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Abstract

Multiple-antenna “based” transmitter cooperation has been established as
a promising tool towards avoiding, aligning, or shaping the interference re-
sulting from aggressive spectral reuse. The price paid in the form of feed-
back and exchanging channel state information (CSI) between cooperating
devices in most existing methods is however often underestimated. In par-
ticular, although the impact of imperfect knowledge of the CSI is often
investigated, it is usually assumed that the channel estimates are perfectly
shared between all the transmitters. This assumption is meaninguful if the
cooperating transmitters are colocated or can cooperate via “perfect” back-
haul links (e.g., fiber based). It is however not adapted to many practical
cases of transmitter cooperation between distant transmitters. Indeed, in
many settings (e.g., current mobile networks), each transmitter acquires one
part of the full multi-user estimate which has to be shared to the coop-
erating transmitters via a limited and imperfect backhaul network. This
sharing step is already challenging in conventional networks due to the de-
lay in the sharing step, but it becomes even more critical when considering
dense networks with a large number of cooperating transmitters, which can
only communicate via low cost, backhaul links (e.g., wireless backhaul).

We focus in this thesis on the network scenario where the transmitters
would like to cooperate in their transmission but can only imperfectly ex-
change on CSI which is acquired locally. This imperfect CSI sharing step
gives rise to a CSI configuration, denoted as “distributed CSI”, where each
transmitter has its own imperfect estimate of the global multi-user channel
based on which it determines its transmit parameters. We study first the
impact of having distributed CSI over the precoder design. Specifically, we
show that conventional precoding schemes are not adapted to the distributed
CSI configuration and lead to poor performance. Instead, we advocate the
use of new, more robust, precoding paradigms.

A problem which is dual to the problem of designing precoders be-
ing robust to unequally shared CSI, is the problem of optimally allocating
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Abstract

CSI across space. This corresponds to the question “Who needs to know
what?”, when it comes to CSI at cooperating transmitters. In contrast to
the resource-hungry solution consisting in providing the same CSI to all
transmitters, it is shown how a non-uniform spatial allocation of the CSI to
the transmitters can provide strong gains depending on the network’s topol-
ogy. Throughout this thesis, both joint precoding across the transmitters
and coordinated beamforming (interference alignment) are investigated as
our leading examples of cooperation methods in interference limited wireless
networks. Finally, interesting and challenging open problems are discussed.
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La coopération des transmetteurs dans les système multi-antennes a été re-
connue comme un outil prometteur pour éviter ou aligner les interférences
résultant d’une réutilisation agressive de la bande spectrale. Le coùt de
cette coopération en terme de transmission d’information de canal aux trans-
metteurs qui coopérent est cependant souvent sous-estimé. En particulier,
bien que les conséquences d’une connaissance imparfaite de l’état du canal
aux transmetteurs soient souvent étudiées, il est usuellement supposé que
les estimées de canal sont parfaitement partagées entre tous les transmet-
teurs entrant en coopération. Bien que cette hypothèse apparaisse comme
raisonnable lorsque les transmetteurs sont localisés au même endroit ou peu-
vent coopérer via des connections de très bonne qualités n’introduisant que
peu d’imperfections, cette hypothèse n’est pas adaptée à de nombreuses
situations où des émetteurs éloignés visent à coopérer. En effet, dans de
nombreux réseaux sans fil (comme par exemple les réseaux mobiles actuels),
chaque transmetteur recoit seulement une partie de l’information relative
au canal qui relie tous les emetteurs à tous les receveurs. Cette estimée
doit ensuite être partagée à tous les transmetteurs entrant en coopération
de manière à rendre possible la méthode de coopération choisie. Cette étape
de partage de l’information de canal représente un réel défi dans la mesure
où elle peut conduire à l’introduction de délai et/ou d’imperfections, ce qui
a des conséquences très importantes sur les performances de la communica-
tion. De plus, les réseaux actuels tendent à se densifier et à utiliser des liens
bon marché, et donc de qualité médiocre, entre les transmetteurs.

C’est pourquoi nous étudions le cas de réseaux sans-fil où des transmet-
teurs émettent d’une manière coopérative bien qu’ils ne puissent échanger
que d’une manière imparfaite l’information de canal obtenue localement. Ce
partage imparfait de l’information de canal donne lieu à une configuration
d’information de canal que nous dénotons comme «distribuée». En résumé,
dans cette configuration d’information de canal distribuée, chaque transmet-
teur reçoit une estimée du canal multi-utilisateur qui lui est propre, à partir
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de laquelle il détermine ses paramètres de transmission. Nous étudions tout
d’abord les conséquences du partage imparfait de l’information de canal sur
le précodage. En particulier, nous mettons en évidence l’inefficacité des
méthodes conventionnelles de précodage lorsque confrontées à une configu-
ration à information de canal distribuée. Nous passons ensuite à un autre
aspect de ce scenario, qui est la détermination de «qui doit savoir quoi»,
lorsqu’il s’agit de l’information de canal disponible aux transmetteurs en-
gagés dans la coopération. Il est démontré comment une allocation non-
uniforme de l’information de canal aux transmetteurs peut donner lieu à
des gains importants, en fonction de la géométrie du réseau considéré.
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1.4 Précodage conjoint avec information de canal distribuée . . . 17
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.5.6 Total Expected Rate Loss . . . . . . . . . . . . . . . . 207
.6 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . 207

xi



CONTENTS

xii



List of Figures
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1.5 Débit moyen par utilisateur en fonction du SNR moyen P

avec une information de canal distribuée donnée par B
(1)
i =

4 log2(P
2
3 ), ∀i, B(j)

i = 4 log2(P ), ∀i, j, j 6= 1.. . . . . . . . . . . 23
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Chapter 1

Résumé [Français]

1.1 État de l’art pour la coopérations des trans-
metteurs

1.1.1 Saturation des bandes de fréquence

Les communications sans fil sont devenues essentielles à nos vies par de nom-
breux aspects et par une grande diversité de services et d’appareils, du télé-
phone mobile classique, aux ordinateurs et aux tablettes en passant par les
capteurs. Le passage à un trafic dominé par le multimédia crée de nouvelles
demandes en terme de débit, de délai, et en général en terme d’efficacité
spectrale. Dans les réseaux mobiles, la demande en débit a augmenté ex-
ponentiellement durant les dix dernières années: En 2012, le volume de
données échangées via les réseaux mobiles était égal à 10 fois le volume total
de données échangées par internet en 2000. De plus, il est prévu que cette
augmentation exponentielle du volume des informations échangées continue
dans les années à venir, de telle sorte que la taille totale des échanges sera
encore 10 fois plus importante dans 5 ans [2]. Pour répondre à la saturation
des ressources disponibles, il est donc nécessaire de repenser l’architecture
des réseaux sans fil ainsi que les méthodes de transmission. Certains élé-
ments sont récemment apparus comme des éléments clés pour atteindre les
performances escomptées: Un premier élément clé est la densification du
réseau avec un accroissement du nombre d’équipements (cf. les études rel-
atives aux petites cellules [3]). Un second élément clé est l’utilisation plus
agressive des ressources ce qui permet d’augmenter les ressources pouvant
être allouées. En revanche, ces deux éléments n’apportent des améliorations
de performance qu’à la condition qu’ils ne soient pas responsables d’un ac-
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croissement du niveau d’interférence. En effet, une mauvaise gestion des
interférences réduirait considérablement les gains et pourrait même rendre
ces changements contre-productifs. C’est pourquoi il est apparu très claire-
ment à la fois dans la communauté académique et dans le milieu industriel
l’importance critique d’une gestion efficace des interférences (Voir [4] et ses
références).

1.1.2 Transmission à partir d’un transmetteur vers de mul-
tiples récepteurs

Ces dernières années, un nombre impressionnant de travaux a porté sur
les transmissions à partir d’un transmetteur (TX) vers plusieurs récepteurs
(RXs), ce qui modèle les transmissions vers plusieurs utilisateurs dans une
cellule unique. Dans la communauté de la théorie de l’information, ce scé-
nario de transmission est bien connu sous le nom de canal de broadcast [5,6].
De nombreux travaux se sont concentrés sur le canal de broadcast que ce
soit dans la communauté de la théorie de l’information ou dans l’industrie
de telle sorte que ce type de transmission est maintenant relativement bien
compris. La capacité du canal de broadcast Gaussien à entrées et sorties
multiples (MIMO) a été trouvé [7, 8] et peut être atteinte par une méthode
de transmission non-linéaire appelé «Dirty Paper Coding» (DPC) [9]. De
plus, les performances obtenues avec des méthodes linéaires de précodage
ont été évaluées [10, 11] et les méthodes linéaires de précodage se sont im-
posés dans la pratiques grâce à leur plus faible complexité et leur efficacité.
De nombreux algorithmes de précodage linéaires ont ainsi été développés
pour maximiser différents objectifs [12, 13]. En revanche, ces méthodes ne
restent efficaces qu’à la condition qu’une information de canal suffisamment
précise soit disponible aux transmetteurs [14,15].

Pour que ces performances théoriques deviennent une réalité, l’estimation
du canal et son feedback aux transmetteurs ont été étudiés dans des scénar-
ios réalistes de transmission et des méthodes rendant possible l’obtention
d’information de canal précise aux transmetteurs ont été développées (voir
[16] et ses références). De plus, les conséquences d’une réduction de la qualité
de l’information de canal ont été évaluées [15]. Il a aussi été montré comment
la sélection des RXs pouvait être exploitée pour améliorer les performances et
rendre les transmissions plus résistantes aux imperfections de l’information
de canal [17, 18]. Une analyse détaillée et complète des transmissions dans
les systèmes MIMO avec plusieurs RXs dans le cas du précodage linéaire a
été réalisée dans [19].

Cependant, même avec ces nouvelles méthodes, il demeure impossible
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d’obtenir une information de canal parfaite aux transmetteurs à cause de la
nature changeante du canal. En conséquence, des méthodes de transmission
plus résistances à une connaissance imparfaite du canal ont été développées.
Deux approches ont été particulièrement fructueuses. La première consiste à
modéliser la connaissance imparfaite du canal par une variable aléatoire pour
ensuite maximiser les performances moyennées sur ces imperfections [20].
Une deuxième approche consiste à considérer un ensemble de réalisations
possibles pour ensuite maximiser les performances minimales vis à vis des
réalisations possibles [21,22].

Parallèlement, d’autres travaux ont étudiés comment exploiter des es-
timées de canaux «retardées», dans le sens où ces estimées sont reçues au
transmetteur après un délai tel que ces estimées sont décorrélées avec l’état
actuel du canal. Il a été montré dans [23] que même une estimée décorrélée
avec l’état actuel du canal pouvait conduire à une amélioration des perfor-
mances en comparaison avec un système sans aucune information de canal
au transmetteur. Ce résultat surprenant a suscité un intérêt très impor-
tant dans la communauté académique et de nombreux travaux ont depuis
étudiés comment exploiter de la meilleure manière possible des estimées de
canal «retardées» (Voir [24–26] parmi d’autres).

Enfin, l’usage de transmetteurs avec un très large nombre d’antennes,
appelés «MIMO massif», est récemment apparu comme une possibilité in-
téressante pour améliorer les performances tout en diminuant les besoins en
terme de traitement du signal et d’information de canal [27]. Les systèmes
MIMO massifs apparaissent maintenant comme une méthode prometteuse
et sont le sujet de nombreuses recherches, que ce soit dans l’industrie ou
dans les universités (voir [28–30] et leurs références).

1.1.3 Coopération de plusieurs transmetteurs

Bien que les progrès accomplis pour les transmissions à partir d’un seul
transmetteur aient permis une très forte amélioration des performances, les
débits atteignables restent profondément limités par les interférences entre
transmetteurs. Ainsi, la coopération entre transmetteurs est récemment
apparue comme un élément clé pour dépasser ces limites et atteindre les
performances désirées [4].

Une méthode traditionnelle pour réduire les interférences entre transmet-
teurs consiste à optimiser conjointement l’allocation de ressources. En parti-
culier, de nombreuses méthodes d’allocation des fréquences ont été proposées
dans le but de s’adapter aux interférences et d’améliorer ainsi l’efficacité des
transmissions [31–34].
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Plus récemment, il a été montré comment la coopération des transmet-
teurs aux niveau du précodage pouvait apporter une importante augmenta-
tion des débits et en particulier éliminer efficacement les interférences. C’est
ce type de scénario et de coopération que nous étudions dans cette thèse.
En particulier, nous considérons un canal multi-utilisateur avec une propa-
gation dans un milieu sans fil et avec K TXs et K RXs où TX j est équipé
avec Mj antennes et RX i avec Ni antennes. Nous définissons le nombre
total d’antennes aux TXs

Mtot ,
K∑

i=1

Mi

et le nombre total d’antennes aux RXs

Ntot ,
K∑

i=1

Ni.

De plus, nous nous restreignons au cas où un seul flot de données est transmis
à chaque utilisateur. L’extension au cas général avec plusieurs flots par
utilisateur sera en revanche discutée dans le manuscrit. Les transmissions
peuvent alors être représentées mathématiquement selon le modèle discret
suivant. Le signal reçu au RX i est représenté par yi et est égal à [35]

yi = HH
iixi +

∑

j 6=i
HH
ijxj

où xj ∈ CMj×1 est le signal émis par le TX j et HH
ij ∈ CNi×Mj est la

matrice contenant les éléments du canal entre TX j et RX i. Les signaux
transmis x = [x1, . . . ,xK ]T ∈ CMtot×1 sont obtenus à partir des données
utilisateur à transmettre s = [s1, . . . , sK ]T ∈ CK×1 après multiplication par
un précodeur T = [t1, . . . , tK ] ∈ CMtot×K de telle manière que

x = Ts.

Si les données utilisateurs ne sont pas partagées entre TXs, le précodeur T
doit respecter une structure diagonale par blocs, ce qui n’est pas le cas si
les données utilisateurs sont partagées. Dans tous les cas, le précodeur T
doit vérifier la contrainte de puissance E[‖T‖2F] = KP . Le filtre gH

i ∈ C1×Ni

est ensuite appliqué au signal yi qui est reçu par le RX i pour obtenir une
estimée du symbole transmis.

Nous étudions principalement le débit moyen par utilisateur pour mesurer
l’efficacité spectrale des transmissions. On suppose que les données des util-
isateurs sont distribuées comme NC(0, 1) de telle sorte que le débit moyen
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de l’utilisateur i est égal à [6]

Ri = E

[
log2

(
1 +

|gH
i HH

i ti|2
1 +

∑
j 6=i |gH

i HH
i tj |2

)]

où nous avons défini HH
i , [HH

i1, . . . ,H
H
iK ] qui représente le canal de tous les

TXs vers le RX i. De plus, nous nous intéressons aux transmissions à haut
rapport signal-à-bruit (SNR) où le nombre de degrés de liberté (DoF) est
une mesure intéressante de l’efficacité spectrale. Le DoF de l’utilisateur i,
ou coefficient pré-logarithmique de l’utilisateur i, est défini comme [35]

DoFi , lim
P→∞

Ri
log2(P )

.

Bien qu’une mesure imparfaite de l’efficacité de la transmission, l’analyse
du DoF permet d’obtenir des résultats analytiques dans des scénarios de
transmission compliqués. Les intuitions obtenus à partir de l’analyse du
DoF ont été à l’origine de nombreuses innovations qui ont ensuite con-
nus un succès très important: les transmissions MIMO [36], l’alignement
d’interférence [37], l’exploitation de l’information de canal retardée [38],
etc...

Nous allons maintenant présenter très brièvement les techniques prin-
cipales de précodage dans le cas où les données utilisateurs sont partagées
entre les TXs et lorsque ces données ne sont pas partagées.

Sans partage des données des utilisateurs: Précodage coordonné

L’utilisation de multiples antennes au TX offre de nouvelles opportunités
de coopération: Dans le cas où un utilisateur n’est servi que par un seul
transmetteur, il est possible de concevoir ce précodeur de telle sorte que les
interférences sont réduites, ce qui est appelé «précodage coordonné» [39].
Avec des RXs ayant une seule antenne, cette coordination peut se réaliser
sur la base d’information de canal «locale» au transmetteur, au sens où
elle est toujours relative au canal entre ce transmetteur et des récepteurs.
Dans ce cas, des méthodes efficaces pour optimiser le précodeur ont été
trouvés [40–48].

À l’opposé, lorsque les RXs ont plusieurs antennes, la problématique du
précodage change totalement. Il devient alors possible d’aligner les inter-
férences dans un nombre limité de dimensions de manière à ce que le RX
puisse ensuite éliminer les interférences par l’application d’un filtre linéaire.
Cette méthode de transmission est appelée «alignement d’interférence» dans
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la communauté [37,38,49] et a suscité un engouement hors-du-commun. Cela
provient du fait que l’alignement d’interférence permet d’atteindre le DoF
maximal dans de nombreux scénarios [37, 49]. Nous nous intéressons dans
cette thèse à la gestion des interférences et donc aux transmissions à haut
SNR pour lesquelles l’alignement d’interférence est une technique primor-
diale.

Une question particulièrement intéressante avec l’alignement d’interférence
est la question de la faisabilité de l’alignement d’interférence. On dit qu’un
canal d’interférence est «faisable» pour l’alignement d’interférence si la con-
figuration d’antennes (i.e., comment les antennes sont allouées aux TXs et
aux RXs) offre assez de variables d’optimisation pour assurer une trans-
mission sans interférence de toutes les données utilisateurs. Cela revient à
vérifier que [49]

gH
i Hijtj = 0, ∀i,∀j 6= i.

Dans le cas d’un seul flot de données pour chaque utilisateur, il a alors été
montré qu’il est possible de vérifier la faisabilité de l’alignement d’interférence
en comparant le nombre d’équations engendrées par la suppression des inter-
férences au nombre de variables d’optimisation disponibles [50]. Nous avons
reformulé ces résultats dans cette thèse pour obtenir le théorème suivant.

Théorème 1. Le canal d’interférence
∏K
k=1(Nk,Mk) est faisable pour

l’alignement d’interférence si et seulement si pour tout sous-ensemble de
TXs STX et tout sous-ensemble de RXs SRX, il est vérifié que

Nvar(SRX,STX) ≥ Neq(SRX,STX), ∀STX,SRX ⊆ K

où Nvar(SRX,STX) et Neq(SRX,STX) sont respectivement le nombre de vari-
ables et le nombre d’équations provenant de l’ensemble de RXs SRX et de
l’ensemble de TXs STX, et sont donc mathématiquement définis comme

Nvar(SRX,STX) ,
∑

i∈SRX

Ni − 1 +
∑

i∈STX

Mi − 1,

Neq(SRX,STX) ,
∑

k∈STX

∑

j∈SRX,j 6=k
1.

De nombreux algorithmes d’alignement d’interférence ont été dévelop-
pés dans la littérature (Voir [51–53] parmi d’autres) et de nombreux travaux
ont analysé les performances qui peuvent être atteintes par l’alignement
d’interférence (Voir [49,50,54] et les références à l’intérieur). Avec ces méth-
odes, les interférences sont supprimées en exploitant à la fois les possibilités
de précodage des TXs et les possibilités de filtrage des RXs, ce qui amène des

6



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

améliorations considérables des performances. En revanche, cela demande
un degré plus important de coordination entre les TXs puisque les TXs
doivent s’accorder sur les dimensions où les interférences sont alignées. En
conséquence, les algorithmes d’alignement d’interférence présentés dans la
littérature demandent que chaque TX dispose de l’information de l’intégralité
du canal multi-utilisateur. Ainsi, lorsque les données des utilisateurs ne
sont pas partagées, les méthodes d’alignement d’interférence ont le plus fort
potentiel mais aussi le besoin le plus important en information de canal
aux TXs. C’est pourquoi, les méthodes d’alignement d’interférences seront
étudiées en détail dans ce manuscrit.

Avec partage des données des utilisateurs: Précodage conjoint

Quand les données des utilisateurs peuvent être partagées entre les TXs, il
est alors possible pour un RX d’être servi conjointement par plusieurs TXs.
Ce scénario de transmission où des TXs éloignés partagent les données des
utilisateurs de telle sorte qu’il est possible d’appliquer un «précodeur con-
joint» est parfois appelé «MIMO virtuel», et est actuellement un candidat
pour la future génération de réseaux sans fil [4, 55, 56]. Avec le partage
des données des utilisateurs et une connaissance parfaite du canal à tous
les TXs, les TXs peuvent alors être vus comme formant un «TX virtuel»
servant tous les RXs, comme dans le cas du canal de broadcast. Il devient
alors possible d’utiliser un précodeur conjoint T ∈ CMtot×K .

Nous étudions les performances à haut SNR de telle sorte que les pré-
codeurs qui éliminent complètement les interférences sont particulièrement
intéressants. Ces précodeurs sont qualifiés de «zéro-forceur (ZF)». Il en
existe de nombreux types, en particulier en fonction du contrôle de puis-
sance aux TXs [57, 58]. Nous considérons dans cette partie le précodeur
ZF T? , [t?1, . . . , t

?
K ] ∈ CK×K avec

t?i ,
√
P
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi, ∀i ∈ {1, . . . ,K}

où
Hi ,

[
h1 . . . hi−1 hi+1 . . . hK

]
, ∀i ∈ {1, . . . ,K}.

et où P correspond à la puissance disponible par utilisateur. Nous utilisons
dans ce manuscrit le super-script ? pour représenter le précodeur obtenu à
partir d’une connaissance parfaite du canal.

Il est évident que cette méthode de coopération est celle qui promet en
théorie les meilleures performances puisque c’est la méthode qui demande
le plus d’échange d’information entre les TXs. L’avantage de ce type de
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coopération comparée aux approches reposant sur une maximisation égöıste
des performances à chaque TX, repose sur le plus faible nombre d’antennes
qui est nécessaire aux RXs et aux TXs pour supprimer totalement les inter-
férences. Ce gain est déjà présent pour l’alignement d’interférence et devient
encore plus important dans le cas du précodage conjoint. Si nous considérons
par exemple un réseau où trois TXs avec deux antennes chacun s’interfèrent.
Il est nécessaire que chaque RX aie trois antennes dans le cas où il n’y a pas
de coopération. Avec l’alignement d’interférence, seulement deux antennes
par RX sont nécessaires alors que le précodage conjoint permet de supprimer
les interférences dans le cas de RXs ayant une seule antenne.

Les deux scénarios de transmission (avec et sans partage des données
utilisateurs sont représentés dans la Figure 1.1.

8



CHAPTER 1. RÉSUMÉ [FRANÇAIS]
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(b) Précodage conjoint

Figure 1.1: Le fonctionnement d’un algorithme de précodage à alignement
d’interférence est décrit schématiquement dans la Figure a. La Figure b
montre le précodage distribué dans le cas de précodage conjoint avec partage
des données utilisateurs. La matrice ET

i est une matrice qui sélectionne
les lignes du précodeur multi-utilisateur T qui correspondent aux antennes
localisées au TX i.
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1.2 Les défis de l’obtention de l’information de
canal aux transmetteurs

1.2.1 Information de canal imparfaite aux transmetteurs

De la même manière que pour le cas d’un transmetteur unique, les bénéfices
de la coopération des TXs ne peuvent être atteinte qu’au prix de l’obtention
d’une information de canal précise aux TXs. En effet, il n’est possible de
coordonner les actions des TXs que si ces TXs connaissent l’état du canal
sans fil. L’obtention de cette information de canal est encore plus délicate
dans le cas de la coopération des TXs (alignement d’interférence et précodage
conjoint) car il est alors nécessaire d’obtenir les informations relatives aux
canaux entre tous les TXs et tous les RXs. Ainsi la quantité d’information
à partager augmente très vite avec la taille du réseau.

En conséquence, la réduction des besoins en information de canal aux
TXs des méthodes d’alignement d’interférence est devenu un domaine actif
de recherche à part entière [51,52,59–61]. Une synthèse des difficultés tech-
niques et pratiques liées à l’alignement d’interférence est réalisée dans [62].
Une autre approche consiste à étudier le nombre minimal de bits utilisés
pour la quantification de l’information de canal de manière à atteindre le
nombre maximal de degrés de liberté [59,60]. Il a aussi été étudié comment
la conception des filtres aux RXs et aux TXs peut être modifiée pour ré-
duire encore la quantité d’information de canal nécessaire aux TXs [63,64].
Enfin, une autre approche appelée «gestion topologique des interférences»
a récemment été découverte et présentée dans [65]. Au lieu d’avoir comme
point de départ une information parfaite aux TXs et d’essayer ensuite de
réduire les besoins en terme d’information de canal, cette approche consiste
à considérer que très peu d’information de canal est disponible aux TXs et
d’essayer ensuite d’améliorer les performances lorsque plus d’information est
disponible aux TXs. En particulier, cette approche vise à exploiter seule-
ment une connaissance topologique du réseau sans-fil par les TXs (i.e., la
connectivité).

Pour ce qui est du précodage conjoint avec des TXs éloignés, les algo-
rithmes conçus pour le canal de broadcast avec un seul TX servant plusieurs
RXs peuvent être utilisés dans ce scénario de coopération entre TXs. Des ap-
proches utilisant des mises-à-jour itératives entre les TXs et les RXs ont aussi
été développées dans le but d’éviter le feedback explicite de l’information
de canal aux TXs [66]. En revanche, ces itérations demandent plusieurs
échanges consécutifs d’information entre les TXs. Ces échanges introduisent
des délais importants dans de nombreux scénarios ce qui réduit considérable-
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ment la qualité de la suppression des interférences. En conséquence, le pré-
codage conjoint est habituellement limité à de petits groupes de coopéra-
tion au sein desquels les TXs échangent leurs estimées de canal et trans-
mettent coopérativement. La manière optimale de former ces groupes a
aussi été étudiée [67–71] mais l’utilisation de petits groupes de coopéra-
tion présente certaines limitations fondamentales. Tout d’abord, les per-
formances aux limites des groupes sont limitées par les interférences en-
tre groupes de coopération. Ensuite, cela demande aux TXs de recevoir
l’information de canal relative à la totalité du groupe de coopération. Le
volume d’information à partager augmente très vite avec la taille du groupe
de coopération ce qui limite l’élargissement des groupes de coopération.
Plusieurs équipes de recherche ont travaillé sur la détermination de la taille
optimale des groupes de coopération et l’évaluation du coût de l’estimation
de l’information de canal [72,73]. Ces travaux suggèrent que la coopération
des TXs ne permet pas la gestion efficace des interférences, même lorsqu’il
est possible de former de grands groupes de coopération.

1.2.2 Configuration à information de canal distribuée

Nous avons vu dans le paragraphe précédent que de nombreux travaux ont
étudié le problème de la coopération des transmetteurs lorsque l’information
de canal obtenue aux TXs est imparfaite. En revanche, il est considéré dans
ces travaux que l’estimée, bien que imparfaite, est la même à tous les TXs
impliqués dans le précodage conjoint. En pratique, cela signifie soit que
le précodage est réalisé centralement, soit que les estimées de canal sont
parfaitement partagées entre les TXs. Nous qualifions par la suite ce scénario
à information de canal comme étant «centralisé». Cette hypothèse est bien
justifiée dans certains cas où les liens entre TXs sont de très bonne qualité
et en particulier lorsque les TXs sont situés au même endroit.

En revanche, cette hypothèse est peu réaliste dans de nombreux scénar-
ios où les TXs sont éloignés et où le nombre de TXs souhaitant entrer en
coopération est important. L’information de canal est acquise localement
aux RXs et doit être transmise aux entités responsables du précodage. Une
possibilité est l’utilisation d’un noeud central, mais celle-ci ne peut être en-
visagée que dans certains scénarios et requiert une architecture centralisée
qui n’est pas adaptée aux réseaux de grande taille. La solution alternative
est le précodage distribué mais cela requiert que chaque TX reçoive à pri-
ori l’information de canal relative à tout le canal multi-utilisateur. Dans le
cas du précodage distribué, deux scénarios sont actuellement envisagés pour
l’acquisition de l’information de canal aux TXs.
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Dans le premier scénario, l’information de canal disponible aux RXs
est émise directement vers tous les TXs comme dans un canal de broad-
cast. Cette approche présente l’avantage de ne nécessiter aucun partage
d’information entre les TXs. En revanche, elle n’est pour l’instant pas priv-
ilégiée par les organismes de standardisation pour les réseaux mobiles [74].

Le scénario alternatif consiste à une transmission du RX vers un unique
TX. Cette information de canal est ensuite partagée vers les autres TXs.
Le partage de cette information sans délai et sans dégradation demande
l’utilisation de liens très coûteux qui ne peuvent pas être utilisés pour con-
necter tous les TXs entre eux. Ainsi, cette étape de partage de l’information
de canal introduit dans de nombreux cas des délais supplémentaires.

Ces deux scénarios sont représentés dans la Figure 1.2. Dans les deux
cas, les informations de canal disponibles aux différents TXs ne sont pas
exactement les mêmes, en particulier lorsque le nombre de TXs entrant en
coopération augmente. En effet, chaque TX doit recevoir l’information de
canal relative à l’intégralité du canal multi-utilisateur ce qui implique que
la quantité d’information à échanger augmente très vite avec la taille du
réseau.

Pour modéliser ces scénarios où différents TXs obtiennent des estimées
de canal étant imparfaites et imparfaitement partagées entre les TXs, nous
introduisons la notion de configuration à «information de canal distribuée».
Dans ce modèle, le TX j reçoit sa propre estimée du canal multi-utilisateur
que nous dénotons par (H(j))H ∈ CNtot×Mtot . Cette estimée est reçue avant
que la transmission n’est lieu par un protocole de coopération entre les TXs.
Chaque TX effectue ensuite le précodage en utilisant seulement cette infor-
mation et sans autre forme de communication avec les autres TXs.

En dépit de son importance pratique, très peu de travaux ont étudié
cette configuration. Dans [75], un algorithme de précodage adapté à cette
configuration est proposé pour le précodage conjoint avec deux TXs. Cepen-
dant, cet algorithme a une forte complexité et ne peut pas être facilement
généralisé. Dans [76], la capacité du canal d’interférence avec deux util-
isateurs est étudiée lorsque chaque TX connâıt seulement une partie de
l’information de canal. Néanmoins, il ne prend pas en considération le cas
d’information de canal imparfaitement connue et imparfaitement partagée
entre TXs. Postérieurs à nos publications, certains travaux ont poursuivi
l’étude de l’impacte de la configuration à information de canal distribuée sur
les méthodes de transmissions [77–79].

La considération de ce nouveau modèle pose de nombreuses questions.
Bien que ces questions soient bien souvent difficiles à répondre et restent
pour la plupart non-résolues, nous présentons de nouveaux résultats et une
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nouvelle vision de certains aspects de ce problème dans cette thèse. En
particulier, nous montrons comment d’importants gains peuvent être réaliser
en optimisant le partage de l’information de canal entre les TXs.

Dans la première partie de cette thèse, nous étudions le précodage à
partir d’information de canal distribuée. Considérant tout d’abord le pré-
codage conjoint, nous évaluons les performances des méthodes conçues pour
le cas d’information de canal centralisée lorsque confrontées à une infor-
mation de canal distribuée. Nous mettons alors en évidence la très forte
perte d’efficacité de ces méthodes et nous proposons des techniques de trans-
mission plus robustes. Nous étudions aussi plus en détail les besoins en
terme d’information de canal et la conception des canaux de feedback. En-
fin, nous étudions la performances de l’alignement d’interférence dans le
cas d’information de canal distribuée et nous mettons aussi en évidence
dans ce cas la nécessité de concevoir de nouvelles approches plus robustes à
l’information de canal distribuée.

Dans la seconde partie de cette thèse, nous discutons un autre aspect
du problème: Considérant la méthode de précodage comme fixée, nous étu-
dions l’allocation des ressources de feedback disponibles. En particulier,
nous étudions quels sont les besoins en terme de feedback et de liens entre
TXs pour s’assurer d’une coopération efficace des TXs. En optimisant di-
rectement l’allocation des ressources de feedback, nous faisons un pas vers
l’allocation à chaque TX de l’information qui lui est vraiment nécessaire.
Nous montrons comment l’adaptation de l’allocation des ressources en fonc-
tion de l’atténuation du canal ou de la configuration des antennes permet
d’importantes réductions de la quantité d’information nécessaire aux TXs
sans réduction significative des performances. Ces approches sont ainsi
prometteuses pour permettre l’utilisation des méthodes de coopération de
TXs dans la pratique.

Nous présentons maintenant un court résumé de certains des principaux
résultats de la thèse. Ce résumé est non-exhaustif mais donne une idée
des résultats obtenus et permet de comprendre les éléments clés du modèle
étudié ainsi que l’approche suivie.
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Figure 1.2: Dans la Figure a, chaque TX transmet directement l’estimée
disponible vers tous les TXs. Dans la figure b, l’estimée de canal est trans-
mise à un unique TX qui la partage ensuite aux autres TXs. Le canal
de tous les TXs vers RX i est dénoté par hH

i et on représente le fait que
l’estimée corresponde à l’information disponible au TX j par l’utilisation du
super-script (j).
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1.4 Précodage conjoint avec information de canal
distribuée

1.4.1 Précodage ZF avec information de canal distribuée

Nous considérons maintenant le cas de précodage conjoint et nous supposons
par soucis de clarté que les RXs et les TXs n’ont qu’une seule antenne
chacun. Nous dénotons alors le canal de tous les TXs vers le RX i par hH

i ∈
C1×K (cela correspond à la i-ème ligne de la matrice de canal HH ∈ CK×K).

L’estimé du canal hH
i au TX j est dénotée par (h

(j)
i )H. Suite à l’analyse

des méthodes de quantification et de feedback [15, 16, 80], cette estimée est
définie par

ĥ
(j)
i =

√

1− 2−
B

(j)
i

K−1hi + 2−
B

(j)
i

K−1δ
(j)
i , ∀i, j ∈ {1, . . . ,K}

où B
(j)
i représente le nombre de bits utilisés pour obtenir ĥ

(j)
i au TX j.

Le vecteur δ
(j)
i ∈ CK×1 a ses éléments distribués comme CN (0, 1) et est

indépendant du canal hi.

Nous considérons que les TXs utilisent le précodeur ZF décrit auparavant
dans le cas où les TXs ont une connaissance parfaite du canal. Cela signifie

que le précodeur ZF obtenu au TX j est T(j) = [t
(j)
1 , . . . , t

(j)
K ] ∈ CK×K avec

t
(j)
i ,

(
IK −Ĥ

(j)
i

(
(Ĥ

(j)
i )HĤ

(j)
i

)−1
(Ĥ

(j)
i )H

)
ĥ

(j)
i , ∀i ∈ {1, . . . ,K}

et avec la matrice (Ĥ
(j)
i )H contenant les canaux vers tous les RXs à l’exception

de RX i telle que

(Ĥ
(j)
i )H ,




(ĥ
(j)
1 )H

...

(ĥ
(j)
i−1)H

(ĥ
(j)
i+1)H

...

(ĥ
(j)
K )H




, ∀i ∈ {1, . . . ,K}.

Il faut remarquer que TX j obtient le précodeur multi-utilisateur T(j) mais
seulement la j-ième ligne de ce précodeur est utilisée en pratique. Cela
provient du précodage qui est distribué parmi tous les TXs. En effet, TX j
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transmet seulement xj = eH
j T(j)s (où la multiplication par eH

j revient à
sélectionner la j-ème ligne), de telle sorte que le précodeur obtenu au total
est écrit comme TDCSI = [tDCSI

1 , . . . , tDCSI
K ] ∈ CK×K où

tDCSI
i ,



eH

1 t
(1)
i

...

eH
Kt

(K)
i


 , ∀i ∈ {1, . . . ,K}.

1.4.2 Analyse du nombre de degrés de liberté (DoF)

Le précodage ZF est très largement utilisé en pratique et il est connu que
le précodage ZF atteint le DoF maximal dans le cas du canal de broadcast
lorsque le TX dispose d’une connaissance parfaite du canal [15,16,80]. Il est
donc intéressant de déterminer quelles sont les performances du précodage
ZF dans le cas de l’information de canal distribuée.

Le scénario de référence est le cas centralisé et nous allons donc rappeler
les résultats de la littérature relatifs au cas centralisé pour pouvoir compren-
dre l’effet de l’information de canal distribuée. Dans le cas centralisé, il n’y
a qu’une seule estimée du canal hi que l’on dénote par ĥi et qui est obtenue
à partir de l’expression précédente avec Bi bits pour la quantification.

Théorème 2 ( [15]). Dans le canal de broadcast avec information de canal
centralisée, si l’estimée de canal ĥi qui est disponible centralement est obtenue
en utilisant Bi = Ai(M −1) log2(P ) bits de quantification (avec Ai ∈ (0, 1]),
le DoF atteint au RX i avec le précodage ZF est égal à

DoFCCSI
i = Ai.

On peut ainsi observer que le DoF atteint au RX i est déterminé seule-
ment par Ai, et donc seulement par Bi. Nous allons maintenant montrer
comment l’information de canal distribuée change fondamentalement cette
propriété.

Théorème 3. Dans le canal de broadcast avec information de canal dis-
tribuée, si l’estimée de canal ĥ

(j)
i qui est disponible au TX j est obtenue

en utilisant B
(j)
i = A

(j)
i (M − 1) log2(P ) bits de quantification (avec A

(j)
i ∈

(0, 1]), le DoF atteint au RX i avec le précodage ZF est égal à

DoFZF
i = min

i,j∈{1,...,K}
A

(j)
i .
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Le DoF au RX i est limité par l’estimée la moins précise parmi les es-
timées de tous les TXs. Ce résultat contraste fortement avec le cas centralisé
et montre l’influence critique de l’information de canal distribuée. C’est aussi
un résultat très pessimiste car une seule mauvaise estimée suffit à réduire les
performances de tous les utilisateurs. Il est donc important de développer
des précodeurs étant plus robustes à ce genre d’imperfections.

Des résultats préliminaires dans [81] montrent qu’il est possible dans cer-
tains scénarios d’augmenter dramatiquement le DoF atteint. Par exemple,
pour la coopération de deux TXs, nous avons développée une méthode de
précodage appelée actif-passif (AP) ZF qui améliore le DoF comparé au
précodage ZF conventionnel.

Théorème 4. Dans le canal de broadcast avec information de canal dis-
tribuée, si l’estimée de canal ĥ

(j)
i qui est disponible à TX j est obtenue

en utilisant B
(j)
i = A

(j)
i (M − 1) log2(P ) bits de quantification (avec A

(j)
i ∈

(0, 1]), le DoF atteint à RX i avec le précodage AP-ZF est égal à

DoFAPZF
i = max

j∈[1,2]
A

(j)
i .

Ainsi, le précodage AP-ZF permet d’atteindre le DoF qui serait obtenu
avec la meilleure des estimées disponibles parmi les deux TXs. AP-ZF con-
siste à fixer arbitrairement le coefficient de précodage du TX ayant l’estimée
la moins précise pour laisser le TX avec la meilleure estimée éliminer les
interférences. Les débits moyens atteints avec les précodeurs ZF et AP-ZF
sont comparés dans la Figure 1.3 dans le cas où:

A
(1)
1 = 1, A

(2)
1 = 0.5, A

(1)
2 = 0, A

(2)
2 = 0.7.

On peut observer que le débit moyen atteint avec le précodage ZF «conven-
tionnel» sature lorsque le SNR augmente (i.e., le DoF est zéro) alors que le
précodeur AP ZF est plus robuste et permet d’obtenir un DoF positif (plus
exactement, la somme des deux DoFs est égale à 1.3).
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1.4.3 Analyse du précodage et des canaux de feedback

Dans la partie précédente, nous avons évalué l’impacte de l’information de
canal distribuée sur le DoF. L’analyse du DoF permet d’obtenir une intuition
du fonctionnement et de discuter la qualité de la gestion des interférences.
En revanche, cette analyse est difficilement exploitable pour concevoir des
systèmes pratiques dans la mesure où le DoF n’est atteint que pour un
SNR asymptotiquement grand. C’est pourquoi nous étudions maintenant
les dégradations dues à l’information de canal imparfaite en terme de débit.

Une première étape consiste à évaluer la qualité du précodage en fonction
de la qualité de l’information de canal disponible.

Proposition 1. Dans le canal de broadcast avec information de canal dis-
tribuée, il est vérifié avec une probabilité 1, que

u
(j)
i = u?i + a

(j)
i + o(max

q
2−

B
(j)
q

K−1 ), ∀i, j ∈ {1, . . . ,K}

avec

E[|eH
p a

(j)
i |2] =

2
∑K

k=1,k 6=i(2
−
B

(j)
k

K−1 )2 + (2−
B

(j)
i

K−1

K
, ∀i, j, p.

Cette proposition est le premier résultat qui relie la précision du pré-
codage (au sens de la différence quadratique avec le précodeur obtenu à par-
tir d’une information parfaite de canal) à la qualité de l’information de canal.
En effet, dans le cas centralisé, ce sont directement les interférences |hH

i uj |2
qui sont analysées. Dans le cas distribué, ces interférences ont une distribu-
tion statistique complexe (et différente de la distribution des interférences
dans le cas centralisé) due au précodage à partir d’information de canal dis-
tribuée qui rend leur analyse difficile. De plus, le précodeur ZF obtenu avec
l’information de canal distribuée est aussi particulier par le fait qu’il n’est
orthogonal à aucune estimée de canal connue aux TXs, à cause du précodage
distribué.

À partir de cette proposition, le débit moyen atteint avec l’information
de canal distribuée est minoré dans le théorème suivant.

Théorème 5. Dans le canal de broadcast avec information de canal dis-
tribuée, le débit moyen RDCSI

i atteint par l’utilisateur i peut être minoré à
haut SNR par

RDCSI
i ≥ R?

i −∆DCSI
R,i
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Figure 1.4: Différence moyenne E[|eT
1 (u

(1)
2 −u?2)|2] en fonction de la qualité

de l’information de canal 2−
B

(1)
i

K−1 .

où R?
i correspond au débit atteint en utilisant le précodage ZF avec une

connaissance parfaite du canal à chaque TX et

∆DCSI
R,i ≤ µ(K)+log2

(
1+P

K∑

j=1

(
(2K−3)

K∑

k=1,k 6=i
2−

B
(j)
k

K−1 +2(K−1)2−
B

(j)
i

K−1
))

+o(1)

avec la fonction µ(x) définie pour x > 0 par

µ(x) , log2 (3 + 2 log(x)) .

Nous considérons maintenant un exemple d’information de canal pour
visualiser les résultats théoriques précédents. Soit un canal d’interférence
avec K = 5 utilisateurs où

B
(1)
i = 4 log2(P

2
3 ), ∀i (1.1)

B
(j)
i = 4 log2(P ), ∀i, j , j 6= 1. (1.2)
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Figure 1.5: Débit moyen par utilisateur en fonction du SNR moyen

P avec une information de canal distribuée donnée par B
(1)
i =

4 log2(P
2
3 ), ∀i, B(j)

i = 4 log2(P ), ∀i, j, j 6= 1..

Nous montrons dans la Figure 1.4 la différence moyenne en norme quadra-

tique E[|eT
1 (uDCSI

2 −u?2)|2] = E[|eT
1 (u

(1)
2 −u?2)|2]. Nous pouvons vérifier que

les résultats des simulations concordent avec les résultats analytiques.

Enfin, nous montrons dans la Figure 1.5 le débit moyen atteint et nous le
comparons à la borne obtenue analytiquement. Nous présentons aussi une
expression analytique qui correspond à la borne du Théorème 5 mais sans la
fonction µ(K). Nous conjecturons en effet que ce terme est seulement du à
la difficulté de borner précisément les performances dans le cas distribué. En
effet, la distribution statistique des interférences est complexe et la dérivation
de la borne inférieure requiert de nombreuses approximations. Bien que la
borne obtenue apparaisse relativement éloignée, elle prend efficacement en
compte la précision de l’information de canal et peut être utilisée dans la
conception des canaux de feedback. À partir du Théorème 5, nous pouvons
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ainsi obtenir le critère suivant pour la conception des canaux de feedback.

Théorème 6. Dans le canal de broadcast avec information de canal dis-
tribuée, le débit moyen RDCSI

i atteint par l’utilisateur i peut être minoré à
haut SNR par R?i−log2(1+b)+o(1) bits si b > 2+2 log(K) et Bi ≥ BDCSI,∀i
avec

BDCSI = (K−1) log2

(
(2K−1)(K−1)P

b

)
+(K−1) log2

(
b(3+2 log(K))

b− 2− 2 log(K)

)
.

Ce dernier résultat donne un critère pour concevoir les canaux de feed-
back dans le cas d’information de canal distribuée. Cela permet de déter-
miner le nombre de bits nécessaires pour la quantification de l’information
de canal de manière à atteindre les performances désirées. En comparant
cette expression aux résultats obtenus dans le cas centralisé, on remarque
que l’expression obtenue dans le cas centralisé n’est pas adaptée au cas dis-
tribué, et peut mener à d’importantes pertes de performance.

Nous présentons dans la Figure 1.6 le débit moyen par utilisateur atteint
en utilisant le nombre de bits de quantification BDCSI avec b = 1. Nous le
comparons au débit moyen obtenu en utilisant Bi = BCCSI,∀i où BCCSI =
(K−1) log2 ((K − 1)P ) correspond au nombre de bits suffisant pour assurer
une perte maximale de log2(1 + 1) = 1 bit dans le cas centralisé. On peut
observer que l’utilisation de BDCSI induit bien une perte plus petite que
1 bit comparé au débit moyen obtenu à partir d’une information de canal
parfaite, ce qui n’est pas le cas en utilisant BCCSI.

Nous avons ainsi pu montrer dans ce manuscript que les règles de con-
ception des canaux de feedback pour le cas centralisé ne sont pas adaptées
au cas distribué et nous avons développé de nouveaux critères qui perme-
ttent de garantir une transmission efficace à partir d’information de canal
distribuée.
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spond au nombre de bits suffisant pour assurer une perte maximale de
log2(1 + 1) = 1 bit dans le cas centralisé.
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1.5 Alignement d’interférence avec information de
canal incomplète

Nous considérons dans cette section un canal d’interférence, i.e., que les
données ne sont pas partagées entre les TXs. Comme déjà mentionné au-
paravant, de nombreux travaux traitent de la faisabilité de l’alignement
d’interférence en fonction du nombre d’antennes disponibles aux TXs et
aux RXs. En revanche, ces travaux supposent toujours que chaque TX
dispose d’une connaissance parfaite de tous les coefficients de canal. Cepen-
dant, il devient très vite clair qu’il n’est pas toujours nécessaire de fournir
l’intégralité de l’information de canal à chaque TX. Supposons par exemple
que chaque RX aie à sa disposition un nombre suffisant d’antennes. Il n’est
alors pas nécessaire d’effectuer de précodage puisque les interférences peu-
vent être supprimées par simple filtrage aux RXs. Cela a pour conséquence
qu’il est possible dans ce cas «d’aligner les interférences» sans aucune in-
formation de canal aux TXs. Ce simple exemple suggère l’existence d’un
compromis entre le nombre d’antennes disponibles et les besoins en terme
d’information de canal. Nous allons en fait aller plus loin et montrer qu’il
est possible dans certains cas de réduire les besoins en information de canal
sans nécessiter aucune antenne additionnelle.

Plus généralement, nous formulons le problème de la minimisation de
l’information de canal transmise aux TXs à la condition que la faisabilité de
l’alignement d’interférence soit préservée. La minimalité fait référence à la
taille de l’allocation de feedback aux TXs que l’on définit comme le nombre
total de nombres complexes transmis aux TXs par l’intermédiaire d’un canal
de feedback multi-utilisateur.

1.5.1 Modèle d’information de canal incomplète et introduc-
tion du problème considéré

Nous considérons maintenant une structure particulière d’information de
canal distribuée que nous qualifions d’information de canal «incomplète».
Dans ce modèle, un TX obtient soit une connaissance parfaite d’un coeffi-
cient de la matrice de canal, soit aucune information sur ce coefficient. Cette
structure d’information de canal est représentée par l’intermédiaire des ma-
trices F(j) ∈ {0, 1}Ntot×Mtot , j = 1, . . . ,K. Ces matrices sont définies de telle
sorte que si le coefficient {HH}ik est connu au TX j, alors {F(j)}ik = 1, et
sinon {F(j)}ik = 0. Ainsi l’estimée du canal multi-utilisateur Ĥ(j) qui est
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disponible à TX j est donnée par

(Ĥ(j))H = F(j) �HH

où � représente le produit de Hadamard. Nous définissons à partir de ces
matrices l’allocation d’information de canal F :

F = {F(j)|F(j) ∈ {0, 1}Ntot×Mtot , j = 1, . . . ,K}

et nous définissons aussi l’espace F qui contient les allocations d’information
de canal possibles. Enfin, pour représenter la consommation des ressources
de feedback, nous définissons la taille d’une allocation d’information de canal
comme suit.

Définition 1. La taille d’une allocation d’information de canal F , dénotée
par s(F), est égale au nombre total de coefficients complexes transmis aux
TXs:

s(F) ,
K∑

j=1

‖F(j)‖2F.

Nous nous intéressons aux allocations d’information de canal qui préser-
vent la faisabilité de l’alignement d’interférence de telle sorte que nous con-
sidérons uniquement l’ensemble Ffeas contenant précisément les allocations
d’information de canal préservant la faisabilité de l’alignement d’interférence.
Il a été démontré comment vérifier facilement la faisabilité d’une configura-
tion d’antenne [49,50] de telle sorte que déterminer Ffeas peut être facilement
réalisé.

Le problème qui nous intéresse est alors le suivant: Quelle est l’allocation
d’information de canal ayant la plus petite taille tout en préservant la fais-
abilité de l’alignement d’interférence? Cette question peut alors être refor-
mulée mathématiquement comme:

Fmin = argmin
F∈Ffeas

s(F).

Il est nécessaire de remarquer que nous nous intéressons à l’influence de
l’information de canal et non au problème de la faisabilité en lui-même,
de telle sorte que nous considérons que toutes les configurations d’antennes
considérées sont faisables si tous les TXs reçoivent une information complète
du canal multi-utilisateur.

Nous introduisons maintenant la notion de étroitement faisable et de
largement faisable, qui se révélera fondamentale dans l’analyse de la fais-
abilité de l’alignement d’interférence avec information incomplète.

27



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

Définition 2. Un canal d’interférence est dit étroitement faisable si ce canal
d’interférence est faisable pour l’alignement d’interférence dans cette con-
figuration d’antennes et si aucune antenne ne peut être enlevée sans rendre
l’alignement d’interférence infaisable. Un canal d’interférence est étroite-
ment faisable si et seulement il est faisable et

K∑

i=1

Ni +Mi = K(K + 1).

Un canal d’interférence qui est faisable mais non étroitement faisable est dit
largement faisable.

1.5.2 Analyse des scénarios étroitement faisables

Théorème 7. Dans un canal d’interférence
∏K
k=1(Nk,Mk) étroitement fais-

able, supposons qu’il existe un sous-ensemble de TXs et un sous-ensemble
de RXs formant un sous-canal d’interférence (i.e., un canal d’interférence
inclus dans le premier) étroitement faisable, i.e.,

Nvar(SRX,STX) = Neq(SRX,STX)

et définissons l’allocation incomplète d’information de canal F = {F(j)|j =
1, . . . ,K} telle que

F(j) = FSRX,STX
, ∀j ∈ STX

F(j) = FK,K = 1Ntot×Mtot ∀j /∈ STX

où FSRX,STX
représente l’allocation d’information de canal contenant les

canaux reliant les RXs dans SRX et les TXs dans STX.
Alors l’allocation d’information de canal F préserve la faisabilité de

l’alignement d’interférence, i.e., F ∈ Ffeas.

L’intuition derrière ce résultat est l’importance de reconnâıtre les sous-
ensembles de TXs et de RXs qui forment un canal d’interférence étroitement
faisable. Ainsi, il est possible d’aligner les interférences en fournissant à
chaque TX seulement l’information relative au plus petit canal d’interférence
étant étroitement faisable. A partir de ce résultat, il apparâıt facilement
comment obtenir une approche itérative d’allocation de l’information de
canal. L’algorithme consiste à d’abord former les précodeurs des TXs ap-
partenant au canal d’interférence étroitement faisable le plus petit. Une
fois ces précodeurs fixés, les autres précodeurs sont obtenus itérativement
de la même manière. Ainsi chaque TX nécessite seulement l’information de

28



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

canal relative au sous canal d’interférence étroitement faisable le plus petit
auquel il appartient. Pour la description détaillé de l’algorithme et la preuve
que cette approche permet bien d’aligner les interférences, nous renvoyons
le lecteur à la partie principale du manuscript.

Nous verrons dans les simulations que la réduction atteinte de la taille
de l’information de canal est importante. En fait, cette réduction exploite
l’hétérogénéité de la configuration d’antennes: Le plus hétérogène est la
configuration, le plus grand sera le gain réalisé par notre approche. Cette
propriété est particulièrement intéressante dans la mesure où les réseaux
du future contiendront des RXs et des TXs de différentes générations et de
différentes natures ce qui favorise l’apparition de configurations hétérogènes.

1.5.3 Analyse des scénarios largement faisables

Dans les configurations largement faisables, chaque antenne additionnelle
peut être exploitée pour réduire la taille minimale de l’information de canal.
Cependant, comment exploiter ces antennes additionnelles représente un
problème difficile. Nous avons donc proposé une approche simple qui con-
siste à utiliser le fait qu’il est possible d’obtenir des configurations étroite-
ment faisables en ignorant certaines antennes à certains RXs et/ou certains
TXs dans une configuration largement faisable. Il y a en général plusieurs
configurations étroitement faisables qui peuvent ainsi être obtenues à par-
tir d’un scénario largement faisable avec à priori des besoins différents en
information de canal.

En conséquence, nous considérons à la place du problème de minimisa-
tion initial, le problème d’optimisation suivant :

F = argmin
F∈Ffeas

min∏K
k=1(N ′k,M

′
k)

s(F) s.t.
K∑

i=1

M ′i +N ′i = (K + 1)K

s.t. 1 ≤M ′i ≤Mi and 1 ≤ N ′i ≤ Ni.

Ainsi la minimisation de l’allocation d’information de canal a été réduite
au problème consistant à trouver le scénario étroitement faisable (contenant
tous les utilisateurs) inclus dans le canal d’interférence initial et nécessitant
le moins d’information de canal. Étant donné que nous avons déjà développé
un algorithme pour les cas étroitement faisables, il reste seulement à déter-
miner quels RXs ou quels TXs ne devraient pas exploiter toutes leur an-
tennes pour éliminer les interférences, i.e., où des antennes sont «enlevées»
en terme de faisabilité d’alignement d’interférence. Un algorithme heuris-
tique est proposé dans le manuscript et nous verrons qu’il atteint des réduc-
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tions importantes avec une faible complexité. Cet algorithme est divisé en
deux phases: la phase 1) consiste en l’identification des TXs et des RXs où il
est impossible d’enlever une antenne sans rendre l’alignement d’interférence
infaisable, ce qui revient à trouver les TXs et les RXs qui appartiennent
à un sous-canal d’interférence étroitement faisable. La phase 2) consiste
en l’application de l’heuristique qui détermine à quel TX ou quel RX retirer
l’antenne parmi les TXs et les RXs où cela est possible sans rendre infaisable
l’alignement d’interférence.

Il faut remarquer que l’expression «enlever des antennes» ne signifie
pas que les antennes sont physiquement enlevées ou même éteintes. Cela
signifie simplement que des dimensions de précodage ne sont pas utilisées
pour réduire les interférences mais dans un autre but, comme par exemple
augmenter la puissance émise vers un utilisateur où améliorer la diversité de
la transmission.

Par soucis de clarté, nous omettons la description de l’algorithme et mon-
trons simplement sur un exemple simple comment l’algorithme fonctionne
de manière à obtenir une intuition du principe général de notre approche.

Exemple 1. Nous étudions ici le canal d’interférence [(2, 2).(3, 2).(2, 3)]. On
peut facilement vérifier que cette configuration d’antennes est faisable pour
l’alignement d’interférence. De plus, elle est largement faisable avec deux
antennes additionnelles puisque

∑K
i=1Ni + Mi − K(K + 1) = 2. Nous al-

lons maintenant présenter les étapes de notre algorithme d’allocation de
l’information de canal pour les canaux d’interférences largement faisables.

• n = 1: Durant la phase 1), aucun sous-canal d’interférence étroitement
faisable n’est trouvé. Cela signifie qu’il est possible d’enlever une an-
tenne à n’importe quel TX ou n’importe quel RX sans remettre la
faisabilité de l’alignement d’interférence en question. Durant la phase
2), une antenne est alors enlevée au TX 1.

• n = 2: On obtient donc le canal d’interférence [(2, 1).(3, 2).(2, 3)].
Durant la phase 1), l’ensemble des TXs appartenant à un sous-canal

d’interférence étroitement faisable est STight
TX (n) = {1, 2} et l’ensemble

de RXs est STight
RX (n) = {1, 3}. On peut alors enlever une antenne

aux TXs et aux RXs n’appartenant pas à ces ensembles. Durant la
phase 2), une antenne est enlevée au TX 3.

Avec cet algorithme itératif, nous avons donc obtenu le canal d’interférence
[(2, 1).(3, 2).(2, 2)]. Cette configuration d’antennes étant étroitement fais-
able, nous pouvons utiliser l’algorithme développé précédemment pour les

30



CHAPTER 1. RÉSUMÉ [FRANÇAIS]

canaux d’interférence étroitement faisables. Cet algorithme retourne
l’allocation d’information de canal

F = {F(1) = F∅,∅,F
(2) = F{3},{1,2},A

(F ) = A{1,3},{1,2,3}}.

La taille de l’information de canal obtenue avec notre algorithme est de 20
alors que la taille complète est de 99. Les 2 antennes additionnelles ont
donc été exploitées pour réduire par un facteur de pratiquement 4 la taille
de l’allocation d’information de canal.
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Figure 1.7: Taille moyenne de l’allocation d’information de canal en fonction
du nombre d’antennes distribuées de manière aléatoire et uniformément aux
TXs et aux RXs pour K = 3 paires de TX/RX.

La réduction moyenne de l’information de canal qui est obtenue par
l’utilisation de notre algorithme est représentée dans la Figure 1.7 dans
le cas d’un canal d’interférence avec 3 paires de TX/RX. Les résultats
sont moyennés sur 1000 configurations d’antennes. Ces configurations sont
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obtenues en allouant aléatoirement selon une distribution uniforme les an-
tennes aux TXs et aux RXs. Si le canal d’interférence contient 12 antennes,
le canal d’interférence est étroitement faisable et l’algorithme pour les scé-
narios étroitement faisables est utilisé. Avec plus de 12 antennes disponibles,
chaque antenne additionnelle est exploitée par notre algorithme pour réduire
la taille de l’information de canal nécessaire. On peut observer que notre
approche réduit fortement la taille de l’information de canal, et cela même
lorsque la configuration est étroitement faisable.

1.6 Conclusion et nouveaux problèmes

Nous avons mis en évidence dans cette thèse la nécessité de considérer le
cas d’information de canal distribuée dans le mesure où cela correspond à
une réalité pratique. De plus, l’évaluation des performances atteintes par les
méthodes de précodage conventionnelles montre l’importance de considérer
ce modèle dans la conception du précodage, au prix d’une forte dégradation
des performances. Nous avons aussi mis en évidence que l’allocation uni-
forme des ressources de feedback vers tous les TXs n’utilise pas efficacement
les ressources de feedback disponibles: La dissémination de l’information
de canal doit être conçue de manière à fournir à chaque TX seulement
l’information qui lui est réellement utile. L’optimisation du partage de
l’information de canal réduit considérablement les besoins en information
de canal aux TXs, rendant ainsi la coopération des TXs plus adaptée aux
contraintes pratiques des réseaux et ouvrant la voie vers un usage plus im-
portant de la coopération des TXs dans la gestion des interférences.

Au delà des nouvelles méthodes présentées, la considération d’une infor-
mation de canal distribuée aux TXs mène à de nombreuses nouvelles ques-
tions mais aussi à de nombreuses opportunités. Nous avons souvent étudié
dans ce manuscript le nombre de degrés de liberté comme métrique et plus
généralement les performances à haut SNR. L’étude des performances à des
SNRs plus faibles et dans des modèles de canal plus proches de la réalité per-
mettra de transposer les gains obtenus théoriquement en des améliorations
de l’efficacité spectrale dans la pratique. De plus, le problème du précodage
avec information de canal distribuée est un problème difficile qui reste dans
sa majeure partie non résolu. L’obtention de nouvelles méthodes de pré-
codage plus robustes à l’information de canal distribuée représente ainsi une
direction de recherche prometteuse. Enfin, nous avons montré dans certains
scénarios comment l’optimisation du partage de l’information de canal per-
met d’utiliser plus efficacement les ressources de feedback disponibles. Cette
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approche peut potentiellement être étendue à de nombreux autres scénarios
et contribuer à rendre les réseaux sans fil plus efficaces.
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Chapter 2

Introduction

2.1 State of the Art for Transmitter Cooperation

2.1.1 Saturation of the Wireless Medium

Wireless communication has become essential to our lives in many ways,
through a variety of services and devices ranging from pocket phones to
laptops, tablets, sensors and controllers. The advent of multimedia dom-
inated traffic poses extra-ordinary constraints on data rates, latency and
above all spectral efficiency. In mobile networks, the demand for data rate
has increased exponentially in the past decade. In 2012, the global mobile
traffic was equal to 10 times the size of the entire global internet traffic in
2000 and it is expected that the global mobile traffic will continue its expo-
nential increase to reach a tenfolds increase within the next 5 years [2]. In
order to deal with the expected saturation of available resources in currently
used bands, the architecture of the wireless networks and their transmission
schemes have to be rethought. Key enablers for the strong performance
of new wireless systems will be a i) greater densification of infrastructure
equipments (small cells [3]), and ii) a very aggressive spatial frequency reuse,
which in turn results in severe interference conditions for cell-edge termi-
nals. It has then become increasingly clear that the bottleneck of the future
wireless networks will be the management of interference [4].

2.1.2 Downlink Multi-user Single-cell Transmission

In the last decade, an impressive number of works have been focused on
the downlink transmission where one single transmitter (TX) serves mul-
tiple receivers (RXs). In the information-theoretic community, this trans-
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mission scenario is well known as the broadcast channel (BC) [5, 6]. This
scenario has been heavily investigated both in the information theoretic
society and in the industry, and is now relatively well understood. The
capacity of the Gaussian multiple-input multiple-out (MIMO) channel has
been obtained [7,8] and shown to be achieved by a non-linear scheme called
dirty-paper coding (DPC) in which the interference are subtracted on the
TX side [9]. In addition, the performance of linear precoding has been eval-
uated [10, 11] and it has become clear that linear precoding is a practically
interesting transmission scheme with lower complexity than DPC but good
performance. Efficient algorithms have also been developed in order to max-
imize the performance with regards to different figures-of-merit while having
a low complexity [12, 13]. However, the performance improvement can only
be obtained at the cost of an accurate knowledge of the channel state at
both the TX and the RXs [14,15].

To translate these theoretic gains into practical performance, it has then
been investigated how to estimate and feedback the channel state in realistic
scenarios. Methods to obtain accurate feedback at the TX at low cost have
been developed [16] while the impact of having imperfect channel state in-
formation (CSI) at the TX has been evaluated [15]. It has also be shown how
channel dependent scheduling could help improve the performance and make
the transmission more robust to imperfect CSIT [17, 18]. A comprehensive
study of multiuser-MIMO transmissions with linear precoding is provided
in [19].

Even with the novel developed schemes, obtaining perfect CSIT remains
unrealistic due to the changing nature of the channel. Therefore, trans-
mission methods being more robust to imperfect CSIT have been provided,
optimizing either the average performance over the CSIT errors [20] or op-
timizing the worst case behavior [21, 22]. Another line of work aiming at
exploiting delayed CSIT has been triggered by the work [23] where it was
shown that even completely outdated CSIT (not correlated with the current
channel state) could help improve the performance over a setting without
CSIT. Since then, many works have study how to exploit delayed CSIT
(See [24–26] among others).

Finally, using TXs with a very large number of antennas, so-called mas-
sive MIMO, has been recently advocated in [27] as a solution to improve
further the performance while easing the requirements in terms of signal
processing and CSI. It is now considered a promising method and is the
focus of the research of an increasingly large community. It is investigated
both by companies developing prototypes of such TXs and by the academic
world (see [28–30], among others).
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2.1.3 Multi-cell Processing

Although the progresses and innovations done regarding the single-cell trans-
mission have lead to great performance improvements, they remain fun-
damentally limited by the inter-cell interference. Thus, TX cooperation
has appeared recently as the key to further performance improvements [4].
One conventional method to reduce inter-cell interference is by coordinat-
ing resource allocation via flexible and coordinated scheduling. Different
frequency allocations schemes have been proposed with the goal to adapt
to the interference generated in order to improve the transmission effi-
ciency [31–34].

Without user’s data sharing: Coordinated Beamforming (CB)

The use of multiple-antennas at the TX offers additional opportunities for
the TX cooperation. If each user is served only by one TX via linear pre-
coding, it is possible to design the precoder (also called beamformer) so as
to emit little inter-cell interference, so-called coordinated beamforming [39].
With a single-antenna at each RX, the coordination of the TXs can be done
based on mostly local CSIT and efficients methods have been found to op-
timize the precoder design or the feedback [40–48].

In contrast, with multiple-antennas available at the RXs, the transmis-
sion paradigm changes completely. It becomes then possible to align in-
terference at a restricted number of dimensions such that a RX can then
suppress the remaining interference via RX zero forcing (ZF). This precod-
ing scheme has been called interference alignment (IA) [37, 38, 49] and has
lead to an impressive number of new algorithms (See [51–53] among others)
and analysis (See [49,50,54], among others). In IA, the interference are ZF
jointly at the TXs and the RXs which can lead to a strong improvement of
performance. However, it requires a higher degree of coordination among
the TXs since all the TXs have to agree on the RX dimensions in which
all the interference are restricted. Hence, all the algorithms cited above
require global CSI at every TX. Without data sharing between the TXs
(i.e., among the coordinated beamforming techniques), IA represents the
transmission scheme with the strongest potential and the higher feedback
requirements. Hence, in the absence of user’s data symbol sharing, we will
always consider that the RXs have multiple-antenna such that IA can be
applied.
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With user’s data sharing: Joint Precoding (JP)

When the user’s data symbols can be shared to several TXs via for exam-
ple a backhaul network, it is then possible for one user to be served jointly
by several TXs. This scenario whereby multiple interfering TXs share user
messages and allow for joint precoding, denoted as “Network MIMO” or
“Multi-cell MIMO”, is currently considered for next generation wireless net-
works [4, 55, 56]. With perfect message and CSI sharing, the different TXs
can be seen as a unique virtual multiple-antenna array serving all RXs,
in a multiple-antenna BC fashion. It is in fact clear that the cooperation
through JP allows theoretically for the largest improvement as it requires
more exchange of information between the TXs than the other alternatives.

A distinct advantage of TX cooperation over conventional approaches
relying on egoistic interference rejection at the RXs, lies in the reduced
number of antennas needed at each RX to ZF residual interference. This gain
is further amplified when user data messages exchange among TXs is made
possible. For instance, in the case of three interfering two-antenna TXs,
relying on RX based interference rejection alone requires three antennas at
each RX to ZF the interference, while just two are needed when coordination
is enabled via IA. Further, if the three user messages are exchanged among
the TXs, thus enabling JP, then just one antenna per TX and RX is sufficient
to preserve interference-free transmission.

2.2 The Challenges of Obtaining CSIT

2.2.1 Imperfect CSIT

Similarly to the single-cell case, the benefits of multiple antenna transmit
cooperation go at the expense of requiring CSI at the TXs (CSIT). Indeed,
it becomes possible to coordinate the actions of the TXs only if they share
the knowledge relative to the state of the wireless channel. Obtaining this
CSIT is even more challenging in multi-cell cooperation because in most of
the schemes (IA and JP), global multi-user CSI is necessary at every TX.

Consequently, the study of how CSIT requirements for IA methods
can somehow be alleviated has become an active research topic in its own
right [51, 52, 59–61]. An overview of the practical challenges of IA and of
some possible solutions is provided in [62]. Another line of work consists
in studying the minimal number of CSI quantization bits that should be
conveyed to the TXs to achieve some given number of degrees-of-freedom
(DoF) using IA [59, 60]. It has then been investigated how to reduce the
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requirements by optimizing the design of the RX and TX filters [63, 64].
Another approach denoted as topological interference management has been
recently introduced in [65]. Instead of starting from full CSIT and reducing
the requirements, it considers the problem of exploiting only topological in-
formation of the network (i.e., connectivity) to obtain very robust schemes
in terms of CSI requirements.

Regarding JP across distant TXs, the algorithms designed for the conven-
tional BC can then be applied in the multi-cell setting. Distributed schemes
based on iterative updates of the transmit coefficients were also designed to
avoid the requirements of explicit CSI at the TXs, both for IA [51] and for
joint precoding [66]. However, the computation of precoders typically relies
on iterative techniques where each iteration involves the acquisition of local
feedback. As local feedback is updated over the iterations, this approach
implicitly allows each TX to collect information about the precoders and
channels of other TXs, hence amounting to an iterative global CSI acquisi-
tion at all TXs.

As a result, JP is usually limited to small cooperation clusters inside
which the TXs exchange their CSI and cooperate. The optimal way of
forming these clusters has recently become an active research topic [67–71].
Still, clustering leads to some fundamental limitations. Firstly, there is
inevitably inter-cluster interference on the boundaries of the cluster and
secondly, it requires the obtaining at all the TXs inside the cluster of the CSI
relative to the entire cluster. This means that the amount of CSI feedback
required quickly increases with the number of TXs inside the cluster. Several
works have focused on determining the optimal size of the clusters when
taking into account the cost of estimating the channel elements, e.g., [72,73].
They suggest that TX cooperation cannot efficiently manage interference,
even if the backhaul links are strong enough to form large clusters.

2.2.2 The Distributed Channel State Information Setting

As it was mentioned in the previous section, a large body of literature has
been focused on the problem of TX cooperation with imperfect CSIT. How-
ever, it is usually assumed that the channel estimate, although imperfect,
is the same at all the TXs involved in the joint processing. This means
that either the precoding is done in a central node or that the precoding is
distributed across the TXs with the channel estimate being perfectly shared
between the TXs. This CSIT scenario will be called hereafter the centralized
CSIT case. This assumption comes partly from the legacy of previous works
where all the transmit antennas were colocated so that this assumption was
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justified, and partly because it makes the model simple and intuitive.
However, this assumption is likely to be breached in many scenarios

where the TXs are not colocated. Indeed, precoding in a centralized node
can be considered only in some scenarios and requires a centralized architec-
ture which does not scale well with the number of cooperating TXs. With
distributed precoding, the CSI acquisition is inherently acquired at each TX
through a different feedback channel. Two scenarios are actually considered
for the acquisition of the CSIT in wireless networks and both scenarios are
illustrated in Figure 2.1.

The first one consists in direct broadcast of the local estimates from
each RX to all the listening TXs. This scenario is interesting as it does not
require any CSIT sharing through the backhaul network. It is however not
possible in the current 3GPP LTE-A standards [74].

The alternative is an over-the-air feedback from the UE to the home
base station alone, followed by an exchange of the local estimates over the
backhaul, as it is currently advocated by 3GPP LTE-A standards [74]. Shar-
ing the channel estimates without delay and without quantization requires
expensive fiber-based backhaul links or dedicated wireless links which will
not be available everywhere or will be too costly. In many settings, the CSI
sharing will therefore not be possible without further quantization loss and
without a certain delay due both to scheduling and to protocol latency.

Either case, the channel estimates available at the various TXs will not
be exactly the same. This becomes particularly clear as the number of
cooperating TXs increases. Indeed, in both cases, the practical difficulties
of acquiring the CSI at the TXs in a timely manner become more challenging
as the number of TXs increases. In addition, the amount of CSI to provide
to each TX increases very quickly with the size of the network: every TX
has to receive the whole multi-user channel matrix which is of size K ×K
for a setting with K TX/RX pairs and only single-antenna nodes.

This means that a form of CSI discrepancy between the channel esti-
mates at the different TXs will arise in many scenarios. In order to capture
multiple-antenna precoding scenarios whereby different TXs obtain an im-
perfect and imperfectly shared estimate of the overall multi-user channel,
we introduce the framework of distributed CSIT. In this CSIT configura-
tion, TX j is assumed to have received its own estimate of the multi-user
channel, denoted by H(j), before the transmission occurs. It then designs
its transmit parameters solely based on this channel estimate and without
additional communications with the other TXs.

In spite of its practical relevance, very few works have considered this
CSIT configuration, although the analysis of distributed cooperation is gain-
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ing in momentum. In [75], a robust algorithm was designed for joint pre-
coding across two TXs having distributed CSIT. However, the algorithm
provided is computationally demanding and does not provide any insight.
In [76], the capacity of the two-user interference channel (IC) is studied when
each TX knows perfectly a subset of the channel coefficients which are fixed.
This work discusses whether it is possible to transmit reliably without know-
ing some channel coefficients. It does not study however the transmission
with imperfect and imperfectly shared CSIT. Recently, distributed schedul-
ing with local state information has also been investigated in [82] and a
heuristic algorithm to efficiently exploit the local information available has
been developed. Posterior to our publications, some works have pursued
analyzing the impact of distributed CSIT over both JP across the TXs [77]
and IA [78,79].

Several fundamental questions follow from this distributed CSIT config-
uration and have not yet been answered. Although these questions prove to
be difficult and to a large extent remain open, we shed some light on this
problem in this thesis. Specifically, we show that significant gains can be
realized from the consideration of the distributed CSIT framework.

In the first part of this thesis, we study the design of precoders based
on distributed CSIT. Considering first JP, we evaluate the performance of
conventional precoders designed for the case of centralized CSIT when con-
fronted to distributed CSIT. We show the extremely deleterious impact of
the CSIT discrepancies over the performance and we discuss the design of
robust precoders. We also study how distributed CSIT impact the CSI feed-
back requirements. Finally, we discuss the impact of distributed CSIT over
the IA algorithms.

In the second part of this thesis, we consider the other face of the prob-
lem and we assume this time the transmission scheme to be fixed and we
study the spatial allocation of feedback resources. We study what are the
requirements for an efficient TX cooperation in terms of feedback and back-
haul architecture. In particular, we study how complete and accurate should
the estimate H(j) be for each j given some performance requirements. By
optimizing directly the spatial allocation of the CSIT, we go closer towards
providing each TX solely with the information which it really needs for an ef-
ficient transmission. We show how this approach leads to strong reductions
of the CSIT requirements at virtually no cost, and is therefore promising
to make TX cooperation more practical under the constraints of realistic
networks.
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2.3 Contributions and Publications

2.3.1 Contributions Presented in this Thesis

The contributions presented in this thesis are as follows.

• DoF of JP with distributed CSIT: When the TXs apply joint
precoding with distributed CSIT, we derive the DoF, or prelog fac-
tor (which will be defined and discussed in Chapter 3), as a function
of the quality of the CSIT available at each TX when conventional
ZF is applied at every TX. It is shown that the DoF at every user is
limited by the worst CSIT quality across all TXs and across all RXs.
This is in strong contrast with the results with imperfect centralized
CSIT where the quality of the feedback of user i impacts only the DoF
at user i [15]. We also provide some simple schemes improving the
achieved DoF. These results were published in

Paul de Kerret and David Gesbert, “The multiplexing gain of a two-
cell MIMO channel with unequal CSI”, in proc. IEEE International
Symposium on Information Theory (ISIT), 2011

Paul de Kerret and David Gesbert, “Degrees of freedom of the net-
work MIMO with distributed CSI”, in IEEE Trans. Inf. Theory, vol.
58, no. 11, pp. 6806-6824, Nov. 2012

• DoF of IA with distributed CSIT: Considering some particular
IA schemes with distributed CSIT, we lower bound the DoF achieved.
The results suggest a similar behavior as when JP is used in the sense
that the quality of one channel estimate at one TX impacts all the
other users. These results were published in

Paul de Kerret, Maxime Guillaud, and David Gesbert, “Degrees of
freedom of certain interference alignment schemes with distributed
CSIT”, in Proc. IEEE International Workshop on Signal Processing
Advances for Wireless Communications (SPAWC), 2013.

• Rate loss of JP with distributed CSIT: Considering JP with dis-
tributed CSIT, we go beyond the DoF analysis to discuss the rate loss
incurred by the CSI inconsistencies across the TXs. We provide design
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guidelines for the feedback schemes to ensure that the performance re-
mains within some given bounds of the performance achieved when
perfect CSIT is available at all TXs. This work has been published in

Paul de Kerret, Jakob Hoydis, and David Gesbert, “Rate Loss Analysis
of Transmitter Cooperation with Distributed CSIT”, in Proc. IEEE
International Workshop on Signal Processing Advances for Wireless
Communications (SPAWC), 2013.

Paul de Kerret, Jakob Hoydis, and David Gesbert, “Rate Loss Analysis
of Transmitter Cooperation with Distributed CSIT”, to be submitted,
2013

• Distance-dependent CSI spatial allocation for JP: Turning to
the optimization of the spatial CSIT allocation and considering first
JP, we study how the spatial allocation should be made dependent on
the pathloss geometry of the wireless networks. We study an exten-
sion of the DoF analysis called generalized DoF (which will be defined
and discussed in Chapter 3), and we show that the maximal gener-
alized DoF can be achieved in an arbitrarily large network with each
TX having only access to the CSI relative to a finite neighbourhood
surrounding him. This result provides a theoretical foundation for the
well known intuition that the quality with which a channel coefficient
is known at a TX should decrease as the distance between the TX
and the RX concerned by the channel coefficient increases. This work
shows that it is possible to overcome the fundamental limitations of
clustering by optimizing directly the spatial CSIT allocation, hence
allowing for global interference management with only cooperation on
a local scale. These results have can be found in

Paul de Kerret and David Gesbert, “CSI feedback allocation in mul-
ticell MIMO channels”, in Proc. International Conference on Com-
munications (ICC), 2012.

Paul de Kerret and David Gesbert, “Spatial CSIT allocations policies
in network MIMO”, submitted to IEEE Trans. Inf. Theory, June 2013.

• IA with incomplete CSIT sharing: Turning to IA, we provide the
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first IA algorithm achieving perfect IA with only incomplete CSIT,
where the incompleteness refers to some TXs having only the knowl-
edge of a subset of channel coefficients. More generally, we exploit
the distributed (here incomplete) CSIT framework to develop an IA
algorithm achieving IA with significant reductions of the CSIT require-
ments. Particularly striking it the fact that these savings come at no
cost since perfect IA is achieved. These results can be found in

Paul de Kerret and David Gesbert, “MIMO interference alignment al-
gorithms with hierarchical CSIT”, in Proc. IEEE International Sym-
posium on Wireless Communication Systems (IWCS), 2012.

Paul de Kerret and David Gesbert, “MIMO interference alignment with
incomplete CSIT”, submitted to IEEE Trans. on Wireless Commun.,
Nov. 2012.

2.3.2 Other Contributions

A few other results are not mentioned in this thesis but have been also
obtained in the course of the doctorate while dealing with the problems of
interference management. They are briefly mentioned below.

• Asymptotic performance of opportunistic distributed schedul-
ing: We investigate interference management through distributed
scheduling in two typical scenarios of wireless communications. In the
first one, all the users have the same average SNR, which models a
dense network with homogeneous pathloss, while in the second the
users are uniformly located around the TXs, which models a network
for mobile communications. The asymptotic behavior of the average
rate when the number of users becomes large is studied. It is shown
that distributed opportunistic scheduling can efficiently manage inter-
ference and achieve close to the optimal performance without interfer-
ence. However, the rate of convergence is calculated and shown to be
extremely slow. These results have been published in

Paul de Kerret, and David Gesbert, “The asymptotic limits of in-
terference in multicell networks with channel aware scheduling”, in
Proc. IEEE International Workshop on Signal Processing Advances
for Wireless Communications (SPAWC), 2011.
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• Sparse precoding in network MIMO channels: Sharing the users
data to all the cooperating TXs might create a too large burden on
the backhaul architecture. Thus, we study how to optimally share the
users data symbols in the case of joint precoding across distant TXs
when there is a constraint on the total number of users data sym-
bols shared in the backhaul. We develop a sparse precoding algorithm
which aims at minimizing the number of non-zeros coefficients in the
precoder (i.e. the number of users data symbols shared in the back-
haul) while achieving given performance requirements. These results
have been published in

Rajeev Gangula, Paul de Kerret, and David Gesbert, “Optimized data
symbol allocation in multicell MIMO channels”, in proc. IEEE Asilo-
mar Conference on Signals, Systems and Computers (ACSSC), 2011.

Paul de Kerret, and David Gesbert, “Sparse precoding in multicell
MIMO systems”, in proc. IEEE Wireless Communications and Net-
working Conference (WCNC), 2012.

Paul de Kerret, and David Gesbert, “A practical precoding scheme for
multicell MIMO channels with partial user’s data sharing”, in proc.
IEEE Wireless Communications and Networking Conference Work-
shops (WCNCW), 2012.

• Joint precoding with backhaul delays: We study a transmit sce-
nario where distant TXs cooperate by exchanging the locally available
CSI via backhaul links introducing some delays. In the line of the re-
cent works from [23], we investigate how to adapt the results presented
in this work for the case of distributed CSIT to the scenarios where
the TXs receive delayed CSIT. A scheme combining the approach for
distributed CSIT [81] and for delayed CSIT [23] is derived and shown
to achieve the optimal DoF. These results have been published in

Xinping Yi, Paul de Kerret, and David Gesbert, “The DoF of network
MIMO with backhaul delays”, in Proc. IEEE International Conference
on Communications (ICC), 2013.

• Precoding with delayed CSIT: We consider this time a multiple-
input single-output (MISO) BC with a single TX which receives a
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delayed channel estimate being correlated with the true channel state.
With only two RXs, it has been shown in [24, 83] how to optimally
exploit this CSI in terms of DoF. In particular, a combination of the
methods in [23] and conventional ZF is used. We study how to gen-
eralize this approach to an arbitrary number of users. Although it
was not possible to obtain the exact DoF characterization, a new pre-
coding scheme outperforming schemes from the literature is developed
and a new outerbound is derived to evaluate the performance of this
precoding scheme. These results have been published in

Paul de Kerret, Xinping Yi, and David Gesbert, “On the degrees of
freedom of the K-user time correlated broadcast channel with delayed
CSIT”, in proc. IEEE International Symposium on Information The-
ory (ISIT), 2013.

Paul de Kerret, Xinping Yi, and David Gesbert, “On the degrees of
freedom of the K-user time correlated broadcast channel with delayed
CSIT”, extended journal version available under arxiv, 2013.
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Figure 2.1: In Figure a, the broadcast scenario is described: every RX di-
rectly transmits its CSI in a broadcast manner to all the TXs. In Figure b,
we present the sharing scenario where every RX transmits its CSI to its serv-
ing TX which then forwards it to the other cooperating TXs. The channel
from all the TXs to RX i is denoted by hi while we use the superscript (j)
to denote the estimate received at TX j.
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Chapter 3

System Model and Problem
Statement

3.1 Multi TXs Transmission

3.1.1 Received Signal

We study the transmission from K TXs to K RXs where the ith TX and
the ith RX are equipped respectively with Mi and Ni antennas. We then
denote the total number of RX antennas by

Ntot ,
K∑

i=1

Ni (3.1)

and the total number of TX antennas spread over the TXs by

Mtot ,
K∑

i=1

Mi. (3.2)

We further assume that the RXs have perfect CSI as we decide to focus pri-
marily on the challenge of conveying CSI back to TXs through some form
of feedback. We consider in this thesis that linear precoding and linear fil-
tering are used and that the RXs treat interference as noise. We consider
solely in this thesis the transmission of a single-stream to each user. These
assumptions are designed to preserve clarity of exposition while preserving
the essence of the novelty in our contributions. Extensions to multiple-
streams are sometimes possible and will be discussed whenever relevant.
The channel from the K TXs to the K RXs is represented by the channel
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Figure 3.1: The description of a distributed IA algorithm is done in Figure a
while Figure b represents the distributed precoding in a Network MIMO with
user’s data sharing. The matrix ET

i is a matrix which selects the rows of
the multi-user precoder T which corresponds to the antennas at TX i.
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matrix HH ∈ CNtot×Mtot where HH
ik ∈ CNi×Mk denotes the channel matrix

from TX k to RX i and has all its elements i.i.d. as CN (0, ρ2
ik) and indepen-

dent of the other channel matrices. This corresponds to the conventional
model in the literature for a Rayleigh fading environment. Note however
that several results (the ones relative to the DoF) extend to any continu-
ous distribution satisfying some mild constraints. The {ρ2

ik}i,k represent the
pathloss attenuation and allow to consider different networks geometries.

The transmission is then described as



y1
...
yK


 = HHx + η =




HH
1 x
...

HH
Kx


+



η1
...
ηK


 (3.3)

where yi ∈ CNi×1 is the signal received at the i-th RX, HH
i ∈ CNi×Mtot the

channel from all TXs to the i-th RX, and η , [η1, . . . ,ηK ]T ∈ CNtot×1 the
normalized Gaussian noise with its elements i.i.d. as CN (0, 1). We denote
the average per-TX transmit power by P and we also call P the average
SNR.

The multi-TX transmitted signal x∈CMtot×1 is obtained from the symbol
vector s, [s1, . . . , sK ]T∈CK×1 with its elements i.i.d. CN (0, 1) as

x =
√
PUs (3.4)

where the matrix U ∈ CMtot×K is the normalized precoder matrix. De-
pending on how the users data symbols are shared to the TXs, it can either
take any value respecting the power constraint or a block-diagonal form, as
explained in the following. Note that we will sometimes consider also the
total precoder T =

√
PU.

3.1.2 Precoding Schemes with Perfect CSIT

We present now the precoding schemes that we will consider in this thesis
and which correspond to the most widely used transmission schemes. We
present the main principles of the transmission schemes in the case where the
CSI is perfectly known at each TX. A transmission with imperfect centralized
CSIT is straightforwardly deduced from it as it suffices to replace the true
channel matrix by the channel estimate. In contrast, the distributed CSIT
scenario where the CSI is imperfectly shared between the TXs is completely
different and calls for innovative designs. This is one of the central points
of the thesis.
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With Users Data Sharing: Joint Precoding (JP)

When all the users data symbols are available at each TX, there is no con-
straint on the structure of the precoder U, at the exception of the normal-
ization constraint. Hence, the TXs can apply a joint precoder (JP) to serve
all the users collaboratively. Many precoding schemes exist, ZF [57,58], reg-
ularized ZF [20, 84], sum rate maximizing [13], among others. Since we are
interested in the problem of interference management, we will consider the
(interference limited) high SNR regime. Hence, we assume that the TXs aim
at completely removing the interference and use ZF precoding. We present
here only the transmission with single-antenna RXs as it will be our focus
when considering joint precoding across the TXs.

ZF is well known to achieve the maximal DoF in the MIMO BC with
perfect CSIT [15,19]. Furthermore, considering limited feedback in the com-
pound MIMO BC, it is revealed in [85] that no other precoding scheme can
achieve the maximal DoF with a lower feedback scaling of the feedback rate.
This confirms the efficiency of ZF in terms of DoF, even when confronted to
imperfect CSI.

Remark 1. Regularizing the matrix inversion by adding an identity, so
called “regularized ZF” outperforms conventional ZF when confronted to im-
perfect CSIT. However, it does not reduce the interference but simply in-
creases the strength of the desired signal by reducing the cost of the interfer-
ence management [11, 20]. Intuitively, the TX does not waste its resource
in managing the interference which, in any case, cannot be efficiently sup-
pressed because of the CSI imperfections. Consequently, we will consider
conventional ZF as this simplifies the analysis without changing the funda-
mental insights of interference management. This question will be further
discussed in Chapter 4.

There are many possibilities of ZF precoding depending on the power
normalization used. One of them, which will be considered in Chapter 5, is
defined as U? , [u?1, . . . ,u

?
K ] ∈ CMtot×K where

u?i ,
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi, ∀i ∈ {1, . . . ,K} (3.5)

with

Hi ,
[
h1 . . . hi−1 hi+1 . . . hK

]
, ∀i ∈ {1, . . . ,K}. (3.6)

We use throughout this thesis the superscript ? to denote the precoders
obtained based on perfect CSIT.
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Remark 2. The ZF beamformer u?i is not instantaneously normalized. Yet,
it can easily be seen that E[‖u?i ‖2] = 1,∀i and E[‖eH

j U?‖2] = 1,∀j. This
means that a per-user and a per-TX power constraint are fulfilled on average.

Without Users Data Sharing: Interference Alignment (IA)

When the users data symbols are not shared, the precoder U is restricted
to a particular block-diagonal form. Indeed, the signal emitted by TX j is
given by

xj =
√
P (Ej)

HUs (3.7)

where Ej ∈ CMtot×Mj is defined as

Ej ,




0∑j−1
i=1 Mi×Mj

IMj×Mj

0∑K
i=j+1 Mi×Mj


 . (3.8)

Since TX j has only access to the data symbol sj , this means that only the
jth column of the matrix (Ej)

HU can be nonzero. This is the necessary
condition so that the transmitted symbol at TX j only depends on the data
symbol sj . Note that we will slightly abuse notations by denoting by ui
the vector of size Mi × 1 instead of the vector of size Mtot × 1. This means
that we keep the same notation when considering the beamformer after the
coefficients fixed to zero have been removed.

In that scenario, it is now well known that it is asymptotically optimal at
high SNR to align interference in a restricted number of dimensions [50]. We
say that IA is achieved if it is possible to transmit all streams interference-
free. Denoting by gH

i ∈ C1×Ni the RX filter applied at RX i, this means
that the RX filter gH

i should be able to ZF all the received interference.
Mathematically, this is written as

gH
i HH

ijuj = 0, ∀j 6= i. (3.9)

Our focus is not on the design of IA algorithms as many IA algorithms are
already available in the literature (See [52,86–90], among others). However,
we present briefly the principle of the minimum (min-) leakage algorithm
from [86] because this algorithm is the most simple one and contains the
main principles which are used in most of the more complicated algorithms
in the literature.
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The min-leakage algorithm can be described in our setting as follows.
The algorithm minimizes the sum of the interference power created at the
RXs which is called IIA and is equal to

IIA ,
K∑

i=1

K∑

k=1,k 6=i
|gH
i HH

ikuk|2. (3.10)

The algorithm is based on an alternating minimization in which the TX
beamformers are first obtained from the RX beamformers as

uk = eigmin




K∑

i=1,i 6=k
Hikgig

H
i HH

ik


 , ∀k (3.11)

where eigmin is the operator which returns the smallest eigenvector of the
Hermitian matrix taken in argument. Similarly, the RX beamformers at all
RXs are then obtained from the TX beamformers as

gk = eigmin




K∑

i=1,i 6=k
HH
kiuiu

H
i Hki


 , ∀k. (3.12)

The TX and RX beamformers are updated iteratively until convergence to
a local minimizer

We consider exclusively in this thesis MIMO IA for given channel realiza-
tions. In that case and considering only single-stream transmissions, the fea-
sibility of IA depends only on the antenna configuration, i.e., whether there
are enough antennas at the TXs and the RXs to ZF all interference [50].
The IA feasibility problem will be discussed in more details in Chapter 8.

3.2 Figures of Merit: Average Rate, DoF, Gener-
alized DoF

3.2.1 Average Rate

Our main metric of interest is the average rate per user as it can be used
to measure the average spectral efficiency of the transmission scheme. Since
the data symbols are assumed to be i.i.d. NC(0, 1), the average rate of user i
is equal to [6]

Ri , E

[
log2

(
1 +

P |gH
i HH

i ti|2
1 +

∑
j 6=i P |gH

i HH
i tj |2

)]
. (3.13)
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Remark 3. Note that without loss of generality (w.l.o.g.), the noise vari-
ance has been normalized to one by dividing by the noise variance both the
numerator and the denominator in (3.13) which comes down to integrate
the noise variance in the variance of the channel. The general expression in
(3.13) will be rewritten in simplified forms when considering JP or IA.

3.2.2 Degrees-of-Freedom

As already mentioned earlier, our primary interest is on the high-SNR
interference-limited regime in which the DoF is an interesting figure-of-merit.
The DoF at user i, or prelog factor, is defined as [35]

DoFi , lim
P→∞

Ri
log2(P )

. (3.14)

Although an imperfect figure-of-merit, the DoF allows to obtain analytical
results in complicated transmission scenarios. The insights obtained from
the DoF analysis have already been the key to the development of many
important new schemes, e.g., MIMO transmission [36], IA [37], delayed CSIT
[38], etc... We will also show in this thesis how it sheds lights into the
problem of interference management with distributed CSIT.

3.2.3 Generalized Number of Degrees-of-Freedom

Considering the limiting regime where the SNR becomes increasingly large
has for consequence that the (finite) pathloss differences vanish in the anal-
ysis and do not impact the analysis. Indeed, any finite pathloss, even ex-
tremely large, represents a multiplicative term which does not affect the
power exponent of the received signal. This is not problematic in a setting
where all the wireless links are of the same order of magnitude. However,
when this is not the case, a conventional DoF analysis will not take the
pathloss geometry into account and will not provide accurate informations.
We present now a toy example to emphasize our point.

Example 1. Let us consider an IC with two TX/RX pairs and every node
having a single-antenna. They interfere to each other via a channel of vari-
ance α ∈ (0, 1) while the direct links have unit variance. A conventional DoF
analysis (we use the term conventional to contrast with the generalized DoF
analysis) states that the DoF is equal to 0.5 independently of the value of
α [91]. However, if the TXs interfere with very low power, e.g., α = 10−12,
then the interference will be negligible for any realistic range of power used
for the transmission. Thus, simulations would give a pre-log factor of the
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rate as a function of the SNR equal to 1 for a wide range of practical SNRs.
In that case, we can say that the DoF analysis does not fully represent the
real behaviour of the average rate achieved in any practical transmission
and does not provide meaningful enough insight into the actual transmission
performance.

In order to allow the rate analysis to depend on a richer set of parameters
illustrating the impact of the network topology, we advocate the use of the
generalized DoF introduced in [91] and used since in many other works
[91–97]. It consists in using a model where the strength of any interference
links is parameterized as a function of the operating SNR. This dependency
of the pathloss with the SNR allows to take the network geometry into
account in the analysis. The generalized DoF at RX i is then defined by

DoFi(Γ) , lim
P→∞

Ri
log2(P )

, subject to ρ2
ijP = (ρ2

iiP ){Γ}ij , ∀i, j, (3.15)

where the matrix Γ ∈ [−∞, 1]K×K is called the interference level matrix
and can be written as

{Γ}ki ,
log2(ρ2

kiP )

log2(ρ2
iiP )

, ∀k, i. (3.16)

The interference level matrix models the geometry by representing the pathloss
differences. The generalized DoF analysis provides an approximation of the
capacity achieved in the original transmission setting. A common approach
to ensure the accuracy of this approximation consists in upper-bounding the
maximal difference between the approximated expression obtained via the
generalized DoF approach and the true capacity [91].

3.3 The Distributed CSIT Configuration

The key specificity of our work comes from taking into account the imperfect
sharing of the CSI between the TXs. In this thesis, we refer to such a CSIT
configuration as distributed CSIT configuration. In each chapter, further
precisions will be provided to adapt the general distributed CSIT model to
the specific transmission setting being studied. We emphasize the differences
with the conventional centralized CSIT configurations in Fig. 3.2.

3.3.1 Distributed CSIT

In the distributed CSIT configuration, TX j receives an estimate Ĥ(j) ∈
CNtot×Mtot of the multi-user channel H ∈ CNtot×Mtot . The estimate Ĥ(j) can
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x = f(Ĥ)s
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•

•
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Ĥ =
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]
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]
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(a) Joint precoding with centralized CSIT
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x(2) = f(Ĥ(2))s

x(3) = f(Ĥ(3))s

TX 1

TX 2

TX 3

•

•

•
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TX 2

TX 3
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(1)
1 ĥ

(1)
2 ĥ

(1)
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]
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s1s2s3

]
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[
ĥ
(2)
1 ĥ

(2)
2 ĥ

(2)
3

]

s =
[
s1s2s3

]

Ĥ(3) =
[
ĥ
(3)
1 ĥ

(3)
2 ĥ

(3)
3

]

s =
[
s1s2s3

]

x1 = eT
1f(Ĥ

(1))s

x2 = eT
2f(Ĥ

(2))s

x3 = eT
3f(Ĥ

(3))s

(b) Joint precoding with distributed CSIT

Figure 3.2: Joint precoding with centralized CSIT is shown in Figure a
while Figure b represents the joint precoding in the distributed CSIT con-
figuration where each TX receives its own multi-user channel estimate. The
estimates ĥi denote the imperfect channel estimates in the centralized CSIT
configuration.
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a priori be arbitrarily chosen depending on the transmission scenarios that
are considered. One example, which is studied in Chapter 4 and Chapter 5
consists in each element of Ĥ(j) being obtained from

{Ĥ(j)}ik =

√
1− (σ

(j)
ik )2{H}ik + σ

(j)
ik {∆}

(j)
ik (3.17)

where {∆}(j)ik ∼ CN (0, 1) and σ
(j)
ik ∈ (0, 1) represents the quality of CSIT.

Hence, the channel estimate at TX j is locally corrupted by an additive
Gaussian noise whose variance varies for each channel element and for each
TX.

Another distributed CSIT configuration that we will consider in Chap-
ter 8 consists in letting each TX know perfectly a subset of the channel
elements, with the subset of the channel elements being different for each
TX. This CSIT configuration will then be denoted as incomplete CSIT.

3.3.2 Distributed Precoding

In this thesis, we will refer to distributed precoding for a parallel algorithm
suited to the distributed CSIT configuration, which means capable of de-
signing precoders at each of the TX separately, based solely on the CSI
estimates available at that particular TX. This estimate is the result of
a preamble where TXs have possibly exchanged some CSIT related data.
The actual exchange mechanism is out of the scope here and left undeter-
mined for the moment. Once the exchange took place, no more communi-
cations is allowed between TXs. This leads to TX j having the knowledge
of the global multi-user channel estimate (Ĥ(j))H ∈ CNtot×Mtot . We intro-

duce (Ĥ
(j)
ik )H ∈ CNi×Mi , and (Ĥ

(j)
i )H ∈ CNi×Mtot in a similar fashion as their

counterparts for perfect CSIT.

Once the estimate Ĥ(j) has been obtained, TX j computes its transmit
signal without any additional communications with the other TXs. This
requirement follows from the delay introduced by the use of the backhaul.
Hence, TX j designs its transmit coefficient xj as a function of Ĥ(j).

Due to the assumption of distributed precoding, the actual precoder used
for the transmission, which we denote by uDCSI, is equal to

uDCSI
i ,




EH
1 u

(1)
i

...

EH
Ku

(K)
i


 , ∀i ∈ {1, . . . ,K}. (3.18)
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with the matrix EH
j used to select the rows corresponding to the antennas

at TX j and defined in (3.8). The superscript DCSI stands for distributed
CSI.

Up to this point, the precoding scheme used to design the transmit coef-
ficient forming the vector uDCSI has not been discussed. How to optimally
design these transmit coefficients is an open question which will be investi-
gated in the following.

Example 2. One sub-optimal precoding scheme consists in applying a con-
ventional precoding algorithm distributively at each TX. This precoding scheme
does not take into account the fact that the other TXs do not share the same
channel estimate and will be therefore denoted as the the naive approach.
Let us consider for example that the users data symbols are shared to the
K TXs and that each node is equipped with a single antenna. Naive ZF
precoding consists in letting TX j compute the precoding matrix U(j) =

[u
(j)
1 , . . . ,u

(j)
K ] ∈ CMtot×K where

u
(j)
i ,

(
IK −Ĥ

(j)
i

(
(Ĥ

(j)
i )HĤ

(j)
i

)−1
(Ĥ

(j)
i )H

)
ĥ

(j)
i , ∀i ∈ {1, . . . ,K}

(3.19)

where the matrix Ĥ
(j)
i contains the channels from the interfered users and

is defined as

Ĥ
(j)
i ,

[
ĥ

(j)
1 . . . ĥ

(j)
i−1 ĥ

(j)
i+1 . . . ĥ

(j)
K

]
, ∀i ∈ {1, . . . ,K}. (3.20)

Although TX j computes the full precoding matrix, only the jth row of the
precoder is used by TX j because of the distributed precoding. Indeed, TX j
transmits only xj =

√
PeH

j U(j)s such that this gives in total

uDCSI
i ,



eH

1 u
(1)
i

...

eH
Ku

(K)
i


 , ∀i ∈ {1, . . . ,K}. (3.21)

3.4 Optimal Precoding with Distributed CSIT: A
Team Decision Problem

Our objective in this thesis is to study the maximization of one of the figure
of merits introduced in Section 3.2 in the case of distributed CSIT. Consid-
ering for example the sum rate maximization, the optimization problem of
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interest is then:

(uDCSI
1 , . . . ,uDCSI

K ) = argmax
(u1,...,uK)

K∑

k=1

Rk, s.to E[‖ui‖2] = 1,∀i. (3.22)

Note that the jth coordinate of ui is a function of Ĥ(j) since it is computed
at TX j. This optimization problem is a difficult one and can be modeled as
a Team Decision problem [98–100]. Indeed, the TXs aim at maximizing a
common objective by choosing their transmission parameters on the basis of
individual information (the channel estimates Ĥ(j)). We will now reformu-
late the optimization problem (3.22) with the adequate formalism in order
to highlight how it relates to the conventional team decision problems.

Let us denote by ω the sum rate function, and by γj(Ĥ
(j)) the signal

transmitted by TX j based on its channel state information Ĥ(j). TX j
can then be seen as player j while γj(Ĥ

(j)) becomes the “strategy”, or “de-
cision”, of player j. Depending on the cooperation scenario (coordinated
beamforming or joint precoding), the function γj(Ĥ

(j)) takes its value in
a different space. Note that we can restrict ourselves to scalar “decisions”,
since a TX with multiple-antennas is simply modeled as two players hav-
ing the same information. The objective to maximize is then represented
as E[ω(γ1(Ĥ(1)), . . . , γK(Ĥ(K)))].

Finding the optimal team decision strategy is a very difficult problem
as it requires solving a distributed functional optimization problem. A first
step towards the optimal solution is often obtained by writing the person-
by-person optimal decision [98, 100]. It consists in writing explicitly the
necessary condition that any optimal decision represents the optimal strat-
egy given the decisions of the other players, i.e., one player cannot improve
the expected payoff by changing only its strategy. Denoting by (γ?1 , . . . , γ

?
K)

one optimal decision, the necessary condition mentioned above is written
mathematically as

γ?j (Ĥ(j)) = argmax
γj(Ĥ(j))

E[ω(γ?1(Ĥ(1)), . . . , γ?j−1(Ĥ(j−1))

, γj(Ĥ
(j)), γ?j+1(Ĥ(j+1)), . . . , γ?K(Ĥ(K)))], ∀j.

(3.23)

3.5 Summary of Objectives

The considered sum rate optimization based on distributed CSIT has been
rewritten as a Team Decision problem. Yet, Team Decision problems are
generally very intricate and in most of the case, solving them remains an
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open problem for mathematicians. Only some particular cases with simple
objective functions (e.g. quadratic objectives) or with restricted decision
spaces (e.g. few possible discrete choices) could be solved [99]. Hence, the
results presented in this thesis do not rely on any result from the Team
Decision literature but we exploit instead the particular properties of each
considered optimization problem. However, keeping the Team Decision for-
mulation in mind will prove helpful to obtain interesting insights and un-
derstand the fundamentals of the problem.

In the first part of this thesis, we aim at solving optimization prob-
lem (3.23) in the sense that we look for the optimal transmission strategies
at the TXs. We provide new schemes outperforming the conventional ones
from the literature and we also evaluate the performance of commonly (sub-
optimal) used strategies for given information structures.

In the second part, we consider the other side of the TX cooperation
with distributed CSIT, which is the optimization of the information struc-
ture. Specifically, we fix heuristically the TX strategies to commonly used
transmission schemes from the literature and we study the optimal allocation
of the available feedback and backhaul resources to the TXs. Practically,
this means looking for the optimal design of the Ĥ(j) over a space of possi-
ble choices. We then show how solving this optimization problem leads to
very efficient solutions which outperform strikingly transmissions relying on
conventional CSI sharing strategies (e.g. sharing of the same CSI to all the
cooperating TXs).
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Part II

Precoding with Distributed
CSIT
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Chapter 4

DoF of ZF with Distributed
CSIT

We study here the precoder design when the TXs are faced with distributed
CSIT. We consider in this chapter that all the nodes are equipped with a
single-antenna. We also focus on homogeneous pathloss configuration in
which all the wireless links have the same variance

ρ2
ij = 1, ∀i, j. (4.1)

Note that this assumption does not impact the DoF analysis as discussed in
Section 3.2.

We aim at answering the following fundamental questions regarding the
high SNR transmission with distributed CSIT:

”How does ZF perform in the distributed CSIT configuration?”

”Are the precoding schemes designed to be robust with respect to imperfect
centralized CSIT efficient to combat CSIT discrepancies between the TXs?”

“How can we make the transmission more robust to CSI discrepancies
between the TXs?”

4.1 Distributed CSIT Model

Our main focus in this work is on frequency division duplexing (FDD) sys-
tems where the CSI is fed back from the RXs to the TX. The feedback
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channels being imperfect, and the resources limited, the CSI is quantized at
the RX before being feedback. Hence, we start by studying the quantization
scheme conventionally used in the literature and how they can be adapted to
the distributed CSIT configuration. We will then use this analysis to obtain
a simple modeling of the CSI imperfections.

4.1.1 Quantization for Distributed CSIT

The conventional quantization scheme in the literature is the Grassman-
nian quantization [16, 80]. It consists in selecting the quantized unit-norm
channel ĥ from the codebook W as

ĥ = argmax
w∈W

|hHw|. (4.2)

Interestingly, this quantization scheme can be seen to be inadequate in the
case of distributed CSIT: The objective which is maximized, is invariant
by multiplication of the codeword by a unit-norm complex number. This
means that the estimate received at TX j can be written as h(j) exp(ıθj)
where θj is uniformly distributed over [0, 2π). This phase invariance creates
an ambiguity between the estimates which is very harmful for the distributed
joint precoding.

As a consequence, the Grassmannian quantization is efficient only if all
the TXs receive the estimates from the same codebook. This prohibits the
sharing of estimates of heterogeneous qualities to the different TXs, which
can be required when backhaul or feedback links of heterogeneous qualities
are available.

Hence, it is necessary to use another quantization in the distributed CSIT
configuration. An alternative scheme consists in selecting the quantized
channel ĥ from the codebook W so as to verify

ĥ = argmin
w∈W

‖w − h‖. (4.3)

However, using directly (4.3) leads to lower performance as the phase of
the channel also impacts the performance, in contrast to the Grassmannian
quantization. To solve this problem, we multiply the unit-norm channel by a
complex unit-norm number in order to let the first coefficient be real valued.
The quantization can then be written as

ĥ = argmin
w∈W

∥∥∥∥w −
{h}∗1
|{h}1|

h

‖h‖

∥∥∥∥ . (4.4)
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The codebook W contains L = 2B codewords being normalized in the same
way.

Random quantization has been considered in several works [15, 80] be-
cause it provides a lower bound for the performance and leads to analytical
results. Furthermore, it is shown in [15] for the conventional MIMO BC that
in the case of two antennas at the TX, no codebook can achieve a better
DoF than the DoF achieved with RVQ. RVQ is also shown to be optimal for
the point-to-point MIMO link as the number of antennas tends to infinity
both at the TX and the RX [101].

Therefore, we provide in the following an analysis of the performance of
the quantization scheme (4.4) with random codebooks.

Proposition 1. Considering the quantization scheme (4.4) with random code-
books W of size L = 2B, it holds for large codebook size (L >> 1) that

EW,h

[
min
w∈W

∥∥∥∥w −
{h}∗1
|{h}1|

h

‖h‖

∥∥∥∥
2
]

= O(2−
B

K−1 ). (4.5)

and

EW,h

[
log2

(
min
w∈W

∥∥∥∥w −
{h}∗1
|{h}1|

h

‖h‖

∥∥∥∥
2
)]

=
B

K − 1
+O(1). (4.6)

Proof. This proposition is a consequence of the results given in Appendix .2.

We have provided only the main results relative to this random vector
quantization scheme as we will not focus further in this thesis on the quanti-
zation schemes. We will instead use a simple model for the CSI imperfections
in order to discuss the fundamental aspects of the transmission. Additional
results on the quantization scheme can be found in Appendix .2.

4.1.2 Distributed CSIT Model

Following the above discussion of the quantization with distributed CSIT,
the variance of the estimation error of hi at TX j, which we have denoted

by (σ
(j)
i )2 in Section 3.3, is set as (σ

(j)
i )2 = 2−

B
(j)
i

K−1 . For the sake of analytical
tractability, we model the quantization error at TX j such that

ĥ
(j)
i =

√
1− (σ

(j)
i )2hi + σ

(j)
i δ

(j)
i , ∀i, j ∈ {1, . . . ,K}. (4.7)
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where δ
(j)
i ∈ CK×1 has i.i.d. CN (0, 1) elements and is independent of hi.

We assume furthermore that the quantization errors at the TXs are inde-

pendent such that we have E[δ
(j)
i (δ

(k)
i )H] = δjkIK . This corresponds to the

assumption that the feedback channels to the different TXs are independent.
The assumption for the quantization error to be Gaussian distributed

makes the calculation easier. However, it can be easily seen that our DoF
analysis depends only on the variance of the quantization error as long as
the distribution verifies some mild regularity constraints.

Remark 4. A practical scenario where the CSIT is distributed arises when
the CSI is broadcast from the RXs to the non-colocated TXs in an analog
manner (analog feedback) [19, 61]. In fact, the digital quantization model
used in this work can be seen as only a model for the CSIT error due to
limited feedback and the results can be directly extended to the case of analog
feedback. In this case, the number of feedback bits can be related to the
average transmit power (or bandwidth) on the feedback channel.

In the conventional MIMO BC, it is shown in [15] that the number of
quantization bits should scale indefinitely with the logarithm of the SNR in
order to achieve a strictly positive DoF when using ZF precoding. Thus,
we also focus on the scaling in the logarithm of the SNR of the number of
quantization bits of all the channel estimates. Consequently, we introduce
the CSI scaling matrix A ∈ RK×K with its (i, j)-th element defined as

A
(j)
i , lim

P→∞

B
(j)
i

B?
, ∀i, j, (4.8)

where we have defined

B? , (K − 1) log2(P ). (4.9)

The number of CSI feedback bits B? corresponds to a CSIT error decreasing
in 1/P and it will become clear in this chapter that this corresponds to the

CSIT being perfect in terms of DoF. Hence, the CSIT scaling coefficient A
(j)
i

represents the percentage of the number of bits B? used to quantize the

channel of RX i (denoted by hH
i ∈ C1×K) at TX j. Note that B

(j)
i is a

design parameter, the limit in (4.8) always exists. In addition, we assume
that the CSI scaling matrix A is known to all the TXs.

Remark 5. We will always consider that A
(j)
i ∈ (0, 1]. Indeed, using A

(j)
i >

1 means using more CSI feedback bits than B?, which does not bring any
improvement in terms of DoF. It follows that in all the subsequent results,
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the scaling coefficients A
(j)
i should be replaced by min(A

(j)
i , 1) so as to be valid

for arbitrary values of the CSIT scaling coefficients. In addition, we consider

that A
(j)
i > 0 as we consider the high-precision quantization regime.

4.2 Review of the Results in the MIMO BC with
Centralized CSIT

We recall in this section the main results from [15] on the DoF achieved
with finite rate feedback for the conventional centralized CSIT configuration.
This will be helpful to understand the differences between the centralized
CSIT configuration and the distributed setting. Hence, we consider a con-
ventional MIMO BC where M TXs are colocated and share the same chan-
nel estimate. For this setting, we need to use notations which are different
from the ones previously introduced for the MIMO channel with distributed
CSIT. We denote by ĥi the channel estimate of hi obtained with Bi bits.
Following [15], the channel estimate is obtained from

ĥi = argmax
w∈WBC

i

|wHhi|2 (4.10)

whereWBC
i is a random codebook containing 2Bi unit-norm vectors isotrop-

ically distributed in CK×1. We provide now the main result.

Theorem 1. [15] In the MISO BC with M antennas and centralized CSIT,
if the channel estimate ĥi is obtained from the quantization scheme (4.10)
with Bi = Ai(M − 1) log2(P ) (and Ai ∈ (0, 1]) the DoF achieved with ZF is
given by

DoFCCSI =

M∑

i=1

Ai. (4.11)

This result was given in [15] for Ai = A, i.e., with the same quality for
all the channel vectors, but the extension to different values of the CSIT
scaling coefficients Ai follows directly from the proof in [15]. The extension
to Theorem 1 has been also suggested in [102] where the same formula for
the DoF is derived in the case where DPC is used instead of ZF.

We will now derive the equivalent result of Theorem 1 for the BC with
distributed CSIT.
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4.3 ZF in the Two-user BC with Distributed CSIT

As a starting point we consider the particular antenna configuration with
only two users and only two antennas at the TX side. This setting is inter-
esting for two main reasons. Firstly, the exposition is simpler in that case
while most of the insights are the same as in the general case, and secondly
it will become clear in the following that this scenario makes it possible to
obtain stronger results.

In the conventional multiple-antenna BC with imperfect CSI, the DoF
with ZF has been derived and shown to be defined by the CSI scaling.
With distributed CSIT, the CSI scaling of each channel vector hi is different
at each TX. One central goal of our work consist in determining how the
DoF expression with centralized CSIT generalized to the distributed CSIT
configuration. This would then lead us to evaluate whether ZF is in that
case a performing solution and if not, whether one can find better solutions.

4.3.1 Conventional Zero Forcing

With distributed CSIT, the conventional ZF precoder is made of the beam-

former tcZF
i , [eT

1 t
cZF(1)
i , eT

2 t
cZF(2)
i ]T to transmit si, with its elements defined

in an intuitive way as

t
cZF(j)
i ,

√
P

2

Π⊥
ĥ

(j)
i

(
ĥ

(j)

ī

)

‖Π⊥
ĥ

(j)

ī

(
ĥ

(j)
i

)
‖
, j ∈ {1, 2} (4.12)

where we have denoted by ī the complementary index of i, i.e., ī , 1 + i
mod 2. The interpretation behind conventional ZF is that each TX applies
ZF using its own CSI, thus implicitly assuming that the other TX shares the
same CSI estimate. Our first result given in the following theorem relates
the DoF achieved with such a precoding strategy.

Theorem 2. Conventional ZF achieves the DoF

DoFcZF = 2 min
i,j∈{1,2}

A
(j)
i . (4.13)

Proof. A detailed proof is provided in Appendix .3.

With distributed CSIT, the DoF is limited by the worst quality of the
CSI across the channels to the RXs and across the TXs. Comparing this
result with the DoF expression with centralized CSIT in Theorem 1, it is
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striking that the DoF at both users is limited by the worst estimation error
whether it is done relative to h1 or h2. This is contrast to the formula with
centralized CSIT in Theorem 1, where the accuracy of the estimation of hi
impacts only the DoF of RX i.

Remark 6. Note that when all the CSIT scaling coefficients are equal, the
setting considered is still different from the conventional multiple-antenna
BC. Indeed, the estimates at the different TXs have statistically the same
accuracy since the CSIT scaling coefficients are equal, but the realizations of
the quantization errors are still different.

It follows from Theorem 2 that the additional interference due to the CSI
inconsistencies between the TXs do not lead to any loss in DoF compared to
the conventional multiple-antenna BC if and only if the channel estimates
are of the same quality.

4.3.2 Robust Zero Forcing

Robust precoding schemes have been derived in the literature either as sta-
tistical robust ZF precoders [20] or precoders optimizing the worst case per-
formance [22] to reduce the harmful effect of the imperfect CSI. Since we
consider the average sum rate, the most relevant approach is the statistical
one.

Using this model, we can extend the approach from [20] and the beam-
former transmitting symbol si at TX j is obtained from solving the following
minimization:

argmin
ti

E∆(j) [‖ei − (Ĥ(j))Hti‖2], subject to ‖ti‖2 =
P

K
. (4.14)

Writing the Lagrangian of the minimization problem with the Lagrange
variable λ for the power constraint and taking the derivative according to
t∗i yields the equation

(
R

(j)
∆ + Ĥ(j)(Ĥ(j))H + λI

)
ti − Ĥ(j)ei = 0 (4.15)

where the covariance matrix of the estimation error at TX j is

R
(j)
∆ , E[∆(j)(∆(j))H] (4.16)

= diag([P−A
(j)
1 , P−A

(j)
2 ]). (4.17)
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The factor λ improves the performance at intermediate SNR by striking a
compromise between the orthogonality constraint and the power consump-
tion but it cannot improve the DoF. Thus, we can let λ be equal to zero and
normalize the beamformer to fulfill the power constraint. The ith robust ZF

beamformer is denoted by trZF
i , [eT

1 t
rZF(1)
i , eT

2 t
rZF(2)
i ]T and ∀j ∈ {1, 2}

t
rZF(j)
i ,

√
P

K

(R
(j)
∆ + Ĥ(j)(Ĥ(j))H)−1Ĥ(j)ei∥∥∥(R
(j)
∆ + Ĥ(j)(Ĥ(j))H)−1Ĥ(j)ei

∥∥∥
. (4.18)

We then derive the DoF achieved by this robust precoder.

Proposition 2. The robust ZF precoder defined in (4.18) achieves the same
DoF as conventional ZF.

Proof. Only a sketch of the proof is provided as the proof follows easily from
the proof of Theorem 2. The lower bound can be obtained using the same
approach as for conventional ZF. Indeed, a Taylor expansion can be applied
over a space of probability close to one. From the distributed precoding as-
sumption, every precoded coefficient has also its phase distributed uniformly
at random and independently of the other coefficients, which concludes the
proof. The extension of the proof of the outerbound is easily done with basic
algebra following the same approach as for conventional ZF.

Hence, even the existing designs of robust ZF precoders do not improve
the DoF in the BC with distributed CSIT. Note that the extension of the
definition of the statistical robust precoder as well as the extension of propo-
sition 2 to the general setting with K users is trivial and will not be given
explicitly.

4.3.3 Beacon Zero Forcing

Robust ZF schemes from the literature do not bring any DoFs improvement
which leads to investigate other alternative schemes more adapted to the
distributed CSIT assumption. As a result, we now propose a modification
of the conventional ZF scheme which improves the DoF when the estimates
for h1 and h2 are of different qualities. We call it Beacon ZF (bZF) because
it makes use of an arbitrary channel-independent vector known beforehand
at both TXs (a beacon signal).
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The ith beamformer is then tbZF
i , [eT

1 t
bZF(1)
i , eT

2 t
bZF(2)
i ]T, with its ele-

ments defined from

t
bZF(j)
i ,

√
P

2

Π⊥
ĥ

(j)

ī

(ci)

‖Π⊥
ĥ

(j)

ī

(ci)‖
(4.19)

where ci is any non-zero vector chosen beforehand and known at the TXs.
Due to the isotropy of the channel, the choice of ci does not influence the
performance of the precoder.

Corollary 1. The DoF achieved with beacon ZF is

DoFbZF = min
j∈{1,2}

A
(j)
1 + min

j∈{1,2}
A

(j)
2 . (4.20)

Proof. The DoF follows easily from Theorem 2. Indeed, when using bea-
con ZF, no error is induced by the projection of the direct channel which is
replaced by a fixed given vector. In terms of DoF, there is no difference be-
tween projecting the direct channel or any given vector. Thus, it is possible
to apply the formula for the DoF in Theorem 2 considering that the direct
channel is perfectly known, which yields the result.

The key idea behind beacon ZF is to reduce the impact of the differences
in CSI quality by using only the CSI necessary to fulfill the orthogonality
constraint. Thus, the direct channel, which does not change the DoF but
only improves the finite SNR performance, is not used. It follows then that
tbZF
1 does no depend on the estimates of h1, and symmetrically tbZF

2 does
not depend on the estimates of h2.

4.3.4 Active-Passive Zero Forcing

Beacon ZF improves the DoF but it is still the worst CSI scaling across
the TXs (although no longer across the RXs) which defines the DoF. To
improve further the DoF, we propose a scheme called Active-Passive Zero

Forcing (AP ZF). Assuming w.l.o.g. that A
(2)
i ≥ A

(1)
i , AP ZF consists in

the precoder whose beamformer tAPZF
i transmitting symbol si is given by

tAPZF
i ,

√
P

2 log2(P )




1

−{ĥ
(2)

ī
}1

{ĥ(2)

ī
}2


 (4.21)

=

√
P (1+ν

(2)
i )

2 log2(P )
uAPZF
i (4.22)
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where

uAPZF
i ,

[
1
−{ĥ(2)

ī
}1

{ĥ(2)

ī
}2

]T

∥∥∥∥∥

[
1
−{ĥ(2)

ī
}1

{ĥ(2)

ī
}2

]T
∥∥∥∥∥

(4.23)

and

ν
(2)
i ,

|{ĥ(2)

ī
}1|2

|{ĥ(2)

ī
}2|2

. (4.24)

AP ZF is based on the idea that each beamforming vector has to fulfill
only one orthogonality constraint so that only one free variable is necessary.
Thus, one coefficient can be set to a constant while still fulfilling the ZF
constraints. Intuitively, the only way to achieve the DoF stemming from the
best CSI estimate is if TX 2 (which has the best knowledge of h1) can adapt
to the coefficient transmitted at TX 1 to adjust its beamforming vector and
improves the accuracy with which the interference are suppressed. This is
possible only if TX 2 knows the transmit coefficient at TX 1.

Using this precoding scheme, the DoF is then given in the following
proposition.

Proposition 3. Active-Passive ZF achieves the DoF:

DoFAPZF ≥ max
j∈[1,2]

A
(j)
1 + max

j∈[1,2]
A

(j)
2 . (4.25)

Proof. By symmetry, we consider w.l.o.g. the DoF at RX 1, and we assume
that the beamformers t1 and t2 are given by (4.22). We still assume w.l.o.g.

that A
(2)
1 ≥ A(1)

1 , i.e., TX 2 has the best CSI over h1. It follows easily from
the definition that the DoF at RX 1 can be rewritten as

DoF1= 1− lim
P→∞

E
[
log2(|hH

1 t2|2)
]

log2(P )
(4.26)

We now focus on the interference term:

|hH
1 t2|2 =

P

2 log2(P )

∣∣∣∣∣∣
hH

1




1

−{h
(2)
1 }1

{h(2)
1 }2



∣∣∣∣∣∣

2

. (4.27)
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By construction, t2 is orthogonal to h
(2)
1 , so that

|hH
1 t2|2 =

P (1 + ν
(2)
2 )

2 log2(P )
‖h1‖2

∣∣∣∣Π⊥h(2)
1

(h1)Hu2

∣∣∣∣
2

(4.28)

=
P (1 + ν

(2)
2 )

2 log2(P )
‖h1‖2‖δ(2)

1 ‖2 (4.29)

Inserting (4.29) in the DoFs expression (4.26) and using Proposition 16
from Appendix .2 to evaluate the expectation with the quantization error,
we obtain

DoF1 ≥ lim
P→∞

B
(2)
1

log2(P )
(4.30)

= A
(2)
1 (4.31)

which is the best scaling across the TXs.

Comparing the DoF achieved with AP ZF with the DoF achieved when
both TXs share the estimate of a channel vector with the highest accuracy
gives the following result.

Theorem 3. Active-Passive ZF achieves the same DoF in the 2-user BC
with distributed CSIT as in the MIMO BC with centralized CSIT where
both TXs share the estimates with the highest CSI accuracy.

Improved scheme at finite SNR AP ZF allows to recover the DoF
which would have been achieved with the best CSI across the TXs. How-
ever, the choice of the coefficient used to transmit at TX 1 (with the lowest
accuracy of the CSI) remains to be discussed. In fact, the beamformer can be
multiplied arbitrarily by any unit-norm complex number without impacting
the rate achieved so that only the power used at TX 1 needs to be decided.
According to (4.22), the power used at TX 1 is set to P/(2 log2(P )).

The normalization by log2(P ) is a consequence of the fading coefficient
{h1}2 which can have a very small amplitude. In this case it would be neces-
sary for TX 2 to transmit with a very large power to fulfill the orthogonality
constraint. To ensure that the interference are canceled for all channel re-
alizations while respecting the power constraint, it is necessary to have the
ratio between the power used at TX 1 and the sum power constraint tending
to zero. The factor log2(P ) is used because it fulfills this property while not
reducing the DoF due to the partial power consumption.
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However, this comes at the cost of using only a small share of the available
power, which is clearly inefficient and leads to a rate offset tending to minus
infinity. To avoid this behavior, we propose that the TX with the worst
CSI accuracy adapts its power consumption with respect to the channel
realizations. In the following, we propose two possible solutions to improve
the performance at finite SNR:

• Firstly, TX 1 can use its local CSI to normalize the beamformer which
is then given by

tAPZF
i =

√
P

2




1√
1+ν

(1)
i

− {h(2)

ī
}1√

1+ν
(2)
i {h

(2)

ī
}2


 (4.32)

with ν
(j)
i , |{h(j)

ī
}1|2/|{h(j)

ī
}2|2, for j = 1, 2. This beamformer is not

DoF maximizing because the local CSI is used at TX 1 so that TX 2
does not any longer have an exact knowledge of the coefficient used to
transmit at TX 1. Consequently, beamformer tAPZF

i is not any longer

orthogonal to h
(2)

ī
. Yet, this solution achieves good performance at

intermediate SNR.

• Another possibility is to assume that TX 1 receives the scalar ν
(2)
i (or

νi) and use it to control its power. This means that TX 2 needs to
share this scalar. This requires an additional feedback, but only a few
bits are necessary to improve the performance at practical SNR.

4.4 ZF in the General K-Users BC with Distributed
CSIT

In this section, we will show how the main results can be generalized to
arbitrary number of users. The same approach as in the case K = 2 can be
followed and we start by briefly generalizing to arbitrary number of users
the previously described precoding schemes.

4.4.1 Conventional Zero Forcing

The conventional ZF precoder will be denoted as TcZF , [tcZF
1 , . . . , tcZF

K ]

with tcZF
i , [eT

1 t
cZF(1)
i , eT

2 t
cZF(2)
i , . . . , eT

Kt
cZF(K)
i ]T transmitting symbol si,
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and the beamformer t
cZF(j)
i computed at TX j to transmit symbol i given

by

t
cZF(j)
i ,

√
P

K

Π⊥
Ĥ

(j)
i

(ĥ
(j)
i )

‖Π⊥
Ĥ

(j)
i

(ĥ
(j)
i )‖

(4.33)

with Ĥ
(j)
i , [ĥ

(j)
1 , . . . , ĥ

(j)
i−1, ĥ

(j)
i+1, . . . , ĥ

(j)
K ].

We can then generalize the results from Theorem 2 to an arbitrary num-
ber of users.

Theorem 4. In the BC with distributed CSIT, the DoF achieved with con-
ventional ZF is equal to

DoFcZF = K min
i,j∈{1,...,K}

A
(j)
i . (4.34)

Proof. A detailed proof is provided in Appendix .3.

In Theorem 4, we have shown that the results concerning conventional ZF
can be exactly generalized and the DoF scales with the worst CSI accuracy
across the TXs and the RXs. Indeed, the bad estimation of the channel
to one user at one TX reduces the DoF of all the users. This is a very
pessimistic result and represents a different behavior as the transmission
with centralized CSIT.

Example 3. The impact of the CSIT discrepancies between the TXs can be
observed clearly by the analysis of the particular CSIT configuration where

A
(j)
i = Ai for all j. In that case, the DoF achieved with distributed CSIT is

given in (4.34) by

DoFcZF = K min
i
Ai. (4.35)

In contrast, considering the same CSIT scaling coefficients (which is possible
since the quality is the same across the TXs) with centralized CSIT, the DoF
expression is given in (4.11) and the DoF is equal to

DoFCCSI =
K∑

i=1

Ai. (4.36)

The comparison of the two DoF expressions shows a very interesting conse-
quence of the CSIT discrepancies: The DoF achieved at one RX depends on
the quality of all the channel estimates.
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4.4.2 Beacon Zero Forcing

The beacon ZF precoder is denoted as TbZF , [tbZF
1 , tbZF

2 . . . , tbZF
K ] with

the beamformer tbZF
i , [eT

1 t
bZF(1)
i , eT

2 t
bZF(2)
i , . . . , eT

Kt
bZF(K)
i ]T transmitting

symbol si. The beamformer t
bZF(j)
i computed at TX j to transmit symbol si

is given by

t
bZF(j)
i ,

√
P

K

Π⊥
Ĥ

(j)
i

(ci)

‖Π⊥
Ĥ

(j)
i

(ci)‖
(4.37)

where ci is any non-zero vector chosen beforehand and known at all TXs.

Proposition 4. The DoF achieved with beacon ZF is equal to

DoFbZF =
K∑

k=1

min
i∈{1,...,K},

i6=k

min
`,j∈{1,...,K},

6̀=i

A
(j)
` . (4.38)

Proof. To derive the DoF at a RX k, we need to compute the scaling of the
interference at RX k stemming from the transmission to the K−1 other RXs.
In the proof of Theorem 4, it is in fact the scaling of the interference resulting
from the transmission of one stream which is calculated. To obtain the DoF
at one RX, the scaling of the interference resulting from the transmission
of each of the K − 1 interfering streams needs to be computed. This is
represented by the first summation over i. Determining the interference
leaked by the transmission of symbol si using beacon ZF leads to the second
minimum in the formula.

We have derived the DoF for beacon ZF, but we will show in the following
corollary that beacon ZF is only attractive in terms of DoF in the two-user
case.

Corollary 2. For K ≥ 3, beacon ZF achieves the same DoF as conventional
ZF.

Proof. The result is easily obtained by studying the effect of the two suc-
cessive minimums in (4.38).

4.4.3 Active-Passive Zero Forcing

The generalization of AP ZF is intuitive and consists simply, for the com-
putation of each beamforming vector, in letting one TX arbitrarily fix its
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precoding coefficient while the other TXs adapt to this coefficient. Never-
theless, it requires the introduction of a few more notations.

We define the ordered set S , {n1, . . . , nK} as the set whose i-th element
corresponds to the indice of the TX with fixed coefficient when transmitting
the symbol si (passive TX for si). We then introduce the (column) channel
vector from TX ` to all the RXs except the i-th RX:

g
(j)
i (`), [{(Ĥ(j))H}1,`,. . .,{(Ĥ(j))H}i−1,`,{(Ĥ(j))H}i+1,`,. . .,{(Ĥ(j))H}K,`]T.

(4.39)
Using the previous definition, we can then define

(Ĥ
(j)
i (ni))

H , [g
(j)
i (1), . . . , g

(j)
i (ni−1), g

(j)
i (ni+1), . . . , g

(j)
i (K)] (4.40)

which represents the estimate at TX j of the multi-user channel from all the
TXs except TX ni to all the RXs except RX i.

For a given set S, we write TAPZF(S) , [tAPZF
1 (n1), . . . , tAPZF

K (nK)]

where the beamformer tAPZF
i (ni) , [eT

1 t
APZF(1)
i (ni), . . . , e

T
Kt

APZF(K)
i (ni)]

T

transmits symbol si. The beamformer t
APZF(j)
i (ni) computed at TX j to

transmit symbol si is given by

t
APZF(j)
i (ni),

√
P

K log2(P )
u

APZF(j)
i (ni) (4.41)

where we have defined

u
APZF(j)
i (ni), [ ǔ

APZF(j)
1i (ni), . . . , ǔ

APZF(j)
ni−1,i (ni), 1

, ǔ
APZF(j)
ni,i

(ni), . . . , ǔ
APZF(j)
K−1,i (ni)]

T
(4.42)

with ǔ
APZF(j)
i (ni),

[
ǔ

APZF(j)
1i (ni),. . . , ǔ

APZF(j)
K−1,i (ni)

]T
∈CK−1 and

ǔ
APZF(j)
i (ni),

−
(

(Ĥ
(j)
i (ni))

H
)−1

g
(j)
i (ni)

√
1 + ‖

(
(Ĥ

(j)
i (ni))H

)−1
g

(j)
i (ni)‖2

. (4.43)

Even though the notations are quite heavy, the intuition behind the con-
struction of the precoder is exactly the same as for the two-user case. TX ni
is the passive TX and transmits with a fixed coefficient

√
P/K log2(P ) while

the other active TXs then choose their coefficients in order to ZF the inter-
ference. This is obtained by setting their coefficients so as to fulfill (4.41).
The notational complexity comes only from the fact that we need to intro-
duce a “reduced” channel without the direct channel as well as without the
channel from the passive TX.
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Proposition 5. Active-Passive ZF with the set S = {n1, . . . , nK} achieves
the DoF

DoFAPZF(S) =

K∑

k=1

min
i∈{1,...,K},

i 6=k

min
`,j∈{1,...,K},
` 6=i,j 6=ni

A
(j)
` . (4.44)

Proof. Due to the symmetry between the RXs, we will show the result only
for the DoF at RX k. Let assume that AP ZF is used with the set S. To ob-
tain the DoF, we need to derive the scaling of the interference at RX i when
all streams are transmitted using AP ZF. The first minimum of the DoFs
formula follows from the summation over all the K − 1 interfering streams.
It remains then to determine the scaling of the interference resulting from
the transmission of one given data symbol.

TX j computes the beamformer t
APZF(j)
` (n`) according to (4.41). This

formula is similar to the one for conventional ZF so that the scaling of the
remaining interference power can be derived with a proof very akin to that
of Theorem 4 which is omitted to avoid repetitions. Thus, the interference
received at RX k due to the transmission of symbol si corresponds to the
second minimum of the DoF formula. This expression follows from the fact
that the CSI at TX n` and the CSI on the direct channel h` are not used to
design the beamformer transmitting s`.

The DoF given in Proposition 5 is given by two successive minimizations.
This is similar to beacon ZF at the difference that the index of one TX is not
taken into account in the second minimization. This leads then to a larger
DoF. The formula for the DoF depends on the set S but we will show that
the optimal set is easily derived when the number of users is larger than 4.

Corollary 3. For K ≥ 4 users, it is optimal in terms of DoF to choose all the
indices in S to be equal. Therefore, it is optimal to choose ni as the indice
of the minimum over all the CSIT scaling coefficients, and the DoF reads as

DoFAPZF = K min
i,j∈{1,...,K},

j 6=argmink min` A
(k)
`

A
(j)
i . (4.45)

Proof. Similar to the proof of the corollary for Beacon ZF, the proof follows
by studying the effect of the two successive minimums and for K ≥ 4, it has
for consequence that it is optimal to choose ∀i, j, ni = nj .
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Exactly as in the two-user case, AP ZF leads to an improvement in DoF
but this comes at the cost of an unbounded negative rate offset. To improve
on this feature, the percentage of the available power which is consumed
by the TXs needs to be increased. The sames solutions as described for
the two-user case in Subsection 4.3.4 can be applied, i.e., either a heuristic
power control or the transmission of a scalar to control the power. Note that
the scalar can be transmitted by any of the other K − 1 TXs and that one
scalar needs to be transmitted for each stream. We refer to Subsection 4.3.4
for more details.

4.4.4 Discussion of the Results

Altogether, we have shown in this section that the results for the two-user
case given in Section 4.3 could be generalized to an arbitrary number of
users. However, the results suggest in all cases a fundamental lack of ro-
bustness of the performance as we increase the number of users. Indeed, with
conventional ZF, a single inaccurate channel estimate can reduce the DoF
of all the users while the novel precoding schemes proposed can only cope
with a few channel estimates being of insufficient quality. This shows the
need for other methods to make the transmission more robust to imperfect
distributed CSI when more than two-user are present.

4.5 Precoding Using Hierarchical Quantization

In view of the rather pessimistic results in the previous section, we propose
now an alternative method to make the transmission more robust to the
CSI discrepancies. It consists in modifying the CSI quantization and using
a Hierarchical Quantization (HQ) scheme to encode the CSI [75, 103]. This
HQ is in fact very well known in the Rate Distortion theory and called
“multi-level” quantization, or “successive refinement” [104]. We recall briefly
the main principle of this quantization scheme and we particularize it in the
case of interest which is random HQ.

4.5.1 Hierarchical Quantization

Hierarchical quantization (or multi-resolution quantization) is a quantization
scheme in which the information is encoded so that the original message can
be decoded up to a number of bits depending on the quality of the feedback
channel. The better the channel is, the more bits can be decoded. Thus, if
one entity receives a codeword with a higher accuracy than another entity,
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and has the knowledge of the feedback qualities, it also knows what has
been decoded at the other entity. Conversely, if one entity can detect the
feedback information at a given resolution level but knows that another
entity can decode the same information at a higher resolution level, it can
use its individual decoded codeword to form a limited set of guesses around
it as to which higher resolution codeword may have been detected at the
other TX.

In our setting, it means that each TX can decode the CSI feedback up
to a certain number of bits depending on the quality of the feedback link.
If TX j1 receives a CSI of better quality than another TX j2, it can decode
more bits from the CSI and can get the knowledge of the CSI at TX j2 with
less decoded bits. Note that this implies that two TXs with the same CSI
quality have the same codebook and thus exactly the same realization for
the channel estimation error. This is in contrast to what has been considered
in the previous sections.

We wish to continue using the properties of RVQ so that we need to
design hierarchical random codebooks, i.e., codebooks fulfilling the properties
of both kinds of codebooks. Since this is not the main focus of the work, we
just briefly describe a possible method to construct such codebooks and the
quantization scheme associated.

We start by considering a random codebook of size corresponding to the
best accuracy, say 2`max . This random codebook is then divided into two
random codebooks containing each half the elements. This process is then
applied on the two smaller codebooks obtained until having 2`max codebooks
of one element. In each of the sub-codebooks of different sizes created, we
pick randomly one elements to be the representative of this codebook.

Once the quantized vector maximizing the figure of merit has been chosen
among the 2`max vectors, the encoding can be easily done. The chosen vector
belongs to one set of each size and the encoding bits are used to select among
the two possible choices, the set to which the quantized vector belongs.

The decoding step works as follows. The first bit denotes one of the two
codebooks of size 2`max−1, the second bit denotes one of the two codebooks
of size 2`max−2 inside this codebook, and so on, until the last bit is decoded.
Once this is done, the codeword decoded is chosen to be the representative
codeword of the obtained codebook.

It is then easily verified that the proposed quantization scheme has the
hierarchical properties desired.
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4.5.2 Conventional Zero Forcing with Hierarchical Quanti-
zation

In the previous sections, we have shown that the quality of the estimation
of one channel hi to one given RX had an impact on the DoF achieved at all
RXs. This is a surprising property which follows from the joint precoding
where the consistency between the transmissions of the different TXs is
critical. We will show how the hierarchical quantization described above
can be used to avoid this very inefficient property.

In the following, we will consider a particularly simple use of hierarchical
quantization consisting in letting all the TXs designing the beamforming
vector use only the part of the CSI which is common to all the TXs, and
simply ”forget” about the more accurate CSI knowledge. We then obtain a
CSI configuration where all the TXs share the same CSI and the DoF can
be obtained from Theorem 1.

Theorem 5. The DoF achieved using Conventional ZF with hierarchical
quantization is

DoFcZF =

K∑

i=1

min
j∈{1,...,K}

A
(j)
i . (4.46)

Using HQ as described, i.e., using only the estimate of a channel vec-
tor hi common to all the TXs, follows from the observation that the worst
estimation error of hi limits in any case the DoF at RX i. Thus, using only
the common part of the estimate of hi does not reduce the DoF at RX hi.
Yet, it leads to an improved consistency between the beamformers computed
at the TXs. This has for consequence that the error in the estimate of the
channel hi only impacts the DoF at RX i and not at the other RXs.

Remark 7. Note that the proposed scheme using HQ is very simple and
more gains could certainly be obtained with a more sophisticated use of the
additional CSI knowledge available at some TXs.

4.5.3 Active-Passive Zero Forcing with Hierarchical Quanti-
zation

Hierarchical quantization is used for AP ZF in the same way as for Conven-
tional ZF. This consists in using the CSI which is common to all the active
TXs considered in the definition of the beamformer in (4.41).

85



CHAPTER 4. DOF OF ZF WITH DISTRIBUTED CSIT

Proposition 6. The DoF achieved using Active-Passive ZF with Hierarchical
Quantization and the set S is

DoFAPZF(S) =

K∑

k=1

min
i∈{1,...,K},

i6=k

min
j∈{1,...,K},

j 6=ni

A
(j)
k . (4.47)

The two successive minimums come from the fact that it is not the same
TX which is passive for the different streams. It is clear from (4.47) that it
is optimal to choose all the ni to be equal for K ≥ 3. However, the indice
of the optimal passive TX, which we denote by nHQ, is now different from
the case without HQ. It is easily obtained by looking for the passive TX
bringing the largest improvement in DoF:

nHQ , argmax
n∈{1,...,K}

K∑

k=1

min
j∈{1,...,K},

j 6=n

A
(j)
k . (4.48)

The maximum DoF using AP-ZF with HQ follows then directly.

Proposition 7. For K ≥ 3, it is optimal to choose the passive TX to be TX j
with j = nHQ defined in (4.48), for all the data streams. The DoF achieved
with Active-Passive ZF based on Hierarchical Quantization is then equal to

DoFAPZF =
K∑

i=1

min
j∈{1,...,K},
j 6=nHC

A
(j)
i . (4.49)

4.6 Simulations

4.6.1 In the Two-User Case

We consider two models for the imperfect channel CSI, a statistical model
and RVQ as described in Section 4.1.2.

In the statistical model, the quantization error is modeled by adding a
Gaussian i.i.d. quantization noise to the channel with the covariance matrix

at TX j equal to diag([P−A
(j)
1 , P−A

(j)
2 ]). This corresponds to the scaling in P

of the variance provided in Proposition 1. The averaging is then done over
10000 realizations.
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In the RVQ, we consider a given number of feedback bits and we average
over 100 random codebooks and 1000 channel realizations. In the simula-
tions, we consider the following precoders: ZF with perfect CSI, conventional
ZF [cf. (4.12)], Beacon ZF [cf. (4.19)], and Active-Passive ZF [cf. (4.22)] with
heuristic power control and with 3-bits power control.

In Fig. 4.1, we consider the statistical model with the CSI scaling matrix

A =

[
1 0.5
0 0.7

]
. (4.50)

We remind the reader that the first column corresponds to the CSIT scaling
coefficients at TX 1 and the second to the CSIT scaling coefficient of TX 2.
To emphasize the DoF (i.e., the slope of the curve in the figure), we let the
SNR grow large. As expected theoretically, conventional ZF scales with the
worst accuracy and saturates at high SNR, while Beacon ZF has a positive
slope and Active-Passive ZF performs closer to perfect ZF with a slope only
slightly smaller than the optimal one.

In Fig. 4.2, we plot the sum rate achieved using RVQ with the CSI
feedback

B =

[
6 3
3 6

]
. (4.51)

The matrix B contains the number of feedback bits used, with its (i, j)th

element being equal to B
(j)
i the number of bits used to quantize channel hi

at TX j. From the theoretical analysis, the DoF should be equal to zero
for all the precoding schemes since the number of feedback bits used does
not increase with the SNR. This is confirmed by the saturation of the sum
rate as the SNR increases. Yet, the saturation occurs at a higher SNR for
Beacon ZF compared to conventional ZF, and at an even higher SNR for
Active-Passive ZF. This translates into an improvement of the sum rate at
intermediate SNR.

4.6.2 With Arbitrary Number of Users

For the simulations with K ≥ 3 users, only the statistical model described
in the previous paragraph for the two-user case is considered due to the
complexity of RVQ. To model easily the use of hierarchical quantization,
we simply consider that a TX has the knowledge of the channel estimate at
another TX if this TX receives a feedback concerning this channel vector
with a lower CSI scaling coefficient. Since we have derived that Beacon
ZF [Cf. (4.37)] does not bring any improvement in DoF for K ≥ 3, we
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Precoding Scheme DoF

Conventional ZF 0
Active-Passive ZF 2.1

Conventional ZF with HQ 5.3
Active-Passive ZF with HQ 6.3

Table 4.1: DoF achieved by different precoding schemes for the CSIT scaling
coefficients given in (4.52)

will consider in the figures only conventional ZF [Cf. (4.33)] and Active-
Passive ZF [Cf. (4.41)] where the transmission of 3-bits to the passive TX is
allowed for every beamforming vector. For both precoding schemes, we will
furthermore consider both the case of hierarchical quantization with random
codebooks and conventional RVQ.

.

We consider the performance achieved with an arbitrary chosen CSI
scaling matrix to verify that the precoding schemes behave as expected.
Thus, we consider K = 7 users and we set all the elements of the CSI scaling
matrix A equal to 1 at the exception of two coefficients corresponding to
different TXs and RXs set to 0 and 0.3, respectively. Hence, the CSI scaling
matrix is equal to

A =




0 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 0.3 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1




. (4.52)

. The DoFs achieved with the different precoding schemes for this CSIT
scaling matrix are given in Table 4.1.

The average sum rate achieved for this setting is shown in terms of the
SNR in Fig. 4.3. We can observe that the schemes using HQ achieve a much
larger DoF (i.e., slope in terms of the SNR) which is in agreement with
the theoretical expressions in Table 4.1. Furthermore, the increase in DoF
translates to better performance at intermediate SNRs.
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4.7 Conclusion

We have shown that conventional ZF precoding applied without taking into
account the CSI discrepancies achieves far from the maximal DoF and is lim-
ited by the worst accuracy of the CSI over the whole multi-user channel. This
is particularly striking as the bad estimate of the channel to one given user
at a unique TX reduces the DoF of all the users. This represents a different
behavior from the transmission with centralized CSIT. In the particular case
with only two users, we have provided a precoding scheme achieving the DoF
corresponding to the most accurate CSI across the TXs, which is a strong
improvement compared to conventional ZF. With an arbitrary number of
users, the DoF achieved by conventional ZF has been derived and precoding
schemes to improve over this DoF value have been provided. Interestingly, it
has been shown how using codebooks with a hierarchical structure to quan-
tize the CSI leads to a significant DoF improvement thanks to the higher
degree of consistency obtained between the transmit coefficients.
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Chapter 5

Rate Loss of ZF With
Distributed CSIT

In the previous chapter, we have studied the impact of the CSIT distribut-
edness over the DoF achieved. The DoF is a very interesting figure of merit
which for example has helped us understand the impact of CSIT discrepan-
cies. However, it provides only a rough understanding of the transmission
and a more accurate evaluation of the performance is necessary. In [15], a
relation between the number of bits used for the CSI feedback and the aver-
age rate achieved is provided. This result is very useful as it provide design
guidelines which can be used by engineers to design feedback channels in
practical networks. This work aims at generalizing to the case of distributed
CSIT the finite rate feedback study done by Jindal in the centralized CSIT
configuration [15].

Considering the same transmission setting as in the previous section, we
go beyond the DoF analysis to study the rate loss between the transmission
with perfect CSIT and the transmission with limited feedback. Quantifying
the rate loss provides a more precise understanding of the transmission and is
more relevant for practical system design as it allows to guaranty a minimal
performance achieved with the limited feedback.

5.1 CSIT Configuration and Precoding Schemes

We keep in this chapter the same CSIT model as in the previous chapter.
We also study for the sake of comparison the transmission with (imperfect)
centralized CSIT. However, we will consider a different ZF scheme. This
is done as a mean to discuss the different possible ZF precoders. Hence,
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we study the ZF precoder U? , [u?1, . . . ,u
?
K ] which, in the case of perfect

CSIT, is defined from

u?i ,
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi, ∀i ∈ {1, . . . ,K} (5.1)

where we have defined

Hi ,
[
h1 . . . hi−1 hi+1 . . . hK

]
, ∀i ∈ {1, . . . ,K}. (5.2)

Remark 8. The difference with the ZF precoder used in Chapter 4 comes
from the fact that there is no normalization of the beamformer. This means
that the power constraint is only fulfilled in average over the channel real-
izations. However, this scheme is interesting as the power constraint cannot
–in general– be perfectly fulfilled when considering distributed CSIT.

5.1.1 ZF with Centralized CSIT

In the case of centralized CSIT, the same estimate is received at all the TXs.
We then denote the full multi-user channel estimate by Ĥ = [ĥ1, . . . , ĥK ].
We consider the same CSIT model as for the distributed CSIT such that

ĥi =
√

1− σ2
i hi + σiδi, ∀i ∈ {1, . . . ,K} (5.3)

with σ2
i = 2−

Bi
K−1 and Bi being the number of bits used for the quanti-

zation of hi and δi being i.i.d. NC(0, 1). With centralized CSIT, the ZF
precoder UCCSI , [uCCSI

1 , . . . ,uCCSI
K ] is then given by

uCCSI
i ,

(
IK −Ĥi

(
ĤH
i Ĥi

)−1
ĤH
i

)
ĥi, ∀i ∈ {1, . . . ,K} (5.4)

and

Ĥi ,
[
ĥ1 . . . ĥi−1 ĥi+1 . . . ĥK .

]
, ∀i ∈ {1, . . . ,K}. (5.5)

5.1.2 ZF with Distributed CSI

Considering distributed CSIT, the ZF precoder UDCSI , [uDCSI
1 , . . . ,uDCSI

K ]
is then given by

{uDCSI
i }j , {u(j)

i }j , ∀i, j ∈ {1, . . . ,K} (5.6)
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with

u
(j)
i ,

(
IK −Ĥ

(j)
i

(
(Ĥ

(j)
i )HĤ

(j)
i

)−1
(Ĥ

(j)
i )H

)
ĥ

(j)
i , ∀i, j ∈ {1, . . . ,K}

(5.7)
with

Ĥ
(j)
i ,

[
ĥ

(j)
1 . . . ĥ

(j)
i−1 ĥ

(j)
i+1 . . . ĥ

(j)
K

]
, ∀i, j ∈ {1, . . . ,K}. (5.8)

5.2 Broadcast Channel with Centralized CSIT

We study in this section the feedback design in the conventional CSIT sce-
nario of centralized CSIT. The scaling of variance of the estimation error
(or equivalently the scaling of the number of feedback bits) in terms of the
SNR P is a well known result [15, 19], which has had a strong impact on
practical systems. Yet, it is obtained with a different ZF precoder and a dif-
ferent quantization scheme than considered here such that we have to prove
that these results remain valid in the system model used here. Further-
more, we provide additional insights by studying E[|hH

i u
CCSI
j |2] for i 6= j,

which represents the average leaked interference at RX i resulting from the
transmission to RX j.

5.2.1 Rate Loss Analysis

Our focus in this work is on the interference management via ZF precoding
such that the amount of interference leaked to one user represents a crucial
metric. This analysis is a preliminary step for the analysis of the rate loss
but also provides an interesting insight.

Proposition 8. In the BC with centralized CSIT, it holds that

E[|hH
j u

CCSI
i |2] = σ2

j + o(σ2
j ), ∀i 6= j ∈ {1, . . . ,K}. (5.9)

Proof. A detailed proof is provided in Appendix .6.

It is interesting to observe that the formula obtained depends only on the
indice of the channel but not on the indice of the beamformer. Furthermore,
the amount of interference leaked depends only on the accuracy with which
the channel hi is known but not on the CSI relative to the other channels,
which could even not be known at all.

The following upper bound for the rate loss follows easily from Proposi-
tion 8.
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Theorem 6. In the BC with centralized CSIT, the rate loss at user i, which
we denote by ∆CCSI

R,i , can be upperbounded at high SNR as

∆CCSI
R,i ≤ log2

(
1 + (K − 1)Pσ2

i

)
+ o(1). (5.10)

Proof. Starting from the definitions of the rate loss, we write

∆CCSI
R,i , E

[
log2(1 + P |hH

i u
?
i |2)
]

− E

[
log2

(
1 +

P |hH
i u

CCSI
i |2

1 +
∑K

j=1,j 6=i P |hH
i u

CCSI
j |2

)]
(5.11)

= E
[
log2(1 + P |hH

i u
?
i |2)
]
− E


log2


1 +

K∑

j=1

P |hH
i u

CCSI
j |2






+ E


log2


1 +

K∑

j=1,j 6=i
P |hH

i u
CCSI
j |2




 (5.12)

(a)

≤ E

[
log2

(
1 +

K∑

j=1,j 6=i
P |hH

i u
CCSI
j |2

)]
(5.13)

with (a) due to the fact that hH
i u

?
i and hH

i u
CCSI
i are random variables with

the same distribution1. Using Jensen’s inequality for concave functions, we
can then write

∆CCSI
R,i ≤ log2

(
1 + (K − 1)PE

[
|hH
i u

CCSI
j |2

])
. (5.14)

The proof concludes by using Proposition 8 to compute the expectation
inside (5.14).

5.2.2 Feedback Design

In Section 4.1.2, a digital quantization scheme is described with the variance

of the estimation error given by σ2
i = 2−

Bi
K−1 . Considering that a maximal

number of bits B can be allocated freely among all the users, it is then
relevant to determine how the feedback bits should be allocated in order to
minimize the total rate loss. Relaxing the constraint that the number of bits

1This follows from the fact that there are as many TXs as RXs such that the nullspace
of Hi is of dimension one.
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has to be an integer, we can use the upperbound for the rate loss given in
Theorem 6 to write the optimization problem as follows:

min
{Bi}i

log2

(
1 + (K − 1)P2−

Bi
K

)
, s. to.

K∑

i=1

Bi = Bsum. (5.15)

It is the minimization of a sum of convex functions subject to a linear con-
straint and the optimal solution is well known to be [105]

Bi =
Bsum

K
, ∀i. (5.16)

Thus, we consider in the following the case where the feedback is allocated

uniformly to all the users such that σ2
i = 2−

B
K−1 for some given B. The

following theorem provides then an upperbound for the rate loss as a function
of the number of feedback bits available B.

Theorem 7. In the BC with centralized CSIT with σ2
i = 2−

B
K−1 ,∀i, the

rate loss ∆CCSI
R,i is upper bounded at high SNR by log2(1 + b) + o(1) bits if

B ≥ BCCSI with

BCCSI , (K − 1) log2

(
(K − 1)P

b

)
. (5.17)

Proof. Inserting σ2
i = 2−

B
K−1 inside (5.10) and writing the number of bits B

as B = (K − 1)α log2(βP ) for α > 0, β > 0, gives σ2 = (βP )−α which gives

∆CCSI
R,i ≤ log2

(
1 + (K − 1)β−α(P )1−α + o(P 1−α)

)
+ o(1). (5.18)

The scaling in the SNR P of the rate loss is given in (5.18) to be equal
to max(1 − α, 0) such that the DoF achieved with limited feedback is 1 −
max(1− α, 0) = min(α, 1). Hence, we choose α = 1 to achieve the maximal
DoF. Setting the rate loss ∆CCSI

R,i lower or equal to log2(1 + b) and solving
for β gives the result of the theorem.

We can see that the expression obtained is very similar to the expression
obtained in [15] which would gives with our notations (K − 1) log2(KP/b).
The only difference comes from the replacement of K by K − 1 inside the
logarithm, which follows from the different distribution of the CSI errors.
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Figure 5.1: Average interference power E[|hH
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by the SNR P as a function of the variance σ2
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5.2.3 Simulation Results

We will now verify by simulations for a BC with centralized CSIT and K = 5
the analytical results provided above. In a first step, we let variances of the
CSIT errors be given by

σ2
1 =

1√
P
, σ2

i =
1

P
, ∀i 6= 1. (5.19)

With these parameters, we show in Fig. 5.1 the average interference power
normalized by the average SNR P , E[|hH

1 u
CCSI
2 |2] as a function of the vari-

ance σ2
1. We can verify the perfect match between the analytical expression

and the simulations.

We show then the average rate per user achieved in that scenario in
Fig. 5.2. We can see that the analytical expression is indeed a lower bound
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Figure 5.3: Average rate per user versus the average SNR P with centralized
CSIT considering digital feedback.

for the rate achieved with imperfect centralized CSIT, and that the gap
remains relatively small, particularly at high SNR.

Finally, we consider that the digital quantization scheme described earlier
is used. Hence, we show in Fig. 5.3 the average rate per user achieved when
using a number of quantization bits equal to BCCSI as defined in (5.17) with
b = 1. We compare it to the average rate obtained using perfect CSIT and
to the maximal tolerated rate loss of log2(1 + b) = 1 bit. As expected, the
rate loss remains below the threshold value.
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5.3 Broadcast Channel with Distributed Limited
CSI

We now turn to the analysis of the transmission with distributed CSIT,
which represents the core of our work. It is intuitive that the distributedness
of the CSIT leads to an increased amount of leaked interference since the
precoding coefficients are less coordinated. However, this degradation has
not yet been quantified and the feedback requirements with distributed CSIT
are unknown. Our main goal is henceforth to see if the analysis carried
out above for the centralized case can be adapted to the distributed CSIT
scenario.

5.3.1 Rate Loss Analysis

In contrast to the analysis of the centralized CSIT case, we do not study
directly the leaked interference |hH

i u
DCSI
j |2 but we focus instead on the norm

of the difference between the ZF precoder computed and the ZF precoder
based on perfect CSIT ‖uDCSI

j − u?j‖2. This is due to the fact that the

interference |hH
i u

DCSI
j |2 has a very complicated distribution in the case of

precoding with distributed CSIT, which has prevented us for studying it
directly.

Proposition 9. In the BC with distributed CSIT, it holds with probability
one that

u
(j)
i = u?i + a

(j)
i + o(max

q
σ(j)
q ), ∀i, j ∈ {1, . . . ,K}. (5.20)

with

E[|eH
p a

(j)
i |2] =

2
∑K

k=1,k 6=i(σ
(j)
k )2 + (σ

(j)
i )2

K
, ∀i, j, p. (5.21)

Proof. A detailed proof is provided in Appendix .4.

As intuitively expected from the symmetry, the average error done on
the precoding does not depend on the row (i.e., on p in (5.21)). In contrast,
the dependency on i is rather unexpected, since the ith beamformer is less
dependent on the accuracy of hi than on the accuracy of the other channels.

Proposition 9 provides the first expression linking the accuracy (in the
sense of the MSE with the precoder based on perfect CSIT) with which a
precoder is computed to the quality of the CSIT available.
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Remark 9. We can note that Proposition 9 remains clearly valid in the case
of centralized CSIT. In contrast, Proposition 8 does not a priori holds in the
case of distributed CSIT. It is the particular relation between the elements of
the beamformer uCCSI

i with centralized CSIT which makes that the stronger
result given in Proposition 8 holds.

Building upon this proposition, we can then quantify the rate loss due
to the distributed CSIT as it is done in the following theorem.

Theorem 8. In the BC with distributed CSIT, if all the variances (σ
(j)
i )2

decrease polynomially with the SNR P , the rate loss ∆DCSI
R,i at user i can be

upperbounded at high SNR as

∆DCSI
R,i ≤ µ(K)+log2

(
1+P

K∑

j=1

(
(2K−3)

K∑

k=1,k 6=i
(σ

(j)
k )2+2(K−1)(σ

(j)
i )2

))
+o(1)

(5.22)
with the function µ(x) defined for x > 0 as

µ(x) , log2 (3 + 2 log(x)) . (5.23)

Proof. A detailed proof is provided in Appendix .5.

By increasing by 1 the coefficient 2K−3 to 2(K−1), the bound is made
only slightly looser and rewritten in the following simpler form.

Corollary 4. In the BC with distributed CSIT, if all the variances (σ
(j)
i )2

decrease polynomially with the SNR P , the rate loss ∆DCSI
R,i at user i can be

upperbounded at high SNR as

∆DCSI
R,i ≤ µ(K) + log2


1 +

2P (K − 1)

K

K∑

j=1

K∑

k=1

(σ
(j)
k )2


+ o(1). (5.24)

The expression in (5.24) is interesting because it shows in a very simple
way how the accuracy of all channel elements impact the derived expression.
This is in strong contrast with the centralized case where only the quality
of hi has an impact on the rate of user i.

The additive term µ(K) is believed to result only from our difficulty
to bound the rate loss when the CSIT is distributed. However, this term
increases doubly logarithmic with the number of users K such that it is not
very significant as the number of users K increases. Still, we define ΓDCSI

≈,i
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as

ΓDCSI
≈,i , log2


1 +

2P (K − 1)

K

K∑

j=1

K∑

k=1

(σ
(j)
k )2


 (5.25)

and we will use ΓDCSI
R,i as an approximate expression for the rate loss to

obtain an approximate feedback rate. Note that due to this conjecture,
the feedback rate obtained from (5.25) will not guaranty that the rate loss
remains below the given threshold and will have to use (5.24) to obtain a
formal guaranty. Nevertheless, we will verify by simulations our conjecture
that removing µ(K) leads to a good approximation of the true rate loss.

5.3.2 Feedback Design

The dependency between the upperbound for the rate loss obtained in (5.24)
and the CSIT accuracy is very simple since it only depends on the sum of all
the variances. Hence, we can very easily find the bit allocation to minimize
this upperbound for the rate loss. Using the relation between the variance
of the estimation error and the number of feedback bits, this gives

min
{B(j)

i }i,j

∑

i,j

2−
B

(j)
i

K−1 , s. to
∑

i,j

B
(j)
i ≤ B. (5.26)

This optimization problem is the minimization of a convex function subject
to a linear constraint and it easily solved to obtain

B
(j)
i =

B

K2
, ∀i, j. (5.27)

Thus, it is optimal in the homogeneous setting to allocate uniformly the
bits to the channel vectors and to the TXs. A critical guideline for practical
design is then finding what is the minimal value for B to ensure a maximal
rate loss. Such a guideline is provided in the following theorem.

Theorem 9. In the BC with distributed CSIT and (σ
(j)
i )2 = 2−

B
K−1 , ∀i, j,

the rate loss is upper bounded by log2(1 + b) + o(1) bits if b > 2 + 2 log(K)
and B ≥ BDCSI with

BDCSI = (K−1) log2

(
(2K−1)(K−1)P

b

)
+(K−1) log2

(
b(3+2 log(K))

b− 2− 2 log(K)

)
.

(5.28)
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Proof. Similarly to the proof of Theorem 7, we use the parametrization
B = βPα with β > 0, α > 0 inside (5.22). Setting the right hand side of
(5.24) lower or equal than log2(1 + b) gives

µ(K) + log2

(
1 + P (2K − 1)(K − 1)β−αP 1−α) ≤ log2(1 + b). (5.29)

Achieving the maximal DoF requires α = 1, and solving for β then gives the
desired expression.

In Theorem 9, we provide the desired feedback rate. Considering K
larger, this feedback rate is roughly K log2(K) larger than the feedback
rate obtained in the centralized case, implying that the difference between
the two expressions becomes increasingly large as the number of users K
increases.

Considering the approximate expression ΓDCSI
≈,i , we obtain BDCSI

≈ given
by

BDCSI
≈ = (K − 1) log2

(
(2K − 1)(K − 1)P

b

)
. (5.30)

5.3.3 Simulation Results

We verify now by simulations in the BC with distributed CSIT and K =
5 users the theoretical results stated above. We start by discussing Propo-
sition 9 and Theorem 8 for the following CSIT configuration:

(σ
(1)
i )2 = P−

2
3 , ∀i (5.31)

(σ
(j)
i )2 = P−1, ∀i, j 6= 1. (5.32)

In this scenario we show in Fig. 5.4 the average difference E[|eT
1 (uDCSI

2 −
u?2)|2] = E[|eT

1 (u
(1)
2 −u?2)|2] and we can verify the very good match between

the simulations and the analytical results.

We then turn to Fig. 5.5 where the average rate per user is shown as a
function of the SNR. We compare the simulation results to the lower bound
given in Theorem 8 and the approximated expression in (5.25). We can see
that the lower bound shows a large gap compared to the simulations results
while the approximated expression presents also a gap, but smaller.

Finally, we show in Fig. 5.6, the average rate achieved when using the dig-
ital quantization model with different feedback rate. In particular, we show
that using BCCSI does not allow to bound the rate loss under the desired
threshold. On the opposite, using the approximated feedback rate BDCSI

≈ is
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sufficient for restraining the rate loss to be smaller than the desired thresh-
old. Note that because of the different scaling in the number of users, the
loss achieved using BCCSI increases with the number of users K.
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5.4 Conclusion

To study the impact of the resulting CSI discrepancies at the different TXs,
we have discussed how it compares to the conventional centralized CSIT con-
figuration where all the TXs share the same channel estimate. We have first
studied the dependency between the accuracy with which a precoder is com-
puted at a TX and the accuracy with which the ZF precoder is computed.
Furthermore, we have derived a sufficient feedback rate to ensure that the
rate loss compared to the transmission with perfect CSIT remains below a
threshold value. Interestingly, the expression obtained in Theorem 9 can be
seen to increase more quickly with the number of users K than its counter-
part in the BC with centralized CSIT in Theorem 7. Hence, not taking into
account the CSI distributedness in the feedback design leads to important
performance degradations, especially as the total number of users served
increases. We have provided here an upper-bound for the rate loss and the
derivation of a lower-bound is the focus of undergoing research. However,
the statistical distribution of the interference with distributed CSIT makes
this problem especially challenging. The extension to scenarios with a differ-
ent pathloss between every TX and every RX represents also an interesting
research problem. Finally, we have studied the performance of ZF and it
is believed that using robust (regularized) ZF precoding would help reduce
the impact of the CSI discrepancies. Hence, studying how regularization
can help reduce the cost of CSIT distributedness will be the focus of future
research.
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Chapter 6

DoF of IA with Distributed
CSIT

We have studied in the previous chapters the impact of distributed CSIT
when joint precoding is applied at all the TXs, and we now turn to the
analysis of the settings where the users data symbols are not shared between
the TXs. We consider in particular that IA schemes for MIMO statics ICs
are to be used [49].

Note that for this section only, multiple-streams transmission are con-
sidered such that the precoding matrix Ti is of size Mi × di where di is the
number of independent data symbols sent to user i.

6.1 Distributed CSIT and Distributed Precoding

We introduce further in this chapter the normalized estimate for the channel
between TX k and RX i, denoted by H̃H

ik and equal to

H̃H
ik ,

HH
ik

‖Hik‖F
. (6.1)

We define H̃
(j)
i,k in a similar way from Ĥ

(j)
i,k . As in the previous chapters,

TX j computes its precoder based only on H̃(j). In fact, TX j computes
then the full IA transmission strategy (in terms of the precoders and receive

filters U
(j)
k , k = 1 . . .K and G

(j)
i , i = 1 . . .K) based on H̃(j) such as to fulfill

(G
(j)
i )H(H̃

(j)
i,k )HU

(j)
k = 0di×dj ∀k 6= i (6.2)
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where U
(j)
k is the unitary precoder designed to be used by TX k and G

(j)
i

is the receive filter assumed at RX i. Due to the distributed precoding

assumption, the precoder U
(j)
j is used for the actual transmission at TX j,

while the U
(j)
i , i 6= j are discarded. In total, this gives

Uj = U
(j)
j , ∀j. (6.3)

This distributed CSIT setting is depicted and compared to the central-
ized CSIT configuration in Fig. 6.1.

•
1

•
2

•
3

[
U

(1)
1 U

(1)
2 U

(1)
3

]
= fIA

(
H(1)

)
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⊗

•

Multiuser Feedback
H(1) U(1) x1 = U(1)s1

[
U

(2)
1 U

(2)
2 U

(2)
3

]
= fIA

(
H(2)

)
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⊗

•

Multiuser Feedback

H(2)

U(2)

x2 = U(2)s2

[
U

(3)
1 U

(3)
2 U

(3)
3

]
= fIA

(
H(3)

)

TX 3

⊗

•

Multiuser Feedback

H(3)

U(3)

x3 = U(3)s3

Source 1

s1

Source 2
s2

Source 3

s3

Figure 6.1: Symbolic representation of IA with precoding and distributed
CSIT.

Let us assume that H̃
(j)
i,k results from the quantization of H̃i,k, using a

quantization scheme using B
(j)
i,k bits according to

H̃
(j)
i,k = argmin

vect(W)∈W(j)
i,k

∥∥∥H̃i,k −W
∥∥∥

F
, ∀k, i, j, (6.4)

where W(j)
i,k contains 2B

(j)
i,k vectors of size CNiMk isotropically distributed

over the unit-sphere and rotated to have their first element real-valued. We
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further define

(σ
(j)
i,k )2 , EH,W

[∥∥∥H̃(j)
i,k − H̃i,k

∥∥∥
2

F

]
, N

(j)
i,k ,

H̃
(j)
i,k − H̃i,k

σ
(j)
i,k

, (6.5)

where EW [·] denotes the expectation over the random codebooks. It then
gives

H̃
(j)
i,k = H̃i,k + σ

(j)
i,kN

(j)
i,k . (6.6)

Since there is no confusion possible we use the short notation E[·] instead of
EH,W [·].

Using the results in Section 4.1.2, the variance of the estimation error
can then be related to the number of quantization bits as follows.

Proposition 10 ( [80, Theorem 2]). When the size L
(j)
i,k = 2B

(j)
i,k of the random

codebook is sufficiently large, it then holds that

(σ
(j)
i,k )2 = C

(j)
i,k 2−B

(j)
i,k/(NiMk−1) (6.7)

for some constant C
(j)
i,k > 0.

Similarly to Chapter 4 and Chapter 5, we define the CSIT scaling coef-

ficients A
(j)
i,k as

A
(j)
i,k , lim

P→∞

B
(j)
i,k

B?
i,k

,∀k, i, (6.8)

where we have defined

B?
i,k , (NiMk − 1) log2(P ). (6.9)

The pre-log coefficient NiMk − 1 corresponds to the number of channel
coefficients to feedback after normalization of the channel matrix. B?

i,k is
the number of bits which corresponds to a quantization error decreasing as

P−1, which is essentially perfect in terms of DoF [15, 81]. Hence, A
(j)
i,k can

be seen as the fraction of the feedback requirements to achieve the maximal
DoF.

Remark 10. Note however that the CSIT scaling coefficients introduced here
do not exactly correspond to the ones defined for joint precoding previously.
Indeed, we consider here a different CSIT scaling coefficient for each MIMO
wireless channel between one TX and one RX.
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6.2 DoF Analysis with Static Coefficients and Dis-
tributed CSI

Let us now focus on the situation where every TX designs its precoder based
on a different multi-user channel estimate. Hence, the precoding matrices
used for the transmission do not form exactly an IA solution for any imper-
fect estimate of the multi-user channel. This is in contrast to the centralized
case studied in [59, 60]. Hence, the analysis done in these works does not
hold in the setting considered here and a new approach is required.

The analysis of this situation is complicated by the fact that the function
that gives the precoders as a function of the channel coefficients can not
be assumed to be continuous. This can be seen by considering that there
are in general multiple solutions to the IA equations [106], while iterative
algorithms, such as the iterative leakage minimization from [86], converge
to one of the IA solutions. So far this convergence is not fully understood,
and it can not be ruled out that a small change in the CSI (as in the case in
the distributed CSI considered here) leads to a convergence to completely
different solutions across the users.

Furthermore, the channel estimates at the different TXs are potentially
of different accuracies such that it is not clear which accuracy dictates the
DoF. Answering this question is the main goal of this work.

6.2.1 Sufficient Condition for an Arbitrary IA Scheme

Let us denote by U?
i and G?

i the precoder and the RX filter at TX i and
RX i, respectively, when perfect CSIT is available at the TXs for an arbitrary
IA scheme, i.e., verifying (G?

i )
HHH

ijU
?
j = 0di×dj ,∀i 6= j. We further define

∆U
(j)
i , U

(j)
i −U?

i , ∀i, j. (6.10)

We now characterize the DoF achieved as a function of the precoder accu-
racy.

Proposition 11. In the IC with distributed CSIT as described in Section 6.1,
if the CSIT is such that

E[‖∆U
(j)
j ‖2F]

.
= P−βj , ∀j, (6.11)

with βj ∈ [0, 1], then

DoFi ≥ di min
j 6=i

βj , ∀i (6.12)
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and where we have used x
.
= y to represent the exponential equality in the

SNR P , i.e., limP→∞ log2(x)/ log2(P ) = limP→∞ log2(y)/ log2(P ).

Proof. Since we want to derive a lower bound for the DoF, we can choose
Gk = G?

k,∀k. Following a classical derivation [15,19], we can write

Ri ≥ R?i − E


log2

∣∣∣∣∣∣
Idi + P

K∑

j=1,j 6=i
(G?

i )
HHH

i,jU
(j)
j (U

(j)
j )HHi,jG

?
i

∣∣∣∣∣∣


 (6.13)

where we have defined

R?i , E
[
log2

∣∣Idi + P (G?
i )

HHH
i,iU

?
i (U

?
i )

HHi,i(G
?
i )
∣∣] . (6.14)

It is easily seen that R?i
.
= di log2(P ), such that it remains to study the

second term of (6.13), which we denote by Ii. Since (G?
i )

HHH
i,jU

?
j = 0di×dj

for i 6= j, it holds that

Ii = E


log2

∣∣∣∣∣∣
Idi + P

K∑

j=1,j 6=i
(G?

i )
HHH

i,j∆U
(j)
j (∆U

(j)
j )HHi,jG

?
i

∣∣∣∣∣∣


 . (6.15)

Since ‖G?
i ‖2F = 1, we can upper bound the interference to write

Ii ≤ E


log2

∣∣∣∣∣∣
Idi +


P

K∑

j=1,j 6=i
‖Hi,j‖2F‖∆U

(j)
j ‖2F


 Idi

∣∣∣∣∣∣




(a)

≤ di

(
E

[
log2

(
1 + P

K∑

j=1,j 6=i
‖Hi,j‖2F

)]
+ E

[
log2

(
1 + P

K∑

j=1,i 6=j
‖∆U

(j)
j ‖2F

)])

(b)

≤ di

(
E

[
log2

(
1 + P

K∑

j=1,j 6=i
‖Hi,j‖2F

)]
+ log2

(
1 + P

K∑

j=1,i 6=j
E
[
‖∆U

(j)
j ‖2F

]))

(6.16)
where inequality (a) can be seen to hold since only positive terms have been
added and we have used Jensen’s inequality to obtain inequality (b). Using

that E[‖∆U
(j)
j ‖2F]

.
= P−βj , we can write that

K∑

j=1,j 6=i
E
[
‖∆U

(j)
j ‖2F

]
.
= P−minj 6=i βj . (6.17)
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Inserting (6.17) inside (6.16) and (6.13) gives

Ri ≥̇ di
(

log2(P )− log2(1 + PP−minj 6=i βj )
)

(6.18)

≥̇ di(min
j 6=i

βj) log2(P ), (6.19)

which concludes the proof.

Proposition 11 provides some insights into the performance by relating
the accuracy with which the precoder is computed to the achieved DoF.
However, the accuracy of the precoder design is difficult to relate to the
accuracy of the CSIT. Indeed, this relation is dependent on the precoding
method used and some precoding schemes are more or less robust to imper-
fections in the CSIT. Furthermore, obtaining the relation between the CSIT
quality and the accuracy of the precoding is especially difficult in the case
of iterative IA algorithms.

Indeed, in contrast to the conventional centralized CSIT configuration
studied in [59,60,78,107], it is not possible to study solely the IA alignment

obtained at the end of the precoding scheme. The precoders {U(j)
j }j do

not form together (a priori) an alignment solution for any of the multi-
user channel estimates available at the TXs. Hence, the structure of the
IA algorithm has to be studied to observe what is the impact of the CSIT
imperfection over the precoding at each TX.

6.2.2 DoF Analysis in the 3-user Square MIMO IC

Perfect CSIT Solution We consider now a 3-user IC with Mi = M,Ni =
N, ∀i and di = d,∀i. We also assume for the description of the IA scheme
that perfect CSIT is available such that we denote the precoder used at TX j
by U?

j . Since we consider the tightly-feasible case [108], we have M = N =
2d. In that case, the IA constraints can be written as [54]

span
(
H̃H

3,1U
?
1

)
= span

(
H̃H

3,2U
?
2

)
,

span
(
H̃H

1,2U
?
2

)
= span

(
H̃H

1,3U
?
3

)
,

span
(
H̃H

2,3U
?
3

)
= span

(
H̃H

2,1U
?
1

)
.

(6.20)
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In particular, this system of equations can be easily seen to be fulfilled if the
precoders verify

U?
1Λ1 = (H̃H

3,1)−1H̃H
3,2(H̃H

1,2)−1H̃H
1,3(H̃H

2,3)−1H̃H
2,1U

?
1

U?
3 = (H̃H

2,3)−1H̃H
2,1U

?
1

U?
2 = (H̃H

1,2)−1H̃H
1,3U

?
3

(6.21)

for some diagonal matrix Λ1. We also define for clarity the matrix Y? equal
to

Y? , (H̃H
3,1)−1H̃H

3,2(H̃H
1,2)−1(H̃H

1,3)(H̃H
2,3)−1H̃H

2,1. (6.22)

The system of equations (6.21) is then fulfilled by setting

U?
1 =

1√
d

EVD(Y?)
[
e1, . . . , ed

]

U?
3 =

1

‖(H̃H
2,3)−1H̃H

2,1U
?
1‖F

(H̃H
2,3)−1H̃H

2,1U
?
1

U?
2 =

1

‖(H̃H
1,2)−1H̃H

1,3U
?
3‖F

(H̃H
1,2)−1H̃H

1,3U
?
3

(6.23)

where we denote by EVD(A) the eigenvector basis of the Hermitian ma-
trix A.

Distributed CSIT Solution With distributed CSIT, TX j computes
using its channel estimate H̃(j) the matrix

Y(j) = ((H̃
(j)
3,1)H)−1((H̃

(j)
3,2)H((H̃

(j)
1,2)H)−1(H̃

(j)
1,3))H((H̃

(j)
2,3)H)−1(H̃

(j)
2,1))H.

(6.24)
The precoding matrices are then obtained from

U
(j)
1 =

1√
d

EVD(Y(j))
[
e1, . . . , ed

]

U
(j)
3 =

1

‖((H̃(j)
2,3)H)−1(H̃

(j)
2,1)HU

(j)
1 ‖F

((H̃
(j)
2,3)H)−1(H̃

(j)
2,1)HU

(j)
1

U
(j)
2 =

1

‖((H̃(j)
1,2)H)−1(H̃

(j)
1,3)HU

(j)
3 ‖F

((H̃
(j)
1,2)H)−1(H̃

(j)
1,3)HU

(j)
3 .

(6.25)

Note that only U
(j)
j is effectively used for the transmission due to the dis-

tributed precoding assumption.
In that case, we can give the following result on the DoF achieved.
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Theorem 10. Using the 3-User IA scheme described above with distributed
CSIT, the DoF achieved at user i is denoted by DoFDCSI

i and verifies

DoFDCSI
i ≥ dmin

j 6=i
min
k,`,k 6=`

A
(j)
k,`. (6.26)

Proof. The main idea of the proof is to consider only the rate achieved
over the channel realizations which are “well enough” conditioned. Over
these channel realizations, the precoding is robust enough to the errors in
the CSIT. Due to the continuous distribution of the channel matrices, the
probability of the “badly conditioned” channel realizations is small enough
such that the loss due to removing these channel realizations can be made
arbitrarily small.

We consider hereafter that ∀k, `, j, A(j)
k,` > 0 since the result is otherwise

trivial. We also consider without loss of generality the precoding at TX j.
For a given ε > 0, we define the following channel subsets:

X ε , {H̃|∀i, k, λmin(H̃i,k) ≥ ε} (6.27)

Yε , {H̃|∀i 6= j, |λi(Y?)− λj(Y?)| ≥ ε} (6.28)

and

Hε , X ε
⋂
Yε. (6.29)

Since we aim at deriving a lower bound for the DoF (and the rate is nonneg-
ative), we can consider only the rate achieved for the channel realizations
belonging to Hε. From (6.13), we can then write

Ri ≥ EHε
[
log2

∣∣∣Idi + P (G?
i )

HHH
i,iU

(i)
i (U

(i)
i )HHi,i(G

?
i )
∣∣∣
]

− EHε

[
log2

∣∣∣∣∣∣
Idi + P

K∑

j=1,j 6=i
(G?

i )
HHH

i,jU
(j)
j (U

(j)
j )Hi,jG

?
i

∣∣∣∣∣∣

]
. (6.30)

It can be easily seen from the continuous distribution of the channel matrices
that ∀η > 0, ∃ε > 0,Pr(Hε) ≥ 1− η. Hence, it follows that

EHε
[
log2

∣∣∣Idi + P (G?
i )

HHH
i,iU

(i)
i (U

(i)
i )HHi,i(G

?
i )
∣∣∣
]
≥̇ (1− η)di log2(P ).

(6.31)
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We now need to upper bound the second term of (6.30) which we denote by
J εi . We can then proceed similarly to (6.16) to write

J εi ≤ di
(

EHε

[
log2

(
1 +

K∑

j=1,j 6=i
‖Hi,j‖2F

)]
+ log2

(
1 + P

K∑

j=1,j 6=i
EHε

[
‖∆U

(j)
j ‖2F

]))

(6.32)

≤̇ di
(

log2

(
1 + P

K∑

j=1,j 6=i
EHε

[
‖∆U

(j)
j ‖2F

]))
. (6.33)

It remains then only to compute EHε [‖∆U
(j)
j ‖2F]. Le us now consider the

error due to the imperfect CSIT at TX j on one of the matrix inversion re-

quired to compute Y(j) in (6.24). We start by introducing ∆
(j)
i,k to represent

the error done in computing the channel inverse:

∆
(j)
i,k ,

1

σ
(j)
i,k

((
(H̃

(j)
i,k )H

)−1
− ((H̃i,k)

H)−1

)
, ∀i, k. (6.34)

Using the resolvent equality recalled in Lemma 2 in Appendix .1, we can
write

∆
(j)
i,k = −((H̃i,k)

H)−1(N
(j)
i,k )H((H̃i,k)

H)−1 + σ
(j)
i,kΘ

(j)
i,k , ∀i, k, (6.35)

where we have defined

Θ
(j)
i,k , ((H̃

(j)
i,k )H)−1(N

(j)
i,k ))H((H̃i,k)

H)−1(N
(j)
i,k )H(H̃i,k)

H)−1, ∀i, k.
(6.36)

We can then use the properties of the Frobenius norm to obtain the upper
bound

‖∆(j)
i,k‖F ≤ ‖N

(j)
i,k‖F‖H̃−1

i,k ‖2F + σ
(j)
i,k ‖Θ

(j)
i,k‖F. (6.37)

Taking the expectation, we have then

EHε [‖∆(j)
i,k‖2F] ≤ EHε

[(
‖N(j)

i,k‖F‖H̃−1
i,k ‖2F + σ

(j)
i,k ‖Θ

(j)
i,k‖F

)2
]

(6.38)

The expectation in (6.38) exists and is finite because H ∈ Hε such that the

channel matrix H̃i,k (and H̃
(j)
i,k ) has its eigenvalues bounded away from zero.

We have therefore obtained

EHε [‖∆(j)
i,k‖2F] ≤̇ 1. (6.39)
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We can then write

Y(j) = (H̃−1
3,1 + σ

(j)
3,1∆

(j)
3,1)H(H̃3,2 + σ

(j)
3,2N

(j)
3,2)H(H̃−1

1,2 + σ
(j)
1,2∆

(j)
1,2)H

(H̃1,3 + σ
(j)
1,3N

(j)
1,3)H(H̃−1

2,3 + σ
(j)
2,3∆

(j)
2,3)H(H̃2,1 + σ

(j)
2,1N

(j)
2,1)H.

(6.40)

The relation (6.39) holds for every matrix inversion in (6.31) such that
putting all the errors terms together, we can write from (6.40) that

EHε [‖Y(j) −Y?‖2F] ≤̇ max
` 6=k

(σ
(j)
`k )2. (6.41)

Since H ∈ Hε, all the eigenvalues of Y? (and Y(j)) are different and the
matrices Y? and Y(j) are diagonalizable. Let Y? = V?Λ(V?)H, with V? ∈
CM×M and Λ? ∈ CM×M , and Y(j) = V(j)Λ(j)(V(j))H, with V(j) ∈ CM×M
and Λ(j) ∈ CM×M , be the spectral decomposition of Y? and Y(j), respec-
tively. Applying Theorem 2.1 from [109] to Y? and Y(j) and taking the
expectation we can show that for some constant γ(j) > 0 independent of the
SNR P ,

EHε [‖V(j) −V?‖2F] ≤ γ(j)EHε [‖Y(j) −Y?‖2F] (6.42)

≤̇ max
` 6=k

(σ
(j)
`,k)2 (6.43)

.
= P−min` 6=k A

(j)
`,k . (6.44)

Let us denote by V̄(j) and V̄? the matrices made of the first d columns of
V(j) and V?, respectively. The precoding scheme is such that U?

1 = V̄? and

U
(1)
1 = V̄(1). Hence,

EHε [‖∆U
(1)
1 ‖2F] ≤̇ P−min 6̀=k A

(1)
`,k . (6.45)

The relation (6.45) is easily extended to the other precoders U
(2)
2 and U

(3)
3

to obtain that

3∑

j=1,j 6=i
EHε [‖∆U

(j)
j ‖2F] ≤̇

3∑

j=1,j 6=i
P−min 6̀=k A

(j)
`,k (6.46)

≤̇ P−minj 6=i min 6̀=k A
(j)
`,k . (6.47)
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Coming back to (6.30), this gives

Ri ≥̇ di
(

(1− η) log2(P )− log2(1 + PP−minj 6=i min` 6=k A
(j)
`,k

)
(6.48)

≥̇ di
(

min
j 6=i

min
6̀=k

A
(j)
`,k − η

)
log2(P ). (6.49)

Choosing η arbitrarily small concludes the proof.

We have shown that for the 3-user IA closed-form alignment scheme,
the achieved DoF is larger than the worst accuracy of the channel estimates
across the TXs. Note that this lower bound is in fact conjectured to be
tight.

Interestingly, the lower bound at RX j is limited by the accuracy of the
estimates relative to the channels of all the other RXs. This result is in
strong contrast with the centralized setting where the DoF of user i depends
solely on the accuracy with which the channel matrices from the TXs to
RX i are feedback.

6.3 Simulations

In this section, we validate by Monte-Carlo simulations the results in the 3-
user square IC channel studied in Subsection 6.2.2. We consider M = N = 4
and d = 2 and we average the performance over 10000 realizations of a
Rayleigh fading channel. We consider the distributed CSIT configuration
described in Section 6.1. The quantization error is modeled using (6.6) with

(σ
(j)
i,k )2 = 2−B

(j)
i,k/(NiMj−1) and N

(j)
i,k having its elements i.i.d. NC(0, 1). We

choose the CSIT scaling coefficients as

∀(i, k, j) ∈ {1, 2, 3}3 \ {(3, 2, 2), (3, 2, 3)}, A(j)
i,k = 1, A

(2)
3,2 = 0.5, A

(3)
3,2 = 0.

(6.50)
Following Theorem 10, we have for the CSIT configuration described in
(6.50) that DoF1 ≥ 0, DoF2 ≥ 0, and DoF3 ≥ 0.5d = 1. The average
rate achieved is shown for each user in Fig. 6.2. For comparison, we have
also simulated the average rate per-user achieved based on perfect CSIT and
with distributed CSIT when the CSIT scaling coefficients are set equal to 1

for every TX (∀i, k, j, A(j)
i,k = 1). It can then be verified that having all CSIT

scaling coefficients equal to one allows to achieve the maximal DoF.
With the CSIT configuration described in (6.50), the slope of the rate

of user 3 decreases as the SNR increases, revealing a very slow convergence
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Figure 6.2: Average rate per user in the square setting M = N = 4 with
d = 2 for the CSIT scaling coefficients given in (6.50).

to the DoF. This makes it difficult to accurately observe the DoF achieved.

Yet, it can be seen that having only A
(3)
3,2 equal to zero leads already to the

saturation of the rates of RX 1 and RX 2 (i.e., their DoF is equal to 0),
which tends to confirm our conjecture.

6.4 Conclusion and Outlook

We have shown that the DoF that can be achieved with distributed CSIT in
the static 3-user MIMO square IC is at least equal to the DoF achieved with
the worst accuracy taken across the TXs and across the interfering links.
We conjecture further that this represents exactly the DoF achieved. This
result is in strong contrast with the centralized CSIT configuration for which
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it was shown that the DoF achieved at RX i is solely limited by the quality
of its own feedback. This property has already been observed in Chapter 4
when joint precoding is used, and appears as the cost of distributed CSIT.

This particular antenna configuration has been considered both because
it is believed to be a simple, yet practically relevant configuration, and be-
cause the knowledge of a closed-form precoding formula is necessary for our
analysis. In fact, our approach is expected to easily extend to numerous
scenarios where a closed form expression exists for the IA precoding, under
the condition that the precoding scheme is “robust” enough to the quanti-
zation errors, e.g., it consists of matrix inversions or matrix multiplications
where the matrices have their elements distributed according to a continu-
ous distribution. This in particular the case of the original time-alignment
IA scheme from [37, 110]. Hence, our results can be trivially extended to
this setting.

Obtaining the DoF achieved with an iterative IA algorithm like the min-
leakage algorithm or the max-SINR algorithm [53,86] is a challenging open
problem which will be investigated in subsequent works. As a prerequi-
site step, it requires deriving some basic properties of the IA algorithm,
such as convergence properties, which have remained out of reach until now.
Furthermore, it will be shown in Chapter 8 that heterogeneous antenna con-
figurations can be exploited to achieve IA even when some of the TXs do not
have any CSIT. Such behavior should be taken into account when analyzing
the feedback requirements and complicate further the analysis of iterative
IA algorithms.
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Part III

Spatial Allocation of
Feedback Resources in
Cooperative Networks
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Chapter 7

Distance-based CSIT
Allocation for Network
MIMO

In the previous part, we have dealt with the design of the precoders for given
CSIT configurations. We now approach the problem of the TX cooperation
with distributed CSIT under a different angle: We consider from now on that
the precoding schemes are fixed, and we discuss what is the necessary CSIT
at each TX to achieve required performances. More specifically, our goal
is to find the most parcimonious CSIT allocation strategy which allows to
achieve close to the performance obtained with perfect CSIT. Finding such
a CSIT allocation would open the door to potential reductions of the CSIT
requirements at the cost of acceptable (negligible?) performance degrada-
tions. It will become clear in this part that significant CSIT reductions are
in fact possible at virtually no cost.

7.1 System Setting and Problem Statement

7.1.1 Distributed CSI at the TXs

The joint precoder is implemented distributively at the TXs with each TX
relying solely on its own estimate of the channel matrix in order to com-
pute its transmit coefficient, without any exchange of information with the
other TXs. To model the imperfect CSIT, the channel estimate at each
TX is assumed to be obtained from a limited rate digital feedback scheme.
Consequently, we introduce the following definitions.
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Definition 1 (Distributed Finite-Rate CSIT). We represent a CSIT alloca-
tion by the collections of matrices {B(j)}Kj=1 where B(j) ∈ RK×K+ denotes
the CSIT allocation at TX j. Hence, TX j receives the multi-user channel
estimate Ĥ(j) defined from

Ĥ
(j)
ki = Hki + ρki

√
2−B

(j)
ki ∆H

(j)
ki , ∀i, k (7.1)

where ∆H
(j)
ki ∼ N (0, 1) and the ∆H

(j)
ki are mutually independent and in-

dependent of the channel. The ∆H
(j)
ki are then regrouped to form the ma-

trix ∆H(j).

Remark 11. The reasons for modeling the imperfect CSIT via (7.1) are as
follows. First, it is well known from rate-distortion theory that the minimal
distortion when quantizing a standard Gaussian source using B bits is equal
to 2−B [6, Theorem 13.3.3] while this distortion value is also achieved up to
a multiplicative constant using for example the Lloyd algorithm [111] or even
scalar quantization. Thus, the decay in 2−B as the number of quantizations
bits increases, represents a reasonable model.

Furthermore, only the asymptotic behavior exponentially in the SNR is
of interest in this work such that the distribution of the CSIT error does
not matter here. We have chosen a Gaussian distribution but any other
distribution fulfilling some mild regularity constraints could be chosen.

It is now clear from the previous chapters that the pre-log factor of the
number of feedback bits represents an appropriate measure at high SNR of
the amount of CSIT required. Thus, we define the size of a CSIT allocation
as follows.

Definition 2 (Size of a CSIT allocation). The size s(•) of a CSIT alloca-
tion B(j) at TX j is defined as

s(B(j)) , lim
P→∞

∑
i,k B

(j)
ki

log2(P )
(7.2)

such that the total size of a CSIT allocation {B(j)}Kj=1 is

s({B(j)}Kj=1) ,
K∑

j=1

s(B(j)) (7.3)

= lim
P→∞

∑
i,j,k B

(j)
ki

log2(P )
. (7.4)
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Remark 12. We consider here a digital quantization of the channel vectors
but the results can be easily translated to a setting where analog feedback
is used since digital quantization is simply used as a way to quantify the
variance of the CSIT errors [19, 112]. Furthermore, only CSI requirements
at the TXs are investigated, and different scenarios can be envisaged for the
sharing of the channel estimates (e.g., direct broadcasting from the RXs to
all the TXs, sharing through a backhaul, . . . ) [113].

7.1.2 Distributed Precoding

We focus here on the CSI dissemination problem under a conventional pre-
coding framework. Hence, we assume that the sub-optimal ZF precoder is
used. Based on its own channel estimate Ĥ(j), TX j computes then the ZF

beamforming vector t
(j)
i to transmit symbol si such that

t
(j)
i ,

√
P

(
Ĥ(j)

)−1
ei

‖
(
Ĥ(j)

)−1
ei‖

, ∀i ∈ {1, . . . ,K}. (7.5)

Although a given TX j may compute the whole precoding matrix T(j), only
the j-th row is of practical interest. Indeed, TX j transmits solely xj =
eH
j T(j)s. The effective multi-user precoder T verifies then

x = Ts =




eH
1 T(1)

eH
2 T(2)

...

eH
KT(K)


 s. (7.6)

Finally, we denote by T? = [t?1, . . . , t
?
K ] the precoder obtained with per-

fect CSI at all TXs. It is hence equal to

t?i ,
√
P

(H)−1 ei

‖(H)−1 ei‖
, ∀i ∈ {1, . . . ,K}. (7.7)

7.1.3 Optimization of the CSIT Allocation

Optimizing directly the allocation of the number of bits at finite SNR rep-
resents a challenging problem which gives little hope for analytical results.
Instead, we will try to identify one CSIT allocation solution achieving the
same DoF as under the fully shared CSIT setting.
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Definition 3. We define the set of DoF-achieving CSIT allocations BDoF(Γ)
as

BDoF(Γ) , {{B(j)}Kj=1|∀i,DoFi({B(j)}Kj=1,Γ) = 1}. (7.8)

Hence, an interesting problem consists in finding the minimal CSIT al-
location (where minimality refers to the size in Definition 2) which achieves
the maximal generalized DoF at every user:

minimize s
(
{B(j)}Kj=1

)
, subject to {B(j)}Kj=1 ∈ BDoF(Γ). (7.9)

We focus here on an “achievability” result, by exhibiting a CSIT alloca-
tion that achieves the maximal DoF while having a much lower size than
the conventional (uniform) CSIT allocation. Furthermore, the proposed
“achievable scheme” will prove to have very good properties which distin-
guish it from other solutions in the literature (e.g., clustering) and makes
it practically interesting. The problem of finding a minimal-size allocation
policy while guaranteeing full DoF (i.e. DoF equal to the perfect CSIT case)
is an interesting problem, but an extreme challenging one, which, to our best
knowledge, remains open.

7.2 Preliminary Results

7.2.1 A Sufficient Criterion

As a preliminary step, we derive a simple sufficient criterion on the precoder
for achieving the maximal DoF.

Proposition 12. The maximal DoF is achieved by using the precoder T if
the CSIT allocation {B(j)}Kj=1 is such that

E
[
‖T−T?‖2F

]
.
= P 0 (7.10)

where we have used the exponential equality f(P )
.
= P b as in Chapter 6 to

denote limP→∞
log(f(P ))

log(P ) = b [1] and T? has been defined previously as the
precoder based on perfect CSIT.

Proof. We start by defining the rate difference ∆R,i between the rate of
user i based on perfect CSI and the rate achieved with limited feedback. As
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in [15,19], we can then write

∆R,i,E
[
log2(1+|hH

i t
?
i |2)
]
−E

[
log2

(
1+

|hH
i ti|2

1+
∑

j 6=i |hH
i tj |2

)]
(7.11)

=E

[
log2

(
1+|hH

i t
?
i |2

1+
∑K

j=1 |hH
i tj |2

)]
+E


log2


1+

∑

j 6=i
|hH
i tj |2




 (7.12)

.
=E


log2


1+

∑

j 6=i
|hH
i tj |2




 . (7.13)

We further obtain

∆R,i ≤̇E


log2


1+

∑

j 6=i
|hH
i (t?j + (tj − t?j ))|2




 (7.14)

=E


log2


1+

∑

j 6=i
|hH
i (tj − t?j )|2)




 . (7.15)

We can then easily upper-bound (7.15) to write

∆R,i ≤̇ E


log2


1 + ‖hi‖2

∑

j 6=i
‖tj − t?j‖2




 (7.16)

= E
[
log2

(
1 + ‖T−T?‖2F

)]
+ E

[
log2

(
1 + ‖hi‖2

)]
(7.17)

≤̇ log2

(
E
[
‖T−T?‖2F

])
. (7.18)

The maximal DoF is achieved if the rate difference ∆R,i/ log2(P ) tends to
zero as the SNR increases, which is the result of the proposition.

The condition obtained above is very intuitive and will be used in the
remaining of this work. However, Proposition 12 does not solve the main
question, which is to determine what kind of CSIT allocation allows to
achieve (7.10). This question is central to this work and will be tackled in
Section 7.3.

7.2.2 The Conventional CSIT Allocation is DoF Achieving

The term “conventional” hereby corresponds to conveying to each TX the
CSI relative to the full multi-user channel, enabling all the TXs to do the
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same processing and compute a common precoder, such that T(j) = T̂, ∀j.
Hence, the condition of Proposition 12 can be rewritten as

E

[∥∥∥T(j) −T?
∥∥∥

2

F

]
.
= P 0, ∀j ∈ {1, . . . ,K}. (7.19)

Based on this, the following result is obtained.

Proposition 13. The following “conventional” CSIT allocation {Bconv,(j)}Kj=1

defined as

{Bconv,(j)}ki , [dlog2(Pρ2
ki)e]+, ∀k, i, j (7.20)

= [d{Γ}ki log2(P )e]+ (7.21)

is DoF achieving, i.e., {Bconv,(j)}Kj=1 ∈ BDoF.

Proof. We consider without loss of generality the precoding at TX j. Using
the CSIT allocation in (7.21), it holds that

ρki

√
2−B

(j)
ki =

√
1

P
(7.22)

such that H(j) = H+
√

1
P ∆H(j). We start by recalling the well known resol-

vent equality. Using the resolvent equality given in Lemma 2 in Appendix .1
two times successively, we can then write

(
Ĥ(j)

)−1
−H−1 (7.23)

=
(
H +

√
P−1∆H(j)

)−1
−H−1 (7.24)

= H−1(−
√
P−1∆H(j))

(
H +

√
P−1∆H(j)

)−1
(7.25)

= H−1(−
√
P−1∆H(j))H−1 + H−1(−

√
P−1∆H(j))

(
(Ĥ(j))−1 −H−1

)

(7.26)

= −
√
P−1H−1∆H(j)H−1 + P−1H−1∆H(j)H−1∆H(j)(Ĥ(j))−1. (7.27)

We can then use the triangular inequality to obtain the upperbound

‖
(
Ĥ(j)

)−1
−H−1‖F (7.28)

≤
√
P−1‖H−1‖2F‖∆H(j)‖F + P−1‖(Ĥ(j))−1‖F‖H−1‖2F‖∆H(j)‖2F (7.29)

.
=
√
P−1‖H−1‖2F‖∆H(j)‖F. (7.30)
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Because of our assumption of outer-diagonal decay, the channel is well con-
ditioned and all the expectations in (7.30) are finite. Taking the square and
the expectation, we obtain then

E[‖
(
Ĥ(j)

)−1
−H−1‖2F] ≤̇ P−1. (7.31)

After normalization, it follows easily from (7.31) that the sufficient condition
in Proposition 12 is fulfilled, which concludes the proof.

This CSIT allocation provides to each TX the K channel vectors rela-
tive to the K RXs. This means that each TX requires a number of channel
estimates growing unbounded with K. This represents a serious issue in
large/dense networks which prompts designers, in practice, to restrict coop-
eration to small cooperations clusters.

7.2.3 CSIT Allocation with Distributed Precoding

We now turn our attention to the derivation of a more efficient CSIT al-
location strategy. A crucial observation is that each TX does not need to
compute accurately the full precoder. Indeed, the sufficient criterion (7.10)
can be written in the distributed CSI setting as

E

[∥∥∥eH
j (T(j) −T?)

∥∥∥
2
]
.
= P 0, ∀j ∈ {1, . . . ,K}. (7.32)

Intuition has it that a channel coefficient relative to a TX/RX pair which
interferes little with TX/RX j has little impact on the jth precoding row
and hence does not need to be known accurately at TX j. What follows is
a quantitative assessment of this intuition.

7.3 Distance-Based CSIT Allocation

We consider in this section a two dimensional network consisting ofK TX/RX
pairs. The geometry of the network is abstracted as follows. Let us assume
that there is a given map from the user’s indices i ∈ {1, . . . ,K} to some
coordinates (xi, yi) ∈ R2. TX/RX pair i is then assumed to be located at
the position (xi, yi). We denote by d(i, k) the Euclidian distance over R2.
The pathloss between TX i and RX k is then given by

ρ2
k,i = (µ2)d(i,k), ∀i, k ∈ {1, . . . ,K} (7.33)
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for a given µ2 < 1. The interference level matrix Γ defined in (3.16) is then
equal to

{Γ}ki =
log((µ2)d(i,k)P )

log(P )
, ∀k, i (7.34)

= 1 + (γ − 1) d(k, i) (7.35)

where we have introduced

γ ,
log(µ2P )

log(P )
. (7.36)

7.3.1 Distance-based CSIT Allocation

With the notations set above, the conventional CSIT allocation given in (7.21)
can be rewritten as

{Bconv,(j)}ki = d[1 + (γ − 1) d(k, i)]+ log2(P )e, ∀k, i, j. (7.37)

We can now state our first main result.

Theorem 11. Let us define the CSIT allocation {Bdist,(j)}Kj=1 such that

{Bdist,(j)}ki , d[1 + (γ − 1)(d(j, k) + d(k, i))]+ log2(P )e, ∀k, i, j.
(7.38)

Then Bdist ∈ BDoF.

Proof. Let us focus without loss of generality on the CSIT allocation at
TX j. Following the sufficient condition in Proposition 12, we want to find
a CSIT allocation such that

E[|eH
j H−1ei − eH

j

(
Ĥ(j)

)−1
ei|2] ≤̇ P−1, ∀i ∈ {1, . . . ,K}. (7.39)

Indeed, once (7.39) is fulfilled, the the sufficient condition in Proposition 12
follows easily.

Let us first define the matrix D , diag(H). We also define for this proof
the normalized channel coefficient H̃ki , Hki/ρki. It then holds that H̃ki ∼
NC(0, 1). Because of the outer-diagonal attenuation by µmini,j d(i,j), we have
that

lim
n→∞

(IK −D−1H)n = 0K . (7.40)
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Hence, we can proceed by writing the channel inverse using the series von
Neumann as

eH
j H−1ei = eH

j

∞∑

n=0

(D−1(D−H))nD−1ei, ∀i, j (7.41)

=
∞∑

n=0

Cjin (7.42)

where we have defined

Cjin , eH
j (D−1(D−H))nD−1ei, ∀i, j, n. (7.43)

It can be seen from (7.43) that Cjin verifies

E[|Cjin |2] ≤̇ (µ2 mini,j d(i,j))n (7.44)

= P
n

(
log(µ

2 mini,j d(i,j)
P )−log(P )

log(P )

)
(7.45)

= P (γmin−1)n (7.46)

where we have defined

γmin ,
log(µ2 mini,j d(i,j)P )

log(P )
. (7.47)

Hence, the infinite summation can be truncated to a finite summation up
to n0 , d1/(1− γmin)e without impacting the DoF. We further introduce

D(j) , diag(Ĥ(j)), ∀j, (7.48)

Cji,(j)n , eH
j ((D(j))−1(D(j) − Ĥ(j)))n(D(j))−1ei, ∀i, j, n. (7.49)

We can then write

E[|eH
j H−1ei − eH

j

(
Ĥ(j)

)−1
ei|2]

.
= E



∣∣∣∣∣
n0∑

n=1

Cjin − Cji,(j)n

∣∣∣∣∣

2

 (7.50)

≤ E



(

n0∑

n=1

|Cjin − Cji,(j)n |
)2

 (7.51)

≤̇
n0∑

n=1

E[|Cjin − Cji,(j)n |2] (7.52)
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where we have used iteratively that (a+b)2 ≤ 2(a2 +b2),∀a, b ∈ R2 to obtain
the last inequality (and the multiplicative constants could be removed be-
cause of the exponential inequality). We now look for a CSIT allocation B(j)

ensuring that

E[|Cjin − Cji,(j)n |2] ≤̇ P−1, ∀i, j, n. (7.53)

In particular, let us write the first coefficients

E[|Cji0 − C
ji,(j)
0 |2] = E



∣∣∣∣∣
eH
j ei

Hii
−
eH
j ei

Ĥ
(j)
ii

∣∣∣∣∣

2

 (7.54)

= E




∣∣∣∣∣∣∣

√
2−B

(j)
ii ∆H

(j)
ii

HiiĤ
(j)
ii

∣∣∣∣∣∣∣

2
 δji (7.55)

.
= 2−B

(j)
ii δji. (7.56)

Thus, we set

B
(j)
jj = dlog2(P )e. (7.57)

This ensure to fulfill (7.53) for n = 0. The error done over Hjj becomes
then negligible in terms of DoF (i.e., in terms of exponential equality). For
n ≥ 1, it holds that Cjjn = 0 such that we assume that i 6= j in the following,

E[|Cji1 − C
ji,(j)
1 |2] = E



∣∣∣∣∣
{D−H}j,i
HjjHii

− {D
(j) − Ĥ(j)}j,i
Ĥ

(j)
jj Ĥ

(j)
ii

∣∣∣∣∣

2

 (7.58)

.
= E



∣∣∣∣∣
Ĥ

(j)
i,i H̃j,i −Hi,iH̃

(j)
j,i

HjjHiiĤ
(j)
ii

∣∣∣∣∣

2

 (µ2)d(i,j) (7.59)

.
= (2−B

(j)
ii + 2−B

(j)
ji )P (γ−1) d(i,j) (7.60)

Setting

B
(j)
ii = d[1 + (γ − 1) d(i, j)]+ log2(P )e, ∀i 6= j (7.61)

B
(j)
ji = d[1 + (γ − 1) d(i, j)]+ log2(P )e, ∀i 6= j (7.62)
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ensures to fulfill (7.53) for all streams i for n = 1. Going further, we consider
then Cji2 ,

E[|Cji2 − C
ji,(j)
2 |2] (7.63)

= E[|eH
j (D−1(D−H))2D−1ei − eH

j ((D(j))−1(D(j) − Ĥ(j)))2(D(j))−1ei|2]

(7.64)

= E[|
K∑

k=1

eH
j D−2(D−H)eke

H
k (D−H)D−1ei − eH

j (D(j))−2(D(j) − Ĥ(j))ek

· eH
k (D(j) − Ĥ(j))(D(j))−1ei|2]

(7.65)

= E[|
K∑

k=1,k 6=i,k 6=j

1

H2
jjHii

H̃jkH̃ki −
1

(Ĥ
(j)
jj )2Ĥ

(j)
ii

H̃
(j)
jk H̃

(j)
ki |2](µ2)d(j,k)+d(k,i)

(7.66)

≤̇ E[|
K∑

k=1,k 6=i,k 6=j
H̃jkH̃ki − H̃(j)

jk H̃
(j)
ki |2]P (γ−1)(d(j,k)+d(k,i)) (7.67)

.
=

K∑

k=1,k 6=i,k 6=j
(2−B

(j)
jk + 2−B

(j)
ki )P (γ−1)(d(j,k)+d(k,i)) (7.68)

.
=

K∑

k=1,k 6=i,k 6=j
2−B

(j)
ki P (γ−1)(d(j,k)+d(k,i)) (7.69)

where we could remove 2−B
(j)
jk because of (7.62). Setting

B
(j)
ki = d[1 + (γ − 1)(d(j, k) + d(k, i))]+ log2(P )e, ∀k 6= i, k 6= j (7.70)

allows to fulfill (7.53) for n = 2. Going to arbitrary value of n, we write

E[|Cjin −Cji,(j)n |2] =E



∣∣∣∣∣∣

K∑

k1 6=j

K∑

k2 6=k1

. . .

K∑

kn−1 6=kn−2,kn−1 6=i

(
H̃j,k1H̃k1,k2 . . . , H̃kn−1,i

Hn
jjHii

−
H̃

(j)
j,k1

H̃
(j)
k1,k2

. . . , H̃
(j)
kn−1,i

(Ĥ
(j)
jj )nĤ

(j)
ii



∣∣∣∣∣∣

2
 (µ2)d(j,k1)+d(k1,k2)+...+d(kn−1,i).

(7.71)

Yet, it follows from the distance properties of d (triangular inequality, posi-
tivity) that the exponents in µ will always be larger than the ones obtained
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for Cji0 , C
ji
1 , C

ji
2 . Hence, setting the B

(j)
ki as in (7.57), (7.61),(7.62) and (7.70)

ensures that (7.53) is fulfilled for all n and for all i. Inserting this result in
(7.52) concludes the proof.

Letting γ tend to one inside (7.38), the network geometry becomes ho-
mogeneous with all the links having the same variance, asymptotically in the
SNR. There is then no attenuation of the interference due to the pathloss
and the distance-based CSIT allocation converges as expected to the conven-
tional CSIT allocation given in (7.37). More generally, the distance-based
CSIT allocation exploits the fact that two users being further away that a
given distance do not impact the design of precoding coefficients for each
other. This can be related to the the space of infinite (either polynomially
or exponentially) decaying matrices being closed under inversion [114,115].

Remark 13. The result easily extends to the case of multiple TX/RX pairs
located at the same position. This models then a TX with multiple-antennas
serving multiple single-antenna RXs.

7.3.2 Scaling Properties of the Distance-based CSIT Alloca-
tion

We consider in this section the scaling behaviour as the number of TX/RX
pairs increases. It is then differentiated in the literature between so-called
dense networks and extended networks [116, 117]. In the first model, the
size of the network remains constant and the density (number of TX/RX
pairs/m2) increases, while in the second the density of the network remains
constant as the number of TX/RX pairs increases. Our analysis being on
large networks, we consider the extended model and we assume that the
density of TX/RX pairs remains constant, i.e., that the size of the network
increases with the number of TX/RX pairs.

The critical question that we want to tackle here is to determine how
the size of the CSIT allocation increases with the number of TX/RX pairs.
Indeed, this scaling represents an important figure-of-merit to evaluate the
feasibility of large cooperation areas.

Corollary 5. In the distance-based CSIT allocation, TX j does not need to
receive any CSIT relative to the ith RX if

d(i, j) > d0 (7.72)

with d0 defined as

d0 ,
1

1− γ . (7.73)
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In particular, the size of the distance-based CSIT allocation at any TX
remains bounded in the extended model as the number of TX/RX pairs K
increases:

s(Bdist,(j)) = O(1) as K grows, ∀j ∈ {1, . . . ,K}. (7.74)

Proof. This result follows directly by observing that {Bdist,(j)}ki is equal to
zero if d(k, j) > d0. From the assumption of finite density, there are only a
finite number of RXs fulfilling this condition such that the size of the CSIT
allocation at TX j remains bounded as K increases.

This result is in stark contrast with the conventional CSIT allocation
where the size s(Bconv,(j)) scales linearly with K. This corollary confirms
the intuition that a CSIT-exchange restricted to a finite neighborhood is
sufficient to achieve global coordination.

We have considered so far a scenario with global sharing of the user’s
data symbols. The result above leads to ask ourselves whether the sharing
of the user’s data could also be reduced to a local neighborhood without
reduction of the DoF achieved.

Corollary 6. Let us denote by Kj the set of user’s data symbols being shared
to TX j. It is sufficient for achieving the maximal DoF that si ∈ Kj if

d(i, j) < d0. (7.75)

In the extended model, it follows that

∀j, |Kj | = O(1), as K grows. (7.76)

Proof. From the proof of Theorem 11, it is known that

E[|eH
j H−1ei|2] ≤̇ (µ2)d(i,j). (7.77)

Hence, if (7.72) is fulfilled, (µ2)d(i,j)P = P 1+(γ−1) d(i,j) ≤̇ 1 and setting
{T}ji = 0 does not impact the DoF. Thus, it is not necessary in terms of
DoF that TX j participates to the transmission of the ith stream, and hence
it is not necessary that TX j receives data symbol si.

The operational meaning of the above result is that no exchange of infor-
mation (CSI or data symbol) is necessary between two TXs i and k if they
verify that d(i, k) > d0. Intuitively, d0 is the size of the neighborhood inside
which the cooperation should occur. Altogether, the distance-based CSIT
allocation along with the matching users data sharing provides an attractive
alternative to clustering. The difference being that the hard-boundaries of
the cluster are replaced by a smooth decrease of the level of cooperation.
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7.4 Simulations

We verify now by simulations that the maximal DoF per user is achieved
by the distance based CSIT allocation. At the same time, we compare the
distance based CSIT allocation to the CSI disseminations commonly used,
i.e., uniform CSIT allocation and clustering.

We consider a channel model with γ = 0.6 and we use Monte-Carlo
averaging over 1000 channel realizations. We study first a network with a
regular geometry where K = 36 TX/RX pairs are placed at the integer val-
ues inside a square of dimensions 6×6. We show in Fig. 7.1 the average rate
achieved with different CSIT allocation policies. Specifically, the distance-
based CSIT allocation in (7.38) is compared to two alternative CSIT al-
locations, being the uniform CSIT allocation {Bunif,(j)}Kj=1 where the bits

are allocated uniformly to the TXs, and the clustering one {Bcluster,(j)}Kj=1

in which (non-overlapping) regular clustering of size 4 is used. Both CSIT
allocations are chosen to have the same size as the distance-based one:

s
(
{Bunif,(j)}Kj=1

)
= s

(
{Bcluster,(j)}Kj=1

)
= s

(
{B(dist,(j)}Kj=1

)
. (7.78)

With these parameters, the size of the distance based CSIT allocation is
only equal to 6.5% of the size of the conventional CSIT allocation. Never-
theless, it can be observed to achieve the maximal generalized DoF while the
clustering solution has a smaller slope, yet larger than the uniform CSIT al-
location. The distance-based CSIT allocation suffers from a strong negative
rate offset. This offset is a consequence of our analysis being limited to the
high SNR regime. Indeed, using ZF with many users is very inefficient at
intermediate SNR, particularly in a network with strong pathloss. Further-
more, the number of TX/RX pairs K which is here relatively large, has not
been taken into account. Hence, this strong negative rate offset can be eas-
ily reduced by optimizing the precoding scheme and the CSIT allocation at
finite SNR. The key element being that the distance-based CSIT allocation
does not present the usual limitations of clustering, i.e., edge-interference
and large scaling behaviour as the size of the cluster increases.

Finally, we show in Fig. 7.2 the average rate per user in a network made
of K = 15 TX/RX pairs being located uniformly at random over a square of
dimensions 6×6 for γ = 0.7. We compare the average rate achieved with the
distance-based CSIT allocation to the average rate obtained if we use the
distance-based allocation given in Theorem 11, but with 1+α(γ−1)(d(j, k)+
d(k, i)) for a given parameter α > 0 instead of 1 + (γ − 1)(d(j, k) + d(k, i)).
This allows to observe the impact of reducing (α > 1) or increasing (α < 1)
the CSIT compared to the distance-based CSIT allocation.
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Figure 7.1: Average rate per user as a function of the SNR P for K = 36
and γ = 0.6. The TX/RX pairs are positioned at the integer values inside
a square of dimensions 6× 6. The 3 limited feedback CSIT allocations used
have the same size which is equal to 6.5% of the size of the conventional
CSIT allocation in (7.37).
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We can observe that reducing the CSIT allocation leads to reducing the
slope, i.e., the DoF, while using more feedback bits leads to a vanishing rate
offset. This is in agreement with our theoretical result that the distance-
based CSIT allocation leads to a finite rate offset.
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Figure 7.2: Average rate per user as a function of the SNR P for K = 15
and γ = 0.7. The TX/RX pairs are placed uniformly at random over a
square of dimensions 6× 6. The CSIT allocation with α = 1.25, α = 1, and
α = 1.25, use respectively 10%, 17%, and 30% of the number of bits relative
to the conventional CSIT allocation.

7.5 Conclusion

We have discussed the problem of optimizing the CSIT dissemination in a
network MIMO scenario. In particular, following a generalized DoF analysis,
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we have exhibited a CSIT allocation which allows to achieve the optimal
generalized DoF while restricting the cooperation to a local scale. This
behavior is critical for the cooperation of a large number of TXs to be
possible in a realistic network where the backhaul links are imperfect and of
finite capacity. The proposed CSIT allocation can be seen as an alternative
to clustering where the hard boundaries of the cluster are replaced by a
smooth decrease of the cooperation strength.

In this chapter, we have then shown how optimizing the CSI dissemina-
tion allows to achieve the required performance with a CSIT dissemination
strategy being much more parcimonious than the conventional one. Inter-
estingly, this new approach allows to overcome limitations of the TX coop-
eration which seemed fundamental but were in fact only a consequence of
the particular CSIT dissemination strategy chosen. Studying the CSIT dis-
semination in other application scenarios will be the topic of future research
and is expected to lead to further savings and new interesting behaviours.
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Chapter 8

Interference Alignment with
Incomplete CSIT

In the previous chapter, we have shown how to exploit the pathloss atten-
uation to reduce the CSIT requirements. The approach could not easily
be extended to IA because of the different kind of coordination required
between the TXs (the dimensions where the interference are “aligned” have
to be jointly chosen). However, we will now show that there is another
dimension that can be exploited in the case of MIMO IA.

Let us consider as toy example a K-user IC with all TXs and all RXs
having respectively M and N antennas. It is shown in [50] that IA is feasible
if and only if M + N ≥ K + 1 for single-stream transmissions. This result
is obtained with the assumption of perfect CSIT at all RXs. However, if
M = 1 and N = K, it is clear that no CSI is necessary at the TXs since
the RXs have enough antennas to ZF the K − 1 dimensions of interference.
Similarly, if M = K and N = 1, each TX can apply conventional ZF to emit
no interference to the other RXs. It is then not necessary to provide each
TX with the CSI relative to the full multi-user channel but solely with the
“local” CSI relative to this particular TX.

Those particular examples highlight the fact that IA can be achieved in
some cases without the requirement for each TX to receive the CSI relative
to the full multi-user channel. This is very interesting practically as it means
that it is possible to reduce the amount of CSI shared in the backhaul at
the cost of no performance reduction. We investigate in the following what
is the minimal – in the sense of a metric which will be introduced in the
following – CSIT allocation which is necessary in order to achieve IA.

Practically, this means revisiting the so-called “feasibility problem” for
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MIMO IA, which consists in determining for given antenna configurations
whether IA is feasible or not [49,50,118,119], under the scope of incomplete
CSIT at the TXs.

8.1 Incomplete CSIT Configuration and Problem
Statement

We consider in this section a particular case of distributed CSIT which we
call incomplete CSIT. In this model, a TX has either perfect knowledge of
a channel coefficient or no information at all on that element. We represent
the CSIT structure at TX j by the CSIT matrix F(j) ∈ {0, 1}Ntot×Mtot such
that {F(j)}ik = 1 if {HH}ik is known at TX j, and 0 otherwise. Denoting
by Ĥ(j) the available CSI at TX j, we obtain

(Ĥ(j))H = F(j) �HH (8.1)

with � denoting the element-wise (or Hadamart) product. We define the
CSIT allocation F as the set of CSI representations available at all TXs:

F = {F(j)|F(j) ∈ {0, 1}Ntot×Mtot , j = 1, . . . ,K} (8.2)

and we define the space F containing all the possible CSIT allocations. We
can then define the size of an incomplete CSIT allocation as follows.

Definition 4. The size of a CSIT allocation F , denoted by s(F), is equal
to the overall number of complex channel coefficients fed back to the TXs.
Thus,

s(F) ,
K∑

j=1

‖F(j)‖2F. (8.3)

Remark 14. This size definition can be linked to the size used in Chapter 7.
Indeed, considering a quantization of the channel elements with log2(P ) bits
per-element, the size defined in (8.3) is then equal to the total pre-log factor
of the number of CSI bits exchanged in the backhaul. In fact, the size in
(8.3) can be seen as the size introduced in Definition 2 for the particular
case where the number of quantization bits used for a channel element can
only be log2(P ) or 0.

To check whether IA feasibility is preserved with a given CSIT allocation,
we introduce the function ffeas which takes as argument a CSIT allocation F
and an antenna configuration

∏K
k=1(Nk,Mk) and returns 1 if IA is feasible
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with these parameters and 0 otherwise. Note that this means that there
exists one algorithm achieving IA with this CSIT allocation but it does not
precise the algorithm. We also define the set Ffeas containing all the CSIT
allocations for which IA is feasible. Hence,

Ffeas , {F|F ∈ F, ffeas

(
F ,

K∏

k=1

(Nk,Mk)

)
= 1}. (8.4)

Only the interfering channel matrices HH
ij with i 6= j are required to fulfill

the IA constraints, and not the direct channel matrices HH
jj . Thus, from a

DoF point of view, we can always skip the direct channel matrices HH
jj in

the feedback, which leads to the following definition.

Definition 5. A complete CSIT allocation, denoted by Fcomp, is defined by
the knowledge of all the interfering channel matrices HH

ij with i 6= j at all
TXs. Thus, the size of a complete CSIT allocation is

s (Fcomp) = K

(
NtotMtot −

K∑

i=1

NiMi

)
. (8.5)

A CSIT allocation with a size smaller than s(Fcomp) is said to be strictly
incomplete.

At this stage, a natural question is to ask what is the most incomplete
CSIT allocation which preserves the feasibility of IA, i.e., to find

Fmin = argmin
F∈Ffeas

s(F). (8.6)

Note that we limit here our study to the IA feasible settings, i.e., such
that Fcomp ∈ Ffeas.

8.2 Feasibility Results

8.2.1 Results from the Literature

We start by recalling some results from the literature on IA feasibility in a
conventional IC with full CSIT sharing for the case of single stream trans-
mission. In [49], the notion of proper antenna configurations in introduced.
An IC is said to be proper if and only if the number of variables in the RX
and TX beamformers involved in any set of IA constraints is larger than
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the number of scalar equations. Following [49], let us denote by Eij the IA
equation for the jth stream at RX i (See Subsection 3.1.2)

gH
i HH

ijuj = 0 (Eij)

and by var(Eij) the set of free variables involved in this equation. It holds
then

| var(Eij)| = Ni − 1 +Mj − 1. (8.7)

A system is said to be proper if and only if

∀I ⊆ J , |I| ≤ |
⋃

(i,j)∈I

var(Eij)| (8.8)

where J , {(i, j)|1 ≤ i, j ≤ K, i 6= j} and I is an arbitrary subset of J . In
the homogeneous (N,M)K IC, this condition can be reduced to M + N ≥
K + 1. The following result has been later obtained in [50] and is restated
here for convenience.

Theorem 12 ( [50]). IA is feasible in the
∏K
k=1(Nk,Mk) IC if and only if the

antenna configuration is proper, i.e., if (8.8) is verified.

Hence, we can use here the condition (8.8) to determine the feasibility
of IA with complete CSIT sharing.

8.2.2 Tightly-feasible and Super-feasible Settings

Whether the total number of variables is strictly larger than the number of
equations will be shown to impact significantly the CSIT needed. Hence, we
introduce the following definitions.

Definition 6. An IC setting is called tightly-feasible if this IC is feasible
and removing a single antenna at any TX or RX renders IA unfeasible.
Equivalently, an IC is tightly-feasible if and only if it is feasible and

K∑

i=1

Ni +Mi = K(K + 1). (8.9)

The characterization follows directly from (8.8) applied with the set I =
J .

Definition 7. A feasible setting which does not verify the tightly-feasible
condition is said to be super-feasible. Equivalently, a super-feasible setting
is a feasible setting such that

K∑

i=1

Ni +Mi > K(K + 1). (8.10)
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8.2.3 New Formulation of the Feasibility Results

Condition (8.8) requires verifying a number of conditions increasing expo-
nentially with the size of the network. As a preliminary step, we show that
condition (8.8) can be simplified to obtain the following condition.

Theorem 13. IA is feasible in the
∏K
k=1(Nk,Mk) IC if and only if, for any

TX subset STX and any RX subset SRX, it holds that

∀STX,SRX ⊆ K, Nvar(SRX,STX) ≥ Neq(SRX,STX) (8.11)

where Nvar(SRX,STX) and Neq(SRX,STX) are respectively the number of
variables and the number of equations stemming from the subset of RXs SRX

and the subset of TXs STX and are mathematically defined as

Nvar(SRX,STX) ,
∑

i∈SRX

Ni − 1 +
∑

i∈STX

Mi − 1,

Neq(SRX,STX) ,
∑

k∈STX

∑

j∈SRX,j 6=k
1.

(8.12)

Proof. For I ⊆ J = {(i, j)|1 ≤ i, j ≤ K, i 6= j}, we define the sets

STX(I) , {j|∃k′, (k′, j) ∈ I}, SRX(I) , {k|∃j′, (k, j′) ∈ I}. (8.13)

Hence, SRX(I) and STX(I) contain respectively the set of RXs and the set
of TXs appearing in at least one equation of the set of equations I. With
these notations, equation (8.8) can be rewritten as

∀I ⊆ J , |I| ≤
∑

k∈STX(I)

(Mk − 1) +
∑

j∈SRX(I)

(Nj − 1). (8.14)

Adding equations to I without increasing SRX(I) or STX(I) makes condition
(8.14) tighter. Hence, it is only necessary to verify (8.14) for the sets of
equations made of all the equations generated by the RXs in SRX(I) and
the TXs in STX(I).

Remark 15. Using Theorem 1, it is necessary to try all the subsets I in-
cluded in J . The set J can be seen to be of cardinal K(K − 1), such that
there are 2K(K−1) subsets to test. In contrast, Theorem 2 requires “only”
to try all the sub-ICs. This means choosing a number of RXs between 1
and K and a number of TXs between 1 and K, which gives in total 22K

possibilities.

149



CHAPTER 8. INTERFERENCE ALIGNMENT WITH INCOMPLETE
CSIT

We can note that the number of conditions to test in Theorem 13 is still
exponential. However, the main interest of this result does not lie in the
cardinality reduction. It comes from the fact that the TXs and the RXs can
then be ordered to reduce the complexity from an exponential number of
possibilities to a polynomial one. In fact, one contribution of this work is
a simple and intuitive algorithm for testing the feasibility of IA with single
streams. Since this algorithm is obtained after very simple modifications
of our CSIT allocation algorithm (which will be described later on), it is
not described here in more details. However, detailed description of the IA
feasibility test with linear complexity can be found online in [120] along with
the MATLAB code of the test.

The criterion (3.15) provides also an interesting insight into IA feasibility:
The feasibility of IA in the full IC is verified by analyzing the feasibility of
IA in all the sub-ICs included in the full IC.

Note that the sub-IC obtained after selection of the RXs inside SRX and
the TXs inside STX is not a conventional IC due to the fact that the TXs
and the RXs are not necessarily paired. To model this scenario, we introduce
the notion of generalized IC.

8.2.4 Generalized interference channels

We refer to an IC in which at least one TX or RX does not have its paired RX
or TX included in the IC as a generalized IC. We represent this by writing a
“*” instead of the number of antennas of the paired RX or TX. For example,
an IC containing TXs 1, 2, and 3 but only RXs 1, 2, and 4 (with all the TXs
and the RXs having two antennas) is denoted by (2, 2).(2, 2).(∗, 2).(2, ∗).
The IA feasibility criterion (3.15) is trivially extended to generalized ICs
by verifying the condition for all the sets of TXs and RXs included in the
generalized IC.

8.3 IA with Incomplete CSIT for Tightly-Feasible
Channels

8.3.1 General Criterion

Parameterization of the CSIT allocation In order to write concisely
our results, we need to introduce a last notation. With simple words, we
define the matrix FSRX,STX

, where SRX is a set of RXs and STX a set of TXs,
such that FSRX,STX

�H contains all the channel coefficients relative to the
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generalized sub-IC formed by the set of RXs SRX and the set of TXs STX,
at the exception of the direct channel matrices Hjj ,∀j.

Mathematically, this means that the matrix FSRX,STX
of size Ntot×Mtot

has its only nonzero elements chosen to verify

∀x 6= y, x ∈ SRX, y ∈ STX, (Ex
RX)T FSRX,STX

Ey
TX =(Ex

RX)T 1Ntot×MtotE
y
TX

(8.15)
with

En
TX ,

[
0Mn×

∑n−1
k=1 Mk

, IMn ,0Mn×
∑K
k=n+1 Mk

]T
(8.16)

and the matrix En
RX defined similarly, solely with Ni replacing Mi.

Main theorem We can now state one of our main results.

Theorem 14. In a tightly-feasible
∏K
k=1(Nk,Mk) IC, let us assume that there

exists a tightly-feasible generalized sub-IC formed by the set of TXs STX and
the set of RXs SRX, i.e.,

Nvar(SRX,STX) = Neq(SRX,STX). (8.17)

Then the incomplete CSIT allocation F = {F(j)|j = 1, . . . ,K} preserves IA
feasibility, i.e., F ∈ Ffeas if

∀j ∈ STX,F
(j) = FSRX,STX

, ∀j /∈ STX,F
(j) = FK,K = 1Ntot×Mtot .

(8.18)

Proof. We have by assumption that

Nvar(SRX,STX) = Neq(SRX,STX). (8.19)

This setting being tightly-feasible, it is possible to align interference inside
this sub-IC. In the following we assume that the beamformers of the TXs
and the RXs inside this sub-IC have been fixed and fulfill all IA constaints
inside this sub-IC. I0n terms of IA feasibility, this is equivalent to replacing
the TXs and the RXs inside this sub-IC by non-interfering single-antenna
nodes. Indeed, these nodes do not have any ZF capabilities left but do not
create any IA constraints among themselves.

We will now show that IA remains feasible in the IC obtained once these
beamformers have been fixed. Since the initial IC was feasible, it holds for
any subset of TX S ′TX and any subset of RX S ′RX that

Nvar(S ′RX,S ′TX) ≥ Neq(S ′RX,S ′TX). (8.20)
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A fortiori, it holds for SRX ∩ S ′RX = ∅ and STX ∩ S ′TX = ∅ that

Nvar(SRX ∪ S ′RX,STX ∪ S ′TX) ≥ Neq(SRX ∪ S ′RX,STX ∪ S ′TX). (8.21)

It follows from the definition of Nvar and Neq in (8.12), that ∀A,A′,B,B′ ⊂
K, with A′ ∩ A = ∅ and B′ ∩ B = ∅, it holds that

Nvar(A ∪A′,B ∪ B′) = Nvar(A,B) +Nvar(A′,B′)
Neq(A ∪A′,B ∪ B′)=Neq(A,B)+Neq(A′,B)+Neq(A,B′)+Neq(A′,B′).

(8.22)
Applying the relations in (8.22) to rewrite (8.21) and using also (8.20) gives

Nvar(S ′RX,S ′TX)≥Neq(SRX,S ′TX)+Neq(S ′RX,STX)+Neq(S ′RX,S ′TX).
(8.23)

The relation (8.23) describes exactly all the feasibility conditions in the IC
obtained once the beamformers inside the sub-IC containing the RXs in SRX

and the TXs in STX have been fixed. This shows that IA remains feasible
and concludes the proof.

Hence, the existence of a tightly-feasible generalized sub-IC strictly in-
cluded in the full IC yields the existence of a strictly incomplete CSIT allo-
cation preserving IA feasibility.

Remark 16. From the iterative use of this property, we will show in the
following that a reduced CSIT allocation ensuring IA feasibility is obtained
if each TX receives the CSIT relative to the smallest tightly-feasible IC to
which it belongs.

Applying Theorem 14 in an homogeneous setting gives a more pessimistic
result.

Corollary 7. In the tightly-feasible setting (N,M)K (i.e., M +N = K + 1)
with M 6= 1 and M 6= K, there exists no generalized tightly-feasible sub-
IC which is strictly included in the full IC. Hence, the previous sufficient
condition leads to no CSIT reduction.

Proof. The proof follows easily by evaluating (8.17) in an homogeneous set-
ting and is omitted for brevity.

If the full IC is tightly-feasible, a strictly smaller IC can be tightly-
feasible only by exploiting the heterogeneity in the antenna configuration.
Hence, the sufficient condition given in Theorem 14 cannot be fulfilled in
any tightly-feasible homogeneous IC with M 6= 1 and M 6= K.
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8.3.2 CSIT Allocation Algorithm

We now describe an incomplete CSIT allocation policy based on Theorem 14.
The corresponding problem of designing an algorithm achieving IA based on
the incomplete CSIT allocation is tackled in Subsection 8.3.3.

The CSIT allocation algorithm takes as input the antenna configura-
tion

∏K
k=1(Nk,Mk) and returns as output the incomplete CSIT allocation

F = {F(j)|j = 1, . . . ,K}

such that

F(j) = FS(j)
RX,S

(j)
TX

, ∀j. (8.24)

Let us consider w.l.o.g. the problem of allocating the CSI to TX j.

Initialization: We first define an initial pair of sets S , (SRX,STX)
initialized such that

S = (∅, {j}). (8.25)

The remaining TXs (without considering TX j) are ordered by increasing
number of antennas, i.e., with the permutation σTX verifying

MσTX(i) ≤MσTX(i+1), ∀i = {1, . . . ,K − 2} (8.26)

and symmetrically, the RXs are ordered by increasing number of antennas,
i.e., with the permutation σRX verifying

NσRX(i) ≤ NσRX(i+1), ∀i = {1, . . . ,K − 1}. (8.27)

In case of equality, we order the TXs to ensure that

(MσTX(i) = MσTX(i+1))⇒ NσTX(i) ≥ NσTX(i+1), ∀i = {1, . . . ,K − 1}.
(8.28)

Similarly, the RX ordering is modified to ensure that

(NσRX(i) = NσRX(i+1))⇒MσRX(i) ≥MσRX(i+1), ∀i = {1, . . . ,K − 1}.
(8.29)

In case both the two TXs and their matched RXs have the same number
of antennas, the RX ordering σRX is modified to ensure that the RXs are
ordered in the opposite of the TXs, i.e.,

(
MσTX(i) = MσTX(i+1), NσTX(i) = NσTX(i+1)

)

⇒
(
σ−1

RX(σTX(i+ 1)) < σ−1
RX(σTX(i))

)
, ∀i. (8.30)
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Remark 17. This ensures that selecting the TXs and the RXs respectively
according to σTX and σRX, non-matched TXs and RXs will be selected first
for equal number of antennas.

Update at step n: Let us assume that we are given the pair of sets S =
(SRX,STX).

1. If equation (8.17) is verified with the sets SRX and STX, the algorithm

has reached its end. We set S(j)
RX = SRX, S(j)

TX = STX and

F(j) = FS(j)
RX,S

(j)
TX

. (8.31)

2. If equation (8.17) does not hold, we verify whether adding the next
RX adds more equations than variables, i.e.,

Nvar(SRX,STX)−Neq(SRX,STX)≥Nvar({SRX, σRX(|SRX|+1)},STX)

−Neq({SRX, σRX(|SRX|+ 1)},STX)
(8.32)

• If (8.32) is verified, we set

SRX = {SRX, σRX(|SRX|+ 1)} (8.33)

and we start over at step n+ 1.

• If (8.32) is not verified, then

– If |STX| < K, we increase the set of TXs as

STX = {STX, σTX(|STX|+ 1)} (8.34)

and we start over at step n+ 1.

– If |STX| = K, then the algorithm has reached its end and we

set S(j)
RX = SRX and S(j)

TX = STX and

F(j) = FS(j)
RX,S

(j)
TX

. (8.35)

8.3.3 IA Algorithm for Incomplete CSIT Allocation

We consider now the CSIT allocation F to be given and we describe a
novel IA algorithm which achieves IA using an adequate incomplete CSIT
allocation. The algorithm runs in a distributed fashion at each TX. This IA
algorithm, which we denote by fIA, takes as input the antenna configuration,
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the CSIT allocation policy, and the channel coefficients known at the TX,
and returns the beamformer at TX j. Thus, we can write at TX j

tj = fIA

( K∏

k=1

(Nk,Mk),F , Ĥ(j)

)
. (8.36)

IA algorithm for the effective channel We start by introducing an IA
algorithm feff which will be a building block for our algorithm. It consists in
running an IA algorithm over the effective channel obtained once a fraction
of the TX beamformers have been fixed. Hence, taking as input the set
containing the fixed beamformers Bfix

TX and a channel matrix G, it returns as
output the set of beamformers BTX obtained after having run a conventional
IA algorithm from the literature over this effective channel. Note that since
the TX beamformers inside Bfix

TX are not modified, it holds that Bfix
TX ⊂ BTX.

We can then write
BTX = feff

(
G,Bfix

TX

)
. (8.37)

A number of IA algorithms can be run over the effective channel, and we
will use the most simple IA algorithm called the min-leakage algorithm [86].
The main steps of the min-leakage algorithm have been recalled in Chap-
ter 3. Our IA algorithm is obtained from the min-leakage algorithm after
two simple modifications of the update formulas [Cf. equations (3.11) and
(3.12)]:

• The update of the beamformers is done by considering all the interfer-
ing links and not by summing from 1 to K because we consider here
generalized ICs.

• The TX beamformers contained in Bfix
TX are kept unchanged.

Precoding with incomplete CSIT Let us consider now the precoding
at TX j with the CSIT allocation Ĥ(j) = FS(j)

RX,S
(j)
TX

�H. We define now in

a recursive manner the precoding algorithm fIA introduced in (8.36).
We start by defining the set Fj containing all the TXs whose CSIT

allocations are strictly included in the CSIT known at TX j. Hence the
set Fj is defined as

Fj , {k|S(k)
RX ⊂ S

(j)
RX,S

(k)
TX ⊂ S

(j)
TX}. (8.38)

The beamformer tj is then obtained from

tj = feff

(
H̃(j), {tk}k∈Fj

)
(8.39)
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where H̃(j) is the submatrix of Ĥ(j) containing only the columns and rows
which are nonzero, and the beamformers {tk}k∈Fj are obtained from

tk = fIA

( K∏

k=1

(Nk,Mk),F , Ĥ(k)

)
, ∀k ∈ Fj . (8.40)

Note that if Fj = ∅, the beamformer tj is simply obtained from tj =
feff(H̃(j), ∅).

Achievability of interference alignment We have described a precod-
ing algorithm but it remains to prove that IA is indeed achieved.

Theorem 15. The CSIT allocation policy F obtained with the incomplete
CSIT allocation algorithm preserves IA feasibility: F ∈ Ffeas: IA is achieved
by the IA algorithm described above.

Proof. Let us consider w.l.o.g. the precoding at TX j. By construction, TX j

is allocated with the CSI relative to the IC formed by the sets (S(j)
RX,S

(j)
TX),

which is tightly-feasible. We have shown in the proof of Theorem 14 that
setting the beamformers in a tightly-feasible sub-IC to align interference in
this sub-IC, does not reduce the feasibility of IA in the full IC. Thus, if all

the TXs included in S(j)
TX would design jointly their beamformers with the

other TXs adapting to these TX beamformers, IA feasibility would then be

preserved. Yet, all the TXs in S(j)
TX do not necessarily share the same CSIT

and thereby cannot necessarily design jointly the beamformers. Thus, it

remains to prove that all the TXs included in S(j)
TX design their beamformers

in such a way that IA is achieved inside this sub-IC.
By inspection of the CSIT allocation algorithm, the CSIT allocations of

all the TXs contained in S(j)
TX are included in the CSIT of TX j. Thus, TX j

can compute the beamformers of these TXs following the IA algorithm for
incomplete CSIT exactly as it is done at these TXs. This is exactly what
is done in our IA algorithm described in Subsection 8.3.3. This ensures the

coherency between the beamformers of all the TXs in S(j)
TX so that IA is

achieved.

Remark 18. The RXs in S(j)
RX and the TXs in S(j)

TX, as returned by the
CSIT allocation algorithm, form together the smallest tightly-feasible set-

ting containing TX j. If the algorithm is initialized with S(j)
TX = ∅ instead

of S(j)
TX = {j}, the smallest tightly-feasible generalized IC is obtained. Hence,

this algorithm can also be used to verify the IA feasibility of an antenna con-
figuration.
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We will now discuss an example illustrating the operational meaning of
our approach.

8.3.4 Example of Tightly-feasible Configuration

We consider the IC formed by the antenna configuration

K∏

k=1

(Nk,Mk) = (2, 3).(2, 4).(3, 5).(3, 2).(4, 2). (8.41)

The CSIT allocation algorithm presented in Subsection 8.3.2 returns

F =
{

F(1) = F{1,2,3},{4,5,1},F
(2) = F{1,2,3,4},{1,2,4,5},

F(3) = F{1,2,3,4,5},{1,2,3,4,5},F
(4) = F{1,2},{4,5},F

(5) = F{1,2},{4,5}

}

(8.42)
which indicates for example that TX 4 receives the CSI relative to the gen-
eralized IC formed by TX 4 and TX 5 and RX 1 and RX 2. The size of
the incomplete CSIT allocation obtained is equal to 346 while the complete
CSIT allocation has a size of 905.

TX 4 and TX 5 have only the CSI required to align their interference at
RX 1 and RX 2, which is in fact the first step of the IA algorithm. Once
this is done, TX 1 can design its beamformer to align its interference on
the interference subspace created by TX 4 and TX 5 at RX 2 and RX 3.
Proceeding further, TX 2 aligns its interference on the interference subspace
spanned at RX 1, RX 3, and RX 4 by the previous TX beamformers. At
this step, all the interference subspaces have been generated so that TX 3
can use its 5 antennas to align its interference at all the RXs.

As described in Subsection 8.3.2, each TX computes the beamformers of
the TXs having a CSIT allocation included in its own CSIT before computing
its own TX beamformer. For example, all the TXs start here by computing
the beamformers of TX 4 and TX 5.

To verify the achievement of IA, we introduce a symbolic representation
of IA in Fig. 8.1. We represent the dimensions available at RX i by an array
of Ni boxes. The first box on the right represents the dimension taken by
the signal while the other boxes represent the dimensions left free for the
interferences. For each RX, another box indicates if a TX precodes its signal
so as to align with the interference subspace, thus creating no additional
dimension of interference. If this is not the case, the stream transmitted by
this TX creates a dimension of interference at the RX considered. When
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Figure 8.1: Symbolic Representation of the IA algorithm with incomplete
CSIT for the tightly-feasible IC (2, 3).(2, 4).(3, 5).(3, 2).(4, 2).

the TX beamformers are not obtained by ZF but via iterations of an IA
algorithm, it is not clear which TX generates the interference. We represent
this by writing the indices of the interferers both in the IA box and in the
RX box.

In this symbolic representation, a precoding scheme achieves IA if and
only if the number of interfering dimensions at a RX does not exceed the
number of boxes (dimensions) available at the RX while ensuring that each
TX fulfills a number of IA constraint attainable with its antenna configura-
tions (i.e. at most M − 1 IA constraints if this TX has M antennas). In the
case of iterative IA algorithm, this interpretation still holds, it is only not
known at which RX the IA constraint is fulfilled.

We can observe in Fig. 8.1 that for all j, TX j aligns its interference at
Mj − 1 RXs, and for all i, the interference subspace at RX i spans Ni −
1 dimensions. One can also notice that the setting is indeed tightly-feasible
since removing an antenna at any TX or RX makes IA unfeasible.

The intuition behind the IA algorithm for incomplete CSIT is to break
the IA into successive steps. The successive precoding steps are symbolized
by the different columns on the left of the symbolic representation.
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8.4 Interference Alignment with Incomplete CSIT
for Super-Feasible Channels

The previous section indicates how CSIT savings can be obtained for tightly-
feasible scenarios. When additional antennas are available, the intuition
goes that further CSIT savings should be possible at no cost in terms of IA
feasibility. We now investigate this question.

A distinct feature of super-feasible settings is that there must exist a
corresponding tightly-feasible setting that can be obtained by keeping all
TXs and RXs and simply ignoring certain antennas among the overall an-
tenna set. Clearly, there are generally multiple ways for arriving at a
tightly-feasible setting from a super-feasible one. Depending on the choice of
which antennas are ignored in the initial super-feasible setting, the obtained
tightly-feasible will exhibit particular CSIT requirements.

As a consequence, instead of considering directly (8.6), we consider the
following optimization problem :

F = argmin
F∈F

min∏K
k=1(N ′k,M

′
k)

s(F) s.t. ffeas

(
F ,

K∏

k=1

(N ′k,M
′
k)

)
= 1

s.t.

K∑

i=1

M ′i +N ′i = (K + 1)K

s.t. 1 ≤M ′i ≤Mi and 1 ≤ N ′i ≤ Ni.

(8.43)

The problem of finding the minimal CSIT allocation has been reduced to
finding the tightly-feasible setting (containing all the users) included in the
full super-feasible setting which requires the smallest CSIT allocation. Since
a CSIT allocation algorithm has been derived for tightly-feasible settings, it
remains only to determine which RXs or TXs should not fully exploit their
antennas to ZF interference dimensions, i.e., where some antennas should
be “removed” in terms of IA feasibility.

Remark 19. Practically, the antennas are not removed but some precoding
dimensions are used for another purpose than aligning interference inside the
IC (e.g., reducing interference to other RXs, increasing signal power, diver-
sity, etc...). As an example, we will now show how it can be used to increase
the received signal power. Intuitively, we select the0 precoding subspace of
dimension n with n < Mi which provides the largest received power to the
RX. As a consequence, the quality of the direct channel is improved. Let us
write the singular value decomposition of Hii ∈ CNi×Mi as Hii = UiΣiV

H
i

159



CHAPTER 8. INTERFERENCE ALIGNMENT WITH INCOMPLETE
CSIT

with Vi = [v1, . . . ,vMi ] ∈ CMi×Mi and Ui = [u1, . . . ,uNi ] ∈ CNi×Ni being
two unitary matrices and Σi = diag(σ1, . . . , σmin(Mi,Ni), 0, . . . , 0). We set
ti = [v1, . . . ,vn]t′i with t′i ∈ Cn×1 such that the dimension of the precoding
subspace is reduced from Mi to n. However, the vectors v1, . . . ,vn span the
subspace of dimension n with the largest power. Altogether, the number of
dimensions available for ZF precoding is reduced by one, which is equivalent
in terms of IA feasibility to removing one antenna, while the quality of the
direct channel is improved. 1

This problem is still combinatorial in the total number of TXs and RXs
which makes exhaustive search only practical for small settings. As a con-
sequence, we provide in the following a CSIT allocation policy exploiting
heuristically the additional antennas available to reduce the size of the CSIT
allocation. The heuristic behind the algorithm comes from the insight gained
in the analysis of tightly-feasible settings that the more heterogeneous is the
antenna configuration, the smaller is the size of the CSIT allocation.

8.4.1 CSIT Allocation Algorithm

We consider in the following an heterogeneous IC and we denote by S the
total number of additional antennas in the sense that S is defined as

S ,
K∑

i=1

Mi +Ni − (K + 1)K. (8.44)

The following algorithm will provide the pair of sets SNT = (SNT
RX ,SNT

TX )
containing respectively the RXs and the TXs where the additional antennas
should be “removed”. Once these antennas have been removed, the incom-
plete CSIT allocation policy for tightly-feasible can be applied to obtain the
incomplete CSIT allocation. Note that we need to ensure that IA feasibility
is preserved by the removing of the antennas.

Initialization: We define inside the algorithm a virtual antenna configu-
ration

∏K
i=1(Nv

i ,M
v
i ) which we initialize with the true antenna configuration

Nv
i = Ni,M

v
i = Mi. We then initialize the two sets that will be given as

output SNT
RX = ∅,SNT

TX = ∅.
Step n: We start by ordering the TXs inside

∏K
i=1(Nv

i ,M
v
i ) by increas-

ing number of antennas with the permutation σv
TX: ∀i,Mv

σv
TX(i) ≤Mv

σv
TX(i+1).

The RX ordering σv
RX is defined similarly. Note that a node with ∗ antennas

is considered as being an infinite number of antennas.

1Note that this step can be applied similarly on the RX side and that this process on
the TX side requires the CSI relative to the direct channel.
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In case of equality, the permutation is modified such that if Mv
σv

TX(i) =

Mv
σv

TX(i+1), then

(Mv
σv

TX(i) = Mv
σv

TX(i+1))⇒ Nv
σv

TX(i) ≥ Nv
σv

TX(i+1), ∀i. (8.45)

We apply the same process symmetrically for the permutation σv
RX. Finally,

if both RXs and TXs have the same number of antennas, the RX ordering
is made opposite to the TX ordering:

(
Mv
σv

TX(i) =Mv
σv

TX(i+1), N
v
σv

TX(i) =Nv
σv

TX(i+1)

)

⇒
(
(σv

RX)−1(σv
TX(i+ 1)) < (σv

RX)−1(σv
TX(i))

)
, ∀i
(8.46)

We define also the number of RXs and the number of TXs actually in the
generalized IC

∏K
i=1(Nv

i ,M
v
i ) by respectively Kv

RX and Kv
TX.

1. 1.1. We now define a set Sv , (Sv
RX,Sv

TX). If Kv
RX > 0, we start

by setting Sv = ({σv
RX(1)}, ∅). If (8.17) is not fulfilled with

this choice of Sv and Kv
TX > 0, we reinitialize it with Sv =

(∅, {σv
TX(1)}).

1.2. If the equality is reached in (8.17) with Sv, the sub-IC obtained
is tightly-feasible and we update the antenna configuration to the
one of the effective IC once IA is fulfilled in this sub-IC:

∀i ∈ Sv
RX, N

v
i = ∗, ∀i ∈ Sv

TX,M
v
i = ∗.

∀i /∈ Sv
RX,

{
Nv
i = Nv

i − |Sv
TX|, if i /∈ Sv

TX.

Nv
i = Nv

i − (|Sv
TX| − 1) if i ∈ Sv

TX.

∀i /∈ STX
v ,

{
Mv
i = Mv

i − |Sv
RX|, if i /∈ Sv

RX.

Mv
i = Mv

i − (|Sv
RX| − 1) if i ∈ Sv

RX.

(8.47)

We then start over at step n+ 1.

1.3. If equation (8.17) is not verified.

• If |Sv
RX| < Kv

RX, we verify whether adding the next RX adds
more equations than variables, i.e.,

Nvar(Sv
RX,Sv

TX)−Neq(Sv
RX,Sv

TX)

≥ Nvar({Sv
RX, σ

v
RX(|Sv

RX|+ 1)},Sv
TX)

−Neq({Sv
RX, σ

v
RX(|Sv

RX|+ 1)},Sv
TX)
(8.48)
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If (8.48) is verified, we set

Sv
RX = {Sv

RX, σ
v
RX(|Sv

RX|+ 1)} (8.49)

and we start over at step 1.b).

• If |Sv
TX| < Kv

TX, we increase the set of TXs as

Sv
TX = {Sv

TX, σ
v
TX(|Sv

TX|+ 1)} (8.50)

and we start over at step 1.b).

2. Otherwise, there is no tightly-feasible sub-IC and removing an antenna
cannot render IA unfeasible.

• If Kv
TX > 0, we compute

Mv
σv

TX(1) = Mv
σv

TX(1) − 1, SNT
TX = {SNT

TX , σ
v
TX(1)} (8.51)

and we start at step n+ 1.

• If Kv
TX = 0 but Kv

RX > 0 , we set

Nv
σv

RX(1) = Nv
σv

RX(1) − 1, SNT
RX = {SNT

RX , σ
v
RX(1)} (8.52)

and we start at step n+ 1.

• If KTX
v = 0 and KRX

v = 0 , the algorithm has reached its end.

Description of the Algorithm Each iteration step is divided into two
procedures marked with the 1) and the 2), respectively.

The first process consists in finding all the generalized tightly-feasible
sub-ICs. The tightly-feasible sub-ICs are obtained following similar steps as
in the algorithm in Subsection 8.3.2. It consists in the gradual increase of
the set of TXs and the set of RXs so as to always obtain the “most tight”
sub-ICs. For each of these sets, equation (8.17) is tested to verify whether
the setting is tightly-feasible. This is carried out in steps 1.c) and 1.d).

Once a tightly-feasible subset is found, the TX beamformers in this sub-
IC are computed and the channel matrix is replaced by the effective channel
matrix. This is done by the intermediate of the virtual antenna configura-
tion which represents the number of free variables remaining in the effective
channel obtained. This process corresponds to step 1.b).

At the end of procedure 1), the virtual antenna configuration obtained
does not contain any tightly-feasible sub-ICs. This is critical for the second
step because it means that reducing the number of variables by one cannot
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lead to the violation of (8.11) in Theorem 13. As a consequence, IA feasibil-
ity is preserved by removing one antenna in procedure 2). Any antenna can
be removed and the policy chosen in the algorithm consists in removing the
antenna at the TX with the smallest number of antennas if there is at least
one TX left [Cf. equation (8.51)] and otherwise at the RX with the smallest
number of antennas [Cf. equation (8.52)].

Remark 20. Our algorithm relies on the property shown during the anal-
ysis of the tightly-feasible case that setting the TX beamformers inside a
tightly-feasible sub-IC to fulfill IA solely inside this sub-IC does not reduce
the feasibility of IA in the full IC.

8.4.2 Toy-Example of the Incomplete CSIT-Algorithm in Super-
Feasible Settings

Let us consider as a toy-example the super-feasible IC (2, 2).(3, 2).(2, 3) con-
taining two additional antennas since

∑
iNi +Mi −K(K + 1) = 2. We will

now go through the steps of our CSIT allocation algorithm for non-tightly
feasible ICs.

• n = 1: In phase 1), the algorithm starts by verifying whether there is
any tightly-feasible set. This is not the case here such that phase 2)
begins and one antenna is removed at TX 1. The virtual IC obtained
is then (2, 1).(3, 2).(2, 3).

• n = 2: It is again verified in phase 1) whether there is any tightly-
feasible set. Since TX 1 has only one antenna, it forms by itself a
tightly-feasible set, so that its TX beamformer can be fixed and the
antenna configuration is replaced by the virtual antenna configura-
tion (2, ∗).(2, 2).(1, 3). RX 3 has then only one antenna, so that we
can obtain the virtual IC (2, ∗).(2, 1).(∗, 3). Once more, the same pro-
cedure applies to TX 2 to obtain (1, ∗).(2, ∗).(∗, 3) and then again to
RX 1 to get (∗, ∗).(2, ∗).(∗, 2). Finally, there is no tightly-feasible set
so that phase 1) ends and phase 2) begins. Consequently, one antenna
is removed at TX 3 to obtain the IC (∗, ∗).(2, ∗).(∗, 1).

• Step 3: TX 3 has one antenna left so that the IC (∗, ∗).(1, ∗).(∗, ∗) is
obtained. The same is done for RX 2 to obtain the IC (∗, ∗).(∗, ∗).(∗, ∗).
Both the TX set and the RX set are empty so that the stopping criteria
is reached and the algorithm returns the set containing the indices of
the “removed antennas” SNT

TX = {1, 3} and SNT
RX = ∅.
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Figure 8.2: Symbolic representation of the IA algorithm with incomplete
CSIT for the super-feasible IC (2, 2).(3, 2).(2, 3).

The CSIT allocation algorithm leads to remove the antennas at TX 1
and TX 3 to obtain the IC (2, 1).(3, 2).(2, 2). This setting being tightly-
feasible, we can run the CSIT allocation for tightly-feasible ICs described in
Subsection 8.3.2 which returns the CSIT allocation

F = {F(1) = F∅,∅,F
(2) = F{3},{1,2},F

(3) = F{1,3},{1,2,3}}. (8.53)

The size of the CSIT allocation in (8.53) is equal to 20 while the complete
CSIT allocation has a size of 99. Thus, the additional antennas have been
used to reduce the feedback size by practically a factor of 4. The IA algo-
rithm for incomplete CSIT sharing which follows from this CSIT allocation
is symbolically represented in Fig. 8.2. It can be seen that TX 1 fulfills no
ZF constraint and that both TX 2 and TX 3 fulfill each one ZF constraint.

8.5 Simulations

8.5.1 Tightly-Feasible Setting

We start by verifying by simulations that IA is indeed achieved by our new IA
algorithm. We consider for the simulations the (2, 3).(2, 4).(3, 5).(3, 2).(4, 2) IC
which has been studied in the example in Subsection 8.3.4. This example
has been chosen to illustrate our approach, but the CSIT reduction brought
by our approach being different for each antenna configuration, it is neces-
sary to consider the average reduction over all the antenna configurations.
This will be done in the following subsection.
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Figure 8.3: Average rate per user in terms of the normalized TX power for
the tightly-feasible IC (2, 3).(2, 4).(3, 5).(3, 2).(4, 2) with the size of the in-
complete CSIT allocation being only equal to 40% of the size of the complete
CSIT allocation.
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Figure 8.4: Average CSIT allocation size in terms of the number of antennas
distributed across the TXs and the RXs for K = 3 users.

We show in Fig. 8.3 the average rate per user achieved in terms of the
SNR. We compare then our IA algorithm based on incomplete CSIT to the
min-leakage IA algorithm based on complete CSIT. Our algorithm achieves
virtually the same performance as the min-leakage algorithm. Hence, the
reduction of 60% of the feedback size (Cf. Subsection 8.3.4) comes for “free”,
making it especially interesting in practice.

8.5.2 Performance Evaluation of the CSIT allocation Algo-
rithm

We will now evaluate the feedback reduction obtained with our CSIT alloca-
tion policy in super-feasible settings. Since this gain depends on the antenna
configuration, we show in Fig. 8.4 the average size of the CSIT allocation
for K = 3 users when the antennas are allocated uniformly at random to
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the TXs and the RXs. Note that the antenna configurations obtained can
be unfeasible. When this is the case, we redistribute the antennas until a
feasible antenna configuration is obtained.

We average over 1000 antenna configurations and the proposed heuristic
CSIT allocation policy is compared with the exhaustive search. The exhaus-
tive search consists in testing all the possibilities for removing the additional
antennas2. For reference, we also show the average size of the complete (con-
ventional) CSIT allocation. We consider only K = 3 users because of the
exponential complexity of the exhaustive search.

If the aggregate number of antennas is strictly smaller than K(K+ 1) =
12, IA is clearly not feasible. If more than 12 antennas are available, each
additional antenna is exploited by the heuristic algorithm to reduce the
size of the CSIT allocation. This algorithm brings a reduction of the CSIT
size which is only slightly smaller than the reduction brought by exhaustive
search, but has a polynomial complexity.

8.6 Discussion

IA feasibility is studied in the literature under the assumption of full CSIT
sharing. In contrast, we have investigated here the relation between IA
feasibility and CSIT allocation. Specifically, we have shown how IA can
be achieved in some configurations without the need for full CSIT sharing.
When extra-antennas are available, the existence of a trade-off between the
number of antennas available and the CSIT sharing requirements is shown.
Our approach brings a significant reduction of the feedback size while intro-
ducing no losses in terms of DoF compared to the conventional IA algorithm
with full CSIT sharing.

Optimizing directly the CSIT allocation, it was possible to reduce the
total CSIT requirements by providing each TX solely with the CSI which is
necessary for its role in the transmission scheme. Providing each TX solely
with the CSI it really needs appears then as having a strong potential to
reduce the CSIT requirements and make TX cooperation more practical.

2Note that a true exhaustive search through all the possible CSIT allocations (i.e.,
coming back to the original optimization problem (3.19)) is too complex even for trivial
antenna configurations.
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Chapter 9

Conclusion

The focus of this thesis has been the analysis of the multi-antenna coopera-
tion schemes in the case of CSI being imperfectly shared between the TXs.
We have shown how the consideration of CSI discrepancies between the co-
operating TXs significantly impacts the transmission as it can no longer be
modeled as a conventional optimization problem but it becomes instead a
Team Decision problem where distant TXs aim at achieving cooperation
without sharing the same information.

Considering the cooperation of distant TXs with individual information
is a very general problem which can be tackled under many approaches. We
have provided in the first part of this thesis some results which shed some
lights on the impact of distributed CSIT over the precoder design. The main
message is that distributed CSIT impacts considerably the precoding step
and that omitting to consider the CSI discrepancies leads to a large trib-
ute in terms of performance in practical settings. Beyond the performance
evaluation of the conventional precoding schemes which can be used to di-
mension the feedback schemes or predict the performance, novel precoding
paradigms have been provided. The design of precoders being robust to CSI
discrepancies remains however open in many aspects and will be further
investigated in the future.

The focus of the second part of this thesis has been the optimization
of the spatial allocation of the CSIT. Providing each TX with a different
CSI which corresponds to its actual need has been shown to be the key to
significant reductions of the CSIT requirements at virtually no cost. Al-
though many practical aspects have to be considered in order to translate
the promised theoretical gains into improvements in realistic networks, this
approach appears to be very promising and to have a strong potential for
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improvements. The optimization has been described in two scenarios, ex-
ploiting either the antenna configuration or the pathloss attenuations, but
the idea of adapting the CSIT allocation to the environment is very general
and it is believed that CSIT reductions could be achieved in many other
transmission scenarios. We have provided the first results emphasizing the
interest of optimizing the CSIT spatial allocation, but there are a number
of open questions that should be solved and that could lead to further re-
sults. For example, proving the optimality of our novel scheme –or finding
the optimal one– is a challenging research problem.

The initial Team Decision problem formulated is a very intricate problem
which can be tackled under many angles and approaches. We have studied
some aspects of the problem using some tools, but there are many more
possibilities, depending on the modelization of the distributed CSIT, the
communication capabilities of the TX, the channel model, etc... Solving the
Team Decision problem formulated in its full generality represents a real
challenge for the interested researchers.
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.1 Useful Lemmas

Lemma 1 ( [24], Appendix A). Let θ be a random variable uniformly dis-
tributed in [0, 2π). Then, we have

Eθ[log(|B +Aexp(jθ)|2)] = log(max{|A|2, |B|2}) (1)

Lemma 2 (Resolvent identity). Let A ∈ Cn×n and B ∈ Cn×n be two invert-
ible matrices, it then holds that

A−1 −B−1 = −B−1(A−B)A−1. (2)

Proof. This is a well known result, whose (simple) proof can be found for
example in [121, Lemma 6.1].

Lemma 3. Let Xi, i = 1, . . . , n, be n real random variables, and ρi, i =
1, . . . , n, be n positive real numbers. Then

Pr

(
n∏

i=1

Xi >

n∏

i=1

ρi

)
≤

n∑

i=1

Pr(Xi > ρi) (i)

and

Pr

(
n∑

i=1

Xi >

n∑

i=1

ρi

)
≤

n∑

i=1

Pr(Xi > ρi). (ii)

Proof. We prove the lemma for n = 2. The generalization to arbitrary n
follows by direct induction.

• We start by proving (i). From the conditional expectation property,
we write

Pr(X1X2 > ρ1ρ2)

= Pr (X2 > ρ2) Pr

(
X1 >

ρ1ρ2

X2

∣∣∣∣X2 > ρ2

)

+ Pr (X2 ≤ ρ2) Pr

(
X1 >

ρ1ρ2

X2

∣∣∣∣X2 ≤ ρ2

)
(3)

≤ Pr (X2 > ρ2) + Pr

(
X1 >

ρ1ρ2

X2

∣∣∣∣X2 ≤ ρ2

)
(4)

(a)

≤ Pr(X2 > ρ2) + Pr(X1 > ρ1) (5)

where inequality (a) is verified because ρ1ρ2/X2 ≥ ρ1 when X2 ≤ ρ2.

173



• We now turn to the proof of (ii). Using once more the conditional
expectation property, we write

Pr(X1 +X2 > ρ1 + ρ2) (6)

= Pr (X2 > ρ2) Pr (X1 > ρ1 + ρ2 −X2|X2 > ρ2)

+ Pr (X2 ≤ ρ2) Pr (X1 > ρ1 + ρ2 −X2|X2 ≤ ρ2) (7)

≤ Pr (X2 > ρ2) + Pr (X1 > ρ1 + ρ2 −X2|X2 ≤ ρ2) (8)

(a)

≤ Pr (X2 > ρ2) + Pr (X1 > ρ1) (9)

where inequality (a) holds true because ρ2−X2 ≥ 0 given thatX2 ≤ ρ2.

Lemma 4 (Lemma 2, [122]). Let Y =
∑n

i=1X
2
i with Xi i.i.d. NC(0, 1). Then

it holds for x ≥ n that

Pr(Y > x) ≤ e−x2 +n
2

log( ex
n

). (10)

Lemma 5. Let Xi, i = 1, . . . , n be n i.i.d. Chi-square random variable with
2 degrees-of-freedom. It then holds

E[ max
i=1,...,n

Xi] = 2

n∑

m=1

1

m
. (11)

Proof. The distribution of Xi is known to verify

Pr(Xi < x) = 1− e−x2 . (12)
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Using that Xi ≥ 0, we can further write

E[ max
i=1,...,n

Xi] =

∫ ∞

0
Pr( max

i=1,...,n
Xi ≥ x)dx (13)

=

∫ ∞

0
1− Pr( max

i=1,...,n
Xi < x)dx (14)

=

∫ ∞

0
1− (Pr(Xi < x))ndx (15)

=

∫ ∞

0
1− (1− e−x2 )ndx (16)

(a)
=

n∑

k=1

(
n

k

)
(−1)k

∫ ∞

0
e−

kx
2 dx (17)

= 2
n∑

k=1

(
n

k

)
(−1)k+1 1

k
(18)

(b)
= 2

n∑

m=1

1

m
(19)

where (a) is obtained after using the binomial expansion [123, Equation 0.111]
and (b) after using [123, Equation 0.155]

n∑

k=1

(
n

k

)
(−1)k+1 1

k
=

n∑

m=1

1

m
. (20)

Lemma 6. Let n ∈ N∗ , it then holds

n∑

k=2

1

k
≤ log(n) ≤

n−1∑

k=1

1

k
(21)

Proof. The proof is based on the logarithm property that

log(x) =

∫ x

1

dt

t
. (22)

We have then for n ∈ N∗,
∫ n

1

dt

dte ≤
∫ n

1

dt

t
≤
∫ n

1

dt

btc (23)
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which can be rewritten as

n∑

k=2

1

k
≤ log(n) ≤

n−1∑

k=1

1

k
. (24)

Lemma 7. Let us consider a random variable X ∈ R+ and let O be a subset
of R+. It then holds

EO[X] ≤ E[X]

Pr(O)
. (25)

Proof. Using the conditional expectation property, we write

E[X] = Pr(O)EO[X] + Pr(Ō)EŌ[X] (26)

where Ō , Q \ O. It then easily follows

EO[X] =
E[X]− Pr(Ō)EŌ[X]

Pr(O)
(27)

≤ E[X]

Pr(O)
. (28)

.2 Analysis of the Random Vector Quantization
Scheme

We consider the random vector quantization of the unit-norm complex vector
h̃ ∈ CK over a codebook W where both the channel to quantize and the
elements of the codebook are multiplied by a unit-norm complex number
(i.e., are rotated in the complex space) so as to let the first element of the
vector be real valued. Mathematically, the quantized estimate ĥ is obtained
from

ĥ = argmin
w∈W

∥∥∥∥
{w}∗1
|{w}1|

w̃ − {h}
∗
1

|{h}1|
h̃

∥∥∥∥ (1)

where W is a codebook made of vectors isotropically distributed over the
unit sphere. The multiplication by the unit-norm complex number is done
in order to optimize the performance of the quantization. Since the norm
is conserved when considering the canonical isomorphism from CK to R2K ,
we can consider for the quantization the vectors as elements of R2K made
of the stacked real and imaginary parts of the original vector.
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Because of the rotation, the first element of the vector has its complex
value which can be set to 0. It is hence only necessary to consider the
space R2K−1. Thus, a vector u = [u1, u2, . . . , uK ]T ∈ CK with its first
coefficient real valued is represented in R2K−1 by uR2K−1 defined as

uR2K−1 ,
[
Re(u1) Re(u2) Im(u2) Re(u3) . . . Im(uK)

]T
. (2)

We can then define the angle between uR2K−1 and vR2K−1 in R2K−1 as

∠(uR2K−1 ,vR2K−1) , arccos

(
|uT

R2K−1vR2K−1 |
‖uR2K−1‖‖vR2K−1‖

)
. (3)

Using the conservation of the norm by the canonical isomorphism, the quan-
tization in (1) is rewritten as

ĥR2K−1 = argmin
wR2K−1∈WR2K−1

‖wR2K−1 − h̃R2K−1‖2 (4)

= argmin
wR2K−1∈WR2K−1

(2− 2wT
R2K−1h̃R2K−1) (5)

where the codebook WR2K−1 is the counterpart of W in R2K−1. We can see
from (5) that the quantization scheme aims at maximizing wT

R2K−1h̃R2K−1 .
This figure of merit can be linked to the commonly used chordal distance
dch(•) which is defined for two vectors as [80]

dch(h̃R2K−1 ,wR2K−1) ,
√

sin2(∠(wR2K−1 , h̃R2K−1)) (6)

=
√

1− |wT
R2K−1h̃R2K−1 |2. (7)

Thus, minimizing the chordal distance is equivalent to the maximization of
the objective |wT

R2K−1h̃R2K−1 |2. This is then equivalent to the quantization

scheme (3) if the half-space where h̃R2K−1 belongs is known. This requires
solely one additional bit. Since we are interested in the scaling of the number
of bits, this will not make any difference. Consequently, we will study in the
following the quantization scheme based on the minimization of the chordal
distance

ĥR2K−1 = argmin
wR2K−1∈WR2K−1

dch(h̃R2K−1 ,wR2K−1). (8)

This quantization scheme corresponds to the conventional quantization over
the Grassmannian manifold of dimensions (1, 2K − 1) in the field R (i.e., on
the unitary ball in R2K−1). This quantization scheme is studied (in a much
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more general form) in [80] and we start by recalling some results adapted to
our notations. We then derive some new properties which will be needed in
the derivations. 1

We denote by F(x) , Pr{dch(h̃,w) ≤ x} the cumulative distribution
function (CDF) of dch(h̃,w) = sin2(∠(h̃,w)) where w ∈ R2K−1 is an ele-
ment of a random codebook.

Proposition 14 ( [80], Corollary 2). The CDF F(x) verifies that for all x ≤ 1

c2K−1x
K−1 ≤ F(x) ≤ c2K−1x

K−1(1− x)
−1
2 (9)

where c2K−1 , Γ(K − 1/2)/(Γ(K)Γ(1/2)).

Proposition 15 ( [80], Theorem 2). As the size L = 2B of the random code-
book increases, it then holds

2K − 1

2K + 1
c
−1/(K−1)
2K−1 2−B/(K−1) ≤ EW,h̃[ min

w∈W
dch(h̃,w)] + o(1)

≤
Γ( 1

K−1)

K − 1
c
−1/(K−1)
2K−1 2−B/(K−1).

(10)

Proposition 16. When the size L = 2B of the random codebook is sufficiently
large, the expectation of the logarithm of the quantization error is bounded
as

B + log2(c2K−1)

(K − 1)
≤ EW,h̃

[
− log2

(
min
w∈W

dch(h̃,w)

)]
+ o(1)

≤ B + log2(c2K−1) + log2(e)

(K − 1)
.

(11)

Proof. Upper Bound: The derivation of an upper bound follows the same
idea as the proof in Appendix B of [80] which derives an upper bound for
Proposition 15. We start by recalling a Lemma from [80] which follows easily
from the definition but is helpful.

Lemma 8 ( [80], Lemma 3). The empirical distribution function minimizing
the distorsion for a given L = 2B is

F∗W∗(x) =





0 if x < 0

LF(x) if 0 ≤ x ≤ x∗
1 if x > x∗

(12)

1We will do the abuse of notation consisting in removing the subscript R2K−1 in the
derivations but it will be clear that any mention of an angle will refer to the angle defined
in R2K−1.
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where x∗ satisfies LF(x∗)=1 and F(x) , Pr{dch(h̃,w)|≤x}.
Note that Lemma 8 corresponds to the optimal codebook minimizing the

average distance and leads thusly to a lower bound for the distorsion. We
can then write

EW,h̃

[
− log

(
min
w∈W

dch(h̃,w)

)]
=

∫ ∞

0
Pr{− log

(
min
w∈W

dch(h̃,w)

)
≥z}dz

(13)

=

∫ ∞

0
Pr{min

w∈W
dch(h̃,w) ≤ e−z}dz (14)

≤
∫ − log(x∗)

0
dz +

∫ −∞

− log(x∗)
LPr{dch(h̃,w) ≤ e−z}dz

(15)

where (13) is obtained by exploiting the fact that the term in the expectation
is a positive random variable and (15) follows from the previous lemma since
the CDF obtained with the optimal codebook dominates the CDF obtained
with any other codebook of the same size.

Following the same approach as the proof in Appendix B of [80], we
define F0(x) , c2K−1x

K−1 and x0 so that LF0(x0) = 1. Let also define
Fub(x) , c2K−1x

K−1(1−x)−1/2 and xub so that LFub(xub) = 1. Finally, we
define Fubub(x) , c2K−1x

K−1(1−x0)−1/2 and xubub so that LFubub(xubub) =
1.

It holds by construction that xub ≤ x∗ ≤ x0 since we know from Propo-
sition 14 that F0(x) ≤ F(x) ≤ Fub(x). Clearly (1 − x)−1/2 ≤ (1 − x0)−1/2

for x ∈ [0, x0] so that Fub(x) ≤ Fubub(x) for x ∈ [0, x0], which finally implies
xubub ≤ xub. We can then use these relations to derive an upper bound
for (15).

EW,h̃

[
− log

(
min
w∈W

dch(h̃,w)

)]

≤
∫ − log(x∗)

0
dchz +

∫ −∞

− log(x∗)
LF(e−z)dz (16)

≤
∫ − log(xubub)

0
dz +

∫ ∞

− log(x0)
LF(e−z)dz (17)

≤
∫ − log(xubub)

0
dz +

∫ ∞

− log(x0)
LFubub(e−z)dz. (18)

Equation (17) follows from xubub ≤ x∗ ≤ x0 and (18) follows from the fact
that Fub(x) ≤ Fubub(x) for x ∈ [0, x0]. We now replace Fubub(x), xubub,
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and x0 by their expressions to evaluate the integral.

EW,h̃

[
− log

(
min
w∈W

dch(h̃,w)

)]

≤ − 1
K−1 log

(
(1−x0)1/2

Lc2K−1

)
+

Lc2K−1

(1−x0)1/2

∫ ∞

− log(x0)
e−z(K−1)dz (19)

= − 1

K−1
log

(
(1−x0)1/2

Lc2K−1

)
+

1

(1−x0)1/2(K−1)
(20)

=
1

K − 1
(log (Lc2K−1) + 1) + o(1) (21)

as L increases. Dividing by log(2) yields the final upper bound.
Lower Bound: We start from the lower bound for the CDF given in

Proposition 14. It has a form very similar to the CDF for the quantization
of a complex vector in the unit-ball in CK which is usually used for multiple-
antenna BC. Hence, we adapt the approach of the proof of Lemma 3 in [15]
to the current setting.

From the lower bound in Proposition 14, we write

Pr{min
w∈W

(
dch(h̃,w)

)
≤ z} ≥ 1− (1− c2K−1x

(K−1))L. (22)

A lower bound for the expectation of the logarithm can then be calculated
as follows.

EW,h̃

[
− log

(
min
w∈W

dch(h̃,w)

)]
=

∫ ∞

0
Pr{min

w∈W
dch(h̃,w) ≤ e−z}dz (23)

≥
∫ ∞

0
1− (1− c2K−1e

−z(K−1))Ldz (24)

=

∫ ∞

0
1−

L∑

k=0

(
L

k

)
(−1)kck2K−1e

−z(K−1)kdz

(25)

=
1

K − 1

L∑

k=1

(
L

k

)
(−1)k+1 c

k
2K−1

k
(26)

=
1

K − 1
f(L) (27)

where we have defined f(p) ,
∑p

k=1

(
p
k

)
(−1)k+1 c

k
2K−1

k for p ∈ N. To compute
the value of f(L), we will use the following relation given in [123, Section
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0.155].

n∑

k=0

(
n

k

)
αk+1

k + 1
=

(α+ 1)n+1 − 1

n+ 1
. (28)

We now rewrite f(L) in order to be able to apply (28)

f(L) ,
L∑

k=1

(
L

k

)
(−1)k+1 c

k
2K−1
k

(29)

=

L∑

k=1

[(
L−1

k−1

)
+

(
L−1

k

)]
(−1)k+1 c

k
2K−1
k

(30)

=

L−1∑

k′=0

(
L−1

k′

)
(−1)k

′+2
ck

′+1
2K−1
k′ + 1

+ f(L− 1) (31)

= − (−c2K−1 + 1)L − 1

L
+ f(L− 1) (32)

=

L∑

p=2

1− (−c2K−1 + 1)p

p
+ f(1) (33)

=

L∑

p=1

1

p
−

L∑

p=1

1− (−c2K−1 + 1)p

p
. (34)

where we have used (28) to obtain (31) and we have iteratively expressed
f(x) in terms of f(x − 1) to write (33). Furthermore we have the two
following relations:

log(L) ≤
L∑

p=1

1

p
≤ log(L) + 1, (35)

log(1− x) = −
∞∑

n=1

xn

n
, for −1 < x < 1. (36)

Inserting the expression derived for f(x) inside (27) and using the two
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bounds provided above, we can obtain the final lower bound as

EW,h̃

[
− log2

(
min
w∈W

dch(h̃,w)

)]

≥ 1

(K−1) log(2)

L∑

p=1

1

p
− 1

(K−1) log(2)

L∑

p=1

(1−c2K−1)p

p
(37)

≥ log2(L)

(K − 1)
− 1

(K − 1) log(2)

∞∑

p=1

(1− c2K−1)p

p
(38)

=
log2(L) + log2(c2K−1)

(K − 1)
(39)

where we have used that the constant c2K−1 is smaller than one to apply
(36) and obtain the term log2(c2K−1).

.3 Proof of Theorem 4

.3.1 Preliminaries

We start by proving two lemmas which will form the basis of the follow-
ing proof. Throughout this proof, we use a Taylor approximation of the
beamformer by considering the quantization error to be small. This approx-
imation will be detailed in the following. For the sake of clarity, we consider
that the perfect ZF is normalized by ‖(Ĥ(j))−1ek‖ instead of ‖H−1ek‖. This
does not have any impact since it can be shown with a simple first order
approximation that

1

‖H−1ek‖
=

1−(‖(H)−1ek‖−‖(Ĥ(j))−1ek‖)+o(‖(H)−1ek‖−‖(Ĥ(j))−1ek‖)
‖(Ĥ(j))−1ek‖

.

(1)
Inserting this approximation in the Taylor expansion leads to an additional
error term in the direction u?k which is orthogonal to the channel vector.
Hence, we will omit for the sake of clarity to mention this aspect in the
following.

Furthermore, we denote for simplicity by σ2 the largest variance of the

quantization error, i.e., σ2 , P−mini,j A
(j)
i .

Lemma 9. In the BC with distributed CSIT introduced previously (with
positive CSIT scaling coefficients),

∆Ri = E[log2(1 +
∑

k 6=i
P |hH

i a
DCSI
k |2)] +O(1) (2)
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with the vector aDCSI
k defined as

{aDCSI
k }j = {u?k}j +

{
H−1∆(j) H−1ek

‖H−1ek‖

}

j

, ∀j ∈ {1, . . . ,K}. (3)

Proof. We will denote for clarity by ∆RTay
i the expectation in the RHS of

(2) From the conditional expectation property, we can write

∆Ri=Pr(Ω)EΩ[log2(1+
∑

k 6=i
|hH
i u

DCSI
k |2)]+Pr(Ω̄)EΩ̄[log2(1+

∑

k 6=i
|hH
i u

DCSI
k |2)]

(4)

where we have defined the set Ω as

Ω ,

{(
H, {∆(j)}j

) ∣∣∣∣‖u
(j)
i − (u?i + a

(j)
i )‖ ≤ Cσ5/4,∀i, j ∈ {1, . . . ,K}

}
.

(5)

Hence, the set Ω contains channel realizations where a
(j)
i (the first order

Taylor approximation) is an “accurate” approximation. We will show what
we mean by “accurate” in the following, as it means that considering aDCSI

i

instead of uDCSI
i leads to a rate difference in the order of o(1). We start by

discussing the upperbound part of the equality before turning to the lower
bound one.

• Using Jensen’s inequality, we write

∆Ri ≤ Pr(Ω)EΩ


log2


1 + P

∑

k 6=i
|hH
i u

DCSI
k |2






+ Pr(Ω̄) log2


1 + PEΩ̄


∑

k 6=i
|hH
i u

DCSI
k |2




 (6)

(a)

≤ Pr(Ω)EΩ


log2


1 + P

∑

k 6=i
|hH
i a

DCSI
k |2 + o(σ2P )






+ Pr(Ω̄) log2

(
1 + P

E[
∑

k 6=i |hH
i u

DCSI
k |2]

Pr(Ω̄)

)
(7)

≤ ∆RTay
i + Pr(Ω̄) log2

(
1 + P

E[
∑

k 6=i |hH
i u

DCSI
k |2]

Pr(Ω̄)

)
+ o(1) (8)

(b)

≤ ∆RTay
i + Pr(Ω̄) log2

(
1 + P

K2

Pr(Ω̄)

)
+ o(1) (9)
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where inequality (a) follows from the definition of the set Ω and in-
equality (b) from Lemma 7 in Appendix .1.

• Turning to the lower bound, we write

∆Ri ≥ Pr(Ω)EΩ


log2


1 + P

∑

k 6=i
|hH
i a

DCSI
k |2




 (10)

≥ ∆RTay
i − Pr(Ω̄)EΩ̄


log2


1 + P

∑

k 6=i
|hH
i a

DCSI
k |2




 (11)

≥ ∆RTay
i − Pr(Ω̄)

∑

k 6=i
EΩ̄

[
log2

(
1 + P‖hi‖2|‖aDCSI

k ‖2
)]
. (12)

Using the definition of aDCSI
k in (3), we can write that

‖aDCSI
k ‖2 =

K∑

j=1

|{a(j)
k }`|2 (13)

≤ ‖H−1‖2F
K∑

j=1

‖∆(j)‖2F. (14)

Inserting (18) and using one more time Lemma 7 in Appendix .1, we
can write

∆Ri ≥ ∆RTay
i − Pr(Ω̄)

∑

k 6=i
EΩ̄

[
log2

(
P

K∑

`=1

|{aDCSI
k }`|2

)]
+O(1)

(15)

≥ ∆RTay
i − Pr(Ω̄)

∑

k 6=i
log2


P

K∑

`=1

EΩ̄[

K∑

j=1

‖∆(j)‖2F]


+O(1)

(16)

≥ ∆RTay
i − Pr(Ω̄)

∑

k 6=i
log2


P

K∑

j=1

E[‖∆(j)‖2F]

Pr(Ω̄)


+O(1) (17)

≥̇ ∆RTay
i − Pr(Ω̄)

∑

k 6=i
log2(P

P−mini,j A
(j)
i

Pr(Ω̄)
). (18)
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For both cases, it remains to compute the probability of the space Ω. Using
the resolvent inequality two times, we can write

H−1 − (Ĥ(j))−1 = −(Ĥ(j))−1∆(j)H−1 (19)

= −H−1∆(j)H−1 − ((Ĥ(j))−1 −H−1)∆(j)H−1 (20)

= −H−1∆(j)H−1 + (Ĥ(j))−1∆(j)H−1∆(j)H−1. (21)

It then follows that

u
(j)
k = u?k + H−1∆(j) H−1ek

‖H−1ek‖
− (Ĥ(j))−1∆(j)H−1∆(j) H−1ek

‖H−1ek‖
(22)

= u?k + H−1∆(j) H−1ek
‖H−1ek‖

− ε(j)
i (23)

where we have introduced

ε
(j)
i , (Ĥ(j))−1∆(j)H−1∆(j) H−1ek

‖H−1ek‖
. (24)

The definition of the set Ω can be rewritten with the new notation as

Ω ,

{(
H, {∆(j)}j

) ∣∣∣∣‖ε
(j)
i ‖ ≤ Cσ5/4,∀i, j ∈ {1, . . . ,K}

}
. (25)

It can easily be shown that

‖ε(j)
i ‖ ≤ ‖(Ĥ(j))−1‖F‖H−1‖F|‖∆(j)‖2F (26)

≤
√

K

λmin((Ĥ(j))HĤ(j))

K

λmin(HHH)
‖∆(j)‖2F. (27)

We can then write

Pr
(
‖ε(j)

i ‖ > K3σ5/4
)

= Pr

(
(

√
λmin((Ĥ(j))HĤ(j)))−1(λmin(HHH))−1‖∆(j)‖2F > σ5/4

)
(28)

(a)

≤ Pr
(
λmin((Ĥ(j))HĤ(j)) < σ1/2

)
+ Pr

(
λmin(HHH) < σ1/2

)

+ Pr
(
‖∆(j)‖2F > σ7/4

)
. (29)

where inequality (a) follows from Lemma 3 in Appendix .1.
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1. The matrix (Ĥ(j))HĤ(j) is a Wishart matrix of size K − 1 with K
degrees-of-freedom from which the probability distribution of the min-
imal eigenvalue is known from [124, Theorem 5.4] to be exponential
and given by

Pr
(
λmin(HH

i Hi) ≤ x
)

= 1− exp

(
−(K − 1)

2
x

)
. (30)

Hence, with x = σ
1
4 and σ being small, it gives after a Taylor expansion

Pr
(
λmin(HH

i Hi) < σ
4
3
)

=
K − 1

2
σ

1
4 + o(σ

1
4 ). (31)

2. The matrix Ĥ(j) has the same distribution as Hi such that we can use
the same upperbound with the probability distribution of (Ĥ(j))HĤ(j).

3. The matrix ∆(j) has its elements i.i.d. complex Gaussian with the
variance smaller than σ2. After normalizing by σ2, the squared Frobe-
nius norm can be upperbounded by a Chi-square random variable with
(K − 1)K degrees-of-freedom. The tail of the probability distribution
can be upperbounded with the help of Lemma 4 in Appendix .1 with
n = K(K − 1) and x = σ−1/4. For σ sufficiently small, this gives

Pr

(∥∥∥∆(j)
i

∥∥∥
2

F
>σ7/4

)
≤exp

(
−σ−1/4/2+K(K−1)log

(
eσ−1/4

K(K − 1)

))

(32)
which decrease exponentially fast with σ.

In total this gives

Pr
(
‖ε(j)

i ‖ > K3σ5/4
)
≤ (K − 1)σ

1
4 + o(σ

1
4 ). (33)

A lower bound for the probability of Ω is easily obtained by writing

Pr
(
‖ε(j)

i ‖ > K3σ5/4
)

= Pr

(
(

√
λmin((Ĥ(j))HĤ(j)))−1(λmin(HHH))−1‖∆(j)‖2F > σ−3/4

)
(34)

≥Pr

(√
(λmin((Ĥ(j))HĤ(j)))−1>σ−3/4|λmin(HHH))−1≥ 1, ‖∆(j)‖2F≥1

)
.

(35)

Inserting these two bounds of Pr(Ω) inside the rate expressions concludes
the proof.
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Lemma 10. Considering the BC with distributed CSIT introduced previ-
ously, it holds

E[log2(|eH
k a

(j)
i ‖2)]

.
= −min

`
A

(j)
i log2(P ), ∀i, j, k. (36)

Proof. Our first step is to prove that the expected value does not depend on
the value of k (similarly, it can be shown to be independent on the value of i).
To show this result, we will use the permutation matrix Π1 ∈ {0, 1}K×K
(which permutes the columns when multiplied from the right of the matrix,
see [125] for more results). We can write that

eH
k H−1∆H−1ei = (eH

k Π1)Π−1
1 H−1∆Π1(Π−1

1 H−1)ei (37)

= (eH
k Π1)(HΠ1)−1∆Π1(HΠ1)−1ei (38)

= eH
k′H

′−1∆′H′−1ei (39)

(40)

where H′ has the same distribution as H and ∆′ has the same distribution
as ∆. It follows from this symmetry property that

E[log2(|eH
k a

(j)
i ‖2)] = E[log2

(
‖a(j)

i ‖2
K

)
]. (41)

We prove first that the RHS is a lower bound and then that it is also an
upper bound. Using basic algebra, we can show that

‖a(j)
i ‖2 ≥

∣∣∣∣
hH
`

‖h`‖
a

(j)
i

∣∣∣∣
2

(42)

=
1

‖h`‖2
1

‖H−1ei‖2
(σ

(j)
` )2

∣∣∣(δ(j))HH−1ei

∣∣∣
2
. (43)

The two vectors forming the inner product are independent and δ
(j)
i is

isotropically distributed such that the inner product is a Beta random vari-
able whose expected logarithm is finite. Furthermore, we can write this
relation for any channel vector h`, which concludes the proof of the lower
bound. The upper bound follows easily using the same properties of the
norm as in the previous derivations.

We have now all the elements necessary to derive easily the main theo-
rem.
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.3.2 Proof of the Theorem

Proof of Theorem 4. It is now clear that the DoF is determined by the rate
loss expressed as

∆Ri = E


log2


1 +

∑

j 6=i
P |hH

i u
DCSI
j |2




 . (44)

Since all the CSIT scaling coefficient are positive, we can use Lemma 9 to
write that

∆Ri = E


log2


1 +

∑

j 6=i
P |hH

i a
DCSI
j |2




+O(1). (45)

We now prove the results by deriving first an upper bound and then a
matching lower bound.

1. Focusing on the first expectation, we can write

∆Ri ≤ E


log2


1 + P

∑

j 6=i
‖hi‖2‖aDCSI

j ‖2



+O(1) (46)

.
= E


log2


∑

j 6=i
P‖a(DCSI)

j ‖2



 (47)

.
= E


log2


∑

j 6=i

K∑

k=1

P |{a(k)
j }k|2




 (48)

≤ E


log2


∑

j 6=i

K∑

k=1

P‖a(k)
j ‖2




 (49)

.
= log2

(
P max

k,j
(σ

(j)
k )2

)
(50)

(51)

where the last equality follows from Lemma 10 and the fact that
E[log2(‖H−1‖2F)] is finite [124].
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2. Turning to the lower bound, we write

∆Ri = E


log2


1 + P

∑

k 6=i
|hH
i a

DCSI
j |2




+O(1) (52)

≥ E
[
log2

(
1 + P |hH

i a
DCSI
` |2

)]
+O(1) (53)

≥ E


log2


P |

K∑

j=1

{H}ij{a(j)
` }j |2




+O(1). (54)

for any given index ` 6= i. From the definition of {a(j)
` }j , every element

of that vector has its phase uniformly distributed and independent of
the phase of the other elements of the beamformer. This comes from
the distribution of the estimation error being invariant by multiplica-
tion by any unit norm complex number. Hence, we can rewrite (56)
as

∆Ri ≥ E


log2



∣∣∣∣∣∣

K∑

j=1

{H}ij{a(j)
` }j exp(ıθj)

∣∣∣∣∣∣

2


+O(1) (55)

with the θj being i.i.d. over [0, 2π). Applying Lemma 1 iteratively,
yields

E[log2(|hH
i a

DCSI
` |2)] = E

[
log2

(
max
k

(∣∣∣{H}ij{a(j)
` }j

∣∣∣
2
))]

. (56)

The proof concludes by using Lemma 10.

.4 Proof of Proposition 9

The decomposition in (5.20) is obtained after a Taylor expansion with the
CSIT qualities σi considered to be small, i.e., o(1). The derivation of this
expression is detailed in Appendix .5.1. We consider for ease of notation
and without loss of generality that i = K. From (15) and using in addition

that hi, δ
(j)
i and Hi are independent, we obtain

E[|eH
k a

(j)
i |2] =

+ E[eH
k Π⊥Hi

∆
(j)
i Σ

(j)
i

(
HH
i Hi

)−1
(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

ek]+(σ
(j)
i )2E[eH

k Π⊥Hi
ek]

+ E[eH
k Hi

(
HH
i Hi

)−1
(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

∆
(j)
i Σ

(j)
i

(
HH
i Hi

)−1
HH
i ek] (1)

We compute now each term of (1) separately.
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1. Starting with the first term, we have

E[eH
k Π⊥Hi

∆
(j)
i Σ

(j)
i

(
HH
i Hi

)−1
(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

ek]

=
∑

`,`′

E[eH
k Π⊥Hi

∆
(j)
i Σ

(j)
i e`e

H
`

(
HH
i Hi

)−1
e`′e

H
`′(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

ek]

(2)

(a)
=
∑

`,`′

(σ
(j)
` )(σ

(j)
`′ )EHi [e

H
`

(
HH
i Hi

)−1
e`′e

H
k Π⊥Hi

· E
∆

(j)
i

[∆
(j)
i e`e

H
`′(∆

(j)
i )H]Π⊥Hi

ek] (3)

(b)
=
∑

`

(σ
(j)
` )2E[eH

`

(
HH
i Hi

)−1
e`e

H
k Π⊥Hi

ek] (4)

where the two first equalities are obtained via basic algebra, equal-
ity (a) follows from the independence of the channel and the estimation
error, and equality (b) from the estimation errors being uncorrelated.

To compute the expectation, we will exploit the fact that the channel
elements are i.i.d.. Hence, let us consider two permutation matri-
ces Π1 ∈ N(K−1)×(K−1) and Π2 ∈ NK×K . We also denote by π1 and
π2 the permutation functions associated with Π1 and Π2, respectively.
Note that we will exploit in the following that the inverse of a permu-
tation matrix is its transpose, i.e., ΠT

i = Π−1
i for i = 1, 2 [125]. It

follows that

E[eH
`

(
HH
i Hi

)−1
e` · eH

k Π⊥Hi
ek]

(a)
= E[eH

` Π1Π
H
1

(
HH
i ΠH

2 Π2Hi

)−1
Π1Π

H
1 e`

· eH
k ΠH

2 Π2

(
I−HiΠ1Π

H
1

(
HH
i ΠH

2 Π2Hi

)−1
Π1Π

H
1 HH

i

)
ΠH

2 Π2ek]

(5)

= E[(ΠH
1 e`)

H
(
(Π2HiΠ1)HΠ2HiΠ1

)−1
ΠH

1 e`(Π2ek)
H

·
(
I−Π2HiΠ1

(
(Π2HiΠ1)HΠ2HiΠ1

)−1
(Π2HiΠ1)H

)
Π2ek] (6)

(b)
= E[e′H`

(
H′Hi H′i

)−1
e′` · e′Hk Π⊥H′i

e′k] (7)

(c)
= E[(e′H`

(
HH
i Hi

)−1
e′` · e′Hk Π⊥Hi

e′k] (8)

where equality (a) follows simply from the insertion of the permutation
matrices in the inverse, equality (b) is obtained after defining H′i ,
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Π2HiΠ1, `′ = π−1
1 (`) and k′ = π2(k). Equality (c) holds because the

channel elements are i.i.d. such that the distribution of H′i is the same
as the distribution of Hi.

The permutations π1 and π2 can be chosen arbitrarily which implies
that the expectation in (8) is independent of k and `. Hence, we can
write

K−1∑

`=1

(σ
(j)
` )2E

[
1

K − 1
tr
((

HH
i Hi

)−1
) 1

K
tr
(
Π⊥Hi

)]
(9)

(a)
=

1

(K − 1)K

K−1∑

`=1

(σ
(j)
` )2E

[
tr
((

HH
i Hi

)−1
)]

(10)

(b)
=

1

K

K−1∑

`=1

(σ
(j)
` )2 (11)

with equality (a) obtained because the matrix in the trace is the ma-
trix of a projector over an hyperplane and equality (b) obtained from

E
[
tr
((

HH
i Hi

)−1
)]

= K − 1 [126, Lemma 2.10].

2. The second term of (1) is easily computed from the results obtained
above to be equal to

(σ
(j)
i )2E[eH

k Π⊥Hi
ek] = (σ

(j)
i )2E

[
1

K
tr
(
Π⊥Hi

)]
(12)

=
(σ

(j)
i )2

K
(13)

3. The third term of (1) is computed using the same properties as for the
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previous terms, as described below.

E[eH
k Hi

(
HH
i Hi

)−1
(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

∆
(j)
i Σ

(j)
i

(
HH
i Hi

)−1
HH
i ek]

=
K∑

`=1

K∑

`′=1

E
[
eH
k Hi

(
HH
i Hi

)−1
e`e

H
` (∆

(j)
i Σ

(j)
i )HΠ⊥Hi

∆
(j)
i Σ

(j)
i e`′

· eH
`′
(
HH
i Hi

)−1
HH
i ek

]
(14)

=

K∑

`=1

K∑

`′=1

σ
(j)
` σ

(j)
`′ EHi [e

H
k Hi

(
HH
i Hi

)−1
e`

· tr
(
Π⊥Hi

E
∆

(j)
i

[∆
(j)
i e`′e

H
` (∆

(j)
i )H]

)
eH
`′
(
HH
i Hi

)−1
HH
i ek]

(15)

=
K∑

`=1

(σ
(j)
` )2E[eH

k Hi

(
HH
i Hi

)−1
e` · eH

`

(
HH
i Hi

)−1
HH
i ek] (16)

Similarly to the derivation done for the first term, we introduce the
permutation matrices Π1 and Π2 to exploit the invariance of the dis-
tribution of Hi. Hence,

E[eH
k Hi

(
HH
i Hi

)−1
e` · eH

`

(
HH
i Hi

)−1
HH
i ek]

= E[eH
k ΠH

2 Π2HiΠ1Π
H
1

(
HH
i ΠH

2 Π2Hi

)−1
Π1Π

H
1 e`

· eH
` Π1Π

H
1

(
HH
i ΠH

2 Π2Hi

)−1
Π1Π

H
1 HH

i ΠH
2 Π2ek] (17)

= E[eH
k′H

′
i

(
H′Hi H′i

)−1
e`′ · eH

`′
(
H′Hi H′i

)−1
H′Hi e

′
k] (18)

where we have defined H′i , Π2HiΠ1, `′ = π−1
1 (`) and k′ = π2(k) in

the same way as in the computation of the first term. We can choose
the permutations arbitrarily, implying that the expectation is equal
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for all values of ` an k. Thus, we can continue from (16) to write

K∑

`=1

(σ
(j)
` )2E[eH

k Hi

(
HH
i Hi

)−1
e` · eH

`

(
HH
i Hi

)−1
HH
i ek] (19)

=

K∑

`=1

(σ
(j)
` )2

K(K − 1)
E

[
K−1∑

`′=1

K∑

k′=1

eH
k′Hi

(
HH
i Hi

)−1
e`′e

H
`′
(
HH
i Hi

)−1
HH
i ek′

]

(20)

=
K∑

`=1

(σ
(j)
` )2 1

K(K − 1)
E
[
tr
(
Hi

(
HH
i Hi

)−2
HH
i

)]
(21)

=
1

K

K−1∑

`=1

(σ
(j)
` )2. (22)

Putting the three terms together concludes the proof.

.5 Proof of Theorem 8

.5.1 Preliminaries

We prove in this appendix two side results that we will use in the main
proofs. Firstly, we will show that our results remain unchanged if we consider
a quantization model where

ĥ
(j)
i = hi + σ

(j)
i δ

(j)
i (1)

instead of the model given in (3.15). Note that this step is only helpful for
the sake of clarity as using (1) leads to shorter expressions.

We then study how the precoding at a given TX depends on the quality
of its CSIT. This analysis being a bit lengthy, we write it here to avoid
breaking the flow of the main proof.

Simplification of the CSIT model

We start by introducing the matrix Ω(j) as

Ω(j) ,
√

IK −
(
Σ(j)

)2
. (2)

and Ω
(j)
i the (K − 1)× (K − 1) matrix equal to Ω(j) once the ith row and

the ith columns have been removed.
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We can then define the beamformers ũ
(j)
i such that i, j ∈ {1, . . . ,K},

ũ
(j)
i ,

(
IK −Ĥ

(j)
i Ω

(j)
i

(
(Ĥ

(j)
i Ω

(j)
i )HĤ

(j)
i Ω

(j)
i

)
−1(Ĥ

(j)
i Ω

(j)
i )H

)
ĥ

(j)
i√

1− (σ
(j)
i )2

.

(3)
After simplification, we have that

u
(j)
i =

1√
1− (σ

(j)
i )2

ũ
(j)
i , ∀i, j ∈ {1, . . . ,K}. (4)

We can then directly write that

|hH
i u

DCSI
k |2 = |hH

i ũ
DCSI
k |2(1 + o(σ

(j)
i )), ∀i, k ∈ {1, . . . ,K}. (5)

The multiplication by 1 + o(σ
(j)
i ) does not change the results given in the

rest of these works such that we can use ĥ
(j)
i /

√
1− (σ

(j)
i )2 instead of ĥ

(j)
i

without any change on our results. Furthermore, it holds that

ĥ
(j)
i√

1− (σ
(j)
i )2

= hi +
σ

(j)
i√

1− (σ
(j)
i )2

δ
(j)
i (6)

(a)
= hi + σ

(j)
i

(
1 +

1

2
(σ

(j)
i )2 + o((σ

(j)
i )2)

)
δ

(j)
i (7)

= hi + σ
′(j)
i δ

(j)
i (8)

where we have used a Taylor expansion to obtain (a) and we have defined

σ
′(j)
i , σ

(j)
i + x

(j)
i with x

(j)
i = O((σ

(j)
i )3). Once more the additional term

obtained is negligible as the accuracy of the CSIT increases and thus does
not impact our approach.

Putting the two results together, we have shown that we can use (1) to
model the CSIT errors in the following proofs.

Precoding at TX j

As a preliminary step, we discuss the precoding at TX j based on the im-
perfect channel estimate Ĥ(j). We consider without loss of generality the

design of the ith beamformer u
(j)
i . We define

∆
(j)
i ,

[
δ

(j)
1 , . . . , δ

(j)
i−1, δ

(j)
i+1, . . . , δ

(j)
K

]
, (9)

Σ
(j)
i , diag

([
σ

(j)
1 , . . . , σ

(j)
i−1, σ

(j)
i+1, . . . , σ

(j)
K

])
(10)
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such that Ĥ
(j)
i = Hi + ∆

(j)
i Σ

(j)
i . Note that the random matrices ∆

(j)
i and

Hi are independent. We further define for ease of notation

Φ
(j)
i , (Ĥ

(j)
i )HĤ

(j)
i −HH

i Hi. (11)

Applying two times successively the resolvent inequality in Lemma 2

with A = (Ĥ
(j)
i )HĤ

(j)
i and B = HH

i Hi, we get

((Ĥ
(j)
i )HĤ

(j)
i )−1 = (HH

i Hi)
−1−

((Ĥ
(j)
i )HĤ

(j)
i )−1

[
(Ĥ

(j)
i )HĤ

(j)
i −HH

i Hi

]
(HH

i Hi)
−1 (12)

= (HH
i Hi)

−1 − (HH
i Hi)

−1Φ
(j)
i (HH

i Hi)
−1 + Θ

(j)
i (13)

where we have defined

Θ
(j)
i , ((Ĥ

(j)
i )HĤ

(j)
i )−1Φ

(j)
i (HH

i Hi)
−1Φ

(j)
i (HH

i Hi)
−1. (14)

Inserting (13) in the definition of u
(j)
i in (3.17) and using Ĥ

(j)
i = Hi +

∆
(j)
i Σ

(j)
i , we can write

u
(j)
i = u?i + a

(j)
i + Ξ

(j)
i h

(j)
i + σ

(j)
i Ω

(j)
i δ

(j)
i (15)

where we have introduced

a
(j)
i , Π⊥Hi

∆
(j)
i Σ

(j)
i

(
HH
i Hi

)−1
HH
i hi − σ(j)

i Π⊥Hi
δ

(j)
i

+ Hi

(
HH
i Hi

)−1
(∆

(j)
i Σ

(j)
i )HΠ⊥Hi

hi (16)

as well as

Ξ
(j)
i , (Ĥ

(j)
i )HΘ

(j)
i Ĥ

(j)
i +(∆

(j)
i Σ

(j)
i )H(HH

i Hi)
−1∆

(j)
i Σ

(j)
i

− (∆
(j)
i Σ

(j)
i )H(HH

i Hi)
−1Φ

(j)
i (HH

i Hi)
−1Ĥ

(j)
i

− (Ĥ
(j)
i )H(HH

i Hi)
−1Φ

(j)
i (HH

i Hi)
−1∆

(j)
i Σ

(j)
i

− (Ĥ
(j)
i )H(HH

i Hi)
−1∆

(j)
i Σ

(j)
i (∆

(j)
i Σ

(j)
i )H(HH

i Hi)
−1Ĥ

(j)
i (17)

and finally

Ω
(j)
i ,

[
Π⊥

Ĥ
(j)
i

−Π⊥Hi

]
. (18)

Finally, we regroup the two last terms of (15) to define

ε
(j)
i , Ξ

(j)
i h

(j)
i + σ

(j)
i Ω

(j)
i δ

(j)
i , ∀i, j ∈ {1, . . . ,K}. (19)
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.5.2 Sketch of the proof

During all this proof, we will use the short-hand notation σ to denote

maxi,j σ
(j)
i . The proof consists in considering first the channel realizations

and the channel quantization errors belonging to the subspace Aσ defined
as

Aσ ,

{(
H,
(
∆

(j)
i , δ

(j)
i

)
i,j

) ∣∣∣∣‖ε
(j)
i ‖ ≤ C(σ)σ1+ 1

8 ,∀i, j ∈ {1, . . . ,K}
}

(20)

with ε
(j)
i defined in (19) and with C(σ) being a function verifying that

limσ→0C(σ) = 0. By construction of the set Aσ, it holds over Aσ that (15)
can be written as

u
(j)
i = u?i + a

(j)
i + o(σ), ∀i, j ∈ {1, . . . ,K}. (21)

We will proceed by computing an upperbound on the average rate loss over
the subspace Aσ and over its complementary subspace Āσ , H\Aσ. Hence,
we write the rate loss ∆DCSI

R,i as

∆DCSI
R,i = Pr(Aσ)∆DCSI

R,i|Aσ
+ Pr(Āσ)∆DCSI

R,i|Āσ
(22)

where ∆DCSI
R,i|Aσ

and ∆DCSI
R,i|Āσ

denote respectively the expected rate loss over

Aσ and Āσ.

Specifically, the proof will be divided into four steps:

1. We show that

Pr(Aσ) = (1−O(σ
1
4 )). (23)

2. We compute the expected rate loss over the subspace Aσ.

3. We provide a (trivial) upperbound for the expected rate loss over the
subspace Āσ.

4. We put the results together to obtain an upperbound for the expected
rate loss using the conditional expectation formula (22).

In the following, we describe each step in full details.
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.5.3 Probability of Aσ
We prove here that there is a function C(σ) with limσ→0C(σ) = 0 such that
∀i, j

1− Pr(Aσ) = Pr
(
‖ε(j)

i ‖ > C(σ)σ1+ 1
8

)
= O

(
σ

1
4

)
. (24)

Using that ‖Ax‖ ≤ ‖A‖F‖x‖, we can easily upperbound ‖ε(j)
i ‖ as

‖ε(j)
i ‖ ≤ ‖Ξ

(j)
i ‖F‖h

(j)
i ‖+ σ‖Ω(j)

i ‖F‖δ
(j)
i ‖. (25)

Hence, we have

Pr
(
‖ε(j)

i ‖ > x
)
≤ Pr

(
‖Ξ(j)

i ‖F‖h
(j)
i ‖+ σ‖Ω(j)

i ‖F‖δ
(j)
i ‖ > x

)
(26)

(a)

≤ Pr
(
‖Ξ(j)

i ‖F‖h
(j)
i ‖ >

x

2

)
+ Pr

(
σ‖Ω(j)

i ‖F‖δ
(j)
i ‖ >

x

2

)
.

(27)

where inequality (a) follows from (ii) in Lemma 3, Appendix .1. Focusing

on the first term of (25), it follows from the definition of Ξ
(j)
i in (17) that

‖Ξ(j)
i ‖F‖h

(j)
i ‖

≤ ‖Ĥ(j)
i ‖2F‖((H

(j)
i )HH

(j)
i )−1‖F‖(HH

i Hi)
−1‖2F‖Φ(j)‖2F‖Hi‖

+ 2‖Hi‖F‖∆(j)
i ‖F‖Σ

(j)
i ‖F‖Ĥ

(j)
i ‖F‖(H

(j)
i )HH

(j)
i )−1‖2F‖Φ(j)‖F

+ ‖∆(j)
i ‖2F‖Σ

(j)
i ‖2F‖(HH

i Hi)
−1‖2F‖Hi‖3F

+ ‖Hi‖F‖∆(j)
i ‖2F‖Σ

(j)
i ‖2F‖(HH

i Hi)
−1‖F. (28)

Since σ = maxi,j σ
(j)
i , it is clear that ∀i, j, ‖Σ(j)

i ‖F ≤ Kσ and (ii) from
Lemma 3 in Appendix .1 to write

Pr
(
‖Ξ(j)

i ‖F‖h
(j)
i ‖ >

x

2

)

≤ Pr
(
‖Ĥ(j)

i ‖2F‖Φ(j)‖2F‖Hi‖‖((H(j)
i )HH

(j)
i )−1‖F‖(HH

i Hi)
−1‖2F >

x

8

)

+ Pr
(

2Kσ‖Hi‖F‖∆(j)
i ‖F‖Ĥ

(j)
i ‖F‖(H

(j)
i )HH

(j)
i )−1‖2F‖Φ(j)‖F >

x

8

)

+ Pr
(

(Kσ)2‖∆(j)
i ‖2F‖(HH

i Hi)
−1‖2F‖Hi‖3F >

x

8

)

+ Pr
(

(Kσ)2‖Hi‖F‖∆(j)
i ‖2F‖(HH

i Hi)
−1‖F >

x

8

)
. (29)
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In fact, it will become clear that the first term is the most critical one.
Hence, we start by studying this term and we define I to denote it:

I , ‖Ĥ(j)
i ‖2F‖Φ(j)‖2F‖Hi‖‖((H(j)

i )HH
(j)
i )−1‖F‖(HH

i Hi)
−1‖2F. (30)

We derive now an upperbound for I by upper-bounding each factor sepa-
rately.

1. The Frobenius norm of Φ(j) can be upperbounded as follows.

‖Φ(j)‖F =
∥∥∥(∆

(j)
i Σ

(j)
i )HHi+HH

i ∆
(j)
i Σ

(j)
i +(∆

(j)
i Σ

(j)
i )H∆

(j)
i Σ

(j)
i

∥∥∥
F

(31)

≤ Kσ
∥∥∥(∆

(j)
i )HHi + HH

i ∆
(j)
i +Kσ(∆

(j)
i )H∆

(j)
i

∥∥∥
F

(32)

(a)
< 2Kσ

∥∥∥∥∥
(Hi + ∆

(j)
i )H

√
2

(Hi + ∆
(j)
i )√

2

∥∥∥∥∥
F

(33)

≤ 2Kσ

∥∥∥∥∥
(Hi + ∆

(j)
i )H

√
2

∥∥∥∥∥
F

∥∥∥∥∥
(Hi + ∆

(j)
i )√

2

∥∥∥∥∥
F

(34)

= 2Kσ

∥∥∥∥∥
(Hi + ∆

(j)
i )√

2

∥∥∥∥∥

2

F

(35)

where we have used that σ is very small compared to one to obtain
inequality (a).

2. The Frobenius norm of the matrix (HH
i Hi)

−1 verifies [125]

‖(HH
i Hi)

−1‖F ≤
√
K

λmin(HH
i Hi)

. (36)

3. The matrix Ĥ
(j)
i has asymptotically the same distribution as Hi as

the accuracy of the CSIT increases such that (36) also holds for the

matrix ((Ĥ
(j)
i )HĤ

(j)
i )−1.

In total, we have obtained

I ≤ K3
√
K
‖Ĥ(j)

i ‖2(2σ‖ (Hi+∆(j))√
2
‖2F)2‖Hi‖

λmin((H
(j)
i )HH

(j)
i )λ2

min(HH
i Hi)

. (37)
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Using (i) from Lemma 3 in Appendix .1 , we now upperbound the tail
of the probability distribution of I.

Pr
(
I > 4K3

√
Kσ

5
4 (log(σ−4))4

)

(a)

≤ Pr


 ‖Ĥ(j)

i ‖2‖
(Hi+∆(j))√

2
‖4F‖Hi‖2

λmin((H
(j)
i )HH

(j)
i )λ2

min(HH
i Hi)

> σ−
3
4 (log(σ−4))4


 (38)

(b)

≤ Pr

(∥∥∥Ĥ(j)
i

∥∥∥
2

F
> log(σ−4)

)
+ 2 Pr

(∥∥∥ (Hi+∆(j))√
2

∥∥∥
2

F
> log(σ−4)

)

+ Pr
(
‖Hi‖2F > log(σ−4)

)
+ Pr

(
λmin((H

(j)
i )HH

(j)
i ) < σ

1
4

)

+ 2 Pr
(
λmin(HH

i Hi) < σ
1
4

)
(39)

where (a) follows from (37) and from ‖Hi‖F ≤ ‖Hi‖2F when ‖Hi‖F ≥ 1 and
(b) from (i) in Lemma 3 in Appendix .1. We continue by upper-bounding
separately each term in (39).

1. The matrix Ĥ
(j)
i has its elements i.i.d. NC(0, 1)2. Hence, the squared

Frobenius norm is a Chi-square random variable with (K−1)K degrees-
of-freedom. The tail of the probability distribution can be upper-
bounded with the help of Lemma 4 in Appendix .1 with n = K(K−1)
and x = log(σ−4). For σ sufficiently small, this gives

Pr

(∥∥∥Ĥ(j)
i

∥∥∥
2

F
> log(σ−4)

)
≤ e

K(K−1)
2

log
(

e
K(K−1)

)
(log(σ−4))

K(K−1)
2 σ2.

(40)

2. Both the matrix (Hi + ∆
(j)
i )/(

√
2) and the matrix Hi have their ele-

ments i.i.d. NC(0, 1) such that we can use the same upperbound.

3. The matrix HH
i Hi is a Wishart matrix of size K−1 with K degrees-of-

freedom from which the probability distribution of the minimal eigen-
value is known from [124, Theorem 5.4] to be exponential and given
by

Pr
(
λmin(HH

i Hi) ≤ x
)

= 1− exp

(
−(K − 1)

2
x

)
. (41)

2The distribution is in fact NC(0, 1) because of we use (1), but we do not consider this
detail for the sake of clarity.
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Hence, with x = σ
1
4 and σ being small, it gives after a Taylor expansion

Pr
(
λmin(HH

i Hi) < σ
1
4
)

=
K − 1

2
σ

1
4 + o(σ

1
4 ). (42)

4. The matrix Ĥ
(j)
i has the same distribution as Hi such that we can use

the same upperbound with the probability distribution of (Ĥ
(j)
i )HĤ

(j)
i .

Inserting these last four results in (39) gives

Pr
(
I > 4K3

√
Kσ

5
4 (log(σ−4))4

)
≤ 4e

K(K−1)
2

log
(

e
K(K−1)

)
(log(σ−4))

K(K−1)
2 σ2

+ 2
K − 1

2
σ

1
4 + o(σ

1
4 ) (43)

= O(σ
1
4 ). (44)

Coming back to (29), it remains to derive an upperbound for the three
other terms in the RHS. The calculation carried out for the first term can
be adapted to the three other terms without any difficulty. Furthermore, it
can easily be seen from the above calculation that we have considered the
largest term such that the other probabilities are in fact smaller. Thus, it
holds that

Pr
(
‖Ξ(j)

i ‖F‖hi‖ > 16K3
√
Kσ

5
4 (log(σ−4))4

)
= O(σ

1
4 ). (45)

Our goal is to derive an upperbound for (27) and we still have to study the
second term in (27). This is done by writing

‖σΩ
(j)
i δ

(j)
i ‖F

≤ Kσ‖
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
∆

(j)
i

(
HH
i Hi

)−1
HH
i ‖F‖∆(j)

i ‖F
+Kσ‖Ξ(j)

i ‖F‖∆
(j)
i ‖F

+Kσ‖Hi

(
HH
i Hi

)−1
(∆

(j)
i )H

(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
‖F‖∆(j)

i ‖F
(46)

≤ 2Kσ‖∆(j)
i ‖2F‖Hi‖F‖

(
HH
i Hi

)−1 ‖F +Kσ‖Ξ(j)
i ‖F‖∆

(j)
i ‖F (47)

Similarly, we easily obtain that the RHS of (47) has a smaller probability
than I to be asymptotically large so that we have

Pr
(
σ‖Ω(j)

i ‖F‖δ
(j)
i ‖ > 16K3

√
Kσ

5
4 (log(σ−4))4

)
= O(σ

1
4 ). (48)
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We can then use (48) and (45) in (27) to obtain that

Pr
(
‖ε(j)

i ‖ > 32K3
√
Kσ

5
4 (log(σ−4))4

)
= O(σ

1
4 ). (49)

Applying the above calculation for every i and every j, we have then shown
that

Pr
(
‖ε(j)

i ‖ > C(σ)σ1+ 1
8

)
= O

(
σ

1
4

)
(50)

for
C(σ) , 32K3

√
Kσ

1
8 (log(σ−4))4. (51)

.5.4 Upperbound for the rate loss over Aσ
By construction, it holds over the subspace Aσ that

uDCSI
i = u?i + aDCSI

i + εDCSI
i , i, j ∈ {1, . . . ,K} (52)

where we have defined

aDCSI
i ,



eH

1 a
(1)
i

...

eH
Ka

(K)
i


 , εDCSI

i ,



eH

1 ε
(1)
i

...

eH
Kε

(K)
i


 , i ∈ {1, . . . ,K} (53)

such that εDCSI
i = o(σ).

We will use this property to upperbound the rate loss. We start from
the definition of the rate loss and proceed as follows.

∆DCSI
R,i|Aσ , EAσ

[
log2(1 + P |hH

i u
?
i |2)
]

− EAσ

[
log2

(
1 +

P |hH
i u

DCSI
i |2

1 +
∑K

j=1,j 6=i P |hH
i u

DCSI
j |2

)]
(54)

= EAσ
[
log2(1+P |hH

i u
?
i |2)
]
− EAσ


log2


1+

K∑

j=1

P |hH
i u

DCSI
j |2






+ EAσ


log2


1 +

K∑

j=1,j 6=i
P |hH

i u
DCSI
j |2




 (55)

≤ EAσ
[
log2(1 + P |hH

i u
?
i |2)
]
− EAσ

[
log2

(
1 + P |hH

i u
DCSI
i |2

)]

+ EAσ


log2


1 +

K∑

j=1,j 6=i
P |hH

i u
DCSI
j |2




 . (56)
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Focusing on the inner product |hH
i u

DCSI
i |2, we can write

|hH
i u

DCSI
i |2

= hH
i (u?i + aDCSI

i + εDCSI
i )(u?i + aDCSI

i + εDCSI
i )Hhi (57)

= |hH
i u

?
i |2 + (hH

i u
?
i )((a

DCSI
i )Hhi) + (hH

i a
DCSI
i )((u?i )

Hhi) + |hH
i a

DCSI
i |2

+ (hH
i ε

DCSI
i )((uDCSI

i )Hhi) + (hH
i u

DCSI
i )((εDCSI

i )Hhi) (58)

(a)
= |hH

i u
?
i |2 +O(σ) (59)

where (a) follows from the definition of aDCSI
i in (53) and from εDCSI

i = o(σ).
Using (59), we can show that

EAσ
[
log2(1 + P |hH

i u
?
i |2)
]
− EAσ

[
log2

(
1 + P |hH

i u
DCSI
i |2

)]
(60)

= −EAσ

[
log2

(
1 +

O(Pσ)

1 + P |hH
i u

?
i |2
)]

(61)

= o(1) (62)

when σ tends to zero. We have then obtained

∆DCSI
R,i|Aσ ≤ EAσ


log2


1 +

K∑

j=1,j 6=i
P |hH

i u
DCSI
j |2




+ o(1). (63)

Note that we will omit for ease of notation to write explicitly the o(1) in the
rest of the proof as our calculation is always done up to a o(1) and removing
it leads to no confusion.
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Inserting the Taylor approximation of uDCSI
i from (52) in (63), we write

∆DCSI
R,i|σ

≤ EAσ


log2


1 +

K∑

j=1,j 6=i
P |hH

i (u?j + aDCSI
j + εDCSI

j )|2



 (64)

(a)
= EAσ


log2


1 +

K∑

j=1,j 6=i
P |hH

i (aDCSI
j + εDCSI

j )|2



 (65)

= EAσ

[
log2

(
1 +

K∑

j=1,j 6=i
P
(
|hH
i a

DCSI
j |2 + (hH

i a
DCSI
j )(hH

i ε
DCSI
j )H

+ (hH
i ε

DCSI
j )(hH

i a
DCSI
j )H + |hH

i ε
DCSI
j |2

))]
(66)

(b)

≤ EAσ

[
log2

(
1 +

K∑

j=1,j 6=i
P |hH

i a
DCSI
j |2 + o(σ2P )

)]
(67)

where (a) is obtained because hH
i u

?
j = 0 for j 6= i, (b) is obtained because

‖aDCSI
j ‖ = O(σ) and ‖εDCSI

i ‖ = o(σ) over Aσ.
We can then rewrite the upperbound in (67) to obtain

∆DCSI
R,i|σ

≤EAσ

[
log2

(
1+max

`
|eH
i HHe`|2




K∑

j=1,j 6=i
P
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

+o(σ2P )



)]

(68)

(a)

≤ EAσ

[
log2

(
1 + max

`
|eH
i HHe`|2

)]

+ EAσ

[
log2

(
1 +

K∑

j=1,j 6=i
P
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

+ o(σ2P )
)]

(69)

(b)

≤ log2

(
1 + EAσ

[
max
`
|eH
i HHe`|2

])

+ log2

(
1 + P

K∑

j=1,j 6=i
EAσ

[
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

]
+ o(σ2P )

)
(70)

where (a) is obtained by using that log(1 + ab) ≤ log(1 + a) + log(1 + b)
for a ≥ 0 and b ≥ 0, and (b) follows from Jensen’s inequality. To compute
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the expectation over Aσ, we resort to Lemma 7 in Appendix .1 to obtain

∆DCSI
R,i|σ ≤ log2

(
1 +

E
[
max` |eH

i HHe`|2
]

Pr(Aσ)

)

+ log2

(
1 + P

K∑

j=1,j 6=i

E

[
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

]

Pr(Aσ)
+ o(σ2P )

)
(71)

≤ log2

(
1 + E

[
max
`
|eH
i HHe`|2

]
(1− o(1))

)

+ log2

(
1 + P

K∑

j=1,j 6=i
E

[
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

]
(1− o(1)) + o(σ2P )

)
.

(72)

where we have used that Pr(Aσ) = 1 − o(1) to obtain the last inequality.
This can easily be obtained from Appendix .5.3 and is further discussed in
Appendix .5.5. It remains then to compute the two expectations. Focusing
first on the second expectation, we can write

E

[
|hH
i a

DCSI
j |2

max` |eH
i HHe`|2

]

=

K∑

k=1

K∑

k′=1

E


e

H
i HHeke

H
k a

(k)
j (a

(k′)
j )Hek′e

H
k′Hei

max` |eH
i HHe`|2


 (73)

(a)
=

K∑

k=1

K∑

k′=1

EHi



eH
i HHeke

H
k E{∆(j)

i }i,j

[
a

(k)
j (a

(k′)
j )H

]
ek′e

H
k′Hei

max` |eH
i HHe`|2


 (74)

(b)
=

K∑

k=1

EHi



|eH
i HHek|2eH

k E{∆(j)
i }i,j

[
a

(k)
j (a

(k)
j )H

]
ek

max` |eH
i HHe`|2


 (75)

(c)

≤ E

[
K∑

k=1

|eH
k a

(k)
j |2

]
(76)

where (a) follows from the independence between the quantization errors

and the channel, (b) from E{∆(j)
i }i,j

[a
(k)
j (a

(k′)
j )H] = δkk′ , (c) is obtained by

taking the maximum over the |eH
i HHek|2.

We now turn to the first expectation in (72). It is the expectation of the
maximum of K independent Chi-square random variable with 2 degrees-of-
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freedom and is computed via Lemmas 5 and Lemma 6 in Appendix .1. We
have then obtained

E

[
max
`
|eH
i HHe`|2

]
= 2

K∑

m=1

1

m
(77)

≤ 2(1 + log(K)). (78)

Using (76) and (78) inside (72) gives

∆DCSI
R,i|σ

≤ log2(3 + 2 log(K))

+ log2


1 + P

K∑

j=1,j 6=i
E

[
K∑

k=1

|eH
k a

(k)
j |2

]
(1 + o(1))


 (79)

(a)

≤ log2(3 + 2 log(K))+

log2


1 + P

K∑

j=1,j 6=i

K∑

k=1

2
∑K

`=1,` 6=j(σ
(k)
` )2 + (σ

(k)
j )2

K
(1 + o(1))


 (80)

= log2(3 + 2 log(K))+

log2


1 +

P

K

K∑

k=1

K∑

j=1,j 6=i


2

K∑

`=1,`6=j
(σ

(k)
` )2 + (σ

(k)
j )2


 (1 + o(1))


 (81)

where (a) is obtained after using Proposition 9. By inspection of the suc-
cessive summations in (82), it easily follows that

∆DCSI
R,i|σ ≤ µ(K)+

log2


1+

P

K

K∑

k=1


(2K−3)

K∑

p=1,p 6=i
(σ

(k)
` )2+2(K−1)(σ(k)

p )2


(1+o(1))




(82)

with µ(K) defined in (5.23).
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.5.5 Upperbound for the Rate Loss over Āσ

Due to the quickly vanishing probability of the set Āσ, a loose upperbound
for the rate loss is sufficient, and is obtained as follows:

∆DCSI
R,i|Āσ , EĀσ

[
log2(1 + P |hH

i u
?
i |2)
]

− EĀσ

[
log2

(
1 +

P |hH
i u

DCSI
i |2

1 +
∑K

j=1,j 6=i P |hH
i u

DCSI
j |2

)]
(83)

≤ EĀσ
[
log2(1 + P |hH

i u
?
i |2)
]

(84)

≤ log2

(
1 + PEĀσ

[
|hH
i u

?
i |2
])

(85)

(a)

≤ log2

(
1 + P

E
[
|hH
i u

?
i |2
]

Pr(Āσ)

)
(86)

(b)

≤ log2

(
1 + P

E
[
|hH
i u

?
i |2
]

σ2

)
(87)

where (a) follows from Lemma 7 in Appendix .1, inequality (b) is obtained
from using (41) with x = σ2. Indeed, it can easily be shown that Pr(Āσ) ≥
σ2. Finally, the expectation of the inner-product is computed as follows

E
[
|hH
i u

?
i |2
]

= E
[
|hH
i

(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi|2

]
(88)

= E
[
‖
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi‖2

]
(89)

(a)
= 1 (90)

where (a) is obtained after basic manipulations exploiting that hi and Hi

are independent.
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.5.6 Total Expected Rate Loss

Putting all the results together, we can write the expected rate loss as

∆DCSI
R,i = Pr(Aσ)∆DCSI

R,i|Aσ
+ Pr(Āσ)∆DCSI

R,i|Āσ
(91)

≤ µ(K)+

log2


1+

P

K

K∑

k=1

(
(2K−3)

K∑

p=1,p 6=i
(σ

(k)
` )2+2(K−1)(σ

(k)
i )2

)
+o(Pσ2)




+O(σ
1
4 log2(Pσ−2)) (92)

(a)
= µ(K)+

log2


1+

P

K

K∑

k=1

(
(2K −3)

K∑

p=1,p 6=i
(σ

(k)
` )2+2(K−1)(σ

(k)
i )2

)
+o(1)

(93)

with equality a holding true because of the assumption that all the σ
(j)
i

decrease polynomially with the SNR P . This concludes the proof of Theo-
rem 8.

.6 Proof of Proposition 8

We consider for the sake of clarity and without loss of generality, the in-
ner product between the beamformer uCCSI

K with the jth channel vector hj
for j < K. We define the matrix ΣK , diag([σ1, . . . , σK−1]) and the ma-
trix ∆K ∈ CK×K−1 as

∆K ,
[
δ1, . . . , δK−1

]
. (94)

It then holds
ĤK = HK + ∆KΣK . (95)

Let us introduce further the matrix Mδj ∈ CK×K−1 as

Mδj ,
[
0 . . . 0 δj 0 . . . 0

]
(96)

with δj forming the jth column of Mδj . Finally, we define ĜK ∈ CK×K−1

such that

ĜK , ĤK −MδjΣK (97)

= HK + ∆K diag([σ1, . . . , σj−1, 0, σj+1, . . . , σK−1]). (98)

207



Intuitively, ĜK is the estimate of ĤK without the error done on hj . By

construction, the matrix ĜK is independent of δK .

Using the definitions introduced above, we can then write for j < K,

|hH
j u

CCSI
K |2 = |(ĥj − σjδj)HuCCSI

K |2 (99)

= σ2
j |δH

j u
CCSI
K |2 (100)

since ĥH
j u

CCSI
K = 0 for j < K. We then rewrite the beamformer uCCSI

K as

uCCSI
K =

(
IK −(ĜK + σjMδj )

(
(ĜK + σjMδj )

H(ĜK + σjMδj )
)−1

· (ĜK + σjMδj )
H
)
ĥK (101)

= v̂K + εK (102)

where we have defined

v̂K ,

(
IK −ĜK

(
ĜH
KĜK)

)−1
ĜH
K

)
ĥK (103)

and

εK , uCCSI
K − v̂K . (104)

This gives

|hH
j u

CCSI
K |2 = σ2

j |δH
j (v̂K + εK)|2 (105)

=σ2
j

(
|δH
j v̂K |2+

(
δH
j v̂K

)(
δH
j εK

)H
+
(
δH
j εK

)(
δH
j v̂K

)H
+|δH

j εK |2
)
.

(106)

Taking the expectation yields

E
[
|δH
j v̂K |2

]
= E

[
‖δj‖2

]
E
[
‖v̂K‖2

]
E



∣∣∣∣∣
δH
j v̂K

‖δj‖‖v̂K‖

∣∣∣∣∣

2

 (107)

= K(1 + o(1))E



∣∣∣∣∣
δH
j v̂K

‖δj‖‖v̂K‖

∣∣∣∣∣

2

 . (108)

The expectation of the norms have been easily obtained and the remaining
expectation is the expectation of a Beta (1,K− 1) random variable because
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the two vectors forming the inner product are independent, and δj is isotrop-
ically distributed in the space. Thus, the expectation in (108) is equal to
1/K which gives in total

E
[
|δH
j v̂K |2

]
= (1 + o(1)) (109)

All the expectations considered can be easily shown to exist such that we
can take let σj tends to zero inside the expectation. Hence, if we write

E[|hH
j ûK |2]− σ2

jE[|δH
j v̂K |2]

= σ2
jE
[(
δH
j v̂K

) (
δH
j εK

)H
+
(
δH
j εK

) (
δH
j v̂K

)H
+ |δH

j εK |2
]
, (110)

then the expectation in the RHS tends to zero as σj tends to zero meaning
that the RHS is a o(σ2

j ).
We have thus obtained that

E[|hH
j ûK |2] = σ2

jE[|δH
j v̂K |2] + o(σ2

j ) (111)

= σ2
j + o(σ2

j ) (112)

which concludes the proof.
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