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Abstract

Renewable energy is the new black. Countries all over the world are investing in

renewable energy solutions in a bid to become sustainable. Wind energy is one of

the major contributors to this green revolution with an annual increase of around

20%. Although this increase is indeed impressive, wind energy is still unable to

compete against cheap fossil fuels. With current technologies, extracting energy

(or torque) from the wind is difficult, intermittent and unpredictable in many

respects. This unpredictability makes it - even now - a risky industry to invest

in.

The european union would like to reduce the uncertainties in wind resource as-

sessment and forecasting to below 3% by 2030. If this is managed wind energy

will be competitive. Among the wide range of multidisciplinary topics on wind

energy technology, the European Technology Platform for Wind Energy identifies

wind conditions as one of the key thematic areas for the development of future

research activities in the sector. This term should encompass all of the rele-

vant wind aspects that have an impact on the economic and technical feasibility

of a wind farm deployment, notably: wind resource, turbulence characteristics

(intensity, spectra as well as higher order statistics) and wind shear extremes.

A common way to evaluate the wind conditions of a test site is to place wind-

measuring masts in the potential turbine locations. The potential power is then

estimated with the combination of mast-based measurements, numerical engi-

neering models and a significant portion of field experience. The latter is mo-

tivated mainly by the unreliability of the numerical models; models originally

developed for mildly complex terrain under neutral atmospheric conditions.

In this dissertation we have made use of two such atmospheric wind measure-

ment campaigns from two very topographically different nest sites: the German

Growian experiment in a near homogenous terrain setting and the French Ersa

wind park experiment where measurements were taken from within a wind farm

on top of a mountain in Corsica. Both sites are subject to convective sea breezes



and both exhibit wind shear distributions where even coarse time-scale extremes

are much more frequent than those previously predicted by Gaussian distribu-

tions. These frequent intermittent bursts are the major source of wind energy’s

unpredictability and the reason there are mechanical overloads, deviations from

expected power production and large short-time power fluctuations.

From the governing equations of the velocity field, one can not only expect a

(highly) non-Gaussian wind but also one that is scaling. By scaling we mean

a given (statistical) self-similarity; a turbulent cascade of eddies. Stochastic

multifractals (with multiple singularities and co-dimensions) easily reproduce the

scaling, heavy-tailed probabilities that are ubiquitous with the wind and essential

to quantify for the wind energy community. The few parameters that define these

models can be derived either from theoretical considerations or from statistical

data analysis.

For multifractal data analyses, the main aim is to determine the statistics of

the velocity shears. It is sometimes possible to do this with the universal mul-

tifractal (UM) parameters: α - the index of multifractality (0 ≤ α ≤ 2), C1

- the co-dimension of the mean intermittency (C1 ≥ 0) and H - the degree of

non-conservation. The latter of the three parameters is often called the Hurst

exponent. We inter-compare the results from the rather standard method of

empirical estimation of the UM parameters, the Double Trace Moment (DTM)

method, with that of the Double Structure Function (DSF), a newly developed

method.

We found that flux proxies based on the modulus of the wind velocity shears

yield non-scaling statistical moments and therefore spurious multifractal param-

eter estimates. DSF does not require this proxy approximation thus providing

parameters that describe the non-linearity of the structure-function to an extent.

We found no truly stable estimate of alpha using standard methods. Moreover,

the apparent agreement of the departure of the semi-analytic function with that

of the empirical at the theoretically predicted order for a finite sample is not

linear, contradictory to the classical UM theory.

This no longer occurs when we locally optimise (by fractionally differentiating)

the DTM scaling behaviour. We then obtain very stable estimates of the mul-

tifractality index that are furthermore consistent (smaller than two) with other

literature. On the contrary, the two other parameters (C1 and H) become non-



linear functions of the order q of the statistical moments. These results suggest

that the isotropic UM model cannot be used to reproduce the velocity shears in

the atmospheric surface-layer.

To investigate the above hypothesis we use a rotated frame of reference to analyse

the anisotropy of the horizontal velocity in the atmospheric surface-layer. This

enables us to quantify the angular dependency of a Hurst exponent. Despite being

anisotropic the Hurst exponent is consistent with other surface-layer literature.

For time-scales above a few seconds, both data exhibit a strong, scaling anisotropy

that decreases with height. We put forward an analytical expression for the an-

gular variation of the Hurst exponent based on the correlation of the horizontal

components. It determines the generation of wind shear extremes, including

those in the wake of a turbine. We find that the turbulent wind shears are so

extreme that their probability distributions follow a power law. The correspond-

ing exponent (qD) is rather the same in both sites at 50m heights (4 ≤ qD ≤ 5),

inspite of very different orographic conditions. We also discuss its consequences

when analysing the stability of the atmospheric boundary-layer and propose a

new method for its classification.

Finally, we analytically demonstrate that anisotropy increases the extremes’ prob-

ability. This finding reveals one of the many possible turbulence mechanisms in

the atmospheric surface-layer that may seemingly over-generate wind shear ex-

tremes if they are studied in an isotropic UM framework. We theoretically analyse

the consequences of this on the UM estimates for the DTM method. The ob-

tained analytical results fully support empirical findings. We then discuss how to

take into account all of these considerations when simulating multifractal fields

of the wind in the atmospheric boundary-layer. The overall results of this disser-

tation go beyond wind energy, they open up new perspectives for the theoretical

predictions of extremes in the general case of strongly correlated data.

Keywords

wind energy, atmospheric turbulence, multifractal intermittence, surface-layer

stability, anisotropy, extremes



Résumé

Les énergies renouvelables sont à la mode. Partout dans le monde les pays

investissent dans ces énergies pour devenir durables. Avec une croissance an-

nuelle d’environ 20%, l’énergie éolienne est un des principaux acteurs de cette

révolution verte. Bien que cette augmentation soit impressionnante, l’énergie

éolienne ne parvient toujours pas à être compétitive face aux combustibles fos-

siles bon marché. Avec les technologies actuelles, extraire l’énergie du vent est

difficile, intermittent et imprévisible à bien des égards. Cette imprévisibilité fait

de l’énergie éolienne - même maintenant - un investissement risqué.

L’Union européenne voudrait réduire les incertitudes à moins de 3% à l’horizon

2030 dans l’évaluation et la prévision des ressources éoliennes. Cela permettrait

à l’énergie éolienne d’être enfin compétitive. Parmi la vaste gamme de sujets

pluridisciplinaires sur la technologie éolienne, la Plate-forme Technologique eu-

ropéenne pour l’énergie éolienne identifie ‘les conditions du vent’ comme une des

thématiques clés pour le développement des futures activités de recherche dans

le domaine. Ce terme devrait englober tous les aspects du vent qui ont un im-

pact sur la faisabilité économique et technique d’un parc éolien, notamment: la

ressource, les caractéristiques de turbulence et les cisaillements extrêmes.

Un moyen classique d’évaluation du potentiel éolien sur un site choisi consiste à

installer des mâts météorologiques dans les emplacements potentiels d’éoliennes.

Dans cette thèse, nous avons exploité des mesures de vents atmosphériques

réalisés pendant deux compagnes sur deux sites topographiquement très différents:

Growian en Allemagne sur un terrain à peu près plat, et le parc éolien Ersa, où

les mesures ont été prises entre les éloliennes situées au sommet d’une montagne

en Corse (France). Les deux sites sont soumis à des brises de mer convectives

et présentent des distributions de cisaillement où même à basse résolution les

extrêmes sont plus fréquents que ceux précédemment prévus avec des distribu-

tions Gaussienne. Ces fréquentes poussées intermittentes de vent sont la prin-

cipale cause de l’imprévisibilité de l’énergie éolienne et la raison sous-jacente



aux surcharges mécaniques, aux écarts entre production d’énergie attendue et

mesurée, ainsi qu’aux fluctuations importantes de puissance sur de courtes durées.

A partir des équations gouvernant le champ de vitesse, on peut non seulement

s’attendre à un vent (fortement) non-gaussien, mais aussi à un vent présentant un

comportement scalant. Par scalant’ ou invariant d’échelle, nous faisons référence

à un comportement statistique auto-similaire particulier; les cascades de tourbil-

lons. Les multifractales stochastiques (avec des singularités et des co-dimensions

multiples) reproduisent facilement le comportement scalant et les distributions de

probabilités à queues épaisses omniprésentes dans le vent et dont la quantification

est essentielle pour la communauté. Les quelques paramètres qui définissent ces

modèles peuvent êtres déduits soit de considérations théoriques, soit de l’analyse

statistique de données.

Il est parfois possible de caractériser les statistiques de cisaillement du vent à

l’aide des paramètres des multifractals universelles (UM) : α - l’indice de multi-

fractalité (0 ≤ α ≤ 2), C1 - la co-dimension de l’intermittence moyenne (C1 ≥ 0)

et H - le degré de non-conservation. Le dernier des trois paramètres est souvent

appelé exposant de Hurst. Nous comparons les résultats issus des estimations

empiriques des paramètres UM via la méthode plutt standard du Double Mo-

ment Trace (DTM), avec celle nouvellement développée de la Double Fonction

de Structure (DSF).

Nous avons constaté que les approximations de flux basées sur le module du ci-

saillement du vent donnent des moments statistiques non-scalants et donc des

estimations faussées des paramètres multifractals. La méthode DSF n’exige pas

cette approximation et garantit un comportement scalant sur une certaine gamme

d’échelles. Nous n’avons trouvé aucune estimation véritablement stable de α en

utilisant des méthodes standards. Ceci n’arrive plus quand nous optimisons lo-

calement (par la différenciation fractionnaire) le comportement scalant du DTM.

Nous obtenons alors des estimations très stables de l’indice de multifractalité qui

sont en outre en accord (α ≤ 2) avec des résultats publiés. Au contraire, les deux

autres paramètres (C1 et H) deviennent des fonctions non-linéaires de l’ordre q

des moments statistiques. Ces résultats suggèrent que le modèle UM isotrope ne

peut être utilisé pour reproduire le cisaillement de vent dans la couche de surface

atmosphérique.

Lesdites hypothèses sont examinées en utilisant un repère tournant pour analyser



l’anisotropie de la vitesse horizontale dans la couche de surface atmosphérique.

Cela permet de quantifier la dépendance angulaire de l’exposant de Hurst. Les

valeurs de cet exposant restent tout de même conformes aux résultats précédemment

publiés. Pour des échelles de temps supérieures à quelques secondes, les deux jeux

de données présentent une anisotropie scalante forte, qui décrot avec l’altitude.

Nous mettons en évidence une expression analytique de la variation angulaire de

l’exposant de Hurst, reposant sur les corrélations entre les composantes horizon-

tales. Ceci pilote la formation des extrêmes du cisaillement, y compris dans le

sillage d’une éolienne. Les cisaillements turbulents du vent sont si extrêmes que

leur loi de probabilité est une loi de puissance. L’exposant correspondant (qD) est

similaire pour les deux sites à une hauteur de 50m (4 ≤ qD ≤ 5), malgré des con-

ditions orographiques très différentes. Nous discutons aussi de ses conséquences

en analysant la stabilité de la couche limite atmosphérique et proposons une

nouvelle méthode pour sa classification.

Enfin, nous démontrons analytiquement que l’anisotropie augmente la proba-

bilité des extrêmes. Ce résultat met en lumière un des nombreux mécanismes

de turbulence possibles dans la couche de surface qui peut apparemment surpro-

duire les cisaillements extrêmes du vent, s’ils sont étudiés dans le cadre des UM

isotropes. Nous en analysons théoriquement les conséquences sur les estimations

des paramètres multifractales par la méthode DTM. Les résultats analytiques

obtenus sont en parfait accord avec les observations empiriques. Nous discutons

alors de la prise en compte de toutes ces considérations pour faire des simulations

multifractales des champs du vent dans la couche limite atmosphérique.

Les résultats de cette thèse vont au-delà de la question de l’énergie éolienne. Ils

ouvrent de nouvelles perspectives sur les prévisions théoriques d’extrêmes dans

le cas général de données fortement corrélées.

Mots Clés

énergie éolienne, turbulence atmosphérique, intermittence multifractale, stabilité

de la couche-limit, anisotropie, extrêmes
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Chapter 1

1.1 The Challenge In Wind Resource

Assessment: Turbulence

Although the effects of wakes add additional complexity to the problem, the wind

energy community is facing the same problems as the turbulence community.

This can easily be seen by considering the state of art wind resource assessment

deliverable D7 (Rodrigo [2011]). The conclusions of the report use the results

from a survey of 72 wind analysts from 48 different organisations to highlight

problematic areas in the wind industry. A comparison of these conclusions with

the “recent advances and key issues in wall-bounded turbulence” discussed in

Marusic et al. [2010] confirms there is an overlap of joint issues that question:

• the existence of universal principal model parameters as a re-

sult of the advent of new methods that provide higher resolution

more reliable data (through remote sensing and post-processing

techniques),

• the validity of approximations to Reynolds stresses and whether

they represent micro-scale wind conditions and extremes and

• the effect of non-neutral stability effects and complex topograph-

ical features.

An appropriate response would be to now focus on the state of art in statistical

turbulence modelling, listing the advantages and disadvantages of applying such

1



methods to these sort of problems. This is appropriate because the key ideas

in statistical turbulence modelling were developed over 50 years ago (see §1.2)

and are well established within the turbulence community. Moreover, one would

expect the wind energy community to also be well aware of the alternatives to

the Reynolds decomposition given the explicit relationship between the two areas

of research, i.e. the wind.

In reality we find there is an apparent lack of even the most basic statistical

approaches to the aforementioned problems, a blind dependency on the results of

numerical simulations that seems to have been fast translated from the numerical

weather prediction (NWP) community.

A fine example of this is in the very questionnaire that we have used to

highlight the joint issues being faced between both communities. In the list of

questions we find three categories: numerical modelling, physical modelling and

field measurements for validation. Although some of the questions within each

category are indirectly related to statistical mechanics it is clear ‘statistical meth-

ods’ is a category of atmospheric science that is either unheard of, or not regarded

as, one of sufficient importance to be included. The irony of this situation is that

the very area of research that is left out, is the very area that is the most fea-

sible option for obtaining a real solution to the aforementioned problems. It is

therefore for this reason that we have endeavoured to give a more pedagogical

discussion in what follows.

The Need For Higher Resolutions

Although being left out of a questionnaire is not of great importance, the fact

is that similar opinions are reflected throughout the wind energy community.

Most commercial, site nesting, models are slightly modified versions of NWP

models (see §1 of Holmes [2011] for an overview of current models). Due to

computational expenses, NWPmodels are forced to truncate the space-time scales

of simulations resulting in a somewhat ad-hoc parameterisation of the unresolved

scales. This same parametrisation of unresolvable scales has also been refashioned

into the wind energy community in the form of the so called ‘turbulence intensity’

(TI) (Wallbank [2008]). A second order approximation (typically done on ten-

2



minute supervisory control and data acquisition (SCADA) measurements) that

is accepted as a sufficient means by which to quantify extreme wind velocities.

For the NWP community a parameterisation like this may be deemed acceptable

because the typical space-time scales being resolved (greater than 1km by 1 day)

are assumed not to be greatly influenced by a second order approximation.

It fast became clear that the scales being resolved by such models and the

necessary parameterisation of small-scale velocity fluctuations do not correspond

to the scales needed to model wind turbines (see for example Schertzer et al.

[2011]). Wind turbines have blades of length and width in the order of metres

interacting with strong intermittent wind increments that have been shown (Fit-

ton et al. [2011b]) to fluctuate wildly at resolutions of Hertz’s let alone minutes

or even days. In response to this the wind industry has focused on obtaining

better predictions with higher resolution models. The solution to this problem

then becomes dependent on the latest and most innovative cluster of processors.

One benefit of this initiative is the need for higher resolution boundary and initial

condition data. This in turn has led to higher resolution measurements which in

turn has allowed us to highlight the extreme variability of the wind.
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Figure 1.1: Empirical probability distribution (blue crosses) of the normalised horizontal
velocity increments, ∆u(τ)/σ (the velocity increments are defined as ∆u(τ) = u(t+ τ)−u(t)),
measured in a high-resolution experimental campaign at a wind turbine test site in Corsica.
Red solid line is the corresponding Normal distribution, N(µ, σ2), for the sample mean, µ, and
the variance, σ2.
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Figure 1.1 displays the (heavy-tailed) probability distribution of the time in-

crements of the horizontal wind velocity. The winds were measured in a high-

resolution experimental campaign at a wind turbine test-site in Corsica (for de-

tails see §2.1). The heavy tails are a result of the large ratio of scales i.e. a high

sampling frequency and a long sampling run (over one hour of measurements at

10Hz). Observing the same heavy tails with SCADA data would require nearly

a continuous year of measurements. An easy way to check whether the tails of a

distribution are heavy is to plot the logarithm of the probability.
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Figure 1.2: Same distribution as in figure 1.1 but with a logarithmic vertical axis and for
increasing time-scales: τ = 0.1, 0.4, 1.6, 6.4 seconds.

Figure 1.2 plots the same distribution but for log-probabilities. In addition

we have upscaled the data through temporal averaging in order to show that the

heavy tails are persistent in time. As the resolution is decreased up to the final

lowest resolution (upper-most plot at 6.4 seconds), the empirical data ‘appears’

to better fit the normal distribution curve due to the lack of extreme events (a

result of the smoothing effect from the averaging procedure).
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A Matter Of Scales

In the previous section we defined three areas that require significant develop-

ment. But why, if the governing equation of the problem does not change, is

there a separation of focus on the development of a better solution? Why can’t

we find a solution to three-dimensional fluid flow? Starting first with the latter

of the two questions, the answer is given typically by example. Since there is no

known (as of yet) analytical solution to the governing equation of fluid flow – the

Navier-Stokes equation – a popular alternative is to numerically approximate the

time-evolution. In the atmosphere, the Reynolds Number, Re, is usually esti-

mated to be 1012. This estimate can be obtained by using the following relation

Re ≈ (L/ℓK)
4/3

and considering the horizontal scaling range as ranging from the dissipation/Kol-

mogorov scale (ℓK ≈ 1 millimetre) to planetary scales (L ≈ 104 kilometres). The

number of grid points therefore required to completely compute the flow in three

dimensions is the cube of this, i.e. 1036 grid points. Given the largest direct

numerical simulation (DNS) to date (Yokokawa et al. [2002]) was done on 1011

grid points for up to five times the eddy turnover time, to follow the evolution of

all of the details would take many thousands of years on even the fastest modern

computers.

Thus, we find direct numerical simulation is confined to flows of relatively

small Reynolds numbers with relatively simple geometry. In order to fit the mod-

els into a given volume there is a requirement to make a compromise between

acceptable resolutions and simulation run-times. This is typically done by trun-

cating the space-time scales and approximating the remaining unresolved scales

using one of the following models Speziale [2011]:

1. Reynolds-stress models, allow for the calculation of one-point

first and second moments such as the mean velocity, mean pres-

sure, and turbulent kinetic energy.

2. sub-grid scale models for large-eddy simulations, wherein the large,

energy-containing eddies are computed directly and the effect of

5



the small scales – which are more universal in character – are

modelled.

3. two-point closures or spectral models, which provide more detailed

information about the turbulence structure, since they are based

on the two-point velocity correlation tensor.

With any of the above methods the ‘closure of the system’ is the outstanding

difficulty i.e. there are more unknowns than there are equations (see for example

Tsinober [1993]). In other words the order of information produced by the model

will never exceed the order of information that is input. Since the models in

question ‘in general’ do not resolve all of the scales of the system, we find the

numerical models are adjusted to fit space-time resolutions that maximise the

information for different flow scenarios. It is here therefore that we find the

answer to the first of our questions: why, if the governing equation of the problem

does not change, is there a separation of focus on the development of a better

solution? Scale dependency.

What Is The Alternative?

We discussed how traditional numerical approaches are forced to truncate their

scales by transforming partial differential equations (PDEs) into (more easily solv-

able) ordinary differential equations (ODEs) that implicitly impose regularity and

homogeneity assumptions through parameterisation methods. The problem en-

countered with these assumptions is the violation of the fundamental symmetries

of the non-linear PDEs that thus leads to a reduction in variability. This then

questions the relevance of the resulting numerical codes because their range of

scales are different from those of the observations.

Multifractals on the other hand are independent of scale providing the velocity

field scales as a power law. This allows us to understand and to model extremely

variable space-time fields over wider (if not all) ranges of scales, thus accounting

for extreme events or gusts. However, before delving into the intricacies of the

universal multifractal (UM) framework (§4.1) we will attempt to summarise some

of the main ideas that led to its development (see also Fitton).
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Governing PDE

The equation that governs turbulence is generally referred to as the Navier-Stokes

equation (1823) and is essentially the extension of the basic symmetries of New-

ton’s laws for continuum media:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f , (1.1)

where u is the velocity vector, with components (u, v, w), which, in general,

depend on the three spatial coordinates, (x, y, z), of the position vector r, and

time t; p is the reduced or kinematic pressure (i.e. pressure divided by density ρ

considered as constant, according to an acceptable approximation in the boundary

layer), ν is the kinematic viscosity and f represents the body forces acting on the

fluid. Since we will consider only atmospheric flows with velocities much smaller

than the speed of sound, we also have the incompressibility condition:

∇ · u = 0.

Although the elementary properties of the solutions (including existence and

uniqueness) of the Navier-Stokes equations are still unknown, their symmetries

have been considered for a while, see in particular Sedov [1972], Frisch [1980].

Symmetries

The Navier-Stokes equation has the following six known symmetries:

1. Space-translations: t, r,u 7→ t, r + ℓ,u, ℓ ∈ R
3

2. Time-translations: t, r,u 7→ t+ τ, r,u, τ ∈ R

3. Galilean transformations: t, r,u 7→ t, r +U t,u+U , U ∈ R
3

4. Parity: t, r,u 7→ t,−r,−u.

5. Rotations: t, r,u 7→ t, Rr, Ru, R ∈ SO(3,R)

6. Scaling: t, r,u 7→ e1−at, er, eau, e ∈ R+, a ∈ R

7



The symmetries (1-4) can be merely understood as direct consequences of

the Galilean invariance of the Navier-Stokes equation. The scaling symmetry is

formally rather straightforward for infinite Reynolds numbers and no forcing i.e.

ν = 0 and f = 0 (Frisch [1980]). However, it can also be argued (Herring et al.

[1982], Lilley et al. [2004]) that this also applies to non-zero eddy/renormalised

viscosity and forcing, without keeping the Reynolds number constant contrary to

Sedov [1972]. Let us also mention that a more systematic way to find the ap-

propriate scaling symmetries, including anisotropic scaling ones, of a differential

system can be obtained with the help of the pullback transforms of the field and

the differential operators generated by (possibly generalised) dilations/contrac-

tions of the space (Schertzer et al. [2011]).

Conservation Laws

We have seen in the previous section that for an infinite Reynolds number, no

forcing and constant density, the equations of hydrodynamic turbulence are scal-

ing under isotropic scale changes (symmetry 6). Consider now the energy flux

whose density is given by:

ε = −1

2

∂

∂t
(u · u). (1.2)

Under the same conditions we find the energy flux density is conserved by the

non-linear ‘inertial’ terms (see appendix A.1). This is important because we

will be interested in situations where these terms are dominant. The dominance

of the terms are classically estimated by the ratio of the non-linear term and

the dissipative (viscous) term in the Navier-Stokes equation using the ‘Reynolds’

number

Re ∼ Non-linear terms

Linear damping
∼ U · L

ν

where U is a ‘typical’ horizontal velocity of the largest scale motions and L is

the corresponding ‘outer’ scale. The Reynolds number is the non-linear ‘coupling

constant’ for the problem. Since Re is usually estimated to be 1012 (as previously

calculated) we may anticipate, in this strong coupling limit, that many standard

methods such as perturbation techniques (which work by solving the easy linear
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problem and treating the non-linear term as a perturbation) will not converge.

1.2 A Statistical Approach To Turbulence

At the beginning of the 20th century, V. Bjerknes (1904) and then L. F. Richard-

son (1922) laid the first blueprints for combining the equations of thermodynamics

with those of hydrodynamics in the form of a closed set of governing non-linear

partial differential equations. At roughly the same time an alternative stochastic

‘turbulent’ approach was being developed by Taylor (1920), Richardson (1926),

Kolmogorov (1930) and others (see both Davidson et al. [2011] and Lovejoy and

Schertzer [2013a] for a more in-depth historical background). The idea behind

this was that just as in statistical mechanics where huge numbers of degrees of

freedom exist, only certain ‘emergent’ macroscopic qualities are of interest. In

the corresponding turbulent systems therefore, new theories sought to discover

emergent laws that in principle could be characterised by simple statistical quan-

tities, such as averages, probability distribution functions, spectra, correlations,

etc.

The first person to discover one of these laws was Lewis Fry Richardson (1926).

In an experiment using two small balloons releasing seeds simultaneously at dif-

ferent distances apart, he derived a general law in which the rate of increase of the

square of the separation (i.e. the rate of diffusion) between objects diffusing on

a turbulent stream increases in proportion to the separation raised to the power

4/3, i.e.,

D(L) ∝ L4/3,

or equivalently ν(L) = KL4/3 where D(L) and ν(L) are the mass and momentum

diffusivity (viscosity) respectively, related through the Schmidt number at scale

L; K is a constant of proportionality.

The result of this discovery was conclusive evidence that turbulent motion

was unlike that of molecular motion in that it was contained in the motion of

eddies with many length scales and that in the limit of small viscosity the tra-

jectories cease to be deterministic and other methods of analysis are needed.

Understanding this non-determinism properly requires the understanding of the
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zero-viscosity limit. It was this very question that was the precursor to the law

of 3D isotropic homogeneous turbulence (Kolmogorov [1941a] and Kolmogorov

[1941b]).

Although Richardson’s discovery was of great importance, it was the audac-

ity with which he conceived a unique scaling (power) law (i.e. a law without

characteristic length scales) that could operate from millimetres to thousands

of kilometres, that was of the greatest significance. In accordance with this,

Richardson believed that the corresponding diffusing particles had ‘Weierstrass

function like’ (i.e. fractal) trajectories (see section §3.1). In fact in the very same

pioneering book “Weather Prediction by Numerical Process” (Richardson [2007],

reprinted version) in which he essentially wrote down the modern equations of

the atmosphere (Lynch [2006]) and attempted a manual integration; he also slyly

inserted the following –

“Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity

-in the molecular sense.”

–implying the notion of cascades seldom left his thoughts. It is thanks to this

now iconic poem, Richardson, is often considered the grandfather of the modern

cascade theories. Had Richardson been encumbered by the later notions of the

mesoscale, or of isotropic turbulence in either two or three dimensions, he might

never have discovered his law.

The Kolmogorov Self-Similarity Hypothesis (K41)

In 1941, inspired by Richardson’s energy cascade, Andrei Kolmogorov (Kol-

mogorov [1941a] and Kolmogorov [1941b]) made claim to the famous 5/3 law.

He assumed that with each step in the energy transfer to smaller and smaller

scales, the anisotropic influence of the large scales would be gradually lost, such

that at sufficiently small scales the distribution of increments would be statis-

tically homogeneous and isotropic (see appendix A.2). This steady situation,
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characterised by a mean flux of energy 〈ε〉 = ε̄, was postulated by Kolmogorov to

be universal and determined by only one parameter, ε̄. With respect to Richard-

son’s 4/3 law, Kolmogorov’s contribution was to find a proportionality constant,

K, that depends on the mean energy flux density i.e. K = ε̄1/3.

Kolmogorov’s 2/3 Law

Kolmogorov formulated his famous heuristic scaling theory of the inertial range

in turbulence, with the help of the second-order structure function.

In a turbulent flow at very high Reynolds number, the mean-square ve-

locity increment
〈
∆u(ℓ)2

〉
between two points separated by a distance

ℓ behaves approximately as the two-thirds power of the distance.

Thus, the second-order structure function is defined somewhat heuristically as

the second-order moment, of the ensemble average, of the velocity increment

separated by a distance ℓ:

S2(ℓ) ≡
〈
∆u(ℓ)2

〉
=
〈
(u(r + ℓ)− u(r))2

〉
. (1.3)

Under Kolmogorov’s second universality assumption, in the limit of infinite Reynolds

number, the statistics of turbulence depend only on the length scale ℓ and the

mean energy flux density ε̄. Dimensional analysis (remembering equation 1.2

gives ε ∝ u2/τ = u2/(ℓ/u) = u3/ℓ) of equation 1.3 thus yields

S2(ℓ) = C(ε̄ℓ)2/3 (1.4)

where C is a universal constant.

The Energy Spectrum

The second-order structure function, equation 1.3, is a special case in that it can

be expressed in terms of the auto-correlation function

R(ℓ) = 〈u(r + ℓ) · u(r)〉 ∝ ℓ2H ,
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where H is a measure of correlation. Using the Wiener-Khinchin theorem

R(ℓ) = F(E(k)) i.e. 〈u(r + ℓ) · u(r)〉 =
∫

∞

−∞

e−ikℓ · E(k) · dk.

The second-order structure function is then

S2(ℓ) =
〈
(u(r + ℓ)− u(r))2

〉

= 2
[
〈u(r + ℓ) · u(r)〉 −

〈
|u(r)|2

〉]

=

∫
∞

−∞

E(k) · (1− e−ikℓ) · dk. (1.5)

Equating equations 1.4 and 1.5 yields the Kolmogorov-Obukhov inertial range

spectrum:

E(k) ∝ ε̄2/3k−β, (1.6)

where k is the wavenumber (related to the scale separation by k ∝ 1/ℓ) and

β = 5/3. Based on the general relationship between the power-spectrum exponent

β and the second-order-moment structure function exponent ζ(2):

β = 1 + ζ(2) ≈ 1 + 2H. (1.7)

This spectral law is best visualised as the slope of the energy spectrum in a log-log

plot (see figure 1.3).

It has been verified in the atmosphere (Gurvich and Yaglom [1967b]) and in

laboratory experiments (Champagne [1978]). The spectral form, equation 1.6,

has become quite universal for describing fully developed turbulence. However,

as we will see later significant deviations from the exponent 5/3 are expected

due to intermittency. We will see later that the models describing intermittency,

imply ζ(2) < 2/3, which leads to values smaller than the theoretical β = 5/3

respectively.
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Figure 1.3: Schematic diagram of the turbulence energy wavenumber spectrum, E(k) ∝ k−β ,
where kI , kT and kK are the equivalent wave numbers of the Integral, Taylor and Kolmogorov
scales.

Kolmogorov’s 4/5 Law

Starting from the Karman-Howarth-Monin relation Kolmogorov derived a rig-

orous result for the third-order structure function, the famous ‘four-fifths law’,

considered to be one of only a few exact results satisfying the Navier-Stokes

equation (equation 1.1).

In the limit of infinite Reynolds number the third-order (longitudinal)

structure function of homogeneous isotropic turbulence, evaluated for

increments small compared to the integral scale, is given in terms of

the mean energy dissipation per unit mass by

S3(ℓ) ≡ 〈|∆u(ℓ)|3〉 = −4

5
ε̄ℓ.

The four-fifths law also allows us to determine the value of the scaling exponent

(H = 1/3) for isotropic and homogeneous turbulence, although this requires

supplementary assumptions on the rigorous definition of the involved averaged

energy flux density ε̄, as discussed below. Frisch [1980] considered the derivation

based on Kolmogorov [1941b] as more rigorous than that given in Kolmogorov

[1941a], whereas Chigirinskaya et al. [1998] emphasised that in both cases there

13



is an ad hoc hypothesis of a unique scaling exponent, which turn out to be fully

irrelevant.

The Structure Function

A more general form of the structure function, for moments of order q, is given

by:

Sq(ℓ) ≡ 〈|∆u(ℓ)|q〉 = 〈|u(r + ℓ)− u(r)|q〉. (1.8)

Assuming ε̄ is constant and can be determined, the second of Kolmogorov’s hy-

potheses i.e. self-similarity, suggests that structure functions of an arbitrary (but

finite) order q should scale as:

Sq(ℓ) ∝ (ε̄ℓ)ζ(q), (1.9)

with a linear scaling exponent ζ(q) = q/3 for K41 (no intermittency).

Bolgiano-Obukhov Theory (BO)

To take into account the dominant role of the vertical motion of large scale

atmospheric structures Bolgiano Jr [1959] and Obukhov [1959] considered the

buoyancy force variance flux, ξ. This flux plays the same role as the energy flux,

ε, in 3D turbulence along the vertical

∆u(∆z)
d
= ξ(∆z)1/5∆z3/5. (1.10)

Dimensional arguments of the energy spectrum, as with K41, give a Bolgiano-

Obukhov (BO) -11/5 scaling exponent. In the first attempts to observe an 11/5s

power law, due to the isotropic-homogeneous statistical conditions imposed, the

predicted 11/5s exponent was rarely observed in three dimensions and therefore

easily disregarded. Generalised scaling invariance (GSI) on the other hand does

not require an isotropic-homogeneous condition, in fact quite the inverse. In GSI,

equation 1.10 is used only to define the iso-scale. A variety of scaling anisotropies

can then be postulated for different scenarios. We see later that this is a more

appropriate model for our empirical observations.
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1.3 The Challenge In Turbulence:

Intermittency

The general notion of an intermittent process is one that is scarcely active. In fluid

dynamics, due to Batchelor and others, this notion has become much more precise,

i.e. the activity of a process is confined to smaller and smaller fractions of the

available space-time when observed at a higher and higher resolution. Examples

of intermittency can easily be observed in wind farm wind velocity data (see

figure 1.4). This is mainly due to the high Reynolds numbers associated with

the atmospheric conditions at wind farm locations. As discussed in the following

sections, rigorous definitions of intermittency can be obtained with the help of

fractals and multifractals.

∆
u
(τ
)

t

0 5 10 15 20
−1

−0.5

0

0.5

1

Figure 1.4: A twenty-second time-series of wind velocity increments, ∆u(τ), taken from a
wind farm test site in Corsica. The sporadic/intermittent nature of the large fluctuations is
characteristic of turbulent processes.

The Energy Flux Density And Intermittency

Under K41 we have assumed that the mean of the energy flux density is suffi-

cient to characterise the statistical properties of a fully developed turbulent flow.

Although the instantaneous value of ∆u(ℓ) might be expressed as a universal

function of the dissipation, ε, at the instant considered, when we average these
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expressions, an important part will be played by the manner of variation of ε over

time. Such variations in time at a given point in space are also easily observed,

as with the intermittent nature of the wind velocity, in empirical data (see for

example figure 1.5). Thus we find neither the velocity increments, ∆u(ℓ), nor

the energy flux density, ε, are constant in time or space. Within a turbulent

flow field, ε may vary widely in space, sometimes by orders of magnitude. The

highest values of ε (relative to the mean) will tend to increase with increasing

Reynolds number. These values may be of an order 15 times greater than the

average energy flux at laboratory scale flows and 50 times that of the average

energy flux in atmospheric flows.
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Figure 1.5: The rate of energy transfer (energy flux density), ε(t) = |∆u(t)|3, from large to
small scales for atmospheric turbulence. The energy flux density is very intermittent.

Limitations To The K41 Hypothesis

To take intermittency into account, Kolmogorov [1962] (denoted K62) and Obukhov

[1962] considered that the structure function of velocity increments is a function

of a locally averaged energy flux density for a sphere of radius ℓ and therefore εℓ.

They hypothesised that εℓ was log-normally distributed with the variance σ2
ℓ of

log(εℓ) given by

σ2
ℓ = B + π log(L/ℓ),
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where B is a constant associated with the macrostructure of the flow, π a uni-

versal constant, and L the largest external scale. One may note here that this

hypothesis has been presented without real theoretical foundations. Kolmogorov

did not provide any justification for this hypothesis, just stating that “it is natural

to suppose that...” (Kolmogorov [1962]). Obukhov was more specific, indicating

that the distribution of any positive quantity should be approximated by a log-

normal distribution with the appropriate values for the first and second moments

of the logarithm of this quantity (Obukhov [1962]).

Thus, under the K62 hypothesis, equation 1.9 becomes

Sq(ℓ) = ε
q/3
ℓ ℓq/3, (1.11)

also known as the refined similarity hypothesis (RSH). Although a log-normal

distribution was hypothesised the ‘refinement’ can be generalised to any distri-

bution.

(a) First two steps in the RSH cascade i.e.
for n, j = 1, 2.

(b) General case of the RSH for
the energy density flux, εn,
at any scale, n.

Figure 1.6: One dimensional schematic diagram of the RSH. The energy flux εℓ = εn,j is
fractionally distributed through the randomly distributed multiplicative increment µn,j where
n is the level corresponding to the discrete scale ℓn and j is the position in the cascade.

Thus, the energy flux density simply becomes a function of the positive ran-

domly distributed variable µn, where n is the position in the cascade i.e. the
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local scale (see figure 1.6 for a schematic of the RSH). In comparison, K41 was

previously assumed to be a homogenous and uniform distribution. Comparing

the two expressions makes the subtle difference slightly clearer:

• K41: ∆u(ℓ) = ε̄1/3ℓ1/3

• RSH: ∆u(ℓ) = ε
1/3
ℓ ℓ1/3

The statistics of ∆u(ℓ)3 are equivalent to that of εℓ in both cases, but only in K62

are these statistics expected to correspond to a wide spread probability distribu-

tion, e.g. a fat-tailed distribution. This wide spread distribution corresponds to

the non-linear forms of the structure-function exponent, ζ(q), thus characterising

intermittency.

Discrete Cascades

Although Kolmogorov mentioned turbulence cascades in his derivation of the first

universal law for the velocity fluctuations no explicit cascade model was referred

to. It was not until Yaglom [1966] and Gurvich and Yaglom [1967b] made his

first attempt at a multiplicative cascade model that a quantitative description of

the Richardson cascade was produced. It is this model therefore that is the root

of all the cascade models developed subsequently.

Multiplicative Processes

The key assumption in phenomenological models of turbulence is that successive

steps define (independently) the ‘fraction’ of the flux of energy density distributed

over smaller scales (this implies the use of a multiplicative process rather than an

additive one). The small scales do not add energy they only modulate the energy

passed down from larger scales. In the case where the scales are discretised this is

rather simple to express. More precisely if one is using an elementary fixed ratio

of scales, λ = L/ℓ, and the discrete scales are, ℓn = L/λn, the corresponding

energy flux density, εℓ, is replaced by εn = εℓn , which will be on constant volumes

of size ℓn; notice we have defined our discrete energy flux density for any arbitrary

position in the cascade, i.e. we neglect the j indexing used in figure 1.6. For a
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multiplicative process the nth energy flux density is recursively defined by

εn =
(
µn

)
εn−1 (1.12)

where µ is a scale independent multiplicative increment analogous to ∆ for ad-

ditive increments and equation 1.12 is analogous (equivalent in logarithmic co-

ordinates) to a forwards difference operation i.e. ∆ε = εn − εn−1, which yields:

εn = µ1µ2µ3...µnε0 =

(
n∏

i=1

µi

)
ε0

Scaling Moment Function

Following the previous hypothesis of independence of variables, it is straightfor-

ward to calculate the moment of the energy flux density εn at the step n (and as

discussed later, the corresponding result for the limit n → ∞):

〈(εn)q〉 =

〈(
n∏

i=1

µi

)q〉
〈ε0〉q

=
n∏

i=1

〈(µi)
q〉〈ε0〉q

= 〈µq
1〉n〈ε0〉q. (1.13)

We can predict that the moments of the energy density flux are related to the

scale ratio through a scaling moment function K(q)

〈εqλ〉 ∝ λK(q). (1.14)

For λ = 2n between the external scale L and the reference scale ℓ > ℓK , from

equation 1.13 we find that K(q) = log2〈µq
1〉. We can use this result to derive

a general relationship between the scaling moment function and the structure

function as follows.
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Consider the relationship between the velocity increments and the energy flux

density at scale ratio λ = L/ℓ for arbitrary scaling exponents a and H

∆uλ = εaλλ
−H . (1.15)

Calculating their moments, equation 1.15 becomes

〈∆u
q
λ〉 = 〈εaqλ 〉λ−qH .

Substituting equation 1.9 into the l.h.s – we can easily normalise λ by the largest

scale such that λ = 1/ℓ – and equation 1.14 into the r.h.s

λ−ζ(q) = λK(aq)λ−qH =⇒ ζ(q) = qH −K(aq). (1.16)

Because we know the turbulent energy is conserved over the inertial subrange

during the cascade process, we have

〈ελ〉 = 〈ε0〉 = k, ∀λ where k is a constant . . .

. . . =⇒ K(1) = 0 (following from equation 1.14)

One may note that this is a necessary and sufficient condition for a cascade

developed on a finite ratio of scale, whereas it is only necessary for an infinite

ratio of scale (for a more in-depth discussion on this see Schertzer [1987]). If we

define a = 1/3 and H = 1/3 we obtain K41 which satisfies the exact relationship

ζ(3) = 1 (equation 1.9).

In the next chapter we will discuss two experimental datasets that contain

wind measurements from a wide range of complex conditions. However, as we

will see in the later sections of the chapter, through scaling analysis we have

a means by which to simplify these complexities. Through scaling we can give

an alternative interpretation to that of classical methodologies; an interpretation

that provides both contrasting yet complimentary results.
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1.4 Summary Of Chapter 1

Our goal is to reduce uncertainties in wind resource assessment. We claim that,

based on the state of the art in wind energy, poor approximations to the high-

number of degrees of freedom that arise in a bounded, turbulent, atmosphere are

the main cause of uncertainty. Numerical attempts to model these complex and

highly non-linear processes typically require a truncation of scales and more often

than not complex parameterisations. Even if all of the scales were resolved (i.e.,

if we were given an infinitely powerful computer so that we could resolve all scales

down to the dissipation scale) this will not prevent the uncertainties that would

occur from the upscaled initial/boundary conditions at infinitely small scales. A

statistical understanding of the corresponding simulations of the Navier-Stokes

equations is therefore still required. We argue that due to the symmetries of

the governing equations of fluid motion for a high-Reynolds number flow, the

statistics of the wind are scaling and multifractal. It is therefore unnecessary to

truncate the scales of the process.

From the governing equations that define the forces driving the wind, it is nat-

ural to not only expect a highly non-Gaussian wind but also one that it is scaling.

By scaling we mean a process that has (statistical) self-similitude. This isn’t such

an abstract concept to conceive if we consider for an instance the cascading eddies

of a smoke plume. Typical atmospheric turbulence modelling approaches micro-

scale wind effects within the ranges of 1 to 1000 metres or 1 to 100 seconds.

Such models naturally rely on stochastic multifractal cascade processes. This

is because multifractals (multiple co-dimension self-similar subdivisions) easily

reproduce the intermittency, heavy-tailed probabilities that are ubiquitous with

the wind and essential to quantify for the wind energy community.
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Chapter 2

2.1 Wind Energy Experimental Settings

For data analysis we have made use of two datasets of atmospheric measurements

from two very topographically different locations. The first (Growian) dataset

was introduced to us by Professor Joachim Peinke of the Oldenburg Institute of

Physics and ForWind. It consists of wind turbine inflow measurements taken in a

near homogenous terrain surrounding. The second (Corsica) dataset was provided

by a WAUDIT partner enterprise, Électricité de France (EDF), and it consists of

measurements taken from within a wind farm on top of a mountain. This means

that unlike the Growian site, the measurements will have been subject to both

wake and orographic effects. Although both test sites differ topographically, both

are located within two kilometres of the sea, suggesting both will be influenced

by convective sea breezes.

The Growian Experiment

The Growian wind turbine experiment (Günther and Hennemuth [1988]; Körber

et al. [1988]) was a German Federal Ministry of Research and Technology’s project

that took place over the years 1983 to 87. A two-bladed, 3-megawatt, wind

turbine was constructed for research purposes in Kaiser-Wilhelm-Koog, near the

German coastline of the North Sea.
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Figure 2.1: Aerial photograph of the Growian experiment taken by Schleswig-Holstein (www.
panoramio.com).

This particular experiment is of great interest to us, not because of the turbine,

but, because of the two 150m measuring masts, positioned 65m West-South-West

of the turbine. Sixteen cup anemometers and wind vanes, eight-per-mast, were

installed on the ends of 12m booms at 50, 75, 100, 125 and 150m from the ground;

covering an effective area of 75-by-100m as can be seen in figure 2.2. This grid-

like set-up meant that (limited) space-time measurements were possible. Finally,
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near-surface measurements were taken at 10m on just one of the masts.

Figure 2.2: Site view and ground plan of the Growian experiment. Image is taken from the
1984 European Wind Energy Conference.

The data available from the experiment came in the form of a horizontal wind

speed measured from the cup anemometer and a simultaneously measured wind

direction from the wind vane. A vertical velocity was also measured, but only

at 75 and 125m. In addition to wind measurements, temperature and relative

humidity were measured at 50, 100 and 150m. The rate of measurement was the

same for all of the variables, 2.5Hz, and the duration of one measuring run was

approximately twenty minutes. A total of 300 runs were made altogether.

Figure 2.3 plots a ten-minute time-series of the wind speed, direction, tem-

perature and relative humidity taken from the same inner-most position of the

second mast (“Mast 2”) at 100m. The wind speed, direction and temperature ap-

pear intermittent and stationary. The relative humidity on the other hand, while
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also fairly intermittent, is sloped suggesting the larger time-scales are displaced.
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Figure 2.3: Plots of the ten-minute time-series of the wind speed (a), direction (b), temper-
ature (c) and relative humidity (d). All of the measurements are taken from the inner-most
position of the second mast (“Mast 2”) at 100m.

Topographical Features

From figure 2.1 we can see that the terrain surrounding the masts consists mainly

of fields, small buildings, bushes and a few sparsely positioned trees. Although

far from wind-tunnel-like ideal conditions, a homogenous boundary condition can

be assumed. This becomes more evident when we compare the flat terrain of the

Growian experiment to the starkly contrasting mountainous, rocky, outcrops of

the Ersa wind farm. The second of our two datasets that will be described in
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more detail in section 2.1.

!

Figure 2.4: Location of the Growian experiment (red marker) with respect to the nearby
coast. Map was generated at www.openstreetmap.org.

A second interesting topographical feature of the Growian dataset is the

nearby sea. Figure 2.4 shows the position of the masts with respect to the sea.

The masts lie approximately two kilometres East-North-East of the sea. Due

to the close proximity to the sea one would expect to observe strong convective

winds, the so-called ‘sea breeze’ phenomena (see Simpson [1994] and Levi et al.

[2011] for a more recent overview). Sea breezes are a commonly observed phenom-

ena that occur during periods of solar heating where albedo differences between

the land and sea result in strong convective winds. Moreover, after periods of

solar heating, differences in conductive properties cause counter-directional winds

and inversion layers. Because the Growian experiment has vertically spaced wind

and temperature measurements, we can easily test some of the classical measures

for stability that aim to classify the corresponding physical processes associated

with this phenomena.
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Data Quality

Errors in the Growian experiment data meant the number of usable twenty-

minutes samples varied between 174 to 290 (see tables 2.1 and 2.2). The errors in

the data consisted of either large numbers of zeros or 9999s. No documentation

could be found describing why there were errors of this sort, we can however

speculate that it was due to mechanical failure because of the consistency of the

error values. For simplicity if either one of the two values was detected in the full

twenty-minute measuring run, the full measuring run was discarded.

Mast 2

Inner Outer

Height [m] 50 75 100 125 150 10 75 100 125

# Discarded Samples 31 25 30 28 126 10 21 40 50

Table 2.1: Number of twenty-minute runs discarded due to errors (Mast 2).

Mast 3

Inner Outer

Height [m] 50 75 100 125 150 75 100 125

# Discarded Samples 28 58 71 62 49 26 35 61

Table 2.2: Number of twenty-minute runs discarded due to errors (Mast 3).

The Wind Direction And Shadow Effect

Figure 2.5 plots the mean raw (no post-processing) wind direction data, θ̄raw, per

twenty-minute measuring run, sorted into ascending order. The majority (about

two-thirds) of the values of the direction lie between 180 and 300◦. A comparison

with the site plan of the experiment (figure 2.6) and a meteorological compass

(positioned on the same figure) confirms that the raw directional data measures

the meteorological wind direction θM . The documentation that came with the

data made no reference to what kind of direction was being measured hence our
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need to check its correspondence. We define the meteorological wind direction,

θM , to be the direction that the wind comes from i.e. if the wind blows from the

North then θM = 0◦, and is measured clockwise thereafter.

With this in mind we can see that the general directional tendency of the

wind is perpendicular to the positioning of the mast array. It is likely that the

original positioning of the array (and turbine) was done according to long-term

mean wind directions similar those displayed in figure 2.5, i.e. with a prevailing

West-South-Westerly wind. Note that the West-South-West direction of the wind

enforces our previous expectation that sea-land and land-sea winds are likely to

occur.
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Figure 2.5: Plot of the mean measured wind direction, θ̄M , per twenty minute measuring run,
S20, sorted into ascending order. The grey plots are the means for each individual wind vane
and the blue plot is, furthermore, the corresponding mean over all of the individual wind vanes.
The dashed lines correspond to a ±90◦ tolerance about the assumed perpendicular-to-the-array
direction, θM = 247.5◦.
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Figure 2.6: Top view of the measuring site with wind rose. The blue highlighted area on the
wind rose corresponds to winds with direction assumed to have the least influence from the
masts and the nearby turbines.
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In order to calculate and plot the vector components of the wind we need,

instead of the meteorological direction, the azimuthal direction θA. Figure 2.7

shows the relation between the meteorological, azimuthal and polar directions.

The azimuthal direction, i.e. the direction towards which the wind is blowing,

is related to the meteorological direction by ±180◦. The two-dimensional wind

vector polar angle on the other hand increases in an anti-clockwise direction from

the positive x-axis. A two-dimensional polar coordinate system will be used

to statistically define the component-wise anisotropy later on. The radial and

directional components of the polar coordinate system are: ũ =
√
u2 + v2 and

θP = tan−1(v/u) respectively.
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Figure 2.7: Diagram illustrating the relation between the meteorological, azimuthal and polar
directions; θM , θA and θP respectively.

Table 2.3 shows how the components u and v are calculated for either the

meteorological wind direction or azimuthal wind direction and vice versa. Figure

2.8 then plots the mean wind vectors – averaged in height and over 25 twenty-

minute measuring runs at a time – corresponding to the (increasing) change in

direction seen in figure 2.5. Some additional information we gain from the vector

plot is the apparent increase or decrease in wind speed with clockwise or anti-

clockwise rotation.
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Wind Vector Azimuth Meteorological Wind Direction

u = ũ · sin θA u = −ũ · sin θM

v = ũ · cos θA v = −ũ · cos θM

Table 2.3: Table relating the horizontal wind components u and v to the meteorological and
azimuthal wind directions and vice versa. The symbol ũ corresponds to wind speed.

E (90)W (270)

S (180)

N (0)

15

10

5

Measuring
Array

Figure 2.8: Mean wind vectors averaged in height (10, 50 75, 100, 125 and 150; inner-most
position of Mast 2), and over 25 twenty-minute measuring runs i.e. Sθ = Si ≤ S ≤ Si+1 for
i ∈ [1 : 25 : 300]. Corresponding time-scale τ = 12 hours. The radial units of measurements
are in m/s.

It is possible the wind speed decreases with rotation due to the influence of

the mast on the measurements. In both figures 2.6 and 2.8 the position of the

array with respect to the mean wind vector over all of the data can be seen to

be approximately perpendicular. When there is a mast array set-up, such as

the one in the Growian experiment, it is important to make sure that the wind
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measurements are unimpeded by the structure of the array. If the winds do pass

through the array, additional turbulent mixing will be generated in the wake of

the structure resulting in an increase in fluctuations at a given scale – typically

the scale corresponding to the size of the structure. This behaviour is easily

observed when a scaling analysis is performed. We will discuss this in more detail

later on.

To ensure this doesn’t happen we can take data with direction close to perpen-

dicular to the array. However, because of the limited number of measurements,

it is in our interest to maximise the amount of usable data. We therefore set

our direction bounds to be within ±90◦ of the perpendicular direction. Although

the mean direction over all of the error free data files is approximately perpen-

dicular to the mast, there are a number of sub-samples, within the dispersion of

the direction estimates, whose mean direction suggests the measurements were

influenced by the mast i.e. θ̄ ∈ [0◦ : 157.5◦] (see figure 2.5). Applying the ±90◦

bound as a means to preselect the data we get a subset (denoted S⊥) consisting

of 225 sub-samples of the total database as shown (again) in figure 2.5.
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0.2
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Figure 2.9: Plot of the relative turbulence intensity, I, vs. the mean twenty minute wind
speed, U20. The plot corresponds to the dataset S⊥. The black lines correspond to the selection
criteria used by Mücke et. al [2011].

In Mücke et al. [2011] the authors suggested the use of a selection criteria based

on the twenty-minute mean interpolated wind speed, U20, and the turbulence

intensity, I =
√

〈u2
δ〉/U20, where 〈·〉 is an averaging procedure and

√
〈u2

δ〉 is the

average fluctuating component. The exact bounds given to U20 and I aren’t
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formally presented. We can however get a rough approximation from the plots

in the publication. We approximated these values to be: 8 ≤ U20 ≤ 12 and

0.05 ≤ I ≤ 0.12. The criteria is supposedly used to remove measurements subject

to a ‘shadow effect’ from the mast. We tested the criteria against S⊥ (figure 2.9)

and they do not correspond.

Vertical Wind and Temperature Profiles

One of the more fascinating aspects of the Growian dataset is the possibility

to compare measurements in space as well as in time. It is therefore always of

interest to perform the analyses in space in order to fully utilize the available

information. In this section we will look at the vertical profiles of the wind and

temperature and compare them with classical surface and boundary-layer theory.

Figure 2.10 plots the vertical profiles of the mean horizontal wind components

and their corresponding mean (azimuthal) directions and temperatures. The plots

are in fact complimentary to the wind vector plots in figure 2.8 of the previous

section. There are two interesting features to note from this figure.

The first, is that the direction remains unquestionably constant with height.

This isn’t altogether shocking since the sub-samples have indeed been sorted by

direction. What is surprising is the complete lack of variability. This suggests

that the wind velocities and temperature are not coupled to the direction (since

they do change with height) at this time-scale (12 hours). The second surprising

observation is the appearance of a temperature inversion at 50m for the two most

South-South-Easterly winds (the red and blue plots). Since the wind vectors’

directions would mean they would displace from land to sea it seems plausible that

the temperature inversion is the result of the so called ‘sea-breeze’ phenomena.

This result further strengthens the argument that strong convective winds will

influence the measurement site. However, based on the discussion in the previous

section, the inversion may also be due to shadow effects caused by the mast

– since the wind vector directions suggest there will have been an impediment

caused by the structure. Using scaling analysis we later provide evidence that

the mast obstruction doesn’t change the scaling of the temperature.
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Figure 2.10: Vertical profiles of the mean horizontal wind components U(z) and V (z) (top left
and top right), the corresponding mean (azimuthal) directions θ(z) (bottom left) and similarly
their related temperatures T (z) (bottom right). The color-coding matches the wind vectors
plotted in figure 2.8. Also as in figure 2.8 the time-scale τ = 12 hours.

We have included the vertical profiles of the wind in the description of the

data as it is now a standard means of data pre-processing, particularly in the

fields of numerical simulation and data assimilation. In the case of numerical

simulation it is often simpler to simulate wind fields under neutral atmospheric

conditions since under stable or unstable conditions additional heat flux equations

must be added to the forcing term of the governing equations. The vertical wind

profile boundary conditions are therefore chosen such that a neutral atmospheric

condition is satisfied. If the boundary conditions do exhibit discontinuities corre-

sponding to temperature inversions etc. there is more chance (depending on the

complexity of the terrain) that the in-situ measurements used for model valida-

tion will deviate from the simulated wind field. Nonetheless, even if the model

does deviate from validation measurements data assimilation tools can be used
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to ‘nudge’ the results back to their desired profiles Laporte et al. [2009]!
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Figure 2.11: The mean (over S⊥) horizontal wind vertical profiles for the Growian experi-
ment (blue crosses). Classical logarithmic (red dashed lines) and power law (pink solid lines)
expressions approximate the profiles.

Figure 2.11 shows the mean (over S⊥) horizontal wind velocity vertical profiles,

for the Growian experiment. The most basic (excluding temperature forcing)

logarithmic profile model for approximating the vertical wind speed profile within

the surface-layer is defined by:

U(z) =
u∗

κ
log(z/z0) (2.1)

where U(z) is the mean wind speed as a function of height, z, z0 is the surface

roughness; a parameter that varies from 0.001 to 0.7 depending on the whether

the ground is flat or rough respectively, u∗ =
√

S/ρ, is the friction velocity (1/10

of the mean flow velocity), S is the shear stress, and κ is the the Von Kármán

constant (∼ 0.41). Alternatively, Burton et al. [2001] states that a power law

approximation is often used in the wind energy community. In this case

U(z) ∝ zπ, (2.2)

where π is typically 0.14 for ‘normal’ conditions and 0.20 for turbulent conditions.

No reason is given for this approximation more than it fits! Figure 2.11 compares

the empirical vertical wind profile with U(z) estimated from equations 2.2 and

2.1. The parameters used in equation 2.2 are π = 0.14 with proportionality
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coefficient 2 for both U and V . For equation 2.1 we have used z0 = 0.04 and

0.06 for U(z) and V (z) respectively with u∗ = 0.2 in both cases. Indeed, it seems

that, at a time-scale of three days (68 hours) i.e. averaged over all of the available

measuring runs, the vertical wind profile can be approximated with either a power

law or logarithmic profile depending on the choice of parameters.
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Figure 2.12: Vertical profile of the mean horizontal wind component, Uy(z), at τ = 0.4s×2i

for i ∈ [0 : 11] (from left to right; top to bottom).
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Although fitting the vertical wind profile at a three-day time-scale seems

achievable within the recommendations of the IEC, the information it provides

is somewhat misleading. In Wächter et al. [2012], they calculate that, using Tay-

lor’s hypothesis (a topic we will return to ourselves in the coming sections), a one

second temporal increment corresponds to a 10 to 20m spatial increment. This

suggests that if we want to even begin to truly quantify the effects of wind shear

across the diameter of a wind turbine blade an understanding, of vertical wind

profiles at a three-day time-scale simply will not do. Moreover, quantifying the

effects of wind shear across the width of a blade (1 to 2m) will require an under-

standing of the properties of temporal wind increments at scales much smaller

than a second.

Figure 2.12 shows the vertical profiles of the horizontal u-component for time-

scales between 0.4 seconds and 15 minutes. It is clear from the plots that, not

only at the highest resolution, but up to time-scales of approximately a minute, a

smooth power law approximation cannot be used. Below time-scales of a minute

the profiles are not only without a general form, they are chaotic; turbulent one

might say. If time-averaging a velocity until it becomes smooth is representative

only of the time-scale it is averaged up to, what other means do we have to

describe the chaotic profiles observed at higher frequencies? We may take note

from a discussion I once overheard – “it is always interesting to first look at the

probability distributions [before a more complex approach is attempted]”.

Vertical Probability Distribution Profiles

Figure 2.13 shows the exceedance probabilities of the temporal velocity incre-

ments, ∆u(τ) = u(t+ τ, z)−u(t, z), of six twenty-minute samples taken at differ-

ent heights but for the same measuring run. The time-scale of the increment is 0.4

seconds and the differing sample heights are 10, 50, 75, 100, 125 and 150m (from

top to bottom and shifted vertically for clarity). The probability of exceedance

is calculated using the Weibull plotting position

Pr(X ≥ s) = i/(N + 1), (2.3)
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where i is the index of the random variable Xi, N is the length of {Xi} and

s is Xi sorted into descending order. Although the distributions in figure 2.13

correspond to one measuring run out of a total of 300 it is representative of the

majority (> 70%) of the probability distributions for the other measuring runs.

The vertical scale of the plot is logarithmic so as to emphasise the heavy-tails

of the distribution. Interestingly we can see that the tails of the distribution of

∆u(τ) do not vary (if but a little) with height unlike the mean velocity profiles

that showed a clear decrease with height. In fact, on the contrary, the tails of

the distributions of ∆u(τ) are heavier – where a heavier tail corresponds to a

more frequent occurrence of extremes – closer to the ground than they are above.

This isn’t particularly unexpected if we consider the temporal increments to be

transformed from velocity increments in space using Taylor’s hypothesis.
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Figure 2.13: Logarithm of exceedance probabilities of ∆u(τ), from six twenty-minute samples
taken at different heights but for the same measuring run. The time-scale of the increments is
0.4 seconds and the differing sample heights are 10, 50, 75, 100, 125 and 150m (from top to
bottom and shifted vertically for clarity).

Re-emphasising now the interest of the Growian experiment, figure 2.14 plots

the exceedance probabilities of the vertical increments, ∆v(rz) = v(z0 + rz, t) −

v(z0, t), where rz = 40, 65, 90, 115 and 140 (again from top to bottom and also

shifted vertically for clarity) and z0 = 10m. By performing this kind of an analysis
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we are effectively looking at the statistical properties of the different layers of the

vertical velocity increments.
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Figure 2.14: The exceedance probabilities of ∆v(rz) in a semi-log plot, for rz = 40, 65, 90,
115 and 140 (from top to bottom; shifted vertically for clarity). Mean meteorological direction
for the measuring run is 270◦.

200 < θ̄M ≤ 250 250 < θ̄M ≤ 300 θ̄M > 300

∆v(rz)
anti-symmetric

w/ heavier +ve tails
symmetric

anti-symmetric
w/ heavier -ve tails

∆u(rz) ————— anti-symmetric w/ heavier +ve tails —————

Table 2.4: Classification of the kinds of (anti-)symmetries observed for different ranges of
direction for ∆u(rz) and ∆v(rz).

The mean meteorological direction of the measuring run used for the dis-

tributions in figure 2.14 was 270◦. The result, as you can see, is a symmetrical

distribution of increments with heavy-tails similar to those observed in the tempo-

ral velocity increments. However, although symmetric for θ̄M = 270◦, the general

form of the distribution of the increments of ∆v(rz) is very much dependent on the
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value of θ̄M . In order to observe a symmetric distribution the value of θ̄M needed

to be within 270 to 300◦, i.e. when U ≈ V . The slight bias arises due to the

prevailing wind direction (there are very few files with θ̄M > 300. For measuring

runs with θ̄M outside of this range the distributions became highly asymmetric in

∆v(rz). Interestingly ∆u(rz) was always asymmetrically distributed in that the

heavy-tails of the positive increments were much larger than those of the negative

increments (see figure 2.15b). Table 2.4 shows what kind of (anti-)symmetries

are observed for different ranges of direction.
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Figure 2.15: The exceedance probabilities of ∆v(rz) in a semi-log plot, for rz = 40, 65, 90,
115 and 140 (from top to bottom; shifted vertically for clarity). Mean meteorological directions
for the measuring runs are 310◦ (a) and 220◦ (b). Solid lines in plot (b) correspond to the
Gaussian distribution approximations for the negative and positive increments.

We can suggest that the changes in the skewness of the distribution for ∆v(rz)

i.e. from heavier positive tails (figure 2.15b) to heavier negative tails (figure
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2.15a), for an increasing angle θM are the result of a change in sign in v that occurs

when the vector passes through the x-axis. Either way we can interpret both kinds

of distribution as an increase in velocity with height due to the largely biased

number of positive increments. In figure 2.15b we have also included the Gaussian

distribution approximations for both the negative and positive increments as a

reminder that although skewed they are still non-Gaussian.

Finally, figure 2.16 shows another fairly frequent occurrence that was observed

when looking to the distributions. For both vector component increments ∆u(rz)

and ∆v(rz), when the distributions were largely asymmetric a number of mea-

suring runs exhibited a flip in the shape of the distribution at the largest vertical

scale (140m) i.e. the lowest plot in figure 2.16 corresponding to the difference

between the velocity at 150m and the velocity at 10m. One explanation for this

phenomena could be the occurrence of an inversion layer.
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Figure 2.16: Exceedance probability distribution of ∆v(rz) in a semi-log plot, for rz = 40,
65, 90, 115 and 140 (from top to bottom; shifted vertically for clarity).

The aim of this section has not been to explain every physical process behind

our observations. The aim has instead been to show that there are alternative

methods to time-averaging data that enable us to better extract a representa-

tive description of the available information. The application of simple statistical
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methods to wind data can easily show that the more frequent occurrence of ex-

tremes ubiquitous with turbulent phenomena are not only persistent in changing

time-scales (with regular vertical spacings), but also persistent in space (with

regular time-spacings). This heavy-tailed persistence is strong evidence of a

highly intermittent space-time scaling process; a scaling that is not easily ob-

served through mean statistics.
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The Corsica Dataset

The ‘Corsica dataset’ is the result of a wind measurement campaign performed by

EDF in the Ersa wind park from the 16th November to the 15th of May. With

respect to the measurements, sonic anemometers at 22, 23 and 43m measured

three-component wind velocities and temperature at 10Hz. The first anemometer

at 22m was positioned directly on the mast. The second, at 23m, was positioned

at the end of a horizontal pole with length 2.5m and azimuth 134◦. The highest

mast at 43m was positioned on a 3m pole on top of the mast. Preliminary analyses

on the dataset were also performed by Fuchs [2008].

43m 

23m 

(a)

(b)

Figure 2.17: (a) photo of the mast and the
vertical positioning of the sonic anemometers
in the Ersa wind farm; (b) the crest of Tor-
ricella over which the turbines are lined up.

Figure 2.18 plots the daily means of the three wind velocity components,

temperature, and azimuthal direction over the six-month measuring period. The

horizontal velocity components exhibit fairly violent fluctuations when compared

to the vertical component. The vertical velocity component remains at about two-

orders of magnitude smaller than the horizontal components; this is consistent

with classical literature and the reason why the geostrophic approximation is
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commonly used.
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Figure 2.18: Daily means of the three wind velocity components (top most plot) – u (blue),
v (green) and w (red), temperature (central plot), and azimuthal direction (lower most plot)
taken over the six-month measuring period.

Table 2.5 displays the mean estimates of the variables taken over six-months.
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z [m] u [m/s] v [m/s] w [m/s] T [◦C] θA [◦]

23m -1.44 1.65 0.23 10.08 77.15

43m -1.60 2.16 0.49 9.66 78.84

Table 2.5: Six-month mean velocities, temperature and direction.

Topographical Features

The Ersa wind farm is located in the North of Corsica (France), approximately

2km from the coast on the West and 4km on the North and East. Figure 2.19

shows the position of the 13 turbines situated along the crest of Torricella with

respect to the measuring mast. The altitudes of the crest range from 480 to 520m

with a 30◦ incline across the East and West faces (see figure 2.20). All of the

turbines have a hub height of 60m and are positioned approximately 117m apart

from each other.

!

Figure 2.19: Map of the Ersa wind farm. The zoomed portion of the map shows the positioning
of the 13 turbines (highlighted by green circles) situated along the crest of Torricella. The
blue circle shows where the measuring mast was positioned during the experiment. The exact
coordinates of the mast are 42◦58.153’N by 9◦22.809’E
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Figure 2.20: Contour map of the Torricella crest. The red marker plots the location of the
measuring mast.

N (0)

S (180)

W (270) E (90)

30

20

10

Figure 2.21: Daily mean wind azimuth vectors at 43m. The radial component is measured in
[m/s].
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Figure 2.21 shows the daily mean wind azimuth vectors at 43m. The predom-

inant Westerly wind direction suggests that, as with the Growian experiment, the

wind directions are mainly determined by land-sea temperature gradients. How-

ever, unlike the Growian experiment, the returning land-sea breezes that were

associated with a temperature inversion are not observed for the Corsica dataset;

possibly due to the mountain ranges East of the site. Figure 2.20 is a contour

map of the Torricella crest. If we compare the wind vectors with the contour map

it is clear the measured winds will have been subject to some sort of orographic

lifting.

Smith [1979] gives an overview of some of the phenomena commonly observed

when orographic winds arise however the focus of the text is mainly on the buoy-

ancy waves that are created in the wake of the lift which is not much concern to

us in this study. In Wu [1985] they suggest that the upper boundaries of different

mixing layers undulates with the ridge. We will use this later to show that the

increased height of the surface-layer can be seen in scaling analyses of the Corsica

dataset. This so-called undulation of the ridge may explain why. Other phenom-

ena associated with orographic winds can be seen in figure 2.22. It illustrates

that the winds over hills will be, cooler, faster and more humid.

Figure 2.22: A simple diagram of the processes that occur in orographic lifting. Picture is
publicly sourced from the internet, the author of the original is unknown.
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Data Quality

When using data from devices not positioned directly on top of the mast (those

at 22 and 23m), it was necessary to take into account the shadow effects caused

by the wind impacting on the mast, thus destroying the quality of the measure-

ments. To check for this problem we took data with daily mean wind passing

directly through the mast (48 of the 102 days) and did a cross comparison at dif-

ferent heights. We observed large numbers of anomalous small fluctuations in the

vertical component (high frequency noise through spectral representation) being

measured at 22m. On closer inspection the anemometer at 22m was found to be

positioned directly on the mast unlike the measurements at 23m that were dis-

tanced from the mast by a few meters. For simplicity, we decided not to include

the 22m measurements in our analyses.

Although confident our data was free of physical interference, corrupt and

missing data files made it difficult to have long runs of continuous error free (clean)

data. Out of the 181 days of data only 10 of the days were time-continuously

clean. For non-time-continuous data (independent samples) there were 161 days

of clean data.
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2.2 Preliminary Scaling Tests

In this section a spectral representation is used to determine the overall scaling

behaviour of our data. This is because a random field is scaling when its spec-

trum follows the power law defined in equation 1.6. In equation 1.6 our energy

spectrum is a function of the wavenumber k ∝ 1/ℓ. Although we do have mea-

surements in space allowing for separations ℓ, they are insufficient in quantity

to merit a spectral analysis. We must therefore invoke Taylor’s hypothesis of

frozen turbulence on the time-series’ of the velocities. To emphasise our analyses

dependence on time rather than space we use the frequency ω ∝ 1/τ instead

of the wavenumber. The exponent β of equation 1.6 can be estimated by plot-

ting the spectra on a log-log graph. Computing the (co)-spectrum of two fields

(which are identical for the spectrum) is the real part of the scalar product of

their Fourier transforms. The Fourier transforms were computed using the fast

Fourier transform (FFT) algorithm.

With the use of the FFT algorithm we were restricted (in order to avoid

padding) to data of sizes 2n where n ≤ log2(Ns) and Ns is the sample size. Thus,

given the longest time continuous sample was six-months, the maximum range

of scales achievable was of about eight orders of magnitude. While a spectral

representation of long runs of data is indispensable to evaluate the overall scaling

behaviour and its limitations, sample averaged estimates are used to define the

spectral exponents more precisely. Since averaging requires more than one sample,

given such a large discontinuous dataset, it was important to choose a suitable

sub-sample size to obtain the most amount of information from the data. For the

majority of this study we focused on analyses with λ = 215 with a brief discussion

on the benefits of a larger sample in §2.2.

In the following figures containing spectra, co-spectra and integrated spectra,

the frequency is normalised such that ω = 2N/τn = λ/τ0, where τn = 2n × τ0 for

n ∈ [0 : N ]. The smallest time-scale, τ0, is 0.1 seconds for the Corsica dataset

and 0.4 seconds for the Growian dataset.
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Scaling In The Growian Data

The Wind

Because the Growian dataset has the wind speed and direction recorded into sepa-

rate files it was straight forward to calculate their corresponding energy spectrum

to check whether either of the quantities scaled as independent variables. It is

well known that the velocity exhibits an inertial range assumed to be isotropic

and homogeneous. Under these conditions an analysis of the scaling properties of

the direction and magnitude (wind speed) separately is useless. However, as we

endeavour to show in the remaining section of this chapter, both scale-by-scale,

and component-wise scaling properties are far from homogenous and isotropic.
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Figure 2.23: Energy spectrum of the wind speed, ũ, taken at 50m from a single twenty-
minute measuring run. Only the first 211 measurements are used in the calculation of the
spectra. Smallest time-scale corresponds to 0.8 seconds (log2 = 10). The red line attempts to
fit the spectra with a quadratic.

If we consider the wind speed with scaling exponent ũHũ = [u2Hu + v2Hv ]Hũ/2,

where Hu and Hv are the scaling parameters computed from equation 1.7, the

most likely case that ũ will be scaling is when u and v are equally correlated

i.e. Hu = Hv. However, as figures 2.23 and 2.24 show, surprisingly it seems that
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only the direction exhibits scaling. The wind speed doesn’t really display a single

inertial range, rather a mixture of different scaling ranges that we have tried to

fit with a series of linear regressions.
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Figure 2.24: Energy spectra of the meteorological direction, θM , taken at 50m from the same
single twenty-minute measuring run as taken for the wind speed in figure 2.23.).

Figure 2.25 shows the velocity components calculated from the wind speeds

and directions of figure 2.23 and 2.24. The statistical scaling exponents for the

two fields show that indeed Hu = Hv. This is contradictory to our previous

statement, implying that there must be a factor that is unaccounted for. In the

later sections of this chapter we attempt to explain this behaviour through the

anisotropic scaling properties of the horizontal wind components u and v. For

now we can consider the mixture of inertial ranges as the combination of the

two statistics of two variables with two different scaling exponents valid over two

different ranges of scales. The result will be something that looks curved.

The horizontal velocity components exhibit two inertial ranges, the first from

0.8 seconds to 10 seconds, has a scaling exponent close that predicted by Kol-

mogorov’s homogeneous and isotropic hypothesis. The second scaling sub-range

starts at 10 seconds and persists up to 10 minutes with a scaling exponent close to

-1. In order to explain a -1 power law we remind ourselves first of the dimensional

derivation of the K41 spectrum. For high Reynolds number turbulent flows the

conservation of the energy flux in the inertial range implies that the energy spec-
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trum depends only on the frequency, ω, and the rate of energy dissipation, ε, i.e.

E(ω, ε) ∝ ωp1εp2 . The corresponding dimensions of the variables are: [ω] = 1/ℓ,

[ε] = ℓ2/τ 3 and [E] = ℓ3/τ 2. Using the dimensional arguments ℓ3 = ℓ−p1ℓ2p2 and

τ−2 = τ−3η we find p1 = −5/3 and p2 = 2/3.
lo
g
2
E
(ω

)

log2 ω

1.0

1.6

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

Figure 2.25: Energy spectrums of the u (blue) and v (green) component velocities calculated
from the wind speeds and directions (at 50m) of figures 2.23 and 2.24.

Korotkov [1976] postulates that for near-wall length-scales i.e. for ℓ ≪ δ (δ is

the boundary-layer depth), the effect of self-similarity is no longer total but local,

i.e., near the wall, the flow is determined directly by the viscosity, depending only

on the length scale ℓ defined through the friction velocity u∗.

It follows that the power spectrum then becomes independent of the distance

from the wall and is fully determined by the friction velocity and frequency. Using

the same dimensional arguments as we did for the K41 inertial range we find

that E(ω) ∝ u2
∗
ω−1. In Korotkov [1976], their results are based on a laboratory

experiment boundary-layer. The Reynolds numbers from the experiment are

therefore much lower compared those observed in the atmosphere. Also the time-

scales of measurement in their experiment are much smaller than the scales we

are working with. In fact their largest scale corresponds exactly to our smallest

scale (10Hz). They also hypothesise the continuation of the -1 power law when
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in fact a steeper slope is observed at their higher frequencies.

Drobinski et al. [2004] is a more recent publication on the atmospheric surface-

layer. In their measurements the same high-frequency K41 inertial range is ob-

served followed by an adjoining -1 subrange. An attempt is made to explain

these observations through rapid distortion theory (see ?) requiring a statistical

homogeneity assumption. This is contrary to the results we describe in the third

chapter of this thesis. Moreover, as in Korotkov [1976], the theory predicts a -1

sub-range but does not account for the increase in scaling exponent empirically

observed over the higher frequencies.

A Matter Of Direction

As we discussed in §2.1, the Growian dataset consists of samples containing mea-

surements that may have been influenced by the nearby mast structures. Figure

2.26 shows the velocity spectra taken over the full dataset, i.e. without removing

the files that may have been influenced. Both of the plots exhibit a spectral spike

at approximately log2 ω = 9 (two seconds). Using the mean velocity profiles of

the previous sections we get a characteristic length scale of 30m. This is approx-

imately the distance between the anemometer and mast or simply the length of

the boom.

Figure 2.27 plots the power spectra of the velocity taken from the outer-most

point of mast 3 at 75m with (top) and without (bottom) pre-selecting according

to direction, i.e. within the±90◦ bounds we defined in section §2.1. It is clear that

removing the measuring runs whose winds are displaced through the structure

results in the disappearance of the spike. This confirms that the spectral spike is

due to a shadow effect.

Although pre-selecting the data removes the spectral spike the white noise

visible in the spectra of the inner position of mast 3 at 125m does not disappear.

We checked the direction and wind speed scaling at this position and it seems

that the noise appears only in the directional data. One explanation for this

could be weathering, decreasing the inertia of the device.
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Figure 2.26: Log-log plots of averaged u-component spectra, Eu(ω), for all S20 ∈ S. The
plots (shifted) from bottom to top correspond to wind speeds at 50, 75, 100, 125 and 150m
measured on Mast 3. The blue and red correspond again to inner and outer positions.
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Figure 2.27: Log-log plot
of averaged horizontal wind
velocity spectra, Eu⊥

(ω),
for samples with direction
approximately perpendicu-
lar to the array (blue) and
the corresponding spectra
taken for all measuring runs
in the dataset.

Performing simple scaling analyses on data proves to be a very powerful and

useful tools of analysis. Our previous methods for checking whether there are
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influences from the nearby masts consisted of sorting, filtering, and looking for

erroneous measurements. The mean velocity profiles showed no real means by

which to distinguish between the usable and unusable profiles. On the other

hand, using scaling analysis quickly allows us to profit by removing non-scaling

data.

Temperature

Figure 2.28 plots the averaged temperature spectra at four heights: 10, 50, 100

and 150m. Unlike the velocity spectra the temperature spectra have a unique

scaling exponent over almost all of the time-scales with the exception of the

higher frequencies, i.e. from 0.8 to 3.2 seconds, where a white noise behaviour

occurs. The scaling exponent, β ≈ 2, is much higher than that of the velocity (1.6)

suggesting the temperature fluctuations are dominated by a different process. A

scaling exponent of 2 is close to the scaling exponent predicted for a convective

process (a BO scaling exponent of 11/5).
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Figure 2.28: Spectral slopes of the temperature at 10, 50, 100 and 150m are: β =1.84, 2.05,
2.00 and 2.02 from bottom to top.

Scaling In The Corsica Dataset

The Corsica dataset is divided into single day sub-samples. In each of these sub-

samples there are approximately 860,000 wind and temperature measurements.
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We perform the spectral analyses on samples with an integer power of two length.

This is because for the scaling analyses that involve the trace and double trace

moment methods in the next chapter an integer power of two is necessary so that

the upscaling procedure converges to a single value. As previously mentioned

this is also useful for the FFT. Calculating the spectra on files with the same

length makes it easier therefore to directly compare the scales. Thus, from a file

of 860,000 we get a maximum integer power of two sample length 219. Figure 2.29

compares the ensemble average of the energy spectra of the three wind velocity

components and temperature, at the heights 23 and 43m.
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Figure 2.29: Comparison of the ensemble averaged energy spectra of the three wind velocity
components u (red), v (green), w (blue) and temperature (turquoise), at the heights 23 (a) and
43m (b).

The spectral analyses show a similar scaling behaviour to that observed in

the Growian dataset. The first two subranges over high and mid-frequencies

respectively, are again partially in agreement with Kolmogorovs -5/3 law of lo-

cally isotropic turbulence. Moreover, for all three velocity components we can
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observe an adjoining -1 power law over smaller frequencies. What is particularly

striking about this result is the repeatability of the processes for two completely

topographical different sites. One of the difficulties that arises with numerical

simulation is a need to choose the scales and processes that need to be simulated

separately. In order to understand the processes at many scales and for different

temperature and topographical situations, numerical computational fluid dynam-

ics models are coupled together (usually even without quantifying numerical error

since validation and nudging techniques can be used to correct any error). What

is becoming more and more clear is that there are underlying, reproducible (be-

ing the key word here) phenomena, independent of location, that arise. The

histograms of the scaling exponents of the velocity temperature can be found in

Fitton et al. [2011b]. Over the high-frequency range (between 5 and 100 seconds)

we find 0.4 < β < 1.4 with mean 1.21 and over the lower-frequency range (be-

tween 10 minutes and 2 hours) 0.5 < β < 4). We found no obvious dependence

between scaling exponent and wind strength although some slight dependence

was observed between the scaling exponent and temperature.

Scaling At Low Frequencies

One of the most interesting features of the Corsica dataset is the continuous-

time sample length. Having a continuous run of measurements over a six-month

period measured at 10Hz means that an extremely large ratio of scales can be

observed. Because of the fluctuating nature of the spectra it is usually better to

average the spectra over a few samples to help smooth out the spectral spikes.

This unfortunately meant that we couldn’t take full advantage of the whole 6-

month time-scale. We were however able calculate power spectrums up to the

time-scales of a month (averaged over six files). This required the concatenation

of around thirty daily samples giving 226 data points in total. Working on files of

this size on a basic desktop computer can be very computationally expensive and

therefore time consuming. Since it is only the largest scales we are interested in

for this kind of analysis we found it was easier to concatenate the multiple files

just once and then upscale them to the largest minimum scale, thus reducing the

size of the files considerably. Scaling analysis methods can then be calculated on
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the – much reduced in size – upscaled data.

Figure 2.30 plots the spectra of the horizontal u-component calculated for

three ranges of increasing scale: 0.2 seconds to 15 hours, 15 minutes to 21
2
days and

4 hours to a month. For the smallest scale spectral plot we have pre-selected the

files to have no scaling break using a simple algorithm. The algorithm determined

the position of the breaks based on the minimum and maximum of ∆β = βn+1−βn

over the range i of E(ωi) ≈ ωβ
n (from equation 1.6) where i = 2n, ..., 2n+∆n and

n = 1, ..., log2(N −∆n). The value ∆n = 5 was found to be the most appropriate

compromise between the best fit and the loss of information at the sample bounds.

By pre-selecting the data to scale we have effectively forced a single scaling range.

lo
g
2
E
(ω

)

log2 ω

-1.4

-2

-0.3

0 5 10 15 20 25
10

15

20

25

30

35

40

45

50

Figure 2.30: Plots of the horizontal u component spectra calculated for three ranges of
increasing scale: 0.2 seconds to 15 hours, 15 minutes to 2 1

2 days and 4 hours to a month. For
the smallest scale spectral plot we have pre-selected the files to have no scaling break.

From figure 2.30 we can discern three distinct ranges of scaling. A high

frequency inertial range similar to K41 as we had also showed in the previous

section (but with an adjoining -1 subrange which we have in fact filtered out).

The mid-frequency range corresponds to a -2 power law. This is usually associated

with Bolgiano-Obhukov buoyancy force effects. Although, alternatively it could

also be the result of the break down of Taylor’s hypothesis. Taylor’s hypothesis
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is not applicable when: the mean wind is displaced and/or uδ ∼ U . If Taylor’s

hypothesis breaks down it may be that we are observing the temporal fluctuations

of the large-scale structures themselves (i.e. uδ = Uδ) resulting in a Lagrangian

scaling exponent ∆u(ℓ) = ε1/2ℓ1/2 (see ?). Moreover, in Wyngaard and Cote

[1972] a -7/3 scaling exponent is derived for the turbulent momentum 〈uδwδ〉 and

heat flux 〈wδθδ〉 co-spectrum in the inertial subrange. Thus, we may try to decide

which of the three scaling laws is the most applicable.

Over the very largest scales (4 hours to a month) we find power laws almost

exactly comparable with the transitions shown to be climate to weather-climate-

plateaus in the century reanalysis of the temperature spectrum in Lovejoy and

Schertzer [2013a] (see also Lovejoy and Schertzer [2013b]). The time-scales used

for the analysis are from 6 hours to 10 years with scaling exponents β = 2 and

0.2 from six-hours to 31
2
days and from 31

2
days to ten years respectively. The

exponents and break in scaling are in good agreement with figure 2.30 where the

break is at three days with exponents 2 and 0.3 over the same time-scales (largest

time-scale is one-month in our case). One thing to note is that the spectra in

Lovejoy and Schertzer [2013a] correspond to temporal temperature measurements

whereas the spectra in figure 2.30 correspond to the velocity. This suggests that

the temperature acts as a passive scalar of the wind over these lower temporal

resolutions.

In Pinel et al. [2013] Thermal IR MTSAT-1R images allowed for space-time

spectral analyses to be made on thermal IR radiances. The horizontal scaling

exponents were found to be the same β = 1.55 for the space and time-scales

120-5000km and 3-100hrs. Assuming that the thermal IR radiances also act as

a passive scalar, the scaling exponents are then much higher than the ‘weather-

climate-plateau’ exponents estimated in Lovejoy and Schertzer [2013a] and in

figure 2.30. This suggests that scaling exponents for the temperature and velocity

may differ. A result we look into in more detail later in §3.3. In the overlap of time

frequencies between figure 2.30 and the thermal IR radiances spectra (<3hrs), a

departure to a higher power law (β = 2) can be seen in both the space and time

spectra of the thermal IR radiances. The position of the break occurs at the same

temporal scales we have observed in figure 2.30.

The reason we have and will focus on the explanation of this scaling region
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is that it is a phenomena that occurs in both of our datasets for all of the mea-

sured quantities: 3D velocity, temperature, direction, relative humidity and even

vorticity. The latter of these quantities we will come back to later. Figure 2.31

compares the low-frequency ranges from both of the datasets. As was done in

figure 2.30 for the Corsica dataset, we have increased the largest time-scale of the

Growian dataset by concatenating eight measuring runs (λ = 214), giving thirty

larger samples when using all of the available files. This was done at 50m so it

could be compared with the 43m measurements of the Corsica dataset.
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Figure 2.31: Comparison of the low-frequency, u-component, spectral ranges from the
Growian (red) and Corsica (purple and green) dataset. The measurements from the Growian
dataset are taken from the innermost point of mast at 50m. The Corsica dataset measurements
are taken at 43m.

As we can see from figure 2.31 both spectra exhibit a -2 scaling power law over

the lower frequencies. In the Growian case the power law starts at two-minutes

65



and in the Corsica spectra it starts at the lower frequency of 15 minutes. It is

possible that this is the effect of an increased surface-layer height; a consequence

of the complex terrain of the mountain. Over the higher frequencies we have

omitted the filtering criteria that was used to obtain a unique scaling range for

the Corsica data of figure 2.30. The result is a very much comparable adjoining

-1 range in both of the spectra. Again, it is surprising to see that two very

different datasets can result in very similar scaling behaviours. On a final note,

we can see that at approximately one hour, in the overlap of the two spectra

(green and purple) a discrepancy occurs in the last value of the spectra taken for

higher frequencies. A discrepancy that suggests the energy spectra at k0 is poorly

defined.

In order to determine whether or not either the scaling exponent or the on-

set of the -2 scaling range has some dependence on height figure 3.32 plots the

compensated spectra ω−2E(ω) at 10, 50, 75, 100, 125 and 150m (Growian). It

seems that both the scaling exponent and the frequency of the onset occur in-

dependently of any space scale (we can infer a horizontal space-scale separation

due to the fixed frequency) in the surface-layer. Because the fixed frequency (30

seconds) corresponds to larger space scales (between 120 and 360m using Tay-

lor’s hypothesis) it is possible that we require a larger change in height in order

to observe any real change with height.

As previously mentioned the occurrence of a -2 scaling range is not restricted

only to the velocity field. Figure 2.33 plots the horizontal u-component veloc-

ity and temperature spectra of the Growian dataset at 50m. We can see that

for time-scales above 2-minutes both spectra superimpose with scaling exponent

2. This suggests both the temporal fluctuations of the velocity and temperature

are dominated by the same process over these time-scales whereas for higher fre-

quencies the processes are different. We see later that this divergence of scaling

processes results in a strong component-wise anisotropy. For the lower frequen-

cies one can hypothesis that it is a Bolgiano-Obukhov process that dominates

the fluctuations of the horizontal wind. Indeed the geostrophic approximation

predicts that the variation in the horizontal velocity components will solely be

determined from pressure/temperature differences between layers.
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Figure 2.32: Plot of the compensated spectra, ω2E(ω), of the u-component velocity at 10, 50,
75, 100, 125 and 150m (Growian). In order to observe the -2 scaling range eight samples have
been put together such that λ = 214.

lo
g
2
E
(ω

)

log2 ω

2

0 5 10 15
15

20

25

30

35

40

Figure 2.33: Comparison of the horizontal u-component velocity and temperature spectra of
the Growian dataset at 50m.
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2.3 Scaling Inputs To Wind Industry

Community

Wakes

Because the Growian experiment was aimed mainly towards inflow conditions,

there are very few samples (20) that displace past the turbine. Our analysis of

wakes is therefore based only on the Corsica dataset. In order to analyse the wind

data in the wake of the turbines we need to know which data has been influenced

by the turbines. This requires the sorting of the data by direction. We sorted the

Corsica data according to their hourly means. Figure 2.34 plots the horizontal

u-component velocity spectra for files with mean wind directions θ̄M that pass in

and out of the path of the turbine according to the map in figure 2.19.
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Figure 2.34: Plot of the u-component velocity spectra for samples with θ̄M that pass in (blue
to red plots) and out (green to black) of the path of the turbine according to the map in figure
2.19.

As we transition in an out of the path of the turbine from the uppermost (blue)

plot through to the lowermost (black) plot it is the range of time-scales that scale

as approximately -1 that are influenced the most. For the uppermost spectra,
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corresponding to samples directly in the wake of the turbine, the adjoining -

1 range stops at 10-minutes (log2 ω = 5). This is then followed by a highly

intermittent (β = 1.3) Kolmogorov range. For the lowermost plot the -1 adjoining

extends up to the much smaller time-scale of one minute (log2 ω = 8). The

reason for this is explained in terms of a disc approximation to the blades of a

turbine. If we imagine that all eddies larger than the disc will be broken into

smaller eddies (as is done with grid-generated turbulence) we are increasing the

space-time scales of the Kolmogorov range; a range of scales that would normally

scale as -1. This process is discussed in more detail in Fitton et al. [2011a]

where in particular we show that the largest frequency of the Kolmogorov range

corresponds approximately to the diameter of the turbine blades. In Fitton et al.

[2011a] we also propose that this break-up of larger structures homogenises the

turbulence. A result that could be of use for the wind industry community as

it suggest that only the front most turbines in an array need to be resilient to

strong wind shearing.

Nacelle Direction And Speed Measurements

Figure 2.35 compares the energy spectra of the wind turbine nacelle direction

(blue) and the wind speed measured at the nacelle (green). Over the lower fre-

quencies we loose the -1 scaling range as observed for the inflow conditions of the

Growian velocity spectra. This is in agreement with our previous wake observa-

tions that hypothesise a forced Kolmogorov range due to the break up of eddies.

Remembering that for nacelle measurements we are in the wake due the wake

of the complex measuring mast structure in front of the turbine. Over higher

frequencies there are indeed complex behaviours that arise that we shall not at-

tempt to explain. What is of particular importance is that there is evidence of

scaling. This result could be very important for designing turbine control sys-

tems (see Fitton et al. [2012] for other applications of scaling methods to wind

energy related topics). At approximately one and two seconds there is evidence

of spectral leakage. It may be that at these higher-frequency rapid changes in

direction the turbine resonates thus fatiguing the structure. This is mere specu-

lation, however, it would be interesting to find out exactly what this behaviour
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corresponds to and how it may affect the turbine.

lo
g
2
E
(ω

)

log2 ω

2

1.3

2 4 6 8 10
10

15

20

25

30

35

40

Figure 2.35: Energy spectra of the wind turbine nacelle direction (blue) and the wind speed
measured at the nacelle (green).

A Matter Of Distributions

The quantitative nature of the so-called intermittent correction introduced by

the function K(q) into the K41 theory (cf. equations 1.9 and 1.16) and into the

corresponding values of the spectral exponent β, remembering β = 1 + ζ(2), is

detailed throughout the following sections and will directly and indirectly be the

focus of the remaining topics. Following the second refined similarity hypothesis,

a variety of non-linear velocity structure functions were introduced in order to

study the intermittent statistical properties of turbulence (Monin and Yaglom

[1975]). The critical point here is that...

...the scaling moment functions of turbulent velocity are directly related

to the probability distribution functions (PDF’s) of the local dissipa-

tion rate ελ. A proper model of the PDF of ελ is sufficient to describe

the whole of the statistics of turbulent velocity. ?
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The prediction of the original log-normal proposal is in reasonable agreement

with empirical data for q of sufficiently low order (i.e. q ≤ 3) for the energy

flux density. This also implies for q > 9, the discrepancies for the velocity incre-

ment, are attributed to the deficiencies in the log-normal assumption, which has

been roundly criticised (e.g. Mandelbrot [1974], Yamazaki [1990]; Frisch [1980],

Schertzer and Lovejoy [1985a]). With the introduction of discrete and continuous

cascade models, a variety of distributions (including improvements on the initial

log-normal proposal) have been proposed for ελ. We discuss some examples in

the next section.
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2.4 Summary Of Chapter 2

In this chapter we have made use of the data from two atmospheric wind measure-

ment campaigns from two very topographically different nest sites: the German

Growian experiment in a near homogenous terrain setting and the French Ersa

wind park experiment where measurements were taken from within a wind farm

on top of a mountain in Corsica. Both sites exhibit velocity increment distribu-

tions where even coarse time-scale extremes are much more frequent than those

previously predicted by Gaussian distributions. It is these frequent intermittent

bursts that characterise wind energy’s unpredictability, e.g., additional mechani-

cal loads, deviations from expected power production and large short-time power

fluctuations.

Since we had a number of different interesting measurements at our disposal

we were inclined to see whether or not they were all scaling. The first and most

common method for checking whether or not a process is scaling – synonymous

with power law probabilities – is to look at the spectra. Analyses on the three-

dimensional velocity confirmed it is scaling and that its scaling power laws are

in agreement with other literature. The spectral exponent being something that

resembled a high-frequency Kolmogorov range with an adjoining lower frequency

-1 subrange. Other not so frequently analysed quantities such as the temperature,

relative humidity, direction, nacelle wind speed and nacelle direction were also

scaling, proving that, particularly for the wind industry, the application of scaling

methods to any dimensional combination of the wind velocity can give remarkable

insights into a number of different processes, including wake effects.
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Chapter 3

3.1 Intermittency, Multifractals And Extremes

Of The Wind

In §1.2 we mentioned how Richardson believed that the corresponding diffusing

particles had ‘Weierstrauss-function-like’ trajectories. Figure 3.1 illustrates the

Weierstrauss-function whose behaviour is seemingly comparable to that of wind

farm wind velocity data (figure 3.2). A comparison of such may have validated the

assumption made by Richardson. However, further inspection shows the fractal

like self-similarity of the function results in a periodic trajectory. This sort of

unique periodic behaviour is generally not found in the very intermittent high

frequency velocity data that is usually measured. This suggests a more realistic

solution may be the combination of more than one fractal function.

Figure 3.1: Weierstrauss function (frac-
tal).

Figure 3.2: Data from wind farm in Cor-
sica (multifractal).
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Fractal Geometry

Fractal geometry (Mandelbrot [1977] and Mandelbrot [1982]) provides the sim-

plest non-trivial example of scale invariance and is useful for characterising fractal

sets. Unfortunately in wind resource assessment (and more generally geophysics)

we are usually much more interested in fields. However, over a wide range of

scales, fractal dimensions can still be useful in ‘counting the occurrences of a

given phenomena’ as long as this question is properly posed.

There are several definitions of fractal dimensions that were initially thought

of as rather equivalent (see appendix A.3). Fractal dimensions are non-integer

generalisations of the concept of the dimension, intuitively understood as mea-

suring the number of points of a given geometrical set A (e.g. a square has more

points than a segment, but less than a cube). Most of them correspond to a

(non-integer) scaling exponent, with respect to the increasing resolution, λ, of a

given estimate of the number of points

Nλ ≃ λDF (A) (3.1)

where DF (A) = 1 for a segment, 2 for a square, 3 for a cube.

The Co-dimension

In the previous section we defined DF (A) as the fractal dimension of the fractal

set A. We now define the geometrical co-dimension, c(A), of the fractal set

A (Mandelbrot [1967], Mandelbrot [1977], Mandelbrot [1982], Falconer [1986],

Barnsley [1988], Feder and Bak [1989]) in an analogous way to the definition of

a linear sub-space of a finite-dimensional vector space;

c(A) = D −DF (A). (3.2)

A similar relation can be derived for the probability that a ball, Bλ, with scale

ratio, λ, is contained in the fractal set A such that

P (Bλ ∩ A) ≃ λ−c(A).
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The corresponding definition of the statistical co-dimension is in fact much more

general than the geometrical one (Schertzer and Lovejoy [1994]). The details of

the relationship between the geometrical and probabilistic definition of the co-

dimension are not discussed here but can be found in appendix A.4. The reason

for using the co-dimension as opposed to the fractal dimension will become clearer

in the following sections.

The β-Model

One of the simplest cascade models that takes the intermittency of turbulence into

account using fractals is the β-model by Novikov and Stewart [1964], Mandelbrot

[1974] and Frisch et al. [1978]. This is done by assuming the cascading eddies are

in either a ‘dead’ or ‘alive’ state where the probability of being alive corresponds

to the number of occurrences out the total, i.e., by equation 3.1

P (µε = λc) ≃
Nλ(Alive)

Nλ(Total)
=

λDF

λD
= λ−c, (3.3)

where the index, ε, of the multiplicative increment, µε, indicates that we are

producing the energy flux field and not the velocity field. The corresponding

dead state probability is therefore simply

P (µε = 0) ≃ 1− λ−c (Dead). (3.4)

The boost, µε = λc > 1 of equation 3.3, is chosen such that the probability of all

events occurring satisfies the conservation of the energy flux density defined in

equation 1.3, i.e.

〈εn〉 = 〈ε0〉 =⇒ 〈µε〉 = 0 · (1− λ−c) + λc · λ−c = 1.

Thus we have a cascade where the number of daughters of a given mother-eddy

are chosen such that the fraction of the volume occupied is decreased by the

factor β = λ−c (0 < β < 1) hence the name β-model. In terms of the co-

dimension, we see from equation 3.2 in the previous section, that the larger the

co-dimension, c, the less of the fraction of space is occupied by the fractal set
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of the support dimension (see figure 3.3). A consequence of the variation in c is

that as n → ∞ so does ελ, i.e. ελ is singular in an analogous way to the Dirac

δ-function for example. For any n, the energy density flux depends on the same

fractal co-dimension.

(a) (b)

Figure 3.3: Plots of the energy density flux, εn, cascade using the two-dimensional β-model
for varying co-dimensions, c = 0.4 and 0.9, (plots a and b respectively) and scale ratio, λ = 27.
Notice that even for the most basic of cascade models we see realistic comparisons with turbulent
energy flux density distributions in that they are proportional to the intensity of the flux at
small scales, i.e. for low c = 0.1 – abundant and evenly distributed energy flux densites, and
for high c = 0.9 – sparse and concentrated.

Multifractal co-dimension Functions

In the β-model example we calculated the fractal dimension of the occurrences of

eddies in a support dimension for two possible states ‘alive’ and ‘dead’. The result

is an intermittency occurrence quantified by the unique co-dimension as seen in

figure 4.1. A comparison of figure 3.3a and 3.3b with the energy flux density in

figure 1.5 shows that although the field we are generating with the β-model is

‘intermittent’ the magnitude of the distribution of the flux is homogeneous (in

contrast to the highly variable energy flux density of figure 1.5).
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The reason for the homogeneity or lack of heterogeneity is simply because

we did not consider the intensity of each of the eddies, only their presence or

absence. It has previously been reported by Schertzer and Lovejoy [1984a] that

a better concept than the fractal object is that of the multifractal field. The

phenomenon studied in this case are characterised by a hierarchy of many frac-

tals (hence multi-fractal) corresponding to regions over which the field intensity

exceeds a given threshold (by taking the logarithm base λ of this intensity, we

obtain the corresponding singularity which is singular for the homogeneous case).

For a non-homogeneous case each singularity is then characterised by a fractal

dimension. The non-uniqueness of a fractal dimension requires a co-dimension

function dependent on the orders of singularities. It will be this function that

will be discussed in detail throughout the following sections.

The α-Model

Because the β-model turns out to be a poor approximation to turbulence (un-

stable under perturbation) we must consider a more realistic alternative to the

simplicity of the ‘dead’ or ‘alive’ dichotomy. One such consideration was the α-

model (Schertzer and Lovejoy [1984b, 1985b]) named because of the divergence of

moments (we will come back to this later, also see appendix A.5) with exponent

α. Rather than only allowing eddies to be either ‘dead’ or ‘alive’ the α-model

considers a more realistic α-instability in which each state can be either ‘more’ or

‘less’ active (see figures 3.5a, 3.5b, and Lovejoy and Schertzer [1986] for further

examples).
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Figure 3.4: Plots of the energy density flux, εn, cascade using the two-dimensional α-model
for co-dimension, c = 0.2 and α = 1.5; the scale ratio, λ = 26. Comparisons show varying
divergences of moments, α, with fixed co-dimension and fixed scale ratio. We can see from the
final step of the model at ε6 (and in fact all steps prior to) we have a much more heterogeneous
distribution of energy flux densities contrary to the homogeneous distribution of the β-model
(figure 3.3). As with the β-model, the magnitude of each energy flux density is proportional to
a singularity exponent i.e. defined by a unique co-dimension. Because we have a non-unique
singularity we must therefore have many fractal dimensions (and therefore a co-dimension
function, hence multifractality).
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The model randomly distributes the occurrence of each eddy at each genera-

tion corresponding to the following binomial process (see figure 3.4):

P (µε = λγ+) ≃ 1− λ−γ+ (Increase) (3.5)

P (µε = λγ−) ≃ λ−γ− (Decrease) (3.6)

where

γ+ =
c

α
, γ− =

c

α′
and

1

α
+

1

α′
= 1.

Note the β-model is a special case of the α-model in which γ− → −∞ and γ+ = c.

Because the β-model has a unique singularity, c, corresponding to a unique fractal

dimension, DF , it is defined as a mono-fractal model.

(a) A schematic picture of the α-
model. At each step, uniform in-
tervals (left) are divided into fixed
λ subintervals (where λ = 2 here)
and then each is randomly multi-
plied by either λγ+ or λγ− (with
γ+ > 0, an increase, or γ− < 0, a
decrease).

(b) Schematic of a tree of increases
(‘+’) or decreases (‘-’) for a one-
dimensional α- or β-model with
probabilities defined by equations
3.5 and 3.6.

Figure 3.5: Schematics of the α- and β-model.

As with the β-model it is necessary to satisfy the condition 〈µε〉 = 1 such

that:

〈µε〉 = λγ+λ−c + λγ−(1− λ−c) = 1. (3.7)

The above equation is in itself evidence that the α-model is a multifractal model

since there exist two singularities, λγ+ and λγ− . Again this means there is more
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than one fractal dimension related to the singularities through the co-dimension

hence validation of the terming ‘multifractal model’).

Defining Multifractals

By re-normalising discrete cascades (see appendix A.6) the multifractal field, ελ,

at the ratio of scale λ can be written

P (ελ ≥ λγ) ≃ λ−c(γ). (3.8)

Each value of ελ corresponds to a singularity (where strictly speaking ‘singularity’

applies only to γ > 0 i.e. when ε → ∞ for λ → ∞, when γ < 0 it is a ‘regularity’)

of order γ and co-dimension c(γ). Moreover, we can define the multifractality with

respect to c(γ), i.e. the multifractality corresponds to the non-uniqueness of c. It

is beyond fractal geometry, where uniqueness of the fractal (co)-dimension is the

rule. Figure 3.6 illustrates why for a multifractal field two scaling thresholds, γ1

and γ2, do not correspond to the same co-dimension.
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Figure 3.6: A schematic illustration of a multifractal field analysed over a scale ratio λ, with
two scaling thresholds λγ1 and λγ2 , corresponding to two orders of singularity: γ1 > γ2.

On a final note, equation 3.8, considers the probability distribution of events

above a given (scaling) threshold; therefore we consider ‘exceedance probability

distributions’, p(ελ) = P (ελ ≥ λγ), rather than the the standard ‘cumulative

probability distribution function’ (CDF), F (ελ) = P (ελ < λγ). Both are obvi-

ously related by p(ελ) = 1−F (ελ). Throughout the rest of the report we will use
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the term ‘probability distribution’ in the sense of exceedance probability distribu-

tion (and therefore for events above a given (scaling) threshold). This is in fact a

more appropriate form of notation anyway since it is usually velocity thresholds

we require.

Lets consider now some of its general properties; the first being that due to its

very definition, c(γ) is an increasing function of γ. The second also readily derived

by considering moments, is that it must be convex. Thus, because 〈ελ〉 ≃ λγ1−c(γ1)

where γ1 is the singularity contributing to the mean (q = 1); the derivative of the

function (now denoted using Leibniz’s notation) is unity i.e. c′(γ1) = 1 and since

〈ελ〉 = 1, we obtain γ1 = c(γ1) = C1. The properties of the c(γ) function will be

discussed in more detail in section §4.1.

Figure 3.7: A schematic illustration of a conserved multifractal c(γ), showing relations c(C1) =
C1 and c′(C1) = 1 where C1 is the singularity of the mean.

Above we defined the co-dimension function as the statistical scaling exponent

of the probability distribution of the energy flux density. A schematic illustration

of a multifractal co-dimension function is given by figure 3.7.
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Bare And Dressed Cascades

From the α-model we were able to derive a continuous distribution relationship

between the probability of exceedence of the energy flux density and the co-

dimension function at non-finite scales λ i.e.

P (ελ ≥ λγ) ≃ λ−c(γ).

However, we must now pose the question:

What are the consequences of the singular behaviour when reaching

the small scale limit λ → ∞ and where does this fit into reality?

We must pose this question simply because in reality we will never come across an

infinitely small sample. To deal with this Schertzer [1987] introduced the terms

‘bare’ and ‘dressed’ (see figure 3.8):

1. Respecting ελ ≃ λγ for all γ > 0, one has ελ → ∞ as λ → ∞; and 〈ελ〉 =

λK(q) → ∞ for all q > 1 (since K(q) > 0 for q > 1). This singular behaviour

means that if a limit exists, it is not in the sense of functions. We really

have something analogous to a Dirac delta-function, as was discussed with

the β-model. This is a ‘generalised’ function defined as a limit of functions

and only meaningful if we integrate over it. The limit is in fact a density of

measure, i.e. well defined limits only exist for the fluxes Πλ(A) → Π∞(A)

which are integrals over the flux densities, ε:

Π∞(A) = lim
λ→∞

Πλ(A) = lim
λ→∞

∫

A

ελ.d
Dr.

What we find is the integration has a drastic calming effect on the variability

of the energy flux density. The singular nature of the limit λ → ∞ and

the possibility of smoothing by integration distinguishes the ‘bare’ cascade

quantities, obtained after proceeding down to scale λ (downscaling), from

the ‘dressed’ cascade quantities obtained after integration of the complete

cascade over the same scale ℓ = L/λ (upscaling). In general, the divergence

implies the dressed quantities will have much larger fluctuations.
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Figure 3.8: An example of an α-model cascade. The left hand side shows the step by step
construction of a (‘bare’) multifractal cascade starting with an initially uniform unit flux density.
The right hand side shows the result of spatial averaging (to the same scale as the left image)
of the cascade developed over the full range (a factor 27 here, bottom centre): the ‘dressed’
cascade discussed in the text. The vertical axis represents the density of energy flux density ε to
smaller scales which is conserved by the non-linear terms in the dynamical equations governing
fluid turbulence. At each step the horizontal scale is divided by two, and independent random
factors are chosen either < 1 or > 1.
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2. If ε is considered at individual points, then as we add in more and more

cascade steps, the ‘incipient’ singularity values, defined at finite λ, are

γλ =
log ελ
log λ

,

and will not converge to a value γ∞ but will undergo random walks as λ is

increased.

Divergence Of Moments

In the previous section we defined the fundamental difference between the ‘bare’

and ‘dressed’ cascade properties i.e. the former all have moments finite (since

by definition, for bare quantities λ is finite) whereas the latter will generally

have divergence for all moments greater than a critical value qD which depend on

the dimension of space over which the process is integrated (see figure 3.8 for a

schematic).

To define the dressed flux, start by defining the resolution flux ΠΛ(A) over the

set A:

ΠΛ(A) =

∫

AεΛ

dDr,

where Λ is the highest resolution. We can now define the ‘partially dressed’ flux

density ελ,Λ(d) as:

ελ,Λ(d) =
Πλ(Bλ)

vol(Bλ)

where vol(Bλ) = λ−D is the D-dimensional volume of a ball (interval, square,

cube etc.) of size L/λ and the ‘(fully) dressed flux density’ as:

ελ,Λ(d) = lim
Λ→∞

ελ,Λ(d)

Now we can use the factorisation property of the cascade; the independence of

the large and small scale multiplicative factors

εΛ = ελTλ(εΛ/λ)
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where the operator Tλ increases the scale – ‘zooms’ by a factor λ. This equation

should be understood in the following way – to obtain a fine scale cascade (reso-

lution Λ) we may take a lower resolution (λ) cascade and multiply each of the λ

resolution boxes (balls) by independent cascade processes each developed over a

range of scales Λ/λ and reduced in size by factors of λ. This leads to:

ελ,Λ(d) = ελ · εΛ,λ(h)

where ελ is the usual bare density (accounting for variability at scales larger than

the observation scale) and the density εΛ,λ(h) (accounting for variability at scales

smaller than the observation scale) can be said to be ‘hidden’ (hence h) since it

corresponds to the scales with which we average over.

It can be shown (Schertzer [1987]) that the integration of ελ on sets of dimen-

sion D leads to statistical discrepancies (λ → ∞) as soon as the order of moments

q becomes greater than a certain critical value qD defined by:

K(qD) = (qD − 1)D; qD > 1. (3.9)

The divergence of moments of a random variable X i.e. (〈Xq〉 = ∞ for q > qD) is

the ‘hyperbolic’ (algebraic) fall off of the probability distribution. The exponent

of this qD tail of probability, which characterises the relative frequency of extreme

events (Schertzer [1987], Schertzer and Lovejoy [1991]), is therefore nothing but

the order of the critical statistical discrepancy; thus we have:

P (X ≥ s) ≈ sqD ⇐⇒ 〈Xq〉 = ∞, q > qD (3.10)

where s is a threshold of intensity. This statistical behaviour is a consequence

of the fact that the sum of the contributions is dominated by the contribution

that is the strongest, that is, rare events have a dominant contribution (Tessier

et al. [1993]). We may note that using thermodynamic analogues of a multifractal

scaling moment function (e.g. where K(q) is the analogue of a thermodynamic

potential, q; the inverse of temperature – discussed in more detail in §4), the

divergence of the theoretical moments (i.e. for an infinite number of samples)

corresponds to a first-order transition over finite samples at the temperature 1/q
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(see Schertzer et al. [1993] and Schertzer and Lovejoy [1993]).
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Figure 3.9: Log-log plot of the exceedance probability, Pr(∆u(τ) > s), of the horizontal
velocity increments, ∆u(τ), of the twenty-second time-series in figure 1.4. The slope of the
dashed line is approximately -6 i.e. qD = 6. This means velocity increment statistics above an
order of 6 are random.

The physical significance of these differences is that the event is more violent

the smaller the exponent qD. Figure 3.9 illustrates the divergence of statistical

moments on empirical data. If we consider now estimating the power, P , through

the fluctuations i.e. P (u) ∝ u3 as is typically done (see for example Peinke et al.

[2006]) we can only consider the second order moment as a usable statistic.
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Empirical Power Law Estimation

As was discussed in the first chapter of this thesis, one way to quantify the

behaviour of the extremes of a distribution is to try to fit a power law of the

form of equation 3.10 to the (heavy) tail(s). We can estimate the exponent by

taking the linear regression of the same probabilities in 2.13 versus s however

in a log-log plot. In order to estimate the regression we require a minimum s

value, smin say, over which to perform the regression. Choosing a value of smin

too small we underestimate the power law, too large and the quality of regression

is diminished.
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Figure 3.10: A ten-minute time-series of the u-component velocity increments calculated from
the wind speeds and directions in figures 2.3a and b.

Figures 3.10 and 3.11 plot a ten-minute time-series of ∆u(τ) and its corre-

sponding probability of exceedance in log-log plot. Figure 3.12 plots the prob-

ability of exceedance of the positive and negative velocity increments of figure

2.15b; the different distributions correspond to increasing vertical spacings, i.e.

rz = 40, 65, 90, 115 and 140m. In both cases smin has been selected visually; a

time-consuming method that cannot be performed on a very large dataset.
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Figure 3.11: The exceedance probability of the positive (red) and negative (blue) velocity
increments in figure 3.10, in log-log plot. The slope of the tail corresponding to the power law
of the distribution is -3.7.

In Schertzer et al. [2006], Bernardara et al. [2008] and Clauset et al. [2009] a

selection of methods are tested concluding that classical estimators of probability

tails have two problems. First, all methods consider samples of independent

outcomes, an assumption that does not fit with long range dependence. Second,

most methods assume the existence of a power-law, i.e. they always yield a given

estimate of its exponent, independently of its relevance (see Schertzer et al. [2006]

and Bernardara et al. [2008] for a discussion on a ‘generalized Hill estimator’ that

yields a signed shape parameter that helps to avoid this problem). In Clauset

et al. [2009] it is shown that a combination of the Kolmogorov-Smirnov or KS

statistic for the estimation of smin followed by a maximum likelihood estimator

(MLE) gives the best results. The details of why this is will not be discussed

here more than the accuracy of the MLE can decrease for sample sizes N < 500.

If this is the case a third criteria must be used. However, since the minimum

sample length for this study is 3500 (truncated to a base two power integer in

general for scaling analysis, e.g. N = 211) we are well within the recommended

number of samples. Finally, the programs can be directly downloaded from the
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authors’ website http://tuvalu.santafe.edu/~aaronc/powerlaws/, however,

it is important to note that their estimated parameter is the exponent of the

probability density function, p(x) ∝ x−α, as opposed to the exponent of the

exceedance probability. Thus, for the estimation of qD we needed to slightly

modify the program.

The estimates of the slopes in figures 3.11 and 3.12 are much lower than

previous surface-layer estimates. In Schmitt et al. [1994], qD was estimated to

be 7.5, on 10Hz velocity measurements taken at 25m, just above a pine forrest.

Remembering that the smaller the value qD the more wild the extremes, we can

easily say the Growian test site exhibited much wilder extremes. Tables 3.1 and

3.2 show the average statistics of qD with error bars for absolute ∆u(τ, z). Figure

3.11 is not far from the average statistic.
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Figure 3.12: The exceedance probability of the absolute velocity increments in figure 2.13, in
log-log plot. The slope of the tail is -5.

Tables 3.3 and 3.4 show the average statistics of qD (with error bars) for

absolute ∆u(t, rz) and ∆v(t, rz). Because the distributions seemed to vary so

much in terms of asymmetry for either u or v we included them both. The mean

values show a large increase in the values of qD suggesting that vertical increments
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of the horizontal wind are much less wild. This is not surprising given the vertical

wind velocity fluctuations are often measured to be an order of magnitude less

than the horizontal component. This is later also observed in the Corsica dataset.

Mast 2 (Inner) ∆u(τ)

z [m] 50 75 100 125 150

qD 4.0±2.1 4.1±2.3 4.2±2.7 4.2±2.1 4.2±2.2

Table 3.1: Table of mean power law tail exponents for ∆u(τ) at 50, 75, 100, 125 and 150m,
on the inner measurement locations of mast 2.

Mast 2 (Outer) ∆u(τ)

z [m] 10 75 100 125

qD 4.3±2.5 3.7±2.0 4.1±2.2 4.0±2.3

Table 3.2: Table of mean power law tail exponents for ∆u(τ) at 50, 75, 100, 125 and 150m,
on the outer measurement locations of mast 2.

Mast 2 (Inner) ∆u(rz)

rz [m] 40 65 90 115 140

qD 10.3±10.8 11.8±11.4 12.2±11.7 13.5±16.1 17.4±21.1

Table 3.3: Table of mean power law tail exponents for ∆u(rz) = 40, 65, 90, 115, and 140.
The measurements were taken on the inner measurement locations of mast 2.

Mast 2 (Inner) ∆v(rz)

rz [m] 40 65 90 115 140

qD 10.2±11.7 10.2±11.8 11.2±12.5 10.9±11.6 12.8±14.0

Table 3.4: Table of mean power law tail exponents for ∆v(rz) = 40, 65, 90, 115, and 140. The
measurements were taken on the inner measurement locations of mast 2.

Estimates of qD For The Corsica Dataset

As we have done with the Growian dataset, we use the MLE to find qD. Because

of the limited lengths of the time-series for the Growian dataset we were only
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able to calculate qD at the highest resolution. Trying to estimate qD on larger

(upscaled) time-scales returned errors on the estimation of the parameters. The

Corsica dataset on the other hand has much longer data time-series (λ = 219).

This meant that qD could be calculated over a range of time-scale resolution

(λ < Λ).
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Figure 3.13: Plots of qD at decreasing resolutions λ (by decreasing resolutions we mean
an upscaled fixed sample size with resolution Λ), for u and T at 23 and 43m (left and right
columns). Solid blue line is the mean with ± error bars (dotted lines) either side.
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Figure 3.13 shows the estimates of qD for increasingly smaller resolutions for

the different increments of u and T . Interestingly we see that with increasing

time-scales the velocity increments become more wild i.e. qD decreases. At first

thought one might think this is due to less and less values being used for the

estimator. However, this is in fact the inverse behaviour that we would expect

if it a was bias in the estimator. For fewer and fewer samples we would expect

larger and larger qD would there be a bias.

Although 3.13 exhibits a slight dependence of the empirical estimate of qD on

the resolution λ, one should not confuse this dependence with that of the largest

resolution of the data (Λ) or with the sample size. Indeed, the theoretical qD is

independent of the sample size, but, requires a large sample size to be (easily)

observable. The λ-dependence could be related to the lack of a unique scaling

regime although the observed fluctuations might simply be inside of the error

bars. It is worthwhile noting that large numerical simulations (Ishihara et al.

[2009], one of the largest direct numerical simulations with 40963 grid points)

hint at the existence of a probability distribution power-tail with qD ≈ 8.3 (see

figure 3.14).
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Figure 3.14: Log-log plot of the normalised probability density functions of the longitudinal
velocity gradients simulated in Ishihara et al. [2009].
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3.2 The Effects Of Scaling Anisotropy On

Extremes

Growian

For the Growian dataset the Cartesian wind components are not directly mea-

sured, but are easily obtained from the wind velocity modulus, ũ = ‖u‖2, and
the instantaneous meteorological angle θM with respect to a fixed reference frame

R:

u = −ũ · sin(θM) and v = −ũ · cos(θM). (3.11)

Figure 3.15 compares the scaling properties of the u and v components from the

Growian dataset at 100m.
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Figure 3.15: Energy spectra of the veloc-
ity components u (blue) and v (green) for the
Growian dataset. The corresponding spectral
exponents for u over low and high frequency
ranges respectively are 1.25 and 1.45; and for
v are 1.45 and 1.70.
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Figure 3.16: Diagram showing a comparison
between the initial two-dimensional Cartesian
frame of reference R (black) with horizontal
velocity vector components u and v and the
rotated frame of reference R′(φ) (red) and its
corresponding rotated velocities u′ and v′.

Both components show two scaling sub-ranges: a small scale sub-range from

1 to 10 seconds and a larger scale sub-range from 10 seconds to 15 minutes.

The scaling exponents for u over low and high frequency ranges respectively are
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1.25 and 1.45; and for v are 1.45 and 1.7. The significant differences in scaling

exponents correspond to a scaling anisotropy that is much stronger than a trivial

anisotropy with a constant ratio of components different from one. Moreover,

there is no evidence of β = 5/3 predicted by homogeneous isotropic turbulence.

The aforementioned scaling anisotropy is in sharp contrast to the ‘local

isotropy’ assumption commonly used in turbulence since Kolmogorov. In Pou-

quet et al. [1976] they show that helicity can strongly modify the spectral slope,

however, due to the complexity of the problem, it is analysed in an isotropic

framework that introduces limitations w.r.t. to surface-layer. The relevance of

an isotropic atmospheric turbulence has been brought into question numerous

times, eventually leading to the birth of the concept of generalised scale invari-

ance (GSI). GSI first posits scaling, not isotropy Schertzer and Lovejoy [1985a].

Statistical isotropy, i.e. u
d
= v (the symbol

d
= denotes equality in probability

distribution), would correspond to rotational invariance of the statistics at all

scales.

In order to quantify the scaling anisotropy (by means of the parameter H)

we can rotate the frame of reference R by an angle φ giving the rotated frame of

reference R′(φ) (see figure 3.16). We then compute the corresponding statistical

exponents Hu(φ) and Hv(φ). This is in some way the inverse of the procedure

typically performed in order to ensure isotropy, i.e. Eu = Ev (see Drobinski et al.

[2004]).

The Cartesian components, defined through the direction and modulus, in a

rotated reference frame R′(φ), are then simply given by:

u′(φ) = −ũ · sin(θM + φ), v′(φ) = −ũ · cos(θM + φ). (3.12)

Since we are using the spectral exponent, β, to quantify statistical properties,

it will be of interest to look at the analytical properties of the rotated vectors’

energy spectra. The rotated time-dependent u-component is:

u′

φ(t) = cos(φ)u(t)− sin(φ)v(t), (3.13)
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and its Fourier transform (due to the linearity of the Fourier transform) is:

û′

φ(ω) = cos(φ)û(ω)− sin(φ)v̂(ω). (3.14)
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Figure 3.17: Plot of the function ρ(φ) in polar coordinates (ρ,−φ) for the correlation coef-
ficient r. The coefficient is increased in increments 0.2 from r = 0 (red) to r = 1 (turquoise).
The red circle corresponds to the isotropic case of independent identically distributed variables.

Considering now either the variance or the spectra of the field, their quadratic

nature yields the following relations: for the variance

< |u′

φ(t)|2 >= Varφ(t) = cos2(φ)Var0(t) + sin2(φ)Varπ/2(t)− sin(2φ)Covu,v(t),

(3.15)

where Covu,v is the covariance of u and v and, Var0 and Varπ/2 are the variances

of u and v respectively; and for the spectra

|û′

φ(ω)|2 = Eφ(ω) = cos2(φ)E0(ω) + sin2(φ)Eπ/2(ω)− sin(2φ)Eu,v(ω), (3.16)
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where Eu,v is the co-spectrum of u and v and, E0 and Eπ/2 are the spectra of u

and v respectively.

When the two velocity components u and v are identically distributed, but

not independent, equations 3.15 and 3.16 become

Varφ = ρ(φ)Var0, (3.17)

and Eφ = ρ(φ)E0, (3.18)

where

ρ(φ) = 1− r sin(2φ), (3.19)

and r is the correlation coefficient of u and v.
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Figure 3.18: Plot of the function ρ(φ) in polar coordinates (ρ,−φ) for the correlation coeffi-
cient r. The coefficient is increased in increments 2 from r = 0 (red) to r = 10 (turquoise). The
red circle corresponds to the isotropic case of independent identically distributed variables.

Equations 3.15 and 3.16 correspond to a given anisotropy of the velocity field

u. This anisotropy becomes a scaling anisotropy if we consider, instead of the
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velocity field itself, similar relations for the singularities, γ = logλ u, where λ is the

ratio of the total sample length and the time-scale of observation. If we consider

the same rotations for the singularities, the equivalent equation to equation 3.15

readily holds for the (misnamed) log-normal model and therefore for the scaling

exponent of the moment of order two, i.e., Kφ(2) = ρ(φ)K0(2). A more general,

universal multifractal (UM) case isn’t yet shown, however, we may mention that

the generalisation should lead to

Kφ(q) = ρ(φ)K0(q) (3.20)

when considering the full hierarchy of multifractal singularities. Note that the

UM scaling moment function Kφ(q) statistically describes the intermittency of

atmospheric flows. From the above equation, this intermittency varies with ρ(φ).

Initial analysis of the function shows that the most intermittent fields do not

correspond to the largest values of r. We wind that the most intermittent fields

are those when r = 0.2.

As expected in the isotropic turbulence model the scaling exponent will remain

the same for varying φ. Note, even though the scaling exponent is isotropic it

could remain far from being homogeneous. This is due to strong intermittency

corrections assimilated into H estimates that make them differ from the expected

H = 1/3! Figures 3.17 and 3.18 show the continuous squeezing of the isotropic,

circular structures due to an increase of the correlation coefficient (see equation

3.19) in the case of identically distributed, but not independent velocities. With

the Growian data, the scaling anisotropy of this type is empirically visible, in

particular over larger time-scales (10 seconds to 5 minutes).

Figures 3.19 and 3.20 display the scaling exponents Hu and Hv as a function

of the rotation, φ, of the frame of reference. The scaling exponents have been

estimated over the (larger) scales (figure 3.19), 10 seconds to 5 minutes (log2 ω

from 2 to 6) and the (smaller) scales (figure 3.20), 0.2 to 10 seconds (log2 ω from

7 to 10). Each plot (from left to right and from top to bottom) corresponds

to an increasing height of 10, 50, 75, 100, 125 and 150m. The black solid line

corresponds to the scaling exponent expected in the isotropic homogeneous case

i.e. H = 1/3.
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Figure 3.19: Plots of empirically estimated Hu (red) and Hv (green), as a function of φ.
Exponents are estimated over the (larger) scales, 10 seconds to 5 minutes (log2 ω from 2 to 6).
The different plots correspond to the heights 10, 50, 75, 100, 125 and 150m from left to right
and from top to bottom. The black solid line corresponds to the scaling exponent expected in
the isotropic homogeneous case i.e. H = 1/3.
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Figure 3.20: Plots of empirically estimated Hu (red) and Hv (green), as a function of φ.
Exponents are estimated over the (smaller) scales, 0.2 to 10 seconds (log2 ω from 7 to 10). The
different plots correspond to the heights 10, 50, 75, 100, 125 and 150m from left to right and
from top to bottom. The black solid line corresponds to the scaling exponent expected in the
isotropic homogeneous case i.e. H = 1/3.
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The increasing values of Hu and Hv with height in figure 3.19 are, although

well below the exponent predicted for homogeneous turbulence, consistent with

other literature (see for example Drobinski et al. [2004]). What is of particular

interest is the clearly decreasing anisotropy between exponents with height. At

10m (top left) we see the scaling exponents exhibit the largest (relative) difference.

The anisotropy exhibits symmetries consistent with the symmetries of equation

3.16. At 150m (bottom right) it is rather clear that with the addition of another

100m in height the scaling exponents would become isotropic to a point.

A further strange observation is the apparent rotation of the point of statistical

isotropy i.e. where Hu = Hv with height. This is strange because the preferential

direction (θ) is fixed with a mean at all heights that does not vary outside of

250±1◦. From 10 to 150m the degree of φ for which the scaling is isotropic varies

from 30 to 90◦. This rotation most presumably results from the Coriolis force, as

in the classical Ekman surface-layer.

With respect to figure 3.20 we can see that the smaller scales also show an

increase in anisotropy with a decrease in height although not to the same extent

as the larger scales. Also, the increase in r does not seem as steady as was

observed over the larger scales in that the increase is mainly at the lowest height

with very little change in r (not H) over the remaining heights.

Corsica

Figure 3.21a shows the energy spectra of the velocity component u′(φ) at 43m

for φ ∈ [0 : π/10 : π/2] for the Corsica dataset. As expected in the isotropic

turbulence model the scaling exponent remains the same (β = 1.3) for varying φ

over the time-scales 5 seconds to 5 minutes. Even though the scaling exponent is

isotropic over these scales it is far from being homogeneous due to strong inter-

mittency corrections! The horizontal velocity at 23m showed identical behaviour

and has therefore not been shown.

Because there is no real component-wise scale separation we estimate Hu over

just one range of scales, 3 seconds to a minute (log2 ω = 6 to 10). Although in

the spectra the scaling exponent seems isotropic when we plot the exponent Hu

as a function of φ (figure 3.21b) we can see that a slight anisotropy arises. When
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calculating θ using the inverse tangent function it is important to map θ from

the [−π : π] plane onto the [0 : 2π] plane. Not doing so will result in spurious

values of u′ and v′. We mention this specifically for the Corsica dataset as it was

unnecessary to compute the direction for the Growian dataset as it was already

available.
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Figure 3.21: (a) Energy spectra of the velocity component u′(φ) for φ ∈ [0 : π/10 : π/2] from
the Corsica dataset; (b) Plot of empirical Hu(φ) calculated at 43m.

Although the Corsica dataset exhibited less anisotropy than the Growian

dataset on the ensemble averaged spectra this was not the case for individual

samples. Figure 3.22 plots u′(φ) for the first thirty single samples in the Cor-

sica dataset. We can see that the near isotropic scaling is lost and instead the

deformed structures seen in the Growian data at 50m are matched. What is

particularly interesting is the rotation of the structures with φ. Indeed it seems

that the majority of individual samples exhibit a stronger anisotropy than the

mean; when averaged together, however, due to their rotations the anisotropy is

cancelled out. There is one single file in figure 3.22 that exhibits a much stronger

anisotropy than the others.

In the next section we investigate the possible physical processes responsible

for the anisotropic behaviour in the Growian dataset and why this doesn’t occur

in the Corsica dataset. We have already briefly mentioned that the Ekman-
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layer is a well studied surface/boundary-layer phenomena that induces a rotation.

Moreover, due to the measurements’ (fairly) close proximity to the land surface

it likely that convection plays a key role. If we are to determine if convection

contributes to the anisotropy of the observations we must quantify the stability

of the atmosphere.
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Figure 3.22: Plots of u′(φ) for φ ∈ [0 : π/10 : π/2] for the first thirty single samples in the
Corsica dataset.
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3.3 Atmospheric Stability

The limits for stability classification through the Richardson number and the

Obukhov-length are widely discussed in Xue-yan et al. [2005]. We will show that

the distributions of both parameters correspond to unwieldy statistics that are

difficult to classify. We will then attempt to create our own classification by relat-

ing the scaling of the temperature and velocity to the anisotropy of the horizontal

velocity components for an appropriate choice of the physical mechanism.

In the previous section we have clearly illustrated that the two datasets exhibit

similar scaling exponents (β = 1.3, given we take the isotropic case at 50m

from the Growian dataset) from 10 seconds to 5 minutes. In addition, we have

also observed that the two datasets exhibit very different component-wise scaling

properties. Since our measurements are well within the surface-layer (SL) we

can expect that the instability of the atmosphere will contribute significantly to

anisotropic changes in shear stresses (see Drobinski et al. [2004]).
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Figure 3.23: (a) Plot of the (Growian) time-series of the instantaneous Richardson number,
Ri = g/T (∆T/∆u2), calculated from 211 velocity and temperature time-series observations
at 75m. The velocity and temperature measurements were taken at the same rate of 2.5Hz
giving a total measuring time of about fifteen minutes. Plot (b) shows the same time-series
but for values greater than −104. This was done in order to further expose the extreme and
intermittent nature of the quantity.

A fairly classical means by which to quantify the vertical (or buoyancy) forces

in the atmosphere is the gradient Richardson number (effectively the ratio be-
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tween buoyancy and friction forces)

Ri =
g

T (z)

∆T (z)

∆u(z)2
∆z, (3.21)

where g is gravitational acceleration. Figure 3.23 shows a time-series (3.23a)

and zoomed time-series (3.23b) of the Richardson number taken at 75m from the

Growian dataset. Note since temperature measurements are only available at 50,

100 and 150m and a difference is required to compute the Richardson number

we must use a 75m proxy. Large negative Richardson numbers correspond to

unstable layers i.e. strong vertical motion. The majority of files for both Growian

and Corsica data exhibit this kind of behaviour.
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Figure 3.24: (a) Log-log plot of the
exceedence probability of the abso-
lute, instantaneous, Richardson num-
bers shown in figure 3.23. The black
solid line of regression is calculated
on the last fifty points of the tail of
the distribution. The slope of the tail
(0.45 in this case) corresponds to the
exponent of the tail of the distribu-
tion of the Richardson numbers i.e.
Pr(Ri ≥ s) ≈ s−qD qD = 0.45; (b) His-
togram of qDs taken over 131 samples
with 〈qD〉 = 0.5± 0.4.
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Figure 3.23 shows the extremely intermittent nature of the instantaneous

Richardson number, suggesting that its empirical average estimate is random and

sample size dependent. Figure 3.24 displays the log-log plot of the exceedance

probability of the absolute, instantaneous, Richardson numbers shown in figure

3.23. The histogram of qD in figure 3.24 gives an average exponent of less than

one (0.5). This value is comparable also for the Corsica dataset. Since qD is

estimated to be less than one for both the Growian and the Corsica datasets,

neither the mean of the Richardson number is defined, nor the Monin-Obukhov

length that depends on it.

We infer also that other parameters, e.g. the Froude number or the Brunt

Vaissala frequency, that are typically used to measure the state of systems will

also be extremely intermittent. Numerical arguments such as those found in Laval

et al. [2003] are typically restricted in scale ratio (computed on low Reynolds

number systems) and are thus difficult to compare to the highly-intermittent

fluctuations of the atmosphere.

This analysis was tested over larger scales (by averaging and spectral damping)

to take into account the changes in scaling at 10 seconds. For increasingly larger

time-scales there is a slight increase in the number of files for which qD > 1,

however, never to the extent in which it is the majority.

Temperature Scaling

As an alternative to using the unwieldy statistics of the Richardson number and

the Obukhov-length we instead compare the scalings of the temperature and the

u-component velocity. Figure 3.25 plots the average spectra of the temperature

(turquoise) and the velocity (red) at 43m for the Corsica dataset. Over high

frequencies the temperature spectra displays instrumental noise up to a second.

Over the larger scales, the two spectra should have the same slope if the temper-

ature behaves as a passive scalar.

Looking now to the average temperature and u-component velocity spectra

(for φ = 0) of the Growian dataset (figure 3.26) we can see that over the same

larger time-scales there is a remarkable difference. Not only does the temper-

ature scale uniquely i.e. without sub-ranges, but it scales with a much steeper
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slope (β = 2). This implies that the temperature fluctuations are not only more

correlated at all scales but also the temperature is presumably an active scalar.

To quantify this behaviour we have taken the difference between the two

scaling exponents i.e. ∆H = Hu−HT , estimated over the larger time-scales – 10

seconds to 15 minutes. The three plots in figure 3.26 correspond to the heights

50, 100 and 150m. The decrease in ∆H at each height seems to be related to the

decreasing anisotropy seen in figure 3.19. We can also see over the smaller scales

that the lower the ∆H, the closer the scaling is to that of the larger scales. A

final important observation is that in the isotropic case we loose this dependence

on height i.e., ∆H is constant at 0.9.
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Figure 3.25: Average temperature (turquoise) and u velocity (red) spectra from the Corsica
dataset at 43m.

Quickly summarising these results – we find that when the temperature is an

active scalar, i.e. ∆H > 0, over larger scales (specifically from scales larger than

10 seconds) wind scaling anisotropy entails. One can also hypothesise that the

point of intersection of the two spectra at approximately 10 seconds is in fact a

good estimation of the so called Obukhov-length or spheroscale for GSI (Schertzer

and Lovejoy [1985a]), whose frequency we denote ωL = 1/τL. For time-scales τ

larger than τL the turbulent statistics are dominated by the fluid motions, but, the

latter are strongly influenced by convection (i.e. active temperature due to surface
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heat fluxes etc.). This combination of processes results in a scaling, statistical

anisotropy. For time-scales τ < τL the larger the ∆H the closer the scaling

is to the theoretical Bolgiano-Obukhov value 11/5 for an (isotropic) buoyancy

range. Being able to quantitatively relate the breaking of symmetry in the near

boundary-layer to the type of convective process is a topic that has been discussed

in Chashechkin [1989]. In the next section we will attempt a similar classification

based on scaling exponents.
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Figure 3.26: Average temperature (turquoise) and u velocity (red) spectra from the Growian
dataset at 50, 100 and 150m (left to right).

More On The Convective Surface-Layer

We have just shown in the previous section that, for the two datasets, the onset of

anisotropy may be determined solely by the difference found between the scaling

of the temperature and the velocity. If the two scaling exponents diverge, i.e.

∆H > 0, then component-wise anisotropy entails. What we haven’t shown yet is

whether the anisotropy occurs at large scales and is cascaded down to the smaller

scales or whether there are other processes at work. This is something we will

look at in the next section, i.e. what is the relationship between the two scale

separations. Before that, we want to look more closely at the differences between

the scaling of other variables within the two datasets.

In the Corsica dataset u appears component-wise isotropic up to ten seconds

and isotropic over all scales for u, v with T scaling as a passive scalar of u and

v also over all of the time-scales. The reason why w doesn’t scale over all scales
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is due to a well known phenomena where the height limitation of the mast does

not permit the (vertical shear) fluctuations of structures larger than the mast to

be observed.

Figure 3.27 compares the temperature spectra of the Growian dataset with

the vertical velocity spectra. We haven’t included the vertical component in

the majority of the analyses due to the poor quality of data (approximately

100 usable files available at only 75 and 125m). Moreover, because the vertical

velocity component is calculated at 75 and 125m and, since the temperature is

measured only at 50, 100 and 150m, an average across heights the 75 and 125m

was taken so that a comparison could be made.
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Figure 3.27: Comparison of the vertical velocity and temperature spectra of the Growian
dataset at 100m. The vertical velocities are measured at 75 and 125m therefore a vertical
average was taken in order to make the comparison.

We can see that over higher frequencies the vertical velocity component scales

as the lower frequencies of the temperature. We can assume that if there wasn’t

the problem of instrumental noise in the temperature spectra and the height

of the mast was increased the two spectra would superimpose. Evidence of a

Bolgiano-Obukhov scaling exponent of the vertical increments of the horizontal

wind have been observed from 150m to 12km in Lovejoy et al. [2009] and Hovde

et al. [2011], further confirming this idea. We now propose the three following
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hypotheses:

H1 For physical processes where the buoyancy forces dominate the vertical in-

crements of the horizontal wind (∆u(∆z)), the vertical velocity component

and the temperature will both scale as Bolgiano-Obhukov (11/5). When

this occurs, if the horizontal components do not scale as the vertical com-

ponent (which as an unlikely occurrence in the surface-layer), anisotropy

will entail.

H2 The degree of anisotropy will be of a factor ∆H, which under the first

hypothesis corresponds not only to the temperature but to the vertical

wind velocity providing sufficient measurements in space can be made.

H3 In the case when turbulent mixing is the dominant physical process the

scaling of the three-dimensional velocity will be component-wise isotropic

and temperature will scale as a passive scalar of the dominant horizontally

fluctuating velocity components.
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Figure 3.28: Diagram illustrating the temperature spectra in a stable and neutral atmosphere.

The three hypotheses in fact correspond to either a neutral or unstable at-

mosphere. For a stratified stable atmosphere H1 will be applied but over the
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space-time scales corresponding to the stratification. Figure 3.28 illustrates the

temperature spectra in a stable and neutral atmosphere.

Let us mention that temporal spectra are insufficient to empirically distin-

guish (non-linear) waves (e.g. the universal internal-wave energy spectrum first

described by Garrett and Munk [1972]. Space and time are instead required (see

Lovejoy et al. [2008] for a more detailed discussion).

Relative Humidity

Figure 3.29 plots the spectra of horizontal u and v-components (red and blue),

the temperature (turquoise) and the relative humidity (orange).

!
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Figure 3.29: Plots of the horizontal u and v-components (red and blue), the temperature
(turquoise) and the relative humidity (orange) spectra.
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The spectra of the relative humidity has three scaling ranges: from 0.4 to 2

seconds with scaling exponent 5/3, from 2 seconds to half a minute with scaling

exponent 0.6 and from half a minute to the largest scale (15 minutes) with scaling

scaling exponent 2.1.

We have already proposed that over the time-scales of 10 seconds to 10 minutes

vertical fluctuations of the horizontal wind are driven by buoyancy force effects,

i.e. a convective surface-layer. Therefore the scaling of the relative humidity

shows that the moisture content of the surface-layer is defined by the vertical

increments of the horizontal wind at scales larger than half a minute and the

horizontal increments for time-scales smaller than 2 seconds. It isn’t clear where

the scaling exponent of the mid-frequency comes from since it doesn’t correspond

to the scaling ranges or exponents of any of the other parameters. Since the

quantity is cascading through the scales it may correspond to a latent heat process

that occurs during the transition from buoyancy force flux to energy flux.

Relating The Two Scale Separations

In the previous section we managed to show that anisotropy entails in both the

high-frequency and low-frequency sub-ranges of the horizontal velocity spectra

from the Growian experiment. What was omitted from the analysis was how the

two sub-ranges are related in terms of anisotropy and scaling exponents, i.e. do

the changes in the lower frequencies change the scaling of the higher frequencies

(they should if we are within the framework of cascade phenomena). If so, how

can we quantify these changes. However, before we attempt to quantify the

behaviour of the scaling exponents it is important to clearly differentiate between

two of the velocity scaling exponent’s properties.

• How does the process generate anisotropy? This is defined by the parameter

r whose value will determine the shape of the potatoide.

• What do the magnitudes of H mean? The magnitude of the Hurst exponent

can be seen as a scale parameter of the potatoide, but we would still like to

quantify it!

115



Figure 3.30 plots the scaling exponents from the higher frequency range, HH ,

and the lower frequency range, HL, against each other at the heights 50, 100 and

150m. These are the heights that ∆H was calculated at. Taking the centre of

the ellipses as some approximation of the mean of the parameters HL and HH

we can see that HL(z) increases by a factor of about 0.1 at each 50m increase in

height giving ∆HL(z) = 0.2 over a 150m vertical distance. The high frequency

scaling exponent, HH , remains about the same. We can consider the horizontal

and vertical widths of the ellipsoids, ∆HL(r) and ∆HH(r) say, as a qualitative

measure of anisotropy.
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Figure 3.30: Plots of HH versus HL at 50 (blue), 100 (green) and 150m (brown).

In agreement with our previous observations we find therefore that both

∆HL(r) and ∆HH(r) decrease with height but with varying factors: ∆HL(r)

decreases from 0.1 at 50m to 0.05 at 150m and ∆HH(r) decreases from 0.2 to

0.1. This result suggests that

∆HL(∆z) = 2∆HH(r) and ∆HH(r) = 2∆HL(r). (3.22)

116



Moreover, since for all three parameters ∆HL(∆z), ∆HH(r) and ∆HL(r) have

a fairly stable (although agreeably based on only three heights) negative gradi-

ent with height we can attempt to interpolate the gradient in order to find a

height at which all three become equal; an equilibrium exponent, H0 say, where

∆HL(∆z) = ∆HH(r) = ∆HL(r), i.e. the isotropic H. Figure 3.31 first plots

HH versus HL at 50 (blue) and 100m (red), then extrapolates the line connecting

HH(φ), HL(φ) at 50 and 150m for larger HL and for φ ∈ [0 : 2π].
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Figure 3.31: Plots of HH versus HL at 50 (blue) and 150m (red). Each point (HH(φ), HL(φ))
at 50m is then fitted and extrapolated to the same HH(φ), HL(φ) at 150m. The purple solid line
corresponds to the bisectrixHH = HL. The black solid lines are suggested paths of convergence.

We can see that a general form arises in the interpolation of HH(φ) and

HL(φ) and that H0 can be estimated to be 0.3, not far from the K41 theory’s 1/3

exponent with an intermittency correction!
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The Domain Of Impinging Eddies

So what exactly is H0? In order to explain what H0 is we must first explain

why HL decreases the closer we are to the wall. The explanation for this comes

from the proposition of Korotkov [1976], that is, for near-wall length-scales the

spectrum is defined solely through the friction velocity u∗. If this is true we must

have a frequency ω∗ that is also a function of the near-wall velocity (see also Kader

and Yaglom [1989] and Yaglom [1993] for similar dimensional arguments and ?

for arguments using rapid distortion theory). Figure 3.32 shows the integrated

spectra of the u-component velocity at 10, 50, 75, 100, 125 and 150m (from top

to bottom). Taking the peaks as approximations of a minimum frequency ω∗ we

can see that the log-relation to height is approximately linear i.e. a power law in

a linear plot. We showed in section §2.1 that for scales larger than a minute a

power law approximation could be used. Loosely speaking therefore we can argue

that the lower frequency velocities are indeed in agreement with this proposition,

i.e., that ω∗ depends on height.

ω
1
.2
E
(ω

)

log2 ω

0 1 2 3 4 5 6 7 8 9 10

Figure 3.32: Log-linear plot of compensated, perpendicular, horizontal wind spectra,
ω1.2E(ω), vs. the normalised frequency, ω; Plots correspond to horizontal wind speeds at
10, 50, 75, 100, 125 and 150m, on the inner position of Mast 2 (shifted from top to bottom).

We can now answer the question – what is H0? It is the scaling exponent of

the velocities above the height of the surface-layer, i.e. the height at which we are

no longer able to observe eddies whose length-scale depend on a surface-friction

velocity. Using, the blue and red plots in figure 3.31 at 50 and 150m we can get a
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rough estimate of the height of the surface-layer; 50m above 150m, therefore our

surface-layer height is 200m.

A Near-Wall Model

We know that for scales ω > ω∗ the eddies are ‘impinged’ eddies. Why we

don’t observe an exact -1 power is a topic we will come back to very shortly.

For scales ω < ω∗ we have a scaling parameter and anisotropy relation defined

by equation 3.22. Note that, even in Korotkov [1976] he mentions that if the

advecting wind is U(x), the friction velocity will (anisotropically) deform the

length scales ℓ∗,x = u∗,xτ of the structures.

For structures of size ℓ > ℓ∗, where ℓ∗ = 1/ω∗, we have spectra that scale as

k−1 i.e. have lower energy flux due friction forces. The structures are anisotropic

if ∆HL(∆z) > 0 (the difference in low frequency exponents at two heights).

Within a cascade framework the energy they contain is (anisotropically) passed

down to smaller scales up to the scale ℓ < ℓ∗ in which there exist only unimpeded

eddies with scaling exponents H0. Due to the higher energy flux in these eddies

anisotropy must be compensated, i.e. increase (with a loss factor of 2) due to

conservation

H0(z)−HL(z) ∝ HH(r). (3.23)

Moreover, one would expect therefore that the increase in anisotropy from large

scales to small scales is proportional to the difference in energy between the two

scale separations with the same loss factor 2. Since the energy at high frequencies

is quantified by H0 we find that

HL(r) ∝ H0 −HL(z). (3.24)

Note we do not need H0 to calculate the proportionality constant, only the spec-

tral exponents at two heights. Figures 3.33 and 3.34 are diagrams that attempt

to conceptually explain this phenomena.
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Figure 3.33: Diagram of surface-layer scalings.

In the diagrams we have also attempted to explain the transition from H0 to

k−1 through an observable domain space. If we start from H0 – a height higher

than the largest impinged eddy – and we move our point of measurement closer

and closer to the surface we find that we are in fact increasing the number of

impinged eddies we observe. However, the number of impinged eddies we observe

are a subset of the fully mixed domain. The intersection of the sets DI and DU

will be defined by the minimum size of the impinged structure hmin. The closer we

are to the surface therefore the larger the contribution of the set DI . This an im-

portant idea because it implies that we will never truly converge to -1 (excluding

corrections for intermittency). Observations of the -1 power law therefore infer

the occurrence of intermittency at the near-wall. Other boundary-layer observa-

tions, specifically Koprov et al. [2005], of the velocity have shown similar scaling

behaviour. In Koprov et al. [2005] however the longitudinal component of the

helicity is also measured to be a passive scalar. They argue that the observation

of a non-zero helicity is characteristic of an enstrophy cascade over larger scales.

This questions therefore the direction of the cascade of the flux (i.e. the sign). A

possible explanation for the complexities that arise later on in this thesis.
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A consequence of impinging eddies is that the cascade ceases to be local (i.e.

interaction between eddies of similar sizes) become non-local (large size difference

of interacting eddies) and the transfer time is no longer the usual eddy-turn over

time (e.g. a time defined with the help of u∗). This drastically changes the

relationship between the energy flux and the energy co-variance (and spectrum).

We later see that the standard methods for estimating universal multifractal

parameters using the usual energy flux density proxy – based on the third order

structure function – fail. Intermittency may also drastically change this picture:

u∗ may fluctuate much more than the usual Gaussian assumption and therefore

yield a different spectral slope.

Figure 3.35 compares the average spectra of the u-component at 23 and 43m.

We can note that the lesser observed anisotropy in figure 3.21 is consistent with

our proposal since ∆HL(∆z) = 0. One possible explanation for this is the much

lower spectral exponent found over the lower frequencies (-0.8 instead of -1) due

to the extraction of energy from the turbines. In the wake of a turbine the

drag forces are generated in a different way to friction forces resulting in a more

three-dimensionally isotropic velocity field.
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The results of all of the above analyses are summarised in Fitton et al. [b].
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3.4 Summary Of Chapter 3

We found that turbulent wind increments are so extreme that their probability

distributions follow a power law. In spite of very different orographic conditions

at 50m heights, empirical estimates of the power law exponent vary between

4 and 5. To investigate this question, we use a rotated frame of reference to

analyse the anisotropy of the horizontal velocity. We found that the scaling

anisotropies of the velocity were far beyond that of mere scaling subranges. Due

to the prevailing direction of the wind the horizontal velocity components of the

wind cannot be treated as i.i.d.s. For time-scales above a few seconds, both data

exhibit a strong, scaling anisotropy that decreases with height. The horizontal

velocity components are in fact so correlated (r > 1) that their statistics are

component-wise anisotropic.

As with the 23/9 dimensional model, the anisotropy reduces the total dimen-

sion of the system that moreover has an immediate effect on the extremes of

a given process. We analytically demonstrate that the power law exponent de-

creases when anisotropy increases, corresponding to wilder and wilder extremes.

This finding gives a first glimpse into one of the many possible turbulence mech-

anisms in the atmospheric surface-layer that may seemingly over-generate wind

increment extremes if they are studied in an isotropic (scaling) framework. We

put forward an analytical expression for the angular variation of the Hurst expo-

nent that determines the generation of wind increment extremes, including those

in the wake of a turbine.

We discuss the surface-layer model that integrates the consequences of the

scaling anisotropies when analysing the atmospheric stability. Although as of

yet we cannot directly quantify the intermittency of a field based on its stability

we have suggested its component-wise anisotropy, and therefore extremes, can

be quantified by ∆H. This brings some particularly useful applications for wind

energy: a means to evaluate surface-layer height and a meaningful parameter

with which to quantify stability.
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Chapter 4

4.1 Background Material On Universal

Multifractals (UM)

In the previous chapter we showed that the processes involved in the surface-

layer are scaling, and anisotropic. Although it was important to show that the

atmosphere is much, much more complicated than the standard homogeneous

isotropic model – a model that is used regularly both in the wind industry and

other applied fluid dynamics related research – it does not bring us any closer

to understanding the true intermittent and multifractal statistics of the wind;

the original task that we had set out to do. Now that we have lots of evidence

that the surface-layer is scaling, multifractals are the next step to take in our

understanding of this complex system. Throughout the first chapter we presented

the historical developments that led to the well-posed problem that is the non-

linearity of the structure function. Understanding and being able to reproduce

this non-linearity is the fundamental problem that must be addressed. If we can

understand how the moments of the structure function are related to the scale

separation ℓ through its scaling moment function we may easily reproduce the

probabilities (and its extremes) of the velocity field.
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Figure 4.1 compares empirical data with: the log-normal model (Gurvich

and Yaglom [1967a]), the random β-model (Benzi et al. [1984]), the p-model

(Meneveau and Sreenivasan [1987]) and the B-model (Yamazaki [1990]). We see

that for the β and K41-models we have linear scaling of moments as a result of

the unique co-dimension. For the other four models we clearly have non-linear

structure functions. This gives us our first taste of reproducible multifractality

and its affect on the ζ(q) due to the scaling moment function, K(q). For the

log-normal and p-models, although non-linear, they struggle to fit the empirical

function due to the lower value of H (i.e. lower than H = 1/3). The random

β-model and B-model do well to fit the curve (note the random β-model required

a renormalisation).

ζ
(q
)

q

K41
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0

0.5

1
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Figure 4.1: Exponent ζ(q) of the structure function. Blue crosses are the empirical structure
function exponents for wind velocities measured in a wind farm test site in Corsica. Time-scales
are from 2 seconds to a minute. The semi-analytical curves are: the log-normal model (green
curve for Φ = 0.1), the random β-model (orange curve for C = 0.63), the p-model (turquoise
for p = 0.13) and the B-model (red curve for ξ = 0.39 and Θ = 0.22). See table 4.1 for the
K(q) functions corresponding to the parameters.

In order to develop a multifractal contribution to the above diagram we must

remind ourselves of the form of the co-dimension function derived for a cascading

energy flux. Two general properties of the co-dimension function are that it is an
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increasing function of γ and that it is convex. Because there is only the convexity

constraint on K(q) and c(γ) (an increasing non-linear function), there are thus

an infinite number of parameters required in order to determine a multifractal

process.

So far, all the cascades that have been described have been discrete. This is

because the scale ratio λ remains unsolved, leading to the construction of cubes

that contain arbitrary properties of the generated structures. In these models

the cascade, i.e. the structure function and thus the co-dimension function’s

moments, because of the weakness of the convexity constraint, require an infinite

number of parameters.

If we simply iterate the model with a fixed ratio of scale λ, we indefinitely

increase the overall range of scales Λ → ∞. On the contrary by fixing the total

scale range of the cascade processes such that λ is finite and then introduce more

and more intermediate scales, the scale ratio between two consecutive cascade

steps converges to 1. In this way, the densification of the cascade can yield

universal behaviour. Schertzer [1987] proposed a continuous model for which

three parameters were relevant enough to fully determine the function K(q),

and thus the co-dimension function (through the Legendre transformation [see

appendix A.7]).
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Universal Multifractal Parameters

We have already noted that the three parameters (H, C1 and α) are of fun-

damental significance where: H characterises the deviation from conservation

(〈ελ〉 = λ−H ; K(1) = −H, C1 is the order and co-dimension of the mean singu-

larities of the corresponding conservative flux (fixed point of the corresponding

c(γ)), it is the local trend of the normalisedK(q) near the mean (K(q) = C1(q−1)

for (q − 1)) and H and C1, thus define the best mono-fractal approximation to

the mean of the process (see figure 4.2 [reproduced from Tessier et al. [1993]]).

Figure 4.2: A schematic illustration showing how the c(γ) curve can be locally characterised
near the mean singularity C1.

The parameter α continues this local description by characterising the local

radius of curvature Rc of c(γ), hence deviation from mono-fractality:

Rc(γ = C1) =
(1 + c′(C1))

3/2

c′′(C1)
= 23/2αC (4.1)
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where the factor 23/2 is introduced for convenience. Using the fact that c(C1) = C1

and c′(C1) = 1 we see that the above definition of α is equivalent to:

d2c(C1)

dγ2
=

1

αC1

. (4.2)

We can establish the corresponding relations for the second derivation and local

radius of curvature of K(q) near q = 1. Hence, we obtain

d2K(1)

dq2
= C1α; RK(1) =

(1 + C2
1)

3/2

C1α
(4.3)

Figure 4.3: A schematic illustration showing the shift in c(γ) of H for non-conservative
processes.
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Finally, for the universal model, the scaling moment function is written

K(q) =





C1

α− 1
(qα − q) +Hq for α 6= 1

C1q log(q) +Hq for α = 1

(4.4)

where α (0 ≤ α ≤ 2) is the Lévy index, C1 is the co-dimension of the mean

singularity and H is the average deviation from the conservation field (see figure

4.3). The bijection between the orders of the moments and the singularities can

be written in the case of α 6= 1 as

qγ =

(
γq

C1α′
+

1

α

)1/α

. (4.5)

This leads to

c(γ +H) =





(
γ

C1α′
+

1

α

)α′

for α 6= 1

C1e
γ/C1−1 for α = 1

(4.6)

In table 4.1, we summarise the turbulence models up to date and, their re-

quired number of parameters (n.o.p.) in comparison with universal multifractals.
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n.o.p. Date References Explanation Parameters

1 1941
Kolmogorov,
(Homogeneous Turbu-
lence)

∆uλ ≈ ε1/3λ−1/3 H = 1/3

2 1962
Kolmogorov-
Obukhov,
(log-normal model)

〈εqλ〉 = λK(q)

K(q) =
Φ

2
(q − 1)q

H,
Φ = 2C1

(α = 2)

2 1964

Novikov-Stewart,
Mandelbrot, Frisch et.
al,
(β-model)

K(q) = C1(q − 1)
H, C1

(α = 0)

∞ 1983-
85

Grassberger,
Hentschel-Procaccia,
Schertzer-Lovejoy,
Parisi-Frisch,
(Multifractal model)

K(q) K(q)

3 1987
Schertzer Lovejoy,
(Universal Multifrac-
tals)

K(q) =
C1

α− 1
(qα − q) H, C1, α

1 1987
Meneveau and Sreeni-
vasan,
(p-model)

K(q) = q − 1. . .
. . . + log2

[
pq+(1−p)

]q p

2 1990
Yamazaki,
(B-model)

K(q) = qξ + q2Θ/2 ξ, Θ

Table 4.1: Summary of Turbulent Models

The parameters H, C1 and α are thus the ‘local’ multifractal hierarchy around

the average behaviour. Below we show that this characterisation will become

global for the universal multifractal (up to the order qD where the divergence of

moments intervenes).

136



Universal attractors of additive processes can be used to deduce multiplying

processes. This can be done by studying the ‘generators’ of the resulting field,

ελ, resulting from the exponential of the generator. Multiplying fields, ελ, are

equivalent to adding generators, Γλ (for fixed scale ratio). We are then led to

seek ‘generators’ that are ‘stable’ and ‘attractive’ under ‘addition’. With the help

of the scaling moment function K(q), which is the second Laplace characteristic

function – also called the cumulant generating function – of the corresponding

generator, we will show these stable and attractive generators are the stable

extremal Lévy noises with 1/f (generalised spectra are characterised by the Lévy

noise α (P (−Γλ ≥ s) ≃ s−α where (s ≫ 1)) =⇒ any q > α : 〈(−Γλ)
q〉 = ∞).

This index is the order of divergence of moments of the generator (except

for the Gaussian α = 2, where there is no divergence). These generators yield

‘universal’ expressions for the scaling function of the moments of the field K(q)

and of the co-dimension function c(γ −H):

1. α = 0:

β-model mono-fractal case study

2. 0 < α < 1:

Log-Lévy process with strong negative singularities, but bounded positive

singularities

3. α = 1:

Multifractal Log-Cauchy

4. 1 < α < 2:

Log-Lévy process with unbounded positive singularities

5. α = 2:

Multifractal Log-Normal1

1Log-Lévy or Log-Normal are misnames because of the difference in behaviour for q ≤ qD.
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The Sampling Dimension

The co-dimension function is a measure of the fraction of the probability space

formed by the total number of samples of dimension D occupied by the singu-

larities of order equal to or superior to γ. If c(γ) is an increasing function for

positive values of γ, i.e. the largest singularities are the rarest, one will find

that the maximum value of γ, denoted γs, observed on at least one sample in Ns

independent samples of volume D is approximated by

Nsλ
Dλc(γs) ∼ 1. (4.7)

Introducing the definition of the dimension of sampling Ds for Ns samples:!
!

D

D +Ds

Ns ≈ λDs

≈

c(γ)

γ
γsD

Rare 

Events 

Extreme 

Events 

Figure 4.4: Schematic illustration of the sampling dimension and how it imposes a maximum
order of singularities γs.
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λDs = Ns, and Ds =
logNs

log λ
. (4.8)

Using equation 4.7 we obtain the following relation for γs:

c(γs) ≈ D +Ds. (4.9)

The last equation shows that the larger the sampling dimension the larger the

spectrum of accessible values of γ (see figure 4.4). Although for universal multi-

fractals the above relation can be solved for γs in practice it is more interesting

to look to qs = c′(γs). The order qs is therefore the highest order moment that

can be reliably estimated with a finite samples size. This moment is given by the

following formula:

qs =

[
D +Ds

C1

] 1

α

. (4.10)
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4.2 Empirical Estimation Of UM Parameters

Linearity

As we saw in the previous chapter it is possible to have a number of scaling

subranges with a variety of scaling exponents. This can cause problems when

estimating the fits of our regressions on large datasets, especially if the position

of a break is unknown, as is usually the case, thus biasing our estimates. To make

life easier, therefore, we start by attempting to estimate the UM parameters on

a single uniquely scaling sample i.e. there is no scaling break, as was commonly

observed in the last chapter. Note, since the spectra is only a second-order

statistic we cannot confirm the unique scaling will persist through higher order

moments.
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Figure 4.5: The energy spectra, E(ω), of a single sample of the horizontal velocity component
u(t). The sample is the velocity measured at 10Hz over one hour. This gives a maximum ratio
of scale, λ = 215. In the plot the highest resolution log2 = 14 corresponds to 5Hz. This file was
chosen as it (visually) showed little noise at the highest resolution. The slope of the solid black
line corresponding to the scaling exponent β is 1.5.

To find a suitable file one would normally apply the following least-squares

fitting method

Ri = yi − f(xi,m), (4.11)
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where m0 and m1 are the intercept and slope in the function m = m0+m1xi and

xi and yi are the independent and dependent variables of a dataset consisting of

i = 1, . . . , n data points. Figure 4.5 plots the function f(xi,m) estimated on the

spectra of a file that has been visually chosen to be scaling.

Using a least-squares fitting method on noisy spectral data like those presented

in figure 4.5 does not give a clear division between data with and without scaling

breaks. One possibility for reducing the noise of a given sample when evaluating

its scaling behaviour is to use the structure function,

ζ(q) = log(〈|∆u(τ)|q〉)/ log(τ), (4.12)

where τ is the time separation between each velocity measurement. One of the

issues associated with this method is that for the larger separations on a fixed

length sample there are fewer statistics. This will typically correspond to a flat-

tening at a scale that unfortunately corresponds approximately to the break in

the data we are trying to avoid.
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Figure 4.6: (a) Log-log plot of the u-component velocity time-increments for moments q = 2,
4 and 6 (from top to bottom); (b) energy spectra for the same sample, spectral exponent
corresponding to the slope of the red line is 1.2.
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Figure 4.6a is an example of the effects of poor statistics over larger scale

separations; specifically log2 λ > 10. For the larger scale separations we find that

for increasingly higher moments a spurious plateau occurs. When estimating the

structure function by calculating the regression over the scale separations, the

higher-order moments artificially decrease the value of ζ(q). Note this does not

happen over the smaller separations due to the sufficient number of statistics. It is

for this reason that the analyses that will involve the structure function hereafter

are restricted strictly to the smallest separations. As a further comparison we

have plotted the spectra from the same data (figure 4.6b). Unlike the moments

of the increments the spectra have a unique scaling exponent through the scales.
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Figure 4.7: Left: blue crosses correspond to the ensemble-averaged first-order structure func-
tion (Corsica) obtained over the scales 0.1 seconds to approximately one-day. The superimposed
green crosses are the structure function computed such that the statistics remain the same at
all scale separations. This method requires 2N statistics. The r.h.s. plot shows the ensemble-
averaged energy spectra over the same time-scales and for the same dataset.

In order to avoid the behaviour caused by the lack of statistics at larger

separations we can take samples of length 2N in order to maintain the same

statistics at all separations. Because the maximum length of each sample we

have is 219 the largest ranges of scales over which we can perform this sort of

an analysis is therefore λ = 29, restricting us mainly to the highest frequencies.

This is surprising that even for a very large, high resolution dataset (six-months

at 10Hz), it is still difficult to obtain reasonable statistics at scales larger than

a minute! It is for this reason alternative methods for analysing the scaling

properties of higher order statistical moments were developed (see §4.2). Figure

4.7 compares the structure functions for decreasing and even statistics at larger
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scales. We can see that maintaining even statistics across the scales doesn’t bring

any additional scaling information.

Empirical Estimates Of The Structure Function

To compute the structure function we require the moments of the increments

of the velocity, either in space or time. In order to reduce the amount of time

needed for the calculation of the moments at different spacings, τ , we have taken

τ to be integer powers of two (in a similar way to the trace and double trace

moment methods), meaning only log2 N operations have to be performed per

sample of length 2N . We have also chosen to cut the daily samples of length

219 into smaller sub-samples of length 215 giving us a total of 2,576 sub-samples

compared to the original 161 used for λ = 219. Increasing the statistics like this

gives much smoother scaling behaviour over the higher frequencies.
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Figure 4.8: Ensemble average of the 2nd, 3rd and 4th moments (bottom to top) of the incre-
ments of the horizontal velocity u versus λ in log-log plot.

Figure 4.8 is the ensemble average of the 2nd, 3rd and 4th moments of the

increments of the horizontal velocity u versus λ (i.e. 1/τ so the orientation of the

function is in the opposite direction to the standard plot) plotted with a log-log

axis. The ensemble average is performed over all 2,576 files. In order to compare
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the scaling of the increments of the structure functions we also computed the

average spectra corresponding to the same data (figure 4.9).

Now, typically either the spectra or the first order structure function are used

to estimate the parameter H. Estimating H from the spectra requires only the

spectral exponent β = 2H + 1 omitting any intermittency correction. Starting

first with the spectra we can see that there is an inertial range from 11
2
seconds

to a minute with a spectral exponent β = 1.27 and therefore Hβ = 0.135.

Calculating H from the increments of the velocity requires the log-log plot of

the increments versus their scale separation. One would expect that the estimates

from the two methods would not be vary to far from each other. However, this

is not the case. For the first order moment of the increments the same smooth

scaling behaviour observable in the spectra was instead curved. Furthermore,

estimation and comparison of the parameter H showed a large discrepancy of the

order 0.2.
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Figure 4.9: Ensemble averaged spectra of the same velocities used to calculate the moments
of the increments in figure 4.8.

As a first order approximation we can estimate HS(q) = (S(q)+K(aq))/q, for

higher moment orders. We found that HS(4) ≈ Hβ, gave the lowest R2 over the

same ranges of scaling as we had observed in the spectra (see top plot of figure
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4.8a). Figure 4.8b shows regressions fitted over higher frequencies, the same

curvature was less visible over lower order moments and the difference between

the R2 values was therefore indistinguishable due to the lower number of points

the regression was estimated over.
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Figure 4.10: Plots of the moments of the velocity increments for q = 1 to 6 versus λ. The mo-
ments are averaged over the full Corsica dataset. The black lines correspond to the regressions
used to estimate the structure function in figure 4.12.

Figure 4.10 plots the structure function for q = 1 to 6 for a larger λ = 218.

The structure functions have been averaged over the full Corsica dataset therefore

giving an average over 161 samples. As done previously we also compare the

spectra (figure 4.11). The range of time-scales that are scaling are comparable;

from one second to a minute (log2 λ = 9 to 14) with a similar scaling exponent

(β = 1.25). The (absolute due to the use of λ on the horizontal axis) slopes of

the black solid regression lines are the scaling exponent ζ(q). Figure 4.12 plots

the function ζ(q).
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Figure 4.11: Average spectra of the velocities used in figure 4.10.
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Figure 4.12: The scaling exponent of the structure function computed from the slopes of
figure 4.10. The non-linear form of the scaling exponent corresponds to strong intermittency
corrections. All of our previous discussions aim to determine this non-linearity (K(aq)).
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Figure 4.12 shows the structure function computed from the slopes of fig-

ure 4.10. The non-linear form of the structure function corresponds to strong

intermittency corrections. All of our future discussions aim to determine the

non-linearity (K(aq)) of the function with the UM parameters α, C1 and H. It is

important to note while ζ(q) is non-linear there is no suggestion that for higher

moments there is the effect of either qs (equation 4.10) or qD (equation 3.9); a

linearity of ζ(q). This is an important result as shows that the structure function

will smooth out the extremes of a process when ensemble averaged. This is con-

sistent with our previous result showing that averaging over different anisotropies

will result in something that appears isotropic. Whether this new isotropic field

is in someway still representative of the sub-anisotropic fields is something we

will discuss in more detail later on.

The Double Trace Moments (DTM)

We would like to estimate the universal multifractal (UM) parameters α, C1 and

H in order to reproduce the structure function of figure 4.12. The standard way

to estimate the parameter α and therefore C1 is to use the double trace moment

(DTM) method. There are different means by which to do this however the usual

way (see Lavallée [1991] and Schmitt et al. [1992]) is to define a normalised ηth

power of the flux density ε

ε
(η)
Λ = εηΛ/〈εηΛ〉 (4.13)

at the highest resolution Λ = 1/τ0, on which the trace moments (TM)s are then

performed in the usual manner (this consists of taking the mean of the flux for

different λ and q). In Schmitt et al. [1992] there is no mention of the use of

the normalisation 〈ε(η)Λ 〉, however, it is used in Veneziano and Furcolo [1999]. In

Veneziano and Furcolo [1999] the normalised flux is defined instead as

ε
(η)
λ = εηλ/〈ε

η
λ〉. (4.14)

Indeed for a scaling positive flux we can upscale ε
(η)
Λ to the resolution λ to obtain

the same result. The difference is however significant if instead of ε the non-

positive velocity increments are used. This is discussed in more detail later on.
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For DTM analyses we therefore use only equation 4.14.

Defining The Flux

In order to simulate a multifractal flux one requires the C1 parameter of the

conservative flux. It is for this reason that the DTMs are usually defined on ελ.

This, however, isn’t a necessary condition, merely a convenience since estimating

the DTMs on the absolute velocity field requires an additional correction of the

parameter C1,∆u, i.e., C1,ε = C1,∆u3
α. It is usually easier therefore to simply

calculate the parameters directly on a conservative field.

The flux is commonly defined as the third power of the velocity increments

i.e. ελ = |∆uλ|3λ. The DTM method is then applied to ελ (a positive quantity)

in order to obtain the multifractality, α, and the mean co-dimension, C1. When

using this method we assume the linearly scaling part (λ−H) is ignored. So what

exactly does that mean? We showed in chapter one that the moments of the

energy flux may scale as λ with exponent K(q) (equation 1.14). From equation

4.13 we therefore have

〈(ε(η)λ )q〉 ∝ λK(qη)−qK(η). (4.15)

Using the universality classes defined before i.e.,

K(q) =
C1

α− 1

(
qα − q

)
, (4.16)

we obtain

K(q, η) = ηαK(q). (4.17)

This is a very important result as it gives an expression for the exponent α,

independently of the resolution λ. This means we should be able to calculate the

scaling non-linear part of the structure function (Kε(q)) without the influence of

λqH .

Figure 4.13 plots the DTMs computed on ελ for q = 1.5 and log η ∈ [−3 : 1]

and the corresponding slopes estimated over the whole range of scales i.e. from

0.1 seconds to an hour. If we compare the scaling to that of the structure function

it would seem that the curvature of the DTMs moments doesn’t seem to be the

result of a scaling break, more a problem with the assumption that |∆u|3λ is not
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a relevant proxy for the flux of energy flowing through the full range of scales

and/or the Taylor hypothesis does not hold over this range.
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Figure 4.13: (a) plot of the DTMs estimated on the third power of the velocity increments
for q = 1.5 and log η ∈ [−3 : 1]. The slopes of these curves yield an estimate of K(q, η) due to
equation 4.14; (b) log-log plot of the slope K(q, η) versus η for q = 1.5.

Local Estimates Of The DTMs

By equation 4.17 the multifractality is the slope of the log-log plot of the double

trace momentK(q, η) versus the moment order η (figure 4.14a). The slope (α) can

be estimated using a number of methods (see Hoang [2011]), one of which counts

a number of points about an inflection point should one exist. One method for

determining the inflection point is to take the maximum local derivative, where

the local estimator

α̂(q, η) =
∂ log(K(q, η))

∂ log(η)
=

η

K(q, η)

∂K(q, η)

∂η
(again by equation 4.17) (4.18)
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Figure 4.14 shows the standard s-shape versus the local estimate.
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Figure 4.14: (a) Log-log plot of the K(q, η) function versus log η ∈ [−6 : 2]. The slope of the
linear part gives the estimate of α; (b) the local derivative, α̂, of the curve given in (a) (blue)
and the curve for a single measuring run (red).

The behaviour of the inflection point is a good indication of the quality of the

estimate α; typically falling into one of three categories:

A wide range almost constant slope indicates the most stable estimate of α

(blue curve in figure 4.14b). This is where the local derivative (α̂) exhibits

a plateau like behaviour over a range of log η. The length of the range

over which α̂ remains constant can be used as a quantification of stability.

Providing the field is scaling, ensemble averaging over a large number of

samples with a small ratio of scales or having a small number of samples

with a very large ratio scales, in general, resulted in a more stable estimate.

A unique inflection point indicates a reasonably stable estimate of α (red curve

in figure 4.14b). Because the points either side of the inflection point de-

crease, the value of α will also decrease depending on how many points

either side are included in the estimate. If the inflection point remains

constant over a given range of log η the number of points taken either side

doesn’t matter since α remains the same.

A non-unique inflection point indicates an unstable estimate of α. If there

is more than one or no inflection point in general we find a much higher
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estimate of α. We discuss the possible reasons for instabilities in more detail

later on.

One of the problems with looking to the DTMs over the full characteristic

s-shaped range of the curve is, for the highest values of log η (in figure 4.13b this

corresponds to log η ∈ [0 : 1]) the flattening of the DTM curve corresponds to

the highest moment, qs, that can be reliably estimated by a finite sample size.

The effect of qs is a spurious linearity of the non-linear K(q, η) function. The

flattening at the smallest values of log η (from -6 to -4) is due to the number of

zeros in the sample (see Hoang [2011] for details). Figure 4.15 illustrates this

effect by adding and removing zeros from the sample. When all of the zeros

are removed from the sample the estimator converges to two (the Lévy index for

the log-normal model). When there are additional zeros added, the range over

which the plateau exists is reduced up to the point where the original α̂ estimate

becomes distorted from ∼ 1.5 to 1.
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Figure 4.15: Plot of α̂ with zeros added and removed from a flux estimated on the third
power of the velocity increments (red curve). Original estimated flux contained around 200
zeros. The green and blue curves correspond to 50 and 100% of those zeroes being removed.
The turquoise and purple curves correspond to 50 and 100% of those zeros being added.
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Coming back now to the DTMs of |∆u|3, if one looks to the upper most curves

of figure 4.13a (corresponding to the aforementioned high values of log η, the qs

range) we may believe that the scaling is quite reasonable (possibly consisting of

two or three scaling regions). However, if we look in a more objective manner

using the normalised root mean squared error (NRMSE) as a function of log η

(figure 4.16b) we find that for decreasing log η we have decreasing NRMSE.

In fact, over the very range where α̂ is constant (log η from -2 to -1), we

have the worst possible scaling. The risk of basing the quality of scaling of the

DTMs on this spurious linear scaling can be particularly misleading when the

flux of the process is unknown (see Fitton et al. [a] for example). As discussed

in the previous section, this is presumably the case in the surface-layer; due to

impinging eddies and other anisotropic complexities. We may therefore consider

a more general relation than K41 between the velocity increments ∆u and the

flux χ

∆uλ ≈ χa
λλ

−h, (4.19)

where, χλ is a conservative process and a and h are given scaling exponents. If

our process is unknown or the combination of different processes, the power we

choose will change the range of the linearity of the DTMs such that q′s = aqs.

α̂

log η

−3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

(a)

N
R
M
S
E

log η

−3 −2 −1 0 1
0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 4.16: (a) the local derivative of the curve in figure 4.13b giving a local estimate of α,
i.e. α̂ = α(η); (b) plot of the corresponding NRMSE versus log(η).
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We later show that the value of a simply translates the α̂ function, making

it important to check and compare the scaling of the DTMs within the range of

log η that α is estimated. For K41, a = h = 1/3 and χλ ≡ ελ.
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Figure 4.17: The DTMs estimated on the third power of the velocity increments (ε = |∆u|3)
for q = 1.5 (the same as in figure 4.13a) but for log η = 0.5, 0, -0.5, -1, -1.5 and -2.

With this in mind we now look only to the DTMs for the values of log η where

the plateau occurs. Figure 4.17 plots the DTMs at the points log η = 0.5, 0, -0.5,

-1, -1.5 and -2. The poor scaling of the DTMs over log λ is indeed in agreement

with the low NRMSE values but in contradiction to the scaling observed in the

spectra. The scaling is so bad that it implies that a fit over different λs would

give UM parameters dependent on scale.
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4.3 The Fractionally Integrated Flux (FIF)

Instead of simply taking the power of the increments of the velocity we can at-

tempt to remove the linear part of the structure function by fractional integration.

Exactly which field should be fractionally integrated i.e. the velocity field, u, it-

self or the increments, ∆u, is not always clearly defined in the literature. Either

way, we would expect the scaling exponents of each to be related by h∆u = hu−1.

To satisfy equation 4.19 it is sufficient to consider (∗ denotes the convolution1)

uλ = χa
λ ∗ |t|h. (4.20)

In Fourier space this corresponds to

ûλ ∝ χ̂a
λ · |ω|−(1+h). (4.21)

As discussed above, our motivation is to find an order of fractional integration

such that there exists a scale invariant flux χλ that satisfies equation 4.19. This

is done by varying the order of fractional integration such that the DTMs become

linear.

Figure 4.18 shows the effect of convoluting the u-component velocity for differ-

ent values of h. For low h the DTM curve is concave in an inverse fashion to that

observed in figure 4.16a. As h is increased the curved DTMs become more and

more linear until at h = 0.15 we have our desired (linear in log-log plot) scaling

as further highlighted by the solid black regression line. As we further increase

h the convex curvature we found for the DTMs becomes apparent. If we were to

further increase the value of h to 1/3 we would find the same curved scaling that

we observed in our previous plots since for ε = ∆u3λ we have hypothesised a

scaling exponent h = 1/3. This result shows that over the time-scales 0.1 seconds

to an hour the K41 scaling exponents aren’t applicable.

1For the convolution to have a scaling exponent −h, you need to use a kernel Xh−D, where
D is the dimension of the space (here 1). This is discussed in the appendix of Schertzer et al.
[1997].
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Figure 4.18: The DTMs calculated on the fractionally integrated velocities of our pre-selected,
uniquely scaling, spectra in figure 4.5. The DTMs have been computed for q = 1.5 and log η = 0
for h ∈ [0.05 : 0.05 : 0.25]. Here h corresponds to a de-convolution of χλ according to equation
4.20. The exponent a = 1/3.

We can manipulate the linear behaviour of the DTMs in order to determine

the conservation parameter H for each sample. For each sample we calculate the

DTMs on χ(h) (we used a larger set of the values of h to take into account as

much of the variation as possible i.e. h ∈ [0 : 1] for u and h ∈ [−1 : 0] for ∆u)

and select the value of h with the highest NRMSE of the DTMs. We then assume

this optimised value is the correct parameter of conservation, i.e. H = h.

Performing this operation on u over all scales (this meant including files with

scaling breaks) gave a mean NRMSE of 0.86 compared to 0.65 for h = 1/3. Figure

4.19a is a histogram of h. The mean (h = 0.1) is not far from the single sample

value we used to test the method in figure 4.18. To ensure a high fidelity we have

use samples with NRMSEs > 0.86. This filtering leaves a total of 1,052 out of

the total 2,576 available samples. Figure 4.19b compares the local estimates of α

for h = 0.1 and h = 1/3 for the 1,052 samples. It is clear that if the correct value

of h is not applied the estimator will give unphysical estimates of α̂, i.e. α̂ = 4!
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Figure 4.19: (a) Histogram of
h calculated over the full Corsica
dataset over the scales 0.1 sec-
onds to an hour. The parame-
ter h is optimised on the moments
q = 1.5 and log η = 0. The mean
h = 0.09± 0.1. (b) plot of the lo-
cal estimates of α for h = 0.1 and
h = 1/3 for samples with NRM-
SEs > 0.86 (approximately 1,000
samples)

In our former results we defined the power of the flux density as the third

power of the convoluted velocity and velocity increments as proposed by Kol-
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mogorov. However, what we have seen is that h is in fact between 0.05 and 0.15

assuming the linearity of the DTMs is a good indication of the estimation of the

parameter. What we haven’t taken into account are the consequences of changing

h without changing a. In figure 4.20 we have taken our uniformly scaling sample

and performed the DTM technique on the data for fixed a = 1/3 and increasing

h (h ∈ [0.1 : 0.5]) and fixed h = 1/3 and increasing a (a ∈ [1/5 : 1]).
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Figure 4.20: DTM analyses preformed for fixed a = 1/3 and increasing h: (left) local estimate,
α̂, of the multifractality parameter α; (right) second order derivative of K(q, η; a = 1/3).
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Figure 4.21: DTM analyses preformed for fixed h = 1/3 and increasing a: (left) local estimate,
α̂, of the multifractality parameter α; (right) second order derivative of K(q, η; a).

In figure 4.20 the effect of decreasing h causes a rightward shift in the posi-

tion (roughly determined by max(ˆ̂α)) of the plateau/spike where α is estimated.

Inversely, in figure 4.21, the effect of increasing a causes a leftward shift in the

position of the plateau/spike where α is estimated. We know that for log η = 0

the flux is well defined. We can attempt to normalise either a or h by forcing the

position of max(ˆ̂α) to be at log η = 0 – compensating one with the other or vice

versa. Figure 4.22 shows the correspondence between the two parameters.
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Figure 4.22: Plot of h versus a.

We can see that the relationship between the two parameters is linear as would

be expected for K41. For a purely Kolmogorov process we expect H and a to

have a one-to-one correspondence. Similarly for a Bolgiano-Obukhov process we

expect H and a to be related by a factor 3. What we find is something in-between

the two processes (a factor of 2.5) suggesting that there is a mixture of each of

these processes. Moreover, in the classical definition of the structure function

ζ(q) = Hq −Kε(aq), (4.22)

we find that for q = 1/a and ζ(1/a) = H/a. More generally

H(a) = ζ(1/a)a. (4.23)

Figure 4.22 clearly shows that equation 4.24 requires an intermittency correction

H(a) = ζ(1/a)a+ b (4.24)
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where b ≈ 0.04. Figure 4.23 compares α̂ for a = 0.5 and h ∈ [−1 : 0.01 : 1], a

much larger range of values. Although complex on first appearance, what is of

particular interest in this figure is the area under all of the sub-plots. It suggests

that there is a stable estimator that can be determined through the ranges of η

and h. Something we will come back to shortly.
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Figure 4.23: Comparison of α̂ for a = 0.5 and for h ∈ [−1 : 0.01 : 1].

Local Surface Plots

When calculating the DTMs typically a single value of q is selected for a range

of η or vice versa. Due to advances in computing power and vectorised functions

we were instead able to calculate the DTMs over a large number of values of

both q and η resulting in a surface plot. Figures 4.24 and 4.26 perform the same

technique (i.e. optimising h at q = 1.5, log η = 0) for ∆u and u on the same

sample. Optimal h corresponds to the solid black α̂ plot in figures 4.24a and

4.26a. We then compute the surface α̂(q, η). To reiterate, we are optimising the

DTMs of χλ(h) such that they are the most linear at q = 1.5 and log η = 0.

After h = H is found we compute the DTMs for a range of q and η (specifically

q ∈ [0 : 4] and log η ∈ [−4 : 2]) on the flux χλ(H). In the remaining analyses we

do not raise χλ(H) to any power, i.e. a = 1. Figures 4.25 and 4.27 illustrate that
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both u and ∆u become more or less convex/concave with increasing or decreasing

values of h.

As briefly discussed in the last section the relation between the exponents hu

and h∆u should be h∆u = hu − 1. For the same h values differing by a factor 1

i.e. -0.82 and 0.22, we obtain the most linear DTMs for both χ(hu) and χ(h∆u)

thus confirming this property. The corresponding estimates of the parameter C1,

however, are not the same. Since in both cases α = 1.6 we can estimate the

correction between the two as C∗

1 = C1(a)
α by equation 4.17. giving a to be

approximately of the order two. This is further evidence that the power law λH

isn’t respected.
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Figure 4.24: Plots of α̂ (left) corresponding to the DTMs (right) estimated on χλ(h) =
|∆u ∗ |t|h| (from bottom to top) for h∆u = −0.92, -0.87, -0.82, -0.77, -0.72. Corresponding UM
parameters at q = 1.5 and log(η) = 0 are α = 1.48, 1.54, 1.60, 1.65, 1.69 and C1 = 0.033, 0.033,
0.0320, 0.031, 0.030. Solid black lines in both plots correspond to h = H = −0.82.
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Figure 4.25: Surfaces α̂(q, η) (a) and Ĉ1(q, η) (b) for q ∈ [0 : 4] and log η ∈ [−4 : 4], estimated
on χ(0.82) = ∆u ∗ |t|−0.82.
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Figure 4.26: Plots of α̂ (left) corresponding to the DTMs (right) estimated on χλ(h) = |u∗|t|h|
(from bottom to top) for h = 0.12, 0.17, 0.22, 0.27, 0.32. Corresponding UM parameters at
q = 1.5 and log(η) = 0 are α = 1.75, 1.70, 1.60, 1.53, 1.51 and C1 = 0.005, 0.007, 0.01, 0.013,
0.018. Solid black lines in both plots correspond to h = H = 0.22.
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Figure 4.27: Surfaces α̂(q, η) (a) and Ĉ1(q, η) (b) for q ∈ [0 : 4] and log η ∈ [−4 : 4], estimated
on χ(0.22) = u ∗ |t|0.22.

We may note that the seemingly inverse convex/concave behaviour we observe

between χ(h) = u ∗ |t|h and χ(h) = ∆u ∗ |t|h for this single sample are not

representative of the general behaviour observed between the two fields. We

found that the samples could curve as either of two plots shown here (figures 4.24

and 4.26).
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4.4 h-Optimised UM Parameter Surfaces

We have seen that we can force the DTMs for a fixed value of q and η to be

linear by fractionally integrating or differentiating either the velocity field or its

increments respectively. The blue plot in figure 4.28 (superposed by the solid

black regression line) shows the DTMs of the fractionally differentiated velocity

increments with h(q, η) = −0.84, for q = 1.5 and η = 1. In figure 4.28 we plot

the same curves but for K(q ± 1, η) (a) and K(q, η ± 1) (b). What this shows

is that although we are forcing the DTMs to be linear at a given value of q and

η, raising χ(h) to different moment orders changes the value of h needed to have

linear DTMs.
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Figure 4.28: DTMs of the fractionally differentiated velocity increments with h(q, η) = −0.84,
for q = 1.5 and log η = 0 (blue plot superposed by black solid line). The purple curves either
side show K(q ± 1, η) (a) and K(q, η ± 1) (b). The DTMs have been normalised by K(q, η) at
Λ.

In order to have a truly optimised-local estimate we must also optimise α̂.

Since η is discretised we can optimise h at qi and ηi and then estimate α̂ over ηi−1

and ηi+1. The locally optimised parameter C1,h(qi, ηi) is found by substituting

αh(qi, ηi) and ηi into equation 4.16. Figures 4.29 and 4.30 show the surfaces

h(q, η), αh(q, η) and C1,h(q, η).
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Figure 4.29: Surface plots of h(q, η) (top) and αh(q, η) (bottom) for q ∈ [1 : 4] and log η ∈
[−3 : 3].
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Figure 4.30: Surface plot of C1,h(q, η) for q ∈ [1 : 4] and log η ∈ [−3 : 3].

We can see from figure 4.29 (top) that h(q, η) shows significant variation across

log η ∈ [−3 : 3] and q ∈ [1 : 4]. In particular across log η we see h varies from

-1 to -0.7. The variation across q isn’t so easily observed but is still there. We

will come back to this later. Figure 4.29 (bottom) plots αh. Although there is

significant variation in h we are still able to observe a very well defined plateau

in αh suggesting that for this sample α = 1.5. Unlike αh, the surface of C1,h

in figure 4.30 shows wave like behaviour across log η. Something of a mixture

between the two previous surfaces. Again the variation in C1,h through q is

difficult to see in this format. There seems to be a singularity that occurs over

larger values of log η in the function of C1,h(q, η). This is simply because C1,h(q, η)

is estimated from αh(q, η), and In figure 4.29 (top) αh(q, η) tends to zero for large

log η hence the occurrence of the singularity. The strong non-linearity in both

h(q, η) and C1,h(q, η) seems likely to be a triviality overlooked in the estimation

of the parameters. However, as we will see in the remaining parts of the thesis,

this triviality is much more complex to decipher than one might hope.

165



4.5 Multifractal Phase Transitions

When a first order multifractal phase transition occurs at a given critical moment

order qD (i.e. a divergence of statistical moments for orders q ≥ qD), the ‘dressed’

TM scaling function KD(q) has the following expression (G denotes the Heaviside

step function) with respect to the ‘bare’ TM scaling function K(q):

KD(q) = G(q − qD)(γ∆s
(q − qD) +K(qD)) + (1−G(q − qD))K(q) (4.25)

where the critical singularity γ∆s
is the largest singularity almost surely present

in a sample of overall sampling dimension ∆s. ∆s can be estimated as:

∆s = D +Ds; Ds ≈ logλ(Ns) (4.26)

where D is the dimension. The largest singularity, γ∆s
, is increasing with sample

size from γs for a unique sample to infinity for an infinite sample. The order

qD is sample size independent, where γD = K ′(qD) (prime denotes a Legendre

transform), for a unique sample. The function K(qD) was defined in equation

3.9.

DTM Estimator Of The Index Of Multifractality

For UM’s, the local log slope of the DTM scaling function K(q, η) corresponds to

the estimator α̂ defined in equation 4.18. The corresponding dressed DTM scaling

function KD(q, η), has a similar expression to that of the bare DTM (equation

4.17) but with respect to the dressed KD(q) instead of the bare K(q),

KD(q, η) = K(qη)− qK(η) . . .

· · ·+G(qη − qD)(γ∆s
(qη − qD) +K(qD)−K(qη)) . . .

· · · − q(G(η − qD)(γ∆s
(η − qD) +K(qD)−K(η)).

(4.27)
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Figure 4.31: The four regions (s1 to s4) of the plan (log(η, q)) delineated by the critical lines
∆ (η = qD) and E (q = qDe− log(η)); (a): s1 – no phase transition, (b): s2 with both phase
transitions, (c): s3 with a unique phase transition at qη = qD and (d): s4 for η = qD.
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As a consequence of this the effective local DTM estimator α̂D(q, η), estimates

the local log slope of the DTM scaling function KD(qη) such that

α̂D(q, η) = ∂ log(KD(q, η))/∂ log(η) = η∂KD(q, η)/KD(q, η)∂η (4.28)

where

∂KD(q, η)/∂η = q(K ′

D(qη)−K ′

D(η))

= q(K ′(qη)−K ′(η)) . . .

· · ·+ q(G(qη − qD)(γ∆s
−K ′(qη)) . . .

· · · −G(η − qD)(γ∆s
−K ′(η))).

(4.29)

This expression already points out that the phase transitions unfortunately yield

spurious multifractality exponent estimates α̂D, as confirmed in the next sec-

tion. It is convenient to systematically introduce into the above equation the

singularities γ(q) = K ′q). We find equation 4.29 is then

∂KD(q, η)/∂η = q(γ(qη)− γ(η))

· · ·+G(qη − qD)(γ∆s
− γ(qη)) . . .

· · · −G(η − qD)(γ∆s
− (1−G(η − qD))γ(η))).

(4.30)

Similarly the co-dimension c(γ(q)) = qγ(q)−K(q) can be used in the expres-

sion of KD(q, η) (equation 4.27):

KD(q, η) = K(qη)− qK(η)

· · ·+G(qη − qD)((γ∆s
− γD)qη + c(γ(qη))− c(γD) . . .

· · · − q(G(η − qD)(γ∆s
− γD)η + c(γ(η))− c(γD).

(4.31)
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Behaviour Of The Effective Estimator

Both the expressions of KD(q, η) and ∂KD(q, η)/∂η (equations 4.27 and 4.29)

show that there are four different behaviours of α̂D (equation 4.28, corresponding

to the four sectors s1 to s2) of the the plane (log(η), q) delimited by the following

critical lines ∆ and E (respectively a straight line and exponential curve, see

figure 4.31):

∆ = {(log(η), q)⌊η = qD} (4.32)

E = {(log(η), q)⌊q = qDe
− log(η)} (4.33)

where ∂KD(q, η)/∂η is no longer point-wise defined, in particular in the quadruple

critical point (log(qD), qDe
qD) corresponding to the the intersection of s4 and E.

No Phase Transition

The absence of a phase transition means that α̂D(q, η) ≡ α̂(q, η), therefore yield-

ing a non-spurious estimate of α. This corresponds to the area s1 of the plane

(log(η), q), to the l.h.s of the straight line ∆, the exponential curve E (figure

4.31), and the plateau α̂D(q, η) = α of figure 4.31a:

η < qD and qη < qD :

∂KD(q, η)/∂η = q(γ(qη)− γ(η))

KD(q, η) = K(q, η); α̂(q, η) = α

Two Phase Transitions

A double phase transition corresponds to the sector s2 in figure 4.31b, i.e. on

the l.h.s area of the straight line ∆ and the exponential curve E as well as to the

plateau α̂D(q, η) = 0. In a rather straight forward manner, both phase transitions

at η = qD and qη = qDη yield the same linear behaviour for KD(η) and KD(qη)
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and therefore both cancel in ∂KD(q, η) (equation 4.29). More precisely:

η > qD and qη > qD :

KD(q, η) = (q − 1)(γ∆s
qD −K(qD))

∂KD(q, η)/∂η = 0 = α̂D(q, η); ∂KD(q, η)/∂q = γ∆s
qD −K(qD)

It is worthwhile to note that the constant slope ∂KD(q, η)/∂q of KD(q, η) with

respect to q is positive, because:

γ∆s
qD −K(qD) = (γ∆s

− γD) qD + c(γD) (4.34)

where both terms are positive (the Legendre transform was used to obtain form

K(qD) the co-dimension c(γD) on the right-hand side of the equation). Conse-

quently, in this sector of the plane (log(η), q), KD(q, η) is negative for q ≤ 1 and

positive for q ≥ 1, as is in the sector s1 .

A Unique Phase Transition

A unique phase transition yields spurious estimates of α̂D(q, η), corresponding to

a transition between the two plateaux α̂D = α (section 4.5) and α̂D = 0 (section

4.5)

Phase Transition In qη = qD

This phase transition corresponds to the section s3 of figure 4.31, i.e. the upper-

most sector defined by the curves ∆ and E in the plane (log(η), q).

η < qD and q η > qD :

KD(q, η) = γ∆s
(qη − qD) +K(qD)− qK(η)

∂KD(q, η)/∂η = q(γ∆s
− γ(η)); ∂KD(q, η)/∂q = γ∆s

η −K(η)

α̂D(q, η) = qη(γ∆s
− γ(η))/(γ∆s

(q η − qD) +K(qD)− qK(η))
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It is worthwhile to note that the slope ∂KD(q, η)/∂η of KD(q, η) with respect

to η is linear with respect to q and is positive. This is because the singularity

γ(η) = K ′(η) is smaller than γD in the sector s3 of the plane (log(η), q), whereas

γ∆s
is larger.

Phase Transition In η = qD

This corresponds to the sector s4 of figure 4.31, i.e. the lower sector defined by

the curves ∆ and E in the plane (log(η), q).

η > qD and q η < qD :

KD(q, η) = K(qη)− q(γ∆s
(η − qD) +K(qD))

∂KD(q, η)/∂η = q(γ(qη)− γ∆s
); ∂KD(q, η)/∂q = η(K ′(q η)− γ∆s

)

α̂D(q, η) = qη(γ(qη)− γ∆s
)/(K(qη)− q(γ∆s

(η − qD) +K(qD)))

This time, the slope ∂KD(q, η)/∂η of KD(q, η) with respect to η remains linear

with respect to q, and negative. This is now because the singularity γ(q η) is

smaller than γD in the sector s4 of the plane (log(η), q), whereas γ∆s
is larger.

Singular Behaviour Along The Critical Borderline Of The Sector s1

This critical borderline corresponds to the union of E+ = E ∩ {q > 1} and

∆− = ∆ ∩ {q < 1}. The term ∂K/∂η has the jump ∆(∂K/∂η) across E+ (from

left to right, i.e. for increasing η’s)

∆(∂K/∂η) = q(γ∆s
− γD), (4.35)

and an opposite jump across ∆−

∆(∂K/∂η) = −q(γ∆s
− γD). (4.36)
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The term K(q, η) has no discontinuity. Putting the two expressions together we

obtain the following jump ∆(α̂D) for α̂D across E+−

∆(α̂D) = qD(q/qD)
α(γ∆s

− γD)/K(q), (4.37)

and across ∆−

∆(α̂D) = (q/qα−1
D )(γ∆s

− γD)/⌊K(q)⌊. (4.38)

Singular Behaviour Along The Critical Borderline Of The Sector s2

This critical borderline corresponds to E− ∩ ∆+ with E− = E ∩ {q < 1} and

∆+ = ∆ ∩ {q > 1}. The term ∂K/∂η has the following jump across ∆+

∆(∂K/∂η) = q(γD − γ∆s
), (4.39)

and again an opposite jump across E−

∆(∂K/∂η) = −q(γD − γ∆s
). (4.40)

Again, using the fact that K(q, η) has no discontinuity, we obtain the following

jump ∆(α̂D) across

∆(α̂D) = (γ∆s
− γD)/(⌊q − 1⌊(γ∆s

qD −K(qD)) (4.41)
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Empirical Evidence Of qD

Figures 4.32 and 4.33 use a fixed h approach; h is optimised at q = 1.5, log η = 0,

and the DTMs are computed for the remaining values of q and η. Figures 4.34,

4.35 and 4.36 use the h(q, η) approach. We were also interested in whether or not

the same behaviour occurred for the velocity field itself not just for the increments.

Figures 4.33 and 4.35 analyse ∆u while 4.32 and 4.34 analyse u.
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Figure 4.32: Fixed h approach with hu = 0.16 in (a) and hu = 0.2 in (b); estimated at q = 1.5,
log η = 0 on the fractionally differentiated u-component velocity. L.h.s plots corresponds to the
sample attributed to qD and the r.h.s plots are attributed to qs.
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Looking to figure 4.32 (fixed point on u), the first obvious difference between

the two samples is the value of hu. The qs attributed sample has hu = 0.2 and

for the qD attributed sample hu = 0.16. It is not clear whether the difference in

hu is the result or the consequence of higher (1.5) and lower (< 1) bands of α

over log η ∈ [−1 : 0]. Nonetheless, the contrast between adjacent bands is clearly

stronger in the case of qD, varying from 1 to 2 from log η = 0 to 1.
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Figure 4.33: Fixed h approach with h∆u = −0.8 (hu = 0.2) estimated at q = 1.5, log η = 0
on the fractionally differentiated u-component velocity increments ∆u. L.h.s plots corresponds
to the sample attributed to qD and r.h.s plots attributed to qs.
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In figure 4.33 (fixed point on ∆u) we see now that h∆u remains the same for

both sample types. The largest difference now is in the surface plot of α̂. As with

figure 4.32, α̂ remains similar in value (1.7) across lower values of log η (from 0 to

-3). Over values of log η > 0 the sample attributed to qs exhibits a low band of

α ≈ 1.5 whereas the sample attributed to qD has the characteristic discontinuity

show to occur in the previous section; consistent at least with the plots for u.
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Figure 4.34: Optimised hu(q, η) estimated on the fractionally differentiated u-component
velocity. L.h.s plots correspond to the sample attributed to qD and r.h.s plots attributed to qs.
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Figure 4.35: Order-Dependent optimisation method h∆u(q, η) estimated on the fractionally
differentiated u-component velocity increments ∆u. L.h.s plots corresponds to the sample
attributed to qD and r.h.s plots attributed to qs.

In figure 4.34 the discrete nature of the optimisation method now becomes

visible. We can see that (for u) the occurrence of the phase transition range

qη = qD (range s3 from §4.5) is now marked by a 0 estimation of hu(q, η). This is

because we are unable to optimise h on the DTMs because they are already linear.

This results in the minimum value being selected (h = 0). The difference between

the two samples is now much clearer. The lower order occurrence of linearity in
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ζ(q) for qD is reproduced in the surface plots corresponding to a much larger s3

section. For qs this range is much smaller resulting in a stable band of α̂ that

gives α ≈ 1.5. As with the fixed h method we find α to be much smaller for qD

of u (≈ 1).

In figure 4.35, as in the h point method, we find that α̂ is similar in value for

both samples, across q and η. It isn’t clear why α varies so much when calculated

on u. One explantation may be that the range of estimation across log η is shifted

rather than the exponent itself changing. Differentiating the field in real space

(∆u) and then fractionally integrating by H + 1 will not give the same result as

simply fractionally integrating by h particularly if λ does not follow a power law.

We have seen in the previous section that the K(q, η) function will shift from left

to right depending on the value of h. Depending on which operation is performed

we may shift the function in or out of the good range of log η for estimation.

Finally, we may note that in all of the above figures one main consistency

remains in that h and C1 are either lower or higher depending on if there is qs

or qD. When there is qD both h and C1 are low, h = 0.1 and C1 = 0.01. When

there is qs, h = 0.2 and C1 = 0.03. Although this seems counter intuitive it is

indeed in agreement with a reduction in dimension due anisotropy.

Figure 4.36 plots the surfaces h∆u, αh∆u
and C1,h∆u

averaged over the full

dataset. The strong discontinuities have been somewhat smoothed, however, it

is clear qD still exists. This is a very important result as it is suggests that

the structure function cannot reproduce the same behaviour i.e. a divergence of

moments, when ensemble averaged over the dataset as discussed briefly in §4.2.

Finally, the order-dependent optimisation method does not bring a great deal

of additional information to that of the fixed-h method when used over a large

number of statistics. Its main use is to be found on the individual statistics of

the sample. Something we discuss in the next section.

In the remaining sections we focus our attention solely on the UM parameters

estimations based on ∆u. This seemed to make more sense as the field is directly

comparable with the statistics of the structure function. For brevity of notation

we drop the ∆u suffix from h∆u.
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Figure 4.36: Order-dependent optimisation method h∆u(q, η) estimated on the fractionally
differentiated u-component velocity increments ∆u; ensemble averaged across the entire Corsica
dataset.
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4.6 Reconstruction Of The Structure Function

There is a particular inconsistency that has arisen between the structure function

and the extreme behaviour we are trying to understand. We recall that, from the

very beginning, our aim has been to reproduce the highly intermittent velocity

wind increments for use in applied wind energy related areas. We showed through

empirical estimation of the power-law tails of the increments that qD-compatible

behaviour was observable on almost every sample; averaging a value of around 4

a the highest resolution and 5 at larger time-scales. The inconsistency that has

arisen is therefore the lack of the prediction of the linearity of the higher-order

moments due to the effect of qD.

We have shown theoretically that the spike seen in the surface plots of α̂

estimated from the DTMs is due to qD. We have also shown that the occurrence

of qD is easily possible for even slightly component-wise anisotropic fields. What

is incompatible with the empirical data is the lack of linearity of ζ(q) that should

occur over the moments q > qD ≈ 4, assuming our ‘empirical’ estimations of qD

are meaningful. Note for a power estimated on the cube of the velocity increments,

it is not clear that even the mean will be well defined. It seems that by ensemble

averaging the structure function this behaviour becomes obscured.

The Kh(q) Function

Figure 4.37 takes two samples, a sample that exhibits a particularly large spike

and a sample that exhibits a plateau-like behaviour, i.e. the effect of qs and

qD a first and second-order phase transition. We then compute the following

scaling moment function (the sub-index-h refers simply to the function parameters

optimisation on h),

Kh(q) =
C1,h

αh − 1

(
qαh − q

)
. (4.42)

The semi-analytical structure function is then

ζh(q) = qh−Kh(q). (4.43)
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This is then compared to the structure function, ζ(q), computed in the classical

way, i.e. on the velocity increments by equation 4.12. In both methods we

have restricted ourselves to the smallest scales in order to avoid the problems

associated with the larger scale separations (see figure 4.38). In order to estimate

the parameter αh we require ηi+1 and ηi−1. So that it is the scaling moment

function of the TMs we are calculating we set η = 1; this gives the now only

q-dependent UM parameters: h(q), C1,h(q) and αh(q). Note, due to the adverse

effects of qD that we previously described this may not always be the best method.

This is discussed later.
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Figure 4.37: Plot of ζ(q) (blue crosses) and ζh(q) (red solid) for samples assumed to be
influenced by qs (top) and qD. The black solid lines highlight the ranges where ζ(q) becomes
linear.

The first thing to notice is that the function Kh(q) is in good agreement with

the structure function for q < qs and qD and for q > 3. The discrepancy over

the smaller moments is likely due to the optimisation procedure. As discussed

in the previous section, the optimisation procedure will fail for q < 1 and when

K(q) is linear. Secondly, we see that it is indeed possible to reproduce the linear
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behaviour associated with a divergence of moments, but only on a unique sample,

thus confirming our previous hypothesis that smoothing occurs when averaging

the structure function. The orders of q where ζ(q) becomes linear are marked

with a solid black line. We may briefly note now that the observation of qD on a

single infers, if we are to remain within the UM framework, that D < 1. This is

in agreement with our results on the anisotropic function ρ(φ).
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Figure 4.38: Scaling analyses for samples assumed to be influenced by qs (top) and qD
(bottom). Left: plot of the second, fourth and sixth moments of the velocity increments. The
crosses corresponds to the range of scales over which the structure function is estimated; right:
corresponding velocity spectra.

Figure 4.38 plots the probabilities of exceedance for the two samples at the

highest resolution Λ = 0.1 seconds for comparison. The tail exponents for qs and

qD are 6 and 4 respectively. A visual comparison with the structure functions in

figure 4.37 give qs to be approximately 10 and qD = 7. The difference between
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the orders is in agreement but the actual departure is somewhat overestimated.

Our aim now is to be able to predict either qs or qD within the UM framework.
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Figure 4.39: Plots of the exceedance probabilities of |∆u(τ)| (red), ∆u(τ) < 0 (blue) and
∆u(τ) > 0 (green) for a sample with qs (lower plot) and qD (upper plot). The lower plot has
been shifted for clarity. The slopes correspond to qs and qD are 6 and 4.

Coming back now to the function ζh(q) we see that when the structure function

becomes linear, ζh(q) departs from ζ(q). When the assumed case of qs occurs we

underestimate the structure function. When the assumed case of qD occurs the

structure function is over estimated. To try to understand this we have plotted

the UM parameters as functions of q (figures 4.40 and 4.41).
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Figure 4.41: Plot of αh for qs and qD (green and blue).

From figure 4.40 we can see that both h and C1,h(q) are non-linear in q for both

of the samples. Figure 4.41 shows that on the contrary αh(q) remains constant at

α ≈ 1.4 in both cases; up to q = 7 for qs and q = 3 for qD. For the case of qD we

see that we loose the stability of the parameter α over q > 3. This may be due

to the fact we are in an unstable region (i.e. s2), interestingly we are still able to

reproduce ζ(q). Using αh(q) and C1,h(q) we can estimate qs,h(q) (figure 4.42).
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Figure 4.42: Plot of qs,h(q) for sample assumed to be influenced by qs and qD (green and
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For the sample with assumed qs behaviour we can see that qs is in agreement

with the linear departure of figure 4.37 (q = 10). We would like to also estimate

qD, however, for these parameters and for D = 1 the values are greater than

20. We mentioned before that for qD to be observed on a single sample we must

have D < 1. For C1 = 0.03, α = 1.4 and qD = 7 we find D = 0.07. Moreover,

C1,∆u/D ≈ 0.4 implies that a−α · C1,∆u = C1,ε. This gives a = 1/6!

It is not unexpected that C1,h(q) is consequently non-linear in q since a frac-

tional convolution of order h will shift the singularities γ by γ + h. Therefore if

h(q) is non-linear in q the mean of the singularities C1 will also be non-linear in q.

Figure 4.43 plots C1,h(q) verses h(q). As with the DTMs, figure 4.43 plots C1,h(q)

versus h(q) such that the non-linearity of the functions becomes independent of

the scale λ. It isn’t clear exactly what the slopes of the function correspond to.

We can hypothesise though that it corresponds to an additional correctional term

in the K(q) function. The correction is quantified by the slope of the ratio of

C1,h(q) and h(q), M say.

We calculate M only over the moments q ∈ [1 : 4]. This is because for q < 1

the optimisation of h results in spurious estimates. For the sample attributed to

qs we find M = 9.5 and for qD, M = 5. Figure 4.44 plots the histogram of M

over the full dataset. We attempted to correlate M with the empirical estimates
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of qD finding R = 0.1. This is not unexpected as there is no reason a correction

for ζ(q < qD) would be influenced by qD.
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Figure 4.44: Histogram of the slopes (M) of C1,h(q) plotted against h(q); taken over the full
Corsica dataset. The slopes are estimated over the moments q ∈ [1 : 4].

Although we are beginning to understand how to quantify this additional cor-
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rection we are still unable to retrieve the parameter that predicts the divergence

of moments. In the next we attempt to better understand this problem.

186



4.7 Summary Of Chapter 4

Universal multifractals provide a framework in which anisotropic, scaling, and

correlated fields have power law statistics. The parameters of the framework

α, C1 and H, describe the extremeness, intermittency and correlation of the

field. However, estimating the multifractality and co-dimension of a given process

requires not only that the process itself is scaling but also that its positive flux

proxies. It turns out that in both of the datasets we had available to us, obtaining

a scaling flux from either the velocity or temperature increments, is much more

complicated a task than one would expect.

While analysing this data we found that flux proxies based on the modulus of

the wind velocity increments yield non-scaling statistical moments and therefore

spurious multifractal parameter estimates. Furthermore, it can be difficult to

initially identify the non-scaling behaviour of the data. If we are to remain within

the framework of universal multifractals the algebraic fall-off observed in the

probability distributions of the velocity increments corresponds to a divergence

of moments in both the scaling moment function and the structure function;

the point at which they both become linear. In terms of the (double) trace

moments, a spurious linearity occurs giving a false impression of scaling. This

can be particularly misleading when the energy flux is defined through the third

power of the velocity. The larger the power the closer the trace moments (TMs

and DTMs) are to the spurious linear range. To deal with this we suggested the

use of a best fit versus α̂ plot. When an α̂ plateau occurs, corresponding to a

stable α, subject to a high regression. However, it is precisely the non-scaling

behaviour of statistical moments with spurious multifractal parameter estimates

that we have spent most of our time studying; attempting to either remove or

quantify its effects.

We have shown that the the non-scaling behaviour (or a trace moment cur-

vature) that appears when using the flux proxies can be linearised with a frac-

tional integration, i.e., with the h-optimisation method. The extensive applica-

tion of this method confirms that the atmospheric surface-layer is scaling (aniso

-tropically), and that it is multifractal, i.e. it has a unique multifractality index

α = 1.4. The downside is that both the co-dimension and the Hurst exponent
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become q-dependent. This is outside of the linear scale invariance framework.

As the curvature of the trace moments varies with q (and η) we have developed

a series of methods that equally optimises the UM parameters at each value of q

and η. So much so that we are still unable to find a unique co-dimension and Hurst

exponent for the atmospheric surface-layer. We are however able to show that it

takes very little to destroy the scaling properties of the flux of a given process and

that it is possible to locally (for each order q) reconstruct the scaling moments

and therefore structure function of the velocity with a fractionally integrated flux.

In the majority of files we found that although the (double) trace moments

could be linearised through fractional integration the much required stable pa-

rameter α remained elusive. Instead a strong spike would occur in the α̂ function.

Using the notion of multifractal phase transition, theoretical developments on the

local estimate of α revealed that for qD four sectors would occur in the surface of

α̂; one of which gives the good parameter and the singular boundary separating

the sectors explained our spike. We put forward an analytical expression for these

four sectors. Then the instability of the α̂ function on individual samples meant

that the dimension of the measurements must be less than unity if to remain in

the UM framework. Due to the increasing evidence of very strong anisotropies

in the surface-layer it has become increasingly clear that this is the cause of the

behaviour.

Comparisons of the spectra of the time-series velocities differentiated in time

and in space showed that it is not possible to obtain a spectral exponent β > 0

for the spatial derivative of the velocity time-series as predicted by dimensional

analysis. This suggests that spatial derivatives will insufficiently de-correlate

time-series wind velocities. Although a space-time anisotropy causes problems

for a homogeneous isotropic assumption, provided it is scaling and multifractal

it can be modelled. Although we have had spatial scale separations available to

us we have remained mainly dependent on the time-series statistics of the data,

i.e. the presumption that the observable inertial ranges are Kolmogorov requires

Taylor’s frozen turbulence hypothesis. If we merely assume that they are scaling

we can still attempt to quantify the temporal statistics of the process. For this we

require universal multifractals. If we are to truly understand the relation between

time and space correlations a more rigorous measurement campaign is needed.
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Chapter 5

5.1 Comparison Of Methods

In this chapter we discuss whether or not it is possible to reproduce the structure

function with stable parameters. In appendix B.4 we see that the addition of a

non-scaling process to that of a scaling process can cause the TMs and DTMs

to become convex, i.e. the total process becomes non-scaling. We fractionally

integrated or differentiated either the velocity or its increments in order to obtain

linear TMs and DTMs. The result of the local linearisation of the DTMs is q

and η dependency for the parameters C1 and H. If we take the dependency of

the parameters on q into account when calculating the scaling moment function

(Kh(q)) we are able to reproduce the empirical structure function. However, if

we wish to simulate a given field we require unique parameters. We therefore

endeavour in this chapter to compare different methods in order to see if there

if there is any convergence to stable parameter estimates. As a basis for testing

our parameters we will use the structure function of figure 4.12 of the previous

chapter. Note this is the ensemble averaged structure function calculated over

the full Corsica dataset.

The DTMs On A FiF

We start off with the DTMs calculated on the fractionally integrated flux for

a fixed value of h; avoiding therefore the q dependency. Figure 5.1 shows the

DTMs for q = 1.5 and log η ∈ [−3 : 3] computed on χ = ∆u ∗ |t|−0.9. Using

h = −0.9 proved to be the best value for the range of scales shown by the black

192



solid lines. We have included the DTMs for h = −1 as a comparison. We can

see that when the correct value is used the same scaling region as the spectra

becomes visible (i.e. from log2 λ = 9 to 14). Note although the DTMs appear

scaling, the logarithmic axis masks the curvature that we described in §4.4.
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Figure 5.1: Plots of the DTMs estimated on χ for h = −0.9 (a) and h = −1 (b).

The Double Structure Function (DSF)

The double structure function Sλ(q, η) corresponds to a modification of the struc-

ture function inspired by the DTM method, i.e. it shares with DTMs the property

of being defined by two exponents q and η, having the same role as for DTM,

but with an algebraic aggregation of the fluctuations ∆uλ like for the classical

structure function:

Sλ(q, η) = 〈(∆u
(η)
λ )q〉 where |∆u

(η)
λ | = |∆uλ|η/〈|∆uλ|η〉

This equation is indeed similar to equation 4.14 with similar properties, e.g.

its scaling exponent. Nevertheless, it has the advantage to deal directly with the

velocity fluctuations of the velocity instead of algebraically aggregating an energy

flux proxy. Figure 5.2 plots Sλ(q, η) for q = 1.5 and log η ∈ [−3 : 3].
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Figure 5.2: The DSF for q = 1.5 and log η ∈ [−3 : 3].
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Figure 5.3: Plot of the DSF method (left) computed on a single sample for q = 1.5 and
log η = 0. The corresponding surface of α̂ is plotted to the right. At q = 1.5 and log η = 0,
α = 2.2 and C1 = 0.014.

We can see that the range of scales (from log2 λ = 8 to 12) that are scaling are

not quite the same as those in the spectra. When using the DSF method a positive

slope appears over the highest frequencies. This corresponds to negative H and
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may be associated to a non-scaling process. The discrepancy in scaling ranges

therefore may be because of the aggregation of this noise through increasing

scales; although this doesn’t explain why there is a disagreement with the spectra.

Instead of estimating over exactly the same range, we have adjusted the range

slightly in DSF such that it is over the range of scales that appears to scale the

best.

Contrary to the DTM method, it is not possible to use the DSF on individual

samples due to its highly variable nature. Figure 5.3 shows the DSF estimated on

a single sample with one of the highest NRMSE values in the whole of the Corsica

dataset. Although there appears to be some scaling the quality of the estimate is

unreliable. This is further confirmed by the estimation of the parameter α > 2.

Comparison Of Local Multifractality Functions

Figure 5.4 plots α̂ for the two DTMs (i.e. for h = −1 and h = −0.9) and the

DSF.
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Figure 5.4: Comparison of α̂ estimated over log η ∈ [−3 : 3] for q = 1.5, from the DTMs of
figure 5.1 (red and blue solid lines for h = −1 and -0.9 respectively) and the DSF of figure 5.3
(dotted blue line).
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We can see that the maximum spikes give estimates that are comparable how-

ever the estimations around log η = 0 differ by a factor of 0.4 to 0.8 depending on

which h is chosen. Since the ‘spikes’ have been shown to be spurious estimates of

the parameter α we are left with a large discrepancy between the two parameters.

Because there is no clear range over which α̂ is constant it isn’t clear which

estimate should be used. This is less the case with the DSF method. To combat

this we will use a range of estimates across log η and see which gives the best

fit versus the structure function. In order to reproduce the structure function

we must choose a unique value of h to match our unique parameters. Since our

DTMs are integrated by h = 0.1 we will also use H = 0.1 for the DSF. This is

because we cannot directly estimate H from the DSF.
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Figure 5.5: Plot of the empirical structure function ζ(q) (blue crosses) compared to the semi-
analytical structure function estimated from the DTMs of the fractionally integrated flux. The
dotted line curves correspond to the variation in parameters α̂ and Ĉ1 (from the solid blue
curve in figure 5.4) across log(η) ∈ [−3 : 0.1 : 1]. The red curve corresponds to the best fitting
of those parameters, i.e., α = 1.64 and C1 = 0.019 at log(η) = −1.3.
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Figure 5.5 plots the structure function and the semi-analytical structure func-

tion for the range of parameters across log η. Similarly figure 5.6 does the same

for the estimates from the DSF method. The red curves in both figures corre-

spond to the semi-empirical curve with the best fit. Comparing the two methods

we can see that DSF gives the best overall fit. Both methods estimate similar

values of C1 with DSF giving a slightly higher estimate of α that results in a

better overall fit.

Although both methods do well to fit the lower order moments (up to q = 7

in both cases) it is more important to be able to estimate qs and qD.
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Figure 5.6: Plot of the empirical structure function ζ(q) (blue crosses) compared to the semi-
analytical structure function estimated from the DSF of the velocity increments. The dotted
line curves correspond to the variation in parameters α̂ and Ĉ1 (from the dotted blue curve in
figure 5.4) across log(η) ∈ [−3 : 0.1 : 1]. The red curve corresponds to the best fitting of those
parameters, i.e., α = 1.79 and C1 = 0.0172 at log(η) = −0.5.

Figures 5.7 and 5.8 show the estimation of qs for the variation in parameters

across η. For such low values of C1 we would not expect to see qD and therefore

haven’t computed it. For DSF we can see that qs is fairly well estimated, for the
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DTM method however qs is much larger than the observed divergence from the

empirical curve.
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Figure 5.7: Plot of qs estimated from the α̂(η)s and Ĉ1(η)s of the DTMs of the fractionally
differentiated velocity.
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Figure 5.8: Plot of qs estimated from the α̂(η)s and Ĉ1(η)s of the DSF of the velocity incre-
ments.
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We have shown that although there are parameters that come from both the

DTMs and DSF methods that can be selected within a (large) margin of error

that will fit the lower order moments of the structure function. Moreover, these

parameters ‘predict’ to some extent the order at which the functions become

linear. We need to ask though, is this really the right approach? We have seen

that due to the instability in the estimates of the parameters it becomes a very

precarious procedure selecting which parameters we should use. Furthermore, a

very common justification for the correct estimation of the UM parameters is the

correct ‘prediction’ of qs.
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Figure 5.9: Surface of qs for a range of values of α and C1; D = 1.

Figure 5.9 shows the ranges of the parameters α and C1 for which qs is esti-

mated. We see that the lower the value of qs (specifically less than 10) the larger

the possible range of values for the parameters. It is therefore unsurprising that

qs is quite often predicted. If we are to truly justify that it is qs we are predicting

we should find that there is an increase in the estimation of qs with increasing

Ds. This however is not the case, as we have clearly shown (due to the spikes in

the surfaces of α̂) that for individual samples we are observing qD.
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So what exactly is happening? We have shown from very early on that the

velocity wind increments exhibit a divergence of moments on each individual

sample of the order 4 to 6 with increasing resolution. We have been able to

show that because the velocity field is highly component-wise anisotropic the

occurrence of qD on a single sample is possible. Moreover, we have shown that the

addition of a non-scaling white noise can produce the spurious convex curvature

of the DTMs.

In which of these situations is the classical UM model applicable and in which

other situations must we modify the model? When we ensemble average the

structure functions of the Corsica dataset we loose the characteristic divergence

of moments that we are so desperate to predict. Is the UM model therefore

more applicable? Although the linearity over higher orders is lost we have shown

that the ensemble averaged DTMs are still more convex. This convexity requires

local fractional integration to be removed. What happens when the linearity over

higher order of the structure functions persists? Can we predict this behaviour?

Figure 5.10 plots the ensemble averaged structure functions of the high-frequency

scaling ranges of the Growian dataset.
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Figure 5.10: Ensemble averaged structure functions computed on the Growian dataset over
the time-scales 0.4 to 6.4 seconds at 50 (blue) and 100m (green).
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We can see that we are approximately able to recover ζ(3) = 11 corresponding

to K41, unlike for the structure functions of the Corsica dataset. The reason for

this is simply the higher value of β (≈ 1.7) as opposed to 1.3 found in the spectra.

We can simply say, therefore, that the Growian dataset over smaller scales is closer

to a Kolmogorov-like energy. In the next section we will look at exactly which

parts of these functions we can predict within the standard UM framework.

1This was pointed out by Annick Pouquet in a private communication.
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5.2 Multifractality Estimation From The

Structure Function

The structure function exponent ζ(q) defines the function f(q) in the following

way:

f(q) = ζ(q)/q = H −Kε(qa)/q (5.1)

where Kε(q) is the scaling moment function of the conservative flux ε. With the

help of:

Kε(q, a) = Kε(qa)− qKε(a) (5.2)

we find that for universal multifractals

Kε(q, a) = aαKε(q). (5.3)

The function f(q) then becomes

f(q) = H + aC1,ε/(α− 1)− aαC1,εq
α−1/(α− 1). (5.4)

Differentiating f(q) yields the following estimate for α:

α ∝ log[−df(q)/dq]

log q
+ 2. (5.5)

If the structure function can be fit by UM parameters, i.e. the process can be

defined by unique parameters α, C1 and H, equation 5.5 is linear over log q.

Figure 5.11 plots f ′(q) computed on the ensemble averaged structure function of

the Corsica dataset used in the previous section. Note, since f ′(q) is negative we

must subtract the absolute slope!
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Figure 5.11: Plot of f ′(q) computed on the ensemble averaged structure function of the
Corsica dataset used in the previous section. Slope of the red line of best fit is -0.23 (α = 1.77
and C1 = 0.018). Estimating α requires the subtraction of the absolute slope.
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Figure 5.12: Plot of f ′(q) computed on the structure function of a single (qs-like) sample
from the Corsica dataset. The red circles correspond to the range of q over which the Kh(q)
function had the best fit.

Figure 5.11 is clearly far from linear in form. However, as a rough approxi-

mation of α we may calculate the slope of the function over the full range of q

giving α ≈ 1.8 and C1 ≈ 0.02. Surprisingly these estimates are in fairly good

agreement with those of the DSF. Although the estimates are within the standard
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UM framework it is clear from the non-linearity of the function (this suggests a

possible dependence on q) that the standard model is not a good approximation.

On the other hand this behaviour could also be due to the poor approximation

of the discrete derivative of the function f(q).

Figure 5.12 plots the same function, f ′(q), for the individual sample we as-

cribed to the behaviour of qs. In particular we have marked out the values of q

of the function that have the closest fit to the Kh(q) function. It is in fact the

most non-linear part of the function that is best reproduced by Kh(q).
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Figure 5.13: Plots of f(q) for the Growian dataset at 10, 50, 75, 100, 125 and 150m in height
over the time-scales half a minute to five minutes.

By equation 5.4 we can quickly identify if a function can be fitted by the UM

model since it should correspond to the sum of a power law with a constant. If the

function is more complex then we are out of the framework of UMs. Figure 5.13

plots the f(q) functions at six heights taken from the Growian dataset. The f(q)

functions were computed on structure functions estimated over the time-scales of

half a minute to five minutes. The clear non-power law behaviour exhibited in

f(q) at most of the heights in figure 5.13 further suggests that a more complex

model is required. It is only the data 50m that is compatible with equation 5.5.
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In figure 5.14 we plot the f(q) function for a simulated velocity with an added

Gaussian white noise. The velocities are computed by convoluting a simulated

conservative flux, i.e., uN(t) = ε
1/3
N ∗|t|1/3. The conservative flux, εN , is simulated

using the discrete α-model with UM parameters α = 1.3 and C1 = 0.15. We then

add a Gaussian white noise, X(t), to uN in a similar way to that done in appendix

B.4; in appendix B.4 the noise is added only to the simulated conservative flux

to show that curving DTMs will occur. We require the approximation to the

velocity field so that the structure function can be computed.

 

 

aN = 4

aN = 3

aN = 2

aN = 1

no added
noise

f
(q
)

q

0 2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

Figure 5.14: Plots of f(q) of uN (t) + X(t) = (ε
1/3
N ∗ |t|1/3) + X(t) for an increasing power

of noise aN . The conservative flux, εN , is simulated using the discrete α-model with UM
parameters α = 1.3 and C1 = 0.15.

The power with a constant form of f(q) that we are looking for in order to

apply the UM framework is well reproduced when uN has no noise added (the

upper most blue plot of figure 5.14). As an increasingly dominating noise is

added to the process we begin to observe the same wave-like behaviour apparent

in the empirical f(q) functions of the Growian dataset. It seems that there is an

additional contribution to the process that determines the function f(q)s vertical

position.
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We add the white noise to the simulated field we are not de-colouring the

high-frequencies of the process in a way that would mimic the instrumental noise

of an anemometer say. If we therefore look at the spectrum of uN(t) + X(t),

for increasing powers, the scaling of the process seems almost unaffected. The

scaling exponent however becomes lower and lower. Note, the slope of the spectra

estimated in both the Corsica and Growian datasets is 1.3. This subtle behaviour

suggests it would be very difficult to distinguish a mixture of the two processes

simply by looking at their spectrum.
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Figure 5.15: Plots of the energy spectra of uN (t) +X(t) for increasing powers of the added
noise X(t): aN ∈ [0 : 4].

Although we have been able to show that adding a non-scaling noise to the

scaling velocity can result in adverse effects when approximating the flux from its

absolute increments |∆u|, it still isn’t clear why ∆u scale differently. It is likely

that the aggregation of the non-scaling noise accumulates through the scales thus

amplifying the effect. The question we instead aim to answer is whether or not the

q dependence of the UM parameters is the consequence of forcing non-scaling data

206



to scale through fractional differentiation/integration or whether it is inherent in

the process. In the previous section we showed that the model is indeed required

to be more complex but whether or not that could be a simple modification of the

standard model is another question. The extreme curvature we have observed in

|∆u| and therefore any power of the field thereafter is not observed to the same

extent in either the structure function or the double structure function. We have

shown that there are ranges of q and η where the TMs and DTMs scale and the

optimisation method ceases to work.
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Figure 5.16: Surface plot of R2(q, η) for the double structure function.

If we are to believe the non-linearity of the DTMs is solely the product of

the fractionally integrated flux model we would expect that the DSF, calculated

only on the velocity increments, would be uniform in h across the surface q and

η. Because we cannot directly measure h we must instead use R2 – the quality of

the linear fit of the DSF. If h remains constant across q and η we would expect

R2 to be constant except for large q in which either qs or qD intervene.

Figure 5.16 shows the surface contour plot of R2 of the DSF of the previous

section. Although the variation seems rather negligible it is still present. More-

over, R2 decreases with q proving that there is q dependence on ∆u without the

use of the FiF model.
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5.3 Five Parameter Fitting Model

We already saw that the FIF model yields the following scaling exponent ζ(q) for

the structure function:

ζ∆u(q) = qH −Kε(aq), (5.6)

where Kε(q) is the scaling moment function of the conservative flux ε and corre-

sponds to the (non-linear) contribution of intermittency. The energy flux density

can be estimated with the help of ε̂ ≈ (∆uλλ
H)1/a.

For a universal multifractal flux ε:

Kε(q) =
C1,ε

α− 1

(
qα − q). (5.7)

We can define a scaling moment function for the velocity fluctuations by:

K∆u = Kε(qa) = Kε(q; a) + qKε(a). (5.8)

In the case of a universal multifractal flux, this could be rewritten as:

K∆u(qa) = aαKε(q) + qKε(a). (5.9)

Therefore, the co-dimension C1,∆u of the mean intermittency of the velocity fluc-

tuations is given by:

C1,∆u = aαC1,ε. (5.10)

In order to obtain α and we must fractionally integrate the velocity increments

so that h is optimised. Once a stable value of α is found we can then optimise the

function K∆u(qa) on a in order to find the optimum value of a (and therefore C1)

that best fits the function ζ(q). Because a unique value of h is required for the

structure function we used a different number of methods to estimate H: taking

the mean across q, using the slope of the spectral exponent and also H ≈ ζ(1).

We found that each method would led to biases that would be compensated by

either a or C1 in the iterative process, thus it wasn’t of great importance which

value we chose provided it was within a given margin of error of the spectral

exponent.
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In order to begin the optimisation of the function we require an initial C1

value. We attempted to use C1,h at q = 1.5 but found that we could not fit the

structure function in this way for the majority of the files. Instead we needed to

separate the two terms of equation 5.9, i.e.,

K∆u(qa1; a2) = aα1Kε(q) + qKε(a2). (5.11)

The separation corresponds to a weighting of C1 for the non-linear term or a

weighting with respect to the power of the flux for the linear conservation term.

It allows us to effectively choose any C1 we require to fit the structure function

but only as a function of the initial C1,h, a1 and most importantly αh. Under this

separation of operations we find that when a1 = a2 the value C1 of the velocity

increments has been correctly initially estimated using the FiF model.

Figure 5.17 plots the histograms of the denominators 1/a1 and 1/a2 of the

parameters a1 and a2. We are interested in the denominators as they correspond

to the power that the velocity increments are raised to in order for us to obtain

our conservative quantity. Figure 5.17b shows that 1/a2 is of the order 20 on

average with isolated cases reaching up to 50! This is clearly unphysical since for

powers of this value we obtain C1 > 2 for the flux. For 1/a1 (figure 5.17a) we

find values that are lower (11) but are still 8 orders more than those predicted

by K41.

Figure 5.17c plots the ratio of a1 and a2 in order to find samples where a1 = a2.

Out of the total 161 samples we find 10 with a1 = a2. The majority of the samples

require that a1 be smaller to a2. This corresponds to χ being raised to a larger

power than the normalisation required for the structure function suggesting that

C1,h < C1,∆u for the majority of samples.

Figure 5.18 plots the structure functions of two samples that have a1 = a2. In

both cases it is necessary to have an extremely large value of C1,ε and a in order

to fit the functions. In Gires et al. [2013], a toy model is proposed where the

normal multifractal model is multiplied by a binary β-model. This has the effect

of reducing the support of the mixed-process, as may be the case here. If we

consider that the contribution from the non-scaling part of the process reduces

the support of the dimension and that this contribution is proportional to the
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q-dependence of the parameters, it may be that we can quantity the non-scaling

effect with the artificial increase in the parameter C1,ε.
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Figure 5.17: Histograms of the denominators 1/a1 (a) and 1/a2 (b). The averages over the
whole sample are 11 and 19 for 1/a1 and 1/a2 respectively; (c) histogram of a1/a2
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Figure 5.18: Structure functions estimated on the velocities of the Corsica dataset, for files
that can be fitted with parameters a1 = a2. The parameters used to fit the left plot are:
C1 = 0.83, αh = 1.36 and a = 13; right: C1 = 1.1, αh = 1.34 and a = 11.
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5.4 Prospects: From Analysis To Modelling

A worst case study?

All of the preceding chapters have been devoted to understanding the funda-

mental phenomenon of turbulence intermittency within the surface-layer. This

has been done with the help of a thorough multifractal analysis of two rather

large data bases from two very different test sites. Before discussing how these

insights can help to model the turbulent velocity field, it is indispensable to

emphasise that the surface-layer is presumably the most challenging problem in

fluid dynamics; loosely speaking a possible worst case scenario that has frightened

many theoreticians. Indeed, turbulence intermittency is already such a difficult

problem that the most achieved tools to understand, analyse and simulate this

phenomenon have been developed in the most simplified, ideal cases, i.e. where

many symmetries, other than scale invariance have been hypothesised.

These pre-suppositions can be traced back at least to Kolmorogov’s hypothesis

of ‘local isotropy’ Kolmogorov [1941a]. A hypothesis that has become so widely

used that it has become a pre-requisite for scaling – a flow is required to be

first translation invariant (in time and space) and isotropic before discussing its

scaling properties. Loosely speaking, scale invariance should not be one of the

first symmetries to be considered, but rather the last one. One may note that

this was not always the case for Sedov [1972], who in spite of the fact that his

book title only mentions self-similarity, he somewhat considered self-affinity. This

wasn’t by chance; it was, as discussed below, related to wall turbulence.

A hierarchy of symmetries

The strong anisotropy of geophysical flows due to gravity and related phenomena

(buoyancy forces, stratification/convection) brought into question whether or not

there exists a hierarchy of symmetries, leading eventually to generalised scale

invariance (GSI, Schertzer and Lovejoy [1985a]). The radical paradigm shift

that GSI introduced requires that scaling first be posit, before then studying

the remaining symmetries. These symmetries are then no longer as trivial as

212



rotation invariance, a compatible (generalised) scale is no longer equivalent to a

Euclidean distance.

As noted by Schertzer and Lovejoy [2006], it is rather ironic that fractal geom-

etry Mandelbrot [1982], a mathematical construct that claimed the irrelevance of

Euclidean geometry to natural phenomena, still remained based on a Euclidean

metric! The GSI paradigm shift was already required for the ‘free atmosphere’

because of its anisotropy, but some space translation invariance was nevertheless

expected to be an acceptable approximation.

This is no longer the case with wall-bounded turbulence such as that of the

surface-layer, i.e., the system’s properties drastically change with altitude. A

considerable amount of research has been invested into deciphering these changes

using so-called ‘mean’ profiles. These efforts have been without a general consent

as to which law is truly valid, e.g., are they logarithmic, power-law, or do they

result from a mixture of both laws?

One basic problem is the difficulty, not to say impossibility, to establish a

clean Reynolds decomposition between the mean and the fluctuations when the

mean defined over a given time scale is embedded into larger scale fluctuations.

As a consequence, the aforementioned definitions can easily be sample depen-

dent. This is the main reason we have not attempted to proceed with Reynolds

decomposition methods as they would not have been supported by the performed

spectral analyses. Indeed, the spectral analyses do not point out a spectral energy

gap.

One may note that the spectral techniques, that have been mostly pioneered

by the Russian school of turbulence, already require a given type of a statistical

translation invariance and if possible a statistical rotation invariance to be easily

handled. Various researchers therefore, have tried to adapt this technique to

both anisotropy and non-translation invariance, e.g. using horizontal spectra

depending on the altitude and looking for relations between them, etc. There

is therefore no surprise that we were compelled to also adapt the multifractal

analysis tools to the complexity of the surface-layer. This adaptation pre-figures

for a large part that of the simulation tools.

213



What kind of complexity?

The main complexity of the surface-layer with respect to the free atmosphere,

is the obvious fact that the hierarchy of eddies cannot be freely expanded to all

sizes because of the complex interactions with the surface. This problem has led

to the decomposition of the surface-layers into several sub-layers Pouquet et al.

[1976], Korotkov [1976], Chashechkin [1989], ? and Drobinski et al. [2004].

In a very general manner, larger-sized eddies, often called impinging eddies,

are not only compelled to be strongly anisotropic (smaller ones are presumably

anisotropic due to buoyancy forces, like in the free atmosphere), but also their

interaction with other eddies are no longer dominated by interactions with eddies

of a similar size. This can be seen as interactions bypassing the usual cascade

steps Korotkov [1976], Kader and Yaglom [1989] and Yaglom [1993]. These types

of interactions are called ‘non-local’ because they correspond, in Fourier space,

to a convolution of Fourier components that have very different wave numbers.

This is in opposition to the classical interactions that are ‘local’, i.e. that result

in a convolution of components with similar wavenumbers.

The energy transfer time for non-local interaction can no longer be ‘locally’

estimated with the help of the usual eddy turn-over-time τ(ℓ) ≈ ℓ/∆u(ℓ). This

drastically changes the relationship between the energy flux, ε, and the energy

co-variance (and spectrum). This explains the failures of the DTMs when using

the usual energy flux density proxy based on the third-order structure function,

i.e. ε(ℓ) ≈ (∆u(ℓ))3/ℓ. It also implies that other proxies, for example, those used

in rainfall, radiance, finance and even complex free-atmosphere measurements,

will likely have encountered similar problems; problems that might have been

over-sighted.

Indeed the goodness of this proxy strongly depends on the approximation

ε(ℓ) ≈ (∆u(ℓ))2/τ(ℓ), i.e. that eddy turn-over-time τ(ℓ) is the effective energy

transfer time. This explains why we have invested a great deal of effort into

looking for other energy flux proxies (i.e. by modifying the exponent a and the

fractional integration order h, see section 4.3), as well as looking to whether or

not it is possible to find a relevant generalised scale.
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Which (generalised) scale invariance?

In a very general manner Schertzer and Lovejoy [2011], we are looking to char-

acterise the transformation of either a function f (e.g. the velocity field) or

a measure µ (e.g. the flux of energy) in response to a (possibly generalised)

contraction/dilation Tλ (respectively for λ ≥ 1 and λ ≤ 1) of their definition

domain E. The simplest case, corresponds to an isotropic, contraction/dilation,

i.e., ∀x ∈ E : Tλ = x/λ. This could already be generalised to a non-isotropic

contraction/dilation, Tλ, by introducing a non-scalar generator G 6= sI, where I

is the identity matrix and s is a scalar.

Tλ = λG ≡ exp(log(λ)G). (5.12)

The change from scalar to non-scalar generators introduces the important ques-

tion of non-commutativity (i.e. A ·B 6= B ·A), which may have important conse-

quences. The resulting transformation of a function f of a measure µ corresponds

respectively to their ‘pullback’ transform T ∗

λ :

∀x : T ∗

λ (f)(x) = f(Tλx) (5.13)

and ‘push forward’ transform T∗λ:

∀f :

∫
fT∗λ(dµ) =

∫
T ∗

λ (f)dµ. (5.14)

The name pullback evokes the fact that this transform acts in the opposite direc-

tion (‘contravariantly’) to that of the original transform Tλ. This general notion is

particularly useful when dealing with differential equations Schertzer et al. [2011].

The dual push-forward transform T∗λ is particularly useful when mathematically

dealing with singular measures such as rain accumulation Schertzer et al. [2010].

It is rather easy to check that the (trivial) multiplicative group property of the

original transform, Tλ, extends to both the pullback and push-forward transforms,

and that both are linear respectively on vector spaces of functions and their dual

spaces of measures.
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For a non-scalar generator G, Tλ is no longer an isometric contraction/dilation

due to the non-commutativity of its generator with that of rotation. There are,

however, generalised scales ‖ · ‖, that are linear with respect to the contraction

parameter 1/λ:

∀x ∈ E, ∀λ ∈ R+ : ‖Tλx‖ = ‖x‖/λ, (5.15)

and are non-degenerate (‖x‖ = 0 ⇒ x = 0); balls defined by these scales are

strictly decreasing with the contraction Tλ. These three properties define a gen-

eralised scale associated to a generalised contraction/dilation.
!

!

!!!

!!!

Figure 5.19: A 2D cut of a multifractal simulation of a vector field defined over a 2D+1 domain
with a resolution λ = 64. The coloured background corresponds to the vorticity component
perpendicular to the cut.

Not only the simplistic, isotropic scale invariance (G = I) is irrelevant for

the boundary layer, but also the simplest GSI case, where the generator G (and

therefore Tλ) is diagonal, in particular in the usual reference frame (x, y, z, t).
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It corresponds to self-similarity – the components scale differently and indepen-

dently. Indeed, the general description of the surface-layer (section 5.4), as well

our previously detailed results show that the space and time components of the

velocity field do not scale independently. This is because there is a more complex

interrelation between the size and life-time of the structures than previously be-

lieved. This result is in agreement with the apparent non-scaling behaviour we

observed on time-series and rather again may be opposite to what is observed

in the free atmosphere where the life time-scales like the eddy turn-over-time

τ(ℓ) ≈ ℓ2/3 over a wide range of scales Schertzer et al. [1997].

Which multifractal modelling?

Multifractal techniques have been rather extensively developed to deal with non-

scalar generators (Gs) for scalar valued fields, and more recently progressed to

vector valued fields, e.g. to define a multifractal alternative to quasi-geostrophic

turbulence Schertzer et al. [2011]. This corresponds to one introducing into the

co-domain, i.e. the vector space where the field is valued, a (possibly generalised)

contraction/dilation T̃λ. For instance, a multifractal measure µ will then be an

invariant measure of the symmetry Sλ
1 resulting from the composition of Tλ and

T̃λ:

Sλ(µ) = µ; Sλ = T̃λ ◦ T∗,λ (5.16)

Generally, the invariance involves an equality in distribution (denoted by
d
=).

This is precisely the case for the definition of simple scaling given by Lamperti

[1962], where:

T̃λ = λ−H . (5.17)

For multifractals T̃λ is no longer defined by a unique scaling exponent H, but by

a full set of singularities (γs) that correspond to realisations of a given random

1The notation, Sλ, for symmetry should not be confused with the DSF used in the previous
sections.
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generator Γλ:

T̃λ
d
= λ−γ = exp(−Γλ). (5.18)

To illustrate, figure 5.19 displays an image extracted from a stochastic multifrac-

tal simulation of a 2D-valued vector field defined on a 2D+1 time-space domain.

Our empirical results point out new challenges for modelling as they show that:

1. at each altitude, there are cross-correlations between the horizontal velocity

components,

2. and that there is no translation invariance of the fluctuations along the

vertical (e.g. the amplitude of H is very sensitive to the altitude).

None of the above are insurmountable obstacles simply because we remain in the

very general framework of Lie cascades Schertzer and Lovejoy [1995], where the

one parameter groups of transforms Tλ and T̃λ result from the exponentiation of

their generators. These belong to a given Lie algebra.

Like a Monsieur Jourdain, who, speaking prose all his life, did so without knowing

it, we also have been dealing with scalar cascades that are in fact the simplest

case Lie cascades. With respect to the two aforementioned properties that we

have already (partial answers:

1. We are required to introduce this property into the generator Γλ. This

is particularly simple when the generator is a multivariate normal field,

but, is a bit more tricky for Lévy generators because multivariate Lévy

variables are non-parametric. Indeed, the direction dependence is defined

by a measure which is nonetheless manageable, although rather demanding

(e.g. Schertzer et al. [2001]).

2. Proceeding differentially rather than in an integrated manner, as is usually

done for translation invariant multifractal fields, is not as subtle. It requires

us to deal with infinitesimal generators gγ of Tλ and T̃λ instead of G log(λ)

and Γλ that correspond to an integration over a given finite resolution λ.
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I can only regret that the difficulties faced during the data analysis did not leave

me enough time to explore these challenging questions.
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5.5 Summary Of Chapter 5

In this section we inter-compare the results from the standard methods of em-

pirical estimation of the UM parameters with a range of newly developed alter-

native methods: the double structure function (DSF), the Kh(q) function, the

five-parameter model and the f ′(q) function, that has aided us in the search for

stable parameters. Although the results from all of the different techniques are

consistent, the most powerful tool and also the most simple is the f ′(q) function.

The f ′(q) function allows one to quickly determine whether the UM framework is

applicable. Having said this, with a combination of the DSF and the f ′(q) func-

tion (α estimated over the full range of q) showed that a rough approximation

could be used to reproduce the structure function up to the order q = 9. The

isolated case where this approximation was the most applicable was the range

of scales of the Corsica dataset that was the most isotropic. The corresponding

divergence of moments was therefore much larger than that predicted empirically

from the probability distributions, qD > 9 rather than 5, thus highlighting the

trade-off required in order to fit the standard model.

If we are to fully understand the process we must first understand whether or

not we can separate the scaling multifractal process from the non-scaling process

(with the linear scaling framework) and if yes how do we quantify each of the two

and what are the consequences in terms of extremes if we neglect the non-scaling

part. Adding varying degrees of white Gaussian noise at the highest resolutions

of the simulated UM data produces the same non-scaling behaviour as observed

in the empirical data. We arrived to the conclusion that the aggregation of the

flux proxies may amplify the non-scaling contribution and should be considered

within the non-linear generalised scaling invariance (GSI) framework.
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Conclusions

Our goal from the start has been to reduce uncertainties in wind resource as-

sessment. We claim that, based on the state of art in wind energy, poor ap-

proximations to the high-number of degrees of freedom that arise in a bounded,

turbulent, atmosphere are the main cause of uncertainty. Numerical attempts

to model these complex and highly non-linear processes typically require a trun-

cation of scales and more often than not complex parameterisations. We argue

that due to the symmetries of the governing equations of fluid motion for a high-

Reynolds number flow, the statistics of the wind are scaling and multifractal. It

is therefore unnecessary to truncate the scales of the process.

Our results confirm that the atmospheric surface-layer is scaling and is mul-

tifractal, however, they also show that this scaling and multifractality are not

only strongly anisotropic, a feature that already requires the framework of (lin-

ear) generalised scale invariance,(GSI), but there is a strong lack of translation

invariance that requires non-linear GSI.

We have developed several new techniques to estimate themultifractality index

α, in particular to take care of the extremes present in a sample that easily

introduce statistical biases in classical estimation methods, such as the trace-

Moments (TM) and Double Trace Moments (DTM). Let us recall that this index

α has several important properties: it measures the multifractality our field:

α = 0 corresponds to a mono-fractal field, whose intermittency is independent of

the considered activity of the field, i.e. the extremes are not that much different

from the mean. Its maximal value α = 2 corresponds to the misnamed ‘log-

normal’ cascade model, whose extremes are much larger than those of a log-

normal distribution. It also characterises the generator of the cascade process;
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more precisely it corresponds to the Lévy stable index of the generator in the

framework of universal multifractals (UM).

We believe that it is particularly significant that we constantly estimate this

multifractality index α ≈ 1.4. This not only confirms a significant multifractal-

ity, but also confirms that, despite the complexity of the surface-layer, a given

universality of the generator of the cascade exists. Furthermore, this generator is

significantly different from a normal generator, i.e. the log-normal model is not

applicable. We found that the estimates of two other fundamental scaling expo-

nents were much less stable and difficult to obtain although their interpretations

are much simpler. Indeed, they are only fractal exponents (contrary to α) – the

scaling exponent H of the mean field (H = 0 for a strictly scale invariant mean

field) and the co-dimension C1 of its support that measures the mean intermit-

tency (C1 = 0 for a homogeneous field). This difficulty, surprising at first glance,

is rather typical of non-linear GSI.

We developed several methods to better estimate the parameters – in partic-

ular making detailed studies of the sensitivity of parameter estimation methods

to instrumental noises: structure functions (SF), TMs and DTMs. This led us to

introduce a hybrid method somewhere between the SF and the DTM method; the

double structure function (DSF), that rather combines both of the other meth-

ods advantages for large statistics. Developments in the structure function led

to analyses based on the q-normalised method: f(q) = ζ(q)/q, where ζ(q) is the

scaling exponent of the structure function.

We also highlight several important features:

• The scaling anisotropy of the samples: to avoid shadow effects from masts,

we are compelled to deal with samples whose ‘mean’ velocity is

near-perpendicular to the masts. The anisotropy of these samples turns

out to be beyond a trivial component-wise anisotropy corresponding to pre-

factors depending on the direction, i.e., the scaling exponents themselves

(in particular H) depend on the direction.

• We derive an analytical expression for the direction dependence of H and

plot the corresponding ‘potatoid’ shapes of the isolines of the exponent
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values. The expression is based on the cross-correlation between orthogonal

components of the singularities.

• We show that this scaling anisotropy has important consequences for first-

order multifractal phase transitions; it decreases the critical order qD (the

analog of the inverse of a critical temperature) at which the transitions

occur. This decrease is so significant that these transitions may occur on a

unique sample whereas usually they are expected only a very large number

of samples since they correspond to a divergence of moments for an infinite

number of samples.

• Not taking care of these phase transitions leads to spurious estimates of the

multifractal exponent α.

• The lack of translation invariance of the fluctuations along the vertical space

axis forces us to deal with non-linear GSI as opposed to simple GSI in order

to avoid inconsistencies.

As briefly discussed in the last section we believe that these features must not

only to be taken into account to develop adequate modelling but, are manageable

in the framework on non-linear GSI.

The aim of this thesis has not been to show whether a deterministic or sta-

tistical approach is better. Its aim, although changing, has finally been to clarify

what needs to be done next and with which tools. By very carefully applying a

range of statistical methods we have shown that turbulence is far more complex

than its face value shows. Nonetheless, it is multifractal and scaling, although

only in a non-linear and generalised manner. We pointed out how to go from mul-

tifractal analysis to a multifractal surface-to-boundary-layer model. A model like

this would provide not only very accurate energy predictions but also meaningful

nowcasts. This is an exciting concept as it will not only drive competitiveness in

the market but also give wind energy the ability to dominate the energy market.
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Appendix A

A.1 Conservation

Under certain conditions of mathematical regularity, the integral of the energy

rate density ε of a fluid parcel is conserved by the non-linear terms of the Navier-

Stokes equation. Starting with the equation of an inviscid fluid (i.e., ν = 0; Euler

equation) with no forcing term at constant density:

∂u

∂t
= −(u · ∇)u−∇p, (A.1)

Multiplying both sides by u:

ε = −1

2

∂

∂t
(u · u) = −u · (u · ∇)u− (u · ∇)p, (A.2)

Because of incompressibility (i.e., u · ∇ = 0), equation A.2 becomes

ε = −∇ ·
[(

1

2
(u · u) + p

)
u

]
(A.3)

Integrating over a volume of space V , it yields (due to Gauss’ divergence theorem):

∫

V

εdV = −
∫

V

∇ ·
[(

1

2
(u · u) + p

)
u

]
dV = −

∮

S

(
1

2
(u · u) + p

)
u · dS (A.4)

where the right hand integral is over the surface only. The first term represents

the transfer of kinetic energy across the surface, the second is the work done by
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pressure forces; there is no net source or sink of ε inside the volume. We now

consider the dissipation term ν∇2u; multiplying by u, ignoring the surface term

just discussed, we obtain:

∫

V

εdV = νu ·
∫

V

∇2udV (A.5)

Now, using vector identities, we have:

u · ∇2u = −|∇ ∧ u|2 −∇ · [(∇∧ u) ∧ u] (A.6)

The second term an the right hand side is a divergence, when integrated over a

volume it can be rewritten as a surface integral (Gauss’ theorem):

∫

V

εdV = −ν

∫

V

|∇ ∧ u|2dV − ν

∮

S

[(∇∧ u) ∧ u] · dS (A.7)

Since the surface integral is null if S is a current surface (dS ⊥ u) or a rigid

boundary u = 0 the right hand side integrand is a positive definite quantity,

ν > 0, and hence the viscosity is always dissipative (decreases the total energy).
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A.2 The Kolmogorov Hypotheses

H1 In the limit of infinite Reynolds numbers, all possible symmetries of the

Navier-Stokes equation, usually broken by the mechanisms producing tur-

bulent flow, are restored in a statistical sense at small scales and away from

boundaries.

By small scale we understand scales ℓ ≪ L where L, the integral scale, is

characteristic of the production of turbulence. Small-scale homogeneity is

defined as the property of having homogeneous increments i.e. in terms of

velocity increments we have:

∆u(ℓ) ≡ u(r + ℓ)− u(r). (A.8)

Specifically, it is assumed that

∆u(r + ρ, ℓ)
d
= ∆u(r, ℓ). (A.9)

for all increments ℓ and all displacements ρ which are small compared to

the integral scale.

Similarly, isotropy means, in the present context, that the statistical prop-

erties of velocity increments are invariant under simultaneous rotations of

ℓ and ∆u and are likewise simultaneously reversed for parity.

H2 Under the same assumptions as in H1, the turbulent flow is self-similar at

small scales, i.e. it possesses a unique scaling exponent H.

Thus, there exists a scaling exponent H ∈ R such that symmetry 6 in §1.1

is satisfied.

H3 Under the same assumptions as in H1, the turbulent flow has a finite non-

vanishing mean rate of dissipation 〈ε〉 per unit mass.

For H3, we must keep the integral scale L and the r.m.s. velocity fluctua-

tions, uδ, fixed, and let u → 0. Otherwise, 〈ε〉 must be non-dimensionalised

through division by u3
δ/ℓ0.
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A.3 Fractal Dimensions

If we take an object with linear size equal to 1 (or any object with a normalised

outer scale, L, as is generally the case) residing in a Euclidean dimension D, and

reduce its linear size n times by the factor ℓn = 1/λn in each spatial direction,

it takes Nn = ℓ−D
n number of self similar objects to cover the original object as

illustrated in figures A.2a, A.2b and A.2c. We define λ as the ratio of scales and

λn as the magnification factor.

(a) N1 = 41. (b) N1 = 42. (c) N1 = 43.

Figure A.1: A line, square and cube broken into λ = 4 self similar parts with the smallest
segments of length ℓ1 = 1/4.

We can express the dimension of the self-similar object simply through the

exponent of the number of self-similar pieces (with scale ratio λ) into which the

figure may be broken.

Using logarithms we obtain

dimension =
log(number of self-similar pieces)

log(magnification factor)
. (A.10)

For a square with dimension 2 there are ℓ−2
n self-similar pieces each with a mag-
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nification factor λn. equation A.10 thus becomes

D =
log(Nn)

log(λn)
=

log(ℓ−2
n )

log(ℓ−1
n )

(A.11)

=
−2 log(ℓn)

−1 log(ℓn)
= 2. (A.12)

We can see from equation A.12 that the (integer) dimension is independent of

scale factor, ℓn, and also therefore n. Similarly if we take equation A.10 as the

same definition for the fractal dimension, DF , of a self-similar object such that

the

fractal dimension =
log(number of self-similar pieces)

log(magnification factor)
(A.13)

and the number of self-similar pieces is chosen to be some ‘fraction’ of the the

total space i.e. 3 out of the 4 segments is occupied =⇒ Nn = 3n for scale ratio

λ = 4

DF =
log(Nn)

log(λn)
=

n log(3)

n log(λ)
=⇒ log(Nn/Nn−1)

log(λ)
(A.14)

=
log(3)

log(4)
= 0.75.

Again we see that the fractal dimension does not depend on the finite scale n but

on the ratio between each scale and the number of counted objects at that scale

ratio.

(a) N0 = 30. (b) N1 = 31. (c) N2 = 32.

Figure A.2: Three iterations of a fractal process on a square with ratio of scales, λ = 2, and
fractal dimension, DF = 0.75.
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Being able to determine the number of ‘active’ countable objects at any scale

ℓ simply through the dimension, fractal dimension (or fractal co-dimension as

we will see in the next section) and the ratio of the largest scale and the scale

of interest is a very desirable property since they are all (D, DF and λ) easily

obtainable from empirical data. Thus we find equations. A.11 and A.14 are

typically written in the form

Nλ = λD and Nλ(A) = λDF (A) (A.15)

where A is the space and/or time set in which the ‘activity’ is occurring.

Types Of Fractal Dimension

Box-counting dimension D0: Nλ(A) = λD0(A) is the typical number of disjoint

balls or cubes of resolution λ covering A.

Hausdorff dimension DH : It is often considered as the rigorously defined frac-

tal dimension. It has indeed a precise mathematical definition, going back

to (Hausdorff [1918]) i.e. for any compact set A: D(A) is the critical di-

mension of the of the D-dimensional Haussdorff measure mD(A) such that:

D < D(A) = mD(A) = ∞; D > D(A) : mD(A) = 0. However, it has only

limited practical applications, since the Hausdorff dimension requires us to

consider coverings with balls of various sizes, not of a characteristic size.
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A.4 Fractal Co-dimensions

The notion of fractal co-dimension, c, can be defined both statistically and ge-

ometrically. While the latter is much more popular, we will demonstrate that

the former is much more useful and general since it applies also to stochastic

processes and not only to deterministic ones.

Geometric Definition Of A Fractal Dimension

Let A ⊂ E (the embedding space) with dim(E) = D and dim(A) = DF (A).

Then the co-dimension c(A) is defined as

c(A) = D −DF (A). (A.16)

This definition corresponds merely to an extension of the (integer) co-dimension

definition for vector subspaces.

The co-dimension can be considered to be more fundamental than the notion

of the fractal dimension and should be introduced directly. Indeed, this is the

case if we consider the scaling behaviour of the probability, P , that a ball Bλ (of

size ℓ = L/λ) intersects A.

Probabilistic Definition Of A Fractal Dimension

Let Bλ be a ball of size ℓ = L/λ, then from equations A.15 and A.16 we find

P (Bλ ∩ A) ≃ λ−c(A) (A.17)

where ‘≃’ means equality within slowly varying and constant factors. We can

see that c is directly defined as an exponent measure of the fraction of the space

occupied by the fractal set A in an embedding space E which can even be an

infinite dimensional space (again see Fredholm theory).
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Relating The Two Definitions

Since the probability of the event, Bλ ∩ A, is defined as

P (Bλ ∩ A) ≃ N(Bλ ∩ A)

N(Bλ ⊃ E)
≃ λ−DF (A)

λ−D
. (A.18)

It is easy to check that when c < DF = dim(E) < ∞ the two definitions are

equivalent

(Definition A.4 : c(A) ≤ D < ∞) ⇔ (Definition A.4 : DF (A) ≥ 0) (A.19)

Rather obviously the statistical definition does not imply any limitation on c.

However, the equivalence between the two does not hold as soon as c(A) > D.

This is the so-called ‘latent’ dimension ‘paradox’... corresponding to the fact that

a deterministic geometric definition is no longer possible. This is not surprising

since the definition A.4 overcomes many limitations of the Hausdorff dimension

which is defined for compact sets (hence bounded sets): the co-dimension mea-

sures the relative sparsity of a phenomena (the relative frequency of occurrence),

whereas the dimension measures its absolute sparsity (the absolute frequency of

occurrence).
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A.5 Divergence Of Moments And The α-Model

From the α-model we have

〈εqλ〉 = λγ+qλ−c + λγ−q(1− λ−c). (A.20)

When q → ∞, q = qD. As such

〈εqDλ 〉 = λγ+qDλ−c. (A.21)

We can see the r.h.s of the above equation is analogous to λK(qD(c/γ+−c)), thus

equating 3.9 and A.21 we obtain

qD =
c−D

γ+ −D
. (A.22)

This implies for qD to be greater than 1, c must be greater than the maximum

singularity γ+.
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A.6 Renormalising Discrete Cascades

The singularities γ+ and γ− create a step by step infinite hierarchy of mixed

singularities (γ− ≤ γ ≤ γ+) such that at the nth step we have

γn =
n+γ+ + n−γ−

n+ + n−
where n = n+ + n−. (A.23)

and therefore also

P (µε = λγ
n+ ,γ

n− ) =

(
n

n+

)
λ−cn+

(1− λ−c)n
−

, (A.24)

where
(
n
k

)
is the number of combinations of n objects taken k at a time. This

implies that we may write:

P (ελn ≥ (λn)γi) =
∑

j

mij(λ
n)−cij . (A.25)

The mijs are the ‘sub-multiplicities’, cij are the corresponding exponents (‘sub-

co-dimensions’) and λn is the total ratio of scales from the outer scale to the

smallest scale. Notice that the requirement that 〈µε〉 = 1 implies that some of

the λγi are greater than one (increases) and some are less than one (decreases),

that is, some γi > 0 and some γi < 0. Note also that the α-model will have

bounded singularities

−γ− ≤ γi ≤ γ+, (A.26)

i.e. the maximum attainable singularity γmax is equal to γ+. The final step in

re-normalising is to replace the above n step, 2 state cascade by a single λn step

cascade with n+1 states. Finally doing this and making the replacement λn → λ,

in the limit λ → ∞, means one of the terms in the sum will dominate (that with

the smallest cij). Hence defining

ci = min{cij} = c(γi) (A.27)

this yields for λ → ∞

P (ελ ≥ λγi) = miλ
−ci (A.28)
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where ci is the co-dimension and mi is the multiplicity. If we now drop the

subscripts ‘i’ (this allows for the possibility of a continuum state, e.g. the process

being defined by a uniform or other continuous distribution) then we obtain:

P (ελ ≥ λγ) ≃ λ−c(γ) ·m(γ);
dc

dγ
> 0. (A.29)

Thus, the multifractal field, ελ, at the ratio of scale λ can be written:

P (ελ ≥ λγ) ≃ λ−c(γ). (A.30)

where ≃ absorbs the multiplicative pij. Each value of ελ corresponds to a sin-

gularity (where strictly speaking ‘singularity’ applies only to γ > 0 i.e. when

ε → ∞ for λ → ∞, when γ < 0 it is a ‘regularity’) of order γ and co-dimension

c(γ).
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A.7 Legendre Transformation

We now derive the basic connection between c(γ) and the moment scaling expo-

nent K(q). To relate the two; we first write the expression for the moments in

terms of the probability density of the singularities:

p(γ) =
∣∣P ′(γ)

∣∣ ≈ c′(γ) · log(λ) · λ−c(γ) ≃ λ−c(γ) (A.31)

(where we have absorbed the c′(γ) · log(λ) factor into the ≃ symbol since it is

slowly varying, sub-exponential). This yields:

〈εqλ〉 =
∫

dP (ελ) · εqλ ≃
∫

λ−c(γ)λqγdγ (A.32)

where we have used ελ = λγ on the r.h.s. which is justified for the change in

variable ελ for γ when λ is a fixed parameter. Hence:

〈εqλ〉 = λK(q) = eK(q) log(λ) =

∫
∞

−∞

eξf(γ)dγ; ξ = log(λ); f(γ) = qγ − c(γ); λ ≫ 1;

(A.33)

We see that our problem is to obtain an asymptotic expansion of an integral

with integrand of the form exp(ξf(γ)) where ξ = log(λ) is a large parameter

and f(γ) = qγ− c(γ). These expansions can be conveniently performed using the

mathematical technique of ‘steepest descents’ e.g. which shows that the dominant

term in the expansion for the integral is

exp
[
ξmax

γ
(f(γ))

]
(A.34)

i.e. the integral is dominated by the singularity γ which yields the maximum

value of the exponent so that as long as ξ = log(λ) ≫ 1:

K(q) = max
γ

{
qγ − c(γ)

}
(A.35)

This relation between K(q) and c(γ) is called a ‘Legendre transform’; see figure

A.3). We can also invert the relation to obtain c(γ) from K(q); just as the inverse

Laplace transform used to obtain K(q) from c(γ) is another Laplace transform
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so the inverse Legendre transform is just another Legendre transform. To show

this, consider the twice iterated Legendre transform L(q) of K(q):

L(q) = max
γ

{
qγ − (max

q

{
q∗γ −K(q∗)

}
)
}
= max

γ;q∗

{
γ(q − q∗) +K(q∗)

}
(A.36)

Taking L′ = 0 =⇒ q = q∗ we see that L(q) = K(q); this shows that a Legendre

transform is equal to its inverse (see Zia et al. [2008] for further details on all of

the above), hence we conclude:

c(γ) = max
q

(qγ −K(q)). (A.37)

The γ for which a given q maximises qγ − c(γ) is γq and it is the solution of

c′(γq) = q (figure A.4). Similarly, the value of q for which a given γ maximises

qγ −K(q) is qγ so that:

qγ = c′(γ), (A.38)

γq = K ′(q). (A.39)

This is a one-to-one correspondence between moments and orders of singularities

(see figures A.3 and A.4).

Figure A.3: K(q) versus q showing
the tangent line K ′(qγ) = γ with the
corresponding chord γq. Reproduced
from (Tessier et al. [1993]).
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Note that if γ is bounded by γmax (for example in the α-model; γ ≤ γ+) there

is a qmax = c′(γmax) such that for q > qmax, K(q) = qγmax − c(γmax), i.e. K(q)

becomes linear in q (see figure A.5).

Figure A.4: c(γ) vs. γ showing where the tangent
c′(γq) = q with the corresponding chord γq.

Figure A.5: Using the Legendre trans-
formation of K(q) to derive the maxi-
mum order of singularity present (γmax;
corresponding moment qmax = c′(γmax)
When q > qmax the Legendre transform
will have a maximum value γ = γmax as
shown. This implies K(q) is linear for
q > qmax. Reproduced from course notes,
1996 (Schertzer and Lovejoy [1994]).
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Appendix B

B.1 Vorticity Scaling

The three-dimensional vorticity in Cartesian co-ordinates is

Ω = ∇× u =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
. (B.1)

We start first with the vorticity of the Corsica dataset. For the Corsica dataset

we have the three-dimensional wind in time at two heights. This means we can

calculate only one component of the vorticity, the y-component Ωy, using the

following terms ∆u/∆z and ∆w/∆x provided Taylor’s approximation is valid for

space separations in x, i.e. where ∆x = U∆t.!

!!! !!!!!! !!!!!! !!! !!! !!!!!! !!!

∆!! ∆!!

!

Figure B.1: Illustrative diagram of the two different methods for obtaining the differences of
the velocity.

In an attempt to match the two separations ∆x ≈ ∆z there are two ma-

nipulations that can be performed. The first and most physically representative

method is to increase/decrease the time-scale separation. If our mean U ≈ 1.5m/s
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is representative, we require ∆t to be about 30 seconds to match a vertical space-

separation of 50m. We found that increasing ∆t for ∆u(∆t), ∆v(∆t) and ∆w(∆t)

to anything larger than the smallest separation possible (0.1 seconds) led to spu-

rious spectral oscillations. Note this happened only if the differences were taken

using a windowing method (see figure B.1). Figures B.2 and B.3 plot the spectra

of the velocity increments for increasing ∆t using the two different methods.
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Figure B.2: Plots of the energy spectra of ∆u(∆t) for ∆t = 0.1× 2n seconds, where n ∈ [0 :
2 : 16] (left to right and from top to bottom). The velocity increments are calculated using the
windowing method. In the final plot the red plot corresponds to the spectra of u(t).
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When the windowing method is used the smallest time-scale separation yields

a spectrum with the scaling exponent of the derivative ∂u/∂t, i.e., approximately

ω2Eu. For increasing time-scale separations a de-correlation occurs until we find

E∆u ≈ 2Eu. When the non-windowing method is used we find that the scaling

exponent (2/3) remains stable with increasing ∆t, i.e. no de-correlation occurs.
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Figure B.3: Plots of the energy spectra of ∆u(∆t) for ∆t = 0.1 × 2n seconds, where n ∈
[0 : 2 : 16]. For increasing ∆t the number of values of ∆u(∆t) decreases hence the leftward
reduction in the sample size.

If we are unable to increase ∆t using the windowing method we can alter-

natively manipulate the mean wind U . Since the spectra discussed in previous

sections have multiple scaling regions (corresponding to multiple means over dif-

ferent scales), estimations could be biased and therefore the manipulations are

justified. Figure B.4 plots the vorticity component Ωy for fixed ∆t = 0.1s and

for increasing U = 2nm/s, for n ∈ [8 : 15] (from top to bottom). When we

change U we are in fact simply changing the weighting of the term ∆w/∆x. The

larger U the more we decrease the weighting of the term. Therefore, figure B.4

corresponds simply to the transition between the spectra of ∆u and ∆w.
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Figure B.4: Energy spectrum of the vorticity component Ωy for U = 2nm/s, for n ∈ [8 : 15]
(see legend).
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Figure B.5: Plots of the energy spectrum of the time-increments (∆t = 0.1s) of the three-
dimensional velocity: ∆u(∆t) (blue), ∆v(∆t) (red), and ∆w(∆t) (green), and the temperature
increments ∆T (∆t) (turquoise).
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Figure B.5 plots energy spectrum of the time-increments of the three-dimensional

velocity and temperature. Dimensional analysis of the velocity increments yields

a positive scaling exponent of 1/3. The increments of three velocity components

exhibit a scaling exponent of 1/2 from 0.2 seconds to 5 seconds. This is then

diminished to 2/3 for the horizontal components from 5 seconds to a minute

(log2 ω = 10 to 6). These exponents are indeed not far from their expected

scaling exponent. For the spectra of the temperature increments a much higher

scaling exponent (4/3s) is observed. This is due to high frequency white noise.

Figure B.6 plots the y-compoent vorticity but for a much longer sample so that

the previously observable -2 scaling ranges of the velocity are included. Indeed

we find that, as with the other measured quantities, a -2 scaling range occurs

even for the vorticity.

lo
g
2
E
(ω

)

log2 ω

2

0 5 10 15 20
34

36

38

40

42

44

46

48

50

Figure B.6: Plot of the energy spectrum of the ∆u(∆t) for a concatenated time-series with
λ = 221.
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In figure B.7 we compare the time-averaged energy spectrums of the time-

series’ velocities u and w and their respective increments in space i.e. ∆u(∆z)

and ∆w(∆z). It seems that the taking the differences of the velocities in space

extends the adjoining -1 scaling range up to much higher frequencies. If we go by

the same argument that is typically applied to the vertical velocity component

i.e. that the fluctuations observable at any given distance above the ground are

restricted to structures that are smaller than the height of measurements, we

can infer that the vertical velocity increments of the horizontal wind will also

be subject to this condition. Because this effect occurs at different time-scales

for either the horizontal or vertical components it may be possible to directly

estimate the space-time anisotropies.
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Figure B.7: Comparison of the energy spectra of the velocities (blue) u(t, z) (a) and w(t, z)
(b) and their respective spatial derivatives (purple) ∆u(t,∆z) (a) and ∆w(t,∆z) (b) where
∆z = 20m. The velocities corresponds to the Corsica dataset.

In fact we show in figure B.8, using the Growian dataset, that the frequency

that the -1 adjoining range begins at does not significantly depend on the size of

the space-separation. This suggests that the anisotropy is in fact universal across

space-time. Because there are no observable scales in which a vorticity spectrum

ensues when the derivative is taken in space it may be that the spatial derivative

does not sufficiently remove the correlation of the velocities in time. This may be

because of the complexities that arise when taking spatial derivatives of a time-
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series. If there is a space-time anisotropy one could believe that the time-series

data are more correlated than the spatial derivatives (at a fixed 50m scale) allow

us to remove.

lo
g
2
E
(ω

)

log2 ω

5 10
1

1.2

1.4

1.6

1.8

2

(a)

lo
g
2
E
(ω

)

log2 ω

5 10
1

1.2

1.4

1.6

1.8

2

(b)

Figure B.8: (a) Comparison of the energy spectra of the velocities (blue) u(t, z) and their
respective spatial derivatives (green) ∆u(t,∆z) where ∆z = 40m; (b) Comparison of ∆u(t,∆z)
for ∆z = 40, 65, 90, 115 and 140m (blue, red, green, turquoise and purple).
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Figure B.9: Comparison of the energy spectra of the horizontal velocity (red) u(t, y) and its
respective spatial derivatives ∆u(t,∆y) for ∆y = 25, 50 and 75m.
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As was done with the vertical spatial increments, figure B.9 compares the en-

ergy spectra of the horizontal velocity u(t, y) and its respective horizontal spatial

derivatives ∆u(t,∆y). Unlike the vertical spatial increments however, increasing

∆y has an effect on the scaling of the spectra of ∆u(t,∆y). It seems the larger

the increment ∆y the further the Kolmogorov range extends. This is somewhat

contradictory to our previous results but could be explained by a strong hori-

zontal anisotropy instead. This would be consistent with our other analyses on

component-wise anisotropy.
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B.2 Quantifying The Effects Of Phase

Transitions

We have shown that the non-scaling TM and DTMs can be corrected by a frac-

tional integration/differentiation however, we haven’t yet discussed the scaling

properties of the singularities of the flux. If the scaling moment functions aren’t

scaling we can expect that the singularities also won’t scale. Unlike the TMs and

DTMs we expect the singularities γ to change linearly i.e. γ + h. To analyse the

scaling properties of γ we estimate γs ≈ γmax at different λ. Indeed, analysing this

quantity at different resolutions confirmed that it too, as with the TM and DTMs

wasn’t scaling. Figure B.10 plots γmax at decreasing resolutions λ = 215, 213, 211,

29, 27 and 25. We can see that the decrease from 0.059 to -0.41 is significant

enough to say there is no conservation.

Because we cannot manipulate the curvature of the singularities with a con-

volution as we did with the TMs and DTMs we attempted to find other means

by which to force the singularities to behave as conservative process. One inter-

esting observation was the apparent dependence on the initial time-separation of

the velocity increments used to approximate the flux; an idea that we originally

developed when looking to the scaling properties of the vorticity. More formally

we define our flux as

ε(τ0) = |∆u(τ0)|3 (B.2)

where τ0 is the initial separation between the velocity increments. The positive

flux field ε(τ0) is then upscaled in the usual way to obtain either the TMs or the

DTMs. We emphasise that for different τ0 our total ratio of scales, λ, remains

the same. Figure B.11 plots γ = logλ(ε(τ0)) through λ and for different values of

τ0.
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Figure B.10: Plots of the time-series of γ = logλ(ελ) at decreasing resolutions λ = 215, 213,
211, 29, 27 and 25.

We can see that for τ0 = 0.1s a similar but not the same curving, non-scaling,

behaviour occurs as has been the case with our TMs and DTMs estimated on the

same quantity. For increasing τ0 we are changing the curvature of the singularities

with respect to λ, as was done with h for the DTMs. In fact, when we change

τ0 we are also indirectly changing H since over larger time-scales, due to scaling

changes observed in the structure functions, the correlation between un and un+1

is different. We show in figure B.12 that, unfortunately the change in H for

increasing τ0 is unrelated the linearity/non-linearity of the TMs and DTMs, i.e,

the TMs are still curving. It is possible to manipulate the curvature of the TMs

and DTMs through τ0 as was done with fractional integration however the same
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result is obtained in that τ0(q, η) is required to fully optimise the functions.
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Figure B.11: Plot of γmax(λ) for different τ0 (see legend).

What is of particular interest is that we seem to be able to obtain a linear

scaling for τ0 somewhere between 0.4 and 0.8s. We showed in chapter two that

the one-dimensional projection of an anisotropic two or three-dimensional process

will result in a reduction in dimension. It may be that as we increase τ0 the

deformation of the space – that has resulted from component-wise anisotropy and

therefore an uneven distribution of the one-dimensional singularities – is reduced.

We can hypothesis therefore that the τ0 that results in the most linear distribution

of singularities across λ is the so called ‘iso-scale’ predicted by GSI. Figure B.13

plots the histogram of the τ0s that produce the most linear distribution of γmaxs

across λ over the whole dataset. The distribution seems to have two more frequent

values of τ0, τ0 = 3.2s and τ0 = 1hr. Whether these time-scales truly corresponds

to an iso-scale is open for discussion. What can be shown however, is that qD is

the result of the uneven distribution of the singularities.
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Figure B.12: Plots of the TMs for optimal τ0 for the first 30 samples.

Figure B.14 plots the surfaces h, αh and C1,h calculated on χ = ε(τ0) where τ0

is the optimal value as shown in figure B.13. When we use a τ0 that is linear in λ

(note this usually corresponds to a constant γmax) the singular behaviour that we

have shown is due to the linearity of the function K(qD) is completely lost. Note

the dependence on h is still maintained further confirming that the occurrence

of qD and the curvature observed in the TMs and DTMs are unrelated. In the

next section we discuss what may be the causes of the non-scaling behaviour of

the TMs and DTMs.

271



N

log2 τ0

0 5 10 15 20
0

5

10

15

20

25

Figure B.13: Histogram of the optimal τ0 that satisfies the most linear distribution of γmax

across λ.
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Figure B.14: Surfaces plots of h, αh and C1,h calculated on χ = ε(τ0) where τ0 is the optimal
values shown in the histogram of figure B.13
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B.3 Empirical Co-Dimension Functions

Due to the aforementioned complexities involved in the estimation of the param-

eters for the scaling moment function, it can sometimes be easier to estimate

the parameters directly from the co-dimension function. There are typically two

standard methods used to calculate the c(γ), the probability distribution-multiple

scaling (PDMS) method and the Weibull plotting position. Note is also possible

to compute the Laplace transform of the K(q) function however this wouldn’t

solve any of the previous problems we had encountered. We attempted to ap-

ply the PDMS method to the data, however, the non-scaling of the singularities

meant the estimation of the slopes was unreliable. This left the Weibull plotting

position.

There are two clear problems when using Weibull plotting position. The

first is that we define our probability Pr = i/(N + 1) ≈ i/λ, because the index

i ∈ [1 : λ] is positive, the maximum co-dimension we can obtain is 1 since

c(γi) = 1 − logλ i. The second problem is that because we are calculating our

Weibull plotting positions on one sample the sampling dimension, Ds = 0. Thus,

because c(D) = γs and the dimension of the sample D = 1, the maximum

obtainable co-dimension should correspond to γs. If in each sample the maximum

observed singularity is more or less than γs, due to the even spacing enforced

by the Weibull plotting position, the remaining singularities will be incorrectly

distributed. We can simulate this problem by defining

c(γi) = C1

( γi
C1α′

+
1

α

)α′

, (B.3)

where γi = logλ(i/λ) and i is positive and evenly spaced as defined early. In figure

B.15 we use a spacing of i ∈ [1 : 10 : λ]. To simulate the effect of our maximum

singularity deviating from γs we shifted the singularities for the corresponding

co-dimensions by a factor of i0 i.e.

Pr(ελ ≥ λγi+i0 ) ∝ λ−c∗(γi). (B.4)

The yellow and purples plots in B.15 correspond to i0 = −6 (max(γ) < γs) and
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6 (max(γ) > γs) respectively. The control plot is the solid blue curve where

i0 = 0 or max(γ) = γs. The corresponding difference γ′ = max(γ) − γs caused

by shifting the index by six places is approximately ±0.15. The effect of having

γmax 6= γs is that the c(γ) function is either more or less curved than it should

be making it difficult to estimate the true values of the parameters that fit the

curve.
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Figure B.15: (a) Plot of c∗(γi) for i0 = 0 (solid blue line), i0 = −6 (yellow crosses) and
i0 = +6 (purple crosses).
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B.4 Approximating The Non-Scaling

Behaviour Of The Trace Moments

A large part of the third chapter of this thesis has been devoted to linearising the

DTMs through fractional differentiation/integration. The result of this manip-

ulation has been the non-unique estimation of the parameters H and C1 (i.e. a

dependence on q of the estimates). This situation is not within the UM framework

as unique parameters are required in order to simulate the velocities.

A possible solution to this problem is to find a log λ′ say in which the TMs

and DTMs are linear. If, as with C1,h and h, the change in λ′ or moreover log λ′

is proportional to the change in either C1,h or h – where C1,h and h are related by

M – through q and η there then exists a universal function f : λ 7→ λ′ that can

be used to simulate the fields. Figure B.16 attempts to illustrate this function or

transformation.
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Figure B.16: Diagram of the transform of the non-linear log λ to the linear log λ′.

The plots of both the TMs and DTMs of ελ = |∆u|3 have shown that there

is a strong curvature that one might attempt to fit with a power law. As an

example therefore figure B.17 plots the TM of ελ at q = 1.5 versus (log2 λ)
µ for
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µ ∈ [1 : 10]. This means we are looking for

log2 λ
′ = (log2 λ)

µ. (B.5)

We can see that a power law works to some extent. Indeed over a given range of

λ for µ = 7 we are able to approach a scaling behaviour in these new coordinates.

One clear problem is the poor normalisation at log2 λ = 0. The function we are

using in this case however is just an example.
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Figure B.17: Plots of the TM of ε = |∆u|3 at q = 1.5 versus (log2 λ)
µ for µ ∈ [1 : 10] (from

bottom to top).

Nonetheless, comparing the change in the parameter µ(q, η) with that of (for

instance) the change in C1(q, η) (figure B.18) we find that the two surfaces can-

cel to (approximately) form a universal constant (figure B.19) of 0.4. Note the

transform f : λ 7→ λ′ can be any function provided the parameter or parameters

of the function change proportionally to C1,h and h.
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Figure B.18: Surface plots of µ(q, η) (left) and C1,h(q, η) (right).
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Figure B.19: The surface µ(q, η) · C1,h(q, η).

For practical applications we can now use this constant to reconstruct so that

our flux will have parameters of the form

µC1 = 0.4, (B.6)
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where C1 is related to H throughM , i.e. for this (qs-like case) H = 9.5C1. For the

simplest solution to the equation B.6 we can use µ = 1 so that λ′ = λ. This means

we must simulate a field with C1 = 0.4 and H = 4! This is an unphysically large

value showing there is something we aren’t quite understanding. We can attempt

to reduce this value by increasing µ but due to the double exponential form of the

equation increasing µ to even 2 means simulating a field with resolution λ = 211

would require λ′ = 283. One reason we are obtaining such large values could be

we are not using the correct function f(λ). We have chosen a power law function

as an approximation. A more reasonable approach will be to determine a physical

reason why the positive energy flux requires a different metric and how that can

be used to determine f(λ).

As discussed in chapter three, Novikov Novikov and Stewart [1964] predicts

a length-scale that depends on the friction velocity. If our surface-layer friction

velocity follows a logarithmic profile (i.e. equation 2.1) we have

λ′ = log(λ). (B.7)

Indeed this also gives a non-linear function f(λ) however with a logarithmic

function we are not able to find a q and η dependent parameter that we can use

to find a universal constant in C1 as changing the base of the logarithm gives

only a linear shift.

Coming back now to our solution to equation B.6. If we are indeed able to find

an f(λ) that sufficiently satisfies the curvature of the TMs and DTMs a simple

fractional integration of the field will not return the same curvature. In figure

B.20 we have taken a simulated flux with parameters α = 1.2 and C1 = 0.15. The

flux has then been fractionally differentiated/integrated for h ∈ [−1 : 1]. We can

see that for negative h we are able to manipulate the scaling such that it becomes

curved however for positive h there is no amount of correlation that changes the

TMs curvature in an opposite convex fashion. We must therefore look to other

‘manipulations’ of the data in order to obtain this characteristic convexity.
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Figure B.20: The trace moment at q = 1.5 of the convoluted, simulated, energy flux εc = ε∗λh

for h ∈ [−1 : 0.1 : 1] from top to bottom.
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Figure B.21: The trace moment at q = 1.5 of ε+ c for c ∈ [5 : 10] from top to bottom.
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The multiplication of two scaling processes will sum the C1s of the processes.

It is therefore not the influence of a scaling process that is causing this behaviour.

A simple result that shows how easily the scaling of a process can be destroyed

is the addition of a constant to the scaling flux i.e. ε(t) + c, which is a way

to increase the mean of the process without increasing the singularities – the

non-scaling way to smooth the singularities (figure B.24).

Indeed, the addition of a constant results in the convex curving of the TMs and

DTMs as it appears in the data. But, the corresponding homogeneous function

h(q, η) (figure B.22) isn’t what we find in the empirical data.
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Figure B.22: Surface plot of h(q, η) estimated on ε+ 5.

Instead of simply adding a constant (that should be vanishing with ∆u),

a more realistic approach is to add a Gaussian noise, X(t), to the simulated

flux: εN(t) = ε(t) + X(t). Figures B.23 and B.24 plot εN for Gaussian noises

with increasing power and their corresponding TMs. As with the addition of a

constant we can see that the addition of a non-scaling white-noise will also result

in a convexity (proportional to the power) in the TMs estimated on εN . If we look

to the corresponding figure B.25 of h(q, η) estimated on εN , the characteristic non-

linear surface observed in the empirical data now becomes apparent. In the next

section we will discuss the consequences of the mixing of processes and whether

or not the UM framework needs to be adapted.
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Figure B.23: Plots of the simulated velocity field, εN (t), i.e. the simulated flux, with an
added white-noise, X(t), where X(t) has increasing power 10aN for aN ∈ [0 : 9] (from left to
right and from top to bottom).

By increasing the power of the white noise we are increasing the range of

the (non-scaling) singularities of X(t). The scale that will be influenced by X(t)

therefore increases with the increase in the power of X(t).
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Figure B.24: Trace moment at q = 1.5 calculated on εN for the increasing (from top to
bottom) powers of added white noise of figure B.23.
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Abstract

One of the key thematic areas for the development of future research in wind energy is wind conditions.

To better understand this topic requires the development of new numerical methods and measuring tech-
niques capable of reaching micro scale effects. My PhD thesis will focus on advanced characterisation of

micro-scale wind turbulence with respect to non-Gaussian heavy tailed statistics and short term extreme

events (gusts) on the scales of 1 to 1000 m and/or 1 to 100 sec. Based on experimental data, multifractal
wind field models with high frequency turbulent dynamics will be developed. Such models are promising

candidates for providing initial flow conditions for turbulent dynamic CFD calculations. A combination of

multifractals with other more classical models can open new perspectives for many industrial applications.

Introduction

Over the last twelve months I have studied mathematical and numerical methods for modelling atmo-
spheres and oceans; specifically fluid dynamics, atmospheric physics, conservation laws and numerical

techniques. The outcome, an ability to model fluid and gas flow based on an understanding of governing

equations and their physical properties. I am now looking to apply this knowledge to a new and exciting
area of research, multifractals.

Traditional numerical approaches are forced to transform partial differential equations (PDE’s) into ordi-
nary differential equations (ODE’s) by implicitly imposing the regularity and homogeneity assumptions.

The problem encountered with these assumptions is a violation of the fundamental symmetry of the non-

linear PDE’s which can lead to a reduction in variability. This then questions the relevance of the resulting
numerical codes because their scales are different from those of the observations. Using multifractals on

the other hand allows us to understand and to model extremely variable space-time fields thus accounting
for extreme events (gusts). If properly applied, I believe a multifractal wind analysis and model will be a

greatly beneficial contribution to weather/wind prediction.

Atmospheric dynamics and the cascade paradigm

In 1922, the meteorologist Lewis Richardson in his book “Weather Prediction by Numerical Processes"

expressed the idea of atmospheric dynamics. In poetic form, he suggested that the turbulence in the atmo-
sphere produced by an outer force, giving rise to kinetic energy at big scales, is transferred to smaller scales
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without dissipation until the terms of viscosity can not be neglected anymore. The theory of turbulence

went on with the work of [3] about homogeneous turbulence. With the help of the so-called refined self-
similar hypothesis [4], the velocity increment singularities were linearly related to the singularities of the

energy flux whose energy spectrum obeys the famous -5/3 law over the scaling range (Fig.1). However, it
required some time and various developments before providing well-defined cascade models ([8]; [5]; [2]).

Simple cascade models were developed to explain how geophysical variability occurs over a very large
range of scales supposing that the same elementary process act at each scale. In the pedagogical case of

“discrete" in scale cascade models “eddies" are defined by the hierarchical and iterative division of a D-

dimensional cube into smaller sub-cubes (see Fig. 2), with a constant ratio of scales λ = L/l, where l is the
scale of observation, L the outer scale. The energy flux is modulated in a multiplicative way from one scale

to the next smaller scale. Thus, after a big number of cascade steps, the energy is concentrated in small

areas. Since we simply follow how the turbulent energy flux becomes more and more inhomogeneous as
large structures break up into smaller and smaller scales, cascades are a very general paradigm. After 1983

multiplicative cascades evolved to a multifractal theory [6], allowing a statistic evaluation of the variability
for all scales.

Figure 1: Schematic illustration of the Kolmogorov-Obukhov
spectrum that follows the power law with the exponent -5/3,
developing Richardson’s idea

Figure 2: Schematic illustration of “discrete" in scale cascade
model. The energy is concentrated in small areas after a big
number of cascade steps

In a very general manner, multifractals are space or space-time fields that have structures at all scales.
The wind velocity field is strongly turbulent and variable over a wide range of scales in space and time.

Figures 3 and 4 display examples of numerical simulations for the city of Marseille (France) performed with
the mesoscale model MESO-NH (developed by Meteo-France and the Laboratoire d’aérologie) to illustrate

such a variability. Multifractal analyses of simulations can be used to get better incite on a performance of

numerical models. For instance, [7] analysed a variability of these data by estimating statistical moments
at various scales. He concluded that for the horizontal wind velocity field the results agree with earlier

empirical and theoretical results within the realms of statistical variability. On the contrary, the vertical

wind velocity field does not coincide with a scaling theory.
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Figure 3: Time fluctuations of a vertical component of wind
velocity at city of Marseille (France) simulated by the MESO-
NH model.

Figure 4: Space-time intermittency of the energy fluxes (z-
axis) simulated during 100 time steps of MESO-NH model with
Buoyancy forces.

Figure 5: (from Fuchs (2008): The spectra calculated from the energy fluxes of the wind data measured at the altitude of 23m (left) and
43m (right). The spectra correspond to a horizontal component of the wind measurements (top) and to three dimensional wind data
(bottom).

Intermittency and multifractal wind gusts

Multiplicative models produce hierarchies of self-organised random structures that yield not so trivial con-
sequence. As already mentioned, higher and higher levels of ’activity’ of the field are concentrated on

smaller and smaller fractions of space. That is the intermittency, also referred to as micro scale effects that
appear in the range of 1 to 1000m or 1 to 100sec. Fluctuations on these scales are known to show extremely

non-Gaussian statistics, i.e. with probabilities of extreme events (wind gusts) much higher than for quasi-
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Gaussian fields. These more frequent intermittent bursts may cause additional mechanical loads, deviations

in the expected power production and large short time power fluctuations. Our current understanding of
multifractal extremes points out the necessity - as well as the possibility - of developing a new extreme value

theory that could deal with processes having long-range dependences. At the same time, there remains the
fundamental question of establishing a more direct connection between multifractals and the deterministic-

like nonlinear equations that are supposed to generate them, in particular the Navier-Stokes equations. This

would have many fundamental consequences such as opening the road to new renormalisation techniques
able to grasp intermittency as well as to a better knowledge of the mathematical properties of the solutions

of these equations.
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Abstract. This paper aims to provide an insight into the fundamental relationships between
large and small scale wind velocity fluctuations within the boundary layer through careful
analysis of measuring mast wind velocities. The measuring mast was in a wind farm on top of a
mountain (with steep inclines of about 30◦) on an island surrounded by the sea which meant the
horizontal mean flow fluctuations were dominated by buoyancy forces and vertical shears at large
scales (above 500m). Thus using a variety of methods including spectral, integrated spectral,
integrated cospectral and multifractal analysis we were able to clearly dispel the relevance of
2D turbulence and give on the contrary some credence to the multifractal anisotropic model.

1. Introduction

The topic of wall-bounded turbulent flows has received continuous attention since the
formulation of the boundary layer concept. Although significant experimental work has been
carried out over the past decade on wall-bounded turbulence, many of the outstanding issues
remain open. New experiments, driven by the desire to generate data at high Reynolds numbers,
have led to new questions related to scaling and the role of the largest scale motions. A recent
paper (1) combines the outputs of international cooperative research on high Reynolds number
wall-bounded turbulence and highlights the key issues that need to be resolved, e.g. the existence
of a logarithmic sublayer, validity of the locally isotropic turbulence hypothesis and the relations
between inner and outer scaling. The authors particularly promote the idea that “extracting
a theory by sifting through the data more carefully is the missing element”. In response to
this, our paper discusses a possibility to explain the observable scaling behaviour of atmospheric
turbulence at low altitudes with the help of an anisotropic multifractal model (2).

2. Data Description and Pre-processing

We had available to us six-months (from 16/11/2002 to 15/05/03) of wind velocity and
temperature measurements from a wind farm test site subject to wake turbulence effects. The
wind farm was in the North of Corsica (France), 3km from the sea on the East and West and
4km on the North. The site has an annual mean wind velocity of about 7.6m/s at 40m. There



are 20 turbines in total with 13 (Ersa site) situated along the crest of Torricella and 7 (Rogliano
site) along the crest of Petraggine. The altitudes of the crests range from 480 to 520m with a
30◦ incline across most of the distance. All of the turbines have a hub height of 60m and are
positioned 117m apart at the Ersa site and 136m apart at the Rogliano site.
The measurements came from three 3D sonic anemometers with a 10Hz data output rate. The
anemometers were positioned at 22, 23 and 43m on a mast in the centre of three concentric
turbines at the Ersa site. The first anemometer at 22m was positioned directly on the mast.
The second, at 23m, was positioned at the end of a horizontal pole with length 2.5m and azimuth
134◦. The highest mast at 43m was positioned on a 3m pole on top of the mast.
When using data from devices not positioned directly on top of the mast (those at 22 and 23m),
it was necessary to take into account the possibility of the interaction of the wind with the
mast, thus destroying the quality of the measurements. To check for this problem we took data
with daily mean wind passing directly through the mast (48 of the 102 days) and did a cross
comparison at different heights. We observed large numbers of anomalous small fluctuations in
the vertical component (high frequency noise through spectral representation) being measured
at 22m. This is likely due to the vertical fluctuations being much smaller in magnitude making
the measurements increasingly sensitive to disturbances at small scales. It is important to note
that this was not observed at 23 and 43m thus aiding our confidence in the quality of data at
these heights and our observations thus from.
Although confident our data was free of physical interference, corrupt and missing data files made
it difficult to have long runs of continuous error free (clean) data. Out of the 181 days of data
only 10 of the days were time continuously clean. For non-time continuous data (independent
samples) there were 161 days of clean data. Note that the requirement for clean data at all three
heights reduced the number of independent samples, at for example 43m, from 161 to 102 days.

3. Spectral Analysis

3.1. Overview
A spectral representation was used to determine the overall scaling behaviour of our data. This is
because a random field is scaling when its spectrum follows a power law of the form E(ω) ∝ ω−β

(see (3)) where E is a function of frequency, ω, in Fourier space and β is the often called “spectral
slope” estimated by plotting the spectra on a log-log graph (see section 3.2 for distributions of β
for the data). The (co) spectrum of two fields (which are identical for the spectrum) is the real
part of the scalar product of their Fourier transforms. The Fourier transforms were computed
using the fast Fourier transform (FFT) algorithm (see sections 3.3 and 3.4).
With the use of the FFT algorithm we were restricted to data of sizes 2n where n ≤ log2(Ns)
and Ns is the sample size. Thus, given the longest time continuous sample was 10 days, the
maximum range of scales achievable was of about 6 orders of magnitude. While a spectral
representation of long runs of data is indispensable to evaluate the overall scaling behaviour
and its limitations, sample averaged estimates are used to define the spectral exponents more
precisely (see section 3.3). Since averaging requires more than one sample, given such a large
discontinuous dataset, it was important to choose a suitable subsample size, Nss, to obtain
the most amount of information from the data. For the majority of this study we focused on
analyses with Nss = 219 (section 3) with a brief discussion on the benefits of a larger subsample
(Nss = 222) in section 4.

3.2. Probability Distributions of Spectral Slopes β
The spectral analyses showed similar scaling behaviour, consisting of three subranges divided by
two breaks, for all three velocity components u, v, w and temperature θ. The first two subranges,
RHF and RMF , over high and mid frequencies respectively, were partially in agreement with



Kolmogorov’s -5/3 law of locally isotropic turbulence. As described in (3), the exponent will
define an inertial subrange for all three velocity components adjoined by a -1 power law (at
sufficiently high Reynolds numbers as discussed in (1)), obtained from dimensional analysis of
the logarithmic sublayer, over smaller wave numbers and frequencies. A 3D inertial range was
observed but only up to between 1 and 100 seconds at which the vertical component diverged
from the scaling of the horizontal components and temperature and remained dissimilar until the
third subrange, RLF , at low frequencies. The adjoining -1 power law was observed for all three
components and temperature but as mentioned before the length and position varied depending
not only on the component but on the day.
More specifically for the positions of high to mid frequency breaks, X, we observed variations
between 5 and 100 seconds and for the positions of mid to low frequency changes in subrange
scaling, Y , we observed variations between 10 minutes and 2 hours. The change in position of
the breaks in scaling are likely due to the changes in wind direction however it was difficult to
see correlation because of reasons later discussed in section 3.4.
Because the position and length of each subrange varied greatly for each sample, it was
necessary to also calculate β over varying positions and lengths and not simply over the whole
range. A simple algorithm determined the position of the breaks based on the minimum and

maximum of ∆β = βn+1 − βn over the range i of E(ωi) ≈ ωβn

i where i = 2n, ..., 2n+∆n and
n = 1, ..., log2(Ns −∆n). The value ∆n = 5 was found to be the most appropriate compromise
between the best fit, R2, and the loss of information at the sample bounds.
The following probability density functions (PDF)s of β consist of two types of plot. Those
where the distributions do not differ significantly for horizontal and vertical (Figures 1 and 2,
one plot per figure in blue) and those that do (Figure 3, two plots compared per figure with
horizontal in red and vertical blue).
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Figure 1. PDF of spectral slopes for high
frequency subrange RHF = [0.2s : X] with
X varying between 5 and 100 secs. Mean
β = 1.21 (u, v and w at 23 and 43m).
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with Y varying between 10 mins and 2 hrs.
Mean β = 2.45 (u, v and w at 23 and 43m).



−0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

β

P
(β

)
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and mean β = 0.59 for vertical
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Some of the spectral exponents for the horizontal components in Figure 3 (over 10% of the
values) were comparable with those of the high frequency subrange in Figure 1. This suggested
there were days where the scaling was observable up to longer time scales. Thus following this
observation the data was filtered based on β for the mid frequency range, RMF , as discussed in
the next section.

3.3. Averaged Spectra
We averaged the spectra of the extreme case mid frequency scaling behaviour to obtain better
estimates of the spectral exponent. For a fair comparison we needed an equal number of
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subsamples for each case. We found the bounds β ≥ 1.20 and β ≤ 0.80, which we define
simply as unperturbed and perturbed scaling respectively (see Figures 4 and 5 for the reasoning
behind this), gave a suitable representation of the extreme case behaviour (11 days for each
case). Note the filtering of the spectral exponent to select these days was only applied to the
horizontal u-component at 43m.
Our results confirmed unique scaling over small scales with 1.21 ≤ β ≤ 1.34 for all three velocity
components up to between 15 and 50 seconds at which the scaling of the vertical w-component
changes to an adjoining -1 power law subrange with 0.34 ≤ β ≤ 0.65 in agreement with wall-
bounded theory. Spectral slopes being lower than 5/3 and 1 could be understood with the
intermittency correction (see section 4). Such high intermittency corrections were particularly
relevant for our case study due to the increased likelihood of small fluctuations from the wind
turbines and complex terrain.
The horizontal velocity components u and v continued to scale, almost identically, up to between
102 and 103 seconds before a departure from the scaling regime was seen. Figure 4 shows a
spectral exponent (mean β = 2.28 over RLF ) consistent with Bolgiano-Obukhov theory (7; 8)
that predicts a power law of -11/5 for a buoyancy force subrange i.e. β = 2H +1 with H = 5/3
for vertical shears. This is not the case for the perturbed days whose spectral exponent (mean
β = 2.99 over RLF ) is closer to that of the Lumley-Shur law or 2D turbulence spectral exponent
of -3 (see section 5 for a more in depth discussion on this topic).

3.4. Integrated Spectra
Figures 6 and 7 display the integrated spectra of all three velocity components for perturbed and
unperturbed days. The main interest in presenting the data this way was the clarity with which
the positions of the breaks in the scaling (defined by the positions of the peaks and troughs in
energy) could be seen and compared with the positions of the breaks in Figures 4 and 5. Such
clear separations in the scaling allowed us to obtain estimates of the integral length scales using
the empirically derived formulae

Lu = 10.3z, Lv = 7.5z & Lw = 0.5z, (1)

as suggested in (4). Tables 1 and 2 show the estimates of the characteristic velocity Uw and the
relative frequencies ∆t′u and ∆t′v derived from ∆tw.

Table 1. Table of estimates derived from length scale coefficients of (4) using ∆tw at 43m.

43m Lw [m] ∆tw [s] Uw [m/s] ∆t′u ∆t′v

unperturbed 21.5 50 0.43 1,050 750
perturbed 21.5 15 1.43 316 226

Table 2. Table of estimates derived from length scale coefficients of (4) using ∆tw at 23m.

23m Lw [m] ∆tw [s] Uw [m/s] ∆t′u ∆t′v

unperturbed 11.5 30 0.38 636 454
perturbed 11.5 8 1.44 168 120
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In addition, given we have the characteristic length scales and velocity we can estimate a
Reynolds number of about 10/1.5 × 10−5 ∼ 106. This estimate confirms that the investigated
wind field exhibits fully developed turbulence and remains consistent with the Reynolds numbers
of the boundary layer experiments summarised in (1).
We can see from Figure 6 that the change in scale of the horizontal and vertical wind
components seems to be in good agreement with the semi-theoretical results of (4) obtained
for the atmospheric surface layer. On the contrary, Figure 7 demonstrates that the -1 power law
appears much earlier than the predicted values defined by Eq. (1). A possible explanation for
this could be the wake turbulence effects attributed to the turbines. As underlined in (5) large
fluctuations in the wind during the trial period of the wind farm often led to interruptions in the
functioning of the turbines during days when either strong or weak winds were being registered.
Two examples of contrasting wind speed and direction occurred on October 26th, 2002 and April
26th, 2003 where very strong Westerly winds meant every turbine was operating and very weak
South-Easterly winds meant every turbine had to be stopped for each of the days respectively.
Both events took place at the Ersa site. Given the very low characteristic velocities Uw ∼ 0.4
(see Tables 1 and 2) coincide with the better scaling of the horizontal velocity components u
and v it is possible this may have been due to the stopping of the turbines in events similar to
those aforementioned.
Given this result one would expect to see strong correlation between mean wind speeds, direction
and scaling. This however is not the case (correlation coefficient less than 0.5). One possible
explanation is that although we have 11 days of extreme behaviour at each end of the spectrum
the other 80 days consist of “mixed” periods of functioning. What this means is that by example
on April 28th, 2003 all of the turbines on the site were shut down up to 9h30 due to very weak
South-Easterly winds. Then at 12h20 due to a much stronger South-Easterly wind 10 of the 20
turbines began to function. This goes some way into explaining why there is no clear correlation.



3.5. Integrated Cospectra
A condition of the applicability of the coefficients derived in (4) is that the structures of the
surface-layer turbulence respect the statistical mirror symmetry with respect to the (x, z) plane
i.e. when the direction of the horizontal u-component coincides with the direction of the mean
wind E(ω) = {Euv;Evw;Evθ} = 0
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Figure 8. Energy cospectra of u and v and
w at 43m averaged over 11 unperturbed days.
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Figure 9. Energy cospectra of u and v and
w at 43m averaged over 11 perturbed days.

Although some of our data and analyses agreed with the length scales of (4) our cospectra are not
compatible with the classical theory. As illustrated by Figure 8, we found that the cospectrum,
Euv, returned values that were of the same order as the previously calculated spectra over the
inertial range and were therefore not neglectable. Furthermore scaling was present the cospectra
Euv similar to the scaling of the integrated spectra (see Figures 6 and 8 for comparison). This
demonstrated that the direction of the horizontal u-component of velocity did not coincide with
the direction of the mean wind. In fact the mean wind was seemingly directed in the South-East
or North-West directions explaining the strong correlation between u and v components. Winds
in this direction have the least influence from wake effects on the mast. In comparison, Figure 7
displays very strong fluctuations of the cospectrum over the same frequencies that combined with
the characteristic velocity Uw ∼ 1.5m/s for perturbed days (see Tables 1 and 2), gave a range
of scales comparable with the height of the turbines and the associated scales of wake-created
coherent structures.
In addition to the cospectrum of the horizontal components we looked at the correlation of the
other velocity components and temperature. Figures 10 and 11 display the behaviour of the
corresponding covariance, which is the buoyancy flux, Ewθ, in Fourier space. The inverse FFT
of Ewθ from the data in these figures was positive. This meant we were observing buoyancy
forces thus confirming the presence of anisotropic scaling i.e. that we have vertically dominating
shears at large scales and horizontally dominating shears at smaller scales (up to the scales of a
few centimetres).
The physical reasoning for this lies in the topographical features of the wind farm. Because the
wind farm is close to the sea, strong convective forces drive atmospheric structures vertically.
Large structures intercept with the mountain and are pushed by prevailing winds upwards
against the side of the mountain and across the face of the mast. Since the mountain is
surrounded by such a steep slope we would expect this feature to be prevalent throughout
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Figure 10. Energy cospectra of w and θ and
w at 43m averaged over 11 unperturbed days.
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Figure 11. Energy cospectra of w and θ and
w at 43m averaged over 11 perturbed days.

all of our data at large scales. With a characteristic velocity Uw ∼ 0.5 for unperturbed days
(Tables 1 and 2) the departure from Kolmogorovs scaling gave a rough estimate of 500m. This
is a large scale that is indeed compatible with the dominating height of the area.

4. Multifractal Analysis

We have seen from Figures 1 and 2 that we have unique scaling defining an inertial range for
small scales where the spectral exponent, β, varies between 1.21 and 1.34 and is thus lower than
the expected spectral exponent 5/3 predicted by Kolmogorov. The difference corresponds to the
intermittency correction (3) that, as discussed below, is due to very high heterogeneity of the
mean field for atmospheric turbulence. Its increase implies an increase of wind extremes which
is expected for a wind farm. Thus one may consider a spectral exponent β = 2H + 1 − K(2)
to account for this, where K(2) is the second order scaling moment function. For RHF

0.34 ≤ K(2) ≤ 0.55, for RMF 0.33 ≤ K(2) ≤ 0.42 and for RLF 0.16 ≤ K(2) ≤ 0.32. For
universal multifractals (2), the function K(q) is given by:

K(q) =
C1,ε

α− 1

(
qα − q

)
(2)

where q is the order of moment and α and C1 are the multifractal parameters defining the degree
of multifractality and the inhomogeneity of the mean field respectively. They are estimated with
the use of the double trace moment (DTM) method based on the following relation

K(q, η) = K(qη)− qK(η) = ηαK(q, 1). (3)

Normally α is obtained by fixing q and obtaining the slope of |K(q, η)| as a function of η on
a log-log graph. Alternatively, given we know the power law relation between the flux and the
velocity i.e. ε ∝ ∆V 3, we can inversely fix η = 1, 3 for ε and ∆V respectively and obtain α as
the slope of K∆V and Kε as a function of q also on a log-log graph where

Kε(q, 1) =
C1,ε

α− 1

(
qα − q

)
, K∆u(q, 3) = 3−αC1,∆V

α− 1

(
qα − q

)
. (4)



It is then elementary to derive the following relation

α = log3(Kε/K∆V ). (5)
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Figures 12 and 13 display PDFs of the multifractal parameters α and C1 of the energy flux
estimated on the data. Note that the distributions were only for the horizontal components since
the vertical component did not scale up to large scales. For high frequency ranges the mean
multifractality index of α = 1.78 and the mean inhomogeneity of the mean field C1 = 0.14. For
low frequency ranges α = 1.75 and C1 = 0.10.
The strong multifractality of the data results in the strong non-linearity of the scaling moment
function, as illustrated by Figure 14 for the horizontal u-component of the wind velocity at each
of the three height measurements. For the large scale range RLF in Figure 12 there were values
of α that exceed the maximum of 2. These high values could be explained by either bad or
limited scaling. Another explanation could be an inappropriate flux as discussed in section 5.
In fact the two issues are closely related.
The PDF of the spectral exponents estimated over large scales (Figure 2) illustrates the difficulty
in distinguishing the type of scaling law. In particular the Bolgiano-Obukhov -11/5 and Lumley-
Shur -3 laws. Since the integrated spectra (Figures 6 and 7) clearly dismissed the idea of 2D
turbulence, the spectral estimates could have been producing values in and around -3 simply
because they were too sensitive to the limited length of data. This is confirmed in Figure 15
which displays a much clearer scaling behaviour over the large scales due to the use of longer
data samples which results in a much better agreement with Bolgiano-Obukhov -11/5 law (mean
β = 2.03 with intermittency correction K(2) = 0.22 for u, v and w at 43m).

5. The Multifractal Anisotropic Model

To take into account the dominant role of the vertical motion of large scale atmospheric
structures, one may consider that the buoyancy force variance flux, φ, plays the same role as the
energy flux, ε, in 3D turbulence but only along the vertical (2). This is contrary to the classical
“buoyancy subrange” that postulates an isotropic turbulence (7; 8) with two different (horizontal
and vertical) scaling regimes. This corresponds to the coupled sets of scaling equations (2; 6):

∆V (∆x)
d
= (ε(∆x))1/3∆x1/3

∆V (∆z)
d
= (φ(∆z))1/5∆x3/5

}
=⇒ (ε(∆x))1/3 ≈ (φ(∆z))1/5 when ∆x1/3 ≈ ∆z3/5 (6)

where ∆V (∆x) and ∆V (∆z) denote the horizontal and vertical shears of the horizontal wind

respectively and the symbol
d
= means equality in probability distribution.

Because the scaling fluctuations of both fluxes are not neglected (due to their explicit scale
dependency) we can define anisotropic scaling (as defined by the anisotropic multifractal model
(2)) at all significant scales instead of two isotropic regimes, separated by a scaling break. This
means the iso-shear surfaces will be ellipsoids rather than spheres and that the horizontal and
vertical extents of the atmospheric structures will be equal only at the sphero-scale which is
generally of the order of 10-20 centimetres. If the multifractality of two fluxes remain the
same, the multifractal anisotropic model predicts that both weak and mean events will have
codimensions that are in the same ratio as the corresponding degrees of non-conservation of the
mean field:

C1,ε

C1,φ
=

H1,ε

H1,φ
=

5

9
, (7)

where C1,ε is the codimension for the energy flux over high frequency ranges, RHF , and C1,φ is
the codimension for the buoyancy force variance flux over low frequency ranges, RLF . Remember
that the codimensions are for the horizontal components on unperturbed days only. In analogy
to Eq. 4 , Eq. 6 implies C1,φ = (5/3)αC1 ≈ 0.25 when using the mean values α ≈ 1.8
and C1 = 0.1 estimated for the energy flux over large scales (Figures 12 and 13). The ratio
C1,ǫ/C1,φ = 0.14/0.25 = 0.56 which remains close to the predicted value 0.555 . . .. This fully
validates the multifractal anisotropic model.



6. Conclusion

The aim of this study was to explore the scaling behaviour of atmospheric velocity and
temperature measurements in a wind farm test site subject to wake turbulence effects. Two
or three scaling subranges were identified depending on the direction of the mean wind. We
started from the investigation of possible relations between wind velocity scaling breaks and
associated theories of turbulence in the atmospheric surface-layer. Once we verified that the
investigated wind field exhibited fully developed turbulence it was possible to use multifractal
methods to deal with the strong intermittency. For days with no interaction with the turbines
the multifractal anisotropic model was fully validated. These preliminary results encourage a
more extensive sifting through of the data for the future development of new theories for the
atmospheric surface-layer.
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and temperature data as well as enlightening discussions with Eric Dupont and Luc Musson
Genon.

References

[1] Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. &
Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: Recent
advances and key issues Phys. Fluid., 22, 065103.

[2] Schertzer, D. & Lovejoy, S. 1984 On the Dimension of Atmospheric motions. In:
T. Tatsumi (Editor), Turbulence and Chaotic phenomena in Fluids, Amsterdam, Elsevier
Science Publishers B. V., pp. 505-512.

[3] Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Cambridge, MIT-Press,
Vol. 2, pp. 874.

[4] Kader, B. A., Yaglom, A. M., & Zubkovskii, S. L. 1989 Spatial Correlation Functions
of Surface-Layer Atmospheric Turbulence in Neutral Stratification, Bound.-Lay. Meteorol.
47, pp. 233-249.

[5] Faggio, G. & Jolin, C. 2003 Suivi ornithologique sur le parc dèoliennes dErsa- Rogliano
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1 INTRODUCTION

A typical routine in wind field resource assessment, at the

most basic level, consists of first to third order statistics of

times series data. The quality of the time series data can

range between 0.05 to 600 seconds. More often than not the

frequency of data will be the latter of the two since it is the

cumulative power over long periods of time that define the

financial return from turbines and thus high-resolution data

is deemed unnecessary. It is now evident that such coarse

time series data are no longer sufficient for a representa-

tive assessment of the wind and that estimations based on

such data are associated with inaccurate power curve pre-

diction and turbine damage. In particular it has been sug-

gested that such problems are due to a lack of understand-

ing of the somewhat intermittent nature of the wind velocity

fields and the small-scale fluctuations thus associated. In

order to address this there has been a significant increase

in research involving coupled mesoscale-microscale mod-

els and stochastic downscaling methods. Our contribution

is a demonstration that a good knowledge of small-scale

variability is essential for a better understanding of the at-

mospheric boundary layer. We discuss the applicability of

the stochastic anisotropic multifractal model to the complex

conditions of wind farm potential and operational sites.

2 DATA

Available to us is six-months of wind velocity and tempera-

ture measurements at the heights 22, 23 and 43m.

Figure 1: Schematic of turbine positions and wake effect

due to North-Westerly winds (map courtesy of Julien

Richard).

The measurements came from 3D sonic anemometers with

a 10Hz data output rate positioned on a mast in a wind farm

test site subject to wake turbulence effects (see Fig. 1). The

quality of the data was of utmost importance so thorough

pre-processing and verification was implemented to assure

the reliability of the results.

3 ANALYSIS

3.1 The Energy Spectrum and Scaling

A typical first-step-method to determine the overall scal-

ing behaviour is the transformation of the velocity field into

Fourier space. We ‘should’ then be able to observe power-

law behaviour of the spectrum such that

E(ω)≡ Aω−β (1)

where ω is the frequency, E(ω) is the energy at a given

frequency, A is a coefficient of proportionality and β is

the scaling exponent. The review of [Marusic et. al., 2010]

discusses the existence of a -1 power law sub-range over

small frequencies, adjoined by a classical Kolmogorov iner-

tial sub-range with β = 5/3.

We will present shortly a more in-depth discussion on how

our results compare to Kolmogorov’s predictions however

before this we would like to discuss the fact that there is no

unique scaling regime i.e. there are three common scaling

features, instead of the predicted universal law (see Figs. 2

and 3 also), that are:

• High frequency scaling range (RHF :∼ 0.1 secs to

∼5 mins) in which all three velocity components, u, v

and w, follow (approximately) the same scaling law.

• Mid-frequency w-component departure from scal-

ing at ∼5 minutes. Mid-Frequency, RMF , corresponds

to the ranges ∼ 5 mins to ∼1 hour.

• Low frequency scaling reunification (RLF :∼ 1 hr to

∼1 day) for all three velocity components at about an

hour. The power law is not the same as that for small

scales as will be discussed later.

The focus therefore of our more in-depth analysis is the be-

haviour of the horizontal u- and v-components over the mid-

frequency-ranges i.e. ∼5 mins to ∼1 day. In fact what we



found was that our data fell into two categories; days (i.e.,

independent samples of 219 measurements [≈ 14.5 hours]

per day) without a mid-frequency perturbation (Fig. 2) and

days with a mid-frequency perturbation (Fig. 3). In the next

section we will consider the simpler of the two regimes that

are the non-perturbed days.

3.2 Non-perturbed Days &

The Anisotropic Multifractal Model

The results from spectral analysis on non-perturbed days

confirm a unique power law for all three velocity compo-

nents over higher frequencies up to approximately 40 sec-

onds at which the vertical wind w-component shows a clear

scaling break followed by a -1 power law subrange as de-

scribed in the previous section.

Moreover, such a clear separation of power law subranges

allows us to obtain an estimate of the integral length

scale for the vertical wind component as suggested in

[Monin & Yaglom, 1975], which in turn leads to an estimate

of the Reynolds number of about 60,000. Thus, from di-

mensional analysis one may obtain a minimum Reynolds

number of about 14,000. These estimates confirm that the

investigated wind field exhibits fully developed turbulence.
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Figure 2: Averaged spectra for 11 non-perturbed days where

the velocity component u is blue, v is green and w

is red. The high-frequency range from ∼ 0.1 sec to

5 mins has spectral slope ∼ 1.4, less than the pre-

dicted 5/3. In addition we have highlighted the -1 ad-

joining range, from 5 mins to an hour, with the scale

break being predictable based on the mast height (see

[Fitton et. al., 2011] for more details). Low frequency

scaling region is compatible with the -11/5 scaling law.

Over the high-frequency range Fig. 3 displays spectral ex-

ponents that differ from Kolmogorov’s -5/3 law. The dif-

ference corresponds to an intermittency correction of spec-

tral slopes and can be taken into account using the univer-

sal multifractal framework (Schertzer and Lovejoy, 1987),

where:

• the energy density flux is a conserved (at any scale

ratio λ ) multifractal field proportional to a power law

with singularity, γ , i.e.

ελ ∝ λ γ , (2)

• the statistical moments of the energy density flux are

defined by:

〈εq

λ
〉 ∝ λ K(q), (3)

• and the scaling moment function K(q) is defined by:

K(q) =
C1

α −1

(
qα −q

)
. (4)

Here, q, is the order of moment, C1 is the codimension of

the mean singularity and α is the multifractal Lévy index.

The spectral exponent of Eq. 1 now becomes

β = 2H +1−K(2) (5)

where H = 1/3 quantifies the degree of non-conservation of

velocity increments. For spectra (i.e. for second order statis-

tics), we estimated K(2) = 0.27. Such high intermittency

corrections are expected over high frequencies in areas with

high Reynolds numbers and complex terrain.

In addition we observed the Bolgiano-Obuhkov -11/5 power

law at low frequencies illustrating the influence of large-

scale vertical motions specific to the topography of our wind

farm test site [Faggio & Jolin, 2003].

To take into account the dominant role of the vertical mo-

tion of large scale atmospheric structures, one may con-

sider that the buoyancy force variance flux, φ , plays the

same role as the energy flux, ε , in 3D turbulence but only

along the vertical [Schertzer & Lovejoy, 1984]. This is con-

trary to the classical ‘buoyancy subrange’ that postulates

an isotropic turbulence [Bolgiano, 1959, Obukhov, 1959]

with two different (horizontal and vertical) scaling regimes.

Thus we have the coupled sets of scaling equations

[Schertzer & Lovejoy, 1984, Lazarev et. al., 1994]:

∆V (∆x)
d
= (ε(∆x))1/3

∆x1/3

∆V (∆z)
d
= (φ(∆z))1/5

∆x3/5

}
(6)

=⇒ (ε(∆x))1/3 ≈ (φ(∆z))1/5 when ∆x1/3 ≈ ∆z3/5 (7)

where ∆V (∆x) and ∆V (∆z) denote the horizontal and verti-

cal shears of the horizontal wind respectively and the symbol
d
= means equality in probability distribution.

Because the scaling fluctuations of both fluxes are not ne-

glected (due to their explicit scale dependency) we can de-

fine anisotropic scaling (as defined by the anisotropic multi-

fractal model [Schertzer & Lovejoy, 1984]) at all significant

scales instead of two isotropic regimes, separated by a scal-

ing break (see [Fitton et. al., 2011] for more details).

3.3 Perturbed Days, Wakes and Power Estimation

In [Fitton et. al., 2011] we put forward the argument that the

non-perturbed days were a result of lack of influence of wind

turbines justified by the low frequency power law (cross-

diagonal mean wind) of the integrated cospectral analysis.

The same argument allowed us to select days that were

highly perturbed. By this we mean days where the mid-

frequency range, RMF , in which the scaling of horizontal



velocity components remained the same as described in the

previous section, now have significant fluttering (see below

[Fig. 3]).
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Figure 3: Averaged spectra for 11 perturbed days where the ve-

locity component u is blue, v is green and w is red.

The high-frequency range from ∼ 0.1 sec to 5 mins

has spectral slope ∼ 1.6 which is much closer to the

predicted 5/3. We have highlighted the fluttering for

the horizontal components over RMF . We can also see

the fluttering of the vertical component is accentuated

to a plateau. The 11/5 low frequency scaling regime

remains, although with a lower coefficient of propor-

tionality A (Eq. 1).

To see the effect of the turbines we can do a direct compar-

ison of the integrated spectra, ωE(ω), in log-linear coordi-

nates of perturbed and non-perturbed days (11 of each see

Fig. 4).
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Figure 4: Comparison of perturbed and non-perturbed, u-

component averaged integrated spectra, ωE(ω), in log-

linear coordinates; blue is perturbed days with light-

blue moving average, green is non-perturbed with red

moving average and purple is the differences of the

moving averages.

This gives us a quantification of the energy per frequency

increment making the overall evaluation of the energy gains

and losses much easier. We have selected the horizontal

u-component since there is no -1 adjoining range for non-

perturbed days making it easier to make the comparison.

Note the behaviour of the horizontal v-component is very

similar (evidence of asymmetry at larger scales). From Fig.

4 we can draw the following intermediate conclusions based

on the ranges defined in §3.1:

• High frequency scaling range (∼ 0.1 secs to ∼5

mins) has an injection of energy since perturbed days

(blue integrated spectra, light-blue moving average in

Fig. 4) have more energy than the unperturbed days

(green integrated spectra, red moving average in Fig.

4). This is confirmed by the positive difference of

the moving average of the integrated spectra (purple

curve of Fig. 4). If we consider the most basic ap-

proximation to a turbine, the actuator disc, then we

can assume any eddy larger than the disc will be split

into smaller eddies. This may explain the increase in

high frequency energy. In fact, we can further con-

firm this idea since the transition of energy peaks at

∼ 5 mins highlighted again in Fig. 4 correspond to

the size of the wake shown in Fig. 1.

• Mid-frequency u-component (∼ 5 mins to ∼3 hours)

shows evidence of energy pumping from the turbines

for the perturbed days. This is more obvious when

looking at the negative difference of the two inte-

grated spectra over this range.

• Low frequency (∼ 3 hours to ∼ 1 day [mesoscales])

shows that although there is similar scaling behaviour

the energy for the perturbed days (red curve) is greater

than the non-perturbed (light-blue curve) since the

difference of the two (purple line) is positive. In

[Fitton et. al., 2011] we suggested this was because

the two particular types of wind the site was typically

subject were strong North-Westerlys and weak South-

Easterlys. This meant only the stronger winds would

interact with the turbines (see Fig. 1).

In addition we see at ∼ 3 hours the energy of the non-

perturbed days becomes greater than perturbed. In the

previous section we discussed how topographical fea-

tures can change the scaling power law over the lower

frequency data. This suggests there are similar topo-

graphical influences causing the loss of energy e.g.

higher mean winds dissipate more energy over com-

plex terrain.

Fig. 5 displays a schematic diagram that illustrates the corre-

sponding inter-relations of different scaling ranges of the en-

ergy spectra. Over each of these ranges, two distinct power

laws describe the corresponding scaling behaviour, with and

without wake effects. Thus, from Eq. 5 we get:

E1(ω) = A1ω−β1 , (8)

E2(ω) = A2ω−β2 . (9)

Since the estimates of the multifractality parameter, α , re-

main stable for both perturbed and non-perturbed fields, the



ratio of the energy spectra is defined by the second order

structure function:

E1(ω)

E2(ω)
=

A1

A2
ω−ζ∆(2) (10)

where ζ∆ = 2(∆H)− (∆C1/(α − 1)) · (2α − 2) from Eqs. 4

and 5.

Figure 5: Schematic of the inter-relations of different scaling

ranges of the energy spectra in a log-log plot.

From Fig. 5, Eq. 4 and the above equation (Eq. 10) we

see an empirical spectral exponent closer to the theoretical

values of β = 5/3 (over small scales) or β = 11/5 (over

large scales), correspond to a smaller intermittency correc-

tion K(2). Figs. 4 and 5 therefore suggest that by taking

the energy over large scales, wind turbines create additional

small-scale eddies and re-inject them as part of the energy

over smaller scales, making the turbulence more homoge-

neous.

4 CONCLUSION

The aim of this study was to explore the scaling behaviour

of atmospheric velocity measurements in a wind farm test

site subject to wake turbulence effects. Based on this study

we can make the following conclusions:

• Using long time series, 10Hz data, we identified (de-

pending on the direction of the mean wind) two or

three scaling sub-ranges.

• Through spectral analysis we found possible relations

between wind velocity scaling breaks and associated

theories of fully developed turbulence in the atmo-

spheric surface-layer and used the universal multifrac-

tal framework to deal with the strong intermittency of

the field.

• We have discussed how the anisotropic multifractal

model can be applied to near wall atmospheric turbu-

lence over complex terrain how it can be fully vali-

dated for days with no interaction with the wind tur-

bine wakes.

• We found empirical evidence of the influence of

wakes and suggested reasoning and scaling tech-

niques that enable us to quantify the loss of energy

with the potential of taking this into account using the

anisotropic multifractal model.

• And finally, we discussed how the pumping of energy

from wind turbines over mid-frequency scales, creates

additional small-scale eddies which are re-injected as

part of the energy over smaller scales. This makes the

turbulence more homogeneous over the smaller scales

in an analogous way to grid-generated homogeneous

turbulence.
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Multifractal Statistical Methods And

Space-Time Scaling Laws For Turbulent Winds

Fitton, G., Tchiguirinskaia, I., Schertzer, D. and Lovejoy, S.

Abstract We discuss the results of a universal multifractal (UM) analysis performed

on the GROWIAN wind speed dataset. Within this framework the wind speed can

be reproduced, including the extremes, at all scales using just three parameters: α ,

C1 and H [1]. We exploit the fact that the wind speed is simultaneously recorded

at several positions (effectively two grids) on two masts. The first grid allows us to

compare the scaling of the horizontal spatial increments of the wind speed (at three

heights) with that of the temporal increments, thus enabling us to verify Taylor’s

hypothesis of frozen turbulence. The second grid allows us to test the hypothesis

of scaling anisotropy between horizontal and vertical shears of the wind speed. The

two scaling laws refer to the choice of either Kolmogorov energy or buoyancy force

fluxes. The spatial structure function analyses assume the large number of data sam-

ples (approximately 150 samples of twenty minutes) reduces the uncertainties from

the limited number of spatial points. The proof of universal scaling behaviour for

different wind farm sites (see [2] for comparison) is an exciting concept that opens

up the possibility of further areas of research and application within the field.

Data Courtesy of Dr. Peinke we were introduced to the GROWIAN dataset. The

experiment consisted of two 150m masts positioned 65m East-South-East of a 3MW

wind turbine with a 52m lateral distance between each mast. Installed on the masts

were 20 propellor anemometers positioned in pairs on the ends of booms with a

12m length. This covered an effective area of 75×100m. Wind speed, direction and

temperature were measured at 2.5Hz and the duration of one measuring run was

approximately 20 minutes. A total of 300 runs were sampled between April 1984

and February 1987 at different inflow conditions, however, errors in the data meant
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the number of usable samples varied between 150 to 290. For more details about the

experiment see [3].

Spectra The field scales when the logarithm of the spectral energy, E(ω) ∝ ωβ ,

has linear behaviour with a unique slope, β = 2H + 1 − K(2) (see Fig. 1). The

second order scaling moment function, K(2), is an intermittency correction. The

Hurst exponent, H, quantifies the divergence from conservation of a flux and is 1/3

for Kolmogorov energy and 3/5 for Bolgiano-Obukhov buoyancy fluxes. For data

analysis, the horizontal wind speed, u, is represented as the two-dimensional vector,

u = (ux,uy), preselected to be approximately perpendicular to the measuring array.
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Fig. 1: Log-log plot of averaged wind speed spectra, E(ω) for all samples (a) and E⊥(ω) for

samples with direction approximately perpendicular to the array (b). The frequency, ω = 2N/ℓn =
λ/0.4s, where ℓn = 2n ×0.4s for n ∈ [0 : N]. Plots (shifted) from bottom to top correspond to wind

speeds at 50, 75, 100, 125 and 150m measured on Mast 2. The blue and red correspond to inner

and outer positions on the masts.

Wind Speed Direction In Fig. 1a a spectral spike can be seen occurring at ap-

proximately log2 ω = 9 or two seconds. In [4], a filtering criteria based on mean

interpolated wind speed and turbulence intensity was used to supposedly remove

measurements subject to a ‘shadow effect’ from the mast. The only way we could

obtain the desired scaling (Fig. 1b) was to filter the wind speed so that it was per-

pendicular to the mast. This confirms the effect of the wakes of the anemometers

causing the over representation of the two second frequency in Fig. 1a. In fact, we

can further confirm this idea by estimating a characteristic length scale of 30m,

given a mean wind speed of 10m/s, which is approximately the length of the boom.

UM Parameters After removing the ‘problematic’ data we estimated α and C1 –

the UM parameters that measure respectively the multifractality and mean intermit-

tency of the scaling field – over two subranges: log2 ω ∈ [1 : 7] & [8:10] using the

DTM method [1]. We use the DTM method [1] on the third power of the time-series

of the wind speed increments, ∆u=
√
[∆u2

x +∆u2
y ], and component increments, ∆ux
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and ∆uy, for α and C1, and the first-order structure function for H (see Table 1 for

the average estimates).

Table 1: Estimation of UM parameters over high (top) and low (bottom) frequency subranges.

Height α∆u C1,∆u H∆u α∆ux
C1,∆ux

H∆ux
α∆uy

C1,∆uy
H∆uy

150m 1.42 0.31 0.42 1.36 0.36 0.38 1.36 0.36 0.45

125m 1.40 0.32 0.37 1.36 0.37 0.33 1.35 0.36 0.42

100m 1.38 0.30 0.45 1.33 0.35 0.42 1.32 0.35 0.49

75m 1.39 0.30 0.45 1.35 0.36 0.42 1.34 0.36 0.49

50m 1.43 0.32 0.48 1.38 0.38 0.44 1.38 0.38 0.51

10m 1.50 0.34 0.47 1.47 0.43 0.43 1.47 0.42 0.51

150m 1.76 0.26 0.33 1.69 0.42 0.30 1.69 0.40 0.36

125m 1.71 0.26 0.30 1.64 0.37 0.26 1.64 0.37 0.34

100m 1.71 0.24 0.33 1.66 0.37 0.30 1.63 0.35 0.36

75m 1.66 0.24 0.31 1.59 0.37 0.30 1.54 0.31 0.34

50m 1.63 0.22 0.30 1.58 0.34 0.28 1.57 0.31 0.33

10m 1.67 0.20 0.26 1.61 0.33 0.23 1.61 0.30 0.29
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Fig. 2: Histogram of the parameter H for uy at 75m (a), estimated from the first order structure

function, using 152 subsamples, Ns. The estimates are comparable to those of Table 1. Summing

the subsamples for extreme values H < 0.33 (green area) and H > 0.5 (red area) we get the corre-

sponding spectral slopes (b) 2 (red), 1.4 (green) and 1.3 (dotted).

The estimates of H, show considerable variability, fluctuating around 0.3 and 0.6

i.e. between Kolmogorov and Bolgiano-Obukhov scaling (Fig. 2a). This is further

supported by average spectra (Fig. 2b) selected so that they correspond to the ex-

treme values of H. The mean codimension, C1, fluctuates in a corresponding man-

ner between 0.35 and 0.45. The multifractality, α ≈ 1.5, remains fairly stable at

all heights and between horizontal components. The values are comparable with

those found in [2]. To check the high frequency changes in scaling are not due to

a smoothing procedure of the measuring device we can look at the compensated

spectra, ωβ E(ω) (Fig. 3).
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Fig. 3: Log-linear plot of compensated perpen-

dicular wind spectra, ω1.2E⊥(ω), vs. the nor-

malised frequency, ω; Wind speeds at 10, 50, 75,

100, 125 and 150m, on the inner position of Mast

2 (shifted from top to bottom).
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Fig. 4: Comparison of high frequency spectral

slopes at 10m for u (blue), ux (green) and uy

(red), shifted for easier comparison. The corre-

sponding slopes of the dotted lines of best fit are

2.3, 1.9 and 1.5.

A characteristic height (or length scale), corresponds to the peaks in the com-

pensated spectra. For wind speed spectra averaged over all subsamples the fre-

quencies to the left of the peaks correspond to Kolmogorov and to the right

Bolgiano-Obukhov scaling respectively. In addition to high and low frequency scal-

ing anisotropy the UM parameters exhibit component wise anisotropy over high fre-

quencies. The extent of the anisotropy leads to a majority of cases where ux scales

as Kolmogorov and uy scales as Bolgiano-Obukhov (see estimates at 10m in Table

1). We can further confirm this by comparing the high frequency spectral slopes of

the decomposed component vectors (see Fig. 4).

Structure Functions Using the UM parameters estimated on the wind speed time

increments, ∆u(τ) = u(t + τ)− u(τ), we can test the validity of Taylor’s hypoth-

esis by reconstructing a semi-analytic structure function, ζτ(q), and the empirical

structure function, ζr(q), for the temporally averaged wind speed space increments,

∆u(r) = u(x+ r)−u(x):

ζτ(q) = qH −K(q) = qH − C1

α −1

(
qα −q

)
& ζr(q) = log〈|∆u(r)|q〉/r, (1)

where q is the order of moment and the operator 〈·〉 denotes an averaging procedure

in time. Fig. 5a illustrates that x = (xi) is the position vector with reference i ∈ [4 :

20] (see [3]) and r is the corresponding spacing between. In Figs. 5b-d, α and C1

are fixed at 1.5 and 0.35 respectively and only the parameter, H, changes between

the two theoretical values 1/3 (red) and 3/5 (blue). The hypothesis is valid when

ζτ(q)≈ ζr(q).
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Fig. 5: Diagram of the spatial increments (a),

ri = i × 25m, for i ∈ [1 : 4]. Other plots are of

semi-analytic structure functions with H = 1/3

and 3/5 (red and blue) compared to empirical

structure functions (× markers) for: horizontal

shears of u at 75, 100 and 125m (b), vertical

shears of ux-component, (c) and vertical shears

of uy-component (d).

The plots of the structure functions in Fig. 5b confirm Taylor’s hypothesis for the

horizontal shears of u. Looking at the vertical shears of components, ux and uy, we

find the anisotropic scaling displayed in the Hurst exponents in Table 1 (estimated

on the high frequencies of the time-series velocity increments) and the spectra in

Fig. 4 are replicated only for the shears taken from top to bottom (5a). This can be
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explained with the help of Fig. 3 and the minimum spacing length, r1 = 25m. Again,

taking the mean wind speed as 10m/s, we see that taking the smallest vertical shear

at the top of the mast, means we are within the Kolmogorov scaling range and

taking the smallest vertical shear at the bottom of the mast means we are within the

Bolgiano-Obukhov scaling range.

Perspectives For The Modelling Of Extremes The effect of the mean codimen-

sion can be seen through the c(γ) function (Fig. 6); related to the probability distri-

bution of a flux, ελ through:

Pr(ελ ≥ λ γ)≃ λ−c(γ), where c(γ −H) =C1

(
γ(α −1)

C1α
+

1

α

) α
α−1

.

Here, γ = logλ ελ , is a scale invariant singularity. In addition to being able to re-

produce the theoretical c(γ) curves (Fig. 6) from the UM parameters, the expo-

nent, qD, of the power law of the distribution of the extremes can be predicted from

K(qD) =D(qD−1) with D= 1 for a time-series. Over small scales this gives qD ≈ 4

and 2.5 for C1 = 0.35 and 0.42 when α ≈ 1.5, thus defining the extreme behaviour

of the energy flux. This further implies qD ≈ 7.5 for the wind velocity, which is a

crucial result for applications within the field of wind energy.

c
(γ
)

γ

−0.5 0 0.5 1

0

0.5

1

1.5 Fig. 6: Theoretical conservative function,

c(γ), with α = 1.35 and C1 = 0.35 for

predominantly Kolmogorov scaling (green)

compared to the empirical function (blue

crosses) using the Weibull plotting position.

The empirical data are the concatenated 13

subsamples of the third power of the uy ve-

locities from Fig. 2b, filtered such that H <
0.33. The horizontal shifting of the empiri-

cal curves is done so that they superimpose

with the theoretical ones at c(C1) =C1. The

shift (corresponding to H = 0.2) is compa-

rable to the mean of the first order structure

function estimates (H = 0.25, see also Fig.

2a).

Acknowledgements This research is part of the EU-FP7 ITN WAUDIT project.

References

1. D. Schertzer and S. Lovejoy, “Multifractals, Generalized Scale Invariance and Complexity in

Geophysics,” International Journal of Bifurcation and Chaos, vol. 21, no. 12, pp. 3417–3456,

2011.
2. G. Fitton, I. Tchiguirinskaia, D. Schertzer, and S. Lovejoy, “Scaling Of Turbulence In The

Atmospheric Surface-Layer: Which Anisotropy?,” Journal of Physics: Conference Series,

vol. 318, p. 072008, Jan. 2011.
3. W. Palz, European Wind Energy Conference 1984: Proceedings of an International Conference

Held at Hamburg, FR Germany, 22-26 October, 1984. Information Today Inc, 1985.
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Abstract. We have carried out in-depth analyses of boundary-layer wind velocity data within
the universal multifractal (UM) framework. Within the UM framework the statistics of a given
field are characterised with the help of three parameters α, C1 and H. With these three
parameters one fully describes the wind velocity fields up to and including the order qD after
which the divergence of statistical moments intervenes. Studies at different sites have shown
that the parameter α – the multifractality index – of the horizontal and vertical shears of the
horizontal wind remains fairly constant at approximately 1.7. In this study we show how the
two remaining parameters C1 and H vary for two very different sites/datasets and discuss what
the consequences of this variability are for the fluctuations of the torque.

1. Introduction
Modern wind turbines operate in the near-surface part of the atmospheric boundary-layer i.e.
between 50 to 200m above ground level. An improved understanding of turbulence-induced
complexities inherent in this region therefore holds central importance for the wind energy
community ([8]). To understand such complexities, accurate wind measurements at these heights
require expensive and non-traditional instrumentation. This has led to insufficient amounts
of adequate experimental data. At present, wind speed observations at 10m heights from
meteorological networks are used in conjunction with the standard similarity theory ([17]). The
use of such methods does not fully represent the complexity of the vertical profile of the wind.

Within the so called surface-layer there exist highly complex three-dimensional time-
dependent turbulent fields involving multi-scale structures whose non-linear interactions and
statistics evolve with the turbulence generation mechanism. Moreover, these turbulent structures
change drastically when generated mostly by buoyancy compared to those generated by wind
shears only (see [16]). This is partially in agreement with the (isotropic) scaling ‘buoyancy
sub-range’ hypothesised by Bolgiano-Obukhov ([3, 18]) hereafter referred to as BO.

In addition to the complexities involved in changing turbulence generation mechanisms
further complexities arise when inhomogeneous terrains are involved. To take advantage of
the wind speed-up induced by eddies forced up over a hill, turbines are frequently installed on
hilltops. This is done even though there is only a limited amount of knowledge concerning the
mechanisms responsible for the complex fluid dynamics that occur on the upwind side of the hill
([9]). What’s more, if the upwind side of the hill contains tall vegetation the turbulent structures
and atmospheric stability will be even further modified ([4]).



Removing the effects of a complex terrain i.e. when the surface satisfies a horizontally
homogeneous terrain assumption, does not make the problem much simpler. A low-level jet
phenomena occurring between 50 to 400m can also cause reason for concern ([1, 2]). In
summary, to establish a reference of the observable space-time variability of wind-inflow events,
in particular of extreme wind speed gusts, very detailed observations need to be made in a
variety of locations and situations.

The wind energy community defines as ‘extreme’, those wind-inflow events, that can
potentially produce, adverse, damaging impacts on modern wind turbines (see [8] for a review).
This includes events such as: persistent wind gusts, rapid changes in the wind direction, and
atmospheric coherent structures; events that are likely to generate critical loads on wind turbines.
If these events occur too frequently the wind turbine will prematurely fatigue. It is thus of vital
importance that the (statistical) predictions of the extreme wind-inflow events are improved.
Improved predictions of the wind turbine loads will help to develop advanced torque gain controls
thus minimising the potential damage caused by extreme wind events.

The significance of turbulence intensity on the optimal torque control gain for different time
scales was investigated in [10]. The so called ‘turbulence intensity’, deeply rooted in the Reynolds
decomposition, is defined as the standard deviation of the wind speed, normalised by the mean
wind speed over a given interval of time. Within the wind energy community this time interval
is typically from 10 minutes to one hour. Bearing in mind a torque controller must be responsive
down to time scales comparable to the transition time of a few seconds – in order to mitigate
the impact of extreme events – it is unlikely the study of such coarse time-scales could be truly
representative of the variability in the system. Moreover, because the turbulence intensity is
defined through the mean and therefore framework dependent velocity, the normalisation does
not respect Galilean invariance. A tool that has been fundamental in the understanding of the
multi-scale structures in turbulence is ironically lost in a term claiming to be that which it least
describes. And yet, inspite of these facets, the turbulence intensity is still widely used as a
classical measure of the ‘gustiness’ of the wind.

In light of these problems (and opportunities), current atmospheric and therefore torque
measurements can be analysed using modern statistical methods. Statistical methods that are
appropriate to the study of events considered to be extreme by the wind energy community. This
paper argues that the current focus of research in wind resource assessment should be devoted
to the multifractal modelling of atmospheric turbulence. A model that, instead of performing
scale-by-scale developments in the design of separate features of a wind turbine, aims to integrate
knowledge across the spatio-temporal scales.

Multifractals are scale invariant. They provide the scaling velocity field, power law statistics
w.r.t. the scales. This allows us to understand and to model extremely variable space-time fields
over a wide range of scales. At present one would expect the wind energy community to go
beyond the Reynolds decomposition. This means taking into account the fundamental problem
of intermittency and addressing the fact that the so-called ‘mean’ wind is frame dependent.

2. Intermittency And The Physics Of Extremes
Intermittency means that the activity of a process is confined to smaller and smaller fractions
of the available space-time domain when observed at higher and higher resolutions. We define
the resolution, λ, as the ratio of the largest scale, L, and the reference scale, ℓ. Examples of
intermittency can easily be observed in wind farm wind velocity data. Figure 1 illustrates a
twenty-second time-series of wind velocity increments from Corsica (France) with λ = 200. The
velocity increments show a highly variable process with sporadically occurring extreme values.
Given the flux of energy at a given ratio of scales, ελ, is proportional to the third power of the
wind velocity increment, it may sometimes vary by orders of magnitude in time and in space.
The highest values of the flux at any given scale relative to the mean, increase with increasing
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exponent characterises the relative frequency of extreme events i.e. extremes are more frequent
when the exponent qD is smaller. This statistical behaviour is a consequence of the fact that
the sum of the contributions is dominated by the strongest contribution; rare events have a
dominant contribution ([19]).

3. Multifractal Behaviour Of Wind Velocity Shears
Over the past two years we have carried out two in-depth analyses of boundary-layer wind
velocity data within a universal multifractal (UM) framework ([19]). Within this framework we
consider that the wind shears scale as

∆uλ
d
= εaλλ

−H , (2)

where
d
= denotes equal in distribution. Moreover, depending on whether the energy flux or the

force variance flux is conserved one may consider that the buoyancy force variance flux, φ, plays
the same role as the energy flux, ε, in 3D turbulence but only along the vertical:

∆u(∆x)
d
= (ε(∆x))1/3∆x1/3 and ∆u(∆z)

d
= (φ(∆z))1/5∆z3/5. (3)

Within the UM framework the statistical moments of a given field are characterised with the
help of a limited number of parameters: α, C1, a and H. For a conservative field (H = 0) the
scaling moment function reads as

K(q; a) = aα
C1

α− 1

(
qα − q

)
(4)

for q < qD. In order to estimate the parameters α and C1 we use the double trace moment
method ([14] and [20] for a review). When the origin of the flux and hence its power, a, remains
unknown, the estimate of C1 absorbs the pre-factor and hence C1 becomes slightly α-dependent.

The non-conservativeness parameter H is estimated through spectral analysis. The Fourier
transform of the second-order-moment structure function yields the energy spectrum E(ω) ∝ ωβ ,
where the scaling exponent β = 2H +1−K(2; a). Note, using the first order structure-function
will give the same result provided the same ranges of scales are used in the regression procedure.

Figure 3 displays log-log plots of the averaged u-component wind velocity spectra at 43m
from the Corsica dataset. The Corsica dataset consists of high-resolution (10Hz) ultrasonic
wind anemometer data taken over six-months. The measurements were taken at 22, 23 and
43m above the ground in a wind farm test site subject to complex terrain and buoyancy forces
from the nearby sea. Very often, as in the Corsica dataset, only time-series measurements of
the velocity are available from an anemometer in a fixed position r say. By Taylor’s frozen
turbulence hypothesis ([22]), if the mean wind, U , is much larger than the local fluctuations, u′,
we can consider u(r, t+ t′) = u(r − Ut′, t′). Hence, the spectral exponent is still expected to be
close to the Kolmogorov-Obukhov (KO) inertial range 5/3 value.

Figure 3a shows the average (over ten samples for each mean direction) of spectra for
meteorological wind directions, θmet = 9, 35, 62, 86, 116, 134, 162, 188, 210, 238, 260 and
281 degrees. The direction, θmet, is where the wind is coming from with respect to true North
e.g. 0◦ is North, 90◦ is East etc. Due to the effects resulting from the wakes of the turbine it
was important to find a control sample from which to observe undisturbed scaling behaviour.
Based on the spectra with the least amount of fluttering i.e. the least influence from the turbine
(see figure 3 for details), the samples are then compared with even lower frequency spectra (see
[6]). This is achieved by concatenating each individual sample (measured continuously over a
day) into a larger continuous file. The largest concatenation consists of about 100 files giving a
maximum ratio of scales, λ = 225 (figure 3b blue). The higher frequencies of the concatenated
files have been removed to give a continuously scaling appearance.
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Figure 3: Plots of averaged u-component wind velocity spectra (Eu(ω)) at a 43m height versus
the normalised frequency, ω. The frequency is normalised such that ω = 2N/ℓn = λ/0.1s, where
ℓn = 2n×0.1s for n ∈ [0 : N ] and N = 19, 25 and 14 for (a), (b) and (c) respectively. (a) Spectra,
Eu(ω), for meteorological varying wind directions (see text) shifted vertically for clarity from
bottom to top; (b) The spectra assumed to have the least influence from the turbine (the second
red plot) is compared with even lower frequency spectra achieved by concatenating each daily
sample into a larger continuous file. The largest concatenation consists of about 100 files giving
a maximum ratio of scales, λ = 225 (blue). The higher frequencies of the concatenated files have
been removed to give a continuously scaling appearance; (c) Inversely each daily sample can be
split into sub-samples and averaged in order to get smoother scaling over the higher frequencies.
The slope of the line of best fit is 1.35.



Based on the pseudo-continuously scaling plot we can see there exist three distinct scaling
sub-ranges. Over the lowest frequencies (log2 ω ∈ [0 : 5]) of figure 3b we have a scaling exponent
that is comparable with low frequency ‘macro’ weather (see [15]). This is then adjoined by an
apparent BO scaling region over the frequencies log2 ω ∈ [5 : 12]. And finally, for the frequencies
log2 ω ∈ [12 : 25] we observe something close to KO scaling. Over this high frequency KO scaling
sub-range the spectra are fairly noisy. We can improve the statistics over the higher frequencies
in an inverse fashion to the concatenation for very low frequencies. That is, each daily sample
can be split into sub-samples and the resulting spectra then averaged. Figure 3c displays the
result of this procedure.
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Figure 4: (a) Ensemble average of trace moments for q = 1.5 and log η ∈ [−6 : 2]; (b) resulting
double trace moment curve; (c) the local estimate α̂ = ∆ logK(q, η)/∆ log η, of α. The trace
moments are estimated on the energy flux over the mid-frequency sub-range (the green plot from
figure 3b) of the Corsica dataset. The parameters over these time-scales are: α = 1.67, C1 = 0.56
and H = 0.64.
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Figure 5: Distribution of UM parameters α (a) and C1 (b) estimated on the energy flux of the
Corsica dataset over the frequencies log2 ω ∈ [5 : 12]. Estimates of α = 2 and the corresponding
C1s have been removed leaving a total of 14 samples from 80.

Figures 4a, b and c show: the trace moments for q = 1.5 and log η ∈ [−6 : 2], the resulting
double trace moment curve and the local estimate (α̂) of α, all estimated on the energy flux
over the mid-frequency sub-range (log2 ω ∈ [5 : 12], see 3b) of the Corsica dataset. The trace



moments show the data scale well if the ensemble average are used. This gives an extended
range of log η i.e. log η ∈ [−3 : −1] over which α is constant. The corresponding UM parameters
are α = 1.67 and C1 = 0.56. Over the high-frequency range α = 1.66 and C1 = 0.23. Using
equation 4 we get H = 0.64 over the mid-frequency range and H = 0.23 over the high-frequency
range, with intermittency corrections K(2; 1/3) = 0.16 and 0.06 respectively (see equation 4).

Because the ensemble averaged trace moments give a more stable result we do not have error
bars on the estimates. Figure 5 gives an idea of the dispersion of the individual estimates of the
UM parameters.

Figure 6a displays a log-log plot of the averaged horizontal u-component spectra at 50m
from the Growian dataset. The Growian experiment in Germany consisted of an array of
cup anemometers recording horizontal wind speeds at 2.5Hz [13]. The array formed a grid of
approximately 75 by 100m, with the lowest point being at 50m. This was comparable, in part,
to the heights of the measurements taken in Corsica. However, due to the spatial distribution of
the measurements, unlike in Corsica, we were able to test if the scaling laws were valid in space
and in time [22]. For the Growian dataset the wind speed and direction are provided and the
corresponding horizontal wind vectors are decomposed such that ux = u ·cos θ and uy = u · sin θ.
For this study we selected a system of coordinates such that 〈uy〉 = 0 in order to impose ‘mirror
symmetry’ as suggested in ([11]).
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Figure 6: (a) Log-log plot of average horizontal wind speed spectra, Eux(ω), at 50m from
the Growian dataset. The frequency is normalised such that ω = 2N/ℓn = λ/0.4s, where
ℓn = 2n× 0.4s for n ∈ [0 : N ]. The spectral slopes (black solid lines) are 1.2 over low frequencies
(log2 ω ∈ [1 : 7]) and 1.7 is over high frequencies (log2 ω ∈ [7 : 10]); (b) Spectra of Eux(ω) at 50,
75, 100, 125 and 150m (from bottom to top [shifted for clarity]). Corresponding spectral slopes
over higher frequencies are: 1.77, 1.58, 1.64, 1.56 and 1.51, and over lower frequencies are: 1.12,
1.24, 1.25, 1.28 and 1.39.

The velocity spectra exhibit scaling over two sub-ranges: approximately log2 ω ∈ [1 : 7] and
[7:10]. Over the lower frequency sub-range there is a scaling exponent β = 1.2. Over the higher
frequency sub-range the scaling exponent falls closer to homogeneous KO scaling with β = 1.7.
The UM parameters over both low and high frequencies are the same i.e.: α ≈ 1.8 and C1 ≈ 0.7.



This gives an intermittency correction K(2; 1/3) = 0.18 and therefore H = 0.19 and 0.44 over
low and high-frequency sub-ranges respectively. The scaling of the spectra is consistent with
that observed in [12] in which a -1 energy production scaling sub-range is adjoined by a KO
scaling sub-range. Although this scaling behaviour is observable close to the ground we find with
increasing height (figure 6b) the processes become mixed and the scaling exponents deviate from
the two predicted adjoining sub-ranges.

4. Scaling Anisotropy And The Implications For The Torque Fluctuations
The Generalised Scale Invariance (GSI) approach posits scale invariance (scaling) as the main
symmetry and then considers the remaining non-trivial symmetries. These symmetries are
generally no longer isotropic (see [21] for details). The anisotropy exponent, Hz, measures the
deviation of scaling laws (self-similarity) from isotropy between two directions. For example,
when taking the horizontal and vertical shears of the horizontal wind, Hz = Hh/Hv =
C1,h/C1,v = 5/9. The subscripts h and v correspond to two different scaling relations (equation
3). This corresponds to the multifractal 23/9-dimensional turbulence model.

When using time-series measurements, the dominant role of the vertical motion of large scale
atmospheric structures may explain (e.g., [6]) why BO scaling becomes apparent over the range
of corresponding frequencies. For the Corisca dataset we find that Hh/Hv = 0.23/0.64 = 0.36
and C1,h/C1,v = 0.22/0.56 = 0.39 which thus (indirectly) validates the anisotropic model of the
wind shears (although with a lower anisotropy exponent Hz = 0.4). For the Growian dataset,
since the co-dimension remains the same for all timescales when 〈uy〉 = 0, a much simpler model
can be used in which only a modification of H is required. Indeed, the wind shears become
about 0.43 times (i.e., Hz = 0.19/0.44) less convoluted over low frequencies.

Using dimensional analysis, the torque derivatives in time, t, which, as a first approximation,
correspond to the derivatives in space, r, are the third power of the velocity increments i.e.,
Qt = [(ut) · r]t = u3r . This gives that the torque fluctuations will scale as the square of the
velocity increments, ∆Q = (∆u)2, and hence, ∆Q ∝ ε2/3ℓ2/3 according to equation 3a and
∆Q = φ2/5ℓ6/5 according to equation 3b. Using the UM parameters estimated from the two
sites we can then simulate the torque fluctuations.

In the context of the simulations the multifractality parameter remains the same however the
non-conservativeness parameter increases two-fold. The mean co-dimension C1 is modified by
the pre-factor (2a)α. Figure 7 displays the resulting torque fluctuations.

Figures 7a and 7c correspond to the torque fluctuations resulting from an intermittent KO
scaling velocity sub-range and a smoother sub-range (possibly a -1 power law energy production
sub-range) respectively. Note that the deviations from the predicted scaling exponents in both
cases suggests the processes are more complex, possibly mixed. Given the vertical scales in
both plots are the same we can consider that both processes result in similarly strong variability
of the torque increments, while the velocity increment variability is fully compatible with that
displayed by figure 1.

Figure 7b corresponds to the torque fluctuations of a velocity field that appears to scale closer
to a homogeneous KO 5/3s power law. From the estimates of C1 and H we know however that
again the processes are likely mixed between an 11/5s and 5/3s power law with intermittency
corrections. We can hypothesise it is the mixing of such processes that gives the deviation of Hz

from the predicted 5/9s. This less intermittent field is the result of an adjoining more convoluted
sub-range predicted to follow an energy production sub-range.

The drastic qualitative difference of the variability displayed by figures 7a to 7d is mainly due
to the difference of values of the exponent H. Indeed, its main role is to smooth out the field
by precisely decreasing the field singularities by −H, i.e. dividing the spikes at resolution λ by
a factor λH , when other UM parameters remain rather similar. This corresponds to a damping
factor of 28×.9 ≈ 27 = 128, i.e. two orders of magnitudes, for figure 7d with respect to figure 7a.



(a) (b)

(c) (d)

Figure 7: Two-dimensional (scalar) simulations of torque fluctuations, ∆Q, for a ratio of scales
λ = 28. Plots (a) and (b) are simulated using the Growian dataset UM parameters for torque:
α = 1.8, C1 = 0.38 and H = 0.38; α = 1.8, C1 = 0.38 and H = 0.88 respectively; and plots (c)
and (d) are simulated using the Corsica dataset parameters for torque: α = 1.7, C1 = 0.11 and
H = 0.46; α = 1.7, C1 = 0.33 and H = 1.28 respectively. Because the difference between the
Hs is so large it was necessary to reduce the vertical scale in plots (b) and (d) by almost two
orders of magnitude.

5. Concluding Remarks
Casting our minds back to figure 3a, for directions influenced by wind turbine wakes, there is
a highly intermittent sub-range with a smoother spectral slope than KO that is followed by a
less intermittent KO scaling sub-range (see [6] for more details). This suggests that there is an
adjoining (high-frequency) range of time and therefore length-scales in which the strong velocity
and therefore torque fluctuations can be smoothed depending on the process. The quantification
of the effect of smoothing for different processes can be estimated with the help of the factor
λ−H for processes having rather similar other UM parameters. This reduction factor is also
relevant for the estimation of the fatigue.

Finally, the probability tails of the Corsica dataset showed that the critical order above which
statistical moments diverge is about qD = 6. One of the consequences of the second order relation
between the torque and the velocity increments is that for the torque fluctuations the critical



exponent is therefore twice smaller than that of the velocity fluctuations. This implies that for
orders larger than three the empirical statistics will display larger and larger fluctuations with
increasing sample size. Consequently standard statistical methods of analysis will underestimate
the extremes.
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Résumé :

Dans cette étude, nous utilisons un repère tournant pour analyser l’anisotropie de la vitesse horizontale
dans la couche de surface atmoshpèrique (SL). Cela nous permet de quantifier la dépendance angu-
laire de l’exposant de la loi d’échelle, souvent appelé exposant de Hurst. Les valeurs de cet exposant
restent de façon générale conformes aux résultats publiés. Pour les échelles de temps supérieures à
10 secondes, les données de l’expérience Growian montrent une anisotropie scalante forte, qui décrôıt
avec l’altitude. Nous mettons en évidence une expression analytique de la variation angulaire de l’ex-
posant de Hurst, qui pilote la formation des extrêmes, y compris dans le sillage d’une turbine. Les
cisaillements turbulents du vent peuvent être extrêmes au point que leur loi de distribution est une loi
de puissance. Son exposant décrôıt lorsque l’anisotropie augmente, ce qui correspond à des extrêmes
d’autant plus violents.

Abstract :

In this study we use a rotated frame of reference to analyse the anisotropy of the horizontal velocity
in the atmospheric surface-layer (SL). This enables us to quantify the angular dependency of the
scaling exponent, often called the Hurst exponent that overall remains consistent with surface-layer
literature. For time-scales above 10 seconds, the data from the Growian experiment exhibits a strong,
scaling anisotropy that decreases with height. We put forward an analytical expression for the angular
variation of the Hurst exponent that determines the generation of wind shear extremes, including those
in the wake of a turbine. Turbulent wind shears can be so extreme that their probability distributions
follow a power law. The exponent of the latter decreases when anisotropy increases, this corresponds
to wilder and wilder extremes.

Mots clefs : Turbulence ; Anisotropy ; Extremes

1 Introduction

Due to the massive worldwide expansion of wind energy production, as foreseen in the next decade [1],
the number of wind farms there are and the number of turbines they consist of is rapidly increasing.
The larger the wind farm, the greater the number of turbines subject to strong wake effects and,
moreover, increased loads. In terms of modelling, this introduces additional complexities compared to
a free inflow condition. There are two methods that are generally used to evaluate response time in
wake operation : the method of equivalent turbulence intensity [2] and the dynamic wake meandering
model [3]. Unfortunately both methods often underestimate extreme loads [4] since the results remain
very sensitive to short-time, extreme fluctuations.

Within a scaling framework we can attempt to quantify the statistics of a given process across the
scales. The main focus of the problem then becomes how to interpret scaling anisotropies through
statistical scaling exponents as discussed in detail in [5]. Typically this has been done without the
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mention of additional scaling changes and additionally extreme behaviours caused by the wake of
the turbine (see [6] for discussion). For this study we will focus on the scaling anisotropies of the
horizontal velocity components ; enabling us to better understand the complexity of the atmospheric
surface-layer – as indicated by the variability of spectral exponents – and its consequences for extremes.
The obtained results help to settle a more appropriate framework for future observations, analyses
and flow simulations in and around the wake.

2 Spectral Look To The Data

For this study we will use the dataset that came from the Growian experiment [7, 8]. Two 150m masts
were constructed 65m West-South-West of a 3MW wind turbine on flat, coastal terrain. Twenty cup
anemometers were positioned at the heights 10, 50, 75, 100, 125 and 150m measuring wind speed and
direction. The measurements were taken at 2.5Hz over twenty-minutes with 300 measuring runs done
in total. Because the anemometers were positioned on booms, certain directions of the wind produced
a shadow effect resulting in spurious spectral spikes over higher frequencies. Filtering the data such
that the mean wind direction per twenty-minute sample was perpendicular to the masts removed the
spurious effects but reduced the total number of samples to 225.

Due to the lack of a vertical velocity component in the Growian dataset we restrict our analyses to the
horizontal components of the velocity. We define the horizontal velocity vector, u, with components
(u, v), that depend on the spatial coordinates, (x, y), of the position vector r = (x, y). In order to
compare the scaling properties of the velocity components we use their energy spectrum, E(ω) =
‖F(ω)‖2, where F is the Fourier transform of the required variable. If there is scaling, the spectra, in
a log-log plot, will exhibit linear behaviour with a spectral slope β (see figure 1). The Hurst exponent
can be defined by H = (β − 1)/2 and is the scaling exponent of the second-order structure function
for H ∈ [0 : 1]. For spectral plots, the horizontal axes are normalised such that ω = 2N/τn, where
τn = 2n × 0.1s for n ∈ [0 : N ].
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Figure 1 – Energy spectra of the velocity com-
ponents u (blue) and v (green) for the Growian
dataset. The corresponding spectral exponents for
u over low and high frequency ranges respectively
are 1.25 and 1.45 ; and for v are 1.45 and 1.70.
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Figure 2 – Diagram showing a comparison bet-
ween the initial two-dimensional Cartesian frame
of reference R (black) with horizontal velocity vec-
tor components u and v and the rotated frame of
reference R′(φ) (red) and its corresponding rota-
ted velocities u′ and v′.

For the Growian dataset the Cartesian wind components are not directly measured, but are easily
obtained from the wind velocity modulus, ũ = ‖u‖2, and the instantaneous angle θ with respect to a
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fixed reference frame R :
u = ũ · cos(θ) and v = ũ · sin(θ). (1)

Figure 1 compares the scaling properties of the u and v components from the Growian dataset at
100m. Both components show two scaling sub-ranges : a small scale sub-range from 1 to 10 seconds
and a larger scale sub-range from 10 seconds to 15 minutes. The scaling exponents for u over low and
high frequency ranges respectively are 1.25 and 1.45 ; and for v are 1.45 and 1.7. There is no evidence of
β = 5/3 as predicted by homogeneous isotropic turbulence contrary to the ‘local isotropy’ assumption.
An assumption that has been commonly used in turbulence since Kolmogorov, and is often used for
load simulations [9]. The relevance of this hypothesis to atmospheric turbulence has been brought into
question numerous times, eventually leading to the birth of the concept of generalised scale invariance

(GSI). GSI first posits scaling, not isotropy [10]. Statistical isotropy, i.e. u
d
= v (the symbol

d
= denotes

equality in probability distribution), would correspond to rotational invariance of the statistics at all
scales.

3 Scaling Anisotropy

The significant differences in spectral exponents on figure 1 correspond to a scaling anisotropy that is
much stronger than a trivial anisotropy with a constant ratio of components different from unity. In
order to quantify the scaling anisotropy (by means of the parameter H) we can rotate the frame of
reference R by an angle φ giving the rotated frame of reference R′(φ) (see figure 2). We then compute
the corresponding statistical exponents Hu(φ) and Hv(φ). This is in some way the inverse of the
procedure typically performed in order to ensure isotropy, i.e. Eu = Ev (see [11]).

The Cartesian components, defined through the direction and modulus, in a rotated reference frame
R′(φ), are then simply given by u′(φ) = ũ · cos(θ+φ) and v′(φ) = ũ · sin(θ+φ). Since we are using the
spectral exponent, β, to quantify statistical properties, it will be of interest to look at the analytical
properties of the rotated vectors’ energy spectra. The rotated time-dependent u-component and its
Fourier transform are :

u′φ(t) = cos(φ)u(t)− sin(φ)v(t), û′φ(ω) = cos(φ)û(ω)− sin(φ)v̂(ω). (2)

Considering now either the variance or the spectra of the field, their quadratic nature yields the
following relations :

|u′φ(t)|2 = Varφ(t) = cos2(φ)Var0(t) + sin2(φ)Varπ/2(t)− sin(2φ)Covu,v(t), (3)

|û′φ(ω)|2 = Eφ(ω) = cos2(φ)E0(ω) + sin2(φ)Eπ/2(ω)− sin(2φ)Eu,v(ω), (4)

where Covu,v is the covariance of u and v and, Var0 and Varπ/2 are the variances of u and v respectively ;
Eu,v is the co-spectrum and, E0 and Eπ/2 are the spectra of u and v respectively.

When the two velocity components u and v are identically distributed, but not independent, equations
3 and 4 become Varφ = ρ(φ)Var0 and Eφ = ρ(φ)E0, where the correlation function ρ(φ) depends on
r, the the correlation coefficient of u and v :

ρ(φ) = 1− r sin(2φ), (5)

Equations 3-4 correspond to a given anisotropy of the velocity field u. This anisotropy becomes a
scaling anisotropy if we consider, instead of the velocity field itself, similar relations for the singularities,
γ = logλ u, where λ is the ratio of the total sample length and the time-scale of observation.

If we consider the same rotations for the singularities the equivalent equation to equation 3 readily
holds for the (misnamed) log-normal model and therefore for the scaling exponent of the moment
of order two, i.e., Kφ(2) = ρ(φ)K0(2). For the more general, universal multifractal (UM), case, the
mathematics are more involved and will be discussed in detail elsewhere. We can however mention
that the generalisation will lead to :

Kφ(q) = ρ(φ)K0(q), (6)

3
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when considering the full hierarchy of multifractal singularities. Note that the UM scaling moment
function Kφ(q) statistically describes the intermittency of atmospheric flows. Then from the above
equation, this intermittency increases with ρ(φ)1.
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Figure 3 – (a) Plots of the function ρ(φ) in polar coordinates (ρ,−φ) for the correlation coefficient
r. The coefficient is increased in increments 0.2 from r = 0 (red) to r = 1 (turquoise). The red circle
corresponds to the isotropic case of independent identically distributed variables ; (b) The same as in
(a) but for r being increased in increments 2 from r = 0 (red) to r = 10 (turquoise).

As expected in the isotropic turbulence model the scaling exponent will remain the same for varying
φ. Figure 3a shows the continuous squeezing of the isotropic, circular structures due to an increase of
the correlation coefficient (see equation 5) in the case of identically distributed, but not independent,
singularities γ of the velocity field u. Note, the transformation r → −r only rotates the set of figures by
π/2. On the contrary a stronger correlation with r > 1 doubles the amount of the structure squeezing
(for figure 3b). For very large r the difference in the size of the sub-structures vanishes. This could be
mimicked by doubling the periodicity of the process with r = 1 and re-normalising the results. This
kind of scaling anisotropy is empirically visible within the Growian data.

4 From The Scaling Anisotropy To Wind Shear Extremes

The scaling exponents have been estimated on the Growian data over the (larger) scales, 10 seconds
to 5 minutes (log2 ω from 2 to 6). Figure 4 displays the scaling exponents Hu and Hv as a function
of the rotation, φ, of the frame of reference. Each plot (from left to right and from top to bottom
from the figure 4a) corresponds to an increasing height : 10, 50, 75, 100, 125 and 150m. Note, these
exponents represent statistically averaged estimates over all the data samples. The black solid line
corresponds to the scaling exponent expected in the isotropic homogeneous case i.e. H = 1/3. The
increasing values of Hu and Hv with height are, although well below the exponent predicted for
homogeneous turbulence, consistent with other literature (see for example [11]). What is of particular
interest is the clearly decreasing anisotropy between exponents with height. At 10m (top left) we
see the scaling exponents exhibit the largest (relative) difference. The anisotropy exhibits symmetries
consistent with the symmetries of equation 4. At 150m (bottom right) it is rather clear that with the
addition of another 100m in height the scaling exponents would become isotropic to a point. Note,
even though the scaling exponent is isotropic it remains far from being homogeneous. This is due to
strong intermittency corrections assimilated into the estimation of H that make them differ from the
expected H = 1/3 !

Filtering the data by the mean wind direction per twenty-minute sample was useful to obtain the

average statistical estimates of the scaling exponents. Over the time-scales 10 seconds to 5 minutes, this

mean direction is rarely representative due to very strong small-scale wind fluctuations. This implies

that the average scaling exponents represent a mixed process between undisturbed and disturbed
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Figure 4 – (a) Plots of Hu (red) and Hv (green) versus φ at 10, 50, 75, 100, 125 and 150m from left
to right and from top to bottom. The black solid line corresponds to H = 1/3.

(within the wake) flows. To get an idea of how the scaling anisotropy differs in and out of the wake, we
selected two individual data samples at 50m for which the mean wind direction remains perpendicular
to the masts and corresponds to two opposite inflow conditions. The results displayed in figures 4 b
and c, demonstrate that although the estimates of scaling exponent for individual samples naturally
differs from the average statistics, the flow within the wake is marked by a much stronger scaling
anisotropy with r ≫ 1. An anisotropy this strong modifies the extreme loads, bringing into question
the many traditional isotropic methods in use at the moment.

Turbulent wind shears can be so extreme that their probability distributions follow a power law at all
scales providing there are sufficient data. The exponent of the power law, qD, is the critical exponent of
the divergence of moments [5]. It is the critical exponent because the statistical moments of order qD
are theoretically finite and can be estimated with the help of standard statistical methods. For orders
q > qD the theoretical moments are infinite and their empirical estimates are both random and sample
size dependent. The velocity measurements taken during the Growian experiment yield multiple data
samples exhibiting the aforementioned divergence of moments. We found that if qD is observable in
the data sample, the multifractal intermittency could be difficult to estimate. This corresponds to the
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fact that exponent of the power law, qD, is defined by :

K0(qD) = D(qD − 1), (7)

where D corresponds to the Euclidean dimension of the isotropic data. Equation 6 indicates that the
scaling anisotropy with ρ(φ) > 1 increases the initial intermittency K0(qD), or equivalently it reduces
the dimension D that defines the exponent qD. The latter implies that extremes are concentrated on
much smaller fractions of the space in statistically anisotropic flows. This significantly complicates
their detection and quantification by traditional statistical methods.

5 Conclusions
In this work we have discussed the component-wise scaling properties of the horizontal velocity in
the atmospheric surface-layer. Using the Growian dataset, scaling anisotropy was observed over the
time-scales 10 seconds to 5 minutes, and analytically framed. Over these time-scales, the anisotropy
decreases with height. Preliminary findings suggest that when ρ(φ) > 1 the scaling anisotropy increases
the turbulent wind shear extremes. To precisely define the relation between the extremes and the
scaling anisotropy, a general UM framework is required. This is out of the scope of this publication.
Furthermore, we need to analyse the full hierarchy of multifractal singularities to estimate the mean
intermittency, as well as that of the extremes, i.e. the multifractality of intermittency. Our future work
will therefore focus on the determination of the UM parameters of the fields.

Since our measurements are well within the surface-layer we can expect that the instability of the
atmosphere will contribute significantly to anisotropic changes in shear stresses (see [11]). An in-depth
study of this question is indeed another interesting scientific perspective. In fact, the component-
wise scaling anisotropy inspires many questions that could be answered through better observations,
multifractal analyses and simulations in and around the wake.
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function used to calculate the double trace moments

1 % input arguments:

2 % − flux should be of length 2ˆn

3 % − the double structure function (DSF) requires only flux = dU.

4

5 function [phi] = DTM(q,eta,flux)

6

7 L = length(flux);

8

9 phi = zeros(log2(L),numel(q),numel(eta));

10

11 [m,n] = size(flux);

12

13 if m > n

14 flux = flux';

15 end

16

17 for i = 1:(log2(L)+1)

18

19 % calculate (normalised) psuedo flux

20 flux prime = bsxfun(@power,abs(flux),eta');

21 flux prime = bsxfun(@rdivide,flux prime,mean(flux prime,2));

22

23 % calculate the trace moments of the psuedo flux

24 phi(i,:,:) = mean(bsxfun(@power,permute(flux prime,[3 1 ...

2]),q'),3);

25

26 % upscale/downgrade the flux

27 flux odd = flux(1:2:(end−1));
28 flux even = flux(2:2:end);

29

30 flux = (flux odd+flux even);

31 flux = flux./2;

32

33 end

327



function used for fractional integration

1 % input arguments:

2 % − u is variable to be convoluted (of length 2ˆn)

3 % − pow is the exponent of the k−vector
4 % − f0 is the highest frequency measurement

5

6 function [phi] = frac flux(u,pow,f0)

7

8 m = length(u); % Window length

9 n = pow2(nextpow2(m)); % Transform length

10 y = fft(u); % DFT

11 f = (0:n−1)*(f0/n); % Frequency range

12

13 trans vec = ([f(1:end/2) f(end/2:−1:1)]).ˆ(pow);
14

15 % needed for negative powers as spurious values occur at ...

k 0 and k N

16 trans vec(end) = trans vec(end−1);
17 trans vec(1) = trans vec(2);

18

19 Y = y'.*trans vec;

20

21 u = (ifft(Y));

22

23 phi = abs(real(u));

24

25 end
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function used to optimise h

1 % arguments:

2 % − u is the variable to be operated on (length = 2ˆn)

3 % − H vec is the range of values of convolution

4 % − f0 is the highest measured frequency

5 % − q and eta should be scalar

6

7 function [H] = optimise h(u,H vec,f0,q,eta)

8

9 L = log2(length(u));

10

11 temp = zeros(1,length(H vec));

12

13 for i = 1:length(H vec)

14

15 [flux] = frac flux(u,H vec(i),f0);

16

17 [dtm] = DTM fastest(q,eta,flux);

18

19 [p] = polyfit(1:L,log2(dtm),1);

20 y = polyval(p,1:L);

21 R = mean(abs(log2(dtm)−y));
22

23 temp(i) = R;

24

25 end

26

27 [¬,b] = min(temp);

28

29 H = H vec(b);
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