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coup de téléphone. Merci pour ta bonne humeur quelque soit les circonstances et ta gentillesse
lorsque je suis venu te solliciter pour la relecture de mon mémoire. Au passage, désolé de ne
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es devenu un véritable ami. Merci Gaëlle pour ta fraicheur et pour m’avoir pris un nombre
de jetons incalculables. Je ne doute pas que ta thèse va bien se passer. Merci à Remy, le
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Merci aussi à JC, Cécile et la famille Hugon, passez nous voir en Angleterre quand vous voulez.
Merci à Géraldine, celle qui m’accompagne depuis tant d’années. Merci pour les coups de pied
que tu m’as mis quand il fallait et pour ton amour au quotidien. Cette thèse a été réussie
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Introduction

Global warming may be one of the biggest challenges that human kind will have to face in
the forthcoming decades if not years. According to the last scientific report of the Intergov-
ernmental Panel on Climate Change (IPCC) [61] ”The largest contribution to total radiative
forcing1 is caused by the increase in the atmospheric concentration of CO2 since 1750”.

A part of these CO2 emissions and in general pollutants stems from the transport industry
and in particular the aeronautical industry. Hopefully for the earth, the rarefaction of crude
oil accelerates the decision making. In particular, in the seventies, the two oil crisis showed
the aeronautical industries their dependence toward energy resources. To face this issue, the
U.S. Senate directed NASA in 1975 to look for every potential fuel-saving concept for aircraft
engines. The Advanced Turboprop project was born [46] and led to the concept of Contra-
Rotating Open Rotor (CROR). It differentiates from the Contra-Rotating Propeller (CRP)
engine, that has been studied by the United-Kingdom (at the beginning of the twenties century)
and Russia (in the forties), by the Mach number for which it is designed: the CROR is meant
to work on transonic inflow conditions, enabling its use for commercial aviation. This CROR
concept showed a potential for large fuel savings but led to higher noise emissions due to
the absence of a duct. The high noise emissions combined with the decrease of the price of
the barrel in the late eighties, the contra-rotating open rotor never reached the commercial
aviation.

Today, the cost of the barrel is almost at its maximum as shown in Figure 1. In parallel,
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Figure 1: Evolution of the cost of a barel from 1861 to 2012, from BP [1].

Airbus forecasts a doubled number of passengers in 2031 [3]. For that reason, the Euro-

1namely global warming
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pean commission has set, through the Advisory Council for Aeronautics Research in Europe
(ACARE), demanding objectives to reduce these emissions by 2050: the noise, CO2 and NOx
emissions should be reduced by 65%, 75% and 80%, respectively, with respect to the value
of 2000. Therefore, to allow a sustainable air transportation, new concepts are needed for
both the engines and the aircraft in general. Several have emerged, among which lightweight
construction with advanced composite structure, airport collaborative decision making with
continuous climb departure and less waiting in taxi, aerodynamically optimized wing geome-
tries, e.g. laminar wings, and fuel efficient engines, to name but a few. For the latter, two
main types of engine are currently studied: the Ultra-High Bypass Ratio (UHBR) engine that
is based on a larger fan exhaust engine improving thus the propulsive efficiency, and the CROR
engine that relies on two rows of contra-rotating rotors, that proved its viability during exper-
iments within the framework of the Advanced Turboprop project of NASA [46]. In this work,
the focus will be on the CROR engine.

The industrial design of turbomachinery, and by extension of contra-rotating open rotors,
is usually based on steady flow analysis, for which the reference simulation tool is the three-
dimensional Reynolds-Averaged Navier–Stokes (RANS) steady computation. However, this
approach finds its limits when unsteady phenomena become dominant. This is the case of
contra-rotating open rotors, where the interaction between the two rotors is of prior importance.
In such a context, engineers need now tools to account for these effects as early as possible in the
design cycle. With the growth of computational power, unsteady computations are entering
industrial practice, but the associated restitution time remains an obstacle for daily basis
applications. For this reason, efficient unsteady approaches are receiving a lot of attention.

At CERFACS, several unsteady approaches have been investigated to reduce the compu-
tational time associated with the unsteady simulation of CROR configurations. These are
seldom carried on the whole circumference of the annulus due to the high computational cost.
A first approach is therefore to assume cyclic periodicity, which allows to solve for only one
blade passage and thus drastically reduce the computational domain. In the turbomachinery
community, the phase-lag approach has shown to be a very efficient method to reduce the
computational domain while maintaining a good capture of the unsteady flow physics. In this
way, Burnazzi [9] evaluated the phase-lag approach by applying it to a 3D contra-rotating
open rotor configuration. The author showed that the interactions between the two rotors can
be retrieved, allowing thus a large computational time reduction. An additional gain can be
expected by working on the temporal scheme used to solve the equations. To achieve this,
Fourier-based time methods for periodic flows have undergone major developments in the last
decade (see He [51] for a recent review). The basic idea is to decompose time-dependent
flow variables into Fourier series, which are then injected into the equations of the problem.
The time-domain problem is thus made equivalent to a frequency-domain problem, where the
complex Fourier coefficients are the new unknowns. At this point, two strategies coexist to
obtain the solution. The first one is to solve directly the Fourier coefficients, using a dedicated
frequency-domain solver, as proposed by He and Ning [52]. The second strategy is to cast
the problem back to the time domain using the inverse Fourier transform, as proposed by
Hall et al. [50] with the Harmonic Balance (HB) method. The unsteady time-marching prob-
lem is thus transformed into a set of steady equations coupled by a source term. This term
corresponds to a spectral approximation of the time-derivative in the exact equations. The
main advantage of solving in the time domain is that it can be implemented into an existing
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classical RANS solver, taking advantage of all classical convergence-accelerating techniques for
steady-state problems. Sicot [90] implemented the HB method into the elsA [12] CFD code
that is used at CERFACS. Applied to turbomachinery configurations, this method showed a
computational gain of one to two orders of magnitude compared to classical time-marching ap-
proaches. Applied to CROR configurations, Yabili [114] showed that the computational time
reduction was not conclusive. In fact, a large number of harmonics was needed to properly
capture the unsteadinesses compared to turbomachinery configurations, lowering the compu-
tational gain. Therefore, François [34] deeply investigated the different unsteady approaches
available for turbomachinery computations, among which the HB approach, and evaluated
them on CROR simulations. The author confirmed that the harmonic balance method can
retrieve unsteady flow features for a reduced cost at a gain that is relatively smaller compared
to what was obtained on former turbomachinery applications. In parallel, Guédeney [43] ex-
tended the harmonic balance approach to a multi-frequential framework. This method allows
then to compute unsteadinesses whose frequencies are not harmonically related, which opens
new perspectives.

Several challenges, such as aerodynamic, aeroacoustic and aeroelasticity are still open for
contra-rotating open rotor to become a viable engine for the next generation aircraft. In this
work, we assess the aeroelasticity of contra-rotating open rotor by using the multi-frequential
harmonic balance approach developed and implemented by Guédeney [43]. Actually, the main
unsteadinesses of the flow field are known to be correlated with the so-called blade passing
frequency. This frequency depends on the rotation speed of the current rotor and the number
of blades of the opposite rotor. In contrast to that, the frequency that drives the aeroelasticity
of CROR blades depends on their structural properties. As such, the frequencies of both the
aerodynamic field and the aeroelasticity are not harmonically related, which justifies the use
of the multi-frequential harmonic balance approach.

The aim of this study is to assess the multi-frequential harmonic balance to estimate the
flutter properties of contra-rotating open rotor configurations. In this way, the dissertation is
divided in three parts:

– Part I first presents general information on contra-rotating open rotors (Chapter 1 ). The
basic equations governing the aeroelasticity of turbomachinery are presented and the cho-
sen numerical approach is detailed (Chapter 2 ). Then, the mathematical framework that
allows the derivation of Fourier-based time methods and their underlying properties are
presented (Chapter 3 ), with focus on the multi-frequential harmonic balance approach.

– Part II presents the advantages and limitations of Fourier-based time methods. The
chosen approach, namely the harmonic balance, is validated for linear and non-linear
equations in Chapter 4 . Both the mono-frequential and the multi-frequential formula-
tions are shown to give spectral accuracy, which is a convergence property specific to
Fourier-based time methods. It is emphasized that a large CPU gain can be expected
in the case of contra-rotating open rotor aeroelasticity. However, high condition number
can lead to divergence of the computations when using the multi-frequential harmonic
balance approach (Chapter 5 ). This is first highlighted on two model problems and then
cured using an original optimization algorithm. Finally, the convergence of the harmonic
balance that was shown to be case dependent is assessed (Chapter 6 ). It is demonstrated
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that the difference in convergence is linked to the thickness of the wakes observed behind
turbomachinery blades, which extends to CROR blades. Based on this observation, a
prediction tool is developed to estimate the number of harmonics needed to compute a
given turbomachinery (and CROR) configuration using a mixing plane computation. The
relative CPU gain to be expected can thus be estimated and help the decision making in
choosing an unsteady approach over another one.

– Based on the work done in the second part, the proposed approach retained in this thesis,
namely the multi-frequential harmonic balance method along with a decoupled aeroelastic
approach, is applied on different configurations in Part III . First, it is validated on
a reference configuration against experimental results and other numerical approaches
found in the literature (Chapter 7 ). This gives us confidence to apply the approach on
an industrial isolated contra-rotating open rotor application at low-speed (Chapter 8 )
and high-speed (Chapter 9 ) flight conditions. The aeroelastic results are finally discussed
based on the computed unsteady flow field.
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Chapter 1

Contra-rotating open rotors

Abstract

In this chapter, we first recall the thrust and propulsive efficiency equations. Using them, the propeller

engines are shown to be good candidates for efficient alternative engines, mainly due to a high bypass

ratio. Geometry, general principles, similarity coefficients and main physical phenomena of such engines

are described. In addition to that, it is shown that even if efficient, propeller engines suffer from a

residual swirl motion. To tackle this problem, the contra-rotating open rotor technology is presented

along with its main source of unsteadiness. The challenges associated to this engine are finally detailed

and we show that aeroelasticity needs to be accounted for.
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1.1 Generalities of propulsion

For an aircraft in steady flight conditions, lift balances weight and thrust balances drag. This
explains why engineers try indefinitely to reduce weight while increasing thrust. A trade-
off between both aspects is to work on the propulsive efficiency of the engine. In this section,
general information on propulsion are given, that leads to the concepts of propeller and contra-
rotating open rotor.

1.1.1 Thrust equation

The force applied on an engine, namely the thrust, comes from the static pressure distribution
and the viscosity of the wetted areas. To compute it, we assume for simplicity that:

– the engine is schematically represented by a tube, as shown in Figure 1.1,
– the flow is steady (steady-state hypothesis),
– the viscosity effects are negligible compared to the pressure effects,
– the pressure surrounding the engine p∞ is constant,
– the inlet pressure p0, the outlet pressure p1 and the pressure surrounding the engine p∞

are equal, meaning that the nozzle is adapted.

The problem parametrization is schematically represented in Figure 1.1. With the given hy-

Inlet Outlet

p∞ = p0 = p1

V1, p1V0, p0

C

BA

D

Figure 1.1: Engine parametrization for the computation of the thrust.

pothesis, the thrust, which is the resultant force projected onto the x-axis, is defined as

Fx =
x

BC+DA

pint d~S −
x

BC+DA

p∞ d~S, (1.1)

where pint is the internal static pressure distribution. The integral on AB+CD is zero due to
the projection on the x-axis. Moreover, as the surrounding pressure is constant

x

BC+DA

p∞ d~S = p∞
x

BC+DA

d~S = p∞(S1 − S0). (1.2)

The distribution of internal pressure is difficult to estimate. To alleviate this, we make use of
the Euler’s momentum equation applied to the internal fluid

x

S

(
ρ~V · d~S

)
V =

x

S

p d~S (1.3)
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The velocity being zero at walls, the left-hand side of the Eq. (1.3) simplifies to
x

S

(
ρ~V · d~S

)
V = −ρ0V0S0V0 + ρ1V1S1V1 = ṁ (V1 − V0) , (1.4)

where ṁ is the mass-flow rate going through the engine. The right-hand side of Eq. (1.3),
projected onto the x-axis, is equal to

x

S

p d~S =
x

BC+DA

p d~S = p∞
x

BC+DA

d~S = p∞(S1 − S0), (1.5)

since we consider that p0 = p1 = p∞. Finally the thrust Fx simplifies to

Fx = ṁ(V1 − V0) (1.6)

From this simple equation, one can see that to increase the thrust Fx, there are two parameters:
the mass-flow and the axial velocity increment.

1.1.2 Global propulsive efficiency

The global propulsive efficiency η measures the success in converting a mechanical power into a
propulsive power. It results from the combination of the kinetic efficiency ηK and the propulsive
efficiency ηPR

η = ηK × ηPR. (1.7)

This is schematically represented in Figure 1.2.

Mechanical 

power

Kinetic 

power

Propulsive 

power

η

ηPR
Pm Pk Ppr

ηK

Figure 1.2: Efficiency relations from mechanical power to propulsive power.

Kinetic efficiency The kinetic efficiency measures the success in converting the mechanical
power Pm into a kinetic power Pk

ηK =
Pk
Pm

. (1.8)

The mechanical power delivered as input can be computed through the first thermodynamic
principle. In fact, in absence of heat exchange, the mechanical power Pm can be estimated as

Pm = ṁ(hi1 − hi0), (1.9)

where hi is the total enthalpy and subscript 0 and 1 are the input and output of the propulsion
system, respectively, as represented in Figure 1.1. The kinetic power Pk is given by

Pk = ṁ

(
1

2
V 2
1 −

1

2
V 2
0

)
. (1.10)

Page 5 of 186



This leads to a kinetic efficiency that can be expressed as

ηK =
V 2
1 − V 2

0

2(hi1 − hi0)
. (1.11)

Propulsive efficiency The propulsive efficiency ηPR measures the success in creating a
propulsive power Ppr from a kinetic power Pk

ηPR =
Ppr
Pk

. (1.12)

The propulsive power is computed using the thrust Fx

Ppr = Fx × V∞, (1.13)

where V∞ is the free-stream velocity. Finally, if the free-stream velocity is the inlet velocity V0
and the inlet and outlet velocities are purely axial

ηPR =
1

1 + V1−V0
2V0

(1.14)

This formula means that the most efficient engine produces a very small velocity increment.

1.1.3 Toward propeller engines

One way to improve the environmental footprint of airplanes engines is to increase the propul-
sive efficiency by reducing the kinetic power needed to drive the engine. According to the
propulsive efficiency formula, doing so while maintaining the thrust can be achieved through
a higher mass-flow rate. Two new concepts are thus derived from this simple statement: the
Ultra-High Bypass Ratio (UHBR) which is basically a turbofan with a larger fan exhaust, and
the propeller, the mass-flow rate of which is not limited by the architecture, as the blades are
not within a nacelle. In the following section, the propeller engine will be detailed and the
drawbacks of such an architecture will be highlighted to motivate the use of a second propeller
row, yielding the contra-rotating open rotor architecture.

1.2 Propellers

1.2.1 Geometry

A propeller is composed of a hub and a rotating set of B blades as schematically represented in
Figure 1.3. The hub is the part on which the blades are mounted. We set the diameter of these
blades being D and their rotation speed being Ω. In front of the propeller, there is a spinner
which is a conic element that conducts the inflow to the propeller blades. The propeller can be
seen as a turbofan whose fan is not within a nacelle. This absence implies that theoretically,
the mass-flow can be infinite. To quantify this, it is common for engines to consider the bypass
ratio. It is defined as the ratio of the cold air (the fan exhaust) divided by the hot air (the air
that goes through the engine core). To give an idea, one of the highest bypass ratio engine on
today’s aircraft is obtained by the Pratt & Whitney PW1000G with a 12 bypass ratio. This
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V0

Ω
DSpinner

Figure 1.3: Geometry of a propeller.

number is representative of the mass-flow rate generated by the engine. However, we have seen
that mass-flow and the velocity difference are the two parameters that can be used to increase
the thrust. Assuming that in a classical ducted turbofan, the bypass ratio is limited to 12,
the only way to further increase the thrust is to increase the velocity which deteriorates the
propulsive efficiency. For the sake of comparison, propellers are estimated to have a bypass
ratio of 50. This explains why this architecture has regained interest.

1.2.2 Velocity triangle

The velocity triangle applied to a propeller configuration is shown in Figure 1.4. The aim of a
propeller is to create thrust through an increase of the axial velocity noted ∆Vx in the diagram.
To do so, the relative flow field is straighten up. This gives both an increase in axial velocity
but also in tangential velocity. In fact, the inflow that was purely axial retrieves a tangential
component at the outlet. This is called the swirl and is a lost energy as it cannot be used
to produce thrust. Moreover, the relative velocity W should be kept subsonic otherwise the

W

V in
x

U

V in
x ∆Vx

∆Vθ
V out
x

Figure 1.4: Velocity triangle applied to a propeller.

propulsive efficiency is reduced. This limits the free-stream velocity V0 of the aircraft and the
size of the propeller as the rotation speed velocity depends on the radius of the blades. This
explains why propellers have been limited so far to low-speed inflow conditions.
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1.2.3 Similarity coefficients

To evaluate the performance of the propeller, four similarity coefficients are commonly used:
the advance ratio J that represents the operating point of the propeller, the thrust Ct and
power Cp coefficients and finally the efficiency η

J =
V0
nD

, CT =
Fx

ρn2D4
, CP =

MxΩ

ρn3D5
, η = J

CT
CP

, (1.15)

where V0 is the free-stream velocity as shown in Figure 1.3, ρ the free-stream density, n the
rotation frequency (n = Ω/2π), Fx the thrust and Mx the axial torque. The efficiency defined
here is actually the global propulsive efficiency as it gives the ratio of the propulsive power
over the mechanical power.

An estimation of the variation of the advance ratio J and the efficiency η depending on the
flight conditions is given by Bousquet [7]

(cruise) 0.8 < η< 0.95, 1 < J < 3.5 (1.16)

(take-off and landing) 0.5 < η < 0.8, J < 1. (1.17)

1.2.4 Main physical phenomena

The main physical phenomena that can be seen in a propeller are schematically represented
in Figure 1.5. Firstly, due to the presence of a boundary layer on the pressure and suction

Ω wakes

(a) wakes

suction sidepressure side

tip vortex

Ω

(b) tip vortices

stream tube

(c) stream tube con-
traction

Figure 1.5: Main physical phenomena seen in a propeller.

sides of the blades, a wake is shed behind each blade, which involves a momentum deficit
(Figure 1.5(a)). It is mostly a two-dimensional phenomenon seen at each radius. Secondly, in
the tip region of the blade, the pressure difference between each side of the blade induces a
vortex that is counter-rotating with respect to the rotation speed (Figure 1.5(b)). They are
advected by the local relative velocity giving them an helical path propagating downstream.
To reduce this phenomenon, one way is to modify the geometry of the tip of the blades. Finally,
the propeller generates thrust through an acceleration of the fluid. Thus, the stream tube is
contracted (Figure 1.5(c)). All of these phenomena are stationary in their relative frame of
reference.
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1.3 Contra-rotating open rotors

As shown above in a single rotor propeller, the outlet velocity is not axial yielding a residual
tangential velocity ∆Vθ, which forms the swirl. This is a lost energy that deteriorates the
propulsive efficiency. To recover it, a second contra-rotating rotor can be used [46]. We will
see in this section through a simple velocity triangle exercise that the swirl is annulled by the
second rotor. This allows to create more thrust with the same inflow conditions. The loading
of the blades can thus be reduced compared to propeller blades, for a given level of thrust.
This increases the propulsive efficiency for transonic flight conditions as shown by Hughes and
Gazzaniga [60] and reported in Figure 1.6.
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Figure 1.6: Benefit of using a contra-rotating open rotor, from Hughes and Gazzaniga [60].

1.3.1 Geometry

Figure 1.7 depicts the main geometrical parameters of a CROR. It is composed of two rotors,
the first one is called the front rotor and the second one is called the rear or aft rotor. Generally,
they do not have the same diameter and rotation speed. Thus, subscript f and r denotes
respectively, the front and the rear parameters. The difference of diameter is called the clipping
or cropping of the blades and is evaluated through the non-dimensional parameter κ

κ =
Df −Dr

Df
. (1.18)

By clipping the rear rotor blades, tip vortices shed by the front rotor are not likely to hit the
rear rotor. Finally, the spacing between the rotors is evaluated as the difference between the
axial minimum of the rear blade minus the axial maximum of the front blade. The spacing is
one of the adjustment parameters used to minimize the unsteady interaction between the rotors
to reduce noise. In fact, heterogeneities are lessened along with the convection of the flow field.
These heterogeneities are responsible for the unsteady interactions and, by extrapolating, for
noise generation.

Two types of contra-rotating open rotors have emerged. The first type is the puller config-
uration, whose blades are near the front of the spinner as shown in Figure 1.8. As the name
indicates, this configuration is mounted in front of the wing. It is particularly interesting as
the blades will see a uniform flow. However, these all suffer from the same incidence as that
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Figure 1.7: Geometry of a contra-rotating open rotor.

of the wing. This can give large in-plane forces (forces normal to the rotation axis [34]) com-
pared to pusher configurations. In opposite, the deflection of the flow due to the wing provides
a smaller incidence. Moreover, the distortion generated by the CROR will disturb the flow
around the wing. As one way to reduce consumption of airplanes is to have laminar wings,
this configuration is less studied. The second type is the pusher configuration. It is designed
to be mounted on a pylon which will thus interact with the CROR, but laminar wings might
be considered with this configuration. In this work, we will deal with a pusher configuration
in Chapters 8 and 9.

Rolls-Royce Generic Studies Consider 
Both Puller and Pusher Configuration  

Rolls-Royce RB2011 Open Rotor 
Pusher and Puller Configurations 

(a) puller

Rolls-Royce Generic Studies Consider 
Both Puller and Pusher Configuration  

Rolls-Royce RB2011 Open Rotor 
Pusher and Puller Configurations 

(b) pusher

Figure 1.8: Types of contra-rotating open rotor, courtesy Rolls-Royce.

1.3.2 Velocity triangle

Figure 1.9 shows the application of the velocity triangle to a CROR configuration. The swirl
energy that was lost by the propeller is now used to produce more thrust. Therefore, a CROR
will finally have a better propulsive efficiency than a propeller, which explains its study as
a greener engine. In the eighties, Strack et al. [99] and Hager and Vrabel [46] showed that
using a contra-rotating open rotor technology over a single propeller gave an increase of 6−8%
in propulsive efficiency, explaining its regain of interest. Today, high-speed propellers blades
might lead to higher increase in efficiency while keeping a flight Mach number close to 0.8,
enabling its use for commercial aviation.
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Figure 1.9: Velocity triangle applied to a contra-rotating open rotor.

1.3.3 Similarity coefficients

In the case of a CROR configuration, the front and the rear rotors have to be considered. Two
main ways exist to evaluate the global value of the similarity coefficients. The first one, chosen
by Béchet et al. [5] among others, is to consider that the non-dimensional parameter D, n and
J are those of the front rotor for both rotors

Jf = Jr =
V0

nfDf
, CT =

Fxf + Fxr
ρfn

2
fD

4
f

, CP = Ωf

Mxf +Mxr

ρfn
3
fD

5
f

, η = Jf
CT
CP

. (1.19)

The second one uses the non-dimensional parameter of the current rotor, as done by Stuer-
mer [100] and Zachariadis and Hall [116]. The first approach is retained for the current work
as it allows to simplify the comparison of the similarity coefficient with equivalent propellers.

1.4 Unsteadinesses

1.4.1 Unsteady effects

The flow field generated behind the front rotor is steady in its frame of reference. Nevertheless,
due to the relative speed difference between the front and the rear rotors, these steady flow
distortions are seen as unsteady features by the rear rotor. These unsteadinesses are correlated
with the Blade Passing Frequency (BPF)

fBPF =
ΩrelBopp

2π
, (1.20)

where Ωrel is the relative speed difference between the current and the opposite row and Bopp
the number of blades in the opposite row.

1.4.2 Main kinds of unsteadiness

Wakes and potential effects Compared to an isolated rotor, as for the case of a propeller,
the presence of the rear rotor gives rise to an unsteady interaction by means of potential
effects. In addition, wakes generated behind the front rotor interact with the rear rotor. This
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Figure 1.10: Wakes and potential effects in a contra-rotating open rotor.

is schematically represented in Figure 1.10. These two phenomena are correlated with the
blade passing frequency. In addition to this, vortex shedding phenomena may occur behind
the blades, the frequency of which is not known a priori. This phenomenon is more likely to
appear behind blades with a bluff trailing edge. However, this is not a common design for
industrial compressor configurations as bluff trailing edges give larger drag. Therefore, we can
consider here that wake and potential effects are the main unsteady phenomena, and these are
correlated with the blade passing frequency.

Non-uniform inflow and installation effects In maneuver, the CROR is in incidence with
respect to the incoming flow which results in a non-uniform velocity triangle on the blades.
This leads to in-plane forces, which represents an unsteady phenomenon whose frequency is
correlated with the rotation frequency Ω/2π. The presence of a pylon (installation effect) gives
rise to an unsteady frequency also correlated with the rotation frequency when a pusher CROR
is considered. It is important as it changes both performance and flow behavior around the
CROR.

1.5 Challenges

Several challenges are still open for CROR to become a viable engine for the next generation
aircraft. In this way, we classify and describe each of them in the following sections.

Classification Figure 1.11 depicts current challenges associated with CROR configurations.
Three main fields are involved: Aerodynamics, Aeroacoustics and Aeroelasticity.

Aerodynamics Theoretically, the CROR is meant to have a better propulsive efficiency than
a turbofan or a propeller. However, as it is a new architecture, studies need to be conducted to
better understand the inherent flow physics. In particular, aerodynamic interactions between
the two rotors need to be better understood.

Research on the Aerodynamics of CROR is divided in two main axes: the first axis deals
with the design of CROR while the second one analyzes the unsteady flow physics that develop
on a given design.

Concerning the first axis, Hendricks [54] developed an open-rotor cycle model based on
experimental performance characteristics made at NASA. This is an empiric approach that
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Figure 1.11: Challenges raised by contra-rotating open rotors.

suffers from the impossibility to build new designs. Peters and Spakovszky [84] developed
a similar code to design their CROR. The aeroacoustic characteristics of the final design is
assessed by a full annulus unsteady simulation even though the design is based on experimental
correlations. To improve the approach to design new CROR, Béchet et al. [5] used a lifting-line
code to initialize a gradient optimization procedure based on mixing-plane computations. This
led to a gain of almost a half point in CROR efficiency. This is more general than an empiric
strategy if the mixing-plane computations are reliable to assess the performance parameters of
CROR.

Concerning the second axis, Zachariadis and Hall [116] compared the performance pre-
diction of mixing plane computations to experimental data made on an open-rotor test case.
They found a fair agreement for the thrust and power coefficients, however small discrepancies
on the coefficients led to significant errors on their ratio, i.e. the efficiency. Vion et al. [111]
and Stuermer [100] used unsteady CFD computations to assess the unsteady performance and
flow features. Stuermer [100] and François et al. [35] demonstrated through a code to code
comparison that CFD was mature enough to estimate in-plane forces.

Aeroacoustics Lot of research efforts are put on the second challenge which is Aeroacoustics
since the absence of a duct allows noise generated by CROR to propagate far away. In the late
eighties, Hager and Vrabel [46] conducted at NASA a large project on innovative propulsion
systems for the next generation aircrafts. The potential of the CROR configuration was iden-
tified but the noise emitted was so high that the only way thought to use such an engine was
to put noise liners in the fuselage. This resulted in increased weight. This is why, today, a lot
of research effort is put on the understanding and mastering of noise sources in CROR. Two
main types of noise have been identified: tonal noise which comes from the interaction of both
rotors and is mainly present at low-speed flight conditions (namely take-off and landing) and
broadband noise which comes from turbulence and is predominant at high-speed flight condi-
tions (namely cruise). Several CFD studies have been performed in the literature. Peters and
Spakovszky [84] showed that unsteady CFD simulation is able to reproduce the aeroacoustic
footprint of a CROR. They then optimized their CROR and showed that this optimized CROR
design may be mature enough for noise certification. Hoffer et al. [56] and Ferrante et al. [33]
developed an efficient CFD approach to simulate the aeroacoustics of CROR. It is based on a
Fourier-based time method. The approach is able to account for incidence effects which is par-
ticularly interesting considering that the noise of installed configuration is drastically different
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from the isolated one (see Hager and Vrabel [46]).

Aeroelasticity The third challenge is less studied in the numerical literature. Three main
aeroelastic phenomena have been identified during preliminary studies during the eighties by
Hager and Vrabel [46]: whirl flutter, i.e. the self-excited movement of the whole nacelle, blade
flutter, i.e. the vibration of the blades, and forced response, i.e. the excitation of blades
modes by the distortions shed by the rotors or the pylon. For a turbofan engine to achieve
certification, it must be demonstrated that one released fan blade can be safely contained
within the engine’s fan case as written in the Certification Specifications for Engines (CSE) of
the EASA:

”It must be demonstrated that any single compressor or turbine blade will be
contained after Failure and that no Hazardous Engine Effect can arise as a result
of other Engine damage likely to occur before Engine shut down following a blade
Failure”

In the case of propellers and contra-rotating open rotors, due to the absence of a nacelle, this
can not be done. To achieve certification, it must be demonstrated that the probability of a
blade failure (or any failure) should not exceed 10−8 per propeller flight hour as written in the
Certification Specifications for Propellers (CSP) of the EASA:

”It must be shown that Hazardous Propeller Effects will not occur at a rate in excess
of that defined as Extremely Remote. The estimated probability for individual
failures may be insufficiently precise to enable the total rate for Hazardous Propeller
Effects to be assessed. For Propeller certification, it is acceptable to consider that
the intent of this paragraph is achieved if the probability of a Hazardous Propeller
Effect arising from an individual failure can be predicted to be not greater than 10−8

per Propeller flight hour. It will also be accepted that, in dealing with probabilities
of this low order of magnitude, absolute proof is not possible and reliance must
be placed on engineering judgment and previous experience combined with sound
design and test philosophies”

This explains why aeroelasticity of contra-rotating open rotors should be assessed. Whirl
flutter and forced response have been investigated in the CROR literature. The former has
been assessed by Sicot and Dugeai [91] and Verley and Dugeai [107] but these studies mainly
discuss the simulation tools needed to compute such a phenomenon as no experimental data
are available. The latter has been investigated by Ruiz-Calavera and Perdones-Diaz [86] on
installed puller propellers and by Laban et al. [66] on CROR using a strong-coupling approach.

Summary

The concept of contra-rotating open rotor has been presented along with the basic flow phenomena that

develop within it. These unsteady phenomena are mostly correlated with the blade passing frequency,

except for the installation effects and the non-uniform inflow. The challenges associated with this type

of engine are recalled and it is highlighted that aeroelasticity of such systems remain to be accounted

for. This is why the present work will focus on aeroelasticity, which is introduced in the following

chapter.
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Chapter 2

Introduction to aeroelasticity

Abstract

In this chapter, the basic elements to understand aeroelasticity in turbomachinery and by extension

in contra-rotating open rotors are detailed. Firstly, the definition and the basic equations governing

dynamic aeroelasticity are presented. The two main aeroelastic phenomena that develop in turboma-

chinery, namely forced response and flutter, are then presented. The latter is investigated in this work

and the computational approach retained to simulate it, namely the decoupled approach, is presented.

The variables that are used to quantify the flutter boundary are finally presented.
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2.1 What is aeroelasticity

The study of aeroelasticity in turbomachineries takes its origin in the first engines failure during
the sixties [26]. Also called dynamic aeroelasticity, it is the interaction between three forces:
the aerodynamic (A), the elastic (E) and the inertial forces (I) as shown by the Collar [21]
triangle represented in Figure 2.1.

E I

Flight MechanicsStatic Aeroelasticity

A

Structural Dynamics

Dynamic 

Aeroelasticity

Figure 2.1: Collar triangle for dynamic aeroelasticity.

From a structural point of view, the dynamic aeroelasticity is governed by

Mẍ(t) +Dẋ(t) +Kx(t) = f(t) (2.1)

where M , D and K are the structural mass, damping and stiffness matrices, respectively. x(t)
and f(t) denote the displacement and aerodynamic force vectors, respectively. The displace-
ment vector is defined relatively to the steady-state position of the system. In turbomachinery
and by extension in CROR, it is the steady-state position in rotation.

2.2 Main aeroelastic phenomena in turbomachinery

2.2.1 Forced response

As shown previously in Sec. 1.4, wakes and potentials effects give rise to unsteady fluctuations
in CROR configurations. These fluctuations can generate large vibration levels on the blades.
When the structural modes are excited by the rotation speed or its multiples, resonance can
occur, hence the term forced response. The frequency associated to the rotation speed or
its multiples is called Engine Order (EO). At the design phase, one step to minimize forced
response is to use the Campbell diagram shown in Figure 2.2 which schematically represents
such resonance. Blue points show the crossing of engine order with the blade eigenfrequencies
within the operating range. The Campbell diagram does not give any information about the
absolute level of vibration. Therefore, it is mostly used to rank potential designs [71]. This
phenomenon will not be studied in this thesis.
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Figure 2.2: Campbell diagram with forced response (blue circles) and flutter behavior (red
stars).

2.2.2 Flutter

Flutter is defined as a self-excited, unstable self-sustained vibration. In turbomachinery, this is
more likely to appear on blades. One of the most impressive manifestation of flutter occurred on
the Tacoma Narrows bridge in November 7th, 1940. Four months after being built, the bridge
experienced torsional flutter excited by a 64 km.h-1 wind. The first and second torsional modes
were observed. A few hours later, the bridge felt down as seen in Figure 2.3. Hopefully, no
human was injured, but this event showed the importance of taking into account the flutter
phenomenon as it is a very energetic event, that can lead to the failure of the system.

(a) torsion mode (b) failure of the bridge

Figure 2.3: Tacoma Narrows bridge flutter, from Smith [97].

Three vibration scenarios can appear, one leading to flutter. The first scenario is the
damped (or positively damped) vibration meaning that the amplitude of the displacement
decreases with respect to time, as shown in Figure 2.4(a). This is the most wanted behavior
as the system tends to a stable point. In this case, the blade is said to be flutter-free for the
studied mode. The second scenario is the amplified (or negatively damped) vibration, namely
flutter, shown in Figure 2.4(b). This was the scenario that occurred on the Tacoma bridge.
This scenario ultimately leads to failure, which is not acceptable. This is particularly critical
on CROR configurations, as a blade failure might lead to the crash of the airplane as detailed
in Sec. 1.5. The last scenario is the Limit Cycle Oscillation (LCO) vibration. In this scenario,
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the deformation increases until a certain amplitude and then stays constant. This scenario
is not destructive by essence compared to the amplified scenario. However, if the blade is
repetitively excited by LCO, the blade can fail because of structure fatigue.

t

x(t)

(a) damped (stable)

t

x(t)

(b) linear flutter instability (un-
stable)

t

x(t)

(c) limit cycle oscillation

Figure 2.4: Different vibration scenarios for the flutter phenomenon.

The development of one scenario over another one is linked to the fluid response to the
vibration of the blade. In fact, if the aerodynamic loads projected on the direction of the
displacement is positive, this means that the vibration will be amplified. In opposite, if the
force is in opposed direction, the vibration will be damped. Therefore, the out-of-phase com-
ponent of the aerodynamic force compared to the displacement vector will give the sign of the
aerodynamic damping. The amplitude will give its strength.

In this thesis, only the flutter boundary is assessed and a decoupled approach is chosen as
detailed in the following Section.

2.3 Computational AeroElasticity (CAE)

Solving Eq. (2.1) analytically is generally not feasible. In fact, in turbomachinery, the flow
exhibits non-linear features such as turbulence, shock and boundary-layer interaction, to name
but a few, that are out of reach for analytical methods.

Two main strategies exist then for solving Eq. (2.1): the strong-coupling and the decoupled
strategies. The strong-coupling approach either solves the equation directly or two solvers are
coupled to compute the aerodynamic and the structural response of the system. The strong-
coupling remains computationally expensive [4] and numerically stiff [22]. This approach has
been used to assess the aeroelasticity of propellers [86] and CROR [66]. However, the strong-
coupling remains computationally expensive [4]. It is therefore not used in this thesis.

Conversely, the decoupled approach has been widely used in the turbomachinery aeroelas-
ticity community [71]. This method uses a modal approach to identify the structural modes.
These modes are then prescribed with a harmonic motion in the aerodynamic flow solver. The
aerodynamic force is finally post-processed to analyze if it amplifies the motion of the blade or
damps it.
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2.3.1 Modal analysis

To identify the structural modes, the aerodynamic force f(t) and the structural damping matrix
D are considered to be zero and Eq. (2.1) becomes

Mẍ(t) +Kx(t) = 0. (2.2)

Considering now that the displacement vector x(t) is harmonic yields the eigen-value problem

det
(
K − ω2M

)
= 0. (2.3)

The solution of this equation are the modes ψr and their associated angular frequencies ωr,
verifying

(
K − ω2

rM
)
ψr = 0. (2.4)

The modes define a modal basis Ψ = [ψ0ψ1 · · ·ψn]. Once it is identified, either by mean of a
Finite Element model or an experimental identification, Equation (2.1) becomes

Mmq̈(t) +Dmq̇(t) +Kmq(t)−Ψ>f(t) = 0, x(t) = Ψq(t). (2.5)

Mm, Dm and Km are the modal mass, damping and stiffness, respectively expressed as

Mm = Ψ−1M, Dm = Ψ−1D, Km = Ψ−1K, Ψ−1 = Ψ>. (2.6)

As the modes are orthogonal by definition, Mm, Dm and Km are diagonal matrices and Equa-
tion (2.5) is a system of completely decoupled equations.

2.3.2 Structural dynamics of turbomachinery blade

The modes are classified by their global shape, among which bending/flection (noted F) and
torsion (noted T) modes are the main ones. Then they are classified depending on the number
of deflection lines that they include. If one deflection line is present in a flection mode, it is
called 1F and 2F if two deflection lines are seen, as shown in Figure 2.5.

+

−

+

−

+

+−

1F 2F 1T

Figure 2.5: Blade mode shape nomenclature.
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2.3.3 Phase theorem

In 1956, Lane [68] demonstrated for the case of small vibration amplitude, that each blade
in a perfect turbomachine (no mistuning) vibrates with identical modal amplitudes with a
constant Inter-Blade Phase Angle (IBPA) sometimes noted σ. According to Lane [68], the
possible values for a rotor mode of B blades are

IBPA[◦] =
360× nd

B
nd ∈ [0, B − 1] (2.7)

where nd is the nodal diameter. A zero degree value IBPA means that the blades are vibrating
in phase, a 180◦ or −180◦ IBPA means that the blades vibrates in phase opposition.

2.3.4 Decoupled approach

The modes being identified, these are prescribed with a small vibration amplitude and a
harmonic motion. Due to the phase theorem, the easiest way to express the mode is to use a
complex notation. The displacement vector projected on the modal basis becomes

x̂(t) = (hr + ihi)e
iωt, (2.8)

where hr and hi are the real and imaginary displacement modes, respectively, and ω the
angular frequency. As the motion is harmonic, the fluid response is supposed to be harmonic
too. In particular, the unsteady aerodynamic force f(t) exerted by the fluid is due to the static
pressure and can be expressed as

f̂(t) = (pr + ipi)Se
iωt. (2.9)

The damping can then be computed by considering the work per cycle Wc defined as

Wc =

∫ T

0
ẋ(t) · f(t) dt, T =

2π

ω
. (2.10)

Using the complex approach

Wc =

∫ T

0
<( ˙̂x(t)) · <(f̂(t)) dt. (2.11)

The development of this equation leads to

Wc = πS [hrpi − hipr] . (2.12)

According to Carta [15], the aerodynamic damping can be expressed using the work per cycle
Wc, which gives

Damping [−] = −πS [hrpi − hipr]
2Mmω2

(2.13)

The mechanical damping Dm is difficult to estimate but is negligible compared to the aerody-
namic damping [78]. Therefore, estimating only the aerodynamic damping is the discriminant
test case.
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2.3.5 Stability curve

The damping as a function of the IBPA, sometimes referred to as the stability or S-curve, is
used to display the aeroelastic results. It is shown in Figure 2.6. The shape of this curve is
known to display an S for most of the turbomachinery configurations. In our simulations, we
will check that this empirical statement is observed. The negatively damped modes are said
to be unstable and can be subject to flutter. The least stable modes are usually found at low
IBPA.

Summary

Contra-rotating open rotors are made of thin rotor blades that see unsteadinesses coming from the

opposite rotor. The study of the coupling between the structural displacement and the unsteady flow

field is called dynamic aeroelasticity. Two approaches exist to simulate such a phenomenon: the strong-

coupling and the decoupled one. Even though strong-coupling remains more accurate, the cost of such

an approach prevents its use in the industry. Therefore, the decoupled approach is the method that will

be used in this work to assess the flutter of contra-rotating open rotors. It has been described in this

chapter. The formula to compute the damping within the decoupled approach has been given. In the

next chapter, Fourier-based time methods will be presented as they are good candidates to efficiently

simulate the aeroelasticity of contra-rotating open rotors within the decoupled approach.
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Chapter 3

Fourier-based time methods

Abstract

The main Fourier-based time methods are presented in this chapter: the Linearized Unsteady Reynolds-

averaged Navier–Stokes (LUR), the Non-Linear Harmonic (NLH), the Non-Linear Frequency Domain

(NLFD) and the Harmonic Balance (HB) methods. The LUR method comes from a linearization of

the governing equations while the three others are built to take into account the non-linearities. The

NLH, NLFD and HB methods rely on a decomposition of the variable of interest in Fourier series. By

truncating these at order N , 2N +1 steady equations coupled by a source term are obtained. Emphasis

is put on the development of the multi-frequential formulation and its mathematical background to

allow multi-frequential applications. This is the case, for instance, of a pylon/rotor/rotor configuration

(namely an installed pusher CROR) or a CROR with vibrating blades, which is the purpose of the

current work. The applicability of these methods is demonstrated in the literature through simple

test cases for which an analytical solution is known, 2D/3D academic turbomachinery configurations,

industrial subsonic/transonic multi-stage applications, aeroelastic configurations and even unsteady

optimization problems, proving their maturity. The cost of the methods is about 2N + 1 times the

cost of a steady computation with N being the number of computed harmonics. The current study

relies on the former work of Sicot [90], who initially implemented the harmonic balance method into the

elsA code at CERFACS, and on the work of Guédeney [43], who extended it to the multi-frequential

framework.
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3.1 Introduction

There is a large variety of Fourier-based time methods in the literature. The most used ones in
the turbomachinery community will be presented in this section. In total, four Fourier-based
methods are presented: the Linearized Unsteady Reynolds-averaged Navier–Stokes method
(LUR), the Non-Linear Harmonic method (NLH), the Non-Linear Frequency Domain method
(NLFD) and the Harmonic Balance method (HB). These names are chosen here for clarity
but alternative appellations may be found sometimes. When this is the case, an effort will be
made to synthesize these appellations to give a good overview of the types of Fourier-based
time methods existing in the literature and their differences. Originally, these approaches have
been developed to efficiently simulate unsteady periodic phenomena.

For simplicity, the key features of the methods are described for a simple non-linear partial
differential equation, namely the inviscid Burger’s equation written in conservative form as

∂u

∂t
+

1

2

∂u2

∂x
= 0. (3.1)

3.2 The Linearized Unsteady Reynolds-averaged Navier–Stokes
method (LUR)

Verdon and Caspar [106] originally developed the unsteady linearized method in the framework
of potential flows. Later on, Hall and Crawley [48] extended it to the Euler equations and Clark
and Hall [20] applied it to the Reynolds-Averaged Navier–Stokes equations, yielding the LUR
method. This method relies on a decomposition of the variables into a base part (generally
the steady-state) and a small-disturbance unsteady component

u = u+ u′, (3.2)

where u′ is considered to be a small unsteady perturbation. In his PhD thesis, Hall [47] defines
small to be less than 10% of the steady flow. Injecting Eq. (3.2) into Eq. (3.1) yields

∂u′

∂t
+

1

2

∂

∂x

[
u2 + 2uu′ + u′u′

]
= 0. (3.3)

By means of linearization, i.e. collecting terms of equal order (equivalently u′ = 0) and
neglecting terms of order greater than one, Eq. (3.3) can be split into a steady equation

1

2

∂u2

∂x
= 0, (3.4)

and an unsteady first-order perturbation equation

∂u′

∂t
+

∂

∂x

[
uu′
]

= 0. (3.5)

There is a one-way coupling between the two equations: the steady field is first computed
using Eq. (3.4) and is secondly given as an input to the perturbation equation to compute the
corresponding unsteady disturbance (Eq. (3.5)). However, the computed perturbation is not
used to update the steady solution. Hence the one-way coupling.
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3.2.1 Mono-frequential formulation

As mentioned before, Fourier-based time methods have been developed to efficiently capture
periodic phenomena. Hence, assuming that the velocity perturbation is harmonic with angular
frequency ω, one can write

u′ = û1e
iωt + û−1e−iωt, (3.6)

with û1 and û−1 being complex conjugates giving a real value for the perturbation. Injecting
this definition into Eq. (3.5) and using the orthogonality property of the complex exponentials
leads to





iωû1 +
∂

∂x
[uû1] = 0,

−iωû−1 +
∂

∂x
[uû−1] = 0.

(3.7)

Since û1 and û−1 are complex conjugates, only the first complex equation is actually computed.
Finally a pseudo-time τ is added to time-march Eq. (3.4) and Eq. (3.7) to the steady-state,
giving one complex and one real equation, i.e. three real equations in total





∂u

∂τ
+
∂u2

∂x
= 0,

∂û1
∂τ

+ iωû1 +
∂

∂x
[uû1] = 0

(3.8)

3.2.2 Extension to the Navier–Stokes equations

To extend the LUR method to the Reynolds-Averaged Navier–Stokes equations, one has to
consider their linearized counterpart. The reader is referred to the paper of Clark and Hall [20]
for a detailed development of the LUR method for the Navier–Stokes equations.

3.2.3 Numerical cost

As the method is based on three equations in total, one steady equation (namely a classical
RANS equation) and one complex perturbation equations, if $RANS denotes the CPU and
memory cost of one steady computation, then the cost of the LUR method can be estimated
as

$LUR = 3× $RANS. (3.9)

In practice, only two computations are performed since the steady computation is usually
available beforehand.

3.3 The Non-Linear Harmonic method (NLH)

Originally developed by He and Ning [52] and Ning and He [82], the NLH method relies
on a decomposition of the conservative variables into a time-averaged part plus an unsteady
perturbation

u = u+ u′, (3.10)
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where . denotes the time-averaging operator and .′ its unsteady perturbation counterpart. By
injecting Eq. (3.10) into Eq. (3.1), one gets

∂u′

∂t
+

1

2

∂

∂x

[
u2 + 2uu′ + u′u′

]
= 0. (3.11)

The equation for the time-averaged part can be obtained by time-averaging Equation (3.11)

∂

∂x

[
u2 + u′u′

]
= 0, (3.12)

The term u′u′ accounts for the non-linearities of the considered equations. This term reflects
the influence of the unsteady contribution to the time-average, which was neglected in the
LUR approach. It is called the non-linear (or the deterministic) stress terms, by analogy with
the Reynolds stress terms. The equation for the unsteady perturbation is then obtained by
keeping the first-order terms of the unsteady Eq. (3.11). This means that the term u′u′ is
neglected, yielding

∂u′

∂t
+

∂

∂x

[
uu′
]

= 0. (3.13)

Note that neglecting the high-order terms (namely u′u′ for the Burger’s equation) is almost
similar to linearizing the equation. However, in the NLH approach, the time-averaged u′u′

of u′u′ is kept in Equation (3.12) which accounts for a part of the non-linearities. Thus, the
method is not linear. Equations (3.12) and (3.13) are simultaneously solved, leading to a
two-way coupling.

3.3.1 Mono-frequential formulation

Up to now, no assumption has been made neither on the velocity u, nor on its time-averaged
part or unsteady perturbation part. Assuming now that the velocity perturbation is periodic
in time with period T = 2π/ω, the unsteady perturbation can be decomposed into a Fourier
series

u′ =
∞∑

k=−∞
k 6=0

ûke
iωkt, (3.14)

where the k = 0 term is omitted as it is accounted for in the u part. The complex exponentials
family forming an orthogonal basis, we retrieve for all harmonics −∞ ≤ k ≤ ∞, k 6= 0

iωkûk +
∂

∂x
[uûk] = 0, ∀k. (3.15)

Each one of harmonic Eq. (3.15) represents now a steady-flow-like equation as no temporal
derivative is present anymore.

The term u′u′ remains in the time-averaged Equation (3.12) and needs to be computed. It
can be directly worked out when the harmonics are known from Eq. (3.15)

u′u′ =



∞∑

k=−∞
k 6=0

ûke
iωkt






∞∑

k=−∞
k 6=0

ûke
iωkt




=
∞∑

k=−∞
k 6=0

(ûk)
2ei2ωkt + 2

∞∑

k,j=−∞
k 6=j 6=0

ûkûje
iω(k+j)t.

(3.16)
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Thus, the time-average becomes

u′u′ =
1

T

∫ T

t=0



∞∑

k=−∞
k 6=0

(ûk)
2ei2ωkt + 2

∞∑

k,j=−∞
k 6=j 6=0

ûkûje
iω(k+j)t


dt

=
2

T

∫ T

t=0

∞∑

k,j=−∞
k 6=j 6=0

ûkûje
iω(k+j)t dt,

(3.17)

as the first term is periodic with a zero mean value. Moreover, this olds true for the terms
j 6= −k. Therefore, Equation (3.17) becomes

u′u′ =
2

T

∫ T

t=0

∞∑

k=−∞
k 6=0

ûkû−k dt. (3.18)

As ûk and û−k are complex conjugates, u′u′ is finally equal to

u′u′ = 2

∞∑

k=−∞
k 6=0

|ûk|2. (3.19)

This last equation depends only on the computed harmonics, meaning that no term is modeled.
Moreover, this term couples the time-average solution with the unsteady perturbation and
takes into account a part of the non-linearities of the considered equation, which makes a great
difference with the LUR approach presented in Sec. 3.2.

Finally, as computing an infinite number of harmonics is numerically not feasible, it is
truncated at order N . This is a fair assumption as, for most of the physical flows, the energy
is concentrated on a finite number of frequencies. Moreover, the goal of Fourier-based time
methods is to have a compact representation of the unsteady time signals. As for a mesh grid
convergence, the number of harmonics N will directly impact the accuracy of the unsteady
representation of the signal. The discussion on the convergence of Fourier-based time methods
will be introduced mathematically in Sec. 3.6 and discussed later on in this work in Chap. 6.

To summarize, the NLH method applied to Eq. (3.1) gives 2N complex perturbation equa-
tions and one time-averaged equation. As ûk and û−k are complex conjugates, this yields N
complex equations and one time-averaged (real) equation, making 2N + 1 real equations in
total. A pseudo-time (τ) derivative is added to march the equations in pseudo-time to the
steady-state solution of all the harmonics





∂u

∂τ
+

∂

∂x

[
u2 + u′u′

]
= 0,

∂ûk
∂τ

+ iωkûk +
∂

∂x
[uûk] = 0, k ∈ [1, N ]

(3.20)

The equations are coupled by the deterministic stress term u′u′ defined in Eq. (3.19). The
term u′u′ is neglected in this formulation.
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3.3.2 Multi-frequential formulation

He et al. [53] extended the method to a multi-frequential formulation. Instead of writing
the perturbation using a Fourier series as defined in Eq. (3.14), it is written using a sum of
harmonics each of which having an angular frequency ωk

u′ =
N∑

k=−N
k 6=0

ûke
iωkt. (3.21)

Note that the term kω in Eq. (3.14) is now replaced by ωk meaning that the frequencies can be
chosen arbitrarily. The derivation of the equations is kept the same and the following 2N + 1
subset of equations is finally obtained





∂u

∂τ
+

∂

∂x

[
u2 + u′u′

]
= 0,

∂ûk
∂τ

+ iωkûk +
∂

∂x
[uûk] = 0, k ∈ [1, N ]

(3.22)

However, as the complex exponentials (eiωkt) do not form an orthogonal basis, writing Eq. (3.22)
for each harmonic k ∈ [1, N ] is mathematically not true. He et al. [53] argued that the terms
are collected for each harmonic. The same development is made by Vilmin et al. [108].

The coupling deterministic stress term is evaluated using the same equation as for the
mono-frequential formulation

u′u′ = 2
∞∑

k=−∞
k 6=0

|ûk|2. (3.23)

To give a mathematical framework to prove this assertion, let us consider the specific example
of u′ taken as

u′ = (û−1e−it + û1e
it) + (û−2e−iπt + û2e

iπt), (3.24)

namely, we consider Eq. (3.21) with the specific angular frequencies: ω1 = 1 and ω2 = π. The
cross-term u′u′ is then equal to

u′u′ =(û−1)2e−i2t + (û1)
2ei2t + (û−2)2e−i2πt + (û2)

2ei2πt

+ 2
[
û−1û−2ei(−1−π)t + û−1û2ei(−1+π)t + û1û−2ei(1−π)t + û1û2e

i(1+π)t
]

+ 2û−1û1 + 2û−2û2.

(3.25)

In the mono-frequential framework, the frequencies are harmonically related and a common
period T exists. This logically leads to the definition of the mean value f of such a time-varying
function f(t) as

f =
1

T

∫ T

0
f(t) dt. (3.26)

In the current multi-frequential example, π and 1 are not integer multiples of a common funda-
mental frequency. For this specific example, a common period T does not exist. Besicovitch [6]
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defines a mathematical framework for such functions, called almost-periodic functions. In this
framework the temporal mean value is shown to exist. It is defined as

f = lim
X→∞

1

X

∫ X

0
f(t) dt. (3.27)

Applying the time-averaged operator to Eq. (3.25) yields

u′u′ = 2(û−1û1 + û−2û2) = 2(|û1|2 + |û2|2), (3.28)

as the mean value of purely harmonic functions is zero. Extending this demonstration to the
arbitrary case of a multi-frequential perturbation (Eq. (3.21)) leads to the general expression
given in Eq. (3.23).

3.3.3 Extensions

Navier–Stokes equations As shown above, since the development of the NLH method is
made in the frequency domain, applying the method to complex equations can be difficult.
For the Navier–Stokes equations, this step is tedious due to the number of equations to treat.
Nevertheless, Chen et al. [17], He and Ning [52], He et al. [53] and Vilmin et al. [108] have done
this and the reader is referred to these papers for a detailed description. Note that in all those
publications, turbulence is modeled using only the time-averaged quantities. This is another
assumption as the turbulent field, in a wake for instance, is seen unsteady in the opposite row
frame of reference [67]. Thus, this unsteadiness is not taken into account by the NLH method.

Turbomachinery computations Originally, the NLH method has been developed for tur-
bomachinery applications. He and Ning [52] and Ning and He [82] computed isolated turboma-
chinery configurations. To reduce the domain to a single blade-to-blade passage, they consider
a periodic boundary condition for the time-averaged part and a phase-lagged boundary condi-
tion for the perturbation part on the azimuthal boundaries

uU = uL,

u′U = u′Le
iσ,

(3.29)

where subscripts U and L denote the upper and the lower boundaries, respectively, and σ is
the inter-blade phase angle. This allows to compute isolated vibrating configurations thanks
to the phase theorem of Lane [68] (see Sec. 2.3.3).

Chen et al. [17] added a rotor/stator treatment to allow the computation of stage configu-
rations. To do so, the perturbation u′ is exchanged at the interface using an azimuthal Fourier
transform, whereas the time-average field u and the deterministic stresses u′u′ are azimuthally
flux-averaged. To this aim, the azimuthal variations of the perturbation û(θi) are spatially
Fourier transformed (ũi) and exchanged at the interface (ũi = ũj). Subscript i and j denotes,
respectively, the upstream and the downstream rows. This is schematically represented in
Figure 3.1. Still the method is restricted to mono-frequential problems, since only one stage
is considered, each row seeing the opposite blade passing frequency. Considering the time-
averaged field to be constant in the azimuthal direction at the interface seems fair (in case
without clocking effects), but there is no reason for u′u′ to be so.

He et al. [53] extended the method to take into account multi-stage configurations through
the development of a multi-frequential formulation. In fact, in such applications, a sandwiched
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row interface

Fθ

û(θi ) ũi

ũi = ũj

F−1
θ

û(θj)ũj

u(θi ) u(θj)

2π

Bi

∫
u(θi )dθi =

2π

Bj

∫
u(θj)dθj

Figure 3.1: Exchange of the variables at rows interface as described by Chen et al. [17].

row will see unsteadinesses coming from the upstream row (mainly wake effects) and potential
effects from the downstream rows. In the general case where the surrounding rows do not have
the same blade passing frequencies, multiple frequencies can be present in the current row. The
same treatment is used at the rows interfaces meaning that the time-averaged quantities are
flux-averaged and the fluctuations are exchanged through their azimuthal Fourier transform.

Vilmin et al. [108] extended the rotor/stator interface to a non-matching join sliding mesh
interface which leads to the continuity of the unsteady flow field at the interface. The main
difference with the previous treatment is that u and u′u′ are not flux-averaged but rather
spatially Fourier transformed, which leads to the continuity of u at the interface, when the
number of harmonics is sufficient.

1

2

3

Figure 3.2: Different clocking positions for a stator/rotor/stator configuration.

Clocking effect Figure 3.2 shows three different clocking positions (sometimes also referred
to as the indexing positions) of the first stator in a stator/rotor/stator configuration. In this
figure, the first clocking position is aligned with the second stator. The second and the third
clocking positions are not aligned with the second stator, which may give different level of
perceived unsteadiness by the second stator. At a design phase, the engineer can choose any
relative position of the rows and thus any clocking position. The relative position of both
stator is of prior interest to choose the best clocking position. In fact, the wakes that are shed
behind the first stator are cut by the rotor blades and transmitted to the second stator row.
The stators being fixed, the wake of the first stator is seen as a stationary wave in the second
stator. Hence, the importance of their relative position. For instance, Huber et al. [59] showed
that on their 1.5 stage turbine, the variation of efficiency due to clocking position was equal
to 0.8% of efficiency points, showing the importance of the clocking effect.

The brute force approach to compute the clocking effect on a configuration is to consider all
the relative positions. This means that the geometry of the stator should be rotated for each
new clocking position and hence a new unsteady computation should be run. The innovative
procedure proposed by He et al. [53] is to consider the clocking effect as a steady wave. In fact,
as both stator are fixed, a steady perturbation shed behind the first stator is still steady in
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the second stator. In terms of frequencies, a steady perturbation can be assimilated to a zero
frequency mode. In He et al. [53] and Vilmin et al. [109], a perturbation with a zero frequency
is thus additionally computed. The clocking effect can then be evaluated by post-processing
the Fourier coefficient of the zeroth frequency mode. Recently, the computation of clocking
effects on arbitrary configurations has been made possible by Vilmin et al. [110]. This allows
its use for pylon/rotor/rotor applications for instance, which is the configuration encountered
in an installed CROR.

3.3.4 Numerical cost

Compared to the LUR method, the number of equations to solve is not constant here. In fact,
if N denotes the number of harmonics computed in total (sum of the number of computed
harmonics per perturbations) and if $RANS denotes the CPU and memory cost associated to
one steady computation, N complex perturbation equations (i.e. 2N real equations) and one
time-average equation are solved, thus

$NLH = (2N + 1)× $RANS. (3.30)

However, Vilmin et al. [108] do not apply the NLH formulation to the turbulent equation (in
their case, the one equation of Spalart and Allmaras [98]). Therefore, as only five equations
are solved using the NLH approach, the turbulent equation being solved as a steady one, the
cost becomes

$NLH =
5× (2N + 1) + 1

6
× $RANS. (3.31)

3.4 The Non-Linear Frequency Domain method (NLFD)

Originally proposed by McMullen et al. [74], the NLFD method relies on a simple observation:
to develop Fourier-based time methods, and in particular the NLH method, one has made use
of the Fourier series to efficiently represent an unsteady signal. This representation has then
been used to develop the unsteady equation into 2N + 1 steady equations: one time-averaged
equation and 2N perturbation equations, where N denotes the number of harmonic kept to
compute the solution. The problem is that the equations need to be resolved in the frequency
domain meaning that all the numerical techniques should be adapted: the numerical schemes,
the turbulent models and so on. The original idea proposed by McMullen et al. [74] is to
make use of the fast Fourier Transform and its inverse to allow an easy implementation of the
method into a classical time-domain solver.

3.4.1 Mono-frequential formulation

To explain the development of this method, let us first write Eq. (3.1) in the more general
form

∂u

∂t
+R = 0, (3.32)

with

R =
1

2

∂u2

∂x
. (3.33)
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Consider now that both u and R are periodic in time with respect to period T = 2π/ω and
can be written using Fourier series

u(t) =

∞∑

k=−∞
ûke

ikωt,

R(t) =

∞∑

k=−∞
R̂ke

ikωt.

(3.34)

Note that decomposing R(t) into a Fourier series is equivalent to use the Fourier decomposition
of u(t) and express R(t) using the Fourier coefficients ûk of u since the cross-terms that may
arise are also expressed using the same complex exponentials. This comes from the fact that
multiplying a complex exponential with another complex exponential just forms a new one at
the power of the sum of the two. Injecting these decompositions into Eq. (3.32) and taking
into account the orthogonality of the complex exponentials yields

ikωûk + R̂k = 0, k ∈ [−∞,∞]. (3.35)

As previously, only a small number of harmonics N is kept and a pseudo-time (τ) derivative is
added to march the equations in pseudo-time to the steady-state solutions of all the harmonics.
Since ûk and û−k are complex conjugates, this yiels N complex equations plus one real equation
(corresponding to k = 0)

∂ûk
∂τ

+ ikωûk + R̂k = 0, k ∈ [0, N ] (3.36)

The fact that R(t) is expressed using its own Fourier series makes it simpler to implement as
it avoids developing its expression using the complex coefficients ûk. However, R̂k must be
evaluated. To do so, McMullen et al. [74] propose to use an Inverse Fast-Fourier Transform
(IFFT) to get u(t) from ûk, as depicted in Figure 3.3. Then the considered governing equations
are used to evaluate R(t) which leads to R̂k through a Fast-Fourier Transform (FFT). Finally,
the next iteration value ûk is evaluated by adding R̂k and the corresponding temporal derivative
ikωûk. All harmonics are coupled through the IFFT and FFT operations that needs all of the
former to compute the counterpart temporal signal, hence the coupling. Moreover, in the
non-viscous Burger’s equation framework, the term u′u′ is no-longer neglected compared to
the NLH approach and the computation of the deterministic stress terms is encompassed by
the FFT and IFFT operations.

IFFT
u(t)

governing 
equations FFT

R̂kR(t) +

ikω

ûk ûk
next 

iteration

Figure 3.3: Simplified diagram of the computation of R̂k from ûk for the non-linear frequency
domain method.
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3.4.2 Extensions

Navier–Stokes equations The Navier–Stokes equations can be written in finite-volume,
semi-discrete form as

V
dW

dt
+R(W ) = 0, (3.37)

where V is the volume of the cell and W the vector of the average conservative variables over the
control volume. This formulation is similar to Eq. (3.32) meaning that nothing particular has
to be made to derive this approach for the Navier–Stokes equations. This is indeed attractive
as the method can be applied almost directly, except for the FFT and IFFT step that should
be added into the pseudo-time loop.

Aeroelastic computations Since both the structural and the aerodynamic equations are
prone to time-periodic unsteadinesses, Kachra and Nadarajah [63] extended the NLFD ap-
proach to the strong-coupling of aeroelasticity within the two-dimensional Euler equations
framework. Both the fluid dynamics and the structural equations are solved using the NLFD
approach. They are coupled together every 15 multigrid cycles. A 2D plunging and pitching
airfoil is considered. They demonstrate that with a one-harmonic NLFD computation, the
flutter boundary of a NACA64A010 airfoil is correctly predicted. This leads to a gain of one
order of magnitude compared to a classical time-marching procedure.

Gradient-based method to determine the frequency McMullen et al. [74] applied the
NLFD to a cylinder vortex shedding. This could be done as the frequency of the vortex shedding
was known a priori from experimental and numerical data. Note that this supposes that the
numerical and the experimental vortex shedding frequencies are equal, which is generally not
true [64]. However, for a given cylinder, it is generally not possible to know this frequency a
priori. This is why McMullen et al. [75, 76] proposed a gradient based method for determining
the frequency of a periodic phenomena where the frequency is unknown a priori. They argue
that the frequency domain formulation helps forming a gradient operator to find the period
T based on the minimization of the residuals of the unsteady equations. They applied their
algorithm to find the frequency of the vortex shedding around a cylinder, and found it with
a 3.5% accuracy compared to experimental data. Nevertheless, as a gradient method is used,
a good initial guess is needed for the algorithm to converge. This limits the method to well-
known unsteady problems. Moreover, the prior interest of the NLFD method is to reduce the
cost compared to a classical time-marching scheme to solve the unsteady periodic problem.
One may ask if applying the NLFD with a gradient based method is not finally more costly
than a classical time-marching scheme.

Optimum shape design Nadarajah et al. [81] compared an optimum shape design strategy
for pitching airfoils using both a classical time-marching scheme and the NLFD scheme within
the Euler equations framework. It is shown that the NLFD method gives the same accuracy
for the gradient and the optimum with only three time instants (namely N = 1) compared
to 23 time instants needed for the time-marching approach. Nadarajah and Jameson [80]
extended it to the three-dimensional Navier–Stokes equations. A wing undergoing a change
in angle of attack as a function of time is computed and it is demonstrated that five instants
(namely N = 2) are sufficient to provide accurate results. Tatossian et al. [101] applied it to
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the aerodynamic shape optimization of hovering rotor blades in the Euler framework. The
capability of their shape optimization process to redesign the Caradonna–Tung experimental
blade is assessed and gives a proof of concept.

Adaptive method The problem of Fourier-based time methods is that the higher the num-
ber of computed harmonics, the higher the corresponding CPU and memory cost. There is
thus a need to optimize the chosen number of harmonics. Mosahebi and Nadarajah [79] im-
plemented an adaptive NLFD approach named the p-NLFD. Based on the energy of the last
mode compared to the whole spectrum, the number of harmonics is increased if a fixed thresh-
old is not reached. The novelty of the approach is that the number of harmonics can also
decrease. This gives a speed-up of 2 in terms of CPU cost and memory reduction for the case
of a vortex-shedding behind a cylinder, the frequency of which being known a priori.

3.4.3 Numerical cost

The NLFD method is close to the NLH approach in terms of number of equations solved.
However, at each time-step, a fast Fourier transform is performed to cast back the harmonics
into the time-domain in order to compute the residual R(t). McMullen and Jameson [73]
argue that the cost of the fast Fourier transform is less than the cost of the spatial derivatives.
Kachra and Nadarajah [63] quantitatively estimate it to be approximately 2% of the cost of
one iteration, which is negligible. Based on this affirmation, one can say that if $RANS denotes
the CPU and memory cost of one steady computation, the cost of the NLFD method can be
approximated by

$NLFD = (2N + 1)× $RANS. (3.38)

This evaluation of the cost is confirmed using numerical simulations by McMullen et al. [75].

3.5 The Harmonic Balance method (HB)

The HB method has been originally proposed by Hall et al. [50], at that time named Harmonic
Balance Technique (HBT). It can be considered as an improvement of the NLFD approach.
In fact, instead of using the fast Fourier transform to cast back the equations to the time
domain at each pseudo-iteration step, the equations are mathematically derived to be directly
computed into the time-domain. To explain the method, we will again use the general form
of the non-viscous Burger’s equation as defined in Eq. (3.32). This study relies on the former
work of Sicot [90] who implemented the harmonic balance method into the elsA [12] CFD
code at CERFACS. Recently Guédeney [43] extended it to the multi-frequential formulation,
allowing contra-rotating open rotor aeroelastic computations. This is why this approach will
be used in the current work.

3.5.1 Mono-frequential formulation

Following the same approach as the non-linear frequency domain one, it is considered that
both u and R are periodic in time with respect to period T = 2π/ω and can be written using
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Fourier series

u(t) =
∞∑

k=−∞
ûke

ikωt,

R(t) =

∞∑

k=−∞
R̂ke

ikωt.

(3.39)

Injecting Eq. (3.39) into Eq. (3.32), and considering the orthogonality of the complex expo-
nentials

ikωûk + R̂k = 0, k ∈ [−N,N ]. (3.40)

In the same way as one uses Fourier coefficients to evaluate the temporal signal, one can
reconstruct the Fourier coefficients using temporal evaluations. These are taken at evenly-
spaced time instants sampling the period T = 2π/ω. Moreover, according to the Nyquist-
Shannon [89] sampling theorem, at least 2N time instants are needed to capture N frequencies.
Actually 2N + 1 time instants are used to prevent odd-even decoupling as demonstrated by
van der Weide et al. [105]. ûk can thus be expressed as a function of u(t), using the inverse
Fourier transform

ûk =
1

2N + 1

2N∑

n=0

u(tn)e−ikωtn . (3.41)

If E denotes the matrix composed of the elements (E)k,n = e−i(k−N)ωtn/2N + 1, one can write

ûk and R̂k as

ûk = Eu?,

R̂k = ER?,
(3.42)

where u? and R? denote the vectors formed of all the evaluations of u and R, respectively,
made at 2N + 1 time instants uniformly sampling the period of interest

u? = [u(t0) · · ·u(t2N )],

R? = [R(t0) · · ·R(t2N )].
(3.43)

E can thus be named the Fourier matrix. Note that conversely, using the inverse Fourier
matrix E−1

u? = E−1ûk

R? = E−1R̂k.
(3.44)

Injecting the matrix formulation of Eq. (3.42) in Eq. (3.40) gives

iωKEu? + ER? = 0, (3.45)

where K is a diagonal matrix formed of all the k ∈ [−N,N ]. Note that first, the matrix formu-
lation encompass all harmonics k ∈ [−N,N ] and second, it does not require the orthogonality
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of the complex exponentials. Now multiplying the equation by the inverse Fourier matrix E−1

iωE−1KEu? +R? = 0, (3.46)

where R? can now be substituted

iωE−1KEu? +
∂

∂x

(u?)2

2
= 0. (3.47)

What happened here is that instead of developing R(t) in the frequency domain as made with
the NLH approach, which is tedious, this term is kept in this form through all the development
process. Since R(t) only includes spatial derivatives, no temporal non-linear terms arise by
using the Fourier decomposition. Thus, multiplying it by the inverse Fourier matrix leads to
the unity matrix. R(t) is then simply evaluated at 2N + 1 time instants.

This approach is really close to the NLFD method. The higher order perturbation terms
are taken into account in the equations. However, as the development is on the equations and
not during the time loop, we get 2N + 1 steady equations, by definition in the time domain,
that are coupled by a source term. The source term appears as a spectral operator defined as

Dt = iωE−1KE. (3.48)

To compute Dt, Hall et al. [50] inverse the Fourier matrix E. In an easier way, Gopinath
and Jameson [40] provided an analytical formulation of the source term defined in Eq. (3.48)
and renamed the HB approach the Time Spectral Method (TSM). It is a matrix operator
whose elements are defined as

(Dt)k,n =

{
π
T (−1)k−n csc

(
π(k−n)
2N+1

)
, k 6= n,

0 , k = n.
(3.49)

The main difference with the NLFD approach is that the source term matrix Dt is known
at the first iteration and does not change, meaning that we do not spend time computing a
fast Fourier transform and its inverse at each time-step, even though the source term Dt(u

?)
needs to be evaluated.

Finally, adding a pseudo-time (τ) derivative to time march the equations to the steady-
state, the mono-frequential formulation of Eq. (3.1) in the harmonic balance framework is given
by

∂u?

∂τ
+Dt(u

?) +
∂

∂x

(u?)2

2
= 0 (3.50)

with Dt defined using Eq. (3.49). As for the NLFD method, the term u′u′ is not neglected in
the current approach.

3.5.2 Multi-frequential formulation

In the framework of almost-periodic functions [6], a function f(t) composed of multiple frequen-
cies non necessarily harmonically related can be approximated by an almost-periodic discrete
Fourier transform

f(t) ≈
N∑

k=−N
f̂ke

iωkt. (3.51)
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In this framework, Gopinath et al. [42] and Ekici and Hall [29] extended the harmonic balance
approach to a multi-frequential formulation. To do so, they considered a Fourier matrix defined
as

(E)k,n =
1

2N + 1
e−iωk−N tn , (3.52)

where N is the chosen number of frequencies. Note that replacing ωk−N by (k − N)ω gives
the mono-frequential inverse Fourier matrix back. However, in the multi-frequential case, the
inverse Fourier matrix E−1 has to be numerically computed from E. Actually, as demonstrated
by Gopinath et al. [42], it is easier to express E−1 analytically, compute its temporal derivative
(that is hence analytical too) and inverse it numerically to obtain E. In fact, the source term

can be written as Dt = ∂E−1

∂t E which ease its computation.

Using the same process as for the mono-frequential formulation, Eq. (3.32) becomes

iE−1PEu? +R? = 0, (3.53)

where P is a diagonal matrix formed of all the angular frequencies ωk. Note that the ex-
ponentials do not need to form an orthogonal family here. The only need is to have the
multi-frequential Fourier matrix E to be invertible which is the case [29]. This is really close
to the mono-frequential formulation given in Eq. (3.46). Finally, adding a pseudo-time (τ)
derivative to time-march the equations to the steady-state, the multi-frequential formulation
of Eq. (3.1) in the harmonic balance framework reads

∂u?

∂τ
+Dt(u

?) +
∂

∂x

(u?)2

2
= 0 (3.54)

with Dt defined as

Dt = iE−1PE, (3.55)

and again u? = [u(t0) · · ·u(t2N )] and R? = [R(t0) · · ·R(t2N )].

In practice, in this work, a real formulation of the discrete Fourier transform and inverse
Fourier transform matrices is used as detailed by Kundert et al. [65]. This has been imple-
mented by Guédeney [43] into the elsA CFD code that will be used in this work.

3.5.3 Extensions

Navier–Stokes equations As for the NLFD approach, since the Navier–Stokes equations
can be written in finite-volume, semi-discrete form as

V
dW

dt
+R(W ) = 0, (3.56)

nothing particular has to be made to derive this approach for the Navier–Stokes equations,
except adding the source term computation in the time-loop. This shows its advantage over
the NLFD and particularly over the NLH method.
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Turbomachinery computations Originally, the HB method has been developed for tur-
bomachinery applications. Hall et al. [50] applied the method to the computation of the flutter
boundary of the front stage rotor of a modern high-pressure transonic compressor. To reduce
the computational domain to a single blade passage, a phase-lagged boundary condition is
used at the azimuthal interfaces

ûk,U = ûk,Le
iσk, (3.57)

for k ∈ [−N,N ], where subscript U and L denote respectively the upper and lower azimuthal
boundaries, and σ denotes the inter-blade phase angle. This boundary condition allows to
compute isolated aeroelastic configurations using only one blade-passage.

van der Weide et al. [105] extended the approach to take into account the periodic boundary
conditions when the equations are solved in the cartesian coordinate system. The efficiency of
the method was demonstrated with the NASA-Stage 35 compressor. In that case, engineering
accuracy is obtained with only N = 5 harmonics. Nothing is said on the strategy used at the
rows interface.

Ekici and Hall [29] and Gopinath et al. [42] extended the method to a multi-frequential
formulation. As such, it can then be applied to multi-stage configurations. Both of them
demonstrated the applicability of the method on a two-dimensional multi-stage compressor
called configuration D. The strategy used by Ekici and Hall [29] to exchange the variables at
the rows interface is schematically represented in Figure 3.4. The temporal and azimuthal

+ non reflecting boundary 

condition on spurious frequencies

FθFt F−1
tF−1

θ

u(θj , tj)u(θi , ti ) û(θi ) û(θj)ũjũi

ũi = ũj

row interface

Figure 3.4: Exchange of the variable at rows interface as described by Ekici and Hall [29].

variations of the field (here represented as u(θi, ti)) in row i are Fourier transformed first with
respect to time giving û(θi), and then to space to obtain the spatio-temporal modes ũi. At the
interface, these modes are transmitted using a non-reflecting boundary condition filtering the
spurious modes. In fact, as only some temporal modes are computed using the HB approach,
only those will be kept when transmitted to the opposite row. Finally, the inverse operations
are carried out in the opposite row: first an inverse azimuthal Fourier transform is performed
and second an inverse temporal Fourier transform is done which gives u(θj , tj) in row j.

Gopinath et al. [42] used a different approach to transfer the information at the interface as
shown in Figure 3.5. In most time-domain solver, a sliding mesh treatment exists to interpolate

u(θi , ti ) Fti F−1
tj

u(θi , tj) u(θj , tj)

spatial interpolation

row interface

Figure 3.5: Exchange of the variable at rows interface as described by Gopinath et al. [42].

azimuthal variations between consecutive rows. Therefore, Gopinath et al. [42] interpolates
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temporally the field on the time instants used for the HB computation in the opposite row. To
do so, they used a temporal Fourier transform combined with an inversed one using the time
instants of the opposite row. This is where the filtering occurs as the signal is interpolated into
discrete time instants. Then, they applied the sliding mesh treatment to spatially transfer the
information. As spurious effects can appear, the time interpolation is done, not on the 2N + 1
samples of the opposite row, but rather on 2 × (2N + 1) samples. This over-sampling helps
isolating the spurious effects on the higher harmonics to suppress them.

Ekici and Hall [30] applied the multi-frequential method to the effect of wake passing on the
vibration of a turbine blade. Note that the stator is modeled by an unsteady wake injection but
not computed. Two frequencies are involved: the blade passing frequency of the opposite row,
here the stator row that is modeled through an unsteady wake injection, and the aeroelastic
frequency, justifying the use of the multi-frequential formulation.

At CERFACS, Sicot et al. [93] implemented the harmonic balance into the elsA [12] CFD
code and analyzed the rotor/stator interaction in a subsonic compressor. To reduce the compu-
tational domain, phase-lag boundary conditions are implemented using the general expression
of the phase-lag due to different number of blades in the different rows provided by Gerolymos
and Chapin [37]

σ = −2π sign (Ωcur − Ωopp)

(
1− Bopp

Bcur

)
, (3.58)

where Ω denotes the rotation speed, B the number of blade and subscript opp and cur, respec-
tively, the opposite and the current row. The same treatment as Gopinath et al. [42] is used
at the interface. Guédeney [43] extended this to the multi-frequential framework. The author
showed that unsteadinesses coming from upstream and downstream rows can be retrieve with
a good accuracy using only a limited number of harmonics. This is the interface treatment
that will used in this work when dealing with turbomachinery like configurations.

Choice of the frequencies for the multi-frequential formulation Due to the non-
linearity of the considered equations, the presence of two or more base frequencies can lead to
the emergence of combinations of them. This leads to a set of possible frequencies that is two-
dimensional or more. As an infinite number of frequencies can not be computed, this set has to
be truncated. In the electronic literature, Kundert et al. [65] propose two types of truncation:
the ”rectangular grid” and the ”diamond grid” truncations. These are schematically repre-
sented in Figure 3.6. Dots represent frequencies that are computed by the multi-frequential
harmonic balance approach. In the turbomachinery literature, Gopinath et al. [42] follows the

f1

f2

(a) rectangular grid

f1

f2

(b) diamond grid

f1

f2

(c) cross grid

Figure 3.6: Truncation grids for reducing the input set of frequencies of multi-frequential
harmonic balance computations.
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diamond grid pattern while Ekici and Hall [29] seems to choose a rectangular grid pattern.
In his PhD thesis, Guédeney [43] first choose the frequencies by knowing which one emerge
based on a reference classical time-marching computation. Of course, this approach can only
be done a posteriori which limits the predictability of the method. He also made computations
with a ”cross grid” truncation (shown in Figure 3.6), this new type of truncation scheme only
considers the harmonics of the base frequencies. Guédeney [43] showed that this truncation
pattern gives similar if not better results that the ”diamond grid” truncation pattern.

In this work, we will consider as base frequencies, both the one associated with the unsteady
aerodynamic and with the aeroelastic forced vibration. Since the decoupled approach will be
used, we assume that combinations of the frequencies will be less energetic than the aerody-
namic and aeroelastic frequencies and their harmonics. This is why, in this work, the ”cross
grid” truncation pattern will be used when using the multi-frequential approach to compute
the aeroelasticity of CROR.

Aeroelastic simulations Thomas et al. [102] used the method to determine the Limit-
Cycle Oscillation (LCO) solution of a transonic airfoil configuration using the Euler equations
and Thomas et al. [103] extended it to the viscous Navier-Stokes equations. For external-
flow aeroelasticity, the HB approach has been thoroughly validated by Dufour et al. [24],
Gopinath and Jameson [40], Sicot et al. [92], Woodgate and Badcock [113], mostly for the
AGARD test cases of Davis [23]. Dufour et al. [24] highlighted the benefits of using a non-
linear approach for oscillating-flap simulations compared to linearized approaches. A one-
harmonic HB simulation gives results comparable to an expensive time-marching simulation.
Huang and Ekici [57] applied the mono-frequential HB method to the flutter prediction of the
11th standard configuration for aeroelasticity [36]. They show that with only one harmonic,
the local harmonic response of the fluid is superimposed with the results of a time-marching
simulation. The same study has been performed in this work as detailed in Chap. 7 and
the same conclusions are drawn. These results have been published in Sicot et al. [93]. In
the context of the current thesis, Sicot et al. [94] applied the multi-frequential method to the
aeroelasticity of a contra-rotating fan, proving the maturity of the approach.

Transient problems Yang and Mavriplis [115] and Mavriplis et al. [72] extended the method
to an hybrid polynomial-harmonic balance approach. It allows to use the method for maneuver
simulations, where a part of the simulation exhibits a physical transient.

Gradient-based method to determine the frequency With the same approach as Mc-
Mullen et al. [75], Gopinath and Jameson [41] developed a gradient-based method to estimate
the frequency of the vortex shedding behind a cylinder and of a NACA0012 airfoil at high
angle of attack using the harmonic balance approach. The results are superimposed with a
classical time-marching approach ones. However, for the same reasons as detailed in Sec. 3.4.2,
this gradient-based approach is limited to problems where a good initial guess of the fre-
quency is known. Moreover, several harmonic balance computations are needed to converge
the gradient-based method, which deteriorates the efficiency of the approach and makes this
last less competitive compared to a classical time-marching approach.

Optimum shape design Thomas et al. [104] used an automatic differentiation compiler to
derive an adjoint code from their harmonic balance code. This adjoint code is then evaluated
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on the NLR 7301 supercritical airfoil section. The computation of the sensibilities is finally
classically compared to a finite-difference and shows to be in good agreement with these,
validating the given approach.

Choi et al. [18] derived the adjoint equations in the harmonic balance framework. This is
a better-posed problem compared to the approach of Thomas et al. [104]. The methodology
is assessed on the flight 8534 test case of the UH-60A configuration. A good agreement with
both a classical time-marching approach and experimental results is demonstrated.

Adaptive method Maple et al. [70] presented an adaptive harmonic balance approach. To
do so, the number of harmonics is increased if the energy of the last harmonic divided by the
cumulative sum of the energy of each harmonic is larger than a given threshold. During the first
iterations, only a low number of harmonics is kept. Then, when the flow is almost converged,
the adaptive harmonic balance approach is used. This ensures that higher order harmonics
are not injected at the first iterations, when the flow is not physical. A 86% reduction in time
(and in memory footprint) is seen compared to a resolved (converged in terms of harmonics
N) harmonic balance computation. This has to be compared to the 2 factor speed-up observed
by Mosahebi and Nadarajah [79] with an adaptive NLFD approach.

The approach proposed by Maple et al. [70] is mathematically clever and is shown to lead
to a large gain in CPU time. However, to the author knowledge, it has not been implemented
in an industrial CFD code ever since. In fact, implementing a variable number of harmonics
for each cells is not straightforward, if not thought at the early stages of the development of
the CFD code.

3.5.4 Numerical cost

As mentioned before, the cost of the method is linked to the number of simulated time instants.
In fact, each new time instant corresponds to an additional steady computation. Thus, if
2N + 1 time instants are considered and if $RANS denotes the CPU and memory cost of one
steady computation, the cost of the HB method can be approximated by

$HB = (2N + 1)× $RANS. (3.59)

Note that Ekici and Hall [29, 30] use 3N + 1 time instants or more to prevent the bad condi-
tioning of the source term when using the multi-frequential formulation. This will be detailed
later on this thesis in Chapter 5 and an innovative solution will be proposed. In that case, the
cost is bigger and scales with the chosen number of time instants.

In addition to that, also note that this estimation is based on the hypothesis that harmonic
balance computations will converge to the steady state using the same number of iterations.
Due to the presence of the harmonic balance source term in the equations, this is not completely
true even though the order of magnitude is correct.

3.6 Convergence of the spectral operator

This section provides theoretical results on the convergence of Fourier-based time methods as
well as an example motivating the use of such an approach for the current work.
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3.6.1 Theoretical results

The convergence of the spectral operator depends on the regularity of the approximated func-
tion. Consider a function u(t) that is continuous, periodic and bounded in [0,T ] and let
PN (u(t)) denote its truncated Fourier series

PN (u(t)) =
N∑

k=−N
ûke

ikωt. (3.60)

The L2-norm of the error writes

‖u‖2 =

(∫ T

0
|u(t)− PN (u(t)) |2 dt

)1/2

. (3.61)

If u(t) is m-times continuously differentiable in [0,T ] (m ≥ 1) and its j-th derivative is periodic
on [0,T ] for all j ≤ m− 2 then, it exists k0 ∈ [1, N ] such that

ûk = O(k−m), for k > k0, (3.62)

where ûk is the k-th Fourier coefficient of u(t). This equation means that, the more regular
the function is, the faster the convergence rate of the Fourier coefficients. The property of
the error to decay exponentially as soon as the function is approximated by a number of
harmonics greater than k0, is called spectral accuracy [14]. Note that k0 is not known but
is rather essential for the analysis. For k below k0, approximating the function u(t) with its
Fourier series yields unacceptably high errors.

3.6.2 Motivating example: numerical derivation of a smooth function

To assess the capability of the HB operator, used in the present work, to provide accurate
approximations of the time-derivative, we consider the simple example of a pure five-harmonic
signal of the form

u(t) = cos(ωt) + sin(2ωt) + cos(3ωt) + sin(4ωt) + cos(5ωt), (3.63)

where ω = 2πf and f is the temporal frequency of the considered phenomenon. The analytical
derivative is then

du

dt
= ω [− sin(ωt) + 2 cos(2ωt)− 3 sin(3ωt) + 4 cos(4ωt)− 5 sin(5ωt)] . (3.64)

The exact derivative is compared to the approximated one obtained by applying the HB op-
erator defined in Eq. (3.48). Two Finite-Difference (FD) schemes are used for comparison: a
second-order centered scheme

du

dt
(t = tq) =

uq+1 − uq−1
2∆t

+O(∆t2), (3.65)

where uq = u(tq) and uq+1 = u(tq+1) and so on, and a fourth-order centered scheme

du

dt
(t = tq) =

−uq+2 + 8uq+1 − 8uq−1 + uq−2
12∆t

+O(∆t4), (3.66)
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Figure 3.7: Time-derivative estimation by the harmonic balance operator, the 2nd order and
4th finite-difference schemes.
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are also used for comparison. For finite-difference schemes, we assume that the time line is
discretized by a regular mesh of step ∆t, such that tq = q∆t.

Figure 3.7 shows the resulting approximations of the derivative over one period. Four
sampling levels are tested for the HB operator: 7, 9, 11 and 13 time instants per period
corresponding to N = 3, 4, 5 and 6, respectively. For the FD schemes, the periodicity time
interval is sampled by 10, 40 and 100 points. For 40 samples, the 4th order FD scheme almost
fits the analytical solution. On the other-hand, the HB operator prediction is superimposed
with the analytical solution by using 11 samples, i.e. N = 5. Beyond that, further increasing
the number of harmonics (or samples) does not improve the solution.

To quantitatively analyze the results, the L2-norm of the absolute error with respect to the
analytical derivative is computed for the different schemes and sampling levels (see Figure 3.8).
As expected, the error of the 4th order FD decreases faster than the 2nd order for a given
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Figure 3.8: L2-norm of the error for each time-derivative schemes.

sampling level. When the number of harmonics is low (i.e. N < 5), the error is high for the
HB operator. But as soon as N ≥ 5, the error drastically decreases to machine precision.
This illustrates the spectral accuracy as explained in Sec. 3.6.1. In fact, the function defined
in Eq. (3.64) approximated by the spectral operator is infinitely differentiable and periodic in
[0, T ]. Thus, using the properties established in Sec. 3.6.1, the convergence rate of the spectral
operator is O(k−∞) for k > k0, here k0 = 5. In this case, k0 reflects the frequency content of
the signal (namely 5 harmonics).

The study of the convergence applied to the resolution of turbomachinery harmonic balance
computations will be detailed in Chap. 6.

3.7 Periodic flows in turbomachinery

In this thesis, the final application is contra-rotating open rotor configurations. To bound
Fourier-based time methods for such applications, we propose a classification of the unsteady
phenomena that can be computed using such approaches.

Inspired by Hodson [55], a diagram presenting the unsteadinesses seen in a CROR is shown
in Figure 3.9. A distinction is made between unsteadinesses whose frequencies are known or
not. From the bibliography presented previously, almost all unsteady flows can be computed
using Fourier-based time methods. The current implementation of the HB method available
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Figure 3.9: Main unsteady phenomena seen by contra-rotating open rotors. Bold blue text
highlights applications that can be treated with the harmonic balance implementation available
in the current work and underlined red text shows additional applications made possible by
extensions available in the literature.

for this thesis is able to compute all the unsteady effects highlighted by a bold text. In the
literature, the presented work of Mavriplis et al. [72] allows to compute transient unsteady
flows resulting from a change of operating point and/or a maneuver and the work of McMullen
et al. [75] and Gopinath and Jameson [41] allows to capture periodic flows whose frequency is
unknown. These two kinds of unsteadiness are added to the current panel of applications that
can be treated by Fourier-based time methods and are highlighted by an underlined text. Note
that the gradient algorithm presented by McMullen et al. [75] and Gopinath and Jameson [41]
is only able to converge when a good approximate of the solution is given, meaning that
this strategy fails when one has no estimate of the value of the frequency for the considered
phenomenon. It can also be inferred that using such an optimization algorithm coupled with
a Fourier-based time method might require more computational time than a classical time-
marching scheme, which limits its applicability to academic configurations.

Summary

Four Fourier-based time methods have been presented in this chapter. The main mathematical de-

velopments have been discussed and the underlying hypotheses/weaknesses of each method have been

highlighted. The harmonic balance method, that will be used in the current work, has been selected

because of its ability to tackle both mono- and multi-frequential applications. To do so, the unsteady

equation is transformed into a subset of 2N + 1 steady-state equations coupled by a source term which

is analytical in the mono-frequential formulation and of matrix form in the multi-frequential framework.

The vast literature available on these methods shows that they are ready for industrial, numerically

demanding unsteady applications. Moreover, the method is shown to be suitable for the computation

of aeroelastic phenomena on contra-rotating configurations investigated in the present work. Neverthe-
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less, some numerical issues may arise in specific configurations. Before applying the harmonic balance

method to CROR, we investigate these aspects in the following chapters and suggest possible solutions.
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Advantages and limitations of
Fourier-based time methods
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Chapter 4

Preliminary validations of the harmonic balance approach

Abstract

In this chapter the mono- and multi-frequential harmonic balance approaches are validated. In this aim,

two model problems are used. Firstly, the harmonic balance method is applied to the linear advection

equation supplemented with unsteady boundary conditions of different frequency content. Mono- and

multi-frequential unsteady signals are injected and compared to exact solutions. The spectral accuracy

of the method is verified. Moreover, the ability of the multi-frequential approach to capture signal

composed of segregated frequencies is underlined. Based on these results, the aeroelasticity of contra-

rotating open rotors is put into perspectives. Secondly, the multi-frequential approach is assessed

for a channel flow problem solved using the elsA [12] CFD code within the Navier–Stokes equations

framework. The results are shown to be superimposed with a classical time-marching solution.
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4.1 Linear advection of a periodic signal

4.1.1 Presentation of the test case

To validate the harmonic balance approach within a linear framework, the resolution of the
advection equation is considered. It is defined as

∂u

∂t
+ c

∂u

∂x
= 0, (4.1)

with the constant advection speed c assumed as positive. The equation is solved in the domain
x ∈ [0, Lx]. Periodic perturbations of different shapes are imposed at the left boundary

u(0, t) = ul(t), (4.2)

where ul is a periodic function of period T = Lx/c. These perturbations are advected across
the computational domain and leave from the right boundary. After a transient of time length
Ttrans = Lx/c, the solution at any point x in the space domain achieves a periodic state. The
exact solution for this periodic state is a periodic function of the form

uex(x,t) = ul(x/c+ t). (4.3)

For simplicity, Lx and c are taken as unity.

4.1.2 Numerical setup

The space derivative is discretized by means of a centered fourth-order finite-difference scheme
on a uniform Cartesian mesh

∂u

∂x
(x = xi, τ = τq) =

−ui+2
q + 8ui+1

q − 8ui−1q + ui−2q

12∆x
+O(∆x4), (4.4)

where τ denotes the pseudo-time. A very fine space step is used (∆x = 5× 10−4) in order to
rule out spatial approximation errors. This corresponds to 2,000 grid points in the domain.
The solution at the last mesh point on the right of the domain is extrapolated from the inside.
To this aim, a standard second-order and a first-order upwind discretization schemes are used
to approximate the space derivative at the last two mesh points on the right, respectively

∂u

∂x
(x = xm−1, τ = τq) =

3um−1q − 4um−2q + um−3q

2∆x
+O(∆x2),

∂u

∂x
(x = xm, τ = τq) =

umq − um−1q

∆x
+O(∆x),

(4.5)

where m is the total number of grid points.

Time-discretization is achieved through the HB method (described in Sec. 3.5) with a
standard four-step Runge-Kutta method [62] used to pseudo-time march the HB equations to
the steady-state. The kth step is evaluated by

uk = uq − αk∆τ
[
c
∂uk−1
∂x

(τ = τq + αk−1∆τ) +Dt(uk)

]
, (4.6)
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where α0 = 0, α1 = 1/4, α2 = 1/3, α3 = 1/2, α4 = 1. The HB source term Dt(uk) is computed
using Eq. (3.55).

The CFL number in pseudo-time is set to 1 to ensure the stability of the explicit time-
marching scheme which sets the time step. For stability reasons, this time step is modified [105]
to take into account the additional source term

∆τ = CFL
∆x

c+ ωN∆x
. (4.7)

The extra term ωN∆x is added to the advection velocity c to restrict the time step. Equa-
tion (4.7) implies that a high frequency and/or a high number of harmonics N can considerably
restrict the time step, especially for explicit Runge Kutta time integration scheme, as men-
tioned in [50]. Note that for multi-frequential computations, the extra term ωN∆x is replaced
by ωN∆x, where ωN denotes the largest angular frequency.

4.1.3 Validation of the mono-frequential approach

A perturbation in the form of a finite sum of sine functions, similar to the one used in Sec. 3.6.2,
is applied at the left boundary

ul(t) = cos(ωt) + sin(2ωt) + cos(3ωt) + sin(4ωt) + cos(5ωt). (4.8)

Harmonic balance computations are run with 1 to 10 harmonics. For each computation ranging
from N = 1 to N = 6, we show spatial distributions of the solution at three time instants,
namely t = 0, t = T/3 and t = 2T/3. Since these instants are not necessarily used in the HB
discretization, a temporal interpolation is performed. To do so, the frequency content of the HB
solution is used together with an inverse Fourier transform on the time-vector [0, T/3, 2T/3].
Figure 4.1 depicts the results of HB computations using 1 to 5 harmonics. The analytical
solution is also reported for comparison.

The accuracy of the solution improves with the number of harmonics, until it reaches
the frequency content of the injected signal, i.e. 5 harmonics. For higher sampling levels,
the results of HB computations are superimposed with the analytical solution, validating the
current approach.

The L2-norm of the error in time is computed over all the time instants at each grid point
over the domain. Then, the average in space is computed. The error is shown as a function of
the number of harmonics in Figure 4.2. Two results are displayed: one for the reference mesh
(2,000 grid points) and one for a refined mesh (4,000 grid points). The convergence of the
HB computations is slow for N ≤ 4. However, when the number of harmonics composing the
injected function is reached (N = 5), the error is minimum and computing more harmonics
does not change the error. As introduced in Sec. 3.6, the convergence rate of Fourier-based
time methods is inherently linked to the spectrum of the temporal phenomenon that one wants
to capture. This property is still seen when solving the linear advection equation. Here a finite
discrete spectrum composed of only five harmonics is imposed. The value of the plateau
obtained after N = 5 is representative of the error introduced by the different discretizations.
In fact, refining the mesh changes this value without modifying the error levels of the lower
harmonics points as indicated by Figure 4.2.

The temporal discrete Fourier transform of the computational results is compared to the
analytical results in Figure 4.3. When the number of harmonics grows in the spectral compu-
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Figure 4.1: Linear advection of a sum of sine functions: numerical solutions at different time
instants for different numbers of harmonics.
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tations, the Fourier transform gets closer to the analytical solution. When the whole frequency
content of the injected function is contained in the HB solution, the numerical results are su-
perimposed with the analytical ones. For intermediate sampling frequencies, as for instance
the three-harmonics HB computation, the resolved harmonics have higher amplitudes than the
exact one, since they compensate for harmonics that are not resolved.

When the number of harmonics composing the spectrum of the computed signal is reached,
the computational results are superposed with the analytical ones, namely we obtain spectral
accuracy. This is the main advantage of Fourier-based time methods: when the signal has
a narrow spectrum, as it is the case for the sum of sine function used here, the convergence
can be very fast compared to a classical time-marching scheme as only a few number of time
instants is necessary to retrieve the unsteadiness.

4.1.4 Validation of the multi-frequential approach

In Section 3.5.2, the multi-frequential harmonic balance approach has been presented. In this
method, the frequencies can be chosen arbitrarily. This becomes particularly interesting when
dealing with signal/flow field composed of segregated frequencies. To emphasize that, let us
consider the linear advection problem with a perturbation in the form of a sum of two sine
functions, applied at the left boundary

ul(t) = sin(ωt) + sin(22ωt). (4.9)

Using a mono-frequential approach

Obviously, computing the advection of such a perturbation using a classical time-marching
scheme would require to discretize the smaller period. The largest frequency (here f2 = 22 Hz)
acts as a bottleneck as the time-step will be chosen according to this frequency. The cost scales
thus with the ratio of f2/f1.

This holds true when computing the solution using the mono-frequential harmonic balance
approach. In fact, the frequencies can not be chosen arbitrarily. Therefore, to compute such
a configuration, a N = 22 harmonic computation will be needed to be spectral accurate. To
emphasize that, mono-frequential HB computations are run with 1 to 25 harmonics. As made
previously, for 6 chosen computations of the 25 computations, we show spatial distributions
of the solution at three time instants, namely, t = 0, t = T/3 and t = 2T/3. It is shown in
Figure 4.4. Again, the accuracy in capturing the injected function improves with the number
of harmonics, until it reaches the frequency content of the injected signal, i.e. 22 harmonics.
After that, the results of the HB computations are superimposed with the analytical solution.
The problem, with such a segregation of frequencies, is that the mono-frequential version suffers
from the same problems as a classical time-marching scheme in terms of computational cost.

To quantitatively analyze the results, the discrete L2-norm of the error is shown in Fig-
ure 4.5 for the mono-frequential HB computations ranging from 1 to 25 harmonics. When the
number of harmonics used to compute the solution is higher than the content of the spectrum,
the error decreases drastically. The spectral accuracy is retrieved but only starting at N = 22.
In fact, similar as in Sec. 4.1.3, the injected function is indefinitely differential and periodic
yielding an infinite convergence slope. We can observe a slight local convergence for the N = 5
harmonics HB computation. This is due to the fortunate capture of the low-frequency pattern
of the injected function as shown in Figure 4.4(b).
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Figure 4.4: Linear advection of a sum of two segregated sine functions: numerical solutions at
different time instants for different numbers of harmonics.
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Using a multi-frequential approach

One of the advantage of the multi-frequential HB method, introduced in Sec. 3.5.2 and used
in this work, is that it can take arbitrary frequencies into account. In the case of an injected
signal with a large frequency segregation, the benefit might be tremendous. Let us consider
again the signal defined in Eq. (4.9) and compute one HB simulation using f1 = 1 Hz and
f2 = 22 Hz as input frequencies. This gives a computation of two coupled calculation that is
nine times faster than the N = 22 converged mono-frequential HB computation. In fact, the
cost of a N = 22 computation scales with 2 × 22 + 1 = 45 (see Sec. 3.5.4), while a N = 2
computation scales with 2× 2 + 1 = 5 which explains the nine factor.

Again we show spatial distributions of the solution at three time instants, namely t = 0,
t = T/3 and t = 2T/3 in Figure 4.6. With only two input frequencies, the multi-frequential
HB solution is superimposed with the analytical solution. Moreover, the L2-norm of the error
is exactly the same as the one of the N = 22 mono-frequential approach.

This validates the multi-frequential approach used along with segregated frequencies which
is the case of contra-rotating open rotor aeroelasticity.
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Figure 4.6: Linear advection of a sum of two segregated sine functions: numerical solutions at
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4.2 Application to a non-linear system of equations

Both the mono- and multi-frequential harmonic balance approaches have been validated on a
linear equation. In this section, the multi-frequential harmonic balance developed and imple-
mented by Guédeney [43] into the elsA [12] CFD code is assessed within a non-linear framework,
namely the Navier–Stokes equations.

4.2.1 Presentation of the case

The second case consists of a 2D channel with a constant left injection at a transonic Mach
number (M0 = 0.7) supplemented with a time-varying unsteady back pressure. As the pressure
is oscillating at the outlet, the imposed unsteady pressure fluctuations travel within the flow at
the velocity u+ c and u− c, where u denotes the local flow velocity and c the speed of sound.
Since the pressure waves are generated at the outlet, only the u − c waves are seen, resulting
in pressure waves propagating upstream of the channel. The axial length of the channel is
Lx = 100 m and the transversal one is Ly = 1 m. Figure 4.7 shows a sketch of the considered
channel flow problem.

Merkle and Athavale [77] give an analytical solution for incompressible flows with small
pressure fluctuations, assuming thus a linear unsteady flow. However, this channel flow problem
is set up to highlight the properties of the harmonic balance in a non-linear framework which
is not the hypothesis of Merkle and Athavale [77]. This is why, to get confidence into our
forthcoming results for this model problem, this last will be validated below against a classical
time-marching scheme in Sec. 4.2.3.
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Figure 4.7: Sketch of the channel flow problem.

4.2.2 Numerical setup

The mesh consists of 997 points along the axial direction and 9 in the transverse one, which
corresponds to equal spacings in both directions.

The boundary conditions are: (i) a constant injection condition for the inlet where the total
pressure pi0 and enthalpy hi0 are set, (ii) symmetric conditions for the upper and lower bounds
as the flow is assumed to be symmetric in the transverse direction, and (iii) a fluctuating static
pressure (non-reflective) imposed at the outlet

ps1(t) = ps1 [1 + a1 sin(2πf1t) + a2 sin(2πf2t)] , (4.10)

where ps1 is the temporal average static pressure, an the amplitude of the nth mode and fn its
frequency. Only two modes (f1, f2) are injected but due to the non-linearity of the Navier–
Stokes equations, new frequency combinations rise. The mean velocity of the flow is imposed
through a static pressure condition ps1 at the outlet

ps1 =
pi0(

1 + γ−1
2 M2

0

) γ
γ−1

, (4.11)

the mean velocity is thus set by imposing the inlet target mean Mach number value M0. We
assume here that the flow is isentropic as no geometrical object disturbes the flow field.

The elsA [12] CFD code developed by ONERA is used to solve this channel flow problem. In
fact, the aim of this model problem is to use the same solver as the one used in the application
part of this work so that the results shown here can be directly transposed later on. This code
solves the RANS equations using a cell-centered approach on multi-blocks structured meshes.
Several time-integration schemes are available, in particular the Dual Time-Stepping [62] (DTS)
as well as the time-domain harmonic balance method implemented by Sicot [90] for the mono-
frequential formulation and extended by Guédeney [43] to multi-frequential flows.

The present configuration is turbulent as the Reynolds number based on the inlet flow
velocity and the axial length of the channel is about Re ≈ 2.0×109. To this aim, turbulence is
modeled using the one-equation model of Spalart and Allmaras [98]. Roe’s scheme [85] along
with a third-order MUSCL extrapolation is used for the spatial discretization of the convective
fluxes. In addition to that, the block-Jacobi algorithm derived in Sicot et al. [92], is used to
improve the robustness and efficiency of the HB computations.

4.2.3 Validation of the multi-frequential approach

We propose now to validate the channel flow problem within the multi-frequential harmonic
balance framework in order to have confidence in the forthcoming results that will use this
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approach. To do so, two non-harmonically related frequencies are chosen as input for the
outlet boundary condition: f1 = 3 Hz and f2 = 17 Hz.

The classical DTS time-marching scheme is taken for comparison. Convergence in time
discretization is obtained after 20 periods using 160 instants per almost-period. Since the
frequencies are integers and coprime, the period is T = 1 s. Iterative convergence for the inner
loop is considered achieved when the normalized residuals drop by 10−2 within a maximum of
50 sub-iterations.

The results obtained with the DTS scheme are compared to the HB results for pressure
waves amplitudes of a = a1 = a2 = 0.001 (see Eq. (4.10)). The transient of the DTS computa-
tion is shown in Figure 4.8, illustrating the propagation of the waves with a slight attenuation
of the high-frequency ones.
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Figure 4.8: DTS computation: transient propagation of the pressure waves.

Due to the non-linearity of the Navier–Stokes equations, the two frequencies f1 and f2
give rise to linear combinations of them. Therefore, the results are analyzed for frequencies
1 < f < 40 Hz and the dominant frequencies (the one that have the highest amplitudes) are
set for the HB computation. To do so, pressure signals are probed upstream, in the middle
and downstream of the channel at y = 0.5 m and x = [25 m, 50 m, 75 m], respectively. The
spectra of the aforementioned unsteady pressure signals, obtained with a Fourier Transform,
are plotted in Figure 4.9. The labeled frequencies are the dominant ones, as for each probe,
these have a high amplitude. Those nine frequencies are thus selected as input frequencies
for the HB computation. Actually, this corresponds to a rectangular grid truncation (see
Sec. 3.5.3).

The HB computation using the previously mentioned frequencies is run and a discrete
Fourier transform is computed at several axis positions in the middle of the channel (y = 0.5 m).
This is the same post-processing as the one done previously to retrieve Figure 4.9, but for all
axial grid points. Figure 4.10 shows the results for the frequencies that have been set for the
multi-frequential HB computation. The overall agreement between the DTS and the HB is
fair. Some local discrepancies can be observed upstream for frequencies f2 + 3f1, f2 − f1 and
f2− 2f1. These are caused by aliasing but they are minimal regarding the temporal evolution,
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Figure 4.9: Spectra of the pressure signals.

as shown in Figure 4.11, where the time evolution of pressure signals is extracted at all probes.
The difference between the HB and the DTS method is negligible proving that the present
multi-frequential harmonic balance approach is able to accurately capture multi-frequential
unsteady signals.
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Figure 4.11: Unsteady pressure signals at different axial positions.
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Summary

The mono- and multi-frequential harmonic balance approaches have been validated in this chapter

against selected test problems. If the provided number of harmonics is greater than a threshold value

depending on the specified configuration, the solution is superimposed with the exact/reference solution

for both linear and non-linear test cases. This property is called spectral accuracy. In addition to that,

it is shown that the multi-frequential harmonic balance approach is a good candidate for the simulation

of problems involving segregated frequencies. Actually, this is the case of contra-rotating open rotor

aeroelasticity. In the following chapter, we will see that an issue rises when considering segregated

frequencies with the multi-frequential harmonic balance approach. As this is likely to be the case for

contra-rotating open rotor aeroelasticity, an original approach is proposed to alleviate this problem.
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Chapter 5

Conditioning of multi-frequential harmonic balance methods

Abstract

Problems characterized by multiple frequencies, as for instance the aeroelasticity of contra-rotating open
rotors, require multi-frequential harmonic balance discretization operators. These can be ill-conditioned
for some combinations of the discrete frequencies. In this chapter, we investigate the sensitivity of
harmonic balance solutions to the condition number of the discrete Fourier transform matrix for a
linear advection problem and a non-linear channel flow problem. Highlighted is the fact that when the
condition number is greater than one, the unsteadiness can be badly reproduced preventing the use of
such an approach. To improve the condition number, we consider a non-uniform distribution of the
time instants (Guédeney [43]), along with an optimization algorithm minimizing the condition number
of the discrete Fourier transform matrix. The optimization algorithm developed in the present work
gives very good results for any input frequencies, enabling the use of the multi-frequential harmonic
balance for the simulation of contra-rotating open rotor aeroelasticity. This work has been published in

T. Guédeney, A. Gomar, F. Gallard, F. Sicot, G. Dufour, and G. Puigt. Non-Uniform
Time Sampling for Multiple-Frequency Harmonic Balance Computations. Journal of Com-
putational Physics, 236:317–345, March 2013
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5.1 Condition number and contra-rotating open rotor aeroe-
lasticity

As shown previously in Sec. 1.4, the main unsteady phenomena encountered in CROR can be
correlated with the blade passing frequency. In addition to that, the aeroelastic phenomenon
studied here, namely blade flutter sensibility, has a vibration frequency that is imposed (de-
coupled approach) which depends on the proper modes of the structure (see Sec. 2.2.2). In
general, these are not harmonically related nor of the same order of magnitude. Hence the use
of the multi-frequential formulation of the HB approach.

The condition number κ of a matrix A is defined as

κ(A) = κ(A−1) = ‖A‖ · ‖A−1‖, κ(A) ≥ 1, (5.1)

where ‖ · ‖ denotes a matrix norm. Considering the resolution of the system of equations
Ax = b, if A is invertible and if δA, δx and δb are the numerical errors associated with the
computation of A, x and b, respectively, then

(A+ δA)(x+ δx) = b+ δb. (5.2)

By definition, the condition number measures the error amplification made on x during reso-
lution of the matrix equation Ax = b

‖δx‖
‖x‖ ≤ κ(A)

[‖δA‖
‖A‖ +

‖δb‖
‖b‖

]
. (5.3)

Actually, the equation (3.54) that we want to solve, is a matrix equation. Therefore, according
to the above definition, the condition number of the source term Dt will be of prior importance.
Using the inequality property of the norm of the product of matrices

κ(Dt) ≤ κ(E−1) · κ(P ) · κ(E)

≤ κ(E)2 · κ(P ).
(5.4)

Since the matrix P is imposed by the given problem (e.g., the computed frequencies), we
choose to only focus on the condition number of the DFT matrix E.

In the mono-frequential formulation, the logical sampling is the uniform one which has the
good property of providing a well conditioned DFT matrix E. In fact, in this framework, E is
orthogonal giving the smallest condition number κ(E) = 1. In the multi-frequential framework,
the condition number of the DFT matrix E is not always unity and varies under frequencies and
time instants change [65]. The frequencies being imposed by the problem that is simulated, the
only degrees of freedom left to control the condition number are the time instants. Moreover,
the amplitude of the unsteadinesses, represented by δx, can not be a priori controlled as it is
ruled by the flow physics.

All variations of the HB approach proposed in the literature rely on a uniform time sam-
pling of the longest period of interest (though the number of samples can differ). This uniform
time sampling can raise stability issues. To emphasize this, let us consider two independent
frequencies f1 and f2 playing the role of the blade passing frequency and the vibration fre-
quency, respectively. The two frequencies are arbitrarily chosen between 1 and 10,000 Hz and
the corresponding condition number of the DFT matrix E is computed. 100 points are used
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to discretize each frequency interval giving a frequency step of 100 Hz. The results using a
uniform time sampling are reported in Figure 5.1. The problem being symmetric in (f1, f2), so
are the results. Moreover, only the ratio of f2 over f1 is important as the shape of the solution
is constant under a translation of vector (1,f1/f2).

Almost half of the set of frequencies have a DFT matrix E with a condition number greater
than ten. The minimum values are obtained with harmonically related couples of frequencies.
In fact, the white zones in Figure 5.1 are the regions where f2 = nf1 with n ∈ N or 1/n ∈ N.
Elsewhere, the condition number is large and grows exponentially. To highlight this, the
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Figure 5.1: Condition number of the discrete Fourier transform matrix E using two independent
frequencies and evenly-spaced time instants.

minimum (min), maximum (max), mean and standard deviation (std) values of the previous
example are summarized in Tab. 5.1. The values of the maximum, mean and standard deviation

min max mean std

1.0 9.4× 1016 1.5× 1014 2.8× 1015

Table 5.1: Condition number of the discrete Fourier transform matrix E: statistics for two
independent frequencies using evenly-spaced time instants.

are tremendous. Moreover, this last is greater than the mean (std > mean) preventing the
blindly use of such a sampling strategy for multi-frequential HB computations. In numerical
methods, it is common to deal with ill-conditioned problems. However, we will show below
that HB results are very sensitive to the condition number of the DFT matrix E. To do so,
the linear advection problem presented in Sec. 4.1.1 and the channel flow problem presented
in Sec. 4.2.1 are used with varying condition number and input unsteady signals.
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5.2 Highlighting the problem

Linear advection problem A pure harmonic signal is imposed at the left boundary con-
dition of the linear advection equation problem presented in Sec. 4.1.1

ul(t) = 1 + sin (2πft) . (5.5)

The minimal condition number (κ(E) = 1) is obtained with evenly-spaced time instants. In
fact, as the injected function is mono-frequential, the theoretical lower bound of the condition
number is obtained by using evenly-spaced time instants. The time instants of the harmonic
balance computations are chosen to reach varying condition numbers such that 1 ≤ κ(E) ≤ 10.
For the reproducibility of the results presented below, the chosen time instants used to reach
the different condition numbers, are given in Tab. 5.2.

condition number time instants

κ(E) = 1 [0, 0.33333333, 0.66666666]

κ(E) = 2 [0, 0.40440305, 0.80864428]

κ(E) = 3 [0, 0.43393293, 0.86807573]

κ(E) = 4 [0, 0.44994890, 0.89979896]

κ(E) = 5 [0, 0.17667686, 0.35371563]

κ(E) = 6 [0, 0.16466780, 0.32957934]

κ(E) = 7 [0, 0.15515438, 0.31015982]

κ(E) = 8 [0, 0.14714615, 0.29403231]

κ(E) = 9 [0, 0.14013916, 0.28032401]

κ(E) = 10 [0, 0.13413313, 0.26846332]

Table 5.2: Values of the time instants for varying condition number of the discrete Fourier
transform matrix.

As shown in the previous section, configuration with high condition number amplify the
errors due to the iterative resolution of the linear advection equation. This is illustrated
in Figure 5.2 which shows the evolution of the results with a varying condition number. The
amplitude of the sinusoidal function is either under or over-estimated when κ(E) 6= 1. However,
the higher the condition number, the worse the accuracy in capturing the amplitude of the
injected function. Moreover, when κ(E) ≥ 6, the shape of the solution is even inverted which
would lead to bad conclusions if analyzed as it.

Channel flow problem The previous example shows that the harmonic balance solutions
are very sensitive to the condition number. To further analyze the condition number issue, we
consider the unsteady channel flow with oscillating back-pressure as described in Sec. 4.2.1.
It is computed with a single frequency oscillating back-pressure at the outlet: f1 = 3 Hz, the
second frequency having a zero amplitude (a2 = 0)

ps1(t) = ps1 [1 + a1 sin (2πf1t)] . (5.6)
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Figure 5.2: Linear advection of a sinusoidal function: numerical steady-state solutions at t = 0
for varying condition number.

This helps understanding the behavior of the HB source term within the Navier–Stokes equa-
tions framework.

As the oscillating back-pressure is composed of only one frequency, it is mono-frequential.
Thus, by using evenly-spaced time instants, the condition number of the source term is κ(E) =
1. To highlight the issue related to the condition number, the time instants are chosen to reach
varying condition numbers such that 1 ≤ κ(E) ≤ 3.43. Two frequencies are specified for the
HB computation: f1 and its first harmonic 2f1.
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Figure 5.3: Relation between the condition number κ(E) and the convergence of the solution.

The results in Figure 5.3 show that for a condition number κ(E) ≥ 2.24 and wave input
amplitude a1 = 0.05, the computation diverges. However, the computations with the same
condition numbers but with a smaller input amplitude a1 = 0.01 converge. In fact, the con-
dition number amplifies the errors made during the iterative process. When the input waves
have a smaller amplitude, the iterative errors are lower by essence, hence the convergence.

The problem is that for a given configuration, the amplitude of the computed unsteady
phenomena can not be a priori known.

Varying condition number values have been found in the literature. Precisely, Gopinath
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et al. [42] and Ekici and Hall [29] assessed their implementation of the multi-frequential HB
method on a 2D multi-stage compressor. It is composed of a rotor sandwiched by two stators
having 32, 40 and 50 blades, respectively. Various combinations of the stators blade passing
frequencies are considered, but always with evenly-spaced time instants sampling the largest
period. While Gopinath et al. [42] use 2N + 1 samples (noted EVE 2N + 1), Ekici and
Hall [29] over-sample this period with 3N + 1 time instants (noted EVE 3N + 1). This
leads to a rectangular (2N + 1) × (3N + 1) almost-periodic Fourier matrix that gives thus
HB computations that are more CPU and memory demanding (see Sec. 3.5.4). The chosen
frequencies and the a posteriori associated condition numbers of the above references are given
in Tab. 5.3. In bold text is highlighted the condition number used in the original computations.
The values vary between 2.07 and 16.66 which can lead to divergence with some high amplitude
unsteadinesses. For N = 4, the oversampling approach of Ekici and Hall [29], using 3N+1 time
instants, efficiently reduces the condition number. But for this case, the use of evenly-spaced
time instants is sufficient as the condition number seems to be small enough for the considered
magnitude of unsteadiness. However, such an approach fails when dealing with configurations

Reference κ(E)

and # harmonics EVE (2N + 1) EVE (3N + 1)

Gopinath et al. [42] (N = 2) 3.79 3.00

Ekici and Hall [29] (N = 3) 5.40 3.84

Gopinath et al. [42] (N = 4) 11.25 2.07

Gopinath et al. [42] (N = 7) 16.66 14.61

Table 5.3: Literature review of the condition number used in multi-frequential harmonic bal-
ance computations.

where:

– the amplitude of unsteadinesses is large as for instance large oscillations of a blade,
– the frequencies are widely segregated. In fact, as shown previously in Sec. 5.1, the

more segregated the frequencies, the higher the condition number using a uniform time
sampling. This condition number can be tremendous (κ(E) � 100) preventing the use
of such an approach for given configurations.

Moreover, as the amplitude of unsteadinesses plays a crucial role in the amplification done
by the condition number, the only way to ensure that a simulation will converge is to minimize
the condition number. Therefore, the section below will be dedicated to the development of
algorithms to achieve this goal.

5.3 Proposed cure: automatic optimization of time instants

Two algorithms that automatically choose the time instants in order to minimize the condition
number are presented: first, the Almost Periodic Fourier Transform (APFT) algorithm, ini-
tially proposed in the literature for electronics problems and implemented by Guédeney [43] in
his PhD thesis, is described, then a gradient-based OPTimization algorithm over the condition
number (OPT), developed in the current work, is presented.
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5.3.1 Almost-Periodic Fourier Transform algorithm (APFT)

Based on the work of Kundert et al. [65] in electronics, the APFT algorithm has been imple-
mented by Guédeney [43] during his PhD thesis. The algorithm is designed to maximize the
orthogonality of the multi-frequential IDFT matrix in order to minimize its condition num-
ber. To do so, a Gram-Schmidt orthogonalization procedure is conducted. First, the period
associated with the smallest frequency (2π/ωmin) is oversampled with M evenly-spaced time
instants, M � 2N+1 being specified by the user with N the number of frequencies. Consider-
ing these time instants, a rectangular multi-frequential IDFT matrix is built. This rectangular
matrix can be seen as a set of M vectors of length 2N + 1. The first vector noted V0 (cor-
responding to t = 0) is arbitrarily chosen as the first time instant and any component in the
direction of V0 is removed from the following vectors using the Gram-Schmidt formula

Vs = Vs −
V >0 Vs
V >0 V0

V0, s = 1 · · ·M − 1. (5.7)

The remaining vectors are now orthogonal to V0. Initially, the vectors had the same Euclidean
norm. Therefore, the vector that has now the largest norm is the most orthogonal to V0. It
is thus assigned to V1. The previous operations are then performed on the M − 2 remaining
vectors using V1 as starting point. This process is repeated until the required 2N+1 vectors are
defined. As a time instant corresponds to a vector, 2N + 1 time instants are obtained, which
enables the construction of the multi-frequential IDFT matrix. This algorithm is summarized
in Algo. 1.

Algorithm 1 The Almost Periodic Fourier Transform Algorithm (APFT)

ωmin ← min (|ωk|, 1 6 k 6 N)
for m← 0 · · ·M − 1 do

tm ←
2π

ωmin

m

M
end for
for n← 1 · · · 2N do

for m← n+ 1 · · ·M do

Vm ← Vm −
V >n · Vm
V >n · Vn

Vn

end for
argmax() returns the index of the largest member of a set
k = argmax (‖V n

s ‖, n+ 1 6 s 6M)
swap(Vn+1,Vk)
swap(tn+1,tk)

end for
Toptimized ← [t0 · · · t2N ]

5.3.2 Gradient-based OPTimization algorithm (OPT)

A more direct approach is to seek directly a set of time instants that minimize the condition
number of the associated multi-frequential IDFT matrix. This minimization problem can be
solved numerically by an optimization algorithm.
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The limited memory optimization method of Byrd et al. [10] (noted L-BFGS-B) is used to
look for a minimum of the condition number of the multi-frequential IDFT matrix κ

(
E−1 [T]

)

as function of the time instants vector T. This quasi-Newton algorithm approximates the
inverse Hessian matrix H(κ

(
E−1 [T]

)
)−1 with the BFGS formula in order to decrease the

objective κ
(
E−1 [T]

)
in the direction −H(κ

(
E−1 [T]

)
)−1∇κ

(
E−1 [T]

)
. In the present case, the

derivative ∇κ
(
E−1 [T]

)
of the objective with respect to the time instants is approximated by a

first-order finite-differences. The descent direction is associated with the search for a zero of the
gradient, which is a necessary condition for an extrema, in a second-order Taylor series. Finally,
a line search on α is performed to minimize κ

(
E−1

[
T− αH(κ

(
E−1 [T]

)
)−1∇κ

(
E−1 [T]

)])
. An

open-source implementation of this broadly-used algorithm is employed [83].

Gradient descent methods being local, the L-BFGS-B method converges to a local minimum
of the condition number. This minimum is unsatisfying if the starting time instants vector T
is not well chosen, therefore a strategy to find an appropriate initial point is required. To this
aim, the smallest angular frequency ωmin is used as a base angular frequency to create a set Ω

Ω = [
1

M
ωmin · · ·

m+ 1

M
ωmin · · ·ωmin], (5.8)

where M denotes the desired number of initial guesses. This gives a set of periods. Each of
them are then evenly sampled to obtain a set of time instants Tm

Tm =

[
0,

2πM

(2N + 1)(m+ 1)ωmin
· · · 2NπM

(2N + 1)(m+ 1)ωmin

]
(5.9)

These time instants sets are finally used as initial guesses for the L-BFGS-B algorithm.

The multi-frequential IDFT matrix is then built for each one of these time instants and
the corresponding condition numbers are computed. A large number M , typically thousands,
of fractions of the greatest period gives a large set of potential time instants vectors. This is
acceptable given the very low cost of the computation of the condition number on such small
matrices of size (2N + 1)× (2N + 1). From this set, the time instants vector associated with
the multi-frequential IDFT matrix having the smallest condition number is taken as a starting
point. The optimization algorithm actually achieves a local adjustment of the time instants.

In this way, the exploitation capability of the gradient-based optimizer is well combined
with the exploration capacity of the sampling. The OPT algorithm is summarized in Algo. 2.

5.3.3 Assessment of the algorithms

Taking the same independent couples of frequencies (f1, f2) as the one used is Sec. 5.1, the
condition number of the multi-frequential DFT matrix κ(E) is computed, highlighting the
ability of the different algorithms to choose the time instants that minimize the condition
number, for any input frequencies. This assessment is only made for two frequencies, but the
results are similar when increasing the number of frequencies. As two frequencies are involved,
five time instants are required. The results for the three algorithms are depicted in Figure 5.4:
(i) APFT: the Almost Periodic Fourier Transform algorithm, (ii) OPT: the gradient-based
OPTimization algorithm and (iii) EVE: EVEnly spaced time instants oversampling the largest
period as done in Gopinath et al. [42] using 2N+1 time instants and in Ekici and Hall [29] and
Ekici et al. [31] using 3N + 1 time instants. Table 5.4 gives some statistics about the results
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Figure 5.4: Condition number of the discrete Fourier transform matrix E using two independent
frequencies and four different algorithms to choose the time instants.
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Algorithm 2 The gradient-based OPTimization algorithm (OPT)

ωmin ← min (|ωk|, 1 6 k 6 N)
for m← 0 · · ·M − 1 do
ωm ← m+1

M · ωmin
for i← 0 · · · 2N do

ti ←
i · 2π

ωm · (2N + 1)
end for
Tm ← [t0 · · · ti · · · t2N ]
Cm ← κ

(
E−1 [Tm]

)

end for
argmin() returns the index of the smallest member of a set
k ← argmin (Cm, 0 6 m 6M − 1)
min l-bfgs-b

(
κ
(
E−1 [T]

)
,Tini

)
returns the optimal time instants vector T using the con-

dition number κ
(
E−1 [T]

)
as objective function for the L-BFGS-B algorithm and Tini as

starting point.
Toptimized ←min l-bfgs-b

(
κ
(
E−1 [T]

)
,Tini = Tk

)

obtained with each algorithm to give the reader a quantitative overview of the efficiency of the
different algorithms.

The EVE algorithms give fair results (κ(E) ≤ 2) only at discrete couples of frequencies,
corresponding to the particular cases where f2 is a multiple of f1, as shown in Sec. 5.1. This
is not promising as these cases can be computed using the mono-frequential formulation and
thus does not need non-uniform time instants. Oversampling improves the results. In fact, the
mean condition number obtained with 3N + 1 samples indicates that the higher the number
of time instants the better the condition number. However the multi-frequential DFT matrix
becomes rectangular. The memory and CPU cost being proportional to the number of time
instants (see Sec. 3.5.4), such a strategy can not be used in an industrial context. The APFT
algorithm improves the results, as it gives κ(E) ≤ 2 for a large interval but fails when the
frequencies are too close from one another (f1 ≈ f2) or when they are significantly different
(f1 � f2 or f1 � f2). Finally, the OPT algorithm gives a condition number close to unity for
all couple of frequencies (f1, f2). Moreover, as shown in Tab. 5.4, the OPT algorithm is the
only one to give a standard deviation that is smaller than the mean, proving its robustness.

min max mean std

EVE (2N + 1) 1.0 9.4× 1016 1.5× 1014 2.8× 1015

EVE (3N + 1) 1.0 3.7× 1016 4.7× 1013 9.5× 1014

APFT 1.0 81.2 5.9 9.0

OPT 1.0 2.6 1.1 7.7× 10−2

Table 5.4: Condition number of the discrete Fourier transform matrix E statistics for two
independent frequencies using four different algorithms to choose the time instants.

The configurations encountered in the turbomachinery literature are taken again to demon-
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strate the capability of the presented algorithms to minimize the condition number regardless
of the input frequencies. The results are shown in Tab. 5.5. The APFT algorithm improves
the condition number compared to the EVE (2N + 1) but can give relatively large condition
numbers, here 12.95. In opposite, the OPT algorithm developed in the present contribution
gives results close to one for the four configurations.

Reference κ(E)

and # harmonics EVE (2N + 1) EVE (3N + 1) APFT OPT

Gopinath et al. [42] (N = 2) 3.79 3.00 1.72 1.08

Ekici and Hall [29] (N = 3) 5.40 3.84 1.71 1.00

Gopinath et al. [42] (N = 4) 11.25 2.07 3.46 1.13

Gopinath et al. [42] (N = 7) 16.66 14.61 12.95 1.00

Table 5.5: Literature review of the condition number used in multi-frequential harmonic bal-
ance computations compared to the presented algorithms.

Thus, the non-uniform time sampling proposed by Guédeney [43] used together with the
OPT algorithm developed in the present contribution enables to tackle problems with large
frequency separation and/or large unsteadinesses, namely CROR aeroelasticity.

5.3.4 Distribution of the time instants

For harmonically-related frequencies, the set of time instants that minimize the condition
number is provided by a uniform sampling of the fundamental frequency period as it gives
the theoretical lower bound κ(E) = 1. Since the frequencies are harmonically related, the
distribution of the time instants on the other frequencies is also uniform. In fact, considering
the frequency vector F = [f1 · · · fk = kf1 · · ·Nf1] and the time instants vector T uniformly
sampling the smallest frequency

T =

[
0,

1

f1(2N + 1)
· · · 2N

f1(2N + 1)

]
, (5.10)

then the product of the ith term of T to its associated frequency is

f1
i

f1(2N + 1)
= kf1

i

kf1(2N + 1)
= fk

i

fk(2N + 1)
. (5.11)

Equation (5.11) means that evenly-spaced time instants for the fundamental frequency are
still seen as evenly spaced by the kth harmonic. This is an explanation why the condition
number of the multi-frequential IDFT matrix E−1 will be unity as each frequency is sampled
by evenly-spaced time instants [8].

Now, considering non-harmonically related frequencies, there is mathematically no reason
for evenly-spaced time instants over the smallest frequency to be seen as evenly spaced by the
other frequencies in general.

Figure 5.5 shows the distribution of the time instants, relative to each frequency period,
obtained by the presented algorithms for the frequencies f1 = 3 Hz and f2 = 17 Hz. To do so,
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the chosen time instants are redistributed on the considered frequency period by applying a
modulo to it

T[fk]
j = Tj modulo 1/fk (5.12)

Then, they are divided by the latter, so that the results are dimensionless. In light gray line is
depicted the y = x function representing the evenly-spaced solution on the considered period.
Bearing in mind that if each frequency sees evenly-spaced time instants, then the condition
number is the smallest, the optimal solution would be to have relative time instants on y = x
for each period. Running the EVE (2N + 1), APFT and OPT algorithms leads to a condition
number of 33.1, 3.8 and 1.1, respectively. The EVE algorithm gives a perfect distribution of
the time instants with respect to period 1/f1 as the time instants are sampled on the period
1/f1. However, it gives results that are far from the evenly-spaced time instants within period
1/f2. The APFT algorithm is nowhere near the evenly-spaced solution for both the considered
periods, but closer than EVE regarding period 1/f2. Finally, the OPT algorithm is the only
one to be close to the evenly-spaced solution for each period considered. This explains the
very good condition numbers obtained with the OPT algorithm.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
on

-e
ve
n
ly

sp
ac
ed

ti
m
e
in
st
an
ts

Evenly spaced time instants

EVE κ(E ) = 33.1

APFT κ(E ) = 3.8

OPT κ(E ) = 1.1

(a) relative to period 1/f1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
on

-e
ve
n
ly

sp
ac
ed

ti
m
e
in
st
an
ts

Evenly spaced time instants

EVE κ(E ) = 33.1

APFT κ(E ) = 3.8

OPT κ(E ) = 1.1

(b) relative to period 1/f2

Figure 5.5: Distribution of the time instants on each frequency periods.

5.3.5 Imaginary part of the source term

Mathematically speaking, for Eq. (3.54) to be true, the source term Dt needs to be real.
Figure 5.6 depicts the computed imaginary part of the source term over its real part. Therefore,
it emphasizes regions where the source term is real (value close to zero) for varying couples of
frequencies. One can see that the source term is almost never close to be real when using a
uniform sampling (EVE 2N + 1). In opposite, using the proposed OPT algorithm, the value
of the imaginary part over the real one is close to machine precision. Actually, this is linked
to the non-orthogonality of the vectors when using a uniform time sampling. In fact, the non-
orthogonality seems to yield a large imaginary part of the source term. In opposite, the use
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of the OPT algorithm provides vectors that are almost orthogonal (value close to theoretical
lower bound of the condition number) for all choices of couple of frequencies. Therefore, the
proposed algorithm allows to obtain a mathematically well-posed problem, which was not the
case when using a uniform sampling.
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Figure 5.6: Imaginary part over the real one for the source term Dt using different algorithms.

Summary

In this chapter, we demonstrated that the time sampling has a major effect on the stability of the multi-

frequential harmonic balance approach, due to the condition number of the discrete Fourier transform

matrix. One way to tackle this issue, is to consider a non-uniform time sampling along with an algo-

rithm to properly choose the time instants as proposed by Guédeney [43]. The Almost-Periodic Fourier

Transform algorithm (APFT) algorithm, originally developed by Kundert et al. [65] and implemented

by Guédeney [43], is shown to improve the discrete Fourier transform matrix condition number. How-

ever, for segregated frequencies, this condition number is shown to remain too large to be used within

an industrial context. As the aeroelasticity of contra-rotating open rotors is by essence composed of seg-

regated frequencies, new algorithms are needed. This is why, a gradient-based OPTimization algorithm

(OPT) has been developed in the current work. It directly minimizes the condition number thanks to

a gradient-based optimization method. This last has proved to give a condition number that is almost

unity (i.e. the theoretical lower bound) for any input frequencies, thus alleviating the stability issues

encountered for arbitrary multi-frequential HB computations.
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Chapter 6

Convergence of Fourier-based time methods for
turbomachinery wake passing problems

Abstract

Efficiency of Fourier-based time methods results from a trade-off between accuracy and costs require-
ments. On one hand, the accuracy depends on the number of harmonics used to represent the fre-
quency content of the time signal; on the other hand, computational costs and memory consumption
of the computations also scale with the number of harmonics. The problem is that this number is
configuration-dependent. Studies on the convergence of Fourier-based time methods for turbomachin-
ery simulations have been previously reported in the literature, but with scattered results. For instance,
using a frequency-domain approach, Vilmin et al. [108] obtain accurate solutions using 5 harmonics for
a compressor stage and 3 harmonics for a centripetal turbine stage. For a transonic compressor stage
with forced blade vibration, Ekici [28] use up to 7 harmonics with a time-domain harmonic balance
approach. Finally, for a subsonic compressor stage, Sicot et al. [93] report that 4 harmonics is the
minimal requirement to properly capture wake interactions. Moreover, a high number of harmonics
(� 10) can prevent the use of such an approach, as it might be more expensive than a classical time-
marching approach. This is particularly true on CROR configurations where the number of harmonics
needed to reach convergence has been shown to be greater than ten on some configurations, as shown by
François [34]. In this chapter, the accuracy and convergence properties of Fourier-based time methods
are investigated. It is highlighted that the convergence rate of these methods, in terms of harmonics
required to describe the solution with a given level of accuracy, depends on the spectral content of the
solution itself: Fourier-based time methods are particularly efficient for flow problems characterized
by a narrow Fourier spectrum. Based on the similarity law of Lakshminarayana and Davino [67], the
specific case of turbomachinery wake passing is considered and an analytical truncation error is defined.
Then, a model turbomachinery problem is set up, which shows that the analytical truncation error can
be a priori estimated using a mixing-plane steady computation. This work has been submitted in

A. Gomar, Q. Bouvy, F. Sicot, G. Dufour, P. Cinnella, and B. François. Convergence
of Fourier-based time methods for turbomachinery wake passing problems. Journal of
Computational Physics, minor revisions in April 2014
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6.1 Periodic problems with an infinite Fourier spectrum

In fluid dynamics, the simplest model representative of a shock wave is the step function. It
is a discontinuous function that may be difficult to capture for Fourier-based time methods.
The periodic step function over the period T = Lx/c is defined as

ul(t) =

{
0, if 0 ≤ t < T

2 ,

1, if T
2 ≤ t < T.

(6.1)

The linear advection model problem defined in Sec. 4.1.1 is used here to assess the capability
of the harmonic balance approach to capture discontinuous unsteadinesses.

Figure 6.1 depicts the results of HB computations using one to six harmonics at differ-
ent time instants. The convergence rate is slow, and for the six-harmonics HB computation
the shape of the rectangular function is still barely captured. The well-known Gibbs [38]
phenomenon is observed, which is a typical drawback of Fourier-based methods applied to
discontinuous problems, see e.g. Canuto et al. [14].

The L2-norm of the error is depicted in Figure 6.2. The convergence of the sum of sine
functions, that has been studied in Sec. 4.1.3, is added for comparison. The convergence
rate is different from the previous one: the error decreases slowly when more harmonics are
introduced, but the exact solution is never reached, unless an infinite number of harmonics is
considered.

The discrete Fourier transform of the results is computed and compared to the analytical
result in Figure 6.3. For this case, the spectrum is not finite and cannot be captured accurately
with a finite number of samples. Adding more harmonics improves the results but the analytical
solution is out of reach of the harmonic balance approach.

To summarize, Fourier-based time methods are unadapted for unsteady signals for which
the Fourier spectrum is wide. In the next section, wake passing is modeled by an analyti-
cal function. This allows to assess the convergence of Fourier-based time methods for such
problems.

Page 80 of 186



-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 1

(a) N = 1

-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 2

(b) N = 2

-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 3

(c) N = 3

-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 4

(d) N = 4

-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 5

(e) N = 5

-0.5

0.0

0.5

1.0

1.5

0 Lx/4 Lx/2 3Lx/4 Lx
Axial direction [m]

t
=

2T
/3

t
=

T
/3

t
=

0

Analytic HB N = 6

(f) N = 6

Figure 6.1: Linear advection of a rectangular function: numerical solutions at different time
instants for different numbers of harmonics.
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Figure 6.2: Linear advection of a rectangular function: convergence of the HB method error.
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6.2 Toward turbomachinery wakes

Consider for simplicity a turbomachinery stage composed of two rotors, as for instance a
CROR configuration. A wake is shed behind the upstream rotor. It is stationary in the frame
of reference attached to the upstream rotor. However, when it crosses the rotor/rotor interface,

Rotor Rotor

Figure 6.4: Characteristic wakes in a CROR configuration.

the wake becomes unsteady in the frame of reference of the second wheel. Thus, an upstream
steady spatial distortion becomes unsteady in the downstream row.

Lakshminarayana and Davino [67] showed that the wake behind turbomachinery blades
follows a similarity law for the velocity. It can be empirically approximated by a Gaussian
function:

ul(t) = um

[
1−∆u · e−0.693(2 θL)

2]
, (6.2)

where um denotes the free-stream velocity, ∆u the axial wake velocity deficit, and L the
wake width, defined as the full width at half maximum. The azimuthal coordinate θ is here
assimilated as ct/Lx.

Therefore, in the downstream frame of reference, wakes coming from the upstream wheel
can be represented, to a first approximation, as the periodic advection of a Gaussian function
from the inter-wheel interface.

To study the convergence properties of such a function, we consider again the linear ad-
vection problem defined in Sec. 4.1, with ul now taken equal to a Gaussian function. The full
width at half maximum L of the wake is set to 10% of the domain size, um is set to c and ∆u
to 10% of um.

Figure 6.5 depicts the HB computations for one to six harmonics. The numerical solution
start to convergence toward the Gaussian function starting from N = 6 harmonics. When the
number of harmonics is too small, the width and the depth of the wake are badly approximated
by the method, and the solution exhibits some spurious oscillations.

Figure 6.6 shows the quantitative convergence of the L2 error. The convergence curves for
the two functions studied in the previous sections are also reported for comparison. The error
follows now a nearly exponential convergence. The discrete Fourier transform of the results is
depicted against the analytical result in Figure 6.7. The N = 2 and N = 4 computations badly
capture the amplitudes of the resolved harmonics. Starting from N = 6, some of the lower
frequencies are correctly captured, whereas high frequencies are always under-estimated. The
capture of the amplitudes improves when further harmonics are added to the computation.
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Figure 6.5: Linear advection of a Gaussian function representing a turbomachinery wake:
numerical solutions at different time instants for different numbers of harmonics.
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Figure 6.6: Linear advection of a Gaussian function representing a turbomachinery wake:
convergence of the HB method error.

10−4

10−3

10−2

10−1

1 2 3 4 5 6 7 8 9 10

û
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For a better understanding of the HB convergence behavior, we consider the spectral content
of the Gaussian wake model. Precisely, the Fourier transform ĝ of a Gaussian function g defined
as

g(x) = Ae−αx
2
, (6.3)

where A and α are constants, is

ĝ(f) = A′e−α
′f2 , (6.4)

where
{
A′ = A

√
π
α ,

α′ = π2

α .
(6.5)

For the similarity law of Lakshminarayana and Davino, α and α′ can be identified as

α = 0.693

(
2

L

)2

, α′ =
1

0.693

(
πL

2

)2

. (6.6)

The exponential factor of the wake law α is inversely proportional to its Fourier counter-
part α′, meaning that their width will vary in opposite way: the thinner the wake, the wider
its spectrum and vice-versa.

The convergence rate is inherently linked to the spectrum of the considered unsteady sig-
nal. As for the present case we know the analytical wake spectrum, we define the theoretical
truncation error as the ratio of the energy contained in the unresolved part of the spectrum to
the overall energy content of the full spectrum

εth(f) =

√∫∞
f |ĝ(ζ)|2 dζ
∫∞
0 |ĝ(ζ)|2 dζ

. (6.7)

Introducing the error function defined as

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (6.8)

and the complementary error function defined as

erfc(x) = 1− erf(x), (6.9)

then
∫ ∞

0
|ĝ(ζ)|2 dζ =

1

2

∫ ∞

−∞
|ĝ(ζ)|2 dζ (6.10)

=
A′2

2

√
π

2α′
, (6.11)

and
∫ ∞

f
|ĝ(ζ)|2 dζ =

A′2

2

√
π

2α′
erfc(
√

2α′f). (6.12)
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Figure 6.8: Theoretical truncation error of the Lakshminarayana and Davino wake law.

The theoretical truncation error can finally be written as

εth(f, L) =

√
erfc(

√
2α′(L)f). (6.13)

One can notice from Eq. (6.13) that the truncation error does not depend on the wake deficit
∆u but only on the wake width L. Note that f is the normalized frequency meaning that
N = 1 corresponds to f = 1 Hz.

Eq. (6.13) is depicted in Figure 6.8 for varying numbers of harmonics and wake widths. It
can be seen that the wider the spectrum, the higher the number of harmonics needed to reach
a certain level of error. Moreover, for a thin wake width (e.g. 2% of the pitch) the number of
harmonics required to capture it with a truncation error of 10% is up to 25 harmonics. In the
limit of L → 0, the wake becomes a Dirac function which represents the worst possible case,
as the rectangular function was. In the preceding example, the Gaussian function had a width
of 10% which, according to Eq. (6.13), is captured by using N = 7 harmonics for a target of
10% error.

This section provided analytical results of the convergence of Fourier-based time methods
in the case of wake passing. To confirm these results, a turbomachinery like model problem is
set up and solved using the Euler equations in the following section.

6.3 Application to a model turbomachinery configuration

6.3.1 Presentation of the case

We consider a simplified configuration modeling a turbomachinery stage. It consists of a
periodic azimuthal perturbation propagated downstream of the inlet boundary of the com-
putational domain. The domain is made of two grid blocks in relative motion, so that the
perturbation, which is steady in the upstream block, is seen as unsteady by the downstream
one. It is thus representative of turbomachinery wakes propagated across an inter-wheel inter-
face. Figure 6.9 shows a sketch of the considered model turbomachinery problem.

The blocks are generated in cylindrical coordinates such that the presented configuration
can be assimilated to a slice of a turbomachinery stage. Without loss of generality, we set the
rotation velocity of the upstream block to zero (stator). The stator is composed of Bstator = 10
”virtual” blades and the rotor of Brotor = 12 ones. The stator’s pitch is therefore larger than
the rotor’s. These are termed ”virtual” blades as no blade is actually meshed. The pitch ratio
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Figure 6.9: Sketch of the model turbomachinery flow problem.

is representative of contra-rotating open rotor applications in which the first row contains more
blades than the second one. Indeed, in contra-rotating open rotor applications, the number of
blades is typically smaller than classical turbomachinery configurations.

A wake is axially injected at the inlet of the turbomachinery model problem following the
Lakshminarayana and Davino [67] similarity law.

6.3.2 Numerical Setup

The flow is modeled using the Euler equations in order to avoid wake thickening and vanishing
associated with viscous effects. The velocity is not imposed at the inlet directly but rather
through the total pressure and the total enthalpy distributions

pi0(θ) = piref

[
1−∆pi · e−0.693(2

θ
L)

2]
, (6.14)

hi0(θ) = hiref

[
1−∆hi · e−0.693(2

θ
L)

2]
, (6.15)

where piref is the inlet reference total pressure, ∆pi the total pressure deficit in the wake,
hiref the reference total enthalpy, ∆hi the total enthalpy deficit in the wake and L the wake
width. To impose a realistic distortion, the total pressure and enthalpy deficits are estimated
from a separate turbomachinery simulation. This leads to ∆pi = 0.025 and ∆hi = −0.007.
The negative sign is due to overturning in the wake, which is due to velocity composition, and
therefore specific to rotors. The static pressure ps1 is imposed at the outlet

ps1 =
piref(

1 + γ−1
2 M2

0

) γ
γ−1

. (6.16)

The mean velocity is thus set by imposing the target mean Mach number value M0. At the
azimuthal boundaries, phase-lag conditions [32] are used to take into account the space-time
periodicity.

The elsA [12] CFD code is used. Roe’s scheme [85] along with a second-order MUSCL
extrapolation is used for the spatial discretization of the convective fluxes and an implicit
backward Euler scheme is used to march the HB equations in pseudo-time.
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Each grid block has a radial extent of five grid points, i.e. four cells. The azimuthal grid
density is similar in the stator and in the rotor blocks to guarantee a consistent capture of the
wake on each side of the interface. To do so, if ∆θcell denotes the azimuthal length of a cell at
the interface, then

∆θcell =
2π

Bstator

1

Nstator
=

2π

Brotor

1

Nrotor
, (6.17)

where Nstator and Nrotor are the number of cells in the stator and the rotor, respectively.
Several wake thicknesses will be tested below from 30% down to 1% of the pitch. For this
thinnest wake, mesh convergence is obtained with 500 cells in the azimuthal direction of the
stator, which gives 600 cells for the rotor block. 30 grid points are put in the axial direction.
Moreover, a constant aspect ratio of 5 with respect to the azimuthal length of the cells is
kept, which sets the axial length of the case. This leads to a total number of grid points of
approximately 170,000.

Convergence of the iterative procedure used to solve the HB equations is achieved after
3,000 iterations for all the simulations.

6.3.3 Spectral convergence study

The primary interest in this section is the wake capturing capabilities of the Fourier-based time
methods in the rotating part. To analyze this, two error measures are defined and evaluated.

Those measures address the loss of information introduced by the HB approach at the
interface. This loss is firstly evaluated by analyzing the spectrum from a purely spatial point
of view. Then, an hybrid spatial/temporal point of view is taken. This finally allows to assess
the filtering introduced by the harmonic balance method on both the time and spatial signals.

In fact, in the stator part, the wake is steady and is thus not filtered by the HB operator.
Conversely, in the rotor part, the steady wake becomes unsteady due to the relative speed
difference between the stator and the rotor. However, only a finite number of harmonics N is
used to describe the unsteady field, hence the filtering.

Spatial-spectrum based error measure The first error quantification is set up to quantify
this filtering by using only spatial information and is defined as the L2-norm applied on the
difference between the rotor and the stator spectra. It is equivalent to the analytical truncation
error defined in Eq. (6.7). Indeed, the error is described as the ratio of the unresolved energy
in the rotor block to the energy of the full spectrum, e.g. that of the stator block

ε1(N) =

√√√√
∑fmax

f=1 |ŝ θ
N (f)− r̂ θ

N (f)|2
∑fmax

f=1 |ŝ θ
N (f)|2

, (6.18)

where ŝ θ
N denotes the spatial Fourier transform (indicated by the .̂ operator) of the azimuthal

extraction (shown by superscript θ) of the result of a HB simulation using N harmonics, in the
stator; r̂ denotes the spectrum of the signal transferred to the rotor. The highest frequency
present in the spectrum is dictated by the spatial discretization. Thus, fmax = 1/2∆θcells,
using the notations of Eq. (6.17). As the azimuthal cell size is similar in both blocks, the same
sampling is used leading to the same frequencies in both stator and rotor spectra. Details of
the algorithm used to compute ε1 are given in Appendix A.1.
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The azimuthal velocity distributions (left hand-side) and the corresponding spatial spectra
(right hand-side) are presented in Figure 6.10 for a relative wake thickness of 5% with respect
to the pitch and for HB computations using N = 2, 5, 10 and 18. For the stator, the azimuthal
distribution follows a Gaussian function as expected. On the contrary, the rotor distribution is
aliased by the HB discretization and exhibits spurious oscillations that tend to disappear when
the number of harmonics used in the computation increases. For N = 10, some oscillations
are still present, but the wake captured in the moving block begins to converge to that leaving
the upstream block.

Inspection of the spectra suggests the same conclusions. The amplitude of ρ̂U improves
when increasing the number of harmonics. For N = 20, the spectrum of the rotor block
matches that of the stator block. This is consistent with the theoretical analysis, in which
more than N = 10 harmonics are needed to capture the wake with less than 20% of error for
this particular wake width (see Figure 6.8).

The filtering introduced by the HB approach acts primarily on the time resolution. For
under-resolved HB computations, a dissipation error is observed. This dissipation is not spa-
tially uniform and gives rise to dispersion errors on the spatial spectrum and to spurious
high-frequencies as shown in Figure 6.10 for HB computations N = 2 to N = 10. These effects
vanish when the HB computations converge, i.e. for N ≥ 10. This explains why the spectrum
of the unresolved spurious frequencies is imposed to have a zero amplitude value to compute
ε1.

In summary, for this wake thickness, the temporal filtering on a simulation involving less
than ten harmonics is too harsh and leads to a significant amount of unresolved energy, which
deteriorates the numerical representation of the wake.

For a more quantitative analysis, we compute the error measure ε1 for each computation
ranging over different wake thicknesses and numbers of harmonics. The results are summarized
in Figure 6.11. Because it quantifies the unresolved energy in comparison to the resolved
energy, ε1 exhibits a behavior similar to that of the theoretical error εth for a Gaussian function
(Figure 6.8). The iso-error contours have a similar shape compared to the analytical ones. The
conclusions are equivalent: the truncation error decreases with the wake thickness and with
the number of harmonics used to capture the wake. Nevertheless, for thicker wakes and higher
numbers of harmonics, the error measure ε1 is over-estimated. For instance, around N = 15
and for L = 25%, ε1 ≈ 10−2 whereas the theoretical error εth is less than 10−4. As discussed
in the following, the error measure ε1 does not represent a realistic measure, because of the
spatial Fourier transform performed to compute the error.

As can be seen in Figure 6.12, the Fourier transform of the spatial signal in the stator
block tends to a plateau. The thicker the wake, the lower the frequency for which the plateau
appears: approximately 15 harmonics for L = 10% (see Figure 6.12(a)) and 6 harmonics for
L = 25% (see Figure 6.12(b)). Actually, for a N -harmonic HB computation, the spectrum is
explicitly filtered in the moving block leading to an amplitude equal to zero above the N th

harmonic. Therefore, when the HB computations are converged, the difference between the
spatial spectra in the stator and in the rotor block is driven by the plateau present in the
spatial spectrum of the stator block.

This behavior is linked to the windowing of the signal on a bounded interval, namely
the pitch. To highlight that, the influence of a modification on the inlet boundary condition
is analyzed. The inlet wake distortion used in the model turbomachinery configuration is
originally based on the analytical Lakshminarayana and Davino Gaussian law (see Eq. (6.2)).
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Figure 6.10: Wake of L = 5% width extracted in stator and rotor blocks. Signal and spatial
Fourier analysis for different computations.
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Figure 6.12: Discrepancies between spatial and temporal spectra.

Page 92 of 186



However, this law is discretized and imposed on a bounded interval that spans the angular
pitch. As the relative thickness increases, the inlet condition diverges from the analytical
Gaussian law for which the angular pitch is theoretically infinite. This is shown in Figure 6.13
through the spectra of three Gaussian laws. The relative thickness of the laws are modified
through the size of the pitch ∆θ. The multiplication by a factor 100 of the pitch leads to
a disappearance of the plateau in the spectrum, which accurately matches with the Fourier
transform of a Gaussian function.

To sum up, a plateau appears in the spatial spectrum of the stator block. This plateau
is explicitly filtered in the rotor block above the N th harmonic, leading to an over-estimation
of the first error measure. This over-estimation drives the error value for higher number of
harmonics and thicker wakes. However, for lower number of harmonics and thinnest wakes,
the computed error measure is superimposed with the analytical one.
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Figure 6.13: Evolution of the spectrum of the inlet boundary condition for different angular
pitches.
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Spatial/Time duality error measure To get a more realistic error measure, we take again
into account the energy loss through the interface, but based on a spatial/time duality. As this
loss of energy is precisely related to the filtering introduced on the temporal signal by the HB
approach, the second error quantification ε2 addresses the result on the temporal information.

Near the interface of the blocks, consider a fixed observer in the rotor frame of reference.
This observer sees an unsteady wake passing as the blocks have a relative speed difference. The
first error quantification has shown the influence of the number of harmonics on the spatial
signal in the rotor block. The spatial/time duality error quantification will now point that this
spatial influence is due to a temporal filtering done by the HB approach.

Following the same notation as in Eq. (6.18), the second error measure is written as

ε2(N) =

√√√√
∑fmax

f=1 |ŝ θ
N (f)− r̂ t

N (f)|2
∑fmax

f=1 |ŝ θ
N (f)|2

, (6.19)

where superscript t denotes the temporal version of the Fourier transform. By definition, ε2
quantifies the matching between a spatial signal and a temporal information. Again, the error
is described as the unresolved energy in the rotor block, divided by the energy of the full
spectrum, e.g. that of the stator block. For ε1, the amplitude of the harmonics above the N th

one was imposed to zero. On the contrary, for ε2, the temporal spectrum in the rotor block
is, by essence null above the N th harmonic, as the filtering acts on temporal values. Details of
the algorithm used to compute ε2 are given in Appendix A.2.

Figure 6.14 shows time signals extracted at two different azimuthal positions at the interface
of the rotor block, named loc 1 and loc 2. The small phase shift between the two signals is
due to the space lag between the two points, and is the same for any choice of the number
of harmonics used in the computation. On the contrary, differences in terms of amplitude
are only due to the use of an insufficient number of harmonics: as the number of modes used
for the time approximation is increased from N = 5 to N = 15, the amplitude of the space-
shifted signals tends to converge to the same value, and spurious oscillations tend to disappear.
Therefore, in the following, only loc 1 will be considered.

Figure 6.15 describes the space and time spectra of the axial momentum ρ̂U at loc 1,
for computations using N = 2, 5, 10 and 20 harmonics and for a wake width of L = 5%.
The spatial spectrum contains the whole wavelength content associated to the incoming wake;
on the contrary, due to the filtering introduced by the HB approach, the time spectrum is
composed of only N harmonics.

For computations using less than 10 time harmonics, time spectra are truncated, and the
amplitude of ρ̂U differs from that of the corresponding mode in the spatial spectrum.

As the number of time harmonics is increased, the amplitude of lower harmonics becomes
closer and closer to that of the corresponding harmonic in the reference signal, and errors
move toward the higher resolved harmonics. For N = 20, the amplitudes of the 20 resolved
harmonics are similar for both the time and space spectra.

In summary, the preceding analysis shows that, for under-resolved HB computations, the
time signal is affected by both amplitude and phase errors, since the energy content is redis-
tributed incorrectly among the resolved harmonics.

To quantify this error, we apply the error measure, defined in Eq. (6.19), to HB compu-
tations of the model turbomachinery problem corresponding to different choices of the wake
thickness and different numbers of harmonics. Results are presented in Figure 6.16. The ε2
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Figure 6.14: Temporal signal seen at loc 1 and loc 2 for a L = 5% wake width.
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Figure 6.15: Spatial/time duality for a L = 5% wake width.
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error map is qualitatively and quantitatively similar to the ε1 discussed in the previous section.
Again, the truncation error measured using ε2 for thick wakes and high numbers of harmonics
does not follow the trend observed with the theoretical error εth, due to the spatial filtering
introduced at the interface by the phase-lag condition.

The preceding analysis shows that, for HB computations that are well converged in terms
in harmonics, the spatial spectrum in the stator and the time spectrum in the rotor block tend
to match, except for additional spatial errors introduced by the use of an azimuthal Fourier
transform on a bounded interval, which confirms the validity of the error measure defined in
Eq. (6.19).
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Figure 6.16: Evaluation of the error due to the wake capturing using the second error quan-
tification (ε2).

6.3.4 Comparison with the theoretical error measure

The preceding results show that approximated truncation error measures computed for the
model turbomachinery problem using the non-linear Euler equations exhibit trends, with re-
spect to the wake thickness and number of HB harmonics, in close agreement with the theo-
retical error measure derived in Section 6.2 for a Gaussian function. Figure 6.17 compares the
different error measures for HB simulations of advected wakes of varying thickness versus the
number of harmonics used for the time discretization. This corresponds to horizontal cuts of
Figures 6.8, 6.11 and 6.16. For a wide range of harmonics the three error measures are seen
to give results in very close agreement. For higher harmonics values, both the ε1 and ε2 error
measures applied to the model turbomachinery problem exhibit a plateau. The same plateau
is also observed on εmxp error whose definition will be given in the next section. The preceding
remarks suggest the idea that, since all error measure provide similar results, at least up to
numbers of harmonics of interest for practical applicative problems. An a priori estimate of
the number of harmonics required to achieve a given error level could then be obtained by
using the theoretical error measure Eq. (6.13), if a quick estimate of the wake thickness char-
acteristic of a given turbomachinery problem is available. In the next Section, we show that a
reasonable and more general estimate of the convergence of the error, can be obtained from a
preliminary steady computation based on the mixing plane interface condition.
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Figure 6.17: Truncation, computed and analytical errors for four wake widths.
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6.3.5 Toward an a priori error estimate

In order to define an a priori error measure that can be used to estimate the number of harmon-
ics required to achieve a reasonable convergence of the HB method, we suggest to evaluate the
wake thickness by using a preliminary mixing plane steady computation. Indeed, if potential
effects due to the downstream row can be neglected, the spatial information at the interface in
the stator block, essentially due to the incoming wakes, can be captured without taking into
account the relative motion between the wheels, i.e. by means of a mixing plane computa-
tion. Given the approximated azimuthal distribution at the stator interface, we consider the
cumulative energy content of the signal up to a given frequency f (or, equivalently, to a given
harmonic N = f/f1 where f1 is the base frequency value of the considered unsteadiness, here
the opposite blade passing frequency). The cumulative energy is defined as

E(f) =

∫ f
0 |ĝ(ζ)|2 dζ∫∞
0 |ĝ(ζ)|2 dζ

, (6.20)

where ĝ is the spectrum of the quantity of interest, here the axial momentum. By comparison
with Eq. (6.7), the relation between the relative accumulated energy E and the truncation
error εmxp is given by

E(f) = 1− ε2mxp(f). (6.21)

Note that this last error measure is based only on the amount of unresolved energy that is
left in a computation if the spatial signal is truncated at a given cutoff frequency f , and does
not require any information from the rotor block. In fact, it depends only on the characteristics
of the incoming wake.

To check if the new error measure represents an accurate estimate of the truncation error
of an HB simulation, we carry out again a parametric study of the error versus different
wake thicknesses and numbers of harmonics (equivalently, cutoff frequencies), and compare
the results to those of the a posteriori error measures obtained for the model turbomachinery
problem (ε1, ε2) and to the theoretical error εth. Results corresponding to εmxp are superposed
to the corresponding curves in Figure 6.17. The a priori error measure (εmxp) matches the
theoretical estimate (εth) and the a posteriori measures (ε1, ε2) over a wide range of harmonics.
Similarly to the a posteriori errors ε1 and ε2, the a priori error exhibits a plateau for high
N and high wake thicknesses, due to the application of the Fourier transform on a bounded
interval. We also stress the close agreement between εmxp and εth: specifically, estimates of
the number of harmonics needed to capture 99% of the cumulative energy (equivalently, to get
a truncation error equal to 10%), a value that will be justified later, are identical for all error
measures.

This is indeed very attractive as a preliminary steady mixing plane simulation is cheaper
than a harmonic balance computation. This tool will be assessed on two CROR configurations
in Chapter 8 and applied in Chapter 9.

Summary

In this chapter, we showed that the main impulsive source of unsteadiness in turbomachinery flows is

due to the relative motion of wakes generated by a given blade row with respect to the downstream row.

Lakshminarayana and Davino [67] showed that the wake shed behind turbomachinery blades follows
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a similarity law for the velocity. It can be empirically approximated by a Gaussian function. The

Fourier transform of a Gaussian function being analytical, a truncation error has been defined, which

showed that the narrower the wake, the larger the Fourier spectrum resulting in a slower convergence

of Fourier-based time methods. Based on these observations, we showed on a model turbomachinery

computation, that the analytical truncation error can be a priori estimated using a mixing-plane steady

computation. Applying the a priori error estimate to the steady computation of any turbomachinery

configuration provides a lower bound of the number of harmonics required to achieve a given level of

convergence.
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Chapter 7

11th standard aeroelastic configuration

Abstract

The harmonic balance method along with an aeroelastic decoupled approach, is applied to the well-
known 11th standard aeroelastic configuration of Fransson et al. [36]. It is shown that by using only
one harmonic (N = 1), the damping curve of both the subsonic and the transonic operating points are
superimposed with the reference unsteady computation. The agreement with both the experimental
and the numerical data available is good, justifying the proposed approach. Moreover, a speed-up of
seven is found compared to a classical time-marching scheme. This work has been published in

F. Sicot, A. Gomar, G. Dufour and A. Dugeai. Time-Domain Harmonic Balance Method
for Turbomachinery Aeroelasticity. AIAA Journal, 52(1):62–71, January 2014
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7.1 Presentation of the case

For external-flow aeroelasticity, the HB approach has been thoroughly validated by Gopinath
and Jameson [40], Woodgate and Badcock [113] and Dufour et al. [24], mostly for the AGARD
test cases of Davis [23]. Experimental data for turbomachinery aeroelasticity are more scarce:
the STandard aeroelastic ConFigurations (STCF) experiments of Fransson et al. [36] are the
reference in this respect, and have been widely used to validate different numerical approaches
by Campobasso and Giles [13], Cinnella et al. [19], Duta et al. [27], Sbardella and Imregun [88]
and Huang and Ekici [58] whose uses a similar harmonic balance approach as the one proposed
in this work. The experiments are composed of 11 turbomachinery configurations that have
been thoroughly investigated experimentally in an annular test rig at École Polytechnique
Fédérale de Lausanne.

In particular, the 11th standard configuration is a turbine stator composed of 20 blades, and
tested in the late 1990’s by Fransson et al. [36]. The experimental results have been found to
be highly reproducible and therefore suitable for code validation. Moreover, two flow regimes
are considered, one subsonic and one transonic. In this respect, the transonic case allows to
distinguish solvers able to capture non-linear unsteady effects. This is why this particular case
is used here, since HB methods are meant to capture non-linear unsteady features. However,
it must be pointed out that LUR approaches have been validated using the transonic case and
show fair agreement with experimental data [13, 27, 88].

The geometry profile and the results are available over the internet [2]. To characterize
the two flow regimes, measurements of static and total pressures as well as flow angles are
done in two planes e0 located 0.3 axial chord upstream of the turbine blade and e1 located 0.6
axial chord downstream as shown in Figure 7.1. The results are given in terms of inlet Mach

e0 e1

β0

M0, pi0 M1is , ps1

Figure 7.1: Position of the measurement planes in the STCF 11 configuration.

number M0, inlet total pressure pi0 , inlet flow angle β0, outlet isentropic Mach number M1is

and outlet static pressure ps1 . The isentropic Mach number is the Mach number computed if
the stagnation pressure was taken constant (without loss)

Mis =

√√√√ 2

γ − 1

[(
pi0
ps

) γ−1
γ

− 1

]
, (7.1)

where pi0 is the inlet total pressure and ps the local static pressure. It is actually one way to
interpret the static pressure as a velocity. The experimental results measured at plane e0 and
e1 are given in Tab. 7.1. These will be used later on to set the boundary conditions of the
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CFD computations. To allow local validation of the steady flow, the experimental results of
isentropic Mach number are given at blade wall.

M0 [−] pi0 [Pa] β0 [◦] M1is [−] ps1 [Pa]

Subsonic 0.31 124,600 15.2 0.69 90,700

Transonic 0.4 229,800 34 0.99 122,400

Table 7.1: Steady experimental results for the STCF 11 configuration.

For aeroelastic investigations, the blades oscillate harmonically in the first bending mode
at a frequency f = 209 Hz for the subsonic case and 211.6 Hz ≤ f ≤ 212.1 Hz for the transonic
case. Aeroelastic results are available such as the first harmonic of the unsteady pressure coef-
ficient at blade walls (amplitude and phase), for several nodal diameters. These are measured
using piezo-resistive pressure transducers.

The damping is evaluated at blade walls through the expression given by Fransson et al. [36]

Damping [−] = −
# pts∑

k=0

c

h

|p̂k|
(pi0 − ps0)

Sk arg(p̂k), (7.2)

where c is the chord length, h the bending amplitude, |p̂| and arg(p̂) are the modulus and the
phase of the complex first harmonic of static pressure, respectively, S the surface and k the
kth grid point at blade walls. The damping strongly varies under small changes in the local
distribution. It is therefore recommended to look at the local distributions. No experimental
damping curves are given. In fact, there is too few measurement points to integrate the results
with confidence. However, Fransson et al. [36] provide numerical results of the damping curve
obtained with a potential code.

7.2 Numerical setup

The blade passage is meshed using an O4H topology as shown in Figure 7.2. The number of
grid points along the blade chord is 160 and the computed y+ at the walls is O(1). 81 points are
used to discretize the azimuthal direction. The blade has the same profile along the spanwise
direction and no twist. Therefore, a 2.5D mesh is used with five points in the radial direction.
The spanwise extent represents 1% of the chord. The total size of the mesh is 70,330.

The elsA [12] CFD code along with its aeroelastic module [25] is used to solve this configu-
ration. The boundary conditions used for this case are: (i) an injection condition for the inlet
(with the relative flow angle, the Mach number and the total pressure set to the experimental
values using Tab. 7.1), (ii) a constant static pressure condition for the outlet using also the
value ps1 given in Tab. 7.1, (iii) an adiabatic no-slip condition on blade walls, and (iv) periodic
or phase-lagged conditions for azimuthal boundaries depending on the prescribed IBPA.

Turbulence is modeled using the one-equation model of Spalart and Allmaras [98]. Roe’s
scheme [85] along with a third-order MUSCL extrapolation is used to compute the convective
fluxes. The classical Dual Time-Stepping [62] (DTS) time-integration scheme is taken for
comparison to the proposed harmonic balance approach. The maximum CFL number is set

Page 107 of 186



Figure 7.2: STCF 11 mesh.

to 20 for the steady computations, the inner loop of the DTS scheme and the HB simulations.
For the DTS scheme, convergence in time discretization is obtained after 20 periods using
128 time steps per period. Iterative convergence for the inner loop is considered achieved when
the normalized residuals drop by 5× 10−2 (within a maximum of 50 sub-iterations).

Influence of the mesh discretization The mesh quality is assessed through a mesh con-
vergence. To ensure the latter, three meshes are tested, the referenced one described above,
and two meshes, coarse 2 and coarse 4, coarsened in the axial and azimuthal directions by
a factor of two and four, respectively. The five grid points in the radial direction are kept
unchanged.

The steady results for the two operating points are shown in Figure 7.3. The three meshes
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Figure 7.3: Influence of mesh discretization for the STCF 11 configuration.

give the same results for the subsonic case. On the pressure side (bottom curve), the three
results are superimposed. On the suction side (top curve), some minor differences are observed
in particular near the leading edge (x/c ≤ 0.2). Nevertheless, the agreement between the three
meshes is very good for the subsonic operating point. The results are more scattered for the
transonic operating point. In fact, the coarse 4 mesh does not accurately predict the region
where x/c ≤ 0.3 and where 0.7 ≤ x/c ≤ 0.9. This last zone seems smeared out. However,
the results obtained with the coarse 2 mesh are in good agreement with the referenced mesh.
Therefore, the reference mesh is retained for the following study.
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Influence of the spatial discretization Four space schemes are used to compute both
the subsonic and transonic steady fields. These schemes are the Jameson et al. [62] scheme
(JST) with artificial viscosities κ4 = 0.016 and κ2 equal to 0.5 and 1.0 for the subsonic and
the transonic inflow conditions, respectively. In addition to this scheme, three upwind Roe’s
scheme [85] along with no extrapolation (Roe 1), a second-order (Roe 2) and a third-order
(Roe 3) MUSCL extrapolations are used. The steady results for the two operating points are
shown in Figure 7.4. For the subsonic case, the results are all superimposed except Roe 1.
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Figure 7.4: Influence of mesh discretization for the STCF 11 configuration.

This was expected as first-order schemes are not precise enough to accurately capture turbo-
machinery flow fields. For the transonic operating point, which is a numerically stiffer case, the
Jameson et al. [62] and the Roe 3 scheme are superimposed. As for coarse meshes, the Roe 2
and Roe 1 schemes lack in predicting the suction side evolution indicated by two non-linear
flow features: a recirculation bubble and a shock. In the following, the Roe 3 scheme is chosen
to be the reference spatial scheme.

7.3 Subsonic case

Steady results For the subsonic case, the experimental inlet Mach number is 0.31 and the
isentropic outlet Mach number is 0.69. Steady results for the isentropic Mach number at blade
walls are compared to the experimental data in Figure 7.5. For this flow regime, the fluid
remains subsonic. On the pressure side, the flow accelerates all the way to the trailing edge
of the blade. The stagnation point is located at x/c ≈ 0.05. On the suction side, the flow
accelerates until a maximum speed at ≈ 40 % of the chord and finally decelerates toward the
trailing edge. The agreement with the experimental data is fair. However, an over-prediction of
the isentropic Mach number is observed on the suction side. This discrepancy is also reported
in the literature (see Fransson et al. [36] for instance).

Aeroelastic results The aeroelastic experimental data are compared to the present results
obtained with both the DTS and the HB approach. To explore the range of nodal diameters
with the HB method, an incremental approach is used where each nodal diameter simulation is
used to initialize the next one. Considering the opposite phase vibration case (the 10th nodal
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Figure 7.5: Steady results for the STCF 11 configuration, subsonic case.

diameter), the amplitude and the phase of the pressure coefficient are presented in Figure 7.6.
With only one harmonic (i.e. three instants), the HB results are superimposed with the DTS
ones. Moreover, the numerical results are in fair agreement with the experimental data for the
amplitude. However, for the phase, the sign change on the suction side is predicted at about
60 % of the chord, whereas the experimental location is about 25 %.
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Figure 7.6: Wall pressure harmonic analysis for an opposite phase vibration, subsonic case.

The results for the −2 nodal diameter, corresponding to IBPA = −36◦, namely the mostly
damped as will be seen later on, are shown in Figure 7.7. The HB and DTS data are superim-
posed, and are in fair agreement with the experiments. The amplitude levels are well captured
and the phase prediction is slightly improved over the opposite phase case.

The damping obtained from the previous calculations is depicted in Figure 7.8. Also plotted
are the results from Fransson et al. [36], obtained with a potential code. These are the only
damping results for the subsonic case known by the authors. Since the local variations are
superimposed for the DTS and the HB approaches, so are the damping. The present results
show similar trends and levels to those of Fransson et al. [36].
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Figure 7.7: Wall pressure harmonic analysis for a nd = −2, subsonic case.
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Figure 7.8: Aerodynamic damping coefficient versus IBPA, subsonic case.
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7.4 Transonic case

The outlet isentropic Mach number is 0.99 for an inlet Mach number of 0.4. This case, for
which experimental uncertainties are available, has been largely addressed in the literature by
Campobasso and Giles [13], Cinnella et al. [19], Duta et al. [27], Sbardella and Imregun [88] and
Huang and Ekici [58]. This test case is challenging in terms of non-linearities as a separation
bubble and a shock are present.

Steady results Steady results of the isentropic Mach number are shown in Figure 7.9. For
this flow regime, a small separation bubble develops on the suction side at the leading edge.
The flow then accelerates, followed by a shock. The experimental data suggests that the shock
appears sooner on the suction side than in the computations; all the results reported in the
literature exhibit similar discrepancies (see Refs. [13, 19, 27, 36, 58, 88]). Otherwise, the present
results are in fair agreement with experimental data.
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Figure 7.9: Steady results for the STCF 11 configuration, transonic case.

Aeroelastic results The aeroelastic experimental data are compared to the present results
obtained with both the DTS and the HB approach. Considering the opposite phase vibration
case (the 10th nodal diameter), the amplitude and the phase of the pressure coefficient are
presented in Figure 7.10. Also plotted are the results of Cinnella et al. [19], computed with a
non-linear viscous approach using also the Spalart-Allmaras turbulence model. The present HB
and the DTS results are superimposed, which indicates that the one harmonic HB solution is
able to reproduce the unsteady non-linear effects without increasing the number of harmonics.
The results are in good agreement with the experimental data and display the same trends as
that of Cinnella et al. [19]. A slight discrepancy can be observed within the shock region, where
the amplitude and the phase phenomena are predicted further than the experiments indicate.
This can be attributed to the poor prediction of the shock position (indicated in Figure 7.9)
and thus the poor prediction of its interaction with the motion of the blade.

The results for the −2 nodal diameter are also shown in Figure 7.11. Again, the HB
results are superimposed with the DTS ones. Moreover, these are in good agreement with the
experiments, considering the uncertainties of the experimental data.
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Figure 7.10: Wall pressure harmonic analysis for an opposite phase vibration, transonic case.
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Figure 7.11: Wall pressure harmonic analysis for nd = −2, transonic case.
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Let us clarify one important thing here: the convergence of the harmonic balance approach
depends on the smoothness of the temporal phenomenon. This effect can be emphasized by
two aeroelastic computations that have been performed using a harmonic balance approach.
The first one is the case of an airfoil with an oscillating flap [24]. In this simulation, the flap is
oscillating under transonic inflow conditions, resulting in a shock swinging temporally back and
forth from the pressure side to the suction side. As the discontinuity is both spatial (a shock
is seen on the field) and temporal (this shock is moving with respect to time), the number of
harmonics needed to capture this phenomenon was high (N = 3). This is consistent with the
capturing of a rectangular function as shown in Sec. 6 and with the results of Maple et al. [70],
as more than 35 harmonics are required to capture an unsteady shock.

Contrarily, a recent publication [58] and the current results on the validation of the use
of harmonic balance approach to predict aeroelasticity damping within turbomachinery, have
highlighted different conclusions. Under the first bending mode of the blade, the shock remains
almost steady in the relative bending frame of reference. As the shock is only spatial, both
authors show a convergence of the harmonic balance approach with only N = 1 harmonic in
this region. Thus, if the shock structure is not evolving in time, Fourier-based time methods
will not need extra harmonics to converge, while for a temporally moving discontinuity (which
is not our case here), the number of harmonics to converge will be higher. However, a finer
mesh might draw other conclusions. In fact, the steady results already gave a poor estimation
of the shock position (see Sec. 7.4). Therefore, a finer local resolution and a larger blade
oscillation might lead to different conclusions even though the idea remains.

The damping is shown in Figure 7.12 for the transonic case. Also plotted are the results
from Fransson et al. [36] (potential code), and from Cinnella et al. [19] (RANS code). The
scattering is much more severe than for the subsonic case. The trends obtained with the RANS
approaches are similar, but the discrepancies in terms of levels are significant. Recently, Vogt
and Fransson [112] reported similar discrepancies for damping predictions of subsonic and
transonic cascades, showing that the damping can be significantly affected by small local
changes in the amplitude or the phase.
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Figure 7.12: Aerodynamic damping coefficient versus IBPA, transonic case.

In terms of computational efficiency, the HB method is 7 times faster than the DTS for
all the IBPAs which is very good considering that the DTS computations were done using
chorochronic boundary conditions which already provides computational savings compared
to a full 360◦ simulation. Actually the N = 1 harmonic balance computation is 3 times
more expensive than a steady RANS simulation, which is consistent with the theoretical cost
estimation (see Sec. 3.5.4).
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Summary

The use of the harmonic balance approach to compute turbomachinery aeroelasticity has been validated

against a well documented test case. The results are in good agreement with the experimental data

and with the numerical results obtained by using different approaches. The harmonic balance approach

has shown that with only one harmonic, the damping curve is retrieved compared to a classical time-

marching scheme. The speed-up obtained is seven compared to a phase-lag approach with a classical

time-marching scheme. Even though the aeroelasticity validation case is confined to 2D, which is the

case for most ones found in the literature, this give us confidence to apply the current approach to more

demanding aeroelastic computations, namely contra-rotating open rotor aeroelasticity.
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Chapter 8

Isolated low-speed CROR configuration

Abstract

The studies performed in the previous chapters are finally used together to simulate the aeroelasticity

of a low-speed CROR configuration. First, the steady results are analyzed to provide insight into the

flow physics and give confidence in the results. The prediction tool defined in Chap. 6 is then used

to estimate the number of harmonics required to simulate the unsteady rigid-motion response of the

CROR using the harmonic balance approach. Aeroelastic simulations are then carried-out using the

decoupled approach that has been validated in the previous chapter. The OPT algorithm develop in

Chap. 5 is used to ensure the stability of the computations. Local excitation contours and the integrated

damping are finally analyzed.
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8.1 Presentation of the case

Figure 8.1: Low-speed isolated contra-rotating open rotor geometry.

The studied configuration is a pusher contra-rotating open rotor that comes from the know-
how of Snecma (Safran). It is shown in Figure 8.1 for the Low-speed (LS) flight condition,
representative of the take-off and landing. The simulated configuration does not include the
spinner as the experimental setup does not take into account this part of the geometry. The
experimental results were not available for comparison at the time this study was written.

M0 J Mtip

0.2 1.06 0.63

Table 8.1: Low-speed isolated contra-rotating open rotor flight condition parameters.

Table 8.1 recalls the main parameters of the case: the inflow Mach number M0, the advance
ratio J (see Chap. 1) and the Mach number at the tip of the front rotor blades Mtip based on
the inflow velocity and the advance ratio

Mtip =

√
V 2
0 + (ΩR)2

γRt0
=

V0√
γRt0

√
1 +

(
ΩR

V0

)2

=
V0√
γRt0

√
1 +

(
πnD

V0

)2

= M0

√
1 +

(π
J

)2
(8.1)

At this flight condition, the inflow Mach number M0 is within the incompressible range
(M0 < 0.3). As the CFD flow solver used here is the elsA [12] CFD code which is a compressible
code, a preconditionner might be needed for the computations to converge. Hopefully, the
fluid is accelerated by the two rotors and the tip Mach number is high enough not to use any
preconditionning. However, let us bear in mind that this range of Mach number might be
tedious for a compressible flow solver. The advance ratio J is around 1 which is a classical
value for low-speed propellers [7].

Two structural modes are considered for the aeroelastic study of this configuration: the sec-
ond bending/flection mode (2F) and the first torsion mode (1T) of the front rotor. These were
inputs of the current work. The shape of the modes is shown in Figure 8.2 with an arbitrary
amplitude, large enough to ease the visualization. Two inflection lines are seen for the 2F mode,
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(a) 2F (b) 1T

Figure 8.2: Low-speed isolated configuration: structural modes considered.

while only one is seen for the 1T, hence their designation. The frequency, mass and stiffness of
the modes are given with the corresponding modes. The ratio of the blade passing frequency
of the opposite row, namely the rear rotor, over the aeroelastic frequency of each mode varies
within the range 3.19 ≤ fBPF /fAEL ≤ 3.87 , and yields therefore non-harmonically related
frequencies. However, this last frequency governs the unsteady rigid-motion flow physics and
will have to be computed along with the aeroleastic frequency. Therefore, the multi-frequential
formulation of the harmonic balance approach will be used to simulate the aeroelastic response
of the blades in Sec. 8.6.

8.2 Numerical setup

The CROR configuration is computed using a single-blade passage meshed with an O4H topol-
ogy as shown in Figure 8.3(a). The number of grid points is reported in Figure 8.3(b) for a
blade-to-blade section. 129 points discretize the blade, 45 the pitch and 181 the radial extent,
among which 101 for the blade height. The same number of grid points is used for the front
and the rear rotor blades. Finally, the total number of grid points is almost 5 million, which
is in the mid-range of the literature values [5, 35, 84, 100, 116].

As a CROR is not shrouded, a sufficiently large domain is taken to ensure a minimum
influence of the far-field boundary conditions on the results. The computational domain is
schematically reproduced in Figure 8.4. The radial extent is 3D while the axial one is 3.5D,
with D being the diameter of the front rotor. In the literature, Peters and Spakovszky [84]
consider an axial extent of 7.5D with a radial extent of 4D while Zachariadis and Hall [116]
consider 2.5D and 3.6D, respectively. We are thus in the mid-range of the values taken in the
literature. As highlighted by the underlined text in Figure 8.4, the boundary conditions used
here are: (i) adiabatic walls for the blades and the hub (or spinner), (ii) constant stagnation
values for the far-field, (iii) periodic or phase-lagged boundary conditions for the azimuthal
boundaries of the channel and (iv) mixing-plane or sliding mesh interface for the rotors interface
depending on the type of computation (steady or unsteady). In this case, the mesh stems from
literature and industrial best practices and will not be assessed.
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Figure 8.3: Low-speed isolated configuration mesh topology.
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Figure 8.4: Low-speed isolated configuration far-field domain and boundary conditions.
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Turbulence is modeled using the one-equation model of Spalart and Allmaras [98]. Roe’s
scheme [85] along with a second-order MUSCL extrapolation is used to compute the convective
fluxes. The maximum CFL number is set to 10 for the steady computations and to 5 for the
unsteady simulations.

For the aeroelastic computations shown in Sec. 8.6, the aeroelastic module [25] of the
elsA [12] CFD code is used. Again, only a one-blade passage domain is meshed. Phase-lag
boundary conditions are therefore used and each computed frequency is associated to one
phase-lag as shown by Guédeney [43]. For the aeroelastic modes, four nodal diameters are
considered, corresponding to Inter-Blade Phase Angles (IBPA) of: [−60◦,−30◦, 30◦, 60◦]. The
aeroelastic coupling is considered to be linear (decoupled approach), therefore a very small
amplitude of the mode is applied and the fluid response is analyzed. In this work, the two
frequencies have a different physical meaning. In fact, while the blade passing frequency has
been shown to convey the main flow physics (potential effects, wakes, tip vortices, to name but
a few), the aeroelastic frequency is more likely to influence the near blade wall flow field. In fact,
as recalled previously, the amplitude of vibration is kept very small, yielding a local influence of
the blade vibration. Therefore, it seems reasonable to use the ”cross grid” truncation pattern
(see Sec. 3.5.3). Thus, the harmonic balance computations are run with five frequencies in
total. In the rear rotor, the harmonics of the front rotor blade passing frequency are chosen.
In the front rotor, the first frequency is the frequency associated with the vibration of the blade
and the remaining ones are the harmonics of the rear rotor blade passing frequency. The time
instants are automatically chosen using the OPT algorithm (see Sec. 5.3.2) which leads to a
condition number always lower than 1.1 which ensure the stability of the computations.

Influence of the spatial discretization To assess the influence of spatial discretization,
two space discretization schemes are used to simulate this low-speed CROR configuration.
These schemes are the Jameson et al. [62] scheme (JST) and the Roe scheme. The JST scheme
is used with artificial viscosities κ4 = 0.016, κ4 = 0.032, κ4 = 0.064 and κ2 equal to 0.5. In
addition to this scheme, we consider Roe’s scheme [85] without MUSCL extrapolation (Roe 1),
and with second-order (Roe 2) or third-order (Roe 3) MUSCL extrapolations.

Convergence histories of the different computations are shown in Figure 8.5 for the four
schemes. The convergence is not very good. Only the Roe 1 and Roe 2 spatial schemes give a
convergence that has an acceptable slope. On the contrary, the JST with κ4 = 0.016 diverges
and hardly converges when using different values of the artificial viscosity parameters. The
higher the viscosity parameter κ4 of the JST scheme, the better the convergence. Exceed-
ing κ4 = 0.064 should warn us that something might be wrong with the computation. As
stated previously, this can be attributed to the range of Mach number in which this low-speed
configuration operates or to any stiff flow features as for instance flow separation.

To further differentiate the spatial schemes, the steady results for the similarity coefficients
are reported in Figure 8.6 for all spatial scheme, except the diverging JST κ4 = 0.016 com-
putation. Arbitrarily, the results are normalized by the Roe 2 values. The Roe 2, Roe 3, and
the JST scheme with different choices of the dissipation coefficients give equivalent similarity
coefficients as the difference is smaller than 1 %. In opposite, the first-order upwind scheme
(Roe 1) gives a 5 % difference for both the traction coefficient CT and the efficiency η. Cross-
comparing these results with the convergence of the computations reported in Figure 8.5, the
Roe 2 scheme is kept for the following as it gives both a good convergence of the residuals and
consistent similarity coefficients.
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Figure 8.5: Low-speed isolated configuration: convergence of the steady computations using
different spatial schemes.

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

CT/C
Roe 2
T CP/C

Roe 2
P η/ηRoe 2

Roe 1
Roe 2
Roe 3

JST κ4 = 0.032
JST κ4 = 0.064

Figure 8.6: Low-speed isolated configuration: convergence of the similarity coefficients using
different spatial schemes.

Page 122 of 186



8.3 Steady results

8.3.1 Convergence analysis

The convergence of the steady computation using the Roe 2 space scheme is reported in Fig-
ure 8.7. The residuals show a four orders of magnitude decrease and the similarity coefficients
are stable starting at 500 iterations. Therefore, according to Casey and Wintergerste [16], the
solution is considered to be converged.
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Figure 8.7: Low-speed isolated configuration: convergence of the Roe 2 steady computation.

8.3.2 Similarity coefficients

The similarity coefficients (defined in Sec. 1.3.3) are post-processed and reported in Tab. 8.2.
The results are consistent with the efficiency estimation given in Eq. (1.17) for a propeller at
take-off flight conditions. In fact, each rotor of the CROR has an efficiency that is between 0.5
and 0.6. The advantage of the CROR is demonstrated here as the rear rotor is able to retrieve
an additional thrust coefficient of 0.568 yielding a total of 1.132, while the front rotor alone
would only give 0.564. The presence of a second rotor allows to more than double the total
thrust of the engine. Nevertheless, the efficiency is affected compared to a single row propeller,
as it goes from 0.600 for the front rotor alone to 0.573 for the CROR. However, achieving such
a level of thrust coefficient (CT = 1.132) with an isolated propeller would require a higher
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global front rear

CT CP η CTf CPf ηf CTr CPr ηr

1.132 2.093 0.573 0.564 0.994 0.600 0.568 1.099 0.548

Table 8.2: Low-speed isolated configuration: similarity coefficients.

loading of the blades which is not consistent with an increase of the efficiency, necessary to
meet the ACARE goals. Actually, this is the main advantage of the CROR engine: two rotors
are used to create the thrust which allows to reduce the loading of each rotor compare to an
isolated propeller, allowing thus higher inflow Mach numbers. In fact, the rotation of the rotors
is reduced to maintain a subsonic Mach number optimizing thus the efficiency for a given level
of thrust. Moreover, by maintaining a subsonic Mach number, the noise emissions are retained.

8.3.3 One-dimensional results: radial profiles

Radial profiles positioned at six locations upstream and downstream the rotors are extracted
and shown in Figure 8.8(a). The absolute Mach number, absolute flow angle, static pressure,
stagnation temperature and stagnation pressure are shown in Figure 8.8 against the radial
position expressed relative to the radius of the front rotor blade Rf .

The absolute Mach number, shown in Figure 8.8(b), is increased by the two rotors as it
goes from the inflow condition value M = 0.2 up to M = 0.4. Note that above R/Rf = 1,
namely above the tip of the front rotor blade, the Mach number almost recovers the inflow
condition. Moreover, it can be inferred from the absolute Mach number radial evolution, that
the stream tube is contracting which is consistent with the observed acceleration of the fluid.

The pitch angle of the absolute velocity vector is shown in Figure 8.8(c). The front rotor
deviates the flow of almost 20◦, justifying the need for a second rotor. Between the fourth and
the fifth extraction planes, namely passing through the rear rotor, the flow is straighten up.
Remember that the very first motivation for adding a second rotor to a propeller was to recover
the energy lost by the swirling flow (recall Sec. 1.3.2). This is observed in our simulations as
the deflection angle is now close to 0◦ for 0.3 ≤ R/Rf ≤ 0.7 in plane P6. Below that, the
deflection angle remains negative. In the tip vortex region of the rear rotor, one can see the
effect of the two tip vortices: between 0.8 ≤ R/Rf ≤ 0.9, the front rotor tip vortex is seen
as the deflection angle is positive while between 0.7 ≤ R/Rf ≤ 0.8 the rear rotor is observed,
which is consistent with the positive peak observe near the blade tip region in planes P3 and
P4.

The goal of a CROR is to create thrust through an acceleration of the flow rather than to
produce static pressure as in a compressor stage. This is highlighted in Figure 8.8(d) where
the static pressure increases by at-most 2% which has to be compared with an almost 100%
increase of the absolute Mach number. This is consistent with the low inflow Mach number
that is within the incompressible range. A small increase is observed at each rotor crossing.
Upstream the rotors, the potential effects can be seen. Actually, the flow is accelerated by the
rotors, this acceleration yields a decrease of the static pressure (roughly through the Bernouilli
theorem) and this pressure deficit is observed in planes P1, P2 and P4.

Figure 8.8(e) shows the stagnation temperature. An increase is observed at each rotor
crossing. This is consistent as a propeller row gives work to the fluid. As such, the first principle
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of thermodynamics states that the enthalpy will raise resulting in an increasing stagnation
temperature observed in our results. One can notice that the enthalpy increase is greater on
the rear rotor compared to the front rotor.

The stagnation pressure evolution is shown in Figure 8.8(f). As the static pressure and the
absolute Mach number increases along with the crossing of the rotors, it is logical to have an
increase of the stagnation pressure.

These 1D results provide us confidence in our simulation. In fact, the flow physic that was
expected is observed in the results. To further analyze the simulation, 2D results are presented
in the following section.

8.3.4 Two dimensional results: radial and axial cuts

Contours of the relative Mach number are shown in Figure 8.9 along with the pressure coeffi-
cient kp, for both the front and the rear rotor, defined as

kp =
ps − ps0
ρn2D2

, (8.2)

where the n and D parameters are the one of the front rotor to ease the comparison.
The negative kp range is attributed to the suction side and the positive to the pressure

side. The kp should be interpreted as follow, a decreasing kp means that the pressure gradient
is negative, namely the flow is accelerating. Classically, the kp axis is reversed so that the
suction side is on top of the figure and the pressure side on bottom. The stagnation point is
highlighted by the maximum of the pressure coefficient. On the pressure side (kp > 0), the
flow accelerates toward the trailing edge with a favorable pressure gradient. On the suction
side, a rapid acceleration of the fluid is observed near the leading edge (∂kp/∂x� 0) followed
by a deceleration of the fluid along with an adverse pressure gradient. On the front rotor,
the integrated pressure coefficient is increasing along with the relative span, at least when
comparing the 50 % and the 75 % relative spans. After that, the pressure coefficient is almost
constant on the front rotor. The loading is thus almost constant for relative spans greater than
50 %.

The pressure coefficients on the rear rotor have a similar shape compared to the one of the
front rotor. However, the loading is larger on the rear rotor and near the tip of the blades
R/Rf > 75 %, the integrated value of the pressure coefficient increases drastically. This is
highlighted by the thrust coefficient of the rear rotor CTr which is reported in Tab. 8.2 and
that is higher than the front rotor one. This is observed even though the diameter of the front
rotor is chosen to normalize the pressure coefficient which lessened the thrust coefficient of the
rear rotor.

Relative Mach number contours are also shown in Figure 8.9. As inferred by the tip Mach
number value Mtip of the blade given in Tab. 8.1, the relative Mach number does not cross
the sonic boundary Mrel = 1. The flow remains subsonic which is, aerodynamically speaking,
a good feature for the performances since shocks create losses. Near the tip region of the rear
rotor blades, the leaving of the tip vortex can be seen. In fact, for relative span R/Rf ≥ 90%,
a low velocity region is seen on the rear rotor blades oriented from the pressure side to the
suction side, hence the consistence with a tip vortex.

Axial cuts of the entropy are shown in Figure 8.10. The axial positions are the four
planes P3, P4, P5 and P6 as defined in Figure 8.8(a). The tip vortices generated by the
front rotor are seen in the P3 axial plane. The mixing plane approach is used for the steady
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Figure 8.8: Low-speed isolated configuration: radial profiles.
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Figure 8.8: Low-speed isolated configuration: radial profiles (contd.).
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kp front rotor kp rear rotor relative Mach number
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Figure 8.9: Low-speed isolated configuration: pressure coefficient and relative Mach number
contours at different radial position.
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computations presented here. This is emphasized by the P4 axial cut of entropy as a smooth,
spatially-averaged field of entropy is seen with a ring of losses attributed to the front rotor tip
vortices. This is of course the main weakness of the steady approach used here to compute
the CROR configuration. In fact, as recalled in Chap. 1, the tip vortices and the wakes shed
by the front rotor blades can impact the rear rotor blades and thus generate exceeding level
of unsteadinesses, responsible for noise and vibration. As the influence of the front rotor tip
vortices is azimuthally-averaged, its influence is lessened. Therefore unsteady computations
will be needed to predict the unsteady interactions of the front rotor with the rear one. This
is the aim of the forthcoming Section 8.5. The remaining axial planes extracted at P5 and
P6 depict the strong loading of the rear rotor blades. In fact, bearing in mind that the axial
planes are equidistant from the blades, the larger the loss traces, the stronger the loading of
the blades. According to the Euler theorem applied on the two rotors, the enthalpy variation
is equal to the variation of the dot product of the rotational velocity U = ΩR to the tangential
absolute velocity Vθ. If the inflow is similar on both rotors, the work exchange should be the
same. However, the flow has been accelerated by the front rotor resulting in a higher work
exchange to obtain the same deviation on the rear rotor. This higher work exchange implies
a greater loading of the rear rotor blades and thus higher pressure gradients. Therefore, the
flow field will be more prone to boundary layer separation, which is observed in practice in
Figure 8.10 by larger entropy values downstream the rear rotor blades. Moreover, even though
the tip vortices shed by the front rotor blades are azimuthally-averaged, their trace is still seen
and seems to indicate that they will interact with the rear rotor tip vortices.
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Figure 8.10: Low-speed isolated configuration: axial cuts of entropy.
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8.4 Spectral convergence of the harmonic balance computa-
tions

8.4.1 Using the prediction tool

The prediction tool based on a mixing plane computation described in Sec. 6.3.5 is applied
to the studied configuration to evaluate the required number of harmonics needed for the
harmonic balance approach to be converged. The algorithm to compute the accumulation of
energy is detail in Sec. A.3.

To have a global insight of the energy contained in the tangential distortion across the whole
span, the energy accumulation is plotted using a color map in Figure 8.11. Three contour lines
are added to ease the interpretation: 90%, 95% and 99% of accumulated energy, corresponding
to a truncation error of respectively 30%, 20% and 10%.
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Figure 8.11: Low-speed isolated configuration: prediction of the number of harmonics needed
to simulate the configuration.

The level of accumulated energy required for a computation to be rigorously converged is
difficult to estimate. It seems reasonable, from an engineering standpoint, to consider that a
99% accumulation of energy should be a good criterion. To emphasize that, the reconstruction
of a wake as a function of four levels of cumulative energy E is depicted in Figure 8.12. One
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Figure 8.12: Reconstructions of a wake depending on the energy content kept in the signal.
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can see that a reconstruction using only 50% of the energy leads to a signal that has neither
the right wake deficit nor the correct width. Using 90% and 95% of the energy improve the
resulting shape but large secondary oscillations remain, with a bad capture of the wake deficit.
In opposite, by using 99% of the energy to reconstruct the signal, only minor oscillations are
seen and the wake width and deficit are recovered with more than 95% accuracy. Thus, the
99% energy threshold ensures that the wake will be correctly transmitted to the opposite row,
which is the prior concern of this Section.

Four harmonics are needed to capture 99% of the energy, even though at a relative span
superior to 60%, only three harmonics would be needed. However, as the implementation of the
harmonic balance used in this work does not allow a varying number of harmonics through the
configuration, four harmonics is supposed to be sufficient to efficiently represent the unsteady
flow field.

8.4.2 Analyzing the similarity coefficients

To confirm the number of harmonics needed to ensure the convergence of harmonic balance
computations, simulations are run from one to four harmonics. The strategy used to launch
the computation is as follow: the steady computation is used as an initial guess for the N = 1
HB computation. Then each new HB computation is launched with the previous one as initial
solution.

Two harmonics are actually necessary to converge the temporal mean of the similarity
coefficients as shown in Tab. 8.3. After that, a slight evolution of the coefficients is still seen
but represents a change lower than 0.01% of the N = 4 results, hence the convergence. Note

steady HB N = 1 HB N = 2 HB N = 3 HB N = 4

(time average)

CT 1.1319 1.1334 1.1330 1.1330 1.1329

CP 2.0927 2.0951 2.0944 2.0945 2.0946

η 0.5726 0.5727 0.5726 0.5726 0.5725

Table 8.3: Low-speed isolated configuration: analysis of the number of harmonics required to
capture the time average similarity coefficients.

that a steady computation is sufficient to retrieve the temporal mean value of the similarity
coefficients for this low-speed configuration. In fact, on this variables, a maximum of 0.1%
difference is observed by comparing the mixing plane and harmonic balance results.

8.4.3 Analyzing the blade response

Of course, analyzing integrated results to assess the convergence of a computation is a primar-
ily step that should be complemented with a local analysis. In this way, a discrete Fourier
transform is performed to analyze the first harmonic of the static pressure on the rear rotor
blades. Due to the passing of the front rotor wakes, these blades will experience a high level
of unsteadinesses. It is therefore considered as a bottleneck in the convergence of the HB
computations, hence its analysis. The results are shown in Figure 8.13.
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Figure 8.13: Low-speed isolated configuration: analysis of the number of harmonics required
to capture the harmonic response of the rear rotor blades.
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Only one harmonic is needed to converge the time-average value on the rear rotor blades.
Actually, the steady computation already gave a good prediction of this time-averaged value.
This is due to the range on which this low-speed CROR configuration operates. The Mach
number is almost within the incompressible range. As such, the non-linearities of the Navier–
Stokes equations remains small and steady approaches give good results.

Two to three harmonics are needed to converge the first harmonic pressure response on the
rear rotor blade. This is a rough estimation as a small convergence of the harmonic pressure
rise on the suction side of the blade between HB N = 2, N = 3 and N = 4 computations can
be seen.

8.4.4 Analyzing the radial cuts

The final assessment of the convergence is done on radial cuts of entropy made at 75% of the
height of the rear rotor blades. This is the region where the blades are most likely to be highly
loaded, hence the choice of this span. The entropy spurious waves vanishes when computing
the HB N = 4 even though the HB N = 3 computation give a relatively smooth entropy field.
Nevertheless, the prediction tool, the similarity coefficients, the harmonic blade response and

(a) HB N = 1 (b) HB N = 2

(c) HB N = 3 (d) HB N = 4

Figure 8.14: Low-speed isolated configuration: analysis of the number of harmonics required
to capture the wake at a 75% height radial cut.

the radial cuts give us confidence in the HB N = 4 computation. It is therefore chosen to
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further analyze the unsteady results on this HB N = 4 computation.

8.5 Unsteady rigid-motion results

8.5.1 Similarity coefficients

Figure 8.15 depicts the unsteady variation of the thrust coefficient CT on both the front and
the rear rotor. The time is normalized by the reference period of the current rotor (the rotation
frequency n) and the thrust coefficient is normalized by its temporal mean value. This allows
to assess the unsteady variations over one reference period.

The level of unsteadiness is rather the same on both rotors. It represents an envelope of
approximately ±3h of the temporal mean value. This level is not negligible and justifies the
use of unsteady methods on CROR configurations. Moreover, even though wakes are shed
behind the front rotor that impinge the rear rotor blades, the level of unsteadiness perceived
by the rear rotor is close to the front rotor ones. Actually, the rear rotor sees more unsteady
flow phenomena but on a smaller area. This can be one of the reasons explaining the equal
level of unsteadiness observed on the front and rear rotor blades.
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Figure 8.15: Low-speed isolated configuration: unsteadiness seen by the rotors.

To assess in more detail the unsteady flow field seen by the blade, a harmonic analysis on
the blades is performed in the following section.

8.5.2 Two-dimensional results: harmonic blade response

A discrete Fourier transform is computed on the blades for the unsteady static pressure variable.
This gives an idea of the level of unsteadiness seen locally by the blades. The amplitude of the
first harmonic of the blade passing frequency of the opposite rotor is shown in Figure 8.16 for
both blades. The legend is in logarithmic scale and it is different for the front and rear rotor
blades. In fact, even though the integrated level of unsteadiness is relatively the same, this
fails when looking at local results. Roughly, the harmonic amplitude of the static pressure on
the rear rotor blade is ten times larger.

On the front rotor blade, the level is large as it is close to 0.1% of the inflow static pressure.
Moreover, the pressure side exhibits a larger level of unsteadiness compared to the suction side.

Page 135 of 186



            0.01 % 0.018 % 0.032 % 0.056 % 0.1%

ps/ps0 [−]

            0.1 % 0.18 % 0.32 % 0.56 % 1%

ps/ps0 [−]

Front rotor blade Rear rotor blade

suction side pressure side pressure side suction side

Figure 8.16: Low-speed isolated configuration: harmonic response of the front rotor blades.

This is due to the relative position of the blades which makes the pressure side more vulnerable
to potential effects. In fact, as can be seen on radial cuts (as for instance in Figure 8.14) the
suction side is shield from the downstream flow field. The intensity is not uniform along span
with a relatively higher amplitude of unsteadiness at the tip of the blade and near the hub on
the pressure side. On the suction side, the largest level of unsteadiness is observed near the
hub.

On the rear rotor blade, the level of unsteadiness is much larger than the one observed
on the front rotor blade. Here, the level of unsteadiness goes up to 1% of the inflow static
pressure. This is mostly due to the wake passing shed by the front rotor blades. In fact, on the
leading edge of the suction side of the rear rotor blade, a strong harmonic response is observed,
while it is much smaller on the pressure side. Bearing in mind that the suction side sees the
wake passing, one can deduce that this strong harmonic response is attributed to wake passing.
In addition to that, in the tip region of the rear rotor blade, a stronger level of unsteadiness
is observed. As mentioned previously, tip vortices are shed by the front rotor blades. Even
though the rear rotor blades are clipped, as the stream tube contracts, there is a chance that
the front rotor blades tip vortices interact with the rear rotor blades. This is investigated by
analyzing axial cuts of entropy.

8.5.3 Two-dimensional results: axial cuts

Axial cuts of entropy at four planes (P3, P4, P5 and P6) are shown in Figure 8.17. The
steady results are also reported for comparison. Compared to a steady computation, the
harmonic balance approach allows to capture the impact of the front rotor tip vortices on the
rear rotor. Between plane P3 and P4, they have been diffused thanks to the viscosity effects.
The interaction of the front and the rear rotor tip vortices is highlighted in the P5 plane. At
the end, in plane P6 the vortices have almost merged and a large entropy trace remains. This
confirms the impact of the front rotor tip vortices on the rear rotor blades, which explains the
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large static pressure fluctuations observed in the tip of the rear rotor blades. Nevertheless, for
this configuration, the steady mixing plane approach provides good results when comparing
the axial cuts downstream the rear rotor (P6).

8.5.4 Two-dimensional results: radial cut of harmonic pressure

To further analyze the unsteadinesses that are seen in a CROR configuration, a radial cut at
75% of the rear rotor height of the first harmonic of the static pressure is show in Figure 8.18.
The two rotors rotating in opposite direction, a steady field for the former is seen as unsteady
by the latter and vice-versa. Therefore the flow field is, by nature, discontinuous at the rows
interface.

On the front rotor side of the interface, a high amplitude azimuthal pattern of static pressure
is seen. It is representative of the potential effects: the blades deviates the stream lines and as
the two rotors rotate in opposite directions, theses deviations are finally seen as unsteady flow
features by the front rotor.

On the rear rotor side of the interface, no azimuthal pattern of static pressure is observed
near the interface. Conversely, the pressure unsteadinesses are mostly observed near the rear
rotor blades. These pressure unsteadinesses come actually from the unsteady wake passing. In
fact, the absolute velocity deficit in the wakes shed by the front rotor is seen as unsteady by
the rear rotor. However, at the blade walls, the velocity is necessary null. These velocity fluc-
tuations are actually seen as pressure fluctuations since the presence of the blades transforms
velocity into pressure at blade walls. Figure 8.19 supports this argument as the amplitude of
the Mach number fluctuations vanishes in regions where the pressure fluctuations grows near
the rear rotor blades.
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Figure 8.17: Low-speed isolated configuration: axial cuts of entropy.
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Figure 8.18: Low-speed isolated configuration: radial cut of the first harmonic of the static
pressure normalized by the inflow static pressure.

Figure 8.19: Low-speed isolated configuration: radial cut of the first harmonic of the relative
Mach number.
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8.6 Aeroelastic results

8.6.1 Stability curve

The damping as a function of the inter-blade phase angle, namely the stability curve, is reported
in Figure 8.20 for the two modes considered. All the modes have a positive damping which
clear this low-speed CROR configuration from flutter. The minimum damping is at IBPA=30◦

for the second flection mode and at IBPA=−30◦ for the first torsion mode. The variation of
the damping against the inter-blade phase angle is limited for the 2F mode while a much larger
interval of variation is observed for the 1T mode. To further analyze the aeroelastic behavior
of the front rotor blades, the local excitation is computed and shown in the following section.
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Figure 8.20: Low-speed isolated configuration: integrated damping for modes 2F and 1T.

8.6.2 Local excitation

The local excitation is shown on the pressure side and the suction side of the front rotor blades
in Figure 8.21. It is the local damping given in each cell divided by the surface of the cell. It
is therefore expressed in m-2.

Firstly, the amplitude of variation of the damping is confirmed by the local results. In fact,
higher excitation peaks are observed on the 1T mode results. This can be explained by the
physical behavior of the 1T mode. The shape of this last has the tendency to change the angle
of attack of the blade, which governs at first order the performance of the blade. Therefore,
changing the angle of attack of the blades can have a strong impact on the flow field that
develops around the blades. This can explain why the first torsion mode damping has a larger
variation interval compared to the second flection mode.

Secondly, the variation of the excitation against IBPA is barely seen for the 2F mode.
The shape of the results does not change. This is not true for the 1T mode. In fact, at the
leading edge of the pressure side, a positive excitation structure is seen for all IBPA except
IBPA= −30◦. Moreover, for this last, the two biggest excitation structures on the pressure
and suction sides of the blade seem to propagate toward the hub.

Thirdly, inflection lines for the modes are also inflection lines for the local excitation values.
Moreover, inflection lines for the flow physics as the strong adverse pressure gradient near the
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leading edge of the blade on the pressure side that lessened at approximately 25% of the chord
is a region where the local excitation changes in terms of sign. This effect is not seen on the
pressure side where the flow physics is smoother compared to that of the suction side. Even
though the local excitation values on the 1T mode are higher in terms of intensity, this is not
observed in the damping value that has the same order of magnitude than the one of the 2F
mode. Only the variation of damping between different inter-blade phase angles is affected.
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Figure 8.21: Low-speed isolated configuration: local excitation for modes 2F and 1T.
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Summary

The multi-frequential harmonic balance approach along with the decoupled approach has been used

in this chapter to simulate the flutter behavior of a low-speed CROR computation. It is shown that

the local excitation varies in correlation with the inflection lines of the modes and with a change in

aerodynamic behavior. This configuration is shown to be cleared from flutter as the damping is positive

for all modes and all inter-blade phase angles. To further assess the approach, a more demanding

configuration is studied, namely a high-speed CROR.
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Chapter 9

Isolated high-speed CROR configuration

Abstract

To further assess the proposed multi-frequential harmonic balance method along with a decoupled ap-

proach, a more demanding case is studied, namely a high-speed CROR configuration. The number of

harmonics required to compute such a configuration is shown to be higher than the low-speed config-

uration. The unsteady rigid-motion computations are analyzed and aeroelastic simulations are then

carried out, showing that the proposed approach is robust enough to assess such configurations.
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9.1 Presentation of the case

Figure 9.1: High-speed isolated contra-rotating open rotor geometry.

The configuration studied in this Chapter is the same as the previous one but with a
different angle of attack of the blades as the inflow Mach number is larger. The geometry
is shown in Figure 9.1. This geometry is the High-Speed (HS) version of the previous one,
representative of the cruise flight condition. The rotation speed is kept almost constant between
the two configurations, meaning that the only way to ensure a proper adaptation of the velocity
field is to change the angle of attack of the blades.

The main input parameters of the case are recalled in Tab. 9.1. The inflow Mach number

M0 J Mtip

0.73 3.7 0.96

Table 9.1: High-speed isolated contra-rotating open rotor flight condition parameters.

is within the transonic range. Its high value can suggest the appearance of shocks in the flow
field. This is emphasized by the Mtip which is near from being supersonic.

The same two structural modes are considered for the aeroelastic study of this configuration:
the second bending/flection mode (2F) and the first torsion mode (1T) of the front rotor. These
were inputs of the current work.

The frequency, mass and stiffness of the modes are given with the corresponding modes. The
ratio of the frequency of the blade passing frequency of the opposite row, namely the rear rotor,
over the aeroelastic frequency of each mode varies between 3.35 ≤ fBPF /fAEL ≤ 4.11. Again,
this last frequency governs the unsteady rigid-motion flow physics and will have to be computed
alongside with the aeroleastic frequency. Therefore, the multi-frequential formulation of the
harmonic balance approach will be used to simulate the aeroelastic response of the blades (see
Sec. 9.6).

9.2 Numerical setup

The same topology and number of grid points is used to mesh this high-speed configuration.
If nothing particular is said, the same numerical parameters are kept for the study of this
high-speed configuration. The reader is referred to Sec. 8.2 for detailed information.
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The same numerical approach as the low-speed configuration is chosen for the aeroelastic
computations that will be presented in Sec. 9.6. For practical reasons, the harmonic balance
computations are run with the same number of frequencies as the low-speed configuration,
namely five frequencies in total. This might be not sufficient as suggested by the prediction
tool shown below in Sec. 9.4. A partial convergence study is therefore conducted afterwards
in Sec. 9.6.3. In the rear rotor, the harmonics of the front rotor blade passing frequency are
chosen. In the front rotor, the first frequency is the frequency associated to the vibration of the
blade and the remaining ones are the harmonics of the rear rotor blade passing frequency. The
time instants are automatically chosen using the OPT algorithm which leads to a condition
number always lower than 1.1, ensuring thus the stability of the computations.

Influence of the spatial discretization The same exercise as done in Sec. 8.2 is made
below Four schemes are evaluated based on the convergence of the computations and of the
integrated results (similarity coefficients). For the Jameson et al. [62] scheme, the artificial
viscosities are chosen as follow: κ2 = 1.0 and κ4 = 0.016. We will see that the computation
converges with this low κ4 coefficient. Therefore, only this coefficient will be tested.

The convergence of the computations using the four spatial schemes is reported in Fig-
ure 9.2. The convergence is good for all the spatial schemes. In fact, more than five orders of
magnitude are lost on the residuals.
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Figure 9.2: High-speed isolated configuration: convergence of steady computations using dif-
ferent spatial schemes.

The values of the similarity coefficients obtained with all the spatial schemes is reported in
Figure 9.3. Arbitrarily, the values are given as a ratio over the Roe 2 values. The first-order
upwind scheme (Roe 1) give similarity coefficients that are several percent lower than the Roe 2
value. The other schemes give results that are less than 1% close, therefore and for consistence
with the approach retained for the low-speed configuration the Roe 2 scheme is chosen for the
following computations.
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Figure 9.3: High-speed isolated configuration: convergence of similarity coefficients using dif-
ferent spatial schemes.

9.3 Steady results

9.3.1 Analysis of the convergence

The convergence of the simulation is obtained after 500 iterations for both the residuals and
the similarity coefficients (Figure 9.4). More than five orders of magnitude are obtained for the
residuals and the similarity coefficients are stabilized starting below 500 iterations. According
to Casey and Wintergerste [16], this means that the steady simulation is converged.

9.3.2 Similarity coefficients

The similarity coefficients are reported in Tab. 9.2. They are representative of a cruise pro-
peller (see Eq. (1.17)). Firstly, the thrust is higher on the rear rotor than on the front rotor,
even though it is relatively well distributed. Bear in mind that the rear rotor similarity coef-
ficient is normalized by the front rotor diameter. Therefore, the thrust produced by the rear
rotor is larger than the one of the front rotor, relatively to its diameter. Secondly, the power
coefficient is similar for both the front and the rear rotor. As the power coefficient represents
the mechanical input given to flow, this means that the mechanical distribution is well reparti-
tioned, which is a design wish for the integrity of the drive shaft. In fact a non-uniform power
coefficient might give an additional momentum on the drive shaft which can deteriorates its
mechanical properties.

global front rear

CT CP η CTf CPf ηf CTr CPr ηr

0.902 3.849 0.858 0.411 1.926 0.780 0.491 1.922 0.935

Table 9.2: High-speed isolated configuration: similarity coefficients.
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Figure 9.4: High-speed isolated configuration: convergence of the steady computation.
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9.3.3 Radial profiles

Radial profiles are computed on the steady results and reported in Figure 9.5.
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Figure 9.5: High-speed isolated configuration: radial profiles.

The absolute Mach number (Figure 9.5(a)) increases from its inflow value (Ma = 0.73) up to
around Ma = 0.76. This represents a 4% increase that has to be compared to the 100% increase
for the low-speed configuration. Nevertheless, this represents an absolute ∆Ma = 0.03 increase
for this high-speed configuration where it was ∆Ma = 0.2 for the low-speed configuration. The
stream tube contraction is smaller than the low-speed configuration as the increase in velocity
remains bounded. It seems that the front rotor tip vortices do not interact with the rear rotor
blades as the small increase near 90% of the span, which is attributed to the core of the front
rotor tip vortex, is not contracted by the stream tube.

The absolute pitch angle (Figure 9.5(b)) of the velocity highlights, again, the advantage of
using a CROR compared to a single row propeller system. In fact, the flow is deviated by the
front rotor from its axial direction to a mean 5◦ velocity vector. The rear rotor then deviates
back the flow field to make it almost purely axial with exceptions near the hub and near the
front tip vortex region (0.75 ≤ R/Rf ≤ 0.95). This explains the efficiency of a CROR propeller
system also for high-speed inflow conditions, which is the design priority.

The static pressure (Figure 9.5(d)) increases by at-most 10% which is larger than it was for
the low-speed inflow condition. These are clearly compressibility effects due to the high inflow
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Figure 9.5: High-speed isolated configuration: radial profiles (contd.).
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Mach number. As the goal of a CROR is to create thrust through a large mass-flow and a
velocity increment, this static pressure rise helps increasing the mass-flow and thus participates
to thrust. In fact, using roughly the perfect gas state-equation, a static pressure increase is
seen as a density increase that participates to a high mass-flow, hence the contribution to
the thrust. The potential effects can be seen in the P2 and P4 planes. In fact, the pressure
decreases before crossing the rotor blades. This is due to the acceleration of the fluid that is
done at each rotor crossing. This increase of velocity creates a decrease in static pressure that
is seen upstream the rotors.

With the stagnation temperature rise shown in Figure 9.5(e), one can say that the rotors
provide energy to the fluid to create the thrust. The stagnation pressure is shown in Fig-
ure 9.5(f). At each rotor crossing it increases since both the absolute velocity and the static
pressure increase. Moreover, the stream tube contraction seems to be smaller compared to the
low-speed flight condition. It will have to be confirmed by the forthcoming unsteady results.

9.3.4 Flow field around the blades

Relative Mach number contours and the pressure coefficient kp are shown in Figure 9.6 for
both the front and the rear rotors.

On the front rotor, for relative span R/Rf = 25%, a compression is observed near the
leading edge (x/c ≤ 0.2) of the suction side. The pressure coefficient is then almost constant
up to the trailing edge. For all relative spans, a small negative incidence is indicated by a
crossing in kp values of the front rotor, near the leading edge. This might indicate that either
the incidence of the blades or the rotation speed is not well adapted for this inflow condition.
The shock that was seen near the leading edge seems to change to a weak shock wave for higher
relative spans (R/Rf ≥ 50%). On the suction side of the blade, the pressure coefficient kp
increases such that for R/Rf ≥ 75%, a shock is observed on the suction side of the blade at
x/c ≈ 0.7.

On the rear rotor, the flow field seems to be better adapted to the inflow conditions. In
fact, no negative incidence is seen. A shock is observed at x/c ≈ 0.5 for all relative spans that
moves toward the trailing edge as for R/Rf = 90%, it is located at x/c ≈ 0.6. In fact, as
the relative span increases, the relative Mach number grows which explains the movement of
the shock toward the trailing edge. For R/Rf = 95%, no shock is seen but rather a smooth
compression of the flow. This is due to the leaving of rear rotor tip vortices that splits the
pressure gradient responsible for the shock. In fact a low velocity trace seems to indicate a tip
vortex. Globally, the pressure coefficients on the rear rotor have a higher integral, explaining
the higher thrust coefficients observed in Sec. 9.3.2.

To investigate the structure of the tip vortices, axial cuts of entropy made at planes P3,
P4, P5 and P6 are shown in Figure 9.7. One can notice that the vortices look much thinner
compared to the low-speed inflow condition ones. This is due to the staggering angle of the
blades. In fact, as the inflow Mach number is greater, the staggering angle should be decreased
so that an almost constant rotation speed can be kept. Therefore, projecting the tip vortices
on axial cuts will make the high-speed ones look thinner. Contrary to the low-speed inflow
condition, the trace of the front rotor tip vortices seen in plane P4 seems to pass above the
rear rotor tip vortices. This was also observed when looking at the radial profiles. This will
be deeply investigated with unsteady simulations in Sec. 9.5.
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Figure 9.6: High-speed isolated configuration: pressure coefficient and relative Mach number
contours at different radial position.
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(a) P3 (b) P4

(c) P5 (d) P6

Figure 9.7: High-speed isolated configuration: axial cut of entropy.
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9.4 A priori estimate of the required number of harmonics

9.4.1 Using the prediction tool

The prediction tool developed in Chap. 6 is used to estimate the number of harmonics needed
to compute this high-speed configuration. Seven harmonics are required to capture 99% of the
energy (Figure 9.8).
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Figure 9.8: High-speed isolated configuration: prediction of the number of harmonics needed
to simulate the configuration.

In the following, the HB N = 7 computation will be considered to be converged and
therefore used to analyze the unsteady flow physics that develops on this CROR configuration.

9.4.2 Analyzing the radial cut

The assessment of the convergence is done on radial cuts of entropy made at 75% of the height
of the rear rotor blade. No spurious entropy waves are seen in Figure 9.9, validating the
estimation of the number of harmonics needed, provided by the prediction tool. This gives us
confidence in the forthcoming results.

Figure 9.9: High-speed isolated configuration: analysis of the number of harmonics required
to capture the wake at a 75% height radial cut.

Page 155 of 186



9.5 Unsteady rigid-motion results

9.5.1 Similarity coefficients

The level of unsteadiness perceived by both rotors is reported in Figure 9.10 for the thrust co-
efficient. The envelop of the unsteadiness is ±1% on the front rotor and ±2% on the rear rotor.
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Figure 9.10: High-speed isolated configuration: unsteadiness seen by the rotors.

This has to be compared to the ±3h observed for both rotors on the low-speed configuration.
The amplitude of unsteadiness is doubled on the rear rotor, compared to the front rotor one,
meaning that the wake effects are much stronger than the potential ones when considering
the high-speed inflow condition. The analysis of the shape of the unsteady thrust coefficient
reveals that it is close to a sine shape function for the front rotor.

9.5.2 Two-dimensional results: harmonic blade response

To further analyze the unsteadinesses perceived by both rotors, a discrete Fourier transform
of the first harmonic of the static pressure of the opposite blade passing frequency is shown in
Figure 9.11. Note that the scale is different for the front and the rear rotors.

On the front rotor, the maximum amplitude is observed at the tip of the pressure side. This
is consistent with the observation made on the low-speed configuration, where the pressure
side was more exposed to pressure variations. In fact, the suction side is shielded from the
downstream disturbances by the blade angle of attack. The suction side is not only shielded
by the blade angle of attack but also by the shock that forms around x/c ≈ 0.7 for relative
span greater than 40%, as mentioned in Sec. 9.3.4. For relative span smaller than 40%, the
shock is closer the leading edge, hence the pressure unsteadiness going upstream. On the tip
of the front rotor blade, a vortex is formed that leaves the blades from the pressure side to the
suction side. It helps increasing the pressure on the suction side, alleviating the formation of
a shock. Therefore, at the tip of the blade, the pressure variations are observed all the way to
the leading edge.

On the rear rotor, the suction side of the blade shows a large structure of high unsteadiness
near the leading edge. This is attributed to the wake passing. In opposite, a large low amplitude
region is observed in the middle of the suction side of the blade. This is attributed to the
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Figure 9.11: High-speed isolated configuration: harmonic response of the front rotor blades.

shielding effect of the shock. In fact, the shock is a discontinuity that prevents unsteady effects
to affect the blade. On the pressure side, the level of unsteadiness is much larger than the
one observed on the low-speed configuration, relatively to the suction side level. Actually, the
smaller angle of attack of the blades might explain this high level. Similar as the suction side
of the front rotor blade that are shielded from potential effects coming from the rear rotor
blades, the pressure side is relatively less affected by the wake passing than the suction side
is. However, for the high-speed configuration, the angle of attack is smaller as said in Sec. 9.1.
Therefore, the unsteady effects hitting the suction side of the rear rotor blades are more prone
to affect the pressure side too. Moreover, as no shock is present on the pressure side, these
unsteadinesses affects the whole chord.

9.5.3 Two-dimensional results: axial cuts

Axial cuts of entropy are shown in Figure 9.12 for several axis positions and compared to steady
computation results. Clearly, the harmonic balance approach is able to transfer the tangential
distortions between the rows, allowing thus to capture the interaction of the front tip vortices
with the rear rotor blades. In this high-speed configuration, the front tip vortex does not
hit the rear rotor blades. The difference with the mixing plane approach is tremendous and
justifies the use of an unsteady approach over a steady one.

One can see that the prediction tool has provided the number of harmonics needed to
ensure the continuity of the tangential information at the rows interface. In fact, at the P4
plane, no spurious entropy waves are seen, giving us confidence in the unsteady results.
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Figure 9.12: High-speed isolated configuration: axial cuts of entropy.
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9.6 Aeroelastic results

9.6.1 Stability curve

The damping curves for the two modes of this high-speed configuration are shown in Fig-
ure 9.13. The damping is positive for all the inter-blade phase angles and modes, which clears
this configuration for flutter. In fact, the damping is around 2.1 and 0.35 for the torsional
mode and the flection mode, respectively. The torsional mode is much more damped than the
flection one. In opposite to the low-speed configuration, the variation range is similar for both
modes. The minimum damping is obtained for IBPA=30◦ for the 2F mode and IBPA=−30◦

for the 1T mode. To further analyze the aeroelastic behavior of the front rotor blades, the
local excitation is computed and analyzed in the section below.
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Figure 9.13: High-speed isolated configuration: integrated damping for modes 2F and 1T.

9.6.2 Local excitation

The local excitation is shown on the pressure side and the suction side of the front rotor blades
in Figure 9.14. It is the local damping given in each cell divided by the surface of the cell. It
is therefore expressed in m-2.

Firstly, the level of local excitation is larger for the 1T mode than it is for the 2F mode.
This is one explication for the difference in damping amplitude observed above. This can
be attributed again to the displacement related to the 1T mode. In fact, this mode has the
tendency to change the local angle of attack of the blade, yielding an unadapted inflow velocity.
This angle of attack drives, for the most part, the aerodynamic behavior around the blade.
Therefore, a small change in angle of attack can have a strong impact on the loading and
the local excitation might be emphasized. Compared to the low-speed configuration, the local
excitation is always positive on the leading edge of the blade, meaning that the change in
angle of attack and in dihedral angle for the torsional and the flection mode, respectively, is a
positive feature for the damping.

Secondly, the influence of the IBPA remains limited for the two modes. The global phe-
nomenology is kept unchanged even though the amplitude varies. For the torsional mode, the
local excitation of the tip of the blade seems to be sensitive to the IBPA. This is the tip vortex
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Figure 9.14: High-speed isolated configuration: local excitation for modes 2F and 1T.
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region, and advanced post-processing procedures might be required to fully understand the
behavior of local excitation near the tip of the blades.

Globally the shape of the local excitation contours is much more complicated on the high-
speed configuration compared to the low-speed one. In fact, not only the modes inflection lines
become inflection lines for the local excitation, but also the shock and the flow that develops
in the tip region are important.

9.6.3 Influence of the number of harmonics on the aeroelastic results

So far, all aeroelastic simulations have been carried out by using five harmonics. However,
the a priori estimator predicts that N = 7 harmonics are required to converge the unsteady
aerodynamic of the currently studied high-speed configuration (see Sec. 9.4.1). This means
that the high-speed aeroelastic computations might be under-resolved in terms of aerodynamic
frequencies as only five frequencies are used in total. Therefore, to assess the convergence of
the capture of the damping by the multi-frequential HB approach, four set of frequencies are
studied to run the HB computations on the second flection mode of the high-speed CROR
configuration. For each computation, the vibration frequency is considered with one to several
harmonics of the blade passing frequency of the rear rotor. As indicated in Sec. 3.5.3, several
approaches exist to truncate the frequency sets. Here, only the ”cross grid” truncation pattern
is used with only one aeroelastic frequency. The local excitation and damping results are shown
in Figure 9.15. Raising the number of harmonics of the rear rotor blade passing frequency
changes the damping by at-most 10% but the contours of the local excitation are kept nearly
unchanged. Only small differences are observed, that integrated produces the 10% observed
on the damping value. Further investigation of the convergence for the choice of frequencies
are needed, but this has not been done in this work.
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Figure 9.15: High-speed isolated configuration: convergence of local excitation and damping.
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Summary

The multi-frequential harmonic balance method along with a decoupled approach has been assessed on

a high-speed CROR configuration. The steady computations reveal highly non-linear features, namely

shocks. The prediction tool defined in Chap. 6 is then used to estimate the number of harmonics

required to simulate the configuration. Seven harmonics are needed for the high-speed configuration

whereas only four were required for the low-speed one for the same accuracy. With no need for trial

and error simulations to select the number of harmonics, results are shown to be consistent, namely

tip vortices and wake interactions are well captured. Aeroelastic simulations are then undertaken. The

results are scrutinized with focus on the integrated damping and the local excitation of the blades. This

configuration is shown to be flutter free, similarly to the low-speed one. The proposed methodology is

thus demonstrated to be able to tackle demanding industrial configurations.
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Conclusion

In the present PhD work, the Harmonic Balance (HB) approach is applied to aeroelastic sim-
ulations of a new type of aircraft engine: the Contra-Rotating Open Rotor (CROR). The
proposed methodology is first validated on analytical, linear and non-linear numerical test
problems in Chapter 4 . Two numerical issues are raised, which prevent the use of such an
approach on arbitrary aeroelastic configurations: the conditioning of the multi-frequential HB
source term and the convergence of the method. Original methodologies are developed to im-
prove the condition number of the simulations (Chapter 5 ) and to provide a priori estimates
of the number of harmonics required to achieve a given convergence level (Chapter 6 ). The
HB method along with a decoupled approach is then validated for a standard configuration
for turbomachinery aeroelasticity in Chapter 7 . The results are shown to be in good agree-
ment with the experimental data. The applicability of the method is finally demonstrated for
aeroelastic simulations of CROR configurations in Chapter 8 and Chapter 9 .

Summary of the results

On the conditioning of multi-frequential harmonic balance methods

When the considered unsteadiness is related to a single frequency and its harmonics (i.e. peri-
odic signal), Fourier analysis leads to a natural choice for the time instants needed to compute
the source term: they are evenly spaced over the period. In this case, the mathematical prob-
lem is numerically well-defined, meaning that the conditioning of the operators ensures the
stability of the approach. In opposite, when several arbitrary frequencies are considered (i.e.
almost-periodic signal) the multi-frequential HB approach is required and its source term can
be ill-conditioned.

As shown in Chapter 5 , the time sampling has a major effect on the stability of the
multi-frequential HB method, due to the condition number of the discrete Fourier transform
matrix. One way to tackle this issue, is to consider a non-uniform time sampling along with
an algorithm to properly choose the time instants as proposed by Guédeney [43]. The Almost-
Periodic Fourier Transform algorithm (APFT), originally developed by Kundert et al. [65] and
implemented by Guédeney [43], is shown to improve the discrete Fourier transform matrix
condition number. However, for segregated frequencies, this condition number is shown to
remain too large to be used within an industrial context.

As the aeroelasticity of CROR configurations is by essence composed of segregated frequen-
cies, improved algorithms are needed to circumvent this difficulty. This is why, a gradient-based
OPTimization algorithm (OPT) has been developed in the current work. It directly minimizes
the condition number thanks to a gradient-based optimization method. This approach has
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been proven to give a condition number that is always close to unity (i.e. the theoretical lower
bound) for any input frequencies, thus alleviating the stability issues encountered for arbitrary
multi-frequential HB computations. This is a pre-processing procedure that takes less than a
minute. Therefore, the non-uniform time sampling proposed by Guédeney [43] used together
with the OPT algorithm developed in the present contribution enables to tackle problems with
large frequency separation or large unsteadinesses, namely CROR aeroelasticity simulations
can be considered. This work has been published in

T. Guédeney, A. Gomar, F. Gallard, F. Sicot, G. Dufour, and G. Puigt. Non-Uniform

Time Sampling for Multiple-Frequency Harmonic Balance Computations. Journal of Com-

putational Physics, 236:317–345, March 2013

On the convergence of Fourier-based time methods

Efficiency of Fourier-based time methods results from a trade-off between accuracy and costs re-
quirements. On one hand, the accuracy depends on the number of harmonics used to represent
the frequency content of the time signal; on the other hand, computational costs and memory
consumption of the computations also scale with the number of harmonics. The problem is
that this number is configuration-dependent. Studies on the convergence of Fourier-based time
methods for turbomachinery simulations have been previously reported in the literature, but
with scattered results. For instance, using a frequency-domain approach, Vilmin et al. [108]
obtain accurate solutions using 5 harmonics for a compressor stage and 3 harmonics for a cen-
tripetal turbine stage. For a transonic compressor stage with forced blade vibration, Ekici [28]
use up to 7 harmonics with a time-domain harmonic balance approach. Finally, for a subsonic
compressor stage, Sicot et al. [93] report that 4 harmonics is the minimal requirement to prop-
erly capture wake interactions. Moreover, a high number of harmonics (� 10) can prevent
the use of such an approach, as it might be more expensive than a classical time-marching
approach. This is particularly true on CROR configurations where the number of harmonics
needed to reach convergence has been shown to be greater than ten on some configurations, as
shown by François [34].

In Chapter 6 we investigated the accuracy and convergence properties of Fourier-based time
methods. It is highlighted that the convergence rate of these methods, in terms of harmonics
required to describe the solution with a given level of accuracy, depends on the spectral content
of the solution itself: Fourier-based time methods are particularly efficient for flow problems
characterized by a narrow Fourier spectrum.

We showed that the most impulsive source of unsteadiness in turbomachinery flows is due
to the generation of wakes in a relative motion. Lakshminarayana and Davino [67] showed that
a wake can be empirically approximated by a Gaussian function. The Fourier transform of a
Gaussian function being analytical, a truncation error has been defined. Based on this last,
we showed that the narrower the wake, the larger the Fourier spectrum, which finally results
in a slower convergence of Fourier-based time methods.

In addition to that, we showed on a turbomachinery model problem, that the analytical
truncation error can be a priori estimated using a mixing-plane steady computation. Apply-
ing the a priori error estimate to the steady computation of any turbomachinery configuration
provides the number of harmonics required to achieve a given level of convergence. It encom-
passes both the wake distortions and also any tangential disturbances, as for instance the tip
vortices or the viscosity effects near the hub. We finally stressed that a 99% accumulation
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of energy is a good threshold that ensures the continuity of the tangential distortions at the
rows interfaces. Finally, this allows to a priori estimate the number of harmonics required to
simulate a given turbomachinery configuration. This work has been submitted for publication
in

A. Gomar, Q. Bouvy, F. Sicot, G. Dufour, P. Cinnella, and B. François. Convergence

of Fourier-based time methods for turbomachinery wake passing problems. Journal of

Computational Physics, minor revisions in April 2014

This preliminary step has a negligible cost compared to the overall HB simulation, since the
steady computation is classically used to initialize the unsteady run, and extraction of energy
accumulation across span takes less than a minute on a single processor. The capability of the
tool to estimate the number of harmonics needed to converge an HB computation is verified
on the industrial low-speed CROR configuration studied in Chapter 8 and used to predict the
required number of harmonics on the high-speed CROR configuration studied in Chapter 9 .

On the validation of the harmonic balance approach for aeroelastic simula-
tions

In Chapter 7 , the proposed decoupled approach along with an HB approach has been validated
on the 11th standard aeroelastic turbomachinery configuration. The results show that the HB
approach provides local and global results close to the reference time-marching scheme with
only N = 1 harmonic in the time period. Moreover, the results are in good agreement with the
experimental data and with the results found in the literature, validating the current approach.
At the cost of a memory increase (roughly equal to the number of instants used in the HB
simulations), the computational saving is seven for this particular case compared to a phase-lag
approach combined with a time-marching scheme. This work has been published in

F. Sicot, A. Gomar, G. Dufour and A. Dugeai. Time-Domain Harmonic Balance Method

for Turbomachinery Aeroelasticity. AIAA Journal, 52(1):62–71, January 2014

Merging conclusions: the aeroelasticity of contra-rotating open rotors

The three elementary studies summarized above are finally used together to simulate the
aeroelasticity of CROR configurations. A low-speed (Chapter 8 ) and a high-speed (Chapter 9 )
CROR configurations are assessed. First, the steady results are analyzed to provide insight into
the flow physics and give confidence in the results. The prediction tool defined in Chapter 6 is
then used to estimate the number of harmonics required to simulate the unsteady rigid-motion
response of the CROR using the HB approach. The results are analyzed to give the reader a
global overview of the unsteady phenomena that will participate to the aeroelastic response of
the CROR. Aeroelastic simulations are then launched using the decoupled approach that has
been validated in Chapter 7 . As the aeroelastic frequencies of the modes and the blade passing
frequencies are not harmonically related, the OPT algorithm developed in Chapter 5 is used
to ensure a good conditioning of the multi-frequential HB source term. The results are finally
assessed by post-processing the integrated damping and the local excitation of the blades.
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Future work

Toward the applicability of Fourier-based time methods to installed contra-
rotating open rotors

The multi-frequential HB approach enables new kinds of applications. In particular, the con-
figuration of pusher CROR with a pylon becomes possible. In fact, a mono-frequential HB
approach can not be used on such a configuration as the sandwiched row will see upstream
and downstream blade passing frequencies that are not multiple integers, hence the need for
the multi-frequential HB approach. This might be a very efficient approach as full annulus
strategies that are commonly used in the literature to simulate such configurations (see for
instance Stuermer [100]) are very expensive.

A pylon/rotor/rotor configuration shown in Figure 9.16(a) has been studied during this
work, but is not reported. In fact, a preliminary steady mixing-plane simulation has been
launched and the prediction tool developed in Chapter 6 has been used to estimate the number
of harmonics needed to capture the distortions shed by the pylon. The result is indisputable:
on this particular configuration, up to 300 harmonics are required to capture 99% of the energy
on the whole span (Figure 9.16(b)). This is due to the thin relative thickness of the wake shed
by the pylon. The span being given relative to the front rotor height, one can argue that ”only”
150 harmonics are needed to capture the pylon wake in the front rotor region.
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Figure 9.16: Number of harmonics required to compute an installed contra-rotating open rotor
configuration.

For such impulsive unsteady signals, the Fourier basis is not optimal as shown in Chapter 6 .
Li et al. [69] propose a wavelet-balance approach to solve this type of large spectrum signals.
This solution sounds promising and should be tested on wake signals to see if these can be
captured using a low number of wavelet functions.

Ferrante et al. [33] used a multi-frequential Fourier-based time method to investigate inci-
dence effects on the noise emission of a CROR. This sort of application is a good candidate for
the multi-frequential HB approach as the full annulus distortion is more likely to be close to
a sine function which requires few harmonics to be captured. The advantage of the prediction

Page 168 of 186



tool developed in the current work is that it can be used on any steady computation to a priori
estimate the number of harmonics required to simulate the configuration. As such, it helps
choosing whether or not a Fourier-based time method might be more efficient than a classical
time-marching approach.

Toward accurate aeroelastic simulations of contra-rotating open rotors

In this work, a numerical approach has been developed to simulate the aeroelasticity of CROR
configurations. Only the flutter of the front rotor blades has been investigated. The rear rotor
one remaining to be studied. In particular, the wakes that are shed from the front rotor might
lead to exceeding level of local excitation on the rear rotor, hence its importance.

In addition to that, forced response simulations are needed to evaluate the vibration level
of the rear rotor blades as it might lead to structural fatigue. The problem is that the proposed
approach is decoupled meaning that the forced response can not be computed as the change
in amplitude due to the fluid response is of prior importance. Therefore, a strong-coupling
approach is required. However, using a classical time-marching approach can be tedious as time
scales of the physical and the mechanical problems are scattered. One elegant approach might
be to consider the multi-frequential HB approach for both the fluid and the structure [87].
As the method is based on Fourier coefficients, exchanging them for different time scales is
compatible. This work is currently conducted by Cadel [11].

Another point of interest might be the choice of frequencies for the multi-frequential har-
monic balance approach. In fact, it has been partially assessed in this work and further
investigations need to be conducted. In particular, the influence of the vibration on the aero-
dynamic of the opposite blade should be taken into account and also its influence back to the
vibrating blade [49, 96].
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Chapter A

Detailed algorithm to compute the convergence criteria

A.1 Detailed algorithm to compute ε1

A sketch of the steps used to evaluate ε1 from a computation is shown in Figure A.1. Two
azimuthal lines are extracted in the stator and in the rotor respectively (step 1©). These are
duplicated using the phase-lag condition to retrieve the full 2π signal in both blocks. The
axial momentum ρU variable is analyzed. The main advantages of this variable are that it is
a representative variable for the wake, it is a conservative variable of the considered governing
equations and finally, it is invariant under a change of reference frame, unlike the relative
velocities for instance. Then, an azimuthal Fourier transform, denoted Fθ, is carried out on
each azimuthal 2π signals and gives the frequency content of the wake in both the stator and
the rotor (step 2©).

θ

ff0 3f0 5f0 7f0

Fθ

stator

rotor

1©

2©

ρ̂U

rotor

stator

ρU

dref /5

Figure A.1: Sketch of the steps needed to compute the first error quantification ε1.

However, due to the time interpolation between the two rows achieved at the interface,
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spurious effects can appear upstream the interface as shown in Figure A.2. The effects of the
rotor block are significant on the closest cells to the interface for the N = 5 computation and
still appear on the very lasts cells before the interface for the N = 10 computation. They
have disappeared when using N = 15 harmonics. To lessen the influence of this interpolation,
and thus the spurious effects, the extraction of the axial momentum is not performed at the
closest cell to the interface. If dref is the axial length of a block, the extraction is achieved at
dref/5 of the interface upstream and downstream the stator and rotor block, respectively. It
represents six time the length of a cell in the axial direction. As the governing equations are the
Euler ones, there is no significant variation of the wake thickness within six cells, supporting
this approach. Moreover, preliminary studies have shown that dref/5 is sufficient to lower the
spurious effects while keeping the results consistent.

rovx / rovx_inf: 0.70 0.71 0.72 0.74

(a) N = 5

rovx / rovx_inf: 0.70 0.71 0.72 0.74

(b) N = 10

rovx / rovx_inf: 0.70 0.71 0.72 0.74

(c) N = 15

Figure A.2: Occurrence of spurious effects upstream the interface between stator and rotor
blocks for a L = 5% wake width.

A.2 Detailed algorithm to compute ε2

The steps to compute the second error quantification for each of the 375 computations, are
schematically shown in Figure A.3. An azimuthal line is extracted in the stator domain, nearby
the interface (step 1©), like for the first error quantification. Contrary to this last, in the rotor
block, a time probing is done at one point giving an unsteady time signal of ρU(t) (step 1©′).
The azimuthal signal is duplicated using the phase-lag condition to retrieve the full 2π signal.
The temporal and spatial signals are then Fourier transformed so that their spectrum can
be compared (step 2©). The wake extraction is performed at the same axial distance of the
interface as for the first error quantification. In this case, the location of the point in the
rotor block has a direct impact on the results especially when the wake is under-resolved. To
highlight this impact, the temporal Fourier transform is evaluated at two different locations
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Figure A.3: Sketch of the steps needed to compute the second error quantification.

called loc 1 and loc 2. The two points are separated by a distance ∆θloc1−loc2 = dref/10 in the
azimuthal direction, as shown in Figure A.3.
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A.3 Detailed algorithm to the tangential accumulated energy
from a mixing plane computation

Figure A.4 shows the different steps: firstly, the row interface is extracted from a mixing-
plane computation. Secondly, using this interface, the axial momentum is extracted for several
spanwise positions in the region of interest (step 1©). In a CROR configuration this is the region
with a relative span ranging between 0% and 120%. In fact, beyond the 120% threshold, the
influence of the blades on fluid unsteadiness decreases rapidly such that the fluid has a narrow
spectrum as the whole spectrum energy lies in, at most, the first three harmonics. Then, for
each radius, an azimuthal Fourier transform is performed to obtain the tangential spectrum of
the axial momentum (step 2©). The relative cumulative energy for a given number of harmonic

θ

ρU

Fθ

for each radii

ff0 3f0 5f0 7f0

ρ̂U

row interface

1© 2©

Figure A.4: Steps for the prediction tool based on an azimuthal Fourier transform of the axial
momentum at the rotor/rotor interface.

N is then defined as:

E(N) =

∑N
k=1

[
ρ̂U

θ
(k)
]2

∑∞
k=1

[
ρ̂U

θ
(k)
]2 , (A.1)

where ρ̂U
θ

denotes the axial momentum spectrum extracted from the rows interface plane. In
Eq. (A.1), the cumulative energy up to harmonic N is compared to the total energy.
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Blade-Row Interaction. La Recherche Aérospatiale, 5:69–73, 1991. Cited in page 39

[38] J. W. Gibbs. Fourier’s Series. Nature, 59(1539):606, April 1899. doi: 10.1038/059606a0. Cited in page
80

[39] A. Gomar, Q. Bouvy, F. Sicot, G. Dufour, P. Cinnella, and B. François. Convergence of Fourier-based
time methods for turbomachinery wake passing problems. Journal of Computational Physics, submitted
in December 2013. Cited in pages xiii, 79, and 167

[40] A. Gopinath and A. Jameson. Time Spectral Method for Periodic Unsteady Computations over Two-
and Three- Dimensional Bodies. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA,
January 2005. doi: 10.2514/6.2005-1220. Cited in pages 36, 40, and 106

[41] A. Gopinath and A. Jameson. Application of the Time Spectral Method to Periodic Unsteady Vortex
Shedding. In 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 2006. doi:
10.2514/6.2006-449. Cited in pages 40 and 45

[42] A. Gopinath, E. van der Weide, J. J. Alonso, A. Jameson, K. Ekici, and K. C. Hall. Three-Dimensional
Unsteady Multi-Stage Turbomachinery Simulations using the Harmonic Balance Technique. In 45th

AIAA Fluid Dynamics Conference and Exhibit, Reno, NV, USA, 2007. doi: 10.2514/6.2007-892. Cited
in pages 37, 38, 39, 70, 72, and 75

[43] T. Guédeney. Modélisation des interactions rotor-stator par une méthode d’équilibrage harmonique. PhD
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METHODE D’ÉQUILIBRAGE HARMONIQUE MULTI-FRÉQUENTIELLE  
POUR LA SIMULATION DES DOUBLETS D’HÉLICES CONTRA-ROTATIVES : 

APPLICATION À L’AÉROÉLASTICITÉ 
 

RESUME : La mécanique des fluides numérique a permis d'optimiser de nombreux systèmes dont, 
notamment, les moteurs d'avions. Dans l'industrie aéronautique, les calculs numériques d'écoulements 
sont principalement limités à des approches stationnaires de par le "#$% prohibitif des simulations 
instationnaires. Néanmoins, les écoulements qui se développent dans les machines tournantes, à savoir 
les principaux composants d'un moteur d'avion, sont majoritairement périodiques en temps. En partant de 
cette hypothèse de périodicité temporelle, des approches dites spectrales en temps ont vus le jour il y a 
plus de quinze ans. Elles restent principalement limitées à des écoulements mono-fréquentiels, à savoir 
composés d'une seule fréquence de base et de ses harmoniques. Récemment, une méthode d’équilibrage 
harmonique multi-fréquentielle a été développée et implémentée dans le code de calcul elsA, élargissant 
le champ des applications possibles. En particulier, l'étude de l'aéroélasticité des machines tournantes 
multi-étagées devient alors envisageable. 

Cette thèse se propose d'appliquer la méthode d’équilibrage harmonique multi-fréquentielle pour étudier 
l'aéroélasticité d'une configuration nouvelle de moteur d'avion: les doublets d'hélices contra-rotatives. La 
méthode est tout d'abord validée analytiquement et numériquement sur des cas tests linéaires et non-
linéaires avec succès. Deux problèmes sont soulevés pour l'utilisation d'une telle méthode sur des 
configurations aéroélastiques arbitraires: le conditionnement du terme source et la convergence de la 
méthode. Des approches originales ont été développées afin d'améliorer le conditionnement et de fournir 
une estimation a priori du nombre d'harmoniques nécessaire pour obtenir un certain niveau de 
convergence. La méthode d’équilibrage harmonique est ensuite validée sur un cas standard 
d'aéroélasticité des machines tournantes et montre des résultats très proches de ceux expérimentaux. 
L'applicabilité de la méthode est finalement démontrée pour la simulation de l'aéroélasticité des doublets 
d'hélices contra-rotatives. 

Mots clés : Approche spectrale en temps, Doublet d'hélices contra-rotatives, Aéroélasticité, Équilibrage 
harmonique, Multi-fréquentiel 

MULTI-FREQUENTIAL HARMONIC BALANCE APPROACH  
FOR THE SIMULATION OF CONTRA-ROTATING OPEN ROTORS : 

APPLICATION TO AEROELASTICITY 
 

ABSTRACT: Computational Fluid Dynamics (CFD) has allowed the optimization of many configurations 
among which aircraft engines. In the aeronautical industry, CFD is mostly restricted to steady approaches 
due to the high computational cost of unsteady simulations. Nevertheless, the flow field across the rotating 
parts of aircraft engines, namely turbomachinery blades, is essentially periodic in time. Years ago, Fourier-
based time methods have been developed to take advantage of this time periodicity. However, they are, 
for the most part, restricted to mono-frequential flow fields. This means that only a single base-frequency 
and its harmonics can be considered. Recently, a multi-frequential Fourier-based time method, namely the 
multi-frequential Harmonic Balance (HB), has been developed and implemented into the elsA CFD code, 
enabling new kinds of applications as, for instance, the aeroelasticity of multi-stage turbomachinery.  

The present PhD thesis aims at applying the HB approach to the aeroelasticity of a new type of aircraft 
engine: the contra-rotating open rotor. The method is first validated on analytical, linear and non-linear 
numerical test problems. Two issues are raised, which prevent the use of such an approach on arbitrary 
aeroelastic configurations: the conditioning of the multi-frequential HB source term and the convergence of 
the method. Original methodologies are developed to improve the condition number of the simulations and 
to provide a priori estimates of the number of harmonics required to achieve a given convergence level. 
The HB method is then validated on a standard configuration for turbomachinery aeroelasticity. The results 
are shown to be in fair agreement with the experimental data. The applicability of the method is finally 
demonstrated for aeroelastic simulations of contra-rotating open rotors. 

Keywords: Fourier-based time method, Contra-rotating open rotor, Aeroelasticity, Harmonic balance, 
Multi-frequential 
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