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Abstract

Network tomography is the study of a network’s traffic characteristics using measures.
This subject has already been addressed by a whole community of researchers, espe-
cially to answer the need for knowledge of residential Internet traffic that ISPs have to
carry. One of the main aspects of the Internet is that it evolves very quickly, so that there
is a never ending need for Internet measurements. In this work, we address the issue
of residential Internet measure from two different perspectives: passive measurements
and active measurements.

In the first part of this thesis, we passively collect and analyse statistics of residen-
tial users’ connections spanning over a whole week. We use this data to update and
deepen our knowledge of Internet residential traffic. Then, we use clustering methods
to form groups of users according to the application they use. This shows how the vast
majority of customers are now using the Internet mainly for Web browsing and watching
video Streaming. This data is also used to evaluate new opportunities for managing the
traffic of a local ADSL platform. As the main part of the traffic is video streaming, we
use multiple snapshots of packet captures of this traffic over a period of many years
to accurately understand its evolution. Moreover we analyse and correlate its perfor-
mance, defined out of quality of service indicators, to the behavior of the users of this
service.

In the second part of this thesis, we take advantage of this knowledge to design a new
tool for actively probing the quality of experience of video streaming sites. We have
modeled the playback of streaming videos so that we are able to figure out its quality as
perceived by the users. With this tool, we can understand the impact of the video server
selection and the DNS servers on the user’s perception of the video quality. Moreover
the ability to perform the experiments on different ISPs allows us to further dig into the
delivery policies of video streaming sites.
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Résumé

Le domaine de la mesure des caractéristiques du trafic transitant sur un réseau a été
largement traité par une vaste communauté de chercheurs, en premier lieu pour ré-
pondre aux attentes des opérateurs fournisseurs d’accès à Internet. En effet, leur pre-
mière préoccupation est de savoir quel type de trafic ils doivent transporter. Une des
principales caractéristiques de l’Internet est qu’il évolue très vite, de sorte que le besoin
de mesures du trafic grand public ne se tarit jamais. Dans ce travail, nous abordons la
question de la mesure du trafic Internet grand public par deux perspectives différentes :
les mesures passives et les mesures actives.

Dans la première partie de cette thèse, nous capturons et analysons passivement les
statistiques des connections d’utilisateurs d’Internet durant plus d’une semaine. Nous
utilisons ces données pour réviser et approfondir notre connaissance du trafic Inter-
net résidentiel. Ensuite, nous utilisons des méthodes de regroupement pour créer des
ensembles d’utilisateurs en fonctions des applications qu’ils utilisent. Nous apprenons
donc qu’une vaste majorité des clients se connectent à Internet principalement pour
surfer sur le Web et regarder des vidéos en streaming. Ces données nous servent aussi
à évaluer de nouvelles possibilités de contrôler le trafic d’une plateforme ADSL. Comme
la principale partie du trafic provient du vidéo streaming, nous prenons plusieurs instan-
tanés de ce trafic avec des captures paquet durant une période de plusieurs années,
ceci pour comprendre précisément l’évolution de ce trafic. De plus, nous analysons et
relions la performance du vidéo streaming, définie par des indicateurs de qualité de
service, au comportement des utilisateurs de ce service.

Dans la deuxième partie de cette thèse, nous tirons parti de cette connaissance pour
concevoir une sonde active capable de mesurer la qualité d’expérience des sites de
vidéo streaming. Nous avons modélisé la lecture des vidéos streaming pour pouvoir
déterminer leur qualité telle qu’elle est perçue par les utilisateurs. Grâce à cet outil,
nous pouvons comprendre l’impact de la sélection du serveur vidéo et du serveur DNS
sur la perception de la qualité vidéo par l’utilisateur. De plus, la possibilité de réaliser des
mesures depuis divers opérateurs, nous permet de détailler les politiques de distribution
vidéo utilisées par les sites de streaming.
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CHAPTER1
Introduction

Dessine-moi un mouton !1

Antoine de Saint-Exupéry,
Le Petit Prince

1.1 Network Measurement: Tomography

Internet measurement can be undertaken at different levels: from an end-user computer
to a router of the core network. The amount of data collected is thus a trade-off between
the precision and the storage (or analysis) capacity of the system. A very coarse view
of a system can be given by the count of the total amount of bytes or packets transiting
through a network interface, this is a typical setup for routers transmitting Giga-Bytes
of traffic per second. The most precise measurement is packet level trace and is usu-
ally captured through dedicated software. The data measurement setup should not be
determined by the capacity of the probe but by the precision of analysis required.

The methodology of capture is as important as the data collection: actively requesting
a server vs. passively duplicating Internet packets are two completely different methods
that do not share the same objectives. Active probing can be used to measure how
a service is accessed or what is its performance on a specific setup. On the contrary,
passive measurements are usually taken at a much larger scale, but at the cost of losing
the ability to customize the requests. Passive captures are used to understand what is
actually happening on the monitored network.

The purpose of network tomography is not only to collect data, but to understand it.
Usually, it imply evaluating the performance of an Internet connection. Internet perfor-
mance can have many definitions depending on the point of view:

• at router scale, the drop rate of packets (independently of the connection) is the
main indicator;

1Draw me a sheep – my translation

1



2 CHAPTER 1. INTRODUCTION

• on a transit link, the load of the link is of primary interest;

• for an ISP, the global load of a local platform determines not only the satisfaction
of its customers, but also the need of upgrading the hardware;

• for a Web user, the delay encountered while accessing it favorite website is the
only satisfaction measure;

• whereas a P2P user shall be mainly interested in the total throughput achieved
for its file transfers;

• finally, a TCP expert can define the performance of a connection as the ratio of
desequenced packets without retransmission only during bulk transfer periods.

Here again the definition of performance should be taken according to the goal of the
analysis and not to some pre-computed available metrics.

1.2 ISP Motivation

Internet Service Provider provide a so-called best-effort service: their first goal is to
transmit packets between their customers and other machines on the Internet. Many
factors have an impact on the customers connections:

• the access network capacity (and also collection infrastructure: ATM vs. GE);

• the ISP network from the access collection point towards the destination of the
connection;

• the link capacity between the ISP and the next AS towards the destination;

• the routing policies between all the ASes through which the packets will transit
until the destination.

Only some of these factors can be controlled by ISPs. Nevertheless, the main protocol
used to transmit packets over the Internet is TCP which is an end-to-end protocol. This
means that the packet analysis of a connection (at any point of measure) can give useful
information on the path capacity and the resulting performance from the end-user point
of view.

The motivation of an ISP is to give the best performance to its customers at a given
cost (both for its own infrastructure and the peering agreements with other ASes). The
use of different methods of measurement and analysis, as presented in this thesis, is
thus of primary interest for ISPs. This can lead to new ways of managing the traffic
ranging from local platform load management to TCP configuration according to the
service accessed.
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1.3 Organisation of the Thesis

The two main parts of the thesis are based on the choice of the measurement method:
passive in Part I vs. active in Part II.

We first give the context and related work on passive measuring the Internet in Chap. 2.
The passive measurement studies in Part I benefits from data collected from many
different sources and at very different scale. For Chap. 3, we have analysed connection
statistics over more than a week for 3 local ADSL platforms. This gives us many insights
on the applications used2 and the performance of 4,000 different users. We also use
this information to evaluate innovative ways of managing a local platform. In Chap. 4,
we use multiple packet level traces of all users of a local ADSL platform during short
time spans (1 hour) to focus on HTTP Streaming performance. This data has been
collected over a period of three years. We show how the network conditions influence
the behavior of users watching streaming videos. We conclude Part I in Chap. 5.

The challenges and related work on how to actively measure the Internet are given in
Chap. 6. The active measurements presented in Chap. 7 have been collected by a
new tool measuring the quality of experience of YouTube videos. We have collected
data from many volunteers around the world, and also analysed data from a laboratory
connected to the Internet through multiple ISPs. From this data, we figure out the main
causes of perturbations of the end-user perceived quality. The main message is that
link cost and ISP dependent policies have much more impact on the quality than usual
quality of service metrics. Moreover, the access capacity on ADSL (and even more on
FTTH) is no more a bottleneck in the access of video streaming service. We conclude
Part II in Chap. 8.

Finally a conclusion of the thesis is given in Chap. 9.

2and which applications are used in parallel
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CHAPTER2
Passive Measurements Context

and Methods

We don’t see things as they are, we see them

as we are.

Anaïs Nin

Monitoring what is happening in a network (or on a link) without perturbing the traffic
is of primary interest for an ISP. It gives the opportunity to understand and plan the
development of the traffic transiting through its network. Nevertheless, if an operator
would like to have a complete view of all its customers, the amount of data to capture
can quickly become huge. Thus methods are used to reduce the data necessary to
fit in the evolution of traffic. In this part, we focus on data collected from an ISP at a
local platform level. We shall study in detail connection level statistics over a timescale
of a week in Chap. 3. This will give us an updated view of the actual traffic generated
by residential users. We shall learn how streaming traffic (and especially video clips)
is nowadays the main application in terms of downstream volume. In Chap. 4, we use
packet level traces during short timescale to precisely measure what is the performance
of video streaming traffic and to determine the impact of the quality of service on the
usage of video streaming.

In this chapter, we first recall main methods and tools used to passively capture Internet
traffic in Sect. 2.1. In Sect. 2.2, we expose a summary of the main results of Part I and
position our work in the passive measurements area. Finally, in Sect. 2.3, we review
relevant related work focusing particularly on video streaming as it is one of the main
focus of this thesis.

2.1 Methods and Tools for Passive Measurements

The first method to monitor Internet traffic is to collect statistics on the border routers of
the entity that would like to monitor its network. This is usually done through inquiry on
SNMP counters of routers or switches. These measures are used to get a broad view

7
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and no precise information can be expected from this data. Indeed, precise evaluation
of the Internet traffic needs the concept of a connection (also called flow). Traffic
monitoring literature defines a connection as an aggregation of packets identified by
the same five tuple consisting of source and destination IP addresses, IP protocol,

source and destination port numbers (for TCP and UDP only).

The next step towards precise measure of the traffic transiting through large routers is
arguably Netflow records. Even though Netflow is originally a Cisco product, it is now
recognised as a standard for traffic monitoring. Netflow records identify a connection
as the standard five tuple plus the ingress interface and the IP type of service: this
leads to unidirectional connections. Large routers give processing priority to the packet
routing over the collection of Netflow records, thus random packet sampling was intro-
duced in the collection process: only 1 packet out of n (usually n = 1000) is recorded.
The accuracy and implication of this method has been studied in a large number of
studies [31, 16, 11, 21, 7]. . . The main impact of this sampling is that it gives more
importance to large flows (more likely to be caught by sampling) over small ones [12].
The large connections have been called elephants and small ones mice [6], and a whole
taxonomy of Internet flows has thus been derived [9, 5].

To overcome the limitation of packet sampling, many researchers have developed ded-
icated probe to capture the Internet traffic The most popular packet capture softwares
are tcpdump [52] and Wireshark [56]. They are based on the libpcap [32] C library,
which is also the basis of many dedicated capture softwares (such as those devel-
oped by ISPs). Even if in this thesis our passive capture tool is a private one, many
other good software to passively capture Internet packet are freely available [54, 50].
Dedicated hardware (such as Endace Dag cards [17]) can be used to cope with large
amount of packets arriving at an interface, they also improve the precision of packet
timestamping (which is useful to compute accurate performance indicators).

Once the question of how to capture has been resolved, the next question is: “Where
to capture?” This is a crucial issue as the results drawn out of the measurements
will highly depend on it. Many measurement studies are based on PlanetLab [38] or
on Universities campuses (mainly in the US.). Even if modeling Internet connections
can be done through this kind of measures, the lack of some applications (e.g. P2P,
enterprise specific. . . ) induce a large bias in the results. For ISPs, it’s even more
important to have data from residential customers, and this data has to come from a
similar country (from geographic and linguistic point of view) to be transposable.

The last question to address is: “What to capture?” Here again a trade-off has to be
chosen between capturing more data for a shorter period of time, or having a long term
analysis but reducing the scale of data captured.

Once we have collected data, the question of privacy arise. In the case of ISPs, we
do not want (nor have the right to) divulge the contents of the packets transmitted.
Nevertheless, if we take the analogy between a packet and a post letter, we focus only
on the details given on the envelop (including TCP sequence number if needed) and not
on the contents (the payload of a data packet). In the same problematic, anonymisation
concerns have to be taken into account.
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2.2 Contributions

In Part I of the thesis, we use passive captures from residential customers in France.
The data has been collected on a local platform aggregation point, namely at BAS
(Broadband Access Server) level. We have used internally developed dedicated probes
geographically distributed over France, and we have seen that the data is coherent
between probes. This allows us to focus on a small number of different probes (three
in Chap. 3, and two in Chap. 4). We analyse a week long of connection statistics
in Chap. 3. This data offers a fresh view on what are the components of residential
traffic nowadays. Whereas in Chap. 4, we take into account only Streaming traffic at
packet level during snapshots of one hour. Nevertheless, we have performed multiple
measurements campaigns that allows us to follow the evolution of Streaming traffic over
a time span of three years.

2.2.1 Analysis of one week of ADSL connections

In Chap. 3, we analyse the TCP traffic during one week of 3 ADSL platforms each con-
necting more than 1,200 users to the Internet. We use connection statistics enhanced
with a Deep Packet Inspection (DPI) tool to recognise the application. Top applications
(Streaming, Web, Download and P2P) have the same volume and the same rank over
days and probes in our data. The detail for each application is given, this gives us in-
sights on what sub-class of application carries most of the bytes or the type of traffic
generated. The ability to identify users allows us to follow their behavior independently
of IP address churn, and the performance indicators helps us to better understand how
the applications behave. The difference of traffic patterns between working days and
week-end days is also studied.

The clustering analysis allows us to understand the application mix of users: the surge
of plenty of customers using only Web and Streaming is quantified. Moreover, we
explore the possibility to change the timescale of analysis. Our results shows that, if
well chosen (namely during busy periods), a snapshot of one hour of traffic can be
as representative as a whole week. Top 20 users (in terms of volume) have quite a
specialized application mix, and their share of the platform load is about 10 times more
than the average.

We also address the question of local platform dimensioning. We perform some sim-
ulation to show how a well chosen rate limit policy could reduce peak rate at a very
moderate impact for the users.

2.2.2 HTTP Video Streaming Performance

Chapter 4 investigates HTTP streaming traffic from an ISP perspective. As streaming
traffic now represents nearly half of the residential Internet traffic, understanding its
characteristics is important. We focus on two major video sharing sites, YouTube and
DailyMotion.
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We use eight packet traces from a residential ISP network, four for ADSL and four for
FTTH customers, captured between 2008 and 2010. Covering a time span of three
years allows us to identify changes in the service infrastructure of some providers.

From the packet traces, we infer for each streaming flow the video characteristics, such
as duration and encoding rate, as well as TCP flow characteristics: minimum RTT, mean
and peak download rates, and mean loss rate. Using additional information from the
BGP routing tables allows us to identify the originating Autonomous System (AS). With
this data, we can uncover: the server side distribution policy (e.g. mean or peak rate
limitations), the impact of the serving AS on the flow characteristics and the impact of
the reception quality on user behavior.

A unique aspect of our work is how to measure the reception quality of the video and
its impact on the viewing behavior. We see that not even half of the videos are fully
downloaded. For short videos of 3 minutes or less, users stop downloading at any
point, while for videos longer than 3 minutes, users either stop downloading early on or
fully download the video. When the reception quality deteriorates, fewer videos are fully
downloaded, and the decision to interrupt download is taken earlier.

We conclude that

(i) the video sharing sites have a major control over the delivery of the video and its
reception quality through DNS resolution and server side streaming policy,

(ii) that the server chosen to stream the video is often not the one that assures the
best video reception quality.

2.3 Related Work

After a very brief review of passive measurements works, we focus on HTTP Streaming
studies as most of our contributions focus on this traffic.

2.3.1 Network Tomography

Network tomography is a large domain and the relevant publications are numerous. The
most authoritative reference is the “Internet Measurement” book [15]. Here are a very
small number of works that have inspired us in the field of passive measurements: [35,
47, 33].

2.3.2 Video Streaming Studies

Most related work on video sharing sites focuses on YouTube, which is the most promi-
nent video sharing site. There is no previous work to compare YouTube with its com-
petitors such as DailyMotion.
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2.3.2.1 Characterisation of YouTube Videos

Many studies have tried to find out the characteristics of YouTube videos compared to
e.g. Web traffic or traditional streaming video sites (real time over UDP and not PDL1).
In [10], the authors crawled the YouTube video meta-information to derive many char-
acteristics on the video contents and its evolution with video age (e.g. popularity). This
information is used to evaluate opportunities of P2P distribution and caching.

In [13], the authors use a long term crawl of the YouTube site to derive global character-
istics of YouTube videos such as that the links between related YouTube videos form a
small-world network. Using the properties of this graph and the video size distribution,
they show that P2P distribution needs to be specifically adapted to distribute YouTube
videos.

In [25], the authors use university campus traffic to gather information on YouTube video
characteristics and complement their data with a crawl of most popular files on YouTube.
Temporal locality of videos and transfer characteristics are analyzed, and the opportu-
nities for network providers and for service providers are studied. Another work of same
authors [24] uses the same campus traces to characterize user sessions on YouTube
showing that the think time and data transfered by YouTube users are actually longer
than for Web traffic.

2.3.2.2 YouTube CDN Architecture

Some recent papers study the global architecture of the YouTube CDN2. In [2], the
authors explain with Tier-1 NetFlow statistics some of the load-balancing policies used
by YouTube and use these measurements to figure out traffic dynamics outside the ISP
network. This method is used to evaluate different load-balancing and routing policies.
Even if the methodology still holds, the data collected for this work was taken before
heavy changes in YouTube infrastructure in the second half of 2008 (two years after
Google bought YouTube).

The same authors study the YouTube server selection strategy [3]. Using PlanetLab
nodes to probe and measure YouTube video transfers, this analysis shows that YouTube
is using many different cache servers hosted inside their network or by other ISPs.
Some of the load-balancing techniques used by YouTube are also revealed in this paper.

In the same vein, the authors of [53] use recent traces from different countries and
access type (university campus vs. ADSL and FTTH on an ISP networks) to analyse
the YouTube service policy. In most cases, YouTube selects a geographically close
server except when these servers are heavily loaded.

The details of YouTube video streams at TCP level have been studied in [45]. This
analysis of residential ISP datasets shows that the bursty nature of the YouTube video
flow is responsible for most of the loss events seen. In [44], the interaction of the type
of application and the type of video playback strategy with TCP is studied on Netflix and
YouTube records. This shows how ON-OFF cycles can occur in video streaming trans-

1PDL: Progressive DownLoad
2CDN: Content Delivery Network
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fers. Moreover a model of these behaviors is used to forecast the impact of expected
changes (more mobile traffic, use of HTML5. . . ) on the network.

We also would like to mention this work on load-balancing in CDNs [42]. Here the
answers of DNS queries towards CDNs are stored at ISP level in order to bypass recur-
sive DNS resolution by the CDN. This allows to directly answer to the customers with
an IP address chosen by the ISP instead of the CDN. The evaluation of this mechanism
shows an improved performance, e.g. download time are reduced by up to a factor of
four. This work shows that a cooperation between the CDN operators and the ISPs
could not only be beneficial to these actors but also to the users. In a similar vein, the
study of YouTube [53] also illustrates the importance of DNS resolution in server selec-
tion and how video sharing sites (and more generally CDNs) use it to apply complex
load-balancing strategies. Also the influence of traffic management between ISPs and
main CDNs is underlined in [19].



CHAPTER3
Analysis of one Week of ADSL

Traffic

Vous arrivez devant la nature avec des

théories, la nature flanque tout par terre.1

Pierre-Auguste Renoir

The Internet is a very dynamic environment: new services and usages are invented
every day. The attempt to measure it is thus an endless challenge. Nevertheless,
regular measures are needed to quantify its evolution. The diversity of the Internet also
resides in the ways to access it: of the many access types (from work, Universities, or
home), residential access is the most free. Indeed no traffic regulation apply, and only
few studies have revealed the residential usage of the Internet [55, 36, 33].

In this chapter, we perform a large scale analysis of 3 different local ADSL platforms
each connecting more than 1,200 users during one week of July 2011. We use an inter-
nal deep packet inspection (DPI) tool to recognise the application used by customers.
With this information and connection summaries, we first study the characteristics of the
residential traffic, and also focus on some specific popular services such as Facebook
or YouTube. We then use clustering techniques to group customers according to their
application mix. Finally, we simulate some traffic shaping techniques to evaluate their
impact on platform dimensioning.

3.1 Data Collection

We have collected statistical information on 3 ADSL probes in France (located in Lyon,
Montsouris and Rennes) over a period of one week of 2011: from Tuesday the 5th July
to Tuesday the 12th July included. The data comprises information summary of the

1You come in front of nature full of theories, then nature messes everything. – my translation
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Table 3.1: Summary of Trace Details

Nb of Clients Nb of Cnx
Trace Total Avg per Day Total Removed† Avg per Day

Lyon252 1354 1284 66,231,068 86,576 7,788,835
Mont151 1009 951 50,008,566 59,393 6,251,070
Renn257 1139 1099 41,320,018 35,847 5,165,002

† data cleaning as explained in Sect. 3.1

name nr.

1 159
2 159

Table 3.2: .....

TCP connections of all customers for each day of capture2. The following indicators
have been computed for our analysis:

Cnx Id the source and destination IP addresses and Ports, and the time of start and
stop of connection;

Application determined out of an internally developed DPI tool, we have access to
the application, and also web-apps (such as Facebook) and a part of encrypted
eMule and BitTorrent, still we shall mainly refer only to the class of the application
(namely P2P, Streaming. . . );

Volumes the number of Bytes (with IP headers and also difference between last and
first TCP sequence number) and non-empty Packets for each direction of the
connection, we will also use the maximum volume per period of 20 seconds;

TCP Performance we define the expected sequence number as the maximum TCP
sequence number seen plus the size of this packet, then a packet with a se-
quence number higher than the expected one is counted as a loss, whereas if it’s
lower, it’s counted as a repetition; we also have an evaluation of RTT. All these
indicators are computed for each direction of the connection.

This data is complemented with specific HTTP streaming indicators with the URL and
URI of the media, and a classification according to URL of well known sites (for adver-
tisement, video clips, porn sites. . . ).

As this data is collected on the fly on probes connected to a switch after the BAS, we
may have some incorrect records. Thus, we filter out the connections with incorrect
statistics. The number of connections removed is included in Tab. 3.1.

In all the rest of the Chapter (and of the thesis), we call downstream traffic the packets
coming from the Internet to the customers, whereas upstream traffic denotes packets
going from the customers to the Internet.

2the connections spanning over 2 days are split
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(a) Volume (aggregated by 10 minutes)
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Figure 3.1: Evolution of stats captured on the probe on Lyon’s probe for the whole week
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(b) Sunday, 9th

Figure 3.2: Evolution of TCP Volume captured on the probe (aggregated by minute) on Lyon’s
probe on 5th July

3.2 Basic Characteristics of the Residential Traffic

To give an overview of the data, we start by showing the evolution of volume and num-
ber of users over the week, we plot each days on Fig. 3.1. The curve of the volume
(Fig. 3.1a) shows a very similar pattern over the week. Thursday the 7th has the highest
volume whereas Sunday the 9th has the lowest. As for the number of users (Fig. 3.1b),
there are some differences between the days: for example, Saturday night has the least
amount of users.

In Fig. 3.2, we trace the evolution of volume (TCP) over two different days of the week.
On a week day (Fig. 3.2a), we observe an unsurprising camel curve with 2 large peaks
around the mid-day break. Whereas on Sunday (Fig. 3.2b), we have a large plateau
from late morning to early afternoon.
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Table 3.3: Distribution of Application Classes according to Downstream Volume per Day and
per Probe

(a) Lyon

Top Applications (fraction of total downstream volume)
Date 1 2 3 4 5

05/07/2011 Streaming (47.69 %) Web (18.75 %) Download (18.13 %) P2P (8.49 %) Games (2.45 %)
06/07/2011 Streaming (47.95 %) Web (19.56 %) Download (17.29 %) P2P (9.25 %) Games (2.78 %)
07/07/2011 Streaming (47.79 %) Download (19.53 %) Web (18.22 %) P2P (10.26 %) Mail (1.66 %)
08/07/2011 Streaming (44.73 %) Download (21.40 %) Web (18.66 %) P2P (6.98 %) Games (3.48 %)
09/07/2011 Streaming (48.82 %) Download (21.67 %) Web (15.93 %) P2P (10.31 %) Unknown (1.60 %)
10/07/2011 Streaming (53.38 %) Download (17.90 %) Web (17.24 %) P2P (8.46 %) News (1.02 %)
11/07/2011 Streaming (49.01 %) Web (20.52 %) Download (15.93 %) P2P (9.52 %) Unknown (1.97 %)
12/07/2011 Streaming (51.64 %) Web (19.19 %) Download (14.29 %) P2P (9.78 %) Unknown (2.62 %)

(b) Montsouris

Top Applications (fraction of total downstream volume)
Date 1 2 3 4 5

05/07/2011 Streaming (38.86 %) Web (25.47 %) Download (21.37 %) P2P (7.81 %) Mail (3.18 %)
06/07/2011 Streaming (44.78 %) Web (22.48 %) Download (17.19 %) P2P (7.64 %) Mail (4.17 %)
07/07/2011 Streaming (43.26 %) Web (23.62 %) Download (18.67 %) P2P (6.28 %) Mail (3.84 %)
08/07/2011 Streaming (44.94 %) Web (22.99 %) Download (17.42 %) P2P (5.38 %) Mail (4.67 %)
09/07/2011 Streaming (48.70 %) Web (21.94 %) Download (15.70 %) P2P (7.42 %) Unknown (2.94 %)
10/07/2011 Streaming (48.21 %) Web (17.00 %) Download (16.42 %) P2P (13.64 %) Unknown (2.12 %)
11/07/2011 Streaming (42.76 %) Web (23.87 %) Download (20.79 %) P2P (5.65 %) Mail (4.19 %)
12/07/2011 Streaming (39.86 %) Download (24.96 %) Web (21.23 %) P2P (7.25 %) Mail (3.72 %)

(c) Rennes

Top Applications (fraction of total downstream volume)
Date 1 2 3 4 5

05/07/2011 Streaming (47.23 %) Download (24.07 %) Web (16.12 %) P2P (5.38 %) News (3.19 %)
06/07/2011 Streaming (46.35 %) Download (23.55 %) Web (15.93 %) P2P (7.74 %) Games (2.40 %)
07/07/2011 Streaming (47.34 %) Download (23.48 %) Web (16.43 %) P2P (7.80 %) Mail (1.73 %)
08/07/2011 Streaming (43.81 %) Download (26.73 %) Web (16.25 %) P2P (6.09 %) Enterprise (3.41 %)
09/07/2011 Streaming (44.21 %) Download (25.54 %) Web (15.53 %) P2P (8.56 %) Enterprise (3.19 %)
10/07/2011 Streaming (41.58 %) Download (22.86 %) Web (19.06 %) P2P (11.12 %) Games (2.60 %)
11/07/2011 Streaming (36.92 %) Download (19.52 %) Web (15.81 %) P2P (11.52 %) Unknown (6.29 %)
12/07/2011 Streaming (40.15 %) Download (19.92 %) Web (16.78 %) P2P (10.66 %) Unknown (5.03 %)

3.2.1 Application Share

We summarize in Tab. 3.3 the distribution of applications per number of connections
and per volumes. Note that we consider only application classes.

In Tab. 3.3 Streaming is by far the most used application in downstream volume. The
next two application classes are Web and Download with very similar share of down-
stream volume. The 4th most popular application is P2P. The order is quite stable over
the days or over the different locations. The downstream volume generated by all other
application is very low (less than 10%) compared to the one of the top 4 application
classes.
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3.2.2 Refined Application Distribution

For the most popular application classes, we detail the repartition of applications over
the week in Tab. 3.4. We give the percentage of users, of flows, of volumes (down and
up) for each application, and also the mean volumes (down and up) per flow. We have
also computed the same statistics on application distribution over each day. As there
is no notable difference in the weekly stats vs. daily stats, we do not include the daily
data.

Table 3.4 gives us a finer view of the key components of the traffic. We first focus on
the Streaming class. Here is the detail of Streaming applications in the table:

• HTTP-FLV and HTTP-MP4 are the main videos formats used by popular video
streaming sharing sites (like YouTube);

• HTTP-STREAMING regroups other formats of videos (mainly used for small em-
bedded advertisements);

• RTMP related protocols are usually used to deliver on demand video streaming
(note that RTMPE is only used by a specific popular TV channel for its replay
service: M6Replay).

The HTTP-STREAMING class appears for almost all users, and represents 3/4 of flows.
The mean downstream volume is very low as the durations of these ads videos are
very small (a few seconds). In upstream, as the mean volume is almost the same for
the main Streaming applications, the fraction of upstream volume generated by HTTP-
STREAMING flows represents a large part of the total due to its huge number of flows.
This table allows us to quantify that FLV is used about 4 times more than MP4. Indeed,
this is the default format for YouTube which is the most popular video streaming site.

As for Web traffic which is used by almost all users, the images on the Web sites carry
most of the bytes of this class. We can note that secured Web transfers (with TLS or
on 443 TCP port) are used by 4/5 of users, but it represents only 5% of flows. Finally,
even if the fraction of flow and volume on Facebook is very low (less than 1% thus not
in the table), two third of the clients use it.

The Download class is used by 9/10 users because of Web Downloads. Even though
HTTP File Sharing is used by a small fraction of users (7%), it represents almost half
of downstream volume. This is due to the large volume per flow (16 MBytes), and the
most popular file sharing site at this time was MegaUpload.

P2P is used by about 10% of users and represents 10% of the total traffic (Tab. 3.3). The
information in Tab. 3.4 is very interesting to understand new trends in P2P networks:

• BitTorrent is the most popular P2P application, and even if its encrypted version
is used by half of BitTorrent users, the total downstream volume that is encrypted
is very low compared to non-encrypted one;

• eMule/eDonkey is the second most popular P2P application, but in this case the
encrypted protocol is the most popular (both in terms of users and bytes);
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Table 3.4: Distribution of Applications ordered by decreasing volume down for each class for
Lyon’s probe over the week (from 05 to 12 July) only applications with more than 1% vol down

Mean per Flow
App. Class App. Nb. Users Nb. Flows Vol. Down Vol. Up Vol. Down Vol. Up

Streaming HTTP-FLV 59.22 % 16.99 % 51.64 % 12.80 % 5 695 173,3 1 704,1
Streaming HTTP-STREAMING 93.42 % 74.50 % 32.71 % 60.16 % 822 918,7 1 827,7
Streaming RTMPE 4.57 % 0.17 % 6.05 % 0.34 % 68 066 027,7 4 588,0
Streaming RTMP-Data 20.12 % 0.94 % 3.49 % 10.22 % 6 951 763,4 24 538,5
Streaming HTTP-MP4 17.26 % 3.89 % 2.85 % 1.56 % 1 372 468,9 905,1
Streaming RTMP 13.10 % 0.50 % 1.17 % 4.07 % 4 394 348,0 18 427,4

Web Images Web 81.08 % 29.61 % 52.48 % 29.52 % 28 561,8 2 267,9
Web Default http 80 86.73 % 34.37 % 25.50 % 35.24 % 11 954,8 2 332,4
Web TLS 80.68 % 5.10 % 8.49 % 14.86 % 26 849,9 6 631,5
Web http 80.57 % 7.85 % 7.14 % 8.25 % 14 671,0 2 390,3
Web Unknown 99.89 % 20.09 % 3.42 % 6.76 % 2 742,6 765,5
Web Other443 49.64 % 1.04 % 1.81 % 0.25 % 28 122,5 550,1

Download DownloadWeb 88.20 % 52.34 % 46.57 % 9.44 % 558 654,8 1 796,6
Download HTTP File Sharing 6.95 % 1.81 % 45.53 % 1.00 % 15 785 114,3 5 485,5
Download AppStore 2.98 % 0.17 % 4.01 % 0.01 % 14 790 512,3 859,7
Download Encrypted FTP 2.82 % 0.20 % 1.98 % 7.84 % 6 262 936,5 393 622,5
Download FTP-Data-Passive 7.72 % 18.24 % 1.37 % 41.46 % 47 243,0 22 640,9

P2P Bittorrent 7.24 % 59.65 % 45.79 % 25.56 % 30 506,6 8 995,1
P2P eMuleEncrypted 4.68 % 3.11 % 28.53 % 43.74 % 364 595,6 295 240,0
P2P eDonkey 2.79 % 7.67 % 16.23 % 18.46 % 84 070,5 50 512,8
P2P BitTorrentEncrypted 4.34 % 0.60 % 8.33 % 9.58 % 552 204,8 335 471,8

• the ratio of downstream to upstream volume is 3 times higher for BitTorrent than
for eMule/eDonkey (we cannot compute it in the table as the fraction of volumes
are separated by direction and thus are not comparable).

3.2.3 Streaming Analysis

We focus in this section more closely on the composition of streaming traffic in Tab. 3.5.
The streaming traffic consists mainly of Clips if we consider downstream volume, see
Tab. 3.5a. But Advertisement and Unknown (most probably advertisements) represent
the majority of flows. The categories are obtained through pattern matching on URLs
with well-known services.

We can rank streaming sites in Tab. 3.5b according to their share of downstream vol-
ume. Note that the upstream volume is very low for this application class. YouTube
represents more than 1/5 of total downstream volume, and its next competitor gener-
ates only half of its traffc (10%). Then comes porn sites and TV replay sites. Note
that the most popular music streaming site represents 5% of flows (but a lower share of
volume).

3.2.4 Facebook

We have seen in Sect. 3.2.2 that the fraction of users on Facebook is about 2/3 of users
over the week. In Tab. 3.6, we compute for each Facebook user how many days he has
been connecting to the service. We learn that most users connect every day or all days
except during the week-end.
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Table 3.5: Composition of Streaming traffic over the week for Lyon’s probe (tables are ranked
according to decreasing downstream volume)

(a) Distrib. of type of Streaming traffic

Service Flows Volume Down

Clip 30.36 % 77.83 %
CatchUp TV 0.22 % 6.71 %
RadioLive 0.97 % 4.90 %
Unknown 39.23 % 4.86 %
TVLive 0.66 % 3.84 %
Advertisement 26.54 % 1.56 %
Chat 0.10 % 0.18 %
Games 1.92 % 0.12 %

(b) Popularity of Streaming sites

Service Flows Volume Down

Unknown 68.15 % 27.83 %
YouTube 4.27 % 22.02 %
MegaVideo 1.42 % 11.26 %
DiversX 4.88 % 9.71 %
Orange 2.06 % 6.80 %
M6 0.08 % 3.94 %
DailyMotion 1.10 % 3.67 %
AutresRadio 0.16 % 3.16 %
FranceTelevision 0.49 % 1.97 %
Deezer 4.99 % 1.70 %
Apple 0.11 % 1.53 %
Canal+ 0.21 % 1.20 %
RadioFrance 0.75 % 1.08 %

Table 3.6: Frequency of Connection for Facebook Users over the week for Lyon’s probe

Nb. of Days† Nb. of Users

8 342
7 158
6 175
5 115
4 119
3 103
2 104
1 91

† Nb. of days where the user
has at least one Facebook
flow.

Table 3.7: Usage of Facebook (FB) for Lyon’s probe

Day FB Users Total Users Nb. FB Flows Vol. Down FB

05/07/2011 871 1 306 63 669 465 919 106
06/07/2011 850 1 299 65 676 494 216 107
07/07/2011 887 1 311 56 568 390 515 974
08/07/2011 851 1 290 58 779 377 824 828
09/07/2011 713 1 250 46 566 324 139 375
10/07/2011 703 1 255 47 738 373 960 414
11/07/2011 837 1 268 53 122 403 244 646
12/07/2011 839 1 267 55 762 418 309 987

† 9th and 10th July were Saturday and Sunday.

In Tab. 3.7, we compute per day the number users, the number of flows and the down-
stream volume of Facebook. We have a very stable number of users per day except
during the week-end when Facebook (as well as Internet in general) is less used by
residential customers.
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In Fig. 3.3, the evolution of the number of users over the week is computed over periods
of 600 seconds. We have a clear daily pattern with very low night traffic and a small
increase around 8 pm. Note there are very few background users. If we focus on each
day separately in Fig. 3.3b, Sunday has the least amount of traffic. Also note the traffic
is stable during the day with a very low decrease around 3 pm.

In Fig. 3.4, we plot the CDF of upstream RTT for Facebook connections. In Fig. 3.4a, we
clearly have steps that are different from multiple order of magnitude. This is the same
phenomenon as in [22]. If we detail per /24 prefix in Fig. 3.4b, we have a very homo-
geneous distribution per prefix. The prefixes are thus not shared between datacenters,
and the absence of variance in RTT shows that the datacenters are well provisionned
(access as well as machines). As a comparison, the YouTube datacenters studied in
Sect. 7.4 can have dramatic RTT variance even at European distance.

3.2.5 YouTube

We now focus more precisely on YouTube traffic. In Fig. 3.5, we plot the CDF of av-
erage throughput per YouTube connection. We have filtered out connections smaller
than 400 kBytes to remove the connections comprising of flash player download (see
Sect. 4.3 for the details of YouTube functioning). Most connections (more than 95%)
achieve a rate above the median encoding rate. This is more than what we shall see
in Sect. 4.4.3.2 with older traffic traces. Also, even if this is not very precise, from
Sect. 7.3.3 we have that most of these connections should have a good playback qual-
ity. Indeed at the time of capture, a dedicated AS was used to deliver YouTube videos
and the links towards this AS were moderately loaded.

We try to find a specific daily pattern for YouTube. We thus plot the evolution of the
volume and of the number of users in Fig. 3.6.

We observe a usual daily pattern with peaks during day time (Fig. 3.6a). As for the
number of users (Fig. 3.6b), there is a small drop of the number of users on the week-
end (9th and 10th July).
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Figure 3.3: Evolution of Nb. of Users of Facebook over the week for Lyon’s Probe
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Figure 3.4: RTT from BAS towards Facebook servers

We plot the daily volume for each day of the week in Fig. 3.7a. We have very few varia-
tion in the pattern. The only remarkable point is important small peaks can be observed
in the volume aggregated by 10 minutes. The number of users (Fig. 3.7b) clearly has a
week vs. week-end days pattern with less users on the week-ends. The highest number
of users is found on Wednesday the 6th July (especially in the afternoon).

3.2.6 Volumes

The CDF of global downstream volumes per application is very stable over the days of
the week and also over the different probes. The only notable (but expected) point is
that P2P CDF has a very large amount of small connections. We do not include this
graph for brevity.
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Figure 3.6: Evolution of YouTube traffic over the week for Lyon’s probe
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Figure 3.7: Evolution of YouTube traffic per day

3.2.6.1 Distribution of Volume per Day

In Tab. 3.8, we sum up the total volumes (down and up), number of users and of con-
nections for each day of capture. The average downstream rate per customer are quite
low: around 5 kb/s if we consider 400 GB shared among 1000 users for 8 days. This
mean that we shall focus on users generating most of the bytes (heavy hitters), or busy
periods, in order to draw the characteristics of the platform.

3.2.6.2 Useful Connections

We define a useful connection as a connection with at least 1 kByte of downstream
volume, and give in Tab. 3.9 the same figures as in Tab. 3.8 but considering only useful
connections. The difference between Tab. 3.8 and 3.9 is mainly seen in number of
connections and in upstream volume. The number of connections is approximately
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Table 3.8: Distribution of Volume per Day (for Lyon probe)

Day Nb Customers Nb. Cnx Vol. Down Vol. Up

Lyon252/07/05/ 1 306 8 453 211 409 GB 46 GB
Lyon252/07/06/ 1 299 8 336 392 426 GB 38 GB
Lyon252/07/07/ 1 311 8 656 706 430 GB 38 GB
Lyon252/07/08/ 1 290 7 450 024 382 GB 32 GB
Lyon252/07/09/ 1 250 6 680 858 394 GB 41 GB
Lyon252/07/10/ 1 255 6 541 489 396 GB 32 GB
Lyon252/07/11/ 1 268 7 811 004 395 GB 48 GB
Lyon252/07/12/ 1 267 8 381 002 392 GB 42 GB

Note the 10th July was a Sunday.

Table 3.9: Distribution of Volume per Day (for Lyon probe) only Connections larger than 1 kB in
downstream

Day Nb Customers Nb. Cnx Vol. Down Vol. Up

Lyon252/07/05/ 1 184 2 677 139 408 GB 39 GB
Lyon252/07/06/ 1 182 2 831 656 425 GB 31 GB
Lyon252/07/07/ 1 197 2 680 339 429 GB 32 GB
Lyon252/07/08/ 1 154 2 553 930 381 GB 26 GB
Lyon252/07/09/ 1 056 1 955 062 393 GB 36 GB
Lyon252/07/10/ 1 033 2 132 712 395 GB 27 GB
Lyon252/07/11/ 1 154 2 586 691 394 GB 38 GB
Lyon252/07/12/ 1 143 2 617 861 390 GB 33 GB

Inter Session

Think

TIME

Session Session

No flow for > 300s

time < 300s

Flow Flow Flow Flow Flow Flow

Figure 3.8: Schema of session construction

divided by 4, whereas the upstream volume is decreased by about 20%. Downstream
volume is almost unchanged. This is mainly due to P2P applications that generate a lot
of very small connections.

3.2.7 Users’ Sessions

To figure out how the users behave we construct sessions as aggregation of connec-
tions. We explain how we have constructed the sessions in Fig. 3.8. This construction
intends to mimic a usual activity pattern with multiple flows following each other with
periods of silence (user’s think time) in between. We have chosen a threshold for inter-
session of 5 minutes. We expect these sessions correctly aggregate Streaming flows
resulting from a continuous watch of multiple videos.

In Fig. 3.9, we plot the CDF of session durations for all users. We also plot per user
the median duration of its sessions. Note we consider only connections lasting more
than 1 second for the session construction. The median session duration is at about
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Figure 3.9: CDF of session durations for Lyon probe on 05/07 (only cnx > 1 sec)
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Figure 3.10: CDF of session durations for P2P and Streaming for Lyon probe on 05/07 (only
cnx > 1 sec)

2 minutes globally: this seems quite low for a real user session. Thus, we also plot
in this figure the same CDFs but with only sessions longer than 5 minutes. For these
longer connections, the median is of about 15 minutes (1000 seconds) which seems
more reasonable for a user’s session.

3.2.7.1 Sessions discriminated per Application

We have also conducted a session study based on the application used in Fig. 3.10.
We focus on P2P and Streaming as their usage is quite different: background traffic for
P2P vs. interactive usage for Streaming. Indeed we have much more short sessions for
P2P than Streaming: 80% of Streaming sessions last more than 100 seconds whereas
it’s only 50% of P2P ones. Focusing on sessions larger than 5 minutes, the distribution
is similar between the two application classes.
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Figure 3.11: CDF of session durations per hour for Lyon probe on 05/07 (only cnx > 1 sec)

3.2.7.2 Sessions per hour

We study the impact of the time of the day on the session durations: as the application
used change the session pattern, the time shall also have an impact. Indeed the appli-
cation mix is different depending on the hour. We focus on two specific hours: 4 am and
9 pm in Fig. 3.11a and 3.11b respectively. We have a very different pattern depending
on the hour:

• at 4 am, most of the connections are shorter than 10 seconds;

• whereas at 9 pm, most of connections are longer than 2 minutes.

This is obviously caused by the underlying applications, but the residential usage of the
Internet is the root cause: mostly interactive usage in the evening vs. batch usage in
the middle of the night.

3.2.8 User’s Level Analysis

In this section, we study the usage of applications by the customers. We first look at
global trends for all the platform users, and then focus on the 4 customers generating
most bytes in the platform.

3.2.8.1 Parallel Connections and Aggregated Throughput

In Fig. 3.12a, we compute the CDF of the average downstream throughput per connec-
tion (only connections larger than 1 MBytes). In this graph, we treat each application
independently. A global remark is that very few connections achieve average through-
put close to access rate: this means that the access rate to the Internet is not at all
a bottleneck for connection throughput. The main point in this graph is that P2P con-
nections achieve a very low average throughput: 90% of P2P connections (larger than
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Figure 3.12: Stats for all Users on Lyon’s probe

1 MBytes) have a throughput lower than 100 kb/s. P2P applications usually limit the
downstream throughput, this is done through

• the reduction of the packet size (e.g. for eDonkey/eMule3);

• or the introduction of periodic silent periods with no packets send (e.g. for BitTor-
rent).

The applications with the fastest connections are Download and Streaming.

In Fig. 3.12b, we reduce the impact of silent periods by taking the maximum rate
achieved over a 20 seconds sliding window. The average throughputs for P2P are still
very low: for 80% of connections it’s under 100 kb/s. We can explain this because P2P
applications are using a lot of parallel connections as a way to improve their download
throughput. This is a method for not keeping a low individual upload speed limit.

3this is an efficient way to detect this application out of packet statistics (along with the TCP PUSH flag)
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To check the impact of multiple connections per application, we count for each user the
number of connections in parallel for each application in Fig. 3.12c. The aggregation of
the number of connections is done at a specific time scale, but we have tested that a
time scale between 1 and 10 seconds do not impact the results. The study of parallel
connections shows that P2P applications generate a lot more parallel connections than
the other applications. The P2P application used has a large impact here. We shall
see it in details for some heavy hitters, but generally eDonkey/eMule generate a lot of
parallel connections, and specifically much more than BitTorrent.

To be able to compare the application rates, we have aggregated per user and per ap-
plication the bytes generated per seconds (by equally distributing the bytes over the
duration of the connection). Then we plot the CDF of the average throughput per ap-
plication aggregated over 1 second for each user in Fig. 3.12d. We can compare the
achieved throughputs:

• Streaming and Download achieve the highest throughputs, with almost all con-
nections with more than 100 kb/s and up to some Mb/s;

• P2P applications still have moderate throughputs, but the median rate is at around
100 kb/s;

• the fact that VOIP applications mainly share the same average throughput is an
indication of the correctness of our data processing method.

Note that the throughput limit of 1.25 Mb/s observed for YouTube in [41] can be seen in
the aggregated throughput and the max rate over 20 seconds graphs as YouTube is by
far the most popular streaming service (as seen in Tab. 3.5b).

3.2.8.2 Heavy Hitters

In this section, we focus on the top 4 heavy hitters to refine the discussion of the previ-
ous section. Their main characteristics are exposed in Tab. 3.10. As seen in [37], the
application generating most of the volume of a heavy hitter explain a very large majority
of its bytes: from 70 to 95% of its total volume. The share of downstream volume for the
top 4 heavy hitters is at about 1%: with a total number of users of 1000, this means they
consume 10 times more than the average. Moreover the top heavy hitter using mainly
P2P in upstream direction generates as much as 15% of the upstream traffic volume of
the whole platform.

Table 3.10: Top 4 users (most up+down volume) week stats

Rank Main App. Vol. Tot Vol. Down Vol. Up Nb. Flows vol_down
tot_down

vol_up
tot_up

nb_flows

tot_flows

1 P2P (95%) 63.6 GB 15.2 GB 48.5 GB 157,642 0.5% 15.1% 0.3%
2 Streaming (68%) 56.9 GB 55.0 GB 2.0 GB 828,782 1.7% 0.6% 1.3%
3 P2P (77%) 56.6 GB 49.8 GB 6.8 GB 1,355,444 1.5% 2.1% 2.2%
4 Download (94%) 51.0 GB 50.8 GB 0.2 GB 140,298 1.5% 0.1% 0.2%
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Figure 3.13: Heavy Hitter 1

3.2.8.3 1st Heavy Hitter

This heavy hitter is mainly using P2P (95% of its bytes), and generates much more
upstream traffic than other users (15% of the whole platform upstream volume). Its
upstream volume is 4 times higher than its downstream one (contrarily to other heavy
hitters, and to the ADSL users in general). In Fig. 3.13a, we plot the evolution of its
downstream volume over time. We have that his usage of P2P is almost continuous
throughout the week. This user is using mainly eMuleEncrypted protocol (for more than
90% of its volume) and then eDonkey protocol. This explains why the maximum rate
over a 20 seconds sliding window is very low (around 50 kb/s) in Fig. 3.13b: with multi-
ple connections in parallel (Fig. 3.13c), the aggregated throughput for P2P is between
100 kb/s and 1 Mb/s.

We detail in Fig. 3.14 the evolution of its upstream volume. We have that his upstream
volume is very stable and is reduced around midnight every day (although this user
changed its IP address only once at the end of the first day). Also note that the P2P
upstream and downstream traffics are not directly correlated.
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Figure 3.14: Evolution of Upstream Volume over the week for Heavy Hitter 1

3.2.8.4 2nd Heavy Hitter
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Figure 3.15: Heavy Hitter 2

This heavy hitter is using mainly Streaming (68% of its bytes), and then Download, Web
and P2P. In Fig. 3.15a, we have a mix of applications, and distinct periods of activity
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Figure 3.16: Heavy Hitter 3

(but mainly on evenings). In Fig. 3.15b, the throughputs over a 20 seconds sliding
window are mainly above 300 kb/s for Streaming and Download, but are very low for
P2P. Then the aggregation over parallel connections increases P2P throughputs, but
not Streaming or Download.

3.2.8.5 3rd Heavy Hitter

This user is the most interesting for our analysis: indeed, its daily profiles change a lot
(see Fig. 3.16a). Its main applications are P2P and Streaming, but depending on the
day of the week, the usage is different:

• on week-end days, almost only P2P is used (97% of volume down) and there is
no daily pattern (traffic is stable throughout the day, with a large drop at midnight);

• on week days, Streaming is the dominant application (from 45 to 70%) and has a
pattern with periods of high activity alternating with silent periods.
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Also note that P2P and Streaming are almost never used simultaneously: on 8th July,
periods of P2P and Streaming activity follow each other but never at the same time.
In Fig. 3.16b, the maximum rates over a 20 seconds sliding window are one order
of magnitude lower for P2P and Unknown applications than Streaming. The parallel
connections for P2P is quite important with a median number of 50 parallel connec-
tion per second. Other applications have a majority of single connections at second
timescale. The impact of this on the aggregated throughout is that P2P achieve sim-
ilar rates than Streaming or Download, with an aggregated throughout of more than
600 kb/s in half of the cases. This means that the method used by P2P applications
(in particular eMule/eDonkey) of generating a large number of parallel connections with
low throughputs can effectively lead to large throughputs at user’s scale.

3.2.8.6 4rd Heavy Hitter

0 100000 200000 300000 400000 500000 600000 700000

Time in seconds
0

1

2

3

4

5

6

7

8

A
pp

lic
at

io
n

V
ol

um
e

(a
gg

re
ga

te
d

by
30

0
se

cs
.)

×10
8 Evolution of Volume Down for None probe

Web
Unknown
Streaming

Other
P2P
Download

(a) Evolution of Volume over the week

102 103 104 105

Max Rate in kb/s (computed over 20sec)

0.0

0.2

0.4

0.6

0.8

1.0
P

(X
≤

x)
Max Rate for Connexions larger than 1e+06

Download: 343

(b) CDF of Max Rate depending on Application

Figure 3.17: Heavy Hitter 4

This user almost exclusively use Download: 94% of its downstream volume. From
Fig. 3.17a, we see that the activity periods are very narrow although generating a lot
of bytes. This user is mainly downloading from MegaUpload. In Fig. 3.17b, the maxi-
mum rate over a 20 seconds sliding window is very high with at least 1Mb/s up to the
ADSL maximum rate (18 Mb/s). This user is not using parallel connections, thus the
aggregated throughputs are the same than individual analysis (graphs not shown here
for brevity). This is typical of users accessing specific services (often hosting illegal
contents in eastern Europe) that are achieving very high rates.

3.2.8.7 Conclusion on User Analysis

This section has allowed us to better understand the functioning of the main applica-
tions, in particular P2P. The use of multiple connections with low throughputs can lead
to satisfactory download rates at user scale, but this is not a general rule: most users
still have a low throughput while using P2P. Streaming and Download sites usually al-
low larger downstream throughputs, especially in the case of specific services leading
to maximum rate of the user.



32 CHAPTER 3. ANALYSIS OF ONE WEEK OF ADSL TRAFFIC

10−3 10−2 10−1 100 101 102

Loss Rate in Percent

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

≤
x)

Loss Rate for Connexions larger than 1e+06

Download: 2278
Other: 1479
P2P: 3251
Streaming: 15520
Unknown: 713
VOIP: 52
Web: 4196

(a) CDF of Loss Rate depending on Application

10−2 10−1 100 101 102

Loss Rate in Percent

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

≤
x)

Loss Rate for P2P Cnx (>1MB) per AS of distant peer

ISP 1: 555
ISP 2: 601
ISP 3: 686
ISP 4: 128
ISP 5: 140
Other: 1141

(b) CDF of Loss Rate for P2P depending on ISP

Figure 3.18: Loss Rates for all Users on Lyon’s probe

On the methodology plane, the focus on a few users high volume users is of great value
to understand what are the usages on the platform. Moreover as these users have a
large impact on the global functioning of the platform, the focus on their usage is worth
it. We shall see in Sect. 3.4 that specific policies targeting these users can lead to
efficient local platform management.

3.2.9 Performance Analysis

We analyse the downstream loss rate for large connections (>1 MBytes) per applica-
tion in Fig. 3.18a. The loss rate for P2P and Unknown (most probably P2P) is much
higher than other applications. Indeed some ISPs have specific policies for P2P traffic:
we distinguish the P2P traffic according to distant peer ISP (and separate top 5 main
French ISPs) in Fig. 3.18b. We clearly see the policy difference for ISP 1 and 4 with
a much higher loss rate. However this does not explain completely the difference in
performance between P2P and Streaming.

Figure 3.18b also indicates the locality of P2P connections: indeed most of ISPs classi-
fied as Other are not in France. This means that 35% percent of large P2P connections
come from outside France in our data.

3.3 Clustering Analysis

Based on the work in [37], we apply the same clustering techniques to understand the
application mix of the users. Moreover, we try to apply it at different timescales (namely
week, day and hour) to show what is needed to carry a representative analysis.

The approach is to take into account the usage information in terms of application and
not only consider the volumes. Indeed, the per applications volumes are very different –
e.g., P2P applications tend to generate much more bytes than Web browsing – we miss
some usage information with a purely byte-based approach. We associate to each user
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Table 3.11: Ad-hoc, per application and user minimum hourly thresholds to declare application
usage

Class
Volume Number

Policy
Down Up of Flows

WEB 300kB 500kB 20 All
P2P 1 MB 1 MB 10 Any
STREAMING 1 MB 1 MB – Any
DOWNLOAD 2 kB 1 kB – Any
MAIL 30kB 3 kB – All
GAMES 5 kB 5 kB – Any
VOIP 200kB 200kB – All
CHAT 10kB 10kB – Any

a binary vector, which indicates her usage of each application. We take advantage of
clustering techniques to present typical application mixtures.

3.3.1 “Real” vs. “fake” usage

We represent each customer with a binary vector: A = [appli1, · · · , applin] where n
is the number of applications we consider. Each applii ∈ {0, 1} is a indication weather
the customer used application i or not. We define per application heuristics to declare
that a customer actually uses a class of application. To do that, we define minimal
thresholds for three metrics: bytes up, bytes down and number of flows. Depending on
the application any or all of the three thresholds need to be matched. We summarize
the heuristics in Tab. 3.11. The values were derived from the data as explained in [37].

Heuristics are necessary to separate real application usage from measurements arti-
facts (for instance misclassification due to not enough payload). For instance, large
fraction of users of the platform have a single flow which is declared by the DPI tool
as WEB browsing. It is hard to believe that this flow is a real web browsing activity, as
current web sites tend to generate multiple connections for a single site (single search
without browsing on google.com shows up to 7 connections). Similar problems might
occur with other applications, for instance peer-to-peer user that closed his applica-
tion, might still receive file requests for some time due to the delay in the P2P overlay
network.

3.3.2 Choice of clustering

We have considered several popular clustering techniques to be able to understand
the application mix of each user, see [27] for a complete reference on main clustering
techniques. As explained in the previous paragraph, we have discretized the user’s
characteristics according to some heuristic threshold in order to keep only “real” appli-
cation usage.

We have first tried the popular k-means clustering algorithm, and observed that the re-
sulting clusters are difficult to match to applications. Moreover the choice of the number
of clusters can dramatically change this representation.

google.com
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Hierarchical clustering offers an easily interpretable technique for grouping similar
users. The approach is to take all the users as tree leaves, and group leaves according
to their application usage (binary values). We choose an agglomerative (or down-up)
method:

1. The two closest nodes4 in the tree are grouped together;

2. They are replaced by a new node by a process called linkage;

3. The new set of nodes is aggregated until there is only a single root for the tree.

With this clustering algorithm, the choices of metric and linkage have to be customized
for our purpose.

We want to create clusters of users that are relatively close considering the applications
mix they use. Among comprehensive metrics for clustering categorical attributes, the
Tanimoto distance [51] achieves these requirements. It is defined as follows: d(x, y) =
1− xt

·y
xt

·x+yt·y−xt
·y

.5 This means that users having higher number of common applications
will be close to each other. For example, consider 3 users having the following mix of
applications6:

User Web Streaming Down P2P

A 1 1 0 0
B 1 1 1 0
C 1 1 0 1

With Tanimoto distance, users B and C will be closer to each other because they have
same total number of applications even if all 3 users share same common applications.

We use a complete linkage clustering, where the distance between nodes (consisting
of one or several leaves) is the maximum distance among every pair of leaves of these
nodes. It is also called farthest neighbor linkage.

Due to the chosen metric, and as we choose not to prune the resulting tree, the hier-
archical clustering leads to as many clusters as there are applications combinations:
∑n

i=1

(

n
i

)

. In our case, we restrict the set of applications we focus only to Web, Stream-
ing, P2P and Download.

3.3.3 Impact of Timescale on the Clustering Analysis

As we focus on top 100 users (in terms of total volume generated) in this section, we
first indicate the fraction of volume they represent in Tab. 3.12. The fraction of top 50
users is highly variable throughout the day: from 50% to 82% of downstream volume
in one hour. Note that the fraction for the whole day is much lower (38%) as the hourly
heavy hitters may change from one hour to the other. The fraction of upstream volume
is even more variable due to the first heavy hitter that is responsible for 15% of total
upstream volume (see Tab. 3.10). Indeed the hourly fraction varies from 35% to 90%
for the top 50 users.

4at first occurrence, nodes are leaves
5xt stands for x transposed.
61 means application usage and 0 means no application usage.
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Table 3.12: Fraction of Volume of top users

Fraction of volume carried by
top 50 top 100

Time Down Up Nb. Flows Down Up Nb. Flows

07/05 38% 51% 17% 55% 64% 35%

00 79% 66% 28% 90% 76% 71%
01 78% 90% 42% 83% 99% 82%
02 82% 67% 65% 83% 70% 83%
03 81% 82% 64% 82% 83% 77%
04 79% 66% 67% 80% 67% 78%
05 69% 86% 63% 71% 87% 76%
06 81% 51% 49% 86% 65% 67%
07 64% 65% 38% 80% 81% 63%
08 62% 55% 21% 77% 73% 39%
09 61% 40% 26% 77% 68% 47%
10 55% 62% 21% 70% 76% 44%
11 58% 40% 21% 74% 65% 34%
12 58% 35% 15% 71% 70% 44%
13 50% 53% 17% 68% 64% 32%
14 57% 50% 17% 73% 69% 32%
15 58% 49% 26% 75% 70% 43%
16 59% 63% 22% 76% 75% 35%
17 58% 51% 17% 74% 71% 35%
18 58% 42% 23% 76% 65% 39%
19 58% 57% 21% 74% 80% 42%
20 66% 50% 26% 79% 77% 47%
21 60% 73% 24% 76% 87% 44%
22 69% 46% 30% 81% 72% 45%
23 64% 63% 22% 79% 85% 44%

The take-away message is that the top 50 (and even more for top 100) users represent
a large part of the total traffic of the platform.

3.3.3.1 Weekly Analysis

We have in Fig. 3.19a a large discrepancy in the application mix: indeed, as seen for the
top 4 heavy hitters in Sect. 3.2.8.2, the Internet usage of heavy hitters is quite specific.
This is mostly true for the top 25 users, even if the Web and Streaming class comprises
the majority of the bytes of top 50 users. But in Fig. 3.19b, we have only two main
classes of application mix: Streaming only, and Web and Streaming. This is in line
with [37], and shows how usage over 6 years switched from P2P to Web and Streaming
(comparing with [40]).

3.3.3.2 Daily Analysis

The daily clustering is stable throughout the week. In Fig. 3.20 and 3.21, we show a
week day and a week-end day respectively. We have the same structure than for the
whole week analysis: the top heavy hitters are very diverse in their application mix,
whereas other heavy hitters mainly use a combination of Web and Streaming.
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Figure 3.19: Clustering analysis for the whole week on Lyon’s probe

This means that the application mix analysis done over one day or one week leads to
similar results.
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Figure 3.20: Clustering analysis for the 12th (Tuesday) July on Lyon’s probe
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Figure 3.21: Clustering analysis for the 9th July (Saturday) on Lyon’s probe

3.3.3.3 Hourly Analysis

We computed the same analysis on the 5th July at the hour scale.

The results are very similar to daily or weekly analysis from 9am to 12pm: we give
the clustering results at 8pm as an example in Fig. 3.22a. This mean we have some
heavy hitters using a specific mix of application, and then a large set of users with only
Streaming and Web as main application. Indeed, for the 2nd set of heavy hitters, Web
and Streaming represent about 90% of volume at this high usage hour (see Fig. 3.22b).

From 1am to 8am, the pattern is quite different: with only a few users generating a lot
of bytes, the impact of an individual is very important. Thus the representativity of the
analysis is weaker. We include the graph for 5am in Fig. 3.23a as a representative
example. Users ranked after the 50th place in decreasing volume order do not use any
application at this time: no real application usage threshold is triggered (see Fig. 3.23b).
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Figure 3.22: Clustering analysis per hour for the 5th July on Lyon’s probe at 8pm
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Figure 3.23: Clustering analysis per hour for the 5th July on Lyon’s probe at 5pm

3.3.4 Conclusion of the Users Clustering Analysis

In this section, we have analysed the application mix of users of the ADSL platform.
The main point is even though the first 20 top users (in terms of volume) are extensively
using a specific application (P2P, Download or Streaming), the main mix is Web and
Streaming. This means that users ranked 20 to 100 represent a large share of total
volume, and use almost only Web and Streaming. This is interesting as ISPs should not
only focus on access rate, as the main usage of the Web and Streaming is interactive.
Still, global platform characteristics are strongly influenced by top 20 heavy hitters, and
their continuous Internet usage.

These results are an extension of what has previously been studied in [37]. On a
different perspective, we wanted to check if a change in the timescale imply a change
in the results. We have shown that the daily results are coherent with weekly ones
(choosing a week day is anyway more representative). A surprising point is even an
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hourly analysis can lead to coherent results with the week if we choose a peak traffic
hour (evenings), but also any hour between 9am and midnight.

3.4 Dimensioning
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Figure 3.24: Evolution of the downstream Volume for the week on Lyon’s probe per application
type

In this section, we want to state some insights for local platform dimensioning. On
average there is very few traffic per customer (4 kBytes/s see Tab. 3.8). Moreover the
majority of the traffic volume is Streaming and Web, so we can consider it interactive. In
Fig. 3.24, we aggregate downstream volume on 10 seconds slices over the week, and
distinguish between different types of traffic. We call:

elastic: the traffic generated by P2P, Download and Unknown;

non-elastic: the traffic generated by Streaming, Web, VOIP, Games and Mail;

other: the traffic generated by all the other applications.

We adopt this classification to make clear that a perturbation in elastic traffic shall not
perturb a user, whereas non-elastic traffic should be given some priority.

In Fig. 3.24, the downstream volume generated by elastic applications is stable through-
out the night and increases in the evening, whereas the non-elastic traffic is almost ab-
sent during the night and increases a lot during the day. We include in Fig. 3.25a and
3.25a the daily profiles to get a better view of what is happening.

The platform dimensioning is usually done on the peak traffic, so we should focus on
highest load periods. A reasonable policy for dimensioning is to upgrade the local
infrastructure when 80% of the capacity is reached every day. This means that the
increase of elastic traffic during peak hours is a problem whereas during the night it
does not cause any harm. A reasonable policy for an ISP could thus be to limit P2P
throughput during peak hours, but not at other times. As heavy hitters represents a
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Figure 3.25: Volume evolution on the platform for the week on Lyon’s probe

large part of the total traffic, another policy could be to apply the P2P limit only of these
users during peak hours.

The goal of these policies is to reduce the rate only of application that support it: by
adapting their throughput without the user being perturbed. Moreover, we propose to
apply it only when it’s useful. We explore these two policies in next sections.

3.4.1 P2P Rate Limit at Peak Hour

We show in Fig. 3.26a and 3.26b the CDF of volume generated for elastic and non-
elastic traffic respectively. We separate slices of 4 hours to show what is the impact of
the period on the volume generated. We show the results for the 5th July, but all days
follow the same pattern. The non-elastic traffic is much higher during the day (especially
in the afternoon). Overall for the total traffic in Fig. 3.26c, the busiest period is from 8 pm
to midnight.

We have thus performed a simulation of limiting the overall P2P traffic (for all users
together) at 14 Mb/s during the busy period (more precisely from 7 pm to 11 pm) in
Fig. 3.26d. The result is a clear reduction of total traffic, especially the peaks. If we
measure the 95 percentile of traffic per 10 seconds periods, we achieve a reduction
from 104Mb/s to

• 100Mb/s if we limit elastic traffic only during busy hours;

• 97.5Mb/s if we limit elastic traffic all day long.

A reduction of the peak traffic of 4 to 8% can be important for ISPs that would like to
delay platform upgrade.
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(d) Simulation of Traffic Shaping

Figure 3.26: CDF of the Throughput generated by the platform per hour on Tuesday 5th July

3.4.2 P2P Rate Limit at Peak Hour for Heavy Hitters only

In this section, we try to apply the elastic traffic limit only to heavy hitters to reduce the
number of users impacted by the throughput limitation.

Focusing on 100 top users, we have a much lower difference of throughput for elastic
traffic during the night in Fig. 3.27a as compared to Fig. 3.26a. This means that heavy
hitters have a more stable usage of elastic traffic than other users.

The top 100 users generate approximately the same amount of traffic than all other
users (1206 on Tuesday the 5th July) as seen in Fig. 3.28. But the two main differences
are:

• top 100 users have much more elastic traffic;

• their traffic is much more irregular.

We have simulated a limitation of the elastic traffic of these users at 1 Mb/s (for 100
users). The application of this elastic traffic limit leads to the following reduction of 95
percentile of throughput per 10 seconds:
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Figure 3.27: CDF of the Throughput generated by 100 top users per hour on Tuesday 5th July
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Figure 3.28: Volume evolution on Tuesday 5th July on Lyon’s probe

• from 60 Mb/s to 55 Mb/s if we limit all day long;

• from 60 Mb/s to 56 Mb/s if we limit only during busy hours.

For attenuating the peaks, a limitation of top 100 users only during busy hours seem
sufficient. The gain for the total platform to limit elastic traffic of 100 top users at 10 Mb/s
is almost the same as if limiting the elastic traffic of all users at 17 Mb/s:

• if we limit top 100 users all day long, the achieved rate at 95 percentile is
98.8 Mb/s;

• whereas limiting them on busy hours leads to a 95 percentile value of 100 Mb/s.

These values are very close to those obtained in Sect. 3.4.1.
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3.4.3 Conclusion on Dimensioning

In this section, we have studied the evolution of downstream traffic volume in the per-
spective of platform dimensioning. If we limit the usage of elastic traffic on the platform,
we can reduce the 95 percentile from 4 to 8% depending on the duration of the limi-
tation. Moreover if we apply this limit to top 100 users only, we achieve a similar rate
reduction, but with a much lower impact on users (globally only 1 user out of 10 is im-
pacted). This can delay the upgrade of a local platform by several months, and can thus
be very interesting for ISPs.
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CHAPTER4
A Longitudinal View of HTTP Video

Streaming Performance

J’aime passionnément le mystère, parce que

j’ai toujours l’espoir de le débrouiller.1

Charles Baudelaire,
Le Spleen de Paris

In this chapter, we analyse HTTP streaming traffic. Nowadays, as seen in Chap. 3, Web
driven content represents about half of the Internet traffic due to the surge of many video
sharing sites, and the decrease of P2P [18, 33, 36, 37].

The main video sharing sites in Europe are YouTube, DailyMotion and MegaVideo2.
They provide a free online video sharing service, which is very popular for sharing
user generated content and also video clips (videos are at most 10 minutes long on
YouTube). Moreover, the streaming traffic is interactive in the sense that the user is
actually watching the video during download and not after download completion as it is
the case in P2P. The data is transmitted using TCP, which is not designed for interactive
usage, but for elastic traffic.

We analyse the streaming traffic from an ISP perspective: this means that our main fo-
cus is on the ISP customer’s perception of the Internet. The difficulty in HTTP streaming
traffic analysis is that not only the network characteristics and the TCP congestion con-
trol mechanisms play a role in the user’s viewing experience, but also the video sharing
site itself.

We study different points that impact the video stream at flow level and relate them
to user perceived interruptions. We use passive packet captures and vary important
factors such as: the network access type (ADSL3 vs. FTTH4), the video sharing site

1I desperately love mystery because I always have the hope to resolve it. – my translation
2The MegaVideo web sites have been shut down by the FBI on January 19 2011.
3ADSL (Asymmetric Digital Subscriber Line) is the main Internet access type for European residential

customers.
4FTTH (Fiber To The Home) is a technology offering access rates up to 100Mb/s, which is currently

being deployed in Europe.

45
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(mainly YouTube vs. DailyMotion) and the time of the day (lightly loaded afternoon vs.

highly loaded evenings).

HTTP streaming works as follows: when a user wants to watch a video on a video
sharing site, he first selects the video, e.g. by browsing the site portal or by receiving a
direct link. Then at least 3 HTTP flows (over TCP) arise:

(i) download of the embedding web page;

(ii) download of the video player (only once in a session);

(iii) download of the video itself.

The success of these video sharing sites comes from the fact that the user can start
watching the video after a very small buffering period (typically several seconds). The
rest of the video is downloaded while watching, therefore its name progressive down-
load (PDL). A user can also abandon downloading and watching if she is not interested
any more.

As the main user interest and most of the volume generated by HTTP streaming comes
from the actual video download, we focus on this part and we explain in Sect. 4.2
how we identify the video flows. Then, we give some general information on video
sharing sites in Sect. 4.3. In Sect. 4.4, we focus on the flow level network indicators to
assess the reception quality of the videos watched by the users. Finally in Sect. 4.5, we
highlight the impact of streaming quality on the user download behavior.

4.1 Novelty of this Work

We use eight different packet traces to answer a number of important questions such
as:

• Do the different video sharing sites enforce peak or mean limitations on their
streams and do these limitations change over time?

• How does the YouTube CDN perform server selection for the clients of the ISP
and what is the implication on the reception quality?

• How do users of video sharing sites view videos and is their viewing behavior
affected by the reception quality?

Our work differs from the previous work on video sharing sites in several important
aspects:

(i) Instead of characterizing all the videos available on the YouTube servers, we anal-
yse the characteristics of videos actually watched by users.

(ii) We analyse video transfer characteristics to explain the performance of HTTP
video streaming.

(iii) We compare two video sharing sites, namely YouTube and DailyMotion, which is
one of its popular competitors. This comparison reveals a number of interesting
differences, both w.r.t. performance aspects and the way these two video sharing



4.2. TRACE CHARACTERISTICS 47

Table 4.1: Traces description

Type & Location ADSL M FTTH M ADSL M FTTH M ADSL R FTTH M ADSL R FTTH M

Date 2008/07 2008/07 2009/11 2009/11 2009/12 2009/12 2010/02 2010/02

Start time 20h 20h 20h 20h 20h 14h 20h 20h

Duration 1h 30 1h 1h 20 0h 38 1h 0h 58 1h 0h 28

Active Web/Str. users† 1121 1198 650 2502 795 2009 607 2763

Streaming users§ 109 121 96 336 113 252 74 279

Streaming videos 428 630 405 1462 334 865 258 866

YouTube users§ 41 30 48 185 47 106 46 153

YouTube videos 215 142 210 660 140 400 176 496

DailyMotion users§ 25 20 16 48 12 20 13 29

DailyMotion videos 83 154 45 84 53 35 25 44

† with at least 10 flows (Web and Streaming)
§ watching at least 1 video

sites serve requests for videos. Moreover, the distribution policies of these two
sites differ a lot, leading to an interesting discussion of design choices for existing
video sharing sites.

(iv) Our traces cover the time from 2008–2010, which allows us to to measure the
impact at network level of the modification in the infrastructure of the YouTube
CDN that was put in place in the second half of 2008.

(v) We show that in our traces, the server chosen to stream YouTube videos is often
not the closest one (in terms of RTT) or the one that assures the best video recep-
tion quality. These results are not in line with previous measurements [25, 53, 3].

(vi) We are the first to investigate what fraction of a video users actually download and
we are also able to show that poor reception quality affects the fraction of the video
downloaded.

4.2 Trace Characteristics

The main source of information for our analysis is IP packet captures taken at Broad-
band Access Server (BAS) level of a large European ISP. We have performed multiple
packet captures at different locations. The data consists of eight approximately one
hour snapshots collected on ADSL and FTTH probes from 2008–2010. The probes
are equipped with dedicated capture cards (Endace DAG® card). Users5 have been
anonymised at capture time by hashing their VP/VC (ATM identifier) for ADSL and the
MAC address of OLT (Optical Line Termination) for FTTH. Note that the capture reports
of the cards ensure that no packets have been lost during the capture.

To focus on streaming flows, we first filter on the contenttype field of HTTP header
using the same regexp as in [36]. We also remove all non-video flows such as embed-
ded player download and advertisement contents by filtering out the keyword player in

5IP address is not used because it is not sufficient to identify users [36].
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Figure 4.1: Internet seen by ISP Clients

the resource name or respectively well know advertisement URLs. We process packet
traces with tools to extract flow information including peak rates, RTTs and losses.

We have a specific tool to process streaming traffic that extracts relevant information
about the content (mainly URL, size, and duration of the video) out of the HTTP and
video headers.

We have enhanced this data with information from BGP routing tables collected at the
time of capture at the ISP level, which allows us to accurately map the IP addresses
of streaming servers onto their Autonomous System (AS). Most TCP traffic indicators
have been derived via an internal packet processing tool and some loss indicators have
been calculated using the tstat software [54].

The details of the packet captures are given in Tab. 4.1. We have two old traces from
July 2008, and six traces taken in 2009 and 2010. After the acquisition of YouTube by
Google, changes to the architecture of the YouTube CDN occurred in the end of 2008.
We are able to see the impact of these modifications in our data (mainly the switch from
the YouTube AS to the Google AS and to a new YouTube EU AS). Since then, no notable
infrastructure changes happened. Note that FTTH M 2009/12 trace has been taken in
the afternoon, whereas all the other traces have been captured in the evening, which
is the period of highest network load for residential customers. Traces are captured in
two geographically different locations and labelled with their access type and location
indication. We label traces taken at a central site near the Main ISP peering point with
an M, and with an R those taken at a Regional site.

Figure 4.1 shows a global view of the Internet and the location of our probes. We show
the connection of the ISP customers along with ASes with direct connection as well as
ASes indirectly connected to the ISP Backbone.
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Figure 4.2: Video Encoding Rates for YouTube and DailyMotion

4.3 HTTP Streaming Context

Due to the prominent usage of HTTP streaming [33], this traffic is important for ISPs
in terms of resources required inside the ISP and at the peering points. After a brief
description of the most popular video sharing sites, we evaluate the video encoding
rates of the main video sharing sites as it is a key factor of the video quality and network
resource consumption. Then, we briefly explain how DNS resolution works as it will be
useful for the further analysis. Finally, we give an example of the distribution of the
traffic across the different ASes of the YouTube CDN.

4.3.1 Most Popular Video Sharing Sites

The most popular video sharing sites in our traces are YouTube followed by DailyMotion
and MegaVideo aggregating respectively 30%, 14% and 11% of the total streaming vol-
ume. The rest of the streaming volume comes from TV channels offering replay of their
programs and porn sites. Note that the total streaming downstream volume represents
about 40% of the total traffic for ADSL traces and about 30% for FTTH traces.

YouTube is the most popular video sharing site all over the world with more than 100
Million viewers per month just in US [14]. It has been bought by Google in November
2006. One of its major competitors in Europe is DailyMotion which is among the top 50
most frequented websites in the world with 70 Millions unique visitors monthly [8].

4.3.2 Video Encoding Rate

We are interested in video encoding rates to have an idea of the necessary mean
reception rate of a flow required to watch the video without interruptions. The trend
of encoding rates gives also an interesting insight into content providers choices and
adoption of higher quality formats. We compute the encoding rate by dividing the con-
tent size announced in HTTP header and the content duration announced in the video



50 CHAPTER 4. HTTP VIDEO STREAMING PERFORMANCE

Table 4.2: Distribution of Volumes (in percent) and delays (median value of minimal upstream
RTT per flow) in milliseconds per AS for YouTube and DailyMotion

YouTube DailyMotion

YT EU GOO YT C&W GBLX DM LL
AS 43515 AS 15169 AS 36561 AS 1273 AS 3549 AS 41690 AS 22822

Vol. RTT Vol. RTT Vol. RTT Vol. RTT Vol. RTT Vol. RTT Vol. RTT

2008/07 ADSL M – – 39% 21 61% 113 – – – – 67% 2 33% 14

2008/07 FTTH M – – – – 100% 114 – – – – 61% 1 39% 14

2009/11 ADSL M 90% 114 1% 21 – – 5% 21 4% 117 100% 2 – –

2009/11 FTTH M 91% 108 1% 20 – – 5% 215 3% 106 100% 1 – –

2009/12 ADSL R 93% 116 7% 32 – – – – – – 100% 14 – –

2009/12 FTTH M 80% 101 20% 20 – – – – – – 100% 1 – –

2010/02 ADSL R 56% 126 32% 38 – – 9% 29 3% 52 100% 14 – –

2010/02 FTTH M 60% 110 18% 25 – – 19% 24 3% 108 100% 1 – –

header (FLV, MP4, 3GPP). Note that this is coherent with the bit-rate announced in the
video header but easier to compute with multiple video formats. Video encoding rates
are quite standardized inside a video sharing site (see Fig. 4.2).

Median encoding rates of two most popular video sharing sites are quite close: for
YouTube, the median encoding rate of 330 kb/s is slightly lower than for DailyMotion,
which is 470 kb/s. Encoding rates for YouTube vary quite a lot and many YouTube videos
use encoding rates above or below the median rate (see Fig. 4.2a). Encoding rates of
DailyMotion videos in recent years show little variance and the majority of videos have
an encoding rate equal to the median rate (see Fig. 4.2b).

4.3.3 Domain Name System (DNS)

As explained in [2], retrieving a YouTube video begins with a connection to the YouTube
web server that returns the URL of the video stored in the YouTube data center (cache
server URL e.g. v7.lscache1.c.youtube.com). This URL is then resolved via a DNS
lookup, which returns the IP address of a server delivering the video.

Load balancing techniques by the operator of the video sharing sites can be applied
via DNS resolution: the recursive nature of DNS resolution allows the DNS server of
the domain to take into account internal policies to answer with the most appropriate
server IP address. If a content is highly requested and replicated (as are videos of main
sharing sites), the DNS server of the video sharing site can choose to redirect the same

URL to one of several servers. This technique can be used to balance the load but also
to better take into account network path characteristics (e.g. return the server closest to
the user). As we will see later, the same URL can even be resolved to IP addresses in
different Autonomous Systems (AS), which may greatly impact the flow characteristics
(see Tab. 4.2 and 4.3).

v7.lscache1.c.youtube.com
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Table 4.3: Distribution of number of distinct YouTube ASes per client for clients with at least 4
YouTube videos

Total # distinct ASes per client
Trace # ASes 1 2 3 4

2008/07 ADSL M 3 33% 53% 13% –

2008/07 FTTH M 1 100% – – –

2009/11 ADSL M 3 65% 5% 30% –

2009/11 FTTH M 4 71% 14% 12% 4%

2009/12 ADSL R 2 50% 50% – –

2009/12 FTTH M 2 58% 42% – –

2010/02 ADSL R 3 21% 53% 26% –

2010/02 FTTH M 4 13% 53% 21% 13%

4.3.4 Distribution of Traffic across ASes

We present in Tab. 4.2 the main characteristics of the ASes providing YouTube and
DailyMotion videos. The measured delay corresponds to the round trip time from the

probe towards the server and back, also referred to as upstream RTT and defined in
Sect. 4.4.1. We see that the former YouTube AS (36561) is no more used today. The
YouTube EU AS (43515) streams the majority of the bytes in all 2009–2010 traces,
which is quite different to what was observed in previous studies [53, 3] that had iden-
tified the Google AS (15169) as the one serving most of the streams. Note that we
measure for the YouTube EU AS an upstream RTT in the order of 100ms, which cor-
responds to the RTT between Europe and the East Coast in the US. The Google AS,
which also serves YouTube videos, has a much lower upstream RTT between 20 and
40ms. Other ASes (Cable&Wireless and Global Crossing) are also used for streaming
YouTube videos, but only marginally.

Previous work [53] showed that the server selected by the YouTube CDN for streaming
the video is usually the closest one to the user with notable exceptions only at peak
hours. For our traces, this finding does not hold since the AS that is farthest away is
used to serve the majority of videos (up to 90% in terms of volume the for 2009/11 and
2009/12 traces).

In Tab. 4.3, we see that the same client can be directed to a different AS when request-
ing multiple videos, even in a timescale of one hour. As this redirection mechanism
happens via DNS, the video sharing site has full control to select the AS and the server
that will stream the video. We shall see in Tab. 4.5 that the choice of the originating AS
has a significant impact on the video reception quality.

In the case of DailyMotion, almost all videos are served by the DailyMotion AS (41690)
which has a median delay of 2ms over all traces (resulting in a total RTT of 42ms on
ADSL and 7ms on FTTH). The only exception is found in our 2008 traces where about
1/3 of the videos were coming from the LimeLight AS (22822) with a median delay
of 14ms.
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4.4 Flow Performance Indicators

In this section, we measure various metrics such as RTT, peak rate, mean rate, or
loss rate in order to understand the performance experienced by the flows. One of
the novelties of our analysis is that we compute all these metrics for each different
AS that host servers of the video sharing site, which allows us to reveal the existence
of considerable performance differences between different ASes of the same video
sharing site. In all the graphs, the number after the label in the legend indicates the
number of data samples (videos).

Finally, we derive a decision graph for monitoring a platform (here a BAS connecting
ISP customers to the Internet).

4.4.1 Round Trip Time

ServerProbeClient

Packet
Processing

Packet
Processing

Upstream
RTT

 

Downstream
RTT

Figure 4.3: RTT Computation Schema

Round Trip Time (RTT) is defined as the time between the emission of a data packet
and the reception of its acknowledgement, as shown in Fig. 4.3. In order to get an idea
of the distance between the client and the server, we use the minimum RTT of all the
RTT measures of a flow. As the probe that captures the packets is located between the
customers and the server, we separate the RTT in two parts:

upstream RTT delay from the probe towards the server (in the Internet) and back;

downstream RTT delay from the probe towards the local user and back.

As the infrastructure between the probe and the remote site is the same on different
access types, this allows to compare the distance to streaming servers across the two
different access types, ADSL and FTTH. Note that real RTT between the client and the
server is the sum of the upstream and downstream RTT.
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Figure 4.4: Upstream RTT according to source AS for YouTube 2009/12 FTTH M trace

As the probes are quite close to the clients, downstream RTTs are very short and very
stable (also for non-streaming flows). The CDF of downstream RTTs (between the BAS
and the customer), not shown here, reveals that:

• almost all ADSL video flows have approximately 40ms of downstream RTT;

• whereas FTTH video flows have downstream RTTs between 1ms to 5ms.

For upstream RTTs, we often have a CDF that is multi-modal, which can be explained
by looking at the AS of the flows. The RTT of the two main ASes used by YouTube differ
in their upstream RTT by almost one order of magnitude (see Fig. 4.4). Also for each
AS, the RTTs are very stable showing little variance. We present the results only for
one trace, as they are similar for the other traces.

4.4.2 Peak Rate

We define the peak rate of a flow as the maximum number of bytes received over a
sliding window of 100ms. Studying the peak rate allows us to find out rate limitation
policies of video sharing sites and their interplay with the access rate.

Note that the peak rates are not directly related to the end-user performance as the
conversion of peak rate into mean rate is not straightforward.

4.4.2.1 Peak Rates for FTTH flows

As we compute peak rate over a sliding window of 100ms, we can expect that our
measure will not be systematically perturbed by the congestion control of TCP. We
use only the FTTH traces for which the access rate is 100Mb/s and where the receiver
window size is large enough to assure that the sender rate is not limited by too small
a receiver window. In Fig. 4.5, for the FTTH M traces of 2009 and 2010 the median
receiver window size for clients is in the order 600 kBytes and the maximum around
3.5MBytes.
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Figure 4.5: CDF of window sizes for FTTH M streaming flows
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Figure 4.6: Peak Rates per Flow

Thus we rely on FTTH M flows to grossly evaluate the available capacity along the
path and identify if there is a peak rate limitation policy for video sharing sites. In case
the measured peak rate is below 100Mb/s (default access rate), it is limited either on
server side or between the server streaming the video and the BAS. This path between
the BAS and the server comprises Backbone links, a connection from the Backbone
towards the destination AS (traffic can pass through multiple ASes if there is no direct
link), and the links inside the destination AS.

We consider YouTube and DailyMotion separately as they have very different rate limi-
tation policies.

4.4.2.2 DailyMotion

In Fig. 4.6a, we plot the CDF of the peak rates for DailyMotion FTTH M flows. First note
that a few DailyMotion FTTH M flows achieve peak rates up to 100Mb/s: this indicates
that the path between the BAS and the DailyMotion servers is well provisioned and that
DailyMotion streaming servers do not limit peak rate. In Fig. 4.6a, we see a difference
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Figure 4.7: YouTube Peak Rates per AS for the FTTH M 2009/12 trace

in distribution policy for 2008/07 trace where most of the flows have peak rates at about
15Mb/s.

4.4.2.3 YouTube

For YouTube in Fig. 4.6b, less than 20% of the flows achieve peak rates just above
10Mb/s, while in the case of DailyMotion more than 80% had rates above 10Mb/s.
None of the flows for YouTube achieve a peak rate even close to 100Mb/s.

We would like to show how a server side peak rate limit is influencing the shape of the
CDF of FTTH M peak rates. We choose YouTube as their video streams have peak
rates that are always lower than the peak rates of other streams received by the same
clients. We focus on the 2009/12 trace taken in the afternoon when the ISP Backbone
is lightly loaded. In fact, the CDF of YouTube peak rates for trace FTTH M 2009/12 is
bimodal, so we distinguish YouTube videos per originating AS in Fig. 4.7. This allows us
to see that for both, the YouTube and the Google AS, the distribution policy is to limit the
peak rate of flows, however, the limit value is different. If the providing AS is Google, we
have much higher peak rates (up to 25Mb/s) than if the video comes from the YouTube
AS (only up to 8Mb/s). Indeed the convex and bounded shape of the curve in Fig. 4.7
is characteristic for a server side limit.

We shall see later in Tab. 4.5 that these server side peak rate limits do not influence
video reception quality.

4.4.2.4 Other providers

For other providers (all except YouTube and DailyMotion), we expect a large discrep-
ancy among providers. So we plot in Fig. 4.8 the peak rates per AS and not per video
sharing site as these other providers do not often have an internal infrastructure, but
rely on third party servers to distribute their videos. We also have a few flows achieving
peak rates up to 100Mb/s. Some providers have server side limits whereas other do
not have. We can construct a convex index to derive an indication of the distribution
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Figure 4.8: Other Providers Peak Rates
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Figure 4.9: Mean Flow Rate of Videos for FTTH M traces

type by comparing ratio of the median and the 90th percentile with a threshold:

(Server side limit) ⇔
(

50th percentile
90th percentile

> 0.65

)

4.4.3 Mean Flow Rates

In this section, we focus on the mean flow rate of video transfers, which is defined as:

mean flow rate =
total flow volume
total flow duration

Mean flow rate is an important metric as it is related to the user perceived quality as we
will see later (cf. Tab. 4.5).

In Fig. 4.9, we plot the CDF of the mean flow rate of YouTube and DailyMotion. We also
plot the median video encoding rate for each site to be able to compare the reception
rates with the standard encoding rate. As we are interested in server side limitations,
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we only plot the mean rates for FTTH M traces, as they are much less likely to be limited
by their access speed. Flow mean rates are generally not very high: few videos achieve
rates above 1Mb/s even for FTTH traces.

4.4.3.1 DailyMotion Mean Flow Rates

As for DailyMotion in Fig. 4.9a, we have very homogeneous mean rates in all traces that
show a large accumulation point just above the median video encoding rate at 500 kb/s,
except for 2008/07 trace. Thus, even if there is no peak rate limitation (see Fig. 4.6a),
there is a mean rate limit for DailyMotion videos set slightly above the median video
encoding rate. While such a choice of the rate limit should allow for a correct reception
(and viewing) quality for most of the videos, the reception can be very sensitive to
any network problem that may cause the reception rate to fall below the encoding rate
for some limited time. In the FTTH M trace of 2008, we see that the mean rate limit
originally was higher at about 12Mb/s.

Such modifications in the rate limitation policies made by the video sharing sites are
usually not known in advance to the ISP. However, they may have an important impact
on the network: unlimited peak rates and moderate mean rates may lead to much more
bursty traffic arriving in the router queues.

We would like to emphasize the fact that the peak rate and mean rate limits of TCP flows
are independent: indeed, DailyMotion has no peak rate limit (at least up to 100Mb/s)
but a strict mean rate limit at 500kb/s.

4.4.3.2 YouTube Mean Flow Rates

In Fig. 4.9b, we can see that the policy concerning the mean rate limitation of You-
Tube has evolved over time. For the 2008/07 trace, there is a sharp mean rate limit at
1.2Mb/s that has been previously observed [41].

Such a limitation of both peak rate and mean rate, as in the case of YouTube, was
most likely implemented using a well-known open-source rate limiter, the Token Bucket
Filter over Hierarchical Token Bucket (HTB [29]) with two buckets (one limiting peak rate
and one limiting mean rate). Note that YouTube uses a new distribution policy since
09/2010, so the conclusions on YouTube peak and mean rates do not hold any more.

The FTTH M 2009/12 afternoon trace achieves average flow bit-rates superior to the
median video encoding rate for 95% of the videos. As for mean rate, the shape of the
graphs does not allow to infer any mean rate limitation.

For the traces taken in the evening, around 40% of the videos achieve a mean reception
rate that is inferior to the median encoding rate. The curves are concave with no clear
limitation. As we will see later (in Tab. 4.5), such low reception rates result in bad
reception quality.

In Fig. 4.10, we closer look at the different ASes used by YouTube. There is no indication
for server side limitation of the mean rate, as it was the case in 2008. The CDF of the
mean rates is concave for all ASes. Even if the shape of the CDF for mean rates is
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Figure 4.10: Reception Rate of YouTube videos per serving AS for FTTH M 2010/11 trace

similar among ASes, the YouTube EU AS (43515) clearly has lower mean rates for in
most of the cases, with close to 50% of the videos achieving a mean reception rate
below the median encoding rate. We will come back to this point when we discuss in
detail the video quality (see Sect. 4.5.2).

Studying the achieved mean rates has allowed us to understand the distribution policies
used by the two main video sharing sites. We have seen that the mean rate is not
related to the peak rate, and that videos from the same video sharing site achieve very
different mean rates (independently of the ISP policy) depending on the AS delivering
the video.

4.4.4 Loss Rate

There are different ways to estimate losses at packet level, depending on where the
loss happens.

lost event (LST) a packet with a sequence number lower than the previous one;

retransmitted packets, i.e. packets carrying a sequence number already seen; for the
flows in downstream direction this allows to measure access loss;

out of order packets, i.e. packets with an unexpected sequence number (<
min{seq. nb.} or > max{seq. nb.} + pkt_size) but not retransmitted; for the flows
in downstream direction this allows to measure Backbone loss.

burstiness of loss an index to represent if losses occur in a burst or not, defined as:

burstiness = 1− Nb of LST events
Nb of OOO packets+Nb of RTM packets

We also count the unique bytes received vs. the total bytes received: it gives an indi-
cation of the fraction of the flow affected on the data transfered that may differ from the
packet view.

As the probe is located at the BAS level, all packets from/to the customers of the ISP
must pass through, which ensures that our measures are not biased by multiple paths
taken by the packets.
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Table 4.4: Explanation of Loss Evaluation with downstream packets

Pkt. Length Seq. Nb. LST§ OOO¶ RTM† loss location‡

500 0 – – –
500 500 – – –
500 1000 – – –

1500 1500 – – –
1500 3000 – – –

500 500 X – X access network
500 1000 – – X access network

1500 4500 – – –
1500 9000 – – –
1500 6000 X X – backbone
1500 7500 – X – backbone
1500 10500 – – –

Total 13000 12000 2 2 2
(total bytes) (unique bytes)

§ loss event
¶ out of order packet (but not previously seen) ⇒ backbone loss
† retransmitted packet ⇒ access loss
‡ we do not consider spurious retransmissions or packets not lost but missed

by the probe
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Figure 4.11: Backbone Loss Rates

We illustrate the loss estimations with Tab. 4.4. This shows that losses before probe (in
the backbone) are caught as out of order, as opposed as packets seen twice that most
likely indicate loss after the probe (in the access network).

As for video streaming most of the data are transmitted from server towards the client,
we focus on losses between the server and the BAS, which is referred to as Backbone
loss. The access loss rates of most of the flows are below 1% (details are not shown
here).

In Fig. 4.11, we look at Backbone loss for YouTube and DailyMotion.
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Figure 4.12: Backbone Loss Rates per AS for YouTube videos on 2010/02 FTTH M trace

4.4.4.1 YouTube Loss Rate

In the case of YouTube, it is interesting to understand how the AS connectivity to the
ISP can greatly influence the loss rate. The CDF of the Backbone loss rate, which
is defined as the ratio of the number of packets lost in Backbone to the total number
of packets, is shown in Fig. 4.11a. If we focus on the 1% loss region, in all traces
(except the 2008 traces and the 2009/12 afternoon FTTH M trace) between 60 − 80%
of the flows experience more than 1% packet loss along the path from the server to the
capture point. For a TCP connection, the through achieved is inversely proportional the
square root of its loss rate. Accordingly, the mean flow rate of all the YouTube flows
with more than 1% Backbone loss is only 285 kb/s (including FTTH flows), whereas the
median encoding rate is 330 kb/s (Fig. 4.2a).

A threshold of 2% on loss rates allows us to discriminate traces in Fig. 4.11a. For
example, 2009/12 FTTH M and 2008/07 ADSL M are the only traces where the large
majority of flows have less than 2% loss rate. We will see in Tab. 4.5 that these are also
the only traces with consistently good reception quality.

Distinction per AS In order to better understand the differences among traces, we
distinguish the YouTube flows per originating AS. We focus on Backbone loss in
Fig. 4.12 and shall see how losses occur per AS.

In fact, the loss rate of C&W is dependant of the prefix used (not shown here). Thus,
we have C&W prefixes with high loss rates (higher than YouTube EU AS) and other
with lower one (as Google one). What is clear in this figure is that the 2% out of order
packets ratio seem to be a good indicator of health of the sending AS: if 80% of the
videos distributed by an AS have less than 2% loss, we can assume this AS has no
specific problem.

4.4.4.2 DailyMotion Loss Rate

We show in Fig. 4.11b the CDF of Backbone loss rates for DailyMotion. Most flows
see less than 1% upstream loss rate. We also plot the 2% loss rate, which is adequate
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Figure 4.13: Burstiness of Losses

to discriminate DailyMotion videos according to their reception quality. Indeed, both
of the ADSL R traces (2009/12 and 2010/02) encounter much more losses (above the
threshold of 2%), and we shall see in Tab. 4.5 that these are exactly the traces where a
lot of videos experience a bad reception quality.

4.4.4.3 Burstiness of Loss

The loss burstiness is defined at the beginning of the Sect. 4.4.4. An example of bursti-
ness value is when you have only single out of order packet or retransmitted packet at
a time, then you have a 0 burstiness index. The lower the burstiness index, the more
disperse are losses. A burstiness index above 0.8 means that on average each loss
event affected at least 5 packets. We plot in Fig. 4.13 the CDF of loss burstiness for
YouTube FTTH M flows.

In Fig. 4.13a, there are two traces (2008/07 FTTH M and 2009/12 FTTH M) that
have more burst losses than others. They correspond to the use of former YouTube
AS (36561) and to the afternoon trace. As the AS path from the ISP towards You-
Tube EU encounters congestion problems at evenings, we have a low loss burstiness
for evenings traces. Indeed, this kind of losses are happening on a large transatlantic
link shared between many flows and two consecutive packets of the same flow are
unlikely to be lost. We can check this with the detail of burstiness per AS in Fig. 4.14,
where YouTube EU (AS 43515) has a much lower loss burstiness index than other ASes
providing YouTube videos.

For DailyMotion in Fig. 4.13b, we have a much higher loss burstiness index than You-
Tube. As the DailyMotion AS is well connected to the ISP, the flows should attain very
high TCP congestion window values. Thus, when a loss occurs, it will probably affect
multiple packets in the TCP congestion window, resulting in higher loss burstiness. We
mention that traces from the regional BAS encounter the highest burstiness index: in
this case, the bottleneck is in the ISP on the path between the interconnection and the
regional BAS. On this path, the flows are not multiplexed with other flows leading to
bursts losses.
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Figure 4.14: CDF of loss burstiness for YouTube FTTH M 2010/02 trace per AS

The burstiness study shows different trends between YouTube and DailyMotion that are
due to the cause of limitation:

• interconnection link shared with other traffic for YouTube (less likely to have burst
losses in a flow);

• good connection with a direct peer for DailyMotion.

We generalize the analysis of burstiness as follows: if the flows on a set of users towards
a specific AS encounter mostly bursty losses, we deal with occasional congestion on
a single bottleneck path; otherwise, non-bursty flows indicate a congestion on a path
shared with many other flows.

4.4.5 Methodology for Monitoring

Here we try to combine main messages of the previous analysis into a flow chart to be
able to derive the state of a monitored platform out of flow level information in Fig. 4.15.
In our case, we consider a BAS connecting ISP users to the Internet, but it could be
more generic. As the situation can be very diverse, we shall apply this method for each
AS individually. Moreover we think it should apply on video streaming only. Indeed,
HTTP streaming nowadays aggregate a lot of flows and volume, and other popular
applications cannot allow this analysis:

• P2P software usually limits individual flow rates and take too many different path;

• non-streaming HTTP transfers are often short and do not allow TCP to achieve its
full rate.

One click hosting sites could also lead this kind of analysis but free users often en-
counter many limitations on these sites, so we think it should not be as representative.

This method is quite simplistic but gives us clues on how the traffic is handled without
being mislead by caveats such as servers intentionally limiting peak or mean rates of
its flows.
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Figure 4.15: Monitoring Diagram: to apply to each streaming provider

Our flow chart starts by comparing peak rates to access rate: if the flows achieve their
theoretical maximum rate, no bottleneck has been encountered on the path. Next we
figure out throttling on server side out of the shape of the CDF of the peak rates (with
our convex index). The burstiness of losses allows us to see congestion on shared path
(when there is no bursts) or occasional congestion on a single path (when there are
bursts).

4.5 User Behavior Study

In this section, we want to study how users view videos and also how users adapt their
viewing behavior in response to bad reception quality.

Firstly, we globally measure how much of a video the users download. Secondly, we
define a simple metric for user experience to differentiate videos with good reception
quality from others. Finally, we relate this indicator to the fraction of video downloaded
to the fact that a user has completely downloaded the video, and to the video length.

4.5.1 Downloaded Duration

Ideally, we would like to know how much of a video the user is actually watching. How-
ever, as the video interactions (like pausing/resuming the video) are not transmitted to
the server, we cannot retrieve them at network level. Instead, we approximate how
much of a video a user watches by how much of the video she has downloaded, which
provides us with an upper bound on how much she has watched. For instance, the fact
that a video has been fully downloaded does not mean that the user watched the video
completely (if the video was paused and never resumed).
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Figure 4.16: Fraction of Video Downloaded per Trace

We define the downloaded duration:

downloaded duration =
size of downloaded flow

video encoding rate

We have also checked that the distribution of video length does not change for our
different traces. Also, the distribution of video durations for the videos watched by the
ISP clients matches the size of videos as seen in [25]: the most frequent durations are
videos of 3–4 minutes videos (most likely video clips).

In Fig. 4.16, we plot the CDF of the fraction of the video downloaded for each trace for
YouTube and DailyMotion. We see that the distribution can vary a lot among traces.
Globally, not more than 40 − 60% of the videos are completely downloaded. Such
behavior seems to indicate that progressive download induces users to “browse” videos
without necessarily watching each video to the end.

Focusing on YouTube in Fig. 4.16a, we first notice two traces with a much higher fraction
of videos that are completely downloaded: the 2008/07 ADSL M and 2009/12 FTTH M,
which are the traces with the lowest loss rates (see Fig. 4.11a). In all the other traces,
the fraction of videos that is fully downloaded is 40% or less.

As for DailyMotion (see Fig. 4.11b), the difference in download behavior among the
traces is more pronounced than for YouTube. We have no good explanation why this is
the case, except that there are fewer samples in each trace for Fig. 4.11b. The FTTH M
2010/02 trace has the largest number of completely downloaded videos (80%), which is
significantly more than what we have seen for YouTube.

Since many of videos are not downloaded, and thus not watched, until the end, we want
to understand the reasons: Is it lack of interest, bad reception quality, or video duration?

4.5.1.1 Download Duration per AS

We can think that this reaction of interrupting the video download may be not directly be
due to video characteristics but also to interest in the content. To check this, we plot in
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Table 4.5: Fraction of Videos with Bad Reception Quality (normalized rate ≤ 1)

YouTube DailyMotion

YT EU GOO YT C&W GBLX DM LL
Trace AS 43515 AS 15169 AS 36561 AS 1273 AS 3549 AS 41690 AS 22822

2008/07 ADSL M – 1% 7% – – 4% 49%

2008/07 FTTH M – – 18% – – 1% 3%

2009/11 ADSL M 49% 0% – 47% 50% 11% –

2009/11 FTTH M 34% 0% – 88% 5% 12% –

2009/12 ADSL R 74% 50% – – – 30% –

2009/12 FTTH M 6% 10% – – – 15% –

2010/02 ADSL R 68% 45% – 56% 80% 20% –

2010/02 FTTH M 52% 17% – 1% 69% 8% –

Fig. 4.17 the fraction of downloaded volume for trace FTTH M 2009/11 on YouTube with
each AS separated. In this graph, we see that the downloaded size clearly depends on
the origin AS, but the shape of the CDF is the same for each AS. If we relate this to the
loss rates in Sect. 4.4.4.1, we have a good match between the AS providing high flows
throughputs and the AS where users do not fully download the video.

As the load balancing of DNS resolution is user independent6, we conclude that the
impact of individual video degradation is instantaneously applied: if a user is not able
to watch a video correctly, he will interrupt it independently of previous videos watched.

4.5.2 Simple User Experience Metric

To “measure” the user experience we want to know if the video was interrupted during
playback. First, we define the normalized rate for each video as:

normalized rate =
mean flow rate

video encoding rate

62 requests on the same video cache URL from the same user can result in 2 different addresses
(without DNS cache).
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In lack of a better metric, we say a video has good reception quality if its normalized
rate is above 1, and bad reception quality otherwise. We admit that this is quite a crude
measure. However, we have done several controlled lab experiments under different
network conditions. We have recorded both, the packet traces and the occurrences of
video playout interruptions, and have found that the normalized rate is a reasonable
indicator for the reception quality. We report in Tab. 4.5 the video quality for YouTube
and DailyMotion per AS streaming the video.

What is striking is that for YouTube, the reception quality depends a lot on the AS that
serves the video. Many videos coming from the YouTube EU AS (43515) have a bad
reception quality. If we relate this to the traffic distribution given in Tab. 4.2, we see that
the AS that serves most of the YouTube videos for this particular ISP is the one providing
the worst performance. YouTube videos coming from other ASes usually have a good
reception quality.

The afternoon trace FTTH M 2009/12 is the only one with a good reception quality for
streams served from the YouTube EU AS. This makes us conclude that in the evening
hours there are not sufficient bandwidth resources along the path from the YouTube EU
AS to the ISP.

In the case of DailyMotion, the reception quality among traces is much more uniform.
In the 2008 ADSL trace, the LimeLight AS (22822) had much lower reception quality
than the DailyMotion one. For DailyMotion, the time of day has no impact on reception
quality as the afternoon FTTH M 2009/12 trace does not have better performance than
the other FTTH traces.

The case of the two ADSL R traces is worth considering separately: for both traces, the
reception quality of a large number of videos coming from either the YouTube or from
DailyMotion is bad. As this affects videos being served by the other ASes, these seems
to indicate that some of links internal to the ISP are congested.

4.5.3 How do Users watch Videos

In this section, we want to understand why users decide to interrupt video downloads.
We first analyse the downloaded duration in function of content duration. Then, by
discriminating on the reception quality, we are able to see that videos with bad reception
quality have much shorter downloaded durations than others. Moreover, the decision
of interrupting the download is taken very quickly for videos with bad quality.

4.5.3.1 Relation of Video Length to Reception Quality

In Fig. 4.18, we plot for each video the fraction of the video downloaded in function of
the video length.

We see that videos with good reception quality have more complete downloads than
videos with bad reception quality. To analyse the graph, we first look at the videos that
have download durations of less than 3 minutes, which make up the majority of the
videos, independently of the reception quality. The usage for YouTube seems to be
either to download less than 3 minutes or to download the video completely. In case
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Figure 4.18: Fraction of Video Downloaded in function of Video Length for YouTube
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Figure 4.19: Fraction of Video Downloaded as function of Video Reception Quality

of good reception quality, about three times as many videos longer than 3 minutes are
fully downloaded (28%) as when the reception quality is bad (11%).

4.5.3.2 Relation of Download Duration to Reception Quality

As far as the downloaded duration is concerned, we can see in Fig. 4.18 that in case of
good reception quality, 34% of the videos have a downloaded duration of 3 minutes or
more, while in the case of bad reception quality their share drops to only 15%.

In Fig. 4.19, we relate the fraction of the video downloaded to the video quality. Again,
we clearly see the impact of the reception quality on the downloaded portion of the
video. The results for both sites, YouTube and DailyMotion are very similar. We have
clearly two zones:

• completely downloaded videos (≥ 95%);

• videos for which only a small portion has been downloaded (≤ 20%).
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In case of bad reception quality, very few videos are completely downloaded. Moreover,
the decision to stop downloading a video is taken quickly (in the first 20% of the video
duration).

In case of good reception quality, about half of all videos are completely downloaded
and the decision to interrupt download is not taken right from the beginning but at any
point during the viewing.

We have seen in Tab. 4.3 that in the case of YouTube, the same user, when requesting
multiple videos, will be served with high probability from machines that are located in
different ASes. This observation leads us to carry out one more analysis in order to
validate that there exists a positive correlation between video reception quality and the
fraction of the video downloaded.

For the FTTH M 2010/02 trace, we take all clients that meet either one of the following
two conditions: clients having received at least one video with good reception quality (i)

from both AS 43515 and AS 1273, or (ii) from both AS 43515 and AS 15169.

In Fig. 4.20, we plot for all the clients that meet condition (i) or (ii) the fraction of video
downloaded as function of the reception quality for the three different YouTube ASes.
We see that independently of the AS that serves the video, the fraction of the video
downloaded is much higher for videos with good reception quality than for bad videos.



CHAPTER5
Conclusion of Part I

“There are three kinds of lies: lies, damned lies

and statistics.”

Mark Twain,
Autobiography

Part I has explored different types of passive measurements to draw insights on the
traffic of residential Internet customers. We have used data collected on multiple local
platform aggregation point from different geographical locations in France. In Chap. 3,
we have used connection summaries over a timespan of one week and on three differ-
ent probes to give an updated view of the components of the Internet traffic of residential
users. Chapter 4 has taken advantage of this knowledge (mainly the predominance of
Streaming traffic) to focus more deeply into the performance of HTTP video streaming,
and to understand the impact of the quality of service on the usage of video streaming.
In the remaining of this chapter, we recall the main results of Part I.

5.1 Conclusions on the Analysis of Week-long Connection
Statistics

In Chap. 3, we have refreshed the view of residential Internet traffic with connection
summaries from one week of July 2011 on three different probes in France. We have
first detailed the global characteristics of our data to show that top applications are
Streaming, Web, Download and P2P in this order. The composition of Streaming traffic
shows that most of the flows come from advertisements whereas most of the volume
comes from video clips, also YouTube is by far the most popular video streaming ser-
vice.

Studying traffic indicators at user’s scale has allowed us to understand how main appli-
cations function. In particular, P2P transfers usually take advantage of plenty of parallel
connections (with low throughput) to achieve an acceptable global download rate. This
is true for some users, but overall the P2P throughputs are very low even if aggregated
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among all the parallel connections. We have also seen that some ISPs tend to loss
much more P2P packets than others.

The application mix of users has been studied through a clustering analysis on top 100
users. Most of these users (that carry about the half of the total platform volume) are
grouped in the class of Web+Streaming. This means the large majority of all platform
users (with the notable exception of the first 20 heavy hitters) are using only these
two applications. Moreover the timescale of the analysis plays only a minor role in the
conclusions of the clustering analysis: only taking late night hour snapshots of traffic
leads to different conclusions than the whole week analysis.

We finally have come to the question of platform dimensioning. Here, the problematic
is how to manage the peaks of downstream traffic. With this in mind, we have proposed
some ways to reduce the peaks without perturbation for the end users. The global
method is to limit the rate of elastic applications (consisting of the traffic that is not
interactive). An interesting result is that we can achieve a reduction of about 4% of the
95 percentile of downstream peaks by reducing the rate of these applications during
only 4 hours per day and for only 1 user out of 10. These results may not be directly
applicable, but can play a role in local platform management.

5.2 Conclusions on the Performance of HTTP Video Stream-
ing

In Chap. 4, we have carried out a detailed analysis of HTTP video streaming based
on the actual videos downloaded by the clients of an ISP. We rely on eight different
traces captured over three years, at two geographically different capture sites and for
two different access technologies and considered two of the main video sharing sites.

We underline the fact that the video sharing sites have a major control over the delivery
of the video and its reception quality through DNS redirection and server side streaming
policy. Also, the AS chosen to serve the video is often not the one that assures the best
video reception quality.

5.2.1 YouTube Architecture and Video Servers Selection

YouTube videos can be served by machines located in different ASes. YouTube stream-
ing servers enforce a peak rate limit whose value depends on originating AS. In recent
years, there seems to be no limit on the mean rate.

The selection of the machine serving the video is done via DNS and under the full con-
trol of YouTube. Contrary to the findings of previous studies, YouTube server selection
does not seem to apply the usual metrics such as proximity. For a client, the choice of
the AS can have a big impact on the reception quality. In the case of the YouTube EU
AS, which serves most of the videos in our data, the RTTs and loss rates are high and
the reception quality of many videos is bad.
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5.2.2 DailyMotion Delivery Policy

In our data, DailyMotion imposes a mean rate limitation that is slightly above the median
encoding rate, but does not limit the peak rate.

Since 2009, there is only one AS that serves all requests assuring for most of the videos
a good reception quality.

5.2.3 Users’ Viewing Behavior

This study is the first to look at the user viewing behavior and the influence of the
reception quality on the viewing behavior. We use the normalized reception rate as a
simple indicator of video reception quality. We see that videos with bad reception quality
are rarely fully downloaded and that bad reception quality results in reduced viewing
durations. What is equally interesting is that even when the reception quality is good,
only half of the videos are fully downloaded, which indicates that both, the reception
quality and the interest in the content, impact the fraction of the video downloaded.

5.2.4 Next Steps on Utilising Passive Packet Traces to Understand Video
Streaming Traffic

In the future, we want to further explore how the different flow metrics, such as RTT, loss
rate, or mean reception rate can be used to detect and locate performance problems
(Fig. 4.15). This approach is similar in spirit to the one in [23] where certain TCP flow
records on mobile data networks are used to estimate achievable download speed.

Capturing traces from several video sharing sites will allow to detect problems of a
particular site by both, comparing measurements made at different points in time and
also by comparing measurements for different video sharing sites made at the same
time.

We have used the normalized rate to assess the reception quality of a video. This indi-
cator is a first approximation of the quality of experience of video streaming. The next
step is to precisely study the playout behavior of the Adobe Flash Player to “emulate”
the video playout and to detect buffer underflows that cause playout stall events. Us-
ing this type of study seem not to scale large scale measurements. We shall detail in
Part II our model to emulate the video playout for YouTube using active measurements.
This will help us validate the indicator of video reception quality used in Chap. 4, and
understand in which case this indicator is useful.
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CHAPTER6
Active Measurements Context and

Challenges

Savoir, et ne point faire usage de ce qu’on sait,

c’est pire qu’ignorer.1

Alain,
Propos sur l’éducation

We shall now address the question of active measurements. The main concern with
active measurements from an operator point of view is: “Do I really measure what my
customers see?” Indeed, the traffic we generate may have a different behavior than the
one of the users: it can take a different path, the access rate may be different. . . Also
inserting data directly in customers access lines is not an option. These limitations
justify why we have deeply developed the passive measurement methods in Part I. But
to gain new understanding of the target infrastructure, to be able to modify specific
parameters (such as DNS), to undertake reproducible measures, to be able to compare
results between ISPs, etc. . . active measurements are a very useful tool. As explain in
Sect. 6.1, we shall focus only on HTTP video streaming and more precisely on YouTube,
the most popular video streaming sharing site.

6.1 Active Measurements of HTTP Video Streaming

As seen in Part I, web-driven contents carry most of the bytes of residential Internet
traffic with video streaming being the most important (in terms of volume). Among
the different online video services, HTTP video streaming (using Flash technology)
is the most popular one, and YouTube is by far the most popular service. Services
such as blogs and social networks are also enabling users to embed personal videos,
thus expanding the video streaming audience. As the users usually watch HTTP video
streaming while downloading (it’s also named Progressive Download), the impact of
quality degradation is directly perceived. It is thus of primary interest for ISPs.

1Knowing, and not using what we know, is worse than ignoring – my translation

75



76 CHAPTER 6. ACTIVE MEASUREMENTS CONTEXT AND CHALLENGES

In this part of the thesis, our goal is to understand the YouTube distribution policy and
its impact on Quality of Experience (QoE) from an end-users point of view. For this
purpose, we have designed an active measurement tool to evaluate QoE of YouTube
videos with the number of stalls in the video as a primary indicator. The purpose of our
work is to shed a new light on YouTube video delivery policies and its infrastructure.

This chapter is organised as follows: we first review related work in Sect. 6.2; and in
Sect. 6.3, we state the main results and the novelty of our work. In Chap. 7, we present
our tool and methodology before explaining our results and the knowledge gained on
the YouTube infrastructure.

6.2 Related Work

We have already detailed the passive measurement works on YouTube in Sect. 2.3.
The user experience and the impact of network performance on user behavior has been
studied in [20, 41, 39] based on packet traces captured at an ISP. The main results are
that usually default configurations are used and users often jump inside the videos. With
good network conditions, this may lead to a large amount of wasted bytes (downloaded
but not watched). On the user side, the response to deteriorated network performance
is to shorten their video watching sessions.

We focus in the rest of this section on the active measurement studies of YouTube.

In [46], PlanetLab nodes are used to probe and compare the server infrastructure of
three different HTTP video streaming services (including YouTube). The authors use
the time to download the first MByte of video as their primary performance indicator.
They investigate the service delay distribution according to geographical location of
users and to the characteristics of the video (age and popularity).

PlanetLab active measurements are also used in [3] to understand the dynamics of
YouTube video server selection by studying the mechanisms of load-balancing (static,
semi-dynamic through DNS and dynamic through HTTP redirect). In [1], the same
authors pursue the investigation of the YouTube infrastructure, and give many insights
on the YouTube video cache server hierarchy.

The impact of DNS resolvers has been compared in terms of latency and caching [4]
(not specifically to YouTube). Application level monitoring for ISPs (a goal that we also
share) has been studied in [49], with applications such as quality evaluation but also
routing policy management.

The study of YouTube QoE has been undertaken with a crowdsourcing approach in [28].
The paper shows that the primary QoE factors in YouTube video playback are the num-
ber of stalls followed by their duration. In [48], an estimator of YouTube video QoE has
been designed to predict future stall events.
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6.3 Contributions

6.3.1 Main Results

We have performed many measurements over one year with different configurations. In
order to compare results between ISPs, we have taken advantage of a multi-connected
lab with Internet accesses provided by different ISPs but with similar access rates. We
have completed these findings with some specific European measurements. We also
benefit from simultaneous measures taken by a class of Kansas City students that
allows us to compare the distribution policies between Europe and the US.

The main results are that video delivery policies vary a lot even inside the same country
and for the same geographical location. The traffic distribution is highly dependent
on ISP and this can impact the end-user QoE. Finally, the network and server load-
balancing policies dictates the choice of the cache site used by YouTube to deliver the
video, whereas the geographical location is not as important. We have also seen that
these policies are very volatile and can change abruptly even at the timescale of several
months.

6.3.2 Novelty of our Work

Our work differs from others since we are not only interested in the network perfor-
mance to access the YouTube video streaming servers, but also in the perceived video
playback quality. One work towards these goals asks for manual user feedback via
crowd-sourcing [28]. In this perspective, one of the main interests of our study is to
automatically present an objective measure of video playback quality without having to
ask users for their feedback.

The difference in our dataset and PlanetLab based measurements is also important.
Indeed, we focus on residential accesses that have very different characteristics than
PlanetLab accesses (often hosted by large Universities or Research Centers). This
leads to different treatment in the YouTube video delivery. The diversity of ISPs in our
data allows us to show that the delivery policy (mainly video server selection Sect. 7.3.1)
highly depends on ISP. Finally, many changes observed during the duration of our mea-
surements (almost one year) show that the YouTube infrastructure is highly dynamic
even at the limited timescale of several months.
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CHAPTER7
Impact of YouTube Delivery

Policies on the User Experience

This chapter presents an in-depth study of YouTube video service delivery. We have
designed a tool that crawls YouTube videos in order to precisely evaluate the quality
of experience (QoE) as perceived by the user. We enrich the main QoE metric, the

number of video stalls, with many network measurements and use multiple DNS servers
to understand the main factors that impact QoS and QoE.

This tool has been used in multiple configurations: first to understand the main delivery
policies of YouTube videos, then to understand the impact of the ISP on these policies,
and finally to compare US and Europe YouTube policies.

Our main results are that:

(i) geographical proximity does not matter inside Europe or US, but link cost and ISP-
dependent policies do;

(ii) usual QoS metrics (RTT) have no impact on QoE (video stall);

(iii) QoE is not impacted nowadays (with good access networks) by access capacity
but by peering agreement between ISPs and CDNs, and by server load.

We also indicate a network monitoring metric that can be used by ISPs to roughly
evaluate the QoE of HTTP video streaming of a large set of clients at a reduced com-
putational cost.

7.1 Methodology

The ability to measure QoE of HTTP video streaming is important as it represents a
large part of Internet traffic. Passive monitoring can be used to easily monitor a large
set of users, but in this case the perturbations between the probe and the end-user are
not taken into account in the analysis. Moreover as the video data transfered during
HTTP video streaming can become huge, large scale passive monitoring would need
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EXPERIENCE

too much processing. Therefore we have chosen to monitor the HTTP video streams
directly from the end-users computer.

The interruptions to video playback can be attributed only to insufficient network con-
ditions in HTTP streaming. Indeed, the video quality only depends on the encoding:
once the definition has been chosen (by default on YouTube: 360×640), no other image
degradation is possible (e.g. pixeling). Thus we have chosen only to decode the times-
tamps of the Flash Video (FLV) frames: this allows us to have a precise evaluation of
video time without the cost of video decoding. With this information, we have reverse
engineered the YouTube flash video player to model its behavior.

7.1.1 Tool Presentation

We have designed a tool, Pytomo [43], to measure QoS and QoE of YouTube videos.
Our tool functions as follows: After a bootstrapping phase, where we collect the URLs
of the most popular videos of the week, we process each URL as follows:

(i) retrieval of video server URL;

(ii) DNS resolution to obtain the IP address of video server;

(iii) QoS statistics collection;

(iv) QoE statistics collection.

Videos related to the current video (obtained through YouTube API) are then added to
the list to crawl.

7.1.1.1 Network Statistics

Our tool collects the following statistics (see [30] for a detailed description):

• Ping statistics: min, max, average (over 10 packets);

• Video information: format, duration, length, mean encoding rate;

• Download statistics: average throughput, initial throughput (over the first 3 sec-
onds), maximum instantaneous throughput (over a TCP read).

These network statistics are collected per video for each IP address of the video
servers.

7.1.1.2 Model of Video Playback

The goal of this model is to be able to detect and count interruptions in the streaming
video playback. Indeed a large scale QoE study on YouTube quality [28] has shown
that interruptions (stall) in the videos are the main Quality of Experience (QoE)
indicator for video streaming. Indeed, at the time of writing, seamless video rate
adaptation is not available on main video streaming sites, such as YouTube. Thus, the
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only way to cope with reduced network throughput is to wait for more data to come. To
model the streaming video playback, we maintain two metrics:

D(t): seconds of video content downloaded up to time t ie. the amount of video that has
been downloaded in terms of playback duration (obtained through the timestamps
of FLV tags);

P (t): seconds of the video consumed up to time t ie. the amount of video that has been
watched.

These two timescales correspond respectively to the gray and red bars in the YouTube
player. Obviously when the red bar corresponding to the playback is getting close to the
gray bar corresponding to the downloaded video, the playback is interrupted. Thus, we
have:

D(t)− P (t) < minimal-playout-buffer ⇒ Playback stops

The restart of the playback occurs when there is enough amount of video that has been
downloaded:

D(t)− P (t) > minimal-restart-buffer ⇒ Playback resumes

By keeping track of the state of the playback, we are able to infer the number of inter-
ruptions during video playback. This model does not take into account jumps inside the
video or playback pauses initiated by the user. We are aware of these limitations and
think this model should reflect the usual user behavior. Moreover, in case of a jump
inside the video, the model is still valid: as shown in [41], a jump in a part of the video
that is not already downloaded creates a new connection starting at the requesting time
(instead of beginning).

We collect the following statistics for the video playback:

• playback statistics: initial buffering duration, number of interruptions, total buffer-
ing duration, seconds buffered at the end of the download.

We explain in Sect. 7.1.2 how we obtain the values for the model.

7.1.1.3 Design Implications

As we start our crawl with the most popular videos of the week (by default), we are
biased towards popular videos. This is a deliberate attempt so as to assess the QoS
and QoE for the content that most users watch. In [1], the authors show that cold

(unpopular) videos are much more likely to encounter HTTP Redirect, mainly due to
cache miss in the video datacenter. This implies that in our case, HTTP Redirect should
be due to high video server load (and not cache miss).

7.1.2 Validation Process

In order to be able to obtain reliable results, the validation and calibration of our tool
has been carefully undertaken. We use a local server to deliver the video so that we
completely control the video delivery during the calibration process. We thus simulta-
neously launch a video download with our crawler and a video playback in a browser.
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The video is delivered by our local server: note that we had to use a proxy for the video
player in the browser, since the domain security parameters in the YouTube Shockwave
player do not allow queries on other domain than youtube.com (such as localhost).
We have visually checked that the playback as modeled in the tool correspond to the
playback in the browser. The total control of the video server allows us to precisely
check the threshold values for the model (see 7.1.1.2). Here are the main values found:

• seconds of video content initially buffered (initial buffer ): 2.0 seconds;

• seconds of video content needed to continue playback (minimal playout buffer ):
0.1 seconds;

• seconds of video content needed to resume playback (minimal restart buffer ):
1.0 seconds.

These values agree with the ones chosen in [48] to infer the video quality based on
browser events. Decoding the FLV timestamps has allowed us to determine precise
values of these parameters.

7.2 Datasets Details

Our tool is able to run on any PC with minimal setup, so that we were able to run it in
very different situation.

7.2.1 Volunteer Crawls

We have a large number (145) of volunteer crawls done by ourselves and many col-
leagues and friends in Europe and the US. This has allowed us to first test our tool, and
then to have many different vantage points for analysis. Theses crawls started in March
2011 and are still in use at the time of writing (February 2012). Their durations vary
from a few hours to many days.

They are used to test the tool and understand the YouTube functioning system.

7.2.2 Controlled Crawls

We have also benefited from a set-up in a single location connected to different ISPs
that provides 7 ADSL, 1 Fiber and 1 Cable Internet accesses. Note that the ADSL
accesses have exactly the same access bit-rate. These controlled crawls have been
useful to launch specific tests across multiple ISPs with comparable setup: only the
ISP is changing (geographical location and bit-rate are the same). We focus on 8
crawls of at least two days that have been done between September 2011 to January
2012. We present data from only one crawl in September 2011 and one in December
2011. Indeed, these are the only two datasets where a significant amount of video stalls
occurs. This indicates that

• the quality of YouTube videos is highly dynamic;
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Figure 7.1: Ping time in Milli-seconds to Main YouTube Cache Sites observed in a controlled
crawl in December 2011

• overall at the time of measurement, only few videos stalls were observed.

They are used to compare YouTube’s policy with respect to the ISP without any access
link difference.

7.2.3 Kansas City Crawls

Finally, a complete class of UMKC students were assigned to run simultaneous crawls
from their homes on the 8th December 2011 for two hours. These 70 Kansas City crawls
have given us some insights on the US market. For YouTube, US represents about 15%
of YouTube traffic and 28% of YouTube users.

They are used to compare the findings from European and the US crawls.

Note that the instantaneous throughputs recorded in the crawls allow to validate that
no access network limitation has been encountered: either by access rate limit, or by
excess usage of other applications while using our crawler.

7.3 Results

In this section, we expose the main results from our experiments. We show the impact
of the DNS server used and of the ISP on the selection of IP address and video server
respectively. We show that these two key components have an unexpected impact on
the QoS of video streaming.
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7.3.1 Video Server Selection

7.3.1.1 YouTube Video Server URLs

The URL of a YouTube video is usually:

• http://www.youtube.com/watch?v=XXXXXXXXXXX

• or http://youtu.be/XXXXXXXXXXX (with short URLs).

The YouTube video webpage comprises of multiple parts: the main video in the flash
player and all the rest (comments, related videos, ads. . . ). The video played in the flash
player comes from another TCP connection. This connection is responsible of the video
delivery: our analysis focuses only on the connection towards the video server only.

The URL of the video server is customised according to the IP address of the
requesting user. We have listed the main types of URLs in Tab. 7.1 for controlled
crawls (in France) and in Tab. 7.2 for Kansas City crawls (in the US). We adopt the
same naming convention as in [1]. The 2 main types of URLs in our data are: lscache
and nonxt. They represent primary cache locations of the YouTube infrastructure. A city
code is always included in the URL and indicates the preferred location of the YouTube
cache site. For some ISPs, a specific URL including the ISP name along with the city
code is given: this should direct users to cache sites dedicated to the ISP.

As seen in [1], the mapping of video ID to the URL of video servers is fixed. This means
that if a video is served by a primary cache site as ...v6.lscache2... with one ISP, it
can be directed to another primary cache site but with the same v6 and lscache2 in the
video server URL.

In our data, the secondary and tertiary cache locations of the YouTube infrastructure
are used only in the case of redirections. Their URLs are of the form:

• ...v[1-24].cache[1-8].c.youtube.com.

Note that there is also unicast hostnames to directly address physical servers:

• r[1-24].CITY_CODE.c.youtube.com.

We encounter these URLs only in the case of redirection.

7.3.1.2 In Europe

The most common form of video server URL is lscache as shown in Tab. 7.1 for the
controlled crawls. In these crawls from France, the city codes are par and ams for Paris
and Amsterdam respectively. From Tab. 7.1, this preferred location clearly depends on
the ISP. Here are the main findings from Tab. 7.1:

• ISP B has all its video server URLs on one cache site (par08s01) in Paris;

• ISP N has all its video server URLs with Paris cache site as preferred location,
but with two different logical names (par08s01 and par08s05);
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Table 7.1: Number of Videos for each ISP according to Regexp on Video Server Url for a
controlled crawl in December 2011

ISP
URL Regexp A B-A B-F F-R F-V N O-L S-E S-V

o-o.preferred.par08s01.v[1-24].nonxt[378].c.youtube.com 0 1 2 0 0 0 0 0 0
o-o.preferred.ams03g05.v[1-24].nonxt[378].c.youtube.com 0 0 0 0 2 0 0 0 4

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 0 2676 2677 0 0 1890 0 1967 1528
o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 1636 0 0 952 2425 799 0 0 0
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 150 0 0 0 206 0 0 3033 2488

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 0 0 0 0 0 0 2591 0 0

other 0 0 0 0 0 0 1 0 2

• ISP O has a dedicated cache site (orange-par1), and the IP addresses of this site
belongs to a specific AS (36040);

• ISPs S and F are directed to cache sites in Paris or Amsterdam with different
proportions: about 2/3 to Amsterdam for ISP S and 10% for ISP F.

This highlights that the customisation of video server URLs is done for each ISP.

The network impact of the location on the ping time is found to be very low. For example,
the minimum ping time to Paris video servers is of 23.8ms and of 28ms to Amsterdam
(because of relatively small distance between the two cities). But the main point is that
the choice of the preferred location is dependent of the time of day as shown in Fig. 7.1.
This indicates a deliberate choice depending on ISP. Moreover, even if the difference
on minimum ping value can be very low, the cross traffic on the path from France to
Amsterdam can increase the ping value as high as 200ms. Indeed, Fig. 7.1 shows a
large variance in ping times towards Amsterdam video servers. Overall, the average
ping time to Paris video URLs is of 25.6ms, whereas it’s 53.8ms to Amsterdam.

7.3.1.3 Impact on QoE

Focusing on the QoE, we show in Fig. 7.2 the average number of interruptions per
period of 60 minutes for 2 ISPs during a controlled crawl in December 2011. This
demonstrates that the preferred location has almost no impact on interruptions: indeed,
in this crawl, Free-V5 access has lots of periods with many videos affected by stalls,
while using video servers based in Paris. Whereas SFR-V4 access has no stalls even
though being mainly served by video servers in Amsterdam. Indeed, the factor affecting
the interruptions is the average throughput and not minor differences in the delay to the
server.

At TCP level, a ping time of 200 ms means that 5 TCP windows can be transmitted
per second. With a window size of 64 kBytes (minimal value), it leads to a maximum
throughput of 320 kBytes/s. The average encoding rate of videos in our data is 555 kb/s
or about 70 kBytes/s. This means that this delay to the video server allows, when there
is no congestion (losses), a throughput largely above the one needed to achieve playout
without stalls.
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Figure 7.2: Evolution of the percentage of videos with at least one stall over Time (per period
of 60 minutes) for two ISPs during December 2011 controlled crawl

Table 7.2: Ping times according to video server URLs for Kansas City crawls

URL Regexp Location¶ Nb. of samples Average Ping time

WEST

http://o-o.preferred.iad09g05.v[1-24].lscache[1-8].c.youtube.com Washington DC 1439 97
http://o-o.preferred.sjc07s11.v[1-24].lscache[1-8].c.youtube.com San Jose 446 73
http://o-o.preferred.lax04s12.v[1-24].lscache[1-8].c.youtube.com Los Angeles 147 75
http://o-o.preferred.iad09s12.v[1-24].lscache[1-8].c.youtube.com Washington DC 44 60
http://o-o.preferred.sjc07s15.v[1-24].lscache[1-8].c.youtube.com San Jose 10 61

MID-WEST

http://o-o.preferred.comcast-dfw1.v[1-24].lscache[1-8].c.youtube.com Houston 719 50
http://o-o.preferred.dfw06g01.v[1-24].lscache[1-8].c.youtube.com Houston 308 59
http://o-o.preferred.dfw06s08.v[1-24].lscache[1-8].c.youtube.com Houston 190 24
http://o-o.preferred.mna-mci1.v[1-24].lscache[1-8].c.youtube.com Kansas City 71 184
http://o-o.preferred.ord12s01.v[1-24].lscache[1-8].c.youtube.com Chicago 64 1105
http://o-o.preferred.kanren-lwc1.v[1-24].lscache[1-8].c.youtube.com Lawrence 50 38

EAST

http://o-o.preferred.mia05s05.v[1-24].lscache[1-8].c.youtube.com Miami 660 261
http://o-o.preferred.lga15s20.v[1-24].lscache[1-8].c.youtube.com New York 89 53

¶ we mention the city corresponding to the airport code inside the URL

In summary, the video server selection clearly depends on the user’s ISP and
mainly obeys engineering and load-balancing considerations rather than closest

source or similar strategies.

7.3.1.4 In the US

We use the Kansas City crawls to compare the knowledge gained while analysing Eu-
ropean data with the US. The large number of URLs of video servers (14) indicates that
YouTube allows much more cache sites to be included in the distribution of video in US
than in Europe. In Tab. 7.2, for each video server URL regexp we count the number
of videos and the average ping time to the servers. Note that we only include the data
from the main prefix (/24) for each URL regexp.

In Tab. 7.2, most of the cache sites are located in West and Mid-West region of US.
The most frequent location is Washington DC even if it is about twice as far (ping-wise)
as Houston. We also have some video servers that are far from Kansas City such
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as Chicago or Miami. If we closely look at the ping values, for some cities we have
seemingly bizzare results: for example, Houston cache sites can have either about
24 ms or about 50 ms ping values. The reason is that some caches of the Houston sites
have IP addresses in the Google AS (15169) and others in the YouTube AS (43515).
The path towards these distinct AS can thus be different, resulting in a difference of
ping times. Note that in our data, the larger ping times correspond to cache sites in the
YouTube AS: this is the case for both Houston and Washington DC.

This validates that the proximity of the cache site plays only a secondary role in video
server selection, and that interconnection between ISPs and ASes is a primary factor
in network performance.

7.3.2 DNS impact

DNS is often used by CDNs to control the delivery of their contents. Indeed as we shall
see, the recursivity of the process allows the requested site to completely control the
IP address returned according to the requesting DNS server. YouTube also uses this
process to control the distribution of videos on top of URL customisations (as seen in
Sect. 7.3.1).

7.3.2.1 Address Resolution Mechanism

We first recall how the DNS resolution works. To retrieve a content on the Internet, one
must request it at an IP address. To obtain an IP address corresponding to a URL, DNS
servers are used. We use the common term URL but only the domain name part of the
URL is mapped to an IP address. Note that with replicated contents (such as YouTube
videos) many IP addresses correspond to the same URL1.

The DNS resolution process is recursive: in order to retrieve the IP address correspond-
ing to www.youtube.com URL, the DNS authoritative server responsible of .com domain
is first queried then the DNS authoritative server for youtube.com is queried until the
authoritative server for the complete domain is reached.

Note the successive requests are done by the DNS server used by the client: in case
of default ISP DNS server, the IP returned by the DNS authoritative server can thus be
tailored for the ISP (as we shall see in the rest of this section). In our tool, we have
chosen to ask for DNS resolutions on three different servers: default ISP DNS server,
Google Public DNS [26], Open DNS [34]. This allows us to clearly see the modifications
induced by the choice of the DNS server.

7.3.2.2 URL to IP addresses mapping

The first impact of the DNS server lies in the choice of the IP addresses. We might think
that for the same user’s location and video server URL, the same IP address should be

1In the case of YouTube videos, the same content can even been mapped to multiple cache sites
depending on ISP (see Sect. 7.3.1).
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Table 7.3: Number of distinct IP addresses obtained with the 3 DNS servers (in percent)

ISP Alice Bouygues_ADSL Bouygues_Fibre FreeV5 FreeV6 NC Orange_LB2 SFRV4 SFRV5

1 IP @ 0 0 0 0 0 0 0 74 75

2 IP @ 0 5 3 0 0 14 9 23 20

3 IP @ 100 94 96 100 100 85 89 2 3

10 15 20 25 30 35 40 45 50

Min Ping in mili-seconds

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

≤
x)

CDF of Ping Values

incoming with default resolver: 415
incoming with open dns resolver: 315
incoming with google public dns resolver: 382

Figure 7.3: Ping Statistics differentiated by DNS for an ISP in Europe in May 2011

returned. This is in fact not always the case. Indeed, we have many crawls from our
controlled lab where most of the video server URL were getting 3 different IP addresses
depending on the requesting DNS server. In Tab. 7.3, depending on the ISP, we have

• the 3 DNS servers returning the same IP address: Alice and Free (that share the
same infrastructure);

• the 3 DNS servers returning 3 different IP addresses most of the time: for SFR;

• a small fraction of URLs resolved on 2 different IP addresses (usually Google
Public DNS and Open DNS get the same IP, and the other one comes from the
default ISP DNS): for Bouygues, Orange and Numericable.

The difference in IP addresses is not problematic if they are situated in the same data-
center or at the same distance to the user. As a representative example of the impact
of DNS disagreement, in Fig. 7.3, we show that the ping time towards the IP address
corresponding to the URL of the video server can be twice larger with the default ISP
DNS server than with Google Public DNS. In this case, they even do not share the
same prefix. Note that no general rule can be drawn from this observation: it can vary
a lot with time and according to ISP. Also the video quality is not directly related to this
QoS measure.

7.3.3 Evaluation of QoE Approximation Techniques

We have tested how precise could be an approximation of video stall by an indicator
relating download throughput and encoding rate: this could be useful for large scale
analysis where complete analysis of the download is not possible. We explore two
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metrics: one based on Deep Packet Inspection (DPI) and the other only based on flow
level statistics.

7.3.3.1 DPI Metric

We have chosen the same metric as in [39]:

reception_ratio =
DownloadThroughput

V ideoEncodingRate

A download throughput lower than encoding rate should result in interrupted playback:
reception ratio < 1. In this case, one can use a DPI tool to retrieve the video encoding
rate from the video streaming flow.

To evaluate the accuracy of this method, we use two standard metrics usually used in
classification field (as in [36]). They are based on the concepts of

• True Positive TP: reception ratio > 1 and the video had no stall;

• False Positive FP: reception ratio > 1 but the video had at least one stall;

• True Negative TN: reception ratio < 1 and the video had at least one stall;

• False Negative FN: reception ratio < 1 but the video had no stall.

Out of these notions, we build these evaluation metrics:

• recall = TP / (TP + FN): this corresponds to the fraction of uninterrupted videos
correctly evaluated;

• precision = TP / (TP + FP): this corresponds to the ratio of uninterrupted videos
in the videos with reception ratio > 1.

Here are the results on Free-V5 December 2011 crawl: 91.8% of recall and 88.5% of
precision. This means that the reception_ratio based on video encoding rate is quite
accurate to determine stall in the videos.

7.3.3.2 Pure-Network Metric

If we further explore the idea of computationally efficient evaluation, we can construct
another metric without any DPI phase: we compare the download throughput to the
default encoding rate. We have measured this default encoding rate at 555kb/s in our
data. The metric is thus: simple_reception_ratio = DownloadThroughput/(555 kb/s).

This leads to the following evaluation of the metric: 28.7% of recall and 100% of preci-
sion. This means that this non-DPI metric can surely assess that a video is interrupted,
but would class a lot of interrupted videos as good ones.
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7.3.3.3 Application of these Metrics

The conclusion of this evaluation is that to roughly evaluate video streaming QoE,
we can focus on network throughput (instead of parsing all the FLV timestamps) but a
DPI engine is needed to have a precise evaluation of the encoding rate of the video.
Another advantage of this method is that we do not need to be at the end-user side
(as the throughput is limited from end to end by TCP): this means it can be applied to
monitoring probes high in the network (thus connecting a lot of clients).

7.4 YouTube Infrastructure

From the knowledge gained in Sect. 7.3, we try to understand some of the YouTube
infrastructure. In this section, we use the controlled crawls but do not separate data per
ISPs as we are interested in the global YouTube infrastructure.

7.4.1 Datacenters sizes

7.4.1.1 URLs to IP prefix mapping

The YouTube video servers with the same /24 IP prefix are usually sharing the same
location. In Tab. 7.4, based on data from our controlled lab, we indicate for the main
URL regexps the number of prefixes /24 found with the default DNS server of each ISP.
First note that we have joined two regexps (lscache URL with par08s01 and par08s02)
because they share the same prefix. Also the Paris site has fewer prefixes than the
Amsterdam site. Moreover, the number of prefixes used in Amsterdam has grown fast
in 3 months: from 4 prefixes to 12. An interesting point is that the /24 prefixes are
quite dispersed and cannot be merged in larger prefixes. Also, the prefixes are distinct
between the URL regexps.

Finally, we have to mention that when the QoS (here ping times) are so small, these
differences do not translate in QoE differences. And as seen in Sect. 7.3.1.2 for Free-
V5, closer videos servers do not guarantee good QoE.

7.4.1.2 IP address count

In Tab. 7.5, we count the number of IP addresses for each video server URL Regexp.
For each URL Regexp, we have exactly 192 different hostnames2 (also seen in [1]). This
means that for Paris datacenter, we have fewer IP addresses (160) than hostnames.
Also note the volatility in the distribution of IP addresses: in September 2011 (Tab. 7.5a),
the 160 IP addresses were shared between the two main Paris lscache URL regexps,
whereas in December 2011 (Tab. 7.5b), 80 distinct IP addresses are assigned to each
lscache URL regexp.

2this corresponds to the whole range of possibilities
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Table 7.4: Distribution of IP prefixes (/24) of video servers of all ISPs for controlled crawls

(a) September 2011

URL Regexp # /24

o-o.preferred.par08s0[15].v[1-24].lscache[1-8].c.youtube.com 1
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 4

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 2

(b) December 2011

URL Regexp # /24

o-o.preferred.par08s0[15].v[1-24].lscache[1-8].c.youtube.com 1
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 12

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 2

Table 7.5: YouTube Datacenters sizes according to the Number of IP addresses seen for crawls
of all ISPs on each URL Regexp

(a) September 2011

URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 160†

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 160†

o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 328

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 98

† these 160 IP addresses are the same

(b) December 2011

URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 80‡

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 80‡

o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 494

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 130

‡ two distinct subsets of 80 IP addresses

We also have sent ping probes to missing IPs in the range: there is usually no reply
to the TCP ping on these IP addresses. This means the load-balancing used by
YouTube allows us to cover most of the alive machines and all of the hostnames
of the datacenter even with a 2 days probing period.

As for the distribution of URL regexps, the video server URL clearly depends of the
user’s ISP. So in December 2011, for some ISPs, distinct subsets of the video servers
prefix are used.

Sect. 7.4.1.1 has shown that the Amsterdam site is larger than Paris in terms of pre-
fixes. This is also the case for the number of IP addresses. For the same amount of
hostnames, we have much more IP addresses in Amsterdam than in Paris. We also
have 50% increase in the number of IP addresses in Amsterdam from September to
December 2011.
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Table 7.6: Percentage of Redirection per ISP for December 2011 controlled crawl

ISP Percentage of Redirection

Alice 29.22
Bouygues-ADSL 29.58
Bouygues-Fibre 30.83
Free-Revolution 26.57
Free-V5 25.33
Numericable 30.19
Orange-LB2 12.69
SFR-Evolution 49.02
SFR-V4 45.99
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Figure 7.4: Percentage of Redirection (over all videos) per YouTube Cache Site for ISP SFR-V4
per hour

7.4.2 Redirections

YouTube uses redirections to add a level of dynamic load-balancing (on top of the DNS
policy and cache site selection according to ISP, which are both centralized). The num-
ber of redirections in our controlled crawls is quite variable: in Tab. 7.6, some ISPs can
have up to 50% of videos redirected while others have only 12% of them. Moreover,
these redirections occur throughout the day and not specifically at peak hours. The
redirect URLs have mainly a unicast form (see Sect. 7.3.1.1). In our data, the redirec-
tions are usually sent to these cache sites: par (Paris), followed by ams (Amsterdam),
fra (Frankfort) and lhr (London).

In [1, 53], the explanation for redirections lies in the un-availability of the requested
video or in datacenter load. Due to our choice of bootstrapping the crawls on popular
videos, the chances to have redirections because of cache miss are unlikely. As for the
load, the redirections also occur during off-peak hours.

In Tab. 7.6, the repartition of redirection is dependent of ISP. In the case of ISP cus-
tomised URL (like ISP O), there are only 12% of redirections, whereas in case of ISP
S, half of the videos encounter redirections. This is surprising as the cache sites are
shared between ISPs. In Fig. 7.4, we plot the distribution of redirection over time for the
same ISP than in Fig. 7.1a. The graph does not show any correlation between time of
day (peak vs. off-peak hours) and the percentage of redirections. Also the redirections
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are usually sent to another cache site: in this case, mainly to London (34%), Frank-
fort (30%), Paris (26%). This means that even if the distribution policy sends a user
to Amsterdam cache site, the redirections can send him back to Paris. We conclude
that the primary focus of HTTP redirection (excepting cache miss) is to spare YouTube
infrastructure.

So this seems to indicate that the centralised distribution policies (through cache
site selection and DNS) addresses the traffic load balancing, whereas the decen-
tralised distribution policy (through HTTP redirects) addresses the server load.
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CHAPTER8
Conclusion of Part II

The cause of this meeting [of the seer and the

seen] is ignorance.

Patanjali (Gregor Mahele’s translation), The

Yoga Sutra

In Part II, we have focused on active measurements of HTTP video streaming. To
this purpose, we have presented in Chap. 7 a reliable tool to automatically evaluate
the playback quality1 of YouTube videos as experienced by users. One of the main
objectives of this tool is to understand the delivery policy of YouTube and relate it to the
DNS resolution policy.

In our study, we have used many volunteered crawls to infer the main delivery poli-
cies of YouTube videos. We have completed these crawls with controlled crawls in a
specific lab to show the difference of treatment between ISPs for accessing the same
service. Finally, we have used many simultaneous crawls from Kansas City in the US
to comment on the difference of infrastructure between Europe and the US.

The main findings of our study are that geographical proximity does not really matter
inside Europe or the US, but network/server load-balancing and ISP-dependent policies
do. Usual QoS metrics (RTT) have no impact on QoE (video stalls). The number of
HTTP redirect is quite high in our data, indicating a globally high load on the YouTube
video servers. Finally, QoE is not impacted nowadays by access capacity but by peering
agreement of ISPs and by server load.

The general conclusion is that YouTube and more generally the CDNs have many ways
to control the content delivery:

1. By customising the URL of the video server, which is done by the YouTube front-
end servers (Sect. 7.3.1);

2. By resolving the URL of the video server to a different IP address, which is done
by the YouTube authoritative DNS server;

1which is much more complex than raw throughput measure
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3. By using HTTP redirect messages at the video server level, which is done at the
cache site level (Sect. 7.4.2).

Note that the HTTP redirect messages usually occur when the server decides not to
serve the request (e.g. when the server is too loaded): thus, this is a decentralised
process. On the contrary, the URL customisation and the specific DNS resolution can
be centrally controlled. Thus, we would like to emphasise that YouTube has a large
number of knobs to decide from which server and which AS a particular video gets
served. From our data, it seems that the primary goal of the video delivery is to use the
best paths and to spare infrastructure.

Moreover as the routing modifications (for example) are usually not advertised by You-
Tube to ISPs, this may lead to sub-optimal infrastructure usage. A collaboration be-
tween YouTube (and more generally the CDNs) and the ISPs is thus needed to use the
Internet at his full potential, and for the benefit of end-users.

From an operational point of view, we have shown that a network metric (download
throughput) and a minimal DPI engine (to retrieve the video encoding rate) can lead
to satisfactory results in evaluating video QoE of HTTP video streaming. This can be
efficiently used by an ISP to monitor from a central point the perceived quality of a large
number of clients.



CHAPTER9
Conclusion

Il y a dans ce livre deux textes simplement

alternés ; il pourrait presque sembler qu’ils

n’ont rien en commun, mais ils sont pourtant

inextricablement enchevêtrés. . . 1

Georges Perec,
W ou le souvenir d’enfance

In this thesis, we have addressed the problem of Internet measurement from the point
of view of an ISP. We have used both passive and active measurements to figure out
the components of the residential Internet traffic, but also the behavior of the residential
users. For an operator, knowing and understanding the traffic of its customers is of
primary importance for planning the evolution of its network according to the needs of
the users of this network. We now present the main results and take-away messages
of this thesis.

We have first used passive measurements to gain insight on the users’ behavior from
local ISP platforms. We have shown how the residential traffic is influenced by a small
set of users, and also given some ideas for a better management of a local platform.
We have mainly focused on the video streaming traffic as not only it represents most
of the bytes carried by residential users nowadays, but also as most of residential cus-
tomers utilize it2. The question of the management of a local platform of an ISP has
been studied, and we have proposed some innovative ways to reduce the peaks of
traffic at reduced cost for the customers. As for video streaming, the influence of traf-
fic characteristics and performance on the usage of this service has been studied and
quantified.

We have then developed an active measurement tool to shed a new light in the delivery
process of HTTP video streaming. The design of this tool has been strongly influenced
by the knowledge gained in the passive measurement phase. This has given us the
possibility to discover what is the impact of DNS and ISP dependent policies or video

1There are in this book two distinct texts; it may seem they have nothing in common, yet they are

somehow deeply intertwined – my translation
2this was not the case when most of the residential traffic was P2P: at that time, only a small part of the

users were generating the vast majority of the traffic volume.
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server selection (to name a few) on the quality of experience as seen by users. Then
again, this precise evaluation of video quality has allowed us to understand the key
factors in the user’s perception of the video streaming service. We have thus created
and validated efficient ways to measure video streaming quality that can be used at
large scale with non-intrusive passive captures to monitor the quality of video streaming
customers of an ISP.

Future Work This study opens several perspectives for future work. First, the need
of a monitoring infrastructure operating all the time is underlined and new indicators
closely following users’ expectations are continuously needed. One of the important
methodologies developed in this thesis is the focus on a subset of customers (e.g.

those generating most of the volume) to well understand how they use their Internet
access. A clustering method based on the application mix of users has proven to be
useful to select a representative subset of customers. The focus on a small set of users
can thus help us to figure out global characteristics but also to apply a more precise
analysis (possibly using DPI).

We have developed some tools for accurate analysis of video streaming and we expect
to refine their use in the future. The ratio of the average download throughput over the
encoding rate gives a good approximation of the quality of experience, and we plan to
use this indicator to monitor streaming quality. Nevertheless, a larger set of dedicated
indicators is needed to monitor all the popular services used by residential Internet
customers. With this information, we would like not only to monitor the state of the
platform, but also to determine what and where is the cause of a performance problem.
We have also shown how performance problems can result in a change in the service
utilization of video streaming (Sect. 4.5). We would like to generalize this methods to
more services to infer performance problems not detected by usual network indicators.

Finally, we have shown how active measurements can reveal the dynamics of the find-
ings of our monitoring tools. We plan to extend our video streaming tool to other ser-
vices, so that we can actively and instantaneously follow the evolutions of the video
streaming usage. The development of similar tools specific to other important applica-
tions is also planned.



Part III

French Summary
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CHAPITRE10
Introduction

10.1 Mesure du réseau Internet

La mesure du réseau Internet peut être effectuée à différents niveaux : depuis l’ordina-
teur de utilisateur final jusqu’aux routeurs du cœur de réseau. La quantité de données
collectée est alors un compromis entre la précision et la capacité de stockage (ou d’ana-
lyse) du système. Un vue très grossière d’un réseau peut être donnée par le nombre
total d’octets ou de paquets transmis par une interface réseau : c’est typiquement le
cas des routeurs transmettant des Giga-octets de trafic par seconde. La mesure la plus
précise dans ce contexte est la capture au niveau des paquets réalisée par des logi-
ciels dédiés. La précision de la mesure ne doit pas être déterminée par la capacité de
la sonde, mais par la précision d’analyse voulue.

La méthode de capture est aussi importante que les données collectées : activement

requêter sur un serveur ou dupliquer passivement des paquets réseaux sont deux mé-
thodes complètement différentes qui ne répondent pas aux mêmes objectifs. Les tech-
niques actives peuvent être utilisées pour mesurer comment on accède à un service ou
quelle est la performance de ce service selon l’installation utilisée. En ce qui concerne
les mesures passives, elles sont généralement effectuées à plus grande échelle mais
sans la possibilité de personnaliser les requêtes.

Le but de la mesure du réseau n’est pas que de collecter des données, mais surtout
de les comprendre. En général, il s’agit d’expliquer les performances d’une connexion
Internet. Mais la performance des connections peut recouvrir diverses significations
selon le point de vue :

• au niveau d’un routeur, le taux de perte des paquets dans les files d’attentes
(indépendamment des connexions) est le principal indicateur ;

• sur un lien de transit, on se focalise sur la charge du lien ;

• pour un utilisateur du Web, le délai pour accéder à son site favori est la principale
mesure de satisfaction ;
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• alors qu’un utilisateur P2P sera plutôt intéressé par le débit total des ses transferts
de fichiers ;

• enfin, un expert TCP peut définir la performance d’une connexion comme le rap-
port du nombre de paquets dé-séquencés sans retransmission sur le nombre total
uniquement dans les périodes de transfert de masse.

Dans ce cas aussi, la définition choisie doit l’être en fonction de l’objectif de l’analyse
et pas selon la disponibilité de métriques pré-calculées.

10.2 Le point de vue des opérateurs

Les Fournisseurs d’Accès Internet (FAI) proposent un service au mieux : leur but prin-
cipal est d’acheminer les paquets de leurs clients vers leur destination. De nombreux
facteurs ont une influence sur les connexions des clients :

• la capacité du réseau d’accès (mais aussi l’infrastructure de collecte : ATM ou
Giga-Ethernet) ;

• le réseau du FAI du point de collecte local vers la destination ;

• la capacité du lien entre le FAI et le prochain AS vers la destination ;

• les politiques de routage de tous les AS traversés par le paquet jusqu’à la desti-
nation.

Les FAI ne contrôlent que peu de ces facteurs. Néanmoins, le principal protocole de
transport dans l’Internet est TCP qui est un protocole de bout-en-bout. C’est à dire
qu’une analyse au niveau paquet d’une connexion (quel que soit le point de mesure)
peut donner des informations sur la capacité de tout le chemin et sur la performance
vue depuis l’utilisateur final.

La motivation des FAI est de fournir la meilleure performance possible à ses clients
pour un coût donné (que ce soit pour sa propre infrastructure ou pour les liens avec les
autres AS). L’utilisation de diverses méthodes de mesure et d’analyse, comme présenté
dans cette thèse, est donc extrêmement intéressant pour les FAI. Cela peut aboutir à de
nouveaux moyens de gérer le trafic que ce soit au niveau des plateformes de collecte
ou au niveau de la configuration de TCP en fonction du service demandé.

10.3 Organisation de la thèse

Les deux principales parties de la thèse sont différenciées selon le type de méthode de
mesure : passive dans la partie I et active dans la partie II.

Le contexte de la thèse ainsi que les travaux connexes sur les mesures passives de
l’Internet sont présentés au chapitre 2. Cette première partie sur les mesures pas-
sives se base sur des données collectées de diverses sources et à des échelles de
temps différentes. Au chapitre 3, nous avons analysé des statistiques de connexions
sur plus d’une semaine pour trois plateformes ADSL. Cela nous permet de comprendre
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quelles sont les applications utilisées par les clients et de mesurer la performance de
quatre mille utilisateurs différents. Au chapitre 4, nous avons utilisé plusieurs captures
au niveau paquet pour se focaliser sur la performance du Streaming HTTP. Il s’agit de
captures courtes et ponctuelles sur tous les utilisateurs de plateformes ADSL durant
une période de 3 ans. Cela montre comment les conditions du réseau influencent le
comportement des clients regardant des vidéos en Streaming. La première partie est
conclue au chapitre 5.

La seconde partie de la thèse détaille les mesures actives du trafic Internet. Le cha-
pitre 6 introduit les défis de ce type de mesure du réseau ainsi que les travaux
connexes. Le chapitre 7 présente les données collectées par notre outil de mesure de
qualité d’expérience des vidéos YouTube. De nombreux volontaires dans le monde ont
participé à la collecte des données, nous bénéficions aussi de données obtenues dans
un laboratoire connecté à Internet par divers accès. Toutes ces données nous ont per-
mis de comprendre les principales causes de perturbation dans la qualité ressentie par
l’utilisateur. La leçon à retenir est que les coûts des liens et les politiques de routages
spécifiques aux FAIs ont beaucoup plus d’impact sur la qualité que les traditionnelles
métriques de qualité de service. De plus, la capacité d’accès des réseaux ADSL ac-
tuels (et d’autant plus des réseaux FTTH) ne constitue pas le goulot d’étranglement
pour l’accès aux services de vidéo Streaming. Le chapitre 8 conclut la seconde partie.

Enfin, la conclusion globale de la thèse est présentée au chapitre 9.
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CHAPITRE11
Principales Contributions

Dans ce chapitre, nous présentons les résultats des analyses décrites dans la thèse.
Les sections suivantes (11.1 et 11.2) résument respectivement les parties I et II.

11.1 Mesures Passives

Dans cette section, nous nous focalisons sur des captures passives depuis des clients
résidentiels en France. Les données ont été collectées sur une plateforme de collecte
locale appelée BAS (Broadband Access Server). Nous avons utilisé des sondes dé-
diées développées en interne réparties sur toute la France, et avons vérifié que les don-
nées sont cohérentes entre elles. Cela nous permet de se focaliser sur un petit nombre
de sondes. Nous commençons par analyser une semaine de statistiques de connexions
dans la section 11.1.1. Ces données nous permettent d’avoir une vue récente des prin-
cipales caractéristiques du trafic Internet résidentiel. Dans la section 11.1.2, nous ne
considérons que le trafic vidéo Streaming sur des traces paquet durant des périodes
d’une heure chacune. Cette étude s’étend sur une durée de trois ans, ce qui nous
permet de suivre l’évolution du trafic Streaming de manière longitudinale.

11.1.1 Analyse d’une semaine de trafic ADSL

11.1.1.1 Détail sur les données

Nous avons collecté les résumés statistiques de toutes les connexions sur 3 sondes
ADSL en France (à Lyon, Montsouris et Rennes) sur une période d’une semaine (du 5
au 12 juillet 2011). Ces résumés contiennent des informations sur les connexions TCP
de tous les clients de ces sondes pour chaque jour de capture. Voici les principaux
indicateurs calculés pour notre analyse :

Cnx Id les adresses IP et Ports TCP source et destination, ainsi que les horaires de
début et fin de la connexion ;
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TABLE 11.1: Détails des traces

Nb de Clients Nb de Cnx
Trace Total Moy par jour Total Moy par jour

Lyon252 1354 1284 66,231,068 7,788,835
Mont151 1009 951 50,008,566 6,251,070
Renn257 1139 1099 41,320,018 5,165,002

Application reconnue par un outil DPI développé en interne, nous avons accès à l’ap-
plication, aux web-apps (comme Facebook) et à une partie du trafic crypté eMule
et BitTorrent, néanmoins nous nous contenterons de nous référer au type d’appli-
cation (par exemple P2P, Streaming. . . ) ;

Volumes le nombre d’octets transférés et le nombre de paquets pour chaque sens de
la connexion, nous utilisons aussi le volume maximum transféré par période de
20 secondes ;

TCP Performance nous définissons le numéro de séquence attendu comme le nu-
méro de séquence maximum observé plus la taille du paquet correspondant, ceci
nous permet de considérer un paquet comme perdu si son numéro de séquence
est plus grand que celui attendu, alors que nous le comptons comme une re-
transmission s’il est plus petit ; nous avons aussi à disposition une évaluation du
RTT Tous ces indicateurs sont calculés pour chaque sens de la connexion.

Les principales caractéristiques de ces traces sont données dans le tableau 11.1

11.1.1.2 Répartition des applications

Nous résumons dans le Tab. 11.2 la répartition des applications en fonction de leur
volume. Notez que nous ne considérons que les classes d’application.

Dans le Tab. 3.3, le Streaming est de loin l’application la plus utilisée pour le volume
descendant. Les deux classes d’application suivantes sont le Web et Download avec
une part très similaire du volume descendant. La 4ème application la plus populaire est
le P2P. L’ordre est très stable selon les jours ou les lieux différents. Le volume descen-
dant généré par les autres applications est très faible (moins de 10%) par rapport à
l’une des 4 premières classes de l’application.

Nous nous focalisons sur la répartition du trafic Streaming dans le Tab. 11.3. Le trafic
Streaming est principalement constitué de Clips si l’on se focalise sur le volume des-
cendant (Tab. 11.3a. Néanmoins les publicités et le trafic non-reconnu (probablement
des publicités) représentent la moitié des connexions. Ces catégories sont obtenues
par pattern matching basé sur des URLs de services connus.

Nous avons aussi classé les sites de Streaming dans le Tab. 11.3b en fonction de leur
volume descendant. Le volume montant est très faible pour le Streaming de manière
générale. YouTube représente plus d’un cinquième du volume descendant total, et le
deuxième ne génère que la moitié de ce volume (10%). Ensuite viennent les sites por-
nographiques et les sites de replay. Les sites de Streaming musicaux représentent 5%
des connections, mais une part plus faible du volume.
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TABLE 11.2: Répartition des classes d’application en fonction du volume descendant par jour
et par sonde

(a) Lyon

Top Applications (pourcentage du volume total descendant)
Date 1 2 3 4 5

05/07/2011 Streaming (47.69 %) Web (18.75 %) Download (18.13 %) P2P (8.49 %) Games (2.45 %)
06/07/2011 Streaming (47.95 %) Web (19.56 %) Download (17.29 %) P2P (9.25 %) Games (2.78 %)
07/07/2011 Streaming (47.79 %) Download (19.53 %) Web (18.22 %) P2P (10.26 %) Mail (1.66 %)
08/07/2011 Streaming (44.73 %) Download (21.40 %) Web (18.66 %) P2P (6.98 %) Games (3.48 %)
09/07/2011 Streaming (48.82 %) Download (21.67 %) Web (15.93 %) P2P (10.31 %) Unknown (1.60 %)
10/07/2011 Streaming (53.38 %) Download (17.90 %) Web (17.24 %) P2P (8.46 %) News (1.02 %)
11/07/2011 Streaming (49.01 %) Web (20.52 %) Download (15.93 %) P2P (9.52 %) Unknown (1.97 %)
12/07/2011 Streaming (51.64 %) Web (19.19 %) Download (14.29 %) P2P (9.78 %) Unknown (2.62 %)

(b) Montsouris

Top Applications (pourcentage du volume total descendant)
Date 1 2 3 4 5

05/07/2011 Streaming (38.86 %) Web (25.47 %) Download (21.37 %) P2P (7.81 %) Mail (3.18 %)
06/07/2011 Streaming (44.78 %) Web (22.48 %) Download (17.19 %) P2P (7.64 %) Mail (4.17 %)
07/07/2011 Streaming (43.26 %) Web (23.62 %) Download (18.67 %) P2P (6.28 %) Mail (3.84 %)
08/07/2011 Streaming (44.94 %) Web (22.99 %) Download (17.42 %) P2P (5.38 %) Mail (4.67 %)
09/07/2011 Streaming (48.70 %) Web (21.94 %) Download (15.70 %) P2P (7.42 %) Unknown (2.94 %)
10/07/2011 Streaming (48.21 %) Web (17.00 %) Download (16.42 %) P2P (13.64 %) Unknown (2.12 %)
11/07/2011 Streaming (42.76 %) Web (23.87 %) Download (20.79 %) P2P (5.65 %) Mail (4.19 %)
12/07/2011 Streaming (39.86 %) Download (24.96 %) Web (21.23 %) P2P (7.25 %) Mail (3.72 %)

(c) Rennes

Top Applications (pourcentage du volume total descendant)
Date 1 2 3 4 5

05/07/2011 Streaming (47.23 %) Download (24.07 %) Web (16.12 %) P2P (5.38 %) News (3.19 %)
06/07/2011 Streaming (46.35 %) Download (23.55 %) Web (15.93 %) P2P (7.74 %) Games (2.40 %)
07/07/2011 Streaming (47.34 %) Download (23.48 %) Web (16.43 %) P2P (7.80 %) Mail (1.73 %)
08/07/2011 Streaming (43.81 %) Download (26.73 %) Web (16.25 %) P2P (6.09 %) Enterprise (3.41 %)
09/07/2011 Streaming (44.21 %) Download (25.54 %) Web (15.53 %) P2P (8.56 %) Enterprise (3.19 %)
10/07/2011 Streaming (41.58 %) Download (22.86 %) Web (19.06 %) P2P (11.12 %) Games (2.60 %)
11/07/2011 Streaming (36.92 %) Download (19.52 %) Web (15.81 %) P2P (11.52 %) Unknown (6.29 %)
12/07/2011 Streaming (40.15 %) Download (19.92 %) Web (16.78 %) P2P (10.66 %) Unknown (5.03 %)

TABLE 11.3: Composition du trafic Streaming sur la semaine pour la sonde de Lyon (les ta-
bleaux sont ordonnées en fonction du volume descendant)

(a) Répart. du type de trafic Streaming

Service Conn. Volume Down

Clip 30.36 % 77.83 %
CatchUp TV 0.22 % 6.71 %
RadioLive 0.97 % 4.90 %
Unknown 39.23 % 4.86 %
TVLive 0.66 % 3.84 %
Advertisement 26.54 % 1.56 %
Chat 0.10 % 0.18 %
Games 1.92 % 0.12 %

(b) Popularité des sites de Streaming

Service Conn. Volume Down

Unknown 68.15 % 27.83 %
YouTube 4.27 % 22.02 %
MegaVideo 1.42 % 11.26 %
DiversX 4.88 % 9.71 %
Orange 2.06 % 6.80 %
M6 0.08 % 3.94 %
DailyMotion 1.10 % 3.67 %
AutresRadio 0.16 % 3.16 %
FranceTelevision 0.49 % 1.97 %
Deezer 4.99 % 1.70 %
Apple 0.11 % 1.53 %
Canal+ 0.21 % 1.20 %
RadioFrance 0.75 % 1.08 %
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TABLE 11.4: Seuils horaires par application et utilisateur pour déterminer l’usage d’une appli-
cation

Classe
Volume Nombre

Politique
Down Up de connexions

WEB 300kB 500kB 20 All
P2P 1 MB 1 MB 10 Any
STREAMING 1 MB 1 MB – Any
DOWNLOAD 2 kB 1 kB – Any
MAIL 30kB 3 kB – All
GAMES 5 kB 5 kB – Any
VOIP 200kB 200kB – All
CHAT 10kB 10kB – Any

11.1.1.3 Regroupement des utilisateurs

Dans le but de comprendre les usages de l’Internet, nous utilisons des techniques de
regroupement (ou “clustering”). Nous reprenons l’approche utilisée dans [37] en l’appli-
quant à diverses échelles de temps pour comprendre l’impact de durée de l’analyse.

L’idée de cette section est de ne pas se focaliser sur les volumes générés par les
applications, mais l’usage de ces applications. Nous commençons par définir empiri-
quement un seuil pour l’usage d’une application (Tab. 11.4). Pour chaque utilisateur,
nous obtenons donc un vecteur binaire correspondant à l’usage de chaque application.

Nous utilisons alors une technique de regroupement hiérarchique (“hierarchical cluste-
ring”). Nous construisons un arbre des utilisateurs pour former des groupes entre eux.
Tout d’abord, nous affectons chaque utilisateur à une feuille de l’arbre. Ensuite pour
construire les branches, nous considérons cette méthode agglomérative (ou de bas en
haut) :

1. les deux plus proches nœuds1 de l’arbre sont regroupés ;

2. ces deux nœuds sont remplacés par un nouveau nœud ;

3. le nouvel ensemble de nœuds est à nouveau agrégé jusqu’à ce qu’il n’y ait plus
qu’un seul nœud racine.

Nous avons besoin d’une métrique pour définir la distance entre les nœuds, et avons
choisi la métrique Tanimoto [51].

Nous nous focalisons dans le reste de cette section sur les 100 utilisateurs générant le
plus de volume. En effet, ces utilisateurs font la majeure partie du trafic de la plateforme
(Tab. 11.5).

Les utilisateurs qui génèrent le plus de trafic ont un usage particulier et très important.
À titre d’exemple, nous nous focalisons sur les 5 principaux utilisateurs de la plateforme
dans la semaine (Tab. 11.6). Le plus important dans la Tab. 11.6 est que la principale
application utilisée est extrêmement majoritaire (de 68 à 96% du trafic de l’utilisateur).
D’autre part, ces utilisateurs génèrent autour de 1.5% du volume downstream de la pla-

1au départ, les nœuds sont les feuilles
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TABLE 11.5: Pourcentage de Volume des top utilisateurs

Pourcentage du volume généré par
top 50 top 100

Heure Down Up Nb. Conn. Down Up Nb. Conn.

07/05 38% 51% 17% 55% 64% 35%

00 79% 66% 28% 90% 76% 71%
01 78% 90% 42% 83% 99% 82%
02 82% 67% 65% 83% 70% 83%
03 81% 82% 64% 82% 83% 77%
04 79% 66% 67% 80% 67% 78%
05 69% 86% 63% 71% 87% 76%
06 81% 51% 49% 86% 65% 67%
07 64% 65% 38% 80% 81% 63%
08 62% 55% 21% 77% 73% 39%
09 61% 40% 26% 77% 68% 47%
10 55% 62% 21% 70% 76% 44%
11 58% 40% 21% 74% 65% 34%
12 58% 35% 15% 71% 70% 44%
13 50% 53% 17% 68% 64% 32%
14 57% 50% 17% 73% 69% 32%
15 58% 49% 26% 75% 70% 43%
16 59% 63% 22% 76% 75% 35%
17 58% 51% 17% 74% 71% 35%
18 58% 42% 23% 76% 65% 39%
19 58% 57% 21% 74% 80% 42%
20 66% 50% 26% 79% 77% 47%
21 60% 73% 24% 76% 87% 44%
22 69% 46% 30% 81% 72% 45%
23 64% 63% 22% 79% 85% 44%

teforme : ils consomment donc 18 fois plus de ressources qu’une répartition équitable
(pour 1200 utilisateurs).

TABLE 11.6: Top 4 utilisateurs (le plus de volume up+down) statistiques sur la semaine

Rang Appli. princ. Vol. Tot Vol. Down Vol. Up Nb. Conn. vol_down
tot_down

vol_up
tot_up

nb_conn
tot_conn

1 P2P (95%) 63.6 GB 15.2 GB 48.5 GB 157,642 0.5% 15.1% 0.3%
2 Streaming (68%) 56.9 GB 55.0 GB 2.0 GB 828,782 1.7% 0.6% 1.3%
3 P2P (77%) 56.6 GB 49.8 GB 6.8 GB 1,355,444 1.5% 2.1% 2.2%
4 Download (94%) 51.0 GB 50.8 GB 0.2 GB 140,298 1.5% 0.1% 0.2%
5 P2P (95%) 37.6 GB 30.0 GB 7.6 GB 298,478 0.9% 2.4% 0.5%

Dans la Fig. 11.1a, nous avons réalisé le regroupement des 50 utilisateurs générant
le plus de volume. Il y a une très grande variabilité des principaux utilisateurs comme
vu pour les 5 premiers utilisateurs. Cela reste vrai pour les 25 principaux utilisateurs.
Par contre, nous voyons déjà se dessiner une large fraction d’utilisateurs dans la classe
mixant Web et Streaming. Ces deux applications regroupent la majorité du trafic des
50 principaux utilisateurs (même si ceux-ci utilisent plus le P2P que les autres). Mais
dans la Fig. 11.1b où nous nous focalisons sur les utilisateurs de la 51ème à la 100ème

place, nous avons seulement deux classes de mix d’applications : Streaming seule-
ment, et Web et Streaming. Cela correspond aux résultats trouvés dans [37], et cela
montre que l’usage de l’Internet résidentiel est passé en 6 ans du P2P au Web et
Streaming (en comparant avec [40]).
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FIGURE 11.1: Analyse par regroupement des utilisateurs pour la semaine entière sur la sonde
de Lyon

Les études à d’autres échelles (par jour ou par heure) donnent le même résultat. Cela
signifie que cet étude des usages de l’Internet résidentiel peut s’appliquer à plusieurs



11.1. MESURES PASSIVES 111

TABLE 11.7: Description des traces

Type & Localisation ADSL M FTTH M ADSL M FTTH M ADSL R FTTH M ADSL R FTTH M

Date 2008/07 2008/07 2009/11 2009/11 2009/12 2009/12 2010/02 2010/02

Heure de début 20h 20h 20h 20h 20h 14h 20h 20h

Durée 1h 30 1h 1h 20 0h 38 1h 0h 58 1h 0h 28

Utilisateurs actifs Web/Str. † 1121 1198 650 2502 795 2009 607 2763

Utilisateurs Streaming§ 109 121 96 336 113 252 74 279

Videos Streaming 428 630 405 1462 334 865 258 866

Utilisateurs YouTube§ 41 30 48 185 47 106 46 153

Videos YouTube 215 142 210 660 140 400 176 496

Utilisateurs DailyMotion§ 25 20 16 48 12 20 13 29

Videos DailyMotion 83 154 45 84 53 35 25 44

† au moins 10 connections (Web et Streaming)
§ regardant au moins 1 vidéo

échelles et donner un résultat cohérent. La seule restriction observée dans nos don-
nées intervient si l’on se base sur les heures creuses au milieu de la nuit.

Les principaux enseignements de cette section sont donc que l’usage des clients est
principalement sur le Web et le Streaming. Même si la fraction de trafic des tout pre-
miers utilisateurs (top 20) peut influencer les caractéristiques générales de la plate-
forme (et avec des applications particulières), une large majorité d’utilisateurs est foca-
lisée sur ces applications “interactives”. Cela doit indiquer aux opérateurs que l’amélio-
ration des débits (satisfaisant les usagers du P2P et Download) n’est pas une solution
pour l’ensemble des clients d’une plateforme.

11.1.2 Analyse de la performance du vidéo Streaming

Dans cette section, nous nous focalisons sur l’analyse du trafic Streaming. En effet,
nous venons de voir qu’il s’agit d’une application générant le plus de volume sur les
plateformes Internet résidentiel, et qui en outre est utilisée par une grande part des
clients. Nous étudions principalement YouTube, qui est le service le plus populaire de
vidéo Streaming, mais aussi DailyMotion qui est un de ses principaux concurrents à
titre de comparaison.

11.1.2.1 Détail sur les captures longitudinales

Nous avons utilisé le même type de trace que dans la Sect. 11.1.1. Les sondes sont
réparties sur 2 sites : Montsouris et Rennes. Les captures se répartissent sur une durée
de 3 ans : 2 traces de référence en 2008, et 6 traces de fin 2009 à début 2010. Les
détails de ces traces sont données dans la Tab. 11.7.
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FIGURE 11.2: Pourcentage de vidéo téléchargée en fonction de la durée de la vidéo pour You-
Tube

11.1.2.2 Analyse du comportement des utilisateurs

Nous essayons de voir quel est l’impact de la qualité perçue sur l’usage du Streaming.
Nous définissons donc un indicateur simple d’expérience utilisateur :

taux normalisé =
débit réseau moyen

débit d’encodage

Si le débit d’encodage est supérieur au débit réseau moyen, nous sommes sûrs que
la vidéo ne peut être visionnée correctement. Au contraire si le débit d’encodage est
inférieur au débit réseau moyen, la vidéo a de fortes chances d’être visionnée correcte-
ment. Nous sommes conscients que si le taux normalisé est proche de 1, l’évaluation
de la qualité est imprécise.

Dans la Fig. 11.2, pour chaque vidéo présente dans nos traces, nous la positionnons
selon sa durée totale et la durée téléchargée. De plus, le marqueur utilisé dans le
graphe nous permet de distinguer les vidéos comme suit :

• les vidéos courtes (moins de 3 minutes) ;

• les vidéos longues (plus de 3 minutes) et complètement téléchargées ;

• les vidéos longues (plus de 3 minutes) et téléchargées partiellement.

L’intérêt de cette figure est de présenter les données en fonction de la qualité des vi-
déos : dans la Fig. 11.2a, nous présentons les vidéos avec un taux normalisé supérieur
à 1 ; alors que dans la Fig. 11.2b, seules les vidéos avec un taux normalisé inférieur à
1 sont représentées.

Tout d’abord, YouTube est principalement utilisé pour visionner des vidéos courtes (in-
dépendamment de la qualité) : 3/4 des vidéos regardées dans nos traces durent moins
de 3 minutes. Pour le cas des vidéos longues, soit elles sont téléchargées complète-
ment, soit elles sont téléchargées pour moins de 3 minutes. L’impact de la qualité de
réception est sur la répartition de ces types d’usage : en cas de bonne qualité de ré-
ception, trois fois plus de vidéos longues sont complètement téléchargées (28%) qu’en
cas de mauvaise qualité de réception (11%).
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FIGURE 11.3: Pourcentage de vidéo téléchargée en fonction de la qualité de réception

Nous traçons finalement dans la Fig. 11.3 la CDF du pourcentage de vidéo téléchargée
(par rapport à sa durée totale). Dans ce graphe, nous distinguons les vidéos avec une
bonne qualité de réception de celles avec une mauvaise qualité. D’autre part, pour
vérifier que les conclusions ne sont pas dues au service, nous incluons les données
pour YouTube et DailyMotion.

L’impact de la qualité de réception sur la durée téléchargée est très claire dans ce
graphe. De plus les courbes pour YouTube et DailyMotion sont extrêmement similaires.
Deux zones se détachent :

• les vidéos complètement téléchargées (≥ 95%) ;

• les vidéos très peu téléchargées (≤ 20%).

En cas de mauvaise qualité de réception, très peu de vidéos sont téléchargées com-
plètement. De plus, la décision d’interrompre le téléchargement est prise très tôt (dans
les premiers 20% de la durée de la vidéo) : la courbe est concave au début puis quasi-
plate. En cas de bonne qualité de réception, la moitié des vidéos sont téléchargées
complètement. La décision d’interrompre le téléchargement n’est pas prise au début :
la courbe est quasi-linéaire sur toute la plage des durées.

Ceci implique que la qualité de réception et, à plus forte raison, la qualité d’expérience
ont un impact important sur la façon de réagir des utilisateurs. De plus, comme les
vidéos de bonne ou mauvaise qualité peuvent se succéder (les détails ne sont pas
inclus dans ce résumé), la réaction est due directement à la vidéo regardée, et pas
vraiment à un phénomène à plus long terme (lassitude face à plusieurs vidéos avec
une mauvaise qualité de réception. . . ).

11.2 Mesures Actives

Dans cette section, nous nous focalisons sur les mesures actives sur le vidéo Streaming
et en particulier sur YouTube (le service le plus populaire, comme vu en Sect. 11.1.1). Il
s’agit de lancer des requêtes pour des vidéos YouTube et de mesurer la qualité perçue.
Le principal problème dans ce contexte est d’être sûrs que les mesures effectuées
correspondent bien à ce que les utilisateurs perçoivent. L’étude des mesures passives
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en Sect. 11.1.1 nous garantit une bonne compréhension du sujet, et nous permet de
jouer sur les paramètres qui se révèleront importants pour les mesures actives.

11.2.1 Outil d’évaluation de la qualité d’expérience

L’évaluation de la qualité d’expérience (QoE) est intrinsèquement difficile car cela im-
plique une prise en compte du ressenti de l’utilisateur ainsi que le contexte de l’ex-
périence. Dans le cas du vidéo Streaming, nous approximons la QoE ressentie par
l’utilisateur principalement par le nombre d’interruptions obtenues dans le visionnage
de la vidéo. En effet, la distribution de la vidéo s’effectue à débit d’encodage constant
et sur support HTTP (au dessus de TCP). Ce mécanisme de transport fiable implique
que l’intégralité de la vidéo sera distribuée même en cas de congestion. Comme les
services de vidéo Streaming utilisent la technique de Progressive Download (téléchar-
gement progressif), le visionnage du début de la vidéo commence pendant que le reste
est téléchargé. Donc en cas de congestion, les données vidéo peuvent manquer et la
lecture être interrompue. Ce sont ces interruptions que nous considérons comme le
premier indicateur de QoE dans nos mesures.

11.2.1.1 Présentation de notre outil

Nous avons donc crée un outil, Pytomo [43], pour mesurer la QoS et la QoE des vidéos
YouTube. L’outil commence par collecter les liens des vidéos les plus populaires de
la semaine dans une liste de vidéos à analyser, il boucle ensuite sur ces différentes
actions :

1. sélection d’une vidéo dans la liste des vidéos à analyser ;

2. récupération des liens des vidéos liées à cette vidéo et mise dans la liste des
vidéos à analyser ;

3. récupération de l’URL du serveur délivrant la vidéo ;

4. évaluation des statistiques de QoS ;

5. évaluation des statistiques de QoE.

Les statistiques de QoS sont les suivantes :

• ping : minimum, moyenne, maximum (calculé sur 10 échantillons) ;

• informations vidéo : format, durée, taille, encodage moyen ;

• téléchargement : débit moyen, débit initial (sur les 3 premières secondes), débit
maximum instantané (sur une fenêtre TCP).
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11.2.1.2 Modèle de lecture des vidéos Streaming

L’évaluation des interruptions a été réalisée à partir d’un modèle de visionnage des
vidéos. Pour se faire nous téléchargeons une vidéo et construisons en permanence
deux échelles de temps :

D(t) : durée de vidéo téléchargée à la date t ie. la quantité de vidéo qui a été téléchar-
gée en termes de durée de visionnage (obtenu à partir des timestamps des tags
FLV) ;

P (t) : durée de vidéo visionnée à la date t ie. la quantité de vidéo qui a été regardée.

Ces deux échelles correspondent respectivement aux barres rouge et grise du lecteur
vidéo YouTube. Quand la barre rouge correspondant au visionnage se rapproche trop
de la barre grise correspondant au téléchargement, la lecture est interrompue. Nous
avons donc :

D(t)− P (t) < minimal-playout-buffer ⇒ Interruption de la lecture

La lecture reprend si il y a assez de vidéo téléchargée :

D(t)− P (t) > minimal-restart-buffer ⇒ Reprise de la lecture

Avec cette évaluation de l’état de la lecture, nous sommes capables de déterminer
le nombre d’interruptions durant le visionnage de la vidéo. Ce modèle ne prend pas
en compte les sauts dans la vidéo, ni les pauses dues à l’utilisateur. Nous sommes
conscients de ces limitations, et avons construit ce modèle uniquement dans le but
de transcrire l’utilisation nominale de YouTube. De plus, dans le cas d’un saut dans la
vidéo, le modèle est encore valide comme vu dans [41] : un saut dans une partie non-
téléchargée crée une nouvelle connexion pour récupérer la vidéo à partir du moment
choisit (au lieu du début).

Pour les statistiques de QoE, nous retenons les informations suivantes :

• le nombre d’interruptions ;

• la durée totale des interruptions ;

• la durée du buffer après 30 secondes de téléchargement.

11.2.2 Présentation des données collectées

Notre outil peut être lancé sur n’importe quel PC avec un accès Internet sans installa-
tion nécessaire. Nous avons donc bénéficié de diverses configurations pour lancer nos
analyses.

11.2.2.1 Mesures de volontaires

Nous avons un grand nombre (145) de volontaires (principalement des collègues ou
amis) qui ont accepté de lancer des mesures pour nous. Ces mesures effectuées prin-
cipalement en Europe ou aux États-Unis nous ont tout d’abord, permis de tester notre
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outil, et ensuite de comprendre l’influence des divers points de mesure sur le résultat.
La durée de ces mesures va de quelques heures à plusieurs jours.

Ces mesures sont utilisées pour tester notre outil et comprendre le fonctionnement de
YouTube.

11.2.2.2 Mesures en environnement contrôlé

Nous bénéficions d’un laboratoire en France connecté à plusieurs Fournisseurs d’Accès
Internet (FAI) : 7 par ADSL, 1 par fibre et 1 par câble. Les accès ADSL ont exactement
les même débits d’accès. Nous avons lancé des mesures simultanées sur ces divers
accès pour obtenir des résultats comparés entre FAI alors que le lieu et le débit d’accès
restent les mêmes. Nous utilisons des mesures de septembre et décembre 2011 : ces
mesures ont subit un certain nombre d’interruptions (contrairement aux autres cam-
pagnes de mesures), ce qui nous permet de voir que la qualité de réception des vidéos
YouTube est très dynamique ; et que de manière générale seulement peu d’interruptions
dans les vidéos ont pu être observées.

11.2.2.3 Mesures d’étudiants de Kansas-City

Enfin, un ensemble d’étudiants de l’Université de Kansas-City (UMKC) a lancé des
mesures simultanées depuis leur accès personnel le 8 décembre 2011 pour 2 heures.
Ces 70 mesures nous ont permis de comprendre la répartition des serveurs de cache
YouTube aux États-Unis, ainsi que de le comparer aux résultats en Europe.

11.2.3 Résultats

11.2.3.1 Sélection des serveurs vidéo en Europe

Nous présentons ici les principaux résultats des mesures contrôlées. L’URL du serveur
vidéo indique à la fois sa localisation et son niveau dans la hiérarchie des caches You-
Tube (non détaillé dans ce résumé). Dans la Tab. 11.8, nous comptons pour chaque
opérateur quel serveur de vidéo a distribué les vidéos YouTube.

Les serveurs observés se situent soit à Amsterdam, soit à Paris. Nous avons ces diffé-
rences entre FAI :

• FAI B reçoit toutes ses vidéos d’un seul site de serveurs (par08s01) à Paris ;

• FAI N reçoit toutes ses vidéos d’un seul site de serveurs à Paris, mais avec deux
types de nommage logique (par08s01 et par08s05) ;

• FAI O bénéficie d’un site de serveurs dédiés (orange-par1), les adresses IP de
ce site sont dans un AS spécifique (36040) ;
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TABLE 11.8: Nombre de vidéos pour chaque FAI en fonction de Regexp sur les Urls des ser-
veurs vidéo pour une mesure contrôlée en décembre 2011

ISP
URL Regexp A B-A B-F F-R F-V N O-L S-E S-V

o-o.preferred.par08s01.v[1-24].nonxt[378].c.youtube.com 0 1 2 0 0 0 0 0 0
o-o.preferred.ams03g05.v[1-24].nonxt[378].c.youtube.com 0 0 0 0 2 0 0 0 4

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 0 2676 2677 0 0 1890 0 1967 1528
o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 1636 0 0 952 2425 799 0 0 0
o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 150 0 0 0 206 0 0 3033 2488

o-o.preferred.orange-par1.v[1-24].lscache[1-8].c.youtube.com 0 0 0 0 0 0 2591 0 0

other 0 0 0 0 0 0 1 0 2

• FAI S et F sont redirigés vers les sites de serveurs de Paris ou Amsterdam avec
des fréquences différentes : environ 2/3 vers Amsterdam pour FAI S et 10% pour
FAI F.

Ceci montre que la configuration des URLs des serveurs vidéo est très spécifique en
fonctions des FAI.

11.2.3.2 Impact sur la qualité d’expérience

Dans la Fig. 11.4, nous montrons comment se répartissent les vidéos vers les deux
sites de cache vidéo utilisés :

• pour le FAI S (Fig. 11.4a), de midi à minuit c’est le site d’Amsterdam alors que de
minuit à midi c’est celui de Paris ;

• pour le FAI F (Fig. 11.4b), le principal site utilisé est celui de Paris, sauf de 20h à
21h où c’est celui d’Amsterdam qui est utilisé.

Le fait que ces changements se produisent à heure fixe montre qu’il s’agit de configu-
rations statiques. D’autre part, ces configurations sont très dépendantes du FAI. Dans
ce graphe, nous voyons aussi que le RTT entre notre laboratoire et le site de Paris est
à environ 30 ms et très stable. Alors qu’avec le site d’Amsterdam, le RTT est environ à
40 ms mais a une grande variance avec des pointes à 200 ms.

Dans la Fig. 11.5, nous traçons pour les 2 FAI S et F (les mêmes que pour la Fig. 11.4)
la courbe du pourcentage de vidéos avec au moins une interruption au cours du temps.
Alors que le FAI S n’a quasiment aucune interruption, le FAI F souffre de périodes avec
toutes ses vidéos interrompues au moins une fois. Si on relate cela aux observations
de la Fig. 11.4, cela implique que même si le site d’Amsterdam est situé à une plus
grande distance (en termes de RTT) et soumis à plus de variation de son RTT, la
qualité obtenue est indépendante de ces considérations de QoS.

Tout ceci justifie que l’on se focalise sur des métriques de QoE plutôt qu’à des métriques
de QoS.
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FIGURE 11.4: Valeur du ping en milli-secondes vers les principaux sites de serveurs vidéo de
YouTube observés dans une mesure contrôlée en décembre 2011
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FIGURE 11.5: Évolution du pourcentage des vidéos avec au moins une interruption au cours du
temps (par période de 60 minutes) pour 2 FAI dans une mesure contrôlée en décembre 2011

11.2.3.3 Sélection des serveurs vidéo aux États-Unis

Dans la Tab. 11.9, nous référençons les sites de serveurs vidéos avec leurs URLs, leur
localisation ainsi que le nombre d’échantillons obtenus et le RTT moyen. Tout d’abord,
nous avons 14 sites de serveurs ce qui est beaucoup plus que ce nous avons observé
depuis la France. La plupart de ces sites sont localisés dans l’Ouest ou le Mid-Ouest
des États-Unis. Le site le plus utilisé est celui de Washington même s’il est deux fois
plus distant (en termes de RTT) que celui de Houston. Certaines vidéos sont obtenues
depuis des sites très distants comme Chicago ou Miami.

Dans la Fig. 11.6, nous avons une représentation de la Tab. 11.9 sur une carte des
États-Unis. Kansas-City est représenté par une marque et est l’endroit d’où sont réa-
lisées les mesures. Chaque cercle représente les sites de serveurs vidéos. La taille
des cercles indique le nombre de vidéos qui ont été servies par ce site, tandis que la
couleur du cercle représente le RTT moyen vers ce site depuis Kansas-City.



11.2. MESURES ACTIVES 119

TABLE 11.9: Valeur de ping en fonction des sites de serveurs vidéos pour les mesures de
Kansas-City

URL Regexp Localisation¶ Nb. d’échantillons Ping moyen

WEST

http ://o-o.preferred.iad09g05.v[1-24].lscache[1-8].c.youtube.com Washington DC 1439 97
http ://o-o.preferred.sjc07s11.v[1-24].lscache[1-8].c.youtube.com San Jose 446 73
http ://o-o.preferred.lax04s12.v[1-24].lscache[1-8].c.youtube.com Los Angeles 147 75
http ://o-o.preferred.iad09s12.v[1-24].lscache[1-8].c.youtube.com Washington DC 44 60
http ://o-o.preferred.sjc07s15.v[1-24].lscache[1-8].c.youtube.com San Jose 10 61

MID-WEST

http ://o-o.preferred.comcast-dfw1.v[1-24].lscache[1-8].c.youtube.com Houston 719 50
http ://o-o.preferred.dfw06g01.v[1-24].lscache[1-8].c.youtube.com Houston 308 59
http ://o-o.preferred.dfw06s08.v[1-24].lscache[1-8].c.youtube.com Houston 190 24
http ://o-o.preferred.mna-mci1.v[1-24].lscache[1-8].c.youtube.com Kansas City 71 184
http ://o-o.preferred.ord12s01.v[1-24].lscache[1-8].c.youtube.com Chicago 64 1105
http ://o-o.preferred.kanren-lwc1.v[1-24].lscache[1-8].c.youtube.com Lawrence 50 38

EAST

http ://o-o.preferred.mia05s05.v[1-24].lscache[1-8].c.youtube.com Miami 660 261
http ://o-o.preferred.lga15s20.v[1-24].lscache[1-8].c.youtube.com New York 89 53

¶ la ville correspond au code d’aéroport dans l’URL

Ces informations confirment que le choix d’un site de serveurs vidéo dépend de beau-
coup de paramètres et que des métriques comme la proximité géographique n’est pas
le principal facteur. Ceci est d’autant plus valide aux États-Unis où YouTube a déployé
beaucoup plus de sites qu’en Europe.
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FIGURE 11.6: Carte indiquant la localisation des serveurs de vidéos, le nombre de requêtes
obtenues sur chaque site (diamètre du cercle), et la distance (couleur du cercle : vert pour les
ping ≤ 60ms, bleu pour les ping ≥ 60ms et ≤ 200ms, et rouge pour les ping ≥ 200ms) des
sites de serveurs vidéos pour YouTube pour les mesures de Kansas-City (marque).
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Conclusion

Dans cette thèse, nous avons traité le problème de la mesure de l’Internet du point de
vue d’un Fournisseur d’Accès Internet (FAI). Nous avons utilisé à la fois des traces de
trafic passives et actives pour déterminer les principales caractéristiques du trafic Inter-
net résidentiel, mais aussi pour comprendre le comportement des utilisateurs. Du point
de vue d’un opérateur, savoir et comprendre le trafic de ses clients est très important
pour planifier l’évolution de son réseau en fonction des besoins de ses usagers.

Nous avons tout d’abord utilisé des mesures actives pour inférer le comportement des
utilisateurs à partir de plateformes locales d’un FAI. Nous avons montré qu’une grande
part du trafic résidentiel est généré par un faible nombre d’usagers, et nous avons aussi
proposé diverses techniques pour mieux gérer le trafic d’une plateforme locale. Nous
nous sommes focalisés sur le vidéo Streaming non seulement car cette application est
responsable de la majorité du trafic, mais aussi parce qu’elle est utilisé par la plupart
des clients Internet. La réduction des pics de trafic sans perturber les utilisateurs a été
traitée en considérant les applications et leur interactivité. Pour le vidéo Streaming, l’in-
fluence des caractéristiques de trafic et de la performance sur son usage a été étudiée
et quantifiée.

Nous avons aussi développé un nouvel outil de mesure active pour explorer les méca-
nismes utilisés pour la distribution des vidéos et leur répartition sur les différents sites
de serveurs. La connaissance du trafic vidéo Streaming gagnée dans la première partie
de la thèse a profondément influencé le développement de cet outil. Nous avons donc
montré comment le DNS et le FAI de l’utilisateur impactent la politique de distribution de
la vidéo ainsi que la qualité d’expérience obtenue. Cette évaluation précise de la qualité
de la vidéo nous a permis de comprendre les principaux facteurs dans la perception du
service de vidéo Streaming. Nous avons donc crée et validé des méthodes efficaces
pour mesurer la qualité du vidéo Streaming pour pouvoir évaluer à grande échelle et de
manière non intrusive sur des captures passives de la part d’un opérateur.

Perspectives Ce travail nous donne plusieurs indications pour nos futures études.
Tout d’abord, la nécessité d’une infrastructure de mesure permanente est démontrée,
ainsi que la création de nouveaux indicateurs déterminés par les usages et les attentes
des clients. Une des méthodes importantes développée dans cette thèse est de se
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concentrer sur un nombre restreint d’utilisateurs générant la majorité du trafic. Ceci
dans le but de bien comprendre les usages de l’Internet. Une méthode de regroupe-
ment des clients basés sur leurs usages a montré que même en se focalisant sur une
courte période de temps, nous pouvons obtenir des résultats significatifs. L’étude d’un
groupe restreint mais représentatif permet aussi d’utiliser des techniques d’analyse plus
précises (comme le DPI).

Nous avons aussi développé des outils efficaces pour l’analyse des vidéos Streaming,
et nous comptons suivre les évolutions de technologies pour garder la précision de cet
outil. Le ratio du débit moyen sur le débit d’encodage donne une bonne approxima-
tion de la qualité d’expérience, et nous prévoyons d’utiliser cet indicateur pour suivre
la qualité du vidéo Streaming. Néanmoins, un ensemble d’indicateurs est nécessaire
pour prendre en compte les services les plus populaires pour les utilisateurs de l’Inter-
net. Avec un ensemble complet d’indicateurs, nous volons non seulement évaluer l’état
d’une plateforme, mais aussi être capable de déterminer la cause des éventuels pro-
blèmes. En effet, nous avons vu que des problèmes de performance peuvent influencer
l’usage des services. Nous aimerions généraliser ces méthodes à plus de services
pour signaler des problèmes de performances non détectés par les indicateurs réseau
classiques.

Finalement, nous avons montré comment les mesures actives peuvent révéler la dy-
namique des observations des outils de surveillance. Nous prévoyons donc d’étendre
notre outil à d’autres services, de sorte à pouvoir suivre activement et en direct les
évolutions de l’usage du vidéo Streaming. Le développement d’outils similaires pour
d’autres services important est aussi à prévoir.
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