
HAL Id: tel-01078394
https://pastel.hal.science/tel-01078394v1

Submitted on 28 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-wetting drops: from impacts to self-propulsion
Dan Soto

To cite this version:
Dan Soto. Non-wetting drops: from impacts to self-propulsion. Physics [physics]. Université Pierre
et Marie Curie, 2014. English. �NNT : �. �tel-01078394�

https://pastel.hal.science/tel-01078394v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT

Spécialité : Physique

Présentée par

Dan Soto

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE

Non-wetting drops: from impacts to self-propulsion

Soutenue le 17 octobre 2014 devant le jury composé de :

M. Christophe Clanet Directeur de thèse
M. Robert Cohen Rapporteur
M. Jean-François Joanny
M. Hamid Kellay Rapporteur
M. Detlef Lohse
M. David Quéré Directeur de thèse





Merci !

After several months of manuscript writing, the time has finally come to thank everyone
that has made this work possible.

First of all I would like to thank all the jury members, Jean-François Joanny (who I
hope enjoyed the drops’ racing-track), Detlef Lohse (who was kind enough to come from
Netherlands on the eve of his journey to Shanghai), and my thesis referees Robert Cohen
(who crossed the atlantic from Boston) and Hamid Kellay (who I first met talking about
amazing tornados in soap bubbles) for their enlightening remarks and for their careful
reading of the manuscript.

As the saying goes, “It takes a village to raise a child”. In my case, the village was the
PMMH lab at ESPCI in Paris, as well as the Ladhyx at Ecole Polytechnique. In this rich
environment, I want to thank first my PhD advisors Christophe Clanet and David Quéré.
Christophe, thank you for your constant availability, your tireless thirst for models and
of course your sense of humour. David, thank you for your endless encouragements and
your communicative enthusiasm. Your advice was always distilled in a way that gave me
extreme freedom.

Thank you to all the members of the “Compagnie des interfaces” with whom I have
shared my daily work. The “Elders”: Keyvan Piroir, who kindly welcomed me in my first
days in the group; Alexandre Ponomarenko and his incredible (but true) stories; Marie
Le Merrer, who I first met as my internship advisor at Polytechnique and Jacopo Seiwert
(and his friendly outspokenness and shared passion for the sea). The generation of “The
famous Five” who were for me a key reference point: Caroline Cohen (an amazing surfer),
Baptiste Darbois Texier (a tireless joker with bulletproof optimism), Pascal Raux (who
could talk for hours over lunch and who showed us Lyon by night... and by bike!), Pierre-
Brice Binten (with whom we spend as much time working in the “soute” as choosing
which music to listen to) and Guillame Dupeux (who was as much worried by my carbon
footprint as he was generous with his time to initiate me to the Leidenfrost world and
share with me his passion for Matlab). The crucial link between this two generations
was Adrien Benusiglio, an engaging person always up front with everything. I had the

3



4 MERCI !

pleasure to spend my three years with Raphaële Thevenin. Thank you for your help with
your “white room skills”, for all our discussions and for making me travel all around the
world when sharing your holidays.

As time went on, we welcomed in the group Manu du Pontavice (with whom I shared
several adventure racings, but never got to finish them), Anaïs Gauthier (a formidable
cards opponent with a cheerful personality) and Philippe Bourrianne (who may never
forget the soccer defeat of France against Spain but may find some confort when recalling
that to win a bet it takes a lot of sacrifice!). In my last year, three new PhD students
arrived: Eline Dehandschoewercker (as conscientious as outgoing), Thimothé Mouterde
(always with a big smile and who I loved to tease with his rowing activities) and Hélène
de Maleprade (with whom I had the pleasure to work on our air-levitated objects while
enjoying her constant giggles.) Around this time, two Post-docs also joined the group:
Cunjing Lv (who was always eager to share a moment with us) and Evan Spruijt (whose
kindness was synonym of infinite patience).

I want to specially thank Aurelie Borel de Larivière, a master thesis intern with whom
I worked on drop impacts and who carried out an outstanding work. I thank all the
interns with whom I have crossed paths with, with a special mention to Maxime “Costa”.
Martin and Hadrien, good luck with your PhD!

I also thank you all because I am leaving with wonderful memories of our time shared
outside the lab: may it be in California (where we could play cards in uncommon places),
in Pittsburg (where the snow took us by surprise), in Copenhagen (where soccer and
swimming was as important as the conferences), in Twente (where we discovered what
Evan had usually for breakfast), in Rome (where we enjoyed a thrilling soccer game),
during our skiing adventures or the different evenings spent in each other homes.

I want to thank the PMMH director Philippe Petitjeans (and his predecessor José
Eduardo Wesfreid) for welcoming me in their lab. Frédérique Auger, Amina Mialet and
Claudette Barez, thank you for making so much things happen. I spent a lot of time in
the workshop and I want to thank all their members, with a special mention to Guillaume
Clermont (who took the time to initiate me to the numerical mill) and Xavier Benoit-
Gonin (who taught me all the secrets of the laser cutter). Thank you to all the other
members of the lab with whom I had the pleasure to live with for three years (and six
months internship). I will not forget the friendly atmosphere of Ladhyx and the incredible
soccer games!. Thank you all.

Robert Cohen spent six months in the lab and we had a great pleasure working with
him on drops and grids. Thank you for your kindness and for being always so thoughtful
(such as with the organisation of my trip to Boston). I also thank Xavier Boutillon, Stef-



MERCI ! 5

fen Hardt, Tobias Baier and Stephane Dorbolo with whom we collaborated at Palaiseau,
Darmstadt or Liège.

Finally, I would like to thank everyone who has not been mentioned above but accom-
panied me all along this adventure. My friends, who will forgive me for not attempting
an exhaustive enumeration. My parents, who proofread my manuscript and gave me the
taste for science. My brother, who has always led the way. All my family, who never
doubted the value of a PhD on water drops.

And Marion.





Contents

Introduction 11

I The non-wetting world 15
1 Generating non-wetting objects . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 The super-hydrophobic state . . . . . . . . . . . . . . . . . . . . . . 16
1.2 The Leidenfrost state . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 The air-levitated state . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 A wide range of other possibilities . . . . . . . . . . . . . . . . . . . 25

2 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 The static shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 The vapor cushion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Crenelated surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 High mobility and special friction . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Viscous friction in the vapor film . . . . . . . . . . . . . . . . . . . 45
3.2 Inertial friction in the surrounding air . . . . . . . . . . . . . . . . . 46
3.3 Special friction on a crenelated surface . . . . . . . . . . . . . . . . 46

II Self-Propulsion in the Leidenfrost state 49
1 The texture revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.1 The ratchet: a seed is sown . . . . . . . . . . . . . . . . . . . . . . 50
1.2 The herringbone: time to reap . . . . . . . . . . . . . . . . . . . . . 57

2 Force of propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.1 Experimental measurements . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Analytical calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Friction on grooved topography . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1 Straight trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Free trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Terminal speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Analytical calculation and speed optimization . . . . . . . . . . . . 78

5 A basic unit of a wider picture . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 The drop trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 The active herringbone: the switch . . . . . . . . . . . . . . . . . . 80

7



8 CONTENTS

IIISelf-propulsion on an air hockey table 85
1 When vapor is replaced by compressed air . . . . . . . . . . . . . . . . . . 86

1.1 The air hockey table . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.2 Propulsion with herringbone textures . . . . . . . . . . . . . . . . . 87

2 Force of propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.1 Experimental observations . . . . . . . . . . . . . . . . . . . . . . . 90
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 New geometries, new functionalities . . . . . . . . . . . . . . . . . . . . . . 99
3.1 The truncated herringbone . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 Climbing up a slope . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3 The viscous entrained mill . . . . . . . . . . . . . . . . . . . . . . . 101

4 Channel depth h and Reynolds number . . . . . . . . . . . . . . . . . . . . 104
5 Switching roles: the texture patterned on the slider . . . . . . . . . . . . . 106

5.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Force measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IVDrop impacting a sieve 113
1 Impact on a solid plate: a brief review . . . . . . . . . . . . . . . . . . . . 114

1.1 Maximal impacting radius . . . . . . . . . . . . . . . . . . . . . . . 115
1.2 Drop shape profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2 Impact on a plate with a single hole . . . . . . . . . . . . . . . . . . . . . . 120
2.1 Critical speed V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.2 Role of plate thickness . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3 Several time scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.4 Transmitted mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.5 Final comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3 The Leidenfrost sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.2 Transmitted mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.3 A deformable interface . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4 Splash pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Exploring different meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.1 Role of wetting conditions . . . . . . . . . . . . . . . . . . . . . . . 140
4.2 Role of hole size r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.3 A single curve? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.4 Pinch-off time versus crash time . . . . . . . . . . . . . . . . . . . . 144

5 Conclusion and open questions . . . . . . . . . . . . . . . . . . . . . . . . . 145

V Impact force of a drop 149
1 Compression waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1.1 Water hammer in the liquid . . . . . . . . . . . . . . . . . . . . . . 150
1.2 Water hammer in the surrounding air . . . . . . . . . . . . . . . . . 153

2 Measure of impact force with a piezo-electric quartz . . . . . . . . . . . . . 155
2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.2 Analytical calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 157



CONTENTS 9

2.3 The case of raindrops . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3 A cheaper sensor: the lamella . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.3 Agreement between model and data . . . . . . . . . . . . . . . . . . 162
3.4 The two impact regimes . . . . . . . . . . . . . . . . . . . . . . . . 162
3.5 The case of raindrops . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.6 Energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4 Non-wetting impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.1 Deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Conclusion 169

A G-code script to machine a herringbone pattern 171

B Exact calculation of viscous entrainment force 173

C Résumé en Français 177

Bibliography 197





Introduction

In 1959, the Belgian surrealist artist Magritte finished his masterpiece entilted “Le Château
des Pyrénées” (The Castle of the Pyrenees) shown in figure 1. This painting embodies

Figure 1 – Le Château des Pyrénées (The Castle of the Pyrénées), René Magritte, 1959.
Oil on canvas, 200 x 145 cm. Gift of Harry Torczyner to the American Friends of the
Israel Museum.

the artist’s typical disturbing juxtaposition of familiar objects, combined with captivat-
ing poetry and mystery. A gigantic boulder, topped by a castle, is immobilized in the
air between an azure sky (dotted with clouds) and a pristine sea (whose waves reflect the
gray nuances of the rock). After a first impression, the gap between the rock (emphasized
by the tiny relative size of the top castle) and the sea attracts our attention. Magritte
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12 INTRODUCTION

works in the artistic dimension - where imagination rules and we do not have to satisfy
physical laws. However, we can adopt a more realistic point of view, and wonder how an
object could possibly levitate.

A first answer was proposed in 1756 by the German physician Johann Gottlob Leiden-
frost. In [68], he studied the behavior of a water droplet deposited over a hot substrate
(typically 400 ◦C). Placing a candle behind the drop, Leidenfrost could observe with the
naked eye that light passes between the hot solid and the liquid, revealing the existence
of a film of vapor below the drop as shown in figure 2, in a very similar way than what
Magritte represented in “Le Château des Pyrénées”. However, contrasting with Magritte’s
masterpiece, the Leidenfrost levitation has an explanation: it results from a balance be-
tween evaporation (that nourishes the vapor cushion on which the drop levitates) and the
drop’s weight (which presses on this vapor layer). Since then, other methods have been
proposed to generate levitation. Among them, levitation by blowing air - somehow like
an hovercraft.

Figure 2 – Millimetric drop levitating over a hot plate. Backlighting is used, which helps
to distinguish the interval between the drop and its reflection owing to the presence of
vapor. The scale bar shows 1 mm.

A levitating body avoids any contact with the substrate, which makes it highly mobile.
In this work, we focus on the special dynamics associated with this mobility. We exploit
this situation to generate self-propulsion (allowing us to put a resting object into mo-
tion). Conversely, frictionless objects are difficult to stop. We consider situations where
a moving liquid drop can be stopped by different means: from substrate texturation, to
an impact on a solid wall through impact on a mesh (an intermediate situation between
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a solid wall, able to stop a movement, and no obstacle at all).

These various situations will stress, I hope, the novel physics that arise in this lively
field of hydrodynamics without contact.
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16 CHAPTER I. THE NON-WETTING WORLD

1 Generating non-wetting objects

1.1 The super-hydrophobic state

The lotus plant has been considered as a sacred plant several centuries before our era. It
was held to be the symbol of truth, auspiciousness and beauty, always remaining untainted
despite its surroundings. As Veda Vyasa points out in his ancient sanskrit scripture
Mahabharata1, a lotus leaf never gets wet even though it is always in water:

“brahmany adhaya karmani

sangam tyaktva karoti yah

lipyate na sa papena
padma-patram ivambhasa ”

“One who performs his duty without attachment,
surrendering the results unto the Supreme God,

is not affected by sinful action,
as the lotus leaf is untouched by water.”

Despite this ancient text, it is only recently (in the 90’s) that the lotus mystery has
been solved thanks to the use of Scanning Electron Microscope (SEM) in the work of
W. Barthlott and C. Neinhuis [5]. They describe how the combination of microtextures
and proper chemistry makes lotus actively repel water. From that time on, the lotus
has moved from a religious, sacred dimension to a scientific one, where we try to mimic
its properties. If we look at the surface of a lotus leaf through an SEM (figure I.1), we
can observe a highly sophisticated double texturation: the leaf is covered by micrometric
posts, themselves covered by nanometric wax crystals.

Figure I.1 – SEM picture of the surface of a lotus leaf. We can see that each pillar is
likewise structured because it is covered by small wax crystals. Figure from [9].

1probable composition period: between the fifth and the second century BCE.
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If we want to imitate this effect artificially, nature tells us that we need to satisfy two
requirements:

(i) have a hydrophobic surface (from the ancient Greek ὑδρόφοβος: has fear of water).
The affinity of a liquid towards a substrate can be characterized by its contact angle θc
as defined in figure I.2. At the contact line, we have three interfaces: solid-liquid, liquid-
gas and gas-solid. Since each one has its own surface tension, the static equilibrium is
determined by Young’s equation: cos θc = γsl−γsg

γlg
.

θ
c 
< 90°θ

c 
> 90°

θ
c 

θ
c 

Figure I.2 – Hydrophobic (left) and Hydrophilic drop (right).

If θc < 90◦, the substrate is hydrophilic. Conversely, if θc > 90◦, the substrate is
hydrophobic. Wax, oils, fats, long carbon chains and fluorinated molecules are usually
hydrophobic.

(ii) have a textured surface to enhance hydrophobicity and achieve a super-hydrophobic
effect. It is observed that surface chemistry alone fails to achieve contact angles above
θc = 120◦ [99]. In nature, we can find other examples of super hydrophobicity in plants
(Ginkgo Biloba, Brassica Oleracea) or animals (water strider, dragonfly, collembola).
They all share a common feature: they have a tailored surface. In order to outreach
an angle of 160◦ or even above, we need to add surface roughness. As explained by A.
Cassie [18], when adding roughness, the drop does not wet the whole projected surface
beneath it but only the top of the summit topography, like a fakir on a bed of nails. Lo-
cally, the drop satisfies Young’s equation on top of each pillar. However, the macroscopic
contact angle θ∗c (also called the apparent contact angle) is much larger (figure I.3). In
other words, the drop will mainly face air beneath it (the top pillars represent only a very
low percentage of the total projected area) and will be in a non-wetting state.

Experimentally, we can generate well-controlled roughness by micro-engineering an
array of pillars such as those in figure I.4a. Although different techniques exist to man-
ufacture such refined structures, they all require advanced skills and high technology
equipment. Easier methods that allow greater areas to be treated have been proposed,
such as the one by Larmour and collaborators [65]. This two-steps method (where the
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θ
c 

θ
c

*

 

Figure I.3 – Textured surface, with a drop sitting on it as a fakir on a bed of nails. On
the top of each pillar, the local angle of contact θc satisfies Young’s equation. However,
the macroscopic angle of contact θ∗c is much larger.

precise geometry of the texture can not be controlled) begins by plunging the substrate
in a solution of silver nitrate. The surface darkens owing to the deposition of small
silver particles that generate micrometric roughness. Then, the surface is treated with
an alcoholic solution of 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol
(HDFT) that will graft these long fluorinated molecules to the surface of the silver texture,
making it chemically hydrophobic. This method is limited to metallic substrates, such
as copper or brass. More recently, industrial liquid coatings (such as UltraEverDryTM or
GlacoTM) have appeared on the market as an easy alternative (as easy as spraying the
liquid on the surface) to achieve both chemical hydrophobicity and physical roughness.
After coating a sample with this industrial solutions made of hydrophobic colloids, we can
see through an SEM a disordered roughness at very small scale (see figure I.4b). Another
method for treating large areas of complex geometry (such as a mesh shown in figure
I.4c), is for example used in the group of R. Cohen by spray-coating or dip-coating the
sample from 50/50 wt% mixture of poly(methyl methacrylate) and hydrophobic molecules
1H,1H,2H,2H − heptadecafluorodecyl polyhedral oligomeric silsesquioxane (commonly
called fuorodecyl POSS, see [23, 105, 60]), providing a high degree of hydrophobicity.

1.2 The Leidenfrost state

Leidenfrost experiment

The key to generating a non-wetting state is to prevent contact between liquid and solid.
In the super-hydrophobic state, the pillars succeeded in artificially trapping an air layer
between drop and substrate. However, because the weight of the drop has to be compen-
sated, it needs to rest on top of each pillar: although marginal, contact still exists. If we
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(a) (b)

(c)

Figure I.4 – SEM views of three artificial super hydrophobic surfaces. (a) Array of micro
pillars of height 10 μm, diameter 2 μm, and pitch 10 μm. Scale shows 10 μm, courtesy of M.
Reyssat. (b) Surface treated with GlacoTM. Scale shows 2 μm. Courtesy of C. Willem. (c)
Scanning electron micrographs at different magnifications of dual-textured spray-coated
super-hydrophobic mesh surfaces. Figure from [105].

wish to completely eradicate this contact, we have to go back to Germany in 17562, and
read J. G. Leidenfrost’s paper “On the fixation of water in diverse fire” [68]:

“At the instant when the drop touches the glowing iron, it is spherical. It does not
adhere to the spoon, as water is accustomed to do, which touches colder iron.”

Through this observation, we understand that a Leidenfrost water droplet is in a
non-wetting state. By looking from the side at water sitting on a hot plate (figure I.5,
experiment sketched in figure I.6), Leidenfrost was able to see a beam of light passing
between the liquid and the plate, thus demonstrating a pure non-wetting state.

2The Dutch scientist H. Boerhaave was the first to mention the levitation of a drop over a hot substrate
in his 1732 publication: Elementa Chemiae [13].
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Figure I.5 – Side view of a water droplet on a hot substrate (400◦C). The gap between
the drop and the substrate (visible because of the back light passing through it) has a
typical height h ∼ 100 μm. The bar shows 1 mm.

Figure I.6 – Experimental set up used by J. G. Leidenfrost to observe vapor cushions
between a drop and its hot substrate.

As the drop approaches the hot substrate it evaporates at a rate fast enough to form a
stable vapor film beneath it (visible in figure I.5). The droplet is sitting on top of a cushion
of its own vapor, squeezing it and generating a vapor flow permanently compensated by
evaporation, hence achieving an equilibrium levitation height h of typically 10 to 100 μm.

Drop lifetime

A way to characterize the Leidenfrost effect consists in measuring the lifetime evolution
τ of a drop sitting on a substrate, as a function of the substrate temperature. At high
temperature, the vapor provides thermal insulation and the drop can last over several
tenths of a second. However, as we decrease temperature, we observe a sharp transition.
The temperature corresponding to this lifetime discontinuity is called the Leidenfrost
Temperature TL. At this point (typically between 150 and 200 ◦C for water), the substrate
is not hot enough to sustain the necessary evaporation rate. Consequently, the peaceful
non-wetting state (described in figure I.8 as film boiling regime) disappears and is replaced
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by a violent boiling regime (first, transition boiling and then, nucleate boiling, again shown
in figure I.8). As expected when direct contact between liquid and substrate occurs, drops
lifetime falls drastically.

τ  (s)

T  (°C)
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80
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Figure I.7 – Lifetime τ of a millimetric water droplet of radius R = 1 mm, as a function
of the temperature T of the Duralumin plate on which it is deposited. Leidenfrost tem-
perature TL is around 150 ◦C. Above this temperature, we are in the film boiling regime.
Right below it, the drop experiences the transition boiling regime. If we further decrease
the temperature, we go thorough the nucleate boiling regime before arriving to the single
phase (see figure I.8). Figure adapted from [11].
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Figure I.8 – Sketch of different boiling regimes ranging from single phase to film boiling
(Leidenfrost state) going through the boiling point (B.P.) and the Leidenfrost point (L.P.).
Figure adapted from [112].

The Leidenfrost temperature depends on the nature of the liquid, the substrate and
its roughness. Water on a clean smooth substrate will levitate at lower temperature than
on a dirty rough one. It has been shown [58, 57, 59] that a fine texture (at the scale
of 0.1–10 µm) considerably increases the Leidenfrost temperature. Characteristic metal
roughness ranges from 0.05 μm to 10 μm (rusted metal even reaching 100 μm). Typical
vapor thickness being 100 μm, the greater the characteristic roughness length scale the
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shorter the distance between the liquid and the tip of a local crest topography. Any
vibration of the interface will therefore easily put the liquid in contact with the roughness
protuberance, instantaneously nucleating boiling. We have previously seen that if textures
were hydrophobic, they would achieve super-hydrophobicity. Conversely, if they were
hydrophilic, they would achieve super-hydrophility. Thereby, textures role can be seen
as an enhancer of liquid substrate affinity. In the Leidenfrost state, something similar
happens and roughness does not always necessarily result in a Leidenfrost temperature
increase. If textures are hydrophobic they can be used to stabilize the Leidenfrost vapor
layer as shown by Vakarelski et al. [124].

1.3 The air-levitated state

From Leidenfrost to air-levitated drops

We just saw that we can achieve complete levitation by constantly nourishing a vapor
cushion between a drop and its hot substrate. The vapor is created by using heat to
transform liquid into gas phase. This inevitably means that our drop has a limited
lifetime as it is consuming itself in order to levitate. The time limited (or even deadly!)
nature of this levitation can be avoided by replacing vapor by external injected air as done
with air hockey tables. In 1986, M. Goldshtik carried out a thorough comparison between
Leidenfrost and air-levitated drops [48]. A strong similarity arises from the close analogy
between the symmetry and hydrodynamic mechanisms of both types of suspension (see
figure I.9). In the end, the critical parameter that governs air-levitation is the differential
pressure on a porous surface, as is the temperature in the thermal counterpart.

Hot Plate Porous Substrate

R

h U

Figure I.9 – Leidenfrost drop (left) and air-levitated drop (right). We can see how striking
is the analogy between these two situations.
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The deformable case

In the Leidenfrost state, it is experimentally difficult to reach high vapor flow rates due to
temperature limitations. This contrasts with the air-levitated state where we can easily
adjust the differential pressure through the porous substrate, hence freely varying the air
injection rate on a wide range of values. Therefore, we can reach airflows that are strong
enough to change the underlying levitation mechanism.
To understand this transition, we have to compare the role of inertial forces versus viscous
ones. By denoting ρa the air density, ηa its viscosity and U its speed, a first ratio of these
two forces can be constructed with the drop radius as a characteristic distance, which
yields for this Reynolds number:

Re =
ρaUR

ηa
(I.1)

We experimentally see that the bottom of the drop is deformed and flattened by
the vapor pressure as sketched in figure I.9. In this region, inertial forces will scale as
ρaU

2/R and viscous ones as ηU/h2. Their ratio, sometimes called the lubrication Reynolds
number, is:

ReL =
ρaUh

2

ηaR
= Re

h

R
(I.2)

For a millimetric drop with h ≈ 100 μm and small flow rate (U ≈ 0.1 − 1 m/s), we
expect ReL < 0.1: viscous effects clearly dominate within the air cushion.

The non-deformable case

Previous mechanism of levitation involved the deformation of the interface of the object.
However, a non-deformable solid object (such as a ping-pong ball) can also be maintained
in levitation by blowing air beneath it. We address here the situation of a levitated drop
for which deformation can be neglected. A moving sphere experiences drag from its sur-
rounding liquid (or gas). If the drag is strong enough to compensate the drop’s weight, it
will result in levitation - like a free falling object experiences in its own frame. Depending
on the Reynolds number, several regimes can be observed:

(i) For small Reynolds number (i.e. Re < 1), the sphere will experience a viscous
stress ηaU/R integrated over its whole surface R2. It will be subjected to the Stokes drag
force:

FStokes ∼ ηaRU (I.3)

By compensating it with the drop weight ρR3g (where ρ denotes the liquid density),
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we immediately get a critical levitation speed:

U∗ ∼ ρR2g

ηa
(I.4)

We can insert this speed in the Reynolds number expression (I.1), Re∗ = ρaρR3g
η2a

and build
a characteristic length RL:

RL = (
η2
a

ρaρg
)1/3 (I.5)

Using this characteristic length, the Reynolds number can be re-expressed as: Re =

(R/RL)3. As previously said, this regime only applies if Re < 1: hence a maximum droplet
radius: R∗ = RL. For a water droplet surrounded by air, this means very small droplets:
R < R∗=30 μm.

(ii) If we continue increasing the flow rate, we will enter the intermediate Reynolds
number regime: 1 < Re < 103. When a body is put into motion in a viscous fluid, a
boundary layer develops around the object with a characteristic thickness δ ∼

√
νat. Here

νa = ηa/ρa denotes the kinematic viscosity of air and t the time of development of the
boundary layer 3. For an object of size R, t naturally scales as R/U , hence: δ ∼

√
νR/U .

The resulting stress being σ ∼ ηaU/δ, the skin drag force is:

Fskin ∼
√
ηaρa[RU ]3/2 (I.6)

Analogous reasoning leads to a critical levitation speed:

U∗ ∼ R(
ρg
√
ηaρa

)2/3 (I.7)

Using the same characteristic length RL than defined in equation I.5, the Reynolds
number will now be: Re = (R/RL)2. As Re ∈ [1,1000] this leads to drop radius R ranging
from 30 μm to 1000 μm, that is, still relatively small drops.

(iii) Finally, we consider drag at high flow rates: Re > 1000, yet below turbulent
regimes. If the characteristic length scale of the object is R, it has to displace an initially
resting mass of air ρaR3 at a speed U in a characteristic time R/U in order to move
forward. This leads to an inertial drag force:

Faero ∼ ρaR
2U2 (I.8)

In most everyday situations (car, plane, soccer ball), we have to fight against this force

3This equation is characteristic of diffusive events and in this case the diffused quantity is momentum.
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in order to move. However, as done in the two previous regimes, we can use this drag
force to levitate a body by compensating its weight - the same way a skydiver would do in
a wind tunnel. The critical speed at which we will be able to sustain a drop in air being:

U∗ ∼

√
ρRg

ρa
(I.9)

In this case the Reynolds number can be rewritten as: Re=(R/RL)3/2. To satisfy
the relationship Re > 1000, a last critical radius arises: R∗ = 10002/3RL. Once again,
for a water droplet in air this means R > R∗ = 1 mm. In the case of rain, this is the
most common regime as everyday drops are usually larger than a millimeter. If we think
of a falling drop, after a short acceleration (initially it will accelerate as free fall), drag
will increase until it compensates the weight and the drop reaches its terminal speed U∞
(described in I.9)- typically 10 m/s. In a simple way, we can see a falling drop at terminal
speed (from the drop frame point of view) as a non-wetting object.

1.4 A wide range of other possibilities

A great variety of other approaches have been used to generate levitation [84]. Besides
the air injection through a porous medium, alternative solutions have been proposed to
nourish the air film.

In [27], Couder et al. deposit a liquid drop on top of a vibrating bath of the same
liquid. If the oscillation period and amplitude are well chosen, the air cushion can be
renewed between two oscillations before it has time to drain, hence avoiding coalescence.

Another solution to generate liquid levitation consists on putting a drop above a
spinning disk where solid/liquid contact will be prevented by the thin air boundary layer
entrained by the disk. As a consequence, the drop levitates and is slightly deformed as
shown in figure I.10.

Figure I.10 – Shape of a millimetric silicone-oil drop (viscosity 100 cSt) levitating over a
rotating disk. If rotation speed is not high enough (left image), entrained air is not strong
enough to overcome the drop’s weight and avoid contact. The higher the rotation speed
seen by the drop, the more the drop deforms. Figure courtesy of A. Gauthier.
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Also based on a moving substrate, levitation can be induced by depositing a liquid
droplet on an hydraulic jump as discussed in [104, 39]. Indeed, a thin layer of air is
entrained underneath the drop by the flow of liquid preventing coalescence.

In [84, 81, 35], Neitzel and collaborators use thermocapillarity effects to drive a lu-
bricating gas film between a heated droplet and a cooled substrate. By heating the top
interface of a drop, they increase the local temperature, hence decrease the local surface
tension. As a consequence, liquid is pulled along the interface from the top to the bot-
tom of the drop. Due to this Marangoni flow, surrounding air is entrained in the same
direction, so that air is also injected at the bottom of the drop generating levitation.
For instance, if we take two drops of the same liquid and put them in contact they will
coalesce. However, if the two drops are at different temperature [34] Marangoni flows will
drag air between the droplets suppressing coalescence as shown in figure I.11.

(a) (b)

Hot

Cold

Figure I.11 – (a) Sketch of the flow field for two non-coalescing drops held at different
temperatures. The gap thickness is exaggerated to display the direction of motion in
the entrained air film. (b) Non-coalescnece of two 5 cST silicone oil drops of different
temperature around 15 ◦C. Arrow shows the direction of the Marangoni flow along the
interface. Figures from [34].

Other approaches include Bernoulli levitation, magnetic, electrostatic or even acoustic
levitation [85].
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2 Shape

2.1 The static shape

Surface tension

A physical consequence of being non-wetting is the appearance of a quasi-spherical shape.
As we suppress contact (or, in the super-hydrophobic state, almost suppress it), a drop is
only subject to gravitational forces (scaling as ρR3g) and liquid-gas surface tension forces
(scaling as γR, where γ denotes from now on the liquid-gas surface tension). A first
characteristic length called the capillary length is obtained by balancing this two forces:

`c =

√
γ

ρ g

In the case of water, we have `c = 2.7 mm at ambient temperature and `c = 2.5 mm
at 100◦C. Another convenient liquid is acetone, for which `c is smaller, namely 1.6 mm
near its boiling point at 60◦C. In figure I.12, we show two drops: on the left side (figure
I.12a) a spherical drop smaller than the capillary length; on the right side (figure I.12b)
a flattened puddle larger than `c. We clearly see that the capillary length sets the limit
between small droplets modeled by surface tension and large ones globally deformed by
gravity.

(a)

H=2R

(b)

H=2ℓ
c

Figure I.12 – (a) Small droplets are mainly shaped by surface tension, hence having a
quasi-spherical shape. Scale shows 1 mm. (b) Large drops are flattened by gravity, of
maximum height twice the capillary length `c. Scale shows 2mm.
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Droplets: R < `c

We refer to small drops when R < `c so that surface tension dominates gravity, as shown
in figure I.12a. If we take a fixed amount of liquid (small enough to be in this capillary
world), surface tension selects the geometry that minimizes the surface area. For example,
if we consider a pyramidal geometry, corners are not very efficient since we can put
very little liquid in them although we need a lot of surface to generate them. This
example tells us that surface tension avoids sharp geometries, hence naturally selecting
the spherical shape (mathematically known to minimize surface area for a given volume).
In 1805, Pierre Simon de Laplace showed [64] that a consequence of curved interfaces,
is the existence of a difference of pressure ∆P between the inside and the outside of the
interface: ∆P = γC (known as the Young-Laplace equation). Here, C represents the
interface curvature defined as the sum of two curvatures in perpendicular planes. For a
Leidenfrost droplet, the geometry is that of a sphere, and we have ∆P = 2γ/R, about
100 Pa for millimetric drops.

Puddles: R > `c

We refer to big drops or puddles when R > `c, so that gravity effects have to be taken
into account. As we can see in figure I.12b, the drop is flattened by gravity. R will further
on denote the equatorial radius of a puddle and H its thickness. Laplace pressure on the
curved side can be written as: PL = γ(2/H + 1/R), where R and H/2 are the curvature
in the horizontal and vertical plane, respectively. In the big drop limit (H << R), it
reduces to PL ≈ 2γ/H. From a hydrostatic point of view, the inner pressure at half
height is PH = ρgH/2. By balancing these two pressures, we get an expression for puddle
thickness. It is independent of the radius R, and writes H = 2`c.

If we want to have an exact solution for the drop’s shape, we have to solve the dif-
ferential equation similarly obtained by pressure arguments. The pressure at any height
z of the drop can be written following two different methods based on the two different
paths sketched in figure I.13 (the horizontal position is not relevant in this problem since
we are in a hydrostatic state):

(i) the first path sketched in figure I.13 by a red arrow, where we simply cross the
drop’s interface at height z, implies a pressure jump ∆P1 = γC(z).

(ii) the second one (sketched in figure I.13 by a blue arrow), where we follow an
imaginary path that crosses first the interface on the axis of symmetry at the top of the
drop (with a pressure jump γC0) and then goes down along the z-axis until reaching
height z (hence a hydrostatic pressure ρgz). The corresponding pressure jump is: ∆P2 =

γC0 + ρgz.
Introducing the capillary length, equality between these two pressures ∆P1 = ∆P2
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gives us the following equation for the local curvature:

C(z) = C0 +
z

`c
2 (I.10)

ds
dz

dr

r(z)

z

θ

n

H

→

Figure I.13 – Shape of a non-wetting drop. Two different paths allow to access two
different expression for the pressure inside the drop at height z: red arrow show path
number one while blue arrow shows path number two.

Introducing s as the curvilinear coordinate, r(z) as the horizontal radius at height
z and θ as the angle between the tangent to the interface and the vertical plane (see
figure I.13), the two orthogonal curvatures can be written: C1(z) = cos θ

r
, C2(z) = −dθ

ds
. In

addition, geometrical observation shows that dr=ds sin θ, dz=ds cos θ and ṙ = dr
dz

= tan θ.
By re-expressing cos θ as 1/

√
1 + ṙ2, we immediately get C1(z) = 1

r (1+ṙ2)
1
2
and C2(z) =

−dθ
dz

dz
ds

= −dθ
dz

1√
1+ṙ2

. By calculating r̈ = d tan θ
dz

= dθ
dz

1
1+ṙ2

we obtain the expression of dθ
dz

equal to r̈
1+ṙ2

. We now have all the elements to re-write equation I.10 as the following
second order differential equation for r(z):

1

r (1 + ṙ2)1/2
− r̈

(1 + ṙ2)3/2
= C0 +

z

`c
2 (I.11)

There is no analytical solution to this equation, which must be solved numerically.
The only physical parameters that we have to set are the curvature at the top of the drop
C0 and the capillary length. We show in figure I.14 the shape of several drops for water
(`c = 2.7 mm) and curvature radius at the drop’s apex ranging from 1 mm (smallest
radius of curvature, hence almost spherical drop) to 10 mm (biggest radius of curvature,
hence the more flattened drop).

The model assumes homogeneous stress on the bottom of the drop (as we can get
in super-hydrophobic states). In the Leidenfrost (or air-levitated) situation, gas escapes
from the axis of symmetry towards the external edge, indicating that maximum pressure
point is located right below the center of drop. We will therefore have a local higher
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Figure I.14 – Numerical resolution of equation I.11 rescaled by capillary length (set to `c
= 2.7 mm). Curvature radius at the apex of the drop ranging from 1 mm (smallest radius
of curvature, corresponding to an almost spherical drop) to 10 mm (biggest radius of
curvature, corresponding to the most flattened drop). As explained above, the maximum
height H for a puddle tends towards 2 `c as the drop volume increases.

thickness of vapor at this point, as experimentally observed [17, 19]. A correction can be
introduced in the Leidenfrost state (as well as the air-levitated state) to take into account
the underlying vapor film as done in [103] or [38] for the air-levitated situation. We will
see in section 2.3 that this deformation can be the cause of an instability.

Volume of a non-wetting drop
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Figure I.15 – Drop mass as a function of the equatorial radius for acetone. Red dots
show experiments done on a smooth surface while black dots show experiments done on a
crenelated surface (see section 2.4). Plain red line: numerical solution from equation I.11.
Dashed blue line shows spherical drop approximation for which m varies as R3. Dotted
blue line shows disk approximation for which m scales as R2.
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From the 2D numerical solution of the shape we can easily compute the volume Ω

and mass m of a drop as a function of its equatorial radius R. We show in red in figure
I.15 the comparison between experiments (red dots) and numerical solution (red line) for
acetone. We also draw in dashed blue an approached solution in the small drop’s regime
where we assume perfect spherical drops, hence m = ρ4

3
πR3 is proportional to R3. In the

puddle regime (dotted blue), assuming disk shapes we would get m = ρ2 `c πR
2, hence

varying as R2. This volume approximation, although in qualitative agreement, always
tends to overestimate the data.

Falling drops: analogy with Leidenfrost drops

Free falling drops bigger than 1 mm are in the aerodynamic regime ( see section 1.3).
Assuming spherical shapes, we previously deduced their terminal velocity by balancing
drag and weight forces. However, for bigger droplets (i.e. bigger than the capillary length),
the interface can be deformed and a new geometrical variable is added to the problem. In
order to understand this new drop geometry, we show in figure I.16 the air flow around
the drop.

R
H

U

Figure I.16 – Falling drop of equatorial radius R and terminal speed U in the aerodynamic
regime. Owing to the Bernoulli effect, the drop deforms perpendicularly to its vertical
trajectory. Once the drop has reached its terminal speed, its thickness H scales as the
capillary length `c - exactly as in the Leidenfrost scenario.

In the drop’s frame, the flow is slowed down on the top and bottom of the drop. On
the sides, the streamlines get nearer to each other having a local higher speed. In the case
of a permanent, irrotational and inviscid flow, Bernoulli theorem gives us the following
relationship between speed and pressure: ρaU2/2 + P = cst. This relation states that
high speed points are low pressure ones. In our situation, pressure is lower on the sides
than on the top and bottom of the drop. This radial depression pulls the drop’s edge



32 CHAPTER I. THE NON-WETTING WORLD

outwards, leading to a puddle shape. At equilibrium, the pulling pressure ρaU2 must be
balanced by Laplace pressure γ/H (we assume H << R). The new drop’s thickness H
now scales as γ/ρaU2. Denoting R0 as the drop radius in the original spherical geometry,
volume conservation leads to the following equatorial radius:

R ∼

√
R3

0ρaU
2

γ
(I.12)

The terminal speed of this falling puddle is obtained by balancing drag ρaR2U2 with
the drop’s weight ρR3

0g:

U ∼

√
ρg`c
ρa

(I.13)

We now see how the terminal speed for a big drop (equation I.13) is analogous to the
one obtained for small drops (equation I.9), provided that drop radius replaces the capil-
lary length. In addition, if we plug this terminal speed in I.12, we obtain the equatorial
radius for a free falling drop in terminal speed: R2 ∼ R3

0

`c
. In other words, thickness scales

as in a Leidenfrost situation:

H ∼ `c (I.14)

Through this double analogy, we see how free falling drops and levitated drops are
alike4. Indeed, we shown in figure I.17 three free falling drops: on the left side, the
smaller one (below the capillary length) is spherical, in the middle, a bigger one (above
the capillary length) is a flattened puddle and on the right side, a big drop that is being
destabilized (see section 2.3). Again, all mechanisms seen for the Leidenfrost drops are
visible in the free fall regime.

(a) (b) (c)

Figure I.17 – Free falling water drops of different volume. The drop in (b) has a horizontal
dimension 2R = 1 cm. Pictures (a) and (c) have the same scale as (b). Photos from [92].

4Reyssat et al. showed in [92] how speed and thickness equations are in good agreement with experi-
ments.
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2.2 The vapor cushion

Recent studies have focused on the thickness h of the vapor cushion beneath the drop.
Burton and collaborators have been able to experimentally access the profile of the vapor
layer under a Leidenfrost drop5 [17, 19]. Although they showed that the interface is
slightly concave, in what follows we assume a uniform deformation, i.e. a flat bottom
surface. As evoked earlier, h is fixed by the balance between the drop’s weight and the
horizontal flow overpressure. Once more, two different scenarios are to be considered
depending on the drop’s size.

Puddles, R > `c

Vapor flow below drops comes from the evaporation of the liquid. Gottfried et al. showed
in [50] that the heat transfer at temperatures of 200-500 ◦C is dominated by conduction.
The heat obeys the Fourier law and it can be written per unit area: κ∆T

h
where we denote

the thermal conductivity of the vapor as κ and the difference between the substrate and
liquid temperature as ∆T . After a transient regime (where the drop uses the heat energy
to reach its boiling temperature), all the incoming heat flux is used to transform liquid
into vapor, hence a consumed flux of energy per unit area: Lṁ = Lρv c where we denote
the density and latent heat of evaporation as ρv and L, respectively, and the rate of
evaporation as c.

R

h

2ℓ
c

U

c

Figure I.18 – Sketch describing evaporation mechanism for a Leidenfrost puddle.

As sketched in figure I.18, c can also be seen as the vertical speed of vapor injected
into the cushion. Balancing consumed and incoming energy, we get a first equation for
the expression of vapor injection speed c:

c =
κ∆T

ρv Lh
(I.15)

A second equation is obtained from a mass balance. As the equilibrium height h is

5They have used similar interferometric techniques than initially used to observe the evolution of the
air layer between an impacting drop and its substrate [125, 122].
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attained, the vapor injected at rate c from the bottom of the drop is balanced by the
lateral escaping flux (of horizontal speed U in figure I.18). Hence we have:

U =
1

2
c
R

h
(I.16)

Equation I.16 tells us that given a typical height h of levitation around 100 μm, the
horizontal escaping speed U for a several millimeters drop is ten times greater than the
injection speed c.

A last expression is obtained from the Navier-Stokes equation. Since the Reynolds
number is small, we can neglect inertial effects in the vapor cushion flow. Laplacian
associated to viscosity stress η U

h2
is balanced by the horizontal pressure gradient ∆P

R
,

leading to:

η
U

h2
∼ ∆P

R
(I.17)

Combining equations I.15, I.16 and I.17, we get the equilibrium levitation height h as
a function of the different parameters of the problem:

h ∼ [
ηκ∆T

ρv L∆P
]1/4R1/2 (I.18)

In the case of liquid puddles, the overpressure below the drop is the drop’s hydrostatic
pressure due to its weight: ∆P=ρgH = ρg2`c. We finally get:

h ∼ [
ηκ∆T

ρvLρg`c
]
1/4

R1/2 (I.19)

For a water droplet, the liquid’s physical parameters have to be taken at 100 ◦C:
ρ = 960 Kg/m3 and `c = 2.5 mm. The substrate temperature for a Leidenfrost experiment
being typically 400 ◦C (∆T = 300 ◦C), the vapor’s physical parameters are taken at an
average temperature of 250 ◦C: η = 1.8 10−5Pa · s, ρv = 0.4kg/m3 and κ = 36mW/m/K.
Finally, the latent heat of evaporation is set to L = 2300 kJ/kg. With these values
and for a drop of radius R ≈ 1 cm, the typical vapor thickness is about 100 μm. This
expression also shows that film thickness h has a very slow dependence regarding the
substrate temperature, since it varies as ∆T 1/4. In order to double the thickness we
would need to multiply the temperature by a factor of 16. For water, it would imply
temperatures around 5000 ◦C: despite all the experimental difficulties involved in reaching
this temperature (being way above pyrolysis temperature), the heat flux would no longer
be dominated by diffusion but by radiation. We can now foresee the advantage of the air
levitation technique as it allows us to vary more easily h.
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Exact solution This whole argument can be solved analytically by calculating the
exact geometric prefactors, as done in [11]. Owing to the circular symmetry of the prob-
lem, equation I.17 can be written as: 12η U

h2
= ∇P . Taking into account the conservation

of mass div(hU) = c and assuming h homogeneous, if we take the divergence of the
Poiseuille equation we get: 12ηc

h3
= div(∇P ) = 1

r

∂( r ∂P
∂r

)

∂r
. After integrating twice between

the bottom center of the drop r = 0 (pressure P2) and the outside edge at r = R (pres-
sure P0), we get the following expression for the overpressure: P (r)− P0 = 3ηc

h3
(R2 − r2).

Balancing the integral of this overpressure over the bottom surface of the drop with the
hydrostatic one (and using equation I.15), we get an exact expression for the vapor thick-
ness:

h = [
3

4

ηκ∆T

ρv Lρg`c
]
1/4

R1/2 (I.20)

Lifetime We can also evaluate a puddle’s lifetime τ by calculating the ratio between
the droplet’s mass m ∼ ρ`cR

2 and its mass flow rate ṁ ∼ ρvR
2c, which yields:

τ ∼ ρ`c
ρvc
∼ `cρLh

κ∆T
(I.21)

For a centimetric puddle, this lifetime is around 100 s - long enough to observe it. It
has been calculated under the assumption that almost all the evaporation is done through
the bottom of the drop. This point has been experimentally demonstrated by obtaining
similar lifetimes with droplets covered at their top with a thin aluminium film to avoid
any evaporation other than from the bottom [88].

Droplets, R < `c

We now focus on the second size regime concerning small drops. The main difference
dwells in the area through which evaporation takes place. For big flattened drops, evapo-
ration was assumed to occur at the bottom area R2 (see figure I.18). For small droplets,
evaporation takes place through the entire surface R2 as sketched in figure I.19.

Moreover, the bottom is deformed by gravity over a characteristic length scale l ∼
R2/`c [31]. Since the new horizontal characteristic lengthscale is now l we have to replace
R by l in equations I.16 and I.17. The pressure exerted on the vapor flow due to the
droplet is now dominated by the Laplace pressure (not the weight anymore). In equation
I.17 the pressure gradient has to be replaced by ∆P/l ∼ γ

R
/l, hence a vapor thickness h

scaling as:

h ∼ [
ηκ∆T

ρv Lγ`2
c

]
1/4

R5/4 (I.22)

These different theoretical predictions have been experimentally tested and checked
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R

l

h

Figure I.19 – Evaporation mechanism for a small drop takes place through its entire area
R2. Contact area where drop’s bottom is flattened is noted as l.

by Biance et al. [11, 12].

We can now calculate the lifetime of a drop assuming that the temperature gradient
is established over the whole drop on the length scale R, leading to: ṁ ∼ κ∆T

LR R
2. Hence:

τ ∼ ρLR2

κ∆T
(I.23)

For a water droplet of radius R equal to 0.6 mm, equation I.23 gives a lifetime of 80
s. This value overestimates the lifetime as experimentally seen by Biance et al. [11] who
got a value around 10 s. Despite this overestimation, the model gets the experimental
∆T−1 dependency. As the drops become very small (R << `c), capillary effects completely
dominate and the bottom droplet does not deform at all, remaining spherical. For droplets
as big as the characteristic vapor thickness (h . 100 μm) the lubrication theory no longer
applies. Celestini et al. [21] have theoretically and experimentally shown that the droplet
in this regime lifts and takes off from the substrate.

Additional remark

The main ingredient in Leidenfrost levitation is the need of high evaporation rates. We
can consequently contemplate changing the type of liquid in order to lower the Leiden-
frost temperature as done by using ethanol or even acetone. Almost all our subsequent
Leidenfrost experiments will therefore be done with acetone. More exotic liquids can also
be used: for example, liquid nitrogen and oxygen (whose boiling point is -196 ◦C and
-183 ◦C, respectively) are already in Leidenfrost levitation at ambient temperature. We
can even play with special solids that sublimate at ambient temperature as dry ice or
camphor [3, 41].
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2.3 Instabilities

Since the drop has a deformable interface, shape instabilities can appear for numerous
reasons. In what follows we discuss three main different causes.

Vapor chimney

The vapor cavity beneath the drop becomes unstable for large drops. The gas forms a
chimney rising at the center of the puddle and forming (transiently) a dome at the top as
shown in figure I.20 [11].

Figure I.20 – Side view of a Leidenfrost drop puddle deformed by a chimney instabil-
ity. Vapor underneath is less dense than liquid on top. As the interface is deformable,
buoyancy effects make the vapor try to escape upwards and form a dome before bursting.
Scale shows 5 mm.

The dome then bursts, which leaves a liquid torus that closes, generating strong oscil-
lations before a new chimney forms. Similar instabilities were predicted for large puddles
levitating on air-blown porous materials [74]. This instability can be seen as an inverse
Rayleigh-Taylor instability [113]: instead of having a dense film on a ceiling destabilizing
downwards [113], here we have a light film of gas destabilizing upwards. Gravitational
force dominates surface tension when the drop radius is larger than a threshold critical
radius R∗ = 4.3`c [103], in good agreement with observations [11]6. The case of even
larger drops, a few centimeters or more, is also of interest: multiple chimneys form with
a preferential distance, such as in the Rayleigh-Taylor instability [11]. We will see that
this effect limits the maximum drop size in our experiments.

Spontaneous oscillations

In both Leidenfrost [111, 110, 121, 108, 101] and air-levitated states [15], it was reported
that an instability leads to spontaneous oscillations, eventually inducing a breaking of
symmetry and the appearance of “star drops” as shown in figure I.21 [16].

6 Kozyreff et al. also looked at the instabilities in the case of viscous liquids, as discussed in [61].
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Figure I.21 – Star-shaped drops obtained with liquid nitrogen. A levitating droplet can
oscillate with several different modes. Figure from [101].

The characteristic oscillation time is given by the competition between surface tension
(γR) and inertial effects (ρR3 R

τ2
):

τ ∼

√
ρR3

γ
(I.24)

For a water droplet, this time is between 0.01 s and 0.1 s. The instability appears for
flattened drops yet smaller than the critical radius of chimney apparition. This instability
take some time to appear and in none of our experiments we observed these star-shaped
drops.

Aerodynamic breakup

A free falling drop can become unstable in an analogous way, even though its environment
is not initially turbulent. Falling puddles face an airflow coming towards them at speed U .
They experience a pressure force proportional to ρaU2R2 (acting on the axis of symmetry
of the drop). This force can deform the drop, making an invagination over a characteristic
distance δ as sketched in figure I.22.

Surface tension opposes this deformation. The local curvature due to a vertical defor-
mation δ scale as δ/R2, resulting in a Laplace pressure γδ/R2. This pressure is opposed
by the aerodynamic pressure ρaU2, resulting in:

δ ∼ ρaU
2R2

γ
(I.25)

Drops are unstable if this vertical deformation becomes on the same order of magnitude
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R
H

δ

Figure I.22 – Deformation along the axis of symmetry of a falling puddle due to air
pressure.

as the initial thickness of a falling puddle, that is, if δ > `c. Inserting this condition in
equation I.25, and using the expression of the terminal speed of a falling puddle (equation
I.13), we conclude that puddles are unstable for:

R > `c (I.26)

This problem can be seen as a variation of the previous chimney instability, high-
lighting once more the strong analogy between air-levitated (or free falling drops) and
Leidenfrost drops as previously shown in figure I.17c. By analogy with the Rayleigh-
Taylor instability, the numerical coefficient in these criteria should be on the order of π,
resulting in critical radius of about the centimeter.

2.4 Crenelated surfaces

(a) (b)

Figure I.23 – (a) Drop of acetone on a hot substrate (T = 400◦C) with straight crenels
of various widths W . W is 1.4 mm for crenels 1 and 7, 1.2 mm for 2 and 6, 1 mm for
3 and 5 and 0.8 mm for 4. The depth H is 1 mm to make clear the transition between
levitation (crenels 2 to 6) and impalement (crenels 1 and 7). (b) Zoom on crenel 5 with
the definitions of the distances related to the curvature of the liquid/vapor interface.

We discussed how vapor or air pressure can deform a drop’s interface if it is strong
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enough to overcome surface tension effects. Here, we explore the deformation due to a
physical constraint such as a texture. For that purpose, we etch parallel grooves on a brass
plate, heat it, and deposit on it a water puddle as shown in figure I.23a. It is important
to know whether the crenellations can support the liquid sitting on them or not. Three
geometrical parameters defining the grooved texture must be explored: the distance W
between walls, the thickness λ of the walls and the depth H of the grooves.

Width dependency

We denote as ε the sagging distance of the drop into the groove, as defined in figure I.23b.
We expect a small sagging if the groove is narrow, and a full penetration if it is wide
enough. To be more quantitative, we show in figure I.24 how ε experimentally varies as a
function of crenel width W .
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Figure I.24 – Penetration ε of an acetone drop (`c = 1.6 mm) in a groove as a function
of the width W of this groove rescaled by the capillary length. Vertical red dashed line
is placed at the critical width value Wc = 2(

√
2 − 1)`c calculated from the model I.31.

Plain red line show numerical solution of equation I.29. Wall thickness is λ = 0.2 mm
and depth H is 1 mm.

A critical widthWc separating two different regions clearly appears in the data (vertical
red dashed line in figure I.24). For W > Wc, we have a plateau regime where full
impalement in the texture occurs. The drop falls into the grooves and reaches the bottom
- set here to 1 mm. For W < Wc , the wider the groove, the deeper the drop penetration
in the texture, but the liquid/vapor interface remains suspended above the bottom of the
groove. In order to understand this dependency we use a hydrostatic argument. Assuming
a depth H big enough, we can consider that the bottom of the channel does not perturb
the sagging part of the drop (for the sake of simplicity, we can even assume H infinite). In
such case, the local curved interface between two walls (of radius r defined in figure I.23b)
can be at equilibrium if the Laplace pressure γ/r (we neglect the other perpendicular
curvature assuming r << R) is balanced by the hydrostatic pressure ρg(2`c + ε), hence:
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r =
`2
c

2`c + ε
(I.27)

The interface radius r and the sagging ε (figure I.23b) are geometrically related
through:

2rε = ε2 +W 2/4 (I.28)

We can deduce from I.27 and I.28 an equation for ε:

2`2
cε = (ε2 +

W 2

4
)(2`c + ε) (I.29)

Since there is no analytical solution, we solve it numerically and draw the solution
with a plain red line in figure I.24. Although we have a good qualitative agreement, the
model near Wc tends to underestimate the data. This may be due to the approximation
done when assuming tangent interface at the corners’ tops. In other words, the interface
deformation is supposed to be in first approximation circular, however a catenoid shape
may be more accurate.

Approached solution to I.29 can be obtained in the limit of small ε (ε << `c and
ε << W ):

ε ≈ W 2/4`c (I.30)

The sagging ε logically increases when making the crenellations wider, and the critical
width Wc at which the liquid fully penetrate a crenel (r ≈ ε) is obtained for r = W/2,
which yields:

Wc = 2(
√

2− 1)`c (I.31)

With acetone, we haveWc/`c = 0.84 - in perfect agreement with experiments as shown
in figure I.24 where the red vertical dashed line is placed at this theoretical value. Wc

is expected to be 2 mm for water and 1.3 mm for acetone whose smaller surface tension
makes it impale more easily in the crenels. To go further in our model comparison we
show in figure I.23a a side view of a drop sitting on hot straight channels of width W

varying from 0.8 mm at the drop center to 1.4 mm at its periphery. The critical value Wc

fits with what can be seen in figure I.23a, where acetone only penetrates crenels 1 and 7,
the only crenels of width W = 1.4 mm above Wc = 1.3 mm.

Depth dependency

We show in figure I.25 a set of images of a drop sitting on a hot surface textured with
parallel crenels of width W= 1 mm and wall thickness is λ= 0.2 mm. A different crenel
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depth H has been fixed for each picture ranging (from left to right) from 200 μm to
1200 μm. For deep crenels, the sagging part of the drop ε remains unaffected by the
bottom of the groove. However, as shown in the first left image of figure I.25, ε is smaller
for shallow crenels.

Figure I.25 – Side zoom view of a Leidenfrost puddle drop sitting on crenels of fixed width
W = 1 mm and wall thickness λ = 0.2 mm. Depth H from left to right is 200 μm, 400 μm,
600 μm, 800 μm and 1200 μm. On the left image, where H = 200 μm < h, ε is smaller
due to the vapor cushion overpressure.

In order to be more quantitative, we plot in figure I.26 ε as a function of H :
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Figure I.26 – Sagging distance ε of the drop in the groove as a function of the depth H
of the groove. In this series of experiments, width is W= 1 mm (W/`c ≈ 0.6), and wall
thickness is λ= 0.2 mm.

Two asymptotic regimes can be observed and explained. When H is small compared
to the vapor thickness h on a smooth substrate, everything happens as if there were no
texture, hence ε ≈ 0. When H >> h (regime corresponding to the plateau seen for H >
400 μm in figure I.26), the bottom of the groove does not play any role in the deformation:
we are in the situation studied above and ε obeys equation I.29. In the particular case
of figure I.26, the expected theoretical value is ε ≈ 190 μm - as explained above, slightly
underestimating the experimental value. In between (H/h ∼ 1), a more detailed model
should be produced to take into account that below the interface we are not anymore at
atmospheric pressure: we have to include the overpressure due to the confined flow.
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Wall thickness dependency

The final geometrical substrate parameter to be explored is the wall thickness. In all the
previous experiments, we have set wall thickness to λ = 0.2 mm. We have tried to see what
happens with a texture of same aspect ratio λ/W = 0.2, but half smaller (W = 0.5 mm,
λ = 0.1 μm). The experimental observation was that we could not avoid frequent boiling
events, even at high temperature and using acetone.

H

ε

hλ

λ

W

h

r

Figure I.27 – Zoom on a single crenel for a drop sitting on a grooved hot surface deep
enough to neglect evaporation at the bottom of the sagging part. For visibility, hλ and
ε are not at scale. In red arrows, the escaping flow from the top of a crenel is horizontal
and perpendicular to the grooves direction.

In the limit where the vapor film thickness h is smaller than the texture height H (and
with λ < W < Wc), the drop is suspended at the top of the walls. The whole weight of
the drop has to be sustained by the overpressure present on these tops (the bottom of the
channel being too far away to contribute through the sagging part). The corresponding
vapor thickness on top of each channel (denoted as hλ and defined in figure I.27) is
calculated by balancing the drop weight by the pressure arising from the escaping flow,
whose direction is from the middle of a wall top, towards the outside (i.e. perpendicular
to the wall over the distance λ, as sketched with red arrows in figure I.27). We reproduce
the same argument used to calculate the equilibrium thickness of an evaporating drop on
a flat surface (section 2.2) where we simply replace R by λ and h by hλ in the previous
equations I.15, I.16 and I.17. In addition, the weight of the liquid column is now being
compensated by the surface area corresponding to the top of the walls, hence only over
a surface fraction φ ∼ λ

W+λ
. In the former Poiseuille equation (I.17), the overpressure

has to be replaced by ρg`c/φ. The result is a vapor thickness solution analogous to I.19:
hλ ∼ [ ηκ∆T

ρvL ρg`cφ
]
1/4
λ1/2, hence:

hλ
h
∼ [

λ

R
]1/2φ1/4 (I.32)

In all our experiments, we have φ ≈ 0.17. In the case of a 5 mm radius puddle and
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λ = 0.2 mm, we get hλ
h
≈10%, hence hλ ≈ 20 μm. Through this simple model, we can see

that the drop interface on each wall is close to the substrate. Any small perturbation due
to the vibration of the interface will therefore easily result in a temporary boiling event.
Equation I.32 also tells us that even with a fixed aspect ratio, a decrease of 50 % in wall
thickness will result in a local thickness reduction by 30%. This explains why it was much
more difficult to avoid boiling on wall tops with a half-thick texture (keeping the aspect
ratio constant). Because we want to stay in a film boiling Leidenfrost regime, from now
on we fix W = 1 mm and λ = 0.2 mm, values for which we have experimentally tested
that we avoid the formation of vapor bubbles.

Relationship between mass and radius on a crenelated surface

We showed in figure I.15 (section 2.1) the volume of a non-wetting drop sitting on a
smooth substrate as a function of its equatorial radius. As a consequence, we were able
to deduce the drop volume from the only observation of its radius (without having to
directly measure it). In order to also be able to access the volume of a drop sitting on a
crenelated surface (here of depth H = 200 μm) we add to figure I.15 the corresponding
curve. It can be seen in figure I.15 (black data) that for a fixed volume, a drop on a
crenelated surface has a bigger equatorial radius. To understand this radius increase, we
can assume that thickness from top to bottom of the sagging part of the drop remains
unchanged compared to that on a smooth substrate (a reasonable assumption as far as
the drop is sustained by the top of the walls, i.e. W < Wc). As a consequence, the volume
occupied by the walls is relocated in the bulk, which yields a larger equatorial radius.
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3 High mobility and special friction

If we pour liquid nitrogen on the floor, the resulting drops glide by very large distances,
most often comparable to the size of the room (a few meters) where the experiment was
performed. The absence of a contact line around a levitating drop makes it “adhering
nowhere,” as noted by Leidenfrost himself. It generates original dynamical behaviors,
which are also observed in super-hydrophobic situations. These drops move nearly with-
out friction [42], and bounce when impacting solids [10, 56, 128]. This section presents
some of these special dynamics.

Unexpectedly, it appears that there is no comprehensive study in the literature devoted
to these frictionless motions, maybe because of the simplicity of the friction laws expected
in this limit. The details of the corresponding laws depend on the shape of the liquid, and
for simplicity we consider here the puddle case (large drops of thickness 2`c and radius
R). Several scenarios can be expected depending on where the dissipation takes place: in
the vapor cushion beneath the drop, in the air surrounding the drop or in the liquid itself.

3.1 Viscous friction in the vapor film

If we consider that dissipation takes place in the vapor cushion, we are in the situation
described in figure I.28. The “contact” area of a gliding puddle is comparable to its surface

RH

V

h

Figure I.28 – Viscous friction in vapor film beneath a gliding levitating drop.

area R2 so that the viscous friction Fη scales as:

Fη ∼
ηaV

h
R2 (I.33)

The vapor thickness h was evaluated in section 2.2. Taking its value as independent
of V , we find a friction of typically 1 µN for a velocity V ≈ 1 m/s, that is, approximately
0.1% of the drops’ weight. This is very different from liquids on common substrates, for
which pining forces are comparable to the weight (sticking the drops to tilted plates) and
for which viscous forces opposing the liquid puddle motion (for velocities in the range 0.1
- 1 m/s) can be even larger, also because of the existence of contact lines [102].
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3.2 Inertial friction in the surrounding air

RH
V

h

Figure I.29 – Aerodynamic friction around a gliding levitating drop.

In general, the main force resisting the motion of levitating drops moving on a plate
is the inertia of air. It is similar to the one discussed in section 1.3, except that the
corresponding cross section is not R2, but RH ∼ R`c as shown in figure I.29. Hence we
get:

Fi ∼ ρaV
2R`c (I.34)

For V ≈ 1 m/s, Fi typically is 10 µN, 10 times larger than Fη. For a drop running
down a solid tilted by an angle θ relative to the horizontal direction, balancing Fi with
the weight mg sin θ we obtain a terminal velocity V ∼ [ρ/ρaRg sin θ]1/2, typically a few
meters per second. Conversely, if we throw drops of liquid nitrogen on the floor, they will
decelerate until friction stops them. The corresponding distance Li is given by Newton’s
equation mV 2/Li ∼ Fi , from which we get:

Li ∼ ρR/ρa (I.35)

If we put numbers in this equation, the characteristic stop length is a thousand times
the drop’s radius - several meters. For liquid nitrogen, these distances are so large that
the time Li/V to stop is often on the order of (or even smaller than) the evaporation time
τ evaluated in section 2.2.

3.3 Special friction on a crenelated surface

Frictionless drops can be seen as untamable mobile objects. It is worth thinking of more
efficient ways to slow them down and even try to trap them. This can be done by creating a
texture at the solid surface. For large textures, comparable to the liquid scale (0.1–1 mm)
(see figure I.30a) Dupeux et al. [42] showed that a levitating drop meeting a series of
crenelations perpendicular to its way decelerates on centimeter-size distances, instead of
meters.

This strong effect has been proposed to result from the successive impacts of the
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Figure I.30 – (a) Leidenfrost drop running on a plate with crenelations. (b) The drop
slows down on centimeter-size distances (solid dots), instead of meters on a flat solid
(empty dots). This enhanced friction is attributed to the successive (soft) impacts of the
bumps below the drop onto the side of the crenelations. The distance λ+W between two
crenels is 1.5 mm, and their depth is H = 250 µm. Figure from [42].

sagging liquid on the crenel sides [42]. The liquid deforms in crenelations, and as the
drop slides, each bump hits the side of the crenel without contacting it (no boiling is
observed). As known from impact literature [56], normal shocks are most often soft,
despite the absence of an obvious source of dissipation (such as contact lines). Kinetic
energy is transferred in vibrations that later decay owing to liquid viscosity [10]. This
inertial method of slowing down a drop is efficient because it involves the liquid density,
instead of vapor density.

For crenelations of depth H and wavelength λ+W , we have R/(λ+W ) crenels below
the liquid. Each step is hit over a surface area scaling as εR (ε being the sagging distance
in the crenel). If W > Wc, the drop fully penetrates the texture and we get ε ∼ H. The
corresponding crenel friction force scales as:

Fc ∼ ρV 2R2 H

λ+W
(I.36)

Crenelations increase the friction by a factor ρ
ρv

H
λ+W

compared to the aerodynamic flat
situation (seen in I.34). Because the density of a liquid is 3 orders of magnitude higher
than that of air, the resisting inertial force is increased approximatively 100 times for
H ≈ 0.1 (λ+W ). The efficiency of the trap relies on the fact that dissipation mostly takes
place in the liquid and only marginally in the surrounding air. More precisely, balancing
this inertial friction with the drop deceleration ρR2`c

d(V 2)
dx

provides an exponential decrease
of the velocity along the direction of motion, with a characteristic length:

Lc ∼ `c
λ+W

H
(I.37)

For a puddle, Lc is a few cm, to be compared to the several meters expected previously
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on a flat solid with inertial air friction (equation I.35). This exponential regime is visible
in figure I.30b and followed by an abrupt trapping in the crenels, possibly due to gravity
[42].
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50 CHAPTER II. SELF-PROPULSION IN THE LEIDENFROST STATE

1 The texture revolution

In 2006, Linke et al. found the first system where a Leidenfrost drop could self-propel.
This effect is obtained by texturing a substrate with a ratchet geometry. Linkes’ ex-
periment has been a stimulating starting point for a rich theoretical and experimental
research. A wide range of scenarios has been evoked to explain the propelling mechanism,
ranging from local thermal effects, surface waves, to rocket effect and viscous mechanisms.
To sort them out, several complementary experiments have been proposed. We first do
a short review of these works in order to understand the underlying mechanisms which
have generated elegant novel experiments and configurations. Then, we discuss how all
this experiments lead us to achieve a new texture, easier to model and to optimize.

1.1 The ratchet: a seed is sown

The Linke experiment

As reported by Linke et al., liquids can self-propelled when placed on a hot horizontal
ratchet [73]. Indeed, a drop levitating above saw-teeth (as shown in figure II.1) will
accelerate perpendicular to the texture, in the direction of the slow local slope of a tooth,
from left to right in the case shown in figure II.1, before reaching a terminal speed. Such
a motion is observed provided that the drop is larger than the tooth size.

Figure II.1 – A liquid drop (radius R = 2 mm) is placed on a hot ratchet with teeth of
depth H = 0.2 mm and length λ= 1.5 mm. For ratchet temperatures larger than the
Leidenfrost temperature TL, the drop self-propels, from left to right in the figure. The
interval time between successive pictures is 40 ms. (Courtesy of Marie Le Merrer).

Linke also reported that two regimes can be observed, depending on the substrate
temperature:
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Low temperature regime (L in figure II.2). Droplets on a ratchet are not fully
supported by a vapor layer: nucleate boiling events introduce fluctuations. We show in
figure II.2 drop’s acceleration as a function of substrate temperature. In this narrow
regime (L), accelerations are large, around 1 m/s2. A study focusing on this nucleate
boiling propulsion has been done by a British team in Bath [1] by analyzing the sound
produced by their boiling. However, nucleate boiling greatly increases the evaporation
rate of the liquid, and as a consequence, induces the drop to vanish much faster.

High temperature regime (H in figure II.2). The drop is sitting on a vapor cushion
avoiding direct contact with the textures and generating self-propelled Leidenfrost drops.
After a short time of acceleration (on the order of 10 cm/s2), typical terminal speed
is observed around 10 cm/s. This terminal regime is the signature of an equilibrium
between a propelling force (experimentally calculated by multiplying the drop’s mass by
its acceleration at zero speed) and a resistive friction. Typical values of acceleration being
50 times smaller than gravity g, the propulsion force is 50 times smaller than the drop’s
weight. Although small, propelling forces (several µN) are high enough to generate quick
motion: this is a direct consequence of the high mobility in the non-wetting state. Linke
and colleagues suggested the following explanation for this movement: the film of vapor
directly below the region of the drop that is on top of the ridge is most compressed. This
causes the vapor to flow away from that spot, both backwards and forwards. But, thanks
to the asymmetrical shape of the surface, only the flow in the forward direction creates a
viscous force on the drop, capable of moving it [112].
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Figure II.2 – Droplet acceleration as a function of the difference of temperature between
liquid water and ratchet substrate. Two regimes are separated by a vertical black line.
“H” is the High temperature regime where we have Leidenfrost self-propulsion. “L” is the
Low temperature regime where nucleate boiling generates greater accelerations but faster
evaporation of the liquid. Figure adapted from [73].
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The Dry ice experiment: sorting propulsion scenarios

Other mechanisms explaining this self-propulsion have been considered, possibly relying
on the deformable character of the liquid/vapor interface. Indeed, experiments performed
by Daniel et al. [29] showed that when a liquid drop is subjected to an asymmetric
lateral vibration on a non-wettable surface, a net inertial force causes it to move. Others
scenarios based on the liquid nature of the object are to be found among Marangoni
effects [81], spontaneous oscillation of the drop or surface waves. However, Lagubeau et
al. showed in 2011 that self-propulsion on hot ratchets can also be achieved with dry ice
(see section 2.2, chapter 1): the dry ice platelet both levitates and is set into motion by
the hot substrate ratchet texture in the same direction as observed for the drop. It is
made clear by this simple experiment that propulsion does not need the deformable and
liquid nature of drops [41, 4].

Visualizing the flow: self-propulsion scenario

Two remaining opposite scenarios might however still remain. A first one, based on a
rocket effect and momentum ejection, where the vapor escape would propel the drop in
the direction opposite to this ejection. A second one, where the vapor flows in the same
direction as the drop, which gets entrained by (vapor) viscosity. We see how crucial it
is to know the direction of the vapor flow to distinguish between inertial and viscous
propulsion. In order to make this question clear, Dupeux et al. put small glass bead
tracers in the vapor flow to assess its direction [43]. The 3D vapor flow was found to have
a complex 3D geometry, but it emerges from this work that the flow starts at the teeth
tops, flows down the teeth, and gets perpendicularly evacuated along the bottom of the
steps, as sketched in figure II.3.

Figure II.3 – Sketch of vapor flow below a Leidenfrost drop or solid on a hot ratchet. The
vapor flow is cellular: each tooth carries a vapor in the down slope direction, which gets
perpendicularly evacuated along the bottom of the step.

This experience establishes that the main vapor flow direction is the same as the
levitating object motion, validating the viscous entrainment scenario. As previously seen
in Chapter I (section1.3), the Reynolds number in the vapor cushion is small and Dupeux
et al. [43] propose the following model based on scaling law arguments. Denoting h as
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the mean thickness of vapor, we expect a propelling force scaling as:

F ∼ ηU

h
R2 (II.1)

The Poiseuille equation gives a relationship between shear stress and pressure gradient:

ηU

h
∼ ∆P

R
h (II.2)

Combining equation II.1 and II.2 yields:

F ∼ ∆PRh (II.3)

Since the underlying pressure ∆P has to compensate the pressure generated by the
objects weight mg/R2 (where m is the object mass) we finally get:

F ∼ mg
h

R
(II.4)

The ratio h/R is typically 1/50, in good agreement with the experimental results
previously discussed where propelling force was 50 times smaller than the drop’s weight.

A fertile starting point

A whole zoology of new studies has been developed by this Linke experiment. Two main
directions of work have been privileged:

Scale reduction Marin et al. [49] have worked on ratchets with a texture almost
10 times smaller compared to Linke’s original experiment: their horizontal pitch being
140 μm and the crest height ranging between 10 μm and 32 μm. This vertical scale is to be
compared to the typical vapor thickness beneath water droplets on flat substrates shown
in figure II.4 and ranging from 30 μm to 90 μm [12]. In Marin’s experiments, droplets have
a radius R ∈ [0.7, 3] mm so that they mostly are in the capillary-dominated regime where
the texture height is comparable to the vapor thickness. For big puddles, vapor thickness
can be 10 times bigger than the texture used by Marin so that we expect a less effective
rectification of the vapor flow. They have shown that the viscous mechanism proposed
by Dupeux et al. fits reasonably well with experiments performed on micro-ratchets, not
only for big droplets, but also for capillary droplets, for which the scaling of the force
with the droplet radius is inverted [49].

Ok et al. went a step further in size reduction and manufactured micro- and sub-
micron ratchets [86]. They showed that sub-micron ratchets yield water droplet velocities
reaching 40 cm/s if brought at a temperature range slightly above the threshold of droplet
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Figure II.4 – Vapor thickness h of a Leidenfrost drop on a smooth surface as a function of
its equatorial radius R. As discussed in chapter I (section 2.2), two regimes are observed
depending on the drops radius: if the drop is smaller than the capillary length, thickness
increases as R5/4; if it is larger, it goes as R1/2. Capillary length `c is marked on the
R-axis, with a value of 2.5 mm for water at 100◦C. Figure from [12].

motion. This dramatic increase in the droplet velocity is attributed to an enhanced heat
transfer through the local contacts between ratchet tips and bottom of the droplet - close
to the observations of Linke in the L-regime of figure II.2.

Figure II.5 – Chronophotographies of droplet trajectories on a brass ratchet in the tran-
sition boiling regime (where direct contact is observed between liquid and texture) for
three different temperatures. (a) Brass temperature at 212 ◦C. A strong deviation per-
pendicular to the main direction is observed due to boiling events and interaction with
sub-structures. (b) Brass temperature at 241◦C, deviation in the opposite direction is
observed. (c) Brass temperature at 262 ◦C. By increasing the temperature, we modify
the nature of the contact with the sub-structures, hence changing the deviation. The
horizontal pitch is 1 mm and the sloping parts of teeth are at 30◦(hence a crest teeth at
600 μm from the bottom-deep structures). Figure from [1].
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Finally, Grounds et al. focused their study on the transition boiling regime [1]. While
observing the drops’ trajectories on a ratchet, they recorded the sound produced by
boiling. From sound intensity they could assess wether they were in the Leidenfrost
regime or in the transition boiling regime. They showed that the later regime can be
induced even at high surface temperatures with acute protrusions. In this regime, droplets
can climb steeper inclines perpendicular to the ratchet texture. They also observe that
sub-structures (generated by the milling process and of typical length scale of a few μm)
generate movement in the direction perpendicular to the motion due to boiling events.
As shown in figure II.5, this lateral motion can be tuned by varying the temperature of
the surface: the drop does not only moves in the same direction as seen in the Leidenfrost
regime, but it also has a slow motion along the teeth direction. Grounds et al. showed
how two different propelling mechanisms can be combined. In our study, we will only
concentrate on the viscous drag regime, hence avoiding by all means nucleate boiling.

Looking for new texture geometries Cousins et al. [115] produced a new texture
geometry by exploiting the ratchet effect to construct a “circular ratchet trap” for Leiden-
frost drops: a surface with concentric circular ridges, each asymmetric in cross section as
shown in figure II.6. This new texture was used to study drops’ trajectories as a function
of the initial speed, and to observe how drops get gradually trapped at the center of the
device due to a combination of propulsion and friction in the textures. They also looked
at big drops deformations, large enough to generate binary fission of puddles owing to
important internal movements.

r

h

2R

2R

Figure II.6 – Sketch of a circular ratchet with a drop trapped in the middle. (Left) Top
view. (Right) Side view. Figure adapted from [115].
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Limitations

The previous scaling argument qualitatively captures the propulsion mechanism and it is
in good agreement with the measurements. However, it does not provide the force depen-
dency towards the substrate geometrical parameters such as tooth angle and horizontal
pitch. In order to take them into account, we have to produce a more sophisticated model
by adding two more equations to the Poiseuille one: conservation of mass and thermal
balance, as previously done to calculate the thickness of the vapor cushion on a flat sur-
face. All three equations depend on the vertical characteristic distance fixed by the vapor
thickness h. If we have a closer look at a single tooth (see figure II.7), we observe that
the thickness beneath the drop interface ranges from H (the height of a step) at point 2
to almost zero (at the crest) at point 1. The first limitation of this model dwells on the
need to somehow “arbitrary” choose h between 0 and H.

Figure II.7 – Side view of a Leidenfrost droplet on a ratchet. If we focus on a single teeth,
we clearly observe that the vapor film thickness ranges from h ≈ H (near point denoted
2) to h << H (around point denoted 1). Figure from [112].

A second limitation of the ratchet geometry is that, although we rectify in average the
flow in the main propulsion direction, the detailed 3D flow is rather complex (as shown
in the recent numerical study by Baier et al. [4]), making a rigorous analytical model
probably impossible.

A third limitation dwells on the fact that the ratchet geometry makes it difficult to
predict beforehand how the flow will be rectified. We put the evaporating object on it,
and then observe the vapor direction. Meanwhile, the vapor pattern is free to choose its
own escape path. Hence, it is not easy to understand how the ratchet geometry impacts
the vapor flow, and how it can be optimized.
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1.2 The herringbone: time to reap

Lead by previous work, we propose here to create a new self-propelling texture in order
to reach a double aim: (i) to produce an experiment that would validate the viscous
entrainment scenario, (ii) to further explore the possibility of novel textures, and optimize
them.

The herringbone Texture

(a) (b)

Figure II.8 – (a) Placed on the symmetry axis of a hot herringbone made of brass (angle
2α = 90◦, T = 400 ◦C), an acetone drop (mass m, volume Ω = 200 µL) self-propels.
Images are separated by 0.2 s. The drop acceleration a is measured, from which the
propelling force F = ma can be deduced. Each crenel has a depth H = 0.2 mm and a
width W = 1 mm. The wall thickness λ between channels is 0.2 mm. The bar shows 1
cm. (b) Top sketch of the herringbone geometry with the drop in blue and definition of
the geometric parameters.

In order to force the rectification of the flow, we designed the simplest geometry we
had in mind: a herringbone pattern made of grooves. As previously seen in Chapter I
(section 2.4), a drop on a grooved texture will locally deform, sagging into the top of each
crenel, acting somehow as a roof over a channel. Hence, the vapor has no other choice
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than to follow the direction of the groove searching for the lowest point of pressure: the
exit. To achieve self-propulsion we need as a second ingredient a break of symmetry. To
satisfy this point, we propose to design a herringbone pattern (see figure II.9 and II.8).
A drop placed on the axis of the herringbone flees in the direction opposite to the arrows
of the pattern. As seen in figure II.8a where the snapshots are regularly spaced, the
liquid first accelerates (with an acceleration a ≈ 10 cm/s2) before reaching its terminal
velocity V (10 cm/s in this example) after a few centimeters. Unlike any other existing
self-propelling texture, we can predict in advance the direction of the rectified flow, as it
has to go from the highest point of pressure (right below the center of the drop, hence at
the tip of a chevron), towards the lowest pressure point: the exit.

Experimental set-up

In order to make sure we are in the film boiling regime, we used acetone. At its boiling
temperature (56 ◦C), it has a surface tension γ = 19 mN/m and a density ρl = 751 kg/m3,
which gives a capillary length `c equal to 1.6 mm. Its latent heat of evaporation (L ≈ 520
kJ/kg), almost four times lower than the one of the water, leads to a lower Leidenfrost
temperature.

We use blocks of brass (length 100 mm, width 30 mm), and machine them with a
digital Arix CNC-milling machine to create the herringbone pattern. Crenellations are
parallelepipedic cavities of depth H = 0.2 mm and width W = 1 mm, separated by walls
of thickness λ = 0.2 mm (figure II.8b). In order to automate the process and to increase
precision, we developed a numerical code (written in G-Code language, detailed in A)
resulting in a final tolerance on these values of 10 μm. A profilometer view of the surface
shown in figure II.9 allows us to see the sub-millimetric herringbone texture. A much
smaller roughness is also generated by the milling process, as can be seen on the bottom
of each channel where circular patterns appear as a result of the rotating reamer. The
angle 2α of the herringbone can be varied from 0◦ to 180◦, where these extreme values
define grooves parallel or perpendicular to the symmetry axis of the sample.
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Figure II.9 – 3D Profilometer view of the herringbone surface texture. Walls’ fibrous
aspect is artificially due to profilometer resolution and does not depict reality. Selection
zoom: a much smaller circular roughness generated by the milling process can be seen at
the bottom of the grooves.
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2 Force of propulsion

The herringbone texture was proved to generate self-propulsion by geometrically forcing
the escaping vapor flow. We now experimentally and theoretically focus on the nature of
the propelling force and on its dependency towards substrate geometry. After addressing
the question of force optimization, we study questions regarding central stability and
present some theoretical refinements.

2.1 Experimental measurements

Propelling force F can be deduced from the acceleration a (F = ma). The measurement
is improved by throwing drops from a heated gutter (to make sure they stay in the axis
of symmetry of the texture) at a velocity V0 ≈ 5 cm/s in the direction opposite to the
propulsion: the liquid slows down, stops, and accelerates backwards. The trajectory X(t)

is parabolic (X(t) = V0t− at2/2), from which the acceleration a and the propelling force
F = ma are extracted (see figure II.10). Drops typically lose 1 mg/s by evaporation, so
that their mass m (of order 100 mg) can be considered as constant during experiments
performed in approximately 1s.

X

(mm)

X

2R

t (s)

Figure II.10 – Trajectory of a drop or radius R = 6 mm on a herringbone surface. The
drop is thrown from the right in the opposite direction of the propulsion. The liquid then
slows down, stops (the top picture corresponds to this turnaround moment, marked in
the bottom trajectory by a red cross), and accelerates backwards. The trajectory X(t)
is parabolic (X(t) = V0t− at2/2), from which the acceleration a and the propelling force
F = ma are extracted.
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Complementary experiments were made to measure the propelling force with a differ-
ent method based on the deflexion of a fiber. We trap by capillarity a drop at the end
of a wetting vertical fiber, as shown in figure II.11. We measure the fiber deflexion from
its equilibrium position, as the propelling force acts on it. In thin beam theory, deflexion
is proportional to the applied force, with a proportionality constant of Ed4/L3 where E
is the Young’s modulus of the fiber, d its diameter, and L its length. We can therefore
deduce the force of propulsion of the drop from the fiber deflexion.

F

Figure II.11 – Superposition of two frames of a movie looking from the side at a wetting
fiber deflected by a drop on a hot herringbone. The left fiber is in the drop of radius
R ≈ 4 mm. The right one shows the fiber at rest, after the drop has nearly evaporated.
The deflexion is proportional to the propelling force.

As a great advantage of this method, we can measure the force as a function of the
equatorial radius through a single experiment by taking a side movie and taking advantage
of the evaporation. Measurements give results similar to the ones obtained by the first
method. However, several drawbacks made us choose the first method (fitting parabola
on trajectory): (i) drops vibrations generate big experimental errors; (ii) the drop stuck
by capillarity to the fiber is deformed - biassing the measure. (iii) for big drops, this
sticking force is not strong enough to overcome the propelling force, hence preventing the
measure in the puddle regime.

We can repeat the measurement for various drop radii. We show in figure II.12a
how the measured force varies with the drop’s equatorial radius R. The minimum radius
corresponds to drops slightly larger than the millimeter-size channel widthW , a condition
for achieving self-propulsion (otherwise, the drop being smaller than a groove, would fall
inside). Hence, the drop radii are around or above the capillary length `c, which simplifies
the liquid geometry: as seen in figures II.8a and II.10, drops are puddles of radius R and
height 2`c, the thickness of puddles in a non-wetting situation (as seen in Chapter I
section 2.1). It is observed in figure II.12a that the larger the drop, the stronger the
force. The force typically is 5-10 µN, only a few percents of the drops’ weight, yet large
enough to generate velocities of a few cm/s owing to ultra-low adhesion and friction of
the liquid. The force is also a function of the angle α of the herringbone. It is larger
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around the “median” angle α = 45◦, which suggests that the pattern can be optimized
in term of propelling force. The variation of F (α) is shown in figure II.12b for two drop
radii, confirming the existence of a well-marked optimal angle around 45◦.
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Figure II.12 – Force F propelling acetone on hot herringbones. (a) F as a function of the
drop radius R. Each point is an average on 3-5 experiments, and the colors correspond
to various pattern angles 2α (with α = 15◦, 30◦, 45◦, 60◦ and 80◦). The channels width
and depth are W = 1 mm and H = 0.2 mm, and the wall thickness between channels is
λ = 0.2 mm. Dotted lines show behaviors in R3/2, as suggested by equation II.10. (b) F
as a function of the pattern angle α, for two drop volumes. The fits show equation II.10
with a numerical coefficient of 0.8 and for the radii R = 4.1 mm (red line) and R = 3.1 mm
(blue line).

2.2 Analytical calculation

We now discuss these different findings, in order to understand the characteristics of drop
motion on these patterns. We first focus on a single channel of length Di (figure II.13 and
II.8b) and denote the mean horizontal velocity of the vapor flow as U , and the average
thickness of the vapor as h (H − ε < h < H), as sketched in figure II.13.

On the one hand, vapor is injected at a velocity c (typically a few cm/s) from the top
interface. Assuming c independent of the position x along the channel, mass conservation
can be written:

(hU)x+dx − (hU)x = cdx (II.5)

On the other hand, the energy balance writes per unit time and per unit area:

ρcL =
κ∆T

h
(II.6)
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Figure II.13 – Geometry of a channel of vapor (in grey) bounded by a curved liquid/vapor
interface (in blue). The vapor flows at an average velocity U , while vapor is injected at a
velocity c from the top interface.

where we denote the density and thermal conductivity of the vapor as ρ and κ, the latent
heat of evaporation as L, and the difference between the substrate temperature T and
liquid boiling point as ∆T . Putting together equations II.5 and II.6 yields the variation
of the vapor velocity along the channel, taking the axis of symmetry of the herringbone
pattern as the origin in x of the channel:

U =
κ∆T

ρLh2
x (II.7)

We expect a driving force per channel Fi ≈
∫ ∫

6ηU
h
dxdy , where the numerical coeffi-

cient corresponds to a Poiseuille flow between two solid plates. The levitating liquid has
a viscosity 50 times larger than the vapor one η, justifying that we treat it as a solid for
the corresponding boundary condition. Hence we get, for a channel of length Di:

Fi ≈
3ηκ∆T

ρLh3
WD2

i (II.8)

The force Fi appears to be sensitive to the design of the textured solid, via the param-
eters W and Di. The total force F acting on a drop is obtained by counting the number
N(α) of active channels below the liquid. As sketched in figure II.8b, typically 3 channels
(hence, 6 half-channels, by symmetry) contribute to the motion. More generally, we can
write for thin walls (λ << W ): N(α) ≈ 4R sinα/W . At small opening angles (α → 0),
N(α) vanishes. The number of contributing channels vanishes as a consequence of the
fact that we have to exclude channels open at both sides: vapor flowing on both ways
produces a null total viscous force (see in figure II.8b the most left channels, or in figure
II.15a the top channels). If taking the drop radius R as an average distance Di, we get,
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after projecting the different contributions on the central axis:

F ≈ 6ηκ∆T

ρLh3
R3 sin 2α (II.9)

Until now we considered h as a constant quantity resulting from the sagging of a drop
between two crenels. However, since the vapor thickness h compares to the channel depth
H, the interaction with the bottom of the channel has to be taken into account. Although
in our experiments we vary R on a little range (due to experimental limitations), we gen-
erally expect vapor thickness in a channel to vary with R - as observed and shown for a
Leidenfrost drop on a flat solid. The relationship between h and H arises from a balance
between escaping and incoming flux of vapor due to drop pressure and evaporation, re-
spectively [11]. This leads for the geometry of channels to the relationship (see chapter I,
section 2.2): h ≈ (bR)1/2, where b is a length scale defined by b =

√
3ηκ∆T
ρLρlg`c

. The same
argument could be applied in a single groove leading to a final driving force:

F ≈ 2ρlg`cR
3/2b1/2 sin 2α (II.10)

This expression is exactly the same as the very simple one F ∝ ∆PRh discussed at
the beginning of this section (equation II.3), where ∆P ∼ ρlg`c is the hydrostatic pressure
of the drop due to its weight and h ∼ (bR)1/2 is the vapor thickness on a flat surface.
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Figure II.14 – Force as a function of the theoretical expression found in equation II.10.
All previous experiments are represented: radius R ranging from 2 mm to 4 mm, and
opening angle α ∈ [15◦, 30◦, 45◦, 60◦, 80◦]. Solid line shows equation y = x in log-log
scale.

We show in figure II.14 the force F as a function of the theoretical expression found



2. FORCE OF PROPULSION 65

in equation II.10 and see how all our data collapse on a single curve. Indeed, equation
II.10 captures the different observations, and gives the correct order of magnitude of
the force. Typical values for the parameters are: κ ≈ 13 mW/m/K, η ≈ 2 10−5 Pa.s,
L ≈ 520 kJ/kg and ρ ≈ 1.8 kg/m3, which yields b ≈ 3 μm and thus F ≈10 µN for a
drop of R ≈ 3 mm, as measured. In addition, the force strongly increases with the drop
radius, as observed in figure II.12a where the scaling law in R3/2 (dotted lines) is found
to describe the data. The small variation of the parameter R does not allow us to test
quantitatively the corresponding scaling law. It is simpler (and of practical interest, since
it indicates which herringbone generates the highest propulsion) to look at the variation
of F as a function of α, and equation II.9 predicts a maximum for α = 45◦, as indeed
observed in figure II.12b.

2.3 Further considerations

Discrete to continuous calculation

Inspired by this work, a collaboration was held with the university of Trento (Italy) in
the team of Nicola Pugno [89]. To obtain the total resulting force from the contribution
of each channel, they integrated the viscous stress directly on the contact area rather
than on each channel. In this continuous method, the channels appear only in an indirect
way: they determine the direction of the flow of vapor. Figure II.15a shows a comparison
between the two methods of integration. In the channel-by-channel method, the surface
of integration is approximated by rectangles of width W , whereas, a perfect half-disk is
considered in the continuous method. A graphic comparison of the driving force calculated
with the two methods as a function of half the angle α is given in figure II.15b.

(a) (b)

Figure II.15 – (a) Graphical representation of two methods of calculation of the driving
force: channel by channel method and continuous method. (b) Force propelling a drop
of radius R = 3.3 mm according to these two methods of calculation (Discrete in red,
Continuous in blue). Figure from [89].
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The difference between the results obtained by the two methods is visible; in particular,
the position of the maximum is slightly shifted. However, the general characteristics of
the curve (global shape and order of magnitude) are not modified.

Inspired by this continuous method we have shown a complex analytical exact solution
that can be obtained by calculating the integral of viscous strain over the contact area in
the frame of the corresponding grooves direction (see B for detailed calculation). Again,
we find that the general characteristic of the curve are preserved.

Channel width, crenel depth and wall thickness

The discussion in Chapter I 2.4 on the deformation of a drop sitting in a crenelated
surface helps us set to the optimal depth H for the channels. We saw that walls of width
W must be below the critical width Wc = 2(

√
2−1)`c (I.31) in order to sustain the drop’s

weight by the top of the walls. We experimentally set W = 1 mm near this critical value
(1.3 mm for acetone), imposing a corresponding average sagging ε ≈ 140 μm.

Once we have fixed W , we consequently choose the “right” depth channel. If we have
H >> ε, the vapor is not efficiently confined. Conversely, at small depth H, the liquid
levitates far above the textures, so that the vapor flow rectification becomes negligible.
Hence H must be slightly larger than ε, that is, 140 μm for W = 1 mm. In this study, H
is kept constant, equal to 200 μm - larger than the typical vapor thickness h ≈ 100 μm
for a drop on a flat solid.

As the surface fraction of walls does not contribute to the propelling force, we try to
get them as thin as possible. However, as we also want to avoid nucleation of boiling
(enhanced by very thin walls), we experimentally set λ = 0.2 mm.

Central stability

Up to now we focused on the contribution of the viscous force to the propelling direction.
Indeed, in the perpendicular direction, the projection of the force from each side of the
drop compensate by symmetry. However, if the drop slightly deviates from this central
position, there is no restoring force that can stabilize the drop along the axis of symmetry.

The discussion on drop deformation into a crenel suggests a way to guide the liquid.
A deeper central straight channel of width W ≈ Wc can be etched along the symmetry
axis of the herringbone. As a consequence, the drop is gravitationally trapped as sketched
in figure II.16, without significantly affecting the propelling force F . We will often use
this trick, in particular when curved sections appear, which could destabilize the liquid
by centrifugation.
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(a) (b)
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Figure II.16 – (a) Side view of a herringbone texture with a central groove of depth 0.8 mm
wider than the critical widthWc ≈ 1.3 mm. A drop completely sags in this central groove,
and gets gravitationally trapped along the axis of symmetry. (b) Sketch showing the drop
trapped in the central groove.

Reynolds number

Our model was based on small Reynolds number approximation and lubrication theory.
In order to discuss the validity of this assumption, we replace the expressions found for
the horizontal speed U (equation II.7) in the Reynolds number expression Re = ρlUh

2

ηR

(discussed in chapter I), which yields:

Re =
κ∆T

ηL
(II.11)

For a given liquid, the Reynolds number only depends on the differential temperature
∆T between substrate and liquid boiling point. Using typical experimental values, we
obtain Reynolds numbers below 0.4, which confirms that viscous effects dominate in this
vapor escaping problem.

Boundary conditions

A last point can be made concerning the boundary conditions used in each channel for
our Poiseuille problem. As previously stated, we assume the liquid as behaving as a solid
wall (because its density is 1000 times greater than the vapor one). The escaping vapor is
trapped in a rectangular channel with solid walls. Experimentally, we measure the force
by fitting the trajectory near the returning point of the drop: hence verifying the no speed
condition (and by the way also avoiding any added inertial friction). However, as the drop
accelerates, a moving upper wall solid condition should be set equal to the drops speed.
Typical ejection speed U being 1 m/s and drops speed being ten times smaller, this will
result in a slight reduction of the viscous shear at the drops’ interface, hence lowering the
propelling force.



68 CHAPTER II. SELF-PROPULSION IN THE LEIDENFROST STATE

3 Friction on grooved topography

As proposed by Dupeux et al., friction on large textures arise from the soft shocks of
the liquid bumps on the crenellation sides [42, 40]. This scenario produces an inertial
special friction F = βρlR

2V 2, denoting ρl as the liquid density and β a numerical coeffi-
cient explicitly characterized for normal shocks [42]. Using inclined plates with straight
crenels, we checked that the friction is indeed quadratic in velocity, and deduced from
measurements the friction coefficients β‖ ≈ 0.021 ± 0.003 and β⊥ ≈ 0.109 ± 0.015 for
drops moving parallel or perpendicular to crenels. We logically have β‖ << β⊥. The case
of intermediate angles α between the grooves and the trajectory, is then experimentally
and analytically explored. We finally study lateral deviation of free trajectories for drops
either with initial speed moving on a horizontal substrate or initially at rest and running
down inclines.

3.1 Straight trajectories

Perpendicular and parallel friction

In order to study the special friction on textured materials, we used a brass surface of
200 × 200 mm2. We machined parallel crenels, with the same geometrical character-
istics as for the herringbones used in our study: grooves of depth H = 0.2 mm and
width W = 1 mm, separated by walls of thickness λ = 0.2 mm. The plates were heated
(T = 400 ◦C) and tilted by an angle θ to the horizontal (see figure II.17), so that the
levitating liquid is subjected to gravity. Acetone drops (of fixed volume Ω ≈ 200 µL
corresponding to R ≈ 5 mm, and density ρl) accelerate and reach their terminal velocity
after a few cm, when the horizontal projection of the gravity ρlΩg sin θ is balanced by
friction.

W

θ

H

V

2R

λ

Figure II.17 – Drop of acetone of volume Ω ≈ 200 µL and density ρl descending a
crenelated material inclined by an angle θ so that the gravitational force along the slope
is ρlΩg sin θ. The corresponding terminal velocity is approximately 10 cm/s, comparable
to the terminal velocity reached on herringbones.
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The plate is first displayed with grooves perpendicular to the trajectory (figure II.17).
We repeat the experiment varying the tilt θ from 1◦ to 12◦, hence changing the drop veloc-
ity and consequently the friction force. By recording the motion, we access the terminal
velocity, and plot in figure II.18a the measured friction as a function of the measured
terminal velocity. The solid line represents the best parabolic fit in a log-log scale. If we
consider an inertial friction F = βρlR

2V 2, as discussed above, we can deduce the friction
coefficient for grooves perpendicular to the trajectory. We find: β⊥ ≈ 0.109 ± 0.015.
This value is in excellent agreement with the one measured and discussed by Dupeux et
al. [42].
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Figure II.18 – (a) Friction force as a function of the terminal velocity for grooves per-
pendicular to the trajectory. b) Friction force as a function of the terminal velocity for
grooves parallel to trajectory. We notice that the “perpendicular friction” is an order of
magnitude higher than the “parallel one”. Both behaviors can be fitted by quadratic laws
in velocity (inertial friction).

We can similarly measure the friction force as a function of the terminal velocity for
grooves parallel to the motion (figure II.18b). Again, friction is found to be well described
by a law quadratic in velocity, the signature of an inertial friction. The corresponding
friction coefficient β‖ can be deduced from the experiments. We find β‖ ≈ 0.021± 0.003,
a value significantly smaller than β⊥.

Intermediate angles

We repeat this experiment choosing an intermediate angle between the main groove di-
rection and the down slope direction (denoted as α and as shown in figure II.19). Friction
is logically minimized when the motion is parallel to the grooves, so that a drop will try
to align with the grooves. To avoid this lateral deviation and have a straight trajectory
(aligned with the slope direction), we confine the drop between two walls that compensate
the projection of the friction perpendicular to the gravitational force (and represented as
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mgsinθ
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Figure II.19 – (a) Sketch of drop running down a titled crenelated surface. The angle
between grooves and down slope direction is noted α. Side walls prevents the drop from
laterally deviating by compensating the friction component F2.

F2 in figure II.19). Friction component aligned with the slope direction will be denoted as
F1 (figure II.19). We show in figure II.20a this force F1 as a function of the drop velocity
for different intermediate angles α. Each data point is an average on three experiments
in order to reduce error bars. For high speeds, we can see a small systematic overestima-
tion deviating from the parabolic law probably due to the fact that the plate is not long
enough (200 mm) for the drop to fully reach its terminal speed. We show in figure II.20b
the corresponding coefficient βα assuming parabolic friction.
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Figure II.20 – (a) Friction F1 in the gravity direction as a function of speed for different
intermediate angles α. From left to right curve, α ∈ [0◦, 25◦, 35◦, 45◦, 55◦, 70◦, 90◦]. Solid
lines represent best parabolic fits. Each point is an average on three experiments. (b)
Friction coefficient βα corresponding to each angle α. Each point is deduced from data
on left figure (a), assuming F1 = βαρlR

2V 2. The red solid line shows equation II.13.

As expected, it is bound between the two previous scenarios corresponding to α = 0◦

(right curve in red in figure II.20a) and α = 90◦ (left curve in blue in figure II.20a).
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Back to the herringbone

The herringbone geometry can be seen as a solution to suppress any friction “perpendicular
to the motion” without modifying the friction along the central axis. We show in figure
II.21 a comparison between this two scenarios.

We first focus on the friction along the axis aligned with speed V . Both geometries
generate exactly the same friction. Indeed, in the herringbone case, if we “mentally” flip
upside down the left half-side of the drop (shaded blue in figure II.21b), we end up with
the same configuration than sketched in figure II.21a.

Then, if we now focus on the axis perpendicular to the motion, we observe that friction
does not sum up for the herringbone geometry (such as in the previous case sketched in
figure II.21a) but compensate by symmetry. As a direct consequence we do not need
anymore to put the lateral wall to compensate F2 and prevent deviation.
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Figure II.21 – Comparison between parallel grooves (left) and herringbone texture (right).
(a) Friction can be decomposed in its components parallel and perpendicular to the
crenels. Friction aligned with speed writes F1 = F⊥ sinα + F‖ cosα. Drop velocity along
these directions is V⊥ = V sinα and V‖ = V cosα. (b) If we flip upside down left
shaded part, we see that friction F1 along the central axis of a herringbone is the same
as previously shown in figure (a). In the direction perpendicular to the motion, friction
projections compensate by symmetry.

To be more quantitative we decompose the friction in its components parallel and
perpendicular to the grooves, (as defined in figure II.21): F = F⊥ sinα + F‖ cosα. Since
the drop velocity along these directions is V sinα and V cosα, we end up with a strongly
non-linear expression for the friction:

F = ρlR
2V 2(β⊥ sin3 α + β‖ cos3 α) (II.12)

from which we deduce the friction coefficient βα corresponding to each angle α:
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βα = β⊥ sin3 α + β‖ cos3 α (II.13)

We draw equation II.13 in figure II.20b with a red solid line, and find it is in fair
agreement with experiments (blue points), provided we set β⊥ and β‖ to the experimental
values obtained with α = 90◦ and α = 0◦, respectively.

3.2 Free trajectories

As a logical continuation, we wonder what happens if we do not force anymore straight
trajectories (with a wall, or with a central symmetry with the herringbone). Two cases
can be studied regarding the method used to set a motion. Either we use gravity with a
tilted plate (as previously done), or we provide an initial speed to the drop by launching
it from a tilted gutter into a perfectly horizontal plate. We explore these two possibilities,
starting by the second one for the sake of simplicity.

Deviation on an horizontal plate

A 5 mm radius drop is launched from a hot straight gutter. By modifying the slope of
the ramp we can select various initial speeds: V0 ∈ [18,24,36,42] cm/s. The angle between
incoming direction and grooves axis is denoted as α, as defined in figure II.22b: for α = 0◦,
ramp and grooves are aligned, while for α = 90◦, ramp and grooves are perpendicular.
Chronophotography showing a typical drop trajectory can be seen in figure II.22b for
α = 60◦.

The drop deviation can be modeled by adapting the argument proposed in the her-
ringbone case. We apply Newton’s second law to the drop in the frame defined by the
grooves (~e‖ being the direction along the crenels, ~e⊥ its perpendicular). It writes:

along ~e⊥ : mẍ = −β⊥ẋ2 (II.14a)

along ~e‖ : mÿ = −β‖ẏ2 (II.14b)

These non linear second-order differential equations can be solved using as initial speed
V0 cosα and V0 sinα in the ~e⊥ and ~e‖ directions, respectively. Integration of equations
II.14a and II.14b leads to the expression of speed:
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along ~e⊥ : ẋ =
1

β⊥
m
t+ 1

V0 sinα

(II.15a)

along ~e‖ : ẏ =
1

β‖
m
t+ 1

V0 cosα

(II.15b)

Initial position chosen as the origin finally leads to the expression of position as a
function of time1:

along ~e⊥ : x =
m

β⊥
ln(1 + V0 sinα

β⊥
m
t) (II.16a)

along ~e‖ : y =
m

β‖
ln(1 + V0 cosα

β‖
m
t) (II.16b)

Combining equations II.16a and II.16b we can get rid of speed V0, resulting in the
following trajectory equation:

y =
m

β‖
ln(1 +

β‖
β⊥ tanα

(e
β⊥
m
x − 1)) (II.17)

Equation II.17 is independent of initial speed V0, although it still depends on the
incoming orientation angle α. This means that initial speed V0 will only dictate at which
speed we scan the trajectory.

For small x, this equation greatly simplifies and can be approached by equation
y ≈ x/ tanα, expected as we know that the drop enters the grooved plate with an in-
coming angle α. For long runs, where x→∞, trajectory equation can be approached by
equation y ≈ β⊥

β‖
x/ tanα. Since β⊥ > β‖, this means that in the end, the drop tends to

follow the grooves. We can reason also in terms of speed: at long times (t→∞), the ratio
of terminal speeds along each direction ẋ∞/ẏ∞ is equal to the ratio of friction coefficients
β‖/β⊥. Again, since β⊥ > β‖, this means the drop speed is mainly aligned along ~e‖, that
is, along the grooves.

Equation II.17 gives the trajectory in the frame of study ~e⊥, ~e‖ associated to the
grooves. However, if we want to have the trajectory in the frame ~ex, ~ey (sketched in
figure II.22b) aligned with the incoming speed direction, we need to re-express ~e⊥ as
~e⊥ = − cosα ~ex + sinα ~ey and ~e‖ as ~e‖ = cosα ~ex + sinα ~ey, resulting in the following
change of frame matrix:

1This simple model also allows to have the analytical expressions of friction in both axes, deduced
from the speed solutions.
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T (α) =

(
− cosα sinα

sinα cosα

)

We show in figure II.22a in dashed lines the analytical trajectory solution in this
new frame of study, in fair agreement with the set of experiments done at initial speed
V0 = 42 cm/s. Changing the slope of our launching ramp (hence varying initial speed V0)
should have no impact on the trajectory. However, we have noticed that for low initial
speeds, at some point the drop eventually gets trapped by the textures, aligning with
them instead of deviating. Indeed, as previously mentioned (Chapter I, section 2.4), the
drop deforms into the crenels, lowering its potential energy. As a consequence, there will
be a critical speed for which the drop will not be anymore able to overcome this trapping
force, hence being forced to follow the grooves.
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Figure II.22 – (a) Trajectory in the frame of reference ~ex, ~ey of the gutter, for a 5 mm
radius drop with initial speed V0 = 42 cm/s on a horizontal crenelated plate. This plate
has a square shape of dimensions 200 × 200 mm2, (approximatively) corresponding to the
size of the x- and y-axis. Incoming speed direction α ranges from 0◦ to 90◦ by steps of 10◦.
Experiments (in solid line) are in good agreement with model from equation II.17 (thin
dashed line). (b) Drop launched from a tilted gutter enters a horizontal hot crenelated
plate with an angle α = 60◦ (corresponding to black curve in left figure II.22a).
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Deviation of gliding drops on crenels

We explore here the second method to observe moving liquid puddles: a drop running
down the slope by gravity on a hot crenelated plate. As a consequence, we have to adapt
previous governing equations II.14a and II.14b by adding a constant force mg sin θ. The
new corresponding differential equations are now non-homogeneous and write:

along ~e⊥ : mẍ = −β⊥ẋ2 +mg sin θ sinα (II.18a)

along ~e‖ : mÿ = −β‖ẏ2 +mg sin θ cosα (II.18b)

The addition of the constant driving force implies that we are not anymore able to
show an analytical solution.

Nevertheless, if we focus on the terminal regime (defined as having no acceleration
ẍ = ÿ = 0), we get the following expression for the terminal speed in the frame of
reference of the grooves:

along ~e⊥ : ẋ∞ =

√
mg sin θ sinα

β⊥
(II.19a)

along ~e‖ : ẏ∞ =

√
mg sin θ cosα

β‖
(II.19b)

Hence, the ratio of the terminal speed along each axis is:

ẋ∞
ẏ∞

=

√
β‖
β⊥

tanα (II.20)

Equation II.20 (independent of mg sin θ) predicts an analogous behavior compared to
what we have previously seen: since β⊥ > β‖, once the drop reaches its terminal speed,
there is almost no speed in the perpendicular direction ~e⊥ (ẋ∞ → 0) so that the drop
moves mainly along the grooves. However, in opposition to the previous horizontal case
(where we found ẋ∞/ẏ∞ = β‖/β⊥), equation II.20 depends on the angle α. As a con-
sequence, a special situation is found for α close to 90◦ (for which tanα diverges, hence
equivalent to ẏ∞ → 0) where drops can move perpendicular to the grooves.

In addition, equations II.18a and II.18b can also be numerically solved. We show in
figure II.23b the numerical solution obtained for different orientation angles α. However, it
is experimentally difficult to accurately set the initial position of the drop while generating
it on a slope. As a consequence, arbitrary vertical shifting appears in experiments, making
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Figure II.23 – Trajectory in the frame of reference ~ex, ~ey (associated to the direction of
slope) for a 5 mm radius drop on a tilted crenelated plate. (a) Experimental trajectory:
arbitrary vertical shifting is due to experimental limitations when forming the drop. (b)
Numerical solution of differential equations II.18a and II.18b for a plate tilted by an angle
θ: each color corresponds to a different incoming angle α ranging from 0◦ to 90◦ by steps
of 10◦.

it difficult to quantitatively compare numerical results with experiments. Anyhow, a fair
qualitative agreement is observed in figure II.23 between experiments (left) and theory
(right).
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4 Terminal speed

Once propulsion and friction forces have been discussed, we have all ingredients to address
the question of the terminal velocity. Before making an analytical model, we experimen-
tally access this final speed, where friction force balances with the propelling one.

4.1 Experimental results

In order to see the drop accelerate and reach its terminal regime we need enough textured
substrate length. Such long samples are difficult to manufacture keeping crenel depth
precision below 10 μm. Typical length of our samples being 100 mm, we designed circuits
consisting of two straight herringbones with a stabilizing channel at the center, joined by
semicircular tracks bounded by lateral walls as sketched in figure II.24a. Drops hardly
decelerate in the curved sections, so that the liquid quickly reaches its terminal velocity
(around 10 cm/s), and keeps it for several rounds (figure II.24b), until evaporation makes
its size comparable to the width Wc, which stops the motion.
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Figure II.24 – (a) Long races can be observed by displaying two herringbones in series
(top view) connected by flat hemicircular paths, allowing us to determine the terminal
velocity reached by the drop. The hemicircular lines are lateral walls that guide the liquid
in this region. (b) Drop position along its race, as a function of time. Data are recorded
on the patterned section of the device (blue points), which shows that the velocity V is
reached after approximately one herringbone. Here we find V ≈ 10 cm/s, for acetone
drops of radius at mid-race R = 3 mm and for a herringbone angle α = 45◦.

The device shown in figure II.24a can be used to probe the optimum angle in term
of terminal velocity V . This speed was measured for drops of radius R = 3 ± 1 mm
and was found to decrease by a factor 3 as α increases from 15◦ to 75◦, as seen in figure
II.25. Contrasting with F (α) (see figure II.12b), the function V (α) is strongly asymmetric,
showing a maximum between 15◦ and 30◦. This maximum is roughly equidistant between
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45◦, where we observe the maximum driving force (figure II.12b) and 0◦, where the grooves
are aligned with the motion, so that we expect a minimum friction (figure II.20b).
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Figure II.25 – Drop terminal velocity on hot herringbones, as a function of the pattern an-
gle. Drops are made of acetone, substrate temperature is 400◦C, and the terminal velocity
is measured on circuits consisting of successive herringbones (figure II.24a), allowing us
to reach and measure the terminal velocity even if large. Each data point corresponds
to an average done on a distance of about 1 m, and the fit shows equation II.21 with a
coefficient of 0.8, drawn for R = 3 mm, the typical size of the drop at mid-race.

4.2 Analytical calculation and speed optimization

Balancing the propelling force (section 2, equation II.10) with the resisting force (section
3, equation II.12) yields the expected terminal velocity of drops:

V ≈ (2g`c)
1/2(

b

R
)1/4[

sin 2α

β⊥ sinα3 + β‖ cosα3
]1/2 (II.21)

Equation II.21 is drawn with a full line in figure II.25 for R = 3 mm with a coefficient of
0.8, as done in figure II.12b. It is found to agree well with the data, having in particular
a maximum clearly displaced to small acute angles, as observed experimentally. The
magnitude of the velocity also fits with the calculation.

Maximizing equation II.21 according to α implies that the optimum angle should be
a function of the ratio β‖/β⊥. At small α, the function of α in equation II.21 becomes
2α/(β⊥α

3 +β‖), whose maximum is (β‖/2β⊥)1/3, that is in our geometry, α ≈ 25◦ (within
2% of the value obtained by numerical integration), in good agreement with the observa-
tions.
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5 A basic unit of a wider picture

We just discussed how we can loop two herringbones through curved sections in order
to achieve a Leidenfrost racing track. Further on, we propose to see herringbones as
elementary units of a larger device, which opens new applications and perspectives.

5.1 The drop trap

Two herringbones can be displayed with opposite polarization as sketched in figure II.26a.
As a consequence, drops thrown on this device oscillate, as it can be observed in figure
II.26b where drop position along the drops’ race is plotted as a function of time. The
oscillations are damped by the action of the herringbones, so that the levitating liquid
eventually gets immobilized at the center of the device: opposite herringbones constitute
efficient traps for these elusive drops.
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Figure II.26 – (a) Opposite polarization herringbone facing each other will trap a drop at
its center. (b) Damping of oscillations for a drop of 3 mm radius at mid-race, launched
into the device at 10 cm/s. After a few oscillations (during typically 10 s, smaller than
the life time of an evaporating drop), the drop gets trapped in the middle.

At each side of the center line, the drops undergoes two different regimes. A first one
(just after crossing the center), where inertial friction and viscous entrainment add up
and oppose the movement, resulting in a very effective slow down. A second one, after
the drops make a U-turn, where these forces are opposite and the drop re-accelerates
in the opposite direction. Inertial friction ensures energy dissipation resulting in a final
still position while the viscous entrainment acts as a restoring force attracting the drop
towards the center.

If we look closer to the central pattern (see figure II.27 and II.26a), we see concentric
squares or diamonds (whose 2 diagonals are the axis of symmetry of two herringbones).
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We can therefore imagine a Leidenfrost chessboard in which each box would be made of
concentric squares. If we were to spread a liquid sheet over this special chessboard, the
liquid sheet would destabilize resulting on the trapping of a puddle on each single box.

Figure II.27 – View of the texture resulting from joining two herringbones of opposite
polarization and facing each other: we see concentric squares whose diagonals are the axis
of symmetry of the herringbones.

5.2 The active herringbone: the switch

An other direction has been theoretically explored by our Italian collaborators ([89]) by
straining an elastic substrate on which a herringbone pattern is etched. Using a very
simple model of linear deformation, they expect two kinds of deformation regarding if the
imposed stress is itself symmetric. The deformations which preserve the symmetry allows
a modification of the geometrical parameters, as shown in right side of figure II.28. An
example of deformation not preserving the symmetry of the pattern is shown on the left
side of figure II.28.

Figure II.28 – (Left) Example of elastic deformation that does not preserve the symmetry
of the pattern: uniaxial tension along an oblique direction (inclination of 60◦ with the hor-
izontal, blue arrows represent the applied stress). (Right) Example of elastic deformation
decreasing α. From [89].
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Figure II.29 – Diagram of a ’Leidenfrost switch’. Courtesy of Charlotte Rasser.

When symmetry is not preserved, they consider the asymmetric pattern as the union
of two half-herringbones with different half-top angles α. Using the previous model for
the propelling force with the “continuous” method of calculation, they evaluate the x-
component of the propelling force on each half side of the drop (the x-axis being orthogonal
to the axis made by the vertices of the arrows) as a function of the half-top angle α. They
conclude that a drop placed on the axis of an asymmetric herringbone pattern will tend
to deviate towards the side in which the channels have the biggest angle α (where the
perpendicular projection is bigger). Taking advantage of this asymmetry, they suggest
an idea of application presented in figure II.29 where a straight textured central segment
joins two circular paths patterned with a herringbone texture and a central channel. A
self-propelling drop moving along the straight central segment will have an equivalent
probability to go each side. However, if the substrate is elastic, an asymmetry can be
introduced by stretching it, systematically making the drop deviated to one side. They
conclude that this active pattern could work as a switch.
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Conclusion

Herringbone patterns on solids are found to propel Leidenfrost drops, which can be seen
as a geometrical proof of the scenario suggesting that viscous drag should generally be
responsible for such motions on asymmetric solids. Contrasting with ratchets, the ge-
ometry and the resulting vapor flows are simple and controllable, allowing us to produce
quantitative models for both the propelling and the friction forces, and to discuss how
the design can be optimized. Maximizing the force is useful if it is desired to oppose an
existing force (such as gravity, if the solid is inclined); in other cases, it is interesting to
optimize the drop speed to enhance the motion. The corresponding optimal angles are
not the same, but both properties emphasize the role of geometry in these devices. Hence,
any pattern polarizing the vapor flow should generate propulsion.

We just have proved that searching new textures can lead to new questions. Always us-
ing a flat substrate, we can imagine other macroscopic geometries such as curved chevrons.
The question of textures on substrates that are not flat (hence exploring macroscopically
the third space dimension) is also to be addressed. A good starting point would be the
study of Leidenfrost self-propelled drops squeezed between two parallel textured planes
(a situation recently studied by Celestini and coworkers without textures [20]). Then, the
case of textures inside or outside a cylinder would lead to new questions. We show in fig-
ure II.30 an example of a herringbone texture on a (red stone) cylinder seal of the Jemdet
Nasr period (4th-3rd millennium BC). We see how this simple texture was already used
long ago and how the cylindrical substrate was naturally seen as the logical counterpart
of the herringbone texture on a flat substrate.

Figure II.30 – Herringbone textures on the external face of red stone cylinder seal. Ana-
tolian, 4th-3rd millennium BC, Jemdet Nasr period. Steatite or chlorite, 1.9 x 1.6 cm.
Harvard Art Museums/Arthur M. Sackler Museum.

Smaller temperatures could also be tested, in particular after coating the solid with
hydrophobic micro-textures, which preserves the Leidenfrost state down to the boiling
point of the liquid.

Another way to extend the effect to cold(er) systems consists of etching chevrons in an



5. A BASIC UNIT OF A WIDER PICTURE 83

air-hockey table: blowing air through the holes generates levitation, and experiments (see
Chapter III) confirm that plastic cards can indeed self-propel on such patterned tables.
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1 When vapor is replaced by compressed air

1.1 The air hockey table

Limitations of Leidenfrost Herringbones

Two main limitations can be stressed in the Leidenfrost herringbone device. The first
one dwells on the liquid nature of the self-propelled object. As a drop is deformable, it
sags into the crenels generating a special friction. This deformation also implies that it is
difficult to clearly define the vapor thickness h. Our best solution was to approach the local
deformation by a circular geometry and then average the height over the channel width.
In addition, if we want to study the effect of the object geometry on the propelling force,
we are constrained by experimental limitations: large drops would destabilize (owing to
chimney instability, see chapter I, 2.3) and puddle thickness cannot be varied since it is
fixed to 2`c by the competition between gravity and capillarity.

The second constraint dwells on the thermal origin of the effect. The substrate has
to be brought at a high temperature, significantly above the boiling point of the liquid.
Hence, the liquid itself is at its boiling temperature. Besides the high energetic cost, high
temperature can be an issue if we think of transporting living media inside these moving
droplets. Finally, we are also constrained by the range of temperatures we can explore,
making it difficult to easily vary the height of levitation.

A new levitating device

We designed a new device allowing us to get rid of these limitations by replacing vapor
by injected air. As a consequence, the liquid used to act as a vapor reservoir is no longer
needed. We can from now on consider glass lamellae of controlled geometry (length a,
width b, thickness c, density ρg = 2130 kg/m3, corresponding massM = ρgabc) to play the
role of the self propelling object. By these means, we suppress both the high temperature
and deformable nature of the object.

The slider is maintained in levitation by injecting a constant airflow from below
through a porous media, somehow like an air-hockey table. To supply this constant
flow, we inject compressed air (pressure P2) from the bottom of a Plexiglas box device, as
sketched in figure III.1. The top of this box is closed by a porous Plexiglas plate of thick-
ness e = 2 mm. In order to control the characteristics of this porous wall, we manufacture
it with a laser cutter (Epilog Helix 24) where we cut a square matrix of through-holes of
radius r = 100 μm spaced by a pitch p = 400 μm. The velocity of air escaping from the
pores is denoted as w.1

1For a detailed study, see Gary Leal [66]. In his book, he has theoretically tackled the problem of
height levitation h for a given imposed pressure in the case of a circular levitating “puck”.
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Figure III.1 – Side view of the air hockey table device. On top of a texture of height
h = 160 μm, we place a glass lamella of thickness c, width b and length a. Air is injected
through a porous floor consisting in vertical parallel tubes of length e = 2 mm and radius
r ≈ 100 μm, spatially distributed in a square array of pitch p = 400 μm. Air injected
at a pressure P2 from the bottom of the box, escapes from the pores at a speed w. The
pressure in the texture (beneath the glass lamella and above the porous floor) is denoted
as P1(x).

1.2 Propulsion with herringbone textures

In order to make the levitating object horizontally move, we use again the laser cutter
to engrave a herringbone texture on top of the porous substrate, similar to the one done
in the Leidenfrost case (see figure III.3b). The texture is made of rectangular channels
of width W = 1 mm, depth h = 160 μm and walls of thickness λ = 0.3 mm. The angle
between the main direction of the channel and the axis of symmetry of the chevrons is
denoted by α. The air escapes from the pores into the bottom of each channel.

We start all experiments with a pressure inside the box P2 equal to the atmospheric one
P0. We then slowly increase P2 (hence injecting air in the channels) until the plate takes
off. At this point, the top of the walls do not touch the plate anymore. The levitating
height is close to the wall texture height h = 160 μm: the slider is skimming over the top
of each channel. As soon as the plate takes off, it accelerates in the same direction as seen
in the Leidenfrost case and shown in figure III.3b. We record this motion with a camera
from the top view (figure III.3a). Once the plate has reached the end of the device, we
push it back several times, resulting in a typical position curve as a function of time shown
in figure III.2. We decompose the parabolic trajectory in two phases: in green (III.2) the
slowing down phase, and in red the re-accelerating one. For each round trip we get an
average acceleration from which we deduce the propelling force by multiplying it by the
mass plate. To reduce uncertainty, the force is averaged over the successive parabolas.

The special friction due to the sagging of the liquid into the grooves has been here
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Figure III.2 – Position of the center of mass of the slider as a function of time. The plate
(a = 37 mm, b = 12 mm, c = 160 μm) is launched several times against the air levitating
herringbone texture. Green lines show deceleration phases while reaccelerating phases
are shown in red. The corresponding force F = MẌ is averaged over the series of round
trips. Here, the obtained acceleration is Ẍ = 5 cm/s2, which yields F = 7 µN.

suppressed by the use of a rigid slider. An unfortunate consequence is that we cannot
anymore etch a central wide groove to gravitationally trap and guide the plate. As there
is no restoring force keeping it in the plane of symmetry, we were obliged to put lateral
walls to ensure central stability (see figure III.3a).
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Figure III.3 – (a) Top view chronophotography (images spaced by 0.2 s) showing the
acceleration of a glass lamella of length a = 23 mm, width b = 12 mm and thickness
c = 160 μm. The slider is skimming over a herringbone texture engraved over a porous
substrate through which air is blown. (b) Sketch of the herringbone texture: width of the
channel W = 1 mm, thickness of the walls separating each channel λ = 0.3 mm, angle
between half-channels and axis of symmetry α. The texture is above the porous substrate
and below the glass lamella (length a, width b and thickness c). Inside each channel,
we can observe a square array of circular through-holes of radius r = 100 μm and pith
p = 400 μm. The horizontal ejection speed along a channel of axis x is denoted as U . The
channel length below the plate is L = b/(2 sinα). As soon as the airflow is strong enough to
make the lamella levitate slightly above the wall height h, the slider accelerates in the X
direction and moves at speed V .
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2 Force of propulsion

We focus in this section on the propelling force. A scaling law analysis shows how we can
identify all physical ingredients in order to explain the experiments. Then we produce a
quantitative model that allows us to predict the pressure needed to generate levitation
and compare it to experimental observations. A new horizontal length scale σ arising
from this more sophisticated model permits us to define what a “wide” or “narrow” slider
is.

2.1 Experimental observations

Lamellae geometry dependency

We first discuss how the propelling force depends on the lamella geometry. We conduct
our experiments with a fixed herringbone texture: h = 160 μm, α = 45◦. For two different
thicknesses of our lamellae (c = 160 μm and c = 1000 μm), we repeat the experiment vary-
ing a and b. We show in figure III.4a the force of propulsion F deduced from acceleration
measurements for each geometry.
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Figure III.4 – (a) Force of propulsion as a function of the length a of the glass lamella.
Each color corresponds to different widths b ∈ [6, 12, 18] mm. The two markers stand
for two glass thicknesses: “circles” for c = 160 μm, and “squares” for c = 1000 μm.
Straight solid lines correspond to a linear fit as suggested by equation III.1 or III.13.
(b) Force of propulsion as a function of the opening angle α of the herringbone pattern.
Each curve corresponds to a fixed lamella geometry of thickness c = 1000 μm: “stars”
a x b = 30 x 12 mm2, “diamonds” a x b = 23 x 12 mm2, “pentagons” a x b = 15 x 6 mm2.
The solid line shows equation III.13.
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We can observe in figure III.4a that the propelling force seems to be proportional to
the lamella length a and independent of its width b. The ratio between the slopes of the
two linear fits is 6.25, very close to the ratio between both thicknesses c (equal to 6.2),
suggesting that the propelling force is also proportional to c.

Impact of the herringbone opening

Then we observe how the force depends on the geometry of the herringbone pattern,
particularly on the opening angle α (figure III.4b). We measure the force for various
opening angles α = [15◦, 30◦, 45◦, 60◦, 75◦] for three plate geometries. They all have the
same thickness c = 1000 μm, but have different areas: a x b = 30 x 12 mm2 (“stars”),
a x b = 23 x 12 mm2 (“diamonds”) and a x b = 15 x 6 mm2 (“pentagons”). We report F
as a function of α in figure III.4b. As previously seen in the Leidenfrost case, we observe
a clear maximum around α = 45◦ and force vanishing as α tends towards 0◦ and 90◦.

2.2 Model

In order to quantitatively capture all the results, we suggest a model based on a viscous
entrainment scenario (similar to the one seen in previous chapter).

Scaling argument

Air injected from the bottom of a channel has no other option than escaping in the
direction of channels of length L = b/(2 sinα). Denoting the gas viscosity as η and
the horizontal speed as U , as shown in figure III.3b, this Poiseuille flow will create on
each channel a stress τ ∼ ηU

h
that will apply to the bottom of our glass lamella over

a surface area a b. The resulting propelling force only includes the contributions which
do not compensate, namely a cosα projection in the plane of symmetry. Hence, we get
F ∼ ηU

h
ab cosα, where U is still unknown. Lubrication theory links the Laplacian of

speed to the horizontal pressure gradient through: ηU
h2
∼ δP

L
where L is the length of

a covered channel and δP is the difference of pressure between the inside of a channel
and atmospheric pressure (see figure III.3b and III.1). If we consider that the pressure
beneath the plate has to support its weight, we can assume that δP scales as ρggc. Hence,
we get an expression for the gas velocity (U ∼ ρggch2

ηL
), which gives, once injected in the

expression of the force:

F ∼ ρggc ah sin 2α (III.1)

This equation is exactly the same as the one obtained in chapter II (equation II.10) if
we replace the density ρ by ρg, the thickness 2`c by c, the horizontal characteristic length
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scale R by a and the film thickness
√
bR by h.

This comparison emphasizes an advantage of the air levitated device compared to
Leidenfrost case: the film thickness h is now an imposed geometrical characteristic and
not a variable difficult to model.

Equation III.1 predicts a linear dependency of the force towards length a and thickness
c, as observed in figure III.4a. In addition, it also explains the existence of a maximum of
force for α ≈ 45◦, as seen in figure III.4b. To ensure the validity of our scaling law analysis,
we show in figure III.5 all our data as a function of the force predicted by equation III.1.
All the data collapse in a single curve of slope 1.
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Figure III.5 – Force of propulsion as a function of the expression expected theoretically
(equation III.1). Each point is an average of at least 5 experiments (typically 8). Data dis-
played in this figure correspond to different lengths a = [7.5, 15, 23, 30, 37, 45, 60] mm,
width b = [6, 12, 24] mm (expressed by the color map), thickness c = [160, 1000] μm
(“circles” and “squares”, respectively). We also added experiments where we vary
α = [15◦, 30◦, 45◦, 60◦, 75◦] for three different geometries (same markers and colors
as in figure III.4b). The blue straight line represents the line of equation y = 1/2x, that
is, equation III.1 for the scaling and equation III.13 for the coefficient.

Analytical resolution

Although the scaling law argument captures all the underlying physics, we can go further,
taking advantage of the fact that we control the geometry of the porous through which air
is injected. Darcy law tells us that the volumetric flow rate of mean velocity w through a
single hole Q = wπr2 is proportional to the pressure jump between the inside of the box
P2 (experimentally controlled and constant) and the pressure P1(x) at a given position x
below the slider:
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Q =
P2 − P1(x)

Rh

(III.2)

where Rh is the hydrodynamic resistance, equal to 8ηe/πr4 for circular cross-section
channels (e being the thickness of the porous plate as sketched in figure III.1). This
expression is formally the analog of the electrokinetic law between voltage difference and
current, U = RI. Conservation of mass gives us a second equation that links the injection
speed w and the horizontal escaping speed U ; h∂U

∂x
= Q

p2
. These two equations can be

rewritten as a single one. We have:

h
∂U

∂x
=
P2 − P1(x)

p2Rh

(III.3)

Finally, Stokes equation in a channel writes:

12η
U

h2
= −∂P1

∂x
(III.4)

Equations III.3 and III.4 form a system of two equations with two variables. They can
be rewritten as: ∂2U

∂x2
= U

σ2 and ∂2[P1(x)−P2]
∂x2

= [P1(x)−P2]
σ2 . Both the horizontal speed U and

the pressure along the channel P1 are hyperbolic (exponential) functions that decay over
a characteristic distance σ =

√
2ep2h3/3πr4 . This distance only depends on the porosity of

the plate and on the height h of the wall textures: it is fixed in our experiments and its
value calculated for the parameters of our system is 3 mm.

In order to have an exact solution, we consider as the boundary conditions a zero speed
U at the origin of the channel x=0 and a pressure P0 at the exit x = L = b/(2 sinα). We
get:

U(x) = (P2 − P0)
h2

12ησ

shx
σ

chL
σ

(III.5a)

P1(x)− P0 = (P2 − P0)[1−
chx

σ

chL
σ

] (III.5b)

A similar calculation was done by Gary Leal in [66], in the case of a flat porous
substrate with a circular levitating puck, in relationship with the question of levitation
height of a flat (non-textured) body above a hockey table. The corresponding differential
equations (Bessel differential equation) are more complicated in this circular geometry,
resulting in a solution that required to be evaluated numerically.
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Needed pressure to propel

It is useful to bear in mind that we have L = b/(2 sinα), hence L and b play a similar role.
We do not know “a priori” the value of the imposed pressure P2 − P0 needed to make the
slider levitate at height h. We need to take into account that the pressure profile below
the plate has to compensate the weight. We can limit this argument to a single wall and
channel, which can be written:

ρggc L(W + λ) = W

∫ L

0

[P1(x)− P0]dx (III.6)

After integration and introducing the function G(x) =
1+ λ

W

1− thx
x

we get an expression
for the overpressure needed to make a lamella levitate just above the texture:

∆P = P2 − P0 = ρggc G(
b

2σ sinα
) (III.7)

Equation III.7 confirms that the overpressure needed to induce levitation is propor-
tional to ρggc, anticipated in the scaling analysis. The mathematical study of the function
G (for σ around 3 mm in our case) gives two regimes:

(i) for long channels (b > σ), function G scales as G(x) ∼ 1 explaining the saturation
regime P2 − P0 ≈ ρggc shown in figure III.6 at large b.

(ii) for short channels (b < σ), function G scales as G(x) ∼ 3
x2

leading to G(L
σ

) ∝ 3σ2

b2
,

explaining the divergence of the pressure at small b: since b→ 0, pressure has to diverge
to be able to compensate the weight of the slider.
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Figure III.6 – Normalized overpressure P2 − P0 imposed to induce levitation, as a func-
tion of the horizontal width b for plates of thickness c = 1000 µm and different lengths
a = [15, 23, 30, 45, 60] mm. We show equation III.7 in solid blue line with no adjustable
parameter. As b→ 0, pressure has to diverge to compensate the weight of the slider.
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We show in figure III.6 experimental measurements of this overpressure as a function
of the width b for a plate of thickness c = 1000 µm and different lengths a = [15, 23,
30, 45, 60] mm. We observe almost no dependency towards the distance a. The pressure
increases as the width b decreases, in good agreement with the model (equation III.7)
represented with a solid line in figure III.6. The slight systematic underestimation by the
theory may be due to the fact that there are some pressure losses, so that actual pressure
must be larger than estimated.

Pressure and speed profile inside the groove

Analytical solution We can now inject the expression of P2 − P0 (equation III.7) in
our previous profile solutions for the pressure P1(x) and speed U(x) along the channel,
leading to:

P1(x)− P0 = ρggc G(
L

σ
) [1−

chx
σ

chL
σ

] (III.8a)

U(x) = ρggc
h2

12ησ
G(
L

σ
)
shx

σ

chL
σ

(III.8b)

Again, two regimes can be explored depending on the width b of the plate compared
to the characteristic decay length σ.
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Figure III.7 – (a) and (b): Pressure P1(x) and speed U(x) profile obtained from equation
III.8a and III.8b respectively, as a function of the relative position x in the channel of
length L = b

2 sinα
. Three different width b ∈ [24, 36, 48] mm are shown. Plate thickness is

set to c = 160 μm, length a = 15 mm and wall texture thickness λ→ 0. The characteristic
decay length σ (independent of b) is fixed to 3 mm, so that we are in the “wide” plate
regime.
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(i) “Wide” plates: b > σ We show in figure III.7a and III.7b the analytical profile
solution in a channel for pressure P1(x) (equation III.8a) and speed U(x) (equation III.8a)
respectively, for three different widths b ∈ [24, 36, 48] mm > σ. We fix c = 160 μm,
length a = 15 mm and wall thickness λ → 0 (in order to verify 1+λ/W → 1). A taylor
expansion of equations III.8a and III.8b gives the following approximate solution (for the
sake of simplicity, we will assume here 1 + λ

W
= 1.3 ≈ 1):

P1(x)− P0

ρggc
≈ 1− exp

x−L
σ (III.9a)

U(x) ≈ ρggc
h2

12ησ
exp

x−L
σ (III.9b)

The characteristic decay length σ (independent of b, and set to 3 mm in our exper-
iment) governs the pressure and velocity profile. The smaller this length, the shorter
compared to the channel length L, the sharper the evolution of pressure and speed near
the exit of the channel - visible in figure III.7, where the blue curve is sharper than the
red one. Two channel positions are of particular interest: the exit of the channel (x = L)
and its origin (x = 0). At the exiting side of the channel, pressure is P1(L) = P0 (this
is merely the imposed boundary condition used for the integration). At the origin (cor-
responding to the tip of a chevron), pressure is a function independent of L (hence of b):
P1(0) ≈ P0 + ρggc.

(ii) “Narrow” plates: b < σ

Taylor expansion of pressure and speed results in this case in:

P1(x)− P0

ρggc
≈ 3

2
[1− (

x

L
)2] (III.10a)

U(x) ≈ ρggc
h2

4ηL2
x (III.10b)

We show in figure III.8a and III.8b the corresponding speed and pressure profiles for
width b ∈ [0.3, 1, 3] < σ. Pressure is a parabolic decaying function of the ratio x/L. As
a consequence, all pressure profiles are the same if we plot them as a function of the
proportional channel position x/L: all solid lines in figure III.8a superimpose to each
other. Speed, in turn, is a linear function of x, whose slope is proportional to 1/b, as can
be seen in figure III.8b.
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Figure III.8 – (a) and (b): Pressure P1(x) and speed U(x) profiles obtained from equation
III.8a and III.8b, respectively, as a function of the relative position x in a channel of length
L = b

2 sinα
. Channel length (proportional to b ∈ [0.3, 1, 3] mm) here is smaller than the

characteristic decay distance σ, resulting in a parabolic expression for the pressure and a
linear profile for speed, as described by equations III.10 for the “narrow” plate regime.

General remarks The choice of the geometrical characteristics of the porous plate
allows us to play on distance σ, hence move from a “narrow” plate regime to a “wide”
plate one. For all our experiments, we deliberately chose the regime of “wide” plates
where the required pressure ∆P (see figure III.6) does not diverge and remains relatively
small.

In all cases, maximum overpressure (P1(0) − P0)/ρggc - right below the plate (in the
axis of symmetry) - ranges between [1, 3/2]. This means that although the imposed
pressure P2 − P0 diverges, the pressure inside the channel is always finite.

In order to obtain an expression for the needed external overpressure P2−P0, we stated
that the integral over the surface of the internal channel overpressure

∫ L
0

[P1(x) − P0]dx

must balance the weight ρggcL (equation III.6). By doing a simple change of variable in
this integral expression y = x

L
, we get:

S =

∫ 1

0

[P1(y)− P0]dy = ρggc (III.11)

As a direct consequence, the surface beneath all curves in figure III.7a and III.8a are
equal to unity.

Exact solution for the propelling force

Since we have an analytical solution for the speed (and the pressure) in each channel, we
can make the exact calculation of the viscous force applied by the air to the plate. Knowing
that the stress of a Poiseuille flow in a channel is τ = 6ηU/h and using Stokes equation
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III.4, we get: Fi = −
∫ L

0

∫W
0
τdxdy = Wh

2

∫ 0

L
∂P1(x)
∂x

dx. By recalling that P1(L) = P0, we
obtain:

Fi =
Wh

2
[P1(0)− P0] (III.12)

As done in the Leidenfrost situation, we have to take into account the number of
contributing channels N(α) = 2a/(λ+W

sinα
) and express the projected propelling force along

the central axis. Given that all our experiments are performed in the “wide” plate case
(b > σ), we have P1(0)− P0 ≈ ρggc. We finally get the total propelling force:

F =
1

2
ah ρggc sin 2α (III.13)

Equation III.13 has the same behavior as the scaling law (equation III.1), but it also
yields the numerical prefactor, found to be equal to 1/2. Looking back to figure III.5, the
solid line which nicely matches the data is equation y = 1/2x (a straight line of slope
1/2) predicted by equation III.13.
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3 New geometries, new functionalities

3.1 The truncated herringbone

The model introduces a characteristic distance σ, which physically represents the exit
distance over which pressure and speed changes mainly take place. Since all our experi-
ments were made in the “wide” plate regime (b > σ = 3 mm), we expect almost all viscous
entrainment to take place near the 3 last mm of the channel.

As a consequence, the central geometry of the texture should not play a key role.
We have tested this idea by comparing forces between the “classic” herringbone and a
“truncated” version. This new texture is shown in bottom of figure III.9 and consists in
a herringbone pattern where the tip is now replaced with a straight section of length bT
(fixed to 10 mm) perpendicular to motion:

15

 mm

10

 mm
bb

T

Figure III.9 – Comparison between two textures entraining a glass slider of length
a = 30 mm, width b = 15 mm and thickness c = 1 mm (resulting in a weight M around
1 mg). Top texture is the “classical” herringbone. Bottom one corresponds to the “trun-
cated” herringbone, which has a central straight section of length bT (fixed to 10 mm)
perpendicular to motion, hence having a null viscous propelling contribution.

We show in figure III.10 the comparison of the trajectory of a glass slider (length
a = 30 mm, width b = 15 mm and thickness c = 1 mm) launched against the entrainement
force direction (launched from left to right on the texture represented in figure III.9) for
both textures. As already discussed, the entrainment force will first slow down the slider,
eventually stop it and finally reaccelerate it resulting in a parabolic trajectory (friction
is negligible). We qualitatively see that the trajectories are very similar, indicating that
both devices have a similar propelling efficiency although they have very different textures.
In more detail, we also observe that it take less time to cover the same distance to the
“classical” herringbone (in blue) than to the “truncated” herringbone (in red), indicating
that “classical” herringbone texture is slightly more efficient.
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Figure III.10 – Trajectory comparison between the two propelling textures exposed in
figure III.9. In red, the trajectory corresponding to the “truncated” herringbone, shown
to be slower than the one in blue (corresponding to the “classical” one).

This strong similarity is in good agreement with the assumption that only the last
section of each channel plays a role in the propulsion, hence the central part of the tex-
ture (either a pointed tip or a straight one) do not have a strong contribution to propulsion.

More quantitatively, we can deduce from a quadratic fit of the trajectory the acceler-
ation equal to ẌT ≈ 3 cm/s2 and Ẍ ≈ 4.5 cm/s2 for the “truncated” and the “classical”
herringbone, respectively. Since the plate is the same in both situations (and has a
weight M around 1 mg), we deduce a corresponding force F equal to FT = 30 µN and
F = 45 µN for the “truncated” and the “classical” herringbone, respectively. If all surface
area contributed to propulsion, we could expect a reduction in propulsion proportional to
the reduction of area breaking the symmetry scaling as (b− bT )/b, that is, around 30 %.
However, as qualitatively discussed previously, the ratio of propelling forces FT/F is much
higher (around 70 %) which confirms our assumption of viscous entrainment contribution
to propulsion being concentrated at the end of each channel.

3.2 Climbing up a slope

From the expression of the propelling force (equation III.13), we deduce the expression of
acceleration Ẍ for a plate:

Ẍ ≈ g
h

2b
sin 2α (III.14)



3. NEW GEOMETRIES, NEW FUNCTIONALITIES 101

Figure III.11 – Lamella (a = 30 mm, b = 6 mm, c = 160 μm) withstanding a slope of
2% owing to viscous entrainment. From this lateral view we can distinguish the holes
through which air is injected at the bottom of each chevron.

For the sake of simplicity, we assume α = 45 ◦, the optimum angle in term of propelling
force. Then, equation III.14 tells us that plates can climb slopes up to θ ≈ h

2b
, that is,

up to several % in our typical geometries. To draw a comparison, no mountain stage in
the world famous “Tour de France” exceeds a 10 % slope. For instance, we show in figure
III.11 a plate of width b = 6 mm withstanding a slope of 1.3 % where viscous entrainment
balances the weight.

3.3 The viscous entrained mill

All propulsion movements seen up to now lead to straight translation. The longer we want
to observe the movement, the larger textured substrate we need. In the case of drops, we
solved this problem by looping two straight textured surfaces through flat semicircular
sections. In addition, we used a central deeper groove to gravitationally trap the drop
and be able to guide it, allowing us to reach (and study) the terminal velocity regime.
In the case of non deformable glass lamellae, this set-up is much more complicated to
achieve. In contrast, rotation offers great possibilities since the moving objects remain
in place and can be observed as long as we want. Based on this idea, we developed the
texture similar to a windmill visible in figure III.12. A plane is divided in four equal
sections in which parallel grooves are engraved. Between each quadrant, a 90◦ rotation of
the main direction of the grooves is imposed. Consequently, viscous entrainment acts on
the levitating plate in a different direction for each portion (see arrows in figure III.12a),
which generates a rotation.

The previous scaling argument gives us the propelling force generated by one channel:
Fi ∼ ρggc hW . If we denote as 2b the side length of a square plate (see figure III.12a),
each forth of the plate has N(α) = b/(λ + W ) channels beneath it. The total resulting
force in each quarter being: F1/4 ∼ ρggc hb. Total torque experienced by the plate will
therefore scale as:

M∼ ρggc hb
2 (III.15)
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(a)

b

(b)
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∆

Ω
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Figure III.12 – (a) Windmill texture consists of four square sections textured with parallel
grooves of width W = 1 mm, walls of thickness λ = 0.3 mm and depth h = 160 μm. A
vertical glass fiber acting as central axis (∆) keeps centered a PMMA plate of density 1190
kg/m3, thickness c = 2 mm and side 2b = 30 mm. Red arrows show viscous entrainment
direction in each quadrant resulting in rotation (terminal angular speed denoted as Ω).
(b) Sketch: side view of the setup. Three vertical lengths are indicated: e stands for the
porous plate thickness, h for the walls’ height and c for the slider thickness.

The moment of inertia J of a square plate scales as mb2 and the second Newton’s law
gives us a relation between torque and angular acceleration θ̈: M = Jθ̈. Hence we get:

θ̈ ∼ g
h

b2
(III.16)

If we put numbers in this equation, we obtain h/b2 ∼ 1 m−1 and typical angular ac-
celeration of 10 rad/s2 - quite large indeed!

As of now, imposed differential pressure ∆P = P2 − P0 (between the external at-
mospheric pressure P0 and the inner one P2) was fixed and carefully chosen to match
levitation height and wall texture height h, as sketched in figure III.12b. This new setup
allows us to easily probe the role of imposed pressure (remained unexplored up to now).
We show in figure III.13a the terminal speed of rotation as a function of this overpressure.
Two regimes separated by a critical transition can be observed:

(i) a first regime (below 35 mbar in figure III.13a) where the imposed pressure is not
strong enough to induce levitation. Owing to solid friction, there is no movement at all.

(ii) a second regime (above 35 mbar) where pressure is strong enough to withstand the
plate’s weight, which generates rotation. If we increase air injection, the plate levitates
at height z higher than the walls’ height h. From a side view (see figure III.13b), we
can consider that the flow is divided in two regions. A lower one (flow in dotted blue),
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rectified by the walls of height h and an upper one (between h and z, marked with red
dotted arrows), where the flow is free and will have a symmetric pattern, resulting in a
decrease of the propelling force.

Terminal speed and propelling force are optimized when the slider completely seals
each channel, i.e. when it levitates at height z = h (around 40 mbar in figure III.13a).
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Figure III.13 – (a) Terminal angular speed Ω = θ̇ of a plate on a windmill pattern, as a
function of the imposed differential pressure ∆P = P2 − P0 for a square PMMA plate of
side 2b = 30 mm and thickness c = 2 mm. Optimum of speed is found around 40 mbar,
where the slider levitates just above the walls, hence efficiently confining and rectifying the
flow. (b) Side view of the rotating slider: as the imposed pressure increases, the levitating
height z increases. As a consequence, rectification of the flow is less efficient and terminal
speed decreases. Red dotted arrows show the isotropic flow above the textures. Blue
dotted arrows show the main direction of the flow rectified by the textures.
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4 Channel depth h and Reynolds number

In all our experiments, the crenel depth h is fixed and constant. Increasing the object’s
thickness (or analogously increasing the crenel depth h) results in an increase of the needed
injection speed w. Eventually, there will be a point where the horizontal speeds will be
so high that the low Reynolds number approximation will not be satisfied anymore. From
the speed solution obtained in equation III.8b, we can calculate the maximum horizontal
speed. By injecting it in the Reynolds number expression Re = ρUh2

ηL
, we get its explicit

expression:

Re =
ρρggch

4

12η2L2
H(

L

σ
) (III.17)

where the function H is H(L
σ

) = L
σ
G(L

σ
)thL

σ
. We show in figure III.14 this expression as

a function of the channel depth h for different widths b and a fixed thickness c = 1 mm.
Two asymptotic regimes can be observed:

For “narrow” plates b << σ (∝ h3/2) we have H(L
σ

) ∼ 3, leading to a Reynolds number
proportional to h4 (dotted line in figure III.14):

Reb<σ ∝ h4 (III.18)

For “wide” plates b >> σ (∝ h3/2), H(L
σ

) reduces to L
σ
, hence we have (dashed line in

figure III.14):

Reb>σ ∝ h5/2 (III.19)

Our model is based on a low Reynolds number assumption (region below the horizon-
tal solid black line in figure III.14). In our experiments, the worst scenario (where the
Reynolds number is highest) corresponds to the thickest and most narrow plate (c = 1 mm
and b = 6 mm, red curve in figure III.14), for which we indeed have Re . 1 (given that
we have fixed h = 160 μm). All other plates have smaller Reynolds number (Re ≤ 0.3),
validating our assumption of viscous scenario.
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Figure III.14 – Reynolds number as a function of channel depth h as predicted by equation
III.17 . Thickness is fixed to c = 1 mm (corresponding to our thickest plates, hence highest
experimental Re numbers) and three plates of width b ∈ [6, 12, 24] mm, as indicated with
colors. The dashed black line shows asymptotic behavior h5/2 described in equation III.19
for “wide plates” (also corresponding to shallow crenels). The dotted black line shows
asymptotic behavior h4 predicted in equation III.18 for “narrow” plates (corresponding
here to deep crenels).
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5 Switching roles: the texture patterned on the slider

We thank Steffen Hardt and Tobias Baier for enlightening discussions concerning this
section.

5.1 Experimental set-up

For heavier plates or deeper textures, we expect to switch to a regime where inertial effects
can dominate viscous ones. To generate movement, inertial thrust need a surface upon
which to exert pressure: a role in our case played by the walls of the herringbone pattern.
If walls are bound to the air levitating table we do not expect anything to happen. Since
forces are in the range of µN , table’s weight would be too big to move. Conversely, if
walls are anchored to a light glass lamella, we see the textured slider move in the opposite
direction compared to the one observed up to now, as shown in figure III.15:

Figure III.15 – Chronophotography of a textured slider of width b = 12 mm, length
a = 30 mm and glass thickness c = 1160 μm moving on an air-hockey table. Herringbone
texture has been added to the lamellae by creating walls of depth h = 800 μm (resulting in
a total thickness of c+h = 1960 μm). For visibility reasons, we have highlighted in red one
of the channels of the slider. Plate levitates and moves due to air that is blown from the
underlying substrate through holes of same dimension as previously (pitch p = 400 μm,
radius r = 100 μm). Each image is separated by 0.2 s. Movement takes place in the
opposite direction than for viscous entrainment.

This experiment could be viewed as similar to the previous situations. However, a
slight difference dwells on the fact that air was previously injected from the bottom of the
channels. Now, we blow air onto the whole textured slider, in particular also on the walls.
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As a consequence, it is more difficult to make the slider raze to the ground, hence needing
higher pressure to start levitation and allowing secondary symmetric flows to exist.

In order to create a texture on the slider, we tried several techniques:
(i) we first engraved on a plexiglass lamella the texture with the laser cutter. However,

we faced a main problem since the plate bends after engraving the pattern (when the
texture was engraved on the air-hockey table this problem was avoided by fixing the
extremities of the plate to the substrate with screws, ensuring perfect horizontality).

(ii) we then tried 3D-printing technology (Fortus 250mc printer). The technology is
Fused Deposition Modeling (FDM) where objects are produced by extruding material
which harden immediately to form layers. A thermoplastic filament that is wound on a
coil is unreeled to supply material to an extrusion nozzle head. The nozzle head heats the
material and turns the flow on and off. The nozzle can be moved in both horizontal and
vertical directions by a numerically controlled mechanism. The object is built bottom
up, one layer at a time following the designed 3D pattern (see figure III.16). The highest
resolution we could get using acrylonitrile butadiene styrene as construction material
(ABS-P430) did not allow us to make walls thinner than 350 μm, that is, too large. In
addition, the final surface was too rough, generating high solid friction against the air
blowing substrate.

Figure III.16 – 3D image of herringbone slider designed with Computer Assisted Concep-
tion software (Catiar). The solid body has a thickness c = 1 mm, a width b = 12 mm
and a length a = 30 mm. A herringbone texture of height h = 800 μm is added on the
bottom.

(iii) we finally followed a two steps method based on creating a negative stamp of our
brass herringbones (see [14] for additional information). A mixture (10:1 in weight) of
Polydimethylsiloxane (PDMS, a liquid organosilicon compound) and cross linking agent
RTV-Silicone (Room Temperature Vulcanizing silicone) is poured over the master mould
(namely the brass herringbone) and placed in a furnace at 70 ◦C for 1 hour. Once the
PDMS is hardened, we obtain a negative replica of our master mould. We recreate the
initial texture by pouring UV curing optical adhesive (NOA-61)2 in the PDMS mould.

2NOA-61 is designed to give the best possible bond to glass surfaces and may be polished after curing.
To cure these optical adhesives, they must be exposed to UV light. Recommended energy required for
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After recovering it with a glass lamella of dimension a x b x c, we expose it for 30 s under
an UV light of power 100 mW/cm2. As a consequence, we obtain a glass lamella of the
desired dimension on which walls are bond to the glass forming a herringbone texture.
With this technique, we avoid bending, thick walls and roughness problem previously
encountered.

5.2 Force measurements

We made a set of plates with different geometrical characteristics. Four widths were
generated: b ∈ [6, 12, 18, 24] mm. For each one, three glass thicknesses were produced:
c ∈ [160, 1160, 2160] μm. Lamellae length a was not varied and was set to 30 mm.
Regarding the herringbone texture, wall thickness was fixed to λ = 0.2 mm, spacing to
W = 1 mm and opening angle α to 45◦. Wall height varied in the range of h ∈ [150, 250,
400, 800, 1600] μm. With this set of 48 different plates, we measured the propulsion force
with the same method as previously used. Once again, air injected pressure was carefully
chosen: we start all experiments from no overpressure and keep increasing it until the
very first moment the textured plate starts to levitate (and move). We show in figure
III.17 this force as a function of wall height h for the whole set of sliders.
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Figure III.17 – Force of propulsion as a function of wall height h. Each color represent a
thickness c ∈ [160, 1160, 2160] μm. Each symbol represent a width b (circles for b = 6 mm,
triangles for b = 12 mm, diamonds for b = 18 mm, squares for b = 24 mm). Length a is
fixed to 30 mm and α = 45◦. For a given plate thickness c (i.e. a given color), each cluster
corresponds to a wall height h ∈ [150, 250, 400, 800, 1600] μm. Compared to previous
viscous entrained experiments, the propulsion direction is opposed, hence the negative
sign of F . Solid lines show best linear fit, as suggested by equation III.21. Each point is
an average of at least 5 measurements.

full cure is 3 J/cm2 in the range of 350 nm wavelength.
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In these experiments, the propulsion direction is opposed to the one observed when
the herringbone texture was patterned on the air blowing device. Experiments suggest a
linear dependency of the force as a function of wall height h and glass thickness c, and
width b seem to play little role.

A simple argument based on inertial scenario can be produced to qualitatively cap-
ture all these results. If we first focus on a single crenel as shown in figure III.18, the
underlying pressure has to compensate the weight of both the glass plate (ρgcg) and the
walls (ρNhg λ

W+λ
, where ρN is the density of NOA and the term λ

W+λ
takes into account

the surface density of walls). Assuming all the vertical momentum is transformed in hor-
izontal one, the same dynamic pressure acts on a surface area perpendicular to the plate
scaling as Wh (see red and blue surfaces in figure III.18).

h

W

Figure III.18 – Sketch of the flow in a single crenel. Dotted lines indicate air direction.
Solid arrows show the direction of the force resulting from the dynamic pressure acting
over the vertical colored surfaces. By symmetry, all (absolute) magnitudes are equal
between red and blue colors.

Total propelling force along the axis of symmetry is obtained by multiplying the pro-
jected force in a single crenel by the number of contributing channels N(α) ∼ a sinα

λ+W
.

Hence we get:

F ∼ (ρgc+ ρNh
λ

W + λ
)g ah sin 2α (III.20)

which is independent of b. For the sake of simplicity, the term corresponding to the weight
of NOA walls can be neglected. Indeed, the surface density of walls λ

W+λ
is small (around

10%), and we have usually h < c (except for very thin plates). Hence, the force is just
proportional to h:
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F ∼ ρgcg ah sin 2α (III.21)

This inertial argument allows us to qualitatively capture all experimental observations:
we see all the experimental points collapse in a single curve in figure III.19.
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Figure III.19 – Force of propulsion as a function of the theoretical expression expected from
equation III.20. The solid black line represents equation y = x. Each color correspond to
a lamella thickness. Markers are the same as the ones used in previous figures.

Deviation for shallow textures (first cluster of points for each color) In
the previous discussion (see section 4), we showed how the Reynolds number strongly
depends on the channel depth (as h5/2), in the viscous regime. In the case of our lamellae
geometries, we saw that viscous effects would dominate only up to h ≈ 200 μm. For
texture walls higher than that, inertial effects would take over. Since h ∈[150, 250, 400,
800, 1600], we are clearly in an inertial case for all our points excepted for h = 150 μm
(h = 250 μm is also discutable). That corresponds to the first cluster of points of each
color curve in figure III.17 and III.19. We expect a smaller force where both inertia and
viscous effects (opposing inertial effects) are comparable. This effect is less visible for the
thickest plate (green points): weight is so large that we need strong airflows to generate
levitation, so that inertia completely dominates, regardless of height h.
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6 Conclusion

All this work, based on air levitated objects, confirms the propelling viscous entrainment
scenario discussed in the case of Leidenfrost textures. We have seen how this “cold Leiden-
frost” setup overcomes the problem of high temperatures and deformable interfaces. An
analytical model has paved the way to new geometries. Given that we can freely increase
the air injection, we were able to explore the effect of heavier sliders or deeper textures
(this time engraved on the slider itself). As a consequence, a whole new propelling mech-
anism based on an inertial scenario was found, and observed to reverse the direction of
propulsion.

Although these two regimes (low versus high Reynolds number) are based on different
physical mechanisms (viscous effects versus inertial ones) they surprisingly obey the same
scaling law for the force |F | ∼ ρgcg ah sin 2α. This is somehow explained by the fact that
we experimentally chose to impose the same pressure in both regimes, that is, the one
exactly compensating the objects weight. Since flow onset is pressure governed, it is not
so surprising to find same scaling.

Inertial propulsion has open multitude of new questions that are currently being under
study in the lab (PhD of Hélène de Maleprade). A first one would be to produce a
quantitative analytical model for the inertial regime taking into account the geometrical
parameters of the porous plate (as done when textures were engraved on the air blowing
table) - hence involving the external imposed overpressure ∆P . The question of special
friction would lead to the study of terminal speed of these objects and would require a
new set up allowing to reach such velocities. All our experiments have been made with
air as the injected liquid/gas phase. It will be mostly interesting to change the nature of
the entraining material (hence probing the role of viscosity η) by replacing air by a liquid
such as water. Another interesting question concerns the regime of Re ≈ 1, where both
viscosity and inertia are comparable. Would it be possible (at small airflow injection) to
entrain by viscosity the slider in one direction and make it propel in the opposite direction
(at higher airflow injection)?

This experiment shows that provided we satisfy the main ingredients to achieve self-
propulsion (i.e. gas rectification, break of symmetry), we can imagine a new zoology of
self-propelling devices. More generally, the herringbone geometry was discussed in a wide
range of different domains and applications. It was recently used in microfluidic channels
for mixing liquids [109]. It has been widely used in gear technology in order to smoothly
transfer power (the logo of the car maker Citroën is a graphic representation of a herring-
bone gear, reflecting French André Citroën’s earlier involvement in the manufacture of
these gears). Finally, this pattern, greatly used in artwork, can even be found in ancient
Bactria back in time as far as 5000 years ago. Astonishing objects as the hairpin shown
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in figure III.20 already displayed almost all explored textures of this chapter: herring-
bones, herringbone sections facing each other and in the center a windmill texture! With
our current manufacturing techniques (easier, faster and cheaper), we should be highly
encouraged to search for new geometrical patterns.

Figure III.20 – Bactria hairpin, open work, bronze. We can observe in the middle a
windmill pattern and, circling it, a herringbone loop.



Chapter IV

Drop impacting a sieve

Contents
1 Impact on a solid plate: a brief review . . . . . . . . . . . . . . 114

1.1 Maximal impacting radius . . . . . . . . . . . . . . . . . . . . . 115

1.2 Drop shape profile . . . . . . . . . . . . . . . . . . . . . . . . . 117

2 Impact on a plate with a single hole . . . . . . . . . . . . . . . 120

2.1 Critical speed V ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.2 Role of plate thickness . . . . . . . . . . . . . . . . . . . . . . . 123

2.3 Several time scales . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.4 Transmitted mass . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2.5 Final comment . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3 The Leidenfrost sieve . . . . . . . . . . . . . . . . . . . . . . . . 128

3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . 128

3.2 Transmitted mass . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.3 A deformable interface . . . . . . . . . . . . . . . . . . . . . . . 132

3.4 Splash pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Exploring different meshes . . . . . . . . . . . . . . . . . . . . . 139

4.1 Role of wetting conditions . . . . . . . . . . . . . . . . . . . . . 140

4.2 Role of hole size r . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3 A single curve? . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4 Pinch-off time versus crash time . . . . . . . . . . . . . . . . . 144

5 Conclusion and open questions . . . . . . . . . . . . . . . . . . 145

In this chapter, section 4 was done in collaboration with Pr. Robert Cohen and Siddarth
Srinivasan.

113



114 CHAPTER IV. DROP IMPACTING A SIEVE

1 Impact on a solid plate: a brief review

A naive method to generate a non-wetting drop is simply to suppress its substrate. How-
ever, as a price to pay for such an easy method, nothing sustains the liquid anymore, which
is just a falling drop. By nature, this contactless state cannot be maintained and the glob-
ule will inevitably encounter a substrate at the end of its fall. In this chapter, we focus
on this catastrophic event: the impact of a drop. We focus on the interesting situation
of an impact on a mesh. A grid, that is, a mixture of holes and closings, is an interme-
diate case between a solid plate (i.e. a mesh with no holes) and no obstacle (a grid with
holes only). In order to remain as close as possible to a contactless situation, we consider
non-wetting sieves, either Leidenfrost or superhydrophobic. We privilege a qualitative de-
scription of this rich system, even if we also make at some point more quantitative models.

Impact of a drop on a solid substrate has been lately studied due to its ubiquity
in everyday life. For printing, coating or spraying, from pesticides to rain [26, 134], it is
essential to understand the collision mechanisms of a drop. This problem is more complex
than appears at first sight. We can decompose the whole impact process in four main
stages for a non-wetting substrate:

(i) at the very first moment of contact we have a singularity problem that arises many
questions regarding pressure and speed profiles [45], short time dynamics [44], compress-
ibility effects [119, 26, 79] or bubble entrapment [33, 116, 125, 117] among others,

(ii) a second spreading phase follows this early stage. Two main scenarii have then
been reported [95]: splashing at high speed [130, 100, 54, 132, 131, 106, 75, 123, 118] and
a strong deformation at contact at slower speed, [91],

(iii) after the drop spreads up to a maximum radius [24, 2], it eventually retracts due
to capillary forces,

(iv) depending on the wetting properties of the substrate, retraction can lead to sev-
eral scenarii such as equilibrium, rebound [6], or even singular jets [7].

Many other aspects have been, and are still, explored [134, 130]. Special attention has
been given to the influence of the substrate [122, 55, 123, 36, 72, 78, 80, 54], to the role
of the surrounding gas [132, 131, 75, 136, 106], or to the nature of the liquid (Newtonian,
shear thinning, polymeric [8]).

In what follows, we will focus on the spreading phase where neither splashing nor
jetting are present and where the surrounding gas can be neglected in the dynamics. We
will give particular attention to two key features: the maximal spreading radius, and the
height shape profile.
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1.1 Maximal impacting radius

We adopt here the description of Clanet and collaborators [24], who focused (among
others) on the maximal extension of an impinging drop - a question of practical importance
since it defines the mark made on a solid by such drops. Two regimes are discussed
according to the liquid viscosity:

Figure IV.1 – Impact of a water drop (2R0 = 2.5 mm, V0 = 0.83 m s−1) on a super-
hydrophobic surface. The drop spreads (image 2 and 3) until it reaches its maximal
diameter Dmax = 2Rmax. After a recoiling phase (image 4 to 6), a rebound (images 7
to 9) is observed, together with strong vibration. Time interval between the pictures:
2.7 ms. Figure from [24].

Low viscosity drops In the limit of low viscosity and low wettability (water on a
super-hydrophobic surface), the maximum radius Rmax of the drop was found to scale
as R0We0

1/4, where R0 is the drop’s radius before impact and We0 the so-called Weber
number. This dimensionless quantity compares kinetic and surface energy. For a drop
of radius R0, a liquid of surface tension γ and density ρ, and an impact velocity V0, the
Weber number is:

We0 =
ρV 2

0 R0

γ
(IV.1)

This scaling was found to hold on more wettable surfaces, and interpreted as resulting
from the equation of motion: during the shock the drop experiences an effective acceler-
ation g∗ ∼ V 2

0 /R0 (since it slows down from impact speed V0 to rest in a characteristic
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crashing time τ ∼ 2R0/V0), much more intense than the gravity field: g∗ flattens the
liquid and fixes its thickness to a capillary length where gravity field g is replaced by
deceleration g∗. Hence a thickness: `∗c ∼

√
γ
ρg∗

. Conservation of volume (R3
0 ∼ R2

max`
∗
c)

yields:

Rmax ∼ R0 We0
1/4 (IV.2)

Recent work by Tran et al. [122] extended this study to impacts on super heated
surfaces. Similar to static Leidenfrost drops, the impact behavior can be separated into
three regimes: contact boiling, gentle film boiling, and spraying film boiling. In the two
last regimes (both occurring when the surface temperature is higher than Leidenfrost
temperature TL), the maximum deformation displays universality (Rmax ∼ R0We0

2/5)
regardless of the variation in surface temperature and liquid’s properties. In the latter
situation, spreading is lubricated by a gas layer between the drop and the solid surface.
Tran and coworkers suggest that this steeper scaling law may be due to an extra driving
mechanism caused by the evaporating vapor radially shooting outwards and taking liquid
along.

Although equation IV.2 describes the experimental observations, it has been verified
for a small range of We numbers. S. Chandra and C. Avedisian [22] suggested another
scenario describing their measurements based on energy conservation: initial kinetic and
surface energy of the spherical drop 4πR2

0γ + 1
2

4πR3
0

3
V 2

0 is transformed after impact into
deformation 2γπR2

max.

High viscosity drops The case of more viscous liquids was also analyzed, and a
criterion for predicting if the spreading is limited by capillarity or by viscosity was derived.
Kinetic energy of the impinging drop (on the order of ρR3

0V
2

0 ) being dissipated by viscosity
during impact (and indeed there is no more any rebound), the associated energy scales as
η V0
hd
R3
max, hd being the thickness of the maximal drop. Together with volume conservation

(R3
0 ∼ R2

maxhd), this yields:

Rmax ∼ R0 Re0
1/5 (IV.3)

where the Reynolds number is Re0 = ρR0V0
η

([22, 90]).

Impact Parameter In order to differentiate between the inviscid case (P < 1) and
the viscous case (P > 1), an impact number P = We0/Re0

4/5 can be defined. The
transition between the capillary and the viscous regime is shown in figure IV.2, where the
dimensionless viscous extension Rmax/(R0 Re0

1/5) is plotted as a function of the impact
number P . The transition between the two regimes is very clear. It occurs around P = 1,
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Figure IV.2 – Dimensionless deformation of an impinging drop (where the maximal ex-
tension Rmax is normalized by the maximal deformation in the viscous regime R0 Re0

1/5),
as a function of the impact number P = We0/Re0

4/5. Two regimes are successively fol-
lowed, which corresponds to the capillary and viscous regimes (equations IV.2 and IV.3
respectively). The transition occurs around P = 1. Figure from [24].

as expected, since all the numerical coefficients were (experimentally) observed to be close
to unity. The capillary regime (P < 1) is likely to be observed at small velocities, for
small viscosities and large surface tension.

1.2 Drop shape profile

Lagubeau et al. [63] recently measured the drop shape during impact (over a solid surface)
using space-time-resolved Fourier Transform Profilometry technique (FTP). They observe
three distinct dynamical regimes of spreading for the time evolution of the film thickness
at the center of the drop hc(t), as shown in figure IV.3.

These three regimes have been theoretically and numerically described by Roisman
[96] and Eggers [45], and will be discussed below:

t < τ/2 The early time regime is a linear decrease corresponding to the free fall of
the top of the drop (black solid line in figure IV.3). The apex continues falling at speed
V0 until the pressure impact reaches the top of the drop (approximatively at τ/2).

τ/2 < t < tp We have an intermediate phase (red solid line in figure IV.3) where the
interface velocity −dhc

dt
decreases. In this regime, Eggers et al. [45] predicted a self-similar

solution for the surface profile based on a hyperbolic (inviscid and potential) flow solution:
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Figure IV.3 – Squares and left vertical axis: height hc of the top of the central point of
the drop surface as a function of time for We0 = 214 and Re0 = 2690. Circles and right
vertical axis: radius of expansion R(t) of the same drop. The solid line indicates the
free fall regime. Red curve is the best fit of hc(t) (equation IV.4) during the self-similar
regime from which H(0) and t0 are experimentally obtained. Black dashed-dotted line
corresponds to the final plateau height hp. Vertical dashed line is the crossing time tp
between the two previous regimes. Figure from [63].

h(w,t) = 2R0
τ2

(t+t0)2
H( w

V0(t+t0)
). Here w denotes the radial position in the drop and t0 is

an unknown parameter whose physical significance is the time it takes for the pressure
to decay and for the hyperbolic flow to establish: the flow at intermediate times is no
longer pressure driven. This theoretical prediction is in good agreement with experimental
measurements realized by Lagubeau et al. From the self-similar solution, we can deduce
the time evolution for the central height of the drop: hc(t) = h(w = 0, t).

hc(t) = 2R0
τ 2

(t+ t0)2
H(0) (IV.4)

We can get rid of t0 by re-expressing it in terms of the total drop volume1. We show
in red solid line in figure IV.3 the best fit of equation IV.4, from which the two unknown
parameters t0 and H(0) have been experimentally calculated by Lagubeau and coworkers:
t0 ≈ τ/2 and H(0) ≈ 1/2. For t = τ/2, this solution verifies hc(τ/2) = R0 ensuring height
continuity with the free fall regime.

t > tp At large time (black horizontal dashed-dotted line in figure IV.3), hc tends to
a plateau value hp (if the drop rebounds, this plateau naturally disappears). A viscous
boundary layer is found to grow from the substrate with a thickness scaling as hl(t) ∼

√
νt

1See [63] for proper calculation.
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(where ν = η/ρ is the kinematic viscosity). The asymptotic plateau film thickness hp is
obtained as the growing boundary layer meets the drop surface. The intersection of this
two thicknesses defines a new characteristic plateau time tp (vertical dashed line in figure
IV.3). For t >> tp, the equality hl(tp) = h(w,tp) scales as:

√
νtp ∼ R0

τ2

t2p
, hence:

tp ∼ τRe
1/5
0 (IV.5)

The theoretical prediction is again in good agreement with the observations by Lagubeau
et al. We see that tp scales as τ (where tp > τ) with a small dependance over the Re
number (power 1/5) and we always have tp > τ . For a millimetric water droplet, typical
Reynolds range around 1000 so that we have tp ∼ 4τ .
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2 Impact on a plate with a single hole

As first step towards the study of impacts on grids has been done by Lorenceau and
collaborators. They studied the configuration [77] of a plate of thickness e pierced with a
circular hole of radius r smaller than the drop and the capillary length (see figure IV.4).
This set up can be seen as a mixture of two opposite conditions: the hole allowing the
liquid to flow freely, the substrate forcing it to deviate.

2R
0

2r

e

Figure IV.4 – Set of pictures taken each 2 ms apart. Drop of radius R0 = 1.75 mm, hole
radius r = 450 μm, impact speed V0 = 70 cm/s, plate thickness e = 250 μm. Liquid
(silicone oil) is ejected from the surface and forms several droplets. Figure from [77].

2.1 Critical speed V ∗

In this problem, liquid inertia is always the driving force opposed by two forces: on the one
hand, viscous friction related to the crossing of the hole, and on the other hand, capillary
forces which oppose the formation of a liquid filament. To highlight the contribution of
these two forces, the natural parameters to consider are the Reynolds number and the
Weber number (associated to the hole dimension r and not to the drop radius R0), defined
as:

Re =
ρV0r

η
We =

ρV 2
0 r

γ
(IV.6a)

In both cases, there is a threshold velocity V ∗ above which inertia overcomes the
resisting forces and liquid passes through the hole. Lorenceau et al. focused on these two
numbers at the threshold velocity V ∗ and reported in figure IV.5 the variation of We∗ as a
function of Re∗ for various liquids and hole radii. Three regions can be observed in figure
IV.5:
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Figure IV.5 – Threshold velocity of capture: the Weber number at threshold is plotted as
a function of the Reynolds number at threshold. The data are obtained using a e = 250-
μm-thick plate, different hole radii, and various liquids (silicone oils of viscosity ranging
between 0.5 and 300 mPa s, ethanol, acetone, heptane, and water). The thin line is the
curve Re∗ (We∗ - 3.6) = 5.1 We∗, where the scaling comes from equation IV.7. Figure
from [77].

Low Re number: viscous-inertial regime In the limit of small Re, the viscous
force is dominant and it is responsible for the capture of the drop: this leads to a vertical
asymptote Re∗ ≈ 5 in figure IV.5.

Intermediate Re number For intermediate Re (5 < Re < 100), the two numbers
are observed to depend on each other. Both the capillary and the viscous forces play
a role. In the limit of very thin plates (e < r), the viscous force associated with the
crossing of the hole can be dimensionally written ηV0r (the velocity gradients taking
place on a size of order r). The capillary force opposing the formation of a liquid finger
scales as γr. Balancing these two forces with inertia gives an equation for the threshold:
ρV ∗ 2r2 ∼ ηV ∗r + γr. This yields:

Re∗ ∼ We∗

We∗ − 1
(IV.7)

where all the numerical coefficients have been ignored. An equation of the type IV.7 is
indeed found to describe fairly well the data in figure IV.5, where the equation Re∗(We∗−
3.6) = 5.1We∗ is drawn with a thin line.

Large Re number: capillary–inertial regime At large Re (Re > 100), the critical
Weber number is found to be constant, of about 3.5: the critical speed does not depend on
viscosity and is set by a balance between inertia (dynamic pressure 1/2ρV 2

0 ) and capillarity
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(resisting pressure γ/r). Hence a critical speed:

V ∗ =

√
2γ

ρr
(IV.8)

The We number can be re-expressed as We = ( V0
V ∗

)2. Therefore, the threshold condition
V0 = V ∗ is We = 1.

This speed threshold can be also interpreted in terms of speed of retraction of a liquid
finger. As explained by Taylor [114] for thin planar liquid sheets, the speed of retraction
is driven by capillary forces, scaling as 2πrγ in the case of a cylindrical geometry.

z(t)

2r

V
in

V(t)

2̟rγ

Figure IV.6 – Sketch of retracting liquid finger while liquid is injected at speed Vin from
the top in the opposite direction. Due to mass conservation, during retraction mass
accumulates forming a liquid blob.

By denoting z(t) the position of the bottom of the retracting extremity (where mass
is accumulating, see figure IV.6), we get the following equation of motion:

2πrγ =
d

dt
(M

dz

dt
) (IV.9)

Mass accumulated at the bottom end of the finger M , is equal to the mass previously
distributed in a cylinder of section πr2 (shaded in figure IV.6), hence M = ρπr2z(t).
Inserting the conservation of mass in the equation of motion yields:

d2z2

dt2
=

4γ

ρr
(IV.10)

Assuming finite speed and initial position z(0) = 0, we get after integration a speed
of retraction independent of time:
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V (t) = V ∗ (IV.11)

Clanet et al. [25] refined this model in order to explain the transition between dripping
and jetting. They take into account the possibility of vertical injected speed Vin (in
green in figure IV.6, in direction opposite to retraction). The equations are consequently
modified and we consider here the particular case where we can neglect gravitational forces
(a fair assumption if the mass accumulated has size negligible compared to the capillary
length). We have to add a dynamic pressure term ρπr2Vin(V (t) + Vin) to the equation of
motion IV.9, now becoming:

ρπr2Vin(
dz

dt
+ Vin) + 2πrγ =

d

dt
(M

dz

dt
) (IV.12)

The conservation of mass being now M = ρπr2(z(t) + Vint), we finally get2:

d2z2

dt2
+ 2Vint

d2z

dt2
+ 4V0

dz

dt
=

4γ

ρr
− 2V 2

in (IV.13)

Which has the following exact solution3:

V (t) = V ∗ − Vin (IV.14)

We see that if Vin = V ∗, we have V (t) = 0. In the case of a drop impacting a hole, Vin
is the impact speed V0. If Vin > V ∗, the speed Vej = −V (t) of the ejected liquid finger
becomes :

Vej = Vin − V ∗ (IV.15)

2.2 Role of plate thickness

In the same capillary–inertial regime, Lorenceau et al. also tested the influence of the plate
thickness e on the critical speed V ∗. They compared two plates of respective thickness 0.25
mm and 1.7 mm and found that the threshold of capture is weakly affected by thickness.
It was observed that the critical speed is slightly higher for a thicker plate, which can be
due to an additional viscous dissipation along the hole.

2If we take Vin=0, we get back to equation IV.10.
3To see more model refinements such as variable cylinder radius or role of gravity, see [25].
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2.3 Several time scales

This problem has a multitude of different time scales. Two of them are associated to
impact itself: the time of rebound Treb and the time τ it takes the drop to impact. A last
timescale concerns the liquid passing through the hole, namely the characteristic time
Tdes of destabilization of the liquid cylinder. In what follows we will discuss each time in
more detail.

Time of rebound: Treb

The impact of a water drop on a super-hydrophobic substrate (or on a Leidenfrost surface)
is generally followed by a rebound [52]. The restitution coefficient of the shock can be
very large (around 0.9), so that a drop can bounce many times before stopping [94]. A
rebound is possible because the kinetic energy of the impinging (non-viscous) drop can
be stored in deformation during impact. The contact time has been studied [93, 87] and
shown to scale4 as

√
ρR3

0/γ. This variation, independent of the impact velocity V0, can be
understood by considering (globally) the rebound as an oscillation: the drop is a spring
of stiffness γ and mass ρR3

0, which oscillates with a constant period:

Treb ∼

√
ρR3

0

γ
(IV.16)

For millimetric water droplets this time is typically 10 ms.

Time of finger destabilization: Tdes

In the capillary–inertial regime, the mechanism of transformation of a liquid cylinder
into droplets was explained by Plateau and Rayleigh more than a century ago. Surface
tension tends to minimize surface area, hence transforms cylinders into spheres. For a
liquid column of small viscosity, the destabilization takes place in a time Tdes obtained by
balancing inertia (on the order of ρr

T 2
des

) with capillarity (on the order of γ
r2
), which yields:

Tdes ∼

√
ρr3

γ
(IV.17)

It is interesting to see Tdes as the time to close a cavity of size r at the Culick speed
V ∗: Tdes ∼ r

V ∗
. Destabilization time Tdes has the same capillary-inertial nature than

the time of rebound Treb, hence a similar scaling law. The main difference dwells in the
characteristic length scale: destabilization occurs on a distance scaling as the hole radius
r, whereas rebound implies the drop radius R0. Since Treb/Tdis scales as

√
R3

0/r
3 and

4This rebound time has naturally the same scaling as the period of spontaneous oscillation of drops
(discussed in chapter I, section 2.3) since it is also based on inertia/capillarity balance.
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R0 > r we always have: Tdes < Treb. For holes ten times smaller than the drop size (which
is typically the case in our experiments), rebound is approximatively thirty times slower
than liquid filament destabilization.

Crash time: τ

The time of rebound Treb can also be compared to the time τ it takes for the drop to
crash. The apex of the drop has to cover a distance 2R0 at speed V0, so that τ can be
defined as:

τ =
2R0

V0

(IV.18)

We typically have R0 ≈ 10 r, hence τ > Tdes. For instance, a millimetric water drop
arriving at V0 = 1 m/s has a crash time of 1 ms. For a mesh with holes of size r ≈ 100 μm,
the destabilization time is Tdes ≈ 0.1 ms, which means that the liquid cylinder destabilizes
much faster (here 10 times faster) than it takes the drop to completely crash.

2.4 Transmitted mass

We suggest a simple scaling law giving the amount of liquid that passes through the hole.
The finger is being ejected at a typical speed Vej = V0−V ∗. The total transmitted volume
per unit time will scale as πr2Vej. We now have to discuss which is the right timescale over
which we have to integer this flow rate to access the transmitted mass. Three different
regimes can be considered regarding the ratio τ

Tdes
∼ 2R0

V0
V ∗

r
:

Tdes << τ

The liquid finger destabilizes faster than it takes for the drop to crash. The liquid
jet is permanently pinching off, we are in a kind of dripping regime. As a consequence,
the destabilization of the finger will not affect the amount of transmitted mass but only
its geometry5. Mass will be transmitted all along the crashing time τ , hence transmitted
mass mT scales as ρR0r

2(1 − V ∗

V0
), an increasing function of the impact speed V0. Its

saturation value mmax
T ∼ ρR0r

2 is naively the mass contained in a cylinder of surface area
πr2 and height 2R0, that is, the drop height. Rescaling by the initial drop mass m0 ∼ ρR3

0

we get:

5An asymptotic scenario can be proposed by taking an imaginary drop of infinite radius R0 (i.e. a
continuous jet), ensuring the condition τ > Tdes.
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mT

m0

∼ r2

R2
0

(1− V ∗

V0

) (IV.19)

Tdes >> τ

Liquid is injected through the hole during a time τ smaller than the time of destabiliza-
tion: the finger never pinches off. We form a liquid finger that will eventually stop falling
and retract owing to capillary forces (following the Culick/Taylor speed of retraction V ∗).
As a consequence, no mass will be transmitted. Hence, two conditions have to be satis-
fied in order to transmit liquid through a hole. First, we need the liquid to have enough
inertia to form a liquid finger (i.e. V0 > V ∗). Then the liquid has to pinch off (governed
by the Rayleigh-Plateau destabilization mechanism) and detach avoiding to be retracted
and recaptured due to capillary effects.

A marginal case: Tdes ∼ τ

A very particular situation is observed when Tdes ≈ τ where we observe a unique pinch-off
event. Several cases can be foreseen:

- if Tdes . τ the liquid finger will pinch off shortly before the end of the impact. After
this first pinch-off, even if the drop is still crashing (hence a small fraction of liquid still
being injected), liquid will retract before a second pinch-off happens. Even if this effect
is marginal, less mass will be transmitted and the correct time to be considered here is
Tdes.

- if Tdes & τ the liquid finger will pinch off shortly after the end of the impact. In a
situation where there is a downwards driving force (such as inertia or gravity), the liquid
finger can continue to fall and entrain supplementary liquid from the upper drop, increas-
ing the transmitted mass. We can even imagine a situation where the finger falls and
partially retracts before the first pinch-off occurs, the ultimate situation being a complete
retraction (i.e. Tdes >> τ , previously addressed).

In this context, Lorenceau et al. proposed an alternate model based on the pinch-off
time as characteristic timescale. The critical time should hence be the Rayleigh-Plateau
time Tdes (instead of τ). The arising scaling law gives: mt ∼ ρr3( V0

V ∗
− 1). Once rescaled

by the initial mass, it yields:

mT

m0

∼ r3

R3
0

(
V0

V ∗
− 1) (IV.20)

This second scenario predicts a transmitted mass increasing linearly with impact speed
that does not saturate for any value. We show in figure IV.7, experimental data from
Lorenceau et al.: transmitted mass (rescaled by ρr3) as a function of the normalized
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impact speed. The red region corresponds to a destabilization time faster than impact,
modeled by equation IV.19 (red line) and capturing the steep slope for V0 ∼ V ∗. The blue
region corresponds to the case where pinch-off time dominates. It is modeled by equation
IV.20 (blue line). A fair agreement is observed with the data.
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Figure IV.7 – Volume of ejected liquid (rescaled by ρr3) as a function of the ratio V0/V
∗

for different radii. Red and blue lines show equation IV.19 and IV.20, respectively. Data
extracted from [77].

2.5 Final comment

The study of drop impacting a plate with a single hole shows that the key timescale in this
problem is the crashing time τ ≈ 1 ms. Indeed, we have seen that rebound phenomenon
is to slow (characteristic time typically on the order of 10 ms) to play any role and
destabilization of liquid filament into droplets (characteristic time typically on the order
of 0.1 ms) only modifies the shape of the enveloppe of passing liquid (but not its amount).

Nonetheless, marginal situations (where τ is not anymore the key time) can be observed
by playing with the other timescales of the problem: Treb and Tdes. A whole new (and
quite complex) zoology of regimes can be discussed. For instance, for low We numbers
(where capillarity dominantes inertia) and non wetting plates, we can imagine that a
drop will bounce faster than it crashes (Treb < τ), hence the limiting time now being Treb.
As a direct consequence, we expect an amount of transmitted mass lower than the one
predicted by our previous scaling law.
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3 The Leidenfrost sieve

We now have all elements to study impacts on a grid. After discussing the experimental
details of our set-up, we wonder how much liquid we can grate through a sieve. A scaling
law will allow us to qualitatively predict the amount of transferred mass. A more refined
analytical model will lead us to focus on the deformation of the drop during impact due
to horizontal evacuation of the liquid: as a consequence, we observe an increase in the
section through which liquid is transferred and an ejection speed decrease at the end of
the crash. We finally discuss how lateral spreading plays a role in the formation of a cone
of ejected droplets.

3.1 Experimental set-up

We study in this section the impact of a drop on a Leidenfrost grid. We use a mesh
of plain-woven brass wires of diameter d = 0.17 mm and square holes of lateral size
l = 0.37 mm (see figure IV.16a). The corresponding surface fraction of square holes is
φ = l2

(l+d)2
= 47%. Since liquid avoids corners (where curvature is high), we assume that

liquid ejected from this square holes will have a circular shape. The associated character-
istic radius6 is r = l/2 ≈ 0.19 mm, which yields a slightly smaller surface fraction for the
circular holes: φ∗ = π

4
φ.

We avoid all wetting phenomenas by heating the mesh to the Leidenfrost state. We
qualitatively control the mesh temperature by heating it with a Bunsen burner until it
reaches red-hot metal. To avoid any perturbation of the flame, we turn it off just before
the drop impacts the grid. A simple argument allows us to estimate the proportion of
mass loss due to evaporation. During an impact of characteristic time τ ∼ 2R0/V0, we get
an evaporated mass scaling as δm ∼ ρSeceτ , where Se denotes the surface of evaporation
- scaling as (1 − φ) R2

0 - and ce denotes the speed of evaporation. Normalized by the
initial mass of the drop, we get δm/m0 ∼ (1− φ)ce/V0. For impact speeds of several m/s
and typical evaporation speed ce of 10 cm/s we get a loss of a few percent, allowing us
to neglect mass losses due to evaporation. We can also try to estimate the thickness of
the insulating layer around a hot wire using the classical Leidenfrost thickness equation
(seen in Chapter I, section 2.2, equation I.18). The squeezing pressure will be the one
generated by capillarity (γ/r, where 1/r is the local curvature radius of the liquid finger)
and the characteristic escaping length scale will be d. As consequence, we expect typical
local vapor thickness eL of several tens of μm, slightly thinner than the vapor film beneath

6This hole length is slightly smaller than the one studied by Lorenceau and coworkers where their
biggest hole was r ≈ 0.5 mm.
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a Leidenfrost puddle. As a consequence of the presence of this vapor film, the surface
area through which liquid is injected becomes smaller. The corresponding critical speed
should now be V ∗ =

√
2γ

ρ(r−eL)
. Since r/eL << 1, the change in critical speed remains

small (within measurement scattering): in what follows, we keep the definition of the
critical speed unchanged (i.e. defined without eL).
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α

Figure IV.8 – Side view of a drop of radius R0 = 1.9 mm impacting a hot grid at speed
V0 = 1.6 m/s. First image is used to define origin of time as being the first moment the
bottom of the drop touches the grid. Second and third images represent the time it takes
for the drop to crash: τ = 2R0/V0. This time being larger than the Rayleigh-Plateau
time, liquid filaments destabilize in tiny droplets. On the last image, there is no vertical
momentum at the upper part of the mesh and no mass is transmitted. Grated droplets
fall conserving their momentum and form a cone of angle α. Image are separated by 2
ms.

Drops in this study are formed by means of a syringe and a needle (internal diam-
eter dint = 1.16 mm, external diameter dext = 1.7 mm), which provides a drop radius
R0 = 1.9 mm. The syringe is fixed to a vertical beam and its height varies as to generate
different impact speeds V0 ranging between typically 0.5 m/s to 5 m/s. We record the
impact from the side with a fast camera (typical frame rate 10000 fps), using backlighting
to enhance contrast.

A typical impact is shown in figure IV.8 where we observe that part of the liquid
passes through the sieve while the rest remains on top. On the upper part of the grid,
everything happens as if we had an impact on a non-wetting substrate: we first see a
spreading phase (together with liquid passing through the holes), followed by a recoiling
phase (were mass is conserved) and a rebound (not shown on figure IV.8). On the lower
part of the grid, we observe liquid filaments with a radius comparable to the size of the
holes, which quickly destabilize in tiny droplets. They form a very well defined 3D cone
characterized by an angle α (see figure IV.8).
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3.2 Transmitted mass

Experiments

As previously stated, drops hitting the grid have only two possibilities: they pass through
the holes, or they are stopped and horizontally redirected. We measure the transmitted
mass by positioning a plastic sheet parallel to the grid at approximatively 10 cm below it.
By this means, we harvest immediately after impact the transmitted droplets and weight
them with a high precision scale. We repeat this experiment for each falling height (hence
several impact speeds V0).
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Figure IV.9 – (a) Percentage of transmitted mass as a function of impact speed normalized
by the inertio-capillary speed V ∗ = 0.65 m/s. The solid blue line is equation IV.21
multiplied by a factor 3/2. (b) Sketch of drop at initial time t = 0. Since drop falls at
speed V0, slice at position z will reach the mesh at t = z/V0. Pythagorus theorem yields
the expression of w(t) as a function of time, initial speed and drop radius.

We show in figure IV.9a the transmitted mass fraction mT/m0 (m0 = 4/3πR3
0 being

the initial mass of the liquid) as a function of impact speed. Three regimes are clearly
visible:

(i) for V0 < V∗, the drop has not enough inertia to overcome capillary forces (Vej < 0),
hence even if small filaments transiently sag into the holes, they retract and no mass is
transmitted (mT = 0),

(ii) just above V ∗, we observe a fast increase of transmitted mass,
(iii) for V0 >> V∗, we get a saturation value below mT/m0 = 1.
In order to better understand these observations, we need to specify and compare

the value of all the different timescales. Since drop radius R0 = 1.9 mm and hole size
r = 0.19 mm are fixed, we get: Tdes ≈ 0.3 ms, Treb ≈ 10 ms and τ ∈ [1,10] ms (in our
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range of impact speeds). Liquid cylinder destabilization being much faster than the crash
time τ > Tdes, the characteristic time to be considered to calculate the transmitted mass
is τ (as discussed in section 2.5).

Crash time being always smaller than the rebound time, we can ignore bouncing
effects. In addition, Reynolds number ranges between 100 and 2000 (validating the inertia-
dominated assumption), and Weber number ranges from 0.5 up to 100.

Scaling law

To explain these behaviors we suggest the following simple scaling law. For V0 > V ∗, we
expect the flow rate through a single hole to scale as r2(V0 − V ∗). By multiplying this
flow by the number of holes N (scaling itself as φR2

0/r
2) and the crash time τ = 2R0/V0,

we get for the total transmitted volume: Ω ∼ φR3
0
V0−V ∗
V0

. As a consequence, the fraction
of transmitted mass scales as:

mT

m0

∼ φ (1− V ∗

V0

) (IV.21)

We show in figure IV.9a that equation IV.21 is in very good agreement with the data,
provided we chose a numerical factor of 3/2. Indeed:

(i) equation IV.21 is defined only above V ∗,
(ii) it predicts a local slope dmT

dV0
= φV

∗

V 2
0
. This slope rapidly decreases (as 1/(V0

V
)2),

hence being maximum for V0 = V ∗, which explains the fast increase of transferred mass
just above V ∗,

(iii) for high impact speed V0, it predicts a saturation towards mT/m0 ∼ φ < 1.

Analytical model

We now move a step further, and produce an analytical model. We adapt the equation
giving the transmitted mass through a single hole (equation IV.19) by imagining the drop
as being a vertical assembly of discs of radius w(t) and thickness dz (see figure IV.9b).
Each slice arrives onto the grid at speed Vin. Since Vej = Vin − V ∗, the flow rate through
a single hole is πr2Vej. Mass is transferred through N(t) = πw2

(2r+d)2
= π

4
w2

r2
φ holes. Factor

π
4
reflects the fact that even though our holes are square, mass is transmitted through

cylinders, hence not filling all the available space.
Total mass is calculated by integration over the crash time τ , hence:

mT = φ∗ ρ

∫ τ

0

Vej(t) πw
2(t)dt (IV.22)

For instance, if we assume the drop does not deform and remains perfectly spherical
during impact, we have Vej = V0 − V ∗ independent of time. From Pythagorus theorem
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(applied to the triangle described by red arrows in figure IV.9b), we get: w2(t) = 2R0V0t−
(V0t)

2 = V 2
0 (t τ − t2). Hence: ∫ τ

0

πw2(t)dt =
4πR3

0

3

1

V0

(IV.23)

and

mT

m0

= φ∗ (1− V ∗

V0

) (IV.24)

We retrieve the same scaling as predicted by equation IV.21. In addition, this analyt-
ical model gives a geometrical prefactor equal to unity. However, equation IV.24 assumes
the drop remains spherical during all impact time. Hence, this would be close to the case
of hole surface fraction close to unity (almost no obstacle), which is not the case in our
experiment. We conclude that the experimental higher prefactor (of 3/2) arises from the
deformation of the interface at impact.

3.3 A deformable interface

For low mass transfer, falling liquid has to be strongly evacuated in the horizontal direc-
tion, resulting in the deformation of the drop’s interface. The lower the transferred mass,
the closer we are to a situation of impact on a solid plate. We try here to explore the
consequences of this deformation and its effect on the transmitted mass. To do so, we
focus on the speed of ejection Vej(t) and the spreading radius w(t), two time-dependent
quantities integrated over time to obtain the transferred mass (equation IV.22).

Speed profiles

Experimental observations In order to access the different speeds of the problem,
we extract from each frame of impact movies the vertical line of pixels that passes through
the axis of symmetry of the drop. We then horizontally concatenate them, resulting in
an image (commonly called “reslice”) where x-axis represents time and y-axis represents
vertical distance. Typical curves are shown in figure IV.10. We can deduce speed as
the local slope (schematically represented in green or red in figure IV.10). To increase
accuracy, we developed a Matlab routine to access impact speed V0 at the exact moment
when the bottom of the drop first touches the grid, (which defines the time origin t = 0).

We observe two regimes depending on the impact speed: (i) for V0 < V ∗ (left image
in figure IV.10), no liquid passes through the hole, hence Vej = 0, (ii) for V0 > V ∗ (center
and right image in figure IV.10), we first have Vej ≈ V0 and then we observe a decrease
in time of the ejection speed (shown by a slope decrease in figure IV.10).
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Figure IV.10 – Spatiotemporal diagram for drops impacting a sieve. (Left) Inertia is not
strong enough to overcome capillary effects, hence no liquid passes below the grid (placed
at z = 0). Local slope in green gives impact speed V0. (Center) Inertial and capillary
forces are comparable. In red, trajectory of ejected droplets whose slope is Vej. As time
goes on, from t = 0 to t = τ ∼ 2R0/V0, we see this speed decrease. (Right) Inertial
regime. Speed Vej of ejected daughter droplets is almost the same than V0 the mother
one.

The limit case: impact on a solid plate As observed, smaller transferred mass
implies stronger speed decrease. The asymptotic limit (almost no mass transferred) was
described by Lagubeau et al. for an impact on a solid plate. We deduce the injection speed
Vin from the speed of the apex of the drop hc(t) (equation IV.4): Vin = Vc(t) = d hc(t)

dt
.

Finally, we get:

Vin(t) =



V0 if t < τ/2

V0
1

( t
τ

+ 1
2

)3
if t > τ/2

0 if t > tp

(IV.25)

We represent equation IV.25 in figure IV.11 where speed profile of the apex of the
drop (rescaled by the critical speed V ∗ for a hole of size r = 190 μm) is a function of
normalized time for different impact speeds V0 = 0.9; 1.4; 1.9; 2.4; 2.9 and 3.4 m/s, and
for a drop radius R0 = 1.9 mm.

These speed variations teach us that even if Vin is initially above the critical speed
V ∗, it eventually goes below it before the end of the crash. The moment at which liquid
stops to flow through the hole is denoted as ts. Its expression is given by the condition
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Figure IV.11 – Representation of equation IV.25: speed of the apex of an impacting drop
on a plain solid (rescaled by the critical speed V ∗ for a hole of size r = 190 μm) as a
function of normalized time for impact speeds V0 = 0.9; 1.4; 1.9; 2.4 and 2.9 m/s. Circles
on the red horizontal line shows for each curve the moment when the speed of injection is
not strong enough to pass through the hole. Since in this case tp/τ & 4.5, tp is not visible
in the figure.

Vin(ts) = V ∗, which yields:

ts = τ [(
V0

V ∗
)1/3 − 1

2
] (IV.26)

We indicate ts in figure IV.11 for different impact speeds (circles on red horizontal
solid line).

Although this model describes the decrease of vertical speed observed for drops im-
pacting a solid plate, we assume that the same physical ingredients remain qualitatively
unchanged for the case of pierced plates.

Transfer section

Another quantity varying with time during impact is the horizontal distance by which
mass is injected. Owing to lateral deformation of the drop, we expect a transfer surface
greater that πR2

0, as shown in figure IV.12 where the red horizontal arrow denotes the
maximum real surface πw2

max through which mass is transmitted.
We expect w(t) to vary from 0 to wmax during impact, where wmax cannot exceed

the maximal spreading radius Rmax discussed in section 1.1. Although we have not done
any quantitative measurements, we observe that wmax is a function of transferred mass.
For high mass transfer, almost no liquid is horizontally evacuated, hence there is almost
no lateral spreading and we have: wmax ≈ R0. For low mass transfer, liquid has to be
horizontally redirected and we expect wmax to be a fraction of Rmax.
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Figure IV.12 – Chronophotography (image superposition) of drop of radius R0 ≈ 2 mm
impacting a grid at V0 = 1.6 m/s. Red symbols show that mass is transmitted through a
surface πw2

max larger than πR2
0.

We experimentally observe that wmax can be as high as 3/2R0. Since transferred mass
depends on the square of wmax, this corresponds to an increase of mass as high as a factor
2, justifying that the geometrical prefactor obtained experimentally can be higher than
predicted with a perfect spherical assumption.

The mesh: a mixture in between a hole and a solid plate

Previous discussions on speed profiles and transfer section were mainly based on the
study of two known asymptotic situations: almost no transferred mass (modeled by an
impact on a solid plate), and high transferred mass (modeled by almost no obstacle).
Even though they qualitatively explain the speed decrease and the lateral increase of
transferred section, we would need an analytical solution for the shape and speed profile
in this intermediate case in order to correctly model the transferred mass. A good starting
point would be to adapt and extend the hyperbolic solution proposed by Eggers et al. to
the particular case of the grid.

3.4 Splash pattern

Another measurable quantity characterizing the impact is the angle α of the cone formed
by the passing droplets. We show in figure IV.13 a series of chronophotography for differ-
ent impact speeds (obtained by adding all frames of an impact movie for a given speed).
We observe that the higher the impact speed, the wider the opening angle. More quanti-
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α

Figure IV.13 – Image set-up showing a chronophotography of the impact for different
speeds V0 = 0.4; 0.8; 1.1; 1.2; 1.6; 2.1; 2.5 and 3.1 m/s.

tatively, we show in figure IV.14a α as a function of impact speed V0.

To understand the origin of the opening cone, we first discuss the filament ejection
from a single hole. Since all the mass does not pass through the grid, liquid has to
be horizontally redirected. Hence, injected liquid has both a vertical and horizontal
component as sketched in figure IV.14b. The more the hole is off-centered from the axis
of symmetry, the stronger the accumulation of horizontal redirected mass and the larger
the horizontal component of the ejected liquid. As for the ejection cone, α is given by the
ejection angle of the outer holes of the transmitting surface (the farther away from the
center). As previously discussed, this transfer surface depends on impact speed V0: the
higher the impact speed, the the wider the transfer section, hence the larger the opening
angle α (this justifies the behavior observed in figure IV.13). In other words, we can see
the measure of the opening angle as an indirect measure of the maximal spreading radius!
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Figure IV.14 – (a) Ejection angle α as a function of normalized impact speed. (b) Sketch
describing liquid injection through the holes: the more the hole is off-centered, the stronger
the horizontal flow, and the horizontal ejection speed. In addition, al large α, the effective
cross section πr′2 (in blue) of ejected filaments becomes smaller.
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Other features can be deduced from splashing patterns. For instance, Katsuhiko Yo-
neta from Hokkaido studied in 1932 the diffraction pattern made by a drop falling on a
net [135]. He was struck by the regularity of the splash pattern analogous to the one
seen for a diffraction pattern of X-rays through a crystal. He showed that splash pattern
symmetry depends on the position of drop impact regarding mesh holes. He suggested
three categories regarding if the center of the drop impacted on the middle of a hole, on
the crossing of two fibers or on a combination of both. The different possible outcomes
are shown in figure IV.15. The dotted circles of the left side of each figure indicate the
initial size of the drop. If the volume of drop corresponds to circle n (on the left hand
side), the corresponding splash pattern consists of spots 1 to n (on the right hand side).
In our study we observed similar splash patterns. However, we were in the case where the
circular radius of the drop was much bigger than the grid hole spacing. Hence, our pat-
terns consisted on a multitude of spots splashed over a circular area, losing the memory
of the square symmetry of the grid (somehow showed by K. Yoneta in figure IV.15 for big
drop volumes).

A last comment can be made regarding the droplet sizes. We notice in figure IV.15c
that the outer spotted drops are smaller than the center ones (observation also made in
our experiments). This may be explained by the fact that, as the outer ejected filaments
made an angle α/2 with the vertical axis, the effective cross section of hole becomes
πr′2 = π(cos α

2
r)2 (in blue in figure IV.14b). As a consequence, ejected liquid finger has

a smaller section resulting in smaller daughter droplets (of typical length scale r′). For
instance, ejection of a filament with an angle α equal to π/2 will be twice smaller than if
ejected vertically.
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(a)

(b)

(c)

Figure IV.15 – Possible splash patterns (on a surface positioned below and parallel to the
mesh) showed by Katsuhiko Yoneta. (a) Odd pattern: the center of the drop impacts on
the center of a hole. (b) Even pattern: the center of the drop aligns on the intersecting
point of two fibers. (c) Combined pattern: the center of the drop impacts in a mixed
situation. For all figures, if the volume of the drop corresponds to circle n (on the left
hand side), the spots of splash pattern become spots numbered 1 to n (on the right hand
side). Figures from [135].
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4 Exploring different meshes

Work in this section was motivated and done in collaboration with Professor Robert Cohen
and Siddarth Srinivasan.

All our experiments were previously conducted with a unique Leidenfrost grid. Here,
we want to explore the role of different parameters such as the wetting properties of the
substrate or the role of the surface density φ of holes. The non-wetting state was formerly
generated by heating the mesh above the Leidenfrost point, and we did not really control
temperature or mass loss due to evaporation. In addition, meshes deformed due to thermal
expansion. To avoid these problems, we now generate contactless substrates by coating
the grids superhydrophobic.

(a)

2r = ld

(b)

Figure IV.16 – (a) Scanning electron microscopy image of a spray-coated stainless steel
mesh (d = 254 μm and r = 330 μmcorresponding to mesh C ′) which forms a surface with
hierarchical texture (scale bar: 200 μm). The sprayed textures have a diameter around
20 μm. Figure from [60]. (b) Surface roughness information: the mean thickness of the
superhydrophobic coating is found to be around ec ≈ 30 μm. Figure courtesy of Pr.
Robert Cohen.

We created a panel of different meshes described in table IV.1 and denoted A, B,
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C, D and J (previous brass Leidenfrost mesh is denoted as E). Meshes were provided
by the group of Robert Cohen: each one came in two samples of same geometry but
different wetting properties. The first sample made of stainless steel (McMaster-Carr)
is further on referred as “plain mesh”7. The second sample, elaborated from the same
grid, is coated superhydrophobic (referred as “SH mesh”, and identified by an apostrophe
sign). Coating was manufactured by Siddarth Srinivasan (from Robert Cohen group’s) by
spraying a PMMA and fluorodecyl POSS solution (low surface tension polymers) dissolved
in Asahiklin AK-225 (protocol similar to the one done in [60]). The result of this spray is
a thin coating of spherical structures of typical size 20 μm. The surface topography was
investigated and shown in figure IV.16b. The coating slightly modifies the geometrical
dimensions of the grid by increasing the wire diameter d and decreasing the hole radius r
- each approximatively by ec ≈ 30 μm. For grid E, we have three samples: plain sample
E, superhydrophobic sample E ′ and Leidenfrost sample EL (the one studied in previous
section).

Name Wire diameter Hole size φ = 1
(1+d/2r)2

D∗ = d+2r
d

Mesh #

d (μm) r (μm) (in−1)

A, A′ 343 407 0.495 3.73 22
B, B′ 140 229 0.586 4.27 42
C, C ′ 254 330 0.518 3.57 28
D, D′ 508 452 0.410 2.78 18

E, E ′, EL 170 190 0.477 3.24 46
J , J ′ 254 190 0.361 2.50 40

Table IV.1 – Table describing the geometrical properties of each mesh. Samples coated
superhydrophobic are marked with an apostrophe. Values in three last columns are de-
duced from the dimensions r and d. They provide different criteria to characterize the
meshes: φ is the surface fraction of square holes, D∗ is the dimensionless spacing ratio of
the texture, and the mesh number # represents the number of openings per (linear) inch.
Colors are respected in the following figures.

4.1 Role of wetting conditions

We show in figure IV.17 a comparison of transmitted mass for the same mesh E, E ′ and
EL (mesh number # 46) and different wetting properties. Even if they have a similar
physical behavior, we observe two main differences:

7Although there is a wide commercial choice of samples, we were not completely free to vary r and d
independently, hence the arbitrary choice of geometrical parameters.
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(i) the minimum critical speed for which mass is transferred is not the same (although
they remain comparable). The superhydrophobic grid has the lowest speed V ∗, then the
Leidenfrost grid has a higher one and finally the regular wetting grid has the highest
threshold speed,

(ii) for higher impact speeds the total amount of transferred liquid slightly differs. For
example, taking the superhydrophobic grid as reference and focusing on impact speed
V0 = 4 m/s, regular plate has an increased transfer of 20 % while Leidenfrost grid has a
decrease of 10%.
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Figure IV.17 – Percentage of transmitted mass a function of impact speed. Three different
wetting conditions are shown for the same mesh grid of wire size d = 0.17 mm and hole
size r = 0.19 mm (meshes E, E ′ and EL). The wetting brass mesh is denoted by “solid
dots”, the mesh treated superhydrophobic is denoted by “stars” and the Leidenfrost mesh
is denoted by “solid triangles”.

Previous remarks suggest the following explanations:
Square versus circular holes The first argument explaining the differences in liq-

uid transfer is based on the square geometry of the holes (of side length l, see figure
IV.16a). For a non-wetting mesh, we assumed that the surface through which liquid is
injected is circular with a surface area πr2, (where r = l/2), leading to a surface den-
sity φ∗ corresponding to circular holes. This is a fair assumption for non-wetting liquids
which avoid the corners generated by the crossing of two fibers - where local curvature is
high. For wetting liquids, the real area to take into account is based on square holes of
surface area equal to l2, to which corresponds the surface density φ. As a consequence, we
potentially get an increase in transmitted mass for wetting meshes up to φ

φ∗
= 4/π ≈ 1.3.

Coating thickness The wetting properties are modified by deposition of a small
coating of thickness ec (eL for Leidenfrost sieves) around each wire (which reduces the
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hole surface density). Taking into account this excluded thickness, the expression corre-
sponding to the new surface density φ′ is:

φ′ = φ∗ (1− ec
r

)2 (IV.27)

If we take ec ≈ 30 μm, we get φ′ ≈ 0.7φ∗, in agreement with the reduction of transmit-
ted mass experimentally observed (between regular and super-hydrophobic grids). The
same argument applies to the Leidenfrost sieve, suggesting that the vapor layer thickness
eL can even be greater than ec.

4.2 Role of hole size r

To probe the role of hole characteristic size r, we compare in figure IV.18 the transmitted
mass as a function of impact speed for meshes C and J which have same wire diameter
d = 254 μm (in shaded gray in table IV.1) and hole size r almost twice bigger for mesh C
(in red) than for mesh J (in dark green).
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Figure IV.18 – Percentage of transmitted mass a function of impact speed for mesh C
and C ′ in red, J and J ′ in dark green. “Solid dots” represent plain grids while “asterisks”
represent superhydrophobic ones.

We observe a higher transmitted mass and a lower threshold speed V ∗ for mesh C (in
red), as expected for bigger holes.

If we now focus on the difference between wetting and non-wetting properties, critical
speed V ∗ remains almost constant for grids with big holes (mesh # 28 in red in figure
IV.18). However, for small holes (mesh # 40 in dark green in figure IV.18), critical speed
V ∗ of non-wetting grid is lower compared to the wetting one (effect also slightly visible
in figure IV.17). As sketched in figure IV.19, this may be explained by the fact that the
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local shape of the liquid filament near its base depends on wetting conditions.

r
W

r
NW

Figure IV.19 – Sketch of filament shape near its base. For impact speed V0 ≈ V ∗, the
filament slightly penetrates the texture. If the mesh is non-wetting (in red), filament has
a size rNW at its base. If the mesh is wetting (in blue), filament has a size rW > rNW at
its base.

Indeed, we assume here that pinch-off occurs at the base of the filament for impact
speed V0 close to V ∗. If the mesh is wetting (situation in blue in figure IV.19), filament has
a size rW at its base. In the non-wetting situation (in red), filament has a size rNW < rW ,
facilitating the pinch-off and resulting in a lower critical speed V ∗.

4.3 A single curve?
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Figure IV.20 – Transferred mass as a function of impact speed, expected from scaling law
(equation IV.21). Blue solid line shows equation y = x. (a) Superhydrophobic meshes.
Mesh D′ (in cyan) shows a saturation for high impact speed, probably due to the fact that
we approach the marginal regime where τ ≈ Tdes (see section 2.4). (b) Regular wetting
grids.
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In this paragraph, we probe previous scaling (described in equation IV.21) by showing
in figure IV.20 the percentage of transmitted mass as a function of 1 − V ∗/V0. For all
superhydrophobic substrates (left figure), we see all data collapse close to the line of
equation y = x - validating our model. However, we can also notice a slight mismatch,
confirming the existence of marginal effects that stress the necessity to properly model
the deformation of the interface, itself depending on the transferred mass. As discussed in
section 4.1 (regarding wetting versus non-wetting effects), data for plain wetting textures
(figure IV.20b) is systematically above non-wetting experiments (figure IV.20a).

4.4 Pinch-off time versus crash time

As done for a single hole, we now compare in figure IV.21 the ratio of the crashing time
τ and the pinch-off time Tdes as a function of impact speed V0. We observe that all
our experiments are in the regime where pinch-off happens faster than the crash time
(τ/Tdes > 1), validating the choice of τ as the right timescale for the scaling argument.

However, meshes with big holes and small hole fraction φ (that is, meshes D and D′,
in cyan) are close to the regime τ/Tdes ≈ 1 for high impact speeds. If we look back to
figure IV.20, we indeed see a deviation for this mesh for high impact speed V0, suggesting
the apparition of new mechanisms, probably the ones described in section 2.4.

10

0
10

−1

10

0

10

1

10

2

V0 (m/s)

τ /Tdes

Figure IV.21 – Ratio between the crash time τ = 2R0/V0 and pinch-off time Tdes ∼√
ρr3/γ as a function of impact speed for each mesh (colors defined in table IV.1).
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5 Conclusion and open questions

We focused in this chapter on drops impacting a grid. Experiments helped us to qualita-
tively differentiate the mechanisms that play a key role when liquid has to chose between
flowing through a hole or being horizontally evacuated (when encountering a closing).
Two main parameters were discussed: (i) the capillary speed V ∗ of retraction of liquid
filaments forming through the holes, dictating if liquid has enough inertia to pass through
a hole or not, and (ii) the time over which mass is transmitted. Although the natural
time is the crash time τ , we can encounter marginal situations were the destabilization
time of the liquid fingers or even the rebound time are to be considered. It will be of great
interest to re-explore the experiment of an impact on a single hole (done by Lorenceau
et al.) and try to experimentally shed new light on these regimes. A naive scaling law
was deduced, qualitatively capturing the speed dependency of transferred mass. Since
we would need to be more quantitative to model the interface deformation of the drop, a
good starting point would possibly be to adapt the solution of a drop impacting a solid
plate produced by Eggers et al.

We also observed that ejected liquid was confined in a cone of angle α. All our grids
where thin, allowing the ejected liquid to be laterally deviated. An interesting question
would be to see the effect of thicker grids on the opening angle α.

Finally, we explored the role of wetting properties. In general, suppressing liquid-solid
contact greatly improves liquid mobility: we saw in previous chapters how tiny entrain-
ment forces were able to move levitating objects. Transposing this argument to the case
of drop impacts, we could have expected a greater transmitted mass for non wetting grids.
However, we experimentally observed the opposite effect, confirming our assumption that
viscous effects are negligible, even at relatively small length scales.

The only parameter that we have not varied is the drop radius R0. It is experimen-
tally difficult to vary drop size on a wide range. However, we conducted some preliminary
experiments with liquid jets impacting grids. Since this new system is at dynamic equi-
librium, it is a promising set up for better understanding the interaction of liquid with a
mesh.

Few studies are found in the literature regarding impacts on smaller holes. Yet, Brunet
et al. have tackled the problem of a superhydrophobic grid with holes of size r ≈ 5 μm
(a hundred times smaller than our experiments). For such small opening size, we should
expect relatively high critical speeds: V ∗ ≈ 6 m/s. However, they observed that mass is
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transmitted for speeds V0 up to 2 m/s, that is, three times smaller. Since We = ( V0
V ∗

)2,
this means that mass was unexpectedly transferred for low We numbers - around 0.1.
Similar behavior was also observed by Yarin and collaborators [70, 98] who focused on
drop impacting electrospun nano fiber membranes with several micrometer non-wettable
pores (porosity around 90 %). They also report transmitted mass for We smaller than
unity. The origin of the discrepancy between measured thresholds and predicted ones
remains unclear. However, above cited authors suggest a scenario based on collective ef-
fects leading to an additional pressure that contributes to make the liquid penetrate more
easily through the grid. For instance, Yarin et al. suggest an expression of the penetra-
tion speed for a single hole scaling as Vin ∼ V0

R0

r
based on a potential solution and liquid

incompressibility [70]. This scaling can be interpreted as the result of the accumulation
and channeling kinetic energy of a large mass of liquid through a narrow orifice.

Drop impacting a mesh can be seen as a simple set-up producing mono disperse sprays
of tiny droplet. For impacts where no mass is transferred (V0 . V ∗), the mesh can also be
seen as a tool for shaping drops. Indeed, recent work [76, 126] has shown how deformation
of a drop impacting on cleverly designed superhydrophobic surfaces can lead drops to
bounce from the surface with the distinct shape of a flat disc. This “pancake bouncing”
is due to the storing of capillary energy in shape deformation during spreading phase.
Before retraction sets in, it is restituted vertically into kinetic energy as sketched in figure
IV.22.

a b c

Figure IV.22 – Liu et al. [76] showed that a drop can lift-off from a surface before re-
traction sets in. This greatly reduces the contact time of the drop with the substrate.
(a) A spherical drop just before hitting the structured surface. (b) Spreading and re-
traction dynamics can be modeled as a Hooke spring in both the horizontal and vertical
directions. To decrease friction with the walls, the surface of the posts is coated with a
superhydrophobic layer (yellow). (c) Lift-off. Figure adapted from [126].

Our grids represent a new way to shape drops in a similar way. They have the added
advantage of having limited lateral walls and not having any bottom closings. Therefore,
they represent a perfect alternate system for studying pancake bouncing.
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Conversely, the situation of bigger holes (than studied here) has been recently ad-
dressed by de Jong and collaborators [32] who look at droplet impact near a millimeter-
size hole. They showed that the behavior of an impact near a closed pit greatly differs
from one on an open-ended pore. This should inspire further work focusing on the impact
of sealing the exiting section of our grids on the drop spreading dynamics.
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1 Compression waves

We discussed in previous chapter the spectacular impact figure of a drop hitting a mesh.
It was of particular interest to address two limit situations: the plain solid plate (i.e.
surface fraction of holes φ = 0), and the mesh with only holes (φ → 1 ). For an impact
on a solid plane, we saw that liquid had no other choice than to be completely deviated
horizontally. Hence, it is natural to think that the obstacle in this situation (that is, the
plate) endures the biggest impact force. In this chapter, we only focus on the impact force
of a drop on a solid substrate, a key quantity is soil erosion [26].

It is reasonable to assume that the heavier the drop, the stronger the impact force
F , so that the drop radius R and density ρ naturally arise as key parameters in the
study. However, as discussed in previous chapter IV, we have a geometrical singularity at
early stages of the impact. Indeed, if we zoom on the bottom part of the spherical drop
(see figure V.2), the interface is tangent to the substrate. Hence, the radial spreading of
the contact interface is infinite at early stages, generating huge pressures - called water
hammer pressures (denoted by Pwh). In what follows we discuss two different scenarios
regarding the compressibility in the liquid or in the surrounding air.

1.1 Water hammer in the liquid

Theoretical expression

If we focus in the liquid inside the drop and take into account compressibility effects we
will have right after impact a shock wave propagating upwards at the speed of sound
(denoted as c). This shock wave can be interpreted as the limit separating two domains
in the drop:

(i) upstream, where information that the drop has impacted arrived;
(ii) downstream where this information is still unknown.
Once the information has reached the whole drop (in a time 2R/c), compressible effects

vanish. This effect (also called hydraulic shock) commonly occurs when a valve suddenly
closes at the end of a pipeline system, and a pressure wave propagates in the pipe. In
the frame of the moving shock wave (as shown in figure V.1), we have again two regions
separated by the shock front:

(i) the bottom of the drop (in red in figure V.1), where liquid is at rest;
(ii) the top of the drop (in blue in figure V.1), where liquid is still falling at speed V .
Conservation of mass in the pipe leads to:

ρ1 = ρ2(1− V

c
) (V.1)
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Figure V.1 – Shock wave (in grey) moving at the speed of sound c in a pipe of section S.
In red, the bottom of the drop where liquid is at rest. In blue, the top of the drop where
liquid is still falling at speed V .

Since V << c, we assume ρ1 ≈ ρ2 ≈ ρ. We select a volume in the pipe of section S and
length L: fluid initially at speed V is stopped in a time L/c. Newton’s law gives the force
F needed to stop this volume : F ∼ ρ1 SL

V−0
L/c

. In terms of applied pressure, we can
write F = ∆P S so that denoting ∆P as Pwh we get:

Pwh ∼ ρV c (V.2)

Equation V.2 is generally referred to as the Joukowsky equation, but Tijsseling and
Anderson [119] pointed out that it was actually Von Kries [127] in 1883 who first derived
and validated it. In addition, Frizell (1898) and Allievi (1902) independently derived the
"Joukowsky equation" in pure theoretical studies. However, it is Rankine (1870) who had
already found the equation in the more general context of solids, thus preceding Kries
and Joukowsky1.

Although the scaling of water hammer pressure (equation V.2) does not predict the
geometrical prefactor, Engel et al. were able to indirectly measure it [46] and found it to
be around 0.2 (the same prefactor is also used in later works such as [83, 36]). Hence, we
can write:

Pwh ≈ 0.2 ρV c (V.3)

Equation V.3 gives typical water hammer pressures on the order of MPa - relatively
high pressures. The expression of speed of sound c can be obtained by using the conser-
vation of energy. Kinetic energy Ek = 1/2ρV 2 is transformed in potential energy through
compression (somehow like storing elastic energy in a spring that is being compressed)

1These equations of conservation (V.1, V.2) are also known as the Rankine–Hugoniot relations, de-
scribing the relationship between the states on both sides of a shock wave in a one-dimensional flow.
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Eel = 1/2β∆P 2, where β is the compressibility of the liquid. Balancing these energies
leads to: ∆P ∼

√
ρ
β
V . Replacing this pressure in the Joukowsky equation V.1 yields:

c =

√
1

ρβ
(V.4)

Taking spherical geometry into account

r

R

h(t)=Vt

dr/dt

c

Figure V.2 – Sketch of the early stage of drop impact on a solid substrate. The contact
line horizontally spreads at speed dr/dt (in blue) while the shock wave envelope moves at
speed c (in red). Contact line position r(t) is geometrically deduced from the impacting
speed and the drop radius: r(t) ≈

√
2RV t.

Previous shock model was based on a “cylindrical” drop impacting a solid plate (see
figure V.1). Although real drops are spherical, we can assume that this model is valid at
early times due to the geometrical singularity. Indeed, the position r(t) of the contact
line with the plate is fixed by the falling interface of the drop (see figure V.2). We can
be more quantitative by calculating the expression of r(t) at height h(t) = V t (V denotes
here the impact speed). Since we are only interested in the early stages of the impact,
r(t) =

√
R2 − (R− V t)2 can be rewritten as r(t) ≈

√
2RV t. Simple derivation leads to

the horizontal speed of the contact line (in blue in figure V.2):

dr

dt
≈
√
RV

2t
(V.5)

Right after impact (t = 0), the contact line spreads at infinite speed while the shock
wave envelope (in red in figure V.2) spreads at speed c. As discussed by Field and collab-
orators [71, 47], since the contact line speed decreases in time as

√
RV
2t
, it will eventually

be reached by the shock wave at time tc ∼ 2RV
c2

. As a consequence, compressibility effects
for a spherical drop last over a time scaling as tc, that is, a time V/c times shorter than
the time 2R/c previously discussed. Hence, typical shock waves last over a time on the
order of the nanosecond.

Maximum impacting force in this compressible regime is obtained by multiplying
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the water hammer pressure ρV c by the maximum area over which stress is applied:
πr2(tc) ≈ π(2RV

c
)2. The resulting force Fwh is found to scale as:

Fwh ∼ ρV 2R2V

c
(V.6)

If we put some numbers in this equation, a millimetric drop landing at several m/s
generates water hammer forces on the order of a tenth of a milinewton (ten times smaller
than the weight of the drop).

Recent experiments [117, 118] with a micro-second resolution and theoretical studies
[79] have shown that air discs can be entrapped under the center of the drop. As a
consequence, this will affect the singularity at the contact and thus the pressure and
impact force at very short time.

1.2 Water hammer in the surrounding air

Compressible effects in the surrounding air also play a key role in the impact mechanism.
Nagel and collaborators [132, 131, 106] have shown that splashing can be completely
suppressed by decreasing the pressure of the surrounding gas. Since liquid/solid contact
spreads horizontally at high speeds during early stages of impact, surrounding air is
put into motion at similar speeds, generating compression waves in air. The associated
pressure (referred as air hammer pressure in what follows) scales as: Pah ∼ ρaca

dr
dt

where
ρa and ca denote the air density and speed of sound in air, respectively (here, the second
characteristic speed to take into account is the lateral speed of the contact line, hence a
characteristic speed dr

dt
as shown in figure V.2). Using equation V.5, we get:

Pah ∼ ρaca

√
RV

2t
(V.7)

In [132, 131], Xu et al. have measured the threshold pressure at which a splash first
occurs and found it to scale with the molecular weight of the gas and the liquid viscosity.
They suggest a model where the air hammer pressure Pah balances capillary pressure Pγ in
the thin spreading lamella. This thickness is assumed to be the boundary layer thickness
(which is controlled by the diffusion of vorticity from the solid substrate), scaling as

√
νt,

where ν is the kinematic viscosity of the liquid (see figure V.3). Thus we have:

Pγ ∼
γ√
νt

(V.8)

Re-expressing the air density and speed of sound in air using the equation of state for
an ideal gas, we get: Pah ∼ PMa

kBT

√
κkBT
Ma

√
RV
2t

(where kB is the Boltzmann’s constant, T
the temperature, P the environing pressure, κ the adiabatic constant of the gas, and Ma
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dr/dt √νt

Figure V.3 – Sketch of the bottom of a drop at early stages of impact (by symmetry, we
only show the right half of the drop). A liquid lamella horizontally spreads at speed dr/dt.
Its thickness (controlled by the diffusion of vorticity from the solid substrate) grows as√
νt.

the molecular weight of gas). The ratio of these two pressures is independent of time:

Pah
Pγ
∼ P

√
κMaνRV

γ2kBT
(V.9)

Xu et al. suggest that when the two stresses are comparable, the expanding liquid
rim is slowly destabilized and deflected upwards for an extended period of time, finally
resulting in the ejection of droplets. Hence, equation V.9 predicts a non-intuitive result:
a more viscous liquid splashes more easily than a less viscous one, that is, the threshold
pressure should decrease if the liquid viscosity is raised (as experimentally observed).2

2 For more information on the splashing phenomena, other regimes have been observed for higher
liquid viscosities [131, 106] and numerical simulations have also been performed [75, 136].
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2 Measure of impact force with a piezo-electric quartz

We just saw how compressible effects generate the so-called water hammer effect, to which
corresponds high pressures, on the order of MPa. However, this phenomenon lasts over
extremely short times - namely several nanoseconds. As a consequence, the generated
forces (below the mN) are difficult to access experimentally. In this section, we focus only
on what happens after this early stage.

2.1 Experimental Results

Drops in this study are formed by means of a syringe and various needles, which provides
radii between 1 and 2 mm. The syringe is fixed to a vertical beam and its height can be
changed so as to generate impact speeds V from 20 cm/s to 6 m/s (close to the terminal
speed of middle-size raindrops). We record the impact from the side with a fast camera,
using backlighting to enhance contrast (figure V.4a).
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Figure V.4 – (a) Side view of a water drop of radius R = 1.3 mm hitting a piezoelectric
quartz at V = 3 m/s. Images are separated by 0.5 ms from which we extract the impact
velocity V . (b) Impact force F as a function of time for this experiment, measured by
a piezoelectric sensor. The origin of time is chosen at contact. Impingement typically
lasts 1 ms, of order 2R/V , the time needed for the drop to travel by its own diameter.
The curve is not symmetrical between the beginning and the end of the collision. The
maximum force F0 is reached after about a tenth of a millisecond.
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By this means, we access the impinging speed of the drop and can check the centering
of impacts. In order to control the impact position with a precision of more than 1 mm,
even for high falls, two perpendicular micrometric screws are placed between the syringe
and the beam.

The main specificity of this study dwells on the impulsive character of the event. A
first characteristic time is the “crashing time” 2R/V of the drop, typically 1 ms in our
experiments. We assume here that this time is smaller than the Rayleigh time of vibration
of the drop, which corresponds to typical impact velocities larger than 20 cm/s.

We measure the impact force with a piezoelectric quartz: an impact hammer, PCB
Piezotronics Model 086D80, is diverted from its normal usage and the signal is delivered
via a Kistler charge amplifier 5015A such as used in [83, 82, 97] with a cut-off frequency
of 10 kHz. The signal obtained after impact is recorded by a digital oscilloscope having
a time resolution3 on the order of 50 ms. We show in figure V.4b a typical profile of
the impact force as a function of time, for a water drop with R = 1.30 ± 0.02 mm,
ρ = 1000 kg/m3 and an impacting speed V = 3.00 ± 0.02 m/s. We observe that the
typical force (50 mN for millimetric water drops) is several orders of magnitude larger
than the one generated by water hammer pressure.
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Figure V.5 – (a) Maximum force F0 at impact as a function of the collision speed V
for Galinstan, an alloy of indium, gallium and stain. F0 is typically 300 mN, that is,
about 1000 times the weight of the drop. The dashed lines show equation V.10 without
any adjustable parameter. (b) F0 as a function of V for Galinstan and water at fixed
drop radius (R = 1.3 mm). Whatever the impact speed, forces differ by a factor 6,
approximately the ratio between the two liquid densities. Again, the dashed lines show
equation V.10.

From now on, F0 denotes the maximum force of impact measured on curves similar
3This resolution does not allow us to extract any information regarding air entrapment (mentioned in

[79, 117, 118]).
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to figure V.4b. In order to obtain a larger signal, even at modest speed or small radius,
we choose a liquid denser than water: an eutectic gallium–indium–stain alloy (Ga:In:Sn;
62:22:16 wt%) commonly called Galinstan [28] recently used for studying impact dy-
namics [133]. This liquid metal at ambient temperature is six times denser than water
(ρ = 6359 kg/m3) and has a viscosity of 2 mPa s, close to that of water. Repeating the
experiment of figure V.4b for different drops and impact speeds yields figure V.5a where
the maximum force F0 for Galinstan is plotted as a function of V for three radii. The typ-
ical value of F0 now becomes 300 mN, which corresponds to one thousand times the drop
weight. We observe that F0 evolves as V 2 (dotted lines in figure V.5a are parabolic fits in
log–log scale), a signature of the inertial nature of the collision. Hence, the liquid density
should also matter, and we compare in figure V.5b the function F0(V ) for Galinstan and
water, at a fixed radius R = 1.3 mm.

The parabolic behavior is independent of the liquid nature, and it is found that F0 is
6 times greater for Galinstan than for water at any impact speed, corresponding to the
density ratio between these two liquids. Studies in the 80s by Nearing [82, 83] and more
recently by Grinspan & Gnanamoorthy [97] obtained comparable results with water only
and on a much more narrow range of velocity, making it difficult to extract scaling laws
in velocity. In 2012, numerical and experimental studies performed by Mangili et al. [78]
produced different predictions for the force of impact. Our measurements are in good
agreement with their numerical simulations assuming potential flow theory.

2.2 Analytical calculation

According to these results, we propose a model based on an inertial scenario, as postulated
in [53]. During impact, the transmitted quantity is momentum: at a given time, a slice
of drop of height V dt, radius r(t) (that changes from 0 to R) and mass dm = ρπr2(t)V dt

decelerates from V to 0 in a time dt, which yields: F (t) = ρπr2(t)V 2. The maximum
impact force F0 is reached for r(t) = R. Hence we get:

F0 = πρR2V 2 (V.10)

This expression can be seen as a dynamic pressure ρV 2 applied over a surface area
πR2. It can also be understood as arising from the deceleration (from V to 0) of a mass
M = 4πρR3/3 in a time 2R/V . We can now calculate the ratio between the water
hammer force and the dynamic one: Fwh/F0 ∼ V/c ≈ 1/1000. As previously mentioned,
although water hammer pressures are extremely high, the surface over which they act is so
small that the resulting force is V/c times smaller than the one expected from a dynamic
pressure ρV 2 acting over a surface R2. When compared to experiments, equation V.10
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is observed (in dashed lines) to nicely fit the different data in figure V.5 without any
adjustable parameter.

2.3 The case of raindrops

We can think of exploiting this result to discuss how force measurements provide an
estimate of raindrops radii, a quantity of interest in meteorology where it is desired to
access the polydispersity of falling rain. In other words, understanding the force F0 may
allow us to deduce drop radii for a given liquid, providing a new kind of “disdrometer” –
namely, the device giving access to the size distribution of rain.

We assume that drops reach the sensor with their terminal velocity V0 [51, 92] for
which inertial friction in air balances liquid weight (discussed in chapter I, equation I.9).
These two forces can be written as 4πρR3g/3 and ρaCxπR2V 2/2, respectively (where Cx ≈
0.44 is the drag coefficient at Re > 1000). Balancing them, we get a scaling law for the
terminal speed of a raindrop: V0 ∼

√
ρRg/ρa. Injecting this expression in equation V.10

yields:

F0 ∼
ρ

ρa
mg (V.11)

This formula emphasizes how the impact force magnifies the drop weight of raindrops
(by a factor ρ/ρa, on the order of 1000), which shows why measuring the impact force can
be an accurate method to obtain the drop mass. Indeed, equation V.11 can be rewritten
as: R ∼ (F0ρa

ρ2g
)1/3, allowing us to deduce a drop radius from an impact force measurement.
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3 A cheaper sensor: the lamella

In order to complement this first method, we now consider a simpler (and cheaper) sensor,
namely a thin glass lamella (Menzel-Glaser Microscope cover slip #1) of Young modulus
E = 69 GPa, density ρg = 2350 kg/m3, thickness h = 160 μm, and transverse width
b = 24 mm. One side is clamped by squeezing 10 mm of a 60 mm-long lamella between
two thick glass plates. The other side being free, we have a narrow rectangular plate of
length L = 50 mm and mass M = ρghbL free to vibrate as sketched in figure V.6. Since
the drop spreads at impact, the impact location is adjusted a few millimeters from the
tip of the plate in order to avoid spilling.

δ
0

L

h

2R

V

Figure V.6 – Sketch of lamella sensor. A thin glass lamella of length L = 50 mm, thickness
h = 160 μm and transverse width b = 24 mm is clamped at one end and free to vibrate
at the other one. A drop of radius R and speed V impacts a few millimeters from the
tip of the plate. In grey, the system before impact; in black, the system at the maximum
deflexion δ0. We observe that the drop is sticking to the free end of the plate.

3.1 Experimental Results

We show in figure V.7 a typical side view of the impact resulting in a maximal lamella
deflexion δ0:

Figure V.7 – Galinstan drop of radius R = 1.25 mm and speed V = 4 m/s hitting the
edge of a thin glass plate. Images are separated by 1 ms and only show 1/3 of the lamella.
We denote δ0 as the maximum plate deflection after impact.

From this lateral movie we observe that the dynamics of the plate are dominated by
its first mode of vibration. In addition, side view of plate oscillations allow us to access
the vertical position of the free end of the lamella as a function of time, as shown in figure
V.8 for different impact speeds.
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Figure V.8 – Vertical deflection δ0 of the lamella tip as a function of time for experiments
such as shown in figure V.7. Each curve corresponds to an impact speed V (the brighter
the color, the higher V , which varies from 1.3 m/s to 4.9 m/s by steps of 0.3 m/s). The
characteristic period of vibration of the plate is independent of V and observed here to
be τ ≈ 20 ms.

Focusing on the maximum force, we denote δ0 as the largest deformation of the lamella
for a given impact (see figure V.6 and V.7). We plot this quantity in figure V.9a as a
function of impact speed for water drops of different radii, and compare in figure V.9b
the plate deflection between water and Galinstan for R = 1.3 mm. The results contrast
with figure V.5 since we now observe that δ0 linearly varies with both V and ρ.
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Figure V.9 – (a) Maximal deflection δ0 of the tip of a glass lamella as a function of the
impacting speed of a water drop hitting this lamella close to the edge. We do not observe
a parabolic relationship between δ0 and V , but a linear law. (b) Comparison between
water (lower curve) and Galinstan (upper curve) for a radius R = 1.3 mm. The ratio of
δ0 between the liquids is approximately the ratio of their densities.
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3.2 Model

At mechanical equilibrium, the deflection δ0 of a thin plate is proportional to the applied
force F0. Denoting I = bh3/12 as the moment of inertia of the plate, thin plate theory
[120, 107] gives us the following relation between force and deflection:

δ0 ∼ F0L
3/EI (V.12)

With an impact force varying as V 2 (as seen before), we anticipate a deflection
quadratic in velocity. It is not the case here because the plate has a slow response com-
pared to the crashing time 2R/V (≈ 1 ms) of the liquid: the characteristic time τ0 = 1/f0

of the plate in figure V.8 is about 20 ms, and it is expected to be a function of the plate
parameters (τ0 =

√
ML3/EI). Since the lamella is not at static equilibrium during an

impact ten times shorter than its response time we cannot assume instantaneous pro-
portionality between deformation and force. We propose here to understand the data
using an argument based on momentum conservation. Before impact, the drop of mass
m moves at speed V and the plate of mass M is at rest. After impact, the drop sticks to
the plate, resulting in a system of mass (m+M) vibrating at its natural frequency, inde-
pendent of the collision speed V . With a uniform distribution of m along the plate, the
first resonance frequency would become f = f0

√
M

M+m
. A geometrical correction could be

introduced to take into account the fact that the drop is neither localized at the free end,
nor homogeneously spread all over the lamella. However, since m << M , this correction
is marginal, and we assume f ≈ f0. The lamella is vibrating on its natural mode, with a
parabolic modal shape as a first approximation for clamped-free end conditions. Hence, its
momentum can be written: pM =

∫ L
0
ρgbh 2πf0δ0

x2

L2 cos(2πf0t)dx = 2π
3
Mf0δ0 cos(2πf0t).

On the other hand, the momentum of a drop vibrating at the tip of the lamella is:
pm = m 2πf0δ0 cos(2πf0t). Assuming that the first mode accounts for the dynamics also
at t = 0, the conservation of momentum yields for m << M :

δ0 ≈
3

2π

m

M

V

f0

(V.13)

Equation V.13 is found to be linear in V (instead of quadratic) and sensible to the ratio
of mass between the drop and the lamella. Typical mass ratio m/M in our experiments
being 1/30, a millimetric drop hitting the plate at several meters per second will induce
millimetric deflections to our glass lamella (which has a typical vibration frequency f0 of
50 Hz).
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3.3 Agreement between model and data

In order to explore a large range of densities, we repeated the experiment with the previous
liquids (water, Galinstan) to which we added acetone (of density ρ = 714 kg/m3), hexane
(ρ = 659 kg/m3) and a viscous silicone oil (ρ = 970 kg/m3, viscosity of 500 mPa s). We
show in figure V.10 how the deflection δ0 rescaled by the distance V/f0, as suggested by
the model, varies as a function of the mass ratio m/M for all experiments. As predicted
by equation V.13, data collapse on a line of slope 1.
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Figure V.10 – Normalized deflection f0δ0/V as a function of the ratio m/M between the
drop and the plate mass. V varies from 20 cm/s to 6 m/s. The red line shows equation
y = (3/2π)x, that is, equation V.13. Each color corresponds to a liquid, and each cluster
to different radii R ranging from 0.9 mm to 1.7 mm.

3.4 The two impact regimes

According to the characteristic response time τ0 of the substrate, we expect two regimes
of impact:

(i) a fast one, where the liquid crash is faster than the response of the substrate, which
leads to equation V.13 and corresponds to all our experiments,

(ii) a slow one, where impact is slower than τ0. In this case, since the response
of the plate is quasi-static (mechanical equilibrium), the deformation is proportional to
the force: δ0 scales as L3F0/EI (equation V.12), which yields (using equation V.10):
δ0 ∼ πρR2V 2L3/EI, quadratic in velocity.

Since τ0 is a function of L, let us re-express the transition between both regimes in
terms of substrate length: the linear regime in V occurs for L > Lc, and the quadratic
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one for L < Lc where the critical length Lc is given by:

Lc ∼
[
Eh2

ρg

]1/4 [
R

V

]1/2

(V.14)

For glass lamellae and millimetric drops in our range of impact speeds, this critical
length is around 3 cm. Since the lamella in experiments (L = 5 cm) is longer than Lc, we
indeed expect δ0(V ) to be linear, as observed in figure V.9.

From a more general point of view, leaves can also be viewed as lamellae, and drop
impact can naturally bend or even damage them [129]. We expect leaves to have a large
response time τ0, owing to an effective Young modulus E more than one thousand times
smaller than for glass. For a leaf (of thickness h and width b comparable to that of our
lamellae), Lc becomes about 6 mm. Most plants have leaves longer than Lc, so that
equation V.13 can be used to estimate the deflection of leaves under rain. For millimetric
drops on leaves of a few centimeters (τ0 ≈ 600 ms, f0 ≈ 1.5 Hz), equation V.13 predicts
centimetric deflections. But equation V.13 also exhibits the sensitivity to other parameters
of the leaf: bigger drops hitting thin small leaves can generate a deflection comparable to
the leaf size, which can lead to breakage after multiple impacts.

3.5 The case of raindrops

As previously done for the piezo-electric quartz, we can use a lamella to propose an
alternate solution to achieve a disdrometer. Two regimes arise regarding lamellae length:

For lamellae of length L > Lc, we obtain after expressing the terminal velocity of
raindrops in equation V.13:

δ0 ∼
ρ3/2g1/2

ρ
1/2
a Mf0

R7/2 (V.15)

For lamellae of length L < Lc, injecting the expression of impact force of a rain-
drop (equation V.11) into equation V.12, we get:

δ0 ∼
ρ2gL3

ρaEbh3
R3 (V.16)

In both regimes, the deflection δ0 is a lightly-sensitive function of R, and it can be
measured from a side view video, from which we can deduce the drop radius. As a
consequence, by associating several sensing plates (hydrophobically coated in order to
avoid cleaning between successive impacts), we can assess the polydispersity of rain.
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3.6 Energy harvesting

We can finally estimate the collision energy. The system periodically transfers bending en-
ergyEbh3δ2

0/L
3 into kinetic energyEk−plate = 1/5[1/2M(δ02πf0)2], that is, (9m/5M)Ek−drop.

The kinetic energy Ek−drop of a raindrop is around 1 mJ and the energy of the plate after
impact is typically 10−4 J. Assuming an efficiency of 10% when transforming bending en-
ergy into electrical energy with a piezo-sensor, and supposing that this energy is delivered
for each vibration, we get a transmitted power of 10−3 W. In the case of rain, assuming an
impact every 10 seconds, we deduce that a roof of 100 m2 with 106 receivers can deliver an
average power of 100 W, just enough to light a bulb – a modest amount. Even if raindrops
fall from high, drag slows them down dissipating almost all their potential energy, which
is not efficient if we dreamt of energy harvesting but a blessing for plants, soil or living
creatures that luckily experience relatively less impact force or erosion!



4. NON-WETTING IMPACTS 165

4 Non-wetting impacts

In this section, we address the question of the influence of wettability in the impact
problem. As we know, a substrate coated superhydrophobic generates bouncing after
impact.

4.1 Deflection

We consider a drop impacting the same previous thin plate, excepted it is now coated to
be non-wetting. If the time τ of crash (scaling as 2R/V ) is shorter than the period τ0 of
vibration of the plate, the drop can spill away and it will not stick anymore to the plate
after impact, resulting in a lighter final vibrating system. Since we saw that this problem
is based in momentum conservation and since initial momentum remains unchanged, we
expect higher deflections. Indeed, if we do not neglect the drop mass compared to the
plate one, our argument in section 3.2 gives:

δ0 =
3

2π

m

M

V

f

1

1 + 3m
M

(V.17)

In equation V.17 frequency f also depends on the final mass of the system and varies
as f = f0

√
M

M+m
, so that the expression of deflection δ0 becomes:

δ0 =
3

2π

m

M

V

f0

1

1 + 3m
M

√
M +m

M
(V.18)

For m < M , we get back to equation V.13, which exactly corresponds to the situation
of an impact on a super-hydrophobic substrate: the drop bouncing away from the plate,
it is not anymore attached to it. Hence, the ratio between maximum deflection in a
non-wetting state δnw and in a wetting state δw is:

δnw/δw = (1 + 3
m

M
)

√
M

M +m
(V.19)

As expected, equation V.19 states that we have a higher deflection for a non-wetting
plate. For small mass ratio m/M < 1, Taylor expansion leads to δnw/δw ≈ 1 + 5

2
m
M
. In

our experiments done with water, drop mass m was much smaller than plate mass M
(m/M ≈ 1/30). As a consequence, the correction due to taking into account the mass
sticking to the plate is a few percent - indeed, negligible. However, if we repeat the
experience with a drop of radius twice bigger, we would expect a difference in deflection
up to a factor 2 - clearly measurable and not negligible anymore. It could be an interesting
challenge to experimentally probe this relation.
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4.2 Force

We now think in terms of impact force (instead of maximum deflection). If the re-
bound time Treb of the drop (scaling as

√
ρR3/γ) is shorter than the crashing time 2R/V ,

C. Ybert and coworkers [67] suggest a new expression for the force based on transfer of
momentum. Indeed, the drop will bounce before it has completely crashed. Assuming a
perfect rebound (restitution coefficient of 1) the drop experiences a change of momentum
2mV in a time Treb. Hence, the substrate experiences a force Fnw scaling as:

Fnw ∼
√
ργR3V 2 (V.20)

Equation V.20 predicts an impact force linearly dependent on impact speed V (in the
non-wetting bouncing situation). At low speed, this means a stronger force compared to
the wetting case (which had a parabolic dependence).

The condition of validity Treb < 2R/V can be re-interpreted in terms of speed: the
impacting speed V has to be smaller than Taylor-Culick speed of retraction V ∗ =

√
γ
ρR

.
For a millimetric water droplet V ∗ is on the order of 20 cm/s - relatively small. At this
maximum speed V ∗, we would expect the maximum force F ∗nw in this linear regime to
scale as:

F ∗nw ∼ γR (V.21)

If we put some numbers in equation V.21, we get a force on the order of 0.1 mN - too
small to be detected by our sensor. In order to increase the intensity of the signal we can
think of using mercury. Indeed, this liquid metal has a surface tension approximatively
six times higher than water. As a consequence, the corresponding maximal force F ∗nw
is increased by the same factor, resulting in measurable forces, probably allowing us to
experimentally bring to light this regime. Another solution to have a stronger signal
would be to use rubber ballons filled with liquid. This technique, already used by Clanet
et al. to study the maximal deformation of an impacting drop [24], showed that we can
have an increase in apparent surface tension of a factor up to a thousand.

Surface tension is related to matter cohesiveness (or affinity between molecules) hence,
a higher surface tension implies also a higher density. As a consequence, the maximum
speed V ∗, which is a function of the ratio ρ/γ, is relatively insensitive to a change in liquid
nature: the critical speed for mercury is found to be approximatively 70% of the one of
water.
If we now focus on the ratio of forces between wetting and non-wetting substrates, we
get:
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Fnw
F0

∼ V ∗

V
(V.22)

Equation V.22 predicts a strong effect of bouncing at small impacting speeds4. The
divergence predicted for V → 0 should be difficult to probe since the corresponding forces
tend towards zero.

4Since we can not play on wetting properties of mercury, this difference can not be experimentally
probed with mercury.
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5 Conclusion

Drop impacts have been extensively studied for more than one century due to their ubiq-
uitous implication in everyday life. For printing, coating or spraying, from pesticides to
rain, [26, 134], it is essential to understand the collision mechanisms of a drop. Many
aspects have been and are still explored [134, 130]. Special attention has been given to
the early stages of splashes [45, 132] to the dynamics of the spreading radius [122] or to
the influence of the substrate [122, 55, 123, 36, 72].

However, the force experienced by a substrate hit by a drop has been less discussed,
apart from early discussions about soil erosion [83, 82, 53] and more recent studies about
the rain impact on small creatures [37]. Indeed, drop impacts are difficult to characterize
due to their transient, non-stationary nature. We discussed in this chapter the force gen-
erated during impacts, a key quantity for animals, plants, roofs or soil erosion.

At early stages, compression waves in the liquid generate extremely high pressures (on
the order of MPa). However, they last over a time so short, that the corresponding forces
remain small (below the millinewton).

We measured this force through two different systems: a piezo-electric quartz sensor
and a deflecting thin lamella. Although a millimetric drop has a modest weight, it can
generate collision forces on the order of thousand times this weight. We modeled this
amplification considering natural parameters such as drop radius and density, impact
speed and response time of the substrate. We proposed as well two kinds of devices
allowing us to deduce raindrops size from impact forces.

Finally, we theoretically explored the influence of a superhydrophobic coating allowing
the drop to bounce. We deduced that if the drop bounces faster than the response time
of the lamella, the maximal deflection of the plate will be enhanced. Similarly, if the
drop bounces faster than the crashing time of the drop, we expect increased impact force.
Future work should lead to new experiments allowing to probe these models.



Conclusion

In this work, we discussed special dynamics experienced by non-wetting objects. We fo-
cused on two opposite phenomena: the onset of motion (due to textured substrates) and
the radical stop (due to an obstacle such as a solid plate or a grid).

In 2006, Linke et al. showed that liquid drops deposited on hot solids covered by
asymmetric teeth self-propel. We show that herringbone patterns on solids also propel
Leidenfrost drops, which can be seen as a geometrical proof of the scenario suggesting
that viscous drag should generally be responsible for such motions on asymmetric solids.
Contrasting with ratchets, geometry and resulting vapor flows on herringbones are simple
and controllable, allowing us to produce quantitative models for both the propelling and
the friction force, and to discuss how the design can be optimized. Maximizing the force
is useful if it is desired to oppose an existing force (such as gravity, if the substrate is
inclined); in other cases, it can be interesting to optimize the drop speed to enhance the
motion. The corresponding optimal chevron angles are not the same, but both properties
emphasize the role of geometry in these devices.

We also show that viscous entrainement effects can be extended to room temperature:
blowing air through the holes of an air-hockey table with etched chevrons generates both
levitation and self-propulsion of plastic cards and glass platelets placed on such tables.
Propulsion takes place in the same direction and with the same characteristics as in the
Leidenfrost case, showing the generality and versatility of these devices. However, if we
use deeper channels we lose the confinement effect. We show that we need stronger air-
flows in order to induce levitation. Even though we still see motion, it takes place in the
opposite direction. Although these two regimes (low versus high Reynolds number) are
based on completely different physical mechanisms (viscous effects versus inertial ones)
they surprisingly obey the same scaling law.

Regarding the impact of a drop, we first focus on the impact on a grid. Liquid chooses
to pass through a hole depending on the capillary pressure defined by the size of the hole
(and by the wetting conditions). We show that the total amount of transmitted mass is

169



170 CONCLUSION

usually fixed by the time of crash. However, different timescales have to be taken into
account in other marginal situations such as when bouncing is faster than crashing.

Finally, we focus on drop impacts and their transient, non-stationary nature. We show
that although a millimetric drop has a modest weight, it can generate collision forces on
the order of one thousand times this weight. We measure and discuss this amplification,
considering natural parameters such as drop radius and density, impact speed and response
time of the substrate. We finally imagine and describe two kinds of device allowing us to
deduce the size of raindrops from impact forces.



Appendix A

G-code script to machine a herringbone
pattern

In this appendix, we give the G-Code script used to texture a herringbone pattern on a
brass substrate using a numerical CNC-Milling machine. Variables used by the machine
are preceded by “#”. Comments are either on the right hand side or preceded by “//”.
This work has been possible thanks to the valuable help of Guillaume Clermont.

% @MACRO
//The zero reference is on the right top side of the piece (which is horizontal)
// All units must be in mm
//N denotes the number of passings in each crenel

//Definition of variables
#1=60; Herringbone half opening angle α (deg)
#2=0.1; Depth pitch for each passing
#21=0.20; Maximum depth: h (mm), must be multiple of #2
#3=30.; Width of substrate (mm)
#5=1; Diamater of reamer, defining width of groove W (mm)
#6=0.2; Width of wall λ (mm)
#7=190.; Length of substrate (mm)
#19=#5+1.; Safety margin (mm)

#16=(#7/(#6+#5)/SIN(#1))+1; Number of passing to do
#8=0; Loop counter

//Start
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T1; Name of the reamer
M3 S3700; Milling speed

G00 Z5.0; Go up
G00 Y(#19); Go to zero
G01 Z(-#2) F100.00; Reamer down at translation speed 25

//Loop
WHILE #8<=(#16) DO;

#9=-#8*((#5+#6)/SIN(#1)); Initial position of the loop
#11=-#3/2; First position
#12=#9+(#3/2+#19)/TAN(#1); Second position
#13=(-#3-#19); Third position
#20=-#2; Loop counter for depth

WHILE -#20<#21 DO;
G01 Z#20;
G01 X#9 Y#19;
G01 X#12 Y#11;
G01 X#9 Y#13;

#20=#20-#2;
G01 Z(#20);
Lower reamer G01 X#12 Y#11;
G01 X#9 Y#19;

#20=#20-#2;

END_WHILE

G01 Z(-#2); Take reamer to next initial position
G01 X(#9-((#5+#6)/SIN(#1)));
#8=#8+1; Loop counter

END_WHILE;
G01 Z1; M5; Take reamer away



Appendix B

Exact calculation of viscous
entrainment force

In this appendix, we present an exact calculation of the force of viscous entrainment
generating self-propulsion of a Leidenfrost drop on a herringbone texture. By symmetry,
projection of the forces in the plane perpendicular to the axis of symmetry of the herring-
bone compensate and they add up in the plane of symmetry. After projection (hence the
cosine of α), total entrainement force is:

F = 2 cosα

∫∫
S

6ηU

h
dXdY (B.1)

Here, the surface of integration S is half the circle below the drop1. To get an analytical
solution, the best method is to use the frame −→ex ,−→ey defined by the direction of the grooves,
sketched in figure B.1 and different from the frame −→eX ,−→eY naturally associated to the plane
of symmetry. Instead of first calculating the force generated by the Poiseuille flow in each
channel and then adding them up, we directly integrate the stress over the whole surface
(inspired by the numerical work done in [89]). We inject in equation B.2 the expression of
the horizontal speed U in a single channel described in equation II.7 and obtained from
conservation of mass and thermal balance: U = κ∆T

ρLh2x. Denoting 12ηκ∆T
ρLh3 as A, equation

B.2 can be rewritten as: F = A cosα
∫∫

S
x dXdY . We decompose the total integration in

two regions:

(i) upper one, denoted as S1 (in red in figure B.1a): I1 =
∫∫

S1
x dXdY , and

(ii) lower one, denoted as S2 (in blue in figure B.1b): I2 =
∫∫

S2
x dXdY ,

These notations lead to the following expression for the total entraining force:

1We can take into account the fact that the walls occupy a surface that does not contribute to
propulsion by multiplying S by W/(λ +W ), where W is the width of a groove and λ the thickness of a
wall.
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F = A cosα(I1 + I2) (B.2)
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Figure B.1 – Sketch of surface over which we integrate equation B.2. (a) Upper part, in
red, corresponding to area S1 (and integral I1). (b) Lower part, in blue, corresponding to
area S2 (and integral I2).

Upper contribution

We focus now on the mathematical integration of I1 =
∫∫

S1
x dXdY . Looking at figure

B.1a, we have to integrate x in the −→ex direction from xmin = y/ tanα to xmax =
√
R2 − y2

for a channel at height y. We then have to integrate this result in the −→ey direction from
ymin = 0 to ymax = R− d = R sinα. Hence:

I1 =

∫ R sinα

0

∫ √R2−y2

y/ tanα

x dxdy (B.3)

After integration, we get:

I1 =
sin3 α

3
R3 (B.4)

Lower contribution

We discuss here the mathematical integration of I2 =
∫∫

S2
x dXdY . Looking at figure

B.1b, we have to integrate x in the −→ex direction from xmin = y/ tanα to xmax = R cosα+
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√
R2 − (R sinα− y)2 (as expected, for y = 0, xmax = 2R cosα) for a channel at height y.

We then have to integrate this result in the −→ey direction from ymin = 0 to ymax = R sinα.
Hence:

I2 =

∫ R sinα

0

∫ R cosα+
√
R2−(R sinα−y)2

y/ tanα

x dxdy (B.5)

After integration (with the help of Mathematica software), we get:

I2 =
6 cosα(2α + sin 2α) + (11 sinα + 3 sin 3α)

24
R3 (B.6)

Resulting force

Injecting solutions obtained in B.4 and B.6 in equation B.2 yields the expression of the
total propelling force:

F =
6ηκ∆T

ρLh3
R3 f(α) (B.7)

where f is the function defined as f(α) = 2
3

cosα(sin3 α+ 1
8
[6 cosα(2α+sin 2α)+11 sinα+

3 sin 3α]). As expected, equation B.7 nearly has the same expression as the one obtained
in section 2.2, equation II.9 (provided we set f(α) ∼ sin 2α).

We show in blue in figure B.2 the function f(α) obtained from equation B.7. In red,
the function obtained from approximation done in chapter II, leading to equation II.9.
Although they have a similar allure, the maximum for the exact calculation (in blue) is
slightly shifted towards lower angles (and is also slight higher).
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0

0.5

1

1.5

α ( ◦)

f

Figure B.2 – Comparison of functions f(α): in blue, obtained from exact calculation
(equation B.7); in red, obtained from approximation done in chapter II (leading to equa-
tion II.9).





Appendix C

Résumé en Français

Cette thèse porte sur les liquides non-mouillants et leur interaction avec des textures.
Elle s’articule autour de cinq chapitres. Le premier chapitre introduit clairement toutes
les notions nécessaires à la lecture du manuscrit, et replace la problématique dans le con-
texte de la recherche internationale sur ces sujets. Les deux chapitres suivants traitent
le phénomène de lévitation et d’auto-propulsion. Les deux derniers chapitres se centrent
sur le phénomène d’impact d’une goutte: soit avec une grille soit avec une plaque lisse.
Nous détaillons par la suite le contenu de chaque chapitre.

Le premier chapitre est consacré à la physique des objets non-mouillants (voir figure
C.1). Trois méthodes permettant d’atteindre cet état sont discutés [30]. La première,
propose de réduire le contact entre liquide et solide en combinant un traitement chimique
et physique afin de rendre le substrat super-hydrophobe [62]. La deuxième, se centre sur
la lévitation par caléfaction, c’est-à-dire, la lévitation d’objets (solides ou liquides) sur la
couche de gaz qu’ils génèrent en s’évaporant [11]. La dernière, très similaire, consiste à
souffler de l’air à travers le substrat poreux qui se trouve sous la goute - à l’image d’un
palet qui lévite sur une table d’air-hockey [48].

On étudie par la suite les conséquences de l’existence de cette couche de gaz (isolant
physiquement et thermiquement la goutte du substrat) sur la forme de ces perles liquides.
N’ayant plus aucun contact avec le solide, les petites gouttes sont dominées principale-
ment par les effets de tension de surface. Cette force interfaciale, qui essaye de minimiser
la surface des objets, leur confère une forme sphérique. Pour des plus grosses gouttes, la
gravité doit être prise en compte, et la goutte s’aplatit sous l’effet de son propre poids.
Apres avoir discuté leur forme, nous nous intéressons au coussin de vapeur formé sous la
goutte. Son épaisseur résulte d’un équilibre dynamique entre le poids de la goutte (qui
est en train d’écraser le coussin de vapeur), et le liquide évaporé qui est en permanence
en train de l’alimenter. La question de stabilité de ce coussin de vapeur et de la forme
de la goutte y sont aussi traités. Cette thèse portant sur l’interaction de gouttes avec des
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(a) (b)

Figure C.1 – Gouttes en caléfaction (a) Les petites goutes sont soumises principalement à
la tension de surface, ce qui leur confère leur aspect sphérique. L’échelle représente 1 mm.
(b) Les plus grosses gouttes sont aplaties par la gravité. L’échelle représente 2 mm.

textures, nous discutons comment la forme d’une goutte posé sur une surface crénelé est
modifiée (par rapport au cas du substrat lisse). Par ailleurs, l’extrême mobilité de ces
objets donne toute sa richesse à ce sujet. Leur dynamique est en effet gouvernée par des
forces très faibles, dont la nature et la valeur sont particulièrement difficiles à identifier et
à mesurer. Ainsi, pour clore ce chapitre nous passons en revue les différentes forces qui
peuvent générer de la friction sur ces aéroglisseurs: friction dans le coussin d’air, friction
avec l’air environnent ou friction sur une surface crénelée.

Cette introduction, qui pose les bases de ce travail en même temps qu’elle introduit
des résultats inédits, ouvre naturellement le chemin au deuxième chapitre. On y présente
l’étude du mouvement d’un liquide caléfié sur un substrat texturé. En 2006, H. Linke
[73] a ainsi montré qu’un liquide posé en caléfaction sur un support couvert de dents
asymétriques est autopropulsé dans la direction de la pente descendante des dents. Le
point essentiel est la production de vapeur sous la goutte, une vapeur évacuée par la
pression qu’exerce le liquide sur le film qui le supporte. Si cet écoulement est isotrope
sur un solide plan (cas de la figure C.1), il peut ne plus l’être sur un solide aux textures
asymétriques (cas de la figure C.2). En disposant des microbilles de silice sur les textures,
G. Dupeux [43] a réussi à mesurer le champ de vitesse dans la très fine couche de vapeur
qui maintient l’objet en lévitation. Il a ainsi mis en évidence que le gaz s’écoule vers
la zone la plus profonde du sillon avant d’être évacué latéralement. C’est ce flux vers
les zones profondes de la texture qui entraine, par viscosité, la goutte sur le substrat.
On comprend ainsi que la locomotion est activée dès que l’on canalise la vapeur dans
une direction donnée – ce que fait la vapeur sur les dents à cause de leur asymétrie.
Cependant, l’écoulement de vapeur dans cette texture reste extrêmement complexe. C’est
cette complexité (et la difficulté qui en découle à modéliser physiquement ce problème) qui
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nous a poussé à chercher des nouvelles textures permettant de générer de l’autopropulsion.

Figure C.2 – Vue de trois quarts d’une goutte en caléfaction sur une surface texturée en
forme de chevron. De part et d’autre du plan de symétrie, la texture est formée par des
créneaux parallèles entre eux. Pour cette texture, le demi-angle au sommet du chevron
est de 45◦ - ce qui correspond à l’optimum en force.

Tout en respectant les ingrédients clefs pour établir ce type de mouvement (c’est-à-
dire, la rectification de l’écoulement de vapeur de façon asymétrique) nous avons abouti
à une nouvelle texture. Cette dernière est formée localement de cerneaux parallèles qui
se rejoignent de part et d’autre d’un plan de symétrie pour créer un motif en forme de
chevron (voir figure C.2 ou C.4). Cette texture peut être ainsi vue comme étant une
preuve géométrique permettant de confirmer le scénario d’entraînement visqueux. En
effet, dans chaque cellule, la vapeur n’a pas d’autre choix que de s’écouler le long du
créneau et de suivre ainsi la direction imposée par celui-ci. La simplicité de l’écoulement
dans cette configuration est traduite en loi d’échelle et conduit à une force en accord
avec les résultats expérimentaux. Par la même occasion, ce modèle nous permet de dis-
cuter de l’optimisation de la force de propulsion par rapport aux différents paramètres
géométriques du problème. Par exemple, en ce qui concerne le demi-angle définissant
l’ouverture du chevron, nous montrons que la force est maximale pour un angle de 45◦

(voir figure C.2). L’absence de contact rend ces gouttes extrêmement mobiles (ce sont
des aéroglisseurs) et empêche l’ébullition. Ainsi, la grande mobilité de ces objets soulève
la question de la friction qu’ils subissent. Très faible sur un substrat lisse, on observe
une dissipation inertielle dans l’air environnant et dans une couche limite liquide pour les
gouttes. En revanche, sur un substrat crénelé, elle est fortement amplifiée par l’impact
du liquide sur les textures. En utilisant comme point de départ la friction étudiée par G.
Dupeux lorsqu’une goutte avance sur des rainures perpendiculaires à sa trajectoire [42],
nous élargissons cette étude au cas des trajectoires formant un angle donné par rapport
à l’alignement des créneaux. Nous proposons par la suite un modèle qui rend compte de
la friction que subit une goutte dans le cas qui nous intéresse tout particulièrement: des
textures en forme de chevron. Ayant étudié la force de propulsion et de friction, il ne
nous reste plus qu’à en déduire la vitesse terminale en les équilibrant. Le modèle qui en
résulte est en très bon accord avec les données expérimentales et il permet de prédire un
maximum de vitesse pour un demi-angle au sommet de 21◦. En effet, cet angle représente
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le meilleur compromis entre l’optimisation de la force de propulsion (proche de 45◦) et la
minimisation de la friction (proche de 0◦, correspondant à des créneaux alignés avec la
trajectoire, ce qui minimise les chocs entre la goutte et les murs des rainures). Dans ce
chapitre, nous proposons finalement d’utiliser cette texture comme point de départ pour
de nouvelles applications: un piège à gouttes caléfiées (figure C.3a), une piste circulaire
pour les observer sur des longues trajectoires (figure C.3b) ou même des textures actives
afin d’interagir, en temps réel, avec nos perles liquides.

(a)

(b)

Figure C.3 – Dispositifs utilisant les textures en forme de chevron comme unité de base.
(a) Deux chevrons juxtaposés avec des polarités opposées permettent de piéger une goutte
à leur intersection. (b) Deux chevrons reliés par des sections circulaires vont faciliter
l’observation du mouvement de la goutte sur de très longues distances.

Induire de la lévitation en utilisant la température est restrictif: un liquide non volatil
ne lévitera pas, et nous ne serons pas toujours en mesure de chauffer le support. Il est
donc intéressant de se demander si l’on peut caléfier “à froid” un liquide. Le troisième
chapitre répond à cette question en remplaçant la goutte liquide par un objet solide (une
lamelle de verre). N’ayant plus d’évaporation pour nourrir le coussin qui se trouve entre
la goutte et le substrat, nous perforons ce dernier pour le rendre poreux et y injecter
de l’air à travers [48]. Il en résulte une table de air-hockey (permettant la lévitation,
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[69]) sur laquelle nous allons venir texturer nos motifs en forme de chevron (générant
le mouvement, voir figure C.4). Le fait d’entraîner par viscosité un objet solide nous

Figure C.4 – Plaque de verre (épaisseur 1 mm, largeur 24 mm, longueur 45 mm) posée
sur une substrat poreux texturé. Au fond de chaque créneau, un réseau de trous permet
de souffler de l’air, ce qui va induire la lévitation de la plaque.

aide à comprendre comment la force de propulsion dépend de la géométrie de l’objet
(dans le cas liquide, ceci était impossible à cause de l’apparition d’instabilités liées à
l’aspect déformable de l’interface). Nous pouvons dès lors proposer un modèle en parfait
accord avec les mesures expérimentales. L’existence d’une solution analytique décrivant
l’écoulement dans les canaux nous permet, par la même occasion, de remonter à la pression
nécessaire à imposer sous le poreux pour démarrer la lévitation.
Jusqu’ici nous avons réussi uniquement à induire des mouvements de translation sur un
plan horizontal. Par la suite nous démontrons qu’il existe une pente maximum (non
négligeable) que peuvent remonter ces objets (voir figure C.5b) ou que l’on peut créer des
mouvements de rotation avec des textures en forme de “moulin” (voir figure C.5a).

Pour finir, nous étudions les conséquences de travailler avec des objets plus lourds (ou
des textures plus profondes). On comprend intuitivement qu’afin de faire léviter un objet
plus lourd, il faut augmenter les pressions mises en jeu. Par conséquent, la vitesse du
gaz dans les rainures augmente aussi et le scénario d’entrainement visqueux (basé sur des
effets inertiels négligeables par rapport aux effets visqueux, à savoir, des bas nombres de
Reynolds) n’est plus valable. Nous montrons alors que, pour des pressions de lévitation
élevées (i.e. des haut nombre de Reynolds), les effets inertiels dominent et les objets avan-
cent en sens opposé à celui observé dans le cas visqueux: c’est l’effet fusé (conservation
du moment) qui est à l’origine de cette nouvelle propulsion.

Une façon extrêmement naïve de générer des situations de non-mouillage consiste tout
simplement à supprimer le substrat sur lequel repose le liquide. Il s’en suit un régime de
chute libre puis, inévitablement, un impact avec un substrat qui met fin à cette belle
aventure. La situation est quelque peu moins dramatique lorsque le substrat sur lequel la
goutte impacte est une grille non-mouillante (voir figure C.6).

En effet, ce mélange de trous passants et sections bouchées va arrêter une partie du
liquide (qui sera redirigé latéralement), mais il va aussi laisser passer une partie du liquide
(sous forme de filaments liquides, qui, à leur tour, vont se déstabiliser en petites gout-
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(a)

(b)

Figure C.5 – (a) Moulin visqueux: son motif est basé sur des rainures parallèles disposées
dans une direction qui varie sur quatre quadrants différents. L’écoulement d’air entraîne
par viscosité chaque section d’une plaque en verre (épaisseur 1 mm, longueur et largeur
30 mm), ce qui induit un mouvement de rotation. (b) Vue de trois quarts d’une lamelle
montant une pente de 2% grace aux effets d’entraînement visqueux.

telettes). Le quatrième chapitre, qui porte sur cette interaction goutte/grille, commence
donc par une brève introduction au monde des impacts. On s’attarde en particulier sur
les impacts sur des substrats solides non-mouillants [24, 63]. Un point de départ idéal au
problème de la grille, se trouve dans les travaux de E. Lorenceau [77] et collaborateurs. En
effet, ils traitent le cas de l’impact d’une goutte sur une plaque avec un seul trou. Cette
situation, plus simple que la grille mais renfermant des ingrédients physiques similaires,
nous permet d’isoler des paramètres clefs tels que la vitesse de rétraction d’un filament
visqueux ou le temps que met la goutte pour complètement s’écraser. Dès lors, nous
proposons un modèle qui nous aide à prédire la masse transmise en fonction de la vitesse
d’impact, le rayon de la goutte et la taille du trou. On s’attaque ensuite au problème
d’une plaque avec une multitude de trous - la grille. En utilisant les mêmes principes que
ceux utilisés pour un seul trou, nous adaptons le modèle pour aboutir à une loi d’échelle
qui explique qualitativement les différents régimes observés expérimentalement. Apparaît
alors le besoin de modéliser la déformation de la goutte pendant l’impact afin de rendre
compte des mesures quantitativement. Nous explorons finalement différentes configura-



183

2R
0

V
0

α

Figure C.6 – Vue latérale d’une goutte de rayon R0 = 1.9 mm impactant à vitesse
V0 = 1.6 m/s sur une grille (trous circulaires de rayon approximatif 200 µm). La première
image représente le début de l’impact. La deuxième et troisième image représentent le
temps nécessaires à la goutte pour complètement s’écraser. Grâce à l’inertie, une partie
du liquide passe à travers chaque trou sous forme de jet liquide. Ces doigts cylindriques
n’étant pas stables, ils donnent naissance à un ensemble de petites gouttes. Sur la dernière
image, les gouttelettes continuent leur trajectoire en formant un cône d’angle α. Chaque
image est séparée par 2 ms.

tions possibles (nous faisons par exemple varier la nature mouillante ou non-mouillante
de la grille, ou bien, nous modifions la porosité de la grille) et nous vérifions que le com-
portement physique reste qualitativement bien décrit par notre loi d’échelle.

L’étude des impacts sur grille nous a amené, dans le dernier chapitre, à nous pencher
sur la question de la force subie par un substrat lisse à l’impact d’une goutte. On s’est
tout d’abord intéressé aux phénomènes d’ondes de choc existant juste après le début
de l’impact, à très court terme [119, 71]. En effet, ces ondes génèrent des pressions
tellement élevées (de l’ordre du MPa) que l’on pourrait s’attendre à des forces associées
considérables. Cependant, leur temps de vie est si bref (de l’ordre de la nanoseconde
[47]) que la surface sur laquelle elles agissent est tellement réduite que les forces restent
relativement faibles (de l’ordre du µN). Par ailleurs, il convient de tenir compte des
effets de compressibilité dans l’air environnant si l’on veut comprendre le phénomène
d’apparition des “splashs” [130, 132, 106].

On s’intéresse, dans un deuxième temps, aux forces qui ont lieu dès que les effets de
compressibilité disparaissent. Ces forces d’origine inertielle sont mesurées à l’aide d’un
capteur piézo-électrique (figure C.7a). On observe (figure C.7b) des profiles atteignant
des forces maximums de plusieurs dizaines de mN - bien plus élevées que les forces liées
aux ondes de choc. Un modèle analytique basé sur le transfert de quantité de mouvement
rend parfaitement compte des données expérimentales.

Nous proposons par la suite l’utilisation d’un capteur bien moins couteux basé sur
l’étude de la déflexion d’une lamelle de verre (pincée à une extrémité, libre de l’autre
côté) suite à l’impact d’une goutte (voir figure C.8). Cette fois-ci, c’est la conservation
de la quantité de mouvement qui décrit la déflexion maximale δ0 (définie sur figure C.8)



184 APPENDIX C. RÉSUMÉ EN FRANÇAIS

(a)

(b)

−0.5 0 0.5 1 1.5 2

−10

0

10

20

30

40

50

60

t (ms)

F

(mN)

F
0

Figure C.7 – (a) Vue latérale d’une goutte de rayon R = 1.3 mm impactant un quartz
piézo-électrique à vitesse V = 3 m/s. Chaque image est séparée par 0.5 ms. (b) Force
d’impact mesurée par le capteur piézo-électrique en fonction du temps. La force maximum
F0 est atteinte environ un dixième de milliseconde après le début de l’impact.

en fonction des propriétés intrinsèques de la plaque ainsi que la vitesse et le rayon de la
goutte. Ainsi, deux régimes (“lent” et “rapide”) sont mis en évidence en fonction du temps
de réaction de la plaque comparé au temps d’écrasement de la goutte.

Figure C.8 – (a) Goutte de rayon R = 1.25 mm et vitesse V = 4 m/s impactant sur le
bord libre d’une lamelle de verre. Chaque image est séparée par 1 ms et ne montre que le
dernier tiers de la plaque. δ0 représente la déflexion maximum de la plaque après impact.

Ces deux différents capteurs (piezo et lamelle de verre) nous permettent ainsi de
discuter le cas particulier de la force d’impact des gouttes de pluie. En effet, leur vitesse
terminale étant fixé par un équilibre entre le poids et la trainée inertielle dans l’air,
l’expression de la force d’impact peut être simplifiée.

Tout en gardant cette optique de non-mouillage au coeur de notre démarche, nous
explorons en dernier lieu l’effet d’un traitement super hydrophobe sur la physique de
ces impacts. Cette étude théorique prévoit une augmentation de la force d’impact (ainsi
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que de la déflexion maximale de la lamelle en verre). Elle ouvre la voie à de futurs
travaux comme, par exemple, la vérification expérimentale des ces différentes predictions
théoriques.
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Abstract
We investigate through several experiments the special dynamics generated by non-wetting

objects. On a substrate textured with grooves forming a herringbone pattern, a Leidenfrost levi-
tating liquid is propelled: the textures channel the vapor flow in a well-defined direction so that
the slider above is driven by vapor viscosity. These deformable objects undergo very little friction
on flat surfaces. However, on crenelated substrates, impacts on the texture sides greatly enhance
dissipation. We extend this entrainment scenario to other situations where the liquid (and its
deformable nature) is not involved anymore. A solid plate can levitate over a porous substrate
through which air is blown. Again, escaping flow can be rectified by the textures and entrain
the plate, leading to translation movement or even to rotation. If we create deeper channels
(hence losing flow confinement), we observe motion in the opposite direction due to “rocket effect”
(conservation of momentum).

We are also interested in an extreme non-wetting situation: the falling drop. Indeed, all along
the fall, the drop only experiences air drag friction, easily reaching high speeds. We tackle the
problem of the dramatic issue of this fall: the impact. We first study the impact of a drop on a
sieve. In this situation intermediate between a solid wall and no obstacle at all, mass either passes
through the holes or gets stopped by the closings. We then focus on the impact force experienced
by the substrates and characterize the force as a function of the drop and impact properties, but
also of the nature of the solid on which impact takes place.

Keywords: interface, non-wetting drop, Leidenfrost effect, texture, self-propulsion, friction,
levitation, impact, grid.

Résumé
Nous étudions à travers plusieurs expériences la dynamique spéciale engendrée par des objets

non mouillants. Un liquide en état Leidenfrost est autopropulsé lorsqu’on le pose sur un substrat
texturé avec des rainures formant un motif à chevrons: les textures canalisent l’écoulement de
vapeur dans une direction bien définie de sorte que ces aéroglisseurs liquides sont entraînés par la
vapeur sous-jacente. Ces objets déformables subissent très peu de friction sur une surface plane.
Toutefois, sur des substrats crénelés, les impacts sur les textures créent une friction spéciale qui est
également étudiée. Nous étendons ce scénario d’entraînement visqueux dans d’autres situations
où le liquide (et sa nature déformable) est remplacé par une plaque solide. Pour permettre la
lévitation, on le place sur un substrat poreux à travers lequel de l’air est soufflé. Une fois de plus,
l’écoulement est rectifié par des textures permettant l’entraînement d’une lamelle de verre dans un
mouvement de translation ou même de rotation. Si nous augmentons la profondeur des textures, le
confinement est perdu et on observe un mouvement dans la direction opposée dû à "l’effet fusée".

Nous nous sommes également intéressés à une situation de non mouillage particulièrement
simple: la goutte en chute libre. Tout au long de sa chute, la goute ne subit que la trainée de l’air,
ce qui lui permet d’atteindre des vitesses élevées. Nous abordons le problème de l’issue de cette
chute: l’impact. Nous étudions d’abord l’impact d’une goutte sur un tamis. Dans cette situation
intermédiaire entre un mur solide et aucun obstacle, le liquide passe à travers les trous ou est arrêté
par les sections bouchées. Nous nous concentrons ensuite à la force d’impact subie par le substrat.
Nous la mesurons et la calculons en fonction des caractéristiques du liquide, de l’impact, et de la
nature du substrat.

Mots-clés: interface, goutte non mouillante, caléfaction, texture, autopropulsion, friction, lévi-
tation, impact, grille.
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