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Abstract

Nowadays, cellular technology is almost everywhere. It has had an explosive
success over the last two decades and the volume of traffic will still increase
in the near future. For this reason, it is also regarded as one cause of world-
wide energy consumption, with high impact on carbon dioxide emission. On
the other hand, new mathematical tools have enabled the conception of new
models for cellular networks: one of these tools is stochastic geometry, or more
particularly spatial Poisson point process. In the last decade, researchers have
successfully used stochastic geometry to quantify outage probability, through-
put or coverage of cellular networks by treating deployment of mobile stations
or (and) base stations as Poisson point processes on a plane. These results also
take into account to impact of mobility on the performance of such networks.
In this thesis, we apply the theory of Poisson point process to solve some
problems of cellular networks, in particular we analyze the energy consumption
of cellular networks. This thesis has two main parts. The first part deals with
some dimensioning and coverage problems in cellular network. We uses stochas-
tic analysis to provide bounds for the overload probability of OFDMA systems
thanks to concentration inequalities and we apply it to solve a dimensioning
problem. We also compute the outage probability and handover probability
of a typical user. The second part is dedicated to introduce different models
for energy consumption of cellular networks. In the first model, the initial lo-
cation of users form a Poisson point process and each user is associated with
an ON-OFF process of activity. In the second model, arrival of users forms
a time-space Poisson point process. We also study the impact of mobility of
users by assuming that users randomly move during its sojourn. We focus on
the distribution of consumed energy by a base station. This consumed energy
is divided into the additive part and the broadcast part. We obtain analytical
expressions for the moments of the additive part as well as the mean and vari-
ance of the consumed energy. We are able to find an error bound for Gaussian
approximation of the additive part. We prove that the mobility of users has a
positive impact on the energy consumption. It does not increase or decrease the
consumed energy in average but reduces its variance to zero in high mobility
regime. We also characterize the convergent rate in function of user’s speed.
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Résumé des travaux de thése

Résumé court

Aujourd’hui, la technologie cellulaire est & peu prés partout. Elle a eu un succeés ex-
plosif au cours des deux derniéres décennies et le volume de trafic correspondant va encore
augmenter dans un proche avenir. Pour cette raison, la consommation d’énergie que cette
activité représente dans le monde entier devient non négligeable. C’est I'un des aspects que
nous étudions dans cette thése au travers de modéles basés sur la géométrie stochastique.
D’autre part, de nouveaux outils mathématiques ont permis de construire de nouveaux
modeles pour les réseaux cellulaires: un de ces outils est la géométrie aléatoire, ou plus
particulierement l'analyse des processus de Poisson spatiaux. Dans la derniére décennie,
les chercheurs ont utilisé avec succeés la géométrie aléatoire pour quantifier probabilité
d’outage, le débit ou la couverture des réseaux cellulaires en traitant le déploiement de
stations mobiles ou stations de base (et) en tant que processus ponctuels de Poisson sur
un plan. Ces résultats prennent également en compte 'impact de la mobilité sur la per-
formance de ces réseaux.

Dans cette thése, nous enrichissons et appliquons la théorie des processus de Poisson
spatiaux pour résoudre certains problémes issus de la conception et du déploiement des
réseaux cellulaire. Cette thése comporte deux parties principales. La premiére partie est
consacrée & la résolution de quelques problémes de dimensionnement et de couverture des
réseaux cellulaires. Nous calculons la probabilité de surcharge de systemes OFDMA grace
aux inégalités de concentration et aux développements d’Edgeworth, pour lesquels nous
prouvons des bornes d’erreur explicites, et nous 'appliquons & résoudre un probléme de
dimensionnement. Nous calculons également la probabilité d’outage et la taux de handover
pour un utilisateur typique.

La seconde partie est consacrée a I’étude de différents modéles pour la consommation
d’énergie dans les réseaux cellulaires. Dans le premier modeéle, I'emplacement initial des
utilisateurs forme un processus de Poisson ponctuel et & chaque utilisateur est associé
un processus d’activité de type ON-OFF. Dans le second modéle, ’arrivée des utilisateurs
constitue un processus de Poisson en espace et en temps, une dynamique connue sous
le nom de dynamique de Glauber. Nous étudions également I'impact de la mobilité des
utilisateurs en supposant que les utilisateurs se déplacent de maniére aléatoire pendant
leur séjour. Nous nous intéressons dans toutes ces situations, a la distribution de ’énergie
consommeée par une station de base. Cette énergie est divisé en deux parties: la partie
additive et la partie diffusive. Nous obtenons des expressions analytiques pour les moments
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de la partie additive ainsi que la moyenne et la variance de I’énergie totale consommeée.
Nous trouvons une borne d’erreur pour ’approximation gaussienne de la partie additive.
Nous prouvons que la mobilité des utilisateurs a un impact positif sur la consommation
d’énergie. Il n’augmente ni ne réduit 1’énergie consommée en moyenne, mais réduit sa
variance a 0 en régime de mobilité élevé. Nous caractérisons aussi le taux de convergence
en fonction de la vitesse des utilisateurs.

Motivation

Communications cellulaires ont réalisé une évolution incroyable pendant ces vingt derniéres
années. Les technologiques avancées dans les systémes cellulaires et la conception cellulaire
ont rendu possibles les services que 1’on ne pouvait pas imaginer il y a vingt ans. Téléphonie
mobile, et plus particuliérement GSM, ont été le premier service dans le monde entier avec
plus de 5 milliards les clients d’aujourd’hui.

Les systémes de troisiéme génération comme 'UMTS ont essayé pour fournir une in-
terface radio universel adapté a la fois du circuit et des services de transfert de données.
Le succes des technologies 3G ont été trés décevante au début. Toutefois, les développe-
ments récents tels que HSPA, HSPA + et systémes de quatriéme génération tendent a
montrer que cellulaire les communications sont maintenant & la veille d’'une nouvelle révo-
lution majeure. ces nouveaux technologies va changer le mode de vie de beaucoup de gens
en apportant eux de nouveaux services et des services pratiques. Smartphones modernes
sont désormais construit sur les plates-formes informatiques mobiles, I'informatique plus
avancée et capacités de connectivité que jamais et a des prix abordables. Les gens sont
maintenant en mesure d’utiliser les services de données tels que l'accés Internet localisa-
tion,, le transfert de fichiers & partir de pratiquement n’importe oli, méme dans une grande
mobilité.

Le trafic de données associés a ces services est de plus en plus importante. D’un point
de vue des opérateurs, les ressources sont nécessaire pour satisfaire les demandes des util-
isateurs et de remplir la besoin de la qualité de service. Une telle évolution nécessite de
plus en plus des ressources du spectre mais, malheureusement, cette ressource est limitée.
Par conséquent, les opérateurs ont besoin de concevoir des méthodes de plus en plus ino-
vantes pour dimensioner déployer leur réseau de fagon efficace. Planification cellulaire est
le processus utilisé pour concevoir, dimensioner et de déployer un réseau mobile prenant en
qualité de service contraintes. Il s’agit d’'une procédure complexe qui nécessite de prendre
en compte de nombreux critéres:

e Un opérateur doit répondre & la demande de trafic et de QoS de son clients. Pour
atteindre cet objectif, il est nécessaire de déployer ressources des stations de base,
antennes, ces routeurs, commutateurs ou liens de transmission. Le dimensionnement
est le processus qui détermine le  nombre de ressources nécessaires pour satisfaire
le trafic et les contraintes de QoS.
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Figure 1: Une architecture typique des réseaux cellulaires (Source: Internet).

e [a couverture est le processus qui confére qu'une cellule particuliére fournit la qualité
radio nécessaires pour se conformer les demandes de QoS des utilisateurs.

e La capacité détermine le nombre d’abonnés qui peuvent étre pris en charge par un
réseau en tenant compte de la QoS et la contraintes de radio.

De lautre coté, selon plusieurs études, 0,5% de I'énergie électrique du monde est con-
sommeé par réseau cellulaire et 80% de cela est consommeée par les sites de stations de
base. Jusqu’a 90% de la consommation d’énergie des réseaux cellulaire est des dépenses
opérationnelles de 'opérateur (OPEX). Un BS connecté au réseau électrique peut cotuter
environ 3000 $ par année pour faire fonctionner, tandis qu’un BS hors réseau peut cotter
dix fois plus. Compte tenu de la croissance de la consommation énergétique des réseaux
mobiles; il devient clair que le coiit de I’énergie est essentiel pour 'OPEX des opérateurs.
La dépense d’énergie pour faire fonctionner des réseaux cellulaires devrait tripler au cours
des sept prochaines années.

D’autre part, la technologie de linformation et de la communication (TIC) est un
facteur de plus en plus rapide des émissions de carbone dans le monde. Actuellement il
a une superficie d’environ 2%. Dans les TIC, le secteur des communications cellulaires
d’aujourd’hui a actuellement une petite part, mais on s’attend & une augmentation signi-
ficative & avenir. La téléphonie mobile compte annuellement pour environ 125 millions
de tonnes de carbone, ce qui représente environ 0,25% des émissions mondiales.
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Figure 2: La consommation énergétique dans un réseau cellulaire.

Bien qu'il existe de nombreuses pistes de recherche pour "optimisation de la consomma-
tion d’énergie dans les réseaux cellulaires, étonnamment il n’existe pas de modeéle stochas-
tique pour I’analyser. Pour modéliser les réseaux cellulaires, plusieurs approches peuvent
étre envisagées. Théorie de la file d’atente fournit de bons outils qui ont été adoptées dans
de nombreuses études de modélisation cellulaire, principalement pour évaluer le blocage de
I'utilisateur, le délai ou la capacité du réseau. Géométrie aléatoire et processus ponctuel de
Poisson sont également bien connus comme des outils puissants pour modéliser les réseaux
cellulaires. Cependant, jusqu'a cette thése

"Comment modéliser analytiquement la consommation d’énergie dans le
réseau cellulaire de facon stochastique”? est encore une question ouverte. Y at-il un
modéle inspiré de la théorie de la queue, la géométrie stochastique et processus ponctuel
de Poisson ou peut-étre tous?

Etat de ’art

Dans cette section, nous expliquons pourquoi et comment la géométrie stochastique en
général et des processus spatiaux ponctuels de Poisson en particulier peuvent modéliser
des systémes de communication sans fil. Nous donnons aussi un bref détail sur Calcul de
Malliavin pour les processus de Poisson.

Le premier systéme de télégraphie sans fil a été inventé il y a un siécle. De nos jours, les
systémes de communication sans fil sont constitués des réseaux cellulaires (comme décrit
dans la section précédente), les réseaux ad hoc, réseaux de capteurs, réseaux Wi-Fi et
d’autres qui sont appliquées a tous les aspects de la vie. Dans contrairement aux systémes
filaires, des systémes sans fil il ya une plus grande quantité d’incertitude et de hasard,
par example sur les locations de noeud ou de conditions de canal. En général il y a
des interférences, car de nombreux noeuds partagent le méme canal. Une configuration




X

( Y
Measuring Greenness Network Planning
Green Metrics Heterogenous Networks
~ Faclity Tevel Memics Tame cells
+ Equipment-level Metrics * Micro-cells
* Network-level Metrics Pico-cells

Architecture System Design
Energy Savings in Base Stations Green Cellular Enabling Technologies
* Minimizing BS Networks * Green Comum. via Cognitive Radia
o Improvements in Power Amplifier * Green Camm. via Cooperative Relays
o Power Saving Protocols ik
* Energy-Aware Cooperative BSs © User cooperation
zm"“ s Energy Efficiency in Future
* Using Renewable Energy Resources Generation Wireless Systems
o Sustainable biofuels
o Salar energy * Low Energy Spectrum Sensing
© Wind energy Ihqyﬁwmm(‘kﬂmlnnhn.
* Othes ways fo reduce BS power usage Energy-Efficient Resource Management
© Reducing the number of 85 mglqunmptopmm-
o Architectural changes in BSs
Broader Perspectives
 Statistical Power Profiles
* Smart Grids
* Embodied Energy vs. Operating Energy

Figure 3: Les axes de recherche actuelles en Green Networking([1]).

Realistic modeling

Mathematical tractability

Figure 4: Trade-off between tractability et modélisation réaliste.

d’utilisateurs actifs n’est jamais figé dans le temps: les noeuds peuvent se déplacer ou
tout simplement changer leur état. Le signal recu dépend de la distance entre 1’émetteur
et le récepteur, et I’état du canal appelé évanouissement, peut varier de temps a autre.
Modeles pour les systémes de communication sans fil doit capturer toutes ces incertitudes
et aléas. Cependant, il est difficile de modéliser un systéme parfaitement: la plus réaliste
d’un modele, moins docile qu’elle est. Il ya toujours un équilibre entre la modélisation
réaliste et tragabilité (illustré sur la figure 4).

Processus de Poisson ponctuel est largement utilisée car elle posséde le plus grand ar-
senal de résultats. Il est plus simple a faire des calculs que les autre modeéles de processus
pontuel et, par conséquent, il est plus tractable. Cette modélisation consiste a traiter
I'architecture d’un réseau donnée par un réseau aléatoire et de Ianalyser de facon statis-
tique. Déterminer les performances du réseau avec la configuration déterministe de noeuds
est beaucoup plus difficile. Processus ponctuel de Poisson, d’autre part, permet de car-
actériser le comportement moyen sur de nombreuses réalisations spatiales (snapshot) d'un




réseau. Il est également utilisé pour faire des modéles la configuration de noeuds varier en
temps et de la mobilité, pour la premiére fois, dans cette thése.

Depuis les travaux [2], [3]|, processus ponctuel de Poisson ont été beaucoup utilisé
pour modéliser des systémes de communication sans fil. Il est utilisé avec succés pour
caractériser la distribution d’interférence, probabilité d’outage, la capacité, la connectivité
ou retard dans les grands réseaux ad hoc [4],[5], [6], [7], [8], etc, voir aussi [9] ou [10]
pour un panorama. Il est également utilisé pour étudier la performance et 'optimisation
des réseaux de capteurs [11], [12], etc. Processus ponctuel de Poisson est appliqué sur les
réseaux cellulaires comme dans [13], [2], [14], etc.

Processus ponctuel de Poisson, avec calcul de Malliavin et 1a méthode de Stein, a permis
a la communauté de la recherche pour obtenir des résultats théoriques [15], [16], [17], [18]..
Toutefois, I'application de ces mathématiques modernes sur les réseaux de communication
sans fil est trés limité. Ce n’est que récemment, il a été appliqué pour résoudre le probléme
de la couverture compléte sur les réseaux de capteurs, voir [19]..

Les outils de base de calcul de Malliavin consistent en un gradient et un opérateur de
divergence qui sont reliés par une formule d’intégration par parties. Pour un processus
ponctuel de Poisson w dans un espace E et une fonctionnel F' dépendant de w, I'opérateur
gradient D, peut étre défini par Dy F(w) = F(w Uy) — F(w) avec y € E. Une base de
I'analyse stochastique des processus de Poisson est que, pour une large classe de la variable
aléatoire F' | la représentation du chaos de F' est garantie:

1
F=3 —In(fa)
n=0

ou Iy est une intégrale multiple de Poisson et la fonction f,, est calculé grace a I'opérateur
gradient.

fn(yla )yn) =E [DleynF] .

C’est intéressant de noter que c’est similaire & la maniére dont le développement de
Taylor en analyse classique est établie:

e o"g
g(z) = Zanm where a, = %(0)
n=0 :

Voici la correspondance:

Analyse | Analyse stochastique
f(x) F
| e
2% 0) E[D"F]
X




x1

Contributions

Ce travail vise a fournir de nouveaux modeéles qui peuvent étre appliqués dans le proces-
sus de planification cellulaire. Les modeéles proposé prennent en compte de 'effet de la
distribution spatiale des utilisateurs et des stations de base. Les enquétes menées dans ce
travail s’appuient de facon significative sur la géométrie stochastique, théorie des processus
ponctuels et méthodes de distribution de probabilité d’approximation. Le plus important
contributions de ces enquétes peuvent étre classés dans la les trois domaines suivants:

e Cette thése propose de nouveaux modéles spatiaux pour I’évaluation de performance
de plusieurs aspects des réseaux OFDMA. Le premier probléme abordée est le di-
mensionnement d’une cellule OFDMA en termes de ressources  des blocs ou des
sous-canaux. Le but est de trouver des expressions analytiques de la probabilité de
blocage. Deux approches différentes ont été considéré. Dans une premiére approche,
la borne supérieure de la probabilité de blocage  a été calculée. Cette borne est
assez grossier, mais toujours surdimensionner les ressources nécessaires dans la cel-
lule. L’excés de ressources a un avantage. Il offre une certaine robustesse contre la
inexactitude de modélisation de la propagation radio. Une seconde approche repose
sur les méthodes d’approximations (I'expansions d’Egdeworth). Ils donnent estima-
tions précises de la probabilité de blocage pour la radio bien connu  parameétres
de propagation, mais au détriment d’'un manque de robustesse. Une borne d’erreur
de l'expansions d’Egdeworth a également été dévéloppée. Cette borne donne un
surdimensionnement acceptable si on a la connaissance précise des parameétres du
réseaux.

e Outage et handover sont deux issues cruciales dans les systémes cellulaires. Outage
est étroitement liée & la couverture. Probabilité d’outage fournit un indicateur de
la qualité de couverture dans un  réseau. Cette thése développe des expressions
plus général desprobabilités d’outage en faisant 1’hypothése que les stations de
base répartissent suivant un processus de Poisson dans le plan. Les performances de
handover est aussi une centrale question. Cette métrique est nécessaire pour avoir
une estimation de la  handover du trafic et donc de dimensionner proprement les
cellules. Les expressions fermées  pour la probabilité de handover sont également
développées dans ce travail.

e Enfin la consommation d’énergie dans les réseaux cellulaires est également  pris
en compte dans ce travail. La thése propose des modeéles qui rendent possible
d’estimer la consommation d’énergie dans une cellule en tenant le trafic et la
distribution spatiale de compte d’utilisateurs. Ces modéles peuvent étre utilisés a
des sites dimensions qui n’ont pas acces a l’alimentation électrique ou d’optimiser le
rayon des cellules.

Cette thése se compose de trois parties. La premiére partie présente les éléments du
processus de Poisson. La deuxiéme partie est une application pour dimensionner le systéme
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OFDMA. La deuxiéme partie applique la théorie présentée dans la premiére partie d’étudier
la consommation énergétique de réseaux cellulaires. Nous résumons le contenu de chaque
chapitre de cette thése en plus de détails dans la suite.

Chapitre 2 donne une introduction et des résultats sur le processus ponctuel de Poisson
que nous utiliserons tout au long de la thése. Nous définissons d’abord le processus de Pois-
son d’une maniére compréhensible et présentons quelques propriétés importantes telles que
la distribution du nombre de points et le théoréme de Campbell ou de certaines opérations
préservant de la loi de Poisson. Nous étudions ensuite la distribution des fonctionnelles
linéaires dépendant d’un processus de Poisson car beaucoup de fontionnelles d’intérét ont
cette forme. Nous présentons une borne supérieure sur la distribution(appelée I'inégalité
de concentration) et une borne d’erreur d’approximation gaussienne de telles fonctionnelles.
Nous passons ensuite au calcul de Malliavin sur le processus de Poisson. Elle permet de
décomposer un grand famille de fonctionnelles dépendantes du processus ponctuel de Pois-
son comme la somme orthogonale de chaos, oil le n?™ chaos est la contribution de chaque
ensemble de n points de la processus. Bornes sur la distribution et "approximation Gaussi-
enne d'une fonctionnelle générale est également présentée, qui généralisent les résultats
dans le cas linéaire.

Voici les nouveaux résultats dans le chapitre 2. Considérons un processus de Poisson
w d’intensité Av et une fonction f de E & R. Définissons o = ||f||L2(,,)\/X et fo = f/o.
Considérons le fonctionel

N* = /Efa(a:)(dw(z) ~Mdv(2))=F,\-E[F,].

Définissons également

m(p, A) = /E |fo(2)PA dv(z) = ||f||Z§(,,)||f||§p(y))\1_p/2.

Les polyndémes d’Hermite sont définis par

k
Hy(2)®(z) = (—1)’6% exp(—x2/2)/V/2r.

Les polynomes de Bell By, (ay,...,a;,) sont définies comme suivant

> a, " > By (ai,az2,...;ay) .,
exp{z H@ }: Z o 0

n=1 n=1

for all ay,...,a, and @ such that all above terms are correctly defined.
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Les cing premiers polynémes de Bell sont:

Bi(a1) = a
Bolai,az) = a2+ as
Bs(ay,as,a3) = a3+ 3ajas + a3
By(ay,a9,a3,aq4) = ail + 4atay + 4aiaz + 3a3 + ay
Bs(a1,a2,as3,a4,a5) = ai’ + IOai’ag + 1Oa%a3 + 15a1a§ + bajas + 10asas + as

On peut calculer les moments d’un fontionel linéaire dépendant d’un processus de
Poisson par les polynémes de Bell:

Theorem 1 (Formule de Campbell généralisé). Les cumulants de F = fE fdw est K,Z-F =
fE v(z) (i = 1.n). Les moments and les moments centrauz de F peuvent étre

</f ) dv(z /f2 ) du(z /fz dy) (1)
ci[F (/f2 dv(z /fz ) du(z > (2)

La borne de 'approximation Gaussienne est donnée par le théoréme suivant:

calcules par

and

Theorem. Pour n'importe quelle fonction de Lipschitz G de R a R, on a
B [6V)] = [ 6.au] < 5/5 30 161

On peut aller un peu plus loin dans le dévéloppement, on obtient la borne d’érreur
pour le dévéloppement d’Egdeworth dans les deux théorémes suivants:

Theorem. Pour G € C}(R, R), on a

|Ex, [GINY)] — [ G(y) duly) — § m(3, A) [ G(y)Hs(y) du(y)|
1?4 mid) %) I
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Theorem. Pour G € C,‘:’, on a

Ey [GINY] = [ Gly) dp(y) + 232 [, 6O (y) dply) + 2525 [ 6O () dp(y)
+ 24>\ fRG(4 dﬂ( )"‘GA”G(B ”oo

m(3,1) [ 2 4 x2 \/?
< P . - .
Gr=—ap (45 m(3,1)° + (35 T 1)y 7 ™D

01

Le chapitre 3 propose une modéle analytique pour le dimensionnement des réseaux
OFDMA base comme les systémes WiMAX et LTE. Dans tel systéme, chaque utilisateur
demande certainnombre de sous-canaux qui dépend de leur SNR, par conséquent, de leur
position et le shadowing qu’ils éprouvent. Le systéme est surchargé lorsque le nombre
de sous-canaux requis est supérieur au nombre de sous-canaux disponibles. Nous don-
nons une expression exacte mais qui n’est pas fermée de la probabilité de surcharge et
de donner ensuite une méthode algorithmique pour calculer le nombre de sous-canaux qui
garantit une probabilité de surcharge de moins de’un seuil donné. Nous montrons que
approximation gaussienne conduit aux valeurs optimistes et sont donc inutilisables. Nous
ensuite introduisons des expansions d’Edgeworth avec des bornes d’erreur et de montrer
que, en choisissant le bon ordre de I'expansion, on peut avoir une valeur approximative de
dimensionnement facile & calculer et avec des performances garanties. Comme les valeurs
obtenues sont fortement dépendante des parameétres du systéme, qui s’est avéré étre plutot
indéterminé, nous fournissons une procédure basée sur l'inégalité de concentration pour des
fonctionnelles de processus de Poisson, qui céde & un surdimensionnement. Ce chapitre
s’appuie sur des résultats récents sur les inégalités de concentration et établir de nouveaux
résultats sur 'expansion Edgeworth présentés dans le chapitre 2. Ce chapitre est basé sur
le papier [20], qui a été publiée dans la conférence ValueTools 2012.

Dans le chapitre 4, nous considérons les réseaux cellulaires stochastiques ol les em-
placements des stations de base constituent un processus ponctuel de Poisson homogéne
et chaque mobile est connecté & la station de base qui fournit la meilleure puissance de
signal en moyen. Le mobile est en outage si le SINR tombe en dessous d’un certain seuil.
La décision de handover doit étre effectué si le mobile est en outage pendant plusieurs
slots de temps. La probabilité d’outage et la probabilité de handover sont évaluées en
tenant compte de l'effet de pathloss, shadowing, Rayleigh fading, facteur de réutilisation
de fréquence et la formation de conventionel faisceau. L’hypothése principale est que les
fading de Rayleigh changent chaque intervalle de temps mais tous les autres composants du
réseau restent statiques pendant la période d’étude. Ce chapitre est basé sur le document
de [21], ce qui a été publié dans la conférence WPMC 2012.
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Chapitre 5 introduit un cadre théorique général pour analyser les réseaux limitées en
bruit. Plus précisément, nous considérons deux processus ponctuels de Poisson homogénes
de stations de base et des utilisateurs. Général modéle de propagation du signal radio et
I'effet de fading sont également pris en compte. La principale différence de notre modéle
par rapport a d’autres existant modeéles est que l'utilisateur se connecte & ses meilleurs
serveurs, mais pas nécessairement le plus proche. Nous fournissons formule générale pour
la probabilité d’outage. On étudie fonctionnelles liées au SNR, ainsi que la somme de
ceux-ci fonctionnelles entre tous les utilisateurs par cellule. Pour ces derniers, ’espérance
et la des bornes sur la variance sont obtenues.
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Chapitre 6 présente un général modéle de consommation énergétique pour une station
de base dans un réseau cellulaire. Nous présentons d’abord la consommation de puissance
en tant que fonction de la configuration d’utilisateurs actifs & chaque temps. L’énergie
consommeée pendant une période de temps est alors définie comme 'intégrale de la puissance
consommeée au cours de cette durée. Nous divisons I’énergie consommée en deux parties: la
une partie de diffusion servi & transmettre le méme message a tous les utilisateurs dans la
cellule, et la partie additif qui est la somme de tous quantités d’énergie utilisée par chaque
utilisateur a la fois dans la voie descendante et la voie montante. Nous introduisons ensuite
le modele général pour la mobilité de I'utilisateur, ou trajectoires des utilisateurs sont i.i.d.
Enfin, nous étudions un mModeéle de base pour chaque instance ou la configuration des
utilisateurs actifs est un processus ponctuel de Poisson. Nous montrons que la I’énergie
consommeée est une fonction croissante du rayon de cellule et qu’il y a toujours un rayon de
cellule optimale dans le point de vue économique dont on considére le cout de deployement.
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Nous étudions ensuite la consommation d’énergie de réseau cellulaire en deux modéles
de dynamique des utilisateurs. Dans le chapitre 7, nous supposons que chaque utilisateur
est associé a une activité ON-OFF processus dans le temps. Dans le chapitre 8 nous ne
supposons pas utilisateur soit allumé ou éteint. Au contraire, nous supposons que les
utilisateurs arrivent & la suite d’un Poisson point processdans I'espace et le temps et font
des communications au cours du temps certains étant modélisée par une variable aléatoire.
Nous sommes en mesure de fournir des expressions analytiques pour les statistiques de
I’énergie consommeée et les bornes de sa distribution. Nous considérons ensuite 1'impact
de la mobilité et nous montrons que lorsque les utilisateurs déplacent, 1’énergie moyenne
consommée ne change pas alors que sa variance diminue & zéro lorsque les utilisateurs
déplacent rapidement. C’est un trés surpris résultat car il est vrai pour n’importe quel
modeéle de mobilité. Dans le modéle ON-OFF, nous sommes en mesure de caractériser le
taux de décroissance de la variance en fonction de la vitesse de I'utilisateur. Dans les deux
modéles, nous fournissons des expressions asymptotiques lorsque le systéme fonctionne
pendant un temps trés long. Les deux chapitres sont basées sur [22| et [23| qui sont
actuellement soumis pour publication.

Liste des publications

Voici la liste des publications réalisées pendant la thése:
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e Robust methods for LTE and WiMAX dimensioning, L. Decreusefond and E. Ferraz
and Ph. Martins and T.-T. Vu , Valuetools 2012, Cargese, France

o An Analytical Model for Fvaluating Outage and Handover Probability of Cellular Net-
works, L. Decreusefond and Ph. Martins and T.-T. Vu, WPMC’12, Taipei, Taiwan

e FEnergy consumption in cellular network: ON-OFF model and impact of mobility, L.
Decreusefond and Ph. Martins and T.-T. Vu, submitted to IEEE INFOCOM 2013,
Turin, Italy

e Energy consumption in cellular network: Generalized Glauber model, L. Decreusefond
and Ph. Martins and T.-T. Vu, in preparation

Perspectives

Dans cette thése, nous avons utilisé des modéles abstraits pour analyser la consommation
d’énergie sur les réseaux cellulaires qui simplifie hypothéses sur la traffic, la mobilité, ...
Notre modeéle de consommation d’énergie est seulement a I’état initial et nous avons besoin
de beaucoup d’amélioration pour modéliser avec plus de précision. Pourtant, nous avons
tirées de ces modeles abstraits d'un grand nombre de résultats intéressants qui méritent
d’étre poursuivies.

Il y a quelques pistes de recherches futures comme ci-dessous:
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1. modéle avec perte: Dans cette thése, nous avons supposé que le systéme ne se
limite pas a la puissance transmise ou des ressources de sorte qu’il n’ya pas de perte
d’appel. Dans un systéme réel, comme OFDMA un, la ressource est toujours limité
donc il ya toujours une petite fraction de 'appel a étre perdu, retardé ou interrompu.
Si le systéme est concu de telle sorte que la probabilité de perdre une communication
est trés petite, sans perte sur-modéle peut étre une bonne approximation. Cependant,
nous aimerions construire un modéle pour désigner cette réalité et nous voulons
savoir, par exemple, si la tendance prise par la mobilité est le méme que chez les non-
perte de modéle. Nous notons que la perte de réseau spatial est déja considéré dans
la littérature citeKarray2007Thesis,[57],[58], .... Il peut étre utilisé dans 'analyse
ultérieure.

2. Considérant shadowing, fading, interference: Pour la raison de tragabilité,
nous avons supposé que les canaux entre les utilisateurs et les stations de base ne
sont pas affectés par fading ou shadowing. Il est possible de tenir compte de ces
éléments dans une recherche future que le systéme peut également décrit comme
un Poisson point process. En outre, le réseau cellulaire est particulierement lim-
itée par interférence. Par conséquent, il serait intéressant de mesurer 'impact des
interférences sur la consommation d’énergie des réseaux cellulaires.

3. Comparaison avec la simulation / test / données réelles: Nos modeles de
consommation d’énergie sont purement théoriques. En raison de la limite de temps,
nous n’avons pas encore construit un simulateur. A I’avenir, nous aimerions comparer
les résultats obtenus dans cette thése a une simulation numérique ou des données
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réelles. Un de notre conclusions est que la mobilité n’a pas d’impact sur la moyenne
de consommation d’énergie, mais une grande mobilité diminue sa variance & zéro. 11
serait intéressant de voir si cette conclusion est précis dans le monde réel.
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1.1 Motivation

Cellular communications have realized an amazing evolution for the last twenty years.
Technological advances in cellular systems and cellular phones design have made possible
services that one could not imagine twenty years ago. Mobile telephony, and more par-
ticularly GSM, have been the first worldwide service with more than 5 billions customers
today. The third generation systems such as UMTS have tried to provide a universal radio
interface both adapted to circuit and data services transfer. Success of 3G technologies
have been quite disappointing at the beginning. However, recent developments such as
HSPA, HSPA+ and fourth generation systems tend to show that cellular communications
are now at the eve of a new major revolution. These new technologies will change the
way of life of many people by bringing them new convenient utilities and services. Modern
smartphones are now built on mobile computing platforms, with more advanced computing
and connectivity abilities than ever and at affordable prices. People are now able to use
data services such as localization, Internet access, files transferring from almost anywhere
even in high mobility.

Data traffic associated with these services is more and more important. From a network
operator point of view resources are necessary to satisfy user demands and fulfill quality
of service requirements. Such an evolution requires more and more spectrum resources
but unfortunately this resource is scarce. As a result network operators need to design
more and more efficient methods to design and deploy their network. Cellular planning is
the process used to design, dimension and deploy a mobile network taking into quality of
service constraints. This is a complex procedure that requires to take into account many
criteria :

e An operator needs to satisfy traffic and QoS demands of its customers. To fulfill that
objective, it is necessary to deploy resources such base stations, antennas, routers,
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switches or transmission links. Dimensioning is the process that determines the
number of resources necessary to satisfy traffic and QoS constraints.

e Coverage is the process that grants that a particular cell provides the necessary radio
quality to comply with users’” QoS constraints.

e Capacity determines the number of subscribers that can be supported by a network
taking into account QoS and radio constraints.

This work intends to provide new models that can be applied in the cellular plan-
ning process. The proposed solutions model and take into account the effect of spatial
distribution of users and bases stations. The investigations carried out in this work rely
significantly on stochastic geometry, point process theory and probability distribution ap-
proximation methods. The most important contributions of these investigations can be
classified into the following three areas:

e This thesis proposes new spatial models for the performance evaluation of several
aspects of OFDMA networks. The first problem addressed is the dimensioning of an
OFDMA cell in terms of resource blocks or subchannels. The purpose is to find an-
alytical expressions of the blocking probability. Two different approaches have been
considered. In a first approach, upper bounds of blocking probability have been com-
puted. These bounds are quite coarse but always overdimension the resources need
in the cell. That excess of resources has an advantage. It provides some robustness
against the inaccuracy of radio propagation modeling. A second approach relies on
approximations methods (Egdeworth expansions). They give accurate estimations
of the blocking probability for well known radio propagation parameters but at the
expense of a lack of robustness.

e Outage and handover are both critical issues in cellular systems. Outage is tightly
related with the coverage issue. Outage probability provides an indicator of the
coverage quality in a network. This thesis develops outage probabilities expressions
more general than classical expressions obtained in hexagonal or Voronoi Tessellations
models. The performance of handover is also a central issue. That metric is necessary
to have an estimate of the handover traffic and hence to dimension cells properly.
Closed forms for handover probability are also developed in this investigation work.

e Finally energy consumption in cellular networks is also considered in that work. The
thesis proposes models that make it possible to estimate energy consumption in a cell
taking into account traffic and spatial distribution of users. The proposed models
can be used to dimension sites that do not have access to power supply facilities.

1.2 Thesis outline and contributions

This thesis consists of three parts. The first part introduces the elements of Poisson point
process. The second part is an application to dimensioning the OFDMA systems. The
second part applies the theory presented in the first part to study the energy consumption
of cellular networks.

Let us highlight the content of each chapter of this thesis in more details. Chapter
2 gives an introduction and results on Poisson point process that we use throughout this
thesis. We first define Poisson point process in an understandable way and present some of




its important properties such as the distribution of the number of points and the Campbell
Theorem or some operations preserving the Poisson law. We then study the distribution
of linear functionals depending on a Poisson point process as many functionals of interest
have this form. We present an upper bound on tail distribution (called concentration
inequality) and an error bound of Gaussian approximation of such functionals. We then
turn to the Malliavin calculus on Poisson point process. It allows one to decompose a large
family of functional depending on Poisson point process as the sum of orthogonal chaos,
where the n* chaos is the contribution of every set of n points of the process. Bounds on
the tail distribution and Gaussian approximation of a general functional is also presented,
that generalize bounds in the linear case.

The chapter 3 proposes an analytic model for dimensioning OFDMA based networks
like WiMAX and LTE systems. In such a system, users require a number of subchannels
which depends on their SNR, hence of their position and the shadowing they experience.
The system is overloaded when the number of required subchannels is greater than the
number of available subchannels. We give an exact though not closed expression of the
loss probability and then give an algorithmic method to derive the number of subchannels
which guarantees a loss probability less than a given threshold. We show that Gaussian
approximation leads to optimistic values and are thus unusable. We then introduce Edge-
worth expansions with error bounds and show that by choosing the right order of the
expansion, one can have an approximate dimensioning value easy to compute and with
guaranteed performance. As the values obtained are highly dependent from the parame-
ters of the system, which turned to be rather undetermined, we provide a procedure based
on concentration inequality for Poisson functionals, which yields to conservative dimen-
sioning. This chapter relies on recent results on concentration inequalities and establish
new results on Edgeworth expansions presented in the chapter 2. This chapter is based on
the paper [20], which is accepted for publication.

In the chapter 4, we consider stochastic cellular networks where base stations locations
form a homogeneous Poisson point process and each mobile is attached to the base station
that provides the best mean signal power. The mobile is in outage if the SINR falls below
some threshold. The handover decision has to be made if the mobile is in outage during
several time slots. The outage probability and the handover probability are evaluated
in taking into account the effect of path loss, shadowing, Rayleigh fast fading, frequency
factor reuse and conventional beamforming. The main assumption is that the Rayleigh fast
fading changes each time slot while other network components remain static during the
period of study. This chapter is based on the paper [21], which is accepted for publication.

Chapter 5 introduces a general theoretical framework to analyze noise limited networks.
More precisely, we consider two homogenous Poisson point processes of base stations and
users. General model of radio signal propagation and effect of fading are also considered.
The main difference of our model with respect to other existing models is that a user
connects to his best servers but not necessarily the closest one. We provide general formula
for the outage probability. We study functionals related to the SNR as well as the sum of
these functionals over all users per cell. For the latter, the expectation and bounds on the
variance are obtained.

Chapter 6 presents a general energy consumption model for a base station in a cellular
network. We first introduce the power consumption as a function of the configuration
of active users at each time. The energy consumed during a time period is then defined
as the integral of the consumed power during this duration. We divide the consumed
energy into two parts: the broadcast part served to transmit the same message to all users
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in the cell, and the additive part which sums up all the energy used by each user both
in downlink and uplink modes. We then introduce the general model for user’s mobility,
where trajectories of users are i.i.d. Finally we study a basic model where for each instance
the configuration of active users is a Poisson point process. We show that the consumed
energy is an increasing function of the cell radius and that there is always an optimal cell
radius in the economical point of view.

We then study the energy consumption of cellular network in two models for dynamic
of users. In the chapter 7, we assume that each user is associated with an activity ON-
OFF process in time. In the chapter 8 we no longer assume that a user is on or off.
Rather we assume that users arrive following a Poisson point process in space and time
and make communications during certain time being modeled by a random variable. We
are able to provide analytic expressions for statistics of consumed energy and bounds on
its distribution. We then consider the impact of mobility and we show that when users
move, the average consumed energy does not change while its variance decreases to zero
when users move fast. This is a strong result as it holds true for any mobility model. In the
ON-OFF model we are able to characterize the decay rate of variance in function of user’s
speed. In both models, we provide asymptotic expressions when the system works for a
very long time. The two chapters are based on [22] and [23| which are currently submitted
for publication.

1.3 List of publications
Here is the list of publications:

e Robust methods for LTE and WiMAX dimensioning, 1.. Decreusefond and E. Ferraz
and Ph. Martins and T.-T. Vu , Valuetools 2012, Cargese, France

o An Analytical Model for Evaluating Outage and Handover Probability of Cellular Net-
works, L. Decreusefond and Ph. Martins and T.-T. Vu, WPMC’12, Taipei, Taiwan

e FEnergy consumption in cellular network: ON-OFF model and impact of mobility, L.
Decreusefond and Ph. Martins and T.-T. Vu, submitted to IEEE INFOCOM 2013,
Turin, ITtaly

e Energy consumption in cellular network: Generalized Glauber model, L. Decreusefond
and Ph. Martins and T.-T. Vu, in preparation

1.4 Notations

Tables 1.2 and 1.1 present all mathematical notations and abbreviations used throughout
this thesis.




Abbreviation Explanation

LHS Left hand side

RHS Right hand side

PDF Probability density function

CDF Cumulative distribution function

CCDF Complementary cumulative distribution function
BS Base station

Cadlag (function) | Right continuous with left limits (function)

Table 1.1: Abbreviations

Symbols Definition

R [0, 00)

D differential operator

P(A) probability of event A

E [X] expectation of random variable X

V[X] variance of random variable X

m,, [X] n** order moment of random variable X

c, [X] n'" order central moment of random variable X

px(t) PDF of the random variable X

Fx(t) CDF of real random variable X

Fx(t) CCDF function (tail distribution) of real random variable X

AX n'" order standardized cumulant of real random variable X

B(z,r), Bi(z,r) ball of radius r centered at x (in d dimension)

B(z,r), By(z,7) RY/B(z,7)

1y (2 indicator function

CX,Y] covariance of two random variable X, Y

0 the origin (of RY)

C usually designated to the cell administered by the BS located
at o

C(r) C N B(o,r)

C(r) C N B(o,r)

Q(u) = % [foe T dz | CDF of a standard Gaussian random variable

Qu) = % [Ze~z da | CCDF of a standard Gaussian random variable

uAv min{u, v} for u,v € R

u\Vou max{u,v} for u,v € R

{f+ E =R, [;|f(x)" dv(z) < oo} where v is a measure
on E (n > 0 is not necessarily integer)

(fE | f(@)[" dV(SC))%, L™-norm
hmm—)a % =1

(z)

f(=z)

fx)=0(g(x)) asz —a | 0 <liminf,_,, _Z;(x) < limsup,_,, Y@ <0

Table 1.2: Mathematical notations.
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2.1 Introduction

In this chapter, we review main mathematical results used in this thesis. We first present
the application of stochastic geometry and Poisson point process in wireless networks. We
then define Poisson measure on Polish space and Poisson point process. We study the
distribution of linear functional of Poisson point process. We introduce some basics of
Malliavin calculus on Poisson space then present results on a large class of functional of
Poisson point process. We derive useful results concerning Poisson point process. Materials
in this chapter are collected from literature, mainly from [24], [17], |25], [26], [27], [18], [15],
[28], [16], and we also add new results from our recent work [20].

2.2 The use of Poisson point process on wireless modelling

In this section, we explain why and how stochastic geometry in general and spatial Poisson
point processes in particular can help modeling the wireless communication systems. We
also give a brief detail on Malliavin calculus for Poisson point process.

More than a century ago, the first wireless telegraph system was invented. Nowadays,
wireless communication systems consist of cellular networks (as described in the previous
chapter), ad hoc networks, sensor networks, wi-fi networks and others that are applied to
all aspects of life. In contrary to wired systems, in wireless systems there is a much greater
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Realistic modeling

Mathematical tractability
Figure 2.1: Trade-off between tractability and realistic modeling.

amount of uncertainty and randomness on node locations or channel conditions and usually
there is interference because many nodes share the same medium. A configuration of active
users is never fixed in time: nodes can move or simply change their state. The received
signal depends on the distance between the transmitter and the receiver, and the channel’s
condition called fading, can vary from time to time. Models for wireless communication
systems must capture all these uncertainty and randomness. However, it is difficult to
model perfectly a system: the more realistic a model is, the less tractable it is. There is
always a balance between realistic modeling and tractability (illustrated in figure 2.1).

Poisson point process is widely used because it has the largest arsenal of results. It
is more simple to deal with than other point process model and more importantly, it is
more tractable. This modeling consists of treating the given architecture of the network as
random and analyzing it in a statistical way. Determining the network performance with
deterministic configuration of nodes is much more difficult. Poisson point process, on the
other hand, allows one to characterize the average behavior over many spatial realizations
(snapshot) of a network. It also used to model time varying configuration of nodes and
mobility, for the first time, in this thesis.

Since the works [2], [3], Poisson point processes have been the basis of stochastic geom-
etry modeling of large wireless communication systems. It is successfully used to charac-
terize the distribution of interference, outage probability, transport capacity, connectivity
or delay in large ad hoc networks [4],]5], [6], [7], [8], etc, see also [9] or [10] for an overview.
It is also used to study the performance and optimization of sensor networks [11], [12], etc
. Poisson point process is applied on cellular networks as in [13], [2], [14], etc.

Poisson point process, together with Malliavin calculus and Stein method, has allowed
the research community to obtain theoretical results [15], [16], [17], [18]. However the ap-
plication of this modern mathematics on wireless communication networks is very limited.
Only recently, it was applied to solve the problem of full coverage on sensor networks, see
[19].

The basic tools of Malliavin calculus consist in a gradient and a divergence operator
which are linked by an integration by parts formula. For a Poisson point process w in a
space I/ and a functional F' depending on w, the gradient operator D, can be defined by
DyF(w) = F(wUy) — F(w) with y € E. A basic of the stochastic analysis of Poisson
point process is that for a large class of random variable F', the chaos representation of F
is guaranteed:

= z_;) %In(fn)

where [I,, is the multiple Poisson integral and the function f,, is computed thanks to the
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gradient operator.

oW1,y yn) = E [Dyl"'DynF] :

Interestingly, this is similar to the way as Taylor expansion in analysis is established:

>N o"
g(z) = Zanm where a, = ﬁ(O)
n=0 ’

Here we have the correspondence:

Analysis | Stochastic analysis
f(x) F
o | =m
' 0) E[D"F]
1

Basics and results on Poisson point process are presented in details in the next section.

2.3 Poisson point process

Let E be a o—compact metric space (i.e E can be partitioned into a countable union of
compact metric spaces) with a diffuse Radon measure v. The space of configurations of F
is the set of locally finite simple point measures

QF = {w = Z €, (at most countable), z; € E} ,
where €, denotes the Dirac measure at z € F, i.e
€2(A) = 1.y, A € B(E):-

Here, simple measure means that w({z}) < 1 and locally finite measure means that w(K) <
oo for all compact K C E. The configuration space Q¥ is endowed with the vague topology
and its associated o-algebra denoted by F¥.

For convenience, it is quite often to identify an element w = ) €., with its correspond-
ing support, i.e the unordered set {z1,...,z,},n € N U {+oo}. Also, w(A) counts the
number of points in A € B(E). The distribution of point process w is characterized by the
family of finite dimensional distributions (w(A1),...,w(A,)) where Ay, ..., A, are mutually
disjoint compact subsets of E.

Definition 1. w is a Poisson point process (PPP) of intensity v if for all set (A, ..., Ap)
of mutually disjoint compact subsets of E:

L ) ki
P(U)(Al) = kq, ,w(An) = kn) — H (e—V(Ai)M> .

|
Pl k!

If E = R?; B is Borel algebra of R? and v(dz) = X\ dz, we will call w the homogenous
Poisson point process with intensity parameter X on R%.
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Figure 2.2: A realization of homogenous Poisson point process of intensity A = 2.1072 and its
thinning with p(z) = 0.2.

Roughly speaking, the number of points of w falling into a subset A follows Poisson
distribution of parameter v(A), and the number of points falling into 2 disjoint subsets are
independent.

In what follows, we describe some operations on point process that preserves the Poisson
law ([24]).

e (Superposition) For n Poisson point process wi, ..., w, of intensities vq,...,v, (n <
o0), we call w = Y I | w; their superposition. It is well known that w is a Poisson
. . - . n
point process with intensity v =>"" , ;.

e (Thinning) Consider a Poisson point process w of intensity v and a function p: £ —
[0,1]. The thinning of w with retention function p is given by w? = Y d;e,, where
the random variables {d;}; are independent given w and P(; = ljw) = p(z;) =
1—-P(9; = OJw). If p is v— measurable then wP is a Poisson point process of intensity

pv with pr(A) = [, p(z) dv(z).

e (Transformation, displacement theorem) Consider another o—compact metric space
E’ and a probability kernel p(z,.), i.e for all z € E, p(z,.) is a probability measure
in E’. The transformation of a Poisson point process w by p with intensity v in
E is defined as w, = > €, where z{,2),... are independent given w and has the
probability P(z] € A'|lw) = Zp(zz-, A"). Tt is shown that w? is a Poisson point process
of intensity v/(A4") = [ p(z, A) dv(2).

Consider a second o—compact metric space E’. For each point z; of w, we associate
with a random mark m; € E’. The mark point process w can be presented as

w= E :E(Zi,mi%
%

where € is the Dirac measure on E' x E’. w is said to be independent marked if the marks
are mutually independent given a realization of w and the distribution of marks depends
only on the location of its parent point P(m € .Jw) = P(m € .|z) = dK.(m) with a
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probability kernel K (.) from F to E’. By displacement theorem we can prove that if w is
a Poisson point processwith intensity v, then w is a Poisson point processin E x E’ with
intensity measure:

(A x A) = / / dK.(m) dv(z), AcC B A CE.
A !

If additionally the marks are independent of their parent point, i.e d M,(m) is the same
as d M(m) then w is a Poisson point processin £ x E’ with intensity dv(z) x d K(m).

2.4 Malliavin calculus on Poisson point process

In this section we introduce basics of Malliavin calculus on Poisson space and then present
some results on general functional depending on a Poisson point process.
A real function f : E™ — R is called symmetric if

f(ZU(1)7 B Za(n)) = f(zla B zn)

for all permutations o of ,,.

The space of symmetric square integrable random variables with respect to v is denoted
by L?(v)°". Let A, = {(z1, - ,2n) € E™ | 2; # zj,Vi # j}. For f € L*(v)°", the multiple
Poisson stochastic integral I,,(f,) is then defined as

In(fn)(w) = /A fa(z1,-- 5 2n)(dw(z1) = dv(z1)) -+ (dw(zn) = dv(z,))-

It is well known that,

El Y fln-h )| =] fla, o, z) dv(z)-- dv(z): (2.1)
o E™
2i#2Zj €W
1<i<j<n

If n =1, (2.1) is the same as Campbell’s formula. From this, by introduction we can show
that E [I,,(f,)] = 0.
If f, € L?>(v)°" and g,, € L?(v)°™, n > m, the following isometry formula holds:

E [In(fn)Im(gm)] = n!]-{m:n} <fnagm>L2(y)°“ (22)

(see [17]). Here
(fn> Gn) L2 (w)on :/ fr(21y s 20)gn (21, ooy 2n) dv(21)... dv(zy)
E’I’L
For f, € L?*(v)°" and g,, € L?(v)°™, we define f, xﬁcgm, 0 <[ <k, to be the function:

(yl+17' o Yny Tyl 7$m) —

/;/l fn(yly“‘ 7yn)gm(y17 7yk7xk+17”' 7xm) dV(yl) dV(yl) (23)

We denote by fy, of,C Jm the symmetrization in n+m — k — [ variables of f, xf,cgm, 0<I<Ek.
This leads us to the next proposition, shown in [17]:
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Proposition 2. For f, € L?(v)°" and g, € L*(v)°™, we have
2(nAm)

(fn Z In-‘,—m s nms)

where
S\ (m {
e = 2 Zl(i) (z)(s_z> noi " gm
$§<2i<2(sAnAm)
belongs to L2(v)°"T™m=5, 0 < s < 2(m An).

In what follows, given f € L?(¥)°? (¢ > 2) and z € E, we denote by f(*, z) the function
on E971 given by (x1,- - ,Lg_1) —> f(:rl, C L Tgo1, 2).
Furthermore, we have:

Theorem 3. Every random variable F € L?(QF P) admits a (unique) Wiener-Poisson
decomposition of the type

Fl+ ) In(fn), (2.4)
n=1

where the series converges in L2(QF P) and, for each n > 1, f, is an element of L*(v)°"
Moreover, we have the isometry equation:

o0

VIE] =3 0l full 32 yon- (2.5)

n=1

Definition 2. Let Dom D be the the set of random variables F € L*(QF,P) admitting a
chaotic decomposition such that

[o¢]
D nnll|fall2yen < 00
n=1

Let D be defined by
D : Dom D — L*(QF x E,P x v),

such that

F=E[F]+) I(fs) — D.F(x) = Y nly_1(fa(*,2)).

n>1 n>1

Theorem 4. We have

‘DZF(w) =F(w+e,) — F(w), dP x dv a.e.-‘
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The theorem 4 says that, the operator D is nothing else but simply the difference
made on F' by adding a point z on w. The integration by parts then says that, for any
F € Dom D, any u € L?(v),

E [F/Eu(z)(dw(z) - dz/(z))] —E UE D.Fu(z) du(z)] . (2.6)

It is well known that F is a linear functional (see the next section) F' = [, f dw if and
only if the chaos representation of F'is F' = E[F] + I;(f) and in this case D, F = f(z)
and thus V [F] = [, |D.F|* dz. Generally, F has the form

k
F:ZI Z fi(Zl,...,Zi)

(21,.-,2i)EAj;zj €W
if and only if the chaos representation of F' has the form

k

F=E[F|+) I
=1

where g1, ..., g can be derived from f1,..., fi.
Using the difference operator D, we can bound the variance of F' as follows:

Theorem 5. ([17], [15]) VF € L*(QF, P) we have:

V[F]<E UE |D.F|? dz] ' (2.7)

Equality occurs if and only if F' is linear.

Corollary 1. VF € L2(QF P) such that |D,F| < f(z) for some non negative measurable
function f : E— R for all z,w then:

V[F] < /E F2(2) dw(z): (2.8)

Theorem 6. (/17],/29]) Consider two functionals F,G € L*(QF,P). Assume that D,F, D,G >
0, P x v a.s. then

CI[F,G] > 0.
As a consequence, V [F + G] > V [F] + V[G].

Definition 3. The Ornstein-Uhlenbeck operator L is given by
[ee]
LF ==Y nl,(fn),
n=1

whenever I € Dom L, given by those F' € LQ(V)O" such that their chaotic expansion verifies

o0
> Pl fall2qyen < oo
n=1

Note that E[LF] =0, by definition and (2.2).
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Definition 4. For F € L?(P) such that E [F] =0, we may define L=' by

[e.9]
L'F=-)"
n=1

The three Malliavin-type operators defined above give us way derive upper bounds
on the distribution of a functional F(theorem 8) and an estimate of error on Gaussian
approximation (theorem 7), results which is more general than the ones introduced on the
previous sections.

In(fn)-

S

Theorem 7. ([18]) Let F' € Dom D be such that E[F] =0 and V [F]| = 1. Then,

dw(F, N(0,1)) < E Hl — [plD.F x D.L7'F] dl/(Z)H
+ [y E[|D.F* |D.L7'F|| dv(z)

Here dyy is the Wasserstein distance.

Theorem 8. [15/, Let F € Dom D. Assume that |DF| < M, P xv a.s., for some M >0
and [, |D.F|* dv(z) < o, P—a.s. Then for all u > 0 we have

P Bl 0) <o - 2o () 2s)
for M >0 and
P(F—E[F] > a) Sexp{—za;} (2.10)

for M =0 where g(t) = (1+t)In(1 +¢) —¢.

Corollary 2. Let F € Dom D. Assume that |DF| < M, P x v a.s., for some M > 0 and
|D.F| < f(2),P—a.s. for some non negative function f € L*>(v). Then for all u > 0 we
have

2 z vz u
P(F-E[F] >u) < exp{—fEf (M)Qd ( )9 <fEf2(z];4du(z)>}. (2.11)

2.5 Distribution of linear functional of Poisson point process

We call F' a linear functional of w if there exists f : F — R such that

F= [ 56 dui) = Y )

zew

We assume that f € L1(v). In this section we are interested in the distribution of F.
Let £4(.) be the Laplace functional of w, i.e:

Lo(u) = E [e— Jpu(2) dw(z)] (2.12)
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Theorem 9. (/17]) The Laplace functional of w satisfies:

Lo(u) = e e dv@) e [1(y). (2.13)

From the above theorem the moment generating function (MGF) of F' is expressed as
follows:

E [efEf dw} — eJpP-1) du(z), (2.14)

2.5.1 Moments

The complete Bell polynomials B, (ay,...,a,) are defined as follows:

exp{i } i a17a27"'7 n)en

n=1

for all ay,...,a, and @ such that all above terms are correctly defined.
The first five Bell complete polynomials are given as:

Bi(a1) = a

Ba(a1, as
Bs(ay, a2, a3
By(a1,az,a3, a4

Bs(a1, a2, a3, a4, a5

2
aj + az

az{’ + 3aras + ag
a‘ll + 4a%a2 + 4aqa3 + 3(1% + a4
= a? + 10(1?(12 + 10a%a3 + 15a1a§ + baiayg + 10asas + as

)
)
)
)

It is well known that the coefficients of Bell’s polynomial are always non negative. If a
random variable S has n first cumulants n*lg - ng then its moments and central moments
of S can be expressed as:

m,, [S] = E[S"]
cn [S] = E[(S - E[5])"]

Bp(K7, . kD)

'

B (0, K5 ..., K2

Now consider a linear functional F' of w, i.e F = fEf dw for some non-negative v-
measurable function f. We can compute the cumulants, the moments and central moments
of F' by Bell complete polynomials as follows:

Theorem 10 (Generalization of Campbell’s formulas). Assume that f € N L' (E,v).
The cumulants of F = [, f dw is &I" = [, f{(2) dv(z) (i = 1.n). The moments and
central moments of F' are given as:

</f ) dv(z /f2 ) du(z /fz ) dv(z ) (2.15)
ci[F (/f2 ) du(z /fl ) du(z ) (2.16)

and

fori=1,2,...n
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Proof. We apply the theorem 9 to get that:

E [eeF] — oJp( B -1) du(z)
— eJp 2 0" (2) du(z)
g 62;.7,0:1 om fE fn(z) dl/(z)

By definition of cumulant, we have k! = [}, f(z) dv(z), and thus the expressions for
moments and central moments of I’ are straightforward. O

As a direct consequence, one can easily obtain from the above theorem two useful
formulas (Campbell’s theorem):

Corollary 3 (Campbell’s theorem). Let F = [, f dw then

R

)
)-

E[F] :fEf(Z)dl/(Z), fELl(

VIF|=E[(F-E[F))? =],z dv(z), feL¥ (2.17)

X

Notice that if we consider a independent making Poisson point process w = Y €., m,)
with a probability kernel K from E to the space of marks E’ and F =) f(z;,m;) then

/ Fi(zim) d K. (m) du(z):/ E [fi(z,m)] du(z)-
EJE'

E

Campbell’s formula is written:

E[F] = /E E[f(z,m)] dv(2),
V [F] :/EE[f2(z,m)] dv(z)-

2.5.2 Existing results on Gaussian approximation, Edgeworth expansion
and concentration inequality

We have now expressions for moments and central moments of F'. We note that the central
moments of F' is always non negative as f is supposed to be non negative. One can ask
if there is mean to compute the tail distribution of F. Gaussian approximation seems
to be a first answer one can think of due to the central limit theorem (CLT). An error
bound of Gaussian approximation for sum of n i.i.d random variables is known as Berry-
Esseen theorem. It is possible to find an alternative version of this error bound for linear

functional of PPP. Let Q(a) = % ffoo e~"*/2 du be the CDF of a standard Gaussian

random variable and @ be its CCDF.

F—E[F]
VIF]

Theorem 11. Consider F = [, f dw with f € L*(v). Let F = then:

Jplf (@) dv(z)

[PEF <a) = Q@) < (Jp [?(2) dl/(z))3/2'

(2.18)




23

Proof. Unfortunately there is no elementary proof for this theorem, we must apply the
theorem 7 for F. First, note that the chaos presentation of F'is ' = Il(ﬁ). Then

— = f(2)
D.F=D,L 'F =
z z V [F]
Thus, V[F] = [}, f(z) dv(z) and D.L™'F = D.F = ﬁ We now apply theorem 7 to

get (2.18).
U

Now instead of dv(z), we consider A dv(z) in the above theorem, and let Fy, F'y the
corresponding versions of F, F', we get:

3d
Py < ) - Qa)| < S/ drE) (2.19)
VA £2(2) du(2))3?
The last inequality shows that the error of Gaussian approximation is around O(\%\)

It is worth noted that the error bound for Gaussian approximation of the sum of n i.i.d
. . 1

variables is O(%)
An improvement for Gaussian approximation is known as Edgeworth expansion. Let

A = "55 _ fEfn(Z)dV(Z)
(VD2 ([ f2(2) du(z)n/?

be the n'* standardized cumulant of F. The Edgeworth expansion for the distribution of
F'is given as:

P(F < ) + ZP (2.20)

where P, is polynomial of degree 3n and D is the dlﬂ'erenmal operator. The first five terms
are:

P(F>a) = @( )
_|_

Q(?’()
F\2
- (2;1@“) @+ 5 00 +
F F F\3
+ (320 + 22am @ + B0 -

FA\F F F\4
<720Q(3( )+ ((1?5)2 * A?2?)5 Q¥ (a) + ()\17)82 Q" (a) + gi&ﬂm)(a)) i

For the best of our knowledge, no error bound for Edgeworth expansions exists in the
literature. Even we cannot find any reference in Edgeworth expansions of linear functional
of Poisson point process. However, if f(z) > 0 we can rewrite (2.19) as

IP(F <a)—Qa)| <\ (2.21)

This provides a hint that, error bounds may be expressed as function of cumulants of F
under appreciate conditions of f.
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We have presented the Gaussian approximation and Edgeworth expansions for linear
functionals. We are now interested in upper bounds on the distribution of F, which can
be called concentration inequality.

Theorem 12. Let M,a > 0.
Assume that 0 < f(2) < M v—a.s and f € L*(E,v), then:

P(F > E[F] +a) gexp{—#g (EC[‘F]>} (2.22)

where g(u) = (1 +u)In(l 4+ u) —u.
Assume that |f(2)] < M v—a.s and f € L*(E,v), then

P(F > E[F] +a) < exp {—V]w“;]g (3%)} (2.23)
Assume that f(2) <0 v—a.s and f € L>(E,v), then
P(F >E[F]+a) <exp {—‘;C[f;] } (2.24)

The above theorem can be directly derived from 2, which will be introduced in the
next section. However let us take this opportunity to prove this theorem in a very nice,
simple and elementary fashion, exactly the same way as Bennett built his concentration
inequality for the sum of n i.i.d random variables.

Proof. Using Chernoff’s bound we have:

P(F>E[F]+a)<E [e"F } JIEIFI+a)

— oJu(FD=1-0f(2)) dv(z)—ba

Now assume that 0 < f(z) < M v—a.s . Observe that the function ezx—_l Is increasing on
e0f(2) eOM _q

R., we have 0f(z)_1 < Sar for f(z) # 0, thus

6 1< iy

v—a.s . We deduce that:

M _ 1

P(F>E[F]+a)§exp{/E< = f(z)—@f(z)) dy(z)—Ha}

oM 1
= exp {#E [F] — 0a}~

We minimize the L.H.S in 0, by some elementary manipulations, we reach the optimal

value 0 = ﬁ In (1 + ﬁ) and we obtain (2.22).

Now assume that |f(z)] < M v—as . Observe that the function =3~ is increasing
on R (the value at 0 is 1/2), we have that

™M _ 1 _0M

M@ —ff(z) - 1< e

f2(2)
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v—a.s . Thus,

P(F > E[F] +a) < exp {/E (%#ﬂ(z)) du(z) 9a}

{e"M—1—9M
=exXpy———5

— V[F]—ea}.

We find that 0 = ﬁ In (1 + \‘}TJ\;{]) minimizes the L.H.S and apply this value we obtain
(2.23).
Now assume that f(z) <0 v—a.s . By the same argument as above

) —0f(z) — 1< 12 (2),

Thus,
P(F > E[F] +a) <exp {G—S/Eﬂ(z) dv(z) — Ha}

e 7Vimaa).

Minimizing the LHS by 6 = 7=

(7] We obtain (2.24). O

2.5.3 New results

In this subsection we present our new asymptotic results on the distribution of a functional
F of a Poisson process as its intensity goes to infinity. We consider the measure A d v(z)
instead of dv(z) and we are interested in Fy and F'y and let m(p, \) = M. We denote
by o = ||fllz2() VA and f, = f/o. Note that || f5r2(,) = 1/ and that

m(p, A) = /E |fo(2)PA dv(z) = ”f”;)(y)”f|’7£p(l,)>\l_p/2.

For A > 0, let
N* = / fo(x)(dw(z) = A dv(z)) = FA—E[F,].
E

In what follows, we consider G(N*) where G : R — R. A functional will be of particular
interest in the sequel: If G = 1457} then

P(N*>T)=E [G(NA)] .

The proof of the following theorem may be found in [30] and deduced also from [17, 18]:

Theorem 13. Let f € L?(v). Then, for any Lipschitz function G from R to R, we have

1
Ewkaﬂ—AGd4§§¢§m@Awmmp

We can go further in the expansion by precising the next term. This result is new and

appeared in |20].
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Theorem 14. For G € C}(R, R),

[Ex [GIVY)] = o Gy) duly) — 5 m(3, A) [o G(y)Hs(y) dp(y)]
< <m<3é1>2 + m& D \/g ) ”G?”‘”' (2.25)

Proof. According to the Taylor formula,

D,G(N*) = G(N* + fo(z)) = G(N?)

1
= G (NN ola) + 372@) C"(NY) + 3 ()’ /0 PG (N + (1= 1) f,(2)) dr. (2.26)

Hence, according to (2.6) and (2.26),
B, [MAEGIOM)] = B | [ £ PGP duta)]
= B [(RG) ()] + 5 [ 2 dv@, (RGO (V)]

1 1
+2/ @)\ dv(z)Ey, V (P,GYD (rN* 4+ (1 — ) fo (x))r? dT]
E 0
= Ay + Ay + As.
Hence,

e 4 \/E
Ayl < —— [ Zm(4, N) [|GP) o
| 3| = 6m ﬂ_m( ) ) || ||oo

Moreover, according to Theorem 13,

1 |
< 3/3m3 VIEG )

Ew (6O 0V)] - [ (69 (@) dula)

R
1 e 4
<! G,
< om0V
Then, we have,
42 — Sm(3 A)/(PtG)(?’)(ﬂf) dpa)] < +m(3, \)? - e
277 7 Jr T4 T >

Hence,

E,, |NNPG) (N — (PtG)"(NA)] = %m(3, A) /R (P,G)®)(z) du(z) + R(t),

m(3, \)2  m(4, \) \/5 3) e 4
R < + — .

G (x z) = e 3 G)(e~ty —e 2t
[ 6@ dut o[ Ee e+ V=) duty
_ Bt (3)
/RG (y) dpu(y)

_ /R G (y)Hs(y) d p(y).

where

Now then,
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since the Gaussian measure on R? is rotation invariant and according to (10.2). Remarking
that
oo
/ e M1 —e 27124t =2/3
0

and applying (10.4) to z = N*, the result follows. O

This development is not new in itself but to the best of our knowledge, it is the first
time that there is an estimate of the error bound. Following the same lines, we can pursue
the expansion up to any order provided that GG be sufficiently differentiable. Namely, for
G e Cl?v we have

E,, [G(NY)] = fR () + 280 [ GO (y) dply) + 245 [ GO ) dply)
24,\ f]RG(4 dﬂ( )‘l‘G/\”G(5 l|oo-

where

m(3,1 2 4 w2 /2

2.6 Conclusion

In this chapter we introduce all the mathematical tools used throughout this thesis. First
we have presented the notion of Poisson point process. After, we have introduced the
notation of Malliavin calculus applied to Poisson point process and presented useful results,
which are upper bounds on the distribution of random variables depending on a Poisson
point process. Then we have studied the distribution of linear functional of Poisson point
process, we have presented some new results on Edgeworth expansion.
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Part 11

Dimensioning and coverage models
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Chapter 3

Robust methods for LTE and
WiMAX dimensioning
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3.1 Introduction

Future wireless systems will widely rely on OFDMA (Orthogonal Frequency Division Mul-
tiple Access) multiple access technique. OFDMA can satisfy end user’s demands in terms
of throughput. It also fulfills operator’s requirements in terms of capacity for high data
rate services. Systems such as 802.16e and 3G-LTE (Third Generation Long Term Evolu-
tion) already use OFDMA on the downlink. Dimensioning of OFDMA systems is then of
the utmost importance for wireless telecommunications industry.

OFDM (Orthogonal Frequency Division Multiplex) is a multi carrier technique espe-
cially designed for high data rate services. It divides the spectrum in a large number of
frequency bands called (orthogonal) subcarriers that overlap partially in order to reduce
spectrum occupation. Each subcarrier has a small bandwidth compared to the coherence
bandwidth of the channel in order to mitigate frequency selective fading. User data is then
transmitted in parallel on each sub carrier. In OFDM systems, all available subcarriers are
affected to one user at a given time for transmission. OFDMA extends OFDM by making
it possible to share dynamically the available subcarriers between different users. In that
sense, it can then be seen as multiple access technique that both combines FDMA and
TDMA features. OFDMA can also be possibly combined with multiple antenna (MIMO)
technology to improve either quality or capacity of systems.

In practical systems, such as WiMAX or 3G-LTE, subcarriers are not allocated indi-
vidually for implementation reasons mainly inherent to the scheduler design and physical
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Figure 3.1: OFDMA principle : subcarriers are allocated according to the required transmission
rate

layer signaling. Several subcarriers are then grouped in subchannels according to different
strategies specific to each system. In OFDMA systems, the unit of resource allocation
is mainly the subchannels. The number of subchannels required by a user depends on
his channel’s quality and the required bit rate. If the number of demanded subchannels
by all users in the cell is greater than the available number of subchannel, the system is
overloaded and suffer packet losses. The questions addressed here can then be stated as
follows: how many subchannels must be assigned to a BS to ensure a small overloading
probability 7 Given the number of available subchannels, what is the maximum load, in
terms of mean number of customers per unit of surface, that can be tolerated 7 Both
questions rely on accurate estimations of the loss probability.

The objectives of this chapter are twofold: First, construct and analyze a general
performance model for an isolated cell equipped with an OFDMA system as described
above. We allows several classes of customers distinguished by their transmission rate
and we take into account path-loss with shadowing. We then show that for a Poissonian
configuration of users in the cell, the required number subchannels follows a compound
Poisson distribution. The second objective is to compare different numerical methods to
solve the dimensioning problem. In fact, there exists an algorithmic approach which gives
the exact result potentially with huge memory consumption. On the other hand, we use
and even extend some recent results on functional inequalities for Poisson processes to
derive some approximations formulas which turn to be rather effective at a very low cost.
When it comes to evaluate the performance of a network, the quality of such a work may
be judged according to several criteria. First and foremost, the exactness is the most used
criterion: it means that given the exact values of the parameters, the real system, the
performances of which may be estimated by simulation, behaves as close as possible to the
computed behavior. The sources of errors are of three kinds: The mathematical model may
be too rough to take into account important phenomena which alter the performances of
the system, this is known as the epistemic risk. Another source may be in the mathematical
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Symbols | Physical meaning

~y Pathloss exponent

k User’s class

A Intensity of users

K Number of classes

Tk Probability that a user is of the class k

Cy Transmission rate of class k

Nz Maximum number of subchannels (resource units) for a user

Novail Number of subchannels at the BS

Niotal Number of subchannels demanded by all users in the cell

Bmin Outage threshold

lx Maximum number of subchannels (resource units) for a user
of class k

Bl A user of class k uses exactly k subchannels if the SINR is
in the interval [B 1, B i—1) (1 <1 <)

Ch,l Mean number of users of class k using [ subchannels

Table 3.1: Notations and parameters in this chapter.

resolution of the model where we may be forced to use approximate algorithms to find some
numerical values. The third source lies in the lack of precision in the determination of the
parameters characterizing the system: They may be hard, if not impossible, to measure
with the desired accuracy. It is thus our point of view that exactness of performance
analysis is not all the matter of the problem, we must also be able to provide confidence
intervals and robust analysis. That is why, we insist on error bounds in our approximations.

Resources allocation on OFDMA systems have been extensively studied over the last
decade, often with joint power and subcarriers allocation, see for instance [31, 32, 33,
34|. The problem of OFDMA planning and dimensioning have been more recently under
investigation. In [35], the authors propose a dimensioning of OFDMA systems focusing on
link outage but not on the other parameters of the systems. In [36], the authors give a
general methodology for the dimensioning of OFDMA systems, which mixes a simulation
based determination of the distribution of the signal-to-interference-plus-noise ratio (SINR)
and a Markov chain analysis of the traffic. In [37, 38], the authors propose a dimensioning
method for OFDMA systems using Erlang’s loss model and Kaufman-Roberts recursion
algorithm. In [39], the authors study the effect of Rayleigh fading on the performance of
OFDMA networks.

The chapter is organized as follows. In Section 3.2, we describe the system model
and set up the problem. In Section 3.3, we examine four methods to derive an exact,
approximate or robust value of the number of subchannels necessary to ensure a given loss
probability. In Section 3.4, we apply these formulas to the particular situation of OFDMA
systems.

Important notations and parameters used in this chapter are summarized in the table
3.1.
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3.2 System Model

In practical systems, such as WiMAX or 3G-LTE, resource allocation algorithms work at
subchannel level. The subcarriers are grouped into subchannels that the system allocates
to different users according to their throughput demand and mobility pattern. For exam-
ple, in WiMAX, there are three modes available for building subchannels: FUSC (Fully
Partial Usage of Subchannels), PUSC (Partial Usage of SubChannels) and AMC (Adaptive
modulation and coding). In FUSC, subchannels are made of subcarriers spread over all
the frequency band. This mode is generally more adapted to mobile users. In AMC, the
subcarriers of a subchannel are adjacent instead of being uniformly distributed over the
spectrum. AMC is more adapted to nomadic or stationary users and generally provides
higher capacity.

The grouping of subcarriers into subchannels raises the problem of the estimation of
the quality of a subchannel. Theoretically channel quality should be evaluated on each
subcarrier of the corresponding subchannel to compute the associated capacity. This work
assumes that it is possible to consider a single channel gain for all the subcarriers making
part of a subchannel (for example via channel gains evaluated on pilot subcarriers).

We consider a circular cell C of radius R with a base station (BS for short) at its center.
The transmission power dedicated to each subchannel by the base station is denoted by
P. Each subchannel has a bandwidth W (in kHz). The received signal power for a mobile
station at distance d from the BS can be expressed as

_ PK,

P(d) = —=GF := P,Gd "7, (3.1)

where K, is a constant equal to the attenuation at a reference distance, denoted by dier,
that separates far field from near field propagation. Namely,

2
C
K =———] &
ol <47deref> ref?

where f is the radio-wave frequency. The variable ~ is the path-loss exponent which
indicates the power at which the path loss increases with distance. Its depends on the
specific propagation environment, in urban area, it is in the range from 3 to 5. It must be
noted that this propagation model is an approximate model, difficult to calibrate for real life
situations. In particular, it might be reasonable to envision models where v depends on the
distance so that the attenuation would be proportional to d7(?). Because of the complexity
of such a model, 7 is often considered as constant but the path-loss is multiplied by two
random variables G and F which represent respectively the shadowing, i.e. the attenuation
due to obstacles, and the Rayleigh fading, i.e. the attenuation due to local movements of the
mobile. Usually, G is taken as a log-normal distribution: G = 105/19, where S ~ N(k, v?).
As to F, it is customary to choose an exponential distribution with parameter 1. Both,
the shadowing and the fading experienced by each user are supposed to be independent
from other users’ shadowing and fading. For the sake of simplicity, we will here treat the
situation where only shadowing is taken into account, the computations would be pretty
much like the forthcoming ones and the results rather similar should we consider Rayleigh
fading.

All active users in the cell compete to have access to some of the N, available
subchannels. There are K classes of users distinguished by the transmission rate they
require: C} is the rate of class k customers and 73 denotes the probability that a customer
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belongs to class k. A user, at distance d from the BS, is able to receive the signal only if
the signal-to-interference-plus-noise ratio SNR = @ is above some constant ,,;, where
I is the noise plus interference power and P(d) is the received signal power at distance d,
see (3.1). If the SNR is below the critical threshold, then the user is said to be in outage
and cannot proceed with his communication. In this work we assume that I = constant,
which can be seen as the system is noise limited (high reuse factor) or we take into account
only the worse interference.

To avoid excess demands, the operator may impose a maximum number Ny, of allo-
cated subchannels to each user at each time slot. According to the Shannon formula, for a
user demanding a service of bit rate C', located at distance d from the BS and experiencing
a shadowing g, the number of requires subchannels is thus the minimum of Ny, and of

Cr
if Pygd "/ > mins
Nuger = ’7W10g2 (1 + P,Ygd’y/j)—‘ g / > f
0 otherwise,

where [2] means the minimum integer number not smaller than x.

We make the simplifying assumption that the allocation is made at every time slot
and that there is no buffering neither in the access point nor in each mobile station. All
the users have independently from others a probability p to have a packet to transmit
at each slot. This means, that each user has a traffic pattern which follows a geometric
process of intensity p. We also assume that users are dispatched in the cell according to a
Poisson process of intensity A\g. According to the thinning theorem for Poisson processes,
this induces that active users form a Poisson process of intensity A = A\gp. This intensity
is kept fixed over the time. That may result from two hypothesis: Either we consider that
for a small time scale, users do not move significantly and thus the configuration does not
evolve. Alternatively, we may consider that statistically, the whole configuration of active
users has reached its equilibrium so that the distribution of active users does not vary
through time though each user may move.

From the previous considerations, a user is characterized by three independent param-
eters: his position, his class and the intensity of the shadowing he is experiencing. We
model this as a Poisson process on E = B(0, R) x {1, ---, K} x RT of intensity measure

Adv(z) :=A(dz x dr(k) x dp(g))

where B(0, R) = {x € R?, ||z|| < R}, 7 is the probability distribution of classes given by
7({k}) = 7, and p is the distribution of the random variable G defined above. We set

. Ch
Sz, k; g) = min (N'“a"’ LPrglal 2180} [Wl% 1+ Pvgnwn—v/I)D |

The total number of demanding subchannels of all users in the cell is then:

Ntot = f($7 k7 g) dw(:z:, ka g)'

cell

We are interested in the loss probability which is given by

P(Ntot 2 Navail)-
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We first need to compute the different moment of f with respect to v in order to apply
Theorem 13 and Theorem 14. For, we set

Ck
l :Nm X A ’
b e {Wlogz(l +Bmin)1

where a A b= min(a, b). Furthermore, we introduce S ¢ = oo,

I
5,€,l:_(20k/Wl—1),1gk§K, 1<I<l,—1,

Py

and S 1, = IBmin/Py. Parameter f; gives the minimum SINR for which [ resource units
are necessary to provide the bit rate of class k (i.e. C%). In other words to use exactly [
resource units, the SINR should be in interval [5y 1, i 1—1).

’U2
Theorem 15. Let (= 7T(ﬁk_§/7 ANR? — ﬁk_?/jl A R?) 10 F 1oy Im10)/57 - gy any p >0, we

have:
s

K
/fp dV:ZTkleCk,l- (32)

k=1 =1

Proof. By the very definition of the ceiling function, we have

K Ik
Lo ar =m0 [ [ g ofellel ™) doto) d
E -1 cell /R

k=1

By some elementary manipulations, we have

_ —2 -2
/“ 1[6k,l§/8k,l71)(g”$‘| 'y) dz = 7"'(/Bk,l/’y AR? — /Bk,l@l A R2)92/’y'
ce

Thus, we have

/11/1R1[5&1551@,1—1)(9”95”_7) dp(g) dz

v2
= (8,77 ARE = B30 A R2) 100 0 10/

3.3 Loss probability

3.3.1 Exact method

Since f is deterministic, Nior follows a compound Poisson distribution: it is distributed as

K 1
D> Nk

k=11=1

where (N, 1 < k < K, 1 <1 < [) are independent Poisson random variables, the
parameter of Ny ; is A7,( ;. Using the properties of Poisson random variables, we can
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reduce the complexity of this expression. Let L = max(ly, 1 < k < K) and for [ €
{1, .-+, L}, let K; ={k, lx > 1}. Then, Ny is distributed as

L
Z I M,
=1

where (M;, 1 <[ < I) are independent Poisson random variables, the parameter of M,
being my; == ;. K ATCk, ;- For each [, it is easy to construct an array which represents
the distribution of [M; by the following rule:

0 if w mod [ #0,
pi(w) = g .
exp(—my)m)/q! if w = ql.

By discrete convolution, the distribution of Niyt and then its cumulative distribution func-
tion, are easily calculable. The value of N,yai which ensures a loss probability below the
desired threshold is found by inspection. The only difficulty with this approach is to de-
termine where to truncate the Poisson distribution functions for machine representation.
According to large deviation theory [40],

P (Poisson(f) > af) < exp(—f(alna + 1 — a)).

When 6 is known, it is straightforward to choose a(6) so that the right-hand-side of the
previous equation is smaller than the desired threshold. The total memory size is thus
proportional to max(mya(my)l, 1 <1 <lj). This may be memory (and time) consuming if
the parameters of some Poisson random variables or the threshold are small. This method
is well suited to estimate loss probability since it gives exact results within a reasonable
amount of time but it is less useful for dimensioning purpose. Given Nyyail, if we seek for
the value of X\ which guarantees a loss probability less than the desired threshold, there is
no better way than trial and error. At least, the subsequent methods even imprecise may
help to evaluate the order of magnitude of A for the first trial.

3.3.2 Approximations

We use the same notations as in the subsection 2.5.3,i.e , 0 = ||f||L2(l,)\F)\, fo = f/o and

mip, N = M = [ 1oADPA d(a) = 171k 1 N

We begin by the classical Gaussian approximation. It is clear that

P(/Ef dw > Npwait) = P(fy fo(dw — A dv) > N,)

= Ej\ [l[Ng,—‘roo)(fE fo((dw =\ dv))]

where N, = (Navaii— [ fA dv)/o. Since the indicator function 1[N, +o0) i8 not Lipschitz, we
can not apply the bound given by Theorem 13. However, we can upper-bound the indicator
by a continuous function whose Lipschitz norm is not greater than 1. For instance, taking

6(z) = min(z*, 1) and ¢ (2) = Bz — ),

we have

LN, 11, 400) S ONo+1 S 1N, 400) S ON,—1 < 1N, -1, 4+00)-
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Hence,
1 /2m(3,1)
1-— N0+1——\/j7’§P/ dw > Navail) <
Q( ) 2 T \/X (Ef aal)

1-Q(N, —1) + %\/gm(j’;), (3.3)

where @ is the cumulative distribution function of a standard Gaussian random variable.

According to Theorem 14, one can proceed with a more accurate approximation. Via
polynomial interpolation, it is easy to construct a C® function 1/’5\/ such that

()Pl < 1 and LN, 435, +00) < U, < 1[N, +o0)

and a function 1y such that

1(¥3) oo <1 and 1[N, +00) < ¥N, < 1N,-3.5,+00)

From (10.3), it follows that

1- Q(Ncr + 35) - nﬁg&\al)Q(g)(Na + 35) - E)\ < P(/ f dw > Navail) <
E
_ _ mG, 1) o6y
1 - Q(N, —3.5) + o @ (N, —3.5)+ Ey (3.4)

where E) is the right-hand-side of (8.11) with ||[F®)]||o = 1.
Going again one step further, following the same lines, according to (2.27), one can
show that

P(/Ef dw > Navail) < 1-— Q(Na' — 65)

m(3, 1)
6v/\

@ (n. m(3, 1% ) n
QUI(N, - 65) + 2 QPNN, — 6.5)
m(4,1)

24\

_|_
QW (N, —6.5) + F\ (3.5)

where F) is bounded above in (2.27).
For all the approximations given above, for a fixed value of Nyyai1, an approximate value
of A can be obtained by solving numerically an equation in v/\.

3.3.3 Robust upper-bound

If we seek for robustness and not precision, it may be interesting to consider the so-called
concentration inequality. We remark that in the present context, f is non-negative and
bounded by L = maxy [ so that we are in position to apply Theorem 12. We obtain that

[ FPA dv aL
p(f sz [ favea <en (). @)

where g(u) = (1 +u)In(1 +u) — u.
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3.4 Applications to OFDMA and LTE

In such systems, there is a huge number of physical parameters with a wide range of
variations, it is thus rather hard to explore the variety of sensible scenarios. For illustration
purposes, we chose a circular cell of radius R = 300 meters equipped with an isotropic
antenna such that the transmitted power is 1 W and the reference distance is 10 meters.
The mean number of active customers per unit of surface, denoted by A, was chosen to
vary between 0,001 and 0.000 1, this corresponds to an average number of active customers
varying from 3 to 30, a realistic value for the systems under consideration. The minimum
SINR is 0.3 dB and the random variable S defined above is a centered Gaussian with
variance equal to 10. There are two classes of customers, C; = 1,000 kb/s and Cy = 400
kb/s. It must be noted that our set of parameters is not universal but for the different
scenarios we tested, the numerical facts we want to point out were always apparent. Since
the time scale is of the order of a packet transmission time, the traffic is defined as the
mean number of required subchannels at each slot provided that the time unit is the slot

duration, that is to say that the load is defined as p = A [, f dv.
N — - T1000,200] 1= (172,179 I : : .
e o OC=TH .
an = [1500,433], v = {1/4.3/4) o
= [B00; 400}, + = (3/4.1/4) .

— log, (loss probability)

Figure 3.2: Impact of v and 7 on the loss probability (Nayvaii = 92, A = 0.0001)

Figure 3.2 shows, the loss probability may vary up to two orders of magnitude when
the rate and the probability of each class change even if the mean rate ), 7,C) remains
constant. Thus mean rate is not a sufficient parameter to predict the performances of such
a system. The load p is neither a pertinent indicator as the computations show that the
loads of the various scenarios differs from less than 3%.
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Comparatively, Figure 3.2 shows that variations of v have tremendous effects on the
loss probability: a change of a few percents of the value of v induces a variation of several
order of magnitude for the loss probability. It is not surprising that the loss probability
increases as a function of v: as 7 increases, the radio propagation conditions worsen and
for a given transmission rate, the number of necessary subchannels increases, generating
overloading. Beyond a certain value of v (apparently around 3.95 on Figure 3.2), the radio
conditions are so harsh that a major part of the customers are in outage since they do
not satisfy the SNR criterion any longer. We remark here that the critical value of v is
almost the same for all configurations of classes. Indeed, the critical value ~. of v can be
found by a simple reasoning: When v < 7., a class k customer uses less than the allowed

[ subchannels because the radio conditions are good enough for ﬂ;/; > R for some j < I

so that the load increases with . For v > ~,, all the ﬁ];11/7 are lower than R and the larger
v, the wider the gap. Hence the number of customers in outage increases as - increases
and the load decreases. Thus,
Yo inf{%ﬂ;}ﬁl < R} for s = arg maxyly.

If we proceed this way for the data of Figure 3.2, we retrieve v, = 3.95. This means that
for a conservative dimensioning, in the absence of estimate of +, computations may be
done with this value of ~.

For a threshold given by € = 10~%, we want to find Nayai such that P(Nyot > Nayail) < €.
As said earlier, the exact method gives the result at the price of a sometimes lengthy
process. In view of 3.3, one could also search for o such that

1—-Q(a)+ %\/gm(& A) =€ (3.7)

and then consider [1 + f pfdv+ ac] as an approximate value of Nyyai. Unfortunately
and as was expected since the Gaussian approximation is likely to be valid for large values
of A, the corrective term in (3.7) is far too large (between 30 and 500 depending on ) for
(3.7) to have a meaning. Hence, we must proceed as usual and find a such that 1 —Q(«a) =
€, i.e. a =~ 3.71. The approximate value of Ny is thus given by [fEf dv + 3.710].
The consequence is that we do not have any longer any guarantee on the quality of this
approximation, how close it is to the true value and even more basic, whether it is greater
or lower than the correct value. In fact, it is absolutely impossible to choose a dimensioning
value lower than the true value since there is no longer a guarantee that the loss probability
is lower than €. As shows Figure 3.3, it turns out that the values returned by the Gaussian
method are always under the true value. Thus this annihilates any possibility to use the
Gaussian approximation for dimensioning purposes.
Going one step further, according to (3.4), one may find « such that

1-Q(a) — m(?g)\)Q(?’)(a) +E\=c¢
and then use
[3.5 +/ fdv+ao]
E

as an approximate guaranteed value of Nyyai1. By guaranteed, we mean that according to
(3.4), it holds for sure that the loss probability with this value of Nayi is smaller than
€ even if there is an approximation process during its computation. Since the error in
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the Edgeworth approximation is of the order of 1/, instead of 1/v/X for the Gaussian
approximation, one may hope that this method will be efficient for smaller values of .
It turns out that for the data sets we examined, Ej is of the order of 1077 /), thus this
method can be used as long as 1077 /) < e. Otherwise, as for the Gaussian case, we are
reduced to find « such that

1 Qo) - 2N g0 =

and consider [3.5 + fEf dv 4 ao| but we no longer have any guarantee on the validity
of the value. As Figure 3.3 shows, for the considered data set, Edgeworth methods leads
to an optimistic value which is once again absolutely not acceptable. One can pursue the
development as in (2.27) and use (3.5), thus we have to solve

2
1 - Q) ~ M Ngie) - MED g0 )+ Do) - = o
For the analog of 3.4 to hold, we have to find ¥ a Cl‘;’ function greater than 1, . but
smaller than 1j,_j,, o) with a fifth derivative smaller than 1. Looking for ¥ in the set of
polynomial functions, we can find such a function only if lag is greater than 6.5 (for smaller
value of the lag, the fifth derivative is not bounded by 1) thus the dimensioning value has
to be chosen as:

[6.5—1—/ fdv+ao].
E

For the values we have, it turns out that F) is of the order of 10~?A~3/2 which is negligible
compared to € = 1074, so that we can effectively use this method for A > 107%. As it is
shown in Figure 3.3, the values obtained with this development are very close to the true
values but always greater as it is necessary for the guarantee. The procedure should thus
be the following: compute the error bounds given by (3.3), (8.11) and (3.5) and find the one
which gives a value negligible with respect to the threshold e, then use the corresponding
dimensioning formula. If none is suitable, use a finer Edgeworth expansion or resort to the
concentration inequality approach.

Note that the Edgeworth method requires the computations of the first three (or five)
moments, whose lengthiest part is to compute the ¢ ; which is also a step required by the
exact method. Thus Edgeworth methods are dramatically simpler than the exact method
and may be as precise. However, both the exact and Edgeworth methods suffer from the
same flaw: There are precise as long as the parameters, mainly A and v, are perfectly
well estimated. The value of 7 is often set empirically (to say the least) so that it seems
important to have dimensioning values robust to some estimate errors. This is the goal of
the last method we propose.

According to Theorem 12, if we find « such that

al ~ log(e)L?
g(fE o) 22X

and

Noait = / favt / P2\ dv, (3.8)
B L* Jp

we are sure that the loss probability will fall under e. However, we do not know a priori
how larger this value of Nyyaii than the true value. It turns out that the relative oversizing
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increases with v from a few percents to 40% for the large value of v and hence small values
of Nuvail- For instance, for v = 4.2, the value of Ny given by (3.8) is 40 whereas the
exact value is 32 hence an oversizing of 25%. However, for v = 4.12, which is 2% away
from 4.2, the required number of subchannels is also 40. The oversizing is thus not as bad

as it may seem since it may be viewed as a protection against traffic increase, epistemic
risk (model error) and estimate error.

A — Exact
,.-'f N -~ Edgeworth
w00 | A\ .. Edgeworth2 |]
" i \\ «~— Concentration
/ N ) - - Gaussian
N\

W

=)

Nomil

il

&

3 1 L |

Figure 3.3: Estimates of N, as a function of v by the different methods
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Chapter 4

An analytic model for evaluating
outage and handover probability of
cellular wireless networks
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4.1 Introduction

In a wireless network, nodes can be modeled by a fixed or a stochastic pattern of points
on the plane. Fixed points models can contain a finite or an infinite number of points and
usually form a lattice. This approach fails to capture the irregularity and randomness of
a real network. For example, to model a wireless cellular network, the hexagonal cellular
network is the most frequently used one. In reality, even if the base station (BS) nodes
are fixed, it is not true that they are periodically distributed. Recently, stochastic model
gained much interest. Node patterns can be represented by a stochastic process on the plane
such as Poisson point process. It is worth to note that stochastic models, although more
complicated at first sight, usually lead to elegant and easy calculated formulas. Actually,
all the insights obtained when studying both types of models are useful for the design or
the dimensioning processes of a network.

In the literature, it is very often assumed that a mobile, once active in the network,
is served by its nearest BS. This holds if the effect of fading is not taken into account in
the propagation model. This assumption results in a so called Poisson-Voronoi cells model
(for example, [24], page 63) : the domain of the plane taken in charge by a given BS is
the cell of the Voronoi tessellation it is the center of. We are interested in a system which
is spatially static but with some time evolutionary elements. As its name indicates, slow
fading varies slowly, i.e. it may be considerered as constant on a duration of the order of a
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second; whereas Rayleigh fading varies much more rapidly, at the scale of a micro-second.
Since we work at the time scale of a slot, i.e. of the order of micro-second, we may consider
the slow fading to be constant over the period of analysis and we assume that the Rayleigh
fading changes each time slot. Then, we make the very natural assumption that a mobile
is served by the BS that provides it the strongest mean signal power. Mean signal power
means that the effect of Rayleigh fading is averaged over a few slots. Thus, the mean signal
power depends only on path loss and slow fading.

Once the mobile is attributed one BS, the signal received by this BS is the useful
signal, and other signals received from other BS using the same frequency are considered
as interference. It is not true if we consider for example an advanced system in which the
base stations are cooperative. However our model covers almost all other existing cellular
networks. To model the frequency reuse, we add a label to each BS which represents its
frequency band. A BS interferes only with the other BSs that have the same label. In
addition to the interference, the local noise can intervene. For a mobile to communicate
with a BS, the signal-to-noise-plus-interference ratio (SINR) at this mobile location must
exceed some threshold, in this case the mobile is covered, otherwise it is said to be in outage.
If the mobile is in outage during several consecutive time slots, a handover decision has to
be made. It is thus of paramount importance to compute the outage probability and the
handover probability as explicitly as possible.

In [41], Haenggi showed that the path loss fading process is a Poisson point process
on the real line in the case of path loss exponent model. In [4] Baccelli and al. found
analytic expressions for outage probability of networks where each node tries to connect
with a destination at fixed distance or to the nearest node in case of Rayleigh fading. In
[42], Kelif et al. found an outage probability expression for cellular network by mean of the
so-called fluid model. In [43], Ganti et al. developped interesting results about temporal
and spatial correlation of wireless networks. In [44] and [45], outage probability of regular
hexagonal cellular networks with reuse factor and adaptive beamforming were studied by
simulation.

This chapter is organized as follows. In Section 4.2 we describe our model. In Section
4.3, we calculate the outage probability. In Section 4.4, we calculate the handover proba-
bility. Section 4.5 shows the numerical results and the difference between our model and
the traditional hexagonal model.

Important notations and parameters used in this chapter are summarized in the table
4.1.

4.2 System model

Given a BS (base station) located at y, of transmission power P, and an MS (mobile
station) located at x, the mobile’s received signal has average power L(y — x)P where L
is the path loss function. The most used path loss function is the path loss exponent law
L(z) = K|z|~7 where |z| refers to the Euclid norm of z. The parameter K depends on
the characteristics of the antenna and the path loss exponent ~, typically in the range
(2,4) characterizes the environment under study. Actually, this path loss model gives nice
closed formulas but is not correct for small distances as it implies an almost infinite power
close to the BS. It is thus often preferable to consider the modified path loss exponent
model L(z) = K(max{Ry,|z|})”7 where Ry is a reference distance. In addition to the
deterministic large scale effect, there are two random factors that have to be considered.
The first one, called shadowing, represents the signal attenuation caused by large obstacles
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Symbols Physical meaning
Ly — x) Pathloss function from y to z
~y Pathloss exponent
Pz Slow fading form y to =
H Generic random variable of slow fading
o? Logarithmic standard deviation of shadowing
Tyal] Fast fading from y to x at time slot [
sl SINR of a user at x at time slot [
k i? + j2 + ijFrequency reuse factor
-1 hys L(y — x) P Average received power from y to
Il = {yn,n > 1}, Ap | Poisson point process of BSs and its intensity
g {(hy+L(y — x)P)~1, y € TIg}, Poisson point process of re-
ceived power

Table 4.1: Notations and parameters.

such as buildings. The second, called fast fading, represents the impact of multi-path.
The shadowing can be considered as constant during a period of communication of a
mobile while the fast fading changes at each time slot. If no beamforming technique is
used, the received signal power from the BS y to the MS z at the time slot [ is Py,[l] =
Tyz[l]hyz L(y — x) P, where {hy;}, ,cr2 are copies of a random variable H while {r,,[l]} are
independent copies of R which is an exponential random variable of mean 1/u. We suppose
that for each z, the random variables (hy,, y € R?) are independent, and py (resp. Fp)
denotes their PDF (resp. complementary CDF). The most used shadowing random model
is log-normal shadowing, for which H is a log-normal random variable. In this case, we can
write H ~ 109710 where G ~ N(0,02). We now consider the conventional beamforming
technique with n; antennas. The power radiation pattern for a conventional beam-former
is the product of the array factor times the radiation pattern of a single antenna. If ¢ is
the direction towards which the beam is steered, the array gain in the direction 0 is given
by ([45],[44]):

sin? (n¢ 5 (sin(@) — sin(¢))
n? sin2(%(sin(0) — sin(¢))

(©),

where g(0) is the gain in the direction § with one antenna. For simplicity we assume that
the BS always steers to the direction of the served MS and the gain g(0) is positive constant
on (—7/2,m/2) and 0 otherwise (zero front-to-back power ratio). Hence, the interference
signal power from a BS to an MS attached to another BS using the same frequency, in the
direction 6, will be reduced by a factor of:

sin?(n; = (sin(f
a(0) = 1ipe(—r/2,7/2)} nZ siilz(%((sin((é)))))) :

If the beamforming technique is not used a(f) = 1. We assume that the bandwidth is split
in k£ non interfering sub-bands.

Thus, for a mobile at position z, any BS is characterized by three quantities: ¥ its
position, e the sub-band in which it operates and ¢! = hy, L(y — z)P.

Once being in the network, the mobile z is attached to (or served by) the BS that
provides the best average signal strength in #ime: it is attached to the BS which has the
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minimal {. We denote by yq the position of the chosen BS and by (y,,, n > 1) the positions
of the other BSs. Sub-bands and ¢’s are indexed accordingly.

Assume that each BS using frequency e is always serving an MS, and denote by 6; the
argument of the segment [x,y;]. The SINR at time slot [ is given by:

_ Tyox[l]g(;l
N+ Zi;éo 1{e¢=eo}a(9i)ryiw[l]5¢_1

where N is the noise power, assumed to be constant. The term I = 3=, 4, 1{61:60}a(0i)ryw[l]§i_1
is the sum of all interference. In order to communicate with the attached BS, the SINR
must not fall below some threshold 7.

We assume that the base stations are distributed in the plane according to a Poisson
point process I1p of intensity Ag. The frequency e; at which operates y; is chosen uni-
formly in {1, --- | k} where k is the frequency reuse factor. The BSs that have the same
mark interfere to each other. Our reuse model can be considered as a worst case scenario
since the sub-bands are distributed at random, in contrast with planned network patterns
where frequencies are attributed to BSs in order to minimize interference. The subsequent
computations rely mainly on the following theorem.

$3[l] (4.1)

Theorem 16. The random variables = = {(hy L(y —x)P)~', y € llg} is a Poisson point
process on RY with intensity dA(t) = ApB'(t)dt where B(3) = [pe Fu((L(z)PB)™!) dz.

Proof. Define the marked point process II* = {y;, hy,2 }52. It is a Poisson point process
of intensity Apdy ® fr(t)dt because the marks are i.i.d. Consider the probability kernel
p((2,t), A) = gLz p)-1cay for all Borel A C R and apply the displacement theorem
[24, Theorem 1.3.9], to obtain that Z is a Poisson point process whose intensity measure
we denote by A. Moreover, for any

A([0,8]) = XB /R2®R L= (8p.L(z)P)-1yPu (t)dzdt
= Ag /RQ Fy((BL(2)P)"Ydz = A\gB(B).

This concludes the proof. [

By straightforward quadatures, we get the following proposition.

Proposition 17. If L(z) = K(max{Ro, |z|})~7 then:

BB)=C16° [ o Crnltas (42)

where C = F(PK)%. For lognormal shadowing H ~ 10619 where G ~ N(0,0%) and we
have:

2> 20— Inf—In(PKR;Y) 20
B(9) = €157 5 g ) 2 (4.3
where Q(’u,) = \/%? fuoo e—u2/2du and o1 = 011n010-

For the exponent pathloss model, it is sufficient to put Ry = 0 in the above formulas.
This particular result could be derived from [41]. We observe that the distribution of the

2
point process = does depend only on E(H ») but not on the distribution of H itself. This
phenomenon can be explained as in [46, Page 159].
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4.3 Owutage analysis

The mobile at x suffers an outage at time slot [ whenever its SINR falls below a threshold
T at this slot. For the sake of notations,in this Section, we drop the index [ as it is fixed.

Theorem 18. The outage probability is given by
o0 A
Po:=P(s, <T)=1- )\B/ B’(B)eiABB(B)*NT"ﬁ*ﬁD(B) dg (4.4)
0

where D(B) = [T _df fﬁoo B'(€)(1+ &/TBa(0))~1 d¢.

Proof. Since ry,, is an exponential r.v. of mean 1/p we have:

P(se 2T|§o =B) = Plrye 2 TBN + LI(B)) | o = 5)
E(e—HTB(N""Im(B)) | &= B)

G_NT“BQz(ﬁ) (TupB)

where 1,(3) is the distribution of the random variable I, given (§o = 8)) and Ly, g) is
its Laplace transform. Given (§y = f), according to strong Markov property, the point
process {; }i>o is a Poisson point process on (3, 00) with intensity AgB’(§)d¢. By thin-
ning, the point process {&;}{i>0,¢,—e,} 18 @ Poisson point process on (8, 00) with intensity
k=*ApB'(§)d¢. Hence, Ly, () can be calculated as follows (see [24]):

e‘ff;o Q%ELB’(5)(1—E(efa<0>u»s—1R))d£

L@ (u) =

L o aB [ B [ dr [T e (1—ea @ g

Iy i —

P(sy > Tléo = B) = e~ NTH8=3D() (4.5)

Thus, we get

Since the distribution density of & is AgB'(8)e *25#) by averaging over all & we obtain
(4.4). O

Proposition 19. In the interference-limited regime (N =0), we have
- ApB(8)— 2B D
pol1) =1=Au [ B(8)e B3O g5, (4.6)
0

If L(z) = K|z|~7 we have:

o0 o
po(T) = —/ e~ Ma=Gaz g (4.7)
0
L _ 17 oo du . _
where M = M(k,T,7) = 1+ 5 [" df [ e 1aF and G = NTu(AgC)~ 2. If
L(z) = K|z|77 and N =0 we have:
1
po(T) =1-— (4 8)
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Some interesting facts are observed from these results: Rewrite the expression of SINR
as

Tyoe 5"

Sz [l] = — 1
IUN + Zz;éo 1{ei:eo}a(9i)ryi$[”£i

where Ty, [l] = pry,.[l]. Since ry,[l] is an exponential random variable of mean 1/, Ty, [l]
is an exponential random variable of mean 1. Hence by the above equation it is expected
that the outage probability depends on the product u/N but not directly on g and N. It
is an increasing function of Ny which is confirmed by (4.4). The fact that the outage
probability is an increasing function of 1 and NV is quite natural, increasing of noise or the
fast fading influence always deteriorate the system performances.

It is also expected that in the interference limited case (N = 0) the outage probability
does not depend on p. It is confirmed by (4.6). Physically it means that in the absence
of noise, the fast fading modifies the channels (from the MS to each BS) characteristics by
the same factor, thus the SINR does not change.

In the interference limited scenario with the exponent pathloss model, the outage prob-
ability does not depend neither on pu, nor on the BS density Ap and nor on the distribution
of shadowing H. It is due to the scaling properties of the pathloss function and of the
Poisson point process. The outage probability is thus a decreasing function of the pathloss
exponent .

In the presence of noise N > 0 and still for the exponent pathloss model case, the
outage probability is an increasing function of Ag. Hence, it can be thought that the more
an operator installs BSs, the better the network is. In addition, if the density of BSs goes
to infinite then outage will never occur. However it is not true. In fact, if the density of
BSs is very high, the distances between a MS and BSs tend to be relatively small. Hence,
the exponent pathloss model is no longer valid since it is not accurate at small distances.
If the modified exponent pathloss is used, the outage probability must converge to 0. The
outage probability is also an increasing function of E(H%), and if the shadowing H follows
lognormal distribution then the outage probability will be an increasing function of o.
We recover an other well known fact: the increasing of uncertainty of the radio channel
deteriorates the performance of the network.

4.4 Handover analysis

If the MS is in outage for n consecutive time slots, a handover decision has to be made.
Keep in mind that only the Rayleigh fast fading changes each time slot. Let A; be the
event that the mobile is in outage in the time slot [, and Af its complement and observe
that in fact P(N2,A5) = P(N2,A7). By definition ppe := P(N_y Aiyi-1) = P(N7Z14i).
We have

do=nm > P(NiZ, A7)
m=1 J1#. . #ime{l,..,n}
2

Pho = 1+

PN 45)-
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Theorem 20. The handover probability is given by:
n!

_1+z D,

where gy, = P(N2,AS) is given by:
G = /OO A\sB'(B)e ~ABB(8)—~NTuf— 58 Dy 5)dﬁ7
0

and Dy (B) = [T d9 5 B€)(1 ~ (rmme=r)™ €.

Proof. We need to calculate the probability P(N",A¢) that is the probability that the
mobile is covered in m different time slots.

P(sz[1] > T,...,sz[m] > T|& = )
PN, A%l _ 5 P(’"y_ow['] > 5(Tfn\7+f [?])J =1...ml§ = B)
T E( WnTNAEET, LB g, = B)
=e NI Lo 1y (ThB)
where I,(8)[i] is the distribution of the random variable I, [i] given (£, = ). We have :

Z L(B)]i] = Z 1{61160}5;1a(0i)(z Tyix[z])
i=1 j=1 i=1

As the random variables 7y, [i] are independent copies of the exponential random variable
R, the random variables > ", ry,,[i] are also i.i.d and the common Laplace transform of
the latter is :

L,y ii(0) = (Lr(u)" = (L

The Laplace transform of > 1", ( )[7] is now:

o2 0 [ B

23 m
ra@ETa) %,

Ly @) =

Proceeding as for Theorem 18, we get
G = /oo )\BB/(B)e—ABB(ﬁ)—NTMB—%Dm(ﬂ)dﬁ.
0
The result follows. i

We can obtain more closed expression for ¢,, in some special cases.

Proposition 21. In the interference limited regime N = 0, we have:

Gm = /Oo )\BB/(IB)e—ABB(ﬂ)—%Dm(ﬂ)dﬂ.
0

If L(z) = K|z|™7 then:
00 ~
G = / —Mma—Ga2 dov

where

1
M,, —1+— d@/ ™) du.
2k 1+Ta(0)u %) )

If N =0 and L(z) = K|z|77 we have: gy = 1/M,p,.
From these computations, the same kind of conclusions as for outage probability can
be drawn.
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Figure 4.1: Outage probability vs SINR threshold

4.5 Numerical results and comparison to the hexagonal model

We place a MS at the origin o and consider a region B(o, R;) where Ry, = 300(m). The
BSs are distributed according to a Poisson point process in this region. The path loss
exponent model is considered. The default values of the model parameters are K = —20
dB, P=0dB, n; =8 and = 1.

In the literature, the hexagonal model is widely used and studied so we would like to
compare two models. For a fair comparison, the density of BSs must be chosen to be the
same, i.e the area of an hexagonal cell must be 1/\p. Unlike the Poisson model where
each BS is randomly assigned a frequency, in the hexagonal model, the frequencies are well
assigned so that an interfering BS is far from the transmitting BS and BSs of different
frequency are grouped in reuse patterns. The reuse factor k£ in the hexagonal model is
determined by k = i? + j2 + ij where integers i,j are the relative location of co-channel
cell.

Figure 4.1 shows the outage probability versus the SINR threshold of the Poisson model
and the hexagonal model in the case k = 7. As we can see, the outage probability in the
case of Poisson model is always greater than that of hexagonal model as expected. The
difference is about 8 (dB) in the case v = 4 and 6(dB) in the case v = 3.

In Figure 4.3, we can see that the outage probability is a decreasing function of v as
theoretically observed. In Figure 4.4, we see if the reuse factor k increases, the MS has
to do less handover. Thus, increasing the reuse factor has a positive effect on the system
performance not only in term of outage but also in term of handover.
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Figure 4.2: Handover probability vs SINR, threshold

4.6 Conclusion

In this paper we have investigated the outage and handover probabilities of wireless cellular
networks taking into account the reuse factor, the beamforming, the path loss, the slow
fading and the fast fading. We valid our model by simulation and compare numerical
results to that of hexagonal model. The analytic expressions derived in the this paper can
be considered as an upper bound for a real system.
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Chapter 5

On noise-limited networks
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5.1 Introduction

Cellular network is a kind of radio network consisting of a number of fixed access points
known as base stations and a large number of users (or mobiles). Each base station covers a
geometrical region known as a cell and serve all users in this cell. Interference and noise are
two factors annoying communications in cellular wireless networks. Noise is unavoidable
and comes from natural sources. Interference come from users and base stations. The
use of recent technologies such as SDMA (spatial division multiple access) and MIMO
(multiple input multiple output) can reduce significantly interference so that we can hope
that in a near future the impact of interference will be negligible and noise will become the
only factor harming the network. The best case is when interference from other cells are
perfectly canceled, the network is then said to be in noise limited regime. We introduce
here a framework to study this kind of network.

In the existing literature, base stations (BS) locations are usually modeled as an ideal
regular hexagonal lattice. In reality, base stations are irregularly located, especially in an
urban area, and the cell radius is not the same for each BS. In this chapter, we model the
base station locations as an homogenous Poisson point process I1p of intensity Ap. Such a
model comes from stochastic geometry. It is sufficiently versatile by changing Ag to cover
a wide number of real situations and it is mathematically tractable. For an introduction
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to the usage of stochastic geometry for wireless networks performances, we refer to [47].
Theory and number of pertinent examples can be found in [24] and [48]. For all theoretical
details, we refer to the first opus.

To model cellular network cells, Voronoi tessellations are frequently used. It is based
on the assumption that each user is served by the closest BS. Unfortunately, this is not
always very accurate since in real life, a mobile connects to the best BS it can have, i.e., the
BS which offers it the best Signal over Noise Ratio. The best BS is not always the closest
because of the fading environment. In this chapter, we analyze the impact of fading by
considering that users are served by the base station providing the best signal power. The
location of users in the plane are modeled as another homogenous Poisson point process
IIps of intensity Apys.

While cellular networks like GSM and GPRS provided only voice service and low data
transmission rate, recent and emergent wireless cellular networks such as WIMAX or LTE
offer higher data rate and other services requiring high throughput such as video calls.
Each service requires a different level of signal to noise ratio (SNR). If the SNR does not
reach a required threshold due to the radio condition, the service cannot be established
or may be interrupted. Such calls are said to be in outage. The outage probability is one
of the key measurement of the network performance. We aim to determine the outage
probability of noise limited network, or equivalently the distribution of SNR, which turns
out to be equivalent to determine the distribution of the smallest path loss fading. In fact,
there have been some works dealing with the outage probability of noise limited wireless
network, but almost all of them consider the exponent path loss model. We here derive a
formula for outage probability taking into account a general model of path loss.

Once the distribution of SNR of a user is determined, the distribution of functionals
related to SNR can be easily derived. In some situations, we have to study the distribution
of the sum of a functional for all users in a cell. For example, in an OFDMA noise limited
cellular system, the number of sub channels required for a user demanding a particular
service depends on its SNR. If the total number of sub channels of all users in a cell
excesses the number of available sub channels in this cell then at least one user is blocked.
The probability of that to happen, sometimes called unfeasibility probability, contains
extremely important information on the performance of the network. Since it is often
impossible to find the explicit probability distribution of additive functionals, we calculate
the expectation, and bounds on the variance of such random variables.

Important notations and parameters used in this chapter are summarized in the table
5.1.

5.2 Model

Consider a BS (base station) located at y with transmission power P and a mobile located
at . The mobile’s received signal has average power L(y — x)P where L is the path loss
function. The most used path loss function is the so-called path loss exponent model

L(z) = K|z 7,

where |z| refers to the Euclidean norm of z. This function gives raise to nice closed formulas
but is rather unrealistic: Close to the BS, the signal is infinitely amplified. A more realistic
model is the modified path loss model given by:

L(z) = K min{R;", 2|7}
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Symbols Physical meaning

L(y — x) Pathloss function from y to z

~y Pathloss exponent

Ny Fading form y to x

H Generic random variable of fading

IIp {Y0,y1, ...} Poisson point process of BSs of intensity \p

11§V} {z0,x1,...}Poisson point process of users of intensity Ay

Sh* {$yz = hya L(y — 2))~ ', y € I}, Path loss fading process
at point x

Sh* {0 < & < &F < .. .}Path loss fading process at point z

f Capacity function (for example f(u) = logy(1 + u))

So(f) > wec, f(Soz), Cell sum capacity

m(f),v(f) | Mean and variance of S,(f)

Table 5.1: Notations.

where Ry is a reference distance and K a constant depending on the environment. In
addition to this deterministic large scale effect, we consider the fading effect, which is by
essence random. The received signal power from a BS located at y to a mobile unit (MU
for short) located at x is given by

Py =hy o L(y — x)P,

where {hy 2}, er2 are independent copies of a random variable H. Most used fading
random models are log-normal shadowing and Rayleigh fading. The log-normal shadowing
is such that H is a log-normal random variable and we can write H ~ 109/10 where
G ~ N(0,0?). The Rayleigh fading is such that H is an exponential random variable
of parameter p. We can also consider the Rayleigh-Lognormal composite fading, in this
case the fading is the product of the log-normal shadowing factor and the Rayleigh fading
factor. It is worth noting that the log-normal shadowing usually improves the network
performance while Rayleigh fading usually degrades performances.

We assume that once in the network, a mobile is attached to the BS that provides it
the best signal strength. If the power received at this point is greater than some threshold
T, we say that x is covered. If = is not covered by any BS then a MU at x cannot establish
a communication and thus is said to be in outage. In the case of path loss exponent model
with no fading (H = constant), the best BS for given mobile is always its nearest BS.

We assume that the point process of BSs Il = {yo,y1,...} is an homogenous Poisson
point process of intensity Az on R? and that users are distributed in the plane as a Poisson
point process Iy, = {xg,x1, ...} of intensity ;.

To avoid any technical difficulty, from now on, we make the following assumptions:

Assumption 1. Assume that:

1. All random variables hy, (x,y € R?) are independent.

2. H admits a probability density function pg. Its complementary cumulative distribu-
tive function is denoted by Fyy, i.e.,

[e.9]

Fu(8) = P(H > f) = /ﬁ pi(t) dt > 0.
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Figure 5.1: Triangles represent BS, plus represent MU. Dotted polygons are Voronoi cells induced
by BS. A line between a BS and an MU means that the BS serves the MU. A mobile may be not
served by the BS closest to it, due to fading.

3. Define B() = [po Fu((L(2)B8)7") dz. Then, we have 0 < B(f) < oc for all 8 > 0.

5.3 Poisson point process of path loss fading

For each location z on R2, consider the path loss fading process Sh* = {Syz = hya L(y —
7))71, y € lIg}. The next proposition follows from [41].

Proposition 22. For any x, Sh® is a Poisson point process on R with intensity density

dA(t) = ApB'(t)dt. In addition, B(0) =0 and B() = 0.

For any point x, we can reorder the points of Sh*. We denote ordered atoms of Sh* by
0 <& <& <.... The CDF and PDF of £, are easily derived according to the property
of Poisson point processes:

Corollary 1. The complementary cumulative distribution function of £, is given by:

Pleg, > 1) = w0 3 QuBO)

)

=0




o7

and its probability density function is given by

pffn(t) _ )‘g+lB/Ei)!(B(t))m e—ABB(t). (5_1)

Proof. The event (£F > t) is equivalent to the event (in the interval [0,¢t], there are at

most m points) and the number of points in this interval follows a Poisson distribution of
mean A\pB(t). Thus, we have:

~ (AB(t))’

P&l > t) = e a0 N~ B80T

=0

7!

The PDF is thus given by

1o}
pez (1) = —ap(fﬁq > t)

= —)\BB/(t)e_ABB(t)
- i—1 i
+ 3 ApB (te-reb (ABO)T (AsB())
S swtorom >

(i —1)! il

ABHLB () (B(t)™ o8B,
m)!

The proof is thus complete. [
Corollary 2. If L(z) = K|z|™7 then:

B(8) = C.87,

where C = WK%E(H%)

Proof. The path loss function depends only on the distance from the BS to the user. By
the change of variable r = |z| and by integration by substitution, we have:

B(,B) = 27['/ / rl{tKﬂZr’y}pH(t) dr dt
0 0

o0 (tKp)Y/Y

= 27r/ pr(t) dt/ rdr
0 0
2 2 [ 2

= F(K)’Y,B’Y/ pr(t)ty dt
2 02 2

= w(K)"E(H~)p~-

Hence the result. O

2
We observe that the distribution of the point process Sh* does depend only on E(H ")
but not on the distribution of fading H itself. This phenomenon can be explained as in
[46](page 159). If the fading is log-normal shadowing, i.e H ~ 10¢/10 where G ~ N(0, 0?)
2

20
then E(H%) — ¢ where o] = ln(llg)o. If the fading is Rayleigh fading, i.e H ~ exp(u)
2 2
then E(Hv) = F(% +1,0)u 7 where I'(a,b) = [;°t* te" dt is the upper incomplete
gamma function.
Similarly to the distance to m-th nearest BS (which can be found in [49]), the distri-

bution of m-th less strong path loss fading £F, can be characterized as follows:
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Corollary 3. If L(z) = K|z|77, &, is distributed according to the generalized Gamma
distribution:
—ABCt%

2 >
pes, (1) = —(ApC)™Hen M
~ m!

Proof. This is a consequence of Corollaries 1 and 2. O

We can also investigate more general and realistic path loss model.

Corollary 4. If L(z) = K min{R, ", |z|~7} then:

B(B) = O3 [, out) (52)

BK

2 .,
where C1 = wK~. In addition, we have:

B(9) = 257 B09) + ehin (15 ) 5.3

If the fading is lognormal shadowing H ~ 105710 where G ~ N(0,0?) then we have:

B(B) = (0 (TImB KR ) 200
o1 v ]’

where Q(a) = \/% faoo e~V /2 du is the Q-function and o1 = "%10, If the fading is Rayleigh

H ~ exp(p) then
— é g 2 '“Rv>

Proof. Similarly to the path loss exponent model case, we have:

B(p)

27 /OO rFy((max{Ry,r})"7(KB)~1) dr
0

Ro oo
— 271/ rFr(RyT(KB)™) dr+27r/ rFy(RyY(KB)™Y) dr
0 Ro

o0 (tK )/
— R (RUKS) ) + 2 /RW pu(t) dt / r dr
K Ro

2 [0 2
= 18? [ pult)

KB
We then obtain Equation (5.2). Now differentiate the two sides of that equation to get:

2 21 [ 2 C1R? R]
B'(B) = 20187 1/R7 tpg(t) dt + =52p <K_OB>
v B Kw

2

R’Y
= 257 505) + nhion (5.
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That yields Equation (5.3). In the case of lognormal shadowing we have:

, [ 1 , _(nt)?
2 2 202
B(B) = Clﬁ”/m m“e Lodt
5 i

(]

2
2 [ 1 u —ts
= (C167 . eve *1 du
1

R 2
nz% V2mo]
w-221y?
2 (201y2 o0 1 — 2’%
= (C1fve" 7 a1 e 1 du
In 2% \2mo7

ﬂ)2

= O Q(

—Inp—In(KR,") _ 201
o1 v

In the case of Rayleigh fading we have:
2 [ 2 .
B(B) = O /Rw £ pe " dt

0
Y

(142008,
v Kp

o)

by a change of variables. Hence the result. [

=
w

=2

Corollary 5. Let T be the value of attenuation above which a communication is not feasi-
ble. The number of BS covering a point x is distributed according to the Poisson distribution
of parameter \g B(T). In particular, the outage probability is given by

P(&E > T) = e 8B,

Proof. The path loss fading Sh® is a Poisson point process on R™ with intensity AgB’(t) dt,
so the number of point on the interval (0, 7") is distributed according to Poisson distribution
of parameter ApB(T). ]

Figure 5.2 represents the outage probability for different models of fading. This shows
that the curves of modified path loss exponent model is generally higher than those of path
loss exponent model but they are very close in the low outage region.

5.4 Capacity

In this section, we calculate the mean of any capacity function of a user. We call capacity
function any measurable non-negative function defined on RT. In some cases, we can add
the property that f(0) = 0. Examples of capacity functions are:

e fo(t) =1 1is a constant function indicating that the user is in the system.

e fi(t) = 1(t > T) is the function indicating that the user is in outage or not if the
path loss fading threshold is T'.

e fo(t) =1(t <T) is the function indicating that the user is covered or not.
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Figure 5.2: Comparison of outage probability between propagation models. For lognormal shad-
owing o = 4(dB), for Rayleigh fading y = 1; K = 1072, v = 2.8.

e Shannon capacity when transmitting over a channel of bandwidth W and with noise
Nis W logg(l—l—%) (kbs). In practice, the set of achievable rates is not continuous for
all wireless systems. Indeed, the actual user bit rate can be expressed as a piecewise
constant function f3(t) = Y7 UT; <t < Tjp1)e; with 0 < Ty < Th < .. < T, <
Tn+1 = +00.

Hence, it is interesting to study the random variable f(sup,er, Sy, z)-

Remark that since the system is spatially stationary the statistic of the path loss fading
and the capacity of a user does not depend on his position. Since the PDF and the CDF of
the path loss fading £ have been already calculated in Corollary 1, the mean of a capacity
function of a user follows immediately. In particular:

Theorem 23. The average capacity per user s

BUTEE) = s | B8)e 20 1(5) ds (5.4)
Tn the case of path loss exponent model L(z) = K|z, we have:
B(J(§)) = £(A5C) (5.5)
where Lg(s) = Jo e stg(t) dt is the Laplace transform of the capacity function g and
Ft) = f(t2).

Proof. Equation (5.4) comes from Proposition 1. If the path loss exponent model is con-
sidered, then we have:

E(F(€0) = A /0 h %ﬁi—le—wﬂ”ﬂﬁ) ap
- / T euc p(gd) ap,

0

by the change of variable g1 = ﬁ% O
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Assume that there is a BS located at the origin o, called typical BS, and maintain the
Poisson point process of other BSs IIp. Each user is attached by the best BS according to
Assumption 1. We would like to obtain defined as follows. Let C, be the set C, = {z; €
Iar | Som; < SUDPy, eIl Sy, p of all user attached to the BS o. We define the cell capacity
as :

So(f) = Z f(Soz)-
zeCly

The statistic of the cell capacity S,(f) is more difficult to analyze. In this section, we
calculate its mean m(f) and lower bound and upper bound of its variance v(f). We state
the following lemma, which is straightforward due to Assumption 1 but still useful:

Lemma 24. Given a fized configuration Il of BSs, the Poisson point processes of path
loss fading Sh* and ShY are independent for any two different points x, y.

Lemma 25. Let z =y —x. The PDF of s, is given by

o 1 1
)= gz (73)
Proof. We have

P(sye <t) = Plhyy > ——

The density probability function is then

(t) = 1 1
Pova i) = TP\ (20t )
[]
Theorem 26. The expectation of the cell capacity of the typical BS is
[e.e]
mlf) =ar [ BB O £(3) dp (56)
0
In the case of path loss exponent model L(z) = K|z|™7, we have:
A
m(f) = 3= LHABO)- (5.7)

=3, 5

Proof. Given a fixed configuration of BSs IIp, the random variables 1(soq < &J)f(Soz) Ob-
tained from all z € R? are independent. Thus, the marked point process Iy = (2, 1(8pg, <
&) f(Sox;)) is a Poisson point process. Using the Campbell theorem we have:

B | T5) = Mar [ B (1(s0r < ) (50r) | T)

As a consequence,

E(So(f)) = E (AM E(U(s0r < &) f(502) | 1) dx)

RZ

= Ay /R? E(1(sox < &5)f(S0z)) da
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In virtue of Lemma 25, Proposition 22 and Collary 1, we have:

BS.(F) = Mat [ B(1(s0r < )5 (s0r)) da
SN " pen (OP( < €0)£(1) dt du

o0 OF 1
_ —AsB(t) g H d
w [t [ (o) o

_ * nesBO 3,90 1
_)\M/O f(t)e BBl di— (/RQ F(L(:p)t) da:)
=\ / ) f(0)e=POB(t) dt.

0

For the case of path loss exponent model, Equation 5.7 follows easily. This completes the
proof. []

Equation (5.6) has the following interpretation: the mean cell capacity is the product
of the mean number of users per cell and the mean capacity per user.

Theorem 27. Given two capacity functions f,g we have :
cov(So(f), Solg)) = m(f.g): (5.8)

In particular,

var(So(f)) = m(f?).

Proof. For simplicity, let 8, = so51(s0; < &§) and f(0) = 0,¢(0) = 0, we have :

cov(5o(f)S(9)) = E(cov(Ss(f), So(9) | Ip))
+ E(E(So(f) | IB)E(So(9) [ 11B)) — E(So(f))E(Ss(9))
=T+ 15 —T;-

It is clear that
T5 = m(f)m(g)-
Consider the first term. Remind that we have assumed that all random fading {hy. }, ,cr2

are independent, so given a fixed configuration Il of BSs, the random variables {f;},cr2
are independent. Hence by Campbell formula we have:

T = il [ P((30(8) | T1p) da
= M [ BE((B)9(8:) | Tp) da

_ /R E(f(8)9(8,)) da
= m(f.g)
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Now consider the second term

7o = ([ B0 1) ao [ Blo(5) 1) )
—AME(/ [ B2 | 1) Elal3,) | 105) )

/IR? R2E f(Bz) | 1) E (Q(ﬁy) | IIp)) dz dy
=% [ [ BUEDEGE,) a a

oo oo
:)\?\4/ / / / P(30x<£gasoy<£g|Sawztlysoy:tQ)x
R2 JRZ JO 0

X f(t1)g(t2)ps,. (t1)Ps,, (t2) dt1 dtz dx dy-

by remarking that §, and 8, are independent if z # y (Lemma 24). We will prove that if
x #

P(Sozr < 583,80;/ < 53 | Sox =11, S0y = t2) >
P(Sox < 58 | Sox = tl)P(SOy < g(l)/ ’ Soy = t2)

Consider the marked point process II5Y = {y;, hy,z, hy,y)}. Since the marks are indepen-
dent, it is a Poisson point process on R* with intensity

mEU2(dy, dug, dug) = Ay dy @ pg(u) dug ® pr(uz) dug-

Consider two sets
Ar = {(y,ur,u2) : L{y)uy >t}
and

Ag = {(y,ur,u) : L(y)uz > 15 '},

we have:

P(Sor < 53,8031 < ﬁg | Sox = tlasoy = t2) = P(Hgy(Al U A2) = @)
— e—mi’y(A1UA2)

o (A=Y (As)

P(II5" (A1) = 0)P(IT5" (A2) = 0)
P

(Sow < &5 | Sox = t1)P(s0y < &5 | 5oy = t2)-

Y]

Thus,

T2>)\2 / / / / P(s0z < &5 | S0z = t1)P (50y<£0|50y_t2)
R2 R2
x f

t1)9(t2)Ps,. (t1)ps,, (t2) dt1 dtz dz dy
=m(f )m(g)'

The result follows. O
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Theorem 28. For f and g two capacity functions, we have:

cov(5o(f), So(9)) < m(f.g) +m(f)n(g) —m(f)m(g)

where

o0
H= [ BO) b (5.9)
0
Proof. We continue the proof of Theorem 27, we have to prove that

Ty < m(f)n(g)

Indeed,
P(Sox < égusoy < fg | Sox = tlasoy = t2) < P(So:c < 5(9)C | Sox = tl)v
thus,
T2<)\ / / / / So:t:<€0’50:t:—t1)
R2 JR2
X f(t1)g(t2)Pso, (t1)Ps,, (t2) dty dio daz dy
> oFy, 1
< t —_— dz dt
<m(f) [ ot [ TG o ae
=m(f)n(g)-
Hence the result. O

5.5 Examples

5.5.1 Number of users in a cell

For fo(t) = 1, the random variable n, := S(fo) = > ;2 1(z; € C,) represents the number
of users who view o as the best server, and thus will be served by o.

Bw) = A [ B(@e e Das
0
h

The mean number of users served by a BS is % which is easily interpreted. We rewrite
the formula (5.6) by

E(S.(£) = LLEU ()

Again this is easily interpreted. The average sum rate is the product of the average user
per cell and the average per user.
Now apply Theorem 27, we get that

A

var(n,) > m(l) = by

We cannot apply Theorem 28 because n(fy) = Ay fooo B'(t) dt = co.
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Figure 5.3: Histogram of n,

5.5.2 Number of users in outage in a cell

Consider f1(t) = 1(t > T), then S,(f1) is the number of users in outage in the typical cell.
We have

m(f1) = A /T T B(B)e B ag

— )\_Me_)\BB(T)
B ’

and

Note that again, we cannot apply Theorem 28 as n(f1) = Ay [ B'(t) dt is infinite.

5.5.3 Number of covered users in a cell

Consider fa(t) = 1(t < T'), then S(f2) represents the number of covered users in the typical
cell. We have:

T
m(f2) = Aut /0 B'(B)e#BO) 45

_ iﬂg (1 _ e—ABBm)

’

v(fa) > A
B

S (1 eeP ),

and

2
o(fo) < GBI SH B (A B(T) — 14 AeBD)
AB 2
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5.5.4 Total bit rate of a cell

We now consider the piecewise constant function f3(t) = > 7 1(T; < t < Tj41)¢; with
0<Ty <Ty < ..<T, <Tys1 and T,,+1 can be infinite. If f3 is the function that
represents the actual bit rate then S,(f3) represents the total bit rates of all users in the
cell. We have:

n

m(fs) = Am / T B(g)eeB®) > UT < B < Tipa)eidp

1

_ /\MZ (—ABB(T ¢ B B( 1+1)).

n

v(fs) > )\Mch (e*ABB(Ti) _ e—ABB(Tm)) )

i=1

n

v(fs) < Au o (e’ABB(Ti) — e*’\BB(TiH)) +

. <)\_M>zz’”: <€—ABB(T1-) _ e—ABB(Ti_H)) %
AB

=1

n
x> (ApB(Tig1) = ApB(T;) — ¢ 8B 4 =BT

5.5.5 Discussion on the distribution of S,(f)

The distribution of S,(f) does not behave like a Gaussian distribution even in the limit
regimes. Take, for example, the histogram of n, = S,(fo) and that of S,(f3) which are
shown in figures 5.3 and 5.5 respectively. For the case of no fading, H = constant, in |50]
the author found some approximate but not reliable bounds of the distribution of S,(f)
for equivariant functions f but no approximation or bounds is found for general capacity
functions. In addition, no closed expression is found for the Laplace transform of functional
So(f). In our case where the fading is considered, this is expected to be more challenging.
We can find an upper bound for the tail distribution by Chebyshev’s inequality:

_olf)
o(f) + 2
m(f?) + m(f)n(f) — (m(f))?
m(f?) +m(f)n(f) = (m(f))* + t?

The above inequality provides a robust upper bound for the tail distribution and valid for
all capacity function f. However the gap is large (Figure 5.4). It is well known that other
types of concentration inequality based on Chernoff bound can give better bound. In this
direction, [16], [28] and [15] provide concentration inequalities that apply for functional
related to one PPP. These inequalities cannot be directly applied in our case because our
target is a functional related to two independent PPPs. Actually we can combine the two

P(So(f) >m(f) +1) <
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independent PPPs into one united PPP by the independent marking theorem. Unfortu-
nately the functional S,(f) of the united PPP does not satisfy the required conditions
for the concentration inequalities neither on [16], [15] nor on [28]. But we believe that
similar techniques used in these references can be used to derive a upper bound the tail

distribution of S,(f).

5.6 Conclusion

In this chapter we introduce a general model to evaluate the outage probability and the
capacity of wireless noise limited network. It is in fact an extension of models introduced
in series of papers [2], [3], [50]. The main difference is that we take into account the effect
of fading, and that we assume that a user connects to the BS with strongest signal rather
than the closest one. We first show that for a particular user, the path loss fading process
from all BSs seen from this user is a Poisson point process in the positive half line. We
find explicit expression for the outage probability, the expectation of capacity of a user,
and the expectation of the cell capacity of the typical BS S,(f). We find the lower bound
and upper bound for the variance of the cell capacity. We consider general model for path
loss and fading. The results presented in this chapter actually generalizes the results on
[50]. Possible further research is to find a way to compute the distribution of S,(f).
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Part 111

Energy consumption models
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Chapter 6

Presentation of energy consumption
model and mobility model
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6.1 Introduction

In this chapter we introduce a general energy consumption model for cellular network.
In Section 6.2, we present the power consumption model and the energy consumption
model. In Section 6.3, we present the mobility model for users. In Section 6.4, we establish
the relationship between the consumed energy and the parameters of the system such as
intensity of users or cell radius. The energy consumption model and the mobility model
are also used in the next two chapters.

Important notations and parameters used in this chapter are summarized in the table
6.1.

6.2 Model for energy consumption

We suppose that there is a cellular network with multiple base stations on R? and there is
a base station located at the origin o administering a geographical region C' around o. We
assume that there exists 0 < Ry < R such that B(o, R1) C C C B(o, R) and C' is convex
and compact. We define R;,; = infr{C C B(o, R)}. For a given spatial configuration of
active users on R%, denoted by 7, users located inside C' are served by o, users outside this
region are served by another base station (or are in outage regime). The power consumed
by the battery of the base station o can be divided into two parts:

e The power dedicated to transmit, receive, decode and encode the signal of any ac-
tive user. The cumulated power over the whole configuration is then of the form
> zen @(2), where ¢ is a function to be defined later.
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1
A BS e MS Uplink and downlink L Broadcast

Figure 6.1: Power consumption model.
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Symbols Physical meaning

n A configuration of active users

Il _ sup{[z] .« € C}

o(x) = ¢(|z|) Consumed power for a user at x

Y(z) = ¥(|z)) Broadcast power for the farthest user in the cell at x

Pa(n) _ > wen @(x), Total power served to all users

Pg(n) =¥(n|) Broadcast power

P(n) Pa(n) + Pg(n) Total consumed power

I(z) = I(x) Pathloss function

w = {omy,t € R} Time variant process of configuration of active users

Ja = Ja(w,T) fOT Ps(ws) ds, Additive part of consumed energy during the
period [0,7)

Jp = Jp(w,T) f(;f Pp(ws) ds, Broadcast part of consumed energy during
the period [0,7)

Jr = Jr(w,T) = fOT P(ws) ds, Total consumed energy during the period
0,7)

M = (M(t),t <0) Random mobility model

M/e = (M(t)/e,t <0) | High mobility model (¢ — 0)

Table 6.1: Notations and parameters.

e The power dedicated to broadcast messages. In order to guarantee that all active
users receive these messages, the power must be such that the farthest user in the
cell is within the reception range (if the system performs power control) or all the
cell is within reception range (if the system does not performs power control). Thus,
the power is a function of max,eync |z| where |z| is the Euclidean norm of z (the
power is equal to 0 if n N C = (). This function is constant if power control is not
performed.

It follows that the total consumed power is given by:

| P(1) = Pa(n) + Ps(n)

, (6.1)

where P4 (n) = 3¢, ¢(x) and Pp(n) = ¥([Inll), ]l = maxzepnc | if pNC # 0 and ||n]| =
0 if n N C = 0 (the subscript A stands for "additive" and B stands for "broadcast"). For

a very simple propagation model (without fading and shadowing), the Shannon’s formula
states that for a receiver located at x, the transmission rate is given by

Wlogy(1 + Pel(x)),

where W is the bandwidth, P, is the transmitted power and [(z) is the pathloss function.
Generally, the function [ : R? — [0,00] takes the form I(|z|) where [ : [0,00] — [0, 00]
is a non decreasing function. This implies that in order to guarantee a minimum rate at
position z, P, must be proportional to (I(x))~'. Thus, it is sensible to choose ¢ as

¢(x) = al(2))1zecy (6.2)
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with @ > 0. The function 1 is chosen as

(6.3)

W) = b.l(|x|)1{zecy, If power control is performed;
| 0l(Ring), If power control is not performed.

We can divide models for path loss into two categories:

e singular path loss model I(z) = K |z|””7 where v is the exponent path loss parameter
and K is a positive constant.

e non-singular path loss models like I(z) = K (ro V |z|)™ or I(z) = K (1 + |z|77)~L.
More generally, we make the following assumption:

Assumption 2. The transmitted power depends only on the distance to the base station
¢(z) = ¢(|x])1zecy. Furthermore, ¢ and ¢ are continuous non decreasing function on

RT.

We denote ¥(z) = @(|$|)1{$ec}- This implies that ¢ and 1 are always bounded
function. Apart from the above model for power consumption, we can define a power
consumption as a general functional depending on the configuration of users Fg : Or!
[0, o0].

If w = (wy, t > 0) is a process of time varying configurations, the total consumed energy
between time 0 and time 7T is given by

T
Jr = Jp(w,T) = /0 Pws)ds- (6.4)

As previously, we also define J4 and Jpg by:

T T
Ja = Ja(w,T) :/0 Py(ws)ds and Jp = Jp(w,T) :/0 Pp(ws)ds- (6.5)

The same definition for Jg(w,T') if the system applies power consumption Pg(.).

Also we denote C(r) = C N B(o,r) and C(r) = C N B(o,r). For a configuration v, we
denote x, the point of v such that |z,| = ||v|| (if there are more than one point then x,,,
is randomly chosen among these points).

6.3 Model for mobility of users

In this section, we introduce the mobility models for users.

Consider the functional space D(]0, 00), R?) of Cadlag function on R? equipped with the
Skorohod topology (see, for example [51], page 369). It is well known that D([0, 00),R%) is
a Polish space. The subset Dy([0,00), R?) = {f € D([0,00),R%), £(0) = 0} equipped with
the Skorohod topology is also a Polish space. We consider a probability distribution Py
of a random variable M = (M(t),t € [0,00)) defined on the associated Borelian o—field of
the space Dy([0,00),R%). Bach realization of M can be represented as a Cadlag trajectory
of on R%  Also, this probability is completely determined by the distributions of finite
marginal distributions P (M (t1) € .,..., M(t,) € .) (t1,...,tn, > 0). In some situation, for




6]

convenience we can assume that M (t) = o for ¢ < 0. M is said to satisfy the property T
if P(M(tl) = M(tg)) =0 for any 0 <ty < to.

If mobility is considered, then each user is associated with a mobility process on R
We make the following assumption:

Assumption 3.

e Motion trajectories of users are i.i.d mutually independent and have the same distri-
bution as that of M.

e Motion trajectories of users do not depend on the initial position of users.

More precisely, a user ¢ initially located at x; is associated with an independent version
of M, namely M; and an arrival time 7;. This user will move during its sojourn along M;,
i.e the position of this user at time ¢t > T; is x + M;(t —T;). The random processes (M,);eN
are mutually independent. Examples for mobility model are as follows:

e Motionless users: M(t) = o,Vt € R.

e Brownian motion users: M (t) = c(t)By(t) where ¢(t) € R is a continuous function in
[0,00) and By is a standard Brownian motion on R?.

e Completely aimless users: M (t) = tv where the speed of user v is random whose
direction is chosen randomly and uniformly over the d-dimensional unit sphere and
|v| is a positive random variable.

e Combination of two above models: M (t) = tv + ¢(t)By(t).

e High mobility regime: let ¢ > 0 be a small parameter, the high mobility regime
consists of considering the mobility process (M/e)(t) = M(t)/e and we want to
study the behavior of the system when ¢ — oo. The high mobility regime of the
completely aimless mobility model with constant speed |v| is the same as considering
|v| = o0, i.e when the user’s speed is very high.

6.4 Basic model

In this section, we present a very basic model for energy consumption of cellular network.
We assume that for each time ¢, wy follows a Poisson point process of intensity A da and the
cell C'is circular centered at the origin. Furthermore, ¢(z) = ¢(|z|) = a|z|" Lizen(or))
and 9 (r) = br71(,eB(o,r)}- We are interested in the average energy E [Jr(w,T')] that the
BS consumes during the period [0, 7).

As the configuration at any time follows the same distribution, we have E [Jr(w,T')] =
TE [P(wy)] = TE [Pa(wo)] + TE [Pg(wp)]. Therefore, it is sufficient to find E [P4(wg)] and
E [Pg(wo)].

Since P4 is linear functional of wg, thanks to the Campbell’s theorem and the lemma
29 we can calculate the expectation of P4 as follows:

R
E [PA(WO)] = anm‘
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Figure 6.2: Basic model.
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Lemma 29. Denote Vg = Fzr;fl) the volume of a ball of radius 1 in R?, and Vd/ =dVy
2
then

/Rk-I-d
k

z|" de = V,——
/B(O,R)| | “h+d

for all real k > —d.

Proof. We have:

R
/ 2" dz = / r* d (Vdrk)
B(o,R) 0

R /
= / Vrktd=l gy
0
, Rk+d

dp 1 d

We are now interested in Ppg.

Lemma 30. Let v be a Radon measure on R% absolutely continuous with respect to the
Lebesque measure, let II be a Poisson point process of intensity v on R? then the CDF of
IILT|| @s given as:

Fjyy(r) = e (€0,

and its PDF' is given by

dv(CNB(0,7) e,

Py (r) = ph
In particular, if dv(z) =X\ dv and C = B(o, R) then:

e_’\vd(Rd_Td), 0<r<R;

and

)\Vérd_le_)‘vd(Rd_”d), 0<r<R;
Py (r) = 0, R<r.

Proof. We have, as Il is a Poisson point process:

F||H||(T) = P (U(T) NIl = @)
-

for < R. The PDF of [|II|| then follows. Now if dv(z) = A dz and C = B(o, R) then
v(CNB(o,r)) = Vyg(R? — r?), then the expressions for CDF and PDF of ||TI|| follows. [
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Remark 1. If the cell C has the regular n—polygon (n = 3,4 or 6 in a reqular network) on
R? (d = 2) with circumradius R, and dv(x) = X dx then the CDF of ||I1|| in the previous
lemma can be expressed as follows:

exp {—)wr(R2 — 7"2)} ,if0<r < RcosT;

exp {—)\ (R2 — (7r — n arccos RC:S% 5 sin (2 arccos w>> 7"2)} ,
if Reos T <r < R;

1, if R<r.

Fj (r) =

Following the above lemma, the moments of Pp are given as

R
m, [Pg(w)] = 0" / PNV rdlem WValRE=r) g,
0
For simplicity, let
u
Hy(u,v,a) = dv/ repd—lemvlul=r?) 4 (6.6)
0

where o > 0 then, m,, [Pp(wo)] = 0"Hy(R, A\Vg,ny). In particular,
E [PB (WO)] = bHd(R7 )‘Vd7 7)

Consequently, we obtain

E [Jr(w,T)] = TanI’Y — + TOHa(R, AVa, ). (6.7)

We note that 0 < Hy(u,v,a) < R* so TaV,Z > R”*d < E[Jr] < TaV, 22 R”“‘ + ThR*. If
A — oo then E[Jg] — ThR?, which is intuitive: as the intensity goes larger, the farthest
user is located closer to the border of the cell. Nevertheless, bT'R" is the consumed energy
if the operator wants to broadcast message to all points of the cell, not just all active users
in the cell. Thus, it is fair to assume that E[Jg(w,T)] ~ Tb RY with b > 0.

Consider an operator aiming to design the optimal cell radius R to cover a region of
total area (volume) S € R? The average total cost of the network is assumed to be the
sum of the operation cost during the life time of the network (says T') and the cost of

facilities (base stations). The number of base station is then proportional to %, say %,
so the installation cost of base stations is <L with ¢; > 0. The operation cost is assumed

R4
to be proportional to the consumed energy.

We assume that I(z) = K. |z]7, ¢(z) = a.l(2)1zecy, ¥() = b.1(2)1zeoy with K >0
and furthermore v > d. The expectations of the two parties of energy consumed by a singe
base station are then E [J4(w,T)] = AT'a' R"*% and E [Jg(w,T)] = Tb'RY with a',b > 0.
The energy consumed by the network during its operating time is:

C

Rd
This is a increasing function of R, which means that small cell systems will consume less
energy than larger cell system. The average total cost for the network is then

( 'NT R + b’TRV) — TR + b TR,

Cost(R) = sy A\TR" + byTR™ + ;Z (6.8)
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It is interesting for operator to find the optimal R in order to minimize the cost function.
As Cost(R) > 0 for all R > 0 and limp_,g Cost(R) = limp_,o Cost(R) = oo there exists
a minimum for Cost. By differentiation, the optimal cell radius is the unique positive
solution of the following equation:

ap )\'yTRZ;;d +01T(y — d)R, = dcy

As the RHS is increasing in 7', the optimal cell radius R, must be a decreasing function
of T'. This reveals a characteristic of the optimal choice of cell radius. In the economical
point of view, to operate a network with longer life time it is preferable to exploit smaller
cells system.

If by = 0, i.e the broadcast part of transmitted power is small comparing to the additive
part, then the problem reduces to minimizing a; AT R” + %. Simple manipulations yields:

1
dcl m
R = (30 ) (6.9)

1
That is to say theoretically the optimal cell radius is proportional to (A7) »+d.
Similarly the network operates only in broadcast, the optimal cell radius will be

1
d01 e
Hop = <('7 - d)b1T> |

6.5 Conclusion

In this chapter we have proposed a general energy consumption on cellular networks and a
model for mobility for users. We have also considered a basic model for energy consumption
and in order to minimize the cost of the network we derive some theoretical results on the
optimal choice of cell radius.
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Chapter 7

ON-OFF model
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7.1 Introduction

The previous chapter introduced a new energy consumption model for cellular network.
In this chapter, we apply it in a specific scenario. At time t = 0, users are dispatched
in the plane according to a Poisson point process. With each of them, is associated a
random process with two states ON-OFF (active or inactive) which represents their activity.
Moreover, users randomly move. Only "on" users are served by the network. This is the
very first approach we can think of to model the activity of entities in a network. As usual,
this assumption reflects the fact that a user can disconnect from a wireless network to
switch to a new wire network or the channel from the BS to the user can become so bad so
that the connection is no longer possible,... . Although this approach seems to be simple
at the first sight, it is still a complex object to study and need a lot of calculation.

The ON-OFF model is well studied in the queueing literature. It is used to explain phe-
nomenons called heavy tails, self-similarity and long range dependence of traffic observed
by measurement in many types of networks, see for example [52| and references therein.
We do not address this problem here in this thesis.

This chapter is organized in the following way. The section 7.2 describes the model.
Section 7.3 presents analysis in the case where users are motionless. Section 7.4 investigates
the impact of mobility. Section 7.5 considers some special cases of mobility model, including
the completely aimless mobility model. Important notations and parameters used in this
chapter are summarized in the table 7.1.
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Symbols Definition, Physical meaning
I=(I(t),teR) ON-OFF model of user’s activity
= f(;f I(t) dt | Total fraction of ON time
I = (I;(t),t € R) | ON-OFF activity of user i
N > _i>1 0x;, Poisson point process of initial position of users of
intensity measure dA(x)

Wi Zz‘zl 1{Ii(t):0}5XiP0isson point process of active users at t
if users are motionless

w,f\/[ 2221 147,()=0)0x,+M;(r), Poisson point process of active
users at t if users move

(I)nM(fvtlv"'ﬁtn) [f]Rd l’—|—M tl)) f(x—i_M(in)) dx]

Fal(f,T) Jpa E {(fo (x4 M@)I(t) dt) } dz

HM(f,u) Jea B [(Jo' flz+ M(t) dt)"] da

Table 7.1: Notations and parameters in this chapter.
7.2 Model

An ON-OFF process on the real line alternates between values 1 (for on state) and 0 (for
OFF state). ON-periods (and OFF-periods) are i.i.d positive random variables. Further-
more, the sequences of ON-periods and OFF-periods are independent. Each realization
of an ON-OFF source is a Cadlag function. An ON-OFF process is called exponential if
ON-periods and OFF-periods are exponential distributed.

More precisely, consider an ON-OFF sources (I(t),t € R) such that the ON-periods
are continuous positive random variable of mean ul_l and the OFF-periods are continuous
positive random variable of mean ,ual and denote by U and V the generic ON-period and
OFF-period. We can write:

o0

I(t) = Z Limy, <t<Tpiia}-

1=—00

where ... < T 3 < T o< T 1 <Ty<T) <Ty <13 < ... such that (TgZ To_ 1)1__00
are i.i.d and have the same distribution as V', and (Ta;41 — T%;)52_ are ii.d and have
the same distribution as U. We can assume that Ty V17 > 0. I can be seen as a random

variable on D(R,R) with probability measure dPI We assume that [ is Qtationary. From

[53] for example, we have P(I(t) = 1) = HOJWI £ and P(I(t) = 0) = uo+u1 2 7 for all
t. Furthermore, we have
P(I(t) =1Vt € [0,u) = — /OOP(U> ) d
= JU)) = = s) ds.
E[U] J,

for all uw > 0.

With a little abuse of notation, we write ;. Jn(tl, ) =P (I(t;) =jVi=1.n)
where j1,...,7, € {0,1} and t1,...,t, € R. Let A(T fo ) dt. Since the process I

is stationary, we have E[A(T)] = mT. In the case of exponentlal ON-OFF process, the
expressions for 7j, s (t1,...,t,) and the moments of A(T') are given in the appendix.
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Time ‘

Figure 7.1: Tllustration of the model, each user is associated with a ON-OFF process and a mobility
process.

Lemma 31. We have, for all T
i T" <m, [A(T)] <T".

Proof. Since A(T) < T a.s. we have m,, [A(T)] < T"™. Now m,, [A(T)] > (E[A(T))" =
mI™ by Cauchy—Schwarz inequality. O

Let dA(z) be a o—finite Radon measure on R%, absolutely continuous with respect to
the Lebesgue measure. We make the following assumptions:

Assumption 4. The positions of users at t = 0 follow a Poisson point process N =
{Xi}ti>1 of intensity measure dA(z). User i is associated with an ON-OFF process of
activity (I;(t),t € R),i.e users are active during their ON-periods and are inactive during
their OFF-periods. The activity processes of users are assumed to be i.i.d and have the
same distribution as that of (I(t),t > 0).

Following the above assumptions, the configuration of active users at time ¢ is

wt]\/[ = Z 1{Ii(t)=1}5Xi+Mi(t)'
i>1

The system can be described by a Poisson point process on R? x D(R,R) x D([0, 4+-00), R%)

(I)I’M = {(XZ7 Ii7 MZ)}Zzl
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of intensity dA(z) x dP;x dPjs. The consumed energy is defined in the same way as in
the previous chapter for the time varying configuration process w™ = (wM(¢),t > 0). In
particular, the additive part of consumed energy can be rewritten as:

T
Ja@M, 1) =3 / L)G(X: + Mi(r)) dt

i>1

and the broadcast part is:

T
Talw, 1) = [ (i) ar

The total consumed energy is Jp(w™,T) = J4(wM,T) + Jp(wM, T).
When users are motionless, i.e M;(t) = o, the system is described as a Poisson point
process

o' = {(Xi, L;) }iz1-

of intensity measure dA(xz) x dP;. In this case, we drop the superscript. Thus, the
configuration of users at time ¢ is:

wy = Z 1¢7,()=0)0x;"
i—1

The additive part of consumed energy is

T
TaT) =3 o(X) [ 1(e) a

i>1

and the broadcast part is:

T
Jp(w,T) = /0 B(lwrl) -

The total consumed energy in this case is Jp(w,T) = Ja(w,T) + Jp(w,T). In the next
two sections we present analytical results on the motionless case and the general case.

7.3 Motionless case

In this section, we assume that users are motionless. We derive analytical expressions for
the moments of Ju(w,T), Jp(w,T), Jr(w,T) in this case.

Theorem 32. The moments of Ja(w,T) are given by:
a6 T)] = B (1 [AT)] [ 0(0) ab(@) o [AD)] [ 07(0) (o))
and the central moments of Ja(w,T) are given by:
¢ [Ja(w,T)] = By <O,m2 [A(T)] y ¢*(z) dA(z),...,m, [A(T)] y o™ () dA(a:)) .
In particular, the expectation of Ja(w,T) is given as:

E[Ja(w,T)] =m y () dA(x). (7.1)
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Proof. As Ja(w,T) is a linear functional of ® which is a Poisson point process, we then
n

apply Theorem 7.4 and note that:
T T n
/ @) ( / 1) dt) dA(z) dP; = [ f (2) dA(2)E ( / 1) dt) ]
Rix D(R,R)) 0 Rd 0

—m, [AD)] [ (@) de

O

We see that, from the above theorem, the expectation of J4(w,T’) depends on the
distribution of ON-periods and OFF-periods only by the activity rate pq/pu1.

Corollary 4. If C = B(o, R), ¢(z) = a|z|” LizeB(o,r)} and dA(z) = X dx then:

L)

m, [Ja(w,T)] = B (Aavd/ml A R AVa*mg [AD)] B2 AVja"m, [A(T)] R””+d)

v+d ’ 2y +d ny +d

2y +d ny +d

Cp, [JA(W, T)] — B, (0’ )\VdIQan [A(T)] R2v+d )\Vd’anmn [A(T)] Rn'y+d) .

In particular,

B [J1(w.T) midAaRT4
w, = .
4 (v +d)(4+1)
Proof. We have that fB(o R) |:U|k dx = Vd/% with & > —n. The proof is, thus, completed.

]

Applying Theorem 11, an error bound for Gaussian approximation of J4(w,T) is found
as follows:

Theorem 33. Let Ja(w,T) = JA(“’{/T[?];]E‘U[JJ:;‘})(]W’T)] then for any u we have:

my [A(T)] [ 6*(x) dA(2)
(my [A(T)] fpa ¢*(2) dA(x))?
As shown in Lemma 31, T2 > mgy [A(T)] > 727? and mm3A(T) < T3, so the bound
decays as O(1) as T — oo. We obtain a less sharp bound but depending only on the
activity rate 1 but not on the distribution of ON-periods and OFF-periods and on T

_ _ ¢ (x) dA(x)
|P (JA(w,T) > u) —Qu)| < 5 fRd R
73 (Jpa ¢2(2) dA(z))>
As already noted in the case of exponential ON-OFF source, when T goes to infinity,

my [A(T)] ~ 73T?% and mg [A(T)] ~ 73T3. Consequently, in this case the bound has the
following limit when 7" — oo:

[P (Ta(w,T) > u) - Q)| <

w

Jra ¢°(z) dA(z)
VL (Jpa 9*(2) dA(2))

N
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Now let A(x) = A dzx, the bound becomes:
7)) Jpa ¢°(x) dz
VX (13 [A(T)] fya 62(x) da)
1

which decays as @(ﬁ) as A — 00.

[SI[o¢

Theorem 34. The joint distribution of (||wy, ||, ..., ||ws,||) is given by:

n
F(”th ”,...,llwtnll)(ul’ oy Un) = Z(_l)iil Z et eyt JACmay -t ).
i=1 1<k1<...<ki<n
In particular,
Fllu(u) = emACW), (7:2)

The n'" order moment of Jg(w,T) are given by:

m,, [JB(OJ,T)] = /[()T)n dtl... dtn /(R+)n E(ul)@(un) dF(szlH»..-,Hwtnll)(ul’""“”)'

Proof. Let A; be the event {|wy,|sc < u;}. Simple joint probability rule gives us
P(A4)-Se07 ¥ ).
i=1 1<k <...<ki<n

Thus, we must evaluate P (U;ZlAki). The event U§:1Aki is equivalent to the event: there

is no user on C being active at all instances ty,, ..., {5, having distance to the origin larger
than max{ug,, ..., ug, }. We recall that the ON-OFF processes of users are i.i.d, so the
users being active at all these instances ty,, ..., t;, form a Poisson point process of intensity

71, 1(tky s - thy) dA(2z) and thus
P (Uz':lAk) — e L1 (B ety JA (C(max{ugy ;.. uk, })

The expression for the joint distribution of (|lwy, ||, ..., [|ws, ||) follows. Now we can write:

([ Pl dt)n]
:/ / B ) Bl )] by dty

_ . dt, G (ur)...P(un) dF ).
/[0 . ; /(Rﬂ D)o (tn) AF (i, [ofn, ) (015 -+ )

This completes the proof. [

m, [Jp(w,T) =

Theorem 35. The second order moment of Jr(w,T) is given by:
2
ma U7 = (i (A [ o) dr@)) 4 ma (AT [ 6@ a0

+/[0,T)2 dty dto /(R+)2 E(UI)E(UQ) dF(HWH‘|7H°‘”2H)(u1’u2)
+2 % RHS of (7.4). (7.3)
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Proof. We have:
E [(JT(W,T))ﬂ - E [(JA(w,T) + JB(W,T))Q}
= E [(JA(W,T))Z] +E [(JB(W,T))Z} +2E [Ja(w, T)Jp(w, T)]-

We have already expressions for E [(JA(w,T))Z] and E [(JB (w,T))ﬂ, thus it remains to
evaluate E [J4(w, T)Jp(w,T)].

BT = B [ Pateoat [ Poten al

T ,T B
N / / E [Pa(w)¥([Jws|))] dt ds-
0 Jo

We have to evaluate E [Py (w;)y) |ws|]. We can do it by determining the conditional expec-
tation E [Pg(w)] ||ws|| = 7] then deconditioning on the distribution of |ws|. Now consider
the event "|ws| = r". Given this event, the configuration of users being active at ¢ is
a Poisson point process of intensity measure m1o(f,5)1 oy dA@) + T lzecq)y dA(2)
plus the user at distance r if it is active. Consequently, using Campbell’s formula we have:

E [Pa(w)Pp(ws)| lwsll = 7] = mio(t, s)p(r) o )¢($) dA(z)

——— /C 6 A Pt )91

Note that the distribution of ||w;]|| is the same as that of ||wpl|, we finally obtain an expres-
sion for E [Ja(w,T)Jp(w,T)]:

T T 0o
E[Ja(w,T)Jp(w,T)] = /0 /0 7T1o(t,8)/0 P (r) /C( )¢(x) dA(z) dFj,(r) ds dt

+ /OT /OT /OOO »(r) /C(T) ¢(z) dA(z) dFjg(r) ds dt

T T 00 B B
+/0 /0 /o m11(t, $)@(r)(r) dFjjug) (r) ds dt (7.4)
O

We have obtained closed form formulas for V [Jp(w,T)] and V [Jr(w,T)], however it
requires to solve triple integrals. We now present bounds for V [Jg(w,T')] and V [Jr(w,T)],
which requires only one easily computed integral.

Theorem 36. We have:

V [Jp(w, T)] < my [A(T)] » V?(z) dA(@), (7.5)

and

my [A(T)] 9 ¢*(w) dA(z) <V [Jr(w,T)] < my [A(T)] /Rd (¢(x) +¢())* dA(z). (7.6)




88 7. ON-OFF MODEL

Proof. As (7.5) is covered by (7.6) by setting ¢(x) = 0, it is sufficient to prove (7.6).
Since Jr(w,T) is a linear functional of the Poisson point process ®/ we can apply the
corollary 1. By definition, adding a point (X, ) to ® will increase the consumed power
for at most ¢(X) + ¥ (X) at each instance where the new user X is active. Consequently,

0 < Dix.pJalw,T) < (d(z) +o(x)) i 1(t) dt. Tt follows that:

(ATuw)j,

where the last expectation is taken with respect to the distribution of I.
Now we apply Theorem 6. We consider two functionals J4(w,T") and Jp(w,T'). Adding
a point (X, I) will not decrease both the functionals, so:

VU@ D) < [ () + o)) dA@E

Rd

m, [AT)] [ ¢2(z) dA(z) = V [Ja(w, T)] € V [Ja(w, T) + J5(w, T)] = V [Jr(w, T)].

From theorem 6, we also note that
VJr(w,T)] 2 V[Ja(w,T)] + V [Jp(w,T)].

Corollary 5. If C' = B(o, R), ¢(x) = a|z|" 1zeB(o,r)}: ¥(*) = b|2|" LizeB(o,r)) (@, >0)
and dA(x) = X\ dz then:

Aa’mgy [A(T)] V, R4+

V [Jp(w,T)] < o)
m " pd
Vi) < Aertime B,

The following theorem gives an upper bound on the distribution of Jp(w,T):

Theorem 37. Assume that ¢(z) + ¢(x) < K for all x € R, let

o? =y [AT)] [ (6(0) + 0(0)? dA(s)

Rd
then
T°K?* (uTK
P (Jr(w,T) > E[Jr(w,T)] + u) < exp {— 2 Y <o¢2>}
for all uw > 0.
Proof. As proved above, 0 < Dx rJr(w,T) < (é(x) + w(x))fOT I(t) dt < TK. Thus,
applying Theorem 8 (or its corollary 1) we obtain the desired result. [

By setting ¢(z) = 0 or ¥(z) = 0 in the above theorem, we can derive upper bound on
the distribution of J4(w,T') and Jp(w,T):

Corollary 6. Let
oy = my[A(T)] / (6(x))* dA(x)
R4

o = myAT)] [ () dra)
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Assume that ¢(z) < K for all z € R then for any u > 0,

P (aw 1) > B D))+ o) < exp {1005 (L) |

Similarly, assume that ¢(z) < K for all z € R? then for any u > 0,

P (Jp(w,T) > E [Jp(w, T)] + u) < exp {_T;gzg (“;f) } .

7.4 Impact of mobility
To consider the effect of mobility, we always assume that dA(xz) = X\ dz.
M

Lemma 38. w;"” is a Poisson point process of intensity measure m A dx for all t.

Proof. Consider the point process ). dx,+M;(r)- By the displacement theorem, it is a
Poisson point process of intensity measure dA;(x) characterized by:

A(A) = )\/ Pla+ M(t) € A) da

= /Rd dx/ i) (V)L zsyeay dy

= )\/ pay(y) dy/ 1piyeay dz
Rd Rd
= )\ld(A)

Thus, it is a Poisson point process of intensity A dz. Now by thinning property, wM =
> is1 L1 (t)=1}9x,+M,(x) is a Poisson point process of intensity 71\ dz. O

Theorem 39. For any power allocation policy Pg, and for any mobility model M, the
expectation of energy consumed is the same as in motionless case, i.e:

E [Jow",T)] = E [Jg(w,T)]-

In particular E [J4(wM,T)] = E[Ja(w,T)], E [Jpw™,T)] = E[Jp(w,T)] and E [Jp(w™,T)] =
E [JT(wa T)]

Proof. As for each t, wM and w; follow ‘rhe same distribution (Poisson point processof
intensity 7 A dz). Consequently, E [Jg(wM,T)] = fo [Pa(w})] dt and E [Ja(w, T)] =
fOT E [Pg(wt)] dt must be equal. |

For a non negative function f € L"(R?) and t1,...,t, € R and furthermore we assume
that f(z) = 0if x € R?/C. Define

OM (b1, ) = /RdE[f(erM(tl))...f(x+M(tn))] dz.
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Lemma 40. We have CI)M (f,t) fRd ) dx and:
q)y(fatla"'ytn) S/ f*(x) de-
Rd

Moreover, if M has the property T and n > 2 then @%/G(f,tl,...,tn) — 0 as € = 0 with

n > 2. If f(x) = alyzecy with a > 0 and n > 2 then @%/e(f,tl,...,tn) is decreasing
function of e.

Proof. Note that for all y € RY, fRd z+y)de = fRd ) dz. We have, by Fubini’s
theorem and Cauchy—Schwarz inequality:

OM(f ity .ty) = E[ g flz 4+ M(ty)...f(x + M(t,)) dzx

< B [ [ (U ME)" a7 o (7o + M(e)) e o
]Rd

- /]R ) de,

and it is easy seen that inequality occurs if n = 1.
Since for each realization of M one has w — 00 as M(t;) # M(t2) (a.s),

thus for € small enough, one of 2 points x + (tl) and x + M(t ) must be located outside C,

then f(x + M(tl)) S+ M(:”)) 0. Tt means that f(z + M(tl)) Aflz+ M) — 0 (a.s)
and it is bounded by (sup f)™, so its expectation tends to 0. By dominated convergence
theorem, we obtain that

B[ (o4 MO0 g (o 1) ] o

Now assume f(z) = algzecy and n > 2, we have:
OMIe(f by, .0ty) = E [/ (o4 MU gy Mn) ey dl’]

= E [/C 1{x+M(t2);M(t1)wqx_"_]VI(tn);M(tl)ec} dw] .

Consider 0 < €1 < €3, due to the convexity of C, for each 1 < i <nif z 4 %11\/1@1) eC

then ;U—I—MzM(tl) € C. Since C'is bounded, it implies that 1{z+ Mltg)=Mt1) 4 Mt)=M(1) oy
is decreasing function of e. It means that @M/E(f,tl, ..y tp) s also decreasing function of
€. L]

Now let FnM(f,T)szdE[(fo Fla+ M@®)I() dt)"} da.

Lemma 41. We hawve:

FYM(F,T) < my, [A(T)] / () da-

Ra

If M has the property T then F?/[/E(T,n) — 0 ase— 0 forn>2. If f(x) = alyzecy with
a > 0 then F?/[/E(T,n) is decreasing function of € for n > 2.
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Proof. We can write, by the same way as previously done and using Lemma 40:

FMfT) = /Rd/OT“'/OTE

n

[+ M(ti))l(ti))] dty... dt,, dz

i=1

n

T T
_ /Rd/o /0 BT e+ M@#)| B il;[ll(ti)] dtr... dt, da
T [n T n
= /0 E Jl:[l[(ti)_ /RdE il;[lf(:r—i—M(ti))] dz dt;... dt,

OM(f by, . ty) dty... dt,

T
- /0
H I(ti) f(x) dx dty... dt,

Rd
o] -

=1

[

~ ~
&=
—
=

IN
\

The first part of lemma is, thus, proved. Now the second part follows the fact that
M/E(f,tl,...,tn) — 0 as e — 0; @M/E(f,tl,.. t,) is bounded by [pq f"(x) dz and the
dominated convergence theorem. If f(z) = al{zeccy and n > 2 then FM/ (T)n) is a

decreasing function of € because @y/e(f, L1y ey ty) 1S O

Theorem 42. The moments of J4(w™,T) are given by

m, [Ja(™,T)] = BT 1), (T, 2), ., AFY (T n))
cn [JawM,T)] = Ba(0,AF3(T,2),.., AF }(T,n))

Mobility reduces moments of Ja; i.e
m, [Ja(w",T)] <m, [Ja(w,T)], and ¢, [Ja(w™,T)] < e, [Ja(w,T)]
Furthermore, we have:
E [exp {aJa(w™,T)}] < E[exp {aJa(w,T)}] (7.7)

for all « € R. If M has the property T then the central moments of Ja goes to O in high
mobility regime; i.e

Cn {JA(wM/E,T)} — 0, and m,, [JA(wM/E,T)] — (Trl)\ o(z) dx) as € = 0-
R4

If ¢(x) = alyzecy witha > 0, M has the property T andn > 2 then m,, [JA(wM/E,T)] ,Cn [JA(wM/E,T)]
are decreasing functions of €.
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Proof. The proof is similar to that of Theorem ??. As J4(w™,T) is a linear functional of
&M we can apply Theorem . We derive that

/ (/ fx+M())()dt> A dz dP; Py
Rdx D(R,R) x D([0,+00),R%)

(o]

Hence the expressions of m,, [JA(wM,T)] follow and ¢, [JA(wM,T)}. Now using results
of Lemma 41 and the fact that a Bell polynomial has non negative coefficients, we have
m,, [Ja(w™,T)] < m, [Ja(w,T)], and ¢, [Ja(w™,T)] < c,[Ja(w,T)]. Now assume M
has the property T and following lemma 41, we have, as ¢ — 0 and n > 2:

cn [JA(OJM/G,T)} 5 B,(0,0,..,0) =0
m, [JA(WM/G’T)} — Bu(mA [ ¢(z)dz,0,...,0) = (Trl)\ o(z) dx)n.
R4 R4

Now, following the Laplace functional of Poisson point process and the Jensen’s in-
equality, we have:

E [exp {ada(@™,7)}] = exp { / d (E [ o f Gl ML) dt] _1) dg:}

{)\/Rd (Br [Bas [en i sleraronir ] _1]) dx}

< {)\ [, (EI [EM /0 : i((%ew(HM(t))A(T)] dt—l]) dx}
{ A(T
{

= e {aB; | [ (e - 1) a |
L/ R4
= Elexp{aJa(w,T)}]

If ¢(x) = alyzecy with a > 0 and n > 2 then m,, [JA(wM/E,T)] ,Cn [JA(wM/e,T)] are
decreasing functions of € because Fy/e(T, n) is. U
Theorem 43. The variance of Jg(w™,T) and Jr(w™,T) are bounded as follows:

V [Jp(w™, T)] AFYN(T,2)
AT, 2) <V [JpM,T)] < AT, 2)-

IN

Moreover, if M has the property T then in high mobility regime, the variance of Jp and
Jr tends to 0, i.e

\% {JB(wM/E,T)] ,V {JT(wM/e,T)] —0ase— 0
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Proof. The proof is similar to that of Theorem 36. We need only to prove results for
Jr(wM T), the results for Jp(w™,T) follows by setting ¢(x) = 0. We apply Corollary 1.
By definition,

T
0 < DixsanJa@.T) < /0 (6(X + M(t)) + (X + M(1)) I() dt

Thus,
V [JrwM )] < Ar)(T2)

We also note that adding a point (X,I, M) to w™ will not decrease Ja(wM,T) and
Jp(wM,T), so:

V [Jp(™,T)] > V[Ja™,T)] = M\3(T,2)

Finally, the convergence to 0 of V [JT(wM/E, T)] follows the fact that Fg/i/;(T, 2) tends to

0 as € tends to 0. O

The above results say that, when users move the total consumed energy by a base
station does not change in average, and the moments and central moments of the additive
part are reduced. Moreover, when users move very fast, the consumed energy during a
time period is almost constant. We can see this fact as a consequence of weak central limit
theorem. When users move faster, the configuration of users takes more "value" on QR?
during a same period of time, thus converge faster to the mean.

We find an error bound for Gaussian approximation of J4(w™,T) as follows:

Ja(M 1) —B[J 4 (w™,1)]

Theorem 44. Let Jo(wM,T) = VA 1] then:
- _ FY(T,2)
[P (Ja@".T) > u) - Qu)] < ? 3
VA (Fé/[ (T, 3))
Proof. This result is consequence of Theorem 2.19. [

Theorem 45. Assume that ¢(x) + ¢(z) < K for all z € RY, then

2 72 U
P (Jr(w™.T) > E [Jr(@",T)] +u) < exp {‘Afgzﬁﬂ 2)” (Fﬁjg’ 2)) }

for all u > 0.

Proof. The proof is similar to the proof of Theorem 37, and it is the consequence of
Corollary 2. O

By setting ¢(x) = 0 or 1(z) = 0 in the above theorem, we can derive upper bounds on
the distribution of Ja(w™,T) and Jp(w™,T):

Corollary 7. Assume that ¢(x) < K for all x € R?, then for any u > 0,

2 12 u
P (Ja(@",T) > B [Ja@", T)] +u) < exp {_AFZf;Vf;, 2)? (AF@Z? 2)> }

Assume that ¥(x) < K for all x € R?, then for any u > 0,

2 2 u
P (Jp(w".T) > B [Jp", T)] +u) < exp {_Af%g’, 2) (AF%T(I;, 2>> } |
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7.5 Special cases

In this section we consider some special mobility model M.

7.5.1 Completely aimless mobility model

Consider the completely aimless mobility model M with constant speed, i.e M(t) = tv
where |v| = constant and the direction of v is uniformly distributed.

Lemma 46. Let f(z) be a positive measurable function on R? such that f(x) = 0 for
r € RYC, f(x) <c for allx € C and f(x) > co for all x € C/B(o, %) where c1,c9 >0
are constant then

FM(fT) =0 <M1_1) o] = oo

and FY(f,T) = O(T),T = oo forn > 2.

Proof. (see Figure 7.2) Assume that T > 2 Le‘r C’ = B(0, @)/B( &) and we note

Jof -
that if t < f and 2 € C’ then = + tv € C'/B(o . As a consequence,:
4]

t1+ 40 t1+
/ d:z/ / dtQ.../ I(h) - I(y) di
t1

(T4 t1t gy tt
_ c25d(0)/ dtl/ dt2.../ P(I(t) == I(ty) = 1)) db,
0

t1 t1
R Ry

> B (T—ﬁ)') /0'” dt2.../04“'P <I(t):1Vte [0,&)) dt,
— () (T— ﬁ;) <4]‘|7“;|)n—1 E“[;]] /:O P(U > 1) dt.

[v]

FM(£,T) > &E

Similarly, note that for |¢| > IQIT“ then for all z, at least one of two points = or x + vt
must be outside the cell, thus

/ d:p/ dtl/ tl:”R .../(t(tltj;z/\:rl(tl)...[(tn) dtn]
[v] T ol
< o) (7- ﬁ)(u)

Remarking that E[V] f P(V >t) dt — 1 as |v]| = oo, we obtain the desired result. O

FM(f,T) < cE

Theorem 47. Consider the completely aimless mobility model M with constant speed |v|
then

1. V [Ja(@M,T)] and V [Jr(wM,T)] decay as @(M) as [v| = oo and decay as O(T) as

T — oo . The ratios VE\[,J[J?;;;V;FSF] and ”E\[IJ[ZTWM ] decay as @(\/m) as |v] — oo

and O(-L

ﬁ) as T — oo.
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Figure 7.2: Illustration of the proof of Theorem 47.

2. The error bound of Gaussian approzimation in Theorem 44 decays as @(|v|2) as
|v| — oo and decays as O(—=) as T — occ.

VT
Proof. From the assumption 2 we have ¢(x) < ¢q for all z € C, ¢(x) > ¢y for all z €
C/B(0, %) and 0 < (z) < ¢3 for all € C for some finite positive constants ¢y, s, cs.

Now, according to Theorem 43:
AFY(Tn) =V [Ja@™, T)] <V [Jp™, T)] < AFYL (T n).
The results then follow from Lemma 46. O

We also see that, if |v| is small, the variance of Jp(w™,T) is proportional to % while

in the motionless case, it is ©(T?). We also notice that mobility makes the Gaussian
approximation of J4 more accurate when 7' is large as the bound decays as @(ﬁ) instead

of ©(1) in the motionless case. In the motionless case the position of users are always
fixed over time, only their state change, thus the configuration of active users can take
only some possible values on OR?. So it is intuitive that one cannot guarantee that the
Gaussian approximation is good if 7" is large. On the contrary, in the mobility case, the
configuration of active users can take all possible values on QR When T grows larger,
it take more values. Thus, Gaussian approximation is better when T grows larger. Quite
surprisingly, when |v| is large, the variance of J4 tends to 0 but the bound on Gaussian
approximation does not decrease.

Remark 2. From the above proof and using the properties of Bell polynomial, we can prove

that ¢z [Ja(@™, T)] = O(;2), ea [Ja@, T)] = O(;2), e5 [Ja(@, T)] = O(;5),-

lv v
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Figure 7.3: Tllustration of the proof of Lemma 48.

7.5.2 Always on users

We now consider the following special case: users are always ON, i.e I(t) = 1 for all t. We
always assume the mobility of users. The configuration of users at time ¢ is

M
Wy = 5Xi+Mi(t)'

In this case, the analysis is simpler than in the ON-OFF case and the results obtained
in the previous section can be inherited.

Let
Hy(f,u)z/RdE [(/Ouf(x—i—M(t)) dt>n] dz (7.8)

We see that HM(f,u) is a version of f M(f,T) for I(t) = 1,t € R. In particular, the
moments of Ja(w™,T) is given as

S

my, [JA(WM’ )] = Bn()‘H{V[(stT)?)‘HéVI(Qa? )7" r]L\/l( ))Smn [JA(W>T)]
Cp, [JA(WM’T)] = Bn(O’AHéW(QSvT)? )‘HM(¢7 )) <c [JA(va)]'

In the following lemma, we provide explicit expression for HM (f,T) in the case where

d=1or 2, f(m) = al{‘x‘SR}:

Lemma 48. 1. Ifd=1, C =[-R,R] and f(v) = alyy<pry with a >0 then:

2R (7.9)

s “>m

[v] 7
u(2R)"™ p —1 2Rt

2Ru"a™ — "Lyt vl e, u < 2R .

o1 n+1 Jv
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2. Ifd=2, C =B(o,R) and f(v) = aly,<py with a >0 then:

2u(2R)" Uy (10) 2(n — 1) (2R)"" U, 11(r0)
M _ n__ n
n (f?u) - ”U’n_l a n+1 ’,U’n a

2(n —1
A RT3 (1) — Uy (ro))a™ — %unﬂm 1) [v] a”

ifuﬁ% and

2u(2R)"U, (1) 2(n — 1) (2R)" U, 41(1)
M n +
M) = = e DR
if u > % where U, = fol (1- 1”2)% dr and rog = /1 — %

Proof. 1) We can assume that a = 1. We have,

M(fu) = / E[(/o Liaqutj<ry dt> ] dz
= /_OO </0 1|zt vlt|<R} dt) dz

= / dz /[0 . Lzt polta],. e+ oltn| <R} A1 dip

= /[0 . dty... dtn/ Lf |zt lolte],.. |zt o] tn| <R} AT

= / (2R — |v| (max{ty,ta, ...t} — min{ty, ta, ... t,}))" dti... dt,
[0,u)™

= n'/ dtl/ dtg / 2R |U| t —tl)) tn
t1 tn—1
= n(n—l)/ dtl/ (2R — |v| (tn — t1)) T (tn — t1)" "2 dt,,.
0 t1

By some elementary manipulations, the last integral can be easily computed and it is equal
to the LHS of equation (7.9).

2) We will use 1) to prove 2) (see figure 7.3). We also assume that a = 1. Firstly we
note that the direction of v does not make any impact, so without loss of generality we
assume that v follows the direction of the vector (1,0). We then have:

M(fvu) = /1{x+vt27 LTtut,€C} dx

2

= / /\/7 {Ir1+vltal,...Jr1+|oltn | <VRZ—12} drq

e

Here g,(r) can be calculated by applying 1). If u > % then we have

r) =2V R?— u" o]

+1
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——T=10%(s)
——T=10%(s)
——T=10"(s)
107 E
102H E
107k E
10’4 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Iv] (m/s)
. . VA T)]
Figure 7.4: Influence of user’s speed on the ratio W
If u < 31 then
2*/R27 2/ R2 —p2)n+1
g (T) U( |n lr ) - ’I’L+i( |U|T ) ) O S r S 703
n
2R 2" — =yt o, Rzr >
This concludes the proof. []

From the above lemma, we see that in the case where ¢(x) = constant, the low (and
high) mobility regime can be characterized as T' < % (and T > ?ﬁ)
For a numerical example we choose the simplest case where we have exact expressions:

d =1, A = 0.02 (users/m) 2R = 100(m), ¢(x) = 1 and M(t) = vt with v = |v| or
v = — |v| with equal probability and we consider only J4. In the figure 7.4 we plot the

M
W in function of |v| in the case T' = 105(z) ~ 11(days) and T = 107(s) ~
115(days). As expected it is a decreasing function of |v|. We see that in the low mobility
regime, the ratio decreases very fast. For ‘rhe motionless case, |v| = 0(m/s), the ratio in

all three cases is the same and equal to f = 0.7071 while for |v| = 1(m/s), the ratio is
0.0022 for T = 107(s) and 0.0071 for T = 10°(s).

ratio

7.6 Summary and Conclusion

Throughout this chapter, we have assumed that each user is associated with an ON-OFF
process of activity. We have derived analytical expressions for the distribution of energy
consumed by a base station. We have found that, with or without mobility, the base
station is expected to consume the same amount of energy in average. We have proved
that mobility reduced moments of the additive part of energy. We have also proved that
high mobility leads the variance of energy to 0. These results are strong since they hold
true for any mobility model. In the case of completely aimless mobility model, we have
characterized the convergence rate to 0 of the variance, which is ﬁ
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Generalized Glauber model
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8.1 Introduction

The previous chapter considers users presented by a random configuration on d dimension,
each user is associated with an ON-OFF process of activity to study the distribution of
consumed energy. We consider in this chapter another model called generalized Glauber
dynamic.

Glauber dynamic can be described as following. It starts at ¢ = 0 with a configuration
on a bounded domain D. Each point of this configuration has an exponential life time,
after the life time the point disappears. In parallel, there is new arriving points. The
arriving time follows a Poisson point process on RT and points are randomly placed on
D according to some distribution. Glauber dynamic has been already successfully applied
to study the blocking rate of cellular network. For this it requires that the sojourn time
is exponentially distributed so that the system can be modeled as a Markov process that
takes value in the space of finite point measures. The author of [54] call it spatial Markov
queueing process. In queueing theory, under many situations it can be argued that the
blocking rate does not depend on the distribution of sojourn time but only on its mean.
This property is well known as insensibility property. On the contrary, the distribution of
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Symbols | Definition, Physical meaning

dA(x) A o—finite Radon measure on R?
S Generic sojourn time
LAS Space-Time Poisson point process of calls (no mobility)

Ny D i1 1¢1,<t<T,+5;}0x;, Poisson point process of active users
at time ¢ (no mobility)

LA 42:8M | pace-Time-Movement Poisson point process of calls (with
mobility)
NM Zigl 1T <t<Ti+5:}0x, 4+ M(t—T;), Poisson point process of ac-

tive users at time ¢ (with mobility)
CY (AT | [ e dtJg ps(s)HY (£, (¢4 5) " AT — t4) ds

[0.9]

Table 8.1: Notations and parameters.

energy consumed during certain duration depends heavily on the distribution of sojourn
time, as showed latter in this chapter.

We consider in this chapter a more general scenario and so we call it generalized Glauber
dynamic because of the following arguments. Firstly the domain we consider is no longer
bounded but it can be, for instance, R¢. Secondly the system starts at —oo. Thirdly we
no longer assume that the sojourn time is exponential distributed but we only assume that
the sojourn time is positive and has the finite mean. Furthermore we use the Poisson point
process approach instead of Markov process approach.

This chapter is organized as follows. Section 8.2 describes the model and presents main
results. Section 8.3 presents proofs in the no mobility case. In the section 8.4 the impact
of mobility is treated.

Important notations and parameters used in this chapter are summarized in the table
8.1.

8.2 Model description and main results

8.2.1 Generalized Glauber dynamic

Let A be a o—finite Radon measure on R? absolutely continuous with respect to the
Lebesgue measure with density pa. Let LS be the Poisson point process of intensity
measure given by

dv(t,s,x) = dt x ps(s) ds x dA(z)-

where pg(s) is a probability density function of a positive random variable S with finite
mean.

A realization of this process, if A(R?) < oo, can be obtained as follows. Let Ny =
(T;,i > 0) be a Poisson point process of intensity A(R?) on R and ((X;,S;),i > 0) be a
sequence of i.i.d random variable, independent of N4, such that

dA(x)

dPyx,(z) = ARY and dFg,(s) =ps(s) ds-

Then LM =300 0(1; x,.5,)-
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Figure 8.1: Generalized Glauber spatial dynamic, similar to a M/G /oo queue a user is character-
ized by an arrival time, a sojourn duration, however in our model he is also characterized by his
position and his mobility process. Consequently there may be infinite users at a time ¢ but the

number of users in cell C' is always finite.
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In particular, for a bounded domain C, one can choose A as the Lebesgue measure
restricted on C. If A(R%) = oo, since A is o—finite, there exists a sequence of compact
sets (K, k > 1) such that A(K}) < oo and UK}, = RY, then L™ is the weak limit of the
sequence (LS k> 1) where Ay is the restricted of A to Kj.

The configuration of active users at time ¢ is

Ny = Z Lir<t< 48,30,
i>1

Roughly speaking, in this model a user ¢ arrives at time 7; at location X; and stays in
the system during S; units of time.

From definitions in the chapter 6, for this configuration model, it follows that the total
energy consumed between 0 and 7" is given by:

T
JNT) = 3 Lgen (T + S0)7 AT) = TH)6(X) + /0 BN at
>0

= Ja(N,T)+ Jp(N,T)-

Theorem 49. Assume that A(R?) < oo, the expectation of Jp(N,T) is given by:
BUr(N.T) =TE[S] [ o) dd@)+T [ ppwo)itr) dr - (5)

where p|ny| 15 the probability density function of || No|| and is given by:

PiNo||(r) = EiS] dz(a(r))eE[51A<c<r>>. 8.2)

The second order moment of Jp(N,T) is given by:

2
my [Jr(N,T)] = <T » o(x) dA(a:)) + Ko(T) /R ) ¢*(z) dA(x)
+LHS of (8.13) + 2% LHS of (8.11) + 2 % LHS of (8.14)

where

T 00
K,(T) = /_ dt/o ((t+s)TAT) —t7)" ps(s) ds
T

_ /_ E[(((t+8)" AT) = )] dt.

In order to gain some insights on the behavior of Jp(N,T'), we use the concentration
inequality for Poisson point process to obtain the following result:

Theorem 50. Assume that S < s (a.s) and ¢(z) + ¢¥(x) < Bp for any x € R with
Bs,Bp > 0. Let

B(T) = (Bs AT)BB

and

o%(T) = Ky(T) / (6(x) + () dA(x)
Rd




103

then

PUﬂNJUZMSem{—<%%>g(L_Egggfmmn>}' (5.3

where g(u) = (1 +u)In(1 +u) — u.

If we count only the number of users in the cell C', the system can be seen as a
M/G /oo queue. The returning time to empty state of this queue always has finite mean.
Consequently, the time varying configuration process IV is a regenerative process since it
can be split into i.i.d cycles. It is well known that under appropriate conditions, for a
general model of power consumption Pg, the consumed energy Jg(N,T) = fOT P (Ny) dt
can be well approximated by a Gaussian random variable as T" — oo. Unfortunately, we
can only find an error bound on Gaussian approximation of J4(N,T), as follows:

Theorem 51. We have:

P (JA(N.T) >u)_@<u—E[JA(N,T)]>| K1) Jya 6(a) dAG2)

VIIAN,T)] )|~ (Ka(T) fga 0*(x) dA(x))3/2
for any u > 0.

As showed later in Lemma 60, K,,(T") ~ Tm,, [S], thus the bound becomes

m3 [S] [pa ¢*(x) dA(z)
VT (m3[S] fpa 62 () dA(2))>

when T is large. In contrary to the ON-OFF model without mobility where the bound
decays as O(1), in this model the bound decays as © (%) as T — oo.

Now, if dA(z) = A\ dz then the bound becomes:

K3(T) fRd ¢5(33) dz
VAKS(T) Jza ¢*(w) dz)?/2

which decays as @(%)

8.2.2 Generalized Glauber dynamic with mobility

From now on, when considering mobility, we will make the assumption that dA(z) = A da.

The model is the same as the above Generalized Glauber dynamicmodel, except that
each user moves during its sojourn. The mobility model is already described in the chapter
6. Let M;(t), Ma(t),... be independent versions of M (¢) and be the movement of users
1,2, ... respectively. In other words, the position of user i during at time ¢t € [T;,T; + S;)
is X; + M(t — T;). The marked point process L* 4%5M = (T}, S;, X;, (M;(t),t € R)))%,
is Poisson point process on R x R x R? x D([0,00), R%) due to the independent marking
property. Its measure intensity is:

dv(t,s,z, (m(t),t € R)) = dt x pg(s) ds x dA(z) d x Pp(m)-

At time t, the configuration of active users is

N = Z 1{Ti§t<Ti+Si}5Xi+Mi(t—Ti)'
i>1
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Lemma 52. NM is a Poisson point process of intensity measure NE [S] dx for all t.

The proof of the above lemma is given in the subsection 8.4.1.
Let

T o)
M (f,7) :/_Oo dt/o ps(s)VHM (£, (¢ + 8)* AT — ) ds (8.4)

with v € R* and f : R? — RT such that f(z) = 0 in R?/C and HM(f,u) is defined in
equation (7.8).
From the above lemma, we immediately deduce that:

Theorem 53. For any power consumption model Pg and mobility model M, we have
E [Jo(NY,T)| = E[Jg(N,T)]. Inparticular E [J4(NM,T)] = E[J4(N,T)], E [Jg(NM,T)] =
E[Jp(N,T)] and E [Jp(N™,T)] = E[Jr(N,T)].

We obtain the same result as in the previous chapter. In fact, mobility makes the same
impact on the consumed energy in both model, as we will investigate now.

Theorem 54. We have,
E [exp {aJa (N, T)}] < Elexp{aJa(N,T)}]
for any a € R and

cn[Ja (N, T)]
my, [Ja (N, T)].

¢, [Ja (N, T)]

ma [74 (VV,T)] <

for all n > 2. If M satisfies the property T then
n
Cn [JA (NM/E,T)] 0 and m, [JA (NM/E,T)] - ()\E 5] | é(x) da:)
R4

and
V [Jp(NMe )], v [JT (NM/f,Tﬂ 50 ase— 0.
Furthermore, if p(x) = alecy (a > 0) and M satisfies the property T' then c,, [Ja (NM/G, T)]
and my, [JA (NM/E, T)} are decreasing functions of €.
A bound for Gaussian approximation of J4(NM, T) is found as follows

Theorem 55. We have

P (J4(NM.T) > u) - Q (“_E[JA(NM’TH)‘ I3 (¢,7)

V [Ja(NM,T)]
for any uw > 0. Here TM (¢, T) is defined in equation (8.4).
When T is large, the bound becomes:
E [H3' (¢, )]
VATE [H} (¢, 9))%]

Using the concentration inequality (corollary 2) we obtain the following bound for the
distribution of Jp(NM T). The proof is similar to that of theorem 50 so we omit it here.
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Theorem 56. Assume that S < Bs (a.s) and ¢(z) + ¢¥(x) < Bp for any x € R with
Bs,Bp > 0. Let

B(T) = (Bs AT)BB

then

M 2 u
P(Jp(NY,T) > u+E [Jp(NY,T)]) < exp {— (%) g </\F2M(£—%T)>

(8.5)

—

where g(u) = (1 4+ u)In(1 4+ u) — u.

8.3 Analysis in no mobility case

In this section we present calculations and proof in the case where users do not move
during their sojourn. Let S, be the random variable with the associated stationary-excess
(or equilibrium-residual-lifetime) CDF (]55], [56])

— . fsooﬁs(sl) dSl'

F
Se (S) E [S]
Its PDF,MGF and n'* moments are given by
_ Fs(s)
pSe(S) - E[S] ?
1—E[e ]
E —tSe —
[e7] tE[S]
_ My [S] .
ma [Se] = G R[S

It is easily seen that if S ~ Exponential(p) then S, follows the same distribution. We also
note that if S <w a.s. then S, < wu a.s. .

Lemma 57. For any tg € R, N; is a Poisson point process on R with intensity measure
E[S] dA(z). Given a realization of Ny, the residual sojourn time of users are independent
and follow the same distribution as that of S..

Moreover, the probability distribution function of | N¢|| is given by:
P(|Ny|| > ) = e BISIACED) (8.6)
and its probability density function is given by:

E[S] dA(é(r))e—E[S]A(é(r)))‘
dr

PN (r) =
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Figure 8.2: Illustration of the proof of lemma 57.

Proof. As above defined, the configuration of active users at t, associated with their residual
service time is

Z 1{TiSto<Ti+5i}(5(Xi:Si*(t0*Ti))'
i>1

By displacement theorem, this is a Poisson point processwith intensity measure character-
ized by

[e.e] oo
intensity(D x (sg,00)) = / dt/ P5(8) i<ty s> s0-+t—to} ds/ dA(x)
0 0 D

_ /oo Fs(so +1 — to) dtA(D)

_ /oofg(so—i—t)th(D)
0
— E[S]A(D)Fs, (s)

for all measurable set D € R? and sy > 0. This is exactly the same intensity of a indepen-
dently marked Poisson point process with underlying intensity measure E [S] dA(z) and
the distribution of marks are the same as that of S.. Thus, the lemma is proved.

O

Remark 3. For a domain D such that A(D) < oo, the dynamic of the number of users on
D follows exactly the same as the dynamic of the M /G /oo queue with arrival rate A(D)
and service time distribution dFs. Thus, the model can be called spatial M /G /oo queue.

Lemma 58. Ny, —Ng,, Ny, UNy,, N, — Ny, are 3 independent Poisson point processes of in-
tensity measure Fs,_([ta —t1|)E[S] dA(z), Fg,(|t2 —t1))E[S] dA(x) and Fs,(|ta — t1))E[S] dA(z)

on R%, respectively.

Proof. We note that, a user ¢ is in Ny, — Ng,, Ny, U Ny, Ny, — Ny, if and only if the point
(T3, S;) is in the domain LILIIT respectively. Thus, by thinning property, N;, — N, is
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Figure 8.3: Tllustration of the proof of lemma 58.

Poisson point process of intensity characterized by:
t1 to—t
intensity(D) = A(D)/ dt/ ps(s) ds
—00 t1—t

[e.e]
— AD) [ (Fstt) - Fslt+ 12— 1) a
0
© Fg(t+t—t)
= E[S]A(D) <1—/ ——=dt
0 E[S]

= E[S|A(D)Fs, (t2 — t1)
for all measurable set D € R%. Therefore Nt, — Ny, is a Poisson point process with intensity
E[S] Fs,(ty —t1) dA(x). Similarly Ny, U Ny, Ny, — Ny, are 2 Poisson point processes of
intensity measure Fg, (ty —t1)E[S] dA(z) and Fg, (tz—t1)E[S] dA(z) on R?, respectively.
The independence between the three Poisson point process follows that fact that I,IT and

1T are pairwise disjoint.
]

From the above lemma, we can see that the time varying process NV is time reversible.
It can be deduced from the time reversibility of a M /G /oo queue. Moreover, if S < u a.s.
then S, < wu a.s. and Ny, and Ny, are independent for |ty — 1] > w.

Theorem 59. For n > 1 we have:
m,, [J4(N,T)] = B, <K1(T) ¢(x) dA(z), ... Kn(T) | ¢"(z) dA(fﬂ))
R4 R
and
c, [Ja(N,T)] = B, <O,K2(T) gb2(m) d\(z), ..., K, (T) " (x) dA(:p))
Rd Rd

In particular,

B[JA(N.T)) = TE[S) | 6(z) dA(2). (8.8)
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Proof. As J4(N,T) is a linear functional of L, we can apply the theorem 7.4. Tt is
sufficient to note that:

/ ((((t +5)TA T) — t+) gi)(a:))npg(s) dt ds dA(z)
RxRxR4

= K,(T) 9 " (x) dA(z).

Lemma 60. We have the following properties:

1. Ko(T) =E[(SAT)"(SVT) - 224(S A T)”+1].
2. Assume that m,, [S] < oo then K,(T) ~ Tm, [S] as T — oc.

Proof. 1) We have:
T

Ko (T) = /Ooops(s) dS/ (4 )" AT) — 1) dt

—0o0

= [ st as (/L+/OT) (((t+ ) AT)) )" i
_ /Ooops(s) ds (/_()S((t—i-s)Jr/\T)” dt+/0T(((t+s)/\T)—t)” dt)

By some simple manipulations we get:

s — nlgntl g <

([lerarnras [Ceeoan - a) = {Z07ETG 520

—s n+1 ’

Thus, 1) is proved.

2) We have
ET) _ lsan)svT) B (SAT)"H
T T T
< E[5"]
n n—1 n+1
and lim7_, o (SAT)T(SVT) — "“(S,_/F\T) = S™. Thus, by dominated convergence theorem
we have limp_ oo KTi_F(T) =m,, [5]. O

We see that, from the above lemma, when 7" goes larger, the "border effect" is negligible.
Furthermore, we have

Kn(T) ~ Ty, [S] y ¢"(x) dA(x) = T (E[S])" y ¢"(z) dA(z). (8.9)

That is to say, when T is large, among all positive random variable S having the same
expectation, the constant one minimizes the moments of J4(N,T).
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Lemma 61. The joint distribution of (|| N¢, ||, || Ni,||) is given as:

— (1 — ¢ ElSIFs. (It2=taDAC 1)) (] _ o~ EISIFs, (ft2—t1)A(C(u2))
(v vy (1:10) = (1= € )(1-e )~
« (1 _ efE[S]Fse(\trtl|)A(6(u1wz>)) (8.10)

for all t1,t3 € R and uy,us > 0.
The expectation of Jg(N,T) is given by:

EmeTnzTAMWMdﬂ%mw

and its second order moment is given as:

my [J5(N, T)] = /0 : /0 " dy /O h /0 T Blun)(us) 4

Proof. We have

)(ul,uQ). (8.11)

- < <
E1 8y || 3y | (1 42) = P Ney [ < s | N3 || < )

=P (HNt1 - NtQH < ug, ”NtQ - Nt1H < ug, ”Ntl N Ntz” < up A u2)
=P(||Nt; — Nip || < u1)P([| Ny, — Ny || < u2)P (|| Ney N Ny || < ug Auz)
— (1 _ e—E[S}m(\w—u|>A<6<u1>>) (1 _ e—E[SJFse(|t2—t1|>A(6(u2>>) «

x (1 _ efE[steutrtl|)A(6<u1Auz>>)
as Ny, — Ny, N, — Ny, Ny, N Ny, are three independent Poisson point processes (lemma

58).
Using Fubini’s theorem the expectation of Jp(N,T) is expressed as:

T —
EL@UWYN=:A B3 (| Ni]) dt
= T/O &(r) dFjn, ) (r)

as || N¢|| has the same distribution for all ¢.
Similarly, the second order moment of Jg(N,T) is

(/Twmwm>a>1

- / /’ DN BN )] dty

= /t/<md®/ / Pl)duz) AR, | v ) (1 42)

It is worth noting that we can generalize result of lemma 58 to calculate n'" order
moment of Jg(N,T). For example, for n = 3 and ¢; < to < t3 one can prove that
Nt3 — Ntza Nt3 N Nt2 - NtQ,NtQ — Nt1 — Nt3,Nt3 N Ntlthg N Nt1 - Nt3, Ntl — Nt2 are six

independent Poisson point processes on R%.

my [JB(N, T)]

O
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8.3.1 Proof of Theorem 49

In this subsection we prove the results presented in theorem 49.
As Jp(N,T) = Ja(N,T) + Jg(N,T) we apply lemmas 59 and 61 we obtain the ana-
lytical expression of E [Jp(N,T)]. We are now interested in my [Jp(N,T)]. We have

my [Jr(N,T)] = mgy [Ja(N, T)| + 2E[Ja(N, T)Jp(N, T)] + mg [Jp(N,T)].  (8.12)

Expressions for my [J4(N,T)] and my [Jp(N,T)] have been found in the lemmas 59 and
61 so it remains to calculate E[J4(N,T)Jp(N,T)]. Using Fubini’s theorem the later can
be written as:

T T
E[JA<N,T>JB<N,T>1=E[/O PAv,) an | auNmu)dw]
T T _
- / / E [P4(N ) B(INu )] dty d
0 0
T T
- / / E [Pa(Ny — N0 (| N )] 1 dts
0 0

T T
b [ B PG 0 N (1N, = NV ([N 0 Ny )] e ey
0 0
= termy + terms

Recall from lemma 58 that Ny, — Ny, is independent of Ny, so
oo T T
termy = E [S] . ¢(x) dA(.r)/ w(r) dF||N0||(T)/ / Fse(|t2 — t1|) dtl dtz
R 0 o Jo

0 T
=2E[S] 2@ dA(x)/O e(r) dF||No||(7“)/0 (T —t)Fs,(t) dt (8.13)
Now, also from 58, the joint distribution of (][N, N Ny, ||, [[ Ve, — Ni, ||) is given as:

Evearivig | 1= s, ) (0 2) =
(1 — e_E[S}FSe(\tz—tl|)A(6(u1))) (1 _ e—E[S]FSe(|t2—t1|)A(6(u2\/u2))> .

Note that conditioning on the event "||Ny; N Ny, || = u1", Ny N Ny, is a Poisson point
process of intensity E[S] F'g,(|ta — t1|) on C(uy). Thus, by Campbell’s theorem, we have:

T T
termo = E [S]/ / Fse(‘tQ — tly) dtl dt2><
0 0

. A /0 /C(ul) (b(m) dﬂ?@(m \/U2) dF(”NHmNtz

8.3.2 Proof of theorem 50

Ntz—NtIH)(Uljuz)- (8.14)

)

We now have give a proof for theorem 50. Note that Jp(N,T) is a functional of L and:

Dt,s,0)JT(N,T) < (((t+ )" AT) = t7)(¢(x) + 0 (Ja])
< (BsAT)Bs

Then we apply the theorem 1 we obtain the desired result.
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8.3.3 Proof of theorem 51

The result is consequence of 11 as J4(N,T) is a linear functional of LA,

8.4 Impact of mobility
In this section we consider the impact of mobility. In this case, the consumed energy can

be written as

/((TﬁSi)*/\T)(Tf/\T)

T
Jr(NMT) = (X + My(u)) du + / B(|NM) dt

i>0 70
= JA(NM7T) + JB(NMvT)

Consequently, J4(NM T) is a linear functional of L* 4.5,

8.4.1 Lemmas

Proof. (of lemma 52)

It is sufficient to prove that for all ¢, (T3, X; + M(t — T;))):2, is a Poisson point
process with the same intensity measure as that of ((7;,X;))2,, i.e A dt dz. To prove
that, we apply the displacement theorem. Let [1,l; be the Lebesgue measures on R and
R?. For any subsets A C R and B C R%, applying the displacement theorem we have that
((T;, X; + M (t—T;)))32, is a Poisson point process on R x R? with intensity measure given
by:

AAx B) = /du/ M(t—u)+zeB)dx
Rd

= )\/ dU/ / Py (t—u)(Y) YLy zepy do
A R4 JR4

= A / du / Pum(t—u)(y) dy / Liy+oeny do

:)\ld /du/thu dy

= Ai(4
We conclude the proof. [

We have

rMf.T) =
(t+s)TAT—t+ (t+s)TAT—t+
/ dt/ ps(s ds/ / @ﬁ/[(f,ul,...,un) du; dus... du,.
0

If S = constant then:

Y 2T EM(fu) dut (S - TYHM(f,T), S <T;
= { S ) s (0 - Sys), szr

We see that in this case when T' — oo then TM(f,T) ~ THM(f,S). In the lemma 63 we
generalize this in the case where S is random.
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Lemma 62. We have HY (f,u) < u™ [p f"(z) dz, and TN (f,T) < Kp(T) [ga f™(x) dz
for alln > 1, u € [0,00). Equality occurs if n = 1. Moreover, if M has the property T
then:
=1 M/E =
gr(l)H “(fu) = Em IE(f,T)

If f(x) = algecy then IM(f u) and Hé\/[/e(f, u) are decreasing function of € with n > 2
and a > 0.

Proof. We have [pq f™"(z +y) dz = [pq f"(x) dz for any y € R?. Now for n > 2, for any
Y1y ooy Yn € R4, apply the Cauchy—Schwarz 1nequahty we have:

n n 1
/ [[r@+w)de < ] ( f(z+y:) dm)
RG24 i=1 \JR?
- / () da.
Rd
Therefore,
(I)%(!ﬂubu%“wun) = E / Hf(-ﬁU—f—M(uz)) d.ﬁU]
R
< [ () da
R4
and
HM(f u) = / / OM(f uy, .. up) duy dug... du,
0 0
< "(x) dz.
Rd
Mfu) < / dt/ (t+s)T AT —t")"ps(s ds/ f(z
= Ku(T) f”( ) d
Now as w — 00 as € — 0 then for € sufficiently small one of two point -+ M(ul
and x + M(W) must be outside the support of f. Consequently [[;", f(z + ( )) — 0

as e — 0. By dominated convergence theorem we obtain lim,_ .o ® /E(f7 U, Uy ooy Uy ) = 0
and we have

lim HM/¢(f,u) = 0.

e—0

Using (8.4) and applying the dominated convergence theorem we have:

lim T/ f,u) =
e—0

Finally, if n > 2 and f(z) = alyzecy with a > 0 then H;L\/I/E(f, u) and Fﬁ/‘[/g(f,u) are
decreasing functions because ®M/¢(f uy, ..., uy,) is. O
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Lemma 63. We have IM(f,T) ~ TE [HM(¢,5)] as T — occ.
Proof. We have:

0y (f,T)

0 [ee)
T %/ dt/o HY'(f,(t+5)" AT = t")ps(s) ds

1 T 00
+T/ dt/ HY(f,(t+ ) AT — t)ps(s) ds
0 0
= termy + terms.

It is easy seen that termq; — 0 as T' — oo. We then consider terms. We can write
1
termg = / E [HM(f,((T + S) AT —tT)] dt
0

Since (Tt+s) AT —tT < s, limp oo (Tt +S) AT —tT) = s and HM (f, s) is an increasing
function of s, by monotone convergence theorem we have:

lim termy = E [Hflv‘[(f, 9)].

T— o0

Theorem 64. The moments and central moments of JA(NM,T) are given as:

cn [JANM,T)] = Bn(0,AT5 (¢, T),.... AT (¢, T))
my, [JA(NMvT)] = Bn()‘rjl\/[(gb)T)v)‘Féw(gﬁ)T)v""AFnM(d)vT))

for all positive integer n.

Proof. The result follows the linearity property of J4(N™,T) and the theorem 7.4 and we
note that:

((t+8)TAT)=(tTAT) n
/ / ¢z + M(u)) du |  dtps(s) dsA dx APy
RxRxR?x D(R,R%) 0

= \I'M (¢, T).

When T is large, use lemma 63 we can write: V [Ja(NM,T)] ~ TAE [H}!(¢, S)].

8.4.2 Proof of Theorem 54

With the assumption dA(z) = A dz, applying theorem 64 and lemma 62 we have:

m,, [J4(N,T)] = B, ()\Kl(T) y o(x) dx, ..., \K,,(T) g o™ () dx)

> B, (ALY (6, 7), ..., ALY (¢, 7))
=m, [Ja(NM,T)]




114 8. GENERALIZED GLAUBER MODEL

and

¢ [JA(N,T)] = B, <O,AK2(T) /R 8(2) AA(@), o MG (T) [ 0"(@) da:)

> By, (0,AT5(¢, T), ... \T'N (¢, T))
=c, [Ja(NM,T)].

Now we have, as € — 0:
m, JA(NM/E,T)] — B,(\T [ ¢(z) dz,0...,0) = ()\T o(x) d:r)
R4 R4
and
cn [JA(NM/E,T)] — B,(0,...,0) = 0.

Now, using the property of linear functional of Poisson point process and Jensen’s

inequality, we have

T o] (t s)+ T
E [exp {aJa(NM,T)}] = exp {)\/ dt/ ps(s) ds/ (eaft++ e+ M(u) du _ 1) dx}
—0c0 0 R4

(t+s)tAT

T & 1 + +
< d d d ap(z+M (u))(((t+s)TAT)—tT) _ 1) 4
eXp{A/_oo tf, pseras x<<<t+s>+AT>—t+/ﬁ ‘ !

(t+s)tAT

T
= exp )\/ dt /OO ps(s) ds ! / du/ (ea¢($)(((t+5)+/\T)—t+) _ 1)
—00 0 ((t + 8)+ AN T) — ¢t t+ Rd

T o i :
exp{)\/ dt/0 ps(s) ds /Rd (ea¢(z)((t+s) AT)—t+ 1)}

= E [exp{aJa(N,T)}].

. t
Here we use convention %ft e du = 1.
Now we have:

AT (6 + 0, T)
ALY (4, T).

o
AN
<
S\
2
=
=
A\

o
<
N
2
=
=
A

Apply lemma 62 we have
lim V {JT(NM/E,T)} ~limV [JB(NM/E,T) —0.
e—0 e—0

8.4.3 Special case: Completely aimless mobility model

We consider now the complete aimless mobility model with constant speed, i.e M (t) = tv
where |v| = constant and the direction of v is uniformly distributed.

Lemma 65. Consider the completely aimless mobility model then:

1. If f(x) = alyzecy then
Hy(f,U) =0 (, ’i_1> 7‘”’ — 00
v

and HM (f,u) = O(u),u — oo for n > 2.
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2. Ifd=1and C = [-R, R] and f(r) = alyy<ry with a >0 then: we have

(f, T)=E[R(SAT,TVS)] (8.16)
where:
h(s,t) =
t(2Rs™ — n+13"+1‘v‘ Tl Rsnﬂ"’_(nﬁ;ﬁ’v’ s"H2n s < %;
s o) %

Proof. 1) can be proved following the same lines as the proof of lemma 46 in the previous

chapter, thus we omit here.
Now we prove 2) . Using equations (8.4) (8.15) we need only prove (8.16) in the case
where S = constant < T'. In this case if S < % then:

S
M _ n_n_l n+1 - n n+1
n (f,T) = 2/0 <2Ru n+1u |U|> du+ (T - 95) <2RS +1S v |>
n—1 n(n—1)
— 9 n n+1 n-—+2
<RS n 1 S ||) n 1 Tt Dmto Y0

and if S > %:

2R
|

[v n—1
Mr Ty = 2 2Ry — —— gt d
sy = 2 [ (are = B )

S 2R\" —1(2R)"*1 2R\" —1(2R)"*1
4o (( R)_lu n—1( R)n ) du+ (T — ) (( R)_f n—1( R)n
AN LR BT o AT ol
- ((23) n—1 (2R)n+1> _n—1Q2R)"'S nin—1) (2R)"*?2
- ™t n+1l n+1  |o? (n+1)(n+2) [yt

This completes the proof. []

Applying the above results, we have expressions in the special case: d = 1, C' = [- R, R],
o(z) = 1{‘$‘<R}, Y(r) = blyy<py and M(t) = tv with v = |v[ or —|v| with equal
probablhty . In particular, if S = constant < T we have:

E[Jr(NM,T)] = E[Ja(NY,T)] +E [Jg(NM,T)]
= 2ATRS +Tb(1 — e 258y,

3 3 "
Vv [.]A(NM,T)] = \T <2R52 . ‘U‘SS ) B 2)\1;55 n )\’1)6’5’

ing%and

2R)*S (2R)3> _ A(2R)’S  A(2R)*

V [Ja(NM, T :AT<(
[Tl ) |v] 3 v 3|vf? 6 |vf®
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Figure 8.4: Tmpact of distribution of sojourn time and user’s speed on the
motionless case.

if §> %. We can think that, in this case, the low mobility regime corresponds to S < %

and the high mobility regime corresponds to S < 22 1f § is random and |v| — oo, then

[v]
Y (), T) ~ %. In particular,
\TB S| 2R)*

V [Ja(NM, T)] o]

For a numerical application, we take d = 1, 2R = 1000(m), T = 107(s) ~ 115(days),
A = 5.55555556.10° (users/(m.s)). We also choose ¢(x) = 1y, <p) s0 that we have
exact expressions for Ju. For the distribution of sojourn time, we consider the three
cases: S = 360(s) (deterministic), S ~ exponential(360) (exponential distributed) and
S ~ uniform(0,720) (uniformly distributed). In all three cases, the average sojourn time
V[Ja(NM,T)]
Ja(N,T)
|v]. Since ¢(x) = 1y, <Ry, the ratio is decreasing function of |v[, as expected. The variance
is smallest in the case of deterministic sojourn time, which seems intuitive. We observe
that for |v| > 3(m/s) the ratios are almost the same in three distributions of sojourn time
while they differ enormously in small values of user’s speed. Figure 8.5 plots the PDF of
V [JA(N,T)] (motionless users). We see that even in this simple case, there is difference
between the distribution of J4(N,T"). The variance of J4(N,T') in the case of deterministic
is smallest as predicted in equation 8.9 because T is large.

is the same as 360(s) = 6(mins). Figure 8.4 plots the ratio in function of

8.5 Conclusion

In this chapter we have presented a model called generalized Glauber dynamic to evaluate
the consumed energy in a base station of cellular networks between 0 and 7" where user
arrives according to a Poisson point process in time-space and they are associated with a
random sojourn time and a mobility process. For the additive part of consumed energy
Ja, the moments can be expressed in term of Bell’s polynomial for both cases: motionless
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Figure 8.5: Impact of distribution of sojourn time on the distribution of J4 (N, T') in the motionless
case.

and mobile users. We have also determined an upper bound for the distribution of J4 and
that of the Gaussian one with the same mean and variance. In the case of no mobility,
we have found an ideal to calculate the moments of Jp but it is too complex for n > 3
so we have done it for the 2 moment. We have found asymptotic approximations of the
moments of J4 when T is large. We have determined the effect of mobility of users. In
particular we have showed that it reduces the moments of J4 and in high mobility regime,
it reduced the variance of Jp, J4 to 0.
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Chapter 9

Conclusion and future works

Contents
9.1 Summary . . . . . .t i e e e e e e e e e e e e e e e e e e e e e 121
9.2 Future works . . . . . . o i i i e e e e e e e e e e e e e e e 122

9.1 Summary

In this thesis we explored tools of stochastic analysis and Poisson point process applied
to cellular networks. We first introduced some basics on Poisson point process and Malli-
avin calculus. In the first application, we found a relationship between the probability
of overloading the system, the density of active users and the number of available sub-
carriers, thus providing a large number of possibilities to design OFDMA systems. We
calculated the probability of loosing a user in a OFDMA system because all subcarriers of
the base station are already in use by several methods including Gaussian approximation,
Edgeworth’s expansion and upper bound derived from the concentration inequality. We
apply to dimension the number of subcarriers so that the loss probability is small. We
also compared the numerical results with simulations and note that the upper bound of
overloading probability leads to an overestimate of the number of subcarriers by about 15%
of the simulated one. We also compared it to Gaussian approximation and Edgeworth’s
expansion and found that it is more robust against uncertainty on system’s parameters.
The margin provided by the bounds may be viewed as a protection against errors in the
modeling or in the estimations of parameters.

In the second application, we developed energy consumption models for cellular net-
works. We first defined the power consumption model for base station as a function of the
collection of positions of users. The consumed power consists of the power dedicated to
broadcast the same information to all active users in the cell and the power dedicated to
transmit, receive, decode and encode the signal of any active user. The total consumed
energy during a period is the sum of all consumed power, which in turn is divided into
the broadcast part and the additive part. We consider the first model where at each in-
stance, the configuration of active users follows a homogenous Poisson point process. In
this model, we proved that the consumed energy is a increasing function of cell radius.
Taking into account the cost of base stations, we proved that there exists an optimal cell
radius in the economical point of view. We also present the mobility model for users where
each user moves independently from others but statistically identical .
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We then define two models for user’s activity. In the first model, each user is associated
with an on-off process and the system serves only on users. In the second model, called
generalized Glauber model, calls arrive following a Poisson point process being in the
system for some time period and then disappear. The key idea is that the system can be
described by a Poisson point process, so we can apply theoretical results. In both models,
we were able to find analytical expressions for the statistics of the consumed energy as well
as bounds on its distribution. We showed that the additive part can be approximated by
Gaussian random variable and we found an error bound. We then considered the impact
of mobility and again we can provide some analytical expressions. Mobility is known to
improve the performance of networks in various aspects and we showed that somewhat
it has a positive impact on the energy consumption. It turns out that, in both models,
with or without mobility the network consumes the same amount of energy in average.
However mobility decreases the moments of the additive part and high mobility decreases
the variance of consumed energy to zero. In the first model, we found the decay rate
of variance in function of user’s speed which is O(ﬁ) Nevertheless , there are tons of
questions that we have not been able to answer yet.

We finally remark that, the mathematical frameworks developed to analyze the energy
consumption in cellular networks in this thesis can be applied in other studies of wireless
system or in queueing theory.

9.2 Future works

In this thesis we employed abstract models to analyze the energy consumption on cellular
networks which simplifies hypotheses on traffic, mobility,... Our energy consumption model
is only at the initial state and we need a lot of improvement to model more accurately.
Still, we have derived from these abstract models a large number of interesting results that
deserve to be further pursued. There are some directions for future research as below:

1. Inhomogeneous Poisson process or Non-Poisson process of arrivals, non-
Poisson process of positions: In this thesis we assumed a homogeneous Poisson
arrival of users (or calls) in the Generalized Glauber model. This means that we
assumed that the arrival is always at peak rate. The models can be generalized to
inhomogeneous Poisson arrival or periodic inhomogeneous Poisson arrival to reflect
the fact that in a real network, the arrival of calls is non homogenous or periodic. For
example there is always less of calls during the night time than in day time. Moreover,
we assumed a Poisson process of positions of users at each instance to take advantage
of its randomness and independence aspects. For this reason, we can also expect non-
Poisson arrival of calls, or non-Poisson process of positions in the future works to
make the model more complete. We can imagine a renewal process as calls arrival
process. We can also assume non-Poisson point process such as determinantal point
process or cluster process point process to model user’s position. In this case the
system still can be modeled as a point process, but no longer a Poisson point process
and therefore need a lot of reflection.

2. Loss model: In this thesis, we assumed that the system is not limited on transmitted
power or resources so there is no loss of call. In a real system like OFDMA one,
the resource is always limited so there is always a small fraction of call to be lost,
delayed, or interrupted. If the system is designed so that the probability of losing
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a communication is very small, out no-loss model can be a good approximation.
However, we would like to build a model to capture this fact and we want to know,
for instance, if the tendency made by mobility is the same as in non-loss model. We
note that spatial loss network is already considered in the literature [54],[57],[58],....
It can be used in the subsequent analysis.

. Considering shadowing, fading, interference: For the sake of tractability, we
assumed that channels between users and base stations are not affected by shadowing
or fading. It is possible to take into account these elements in a future research as
the system can also described as a Poisson point process. Moreover, cellular network
is particularly interference limited. Thus, it would be interesting to measure the
impact of interference on the energy consumption of cellular networks.

. Comparing with simulation/test/real data: Our energy consumption models
are purely theoretical. Due to the limit of time, we have not build a simulator.
As a matter of fact, in the future we would like to compare the results obtained in
this thesis to a numerical simulation, or a real data. One of our conclusion is that
the mobility make no impact on the mean of consumed energy but high mobility
decreases its variance to zero. It would be interesting to see if this conclusion is
accurate enough in a real situation.
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Chapter 10

Appendix

10.1 ON-OFF exponential process: Basic properties

In this section, assume that [(t) is a stationary ON-OFF exponential process where on-
periods and off-periods have mean ,ufl and ,ual respectively. Let

_ Ho
Ho + p1

M1
Ho + p1

T and 7y =

By stationarity we have:

Lemma 66. [59] We have
pi(t,s) = mi(1 — e~ (motm)(t=s)y 4. (5ij€—(uo+u1)lt—5|.

for alli,j € {0,1}. Moreover, let t1 < to < ... <t, and iy, is,...,in € {0,1} then

n—1

Tigsienin (b ontn) = POV {T(t5) = i5}) = 7y [] Dijri; (b1, 1)
j=1

Let A(T) = fOT I(t) dt is the total active time of the user. We can obtain its moment
generating function, its expectation, its moments, which is important for the analysis in
the next sections. Let

L —Ho Ho S 0 0 _
V_< 1 —m) ’R_(o 1) » B(0:t) = exp ((V + 0R)?)

1
vi(0) = 3 (—Nl —po+ 0 £/ (p1+po—0)% + 4ﬂo9>
and

_ M K =
koo(0) = v (0) =0 (0) 01(6) vy (0) —v_(0)’

_L s _ _0_///1_7)—(6)
K10(0) = NOETEOR 01(6) v (0) —v_(0)
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Lemma 67. [59] Fori,j = 0,1, we have:
Bii(0,t) = ki (0)e"+ @ + (1 — ky(0))ev= @
Bij(0,t) = rij(0)e"+ D" — 5 (0)e= O,

and
1

1
E {eeA(t)] = ZZWiBij(egt)'
1=0

J=0

To find the moments of A(t), however it is cumbersome to use the above expression of
E [eeA(t)]. We have another way to compute the moments of A(t).

Lemma 68. [60] We have:

T tn—1 to
m, [A(T)] = n!7r1/ dtn/ pll(tnatn—l) dtn—l'--/ pll(tg,tl) dtl' (101)
0 0 0
In particular,
T
E[AT) = M
Mo + p1
and
T2 12 2T 2
(o4 p1)?  (po +p1)®  (po + p)
and
mg[AT)] = Oy O ST = 2ol (i)
(o +p1)*  (po + p)* (Ho + p1)?
12p0p1 (p1 — po) | 6T pops o T(otim).
(1o + p1)8 (1o + p1)®

Proof. We have:

m, [A(T)] = E

o

T /OT
/ PI(t) = 1, I(t,) = 1) dty... iy
0
/tn /tZP(I(tl) o I(t) = 1) ... dty
0

tn t2
= n'// /pn tnstn—1).-p11(te, t1)m di,... dty,

where we use the Fubini’s theorem and exploit the fact that I(¢) = 0 or 1 and I(¢) is a
Markov chain. Thus, (10.1) is proved. To find expressions of m,, [A(T)] for n = 1,2,3 it
suffices to apply (10.1) with some simple manipulations. [
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Note that for large T,

22 373
2Tpopy LA(T po T (AT T

Nm’ - (M0+M1)2’m3 )]NW(T%OO)‘

V [A(T)]
pe T
(o+p1)™

We also note that for small 7', m,, [A(T")] ~ % as T'— 0.

In general, we can prove that m,, [A(T")] ~ as T — oo.

10.2 Hermite polynomials

Let ® be the Gaussian probability density function: ®(z) = exp(—22/2)/v/27 and pu the
Gaussian measure on R. Hermite polynomials (Hy, k > 0) are defined by the recursion

formula:
R dt

Hi(@)8(2) = (~1)* - 0(a)

For the sake of completness, we recall that

Ho(z) =1, Hi(z) = x, Hy(z) = 2> — 1, H3(z) = 2 — 32
Hy(x) = 2% — 622 + 3, Hs(z) = 2° — 102> + 15z.

Thus, for F' € CF, using integration by parts, we have

[ F9@) auto) = [ F@)t@) duto). (10.2)
R

R

Let Q(z) = [ ®(u) du = [3 1001 (u)®(u) du. Then, Q" = & and

/ oo () H (1) ()
R

= (—1)* /_ " 00w du= (~1)*QW () = —Hy_1(2)®(2). (103)

10.3 Ornstein-Uhlenbeck semi-group

To prove the Edgeworth expansion and its error bound, we introduce some notions of
Gaussian calculus. For F' € C(R; R), we consider

AF(x) = xF'(z) — F"(x), for any x € R.
The Ornstein-Uhlenbeck semi-group is defined by

P.F(zx) = / F(e 7'z + /1 — e 2y) du(y) for any t > 0.
R

The infinitesimal generator A and P; are linked by the following identity

Fla) — /R Fly) duly) = — /0 T APF () dt. (10.4)
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It is well known that for F' € C*, (z — P.F(x)) is k + 1-times differentiable and that we
have two expressions of the derivatives (see [61]):

o~ (k1)1
Vi

and (PF)FD(z) = e~ +DEp, () (). The former equation induces that

(PF) ) (z) = F® ety 4+ /1 — e~2ty)y du(y).

—(k+1)t

—(k41)t
Il < PO [l auty) = [ PO
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