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Abstract

The increasing availability of smartphone and tablets has given place to the deve-
lopment of a broad new class of applications, which collect and analyze big amounts
of information about its users for different reasons: offering a personalized service,
offer targeted advertisement, or provide accurate aggregated data for research and
analysis purposes. However, serious privacy concerns have been risen about the
kind and quantity of data being collected: this data is in general private by nature,
and often it can be linked to other kinds of sensitive information. And in most
cases, this information is made available to an untrusted entity, either because the
service provider itself is not reliable, or because some aggregated information is
being publicly released. In order to deal with these concerns, some kind of privacy
guarantee is needed. Differential Privacy is one of the most prominent frameworks
used to deal with disclosure prevention in statistical databases. It provides a formal
privacy guarantee, ensuring that sensitive information relative to individuals cannot
be easily inferred by disclosing answers to aggregate queries. If two databases are
adjacent, i.e. differ only for an individual, then the query should not allow to
tell them apart by more than a certain factor. This induces a bound also on the
distinguishability of two generic databases, which is determined by their distance on
the Hamming graph of the adjacency relation. When the sensitive information to be
protected is other than the value of a single individual, or when the secrets itself are
not databases at all, it is common to consider different notions of distinguishability,
which depend on the application at hand and the privacy guarantees we wish to
express.

In the first part of this thesis we explore the implications of differential pri-
vacy when the indistinguishability requirement depends on an arbitrary notion of
distance. We show that we can naturally express, in this way, (protection against)
privacy threats that cannot be represented with the standard notion, leading to new
applications of the differential privacy framework. We give intuitive characteriza-
tions of these threats in terms of Bayesian adversaries. We revisit the well-known
results about universally optimal mechanisms, and show that, in our setting, these
mechanisms exist for sum, average, and percentile queries.

In the second part of this thesis we introduce geo-indistinguishability, a formal
notion of privacy for location-based systems. This privacy definition corresponds to
an instance of the generalized version of differential privacy presented before. We
also show a mechanism for achieving this notion and study different issues that arise
with its implementation, namely the truncation of the result and the effect of the
precision of the machine. We also describe how to use our mechanism to enhance
LBS applications with geo-indistinguishability guarantees without compromising the
quality of the results.

In the last part of this thesis, we consider the location privacy framework of
Shokri et al., which offers an optimal trade-off between the loss of quality of service
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and the privacy protection with respect to a given Bayesian adversary. We show that
it is possible to combine the advantages of this approach with ours: given a minimum
threshold for the degree of geo-indistinguishability, we construct a mechanism that
offer maximal utility, as the solution of a linear optimization problem. Since geo-
indistinguishability is insensitive to the remapping of a Bayesian adversary, this
mechanism is optimal also in the sense of Shokri et al. Furthermore we propose
a method to reduce the number of constraints of the linear program from cubic to
quadratic, enlarging significantly the size of location sets for which the optimal trade-
off mechanisms can still be computed, while maintaining the privacy guarantees
without affecting significantly the utility of the generated mechanism.



Résumé

La disponibilité croissante de smartphones et tablettes a donné lieu à l’élaboration
d’une vaste classe de nouvelles applications, qui recueillent et analysent de grandes
quantités d’informations sur leurs utilisateurs pour des raisons différentes: offrir un
service personnalisé, offrir de la publicité ciblée, etc. Toutefois, le type et la quan-
tité de données collectées ont engendres des graves préoccupations concernant la vie
privée: en effet, ces données sont en général confidentielles par nature, et souvent,
elles peuvent être liées à d’autres types d’informations sensibles. Afin de pallier
à ces préoccupations, des garanties de confidentialité sont nécessaires. Differential
privacy est l’une des notions de confidentialité les plus importantes dans le contexte
des bases de données statistiques. Elle fournit une garantie formelle de confidentia-
lité, assurant qu’aucune information sensible concernant des particuliers ne peut
être facilement déduite par la divulgation des réponses aux questions globales. Si
deux bases de données sont adjacentes, c’est à dire ne diffèrent que pour un individu,
la requête ne devrait pas permettre de les distinguer par plus d’un certain facteur.
Ceci induit une borne sur la discernabilité qui est déterminée par la distance sur
le graphe de Hamming de la relation de contiguïté. Lorsque les informations sen-
sibles à protéger ne sont pas les données relatives à un seul individu, ou lorsque
les secrets se sont pas du tout les bases de données, il est courant de considérer les
différentes notions de discernabilité, qui dépendent de l’application et de la garantie
de confidentialité que nous voulons exprimer.

Dans la première partie de cette thèse, nous explorons les implications de la
differential privacy lorsque l’exigence d’indiscernabilité repose sur une notion arbi-
traire de la distance. Nous pouvons exprimer de cette façon les menaces contre la vie
privée qui ne peuvent pas être représentées par la notion standard. Nous donnons
des caractérisations intuitives de ces menaces en termes d’adversaires bayésiens.
Nous revisitons les résultats connus sur les mécanismes universellement optimaux,
et nous montrons que, dans notre contexte, ces mécanismes existent pour les requêtes
somme, moyenne, et percentile .

Dans la deuxième partie de cette thèse, nous introduisons le concept de géo-
indiscernabilité, une notion formelle de confidentialité pour les systèmes basés sur
la localisation. Cette définition est un cas particuliere de la version généralisée de
la differential privacy présenté precedemment. Nous présentons aussi un mécanis-
me qui permet d’atteindre cette notion et nous étudions les différentes questions
que pose la mise en œuvre, à savoir la troncature du résultat et l’effet de la préci-
sion de la machine. Nous décrivons également comment utiliser notre mécanisme
pour améliorer les applications LBS avec des garanties de géo-indiscernabilité sans
compromettre la qualité des résultats.

Dans la dernière partie de cette thèse, nous considérons le méchanisme de Shokri
et al, qui offre un compromis optimal entre la perte de qualité de service et la protec-
tion de la vie privée par rapport à un adversaire bayésien. Nous montrons qu’il est
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possible de combiner les avantages de cette approche avec la nôtre: étant donné un
seuil minimal pour le degré de géo-indiscernabilité, nous construisons un mécanisme
qui offre utilité maximale, en resolvant un problème d’optimisation linéaire. Puisque
la géo-indiscernabilité est insensible à la reconfiguration d’un adversaire bayésien, ce
mécanisme est également optimal dans le sens de Shokri et al. En outre, nous pro-
posons une méthode pour réduire le nombre de contraintes du programme linéaire
de cubique è quadratique, élargissant considérablement la taille des ensembles de
localisations pour lesquels les mécanismes optimaux peuvent encore être calculés,
tout en maintenant les garanties de confidentialité sans affecter significativement
l’utilité du mécanisme généré.
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Chapter 1

Introduction

1.1 Motivation

The fact that individuals willingly share personal information is not new. A common
example is the case of surveys and censuses, collecting different kinds of personal
data about people, with various and different purposes. However, over the last
few years there has been a pronounced increase in the amount of information that
individuals share, as well as in the ways this information is shared. One of the
main reasons of this phenomenon is the broad adoption of hand-held devices such
as smartphones and tablets, combined with the high availability of wireless internet
connection. Nowadays, people are connected to the Internet (actively or not) at
almost every instant of their lives. This, in turn, has motivated the development of
a whole new range of services (like social networks, photo sharing applications, etc.)
that allow an individual to share various kinds of information with friends or even
with strangers. Other applications rely on some particular type of information being
shared by the user (e.g. his location, his interests, etc) to provide a requested service
(e.g. locate restaurants around the user’s current location, provide a personalised
news feed, etc). Recent studies in the US show that in 2013, 56% of the adult
population of the country owns a smartphone (in comparison with 35% in 2011)
[Pew Internet. Smartphone Ownership 2013]. Of these users, 40% use some kind of
social network in their phone (28% do so in a daily basis), and 74% use services
based on their location [Pew Internet. Location-Based Services 2013].

However, it is worth noting that the data being shared is, in general, collected
and analysed by the service provider. Moreover, other types of services like e-
commerce portals, search engines and email providers also collect and process data
that, in principle are supposed to remain private (like browsing history, messages
contents, etc). Besides, by studying and processing this data, the service provider is
able to learn even new information about their users (e.g. browsing habits, personal
interests, sexual orientation, etc.) that was never explicitly provided by them. In
some cases, it could even be said that the service provider knows things about their
users that the users themselves do not know. The provider can use this information
with various purposes: enhancing the service itself, predicting the behaviour and in-
terests of users, offering targeted advertisement, etc. But in other cases, for instance
when the service provider is not trustworthy, personal data can also be used with
various malicious intentions: monitoring persons, fraud, scam and discrimination.

This clearly implies that measures need to be taken in order to protect the
privacy of those individuals that share information. From the point of view of a
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user, it is important that he knows what information can be learned (explicitly
or implicitly) by the provider, which parts of this information are disclosed, how
his data is being used, and how is his privacy affected by the combination of these
factors. But at the same time, from the point of view of the provider, it is important
that users feel comfortable with the service and the privacy guarantees it offers, so
that they keep using it.

In order to design mechanisms for privacy protection, it is key to have a definition
of privacy. However, we note that defining privacy is not easy: on the one hand, the
definition could be tied to the context in which it is being used (the definition of
privacy in the context databases might differ, for instance, from the definition in the
context of geolocation applications); and on the other hand, there might be different
definitions that depend on what the user is interested to protect (e.g his identity,
the content of the data, the accuracy with which his information can be inferred,
etc). Our goal is to have a general definition of privacy that can capture a broad
range of scenarios. We also aim at a formal notion of privacy, since it is important
that we can verify if a mechanism satisfies this property or not. Moreover, a formal
notion will in general allows us to quantify the level of privacy of a given mechanism,
which will be useful to evaluate and compare different mechanisms.

1.1.1 Defining and measuring privacy

The literature is rich in works attempting to define privacy and offering means to
measure it. We note, however, that in general the way of defining privacy depends
heavily on the nature of the scenario in which it is being applied. Some privacy
guarantees for location applications might not be suitable for, say, databases. In
this section, we recall some of the most important works that attempt to define and
quantify privacy.

In principle, when defining privacy, we can broadly distinguish two different kinds
of approaches: those attempting to protect the user’s identity, and those focused
on protecting the user’s data. In the former, privacy is achieved by preventing an
adversary from linking the data corresponding to an individual (which is disclosed
to the provider) with the individual’s identity. In the latter, on the other hand, the
identity of the data’s owner is assumed to be known by the adversary. Privacy is
then obtained by modifying the information disclosed to adversary, for instance by
replacing it with an approximate value, increasing its granularity, adding dummy
results, etc.

Protecting user’s identity

One of the most prominents approaches to protect the identity of an individual is
the notion of k-anonymity. This concept was first introduced in [Samarati 2001]
in the context of statistical databases. When selecting a set of records from the
database to be released, the definition of k-anonymity requires that each combina-
tion of “quasi-identifiers” (that is, set of attributes that, combined, can be used to
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identify an individual) appearing in the released set is repeated in at least k records.
The intuitive idea is that an adversary should not be able to distinguish the data
belonging to an individual from, at least, another k−1 individuals. To achieve this,
some attributes can be discretized (by reducing the granularity of the set of possible
values) or simply hidden. Several variants of this notion have been used in contexts
different than the usual case of statistical databases, for instance to define privacy
in location-based systems [Gruteser 2003, Gedik 2005, Mokbel 2006]. Also, exten-
sions of this concept have been introduced in order to cope with the weaknesses of
the approach. The l-diversity notion [Machanavajjhala 2007] requires that, for each
combination of non-sensitive attributes present in the released set, there are at least
l “well represented” values for each sensitive attribute (this could be, for instance, l
different values). The t-closeness notion [Li 2007] asks that the difference between
the distribution of the values of a sensitive attribute in an equivalence class and the
distribution in the whole database is bound by a threshold t.

However, due to the increasing amount of information about individuals being
publicly available, several studies show that, in some cases, protecting the user’s
identity might not be enough, since an attacker might be able to link the disclosed
data with their owners with high precision. In [Narayanan 2009] the authors present
a de-anonymization algorithms for social-network graphs that allows them to re-
identify a third of the users having accounts on both Twitter and Flickr with a
low error rate. In a different work [Narayanan 2008], the same authors apply a
de-anonymization algorithm to the Netflix Prize Dataset (containing movie ratings
information of 500,000 users) to link anonymous records to known Netflix users,
by using the auxiliary information provided by IMDB.com. This way, they were
able to infer other types of private information (like political and religious views)
of the compromised users. The deanonymization threat is even more evident in the
context of location privacy: the location of an individual has not much value by
itself, but in general there is a huge amount of other information that that can be
inferred from it, like his work and home address, his movement patterns, and his
hobbies [Gambs 2011].

Also, it is important to note that, in some contexts, hiding the user’s true identity
might not an option. Suppose for instance an application that provides the user with
personalized contents, like a news feed based on his interests, a list of restaurants
nearby based on his location, or a music recommendation platform based on the what
the user’s friends are listening. In most of these applications the user is assumed to
be authenticated in the service, providing information like name and email address,
and therefore anonymity is lost. This scenario is the one we assume in the rest of
this thesis.

Protecting user’s data

Techniques that aim at protecting the user’s data are generally based on disclosing a
modified version of the information to the adversary in order to reduce his accuracy.
Most of these techniques can be combined with the techniques mentioned before,



4 Chapter 1. Introduction

but more importantly, they can be used in the case the service provider is assumed
to know the identity of the user (for instance, if the user is authenticated in the
application).

The way to measure privacy for these kind of techniques depends, in general, on
the scenario being considered. In the context of location-based systems, for instance,
one of the most common notions used to quantify privacy is the expected error of the
adversary trying to guess the real location of an individual from the reported one. In
the same context, we can find privacy definitions based on variations of differential
privacy or k-anonymity (based on cloaking or dummy locations), although these last
ones have been found to be weak in such scenario [Shokri 2010] . These notions, as
well as some works in the literature based on them, will be discussed in more detail
in Chapter 3.

The concept of differential privacy, introduced in [Dwork 2006a], is one of the
most important privacy notions for obfuscation techniques used in the context of
statistical databases. In a nutshell, differential privacy requires that the observations
reported from “similar” databases (that is, databases differing in only one record)
should be generated with similar probabilities. An important property of this notion
is that its definition does not make any kind of assumption about the prior knowledge
of the adversary.

In [Ghosh 2009] the authors provide a mechanism for counting queries, which
is a discrete variant of the well known Laplace mechanism, that achieves optimal
utility for a fixed level of differential privacy, any user and any prior information
available to the attacker. The authors consider the (inverse of the) bayesian notion
of utility, which measures the expected loss between the real answer of the query
and the reported result. The authors of [Gupte 2010] prove the same optimality
result for the case of minimax utility, that measures the maximum expected loss for
any query result. Finally, in [Brenner 2010] the authors show that these optimal
mechanisms only exist for counting queries.

Differential privacy has been used in contexts other than statistical databases.
It has, for instance, gained a lot of attention in the context of smart metering,
since reassuring users with strong privacy guarantees is key for their deployment.
In [Danezis 2011] the authors use the differential privacy framework to enhance
fine-grained billing (like smart metering for electricity, on-demand TV content, etc)
with privacy guarantees. The basic idea is that a small amount of noise should be
added to each individual payment or reading, in a way to ensure differential privacy
guarantees on the total amount to be payed. However, since this would lead the
user to pay more than he should, a cryptographic protocol is proposed to future
track and reclaim the extra amount payed due to privacy protection. The authors
of [Ács 2011] rely on adding noise to the individual readings in such a way that
the total aggregated noised reading for a cluster (a set of users or households) is
as accurate as possible. Also in the case of location-based systems, several authors
have proposed differential privacy based approaches to protect users’ privacy. These
works will be discussed in more detail in Section 3.2.
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There are other works that attempt to generalize the notion of differential privacy
by extending the metric used to measure the distance between databases. The
authors of [Reed 2010] introduce the idea of a general metric for differential privacy,
and develop a type system that can be used to model algorithms that offer differential
privacy in the standard way. In [McSherry 2007] the authors design a generalized
version of the Laplace mechanism that adds noise to non-numerical query results, by
means of a scoring function. In practice, however, no metric other than the standard
hamming distance is used in any of the previously mentioned works.

1.1.2 Goals

In this work, we are interested in deriving a formal notion of privacy that can be used
measure and quantify the privacy of a given application. We will focus on the case
where the information to be protected is the user’s data and not the user’s identity.
As we mentioned before, one of the most prominents notions for this scenario is
differential privacy. However, and although some generalized versions of this notion
exist in the literature, no definition other than the standard one have been used in
practice. We are interested in a notion that can be applied to an arbitrary domain
of secrets, in which there might be no information aggregation at all.

We set as the main goal of this thesis the study and evaluation of a privacy
framework, based on a generalized notion of differential privacy, that is suitable for
arbitrary domains of secrets. We argue that this can be done by paying particular
attention to the notion of distance between secrets (corresponding to the adjacency
relation between databases in standard differential privacy). For an arbitrary set
of secrets, the distance function can be interpreted as the level of distinguishability
between secrets. Therefore, by defining and manipulating this distance, we would be
able to express different scenarios and privacy threats, and to develop corresponding
privacy protection mechanisms for each case.

As a running example, we consider a user located in Paris who wishes to use a
location-based service (that is, an application that provides a service based on the
current location of the user) to find nearby restaurants in a private way. In principle,
this could be achieved by disclosing some approximate information z instead of
his exact location x. However, in order to get any useful privacy guarantee, this
approximate information cannot be generated naively. It is clear that there is no
direct way to apply the standard notion of differential privacy in this context: there is
no database involved, and no information to be aggregated. In the rest of this thesis,
we will aim at developing a generalized version of the definition of differential privacy
that can be successfully applied in this scenario. We will also design mechanism that
can be used to achieve this notion, and evaluate them in terms of utility, privacy and
complexity. However, these mechanisms will be designed in such a way that they
can be implemented directly into the user’s device, without modifying the service
provider, since this will allow us to use them within any existing location-aware
application. Moreover, in some cases this might be the only possible solution, since
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in general providers do not have enough incentives to modify their services in order
to add privacy guarantees.

1.2 Plan of the thesis and contributions

In this section we present a brief description of the content of each of the following
chapters, as well as the contributions in each of them.

In Chapter 2 we review some basic notions and results that will be used in the
rest of the thesis, including concepts and basic results on metrics, probabilities, and
mechanisms. We also devote a small section to the basics of standard differential
privacy.

In Chapter 3 we present the state-of-the-art on location privacy metrics. We
review in detail two notions to measure the privacy and utility of a location ob-
fuscation mechanism, that will be widely used in later chapters. We also present
a mechanism, based on these two notions, that achieve optimal privacy guarantees
under certain conditions. Finally, we review various different ways to measure lo-
cation privacy, addressing the strengths and weaknesses of each. This will help us
defining the specific goals to be pursued when building our own notion of location
privacy.

In Chapter 4 we present a generalization of the popular notion of differential
privacy. This generalization assumes a generic domain of secrets equipped with
a privacy metric. This way, the definition can be adapted to numerous scenarios
where the standard definition would not be convenient (or even possible) to apply.
We present intuitive characterizations of the different privacy threats in terms of
a Bayesian adversary, which generalize the two most common interpretations of
the standard definition of differential privacy. We revisit the well-known results
stating that universally optimal mechanisms exist only for counting queries: we
show that, in our extended setting, universally optimal mechanisms exist for other
queries too, notably sum, average, and percentile queries. Finally, we explore various
applications of the generalized definition, for statistical databases as well as for other
areas, such as smart metering.

In Chapter 5 we introduce geo-indistinguishability, a novel definition of location
privacy, derived as an instance of the previous generalized privacy definition by
considering the set of secrets to be a set of spatial locations. This privacy definition
formalizes the intuitive notion of protecting the user’s location within a radius r

with a level of privacy that depends on r. Furthermore, we present a mechanism for
achieving geo-indistinguishability by adding controlled random noise to the user’s
location. We describe how to use our mechanism to enhance location-based service
(LBS) applications with geo-indistinguishability guarantees without compromising
the quality of the application results. We also show, through a case study, how
the proposed method can be used to sanitise a dataset containing location data
without heavily affecting the obtained results. Finally, we compare state-of-the-art
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mechanisms from the literature with ours. We will see that, among all mechanisms
independent of the prior, our mechanism offers the best privacy guarantees.

In Chapter 6 we tackle the problem of the trade-off between privacy and utility
of a geo-indistinguishable mechanism. We show that, given a desired degree of geo-
indistinguishability, it is possible to construct a mechanism that minimizes the qua-
lity loss (which corresponds to the inverse of the utility), using linear programming
techniques. In addition we show that, under certain conditions, such mechanism also
provides optimal privacy in terms of the privacy definition presented in Chapter 2
(known as the expected error of the adversary [Shokri 2012]). Furthermore, we
propose a method (based on approximating distances by using spanning graphs) to
reduce the number of constraints of the linear program from cubic to quadratic,
maintaining the privacy guarantees and without affecting significantly the utility of
the generated mechanism. This reduces considerably the time required to solve the
linear program, thus enlarging significantly the location sets for which the optimal
mechanisms can be computed. We end this chapter by performing a comparison
with other methods in terms of privacy, utility, and performance, using data from
real users to generate the probability distributions and evaluating the results.

Finally, Chapter 7 present the concluding remarks of this work.

1.3 Publications from this dissertation

The content of this dissertation is based on the following publications:

• Chapter 4 is based on the results presented in the paper Broadening the

Scope of Differential Privacy Using Metrics [Chatzikokolakis 2013a],
that appeared in the proceedings of the 13th International Privacy Enhancing

Technologies Symposium (PETS 2013).

• Chapter 5 is based on the results presented in the paper Geo-Indisinguishability:

Differential Privacy for Location-Based Systems [Andrés 2013], that
appeared in the proceedings of the 20th ACM SIGSAC Conference on Com-

puter and Communications Security (CCS 2013).

• Chapter 6 is based on the results presented in the paper Optimal Geo-

Indistinguishable Mechanisms for Location Privacy [Bordenabe 2014],
that appeared in the proceedings of the 21th ACM SIGSAC Conference on

Computer and Communications Security (CCS 2014).





Chapter 2

Preliminaries

In this chapter we introduce some definitions and known results from the literature
that will be used throughout the rest of this thesis.

2.1 Probability measures, mechanisms and metrics

A σ-algebra over a set X is a collection F of subsets of X closed under complement
and countable union, and such that X ∈ F . A measure over (X ,F) is a function
ν : F 7→ [0,∞] that is countably additive and such that ν(∅) = 0. Common examples
are the Lebesgue measure on R

n, corresponding to the notions of area and volume,
and the counting measure on countable sets, defined as ν(X) = |X|. For a function
f : X → R, both

∫
X fdν and

∫
X f(x)dν(x) denote the (Lebesgue) integral of f over

X ∈ F w.r.t. ν. Note that
∫
X fdν corresponds (under conditions) to the standard

Riemann integral when ν is the Lebesque measure, while
∫
X fdν =

∑
x∈X f(x) when

ν is the counting measure.
A probability measure is a measure µ over (Ω,F) (where Ω is called the sample

space), such that µ(Ω) = 1. A probability measure is called discrete if Ω is countable
and F = 2Ω; in such case it can be uniquely described by the probability µ({ω}) that
it assigns to singleton elements ω ∈ Ω. In this thesis we generally assume that each
sample set Ω is equipped with some natural σ-algebra FΩ, which should be clear
from the context. For example this would be the powerset if Ω is countable, the usual
Borel algebra if Ω = R

n, etc. We denote by P(Ω) the set of probability measures
over (Ω,FΩ). For A,B ∈ F with µ(B) > 0 we define conditional probability as
µ(A|B) = µ(A ∩B)/µ(B).

A common way of defining a probability measure µ on (Ω,F) is by means of
a probability density function (pdf), that is a function f : Ω → [0,∞) such that∫
Ω fdν = 1 for some reference measure ν on (Ω,F). In this case µ is defined as
µ(X) =

∫
X fdν,X ∈ F . We denote by D(Ω) the set of pdfs over Ω.

Given two sets X and Z, let FZ be a σ-algebra over Z and let P(Z) be the set of
probability measures over Z. A mechanism from X to Z is a (probabilistic) function
K : X → P(Z). The composition H ◦ f of a deterministic function f : X → Y
(called a query) and a mechanism H : Y → P(Z) is the mechanism K : X → P(Z)
defined as K(x) = (H ◦ f)(x) = H(f(x)). Mechanisms of this form are called
oblivious.

Let π be a discrete probability measure on X , called a prior.1 Starting from
π and using Bayes’ rule, each observation Z ∈ Z of a mechanism K : X → P(Z)

1We restrict to discrete priors for simplicity; all results could be carried to the continuous case.
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induces a posterior measure σ = Bayes(π,K,Z) on X , defined as

σ(x) =
K(x)(Z)π(x)∑

x′∈X K(x′)(Z)π(x′)

A metric on a set X is a function dX : X 2 → [0,∞] such that dX (x, y) = 0 iff
x = y, dX (x, y) = dX (y, x), and dX (x, z) ≤ dX (x, y) + dX (y, x) for all x, y, z ∈ X .
The diameter of A ⊆ X is defined as dX (A) = supx,x′∈A dX (x, x

′).
A sequence x1, . . . , xn is called a chain from x1 to xn and denoted by x̃. The

length dX (x̃) of a chain is defined as dX (x̃) =
∑n−1

i=1 dX (xi, xi+1). If dX (x̃) =

dX (x1, xn) then x̃ is called tight.
Of particular interest are metrics induced by a graph (X ,∼X ), where ∼X is the

graph’s adjacency relation. In the induced metric, dX (x, x
′) is the length of the

shortest path from x to x′ (or infinite if no path exists). Of great interest are also
the Manhattan (or L1), the Euclidean (or L2) and the Maximum (or L∞) metrics,
denoted by d1, d2, d∞ respectively. The numerical distance on the reals (which
coincides with all d1, d2, d∞) will be denoted by dR for clarity. Finally, of great
interest is the metric dP on P(Z) defined as

dP(µ1, µ2) = sup
Z∈FZ

∣∣∣∣ln
µ1(Z)

µ2(Z)

∣∣∣∣

with the convention that
∣∣∣ln µ1(Z)

µ2(Z)

∣∣∣ = 0 if both µ1(Z), µ2(Z) are zero and ∞ if only

one of them is zero.

2.2 Differential Privacy

Differential privacy is typically defined on databases and requires that changes to
a single individual in the database should have minor effect on the outcome of a
query2. We fix a finite domain of values V , called the universe. A database x ∈ Vn
consists of n records from V - each corresponding to an individual - that is x is a
tuple 〈x[1], . . . , x[n]〉, x[i] ∈ V, where x[i] is the value of the i-th individual in the
database. We denote by x[v/i] the database obtained from x by substituting the
value v for individual i. The case when individuals are allowed to be absent from
the database can be modeled by the universe V∅ = V ∪ {∅} where the null value ∅

denotes absence.
A crucial notion for differential privacy is that of adjacency : two databases x, x′

are adjacent, written x ∼h x′, if they differ in exactly one element. Let dh be the
distance induced by ∼h (i.e., dh(x, x′) is the number of elements in which x, x′ differ).
The graph (Vn,∼h) is known as Hamming graph, and dh as Hamming distance.

Let Z be a set of query outcomes; a mechanism K : Vn → P(Z) satisfies ǫ-dif-
ferential privacy if adjacent databases produce answers with probabilities that differ

2An alternative definition requires the inclusion or exclusion of a single individual to have a

minor efect on the query outcome. We will see in Chapter 4 that these two definitions coincide.
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at most by a factor eǫ:

K(x)(Z) ≤ eǫ K(x′)(Z) ∀x ∼h x′ ∈ Vn, Z ∈ FZ (2.1)

Following [Reed 2010], the definition can be expressed as dP(K(x),K(x′)) ≤ ǫ

for all x ∼h x′. Moreover, we can rewrite it in terms of the Hamming distance:
dP(K(x),K(x′)) ≤ ǫdh(x, x

′) for all x, x′ ∈ Vn.
The following simple lemma states that bounding dP is equivalent to the usual

formulation of bounding the ratio between probabilities.

Lemma 2.1. Let µ1, µ2 be probability measures on Z. Then

dP(µ1, µ2) ≤ b iff ∀Z ∈ FZ : e−bµ2(Z) ≤ µ1(Z) ≤ ebµ2(Z)

Proof. (⇒) We have | ln µ1(Z)
µ2(Z) | ≤ dP(µ1, µ2) ≤ b, hence −b ≤ ln µ1(Z)

µ2(Z) ≤ b, which

implies e−b ≤ µ1(Z)
µ2(Z) ≤ eb. (⇐) We have that | ln µ1(Z)

µ2(Z) | is bounded from above by b,
but dP(µ1, µ2) is the least of such bounds hence dP(µ1, µ2) ≤ b.

A desirable feature of this definition is that it solely depends on the mechanism
itself, without explicitly talking about the adversary’s side knowledge, or the infor-
mation that he learns from the reported answer. However, in order to get a better
understanding of a privacy definition, it is useful to give an “operational” (or “se-
mantic”) interpretation that directly restricts the abilities of the adversary. To this
end, we capture the adversary’s side knowledge by a prior distribution π on Vn, and
his conclusions after observing Z by the posterior distribution σ = Bayes(π,K,Z).

2.2.1 Operational characterizations

There are two operational interpretations commonly given to differential privacy.
The first can be informally stated as: “regardless of side knowledge, by observing
the reported answer an adversary obtains the same information whether or not the
individual’s data were included in the database”. This can be formalized as follows:
consider a hiding function φi,v : Vn → Vn replacing i’s value by a fixed value v,
i.e. φi,v(x) = x[v/i], and let Φh = {φi,v | i ∈ 1..n, v ∈ V} be the set of all such
functions. The mechanism K ◦φi,v behaves as K after removing i’s value; hence we
require the posterior distributions induced by K,K◦φi,v to be similar. The resulting
notion (called “semantic privacy” in [Ganta 2008])3 can be shown to be implied by
differential privacy.

Theorem 2.1. If a mechanism K : Vn → P(Z) satisfies ǫ-differential privacy then

for all priors π on Vn, all φ ∈ Φh, and all Z ∈ FZ :

dP(σ1, σ2) ≤ 2ǫ where σ1 = Bayes(π,K,Z) and σ2 = Bayes(π,K ◦ φ, Z)

3The only difference between the semantic privacy of [Ganta 2008] and our formulation is that

an “additive” metric between distributions is used instead of the “multiplicative” dP .
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Note that the above interpretation compares two posterior measures. This re-
quirement does not imply that the adversary learns no information, but that he
learns the same regardless of the presence of the individual’s data. Both σ1, σ2
can be very different than the prior π, as the well-known example of Terry Gross
[Dwork 2006a] demonstrates.

A different interpretation can be obtained by comparing the posterior σ to the
prior distribution π. Of course, we cannot expect those to be similar, since some
information is allowed to be disclosed. Still, we can require the distributions to be
similar when restricted to the value of a single individual, by assuming an informed
adversary who knows all other values in the database. Let Ni(x) = {x[v/i] | v ∈ V}
denote the set of databases obtained from x by modifying i’s value, and let Nh =

{Ni(x) | x ∈ Vn, i ∈ 1..n}. Knowing that the database belongs to a set N ∈ Nh

means that we know all values except one. We denote by π|N the distribution
obtained from π by restricting to N , i.e. π|N (x) = π(x|N). Requiring π|N , σ|N to
be similar brings us the definition of “semantic security” from [Dwork 2006b], which
is a full characterization of differential privacy.

Theorem 2.2. A mechanism K : Vn → P(Z) satisfies ǫ-differential privacy iff for

all priors π on Vn, all N ∈ Nh, and all Z ∈ FZ :

dP(π|N , σ|N ) ≤ ǫ where σ = Bayes(π,K,Z)

Note that if the adversary does not know N ∈ Nh, then his knowledge can (and
will in most cases) be increased. Note also that the above result does not imply
that K allows the adversary to learn Ni(x). In fact, this is clearly forbidden since
it would violate the same condition for Nj(x), j 6= i, i.e. it would violate the other
individuals’ privacy.

2.2.2 The Laplace mechanism

We consider a query to be a function f : Vn → Y , with Y being the set of possible
results with a corresponding metric dY . The sensitivity of f is the maximum diffe-
rence in the result of the query that can be obtained by modifying a single value in
a database. Namely:

Definition 2.1. A query f is ∆-sensitive iff:

dY(f(x), f(x
′)) ≤ ∆ ∀x ∼h x′ ∈ Vn

The smallest such ∆ (if exists) is called the sensitivity of f .

In order to answer queries with differential privacy guarantees, we can compose
f with a mechanism H : Y → P(Z). This way, we obtain an oblivious mechanism
H ◦ f : Vn → P(Z),

Fact 2.1. If f is ∆-sensitive and H satisfies ǫ-differential privacy, then H ◦ f
satisfies ∆ǫ-differential privacy.
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Figure 2.1: Linear laplacians with different means and same scale, repre-

senting the distributions of the reported value when the answer of the

query is either 1 or 2.

For the most common case when Y = Z = R, the usual technique to achieve
differential privacy is by adding noise generated from a Laplace distribution with
mean 0 and scale ∆

ǫ , which has the following pdf:

f(z) =
ǫ

2∆
e−

ǫ|z|
∆

Figure 2.1 shows the pdf corresponding to two different query results.

Theorem 2.3. Let f : Vn → Y be a ∆-sensitive query and K : Y → P(Z) a

mechanism adding noise generated from a Laplace distribution with mean 0 and

scale ∆/ǫ. Then K ◦ f satisfies ǫ-differential privacy.





Chapter 3

Metrics for Location Privacy

The use of location-based services (LBSs) has been significantly increased by the
growing popularity of mobile devices like smartphones and tablets, in combination
with the increasing availability of wireless data connections. However, while these
systems have demonstrated to provide enormous benefits to individuals and society,
the growing exposure of users’ location information raises important privacy issues.
Consider a user located in Paris who wishes to query an LBS provider for nearby
restaurants. In order to keep his location information private, but at the same
time obtain useful results, he is willing to disclose some approximate information
z instead of his exact location x. However, it is clear that if he expects to have a
reasonable level of privacy, this approximate location cannot be generated naively.
Our goal is to provide a formal notion of privacy that adequately captures the user’s
expected privacy.

In this chapter, we briefly examine various notions and mechanisms from the
literature in location privacy of LBSs. We pay particular attention to the notion
of expected distance with respect to an obfuscation mechanism, which serves as the
basis for two important notions used later in this thesis: the expected error of the
adversary, used to quantify the location privacy provided by a mechanism, and the
quality loss, used to calculate its utility.

We also explore other location privacy notions, addressing their strengths and
weaknesses. This will help in defining the goals our desired privacy notion needs to
satisfy.

3.1 Location obfuscation, quality loss and adversary’s

error

A common way of achieving location privacy is to apply a location obfuscation mech-
anism, that is a probabilistic function K : X → P(X ) where X is the set of possible
locations, and P(X ) denotes the set of probability distributions over X . K takes a
location x as input, and produces a reported location z which is communicated to
the service provider. In this paper we generally consider X to be finite, in which
case K can be represented by a stochastic matrix, where kxz is the probability to
report z from location x.

A prior distribution π ∈ P(X ) on the set of locations can be viewed either as
modelling the behaviour of the user (the user profile), or as capturing the adversary’s
side information about the user. Given a prior π and a metric d on X , the expected
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distance between the real and the reported location is:

ExpDist(K,π, d) =
∑

x,z πxkxzd(x, z)

From the user’s point of view, we want to quantify the service quality loss (QL)

produced by the mechanism K. Given a quality metric dQ on locations, such that
dQ(x, z) measures how much the quality decreases by reporting z when the real
location is x (the Euclidean metric d2 being a typical choice), we can naturally
define the quality loss as the expected distance between the real and the reported
location, that is

QL(K,π, dQ) = ExpDist(K,π, dQ)

The QL can also be viewed as the (inverse of the) utility of the mechanism.
Similarly, we want to quantify the privacy provided by K. A natural approach is

to consider a Bayesian adversary with some prior information π, trying to remap z

back to a guessed location x̂. A remapping strategy can be modelled by a stochastic
matrix H, where hzx̂ is the probability to map z to x̂. Then the privacy of the
mechanism can be defined as the expected error of an adversary under the best
possible remapping [Shokri 2011, Shokri 2012, Hoh 2005]:

AdvError(K,π, dA) = min
H

ExpDist(KH,π, dA)

Note that the composition KH of K and H is itself a mechanism. Similarly to dQ,
the metric dA(x, x̂) captures the adversary’s loss when he guesses x̂ while the real
location is x. Note that dQ and dA can be different, but the canonical choice is to
use the Euclidean distance for both. However, in this thesis we do not make any
assumption about what these metrics are.

A natural question, then, is to construct a mechanism that achieves optimal

privacy, given a QL constraint.

Definition 3.1. Given a prior π, a quality metric dQ, a quality bound q and an

adversary metric dA, a mechanism K is q-OptPriv(π, dA, dQ) iff

1. QL(K,π, dQ) ≤ q, and

2. for all mechanisms K ′, QL(K ′, π, dQ) ≤ q implies AdvError(K ′, π, dA) ≤
AdvError(K,π, dA)

In other words, a q-OptPriv mechanism provides the best privacy (expressed
in terms of AdvError) among all mechanisms with QL at most q. This problem
was studied in [Shokri 2012], providing a method to construct such a mechanism for
any q, π, dA, dQ, by solving a zero-sum Bayesian Stackelberg game with a properly
constructed linear program.

It is worth noting that this privacy notion and the obfuscation mechanisms
based on it are explicitly defined in terms of the adversary’s side information. This
implies that location-obfuscation mechanisms based on this notion assume that the
attacker have some particular kind of side-information (for instance, past location
traces of the user), and therefore the definition is only satisfied for this limited class
of adversaries.
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3.2 Other ways to measure location privacy

k-anonymity

The notion of k-anonymity is the most widely used definition of privacy for location-
based systems in the literature. Many systems in this category [Gruteser 2003,
Gedik 2005, Mokbel 2006] aim at protecting the user’s identity, requiring that the
attacker cannot infer which user is executing the query, among a set of k different
users. Such systems are outside the scope of our problem, since we are interested in
protecting the user’s location.

On the other hand, k-anonymity has also been used to protect the user’s location
(sometimes called l-diversity in this context), requiring that it is indistinguishable
among a set of k points (often required to share some semantic property). One way to
achieve this is through the use of dummy locations [Kido 2005, Shankar 2009]. This
technique involves generating k−1 properly selected dummy points, and performing
k queries to the service provider, using the real and dummy locations. Another
method for achieving k-anonymity is through cloaking [Bamba 2008, Duckham 2005,
Xue 2009]. This involves creating a cloaking region that includes k points sharing
some property of interest, and then querying the service provider for this cloaking
region.

Even when side knowledge does not explicitly appear in the definition of k-
anonymity, a system cannot be proven to satisfy this notion unless assumptions are
made about the attacker’s side information. For example, dummy locations are only
useful if they look equally likely to be the real location from the point of view of the
attacker. Any side information that allows to rule out any of those points, as having
low probability of being the real location, would immediately violate the definition.

Counter-measures are often employed to avoid this issue: for instance, [Kido 2005]
takes into account concepts such as ubiquity, congestion and uniformity for genera-
ting dummy points, in an effort to make them look realistic. Similarly, [Xue 2009]
takes into account the user’s side information to construct a cloaking region. Such
counter-measures have their own drawbacks: first, they complicate the employed
techniques, also requiring additional data to be taken into account (for instance,
precise information about the environment or the location of nearby users), ma-
king their application in real-time by a handheld device challenging. Moreover, the
attacker’s actual side information might simply be inconsistent with the assump-
tions being made. A detailed study of the flaws of k-anonymity as a framework for
location privacy have also been studied in [Shokri 2010].

As a result, notions that abstract from the attacker’s side information, such as
differential privacy, have been growing in popularity in recent years, compared to
k-anonymity-based approaches.

Differential Privacy

Differential privacy has also been used in the context of location privacy. In the
work of [Machanavajjhala 2008], it is shown that a synthetic data generation tech-
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nique can be used to publish statistical information about commuting patterns in a
differentially private way. In [Ho 2011], a quadtree spatial decomposition technique
is used to ensure differential privacy in a database with location pattern mining
capabilities.

As shown in the aforementioned works, differential privacy can be successfully
applied in cases where aggregate information about several users is published. On
the other hand, the nature of this notion makes it poorly suitable for applications
in which only a single individual is involved, such as our motivating scenario. The
secret in this case is the location of a single user. Thus, differential privacy would
require that any change in that location should have negligible effect on the published
output, making it impossible to communicate any useful information to the service
provider.

To overcome this issue, Dewri [Dewri 2012] proposes a mix of differential privacy
and k-anonymity, by fixing an anonymity set of k locations and requiring that the
probability to report the same obfuscated location z from any of these k locations
should be similar (up to eǫ). This property is achieved by adding Laplace noise
to each Cartesian coordinate independently. There are however two problems with
this definition: first, the choice of the anonymity set crucially affects the resulting
privacy; outside this set no privacy is guaranteed at all. Second, the property itself
is rather weak; reporting the geometric median (or any deterministic function) of
the k locations would satisfy the same definition, although the privacy guarantee
would be substantially lower than using Laplace noise.

Nevertheless, Dewri’s intuition of using Laplace noise1 for location privacy is
valid, and [Dewri 2012] provides extensive experimental analysis supporting this
claim.

Approach-specific location-privacy metrics

There are also other location-privacy definitions that can be found in the literature,
usually specific to some particular obfuscation mechanism. [Cheng 2006] proposes
a location cloaking mechanism, and focuses on the evaluation of Location-based
Range Queries. The degree of privacy is measured by the size of the cloak (also
called uncertainty region), and by the coverage of sensitive regions, which is the
ratio between the area of the cloak and the area of the regions inside the cloak that
the user considers to be sensitive. In order to deal with the side-information that the
attacker may have, ad-hoc solutions are proposed, like patching cloaks to enlarge
the uncertainty region or delaying requests. Both solutions may cause a degradation
in the quality of service.

In [Ardagna 2007], the real location of the user is assumed to have some level of
inaccuracy, due to the specific sensing technology or to the environmental conditions.
Different obfuscation techniques are then used to increase this inaccuracy in order

1The planar Laplace distribution that we use later in this thesis, however, is different from

the distribution obtained by adding Laplace noise to each Cartesian coordinate, and has better

differential privacy properties (c.f. Section 5.2).
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to achieve a certain level of privacy. This level of privacy is computed as (the
opposite of) the relevance of the location measurement. Relevance is defined as
the ratio between the accuracy before and after the application of the obfuscation
techniques.

Similar to the case of k-anonymity, both privacy metrics mentioned above make
implicit assumptions about the adversary’s side information. This may imply a vio-
lation of the privacy definition in a scenario where the adversary has some knowledge
(maybe probabilistic) about the user’s real location.

Transformation-based approaches

A number of approaches for location privacy are radically different from the ones
mentioned so far. Instead of cloaking the user’s location, they aim at making it
completely invisible to the service provider. This is achieved by transforming all
data to a different space, usually employing cryptographic techniques, so that they
can be mapped back to spatial information only by the user [Khoshgozaran 2007,
Ghinita 2008]. The data stored in the provider, as well as the location send by
the user are encrypted. Then, using techniques from private information retrieval,
the provider can return information about the encrypted location, without ever
discovering which actual location it corresponds to.

A drawback of these techniques is that they are computationally demanding,
making it difficult to implement them in a handheld device. Moreover, they require
the provider’s data to be encrypted, making it impossible to use existing providers,
such as Google Maps, which have access to the real data.





Chapter 4

Generalizing Privacy with Metrics

Because of the focus on the single individual as the unit of protection, differential
privacy relies in a crucial way on the notion of two databases being adjacent, i.e.
differing only for an individual. For two non-adjacent databases, there is no re-
quirement other than the one induced by the transitive application of the property.
When the sensitive information to be protected is other than the value of a single
individual, it is common to consider different notions of adjacency. For example, in
cases of cohesive groups with highly correlated values, we could consider adjacent
two databases differing in any number of individuals of the same group. Similarly,
when dealing with friendship graphs in social networks, adjacency could be defined
as differing in a single edge.

We argue that in some situations the distinguishability level between x and x′

should depend not only on the number of different values between x and x′, but also
on the values themselves. We might require, for instance, databases in which the
value of an individual is only slightly modified to be highly indistinguishable, thus
protecting the accuracy by which an analyst can infer an individual’s value.

More generally, we might want to apply differential privacy in scenarios when
x, x′ are not databases at all, but belong to an arbitrary domain of secrets X . In such
a scenario, there might be no natural notion of adjacency, but it is still reasonable
to define a distinguishability level between secrets, and employ the same principle
of differential privacy – i.e. the smaller the distinguishability level between x, x′ is,
the more similar the probability distributions K(x), K(x′) are required to be – to
obtain a meaningful notion of privacy.

In the case of an arbitrary set of secrets X , equipped with a metric dX , differential
privacy can be generalized as follows:

Definition 4.1. A mechanism K : X → P(Z) satisfies dX -privacy, iff ∀x, x′ ∈ X :

dP(K(x),K(x′)) ≤ dX (x, x
′), or equivalently:

K(x)(Z) ≤ edX (x,x′) K(x′)(Z) ∀Z ∈ FZ

Intuitively, the definition requires that secrets close to each other w.r.t. dX ,
meaning hardly distinguishable, should produce outcomes with similar probability.
This is the same core idea as in differential privacy, which can be retrieved as
X = Vn, dX = ǫdh.

Note that Definition 4.1 contains no ǫ; the distinguishability level is directly given
by the metric. In practice, the desired metric can be obtained from a standard one
by scaling by a proper factor ǫ (recall that a scaled metric is also a metric). For
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instance, in the case of standard differential privacy, the Hamming distance between
adjacent databases is 1, and we want their distinguishability level to be ǫ, hence we
use the scaled version ǫdh.

Note also that an extended metric (allowing dX (x, x
′) = ∞) can be useful in

cases when we allow two secrets to be completely distinguished. The understanding
of Definition 4.1 is that the requirement is always satisfied for those secrets. Simi-
larly, pseudo-metrics (allowing dX (x, x

′) = 0 for x 6= x′) could be useful when we
want some secrets to be completely indistinguishable (forcing K(x) and K(x′) to be
identical). To simplify the presentation, in this thesis assume an extended metric
(but not pseudo).

Different metrics dX , dX
′ on the same set X clearly give rise to different pri-

vacy notions. The “strength” of each notion depends on the distinguishability level
assigned to each pair of secrets; dX -privacy and dX

′-privacy are in general incompa-
rable. However, lower distinguishability level implies stronger privacy.

Proposition 4.1. If dX ≤ dX
′ (point-wise) then dX -privacy implies dX

′-privacy.

Proof. Immediate, since dP(K(x),K(x′)) ≤ dX (x, x
′) ≤ dX

′(x, x′).

For example, some works consider an adjacency relation ∼r slightly different
than ∼h, defined as x ∼r x′ iff x′ = x[∅/i] (or vice versa), i.e. x′ can be obtained
from x by removing one individual. This relation gives rise to a metric dr for which
it holds that: 1

2dr ≤ dh ≤ dr. From Proposition 4.1, the two models are essentially
equivalent; one can obtain ǫdr-privacy from ǫdh-privacy by doubling ǫ and vice versa.

4.1 Operational characterizations

Similarly to standard differential privacy, dX -privacy does not explicitly talk about
the adversary’s gain of knowledge. To better understand the privacy guarantees
provided by a certain metric dX , it is useful to directly reason about the capabi-
lities of the adversary. Two such characterizations are given, generalizing the two
interpretations of standard differential privacy (Theorems 2.1,2.2).

4.1.1 First characterization

The first characterization uses the concept of a hiding function φ : X → X . The
idea is that φ can be applied to x before the mechanism K, so that the lat-
ter has only access to a hidden version φ(x), instead of the real secret x. Let
dX (φ) = supx∈X dX (x, φ(x)) be the maximum distance between a secret and its
hidden version. We can show that dX -privacy implies that the adversary’s conclu-
sions (captured by his posterior measure) are the same (up to 2dX (φ)) regardless
of whether φ is applied or not. Moreover, we show that certain classes of hiding
functions are “canonical”, in the sense that if the property holds for those, it must
hold in general. We start by defining this class.
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Definition 4.2. Let Φ be a set of functions from X to X , called hiding functions.

A chain x̃ is called a maximal Φ-chain iff for every step i there exists φ ∈ Φ s.t.

φ(xi) = xi+1, φ(xi+1) = xi and dX (xi, xi+1) = dX (φ). Then Φ is called maximally
tight w.r.t. dX iff ∀x, x′ ∈ X there exists a tight maximal Φ-chain from x to x′.

Note that the above property requires hiding functions that swap the secrets
xi, xi+1. This is not satisfied by the hiding functions φi,v introduced in Section
2.2.1, but will be satisfied by more general functions used later in this thesis.

The following Lemma shows the usefulness of tight chains.

Lemma 4.1. Let x1, . . . , xn be a tight chain. If K satisfies dX -privacy on all adja-

cent elements of the chain, then it also satisfies it for x1, xn. That is

dP(K(xi),K(xi+1)) ≤ dX (xi, xi+1) ∀1 ≤ i < n

implies dP(K(x1),K(xn)) ≤ dX (x1, xn).

Proof. Using the fact that dP is itself a metric, we have

dP(K(x1),K(xn)) ≤
∑n−1

i=1 dP(K(xi),K(xi+1)) triangle ineq. for dP

≤∑n−1
i=1 dX (xi, xi+1) hypothesis

= dX (x1, xn) tightness

Theorem 4.1. Let Φ be a set of hiding functions. If K satisfies dX -privacy then

for all φ ∈ Φ, all priors π on X , and all Z ∈ FZ :

dP(σ1, σ2) ≤ 2 dX (φ) where σ1 = Bayes(π,K,Z)

σ2 = Bayes(π,K ◦ φ, Z)

If Φ is maximally tight then the converse also holds.

Proof. Assume that K satisfies dX -privacy and let π be a prior, φ ∈ Φ and Z ∈ FZ .
We need to show that

∀x ∈ X : e−2dX (φ)σ1(x) ≤ σ2(x) ≤ e2dX (φ)σ1(x)

(then conclude by applying Lemma 2.1). Let x ∈ X , we have:

σ2(x)

=
(K ◦ φ)(x)(Z)π(x)∑

x′∈X (K ◦ φ)(x′)(Z)π(x′)
def. of Bayes

=
K(φ(x))(Z)π(x)∑

x′∈X K(φ(x′))(Z)π(x′)

≤ edX (x,φ(x))K(x)(Z)π(x)∑
x′∈X e−dX (x′,φ(x′))K(x′)(Z)π(x′)

dX -privacy

≤ edX (φ)K(x)π(x)(Z)

e−dX (φ)
∑

x′∈X K(x′)(Z)π(x′)
dX (x, φ(x)) ≤ dX (φ)

≤ e2dX (φ)σ1(x) def. of Bayes



24 Chapter 4. Generalizing Privacy with Metrics

and symmetrically for σ2(x) ≥ e−2dX (φ)σ1(x).
For the opposite direction, assume that Φ is maximally tight (Def 4.2), that

dP(σ1, σ2) ≤ 2dX (φ) holds for all π, φ, Z, but dX -privacy is violated for some x, x′ ∈
X . From Def 4.2, there exist a tight maximal Φ-chain x̃ from x to x′. Then from
Lemma 4.1, we get that dX -privacy is also violated for some adjacent xi, xi+1 in the
chain, that is:

K(xi)(Z) > edX (xi,xi+1)K(xi+1)(Z) for some Z (4.1)

We fix Z to the one above. Since x̃ is a maximal Φ-chain, there exists φ ∈ Φ such
that φ(xi) = xi+1, φ(xi+1) = xi and dX (xi, xi+1) = dX (φ). Fixing this φ, we define
a function f : P(X )→ R as follows:

f(π) =

∑
x′∈X K(x′)(Z)π(x′)∑

x′∈X K(φ(x′))(Z)π(x′)

Let δ(x) denote the Dirac measure assigning probability 1 to x, from (4.1) we have
that

f(δ(xi)) =
K(xi)(Z)

K(xi+1)(Z)
> e−dX (xi,xi+1)

f(δ(xi+1)) =
K(xi+1)(Z)

K(xi)(Z)
< e−dX (xi,xi+1)

From the continuity of f on the line between δ(xi) and δ(xi+1), there exists a prior
π = tδ(xi)+(1−t)δ(xi+1), t ∈ (0, 1), such that f(π) = e−dX (xi,xi+1). Note that since
π is distinct from δ(xi), δ(xi+1), it holds that π(xi) > 0, π(xi+1) > 0. By applying
the hypothesis for this π, we get

dP(σ1, σ2) ≤ 2dX (φ) ⇒
σ1(xi) ≤ e2dX (φ)σ2(xi) (Lemma 2.1)⇒

K(xi)(Z)π(xi)∑
x′∈X K(x′)(Z)π(x′)

≤ e2dX (φ) K(φ(xi))(Z)π(xi)∑
x′∈X K(φ(x′))(Z)π(x′)

(Def. of σ1, σ2)⇒

K(xi)(Z) ≤ e2dX (φ)f(π)K(φ(xi))(Z) (π(xi) > 0)⇒
K(xi)(Z) ≤ edX (xi,xi+1)K(xi+1)(Z)

which contradicts (4.1).

The above characterization compares two posterior distributions; hence, it does
not impose that the adversary gains no information, but that this information is the
almost the same regardless of whether φ has been applied to the secret or not.

4.1.2 Second characterization

A different approach is to compare the adversary’s prior and posterior distributions,
measuring how much he learned about the secret. Since we allow some information
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to be revealed, we cannot expect these distributions to be similar. Still, if we
restrict to a neighborhood N of secrets that are close to each other, we can show
that dX -privacy implies that an informed adversary, knowing that the secret belongs
to N , can gain little more information about the exact secret regardless of his side
knowledge about N . Moreover, similarly to the previous characterization, we show
that certain classes of neighborhoods are “canonical”. We denote with dX (N) the
maximum distance between elements of N .

Definition 4.3. Let N ⊆ 2X . The elements of N are called neighborhoods. A

chain x̃ is called a maximal N -chain iff for every step i there exists N ∈ N such

that {xi, xi+1} ⊆ N and dX (xi, xi+1) = dX (N). Then N is called maximally tight
w.r.t. dX iff ∀x, x′ ∈ X there exists a tight maximal N -chain from x to x′.

The operational scenario is similar to the one of differential privacy. The N -
adversary (for some N ), selects a neighborhood N and a prior π on secrets. He wins
the game if, after observing the output of the mechanism, his posterior probability,
restricted to N , is increased by more than dX (N).

The following result states that if K satisfies dX -privacy then no such adver-
sary (for any N ) can win the game. Moreover, a maximally tight N represents a
“canonical” adversary that is as powerful as all others. The incapability of such an
adversary to win the game is sufficient to imply dX -privacy.

Theorem 4.2. Let N ⊆ 2X . If K satisfies dX -privacy then for all N ∈ N , all

priors π on X , and all Z ∈ FZ :

dP(π|N , σ|N ) ≤ dX (N) where σ = Bayes(π,K,Z)

If N is maximally tight then the converse also holds.

Proof. Assume that K satisfies dX -privacy. We fix some N ∈ N , π ∈ P(X ), Z ∈ FZ

and let σ = Bayes(π,K,Z). Note that π|N , σ|N are distributions on N . From
Lemma 2.1 we need to show that

e−dX (N)π|N (x) ≤ σ|N (x) ≤ edX (N)π|N (x) ∀x ∈ N

Fixing some x ∈ N , we have:

σ|N (x) = σ(x|N) def. of σ|N

=
σ(x)∑

x′∈N σ(x′)

=
π(x)K(x)(Z)∑

x′∈N π(x′)K(x′)(Z)
def. of Bayes

≤ π(x)K(x)(Z)∑
x′∈N π(x′)e−dX (x,x′)K(x)(Z)

dX -privacy

≤ edX (N) π(x)∑
x′∈N π(x′)

dX (x, x
′) ≤ dX (N)

= edX (N)π|N (x)
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and symmetrically for σ|N (x) ≥ e−dX (N)π|N (x).

For the opposite direction, assume that N is maximally tight (Def 4.3) but dX -
privacy is violated for some x, x′ ∈ X . From Def 4.3, there exist a tight N -chain
x̃ from x to x′. Then from Lemma 4.1, we get that dX -privacy is also violated for
some adjacent xi, xi+1 in the chain, that is:

K(xi)(Z) > edX (xi,xi+1)K(xi+1)(Z) for some Z (4.2)

Since x̃ is an N -chain, there exist N ∈ N such that {xi, xi+1} ⊆ N and
dX (xi, xi+1) = dX (N). We define a prior distribution πt(x) as

πt(x) =





t x = xi

1− t x = xi+1

0 otherwise

Using that prior for t > 0, we fix some Z ∈ FZ and let σt = Bayes(πt,K, Z). We
have

σt|N (xi) ≤ edX (N)πt|N (xi) (hypoth., Lemma 2.1)⇒
σt(xi) ≤ edX (N)πt(xi) (πt(N) = σt(N) = 1)⇒

πt(xi)K(xi)(Z)∑
x′∈X πt(x′)K(x′)(Z)

≤ edX (N)πt(xi) (def. of Bayes)⇒

tK(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (N)t (def. of πt)⇒

K(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (N) (t > 0)⇒

K(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (xi,xi+1) (dX (xi, xi+1) = dX (N))

The above inequality holds for all t > 0. Finally, taking the limt→0 on both sides
we get

K(xi)(Z) ≤ edX (xi,xi+1)K(xi+1)(Z)

which is a contradiction of (4.2).

Using meaningful (and maximally tight) sets Φ,N , and applying the above cha-
racterizations, we can get an intuitive understanding of the privacy guarantees of-
fered by dX -privacy. For example, in the case of databases, it can be shown that Nh

is maximally tight w.r.t. the dh metric, hence the characterization of Theorem 2.2
can be obtained as a special case of Theorem 4.2. Theorem 2.1 can also be obtained
from Theorem 4.1 (even though Φh is not maximally tight) since it only states an
implication in one direction.
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z1 z2

y1
3/4 1/4

y2
1/2 1/2

y3
1/4 3/4

Figure 4.1: Counterexample to the converse of Fact 4.1. The table repre-

sents the distribution H. We note that H ◦ f satisfies (ln 2)-privacy, and

that f is 1-sensitive. However H(y1)(z1) = 3/4 6≤ 2H(y3)(z1) = 1/2, hence H

does not satisfy (ln 2)-privacy.

4.2 Answering Queries

To obtain the answer to a query f : X → Y in a private way, we can compose it with
a mechanism H : Y → P(Z), thus obtaining an oblivious mechanism H ◦ f : X →
P(Z). In this section, we first state the standard compositionality result about the
privacy of H ◦ f , relying on the notion of ∆-sensitivity (aka Lipschitz continuity),
naturally extended to the case of dX -privacy. Then, we introduce the concept of
uniform sensitivity, and we use it to obtain the converse of the aforementioned
compositionality result, which in turn allows to give optimality results later in the
chapter.

Definition 4.4. f is ∆-sensitive w.r.t. dX , dY iff dY(f(x), f(x
′)) ≤ ∆ dX (x, x

′) for

all x, x′ ∈ X . The smallest such ∆ (if exists) is called the sensitivity of f w.r.t.

dX , dY .

Fact 4.1. Assume that f is ∆-sensitive w.r.t. dX , dY and H satisfies dY-privacy.

Then H ◦ f satisfies ∆dX -privacy.

Proof. Assume that H satisfies dY-privacy and let x, x′ ∈ X . We have:

dP((H ◦ f)(x), (H ◦ f)(x′)) = dP(H(f(x)), H(f(x′)))

≤ dY(f(x), f(x
′)) dY-privacy

≤ ∆dX (x, x
′) ∆-sensitivity

Note that it is common to define a family of mechanisms Hǫ, ǫ > 0, instead of
a single one, where each Hǫ satisfies privacy for a scaled version ǫdY of a metric of
interest dY . Given such a family and a query f , we can define a family of oblivious
mechanisms Kǫ = Hǫ/∆ ◦ f, ǫ > 0, each satisfying ǫdX -privacy (from Fact 4.1).

The converse of the above result does not hold in general, see Fig. 4.1 for a
counterexample. However, it does hold if we replace the notion of sensitivity by
the stronger notion of uniform sensitivity.



28 Chapter 4. Generalizing Privacy with Metrics

Definition 4.5. Two elements y, y′ ∈ Y are called ∆-expansive iff dY(y, y
′) =

∆dX (x, x
′) for some x ∈ f−1(y), x′ ∈ f−1(y′). A chain ỹ is ∆-expansive iff all steps

yi, yi+1 are ∆-expansive. Finally, f is uniformly ∆-sensitive iff it is ∆-sensitive and

for all y, y′ ∈ Y there exists a tight and ∆-expansive chain from y to y′.

Theorem 4.3. Assume that f is uniformly ∆-sensitive w.r.t. dX , dY . Then H

satisfies dY-privacy if and only if H ◦ f satisfies ∆dX -privacy.

Proof. The (⇒) part is Fact 4.1. For the (⇐) part, fix some y, y′ ∈ Y and let
y1, . . . , yn be the tight ∆-expansive chain from y to y′ guaranteed to exist by the
definition of uniform ∆-sensitivity. Then, for all 1 ≤ i < n, since yi, yi+1 are ∆-
expansive, there exist

x ∈ f−1(yi), x
′ ∈ f−1(yi+1) such that dY(f(x), f(x

′)) = ∆ dX (x, x
′)

Hence

dP(H(yi), H(yi+1)) = dP(H(f(x)), H(f(x′)))

≤ ∆dX (x, x
′) ∆dX -privacy of H ◦ f

= dY(yi, yi+1)

So H satisfies dY-privacy for all adjacent elements in the chain, hence from Lemma 4.1
it also satisfies it for y, y′.

4.2.1 Laplace Mechanisms

Adding Laplace noise is the most widely used technique for achieving differential
privacy. The mechanism can be naturally adapted to any metric, using a variant of
the exponential mechanism [McSherry 2007], by providing a properly constructed
scaling function. Note that in the framework of d-privacy, we can express the privacy
of the mechanism itself, on its own domain, without the need to consider a query or
a notion of sensitivity.

Definition 4.6. Let Y,Z be two sets, and let dY be a metric on Y ∪ Z. Let λ :

Z → [0,∞) be a scaling function such that D(y)(z) = λ(z) e−dY (y,z) is a pdf for all

y ∈ Y (i.e.
∫
Z D(y)(z)dν(z) = 1). Then the mechanism L : Y → P(Z), described

by the pdf D, is called a Laplace mechanism from (Y, dY) to Z.

Fact 4.2 ([McSherry 2007]). Any Laplace mechanism from (Y, dY) to Z satisfies

dY-privacy.

Proof. For the pdf describing the mechanism we have:

D(y)(z) = λ(z) e−dY (y,z)

≤ λ(z) e−(dY (y′,z)−dY (y,y′)) triangle ineq.

= edY (y,y′)λ(z) e−dY (y′,z)

= edY (y,y′)D(y′)(z)
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for all y, y′ ∈ Y, z ∈ Z. The above inequality can be directly extended from the pdf
to the measures, thus we conclude that the mechanism satisfies dY-privacy.

Figure 4.2 provides instantiations of the general definition for various choices
of Y,Z and dY used in this thesis, by properly adjusting λ(z). The basic case
(i) is that of the one-dimensional continuous Laplace mechanism. Similarly, we can
define a two-dimensional continuous Laplace mechanism (used in Chapters 5 and 6),
measuring the distance between points by either the Euclidean (ii) or the Manhattan
(iii) metric. In the discrete setting, we obtain the Truncated Geometric mechanism
TGǫ [Ghosh 2009], given by (iv), using a quantized set of reals as input. We denote
by q[0..k] the set {qi | i ∈ 0..k}, i.e. the set of k + 1 quantized reals with step size
q > 0.

(i) Y ⊂ R, Z = R dY = ǫdR λǫ(z) =
ǫ

2

(ii) Y ⊂ R
2, Z = R

2 dY = ǫd2 λǫ(z) =
ǫ2

2π

(iii) Y ⊂ R
2, Z = R

2 dY = ǫd1 λǫ(z) =
ǫ2

4

(iv) Y = Z = q[0..k] dY = ǫdR λǫ(z) =





eqǫ

eqǫ+1 z ∈ {0, qk}
eqǫ−1
eqǫ+1 0 < z < qk

Figure 4.2: Instantiations of the Laplace mechanism

4.2.2 Mechanisms of Optimal Utility

Answering a query privately is useless if the consumer gets no information about
the real answer, thus it is crucial to analyze the mechanism’s utility. We consider
consumers (e.g. data analysts) applying Bayesian inference to map the mechanism’s
output to a guess that maximizes their expected gain. A consumer is characterized
by a prior π on the set of secrets, and a gain function g (assumed to be monotone
w.r.t. a metric of reference, which is always dR for the needs of this thesis). The
utility U(H,π, g) of a mechanism H for such a consumer is given by her expected
gain under an optimal remap strategy r : Z → X .

U(H,π, g) = max
r

∑
x,z π(x)H(x)(z)g(x, r(z))

This is the Bayesian notion of utility [Ghosh 2009], but our results can be extended
to risk-averse consumers. It is worth noting that this definition is equivalent to
the one of AdvError defined in Section 3.1 and used to quantify the privacy
of a location privacy protacion mechanism. In the context of location privacy, the
consumer (in this case, the service provider) is not assumed to perform any operation
on the reported location when retrieving the results for the user. Hence the utility
measure does not depend on any remapping. However, the adversary is assumed to



30 Chapter 4. Generalizing Privacy with Metrics

perform a post-pocessing of the observed location, based on his prior knowledge, in
order to get a more accurate estimation of the user’s real position. Therefore, the
measure used to quantify the privacy of the mechanism (which is considered to be
the expected error of the adversary), does take this remapping into account.

A natural question to ask, then, is whether, for a given query f , there exists a
mechanism that universally (i.e. for all priors and gain functions) provides optimal
utility. Let Hf (dX ) be the set of all mechanisms H : Y → Z (for any Z) such
that H ◦ f satisfies dX -privacy. All mechanisms in Hf (dX ) can be used to answer f

privately, hence we are interested in the one that maximizes the expected gain.

Definition 4.7. A mechanism H ∈ Hf (dX ) is f -dX -optimal iff U(H,π, g) ≥ U(H ′, π, g)

for all H ′ ∈ Hf (dX ), all priors π and all gain functions g.

The existence of (universally) optimal mechanisms is far from trivial. For stan-
dard differential privacy, a well-known result from [Ghosh 2009] states that such a
mechanism does exist for counting queries, i.e. those of the form “how many users
satisfy property P ”.

Theorem 4.4 ([Ghosh 2009]). Let Y = [0..k] and let f : Vn → Y be a counting

query. Then the TGǫ mechanism with input Y is f -ǫdh-optimal for all ǫ > 0.

On the other hand, a well-known impossibility result [Brenner 2010] states that
counting queries are essentially the only ones for which an optimal mechanism exists.
This result is based on the concept of the induced graph ∼f of a query f : Vn → Y,
defined as: y ∼f y′ iff ∃x ∼h x′ s.t. f(x) = y, f(x′) = y′.

Theorem 4.5 ([Brenner 2010]). Let f : Vn → Y be a query such that ∼f is not a

path graph. Then no f -ǫdh-optimal mechanism exists for any ǫ < ln 2.

Thus, most interesting queries, e.g. the sum and average, have no optimal
mechanisms.

However, the above negative result and the concept of the induced graph are
tied to the Hamming metric dh. This raises the question of whether this special
status of counting queries holds for any metric dX . To answer this question, we will
give a sufficient condition for showing the optimality of TGǫ for an arbitrary query
f and metric dX , based on the concept of uniform sensitivity.

We start by introducing the concept of a mechanism being optimal not w.r.t. a
specific query, but w.r.t. the metric of its input domain. Let H(dY) be the set of all
mechanisms H : Y → Z (for any Z) satisfying dY-privacy.

Definition 4.8. A mechanism H ∈ H(dY) is dY-optimal iff U(H,π, g) ≥ U(H ′, π, g)

for all H ′ ∈ H(dY), all priors π and all gain functions g.

Notice the difference between dY-optimal and f -dX -optimal; the latter refers to
a specific query. The two notions can be related in the case of uniformly sensitive
queries by the following result:
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Proposition 4.2. Assume that f is uniformly ∆-sensitive w.r.t. dX , dY . Then H

is f -∆dX -optimal iff it is dY-optimal.

Proof. From uniform ∆-sensitivity and Theorem 4.3, we get thatH(dY) = Hf (∆dX ).
Then the result follows directly from the definition of optimality (Definitions 4.7,4.8).

The importance of the induced graph ∼f in optimality results comes from the
fact that f is always uniformly sensitive w.r.t. the metric induced by ∼f .

Proposition 4.3. Let f be a query with induced graph ∼f , and let df be the metric

induced by ∼f . Then f is uniformly 1-sensitive w.r.t. dh, df .

Proof. Let x, x′ ∈ X and let n = dh(x, x
′). We first need to show that f is 1-

sensitive w.r.t. dh, df , that is df (f(x), f(x
′)) ≤ n. Since dh is induced by ∼h, there

exists a ∼h-path x1 . . . , xn such that x = x1, x
′ = xn. By definition of ∼f we have

that f(xi) ∼f f(xi+1), thus f(x1), . . . , f(xn) is a ∼f -path of length n from f(x) to
f(x′). Since df (f(x), f(x

′)) is the length of the shortest such path, we have that
df (f(x), f(x

′)) ≤ n.
For the “uniformly” part, let y, y′ ∈ Y and n = df (y, y

′). We need to show that
there exists a tight and 1-expansive chain from y to y′.

Since df is induced by ∼f , there exist a ∼f -path ỹ = y1, . . . , yn such that
y = y1, y

′ = yn This implies that df (yi, yi+1) = 1 and thus df (ỹ) = n = df (y, y
′) so

the chain is tight.
Moreover, from the definition of ∼f we have that there exist x ∼h x′ such that

f(x) = yi, f(x
′) = yi+1, so dh(x, x

′) = 1 which means that yi, yi+1 are 1-expansive,
and this happens for all 1 ≤ i < n so the chain is 1-expansive.

We can now show the optimality of TGǫ with input q[0..k] w.r.t. the ǫdR metric,
independently from any query.

Proposition 4.4. Let Yq = q[0..k]. The TGǫ mechanism with input Yq is ǫdR-

optimal for all ǫ > 0.

Proof. Fix Y = 0..k and Yq = q[0..k] for some k ∈ N, q > 0, and let TGǫ(Y), TGǫ(Yq)
denote the Truncated Geometric mechanisms with input Y,Yq respectively.

From Theorem 4.4 we known that TGǫ(Y) is f -ǫdh-optimal when f is a coun-
ting query. For counting queries, df (the metric that corresponds to their induced
graph) and dR coincide, thus from Prop 4.3 we get that f is uniformly 1-sensitive
w.r.t. dh, dR. Then from Prop 4.2 we have that that TGǫ(Y) is ǫdR-optimal. This
mechanism has pdf

Dǫ(y)(z) = λǫ(z) e
−ǫ dR(y,z) λǫ(z) =





eǫ

eǫ+1 z ∈ {0, k}
eǫ−1
eǫ+1 0 < z < k
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We now show that TGǫ(Yq) is also ǫdR-optimal. The metric spaces (Y, ǫdR) and
(Yq, ǫ1qdR) are isometric. So we can obtain a mechanism D′

ǫ with input Yq by

replacing i with qi and ǫdR with ǫ1qdR). The pdf of this mechanism is:

D′
ǫ(y)(z) = λǫ(z) e

−ǫ 1

q
dR(y,z) λǫ(z) =





eǫ

eǫ+1 z ∈ {0, qk}
eǫ−1
eǫ+1 0 < z < k

Due to the isometry, Dǫ satisfies ǫdR-privacy iff D′
ǫ satisfies ǫ1qdR-privacy, thus (from

the optimality of Dǫ) it follows that D′
ǫ is ǫ1qdR-optimal for all ǫ > 0.

Finally we define:

D′′
ǫ = D′

qǫ

From the optimality of D′
ǫ we get that D′′

ǫ is (qǫ)1qdR-optimal, i.e. it is ǫdR-optimal.
This concludes the proof, since D′′

ǫ is exactly the pdf of TGǫ(Yq).

The results above bring us directly to our sufficient condition.

Theorem 4.6. Let Y = q[0..k] and assume that f : X → Y is uniformly ∆-sensitive

w.r.t. dX , dR. Then the TGǫ mechanism with input Y is f -∆dX -optimal.

Proof. Direct corollary of Prop 4.4 and Prop 4.2.

In the following sections we show that this condition is indeed satisfied by several
important queries, including the sum and average, for various metrics of interest.

4.3 Privacy in Statistical Databases

In this section, we investigate privacy notions in the context of statistical databases,
other than the standard differential privacy. In contrast to the Hamming distance,
which can be defined independently from the structure of the universe V , we are
interested in metrics that depend on the actual values and the distance between
them. To this end, we assume that the universe is equipped with a metric dV ,
measuring how far apart two values are. When the universe is numeric (i.e. V ⊂ R)
then dV = dR is the natural choice. In the case of null values, we can extend a metric
dV from V to V∅ by considering ∅ to be maximally distant from all other values,
that is taking dV(∅, v) = dV(V), v ∈ V. Note that this construction preserves the
maximum distance between values, i.e. dV(V∅) = dV(V).

The first metric we consider, the normalized Manhattan metric, allows to streng-
then differential privacy, obtaining a notion that not only protects the value of an
individual, but also offers higher protection to small modifications of a value. Then
we relax this metric, to obtain a weaker notion, that only protects the “accuracy” of
an individual’s value, but offers higher utility.
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4.3.1 The Normalized Manhattan Metric

Differential privacy provides indistinguishability between databases differing in a
single individual, but the level of distinguishability is independent from the actual
value in those databases. Consider for example a database with salary information,
and two adjacent databases x ∼i x

′ (∼i denoting that they differ only in the value
of the i-th individual) with x[i] = v, x′[i] = v′. A differentially private mechanism
offers distinguishability level ε(x, x′) = ǫ, independently from v, v′. This means that
when v = 0, v′ = 1M, the indistinguishability level between x, x′ will be the same as
in the case v = 20.000, v′ = 20.001.

One might expect, however, to have better protection in the second case, since
the change in the individual’s data is insignificant. Being insensitive to such small
changes seems a reasonable privacy requirement since many queries (e.g. sum, ave-
rage, etc) are themselves insensitive to small perturbations. The equal treatment of
values is particularly problematic when we are obliged to use a “weak” ǫ, due to a
high sensitivity. In this case, all values are only guaranteed to be weakly protected,
while we could expect that at least close values would still enjoy high protection.

The normalized Manhattan metric d̃1 expresses exactly this idea. Databases
differing in a single value have distance at most 1, but the distance can be substan-
tially smaller for small modifications of values, offering higher protection in those
cases. The Manhattan metric d1 on Vn and its normalized version d̃1 are defined
as:1 d1(x, x

′) =
∑n

i=1 dV(x[i], x
′[i]) and d̃1(x, x

′) = d1(x,x′)
dV (V)

. Similarly to differential

privacy, we use a scaled version ǫd̃1 of the metric, to properly adjust the distin-
guishability level.

Concerning the operational characterizations of Section 4.1.2, the hiding func-
tions and neighborhoods suitable for this metric are:

φi,w = x[w(x[i])/i] for w : V → V Ni,V (x) = {x[v/i] | v ∈ V }
Φ1 = {φi,w | i ∈ 1..n, w : V → V} N1 = {Ni,V (x) | x ∈ Vn, i ∈ 1..n, V ⊆ V}

A hiding function φi,w replaces the value of individual i by applying an arbitrary
substitution of values w (instead of replacing with a fixed value as φi,v does). More-
over, for the adversary, knowing Ni,V (x) means that he knows the values of all
individuals in the database but i, and that the value of i lies within V . Note that
Φh ⊂ Φ1 and Nh ⊂ N1. We show that Φ1,N1 are “canonical”.

Proposition 4.5. Φ1,N1 are maximally tight w.r.t. both d1, d̃1.

Proof. We first consider d1. Let x, x′ ∈ Vn, we show that there exist a tight chain
from x to x′ that is both a maximal Φ1-chain and a maximal N1-chain. We re-
cursively create a chain x1, . . . , xn+1 from x to x′ by modifying one element at a

1Note that in the differential privacy literature, the d1 distance is often used on histograms.

This metric is closely related to the standard dh distance on Vn (it depends only on the record

counts), and different than d1 on Vn which depends on the actual values.
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time:

x1 = x

xi+1 = xi[
x′[i]/i] i ∈ 1..n

It is easy to see that d1(x, x
′) =

∑n
i=1 d1(xi, xi+1) so the chain is tight w.r.t. d1.

Fix any i ∈ 1..n and let w : V → V defined as:

w(v) =





x′[i] if v = x[i]

x[i] if v = x′[i]

v otherwise

For the hiding function φi,w ∈ Φ1 it holds that

φi,w(xi) = xi+1 φi,w(xi+1) = xi d1(xi, xi+1) = d1(φi,w)

hence the chain is a maximal Φ1-chain.
Moreover, let V = {x[i], x′[i]}. For the neighborhood Ni,V (xi) ∈ N1 it holds

that
{xi, xi+1} ⊆ Ni,V (xi) d1(xi, xi+1) = d1(Ni,V (xi))

so the chain is a maximal N1-chain.
The case of d̃1 is similar, since it is a scaled version of d1.

From Theorem 4.1, we conclude that ǫd̃1-privacy is equivalent to requiring that
the adversary’s posterior distributions with or without hiding i’s value should be
at most 2ǫd̃1(φi,w) distant. Since d̃1(φi,w) ≤ 1, hiding the individual’s value in any
way has small effect on the adversary’s conclusions. But if i’s value is replaced by
one close to it, d̃1(φi,w) can be much lower than 1, meaning that the effect on the
adversary’s conclusions is even smaller.

Then, from Theorem 4.2 we conclude that ǫd̃1-privacy is equivalent to requiring
that, for an informed adversary knowing the value of all individuals but i, and
moreover knowing that i’s value lies in V , his conclusions differ from his initial
knowledge by at most ǫdV (V )

dV (V)
. This difference is at most ǫ, but can be much smaller

if values in V are close to each other, meaning that for an adversary who knows i’s
value with high accuracy, the gain is even smaller.

Intuitively, ǫd̃1-privacy offers a stronger notion of privacy than ǫdh-privacy:

Proposition 4.6. d̃1 ≤ dh, thus ǫd̃1-privacy implies ǫdh-privacy.

Proof. Fix x, x′ ∈ Vn and let I = {i ∈ 1..n | x[i] 6= x[i′]}. Then

d̃1(x, x
′) =

∑
i∈I dV(x[i], x[i

′])

dV(V)
≤

∑
i∈I dV(V)
dV(V)

= |I| = dh(x, x
′)
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We continue by introducing N -tightness, a relaxed version of the concept of
maximal N -tightness (Def 4.3), by simply dropping the requirement dX (xi, xi+1) =

dX (N) from Def 4.3.

Definition 4.9. Let N ⊆ 2X . A chain x̃ is called an N -chain iff for every step i

there exists N ∈ N such that {xi, xi+1} ⊆ N . Then N is called tight w.r.t. dX iff

∀x, x′ ∈ X there exists a tight N -chain from x to x′.

We can now show the (maximal w.r.t. dh, simple w.r.t. d1, d̃1) tightness of Nh,
which will be useful later on.

Proposition 4.7. Nh is maximally tight w.r.t. dh and tight w.r.t. both d1, d̃1.

Proof. Let x, x′ ∈ Vn. We need to show that there exists a tight (also maximal in
the case of dh) Nh-chain from x to x′. We recursively create a chain x1, . . . , xn+1

from x to x′ by modifying one element at a time:

x1 = x

xi+1 = xi[
x′[i]/i] i ∈ 1..n

It is easy to see that d(x, x′) =
∑n

i=1 d(xi, xi+1), for all d ∈ {dh, d1, d̃1}, so the chain
is tight w.r.t. all three metrics. Moreover, we have that {xi, xi+1} ⊆ Ni(xi) so the
chain is an Nh-chain w.r.t. all metrics.

For dh, it also holds that dh(xi, xi+1) = dh(Ni(xi)) = 1, so the chain is a maximal
Nh-chain w.r.t. dh.

We continue with a lemma that facilitates proofs of ∆-sensitivity by reducing
the pairs of secrets x, x′ that one needs to check.

Lemma 4.2. Let N ⊆ 2X be tight (Def 4.9) and assume:

dY(f(x), f(x
′)) ≤ ∆dX (x, x

′) ∀N ∈ N , x, x′ ∈ N

Then f is ∆-sensitive w.r.t. dX , dY .

Proof. Fix x, x′ ∈ X , we need to show that dY(f(x), f(x
′)) ≤ ∆dX (x, x

′). Since N
is tight there exist a tight N -chain x = x1, . . . , xn = x′, such that each step xi, xi+1

belongs to some set N ∈ N . We have:

dY(f(x), f(x
′))

≤
n−1∑

i=1

dY(f(xi), f(xi+1)) triangle ineq.

≤ ∆
n−1∑

i=1

dX (xi, xi+1) hypoth., xi, xi+1 ∈ N

= ∆dX (x, x
′) tightness of chain
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By Proposition 4.6, since distances in d̃1 can be smaller than those in dh, the
sensitivity of a query w.r.t. d̃1 is in general greater than the sensitivity w.r.t. dh,
which means that to achieve ǫd̃1-privacy we need to apply more noise. However, for
a general class of queries, it turns out that the two sensitivities coincide.

Definition 4.10. A query f belongs to the family C iff dR(f(x), f(x
′)) ≤ dV(x[i], x

′[i])

for all i ∈ 1..n, x ∼i x
′ ∈ Vn, and moreover ∃x ∼i x

′ ∈ Vn such that dR(f(x), f(x
′)) =

dV(V).

Proposition 4.8. Let f ∈ C. The sensitivity of f w.r.t. both dh, dR and d̃1, dR is

dV(V).

Proof. Let f ∈ C. We first show that f is dV(V)-sensitive w.r.t. both dh, dR and
d̃1, dR. From Prop 4.7 together with Lemma 4.2, we only need to show the sensitivity
for databases x, x′ from some set Ni(x) ∈ Nh, i.e. x ∼i x

′.
For dh, we have dh(x, x

′) = 1, thus

dY(f(x), f(x
′)) ≤ dV(x[i], x

′[i]) ≤ dV(V)dh(x, x′)

For d̃1 we have:

dY(f(x), f(x
′)) ≤ dV(x[i], x

′[i]) = dV(V)d̃1(x, x′)

Then, for any ∆ < dV(V), f is not ∆-sensitive for neither metric, since from Def 4.10
there exists x ∼i x

′ such that

dY(f(x), f(x
′)) = dV(V) > ∆dh(x, x

′)

and similarly for d̃1.

Intuitively, the class C contains queries for which the sensitivity is obtained for
values that are maximally distant. For those queries, using the Truncated Geometric
mechanism we can achieve a notion of privacy stronger than differential privacy using

the same amount of noise!

Results About Some Common Queries

We now focus on some commonly used queries, namely the sum, average and
p-percentile queries. Note that other commonly used queries such as the max,
min and median queries are specific cases of the p-percentile query. In the fol-
lowing, we assume that the universe is V = q[0..k]∅ with metric dR, and take
X = Vn \ {〈∅, . . . ,∅〉}, that is we exclude the empty database so that the queries
can be always defined.

For these queries we obtain two results: first, we show that they belong to the C
family, which means that we can achieve ǫd̃1-privacy via the TGǫ mechanism, using
the same amount of noise that we would need for standard differential privacy.

Proposition 4.9. The sum, avg, p-perc queries belong to C.
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Proof. The universe is assumed to be V = q[0..k]∅ for some k ∈ N, q > 0. Let
x ∼i x

′ ∈ Vn. We first show that dR(f(x), f(x
′)) ≤ dV(x[i], x

′[i]).
For sum, it is easy to see that

|sum(x)− sum(x′)| =





dV(x[i], x
′[i]) x[i] 6= ∅, x′[i] 6= ∅

x′[i] x[i] = ∅

x[i] x′[i] = ∅

Note that x′[i] ≤ dV(x[i], x
′[i]) = qr in the case x[i] = ∅ (and similarly for x′[i] =

∅).2

Consider now f ∈ {avg, p-perc}. From Theorem 4.9 (which will be stated and
proved in upcoming Section 4.4) we know that both queries are 1-sensitive w.r.t.
d∞, dR. And since d∞(x, x′) = dV(x[i], x

′[i]) we have:

dR(f(x), f(x
′)) ≤ d∞(x, x′) = dV(x[i], x

′[i])

Finally, we need to show that there exist x ∼i x
′ ∈ Vn such that dR(f(x), f(x′)) =

dV(V) = qk. We construct x = 〈0,∅, . . . ,∅〉, x′ = 〈qk,∅, . . . ,∅〉. These databases
satisfy dR(f(x), f(x

′)) = qk for all queries.

More interestingly, we can show that the Truncated Geometric mechanism is in
fact universally optimal w.r.t. d̃1 for such queries.

Theorem 4.7. The sum, avg and p-perc queries are all uniformly qk-sensitive w.r.t.

d̃1, dR.

Proof. First we have to show that the queries are qk-sensitive w.r.t. d̃1, dR. This
comes from Prop 4.8 and 4.9, since all queries belong to the family C.

We now show the uniform sensitivity of sum. Let y, y′ ∈ q[0..nk] and assume
that y ≥ y′. It is easy to see that we can construct databases x, x′ such that
sum(x) = y, sum(x′) = y′ and x[i] ≥ x′[i] for all i ∈ 1..n. For x, x′ we have

d1(x, x
′) =

∑
i |x[i]− x′[i]|

= |∑i x[i]| − |
∑

i x
′[i]| x[i] ≥ x′[i]

= dR(sum(x), sum(x′))

Thus dR(y, y′) = qk d̃1(x, x
′), which means that the chain y, y′ is qk-expansive w.r.t.

d̃1.
Finally, for f ∈ {avg, p-perc} let y, y′ ∈ q[0..k]. We construct two databases x, x′

with a single present individual as follows:

x = 〈y,∅, . . . ,∅〉 x′ = 〈y′,∅, . . . ,∅〉
It is easy to see that f(x) = y, f(x′) = y′ and d1(x, x

′) = dR(y, y
′). Thus dR(y, y′) =

qk d̃1(x, x
′) which means that the chain y, y′ is qk-expansive w.r.t. d̃1.

Corollary. TGǫ/qk is f -ǫd̃1-optimal for f ∈ {sum, avg, p-perc}, ǫ > 0.

2It is crucial here that V contains 0, so that v ≤ dV(V) for all non-null v. If 0 6∈ V, we can

achieve a similar result for sum by adapting the way dV treats ∅.
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4.3.2 The Manhattan Metric

In the previous section, we used the normalized Manhattan metric ǫd̃1, obtaining a
strong privacy notion that protects an individual’s value, while offering even stronger
protection for small changes in an individual’s value. This however, requires at least
as much noise as standard differential privacy.

On the other hand, there are applications in which a complete protection of an
individual’s value is not required. This happens, for instance, in situations when
the actual value is not sensitive, but knowing it with high accuracy might allow
an adversary to identify the individual. Consider for example a database with the
individuals’ birthday, or the registration date and time to some social network. This
information, by itself, might not be considered private, however knowing such infor-
mation with minute-accuracy could easily allow to identify an individual. In such
situations we might wish to protect only the accuracy of the value, thus achieving
privacy with less noise and offering more accurate results.

This can be achieved by the Manhattan metric ǫd1 (without normalization).
This metric might assign a level of distinguishability higher than ǫ for adjacent
databases, thus the privacy guarantees could be weaker than those of ǫ-differential
privacy. However, adjacent databases with small changes in value will be highly
protected, thus an adversary cannot infer an individual’s value with accuracy.

Similarly to the previous section, we can obtain characterizations of ǫd1-privacy
using the same hiding functions Φ1 and neighborhoods N1. The only difference is
that ǫd1(φi,w) and ǫd1(Ni,V ) can be now higher than ǫ, offering weaker protection.
However, when the adversary already knows i’s value with high accuracy, meaning
that values in V are close to each other, it is guaranteed that his knowledge will
increase by a small factor (possibly even smaller than ǫ), ensuring that he cannot
infer the value with even higher accuracy.

Note that the sensitivity of a query can be substantially lower w.r.t. d1 than
w.r.t. dh. For example, the sum query is 1-sensitive w.r.t. d1 but qr-sensitive
w.r.t. dh. This means that the noise we need to add could be substantially lower,
offering better utility at the expense of lower privacy, but still sufficient for a given
application.

Example 4.1. Consider a database containing the registration date on some social

network, expressed as the number of days since Jan 1, 2000. We want to privately

release the earliest registration date among individuals satisfying some criteria. A

registration date itself is not considered sensitive, however from the result of the

query it should be impossible to infer whether a particular individual belongs to that

set. Since values can range between 0 and approximately 5.000, the sensitivity of the

min query w.r.t. dh is 5.000, while w.r.t. d1 it is only 1. By using ǫdh we protect (up

to the intended level ǫ) an individual’s registration date within the whole range of

values, while by using ǫ
5d1 we provide the intended protection only within a radius of

5 days. More precisely: in the first case two adjacent databases will always have dis-

tinguishability level ǫ, while in the second case such level of protection is guaranteed

only if the individual’s registration date differs by at most 5 days in the two databases



4.4. Privacy in Other Contexts: Smart Meters 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

1
−

δ

α (days)

ǫ = 0.1

ǫ = 0.2

ǫ = 0.3

(a) ǫ
5
d1-privacy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000

1
−

δ

α (days)

ǫ = 0.1

ǫ = 0.2

ǫ = 0.3

(b) ǫdh-privacy

Figure 4.3: Utility for various values of ǫ

(if they differ more the distinguishability level will increase proportionally). The sec-

ond case, of course, offers less privacy, but, depending on the application, confusion

within 5 days can be enough to prevent an individual from being identified. On the

other hand, the trade-off with utility can be much more favorable in the second case:

In Figure 4.3 we show the utility of a Laplace mechanism for both metrics, in terms

of (α, δ)-usefulness (meaning that the mechanism reports a result within distance

α from the real value with probability at least 1 − δ).3 Clearly, ǫ
5d1-privacy gives

acceptable utility while ǫdh-privacy renders the result almost useless.

Finally, the optimality result from the previous section also holds for d1.

Theorem 4.8. The sum, avg and p-perc queries are all uniformly 1-sensitive w.r.t.

d1, dR.

Proof. Direct consequence of Theorem 4.7, since d1 = qk d̃1.

Corollary. TGǫ is f -ǫd1-optimal for f ∈ {sum, avg, p-perc}, ǫ > 0.

4.4 Privacy in Other Contexts: Smart Meters

A smart meter is a device that records the consumption of electrical energy at
potentially very short time intervals, and transmits the information to the utility
provider, thus offering him the capability to monitor consumption accurately and
almost in real-time.

The Problem

Although smart meters can help improving energy management, they create se-
rious privacy threats: By analyzing accurate consumption data, thanks to appli-
ance signature libraries it is possible to identify which electric devices are being

3Using Bayesian utility leads to similar results.
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used [Lam 2007]. It has even been shown that, depending on the granularity of
measurement and the resolution of data, it is possible to deduce what TV channels,
and which movies are being watched [Greveler 2012].

Several papers addressed the privacy problems of smart metering in the recent
past. The solution proposed in [Danezis 2011] is based on the use of techniques of
(standard) differential privacy in order to send sanitized sums of the readings over
some period of time (e.g. an hour, a day, a month) to the service provider. Since
this solution is tailored to the use of smart metering for billing purposes, the noise
added is assumed to be positive.

The Model

For the sake of generality, we assume here that the noise could be of any kind (not
necessarily positive). We can regard the readings over the period [1..n] as a tuple
x ∈ Vn, so that x[i] represents the reading at the time i. Since [Danezis 2011] uses
the standard differential privacy framework, the distinguishability metric on these
tuples is assumed to be the Hamming distance, and therefore the privacy mechanism
is tuned to protect the value of x[i], regardless of whether the variation of this value
is small or large. However, the solution proposed in [Danezis 2011] is general and
can be adapted to a different distinguishability metric.

We argue that for the case of smart meters, the problem that derives from the
extreme accuracy of the readings can be addressed with limited noise by adopting
a metric that is sensitive also to the distance between values, and not only to the
change of the value for a reading x[i]. The reason is the same as illustrated in
previous section: if we want to protect small variations in the reading of x[i], it
is not a good idea to tune the sensitivity on the difference between the extremes
values, because we would end up introducing a lot of noise. In fact, the experiments
in [Greveler 2012] are performed on actual smart meters that are in the process
of being deployed. These meters send readings to the service provider every 2
seconds. The solution proposed in [Danezis 2011] offers good privacy guarantees by
completely protecting each measurement. However, such a definition is too strong
if reporting values at short intervals is a requirement. With standard differential
privacy, we cannot hope to fully protect each measurement without introducing
too much noise. On the other hand, using a more relaxed metric, we can at least
provide a meaningful privacy guarantee by protecting the accuracy of the values.
Some privacy will still be lost, but the attacks described above where the individual’s
behaviour is completely disclosed, will be prevented.

The Manhattan distance d1 on Vn, however, is not suitable to model the privacy
problem we have here: in fact d1 is suitable to protect an individual x[i] and its value,
while here we want to protect all the values at the same time. This is because the
adversary, i.e., the service provider, already knows an approximation of all values.
Note the difference from the case of Section 4.3: there, the canonical adversary
knows all exact values except x[i], and for x[i] he only knows an approximate value.
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(In the case of standard differential privacy, the canonical adversary knows all values
except x[i], and for x[i] he does not even know an approximate value.)

The suitable distance, in this case, is the maximum distance between com-
ponents, d∞. In fact, we should consider x, x′ “indistinguishable enough” (i.e.
d(x, x′) ≤ δ, for a certain δ) if and only if for each component i, x[i], x′[i] are “indis-
tinguishable enough” (i.e. d(x[i], x′[i]) ≤ δ, for the same δ). It is easy to see that the
only distance that satisfies this property is d(x, x′) = d∞(x, x′) = maxi dV(x[i], x

′[i]).

Example 4.2. We illustrate the application our method to distort the digital signa-

ture of a tv program. The grey line in Fig. 4.4(a) represents the energy consumption

of the first 5 minutes of Star Trek 11 [Lam 2007]. The black line is (the approxima-

tion of) the signature produced by a smart meter that reports the true readings every

10 seconds (the samples are represented by the dots). The blue and the magenta dots

in 4.4(b) are obtained by adding laplacian noise to the true readings, with ǫ values

.1 and .5 respectively. As we can see, especially in the case of ǫ = .5, the signature

is not recognizable.

Concerning the characterization results, we use hiding functions substituting the
value of all readings. Moreover, we use neighborhoods modelling an adversary that
knows all readings with some accuracy, i.e. knows that each reading i lies within Vi.

Φ∞ = {φ1,w1
◦ . . . ◦ φn,wn | wi : V → V ∀i ∈ 1..n}

N{Vi} = {〈v1, . . . , vn〉 | vi ∈ Vi, i ∈ 1..n}
N∞ = {N{Vi} | Vi ⊆ V, i ∈ 1..n}

We can show that Φ∞,N∞ are maximally tight.

Proposition 4.10. Φ∞,N∞ are maximally tight w.r.t. d∞.

Proof. Let x, x′ ∈ Vn, and consider the trivial 1-step chain x, x′. This chain is
trivially tight, we need to show that it is both a maximal Φ∞-chain and a maximal
N∞-chain.

For each i ∈ 1..n we define a function wi : V → V as:

wi(v) =





x′[i] if v = x[i]

x[i] if v = x′[i]

v otherwise

For the hiding function φ = φ1,w1
◦ . . . ◦ φn,wn we have that φ ∈ Φ∞ and moreover:

φ(x) = x′ φ(x′) = x d∞(x, x′) = d∞(φ)

hence the chain is a maximal Φ∞-chain.
Moreover, let Vi = {x[i], x′[i]}, i ∈ 1..n. For the neighborhood N{Vi} ∈ N∞ it

holds that
{x, x′} ⊆ N{Vi} d∞(x, x′) = d∞(N{Vi})

so the chain is a maximal N∞-chain.
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(a)

(b)

Figure 4.4: Digital signature of a tv program (a) and its noisy reporting

(b).

Finally, we show that TGǫ is universally optimal for avg and p-perc.

Theorem 4.9. The avg and p-perc queries are both uniformly 1-sensitive w.r.t.

d∞, dR.

Proof. The universe is assumed to be V = q[0..k]∅ for some k ∈ N, q > 0. The p-
percentile query (0 ≤ p < 100) is defined as p-perc(x) = sort(x)[l] for l = ⌊ p

100m+1⌋,
where m is the number of non-null values in x and sort returns a sorted version of
x (after removing the null values). We also define I∅(x) = {i ∈ 1..n | x[i] = ∅}.

We fist show that both queries are 1-sensitive w.r.t. d∞, dR. Let x, x′ ∈ Vn. If
I∅(x) 6= I∅(x

′) then x, x′ are maximally distant, i.e. d∞(x, x′) = d∞(Vn) = qk.
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Then for both queries it trivially holds that dR(f(x), f(x
′)) ≤ qk = d∞(x, x′) since

their range is q[0..k].
It remains to show 1-sensitivity for the case I∅(x) = I∅(x

′) = I. For the average
query we have

dR(avg(x), avg(x
′))

=
1

|I| |(
∑

i∈I x[i])− (
∑

i∈I x
′[i])|

=
1

|I| |
∑

i∈I (x[i]− x′[i])|

≤ 1

|I|
∑

i∈I |x[i]− x′[i]| subadditivity of | · |

≤ 1

|I|
∑

i∈I d∞(x, x′) |x[i]− x′[i]| ≤ d∞(x, x′)

= d∞(x, x′)

For the p-perc query it holds that p-perc(x) = sort(x)[l] and p-perc(x′) =

sort(x′)[l] for the same l (since I∅(x) = I∅(x
′)). Let h, h′ ∈ 1..n such that x[h] =

sort(x)[l] and x′[h′] = sort(x′)[l].
Assume that x[h] ≤ x[h′] (the case x[h] ≥ x[h′] is symmetric). By the definition

of sort, there are at least l elements j ∈ 1..n such that x[j] ≤ x[h] (including h

itself). Moreover, there are at most l − 1 elements j ∈ 1..n such that x′[j] < x′[h′].
Hence, there exists at least one j ∈ 1..n such that

x[j] ≤ x[h] and x′[j] ≥ x′[h′]

It also holds that |x[i]− x′[i]| ≤ d∞(x, x′), i.e.

x[i]− d∞(x, x′) ≤ x′[i] ≤ x[i] + d∞(x, x′) ∀i ∈ 1..n (4.3)

From x[h] ≤ x[h′] and (4.3) we get

x[h]− d∞(x, x′) ≤ x′[h′]

Moreover, it holds that

x′[h′] ≤ x′[j] ≤ x[j] + d∞(x, x′) ≤ x[h] + d∞(x, x′)

thus
dR(p-perc(x), p-perc(x

′)) = |x[h]− x′[h′]| ≤ d∞(x, x′)

For the “uniformly” part, let y, y′ ∈ q[0..k]; we construct x = 〈y,∅, . . . ,∅〉, x′ =
〈y′,∅, . . . ,∅〉, for which it holds that f(x) = y, f(x′) = y′ (for both queries) and
d∞(x, x′) = dR(y, y

′).
Note that for p-perc we can construct x, x′ without ∅ values with the same

property. However, for the avg query this is not possible; its uniform optimality
depends on the fact that ∅ values are allowed. If ∅ 6∈ V then avg is essentially
equivalent to sum, which is not uniformly optimal w.r.t. d∞, dR.

Corollary. TGǫ is f -ǫd∞-optimal for f ∈ {avg, p-perc}, ǫ > 0.
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4.5 Concluding remarks

Related Work

Several works in the differential privacy literature consider adjacency relations dif-
ferent than the standard one, effectively using a metric tailored to that applica-
tion. Examples include group privacy [Dwork 2006a] and edge privacy for graphs
[Nissim 2007].

The generalization of differential privacy to arbitrary metrics was considered also
in [Barthe 2012, Reed 2010]. In those works, however, the purpose of extending the
definition was to obtain compositional methods for proving differential privacy in
programming languages, while in our work we focus on the implications of such
extension for the theory of differential privacy. Namely, we aim at obtaining new
meaningful definitions of privacy for various contexts through the use of different
metrics (cf. the examples of the smart meters and of geolocation), and at investi-
gating the existence of optimal mechanisms.

Another work closely related to ours is [Dwork 2012] in which an extended defini-
tion of differential privacy is used to capture the notion of fairness in classification.
A metric d is used to model the fact that certain individuals are required to be
classified similarly, and a mechanism satisfying d-privacy is considered fair, since
it produces similar results for similar individuals. We view fairness as one of the
many interesting notions that can be obtained through the use of metrics in various
contexts, thus it encourages our goal of studying d-privacy. With respect to the
actual metrics used in this chapter, the difference is that we consider metrics that
depend on the individuals’ values, while [Dwork 2012] considers metrics between
individuals.

Summary

Starting from the observation that differential privacy requires that the distinguisha-
bility of two databases depends on their Hamming distance, we have explored the
consequences of extending this principle to arbitrary metrics. In this way we have
obtained a rich framework suitable to model a large variety of privacy problems,
and in domains other than statistical databases. Furthermore, even in statisti-
cal databases applications, whenever the privacy concern is related to disclosing
small variations in the values of the individuals (rather than large ones), then our
framework allows a more precise calibration of the noise necessary for achieving
the intended level of privacy, and this results, in general, in a better utility than
the one achievable under the constraint of standard differential privacy. We have
investigated the trade-off between privacy and utility in this extended setting, and
it turns out changing the metric has considerable implications on the existence
of universally optimal mechanisms. In particular, for the Manhattan distance, the
normalized Manhattan distance, and the max distance it is possible to define univer-
sally optimal mechanisms for several common queries like the sum, the average, and
the percentile. This contrast sharply with the case of standard differential privacy,
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where universally optimal mechanisms exist only for counting queries. Moreover, in
our framework it is possible to express queries that have unbounded sensitivity with
respect to the standard Hamming metric, as long as this sensitivity is bounded with
respect to another metric. Finally, we have shown the applicability of our frame-
work to various privacy problems in a domains, from the usual case of statistical
databases to smart meters.





Chapter 5

Privacy in Location Based

Systems

In several situations it is desirable to know the location of an individual or a group
of individuals in order to provide a service. For instance: In census-based statistics,
to determine the population density in certain areas, in transportation industry,
to estimate the average number of people who need to travel between two given
stations, and in smartphone applications, to obtain points of interest nearby such
as restaurants.

Due to privacy concerns, an individual may refuse to disclose his exact location
to the service provider. Nevertheless, he may be willing to reveal approximate
location information. It is worth noting that for several location-based systems it is
usually enough to obtain an approximate location to be able to provide an accurate
service. Note however, that in order to guarantee a non-negligible level of privacy,
the random location cannot be generated naively. Therefore, if we want to develop
a method to randomize location coordinates, we have to understand what kind of
privacy the user expects to have, and how much information he is willing to reveal.

In this scenario, the privacy level depends on the accuracy with which an attacker
can guess an individual’s location from the reported one. We will therefore aim for
a distance-dependent notion of privacy, requiring points that are close in distance to
each other to be indistinguishable from the attacker’s point of view. However, we still
allow the service provider to distinguish between points that are far from each other.
This is exactly the kind of situation in which the notion of d-privacy presented in
Chapter 4 shows to be useful. In this particular case, the privacy guarantee can also
be thought as an individual having a certain level of privacy within a radius. In this
sense, we can say that the user enjoys a privacy level l within a radius r if any two
locations at distance at most r produce observations with “similar” distributions,
where the “level of similarity” depends on l. By considering the set of secrets X
as the set containing all possible locations of an individual, we can see that this
guarantee can be achieved by considering an instance of the more general notion of
dX -privacy, taking dX = l

rd2 as the privacy metric (recall that d2 is the Euclidean
distance). Moreover, it is clear that this instantiation provides a certain level of
privacy for any radius: if ǫ = l

r , then for a radius r′ the privacy level is l′ = ǫr′. We
can therefore give a first, intuitive definition of our location privacy notion, that we
call geo-indistinguishability :

A location privacy mechanism satisfies ǫ-geo-indistinguishability if and
only if for any radius r > 0, the user enjoys ǫr-privacy within r.
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Figure 5.1: Geo-indistinguishability: privacy varying with r.

As stated before, this definition implies that the user is protected within any radius
r, but with a level ℓ = ǫr that increases with the distance. Within a short radius, for
instance r=1 km, ℓ is small, guaranteeing that the provider cannot infer the user’s
location within, say, the 7th arrondissement of Paris. Farther away from the user,
for instance for r = 1000 km, ℓ becomes large, allowing the location-based service
(LBS) provider to infer that with high probability the user is located in Paris instead
of, say, London. Figure 5.1 illustrates the idea of privacy levels decreasing with the
radius.

In this chapter, we study the formal aspects of this privacy notion as an instance
of the general definition of d-privacy presented in Chapter 4. First, we recall the
different characterizations and properties of this notion, explaining what they mean
in the context of location privacy. Secondly, we present a mechanism to achieve
this privacy definition, briefly mentioned before in Section 4.2.1, and explain how
to overcome two issues in the implementation, namely the truncation of the area of
reported results and the discretization of the generated points. Thirdly, we present
two case studies showing how to use the proposed method to enhance LBS ap-
plications with geo-indistinguishability guarantees, and how to sanitize a dataset
containing geospatial information. Finally, we compare our mechanism with others
in the literature using the privacy metric proposed in [Shokri 2012].

5.1 Geo-indistinguishability

In this section we formalize our notion of geo-indistinguishability, as an instance
of Definition 4.1. In this particular case, the set of secrets X contains points of

interest, typically the user’s possible locations. The Z of reported values can in
general be arbitrary, allowing to report obfuscated locations, cloaking regions, sets
of locations, etc. However, to simplify the discussion, we sometimes consider Z to
also contain spatial points, assuming an operational scenario of a user located at
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x ∈ X and communicating to the adversary a randomly selected location z ∈ Z
(e.g. an obfuscated point).

In this scenario, probabilities come into place in two ways. First, the attacker
might have side information about the user’s location, knowing, for example, that
he is likely to be visiting the Eiffel Tower, while unlikely to be swimming in the
Seine river. As discussed in previous chapters, the attacker’s side information can
be modeled by a prior distribution π on X , where π(x) is the probability assigned
to the location x.

Second, the selection of a reported value z ∈ Z is itself probabilistic, since it is
obtained by adding random noise to the actual location x, by using a probabilistic
mechanism K; i.e. K is a function assigning to each location x ∈ X a probability
distribution on Z.

We can now state our definition of geo-indistinguishabilityas follows:

Definition 5.1 (geo-indistinguishability). A location privacy mechanism K

satisfies ǫ-geo-indistinguishability if and only if for all x, x′ ∈ X :

dP(K(x),K(x′)) ≤ ǫd2(x, x
′)

Equivalently, the definition can be formulated as K(x)(Z) ≤ eǫd2(x,x
′)K(x′)(Z)

for all x, x′ ∈ X , Z ⊆ Z. Note that for all points x′ within a radius r from x, the
definition forces the corresponding distributions to be at most l = ǫr distant.

A note on the unit of measurement

It is worth noting that, since ǫ corresponds to the privacy level for one unit of
distance, it is affected by the unit in which distances are measured. For instance,
assume that ǫ = 0.1 and distances are measured in meters. The level of privacy for
points one kilometer away is 1000ǫ, hence changing the unit to kilometers requires
to set ǫ = 100 in order for the definition to remain unaffected. In other words, if
r is a physical quantity expressed in some unit of measurement, then ǫ has to be
expressed in the inverse unit. In this thesis we omit the unit since the choice is
orthogonal to our goals.

5.1.1 Characterizations

We will now recall the two operational characterizations of our generalized privacy
notion presented in Section 4.1, which helps us provide intuitive interpretations of
the privacy guarantees offered by geo-indistinguishability.

Adversary’s conclusions under hiding

The first characterization uses the concept of a hiding function φ : X → X , which
can be applied to the user’s actual location before the mechanism K, so that the
latter has only access to a hidden version φ(x) of the location, instead of the real
location x. Intuitively, a location remains private if, regardless of his side knowledge
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(captured by his prior distribution), an adversary draws the same conclusions (cap-
tured by his posterior distribution), regardless of whether hiding has been applied or
not. However, if φ replaces locations in Paris with those in London, then clearly the
adversary’s conclusions will be greatly affected. Hence, we require that the effect
on the conclusions depends on the maximum distance d2(φ) = supx∈X d2(x, φ(x))

between the real and hidden location.

Theorem 5.1. A mechanism K satisfies ǫ-geo-indistinguishability iff for all

φ : X → X , all priors π on X , and all Z ⊆ Z:

dP(σ1, σ2) ≤ 2ǫd2(φ) where σ1 = Bayes(π,K,Z)

σ2 = Bayes(π,K ◦ φ, Z)

Recall that the above characterization compares two posterior distributions.
Both σ1, σ2 can be substantially different than the initial knowledge π, in which
case it means that an adversary does learn some information about the user’s loca-
tion.

Knowledge of an informed attacker

A different approach is to measure how much the adversary learns about the user’s
location, by comparing his prior and posterior distributions. However, since some
information is allowed to be revealed by design, these distributions can be far apart.
Still, we can consider an informed adversary who already knows that the user is
located within a set N ⊆ X . Let d2(N) = supx,x′∈N d2(x, x

′) be the maximum
distance between points in x. Intuitively, the user’s location remains private if,
regardless of his prior knowledge within N , the knowledge obtained by such an in-
formed adversary should be limited by a factor depending on d2(N). This means
that if d2(N) is small, i.e. the adversary already knows the location with some
accuracy, then the information that he obtains is also small, meaning that he can-
not improve his accuracy. Denoting by π|N the distribution obtained from π by
restricting to N (i.e. π|N (x) = π(x|N)), we obtain the following characterization:

Theorem 5.2. A mechanism K satisfies ǫ-geo-indistinguishability iff for all N ⊆ X ,

all priors π on X , and all Z ⊆ Z:

dP(π|N , σ|N ) ≤ ǫd2(N) where σ = Bayes(π,K,Z)

Abstracting from side information

A major difference of geo-indistinguishability, compared to similar approaches from
the literature, is that it abstracts from the side information available to the adver-
sary, i.e. from the prior distribution. This is a subtle issue, and often a source
of confusion, thus it is worth to clarify what “abstracting from the prior” means.
The goal of a privacy definition is to restrict the information leakage caused by the
observation. Note that the lack of leakage does not mean that the user’s location
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cannot be inferred (it could be inferred by the prior alone), but instead that the
adversary’s knowledge does not increase significantly due to the observation.

However, in the context of LBSs, no privacy definition can ensure a small leak-
age under any prior, and at the same time allow reasonable utility. Consider, for
instance, an attacker who knows that the user is located at some airport, but not
which one. The attacker’s prior knowledge is very limited, still any useful LBS query
should reveal at least the user’s city, from which the exact location (i.e. the city’s
airport) can be inferred. Clearly, due to the side information, the leakage caused by
the observation is high.

So, since we cannot eliminate leakage under any prior, how can we give a rea-
sonable privacy definition without restricting to a particular one? First, we give
a formulation (Definition 5.1) which does not involve the prior at all, allowing to
verify it without knowing the prior. At the same time, we give two characterizations
which explicitly quantify over all priors, shedding light on how the prior affects the
privacy guarantees.

Finally, we should point out that differential privacy abstracts from the prior
in exactly the same way. Contrary to what is sometimes believed, the user’s value
is not protected under any prior information. Recalling the well-known example
from [Dwork 2006a], if the adversary knows that Terry Gross is two inches shorter
than the average Lithuanian woman, then he can accurately infer the height, even
if the average is released in a differentially private way (in fact no useful mechanism
can prevent this leakage). Differential privacy does ensure that the risk is the same
whether she participates in the database or not, but this might be misleading: it
does not imply the lack of leakage, only that it will happen anyway, whether she
participates or not!

5.1.2 Protecting location sets

So far, we have assumed that the user has a single location that he wishes to com-
municate to a service provider in a private way (typically his current location). In
practice, however, it is common for a user to have multiple points of interest, for
instance a set of past locations or a set of locations he frequently visits. In this case,
the user might wish to communicate to the provider some information that depends
on all points; this could be either the whole set of points itself, or some aggregate
information, for instance their centroid. As in the case of a single location, privacy is
still a requirement; the provider is allowed to obtain only approximate information
about the locations, their exact value should be kept private. In this section, we
discuss how ǫ-geo-indistinguishability extends to the case where the secret is a tuple
of points x = (x1, . . . , xn).

Similarly to the case of a single point, the notion of distance is crucial for our def-
inition. We define the distance between two tuples of points x = (x1, . . . , xn),x

′ =

(x′1, . . . , x
′
n) as:

d∞(x,x′) = maxi d(xi, x
′
i)
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Intuitively, the choice of metric follows the idea of reasoning within a radius r: when
d∞(x,x′) ≤ r, it means that all xi, x′i are within distance r from each other. All
definitions and results of this section can be then directly applied to the case of
multiple points, by using d∞ as the underlying metric. Enjoying a privacy level of
ℓ within a radius r means that two tuples at most r away from each other, should
produce distributions at most ℓ apart.

Reporting the whole set

A natural question then to ask is how we can obfuscate a tuple of points, by indepen-
dently applying an existing mechanism K0 to each individual point, and report the
obfuscated tuple. Starting from a tuple x = (x1, . . . , xn), we independently apply K0

to each xi obtaining a reported point zi, and then report the tuple z = (z1, . . . , zn).
Thus, the probability that the combined mechanism K reports z, starting from x,
is the product of the probabilities to obtain each point zi, starting from the corre-
sponding point xi, i.e. K(x)(z) =

∏
iK0(xi)(zi). 1

The next question is what level of privacy does K satisfy. For simplicity, consider
a tuple of only two points (x1, x2), and assume that K0 satisfies ǫ-geo-indistinguisha-
bility. At first look, one might expect the combined mechanism K to also satisfy
ǫ-geo-indistinguishability, however this is not the case. The problem is that the two
points might be correlated, thus an observation about x1 will reveal information
about x2 and vice versa. Consider, for instance, the extreme case in which x1 = x2.
Having two observations about the same point reduces the level of privacy, thus we
cannot expect the combined mechanism to provide the same level of privacy.

Still, if K0 satisfies ǫ-geo-indistinguishability, then K can be shown to satisfy
nǫ-geo-indistinguishability, i.e. a level of privacy that scales linearly with n. Due to
this scalability issue, the technique of independently applying a mechanism to each
point is only useful when the number of points is small. Still, this is sufficient for
some applications, such as the case study of Section 5.3. Note, however, that this
technique is by no means the best we can hope for: similarly to standard differential
privacy [Blum 2008, Roth 2010], better results could be achieved by adding noise to
the whole tuple x, instead of each individual point.

Reporting an aggregate location

Another interesting case is when we need to report some aggregate information
obtained by x, for instance the centroid of the tuple. In general we might need
to report the result of a query f : X n → X . Similarly to the case of standard
differential privacy, we can compute the real answer f(x) and the add noise by
applying a mechanism K to it. If f is ∆-sensitive w.r.t. d, d∞, meaning that
d(f(x), f(x′)) ≤ ∆d∞(x,x′) for all x,x′, and K satisfies geo-indistinguishability,

1For simplicity we consider probabilities of points here; a formal treatment of continuous mech-

anism would require to consider sets.



5.2. The Planar Laplace Mechanism 53

then the composed mechanism K ◦f can be shown to satisfy ∆ǫ-geo-indistinguisha-
bility.

Note that when dealing with aggregate data, standard differential privacy be-
comes a viable option. However, one needs to also examine the loss of utility caused
by the added noise. This highly depends on the application: differential privacy is
suitable for publishing aggregate queries with low sensitivity, meaning that changes
in a single individual have a relatively small effect on the outcome. On the other
hand, location information often has high sensitivity. A trivial example is the case
where we want to publish the complete tuple of points. But sensitivity can be high
even for aggregate information: consider the case of publishing the centroid of 5
users located anywhere in the world. Modifying a single user can hugely affect their
centroid, thus achieving differential privacy would require so much noise that the
result would be useless. For geo-indistinguishability, on the other hand, one needs
to consider the distance between points when computing the sensitivity. In the case
of the centroid, a small (in terms of distance) change in the tuple has a small effect
on the result, thus geo-indistinguishability can be achieved with much less noise.

5.2 The Planar Laplace Mechanism

In this section we present a method to generate noise so to satisfy geo-indistingui-
shability, based on an instance of the corresponding Laplace mechanism presented
in Section 4.2.1. We model the location domain as a discrete2 Cartesian plane with
the standard notion of Euclidean distance. This model can be considered a good
approximation of the Earth surface when the area of interest is not too large. In
the rest of the section we develop our mechanism according to the following plan:

(a) First, we define a mechanism to achieve geo-indistinguishability in the ideal
case of the continuous plane. For each actual location, this mechanism should
generate a random point in a way that satisfies geo-indistinguishability on R

2.

(b) Then, we discretize the mechanism by remapping each point generated according
to (a) to the closest point in the discrete domain.

(c) Finally, we truncate the mechanism, so to report only points within the limits
of the considered area.

5.2.1 A mechanism for the continuous plane

Following the above plan, we start by defining a mechanism for geo-indistinguishability
on the continuous plane. The idea is that whenever the actual location is x ∈ R

2, we
report, instead, a point z ∈ R

2 generated randomly according to the noise function.
The latter needs to be such that the probabilities of reporting a point in a certain

2For applications with digital interface the domain of interest is discrete, since the representation

of the coordinates of the points is necessarily finite.
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Figure 5.2: The pdf of two planar Laplacians, centered at (−2,−4) and at

(5, 3) respectively, with ǫ = 1/5.

(infinitesimal) area around z, when the actual locations are x and x′ respectively,
differs at most by a multiplicative factor e−ǫ d2(x,x′).

We can achieve this property by using the Laplace mechanism for Z = R
2

presented in Section 4.2.1. This mechanism has the property that the probability of
generating a point in the area around z decreases exponentially with the distance
from the actual location x.

Given the parameter ǫ ∈ R
+, and the actual location x ∈ R

2, the pdf of our
noise mechanism, on any other point z ∈ R

2, is:

Dǫ(x)(z) =
ǫ2

2π
e−ǫ d2(x,z) (5.1)

where ǫ2/2π is a normalization factor. We call this function planar Laplacian centered

at x. The corresponding distribution is illustrated in Figure 5.2. It is possible to
show that (i) the projection of a planar Laplacian on any vertical plane passing by
the center gives a (scaled) linear Laplacian, and (ii) the corresponding mechanism
satisfies ǫ-geo-indistinguishability.

Drawing a random point

We illustrate now how to draw a random point from the pdf defined in (5.1). First of
all, we note that the pdf of the planar Laplacian depends only on the distance from
x. It will be convenient, therefore, to switch to a system of polar coordinates with
origin in x. A point z will be represented as a point (r, θ), where r is the distance
of z from x, and θ is the angle that the line z x forms with respect to the horizontal
axis of the Cartesian system. Following the standard transformation formula, the
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pdf of the polar Laplacian centered at the origin (x) is:

Dǫ(r, θ) =
ǫ2

2π
r e−ǫ r (5.2)

We note now that the polar Laplacian defined above enjoys a property that
is very convenient for drawing in an efficient way: the two random variables that

represent the radius and the angle are independent. Namely, the pdf can be expressed
as the product of the two marginals. In fact, let us denote these two random variables
by R (the radius) and Θ (the angle). The two marginals are:

Dǫ,R(r) =
∫ 2π
0 Dǫ(r, θ) dθ = ǫ2 r e−ǫ r

Dǫ,Θ(θ) =
∫∞
0 Dǫ(r, θ) dr = 1

2π

Hence we have Dǫ(r, θ) = Dǫ,R(r) Dǫ,Θ(θ). Note that Dǫ,R(r) corresponds to the
pdf of the gamma distribution with shape 2 and scale 1/ǫ.

Thanks to the fact that R and Θ are independent, in order to draw a point (r, θ)
from Dǫ(r, θ) it is sufficient to draw separately r and θ from Dǫ,R(r) and Dǫ,Θ(θ)

respectively.
Since Dǫ,Θ(θ) is constant, drawing θ is easy: it is sufficient to generate θ as a

random number in the interval [0, 2π) with uniform distribution.
We now show how to draw r. Following standard lines, we consider the cumula-

tive distribution function (cdf) Cǫ(r):

Cǫ(r) =

∫ r

0
Dǫ,R(ρ)dρ = 1− (1 + ǫ r) e−ǫ r

Intuitively, Cǫ(r) represents the probability that the radius of the random point falls
between 0 and r. Finally, we generate a random number p with uniform probability
in the interval [0, 1), and we set r = C−1

ǫ (p). Note that

C−1
ǫ (p) = −1

ǫ

(
W−1(

p−1
e ) + 1

)

where W−1 is the Lambert W function (the −1 branch), which can be computed
efficiently and is implemented in several numerical libraries (MATLAB, Maple, GSL,
. . . ).

5.2.2 Discretization

We discuss now how to approximate the Laplace mechanism on a grid G of discrete
Cartesian coordinates. Let us recall the points (a) and (b) of the plan, in light of the
development so far: Given the actual location x0, report the point x in G obtained
as follows:

(a) first, draw a point (r, θ) following the method in Figure 5.3,

(b) then, remap (r, θ) to the closest point x on G.
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Drawing a point (r, θ) from the polar Laplacian

1. draw θ uniformly in [0, 2π)

2. draw p uniformly in [0, 1) and set r = C−1
ǫ (p)

Figure 5.3: Method to generate Laplacian noise.

We will denote by Kǫ : G → P(G) the above mechanism. In summary, Kǫ(x)(z)

represents the probability of reporting the point z when the actual point is x.

It is not obvious that the discretization preserves geo-indistinguishability, due to
the following problem: In principle, each point x in G should gather the probability
of the set of points for which x is the closest point in G, namely

R(x) = {y ∈ R
2 | ∀x′ ∈ G. d(x, y) ≤ d(x′, y)}

However, due to the finite precision of the machine, the noise generated according
to (a) is already discretized in accordance with the polar system. Let W denote
the discrete set of points actually generated in (a). Each of those points (r, θ) is
drawn with the probability of the area between r, r + δr, θ and θ + δθ, where
δr and δθ denote the precision of the machine in representing the radius and the
angle respectively. Hence, step (b) generates a point x in G with the probability of
the set RW(x) = R(x) ∩ W . This introduces some irregularity in the mechanism,
because the region associated to RW(x) has a different shape and area depending
on the position of x relatively to x0. The situation is illustrated in Figure 5.4 with
R0 = RW(x0) and R1 = RW(x1).

Figure 5.4: Remapping the points in polar coordinates to points in the

grid.
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Geo-indistinguishability of the discretized mechanism

We now analyze the privacy guarantees provided by our discretized mechanism.
We show that the discretization preserves geo-indistinguishability, at the price of a
degradation of the privacy parameter ǫ.

For the sake of generality we do not require the step units along the two di-
mensions of G to be equal. We will call them grid units, and will denote by u and
v the smaller and the larger unit, respectively. We recall that δθ and δr denote
the precision of the machine in representing θ and r, respectively. We assume that
δr ≤ rmaxδθ. The following theorem states the geo-indistinguishability guarantees
provided by our mechanism: Kǫ′ satisfies ǫ-geo-indistinguishability, within a range
rmax, provided that ǫ′ is chosen in a suitable way that depends on ǫ, on the length
of the step units of G, and on the precision of the machine.

Theorem 5.3. Assume rmax < u/δθ, and let q = u/rmaxδθ. Let ǫ, ǫ′ ∈ R
+ such that

ǫ′ +
1

u
ln

q + 2 eǫ
′u

q − 2 eǫ′u
≤ ǫ

Then Kǫ′ provides ǫ-geo-indistinguishability within the range of rmax. Namely, if

d(x, z), d(x′, z) ≤ rmax then:

Kǫ′(x)(z) ≤ eǫ d(x,x
′)Kǫ′(x

′)(z).

Proof. The case in which x = x′ is trivial. We consider therefore only the case in
which x 6= x′. Note that in this case d(x, x′) ≥ u. We proceed by determining an
upper bound on Kǫ′(x)(z) and a lower bound on Kǫ′(x

′)(z) for generic x, x′ and
z such that d(x, z), d(x′, z) ≤ rmax. Let S be the set of points for which z is the
closest point in G, namely:

S = R(z) = {y ∈ R
2 | ∀z′ ∈ G. d(y, z) ≤ d(y, z′)}

Ideally, the points remapped in z would be exactly those in S. However, as discussed
before, the points actually remapped in z are those of RW(z) Hence the probability
of z is that of S plus or minus the small rectangles3 W of size δr× r δθ at the border
of S, where r = d(x, z), see Figure 5.5. Let us denote by SW the total area of
these small rectangles W on one of the sides of S. Since d(x, z) ≤ rmax < u/δθ, and
δr < rmaxδθ, we have that SW is less than 1/q of the area of S, where q = u/rmaxδθ.
The probability density on this area differs at most by a factor eǫ

′u from that of the
other points in S. Finally, note that on two sides of S the rectangles W contribute
positively to Kǫ′(x)(z), while on two sides they contribute negatively. Summarizing,
we have:

Kǫ′(x)(z) ≤ (1 +
2 eǫ

′u

q
)

∫

S
Dǫ′(x)(s)ds (5.3)

3W is actually a fragment of a circular crown, but since δθ is very small, it approximates a

rectangle. Also, the side of W is not exactly r δθ, it is a number in the interval [(r − u/
√
2) δθ, (r +

u/
√
2) δθ]. However u/

√
2 δθ is very small with respect to the other quantities involved, hence we

consider negligible this difference.
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Figure 5.5: Bounding the probability of z in the discrete Laplacian.

and

(1− 2 eǫ
′u

q
)

∫

S
Dǫ′(x

′)(s)ds ≤ Kǫ′(x
′)(z) (5.4)

Observe now that
Dǫ′(x)(s)

Dǫ′(x′)(s)
= e−ǫ′(d(x,s)−d(x′,s))

By triangular inequality we obtain

Dǫ′(x)(s) ≤ eǫ
′ d(x,x′)Dǫ′(x

′)(s)

from which we derive
∫

S
Dǫ′(x)(s)ds ≤ eǫ

′ d(x,x′)
∫

S
Dǫ′(x

′)(s)ds (5.5)

from which, using (5.3), (5.5), and (5.4), we obtain

Kǫ′(x)(z) ≤ eǫ
′ d(x,x′)Kǫ′(x

′)(z)
q + 2 eǫ

′u

q − 2 eǫ′u
(5.6)

Assume now that

ǫ′ +
1

u
ln

q + 2 eǫ
′u

q − 2 eǫ′u
≤ ǫ

Since we are assuming d(x, x′) ≥ u, we derive:

eǫ
′ d(x,x′) q + 2 eǫ

′u

q − 2 eǫ′u
≤ eǫ d(x,x

′) (5.7)

Finally, from (5.6) and (5.7), we conclude.

The difference between ǫ′ and ǫ represents the additional noise needed to com-
pensate the effect of discretization. Note that rmax, which determines the area in
which ǫ-geo-indistinguishability is guaranteed, must be chosen in such a way that
q > 2 eǫ

′u. Furthermore there is a trade-off between ǫ′ and rmax: If we want ǫ′ to
be close to ǫ then we need q to be large. Depending on the precision, this may
or may not imply a serious limit on rmax. Vice versa, if we want rmax to be large
then, depending on the precision, ǫ′ may need to be significantly smaller than ǫ,
and furthermore we may have a constraint on the minimum possible value for ǫ,
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Figure 5.6: The relation between ǫ and ǫ′ for rmax = 102 km.

which means that we may not have the possibility of achieving an arbitrary level of
geo-indistinguishability.

Figure 5.6 shows how the additional noise varies depending on the precision of
the machine. In this figure, rmax is set to be 102 km, and we consider the cases of
double precision (16 significant digits, i.e., δθ = 10−16), single precision (7 significant
digits), and an intermediate precision of 9 significant digits. Note that with double
precision the additional noise is negligible.

Note that in Theorem 5.3 the restriction about rmax is crucial. Namely, ǫ-geo-
indistinguishability does not hold for arbitrary distances for any finite ǫ. Intuitively,
this is because the step units of W (see Figure 5.4) become larger with the distance
r from x0. The step units of G, on the other hand, remain the same. When the steps
in W become larger than those of G, some x’s have an empty RW(x). Therefore
when x is far away from x0 its probability may or may not be 0, depending on the
position of x0 in G, which means that geo-indistinguishability cannot be satisfied.

5.2.3 Truncation

The Laplace mechanisms described in the previous sections have the potential to
generate points everywhere in the plane, which causes several issues: first, digital
applications have finite memory, hence these mechanisms are not implementable.
Second, the discretized mechanism of Section 5.2.2 satisfies geo-indistinguishability
only within a certain range, not on the full plane. Finally, in practical applications
we are anyway interested in locations within a finite region (the earth itself is finite),
hence it is desirable that the reported location lies within that region. For the
above reasons, we propose a truncated variant of the discretized mechanism which
generates points only within a specified region and fully satisfies geo-indistingui-
shability. The full mechanism (with discretization and truncation) is referred to as
“Planar Laplace mechanism” and denoted by PLǫ.

We assume a finite set A ⊂ R
2 of admissible locations, with diameter diam(A)

(maximum distance between points in A). This set is fixed, i.e. it does not depend
on the actual location x0. Our truncated mechanism PLǫ : A → P(A ∩ G) works
like the discretized Laplacian of the previous section, with the difference that the
point generated in step (a) is remapped to the closest point in A∩G. The complete
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Figure 5.7: Probability of z in the truncated discrete laplacian.

mechanism is shown in Figure 5.8; note that step 1 assumes that diam(A) < u/δθ,
otherwise no such ǫ′ exists.

Theorem 5.4. PLǫ satisfies ǫ-geo-indistinguishability. namely

KT
ǫ′ (x)(z) ≤ eǫ d(x,x

′)KT
ǫ′ (x

′)(z) for every x, x′ ∈ A

Proof. The proof proceeds like the one for Theorem 5.3, except when R(z) is on
the border of A. In this latter case, the probability on z is given not only by
the probability on R(z) (plus or minus the small rectangles W – see the proof of
Theorem 5.3), but also by the probability of the part C of the cone determined by
o, R(z), and lying outside A (see Figure 5.7). Following a similar reasoning as in
the proof of Theorem 5.3 we get

KT
ǫ′ (x)(z) ≤ (1 +

2 eǫ
′u

q
)

∫

S∪C
Dǫ′(x)(s)ds

and

(1− 2 eǫ
′u

q
)

∫

S∪C
Dǫ′(x

′)(s)ds ≤ KT
ǫ′ (x

′)(z)

The rest follows as in the proof of Theorem 5.3.

5.3 Enhancing LBSs with Privacy

In this section we present a case study of our privacy mechanism in the context of
LBSs. In particular we show how to enhance LBS applications with privacy guaran-
tees while still providing a high quality service to their users. We assume a simple
client-server architecture where users communicate via a trusted mobile applica-
tion (the client – typically installed in a smart-phone) with an unknown/untrusted
LBS provider (the server – typically running on the cloud). Hence, in contrast to
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Input: x // point to sanitize

ǫ // privacy parameter

u, v, δθ, δr // precision parameters

A // acceptable locations

Output: Sanitized version z of input x

1. ǫ′ ← max ǫ′ satisfying Thm 5.3 for rmax = diam(A)
2. draw θ unif. in [0, 2π) // draw angle

3. draw p unif. in [0, 1), set r ← C−1

ǫ′
(p) // draw radius

4. z ← x+ 〈r cos(θ), r sin(θ)〉 // to cartesian, add vectors

5. z ← closest(z,A) // truncation

6. return z

Figure 5.8: The Planar Laplace mechanism PLǫ

other solutions proposed in the literature, our approach does not rely on trusted
third-party servers.

In the following we distinguish between mildly-location-sensitive and highly-

location-sensitive LBS applications. The former category corresponds to LBS appli-
cations offering a service that does not heavily rely on the precision of the location
information provided by the user. Examples of such applications are weather fore-
cast applications and LBS applications for retrieval of certain kind of points of
interest (POI), like gas stations or cinemas. Enhancing this kind of LBSs with geo-
indistinguishability is relatively straightforward as it only requires to obfuscate the
user’s location using the Planar Laplace mechanism (Figure 5.8).

Our running example lies within the second category: For the user sitting at
Café Les Deux Magots, information about restaurants nearby Champs Élysées is
considerably less valuable than information about restaurants around his location.
Enhancing highly-location-sensitive LBSs with privacy guarantees is more challeng-
ing. Our approach consists on implementing the following three steps:

1. Implement the Planar Laplace mechanism (Figure 5.8) on the client appli-
cation in order to report to the LBS server the user’s obfuscated location z

rather than his real location x.

2. Due to the fact that the information retrieved from the server is about POI
nearby z, the area of POI information retrieval should be increased. In this
way, if the user wishes to obtain information about POI within, say, 300 m of
x, the client application should request information about POI within, say, 1
km of z. Figure 5.9 illustrates this situation. We will refer to the blue circle
as area of interest (AOI) and to the grey circle as area of retrieval (AOR).
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Figure 5.9: AOI and AOR of 300 m and 1 km radius respectively.

3. Finally, the client application should filter the retrieved POI information (de-
picted by the pins within the area of retrieval in Figure 5.9) in order to provide
to the user with the desired information (depicted by pins within the user’s
area of interest in Figure 5.9).

Ideally, the AOI should always be fully contained in the AOR. Unfortunately,
due to the probabilistic nature of our perturbation mechanism, this condition cannot
be guaranteed (note that the AOR is centered on a randomly generated location
that can be arbitrarily distant from the real location). It is also worth noting that
the client application cannot dynamically adjust the radius of the AOR in order to
ensure that it always contains the AOI as this approach would completely jeopardize
the privacy guarantees: on the one hand, the size of the AOR would leak information
about the user’s real location and, on the other hand, the LBS provider would know
with certainty that the user is located within the retrieval area. Thus, in order to
provide geo-indistinguishability, the AOR has to be defined independently from the
randomly generated location.

Since we cannot guarantee that the AOI is fully contained in the AOR, we
introduce the notion of accuracy, which measures the probability of such event. In
the following, we will refer to an LBS application in abstract terms, as characterized
by a location perturbation mechanism K and a fixed AOR radius. We use radR

and rad I to denote the radius of the AOR and the AOI, respectively, and B(x, r) to
denote the circle with center x and radius r.
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5.3.1 On the accuracy of LBSs

Intuitively, an LBS application is (c, radI)-accurate if the probability of the AOI
to be fully contained in the AOR is bounded from below by a confidence factor c.
Formally:

Definition 5.2 (LBS application accuracy). An LBS application (K, radR) is

(c, rad I)-accurate iff for all locations x we have that B(x, rad I) is fully contained in

B(K(x), radR) with probability at least c.

Given a privacy parameter ǫ and accuracy parameters (c, rad I), our goal is to
obtain an LBS application (K, radR) satisfying both ǫ-geo-indistinguishability and
(c, rad I)-accuracy. As a perturbation mechanism, we use the Planar Laplace PLǫ

(Figure 5.8), which satisfies ǫ-geo-indistinguishability. As for radR, we aim at finding
the minimum value validating the accuracy condition. Finding such minimum value
is crucial to minimize the bandwidth overhead inherent to our proposal. In the
following we will investigate how to achieve this goal by statically defining radR as
a function of the mechanism and the accuracy parameters c and rad I .

For our purpose, it will be convenient to use the notion of (α, δ)-usefulness,
which was introduced in [Blum 2008]. A location perturbation mechanism K is (α,
δ)-useful if for every location x the reported location z = K(x) satisfies d(x, z) ≤ α

with probability at least δ. In the case of the Planar Laplace, it is easy to see that,
by definition, the α and δ values which express its usefulness are related by Cǫ

4,
the cdf of the Gamma distribution:

Observation 5.1. For any α > 0, PLǫ is (α, δ)-useful if α ≤ C−1
ǫ (δ).

Figure 5.10 illustrates the (α, δ)-usefulness of PLǫ for r=0.2 (as in our running
example) and various values of ℓ (recall that ℓ = ǫ r). It follows from the figure that
a mechanism providing the privacy guarantees specified in our running example
(ǫ-geo-indistinguishability, with ℓ = ln(4) and r = 0.2) generates an approximate
location z falling within 1 km of the user’s location x with probability 0.992, falling
within 690 meters with probability 0.95, falling within 560 meters with probability
0.9, and falling within 390 meters with probability 0.75.

We now have all the necessary ingredients to determine the desired radR: By
definition of usefulness, if PLǫ is (α, δ)-useful then the LBS application (PLǫ, radR)

is (δ, rad I)-accurate if α ≤ radR − rad I . The converse also holds if δ is maximal.
By Observation 5.1, we then have:

Proposition 5.1. The LBS application (PLǫ, radR) is (c, rad I)-accurate if radR ≥
rad I + C−1

ǫ (c).

Therefore, it is sufficient to set radR = rad I + C−1
ǫ (c).

4For simplicity we assume that ǫ′ = ǫ (see Figure 5.8), since their difference is negligible under

double precision.
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Figure 5.10: (α, δ)-usefulness for r = 0.2 and various values of ℓ.

Coming back to our running example (ǫ = ln(4)/0.2 and rad I = 0.3), taking
a confidence factor c of, say, 0.95, leads to a (0.69, 0.95)-useful mechanism (be-
cause C−1

ǫ (c) = 0.69). Thus, (PLǫ, 0.99) is both ln(4)/0.2-geo-indistinguishable and
(0.95, 0.3)-accurate.

5.3.2 Bandwidth overhead analysis

As expressed by Proposition 5.1, in order to implement an LBS application enhanced
with geo-indistinguishability and accuracy it suffices to use the Planar Laplace mech-
anism and retrieve POIs for an enlarged radius radR. For each query made from
a location x, the application needs to (i) obtain z = PLǫ(x), (ii) retrieve POIs for
AOR = B(z, radR), and (iii) filter the results from AOR to AOI (as explained in
step 3 above). Such implementation is straightforward and computationally efficient
for modern smart-phone devices. In addition, it provides great flexibility to appli-
cation developer and/or users to specify their desired/allowed level of privacy and
accuracy. This, however, comes at a cost: bandwidth overhead.

In the following we turn our attention to investigating the bandwidth overhead
yielded by our approach. We will do so in two steps: first we investigate how the
AOR size increases for different privacy and LBS-specific parameters, and then we
investigate how such increase translates into bandwidth overhead.

Figure 5.11 depicts the overhead of the AOR versus the AOI (represented as their
ratio) when varying the level of confidence (c) and privacy (ℓ) and for fixed values
rad I = 0.3 and r = 0.2. The overhead increases slowly for levels of confidence up
to 0.95 (regardless of the level of privacy) and increases sharply thereafter, yielding
to a worst case scenario of a about 50 times increase for the combination of highest
privacy (ℓ = log(2)) and highest confidence (c = 0.99).

In order to understand how the AOR increase translates into bandwidth over-
head, we now investigate the density (in km2) and size (in KB) of POIs by means of
the Google Places API [Google Places]. This API allows to retrieve POIs’ informa-
tion for a specific location, radius around the location, and POI’s type (among
many other optional parameters). For instance, the HTTPS request:

https://maps.googleapis.com/maps/api/place/nearbysearch/json?location=
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Figure 5.11: AOR vs AOI ratio for various levels of privacy and accuracy

(using fixed r = 0.2 and radI = 0.3).

48.85412,2.33316&radius=300&types=restaurant&key=myKey

returns information (in JSON format) including location, address, name, rating,
and opening times for all restaurants up to 300 meters from the location (48.85412,
2.33316) – which corresponds to the coordinates of Café Les Deux Magots in Paris.

We have used the APIs nearbysearch and radarsearch to calculate the aver-
age number of POIs per km2 and the average size of POIs’ information (in KB)
respectively. We have considered two queries: restaurants in Paris, and restaurants
in Buenos Aires. Our results show that there is an average of 137 restaurants per
km2 in Paris and 22 in Buenos Aires, while the average size per POI is 0.84 KB.

Combining this information with the AOR overhead depicted in Figure 5.11, we
can derive the average bandwidth overhead for each query and various combinations
of privacy and accuracy levels. For example, using the parameter combination of our
running example (privacy level ǫ = log(4)/0.2, and accuracy level c = 0.95, rad I =

0.3) we have a 10.7 ratio for an average of 38 (⋍ (137/10002)×(3002×π)) restaurants
in the AOI. Thus the estimated bandwidth overhead is 39 × (10.7 − 1) × 0.84KB
⋍ 318 KB.

Table 5.1 shows the bandwidth overhead for restaurants in Paris and Buenos
Aires for the various combinations of privacy and accuracy levels. Looking at the
worst case scenario, from a bandwidth overhead perspective, our combination of
highest levels of privacy and accuracy (taking ℓ = log(2) and c = 0.99) with the
query for restaurants in Paris (which yields to a large number of POIs – significantly
larger than average) results in a significant bandwidth overhead (up to 1.7MB). Such
overhead reduces sharply when decreasing the level of privacy (e.g., from 1.7 MB
to 557 KB when using ℓ = log(4) instead of ℓ = log(2)). For more standard queries
yielding a lower number of POIs, in contrast, even the combination of highest privacy
and accuracy levels results in a relatively insignificant bandwidth overhead.

Concluding our bandwidth overhead analysis, we believe that the overhead nec-
essary to enhance an LBS application with geo-indistinguishability guarantees is
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Restaurants
Accuracy

in Paris
rad I = 0.3

c = 0.9 c = 0.95 c = 0.99

Privacy
ℓ=log(6) 162 KB 216 KB 359 KB

r=0.2
ℓ=log(4) 235 KB 318 KB 539 KB

ℓ=log(2) 698 KB 974 KB 1.7 MB

Restaurants
Accuracy

in Buenos Aires
rad I = 0.3

c = 0.9 c = 0.95 c = 0.99

Privacy
ℓ=log(6) 26 KB 34 KB 54 KB

r=0.2
ℓ=log(4) 38 KB 51 KB 86 KB

ℓ=log(2) 112 KB 156 KB 279 KB

Table 5.1: Bandwidth overhead for restaurants in Paris and in Buenos

Aires for various levels of privacy and accuracy.

not prohibitive even for scenarios resulting in high bandwidth overhead (i.e., when
combining very high privacy and accuracy levels with queries yielding a large num-
ber of POIs). Note that 1.7MB is comparable to 35 seconds of Youtube streaming
or 80 seconds of standard Facebook usage [Vodafone]. Nevertheless, for cases in
which minimizing bandwidth consumption is paramount, we believe that trading
bandwidth consumption for privacy (e.g., using ℓ = log(4) or even ℓ = log(6)) is an
acceptable solution.

5.3.3 Further challenges: using an LBS multiple times

As discussed in Section 5.1.2, geo-indistinguishability can be naturally extended to
multiple locations. In short, the idea of enjoying a privacy level ℓ within r remains
the same but for all locations simultaneously. In this way the locations, say, x1, x2
of a user employing the LBS twice remain indistinguishable from all pair of locations
at (point-wise) distance at most r (i.e., from all pairs x′1, x

′
2 such that d(x1, x′1) ≤ r

and d(x2, x
′
2) ≤ r).

A simple way of obtaining geo-indistinguishability guarantees when performing
multiple queries is to employ our technique for protecting single locations to indepen-

dently generate approximate locations for each of the user’s locations. In this way,
a user performing n queries via a mechanism providing ǫ-geo-indistinguishability
enjoys nǫ-geo-indistinguishability (see Section 5.1.2).
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This solution might be satisfactory when the number of queries to perform re-
mains fairly low, but in other cases impractical, due to the privacy degradation. It is
worth noting that the canonical technique for achieving standard differential privacy
(based on adding noise according to the Laplace distribution) suffers of the same
privacy degradation problem (ǫ increases linearly on the number of queries). Sev-
eral articles in the literature focus on this problem (see [Roth 2010] for instance).
We believe that the principles and techniques used to deal with this problem for
standard differential privacy could be adapted to our scenario (either directly or
motivationally).

5.4 Sanitizing datasets: US census case study

In this section we present a sanitation algorithm for datasets containing geographi-
cal information. We consider a realistic case study involving publicly available data
developed by the U.S Census Bureau’s Longitudinal Employer-Household Dynam-
ics Program (LEHD). These data, called LEHD Origin-Destination Employment
Statistics (LODES), are used by OnTheMap, a web-based interactive application
developed by the US Census Bureau. The application enables, among other fea-
tures, visualization of geographical information involving the residence and working
location of US residents (e.g., distance from home to work location).

The LODES dataset includes information of the form (hBlock, wBlock), where
each pair represents a worker, the attribute hBlock is the census block in which
the worker lives, and wBlock is the census block where the worker works. From
this dataset it is possible to derive, by mapping home and work census blocks into
their corresponding geographic centroids, a dataset with geographic information of
the form (hCoord , wCoord), where each of the coordinate pairs corresponds to a
census block pair.

The Census Bureau uses a synthetic data generation algorithm [Rubin 1993,
Machanavajjhala 2008] to sanitize the LODES dataset. Roughly speaking, the al-
gorithm interprets the dataset as an histogram where each (hBlock, wBlock) pair is
represented by a histogram bucket, the synthetic data generation algorithm sanitizes
data by modifying the counts of the histogram.

In the following we present a sanitizing algorithm for datasets with geographical
information (e.g. the LODES dataset) that provides geo-indistinguishability guar-
antees under the assumption that the home census blocks values in the dataset are
uncorrelated. Although this assumption weakens the privacy guarantees provided by
geo-indistinguishability, we believe that due to the anonymizing techniques applied
by the Census Bureau to the released data involving census participants’ information
and to the large number of (hCoord, wCoord) pairs within small areas contained
in the dataset, a practical attack based on correlation of points is unlikely.

Our sanitizing algorithm, described in Figure 5.12, takes as input (1) a dataset
D to sanitize, (2) the privacy parameters ℓ and r (see Section 5.1), and (3) the
precision parameters u, v, δr and δθ, and the region A. (see Section 5.2.2) and
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Sanitizing Algorithm for a Dataset of Locations

Input: D : hCoord× wCoord // dataset to sanitize

ℓ, r, u, v, δr, δθ, A // same as in Figure 5.8

Output: Sanitized version D′ of input D

1. D′ = ∅; // initializing output dataset

2. ǫ = l/r;

3. for each (ch, cw) ∈ D do

4. c′
h
= NoisyPt(ch, ǫ, u, v, δθ, δr,A);// sanitized point

5. D′ = D′ ∪ {(c′
h
, cw)}; // adding sanitized point

6. end-for

7. return D′;

Figure 5.12: Our sanitizing algorithm, based on data perturbation

returns a sanitized counterpart of D. The algorithm is guaranteed to provide ℓ/r-
geo-indistinguishability to the home coordinates of all individuals in the dataset (see
discussion on protecting multiple locations in Section 5.1.2).

We note that, in contrast to the approach used by the Census Bureau based
on histogram’s count perturbation, our algorithm modifies the geographical data
itself (residence coordinates in this case). Therefore, our algorithm works at a
more refined level than the synthetic data generation algorithm used by the Census
Bureau; a less refined dataset can be easily obtained however – by just remapping
each (hCoord, wCoord) pair produced by our algorithm to its corresponding census
block representation.

5.4.1 Experiments on the LODES dataset

In order to evaluate the accuracy of the sanitized dataset generated by our algo-
rithm (and thus of our algorithm as a data sanitizer) we implemented our perturba-
tion mechanism and conducted a series of experiments focusing on the “home-work
commute distance” analysis provided by the OnTheMap application. This analy-
sis provides, for a given area (specified as, say, state or county code), a histogram
classifying the individuals in the dataset residing in the given area according to the
distance between their residence location and their work location. The generated
histogram contains four buckets representing different ranges of distance: (1) from
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Figure 5.13: Home-work commute distance for various levels ℓ.

zero to ten miles, (2) from ten to twenty five miles, (3) from twenty five to fifty
miles, and (4) more than fifty miles.5.

We have chosen the San Francisco (SF) County as residence area for our experi-
mental analysis. Additionally, we restrict the work location of individuals residing in
the San Francisco county to the state of California. The total number of individuals
satisfying these conditions amounts to 374.390. All experiments have been carried
on using version 6.0 of the LODES dataset. In addition, the mapping from census
blocks to their corresponding centroids has been done using the 2011 TIGER census
block shapefile information provided by the Census Bureau.

We now proceed to compare the LODES dataset – seen as a histogram – with
several sanitized versions of it generated by our algorithm. Figure 5.13 (a) depicts
how the geographical information degrades when fixing r to 1.22 miles (so to ensure
geo-indistinguishability within 10% of the land area of the SF County) and varying
ℓ. The precision parameters were chosen as follows: u = 10−3 miles, A’s diameter
was set to 104 miles, and the standard double precision values for δr and δθ (for the
corresponding ranges).

We have also conducted experiments varying r and fixing ℓ. For instance, if we
want to provide geo-indistinguishability for 5%, 10%, and 25% of the land area of the
SF county (approx. 46.87 mi2), we can set r=0.86, 1.22, and 1.93 miles, respectively.
Then by taking ℓ = ln(2) we get an histogram very similar to the previous one. This
is not surprising as the noise generated by our algorithm depends only on the ratios
ℓ/r, which are similar for the values above.

As shown in Figure 5.13 (a), our algorithm has little effect on the bucket counts
corresponding to mid/long distance commutes: over twenty five miles the counts of
the sanitized dataset are almost identical to those of the input dataset – even for the
higher degrees of privacy. For short commutes on the other hand, the increase in
privacy degrades the accuracy of the sanitized dataset: several of the commutes that
fall in the 0-to-10-miles bucket in the original data fall instead in the 10-to-25-miles
bucket in the sanitized data.

5Here we choose miles as unit of measure, in order to compare our results with the literature

and with online tools about the LODES dataset.
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After analyzing the accuracy of the sanitized datasets produced by our algorithm
for several levels of privacy, we proceed to compare our approach with the one fol-
lowed by the Census Bureau to sanitize the LODES dataset. Such comparison is
unfortunately not straightforward; on the one hand, the approaches provide differ-
ent privacy guarantees (see discussion below) and, on the other hand, the Census
Bureau is not able to provide us with a (sanitized) dataset sample produced by their
algorithm (which would allow us to compare both approaches in terms of accuracy)
as this might compromise the protection of the real data.

The algorithm used by the Census Bureau satisfies a notion of privacy called
(ǫ, δ)-probabilistic differential privacy (which is a relaxation of standard definition
of differential privacy) that provides ǫ-differential privacy with probability at least
1− δ [Machanavajjhala 2008]. In particular, their algorithm satisfies (8.6, 0.00001)

-probabilistic differential privacy. This level of privacy could be compared to geo-
indistinguishability for ℓ=8.6 and r=3.86, which corresponds to providing protec-
tion in an area of the size of the SF County. Figure 5.13 (b) presents the results of
our algorithm for such level of privacy and also for higher levels.

It becomes clear that, by allowing high values for ℓ (ℓ = 8.6 = ln(5432), ℓ =

4.3 = ln(74), and ℓ = 2.15 = ln(9)) it is possible to provide privacy in large areas
without significantly diminishing the quality of the sanitized dataset.

5.5 Comparison with other methods

In this section we compare the performance of our mechanism with that of other
ones proposed in the literature. Of course it is not interesting to make a comparison
in terms of geo-indistinguishability, since other mechanisms usually do not satisfy
this property.

We consider, instead, the (rather natural) Bayesian notion of privacy that mea-
sures the expected error of the adversary, presented in Section 3.1. We also consider
the trade-off with respect to the quality loss (measured as the expected distance
between the real location and the reported result), and also with respect to the
notion of accuracy illustrated in the previous section.

The mechanisms that we compare with ours are:

1. The obfuscation mechanism presented in [Shokri 2012]. This mechanism works
on discrete locations, called regions, and, like ours, it reports a location (region)
selected randomly according to a probability distribution that depends on
the user’s location. The distributions are generated automatically by a tool
which is designed to produce an OptPriv mechanism (see Section 3.1), that
is, a mechanism that provides optimal privacy for a given utility and a given
adversary (i.e., a given prior, representing the side knowledge of the adversary).
It is important to note that in presence of a different adversary the optimality
is not guaranteed. This dependency on the prior is a key difference with respect
to our approach, which abstracts from the adversary’s side information.
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2. A simple cloaking mechanism. In this approach, the area of interest is assumed
to be partitioned in zones, whose size depends on the level of privacy we want
yo achieve. The mechanism then reports the zone in which the exact location
is situated. This method satisfies k-anonymity where k is the number of
locations within each zone.

In both cases we need to divide the considered area into a finite number of
regions, representing the possible locations. We consider for simplicity a grid, and,
more precisely, a 9×9 grid consisting of 81 square regions of 100 m of side length. In
addition, for the cloaking method, we overlay a grid of 3× 3 = 9 zones. Figure 5.14
illustrates the setting: the regions are the small squares with black borders. In the
cloaking method, the zones are the larger squares with blue borders. For instance,
any point situated in one of the regions 1, 2, 3, 10, 11, 12, 19, 20 or 21, would be
reported as zone 1. We assume that each zone is represented by the central region.
Hence, in the above example, the reported region would be 11.

Measuring privacy and utility As already stated, we will use the metrics for
location privacy and for the quality loss proposed in [Shokri 2012] and described
in Section 3.1. The expected error of the advesary is used to measure the privacy
offered by a mechanism, and it is formally defined as follows:

AdvError(K,π) = min
H

∑
x,x̂ πx(KH)xx̂d2(x, x̂)

where π is the prior distribution over the locations, kxz gives the probability that
the real location x is reported by the mechanism as z, H is called a remapping,
where hzx̂ represents the probability that the reported region z is remapped into x̂

and d2 is the euclidean distance between locations. As for the utility, we quantify
its opposite, the Quality Loss (QL), in terms of the expected distance between the
reported location and the user’s exact location:

QL(K,π) =
∑

x,z πxkxzd2(x, z)

where π and kxz are as above. We note that actually the definitions of AdvError
and QL presented in Section 3.1 depend respectively on the metric used by the
adversary to measure the success of her guessing, and on the one used by the user
to measure the quality of the obtained results. In this section we assume that both
these metrics are equal to the Euclidean distance d2, and therefore for simplicity we
omit them from the list of arguments.

Recall that for the optimal mechanism in [Shokri 2012] QL and AdvError
coincide (when the mechanism is used in presence of the same adversary for which
it has been designed), i.e. the adversary does not need to make any remapping.

Comparing privacy for a given utility In order to compare the three mecha-
nisms, we set the parameters of each mechanism in such a way that the QL is the
same for all of them, and we compare their privacy in terms of AdvError. As al-
ready noted, for the OptPriv mechanism generated by the approach of [Shokri 2012]
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Figure 5.14: The division of the map into regions and zones.

Figure 5.15: Priors considered for the experiments.

QL and AdvError coincide, i.e. the optimal remapping is the identity, when the
mechanism is used in presence of the same adversary for which it has been designed.
It turns out that, when the adversary’s prior is the uniform one, QL and AdvError
coincide also for the Planar Laplace mechanism and for the cloaking one.

We note that for the cloaking mechanism the QL is fixed and it is 107.03 m,
since there is no randomization involved in the generation of the reported location.
Therefore, in our experiments we fix the value of QL to be that one for all the
mechanisms. We find that in order to obtain such QL for the Planar Laplace
mechanism we need to set ǫ = 0.0162 (the difference with ǫ′ in this case is negligible).
The OptPriv mechanism of [Shokri 2012] is generated by using the tool explained
in the same paper.

Figure 5.15 illustrates the priors π1, π2 and π3 that we consider here: in each
case, the probability distribution is accumulated in the regions in the purple area,
and distributed uniformly over them. Note that it is not interesting to consider the
uniform distribution over the whole map, since, as explained before, on that prior
all the mechanisms under consideration give the same result.

Figure 5.16 illustrates the results we obtain when comparing privacy in terms
of AdvError, where (a), (b) and (c) correspond to the priors π1, π2 and π3 in
Figure 5.15 respectively. The optimal mechanism is considered in two instances: the
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(a) (b) (c)
Cloaking Optimal-unif Planar Laplace Optimal-rp

Figure 5.16: Location Privacy, in terms of AdvError, for QL = 107.03

m, for the four mentioned mechanisms, under priors (a) π1, (b) π2 and

(c) π3.

one designed exactly for the prior for which it is used (OptPrivπi , for i ∈ {1, 2, 3}),
and the one designed for the uniform distribution on all the map (OptPrivu, which
is not necessarily optimal for the priors considered here). As we can see, the Planar
Laplace mechanism offers the best location privacy among the mechanisms which do
not depend on the prior, or, as in the case of OptPrivu, are designed with a fixed
prior. When the prior has a more circular symmetry the performance approaches the
one of the corresponding OptPrivπi mechanism (which offers the optimal privacy
for that prior).

Comparing privacy for a given accuracy The QL metric used above is a rea-
sonable metric, but it does not cover all natural notions of utility. In particular, in
the case of LBSs, an important criterion to take into account is the additional band-
width usage. Therefore, we make now a comparison using the notion of accuracy,
which, as explained in previous section, provides a good criterion to evaluate the
performance in terms of bandwidth. Unfortunately we cannot compare our mech-
anism to the one of [Shokri 2012] under this criterion, because the construction of
the latter is tied to the a fixed value of QL. Hence, we only compare our mechanism
with the cloaking one.

We recall that an LBS application (K, radR) is (c, rad I)-accurate if for every
location x the probability that the area of interest (AOI) is fully contained in the
area of retrieval (AOR) is at least c. We need to fix rad I (the radius of the AOI),
radR (the radius of the AOR), and c so that the condition of accuracy is satisfied for
both methods, and then compute the respective AdvError. Let us fix rad I = 200

m, and let us choose a large confidence factor, say, c = 0.99. As for radR, it will be
determined by the cloaking method.

Since the cloaking mechanism is deterministic, in order for the condition to be
satisfied the AOR for a given location x must extend around the zone of x by at
least rad I , In fact, x could be in the border of the zone. Given that the cloaking
method reports the center of the zone, and that the distance between the center
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(b)(a) (c)
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Figure 5.17: Location Privacy for radR = (
√
2 · 150 + 200) m and c = 0.99.

and the border (which is equal to the distance between the center and any of the
corners) is

√
2 ·150 m, we derive that radR must be at least (200+

√
2 ·150) m. Note

that in the case of this method the accuracy is independent from the value of c. It
only depends on the difference between radR and rad I , which in turns depends on
the length s of the side of the region: if the difference is at least

√
2 · s/2, then the

condition is satisfied (for every possible x) with probability 1. Otherwise, there will
be some x for which the condition is not satisfied (i.e., it is satisfied with probability
0).

In the case of our method, on the other hand, the accuracy condition depends
on c and on ǫ. More precisely, as we have seen in previous section, the condition is
satisfied if and only if C−1

ǫ (c) ≤ radR − rad I . Therefore, for fixed c, the maximum
ǫ only depends on the difference between radR and rad I and is determined by the
equation C−1

ǫ (c) = radR − rad I . For the above values of rad I , radR, and c, it turns
out that ǫ = 0.016.

We can now compare the AdvError of the two mechanisms with respect to the
three priors above. Figure 5.17 illustrates the results. As we can see, our mechanism
outperforms the cloaking mechanism in all the three cases.

For different values of rad I the situation does not change: as explained above,
the cloaking method always forces radR to be larger than rad I by (at least)

√
2 ·150

m, and ǫ only depends on this value. For smaller values of c, on the contrary, the
situation changes, and becomes more favorable for our method. In fact, as argued
above, the situation remains the same for the cloaking method (since its accuracy
does not depend on c), while ǫ decreases (and consequently AdvError increases)
as c decreases. In fact, for a fixed r = radR−rad I , we have ǫ = C−1

r (c). This follows
from r = C−1

ǫ (c) and from the fact that r and ǫ, in the expression that defines Cǫ(r),
are interchangeable.
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5.6 Concluding remarks

Related Work

Much of the related work has been already discussed in Chapter 3, here we only
mention the works that were not reported there. There are excellent works and sur-
veys [Terrovitis 2011, Krumm 2009, Shin 2012] that summarize the different threats,
methods, and guarantees in the context of location privacy.

LISA [Chen 2009] provides location privacy by preventing an attacker from re-
lating any particular point of interest (POI) to the user’s location. That way, the
attacker cannot infer which POI the user will visit next. The privacy metric used in
this work is m-unobservability. The method achieves m-unobservability if, with high
probability, the attacker cannot relate the estimated location to at least m different
POIs in the proximity. This method does not take into account the attacker’s prior
knowledge, and it also requires to maintain a database of POIs in the mobile device
in order to provide the required privacy.

SpaceTwist [Yiu 2008] reports a fake location (called the “anchor”) and queries
the geolocation system server incrementally for the nearest neighbors of this fake
location until the k-nearest neighbors of the real location are obtained.

Collaborative models were also proposed, where privacy is achieved with a peer-
to-peer scheme where users avoid querying the service provider whenever they can
find the requested information among their peers [Shokri 2014].

There are also some works whose main goal is to provide accurate results for
data mining algorithms while preserving location privacy of the user. Gidofalvi et
al. [Gidofalvi 2007] use grid-based anonymization, although the privacy guarantees
are mainly experimental.

In [Mironov 2012] it has been shown that, due to finite precision and rounding
effects of floating-point operations, the standard implementations of the Laplacian
mechanism result in an irregular distribution which causes the loss of the prop-
erty of differential privacy. In [Gazeau 2013] the study has been extended to the
planar Laplacian, and to any kind of finite-precision semantics. The same paper
proposes a solutions for the truncated version of the planar laplacian, based on a
snapping mechanism, which maintains the level of privacy at the cost of introducing
an additional amount of noise.

Dealing with location traces

As discussed in Section 5.1, if we need to add noise to a tuple of n points, then
doing it by applying an ǫ-geo-indistinguishable mechanism independently to each
point in the tuple guarantees nǫ-geo-indistinguishability. However, it is clear that
in this case the level of privacy decreases fast with respect to the number of points
in the tuple.

A location trace is a particular case of tuple, in which not only subsequent points
are highly correlated, but also the noise to each points must be added dynamically,
i.e. we cannot just add noise to the tuple as a whole. Besides, location traces usually
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contain a large number of points, making the previously mentioned approach of
adding independent noise ineffective.

To deal with this particular scenario, the authors of [Chatzikokolakis 2013b] have
proposed a method to add noise to location traces by means of a prediction function.
The basic idea is that, whenever a new point is added to the trace and has to be
obfuscated, the mechanism first generates a fake point by “predicting” the direction
in which the user has moved (i.e. in this step, no randomization is used). This
point is then tested to determine if it falls “too far” from the real location. Then,
only if this is the case, a new point is generated by means of a geo-indistinguishable
mechanism. This way, the authors succeed in obfuscating traces with a high number
of locations with a good level of privacy.

Summary

In this chapter we have adapted the general privacy framework presented in Chapter
4 to the case of location-based applications. As result, we derived a novel notion
of location privacy, that we call geo-indistinguishability, and a method, based on a
bivariate version of the Laplace function, to perturbate the actual location. We have
put a strong emphasis in the formal treatment of the privacy guarantees, both in giv-
ing a rigorous definition of geo-indistinguishability, and in providing a mathematical
proof that our method satisfies such property.

We have illustrated the applicability of our method on a POI-retrieval service,
analyzing the tradeoff between the accuracy of the service and the bandwidth over-
head for different levels of privacy. Our experiments show that, by using an afford-
able amount of bandwidth, we can achieve a good level of privacy and, at the same
time, a high level of accuracy. Our method can also be used to sanitize datasets
containing location information without degrading significantly the quality of the
aggregated results that can be obtained from it, as shown in Section 5.4.

The proposed mechanism compares well with other mechanisms in the litera-
ture, and in fact, based on the experiments we performed, it can be seen that it
outperforms those which do not depend on the prior.



Chapter 6

Optimal Mechanisms for Location

Privacy

In the previous chapter we introduced the notion of geo-indistinguishability, an
instance of d-privacy suited for location-based systems. This notion has the prop-
erty of being independent from the adversary’s prior knowledge, meaning that no
assumptions are made with respect to the kind of information about the user’s lo-
cation that the attacker has. We also presented the Planar Laplace mechanism, a
mechanism based on a bivariate Laplace distribution that achieves this definition.
However, the utility of this mechanism is not optimal, in the sense that there are
other mechanisms that achieve geo-indistinguishability with the same privacy level,
but at the same time offer better utility. In this chapter we will study the trade-off
between privacy and utility in geo-indistinguishable mechanisms.

We recall from Section 3.1 that [Shokri 2012] developed an approach to obtain
a mechanism that optimizes the privacy while guaranteeing a minimum fixed level
of utility. The authors accomplish this by expressing the different privacy and
utility constraints as a zero-sum Bayesian Stackelberg game, whose solution can be
expressed as a linear optimization problem. However, it must be noted that in this
case the privacy is measured as the expected error of the attacker (that we will refer
to as AdvError), that is the expected distance between the true location and the
best guess of the adversary once she knows the location reported to the LBS:

AdvError(K,π, d) = min
H

∑
x,x̂ πx(KH)xx̂d(x, x̂)

This privacy measure assumes that the adversary knows the prior probability
distribution on the user’s possible locations. The adversary’s guess takes into ac-
count the information already in her possession (the prior probability), and it is by
definition more accurate, in average, than the reported location. We also say that
the adversary may remap the reported location.

In this chapter, and following the idea of [Shokri 2012], we aim at optimizing
the trade-off between privacy and utility when considering the privacy notion of
geo-indistinguishability. In particular, we are interested in the following problem:
given a privacy requirement in terms of geo-indistinguishability, we are interested in
finding a mechanism that achieves this level of privacy while guaranteeing optimal
utility. We recall that we actually measure the opposite of the utility, namely
the quality loss of the mechanism, which measures the expected distance of the
mechanism under a given prior:

QL(K,π, dQ) = ExpDist(K,π, dQ)
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First, we present a method, based on a linear optimization problem, to obtain a
mechanism that is optimal in the sense just described. Then, we present a method
to reduce the number of constraints in the linear program from cubic to quadratic, by
using an approximation technique based on spanning graphs. We will also see that
the mechanisms obtained this way (either with or without using the approximation
technique) are also optimal with respect to the AdvError privacy metric, that
is, are OptPriv (see Section 3.1). Finally, perform an evaluation of the proposed
approach (in terms of privacy, utility and performance) using information from a
dataset containing thousands of traces of several users.

6.1 Geo-indistinguishable mechanisms of optimal utility

As discussed before, we aim at obtaining a mechanism that optimizes the tradeoff
between privacy (in terms of geo-indistinguishability) and quality loss (in terms the
metric QL). Our main goal is, given a set of locations X with a privacy metric dX

(typically the Euclidean distance), a privacy level ǫ, a user profile π and a quality
metric dQ, to find an ǫdX -private mechanism such that its QL is as small as possible.

We start by describing a set of linear constraints that enforce ǫdX -privacy, which
allows to obtain an optimal mechanism as a linear optimization problem. How-
ever, the number of constraints can be large, making the approach computationally
demanding as the number of locations increases. As a consequence, we propose an
approximate solution that replaces dX with the metric induced by a spanning graph.
We discuss a greedy algorithm to calculate the spanning graph and analyze its run-
ning time. We also show that, if the quality and adversary metrics coincide, then
the constructed (exact or approximate) mechanisms also provide optimal privacy
in terms of AdvError. Finally, we discuss some practical considerations of our
approach.

6.1.1 Constructing an optimal mechanism

The constructed mechanism is assumed to have as both input and output a prede-
termined finite set of locations X . For instance, X can be constructed by dividing
the map in a finite number of regions (of arbitrary size and shape), and selecting
in X a representative location for each region. We also assume a prior π over X ,
representing the probability of the user being at each location at any given time.

Given a privacy metric dX (typically the Euclidean distance) and a privacy pa-
rameter ǫ, the goal is to construct an ǫdX -private mechanism K such that the service

quality loss with respect to a quality metric dQ is minimum. This property is for-
mally defined below:

Definition 6.1. Given a prior π, a privacy metric dX , a privacy parameter ǫ and

a quality metric dQ, a mechanism K is ǫdX -OptQL(π, dQ) iff:

1. K is ǫdX -private, and
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2. for all mechanisms K ′, if K ′ is ǫdX -private then

QL(K,π, dQ) ≤ QL(K ′, π, dQ)

Note that ǫdX -OptQL optimizes QL given a privacy constraint, while q-OptPriv
(Definition 3.1) optimizes privacy, given a QL constraint.

In order for K to be ǫdX -private it should satisfy the following constraints:

kxz ≤ eǫdX (x,x′)kx′z x, x′, z ∈ X

Hence, we can construct an optimal mechanism by solving a linear optimization
problem, minimizing QL(K,π, dQ) while satisfying ǫdX -privacy:

Minimize:
∑

x,z∈X

πxkxzdQ(x, z)

Subject to: kxz ≤ eǫdX (x,x′)kx′z x, x′, z ∈ X
∑

z∈X

kxz = 1 x ∈ X

kxz ≥ 0 x, z ∈ X

It is easy to see that the mechanism K generated by the previous optimization
problem is ǫdX -OptQL(π, dQ).

6.1.2 A more efficient method using spanners

In the optimization problem of the previous section, the ǫdX -privacy definition in-
troduces |X |3 constraints in the linear program. However, in order to be able to
manage a large number of locations, we would like to reduce this amount to a num-
ber in the order of O(|X |2). One possible way to achieve this is to use the dual form

of the linear program. The dual program has as many constraints as the variables
of the primal program (in this case |X |2) and one variable for each constraint in the
primal program (in this case O(|X |3)). Since the primal linear program finds the
optimal solution in a finite number of steps, it is guaranteed by the strong duality
theorem that dual program will also do so. However, as shown in Section 6.2.3, in
practice the dual program does not offer a substantial improvement with respect to
the primal one (a possible explanation being that, although fewer in number, the
constrains in the dual program are more complex, in the sense that each one of them
involves a larger number of variables).

An alternative approach is to exploit the structure of the metric dX . So far
we are not making any assumption about dX , and therefore we need to specify |X |
constraints for each pair of locations x and x′. However, it is worth noting that if the
distance dX is induced by a weighted graph (i.e. the distance between each pair of
locations is the weight of a minimum path in a graph), then we only need to consider
|X | constraints for each pair of locations that are adjacent in the graph. An example
of this is the usual definition of differential privacy: since the adjacency relation
between databases induces the Hamming distance dh, we only need to require the
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differential privacy constraint for each pair of databases that are adjacent in the
Hamming graph (i.e. that differ in one individual).

It might be the case, though, that the metric dX is not induced by any graph
(other than the complete graph), and consequently the amount of constraints re-
mains the same. In fact, this is generally the case for the Euclidean metric. There-
fore, we consider the case in which dX can be approximated by some graph-induced
metric.

If G is an undirected weighted graph, we denote with dG the distance function
induced by G, i.e. dG(x, x

′) denotes the weight of a minimum path between the
nodes x and x′ in G. Then, if the set of nodes of G is X and the weight of its edges
is given by the metric dX , we can approximate dX with dG. In this case, we say that
G is a spanning graph, or a spanner [Narasimhan 2007, Sack 1999], of X .

Definition 6.2 (Spanner). A weighted graph G = (X , E), with E ⊆ X × X and

weight function w : E → R is a spanner of X if

w(x, x′) = dX (x, x
′) ∀(x, x′) ∈ E

Note that if G is a spanner of X , then

dG(x, x
′) ≥ dX (x, x

′) ∀x, x′ ∈ X

A main concept in the theory of spanners is that of dilation, also known as stretch
factor:

Definition 6.3 (Dilation). Let G = (X , E) be a spanner of X . The dilation of G

is calculated as:

δ = max
x 6=x′∈X

dG(x, x
′)

dX (x, x′)

A spanner of X with dilation δ is called a δ-spanner of X .

Informally, a δ-spanner of X can be considered an approximation of the metric
dX in which distances between nodes are “stretched” by a factor of at most δ. Span-
ners are generally used to approximate distances in a geographic network without
considering the individual distances between each pair of nodes. An example of a
spanner for a grid in the map can be seen in Figure 6.1.

If G is a δ-spanner of X , then it holds that

dG(x, x
′) ≤ δdX (x, x

′) ∀x, x′ ∈ X

which leads to the following proposition:

Proposition 6.1. Let X be a set of locations with metric dX , and let G be a δ-

spanner of X . If a mechanism K for X is ǫ
δdG-private, then K is ǫdX -private.
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(a) (b)

Figure 6.1: (a) a division of the map of Paris into a 7 × 5 square grid.

The set of locations X contains the centers of the regions. (b) A spanner

of X with dilation δ = 1.08.

We can then propose a new optimization problem to obtain a ǫdX -private mech-
anism. If G = (X , E) is a δ-spanner of X , we require not the constraints corre-
sponding to ǫdX -privacy, but those corresponding to ǫ

δdG-privacy instead, that is,
|X | constraints for each edge of G:

Minimize:
∑

x,z∈X

πxkxzdQ(x, z)

Subject to: kxz ≤ e
ǫ
δ
dG(x,x′)kx′z z ∈ X , (x, x′) ∈ E

∑

x∈X

kxz = 1 x ∈ X

kxz ≥ 0 x, z ∈ X

Since the resulting mechanism is ǫ
δdG-private, by Proposition 6.1 it must also

be ǫdX -private. However, the number of constraints induced by ǫ
δdG-privacy is now

|E||X |. Moreover, as discussed in the next section, for any δ > 1 there is an
algorithm that generates a δ-spanner with O( |X |

δ−1) edges, which means that, fixing
δ, the total number of constraints of the linear program is O(|X |2).

It is worth noting that although ǫdX -privacy is guaranteed, optimality is lost: the
obtained mechanism is ǫ

δdG-OptQL(π, dQ) but not necessarily ǫdX -OptQL(π, dQ),
since the set of ǫ

δdG-private mechanisms is a subset of the set of ǫdX -private mech-
anisms. The QL of the obtained mechanism will now depend on the dilation δ of
the spanner: the smaller δ is, the closer the QL of the mechanism will be from the
optimal one. However, if δ is too small then the number of edges of the spanner
will be large, and therefore the number of constraints in the linear program will
increase. In fact, when δ = 1 the mechanism obtained is also ǫdX -OptQL(π, dQ)
(since dG and dX coincide), but the amount of constraints is in general O(|X |3). In
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consequence, there is a tradeoff between the accuracy of the approximation and the
number of constraints in linear program.

6.1.3 An algorithm to construct a δ-spanner

The previous approach requires to compute a spanner for X . Moreover, given a
dilation factor δ, we are interested in generating a δ-spanner with a reasonably
small number of edges. In this section we describe a simple greedy algorithm to
get a δ-spanner of X , presented in [Narasimhan 2007]. This procedure (described
in Algorithm 1) is a generalization of Kruskal’s minimum spanning tree algorithm.

Algorithm 1 Algorithm to get a δ-spanner of X
1: procedure GetSpanner(X , dX , δ)
2: E := ∅
3: G := (X , E)

4: for all (x, x′) ∈ (X × X ) do ⊲ taken in increasing order w.r.t. dX

5: if dG(x, x
′) > δdX (x, x

′) then

6: E := E ∪ {(x, x′)}
7: end if

8: end for

9: return G

10: end procedure

The idea of the algorithm is the following: we start with a spanner with an
empty set of edges (lines 2-3). In the main loop we consider all possible edges (that
is, all pairs of locations) in increasing order with respect to the distance function
dX (lines 4-8), and if the weight of a minimum path between the two corresponding
locations in the current graph is bigger than δ times the distance between them, we
add the edge to the spanner. By construction, at the end of the procedure, graph
G is a δ-spanner of X .

A crucial result presented in [Narasimhan 2007] is that, in the case where X is
a set of points in the Euclidean plane, the degree of each node in the generated
spanner only depends on the dilation factor:

Theorem 6.1. Let δ > 1. If G is a δ-spanner for X ⊆ R
2, with the Euclidean

distance d2 as metric, then the degree of each node in the spanner constructed by

Algorithm 1 is O( 1
δ−1).

This result is useful to estimate the total number of edges in the spanner, since
our goal is to generate a sparse spanner, i.e. a spanner with O(|X |) edges.

Considering the running time of the algorithm, since the main loop requires
all pair of regions to be sorted increasingly by distance, we need to perform this
sorting before the loop. This step takes O(|X |2 log |X |). The main loop performs
a minimum-path calculation in each step, with |X |2 total steps. If we use, for
instance, Dijkstra’s algorithm, each of these operations can be done in O(|E| +
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|X | log |X |). If we select δ so that the final amount of edges in the spanner is linear,
i.e. |E| = O(|X |), we can conclude that the total running time of the main loop is
O(|X |3 log |X |). This turns out to be also the complexity of the whole algorithm.

A common problem in the theory of spanners is the following: given a set of
points X ⊆ R

2 and a maximum amount of edges m, the goal is to find the spanner
with minimum dilation with at most m edges. This has been proven to be NP-Hard
([Klein 2006]). In our case, we are interested in the analog of this problem: given
a maximum tolerable dilation factor δ, we want to find a δ-spanner with minimum
amount of edges. However, we can see that the first problem can be expressed in
terms of the second (for instance, with a binary search on the dilation factor), which
means that the second problems must be at least NP-Hard as well.

6.1.4 AdvError of the obtained mechanism

As discussed in 3.1, the privacy of a location obfuscation mechanism can be expressed
in terms of AdvError for an adversary metric dA. In [Shokri 2012], the problem
of optimizing privacy for a given QL constraint is studied, providing a method to
obtain a q-OptPriv(π, dA, dQ) mechanism for any q, π, dQ, dA.

In our case, we optimize QL for a given privacy constraint, constructing a ǫdX -
OptQL(π, dQ) mechanism. We now show that, if dQ and dA coincide, the mechan-
ism generated by any of the two optimization problems of the previous sections is
also q-OptPriv(π, dQ, dQ).

AdvError corresponds to an adversary’s remapping H that minimizes his ex-
pected error with respect to the metric dA and his prior knowledge π. A crucial
observation is that dX -privacy is closed under remapping.

Lemma 6.1. Let K be a dX -private mechanism, and let H be a remapping. Then

KH is dX -private.

Proof. We know that

(KH)xx̂ =
∑

z∈X

kxzhzx̂, ∀x, x̂ ∈ X

Since K is ǫdX -private, we also know that

kxz ≤ eǫdX (x,x′)kx′z, ∀x, x′, z ∈ X
Therefore, given x, x′ ∈ X , it holds that for all x̂ ∈ X :

(KH)xx̂ =
∑

z∈X

kxzhzx̂

≤
∑

z∈X

eǫdX (x,x′)kx′zhzx̂

= eǫdX (x,x′)
∑

z∈X

kx′zhzx̂

= eǫdX (x,x′)(KH)x′x̂

and therefore KH is ǫdX -private.
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Now let K be a dX -OptQL(π, dQ) mechanism and H a remapping. Since KH

is dX -private (Lemma 6.1) and K is optimal among all such mechanisms, we have
that:

QL(K,π, dQ) ≤ QL(KH,π, dQ) ∀H
As a consequence, assuming that dQ and dA coincide, the adversary minimizes
his expected error by applying no remapping at all (i.e. the identity remapping),
which means that AdvError(K,π, dQ) = QL(K,π, dQ) and therefore K must be
q-OptPriv(π, dQ, dQ).

Theorem 6.2. If a mechanism K is dX -OptQL(π, dQ) then it is also q-OptPriv(π, dQ, dQ)
for q = QL(K,π, dQ).

Proof. Let dA = dQ. We recall from Section 3.1 that for an arbitrary mechanism
M , it holds that

AdvError(M,π, dQ) = min
H

ExpDist(MH,π, dQ)

= min
H

QL(MH,π, dQ)

which means that

AdvError(M,π, dQ) ≤ QL(M,π, dQ) (1)

Let K be a dX -OptQL(π, dQ) mechanism. Suppose that

AdvError(K,π, dQ) < QL(K,π, dQ)

This means that there is a remaping H, other than the identity, such that

QL(KH,π, dQ) < QL(K,π, dQ)

However, by Lemma 6.1 we know that KH is also dX -private, and therefore,
recalling Definition 6.1, K would not be dX -OptQL(π, dQ), which is a contradiction.
Therefore, we can state that

AdvError(K,π, dQ) = QL(K,π, dQ) (2)

Now, in order to see that K is also q-OptPriv(π, dQ, dQ), with q = QL(K,π, dQ),
let K ′ be such that

QL(K ′, π, dQ) ≤ QL(K,π, dQ) (3)

According to Definition 3.1 we need to prove that

AdvError(K ′, π, dQ) ≤ AdvError(K,π, dQ)

And in fact we can see that
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AdvError(K ′, π, dQ) ≤ QL(K ′, π, dQ) (by (1))

≤ QL(K,π, dQ) (by (3))

= AdvError(K,π, dQ) (by (2))

which concludes our proof.

It is important to note that Theorem 6.2 holds for any metric dX . This means
that both mechanisms obtained as result of the optimization problems presented in
Sections 6.1.1 and 6.1.2 are q-OptPriv(π, dQ, dQ) – since they are ǫdX -OptQL(π, dQ)
and ǫ

δdG-OptQL(π, dQ) respectively – however for a different value of q. In fact,
in contrast to the method of [Shokri 2012] in which the quality bound q is given
as a parameter, our method optimizes the QL given a privacy bound. Hence, the
resulting mechanism will be q-OptPriv(π, dQ, dQ), but for a q that is not known in
advance and will depend on the privacy constraint ǫ and the dilation factor δ. The
greater the ǫ is (i.e. the higher the privacy), or the lower the δ is (i.e. the better
the approximation), the lower the quality loss q of the obtained mechanism will be.

Finally, we must remark that this result only holds in the case where the metrics
dQ, dA coincide. If the metrics differ, e.g. the quality is measured in terms of the
Euclidean distance (the user is interested in accuracy) but the adversary uses the
binary distance (he is only interested in the exact location), then this property will
no longer be true.

6.1.5 Practical considerations

We conclude this section with a discussion on the practical applicability of loca-
tion obfuscation. First, it should be noted that, although constructing an optimal
mechanism is computationally demanding, once the matrix K is computed, obfus-
cating a location x only involves drawing a reported location from the distribution
K(x) which is computationally trivial. Moreover, although obfuscation is meant to
happen on the user’s smartphone, computing the mechanism can be offloaded to an
external server and even parallelized. The user only needs to transmit π, ǫdX , dQ
(which are considered public) and receive K, and the computation only needs to be
performed occasionally, to adapt to changes in the user profile.

Second, an important feature of obfuscation mechanisms is that they require no
cooperation from the service provider, who simply receives a location and has no
way of knowing whether it is real or not. Obfuscation can happen on the user’s
device, at the operating system or browser level, which is crucial since the user has
strong incentives to apply it while the service provider does not. The user’s device
could also perform filtering of the results, as described in [Andrés 2013].

Finally, we argue that the common idea that users of LBSs are willing to give up
their privacy is misleading: the only alternative offered is not to use the service. The
usage of browser extensions such as “Location Guard” [Location Guard] shows that
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(a) (b)
Figure 6.2: (a) Division of the map of Beijing into regions of size 0.658 x

0.712 km. The density of each region represents its “score”, that is, how

frequently users visit it. (b) The 50 selected regions. These regions are

the ones with highest density between the whole set of regions.

users do care about their privacy and that obfuscation can be a practical approach
for using existing services in a privacy friendly way.

6.2 Evaluation

In this section we evaluate the technique for constructing optimal mechanisms de-
scribed in the previous sections. We perform two kinds of evaluation: first, a com-
parison with other mechanisms, namely the one of Shokri et al. and the Plannar
Laplace mechanism. Second, a performance evaluation of the spanner approxima-
tion technique.

The comparison with other mechanisms is performed with respect to both pri-
vacy and quality loss. For privacy, the main motivation is to evaluate the mecha-
nisms’ privacy under different priors, and in particular under priors different than
the one they were constructed with. Following the motivating scenario of the intro-
duction, we consider that a user’s profile can vary substantially between different
time periods of the day, and simply by taking into account the time of a query, the
adversary can obtain a much more informative prior which leads to a lower privacy.
For the purposes of the evaluation, we consider priors corresponding to four different
time periods: the full day, the morning (7am to noon), afternoon (noon to 7pm) and
night (7pm to 7am). Then we construct the mechanisms using the full day prior
and compare their privacy for all time periods.

We perform our evaluation on two widely used datasets: GeoLife [Zheng 2008,
Zheng 2009, Zheng 2010] and T-Drive [Yuan 2011, Yuan 2010]. The results of the
GeoLife dataset are presented in detail in the sections 6.2.1, 6.2.2 and 6.2.3, while
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those of the Tdrive dataset (which are in general similar) are summarized in Section
6.2.4.

6.2.1 The GeoLife dataset

The GeoLife GPS Trajectories dataset contains 17621 traces from 182 users, moving
mainly in the north-west of Beijing, China, in a period of over five years (from
April 2007 to August 2012). The traces show users performing routinary tasks (like
going to and from work), and also traveling, shopping, and doing other kinds of
entertainment or unusual activities. Besides, the traces were logged by users using
different means of transportation, like walking, public transport or bike. More
than 90% of the traces were logged in a dense representation, meaning that the
individual points in the trace were reported every 1-5 seconds or every 5-10 meters.
Since user behaviour changes over time, and the mechanism should be occasionally
reconstructed, we restrict each user’s traces to a 90 days period, and in particular
to the one with the greatest number of recorded traces, so that the prior is as
informative as possible.

For the evaluation, we divide the map of Beijing into a grid of regions 0.658
km wide and 0.712 km high, displayed in Figure 6.2a. To avoid users for which
little information is available, we only keep those having at least 20 recorded points
within the grid area for each one of the time periods. Whenever we count points,
those falling within the same grid region during the same hour are counted only
once, to prevent traces with a huge number of points in the same region (e.g. the
user’s home) from completely skewing the results. After this filtering, we end up
with 116 users (64% of the total 182).

We then proceed to calculate the 50 “most popular” regions of the grid as follows:
for each user, we select the 30 regions in which he spends the greatest amount of
time. A region’s “score” is the number of users that have it in their 30 highest ranked
ones. Then we select the 50 regions with the highest score.

Figure 6.2a shows the division of the map into regions, with the opacity rep-
resenting the score of each of them, while Figure 6.2b shows the 50 regions with
highest score. We can see that most of the selected regions are located in the south-
east of the Haidian district, and all of them are located in the north-west of Beijing.
We consider the set of locations X to be the centers of the selected regions, and the
metric dX to be the Euclidean distance between these centers, i.e. dX = d2.

Finally, a second filtering is performed, again keeping users with at least 20
points in each time period, but this time considering only the 50 selected regions.
After this, we end up with a final set of 86 users (46% of the total 182).

6.2.2 Mechanism comparison w.r.t. privacy and quality loss

In this section, we evaluate the location privacy and the utility of three different
mechanisms under the several prior distributions for each user. These priors corre-
spond to different parts of the day (all day, morning, afternoon and night), and are
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Figure 6.3: Boxplot of the location privacy provided by the three differ-

ent mechanisms under considered priors. The OptQL mechanism was

constructed with ǫ = 1.07 and δ = 1.05.

computed by counting the number of points, logged in the corresponding time pe-
riod, that fall in each of the selected regions (again, counting only once those points
logged within the same hour), and then by normalizing these numbers to obtain a
probability distribution.

We start by evaluating the location privacy provided by the different mecha-
nisms. However, we must note that in general location privacy mechanisms do not
satisfy ǫdX -privacy unless they are specifically designed to do so. Therefore, for this
evaluation, we measure location privacy with the metric AdvError, proposed in
[Shokri 2012] and described in Section 3.1, which measures the expected error of the
attacker under a given prior distribution. In order to perform a fair comparison, we
construct the mechanisms in such a way that their QL coincide. The first step is
to select a privacy level ǫ and a dilation δ, and then to construct the mechanism
described in Section 6.1.2. We will call this mechanism OptQL. This mechanism
has a QL of q = QL(OptQL, π, d2). We then continue by constructing the op-
timal mechanism of Shokri et al [Shokri 2012], and setting the QL as q. We call
this mechanism OptPriv. Finally, we compute a discretized version of the Planar
Laplace mechanism of Andrés et al [Andrés 2013]. under a privacy constraint ǫ′ (in
general different from ǫ) such that the QL of this mechanism is also q. We call this
mechanism PL. Note that at the end of this process, by construction, the QL of
the three mechanisms is q.

We begin the evaluation comparing the location privacy of each mechanism for
each of the selected users, under the four constructed priors. We fix ǫ = 1.07

(which intuitively corresponds to a ratio of 2 between the probability for two regions
adjacent in the grid to report the same observed location) and δ = 1.05. Figure 6.3
shows a boxplot of the location privacy (in km) offered by the different mechanisms
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Figure 6.4: Quality loss of the OptQL and PL mechanisms for different

values of ǫ. The mechanisms were calculated for all users. Here, points

represent the utility for every user, while the two lines join the medians

for each mechanism and each value of ǫ.

under each prior. In all four cases, the general performance of our mechanism is
better than that of the others, with the only exception being the all-day prior (which
is the one used in the construction of the mechanisms) since, as explained in Section
6.1.4, OptQL and OptPriv are q-OptPriv(π, d2, d2) and therefore offer the same
privacy.

Finally, to show the benefits of using a mechanism with optimal utility, we
compare now the QL of the mechanisms OptQL and PL when both mechanisms
are generated with the same privacy level ǫ. We can see the results in Figure 6.4.
The OptQL mechanism clearly offers a better utility to the user, while guaranteeing
the same level of geo-indistinguishability.

6.2.3 Performance of the approximation algorithm

We recall from Section 6.1.2 that if we consider a large number of locations in X ,
then the number of constraints in the linear program might be large. Hence, we
introduced a method based on a spanning graph G to reduce the total number of
constraints of the linear program. However, in general the obtained mechanism is
no longer ǫdX -OptQL(π, dQ), and therefore it has a higher QL than the optimal
one.
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Figure 6.5: (a) Boxplot of the relation between QL and dilation for the

mechanism OptQL with privacy constraint ǫ = 1.07. The spanner is

calculated with the greedy algorithm presented in Section 6.1.3. (b)

Relation between the approximation ratio and the number of constraints

in the linear program. This number is independent from the user and

form the value of ǫ.

In this section we study the tradeoff between the increase in the QL of the mech-
anism and the reduction in the number of constraints of the optimization problem,
as a consequence of using our approximation technique. We also show how this
reduction affects the running time of the whole approach. We start by constructing
the OptQL mechanism for all selected users and for different dilations in the range
from 1.05 to 2.0, in all cases considering ǫ = 1.07 as before. We then measure the
QL of each mechanism under the user profile. We can see the results in Figure 6.5a.
It is clear that the QL increases slowly with respect to the dilation: the median
value is 0.946 km for δ = 1.05, is 0.972 km for δ = 1.1, and 1.018 km for δ = 1.2.
Therefore we can deduce that, for a reasonable approximation, the increase in the
quality loss is not really significant. It is worth noting that we do not show the QL
for δ = 1 in the plot (corresponding to the case where dX and dG are the same). The
reason is that in that case the number of constraints is really high, and therefore it
takes a lot of time to generate one instance of the mechanism (and much more time
to generate it for the 86 users considered).

The relation between the dilation and the number of constraints is shown in
Figure 6.5b. Note that this number is independent from the user, and therefore it is
enough to calculate it for just one of them. It is clear that the number of constraints
decreases exponentially with respect to the dilation, and therefore even for small
dilations (which in turn mean good approximations) the number of constraints is
significantly reduced with the proposed approximation technique. For instance, we
have 87250 constraints for δ = 1 (the optimal case), and 25551 constraints for
δ = 1.05. This represents a decrease of 71% with respect to the optimal case, with
only 1.05 approximation ratio.

It is also worth noting that, between δ = 1.4 and δ = 1.45 there is a pronounced
decrease in the number of constraints (Figure 6.5b) and also a decrease in the QL
(Figure 6.5a). This might seem counterintuitive at first, since one would expect that
a worse approximation should always imply a higher loss of quality. However, there
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Primal simplex Dual simplex Interior

|X | δ Pr. LP Du. LP Pr. LP Du. LP Pr. LP

50

1.0 57s 1h+ 40s 45s 49m 20s

1.1 46.4s 5.2 5.9s 15.5s 7.5s

1.2 4m 37s 2s 4s 1h+ 2.7s

1.5 2s 1s 2s 3s 0.5s

2.0 Error 1s 2s 2s 0.5s

75

1.0 1h+ 1h+ 29m 26s 1h+ 1h+

1.1 1h+ Error 1m 12s 2m 19s 55s

1.2 1h+ Error 42s 48.4s 11.7s

1.5 1h+ 5m 55s 19.2s 1h+ 2.2s

2.0 1h+ 21.8s 27.2s 15.5s 1.7s

Table 6.1: Execution times of our approach for 50 and 75 locations,

for different values of δ, and using different methods to solve the linear

program.

is a simple explanation: although the spanner with δ = 1.45 has a higher worst-case
approximation ratio, the average-case ratio is actually better that the one of the
spanner with δ = 1.4. This phenomenon is a consequence of the particular topology
of the set of locations and to the algorithm used to get the spanner.

Finally, we measure the running time of the method used to generate the OptQL
mechanism, under different methods to solve the linear optimization problem. The
experiments were performed in a 2.8 GHz Intel Core i7 MacBook Pro with 8 GB of
RAM running Mac OS X 10.9.1, and the source code for the method was written in
C++, using the routines in the GLPK library for the linear program. We compare
the performance of three different methods included in the library: the simplex
method in both its primal and dual form, and the primal-dual interior-point method.
Besides, we run these methods on both the primal linear program presented in
Section 6.1.2 and its dual form. Since the running time depends mainly on the
number of locations being considered, in the experiments we focus on just one user
of the dataset, and we fix the privacy level as ǫ = 1.07. The results can be seen in
Table 6.1. Some fields are marked with “1h+”, meaning that the execution took more
than one hour, after which it was stopped. Others are marked with “Error”, meaning
that the execution stopped before one hour with an error1. A particular case of error
happened when running the interior-point method on the dual linear program, where

1The actual error message in this case was: “Error: unable to factorize the basis matrix (1).

Sorry, basis recovery procedure not implemented yet”
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all executions ended with a “numerical instability” error (and therefore this case is
not included in the table). From the results we can observe that:

• The only two methods that behave consistently (that never finish with er-
ror, and the running time increases when the dilation decreases) are the dual
simplex and the interior-point methods, both when applied to the primal pro-
gram.

• From these, the interior-point method performs better in the case of bigger
dilation, while it does it much worse for very small ones.

• Somewhat surprisingly, the dual linear program does not offer a significant
performance improvement, specially when compared with the interior-point
method.

In the case of OptPriv, the mechanism is generated using Matlab’s linear pro-
gram solver (source code kindly provided by the authors of [Shokri 2012]). We
generated the mechanism for the same cases, and observed that the running time
mainly depends on the number of regions: for 50 regions, the mechanism is generated
in approximately 1 minute, while for 75 regions it takes about 11 minutes.

6.2.4 The T-Drive dataset

In order to reaffirm the validity of the proposed approach, we performed the same
evaluation in a different dataset: the T-Drive trajectories dataset. This dataset
contains traces of 10357 taxis in Beijing, China, during the period of one week. The
total distance of the traces in this dataset is about 9 million kilometres, with more
than 15 million reported points. The average time between consecutive points in a
trace is 177 seconds, and the average distance is 623 meters.

Due to the huge amount of users in this dataset, we started the evaluation
process by blindly selecting (using a standard random function) 5% of the total
number users (about 532 users out of 10357). We then perform the same steps
as described in the previous sections, particularly those described in Section 6.2.2.
In Figure 6.6 we can see the comparison of the location privacy for the different
mechanisms. We can see that, also for this dataset, the privacy level of OptQL is,
in general, as good as the one of OptPriv, and always better than the one of PL. In
particular, the median value for OptQL is always higher than the corresponding one
for the other mechanisms (again, with the exception of the all day prior, for which
we know that these values coincide). We can also see in Figure 6.7 the comparison
in terms of utility of the mechanisms OptQL and PL. Again, the quality loss of
OptQL is, in all cases, better than the one of PL. This is to be expected, since,
from all mechanisms providing a certain geo-indistinguishability, OptQL is the one
with optimal utility (or really close to the optimal utility when the approximation
is used).
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Figure 6.6: Boxplot of the location privacy for the T-Drive dataset. The

median value of the location privacy for OptQL is always as good as the

one of the other mechanisms.

6.3 Concluding remarks

Related Work

Most of the related work on location privacy has been already discussed in Chap-
ters 3 and 5. However, it is worth mentioning here the work of Herrmann et al.
[Herrmann 2013]. The authors present a technique to generate optimal mechanisms
under bandwidth and quality constraints. This mechanism are derived by solving
linear optimization problems, as in our case. The obfuscation techniques of the
obtained mechanisms can be based either on dummy locations, cloaking or simple
obfuscation.

Summary

In this chapter we have developed a method to generate a mechanism for location
privacy that combines the advantages of the geo-indistinguishability privacy guar-
antee and the optimal mechanism of [Shokri 2012]. In our approach, a fixed privacy
level in terms of geo-indistinguishability is defined in advance, and then a mechan-
ism with optimal utility (one that minimizes the service quality loss for the user) is
generated by solving a linear optimization problem. Besides, the privacy guarantee
of the obtained mechanism is not affected by the side knowledge of the attacker.
Since linear optimization is computationally demanding, we have provided a tech-
nique to reduce the total number of constraints in the linear program, based on the
use of a spanning graph to approximate distances between locations, which allows
a huge reduction on the number of constraints with only a small decrease in the
utility. Moreover, in the case where the metric used by the adversary and the one
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Figure 6.7: Quality loss of the OptQL and PL mechanisms for different

values of ǫ, using the data in the T-Drive dataset. The loss of quality of

OptQL is always smaller than the one of PL.

used to calculate the utility coincide, then the obtained mechanism is also optimal
in the sense described in [Shokri 2012], i.e. when the privacy metric is the expected
error of the attacker. Finally, we have evaluated the proposed approach using traces
from real users, and we have compared both the privacy and the running time of
our mechanism with that of [Shokri 2012]. It turns out that our mechanism offers
better privacy guarantees when the side knowledge of the attacker is different from
the distribution used to construct the mechanisms. Besides, for a reasonably good
approximation factor, we have showed that our approach performs much better in
terms of running time.



Chapter 7

Conclusion

In this thesis, we have aimed at developing d-privacy, a general framework to ex-
press and measure privacy in a general setting. For this purpose, we extended the
well known notion of differential privacy by considering arbitrary domains of secrets
(which might differ from the standard case of statistical databases) with different
distinguishability metrics. These metrics express the level of distinguishability be-
tween secrets, and in general depend not only on the current secret domain, but also
in the type of query being considered. We have seen that, by considering different
metrics, we are able to capture privacy threats that cannot be captured with the
standard notion. At the same time, they allow us to enhance the accuracy of the
reported results in queries with high sensitivity in the domain of databases, with
respect to standard differential privacy. Besides, being derived from differential pri-
vacy, our d-privacy framework inherits the property of being independent from the
prior knowledge of the adversary.

We have presented a set of mechanism, based on the Laplace distribution, that
achieve d-privacy for different domains of secrets and metrics. We have also seen
that, under this framework, the existence of universally optimal mechanisms is not
necessarily restricted to counting queries: for metrics other than the usual Hamming
distance, universally optimal mechanisms can be found for queries like sum, average
and percentile.

We have seen that d-privacy can be successfully applied to domains that do not
involve databases. In particular, we derived the novel notion of geo-indistinguishability,
a privacy definition in the context of location-based systems, as a particular instance
of the d-privacy framework when the set of secrets contains spatial points represent-
ing possible locations of an individual. We have also studied the corresponding
Laplace mechanism for this scenario, and provided a method to overcome some is-
sues that arise when the mechanism is deployed in real life, namely the privacy loss
due to the precision of the machine and the truncation of the reported results into
a fixed area of interest. We have shown the applicability of this mechanism in two
relevant case studies: the sanitation of a dataset containing location information
of several individuals, and the enhancement of a POI-retrieval service with privacy
guarantees. Besides, we compared this mechanism with other state-of-the-art ap-
proaches, concluding that our mechanism performs better with respect to those
mechanisms that do not depend on the prior knowledge of the attacker.

The Laplace mechanism however, might not provide optimal utility in the case
of location-based systems. We have studied the trade-off between privacy and util-
ity of geo-indistinguishable mechanisms, and proposed a method, based on linear
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optimization, that allows us to retrieve a mechanism that achieves a pre-fixed level
of geo-indistinguishability while providing optimal utility for a given user. However,
the number of constraints in the linear program is cubic with respect to the number
of locations considered. Therefore, we have also proposed a method to approximate
distances, based on the use of spanning graphs, and showed that this way we can
reduce the number of constraints from cubic to quadratic while maintaining the
same level of privacy, with just a little impact on the utility. We have evaluated the
proposed approach using traces from a dataset containing information of real users,
and compared it with the previously mentioned Laplace mechanism, and also with
the optimal mechanism of [Shokri 2012]. We have shown that the optimal mechan-
ism outperforms the other approaches in privacy, offering a significant enhancement
in utility with respect to the Laplace mechanism.
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