
HAL Id: tel-01099657
https://pastel.hal.science/tel-01099657

Submitted on 5 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Types intersections non-idempotents pour raffiner la
normalisation forte avec des informations quantitatives

Alexis Bernadet

To cite this version:
Alexis Bernadet. Types intersections non-idempotents pour raffiner la normalisation forte avec des
informations quantitatives. Langage de programmation [cs.PL]. Ecole Doctorale Polytechnique, 2014.
Français. �NNT : �. �tel-01099657�

https://pastel.hal.science/tel-01099657
https://hal.archives-ouvertes.fr

École Polytechnique

PhD Thesis

Non idempotent-intersection types
to refine strong normalisation with

quantitative information

Author: Alexis Bernadet

Jury:
Mme Simona Ronchi Della Rocca Rapporteur
Mr Lorenzo Tortora de Falco Rapporteur
Mme Mariangiola Dezani-Ciancaglini Examinateur
Mr Stéphane Lengrand Directeur de thèse
Mr Benjamin Werner Directeur de thèse
Mme Delia Kesner Président

Defended: October 6, 2014

Abstract

We study systems of non-idempotent intersection types for different variants
of the λ-calculus and we discuss properties and applications. Besides the pure
λ-calculus itself, the variants are a λ-calculus with explicit substitutions and a λ-
calculus with constructors, matching and a fixpoint operator. The typing systems
we introduce for these calculi all characterize strongly normalising terms. But we
also show that, by dropping idempotency of intersections, typing a term provides
quantitative information about it: a trivial measure on its typing tree gives a bound
on the size of the longest β-reduction sequence from this term to its normal form.
We explore how to refine this approach to obtain finer results: some of the typing
systems, under certain conditions, even provide the exact measure of this longest
β-reduction sequence, and the type of a term gives information on the normal form
of this term. Moreover, by using filters, these typing systems can be used to define
a denotational semantics.

Acknowledgements

I would like to thank Stéphane Lengrand, Benjamin Werner, Mariangiola Dezani-
Ciancaglini, Delia Kesner, Simona Ronchi Della Rocca, Lorenzo Tortora de Falco,
David Monniaux, Thierry Coquand, Philippe Chassignet, Benjamin Smith, Sylvie
Putot, Julie Bernauer, Jean Goubault-Larrecq, Paul-André Melliès, Pierre-Louis
Curien, Alain Prouté and my family.

1

Contents

Acknowledgements . 1

1 Introduction 4
1.1 Generalities . 4
1.2 About the λ-calculus . 7
1.3 Brief description of the Chapters . 8
1.4 Introduction to α-equivalence . 9

2 A simple typing system of non-idempotent intersection types for
pure λ-calculus 12
2.1 Introduction . 12
2.2 Syntax and operational semantics . 13
2.3 The typing system . 14

2.3.1 Types . 14
2.3.2 Contexts . 16
2.3.3 Rules . 17

2.4 Soundness . 18
2.5 Semantics and applications . 20

2.5.1 Denotational semantics . 20
2.5.2 Example: System F . 24

2.6 Completeness . 26
2.7 Conclusion . 33

3 Intersection types with explicit substitutions 35
3.1 Introduction . 35
3.2 Syntax . 35
3.3 Typing judgments . 37
3.4 Soundness . 38
3.5 Special property of typing trees: Optimality 38
3.6 Completeness . 39
3.7 Complexity . 42
3.8 Conclusion . 43

4 A big-step operational semantics
via non-idempotent intersection types 45
4.1 Introduction . 45
4.2 Basic definitions and properties . 47

4.2.1 Syntax . 47
4.2.2 Intersection types and contexts 49
4.2.3 Typing system . 51

4.3 Characterisation of the typing system 53
4.3.1 Soundness . 53
4.3.2 Completeness . 54

2

4.4 Refined soundness . 55
4.4.1 Complexity . 55
4.4.2 Viewing optimal typing as a big-step semantics 56

4.5 Alternative systems . 58
4.5.1 Variant with no information about the normal form 58
4.5.2 Obtaining the exact normal form 58

4.6 Conclusion . 59

5 Strong normalisation in a calculus with constructors and fixpoints
via non-idempotent intersection types 60
5.1 Introduction . 60
5.2 Calculus . 62

5.2.1 Definition of the calculus . 62
5.2.2 Refined notion of reduction 64

5.3 Strong normalisation . 68
5.3.1 Intersection types . 69
5.3.2 Soundness . 71
5.3.3 Completeness . 71

5.4 Conclusion . 72
5.5 Confluence . 72
5.6 Example in Caml . 74

6 Conclusion 75

A Full proofs 80

B A simple presentation of de Bruijn indices 102
B.1 Definitions . 102
B.2 Binding . 102
B.3 Substitutions . 104
B.4 β-reduction . 106
B.5 Semantics . 107

3

Chapter 1

Introduction

1.1 Generalities

What is a programming language ? A programming language is a set of
sequences of symbols where each of these sequences describes more or less an action
or a computation. Such sequence of symbols is called a program of this programming
language. It is needed to build computer software. For real world programs, these
sequences of symbols are written in one or more files in the computer.

The most obvious programming language is the machine language which can be
directly interpreted by a computer. There are two main reasons why most software
are not written in the machine language:

• It is really hard to write anything with it, even small programs.

• There exists a different machine language for each computer architecture.
Therefore, we may need to rewrite the entire program if we want to port it
on an different platform.

Therefore, almost every other software are written in programming languages that
are more human readable, more scalable, more portable, more machine-independent
and, sometimes, safer. Programs written in these languages cannot be directly
interpreted by a computer.

• There can be a software that transforms a program written in some language
to a program written in the machine language. This software is called a
compiler.

• There can be a software that interpret a program written in some language
and do what the program is supposed to do. This is called an interpreter.

Of course, things can be a little more complicated than that:

• A program in some language can be compiled to another language which is
not the machine language and, to be executed, the new program obtained
requires an interpreter.

• Compilation can be in several steps: the program can be written in several
intermediate languages until we reach the target language. This is useful when
creating a programming language and its compiler to not have to worry about
technical problems that have already been solved by more competent people.
Solving these problems ourselves may be called reinventing the wheel. For
examples, lots of high-level programming language are compiled to a language
called C. Most compiler can compile C to assembler which is a programming
language that is just above the machine language in terms of abstraction.
Finally, the assembler program can be compiled to machine language and
then, we can execute it. Therefore, if someone wants to write the compiler of

4

a new high-level language, they just have to be able to compile it to C, and
then they can have quite fast executables.

When writing a program, someone might wonder what its meaning is or what it
does. We usually have these two approaches:

• We give an intuitive meaning to each construction of the language. The
meaning given is not very different from what someone would have written if
we were trying to explain in a tutorial or a lesson what a construction does.
Of course, this has no mathematical value.

• We say that the meaning of a program is what it does when executed (af-
ter compilation if any). This is also not usually suited to do mathematical
reasoning on programs.

Therefore, if we want to have mathematical results about programs (such as cor-
rectness), we need to define formally the meaning of a program. This is called the
semantics of a programming language. Ensuring the correctness of a program is
useful when there are lives as stake (programs in a plane, etc. . .) or even when
there is money at stake (for example, the crash of a program used in a bank). Even
when it is just saving debugging time (time spent searching and correcting mistakes
that occurs during the execution of a program) it is well worth it. There are two
main approaches:

• The operational semantics: There are syntactic rules (usually reduction rules)
that describe what a program does. In some ways, it is paraphrasing the
interpreter.

• The denotational semantics: We create a mathematical object and we use
it as a model of the programming language: A program is interpreted as
“something” in this mathematical object (for example, it can be an element
of a set or a morphism in a category). For a given programming language,
there are usually lots of possible models.

The difference between these two is similar to the difference between “what it is”
(denotational semantics) and “what it does” (operational semantics).

When studying semantics, we usually start with a minimalistic/toy language.
Most of the time, when we are complexifying the language we can easily extend
and adapt the definitions, results and proofs. The λ-calculus is one of the most well
known minimalistic languages.

Also, when working with terms and programs, we prefer to work with an ab-
stract expression tree instead of a sequence of symbols. For example, the following
sequence of 7 symbols:

3× (4 + 5)
can be transformed into the following abstract expression tree:

3

4 5

+

×
Even if we are manipulating abstract expression trees, we usually write them in one
line (in the above example we write 3×(4+5)). Transforming a sequence of symbols
to an abstract expression tree is done by something called a lexer and another thing
called a parser. Usually, when working on semantics we ignore this aspect.

What is typing in a programming language ?
Originally, types are used in a programming language as an indication for the

compiler about how to represent data. For example, an integer (which has type
“int”) has not the same representation as a floating number (which has type “float”).

As computers got faster, a certain number of programming languages (and quite
a few of them, like Python, became popular), choose to get rid of the types in the

5

language. This leads to a small cost at runtime (we need to keep information about
the types) in exchange of the possibility to write shorter programs.

On the other side, some people (such as the developers of the ML family of
programming languages) consider that having information about the types at com-
pilation time is a bonus because it makes the catching of mistakes at compilation
time easier.

The argument that not having types makes programs shorter to write is not
necessary valid: a compiler can try to guess the types in a program. This is called
typing inference. Hence, we have the best of both worlds. Actually, the more the
types are expressive, the harder it is to infer them. For example, Girard’s System
F cannot be inferred [Wel96]. Moreover, most of the systems using intersection
types[CD78], such as the ones studied in this thesis cannot be inferred.

What is logic ?
Set Theory has imposed itself as the main language for doing mathematics. How-

ever, at the beginning of the 20th century, mathematicians realized that certain rea-
soning with sets could lead to contradictions (for example, Russel’s paradox [vH02]:
the set of all the sets is not a set).

Therefore, it seemed necessary to sanitize the mathematical foundations: decid-
ing what was a valid (or sound) proof and what was not. Of course, to do this, we
need to give a mathematical definition of a proof.

Such proofs can be represented in a computer. Hence, we can write a Proof
Assistant: we write a proof in a computer, and the Proof Assistant checks whether
or not the proof is sound. Also, the writing of some parts of the proofs can be
automated.

What is intuitionistic logic ?
Alan Turing proved [Tur36] that some functions (defined mathematically) could

not be calculated by a computer. It is not a question of time or memory available. It
turns out that the reason we are in this situation is that we can use in mathematics
the principle of excluded middle (for every formula A, A is true or the negation of A
is true). By dropping excluded middle we we are in a new logic called intuitionistic
logic and when we have excluded middle we says that we are in classical logic.
The idea of intuitionistic logic is from Brouwer [vH02] and has been developed by
Heyting [Hey71]. One of the most modern way of defining intuitionistic logic is
Topos Theory: an Lawvere’s Elementary Topos [LS09] can be used as a model of
intuitionistic logic. On the one hand, we can prove fewer theorems in intuitionistic
logic (compared to classical logic). On the other hand:

• A definition (resp. theorem) that is used (resp. holds) in classical logic might
not be intuitionistically friendly (resp. be proved in intuitionistic logic). How-
ever, it may be possible to have a definition (resp. theorem) that is equivalent
in classical logic but is also intuitionistically friendly (resp. holds in intuition-
istic logic) and not more complicated than the original one.

• When something is proved in intuitionistic logic it gives more information than
in classical logic: the proof is constructive. In particular, if we can define a
function in intuitionistic logic, then this function is computable. This is the
reason intuitionistic logic is also called constructive logic.

Moreover, we can find a correspondence between intuitionistic proofs and functional
programs: This is called the Curry-Howard correspondence [GLT89].

What is linear logic ?
When a program runs, resources (data in memory) can be duplicated or erased.

It is possible to have a calculus/programming language that has restrictions on
duplicating/erasing resources. By interpreting this through the Curry-Howard cor-
respondence, we can build a corresponding logic where we have restrictions on using
a proof several times or not using it at all: This is called linear logic and it was

6

invented by Girard [GLT89]. One particularity of linear logic, is that we have two
“and” and two “or”. Linear logic is strongly related to the topic of this thesis,
namely the idea of using intersection types that are not idempotent (A ∩ A is not
equivalent to A, see the next section).

1.2 About the λ-calculus

The λ-calculus is a minimalistic programming language created by Church [Chu85].
In this programming language there is no distinction between programs and data.
A program M in the pure λ-calculus is called a λ-term and is either:

• A variable x, y, z, . . .

• An abstraction of the form λx.M . Intuitively, λx.M describes the function
that maps x to M . For example, λx.x is the identity function.

• An application of the form MN where M is the function and N is the argu-
ment.

The fact that this programming language looks simplistic can be balanced as follows:

• It is possible to encode in this calculus, usual data structures (such as booleans,
integers, lists, trees, etc . . .) and more advanced constructions. For exam-
ple, the integer n is encoded as the λ-term λf.λx.fnx (with f0x = x and
fn+1x = f(fnx)). We can also encode recursion and then prove that the λ-
calculus is Turing complete: anything that can be “computed” can be written
in λ-calculus. This is both a blessing and a curse.

• It is possible to enrich the λ-calculus with usual data structures and more
advanced constructions expressed as new primitives of the language rather as
encodings. Most definitions, theorems and proofs of the λ-calculus without
this enrichment (also called the pure λ-calculus) can be adapted. By taking
a step further, we can design real world programming languages based on the
λ-calculus. These languages are called functional programming languages.
OCaml and Haskell are among those.

The syntax of λ-calculus is very simple, but we still have to define what a λ-term
formally means. This is defining the semantics of the λ-calculus. The main idea
is that (λx.M)N has the same meaning as M{x := N} where M{x := N} is
M where we “replaced every x in M by N”. Moreover, going from (λx.M)N to
M{x := N} is a step in the computation. An occurrence (λx.M1)M2 inside a term
M is called a β-redex; and replacing an occurrence of (λx.M1)M2 by M1{x := M2}
is called a β-reduction. When we cannot do any β-reduction, the computation is
over and the term M that cannot be reduced is the result of the computation. If
from a term M we can reach a term M ′ that cannot be reduced, then M ′ is called
the normal form of M .

When defining this semantics formally, several questions and problems arise:

• We have to formally define what the term M{x := N}.is. The definition is
quite subtle and relies on an equivalence relation that identifies some terms
(like λx.x and λy.y which both describe the identity function). This relation is
called α-equivalence. Usually, λ-terms are considered modulo α-equivalence.
The easiest way of defining and manipulating this equivalence is probably by
using nominal logic techniques (see Section 1.4).

• If there are several β-redexes in a term M , then there are several ways of
doing a β-reduction. Therefore, the normal form does not seem to always be
unique. Actually, it is unique, and it is a corollary of the confluence property:
If M can reach M1 and M can reach M2 then there exists M3 such that M1

7

and M2 can reach M3. It is possible to prove confluence by using something
called parallel reductions [CR36].

• The question about whether or not the normal form exists: Some λ-terms
do not have a normal form. For example, (λx.xx)(λx.xx) can only reduce to
itself. By the fact that the λ-calculus is Turing complete, we cannot avoid the
fact that the computation of some terms does not terminate and we cannot
even decide by a program if a term does terminate or not (that would give a
solution to the Halting Problem and contradict Turing’s result[Tur36]). Even
when the normal form exists, by the fact that a λ-term can be reduced several
ways, we can consider the two following cases:

– There exists a β-reduction sequence to the normal form. This is called
weak normalisation.

– We do not have an infinite β-reduction sequence: Any β-reduction strat-
egy terminates. This is called strong normalisation. By the fact that a
λ-terms has a finite number of β-redexes, strong normalisation of M is
equivalent to having a longest reduction sequences from M .

For example, (λy.z)((λx.xx)(λy.xx)) (with y 6= z) is weakly normalising (the
normal form is z) but is not strongly normalising (it reduces to itself). In this
thesis, we are more interested in the strong normalisation property.

We have described the operational semantics of the λ-calculus. It is also possible
to give a devotional semantics. For example, we can interpret each λ-term as an
element of a Scott Domain [Sco82a] (which is a partially ordered set that satisfies
some properties).

If we want to easily manipulate λ-terms and ensure they have some properties
(such as strong normalisation), we can use types. If M has some type A (written
M : A) then, by a Soundness Theorem, we can prove that M has some properties
described by A. The typing judgment is defined with induction rules.

The most basic typing system for λ-calculus are the simple types where a type
is either a constant τ or an arrow A → B. If we have M : A → B, it means that
M is a “function” that goes from A to B. The main idea is that:

• If M : A→ B and N : A, then MN : B.

• If M : B with x : A, then λx.M : A→ B.
Actually, more formally, the typing judgments are of the form Γ ` M : A where Γ
is something called a context and indicates the type of each variables in M . Simple
types have the following interesting property: If M is typable, then M is strongly
normalising.

It is possible to enrich the types with an intersection construction: If A is a
type and B is a type, then A ∩ B is a type. The main idea is that if M : A and
M : B, then M : A ∩ B. Usually, we have an equivalence relation ≈ on types
(to have associativity, commutativity of intersection etc . . .). We also usually have
A ∩A ≈ A: the intersection is idempotent.

In most of the thesis, we are going to drop the idempotency of intersection and
we are going to see how it can give more information about quantitative properties
on a λ-term: If M : A ∩A, then M will be used twice as a program of type A.

1.3 Brief description of the Chapters

In Chapter 2 ,we define a typing system for pure λ-calculus. The types used in
this system are intersection types: If M is of type A and M is of type B, then
M is of a type written A ∩ B. The particularity of this typing system is that the
intersection is not idempotent: A ∩ A is not the same as A. This leads to various

8

properties and applications that we study: First, similarly to the case of idempotent
intersection types, this typing system characterizes strongly normalising terms: a
term is typable if and only if it is strongly normalising. Also, we can use this typing
system to define a denotational semantics of λ-calculus where values are filters of
types. This semantics can serve as a tool to prove strong normalisation in other
typing systems. We illustrate this with the example of System F. Finally, we have
a complexity result: A trivial measure on a typing tree of a term M gives us an
upper bound on the size of the longest β-reduction sequences from M .

The complexity result obtained in Chapter 2 is an inequality result. We would
rather have an equality result, extracting from the typing tree of a term the exact
size of the longest reduction sequences. For this, in Chapter 3 we refine the λ-
calculus: Instead of the pure λ-calculus, we work with λS which is a λ-calculus
with explicit substitutions M [x := N]. In this calculus the erasure of a sub-term
can be postponed and this simplifies the study of various results. In particular, we
extract from typing trees the exact size of the longest reduction sequences, defined
in terms of its number of B-steps ((λx.M)N →B M [x := N]) rather than β-steps
(which are not primitive reductions of this calculus). Moreover, for this improved
complexity result, we have to restrict ourselves to certain types of typing trees that
we call “optimal”.

In Chapter 4, we also refine the complexity result of Chapter 2, but still for
the pure λ-calculus (unlike Chapter 3). However, we now use an enriched grammar
for types and we add extra rules to the typing system. This typing system still
characterises strongly normalising normal terms and has its own definition of an
optimal typing tree; these optimal typing trees provide the exact size the longest β-
reduction sequences and can be considered as the derivation of a big-step operational
semantics. In particular types describe the structure of normal forms.

In Chapter 5, we extend the typing system of Chapter 2 to a calculus that is
closer to a real world programming language. In particular, this calculus provides
constructors and matching to easily use algebraic data types, and a fixpoint operator
to write recursive functions. As in the previous chapters, a term is typable if and
only if it is strongly normalising.

The chapters can almost be read mostly independently. but we recommended
to read Chapter 2 before the other ones.

This thesis is written in the implicit framework of classical set theory (ZFC)
with first order logic; however when we work with λ-terms (of the various calculi),
we consider them up to α-equivalence. In Section 1.4, we are going to show what
this formally means for the pure λ-calculus. We will not explicitly develop these
technical points for the other calculi handled in this thesis (other we could), but we
will only write “we consider terms up to α-equivalence”.

1.4 Introduction to α-equivalence

In this section we show how α-equivalence can be formally defined in the framework
of the pure λ-calculus. The main idea is that α-equivalence is defined by using
permutations and is inspired by nominal logic [Pit03].

Assume we have an infinite (countable) set Var.

Definition 1 (Permutations).
A permutation π is a bijection from Var to Var such that Dom(π) defined by:

Dom(π) := {x ∈ Var | π(x) 6= x}
is finite.

Perm is the set of the permutations and forms a group:
id defined by id(x) := x is a permutation and id−1 = id and Dom(id) = ∅.

9

x ≈α x
M ≈α M ′ N ≈α N ′

MN ≈α M ′N ′

π ∈ Perm π(x) = y π.M ≈α M ′ fv(M) ∩ Dom(π) ⊆ {x}

λx.M ≈α λy.M ′
(λ)

Figure 1.1: α-equivalence

For all π1, π2 ∈ Perm, π2◦π1 defined by (π2◦π1)(x) = π2(π1(x)) is a permutation
and (π1π2)−1 = π−12 π−11 and Dom(π2 ◦ π1) ⊆ Dom(π1) ∪ Dom(π2).

For all x, y ∈ Var, < x, y > defined by:

< x, y > (x) = y
< x, y > (y) = x
< x, y > (z) = z (z 6= x, z 6= y)

is a permutation and < x, y >−1=< x, y > and Dom(< x, y >) = {x, y}.
Moreover, < x, y >=< y, x >.

Definition 2 (λ-terms and α-equivalence).
λ-terms are defined with the following grammar:

M,N ::= x | λx.M | MN
x ∈ Var

Free variables of M is a finite set of variables defined by induction on M as
follows:

fv(x) := {x}
fv(MN) := fv(M) ∪ fv(N)
fv(λx.M) := fv(M)− {x}

The action of π on M is defined by induction on M as follows:

π.x := π(x)
π.(MN) := π.Mπ.N
π.(λx.M) := λπ(x).π.M

The size of a term M is defined by induction on M as follows:

|x| := 1
|MN | := |M |+ |N |
|λx.M | := |M |+ 1

α-equivalence is defined with the rules of Figure 1.1. In rule (λ) the permutation
π is a witness of the α-equivalence.

Lemma 1 (Properties of λ-terms).

1. id.M = M and π2.π1.M = (π2 ◦ π1).M .

2. fv(π.M) = {π(x) | x ∈ fv(M)}. Therefore if x ∈ fv(π.M), then π−1(x) ∈
fv(M).

3. If M ≈α M ′ then π.M ≈α π.M ′, fv(M) = fv(M ′) and |M | = |M ′|.
4. If M ≈α M ′, then λx.M ≈α λx.M ′.
5. ≈α is an equivalence relation.

6. If for all x ∈ fv(M), π(x) = x, then M ≈α π.M .

7. If for all x ∈ fv(M), π1(x) = π2(x), then π1.M ≈α π2.M
8. If x 6= y and y /∈ fv(M) and < x, y > .M ≈α M ′, then λx.M ≈α λy.M ′.
9. If λx.M ≈α λx.M ′, then M ≈α M ′.

10

10. If λx.M ≈α λy.M ′ and x 6= y, then y /∈ fv(M) and < x, y > .M ≈α M ′.

Proof. 1. By induction on M .

2. By induction on M .

3. By induction on M ≈α M ′. Only one case is not trivial: We have λx.M1 ≈α
λy.M2 with π1 as a witness. We then prove that λπ(x).π.M1 ≈α λπ(y).π.M2

with the rule (λ) and the permutation π ◦ π1 ◦ π−1 as witness.

4. We use rule (λ) with the permutation id.

5. • We prove reflexivity by induction on M . For the λx.M1 case, we use the
item 4.

• We prove symmetry by induction on M ≈α M ′. For the (λ) rule with π
as a witness of λx.M1 ≈α λy.M2, we use π−1 as a witness of λy.M2 ≈α
λx.M1.

• We prove transitivity by induction on M1 that if M1 ≈α M2 and M2 ≈α
M3, then M1 ≈α M3. There is only one case that is not trivial: We have
λx.M1 ≈α λy.M2 with π1 as a witness and λy.M2 ≈α λz.M3 with π2 as
a witness. We use π2 ◦ π1 as a witness of λx.M1 ≈α λz.M3.

In particular, we have π1.M1 ≈α M2 and π2.M2 ≈α M3. Therefore,
M1 ≈α π−1.M2 and π−11 .M2 ≈α π−11 .π−12 .M3. By induction hypothesis
on M1, we have M1 ≈α π−11 .π−12 M3. Hence (π2 ◦ π1).M1 ≈α M3.

6. By induction on M . In particular, for λx.M1, we use the rule (λ) with π as a
witness.

7. For all x ∈ fv(M), we have π1(x) = π2(x). Hence, (π−12 ◦π1)(x) = π−12 (π1(x)) =
x. By item 6, we have (π−12 ◦ π1).M ≈α M . Therefore, π1.M ≈α π2.M .

8. We use the rule (λ) with < x, y > as a witness.

9. Corollary of item 6.

10. Corollary of item 7.

Lemma 1.5 allows us to quotient the grammar of λ-terms by α-equivalence; more
generally the properties will be used implicitly throughout the thesis.

In the rest of the thesis, the work concerning α-equivalence, even for other
calculi, is assumed and terms are considered up to α-equivalence.

Another possibility is to work with De Bruijn indices and then we do not have to
define the α-equivalence. However, the proofs and formalism are heavier. A glimpse
on how to work with De Bruijn is given in Appendix B. It would have been possible
to write this thesis with De Bruijn indices.

11

Chapter 2

A simple typing system of
non-idempotent intersection
types for pure λ-calculus

2.1 Introduction

Intersection types were introduced in [CD78], extending the simply-typed λ-calculus
with a notion of finite polymorphism. This is achieved by a new construct A ∩ B
in the syntax of types and new typing rules such as:

M : A M : B

M : A ∩B

where M : A denotes that a term M is of type A.
One of the motivations was to characterise strongly normalising (SN) λ-terms,

namely the property that a λ-term can be typed if and only if it is strongly normalis-
ing. Variants of systems using intersection types have been studied to characterise
other evaluation properties of λ-terms and served as the basis of corresponding
semantics [Lei86, Ghi96, DCHM00, CS07].

This chapter refines with quantitative information the property that typability
characterises strong normalisation. Since strong normalisation ensures that all re-
duction sequences are finite, we are naturally interested in identifying the length
of the longest reduction sequences. We do this with a typing system that is very
sensitive to the usage of resources when λ-terms are reduced.

This system results from a long line of research inspired by Linear Logic [Gir87].
The usual logical connectives of, say, classical and intuitionistic logic, are decom-
posed therein into finer-grained connectives, separating a linear part from a part
that controls how and when the structural rules of contraction and weakening are
used in proofs. This can be seen as resource management when hypotheses, or more
generally logical formulae, are considered as resource.

The Curry-Howard correspondence, which originated in the context of intu-
itionistic logic [How80], can be adapted to Linear Logic [Abr93, BBdH93], whose
resource-awareness translates to a control of resources in the execution of programs
(in the usual computational sense). From this, have emerged some versions of lin-
ear logic that capture pastime functions [BM03, Laf04, GR07]. Also from this has
emerged a theory of λ-calculus with resource, with semantical support (such as the
differential λ-calculus) [ER03, BEM10].

In this line of research, de Carvalho [dC05, dC09] obtained interesting measures

12

(λx.M)N →β M{x := N}

M →β M
′

λx.M →β λx.M
′

M →β M
′

MN →β M
′N

N →β N
′

MN →β MN ′

Figure 2.1: β-reduction

of reduction lengths in the λ-calculus by means of non-idempotent intersection types
(as pioneered by [KW99, NM04]).

Intersections were originally introduced as idempotent, with the equation A ∩
A = A either as an explicit quotient or as a consequence of the system. This
corresponds to the understanding of the judgement M : A ∩ B as follows: M can
be used as data of type A or data of type B. But the meaning of M : A ∩ B can
be strengthened in that M will be used once as data of type A and once as data
of type B. With this understanding, A ∩ A 6= A, and dropping idempotency of
intersections is thus a natural way to study control of resources and complexity.
Using this, de Carvalho [dC09] has shown a correspondence between the size of the
typing derivation tree and the number of steps taken by a Krivine machine to reduce
the term. This relates to the length of linear head-reductions, but if we remain in
the realm of intersection systems that characterise strong normalisation, then the
more interesting measure is the length of the longest reduction sequences. In this
chapter we get a result similar to de Carvalho’s, but with the measure corresponding
to strong normalisation.

In Section 2.2 we formally give the syntax and operational semantics of the
λ-calculus. In Section 2.3, we define a system with non-idempotent intersection
types. In Section 2.4, we prove that if a term is typable then it is SN (soundness).
In Section 2.5, we use the typing system to define a denotational semantics and we
show examples of applications. In Section 2.6, we prove that if a term is strongly
normalising then it is typable.

2.2 Syntax and operational semantics

In this section we formally give the syntax and operational semantics of the λ-
calculus.

Definition 3 (λ-terms). Terms are defined in the usual way with the following
grammar:

M,N ::= x | λx.M | MN

Free variables fv(M) and substitutions M{x := N} are defined in the usual way
and terms are considered up to α-equivalence.

The notion of reduction is the usual β-reduction:

Definition 4 (β-reduction). M →β M
′ is defined inductively by the rules of Fig-

ure 2.1.

To make some proofs and theorems about strong normalisation more readable,
we use the following notations:

Definition 5 (Strongly normalising terms). Assume n is an integer.
We write SN for the set of strongly normalising terms for →β.

13

F ≈ F A ∩B ≈ B ∩A (A ∩B) ∩ C ≈ A ∩ (B ∩ C)

A ∩ (B ∩ C) ≈ (A ∩B) ∩ C
A ≈ A′ B ≈ B′

A ∩B ≈ A′ ∩B′ ω ≈ ω

A ≈ B B ≈ C

A ≈ C

Figure 2.2: Equivalence between types

We write SN=n for the set of strongly normalising terms for →β such that the
length of longest β-reduction sequences is equal to n.

The set SN≤n is defined by:

SN≤n :=
⋃
m≤n SN=m

2.3 The typing system

In Section 2.3.1, we define the intersection types. In Section 2.3.2, we define con-
texts. In Section 2.3.3, we define the typing system and give basic properties.

2.3.1 Types

In this chapter, intersection types are defined as follows:

Definition 6 (Intersection types).
F -types, A-types and U -types are defined with the following grammar:

F,G ::= τ | A→ F
A,B,C ::= F | A ∩B
U, V ::= A | ω

where τ ranges over an infinite set of atomic types.
With this grammar, U ∩ V is defined if and only if U and V are A-types.
Therefore, by defining A∩ω := A, ω∩A := A and ω∩ω := ω, we have U ∩V

defined for all U and V .

Some remarks:

• The property that, in an arrow A → B, B is not an intersection, is the
standard restriction of strict types [vB95] and is used here to prove Lemma 5.1.

• ω is a device that allows synthetic formulations of definitions, properties and
proofs: U -types are not defined by mutual induction with A-types and F -
types, but separately, and we could have written the chapter without them
(only with more cases in statements and proofs).

For example, (τ → τ) ∩ τ is an A-type.
To prove Subject Reduction and Subject Expansion (Theorems 1 and 5) by

using Lemmas 6 and 12, we have to define equivalence ≈ and inclusion ⊆ between
types. Here is the formal definitions and basic properties (notice that we do not
have A ≈ A ∩A):

Definition 7 (Equivalence between types).
Assume U and V are U -types. We define U ≈ V with the rules given in Fig-

ure 2.2.

The fact that ≈ is an equivalence relation can be easily proved (Lemma 2.4).
Therefore, adding rules for reflexivity, symmetry and transitivity is superfluous and

14

only adds more cases to treat in the proofs of statements where such a relation is
assumed (e.g. Lemma 5.2).

Lemma 2 (Properties of ≈).

1. Neutrality of ω: U ∩ ω = ω ∩ U = U .

2. Strictness of F -types: If U ≈ F , then U = F .

3. Strictness of ω: If U ≈ ω, then U = ω.

4. ≈ is an equivalence relation.

5. Commutativity of ∩: U ∩ V ≈ V ∩ U
6. Associativity of ∩: U1 ∩ (U2 ∩ U3) ≈ (U1 ∩ U2) ∩ U3

7. Stability of ∩: If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
8. If U ∩ V = ω, then U = V = ω.

9. If U ∩ V ≈ U , then V = ω.

Proof.

1. Straightforward.

2. By induction on U ≈ F .

3. Straightforward.

4.

• Reflexivity: We prove that U ≈ U by induction on U .

• Symmetry: We prove by induction on U ≈ V that if U ≈ V , then V ≈ U .

• Transitivity: Straightforward.

5. Straightforward.

6. Straightforward.

7. Straightforward.

8. Straightforward.

9. For all U , we construct ϕ(U) defined by induction on U as follows:

ϕ(F) := 1
ϕ(A ∩B) := ϕ(A) + ϕ(B)
ϕ(ω) := 0

By induction on U , if ϕ(U) = 0, then U = ω

We also have ϕ(U ∩ V) = ϕ(U) + ϕ(V).

By induction on U ≈ V , if U ≈ V , then ϕ(U) = ϕ(V).

If U ∩ V ≈ U : Then, ϕ(U ∩ V) = ϕ(U). Therefore, ϕ(U) + ϕ(V) = ϕ(U).
Hence, ϕ(V) = 0. Therefore, V = ω.

Definition 8 (Sub-typing).
Assume U and V are U -types. We write U ⊆ V if and only if there exists a

U -type U ′ such that U ≈ V ∩ U ′.

Lemma 3 (Properties of ⊆).

1. ⊆ is a partial pre-order and ≈ is the equivalence relation associated to it:
U ⊆ V and V ⊆ U if and only if U ≈ V .

2. Projections: U ∩ V ⊆ U and U ∩ V ⊆ V .

15

3. Stability of ∩: If U ⊆ U ′ and V ⊆ V ′, then U ∩ V ⊆ U ′ ∩ V ′.
4. Greatest element: U ⊆ ω.

Proof. Straightforward.

We could have represented intersection types with multisets (and correspond-
ingly used the type inclusion symbol ⊆ the other way round). We chose to keep the
standard notation A ∩ B, with the corresponding inclusion satisfying A ∩ B ⊆ A,
since these are interpreted as set intersection and set inclusion in some models
(e.g. realisability candidates). This way, we can also keep the equivalence relation
explicit in the rest of the chapter, which gives finer-grained results. For example, the
equivalence only appears where it is necessary and the proof of Lemma 5.2 shows
the mechanism that propagates the equivalence through the typing trees. These
presentation choices are irrelevant to the key ideas of the chapter.

2.3.2 Contexts

To define typing judgements (Definition 10), we need to define contexts and give
their basic properties. We naturally define pointwise the notion of equivalence and
inclusion for contexts. More formally:

Definition 9 (Contexts).
A context Γ is a total map from the set of variables to the set of U -types such

that the domain of Γ defined by:

Dom(Γ) := {x | Γ(x) 6= ω}
is finite.
∩, ≈ and ⊆ for contexts are defined pointwise:

(Γ ∩∆)(x) := Γ(x) ∩∆(x)
Γ ≈ ∆ ⇔ ∀x,Γ(x) ≈ ∆(x)
Γ ⊆ ∆ ⇔ ∀x,Γ(x) ⊆ ∆(x)

Notice that if Dom(Γ) and Dom(∆) are finite, then Dom(Γ ∩∆) is finite. Therefore
Γ ∩∆ is indeed a context in the case where Γ and ∆ are contexts.

The empty context () is defined as follows: ()(x) := ω for all x.
Assume Γ is a context, x1, . . . , xn are distinct variables and U1, . . .Un are

U -types such that for all i, xi /∈ Dom(Γ). Then, the context (Γ, x1 : U1, . . . , xn : Un)
is defined as follows:

(Γ, x1 : U1, . . . , xn : Un)(xi) := Ui
(Γ, x1 : U1, . . . , xn : Un)(y) := Γ(y) (∀i, y 6= xi)

(Γ, x1 : U1, . . . , xn : Un) is indeed a context and ((), x1 : U1, . . . , xn : Un) is written
(x1 : U1, . . . , xn : Un).

Lemma 4 (Properties of contexts).

1. ≈ for contexts is an equivalence relation.

2. ⊆ for contexts is a partial pre-order and ≈ is its associated equivalence rela-
tion: Γ ⊆ ∆ and ∆ ⊆ Γ if and only if Γ ≈ ∆.

3. Projections: Γ ∩∆ ⊆ Γ and Γ ∩∆ ⊆ ∆.

4. Alternative definition: Γ ⊆ ∆ if and only if there exists a context Γ′ such that
Γ ≈ ∆ ∩ Γ′.

5. Commutativity of ∩: Γ ∩∆ ≈ ∆ ∩ Γ.

6. Associativity of ∩: (Γ1 ∩ Γ2) ∩ Γ3 ≈ Γ1 ∩ (Γ2 ∩ Γ3).

7. Stability of ∩: If R is either ≈ or ⊆, Γ R Γ′ and ∆ R ∆′, then Γ∩∆ R Γ′∩∆′.

16

(V ar)
x : F `0 x : F

Γ `n M : A ∆ `m M : B
(∩)

Γ ∩∆ `n+m M : A ∩B
(ω)

`0 M : ω

Γ, x : U `n M : F A ⊆ U
(Fun)

Γ `n λx.M : A→ F

Γ `n M : A→ F ∆ `m N : A
(App)

Γ ∩∆ `n+m+1 MN : F

Figure 2.3: Typing rules

8. Greatest context: Γ ⊆ ().

9. (Γ, x : U) ⊆ Γ.

Proof. Straightforward.

2.3.3 Rules

We now have all the elements to present the typing system:

Definition 10 (Typing system).
Assume Γ is a context, M is a term, n is an integer, and U is a U -type. The

judgement Γ `n M : U is inductively defined by the rules given in Figure 2.3.
We write Γ ` M : U if there exists n such that Γ `n M : U .

Some remarks:

• In Γ `n M : U , n is the number of uses of the rule (App) and it is the trivial
measure on typing trees that we use.

• The rule (ω) is a device to simplify some definitions, proofs and properties: it
is independent from the other rules and this chapter could have been written
without it (only with more cases in statements and proofs). In particular,
` M : ω gives no information about M and, for example, Theorem 2 uses A

instead of U .

• Condition A ⊆ U in rule (Fun) is called subsumption and is used to make
Subject Reduction (Theorem 1) hold when the reduction is under a λ: After
a subject reduction, U can turn into a different U ′ without changing A.

• Another advantage in having the type ω for the presentation of the typing
system: Without the notation U or V , we would have to duplicate the ab-
straction rule that types λx.M (one case where x ∈ fv(M) and one case where
x /∈ fv(M)). That would make two rules instead of one.

• Like the other judgements defined with induction rules, when we write “By
induction on Γ ` M : U”, means “By induction on the derivation proving
Γ ` M : U”.

Lemma 5 (Basic properties of typing).

1. Γ `n M : U ∩ V if and only if there exist Γ1, Γ2, n1 and n2 such that Γ =
Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 M : U and Γ2 `n2 M : V .

2. If Γ `n M : U and U ≈ V , then there exists ∆ such that Γ ≈ ∆ and
∆ `n M : V .

3. If Γ `n M : U and U ⊆ V , then there exist ∆ and m such that Γ ⊆ ∆, m ≤ n
and ∆ `m M : V .

4. If Γ ` M : A, then Dom(Γ) = fv(M).

17

5. If Γ ` M : U , then Dom(Γ) ⊆ fv(M).

Proof.

1. Straightforward.

2. By induction on U ≈ V .

3. Corollary of 1 and 2.

4. By induction on Γ ` M : A.

5. Corollary of 4.

2.4 Soundness

As usual for the proof of Subject Reduction, we first prove a substitution lemma:

Lemma 6 (Substitution lemma).
If Γ, x : U `n M : A and ∆ `m N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆

and Γ′ `n+m M{x := N} : A.

Proof. By induction on Γ, x : U ` M : A. The measure of the final typing tree
is n + m because, by the fact that the intersection types are non-idempotent, this
proof does not do any duplications of the rule (App).

More precisely:

• For
x : F `0 x : F

with Γ = (), n = 0, M = x, U = F and A = F : We

have x{x := N} = N . By hypothesis, ∆ `m N : U . Therefore, ∆ `m
M{x := N} : F with n+m = m and Γ ∩∆ = () ∩∆ = ∆.

• For
y : F `0 y : F

with y 6= x, Γ = (y : F), n = 0, M = y, U = ω, and

A = F : By hypothesis, ∆ `m N : ω. Hence, ∆ = () and m = 0. We have
y{x := N} = y. Therefore, y : F `0 M{x := N} : F with n + m = 0 and
Γ ∩∆ = (y : F) ∩ () = (y : F).

• For
Γ1, x : U1 `n1 M : A1 Γ2, x : U2 `n2 M : A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2 M : A1 ∩A2

with Γ = Γ1∩Γ2, n = n1 +

n2, U = U1 ∩ U2 and A = A1 ∩ A2: By hypothesis, ∆ `m N : U1 ∩ U2. By
Lemma 5.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1∩∆2, m = m1+
m2, ∆1 `m1 N : U1 and ∆2 `m2 N : U2. By induction hypothesis, there exist
Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩∆1, Γ′2 ≈ Γ2 ∩∆2, Γ′1 `n1+m1 M{x := N} :
A1 and Γ′2 `n2+m2 M{x := N} : A2. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2

M{x := N} : A1 ∩A2 with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩
(∆1 ∩∆2) = Γ ∩∆ and n1 +m1 + n2 +m2 = n+m.

• For
Γ, x : U, y : V `n M1 : F B ⊆ V

Γ, x : U `n λy.M1 : B → F
with M = λy.M1, x 6= y, y /∈ fv(N)

and A = B → F . We have (λy.M1){x := N} = λy.M1{x := N}. By
induction hypothesis, there exists Γ′ such that Γ′ ≈ (Γ, y : V)∩∆ and Γ′ `n+m
M1{y := N} : F . By Lemma 5.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆)
and (Γ, y : V) ∩ ∆ = (Γ ∩ ∆, y : V). There exist a unique Γ′′ and a unique
V ′ such that (Γ′′, y : V ′) = Γ′. Therefore, Γ′′ ≈ Γ ∩∆ and V ≈ V ′. Hence,
B ⊆ V ′. Therefore, Γ′′ `n+m λy.M1{x := N} : B → F .

• For
Γ1, x : U1 `n1 M1 : B → F Γ2, x : U2 `n2 M2 : B

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1 M1M2 : F
with Γ = Γ1∩Γ2, n =

n1 + n2 + 1, U = U1 ∩ U2, M = M1M2 and A = F : We have (M1M2){x :=

18

N} = M1{x := N}M2{x := N}. By hypothesis, ∆ `m N : U1 ∩ U2.
By Lemma 5.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2,
m = m1 + m2, ∆1 `m1 N : U1 and ∆2 `m2 N : U2. By induction hy-
pothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1, Γ′2 ≈ Γ2 ∩ ∆2,
Γ′1 `n1+m1 M1{x := N} : B → F and Γ′2 `n2+m2 M2{x := N} : B. There-
fore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2+1 M1M2 : F with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩
∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆ and n1 +m1 + n2 +m2 + 1 = n+m.

Theorem 1 (Subject Reduction).
If Γ `n M : A and M →β M ′, then there exist Γ′ and n′ such that Γ ⊆ Γ′,

n > n′ and Γ′ `n′
M ′ : A.

Proof. First by induction on M →β M
′, then by induction on A.

In particular, for the base case of the β reduction ((λx.M1)M2 →β M1{x :=
M2}), we use Lemma 6.

For the case λx.M1 →β λx.M
′
1 with M1 →β M

′
1, we use the fact that in the rule

(Fun), there can be a subsumption. Therefore, the change of the type of x can be
caught by the rule (App).

More precisely:

• If A is of the form A1 ∩ A2: Then, there exist Γ1, Γ2, n1 and n2 such that
Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 M : A1 and Γ2 `n2 M : A2. By induction
hypothesis on (M →β M

′, A1) and (M →β M
′, A2), there exist Γ′1, Γ′2, n′1

and n′2 such that Γ1 ⊆ Γ′1, Γ2 ⊆ Γ′2, n1 > n′1, n2 > n′2, Γ′1 `n
′
1 M ′ : A1 and

Γ′2 `n
′
2 M ′ : A2. Therefore, Γ′1 ∩ Γ′2 `n

′
1+n

′
2 M ′ : A1 ∩A2 with Γ = Γ1 ∩ Γ2 ⊆

Γ′1 ∩ Γ′2 and n = n1 + n2 > n′1 + n′2.

• For (λx.M1)M2 →β M1{x := M2} with M = (λx.M1)M2 and A is of the

form F :

Therefore, there exist Γ1, Γ2, n1, n2, B such that Γ = Γ1∩Γ2, n = n1+n2+1,
Γ1 `n1 λx.M1 : B → F and Γ2 `n2 M2 : B: Then, there exists U such that
B ⊆ U and Γ1, x : U `n1 M1 : F . By Lemma 5.3, there exist Γ′2 and n′2
such that Γ2 ⊆ Γ′2, n2 ≥ n′2 and Γ′2 `n

′
2 M2 : U . By Lemma 6, there

exists Γ′ such that Γ′ ≈ Γ1 ∩ Γ′2 and Γ′ `n1+n
′
2 M1{x := M2} : F with

Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 ≈ Γ′ and n = n1 + n2 + 1 > n1 + n2 ≥ n1 + n′2.

• For
M1 →β M

′
1

λx.M1 →β λx.M
′
1

with M = λx.M1 and A is of the form F : There exist

B, G and U such that F = B → G, B ⊆ U and Γ, x : U `n M1 : G. By
induction hypothesis, there exists Γ′1 and n′ such that (Γ, x : U) ⊆ Γ′1, n > n′

and Γ′1 `n
′
M ′1 : G. There exist a unique Γ′ and a unique U ′ such that

Γ′1 = (Γ′, x : U ′). Therefore, Γ ⊆ Γ′ and U ⊆ U ′. Hence, B ⊆ U ′. Therefore
Γ′ `n′

λx.M ′1 : B → G.

• For
M1 →β M

′
1

M1M2 →β M
′
1M2

with M = M1M2 and A is of the form F : There exist

Γ1, Γ2, n1, n2 andB such that Γ = Γ1∩Γ2, n = n1+n2+1, Γ1 `n1 M1 : B → F
and Γ2 `n2 M2 : B. By induction hypothesis, there exist Γ′1 and n′1 such that
Γ1 ⊆ Γ′1, n1 > n′1 and Γ′1 `n

′
1 M ′1 : B → F . Therefore, Γ′1 ∩ Γ2 `n

′
1+n2+1

M ′1M2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 and n = n1 + n2 + 1 > n′1 + n2 + 1.

• For
M2 →β M

′
2

M1M2 →β M1M
′
2

with M = M1M2 and A is of the form F : There exist

Γ1, Γ2, n1, n2 andB such that Γ = Γ1∩Γ2, n = n1+n2+1, Γ1 `n1 M1 : B → F

19

and Γ2 `n2 M2 : B. By induction hypothesis, there exist Γ′2 and n′2 such that
Γ2 ⊆ Γ′2, n2 > n′2 and Γ′2 `n

′
2 M ′2 : B. Therefore, Γ1 ∩ Γ′2 `n1+n

′
2+1 M1M

′
2 : F

with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 and n = n1 + n2 + 1 > n1 + n′2 + 1.

In Theorem 1, we have n > n′ because, by the fact that types are non-idempotent,
we do not do any duplications in the proof of Subject Reduction. Therefore, by
Subject Reduction, for each β-reduction, the measure of the typing tree strictly
decreases and then, we have Soundness as a corollary.

Theorem 2 (Soundness).
If Γ `n M : A, then M ∈ SN≤n.

Proof. Corollary of Theorem 1: We prove by induction on n that if Γ `n M : A
then M ∈ SN≤n.

Let M ′ be a term such that M →β M
′. By Theorem 1, there exist Γ′ and n′

such that n′ < n and Γ′ `n′
M ′ : A. By induction hypothesis, M ′ ∈ SN≤n′ . Hence,

M ′ ∈ SN≤n−1 because n′ ≤ n− 1.
Therefore, M ∈ SN≤n.

Theorem 2 gives more information than a usual soundness theorem: If a term
is typable, the term is not only strongly normalising, but the measure on a typing
tree is a bound on the size longest β-reduction sequences from this term to its
normal form. One of the reasons we have just a bound is that the measure of the
typing tree can decrease more than 1. This is usually what happens when the β-
reduction erases a sub-term. Having a better result than just a bound is discussed
in Chapters 3 and 4.

2.5 Semantics and applications

In this section we show how to use non-idempotent intersection types to simplify
the methodology of [CS07], which we briefly review here:

The goal is to produce modular proofs of strong normalisation for various source
typing systems. The problem is reduced to the strong normalisation of a unique tar-
get system of intersection types, chosen once and for all. This is done by interpreting
each term t as the set JtK of the intersection types that can be assigned to t in the
target system. Two facts then remain to be proved:

1. if t can be typed in the source system, then JtK is not empty

2. the target system is strongly normalising
The first point is the only part that is specific to the source typing system: it
amounts to turning the interpretation of terms into a filter model of the source typ-
ing system. The second point depends on the chosen target system: as [CS07] uses
a system of idempotent intersection types (extending the simply-typed λ-calculus),
their proof involves the usual reducibility technique [Gir72, Tai75]. But this is some-
what redundant with point 1 which uses similar techniques to prove the correctness
of the filter model with respect to the source system.

In this chapter we propose to use non-idempotent intersection types for the target
system, so that point 2 can be proved with simpler techniques than in [CS07] while
point 1 is not impacted by the move.

2.5.1 Denotational semantics

The following filter constructions only involve the syntax of types and are indepen-
dent from the chosen target system.

20

Definition 11 (Values).
A value v is a set of U -types such that:

• ω ∈ v.

• If U ∈ v and U ⊆ V , then V ∈ v.

• If U ∈ v and V ∈ v, then U ∩ V ∈ v.
We write D the set of values.

While our intersection types differ from those in [CS07] (in that idempotency is
dropped), the stability of a filter under type intersections makes it validate idem-
potency (it contains A if and only if it contains A ∩A, etc). This makes our filters
very similar to those in [CS07], so we can plug-in the rest of the methodology with
minimal change.

Definition 12 (Examples of values).

1. Let ⊥ := {ω}
2. Let >, the set of all U -types.

3. Assume α is a set of F -types. Then < α > is the set of U -types defined with
the following rules:

F ∈ α

F ∈< α > ω ∈< α >

A ∈< α > B ∈< α >

A ∩B ∈< α >

4. Assume u, v ∈ D . Let uv := < {F | ∃A ∈ v, (A→ F) ∈ u} >.

Lemma 7 (Properties of values).
Assume u, v ∈ D .

1. If for all F ∈ u we have F ∈ v, then u ⊆ v.

2. If for all F , F ∈ u if and only if F ∈ v, then u = v.

3. ⊥ is the smallest element of D and > is the biggest element of D .

4. If U ∈ v and U ≈ V , then V ∈ v.

5. < α > is the smallest element v of D such that α ⊆ v.

6. F ∈< α > if and only if F ∈ α.

7. uv ∈ D and F ∈ uv if and only if there exists A such that (A → F) ∈ u and
A ∈ v.

8. We have u⊥ = ⊥ = ⊥u.

9. If v 6= ⊥, then >v = >.

Proof.

1. We prove by induction on U , that for all U ∈ u, we have U ∈ v:

• For ω: By Definition 11, we have ω ∈ v.

• For F : By hypothesis, we have F ∈ v.

• For A ∩ B: We have A ∩ B ⊆ A and A ∩ B ⊆ B. By Definition 11, we
have A ∈ u and B ∈ u. By induction hypothesis, we have A ∈ v and
B ∈ v. By Definition 11, we have A ∩B ∈ v.

2. Corollary of 1.

3. First, we prove that ⊥ ∈ D :

• We have ω ∈ ⊥.

21

• Assume U ∈ ⊥ and U ⊆ V . Therefore, U = ω and ω ⊆ V . We also have
V ⊆ ω. Hence, V ≈ ω. Therefore, V = ω and V ∈ ⊥.

• Assume U ∈ ⊥ and V ∈ ⊥. Therefore, U = ω and V = ω. Hence,
U ∩ V = ω ∩ ω = ω ∈ ⊥.

Therefore, ⊥ ∈ D .

Assume v ∈ D and U ∈ ⊥. Then, U = ω and U ∈ v. Hence, ⊥ ⊆ v.
Therefore, ⊥ is the smallest element of D .

It is straightforward to prove that > is the biggest element of D .

4. Assume U ∈ v and U ≈ V . Then, U ⊆ V . Therefore, by Definition 11, V ∈ v.

5. To prove that < α >∈ D we first need the following:

• We can notice that U∩V ∈< α > if and only if U ∈< α > and V ∈< α >.

• We can prove by induction U ≈ V , that if U ∈< α > and U ≈ V then
V ∈< α >.

Therefore, we can prove that < α >∈ D :

• We have ω ∈< α >.

• Assume U ∈< α > and U ⊆ V . Hence, there exists U ′ such that
U ≈ V ∩ U ′. Therefore, V ∩ U ′ ∈< α >. Hence, V ∈< α >.

• If U ∈< α > and V ∈< α >, then U ∩ V ∈< α >.

Therefore, < α >∈ D and by definition we have α ⊆< α >.

Assume v ∈ D such that α ⊆ v. We can prove by induction on U ∈< α >
that for all U ∈< α >, we have U ∈ v. Hence, < α >⊆ v.

Therefore, < α > is the smallest element v of D such that α ⊆ v.

6. Straightforward.

7. The fact that uv ∈ D is a corollary of 5. The rest is a corollary of 6.

8. By 3, we have ⊥ ⊆ u⊥ and ⊥ ⊆ ⊥u.

• Assume F ∈ u⊥. Then, by 7, there exists A such that (A→ F) ∈ u and
A ∈ ⊥. Contradiction. Therefore, F ∈ ⊥.

By 1, u⊥ ⊆ ⊥.

• By a similar proof, ⊥u ⊆ ⊥.

Therefore, u⊥ = ⊥u = ⊥.

9. By 3, we have >v ⊆ >.

Assume F ∈ >. By the fact that v 6= ⊥, there exists A ∈ v. Therefore,
(A→ F) ∈ > and F ∈ >v.

By 1, we have > ⊆ >v.

Then, we can conclude.

Definition 13 (Environements).
An environment ρ is a total map from the set of variables to D .
Assume Γ is a context, then we write Γ ∈ ρ if and only if:

∀x,Γ(x) ∈ ρ(x)

The environment (ρ, x � v) is defined as follow:

(ρ, x � v)(x) := v
(ρ, x � v)(y) := ρ(y) (x 6= y)

Lemma 8 (Properties of environments).

1. If Γ ∈ ρ and U ∈ v, then (Γ, x : U) ∈ (ρ, x � v).

22

2. If Γ ∈ (ρ, x � v), then there exist Γ′ and U such that Γ = (Γ′, x : U), Γ′ ∈ ρ
and U ∈ v.

3. We have () ∈ ρ.

4. If Γ ∈ ρ and Γ ⊆ ∆, then ∆ ∈ ρ.

5. If Γ ∈ ρ and ∆ ∈ ρ, then Γ ∩∆ ∈ ρ.

Proof. By the fact that Γ ∈ ρ is defined point-wise.

Definition 14 (Semantics of a term).
Assume M is a term and ρ an environment.
Let JMKρ := {U | ∃Γ ∈ ρ,Γ ` M : U}.

Lemma 9 (Properties of the semantics of a term).

1. We have JMKρ ∈ D .

2. If JMKρ 6= ⊥, then M is strongly normalising.

3. We have JxKρ = ρ(x).

4. We have JMNKρ = JMKρJNKρ.

5. We have Jλx.MKρv ⊆ JMK(ρ,x�v).

6. If x ∈ fv(M) or v 6= ⊥, then Jλx.MKρv = JMK(ρ,x�v).

7. If M →β M
′, then JMKρ ⊆ JM ′Kρ.

Proof.

1. We prove that JMKρ ∈ D :

• We have ` M : ω and () ∈ ρ (by Lemma 8.3). Therefore, ω ∈ JMKρ.
• Assume U ∈ JMKρ and U ⊆ V . Then, there exists Γ ∈ ρ such that

Γ ` M : U . Therefore, there exists Γ′ such that Γ ⊆ Γ′ and Γ′ ` M : V .
By Lemma 8.4, we have Γ′ ∈ ρ. Hence, V ∈ JMKρ.
• Assume U ∈ JMKρ and V ∈ JMKρ. Then, there exist Γ,∆ ∈ ρ such that

Γ ` M : U and ∆ ` M : V . Therefore, Γ ∩∆ ` M : U ∩ V and by
Lemma 8.5, Γ ∩∆ ∈ ρ. Hence, U ∩ V ∈ JMKρ.

Therefore, JMKρ ∈ D .

2. Assume JMKρ 6= ⊥. Then, there exists A ∈ JMKρ. Therefore, there exists
Γ ∈ ρ such that Γ ` M : A. By Theorem 2, M is strongly normalising.

3.

• Assume F ∈ JxKρ. Then, there exists Γ ∈ ρ such that Γ ` x : F .
Therefore, Γ = (x : F) and F = Γ(x). We also have Γ(x) ∈ ρ(x). Hence,
F ∈ ρ(x).

• Assume F ∈ ρ(x). Then, (x : F) ∈ ρ and x : F ` x : F . Therefore,
F ∈ JxKρ.

By Lemma 7.2, JxKρ = ρ(x).

4.

• Assume F ∈ JMNKρ. Then, there exists Γ ∈ ρ such that Γ ` MN : F .
Therefore, there exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 ` M :
A→ F and Γ2 ` N : A. We have Γ ⊆ Γ1 and Γ ⊆ Γ2. By Lemma 8.4,
Γ1 ∈ ρ and Γ2 ∈ ρ. Hence, (A → F) ∈ JMKρ and A ∈ JNKρ. By
Lemma 7.7, F ∈ JMKρJNKρ.

23

x ∈ Dom(G) G(x) = A

G `F x : A

G `F M : A→ B G `F N : A

G `F MN : B

G, x : A `F M : B

G `F λx.M : A→ B

G `F M : A α /∈ fv(G)

G `F M : ∀α.A

G `F M : ∀α.A

Γ `F M : A{α := B}

Figure 2.4: Typing rules of System F

• Assume F ∈ JMKρJNKρ. By Lemma 7.7, there exists A such that (A→
F) ∈ JMKρ and A ∈ JNKρ. Then, there exist Γ1,Γ2 ∈ ρ such that
Γ1 ` M : A→ F and Γ2 ` N : A. Therefore, Γ1 ∩ Γ2 ` MN : F . By
Lemma 8.5, Γ1 ∩ Γ2 ∈ ρ. Hence, F ∈ JMNKρ.

By Lemma 7.2, JMNKρ = JMKρJNKρ.
5. Assume F ∈ Jλx.MKρv. By Lemma 8.5, there exists A such that (A→ F) ∈

Jλx.MKρ and A ∈ v. Then, there exists Γ ∈ ρ such that Γ ` λx.M : A→ F .
Hence, there exist U such that A ⊆ U and Γ, x : U ` M : F . Therefore,
U ∈ v. By Lemma 8.1, (Γ, x : U) ∈ (ρ, x � v). Hence, F ∈ JMK(ρ,x�v).

By Lemma 7.1, Jλx.MKρv ⊆ JMK(ρ,x�v).

6. By 5, we have Jλx.MKρv ⊆ JMK(ρ,x�v).

Assume F ∈ JMK(ρ,x�v). Then, there exists Γ ∈ (ρ, x � v) such that Γ ` M :
F . By Lemma 7.2, there exist Γ1 ∈ ρ and U ∈ v such that Γ = (Γ1, x : U).
Therefore, Γ1, x : U ` M : F . By hypothesis, we are in one of the following
cases:

• We have x ∈ fv(M): Therefore, U is of the form A.

• We have v 6= ⊥ and U is of the form A.

• We have v 6= ⊥ and U = ω: Then, there exists A ∈ v and we have A ⊆ ω.

In all cases, there exists A ∈ v such that A ⊆ U . Hence, Γ1 ` λx.M : A→ F .
Therefore, (A→ F) ∈ Jλx.MKρ. By Lemma 7.7, F ∈ Jλx.MKρv.

By Lemma 7.1, JMK(ρ,x�v) ⊆ Jλx.MKρv.

Then, we can conclude.

7. Assume F ∈ JMKρ. Then, there exists Γ ∈ ρ such that Γ ` M : F . By
Theorem 1, there exists Γ′ such that Γ ⊆ Γ′ and Γ′ ` M ′ : F . By Lemma 8.4,
Γ′ ∈ ρ. Therefore, F ∈ JM ′Kρ.
By Lemma 7.1, JMKρ ⊆ JM ′Kρ.

2.5.2 Example: System F

Definition 15 (System F).
Types of System F are defined with the following grammar:

A,B,C ::= α | A→ B | ∀α.A
where α ranges over an infinite set of type variables. Free variables and substitution
is defined the usual way.

A context G in System is a partial map from type variables to types of System
F.

The typing judgement G `F M : A is defined with the rules of Figure 2.4.

Definition 16 (Model of System F).
We define TP(D) the set of subsets X of D such that:

24

• > ∈ X.

• ⊥ /∈ X.
Assume X,Y ∈ TP(D).

Let X → Y := {u ∈ D | ∀v ∈ X,uv ∈ Y }.

Lemma 10 (Examples of elements of TP(D)).

1. We have {>} ∈ TP(D).

2. Assume (Xi)i∈I a non-empty family of TP(D). Then,
⋂
i∈I Xi ∈ TP(D).

3. Assume X,Y ∈ TP(D). Then X → Y ∈ TP(D).

Proof.

1. Straightforward.

2. Straightforward.

3.

• Assume v ∈ X. Then, by Definition 16, we have v 6= ⊥. By Lemma 7.9,
>v = >. By Definition 16, we have > ∈ Y . Therefore, > ∈ X → Y .

• Assume ⊥ ∈ X → Y . We have > ∈ X. Therefore, we have ⊥> ∈ Y . By
Lemma 7.8, ⊥> = ⊥. Therefore, ⊥ ∈ Y . Contradiction.

Hence, ⊥ /∈ X → Y .

Therefore, X → Y ∈ TP(D).

Definition 17 (Interpretation of System F in the TP(D)).
Assume σ a total map from type variables α to TP(D) (type environment).
We define [A]σ ∈ TP(D) by induction on A as follows:

[α]σ := σ(α)
[A→ B]σ := [A]σ → [B]σ
[∀α.A]σ :=

⋂
X∈TP(D)[A](σ,α�X)

We define [G]σ as the set of environment ρ such that:

∀x ∈ Dom(G), ρ(x) ∈ [G(x)]σ

Theorem 3 (Soundness of the model).
Assume G `F M : A.
Then, for all σ type environment we have:

∀ρ ∈ [G]σ, JMKρ ∈ [A]σ

Proof. By induction on G `F M : A.

• For
x ∈ Dom(G) G(x) = A

G `F x : A
withM = x: Therefore, JxKρ = ρ(x) (by Lemma 9.3).

And we have ρ(x) ∈ [G(x)]σ = [A]σ.

• For
G `F M1 : B→ A G `F M2 : B

G `F M1M2 : A
with M = M1M2: By Lemma 9.4,

JM1M2Kρ = JM1KρJM2Kρ. By induction hypothesis, JM1Kρ ∈ [B→ A]σ =
[B]σ → [A]σ and JM2Kρ ∈ [B]σ. Therefore, JM1KσJM2Kσ ∈ [A]σ.

• For
G, x : A1 `F M1 : A2

G `F λx.M1 : A1 → A2

with M = λx.M1 and A = A1 → A2:

Assume v ∈ [A1]σ. Then, v 6= ⊥. By Lemma 9.6, Jλx.M1Kρv = JM1K(ρ,x�v).
We also have (ρ, x � v) ∈ [G, x : A1]σ. By induction hypothesis, JM1K(ρ,x�v) ∈
[A2]σ. Therefore, Jλx.M1Kρv ∈ [A2]σ.

Hence, Jλx.M1Kρ ∈ [A1]σ → [A2]σ. Therefore, JMKρ ∈ [A]σ.

25

• For
G `F M : A1 α /∈ fv(G)

G `F M : ∀α.A1

with A = ∀α.A1:

Assume X ∈ TP(D). By the fact that α /∈ fv(G), we have [G](σ,α�X) = [G]σ.
Therefore, ρ ∈ [G](σ,α�X). By induction hypothesis, JMKρ ∈ [A1](σ,α�X).

Hence, JMKρ ∈
⋂
X∈TP(D)[A1](σ,α�X) = [∀α.A1]σ = [A]σ.

• For
G `F M : ∀α.A1

G `F M : A1{α := A2}
with A = A1{α := A2}:

By induction hypothesis, JMKρ ∈ [∀α.A1]σ =
⋂
X∈TP(D)[A1](σ,α�X). In par-

ticular, JMKρ ∈ [A1](σ,α�[A2]σ). We can prove by induction on A1 that
[A1{α := A2}]σ = [A1](σ,α�[A2]σ). Therefore, JMKρ ∈ [A]σ.

Theorem 4 (Strong normalisation of System F).
If G `F M : A, then M is strongly normalising.

Proof.
Let σ defined by: ∀α, σ(α) := {>}.
Let ρ defined by: ∀x, ρ(x) := >. Therefore, ρ ∈ [G]σ.
By Theorem 3, we have JMKρ ∈ [A]σ. Therefore, JMKρ 6= ⊥.
By Lemma 9.2, M is strongly normalising.

2.6 Completeness

The goal of this section is to prove that if a term is strongly normalising, then it is
typable. We use the same method usually done to prove this result with idempotent
intersection type:

• We exhibit a β-reduction sequence from M to its normal form M ′.

• We type M ′.

• To get a typing of M we backtrack from M ′: For each β-step M1 →β M2, we
get a typing of M1 from a typing of M2.

What we do in each β-step is called Subject Expansion (Theorem 5). Unfortunately,
Subject Expansion does not work for every reduction M →β M

′. In particular, it
does not hold when M /∈ SN and M ′ ∈ SN (by Theorem 2). Here are a few
examples bellow:

• Case where the argument of the β-redex is not strongly normalising and is
erased:

(λx.y)((λz.zz)(λz.zz))→β y

• More subtle case:
(λw.(λx.y)(ww))(λz.zz)→β (λw.y)(λz.zz)

Here, the erased term ww is strongly normalising but w, one of its free variable
is caught by the abstraction λw.

Therefore, we need a restricted reduction relation such that:

• It can reach the normal form.

• It satisfies Subject Expansion. Therefore, it preserves strong normalisation
both ways.

26

The restricted reduction relation that we give here is not the smallest one that
satisfies those properties. On the contrary, we try to define the biggest one that
satisfies them. This gives us a better understanding about operational semantics and
intersection types and it gives more weight to some theorems such as Theorem 2.6
(which states that this strategy is perpetual).

First, we have to understand why we cannot directly adapt the proof of Subject
Reduction to prove Subject Expansion:

• For M1 →β M2: When an argument N of a β-redex is erased, to type M1, we
need to type N and we have no information about how to type N from the
typing of M2. (first example)

• When a term is erased, the type of a context changes after Subject Expansion
(it gets bigger). When dealing with the (App) rule, we are in a similar situ-
ation that we were in Subject Reduction. To avoid this problem, in Subject
Reduction, we can have a subsumption but here the subsumption is on the
wrong side.

Therefore, when doing an erasure, we have to make sure that the variables of
the erased term are not caught by a lambda like in the second example.

Hence, it seems logic to keep information about the set of variables E of an erased
terms when defining the strategy.

We actually introduce, two restricted reduction relations that are mutally de-
fined: E and ⇒E . The second one is more general than the first. This definition
uses an “accumulator property” denoted accx(M) (accx(M) if and only if M is of
the form xM1 . . .Mn; we also say that x is the head variable of M). The rules
are given in Figure 2.5 and are purely syntactic. However, their motivation and
meaning is that:

• If M cannot be reduced by →β , then M is typable.

• If accx(M) and M is typable, then we can give M any type by just changing
the type of x.

• If M E M ′ and M ′ is typable with a type A, then M has type A, just by
changing the types of each x in E.

• If M ⇒E M ′ and M ′ is typable with a type A, then M is typable with a type
B (which can be different from A), just by changing the types of each x in E.

In more simple and common perpetual strategies (such as the one defined in Chap-
ter 4) we do not need E.

More formally:

Definition 18 (Accumulators).
Assume M is a term and x a variable. Then, accx(M) is defined with the

following rules:

accx(x)

accx(M)

accx(MN)

We write acc(M) if there exists x such that accx(M).

Definition 19 (Special reductions).
Assume M and M ′ are terms and E is a finite set of variables. The reductions

M E M ′ and M ⇒E M ′ are defined with the rules of Figure 2.5.

Lemma 11 (Execution of a λ-term).

1. If M cannot be reduced by →β, then we are in one of the following cases:

• M is of the form λx.M1.

• There exists x such that accx(M).

27

x ∈ fv(M)

(λx.M)N ∅ M{x := N}
x /∈ fv(M) N ⇒E N ′

(λx.M)N E (λx.M)N ′

x /∈ fv(N) N cannot be reduced by →β

(λx.M)N fv(N) M

M E M ′

MN E M ′N

N E N ′

MN E MN ′

M E M ′ x /∈ E

λx.M E λx.M ′

M E M ′

M ⇒E M ′

M ⇒E M ′

λx.M ⇒E−{x} λx.M
′

accx(M) N ⇒E N ′

MN E∪{x} MN ′

Figure 2.5: Rules of E and ⇒E

2. If M can be reduced by →β, then there exists E and M ′ such that M ⇒E M ′.

Moreover, if M is not of the form λx.M , then there exist E and M ′ such that
M E M ′.

3. If M E M ′, then M ⇒E M ′.

4. If M ⇒E M ′ then M →β M
′.

Proof.

1. By induction on M - see e.g. [Böh68].

2. By induction on M : We are in one of the following cases:

• M is of the form x: Then, M cannot be reduced by →β . Contradiction.

• M is of the form λx.M1: Then, M1 can be reduced by→β . By induction
hypothesis, there exist E and M ′1 such that M1 ⇒E M ′1. Therefore,
M ⇒E λx.M ′1.

• M is of the form (λx.M1)M2 and x ∈ fv(M1): Therefore, M ∅ M1{x :=
M2}.

• M is of the form (λx.M1)M2, x /∈ fv(M1) and M2 can be reduced by→β :
By induction hypothesis, there exist E and M ′2 such that M2 ⇒E M ′2.
Therefore, M E (λx.M1)M ′2.

• M is of the form (λx.M1)M2, x /∈ fv(M1) and M2 cannot be reduced by
→β : Therefore, M fv(M2) M1.

• M is of the form M1M2, M1 is not of the form λx.M3 and M1 can be
reduced by →β : By induction hypothesis, there exist E and M ′1 such
that M1 E M ′1. Therefore, M E M ′1M2.

• M is of the form M1M2, M1 is not of the form λx.M3 and M1 cannot
be reduced by →β : By 1, there exists x such that accx(M).

If M2 cannot be reduced by →β , then M cannot be reduced by →β .
Contradiction. Therefore, M2 can be reduced by →β .

By induction hypothesis, there exist E and M ′2 such that M2 ⇒E M ′2.
Therefore, M E∪{x} M1M

′
2.

In all cases, if M E M ′, then M ⇒E M ′.

3. Trivial.

4. We prove the following by induction on M E M ′ and by induction on
M ⇒E M ′ (mutual recursion):

28

• If M E M ′, then M →β M
′.

• If M ⇒E M ′, then M →β M
′.

As usual for the proof of Subject Expansion, we first prove an anti-substitution
lemma:

Lemma 12 (Anti-substitution lemma).
If Γ ` M{x := N} : A, then there exist Γ1, Γ2 and U such that Γ ≈ Γ1 ∩ Γ2,

Γ1, x : U ` M : A and Γ2 ` N : U .

Proof. First by induction on M , then by induction on A. We adapt the proof of
Lemma 6.

We are in one of the following cases:

• A is of the form A1 ∩A2: Then, there exist Γ1 and Γ2 such that Γ = Γ1 ∩Γ2,
Γ1 ` M{x := N} : A1 and Γ2 ` M{x := N} : A2. By induction hypothesis
on (M1, A1) and on (M2, A2), there exist Γ′1, ∆1, Γ′2, ∆2, U1 and U2 such that
Γ1 ≈ Γ′1 ∩∆1, Γ2 ≈ Γ′2 ∩∆2, Γ′1, x : U1 ` M : A1, Γ′2, x : U2 ` M : A2, ∆1 `
N : U1, and ∆2 ` N : U2. Therefore, Γ′1 ∩ Γ′2, x : U1 ∩ U2 ` M : A1 ∩A2,
∆1 ∩∆2 ` N : U1 ∩ U2 and (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2) ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈
Γ1 ∩ Γ2 = Γ.

• M is of the form x and A is of the form F : Then, M{x := N} = N . Hence,
x : F ` x : F , Γ ` N : F and () ∩ Γ = Γ.

• M is of the form y and A is of the form F with x 6= y: Then, M{x := N} = y.
Hence, Γ = (y : F) = (y : F, x : ω). Therefore, y : F, x : ω ` M : F , ` N : ω
and (y : F) ∩ () = (y : F) = Γ.

• M is of the form M1M2 and A is of the form F : Then, M{x := N} =
M1{x := N}M2{x := N}. Therefore, there exist Γ1, Γ2 and B such that
Γ = Γ1 ∩ Γ2, Γ1 ` M1{x := N} : B → F and Γ2 ` M2{x := N} : B.
By induction hypothesis there exist Γ′1, ∆1, Γ′2, ∆2, U1 and U2 such that
Γ1 ≈ Γ′1 ∩∆1, Γ2 ≈ Γ′2 ∩∆2, Γ′1, x : U1 ` M1 : B → F , Γ′2, x : U2 ` M2 : B,
∆1 ` N : U1, and ∆2 ` N : U2. Therefore, Γ′1 ∩ Γ′2, x : U1 ∩ U2 ` M1M2 : F ,
∆1 ∩∆2 ` N : U1 ∩ U2 and (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2) ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈
Γ1 ∩ Γ2 = Γ.

• M is of the form λy.M1 and A is of the form F with y 6= x and y /∈ fv(N):
Then, M{x := N} = λy.M1{x := N}. Therefore, there exist B, V and G
such that B ⊆ V , F = B → G and Γ, y : V ` M1{x := N} : G. By induction
hypothesis, there exist Γ′1, ∆ and U such that (Γ, y : V) ≈ Γ′1 ∩∆, Γ′1, x : U `
M1 : G and ∆ ` N : U . There exist Γ′ and V ′ such that Γ′1 = (Γ′, y : V ′).
By Lemma 5.4 and by the fact that y /∈ fv(M), we have y /∈ Dom(∆). Hence,
Γ′1 ∩ ∆ = (Γ′ ∩ ∆, y : V ′). Therefore, Γ ≈ Γ′ ∩ ∆ and V ≈ V ′. Hence,
B ⊆ V ′, (Γ′1, x : U) = (Γ′, y : V ′, x : U) = (Γ′, x : U, y : V ′) (because x 6= y).
Therefore, Γ′, x : U ` λy.M1 : B → G.

Notice that, in Lemma 12, if x /∈ fv(M), then U = ω and we do not have any
typing information on N .

In⇒E and E , if a term is erased, then it is a normal form. Therefore, to prove
Subject Expansion, we need to be able to type normal terms. This is also used in
Theorem 6. To prove this, we need to know what is the type of an accumulator
(when the context is an input).

Lemma 13 (Type of an accumulator).
Assume Γ ` M : F and accx(M). Then for all G, there exists Γ′ such that:

29

• For all y 6= x, Γ(x) = Γ′(x).

• We have Γ′ ` M : G.

Proof. By induction on accx(M):

• For accx(x) with M = x: Therefore, Γ = (x : F). Hence, x : G ` M : G and

for all y 6= x, (x : F)(y) = (x : G)(y) = ω.

• For
accx(M1)

accx(M1M2)
with M = M1M2: Then, there exist Γ1, Γ2 and A such that

Γ = Γ1 ∩ Γ2, Γ1 ` M1 : A→ F and Γ2 ` M2 : A. By induction hypothesis,
there exists Γ′1 such that Γ′1 ` M1 : A→ G and for all y 6= x, we have
Γ1(y) = Γ′1(y). Therefore, Γ′1 ∩ Γ2 ` M1M2 : G.

Assume y 6= x, then (Γ′1 ∩ Γ2)(y) = Γ′1(y) ∩ Γ2(y) = Γ1(y) ∩ Γ2(y) = Γ(y).

Lemma 14 (Typing of a normal term).
If M cannot be reduced by →β, then there exist Γ and F such that Γ ` M : F .

Proof. By induction on M . By Lemma 11.1, we are in one of the following cases:

• M is of the form x: Therefore, x : τ ` M : τ .

• M is of the form M1M2 with accx(M): By induction hypothesis, there exist
Γ1, Γ2, F1 and F2 such that Γ1 ` M1 : F1 and Γ2 ` M2 : F2. By Lemma 13,
there exist Γ′1 such that Γ′1 ` M1 : F2 → τ . Therefore, Γ′1 ∩ Γ2 ` M1M2 : τ .

• M is of the form λx.M1: By induction hypothesis, there exist Γ1 and F1 such
that Γ1 ` M1 : F1. Then, there exist Γ and U such that Γ1 = (Γ, x : U). Let
A := U if U is of the form B and let A := τ if U = ω. In both cases we have
A ⊆ U . Therefore, Γ ` λx.M1 : A→ F1.

Theorem 5 (Subject Expansion).
Assume Γ′ ` M ′ : A.

1. If M E M ′, then there exists Γ such that:

• For all x /∈ E, Γ(x) ≈ Γ′(x).

• We have Γ ` M : A.

2. If M ⇒E M ′, then there exist Γ and B such that:

• For all x /∈ E, Γ(x) ≈ Γ′(x).

• We have Γ ` M : B.

• If A is a F -type, then so is B.

Proof. First by induction on M E M ′ and M ⇒E M ′ (mutual recursion), then
by induction on A.

• If A is of the form A1 ∩A2 and M E M ′: Then, there exist Γ′1 and Γ′2 such
that Γ′ = Γ′1 ∩ Γ′2, Γ′1 ` M ′ : A1 and Γ′2 ` M ′ : A2. By induction hypothesis
on (M E M ′, A1) and (M E M ′, A2), there exist Γ1 and Γ2 such that:

– For all y /∈ E, Γ1(y) ≈ Γ′1(y) and Γ2(y) ≈ Γ′2(y).

– Γ1 ` M : A1 and Γ2 ` M : A2.

Therefore, Γ1 ∩ Γ2 ` M : A1 ∩A2.

Assume y /∈ E. Then, (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) ≈ Γ′1(y) ∩ Γ′2(y) =
(Γ′1 ∩ Γ′2)(y) = Γ′(y).

30

• If A is of the form A1 ∩A2 and M ⇒E M ′: Then, there exist Γ′1 and Γ′2 such
that Γ′ = Γ′1 ∩ Γ′2, Γ′1 ` M ′ : A1 and Γ′2 ` M ′ : A2. By induction hypothesis
on (M ⇒E M ′, A1) and (M ⇒E M ′, A2), there exist Γ1, Γ2, B1 and B2 such
that:

– For all y /∈ E, Γ1(y) ≈ Γ′1(y) and Γ2(y) ≈ Γ′2(y).

– Γ1 ` M : B1 and Γ2 ` M : B2.

Therefore, Γ1 ∩ Γ2 ` M : B1 ∩B2.

Assume y /∈ E. Then, (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) ≈ Γ′1(y) ∩ Γ′2(y) =
(Γ′1 ∩ Γ′2)(y) = Γ′(y).

• For
x ∈ fv(M1)

(λx.M1)M2 ∅ M1{x := M2}
with M = (λx.M1)M2, M ′ = M1{x :=

M2} and A is of the form F : By Lemma 12, there exist Γ1, Γ2 and U such
that Γ′ ≈ Γ1 ∩ Γ2, Γ1, x : U ` M1 : F and Γ2 ` M2 : U . By Lemma 5.4,
x ∈ Dom(Γ1, x : U) and U is of the form B. Therefore, Γ1 ` λx.M1 : B → F
and Γ2 ` M2 : B. Hence, Γ1 ∩ Γ2 ` (λx.M1)M2 : F .

Assume y /∈ ∅. Then, (Γ1 ∩ Γ2)(y) ≈ Γ′(y).

• For
x /∈ fv(M1) M2 ⇒E M ′2

(λx.M1)M2 E (λx.M1)M ′2
with M = (λx.M1)M2, M ′ = (λx.M1)M ′2

and A is of the form F : Then, there exist Γ′1, Γ′2 and B such that Γ′ = Γ′1∩Γ′2,
Γ′1 ` λx.M1 : B → F and Γ′2 ` M2 : B.

Therefore, there exists U such that B ⊆ U and Γ′1, x : U ` M1 : F . By
Lemma 5.4, x /∈ Dom(Γ′1, x : U) and U = ω. Hence, Γ′1, x : ω ` M1 : F .

By induction hypothesis, there exist Γ2 and B1 such that:

– Γ2 ` M2 : B1.

– For all y /∈ E, Γ2(y) ≈ Γ′2(y).

Therefore, B1 ⊆ ω, Γ′1 ` λx.M1 : B1 → F and Γ′1 ∩ Γ2 ` (λx.M1)M2 : F .

Assume y /∈ E. Then (Γ′1 ∩ Γ2)(y) = Γ′1(y) ∩ Γ2(y) ≈ Γ′1(y) ∩ Γ′2(y) = Γ′(y).

• For
x /∈ fv(M1) M2 cannot be reduced by →β

(λx.M1)M2 fv(M2) M1

withM = (λx.M1)M2, M ′ =

M1 and A is of the form F :

By Lemma 5.4 and by the fact that x /∈ fv(M1), we have x /∈ Dom(Γ′). Hence,
Γ′ = (Γ′, x : ω) and Γ′, x : ω ` M1 : F .

By Lemma 14, there exist ∆ and G such that ∆ ` M2 : G. Therefore, G ⊆ ω,
Γ′ ` λx.M1 : G→ F and Γ′ ∩∆ ` (λx.M1)M2 : F .

Assume y /∈ fv(M2). By Lemma 5.4, y /∈ Dom(∆) and ∆(y) = ω. Therefore,
(Γ′ ∩∆)(y) = Γ′(y) ∩∆(y) = Γ′(y) ∩ ω = Γ′(y).

• For
M1 E M ′1

M1M2 E M ′1M2

with M = M1M2, M ′ = M ′1M2 and A is of the form

F : Then, there exist Γ′1, Γ′2 and B such that Γ′ = Γ′1 ∩ Γ′2, Γ′1 ` M ′1 : B → F
and Γ′2 ` M2 : B. By induction hypothesis, there exist Γ1 such that:

– For all x /∈ E, Γ1(x) ≈ Γ′1(x).

– Γ1 ` M1 : B → F .

Therefore, Γ1 ∩ Γ′2 ` M1M2 : F .

Assume x /∈ E. Then (Γ1 ∩ Γ′2)(x) = Γ1(x) ∩ Γ′2(x) ≈ Γ′1(x) ∩ Γ′2(x) =
(Γ′1 ∩ Γ′2)(x) = Γ′(x).

31

• For
M2 E M ′2

M1M2 E M1M
′
2

with M = M1M2, M ′ = M1M
′
2 and A is of the form

F : Then, there exist Γ′1, Γ′2 and B such that Γ′ = Γ′1 ∩ Γ′2, Γ′1 ` M1 : B → F
and Γ′2 ` M ′2 : B. By induction hypothesis, there exist Γ2 such that:

– For all x /∈ E, Γ2(x) ≈ Γ′2(x).

– Γ1 ` M2 : B.

Therefore, Γ′1 ∩ Γ2 ` M1M2 : F .

Assume x /∈ E. Then (Γ′1 ∩ Γ2)(x) = Γ′1(x) ∩ Γ2(x) ≈ Γ′1(x) ∩ Γ′2(x) =
(Γ′1 ∩ Γ′2)(x) = Γ′(x).

• For
M1 E M ′1 x /∈ E

λx.M1 E λx.M ′1
with M = λx.M1, M ′ = λx.M ′1 and A is of the form

F : Then, there exists B, U ′ and G such that B ⊆ U ′, F = B → G and
Γ′, x : U ′ ` M ′1 : G.

By induction hypothesis, there exist Γ1 such that:

– For all y /∈ E, Γ1(y) ≈ (Γ′, x : U ′)(y).

– Γ1 ` M1 : G.

There exist Γ and U such that Γ1 = (Γ, x : U). We have x /∈ E. Therefore,
U = (Γ, x : U)(x) = Γ1(x) ≈ (Γ′, x : U ′)(x) = U ′. Hence, B ⊆ U and
Γ ` λx.M1 : B → G.

Assume y /∈ E.

– If y 6= x: Then Γ(y) = (Γ, x : U)(y) = Γ1(y) ≈ (Γ′, x : U ′)(y) = Γ′(y).

– If y = x: By Lemma 5.4 and by the fact that x /∈ fv(λx.M1) and x /∈
fv(λx.M ′1), we have x /∈ Dom(Γ) and x /∈ Dom(Γ′). Therefore, Γ(x) =
Γ′(x) = ω.

• For
M E M ′

M ⇒E M ′
with A is of the form F : Straightforward.

• For
M1 ⇒E M ′1

λx.M1 ⇒E−{x} λx.M
′
1

with M = λx.M1, M ′ = λx.M ′1 and A is of the

form F : Then, there exist B′, U ′ and G′ such that B′ ⊆ U ′, F = B′ → G′

and Γ′, x : U ′ ` M ′1 : G′. By induction hypothesis, there exist Γ1 and G such
that:

– For all y /∈ E, Γ1(y) ≈ (Γ′, x : U ′)(y).

– Γ1 ` M1 : G.

There exist Γ and U such that Γ1 = (Γ, x : U). Let B := U if U is of
the form C and let B = τ if U = ω. In both cases, we have B ⊆ U and
Γ ` λx.M1 : B → G.

Assume y /∈ E − {x}.
– If y 6= x: Then y /∈ E and Γ(y) = (Γ, x : U)(y) = Γ1(y) ≈ (Γ′, x :
U ′)(y) = Γ′(y).

– If y = x: By Lemma 5.4 and by the fact that x /∈ fv(λx.M1) and x /∈
fv(λx.M ′1), we have x /∈ Dom(Γ) and x /∈ Dom(Γ′). Therefore, Γ(x) =
Γ′(x) = ω.

• For
accx(M1) M2 ⇒E M ′2

M1M2 E∪{x} M1M
′
2

with M = M1M2, M ′ = M1M
′
2 and A is of the

form F : Then, there exist Γ′1, Γ′2 and B such that Γ′ = Γ′1 ∩ Γ′2, Γ′1 ` M1 :
B → F and Γ′2 ` M ′2 : B.

By induction hypothesis, there exist Γ2 and B1 such that:

32

– For all y /∈ E, Γ2(y) ≈ Γ′2(y).

– Γ2 ` M2 : B1.

By Lemma 13, there exist Γ1 such that:

– For all y 6= x, Γ1(y) = Γ′1(y).

– Γ1 ` M1 : B1 → F .

Therefore, Γ1 ∩ Γ2 ` M1M2 : F .

Assume y /∈ E ∪ {x}. Then, y /∈ E and y 6= x. Therefore, (Γ1 ∩ Γ2)(y) =
Γ1(y) ∩ Γ2(y) ≈ Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y) = Γ′(y).

Theorem 6 (Completeness).
If M is strongly normalising, then there exist Γ and A such that Γ ` M : A.

Proof. By induction on the size of the longest β-reduction sequences of M :

• If M cannot be reduced by→β , then, by Lemma 14, there exist Γ and F such
that Γ ` M : F .

• If M can be reduced by→β : By Lemma 11.2, there exist E and M ′ such that
M ⇒E M ′. By Lemma 11.4, M →β M

′. By induction hypothesis, there exist
Γ′ and A′ such that Γ′ ` M ′ : A′. By Theorem 5, there exist Γ and A such
that Γ ` M : A.

Theorem 7 (⇒E preserves strong normalisation).
If M ⇒E M ′ and M ′ is strongly normalising, then M is strongly normalising.

Proof. By Theorem 6, there exist Γ′ and A′ such that Γ′ ` M ′ : A′. By Theorem 5,
there exist Γ and A such that Γ ` M : A. By Theorem 1, M is strongly normalising.

Theorem , is a generalisation of the conservation theorem: If M →β M
′ without

erasure and M ′ is strongly normalising, then M is strongly normalising. And the
proof mostly use a semantical argument.

2.7 Conclusion

In this chapter, we have defined a typing system of non-idempotent intersection
types and we have proved that it characterizes strongly normalising terms. In
particular, the proof of strong normalisation is a corollary of Subject Reduction.
And we have also proved that this system can be used to build a denotational
semantics based on I-filters which itself can be used to prove strong normalisation
for other kinds of typing system such as System F

Theorem 2 (Soundness) gives us a bound on the size of longest β-reduction
sequences. This is an inequality result. However, we would like a more precise
result: an equality result. To have this kind of result, we have two different possible
approaches:

• Not only erasure makes Completeness harder to prove, but it also makes
Theorem 2 less precise. Therefore, instead of working in the pure λ-calculus,
we can work in a calculus where we have a better control on the erasure of
terms. The calculus we choose for this study is λS (λ-calculus with explicit
substitutions). Of course we have to adapt the typing system of this chapter
to this calculus. This is what we do in Chapter 3.

33

• We still work in the pure λ-calculus, but we choose to refine the types and
the typing system such that the measure of a (certain) typing tree of every
normal term is equal to zero. This is what we do in Chapter 4.

34

Chapter 3

Intersection types with
explicit substitutions

3.1 Introduction

In the pure λ-calculus, we go from a β-redex (λx.M)N to the term M{x := N} in
one step. It is possible to work in a calculus where this reduction is refined: we go
from the β-redex (λx.M)N to something called an explicit substitution M [x := N]
and then it can take several steps to go from the term M [x := N] to the term
M{x := N} (this is called the propagation of the explicit substitution). With
explicit substitutions we have a better control on duplication and erasure: only
some propagation rules trigger duplications and erasures. In particular, on some
calculi, the erasure can be postponed and done just before reaching the normal
form. There are lots of variants for a λ-calculus with explicit substitutions (see for
instance [Kes07, Ren11]). In this chapter, we will only study one and adapt the
typing system of Chapter 2.

In Section 3.2, we define the syntax of the studied calculus and we give its op-
erational semantics (reduction rules). In Section 3.3, we adapt the typing system
of Chapter 2 to the calculus studied in this chapter. In Section 3.4, like in Sec-
tion 2.4, we prove that if a term is typable then it is strongly normalising and the
measure of the typing tree is a bound on the size of the longest reduction sequences
(Theorem 9). In this chapter we measure the number of uses of the rule B that
transforms an occurrence of (λx.M)N into the term M [x := N]. To have a more
precise complexity result than just the one given in Theorem 9, we need to restrict
ourselves to some particular kind of typing trees that we call optimal. In Section 3.5
we define what an optimal typing tree is and in Section 3.6 we prove that if a term
is strongly normalising, then it is possible to typed it with an optimal typing tree.
Finally, in Section 3.7, we prove a more precise result than Theorem 9 when the
typing tree of a term is optimal.

3.2 Syntax

Definition 20 (Terms). We extends the syntax of λ-calculus as follows:

M,N ::= x | λx.M |MN |M [x := N]

The free variables fv(M) of a term M are defined by the rules of figure 3.1.

Definition 21 (Reduction in λS).
The reduction and equivalence rules of λS are presented in Fig. 3.2.

35

fv(x) = {x} fv(λx.M) = fv(M)− {x} fv(MN) = fv(M) ∪ fv(N)

fv(M [x := N]) = (fv(M)− {x}) ∪ fv(N)

Figure 3.1: Free variables of a term

B : (λx.M)N → M [x := N]
W : y[x := N] → y x 6= y
S :

x[x := N] → N (SR)
(M1M2)[x := N] → (M1[x := N])(M2[x := N]) x ∈ fv(M1), x ∈ fv(M2)
(M1M2)[x := N] → M1(M2[x := N]) x /∈ fv(M1), x ∈ fv(M2)
(M1M2)[x := N] → (M1[x := N])M2 x /∈ fv(M2)
(λy.M)[x := N] → λy.M [x := N] x 6= y, y /∈ fv(N)
(M1[y :=M2])[x := N] → (M1[x := N])[y :=M2[x := N]] x ∈ fv(M1), x ∈ fv(M2), y /∈ fv(N)
(M1[y :=M2])[x := N] → M1[y :=M2[x := N]] x /∈ fv(M1), x ∈ fv(M2)
(M [x := N1])[y := N2] ≡ (M [y := N2])[x := N1] x 6= y, x /∈ fv(N2), y /∈ fv(N1)

Figure 3.2: Reduction and equivalence rules of λS

For a set of rules E ⊆ {B,S,W} from Figure 3.2, →E denotes the congruent
closure of the rules in E modulo the ≡ rule.

SNλS denotes the set of strongly normalising λS-terms for →B,S,W .

We call this calculus λS because it is a variant of the calculi λs of [Kes07] and
λes of [Ren11]. That of [Ren11] is more general than that of [Kes07] in the sense
that it allows the reductions

(1) (M1M2)[x := N] → M1[x := N]M2 when x /∈ fv(M1), x /∈ fv(M2)
(2) (M1M2)[x := N] → M1M2[x := N] when x /∈ fv(M1), x /∈ fv(M2)

Reduction (2) is problematic in our approach since, even though the Subject
Reduction property would still hold, it would not hold with the quantitative infor-
mation from which Strong Normalisation can be proved: In the typing tree, the
type of M1 is not an intersection (it is an F -type) but the type of M2 can be one.
So we cannot directly type M2[x := N]. If x ∈ fv(M2) we can use Lemma 17,
otherwise we have to duplicate the typing tree of N .

We therefore exclude (2) from the calculus, but keep (1) as one of our rules,
since it is perfectly compatible with our approach. It is also needed to simulate (in
several steps) the general garbage collection rule below

M [x := N]→ M (x /∈ fv(M))

which is present in both [Kes07] and [Ren11], and which we decide to restrict, for
simplicity, to the case where M is a variable different from x.1 All of our results
would still hold with the general garbage collection rule.

Lemma 15. →S,W terminates.

Proof. By a polynomial argument. More precisely, see appendix A.

1[Kes07] needs the general version, if only for the lack of rule (1).

36

3.3 Typing judgments

In this chapter, we use the same intersection types and the same contexts used in
Chapter 2. Also, we use the same definition for the equivalence and the inclusion
(see Sections 2.3.1 and 2.3.2). For the typing judgment, we add an extra rule to
type explicit substitutions.

Definition 22 (Typability).
The judgment Γ ` M : U denotes the derivability of Γ ` M : U with the rules of

Fig. 3.3. We write Γ `n M : U if there exists a derivation with n uses of the (App)
rule.

x : F ` x : F
(Var)

Γ, x : U ` M : F A ⊆ U

Γ ` λx.M : A→ F
(Abs)

Γ ` M : A→ F ∆ ` N : A

Γ ∩∆ ` MN : F
(App)

Γ ` M : A ∆ ` M : B

Γ ∩∆ ` M : A ∩B
(Inter)

` M : ω
(Omega)

Γ ` N : A ∆, x : U ` M : F U = A ∨ U = ω

Γ ∩∆ ` M [x := N] : F
(Subst)

Figure 3.3: Typing rules

We can notice that, unlike the (Abs) rule, we do not have any subsumption in
the rule (Subst). But we still have two cases: when x ∈ fv(M) (we have U = A)
and when x /∈ fv(M) (we have U = ω).

Like in Chapter 2, we have the following properties:

Lemma 16 (Basic properties).

1. If Γ `n M : U ∩ V , then there exist Γ1, Γ2, n1, n2 such that n = n1 + n2,
Γ = Γ1 ∩ Γ2, Γ1 `n1 M : U and Γ2 `n2 M : V .

2. If Γ `s M : A, then Dom(Γ) = fv(M).

3. If Γ `n M : U and U ≈ U ′, then there exists Γ′ such that Γ ≈ Γ′ and
Γ′ `n M : U ′

4. If Γ `n M : U and U ⊆ V , then there exist m and ∆ such that m ≤ n, Γ ⊆ ∆
and ∆ `m M : V

Proof. Similar to the proof of Lemma 5.

The following lemma is used to prove Subject Reduction in λS.

Lemma 17 (Typing of explicit substitution).
Assume Γ, x : A `n M : B and ∆ `m N : A. Then, there exists Γ′ such that

Γ′ ≈ Γ ∩∆ and Γ′ `n+m M [x := N] : B.

Proof. By induction on B. See Appendix A.

37

3.4 Soundness

Theorem 8 (Subject Reduction for λS).
Assume Γ `n M : A. We have the following properties:

1. If M →B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n and
Γ′ `m M ′ : A

2. If M →S M
′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `n M ′ : A

3. If M →W M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and
Γ′ `m M ′ : A

4. If M ≡M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `n M ′ : A

Proof. See Appendix A.

Theorem 9 (Soundness for λS).
If M is a λS-term and Γ ` M : A, then M ∈ SNλS.

Proof. We have Γ `n M : A for some n, and strong normalisation is provided by a
lexicographic argument on the pair (n,m) where m the length of the longuest S,W
reduction sequences (by Lemma 15, →W,S terminated on its own). Indeed:

• →B strictly decreases n

• →S and →W decrease n or do not change it

• →S,W strictly decreases m.

3.5 Special property of typing trees: Optimality

In the next sub-section we will notice that the typing trees produced by the proof
of completeness all satisfy a particular property. In this section we define this
properties: optimality

This property involves the following notions:

Definition 23 (Subsumption and forgotten types).

• If π is a typing tree, we say that π does not use subsumption if every occurence
of the abstraction rule is such that A ⊆ U is either A ≈ U or A ⊆ ω.

• We say that a type A is forgotten in an instance of rule (Abs) or rule (Subst)
if in the side-condition of the rule we have U = ω.

• If a typing tree π uses no subsumption, we collect the list of its forgotten types,
written forg(π), by a standard prefix and depth-first search of the typing tree
π.

If Γ `n M : A without subsumption, then we write Γ `nns M : A.

The optimal property also involves refining the grammar of types:

Definition 24 (Refined intersection types).
A+, A−, A−− and U−− are defined by the following grammar:

A+, B+ ::= τ | A−− → B+

A−−, B−− ::= A− | A−− ∩B−−
A−, B− ::= τ | A+ → B−

U−−, V −− ::= A−− | ω
We say that Γ is of the form Γ−− if for all x, Γ(x) is of the form U−−.

We can finally define the optimal property:

38

Definition 25 (Optimal typing).
A typing tree π concluding Γ ` M : A is optimal if

• There is no subsumption in π

• A is of the form A+

• For every (x : B) ∈ Γ, B is of the form B−−

• For every forgotten type B in π, B is of the form B+.
We write Γ `opt M : A+ if there exists such π.

In this definition, A+ is an output type, A− is a basic input type (i.e. for a
variable to be used once), and A−− is the type of a variable that can be used
several times. The intuition behind this asymmetric grammar can be found in
linear logic:

Remark 1. Intersection in a typing tree means duplication of resource. So inter-
sections can be compared to exponentials in linear logic [Gir87]. Having an optimal
typing tree means that duplications are not needed in certain parts of the optimal
typing tree. In the same way, in linear logic, we do not need to have exponentials
everywhere: A simple type T can be translated as a type T ∗ of linear logic as follows:

τ∗ := τ
(T → S)∗ := !T ∗(S∗

We can find a more refined translation; it can also be translated as T+ and T− as
follow :

τ+ := τ τ− := τ
(T → S)+ := !T−(S+ (T → S)− := T+(S−

And we have in linear logic : T− ` T ∗ and T ∗ ` T+. So the translation T+ is sound
and uses less exponentials that the usual and naive translation. In some way, it is
more “optimal”. The main drawback is that we cannot compose proofs of optimal
translations easily.

3.6 Completeness

In order to prove the completeness of the typing system with respect to SNλS , we
first show that terms in normal form (for some adequate notion of normal form)
can be typed, and then we prove Subject Expansion for a notion of reduction that
can reduce any term in SNλS to a normal form (which we know to be typed). In
λS, Subject Expansion is true only for →B,S (not for →W). We will prove that
it is enough for completeness. The main reason is that →W can be postponed
w.r.t. →B,S :

We could also define E and⇒E just like in Chapter 2, but, by the fact that we
have a better control over erasure, it is not necessary here: →B,S satisfies Subject
Expansion, and a term that cannot by reduced by →B,S then we can easily type it.
Therefore, we do not need to go the the normal form.

Theorem 10 (Postponing).

1. If x /∈ fv(M), then M [x := N]→∗S→W M .

2. If M →W→B M ′, then M →B→W M ′.

3. If M →W→S M
′, then M →+

S→
+
W M ′.

4. If M−→∗S,W M ′, then M−→∗S −→∗W M ′.

Proof. 1. By induction on M .

39

2. By the fact that the reduction rule →W can only be applied with a variable
(x[y := N]→W x) and by the fact that the rule→B does not do any duplica-
tion or erasure, the application of the rules →B and →W can be commuted.

3. There are two cases where this result is not trivial:

• If the rule →S duplicates a sub-term N , and the application of the rule
→W was inside N . Then, we have M →S→2

W M ′.

• The following case:

(x[y := N1])[x := N2]→W x[x := N2]→S N2

with x 6= y, y /∈ fv(N2) and x ∈ fv(N1).

Then, we have:

(x[y := N1])[x := N2]→S (x[x := N2])[y := N1[x := N2]]→S

N2[y := N1[x := N2]]→∗S→W N2

4. We prove this property by applying item 3., until the reduction is of the form
M →∗S→∗W M ′. However, we have to check that we cannot apply item 3., an
infinite number of times on the same reduction.

Let L a S,W non empty reduction sequence from M to M ′. (if we have an
empty sequence, then the result is trivial)

If L is not a of the form M−→∗S −→∗W M ′, then there exists a sub-sequence
M1 →W→S M2 inside L and by using item 3, we can replace it by M1 →+

S→
+
W

M2 to obtain a non empty reduction sequence L′ that also goes from M to M ′.
Therefore we have a non-deterministic rewriting on non empty S,W -reduction
sequences L from M to M ′.

This rewriting increases or does not change the size of L. According to
Lemma 15, M is strongly normalising for S,W . Therefore, after a certain
number of steps, the size of L does not change. So, after a certain number of
steps, the rewriting is just replacing a sub-seuqence M1 →W→S M2 inside L
by M1 →S→W M2 and this terminates. Hence, this rewriting terminates.

By taking a normal form of this rewriting we have M−→∗S −→∗W M ′.

Therefore, the normal forms for →B,S are “normal enough” to be easily typed:

Lemma 18 (Typability of B,S-normal term).
If M cannot be reduced by →B,S, then there exist Γ and A such that Γ `opt M :

A.

Proof. First, we prove the following intermediate results:

1. If M cannot be reduced by →B,S , then M is of one of the following form:

• λx.M1

• x[y1 := M1] · · · [yn := Mn]N1 · · ·Nm with y1, . . . , yn fresh distinct vari-
ables.

2. If Γ `opt M : A, then there exist ∆ and B such that ∆ `opt λx.M : B.

3. If Γ1 `opt M1 : A1, . . . Γ2 `opt Mn : An, ∆1 `opt N1 : B1, . . . ∆m `opt Nm :
Bm,then there exists ∆ and C such that ∆ `opt x[y1 := M1] · · · [yn := Mn]N1 · · ·Nm :
C.

Proofs:

1. The result is proved by induction on M . We are in one of the following cases:

• M is of the form λx.M1. Then, we can conclude.

• M is of the form x. Then, we can conclude.

40

• M is of the form M1M2. By induction hypothesis on M1, we are in one
of the following cases:

– M1 is of the form λx.M3. Then, M →B M3[x := M2]. Contradic-
tion.

– M1 is of the form x[y1 := M ′1] · · · [yn := M ′n]N1 · · ·Nm. Then, we
can conclude.

• M is of the form M1[x := M2]. By induction hypothesis on M1, we are
in one of the following cases:

– M1 is of the form λy.M3, with x 6= y and y /∈ fv(M2). Then,
M →S λy.M3[x := M2]. Contradiction.

– M1 is of the form z[y1 := M ′1] · · · [yn := M ′n]N1 · · ·Nm with y1,
. . . yn fresh variables and m > 0. Then, there exist N (N = Nm
is x /∈ fv(Nm)), and N = Nm[x := M2] if x ∈ fv(Nm)) such that
M →S (z[y1 := M ′1] · · · [yn := M ′n]N1 · · ·Nm−1)[x := M2]N .

– M1 is of the form z[y1 := M ′1] · · · [yn := M ′n] with y1, . . . yn fresh
variables, and with x = z or there exists i such that x ∈ fv(M ′i).
Then, M can be reduced by →S .

– M1 is of the form z[y1 := M ′1] · · · [yn := M ′n] with y1, . . . yn fresh
variables, x 6= z and for all i, x /∈ fv(M ′i). Then, we can conclude.

2. By hypothesis, A is of the form A+, and Γ is of the form Γ−−. We are in one
of the following cases:

• x ∈ Dom(Γ). Then, Γ−− is of the form ∆−−, x : B−−. Therefore, we
have ∆−− `opt λx.M : B−− → A+.

• x /∈ Dom(Γ). Then, Γ−− is of the form Γ−−, x : ω. Therefore, we have
Γ−− `opt λx.M : τ → A+.

3. The types A1, . . .An are of the form A+
1 , . . .A+

n and can be used as forgetten
types in the final typing tree. The types B1, . . .Bm, are of the form B+

1 ,
. . .B+

m, Therefore, F defined by F := B1 → . . . → Bm → τ , is of the form
A−. In Γ1, . . . , Γn, ∆1, . . . ∆m, the types of x are of the form U−−. Hence,
if we choose the intersection of F , of all the Γi(x) and of all the ∆i(x) for the
type of x, we can conclude.

By induction on M and by using the items 1, 2 and 3, we can prove the lemma.

Theorem 11 (Subject Expansion).

If M →B,S M
′ and Γ′ ` M ′ : A, then there exist Γ ≈ Γ′ such that Γ ` M : A.

Moreover, the optimality property is preserved.

Proof. First by induction on →B,S and ≡, then by induction on A.
We adapt the proof of Subject Reduction. The optimality property is preserved

: indeed, since we are considering →B,S and not →W , the interface (typing con-
text, type of the term and forgotten types) is not changed and we do not add any
subsumption.

Theorem 12 (Completeness).
If M ∈ SNλS, then there exist Γ and A such that Γ `opt M : A.

Proof. By induction on the size of the longest reduction sequence of M . If M can be
reduced by→B,S we can use the induction hypothesis and Theorem 11. Otherwise,
M is typable by Lemma 18.

41

Corollary 1. If M →B,S M
′ and M ′ ∈ SNλS, then M ∈ SNλS.

Proof. By Theorem 12, M ′ is typable with an optimal typing tree. By Theorem 11,
M is also typable with an optimal typing tree. Therefore, by Theorem 9, M ∈
SNλS .

3.7 Complexity

In λS, we take advantage of the fact that →W can be postponed w.r.t. to →B,S

steps. This allows us to concentrate on →B,S and the normal forms for it.

Lemma 19 (Refined Subject Reduction).
If Γ `nns M : A then:

• If M →B M ′, then there exist Γ′ and m such that Γ ≈ Γ′, m < n and
Γ′ `mns M ′ : A.

• If M →S M
′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `nns M ′ : A

Proof. We simply check that, in the proof of of Subject Reduction (Theorem 8), the
absence of subsumptions and the context (modulo equivalence) is preserved. This
comes from the fact that only the rule →W can create subsumptions and without
any subsumptions the rule →B does not reduce the context.

Lemma 20 (Most inefficient reduction).
Assume Γ `nopt M : A. If M can be reduced by →B and not by →S, then there

exist M ′ and Γ′ such that Γ ≈ Γ′, M →B M ′ and Γ′ `n−1opt M ′ : A.

Proof. We follow the proof by induction given in the proof of Subject Reduction
(Theorem 8). In this induction, n can be decreased by more than 1 by a→B in two
cases:

• In the case where the type is an intersection, then n will be decreased by at
least 2.

• When we build a typing of M [x := N] from a typing of (λx.M)N : if there were
subsumption in the typing the λ-abstraction, then the proof calls Lemma 16.4
which might decrease n by more than 1.

Those two cases are never encountered when optimality is assumed, as we prove
the result by induction on M . Since M cannot be reduced by →S , it is of one of
the following forms:

• λx.M1. It is clear that M1 satisfies the necessary conditions to apply the
induction hypothesis.

• (λx.M1)N1 . . . Np (with p ≥ 1). We reduce to M1[x := N1] N2 . . . Np. By
the optimality property, A is not an intersection, and none of the types of
((λx.M1)N1 . . . Ni)1≤i≤p−1 are intersections either (since they are applied to
an argument). Also by the optimality property, there is no subsumption in the
typing of the λ-abstraction, and therefore the call to Lemma 16.4 is replaced
by a call to Lemma 17 and therefore n is decreased by exactly 1.

• x[y1 := N1]...[yp := Np]Np+1...Nm. Therefore there exists i such that Ni can
be reduced by →B . Moreover, optimality requires the type of x to be of the
form A+

1 → ... → A+
p → B−, and therefore the sub-derivation typing Ni is

also optimal: we can apply the induction hypothesis on it.

42

Lemma 21 (Resources of a normal term).
If Γ `nopt M : A, and M cannot be reduced by →B,S, then n is the number of

applications in M .

Proof. Straightforward.

Theorem 13 (Complexity result).
If Γ `nopt M : A, then n = n1 + n2 where

• n1 is the maximum number of →B in a B,S-reduction sequence from M

• n2 is the number of applications in the B,S normal form of M .

Proof. The second item of Lemma 19 and Lemma 20, gives n1, M ′ and n2 such
that:

• M →∗B,S M ′ with n1 B-steps and M ′ is the B,S normal form. (λS is conflu-
ent)

• n = n1 + n2.

• Γ `n2
opt M

′ : A.
To go from M to M ′:

• If we can reduce by →S , then we apply Lemma 19 and the measure on the
typing tree does not change.

• If we cannot reduce by→S and we can reduce by→B , then we apply Lemma 20
and the measure on the typing tree strictly decreases by 1.

• We repeat the process until we reach the B,S-normal form.
By Lemma 21, n2 is the number of applications in M ′.

Assume we have a B,S-reduction sequence, from M to M ′, with m B-steps.
By applying successively Subject Reduction (Theorem 8), we can give a typing tree
of M ′ of measure n′ such that n − n′ ≥ m. To type M ′, we need at least one
application rule by application in M ′. Therefore, we also have n2 ≤ n′. Hence, by
the fact that n−m ≥ n′, we have n−m ≥ n2 and n− n2 ≥ m. Therefore n1 ≥ m.

Assume we have a B,S-reduction sequence, from M to any term M1. It can
be completed into a B,S-reduction sequence with more B-steps, from M to the
B,S-normal form of M1.

3.8 Conclusion

By adapting the typing system of intersection types given in Chapter 2 in a calculus
with explicit substitutions and by measuring the number of B-step instead of β-
steps, we have:

• Completeness is easier to prove: By construction of the calculus, we directly
have the reductions that satisfy Subject Expansion.

• We have a more precise result about complexity (Theorem 13): We have more
than just a bound.

A pure λ-term M is also a term of λS and the typing judgments of M with the
typing system of Chapter 2 are exactly the ones with the typing system of this
chapter (because there are no explicit substitutions inside M). We may try to use
the more precise complexity result of this chapter to have a more precise result on
the pure λ-calculus. Unfortunately, the obtained result depends on the B,S-normal

43

form. Therefore, it is not independent of λS. The main reason is that we have to
keep track of the erased terms one way or another.

Actually, there is a way to go around this problem [BL13]: we can define a
notion of degree of a typing tree and consider only optimal typing tree of minimal
degree (such a typing tree is called principal). Then, a variation of Theorem 13
gives a result independent from the B,S-normal form and that can be used to have
a result on the pure λ-calculus.

To have a precise complexity result for the pure λ-calculus we are going to use a
different approach: In the next chapter, instead of refining the calculus like we did
in this chapter, we are going to refine the intersection types.

44

Chapter 4

A big-step operational
semantics
via non-idempotent
intersection types

We present a typing system of non-idempotent intersection types that characterises
strongly normalising λ-terms and can been seen as a big-step operational semantics:
we prove that a strongly normalising λ-term accepts, as its type, the structure of its
normal form. As a by-product of identifying such semantical components in typing
trees, we are able to define a trivial measure (the number of times a typing rule
is applied) that exactly captures the length of the longest β-reduction sequences
starting from a given typable term.

4.1 Introduction

Operational semantics describes the behaviour of programs using syntax, in other
words without (explicitly) constructing a denotational model (for example, a Scott
Domain [Sco82b]). While small-step operational semantics is based on the step-by-
step evaluation of a program (usually by means of a rewrite system or an abstract
machine), a big-step operational semantics directly relates a program to its final
value / normal form (if it exists): judgements of the form M ↓ v (where M is a
program and v the value of M after computation) can be derived with inference
rules such as

M1 ↓ λx.M3 M2 ↓M4 M3{x := M4} ↓M5

M1M2 ↓M5

in the case of λ-calculus.
In this chapter we provide a typing system for the λ-calculus that can serve as an

inference system deriving a big-step semantics for all strongly normalising λ-terms.
Not only is this system following the traditional concepts and notations of typing,

it more fundamentally differs from standard big-step semantics in that at no point
of derivation trees is a substitution ever computed (unlike the rule above).

Moreover, while most big-step semantics correspond to an (often strict) eval-
uation strategy that is neither the least nor the most efficient, our typing system
is related to longest β-reduction sequences. It therefore provides a semantics to
strongly normalising terms only, but on the other hand it provides quantitative

45

information about reduction: a trivial measure on the typing derivation relating
a term M to its semantics provides the exact length of the longest β-reduction
sequences starting from M .

To build this semantics for all strongly normalising terms, we naturally use
intersection types.

In Chapter 2 and in one paper [BL11a], we gave a typing system that (unlike
de Carvalho’s) characterises strongly normalising terms, and a trivial measure on
typing trees (the number of uses of the rule typing applications) strictly decreases
with each β-reduction. Therefore, strong normalisation is a corollary of Subject Re-
duction and the measure provides a bound on the length of the longest β-reduction
sequences.

Refining the bound into an exact measurement was the challenge of the latter
part of [BL11a], which provided a convoluted solution: First, the exact length of the
longest reduction sequences could only be obtained by considering the typing trees
satisfying a particular condition called optimality (which is the same notion of op-
timality given in Chapter 3). Then, another quantitative information about typing
trees, the degree, had to be read, and the exact length was finally computed as the
measure of an optimal typing tree of smallest degree minus that degree. Moreover,
the result was obtained indirectly via the study of the above notions in Church-
Klop’s λI-calculus [KvOvR93] and then transposed into the pure λ-calculus by a
sophisticated simulation.

However, it can be noticed that

• the degree is a quantitative data related to the normal form of a term;

• going via the λI-calculus is required because longest β-reduction sequences in
the pure λ-calculus sometimes have to erase sub-terms in normal form.

Working with λS instead of the λI-calculus has been discussed at the end of Chap-
ter 3 and done in [BL13].

The present chapter, we develops the idea of incorporating information about
normal forms into typing trees: for every normal form M , its structure v yields a
special type [v].1

Pushing this idea further leads to a non-idempotent intersection typing system
where typing trees can be viewed as the derivations of a big-step semantics.

As a by-product, the system improves the results of [BL11a] and simplifies their
proofs: the length of the longest β-reduction sequences starting from a pure and
strongly normalising λ-term M is simply the number of times a typing rule occurs
in an optimal typing tree for M . The notion of optimality itself is actually much
simpler, the notion of degree becomes useless, and no detour via λI is required.

The trick is that the typing tree for a given term directly indicates which λ-
abstractions and applications will be consumed by β-reduction and which will re-
main in the normal form. These additional typing rules ensure that the measure of
an optimal typing tree for a term in normal form is zero.

This enhancement of the typing system does not make the proofs of Soundness
(typable implies strongly normalising) and Completeness (strongly normalising im-
plies typable) more complicated.

In contrast to other semantics built with intersection types (for example the
denotational semantics given in Chapter 2 or in [BCDC83, BL11b]), this semantics
does not use filters of intersection types.

In Section 4.2, we give the basic definitions and properties. In Section 4.3, we
prove Soundness (typable implies strongly normalising) and Completeness (strongly
normalising implies typable). In Section 4.4, we give more refined properties in the
case where the typing tree is optimal. In particular, we prove the Complexity

1The structure of a normal form is the normal form where all variable names are forgotten.

46

x ∈ fv(M)

(λx.M)N h M{x := N}
x /∈ fv(M) N ⇒h N

′

(λx.M)N h (λx.M)N ′

x /∈ fv(M) N cannot be reduced by →β

(λx.M)N h M

M h M
′

MN h M
′N

acc(M) N ⇒h N
′

MN h MN ′

M h M
′

M ⇒h M
′

M ⇒h M
′

λx.M ⇒h λx.M
′

Figure 4.1: Perpetual reduction

Result (Theorem 19) and the relation between the type of a term and its normal
form (Theorem 20). In Section 4.5, we give a brief study of alternative definitions
of the typing system.

4.2 Basic definitions and properties

In Section 4.2.1, we review basic concepts of λ-calculus. In Section 4.2.2, we define
the intersection types used in this chapter, the contexts of the typing judgements
and we prove some basic properties. In Section 4.2.3, we present the typing system
and its basics properties.

4.2.1 Syntax

In this chapter we work with the pure λ-calculus which is defined and used in
Chapter 2 (see Section 2.2).

We proceed towards the notion of the perpetual reduction which is used:

• to express the longest reduction sequences in Theorem 19

• as a reduction strategy to prove Theorem 17
In order to define it formally, we also define h. acc(M) is already defined in
Section 2.2.

Definition 26.
M h M

′ and M ⇒h M
′ are mutually defined by the rules of Figure 4.1.

Notice that this is the same perpetual reduction strategy used in [BL11a, vRSSX99].
However, the presentation is different (we did not used h in the definition). The
presentation given in this chapter avoids informal notations such as xM1 . . .Mn,
which is here very cumbersome for case analyses: since there are two ways to type
an application, there are 2n ways to type the above.

Also notice that the perpetual reduction is a particular case of the reductions
of Figure 2.5:

Remark 2.
If M ⇒h M

′ (resp. M h M
′), then there exists E such that M ⇒E M ′ (resp.

M E M ′).
We could prove Subject Expansion for E and ⇒E, like we did in Chapter 2,

but working with h and ⇒h is enough for what we do in this chapter.

47

Examples for ⇒h:

• (λx.M)NN1 . . . Nn ⇒h M{x := N}N1 . . . Nn if x ∈ fv(M).

• If M ⇒h M
′, then xM ⇒h xM

′.

• It is possible to have M ⇒h M
′ without having (λx.M)N ⇒h (λx.M ′)N . For

example, we have (λy.a)(xx)⇒h a but we do not have (λx.(λy.a)(xx))(λz.zz)⇒h

(λx.a)(λz.zz). However, we do have (λx.(λy.a)(xx))(λz.zz)⇒h (λy.a)((λz.zz)(λz.zz)).
Every lemma and theorem based on a syntactical analysis of a term in normal term
uses the following lemma:

Lemma 22 (Shape of a normal form).
If M cannot be reduced by →β, then

• either we have acc(M),

• or M is of the form λx.M1.

Proof. By induction on M . See Appendix A.

One of the reasons why ⇒h is used in Theorems 17 and 19, is that it is possible
to reach the normal form by using ⇒h only. More formally:

Lemma 23 (Applicability of ⇒h). If M can be reduced by →β, then M can be
reduced by ⇒h.

Proof. We prove by induction on M that if M can be reduced by →β then:

• If M is of the form λx.M1, then there exists M ′ such that M ⇒h M
′.

• If not, then there exists M ′ such M h M
′.

Therefore, in both cases there exists M ′ such that M ⇒h M
′. See Appendix A.

An optimal typing tree for a term M does not give the exact normal form M ′ of
M but the structure of M ′ (Theorem 20), which is M ′ where the names of variables
are forgotten. More formally:

Definition 27 (Structures). Structures v are defined by the following grammar:

v ::= λv | k
k ::= O | kv

For every term M , struct(M) is partially defined as follows:

struct(x) := O
struct(λx.M) := λstruct(M)
struct(MN) := struct(M)struct(N) (struct(M) is of the form k)

struct(M) is coherent with α-equivalence because: If struct(M) is well-defined, then
struct(M{x := y}) is well-defined and struct(M{x := y}) = struct(M).

Lemma 24 (Structure of a normal term). M cannot be reduced by →β if and only
if struct(M) is well-defined. Moreover, if we have acc(M), then struct(M) is of the
form k.

Proof. By induction on M . See Appendix A.

Remark 3. • struct(λfλx.fnx) = λλOnO.
Hence, Church’s integers all have different structures.

48

• Structures cannot distinguish Church’s booleans:
struct(λx.λy.x) = struct(λx.λy.y) = λλO. However, this problem disappears
if booleans are encoded as Church’s integers (0 for “false” and 1 for “true”).
More generally, the inhabitants of any enumerated type can be encoded in a
way such that their structures remain distinct.

• Similarly, Church’s encoding of pairs is preserved in the structures:
Assume M and N cannot be reduced. We have struct(λx.xMN) = λOstruct(M)struct(N).
Therefore, if struct(λx.xMN) = struct(λx.xM ′N ′), then struct(M) = struct(M ′)
and struct(N) = struct(N ′).

• Consequently, the inhabitants of any algebraic data type (for example lists,
trees, etc . . .) can be encoded in a way such that their structures remain
distinct.

Therefore structures can be considered a reasonable semantics.

4.2.2 Intersection types and contexts

First, we define the intersection types used in this chapter and we show basic defini-
tions and properties about them. Second, we define the contexts used in the typing
derivations used in this chapter and we show basic definitions and properties about
them.

4.2.2.1 Intersection types

Definition 28 (Intersection Types).
In this chapter, intersection types are defined as follows:

F,G ::= [v] | A→ F
A,B,C ::= F | A ∩B
U, V ::= A | ω

F -types, A-types and U -types are defined by grammar on the right, where v ranges
over structures (Definition 27). With this grammar, U ∩ V is defined
if and only if U and V are A-types. Therefore, by defining A∩ω := A, ω∩A := A
and ω ∩ ω := ω, we have U ∩ V defined for all U and V .

Some remarks:

• This grammar is an extension of the grammar for the intersection types given
in Chapter 2.

• [v] is a type used to give information about the normal form of a term and is
used to type applications and abstractions that are not meant to be used in
a β-reduction.

For example, ([O(λO)]→ [λO]) ∩ [O] is an A-type.
To define the notion of optimality, which is used in Theorems 19 and 20, we

need to define the notions of input types and output types:

• An input is an intersection of [O].

• An output is of the form [v].
More formally:

Definition 29 (Inputs and outputs).
The judgement input(U) is defined with the following rules:

input([O])

input(A) input(B)

input(A ∩B) input(ω)

We write output(F) if and only if F is of the form [v].

49

To prove Subject Reduction and Subject Expansion (Theorems 14, 18 and 16) by
using Lemmas 29 and 30, we have to define equivalence ≈ and inclusion ⊆ between
types. Here is the formal definitions and basic properties (notice that we do not
have A ≈ A ∩A):

We define U ≈ V with the same definition given in Chapter 2 (Definition 7).

Lemma 25 (Properties of ≈).
We have all the properties of Lemma 2 plus items 10 and 11.

1. Neutrality of ω: U ∩ ω = ω ∩ U = U .

2. Strictness of F -types: If U ≈ F , then U = F .

3. Strictness of ω: If U ≈ ω, then U = ω.

4. ≈ is an equivalence relation.

5. Commutativity of ∩: U ∩ V ≈ V ∩ U
6. Associativity of ∩: U1 ∩ (U2 ∩ U3) ≈ (U1 ∩ U2) ∩ U3

7. Stability of ∩: If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
8. If U ∩ V = ω, then U = V = ω.

9. If U ∩ V ≈ U , then V = ω.

10. If U ≈ V and input(U), then input(V).

11. input(U ∩ V) if and only if input(U) and input(V).

Proof. • 10: By induction on U ≈ V .

• 11: Straightforward.
The other items have been already proved in Lemma 2

We define U ⊆ V the same definition given in Chapter 2 (Definition 8).

Lemma 26 (Properties of ⊆).
We have the properties as in Lemma 3 plus items 10 and 11.

1. ⊆ is a partial pre-order and ≈ is the equivalence relation associated to it:
U ⊆ V and V ⊆ U if and only if U ≈ V .

2. Projections: U ∩ V ⊆ U and U ∩ V ⊆ V .

3. Stability of ∩: If U ⊆ U ′ and V ⊆ V ′, then U ∩ V ⊆ U ′ ∩ V ′.
4. Greatest element: U ⊆ ω.

5. If U ⊆ V and input(U), then input(V).

Proof. Straightforward.

4.2.2.2 Contexts

We define the contexts (and the equivalence and inclusion between contexts) the
same way we have defined them in Chapter 2 (Definition 9)

Definition 30 (Input contexts).
We write input(Γ) if and only if for all x, we have input(Γ(x)).

Lemma 27 (Properties of contexts).
We have the same properties as in Lemma 4 plus items 10 and 11.

1. ≈ for contexts is an equivalence relation.

50

(V ar)
x : F `0 x : F

Γ `n M : A ∆ `m M : B
(∩)

Γ ∩∆ `n+m M : A ∩B
(ω)

`0 M : ω

Γ, x : U `n M : F A ⊆ U
(Fun1)

Γ `n λx.M : A→ F

Γ, x : U `n M : [v] input(U)
(Fun2)

Γ `n λx.M : [λv]

Γ `n M : A→ F ∆ `m N : A
(App1)

Γ ∩∆ `n+m+1 MN : F

Γ `n M : [k] ∆ `m N : [v]
(App2)

Γ ∩∆ `n+m MN : [kv]

Figure 4.2: Typing rules

2. ⊆ for contexts is a partial pre-order and ≈ is its associated equivalence rela-
tion: Γ ⊆ ∆ and ∆ ⊆ Γ if and only if Γ ≈ ∆.

3. Projections: Γ ∩∆ ⊆ Γ and Γ ∩∆ ⊆ ∆.

4. Alternative definition: Γ ⊆ ∆ if and only if there exists a context Γ′ such that
Γ ≈ ∆ ∩ Γ′.

5. Commutativity of ∩: Γ ∩∆ ≈ ∆ ∩ Γ.

6. Associativity of ∩: (Γ1 ∩ Γ2) ∩ Γ3 ≈ Γ1 ∩ (Γ2 ∩ Γ3).

7. Stability of ∩: If R is either ≈ or ⊆, Γ R Γ′ and ∆ R ∆′, then Γ∩∆ R Γ′∩∆′.

8. Greatest context: Γ ⊆ ().

9. (Γ, x : U) ⊆ Γ.

10. If Γ ⊆ ∆ and input(Γ), then input(∆).

11. If input(Γ) and input(∆), then input(Γ ∩∆)

Proof. Straightforward.

4.2.3 Typing system

We now have all the elements to present the typing system:

Definition 31 (Typing system).
Assume Γ is a context, M is a term, n is an integer, and U is a U -type. The

judgement Γ `n M : U is inductively defined by the rules given in Figure 4.2.
We write Γ ` M : U if there exists n such that Γ `n M : U .

Some remarks:

• (App1) (resp. (Fun1)) are the rules (App) (resp. (Fun)) given in Chap-
ter 2(Figure 2.3).

• In Γ `n M : U , n is the number of uses of the rule (App1) and it is the trivial
measure on typing trees that we use.

• (App2) (resp. (Fun2)) is used to type applications (resp. abstractions) that
are not meant to be used in a β-reduction.

• Another advantage in having the type ω for the presentation of the typing
system: Without the notation U or V , we would have to duplicate each ab-
straction rules that types λx.M (one case where x ∈ fv(M) and one case
where x /∈ fv(M)). That would make four rules instead of two.

To define optimality, we first need to formally define what the absence of sub-
sumptions means:

51

Definition 32 (No subsumptions).
In a derivation of Γ `n M : U , we say that there are no subsumptions if and

only if every occurrence of rule (Fun1)

∆, x : V `n M1 : F A ⊆ V

∆ `n λx.M1 : A→ F
is such that:

• either A = V

• or both V = ω and output(A).
If Γ `n M : U with no subsumptions, then we write Γ `nns M : U and we write

Γ `ns M : U if there exists n such that Γ `nns M : U .

Another way of expressing the absence of subsumptions is that (Fun1) is only
used in one of the two following ways:

Γ, x : A ` M : F

Γ ` λx.M : A→ F

Γ ` M : F x /∈ Dom(Γ)

Γ ` λx.M : [v]→ F
Typing satisfies the following basic properties:

Lemma 28 (Basic properties of typing).

1. Γ `n M : U ∩ V (resp. Γ `nns M : U ∩ V) if and only if there exist Γ1, Γ2, n1
and n2 such that Γ = Γ1∩Γ2, n = n1+n2, Γ1 `n1 M : U (resp. Γ1 `n1

ns M : U)
and Γ2 `n2 M : V (resp. Γ2 `n2

ns M : V).

2. If Γ `n M : U (resp. Γ `nns M : U) and U ≈ V , then there exists ∆ such that
Γ ≈ ∆ and ∆ `n M : V (resp. ∆ `nns M : V).

3. If Γ `n M : U (resp. Γ `nns M : U) and U ⊆ V , then there exist ∆ and m
such that Γ ⊆ ∆, m ≤ n and ∆ `m M : V (resp. ∆ `mns M : V).

4. If Γ ` M : A, then Dom(Γ) = fv(M).

5. If Γ ` M : U , then Dom(Γ) ⊆ fv(M).

Proof. 1. Straightforward.

2. By induction on U ≈ V .

3. Corollary of 1 and 2.

4. By induction on Γ ` M : A.

5. Corollary of 4.

We now have all the elements to define optimality : the property that a typing
tree should satisfy if it should be viewed as the derivation of a big-step seman-
tics or if we want to read from it the length of the longest β-reduction sequences
(Theorems 20 and 19).

Definition 33 (Optimal typing tree).
Assume Γ is a context, n is an integer, M is a term and F is a F -type.
We write Γ `nopt M : F if and only if:

• We have Γ `nns M : F .

• We have input(Γ) and output(F).
We write Γ `opt M : F if and only if there exists n such that Γ `nopt M : F .

52

Example:

(V ar)
x : [λO] `0 x : [λO]

(Fun1)
`0 λx.x : [λO]→ [λO]

(V ar)
y : [O] `0 y : [O]

(Fun2)
`0 λy.y : [λO]

(App1)
`1opt (λx.x)(λy.y) : [λO]

4.3 Characterisation of the typing system

In Section 4.3.1, we prove Subject Reduction and Soundness (typable implies strongly
normalising). In Section 4.3.2, we prove Subject Expansion and Completeness
(strongly normalising implies typable).

4.3.1 Soundness

As usual for the proof of Subject Reduction, we first prove a substitution lemma:

Lemma 29 (Substitution lemma).
If Γ, x : U `n M : A and ∆ `m N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆

and Γ′ `n+m M{x := N} : A.

Proof. By induction on Γ, x : U ` M : A. The measure of the final typing tree
is n + m because, by the fact that the intersection types are non-idempotent, this
proof does not do any duplications. See Appendix A.

Theorem 14 (Subject Reduction).
If Γ `n M : A and M →β M ′, then there exist Γ′ and n′ such that Γ ⊆ Γ′,

n > n′ and Γ′ `n′
M ′ : A.

Proof. First by induction on M →β M
′, then by induction on A. See Appendix A.

The rules (Fun2) and (App2) do not create any problem because we have to use
the rules (Fun1) and (App1) to type a β-redex.

In Theorem 14, we have n > n′ because, by the fact that types are non-
idempotent, we do not do any duplications in the proof of Subject Reduction.
Therefore, by Subject Reduction, for each β-reduction, the measure of the typing
tree strictly decreases and then, we have Soundness as a corollary.

Theorem 15 (Soundness).
If Γ `n M : A, then M ∈ SN≤n.

Proof. Corollary of Theorem 14: We prove by induction on n that if Γ `n M : A
then M ∈ SN≤n.

Let M ′ be a term such that M →β M
′. By Theorem 14, there exist Γ′ and n′

such that n′ < n and Γ′ `n′
M ′ : A. By induction hypothesis, M ′ ∈ SN≤n′ . Hence,

M ′ ∈ SN≤n−1 because n′ ≤ n− 1.
Therefore, M ∈ SN≤n.

Theorem 15 gives us a bound on the length of the longest β-reduction sequences.
For a more precise result, see Theorem 19.

53

4.3.2 Completeness

We prove Subject Expansion for⇒h. We could prove Subject Expansion for a larger
subset of →β . However, the main purpose of this chapter is to emphasize the new
complexity result and Theorem 20. Therefore, we prove Subject Expansion for⇒h,
which is enough to prove Completeness (Theorem 17).

As usual for the proof of Subject Expansion, we first prove an anti-substitution
lemma:

Lemma 30 (Anti-substitution lemma).
If Γ `ns M{x := N} : A, then there exist Γ′, ∆ and U such that:

• Γ ≈ Γ′ ∩∆.

• Γ′, x : U `ns M : A and ∆ `ns N : U .

• For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. First by induction on M , then by induction on A. See Appendix A. The last
property is necessary to preserve the absence of subsumptions in the induction.

Notice that, in Lemma 30, if x /∈ fv(M), then U = ω and we do not have any
typing information on N .

In⇒h, if a term is erased, then it is a normal form. Therefore, to prove Subject
Expansion, we need to be able to type normal terms. This is also used in Theo-
rem 17. To prove this, we need to know what is the type of an accumulator (when
the context is an input).

Lemma 31 (Typing accumulators).
If Γ ` M : F , input(Γ) and acc(M), then F is of the form [k].

Proof. By induction on acc(M). See Appendix A.

Lemma 32 (Typing normal forms).
If M cannot be reduced by →β, then there exist Γ and v such that Γ `opt M : [v].

Proof. By induction on M . In particular, we use Lemma 22 and Lemma 31. See
Appendix A.

Theorem 16 (Subject Expansion).
If Γ′ `opt M ′ : F and M ⇒h M ′, then there exists Γ such that Γ ⊆ Γ′ and

Γ `opt M : F .

Proof. ⇒h is mutually defined with h. We therefore prove, by simultaneous induc-
tion on M ⇒h M

′ and M h M
′, a stronger statement that forms an appropriate

induction hypothesis:
If Γ′ `ns M : F and input(Γ′), and if we are in one of the following cases:

• We have M h M
′

• We have M ⇒h M
′ and output(F).

Then, there exists Γ such that Γ ⊆ Γ′, input(Γ), and Γ `ns M : F .
See the details in Appendix A.

Finally, we can prove Completeness:

Theorem 17 (Completeness).
If M ∈ SN, then there exist Γ and F such that Γ `opt M : F .

Proof. By induction on the size of the longest β-reduction sequences:

54

• If M cannot be reduced by→β : By Lemma 32, there exist Γ and F such that
Γ `opt M : F .

• If M can be reduced by →β : By Lemma 23, there exists M ′ such that M ⇒h

M ′. By induction hypothesis, there exist Γ′ and F such that Γ′ `opt M ′ : F .
By Theorem 16, there exists Γ such that Γ `opt M : F .

Remark 4. The proof of Theorem 17 gives us an algorithm that builds an optimal
typing tree from a strongly normalising term. Hence, if we consider an optimal
typing tree as the derivation in a semantics, then this semantics is indeed an oper-
ational semantics, and β-reduction is only a tool to build the derivation.

This algorithm is based on the worst reduction (see Section 4.4.1), i.e. not very
efficient. But even if there may be more efficient ways of building a typing tree for
M , they have to construct, at the end of the day, something whose size is at least
the length of the longest β-reduction sequences. We are therefore only interested in
this as a purely theoretical construction.

Notice that we could have proved completeness (a strongly normalising term is
typable) without the notion of optimality. But proving it with optimality gives more
value to Theorems 19 (Complexity Result) and 20 (Structure of the normal form of
a typed term): Indeed, if a term is typable, then it is strongly normalising, so it is
typable with an optimal typing tree, and therefore we can apply Theorems 19 and
20 to it.

4.4 Refined soundness

The purpose of this section is to prove results when we have an optimal typing tree.
In Section 4.4.1, we prove a refined Subject Reduction property and the Complexity
Result. In Section 4.4.2, we prove that the type of a term in an optimal typing gives
the structure of its normal form, which allows us to see typing as a derivation of
semantics.

4.4.1 Complexity

Proving the complexity result is shorter than that of [BL11a], as we benefit from
the semantical elements that we have here added to typing trees.

To prove Theorem 18 (a refined version of Theorem 14), we need a refined
Substitution Lemma to preserve the absence of subsumptions:

Lemma 33 (Refined Substitution Lemma).
If Γ, x : U `nns M : A and ∆ `mns N : U , then there exists Γ′ such that:

• Γ′ ≈ Γ ∩∆.

• Γ′ `n+mns M{x := N} : A.

• For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. By induction on Γ, x : U `ns M : A. We adapt the proofs of Lemmas 29 and
30. See Appendix A.

The last property of Lemma 33 has the same purpose as in Lemma 30.
One of the main advantage of this typing system compared to the one in [BL11a]

is that the measure of an optimal typing tree for a normal term is equal to zero:

55

Lemma 34 (Measure of normal forms).
If Γ `n M : F , M cannot be reduced by →β, input(Γ) and output(F), then

n = 0.

Proof. By induction on M with the use of Lemmas 22 and 31. Only rule (App2)
(resp. (Fun2)) can be used to type an application (resp. an abstraction). Hence,
the measure of the typing tree is indeed 0. See the details in Appendix A.

In Theorem 14, the measure can decrease by more than one. However, under
the assumption of optimality and using Lemma 34, we can prove a refined version
of Subject Reduction:

Theorem 18 (Refined Subject Reduction).
If Γ `nopt M : F and M ⇒h M ′, then there exists Γ′ such that Γ ⊆ Γ′ and

Γ′ `n−1opt M ′ : F .

Proof. As in Theorem 16, we have a stronger result with h. We prove, by simul-
taneous induction on M ⇒h M

′ and M h M
′, the following statement that forms

an appropriate induction hypothesis:
If Γ `nns M : F , input(Γ), and if we are in one the following cases:

• We have M ⇒h M
′ and output(F).

• We have M h M
′.

Then, there exists Γ′ such that Γ ⊆ Γ′, Γ′ `n−1ns M ′ : F and then, by Lemma 27.10,
we have input(Γ′).

We adapt the proof of Theorem 14.
In particular, if ⇒h erases a term, then this term is a normal term and, by

Lemma 34, the measure of its typing tree is equal to zero. Also, by the fact that there
are no subsumptions, we never have to discard a part of a typing tree. Moreover,
by the fact that in the induction, the type of a term is not an intersection, the
induction does not have to deal with the intersection rule. All of these reasons
make the measure strictly decrease by one and only one. See Appendix A for
details.

Therefore, we can have a refined version of Theorem 15:

Theorem 19 (Complexity Result).
If Γ `nopt M : F , then M ∈ SN=n.

Proof. By induction on n and by Theorem 18, and Lemmas 23 and 34, there exists a
β-reduction sequence from M of length n. By Theorem 15, M ∈ SN≤n. Therefore,
M ∈ SN=n.

Theorems 14 and 15 are still useful because they require a weaker hypothesis
than Theorems 18 and 19. In fact, Theorems 15 and 18 are both used to prove
Theorem 19.2

4.4.2 Viewing optimal typing as a big-step semantics

Section 4.4.1 gives us the length of the longest β-reduction sequences from an op-
timal typing tree. Similarly, optimality (using the refined Subject Reduction prop-
erty) allows us to derive our final result: viewing the typing tree as the derivation
of a big-step semantics.

We first need a result about normal forms:

2We can notice that, although the results of this section are a refined version of what we prove
in Section 4.3.1, the structure of the lemmas and proofs is closer to the ones in Section 4.3.2.

56

Lemma 35 (Structure of a typed normal term).
If Γ `opt M : [v] and M cannot be reduced by →β, then struct(M) = v.

Proof. By induction on M : By Lemma 22, we have acc(M) or M is of the form
λx.M1. By Definition 33, we have Γ `ns M : [v] and input(Γ).

• If M is of the form λx.M1: Then, because [v] is not an arrow A → F , there
exist U and v1 such that input(U), v = λv1 and Γ, x : U `ns M1 : [v1]. Hence,
input(Γ, x : U). Therefore, Γ, x : U `opt M1 : [v1]. By induction hypothesis,
struct(M1) = v1. Therefore, struct(M) = struct(λx.M1) = λstruct(M1) =
λv1 = v.

• If M is of the form x: Then, we have Γ = (x : [v]). Hence, we have
input(x : [v]) and input([v]). Therefore, v = O and we have struct(x) = O = v.

• If M is of the form M1M2 with acc(M1): Then, we are in one of the two
following cases:

– There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ [v]
and Γ2 `ns M2 : A. By Lemma 27.10, we have input(Γ1). By Lemma 31,
A→ [v] is of the form [k]. Contradiction.

– There exist Γ1, Γ2, k and v1 such that Γ = Γ1 ∩ Γ2, v = kv1, Γ1 `ns
M1 : [k] and Γ2 `ns M2 : [v1]. By Lemma 27.10, we have input(Γ1)
and input(Γ2). Therefore, Γ1 `opt M1 : [k] and Γ2 `opt M2 : [v1]. By
induction hypothesis, struct(M1) = k and struct(M2) = v1. Therefore,
struct(M1M2) = struct(M1)struct(M2) = kv1 = v.

Theorem 20 (Structure of the normal form of a typed term).
If Γ `opt M : [v] and M ′ is the normal form of M , then struct(M ′) = v.

Proof. By Theorem 15, M is strongly normalising. We prove the result by induction
on the longest β-reduction sequences.

• If M cannot be reduced by →β , then M = M ′ and, by Lemma 35, we can
conclude.

• If M can be reduced by →β , then, by Lemma 23, there exists M ′′ such that
M ⇒h M

′′. By Theorem 18, there exists Γ′′ such that Γ ⊆ Γ′′ and Γ′′ `opt
M ′′ : [v]. M ′ is also the normal form of M ′′. By induction hypothesis,
struct(M ′) = v.

Theorem 20 gives us the structure of the normal form of a term. A more precise
result is discussed in Section 4.5.2.

We can also notice that non-idempotency and the absence of subsumptions is
not used to prove Theorem 20.

Remark 5. Assume M is a closed strongly normalising term such that its normal
form is a Church integer. Then, there exists a type A such that, for all closed
strongly normalising terms N whose normal form is a Church integer, `opt N : A
if and only if M and N are β-equivalent.3

We can notice that our results are concerning β-reduction/expansion/ equiva-
lence. It does not give any results on η-reduction/expansion/equivalence. Indeed,
our typing system is not “η-friendly”: we do not have subject reduction nor expan-
sion for η.

3This is similar to a result by Salvati [Sal10] who provides a type system `Sal satisfying: given
a simply-typed λ-term M , there exist a context Γ and a type A such that

Γ `Sal N : A if and only if M =βη N

57

4.5 Alternative systems

In Section 4.5.1, we give a simpler variant that provides the Complexity Result (still
much simpler than in [BL11a]) without giving information about the normal form.
In Section 4.5.2, we study the issue of how to obtain a more precise information
about the normal form.

4.5.1 Variant with no information about the normal form

This chapter improves the Complexity Result of [BL11a] and brings a new result
about the normal form of a term. But if the point is only improving [BL11a], we
do not need to go as far; consider the grammar of F -types is defined as follows:

F,G ::= O | δ | A→ F

All the types [kv] in this chapter are simply collapsed into O, while all the types
[λv] are collapsed into δ.

We therefore defined input(U) if and only if U is an intersection of O and
output(U) if and only if U = O or U = δ.

Moreover, the rules (Fun2) and (App2) are defined as follows:

Γ, x : U `n M : F input(U) output(F)

Γ `n λx.M : δ

Γ1 `n1 M1 : O Γ2 `n2 M2 : F output(F)

Γ1 ∩ Γ2 `n1+n2 M1M2 : O
The proofs of Soundness, Completeness and the Complexity Result are similar.

4.5.2 Obtaining the exact normal form

It would be interesting to enrich the typing system of this chapter to improve
Theorem 20, so that the type of a term gives the exact normal form instead of just
its structure. To highlight the separation between terms and types, even when these
denote terms in normal form, we use a different syntax in the enriched grammar for
v and k:

v ::= λx.M | k
k ::= x | kv

where x, y, z are labels, which differ from λ-term variables in that we choose them to
not be α-convertible in v and k (see below why). A naive way of modifying (Fun2)
is:

Γ, x : U `n M : [v] inputy(U)

Γ `n λx.M : [λy.v]

where inputx(U) means that U is an intersection of [x]. Now in order to give an
optimal typing tree to (λx.λy.xy)(λz.z), indicating its normal form with the type
[λz.z], we would like this instance of (Fun2):

x : [z]→ [z], y : [z] ` xy : [z]

x : [z]→ [z] ` λy.xy : [λz.z]

which shows the need to not consider λz.z to be α-convertible (to λy.y, for instance).
Yet, avoiding name clashes and degeneration of types prompts for a side-condition
for (Fun2) of the form y /∈ fv(Γ) (freshness of y), which unfortunately forbids the
above example (so we would not have Completeness, for lack of Subject Expansion).

To solve this problem we need a subtler way of defining the freshness of y in
(Fun2). We add a condition in the definition of an optimal typing tree: In the typing
tree, a label y must be used at most once in an occurrence of (Fun2). This is a
notion of global freshness, that is somewhat similar to Barendregt’s convention for
labels, and related to the idea that principal types can specify normal forms [NM04].
This condition can blend in the lemmas and theorems of the chapter:

58

• Completeness: We have enough fresh labels to type a normal term when
needed.

• Soundness: Subject Reduction does not do any duplications (because of non-
idempotency), and therefore, global freshness is preserved by (refined or not)
Subject Reduction.

More formally we need to collect the labels y used in (Fun2). Therefore, we have
typing judgements of the form Γ `nA MU with A a finite multi-set of labels. This
makes the lemmas and proofs harder to read and this is the reason we have chosen
to keep the version with structures as the main theory.

Alternatively, we could work in a calculus that does not have λ-abstractions.
For example, the calculus with only combinators (S, K, etc . . .) and applications
would be a good candidate.

4.6 Conclusion

We have presented a typing system of non-idempotent intersection types that char-
acterises strongly normalising λ-terms and in which an (optimal) typing derivation
provides

1. the exact length of the longest β-reduction sequences

2. the structure of the normal form
The typing system is an enhanced version of that introduced Chapter 2 (and
in [BL11a] and [BL11b]), which improves and simplifies the result similar to one
that was proved in [BL11a] and [BL13]. Indeed, we used fewer definitions and lem-
mas, and the measure of an optimal typing tree is exactly the length of the longest
β-reduction sequences from the typed term.

Perhaps more importantly, introducing information about normal forms, within
types, has turned the typing system into a system deriving a big-step semantics for
strongly normalising terms (provided we accept the structure of normal forms as an
acceptable semantics). This style of derivations (based on typing) is unusual in that
it never computes a substitution, and it relates to worst-case reduction strategies
(generating longest β-reduction sequences).

The next section is not directly related to this chapter but is another enhanced
version of the typing system introduced in Chapter 2.

59

Chapter 5

Strong normalisation in a
calculus with constructors
and fixpoints via
non-idempotent intersection
types

We introduce a calculus with a fixpoint operator that allows to naturally write
strongly normalising functions. In the study of this calculus, we introduce a typing
system with non-idempotent intersection types that characterises strong normali-
sation.

5.1 Introduction

Pure λ-calculus is Turing Complete: for every computable function we can find a
corresponding λ-term. In particular, we can construct a fixpoint operator to write
recursive functions. For example, we can write:

fix(M) := (λx.M(xx))(λx.M(xx)) x /∈ fv(M)
We can also extend the λ-calculus with a fixpoint operator and a rewrite rule

that has the same behavior as the previous construction:

fix1(M)→ M(fix1(M))
Of course, in the λ-calculus or in this extension, some terms are not strongly nor-
malising. However, such a fixpoint is worse: Every term that contains fix1(M) is
definitively not strongly normalising. It is weakly normalising at best. For example,
it is the case for fact1 defined by:

fact1 := fix1(λf.λn.if n = 0 then 1 else n× f(n− 1))
Strong normalisation is a useful and desirable property: for example, with strict
evaluation, we do no have to worry about the evaluation order (see Appendix 5.6).
Therefore, we would like the ability to write recursive functions in a style as natural
as possible, but with better strong normalisation properties.

First, we can choose to only reduce the cases where the fixpoint reduction can
be applied. For example, we can have the operator fix2() and the rule:

fix2(M)N → Mfix2(M)N (An argument is needed to trigger the reduction)
Then, for example, fact2 defined by:

fact2 := fix2(λf.λn.if n = 0 then 1 else n× f(n− 1))

60

is indeed strongly normalising. However, fact23, for example, is not:

fact23−→+ if 3 = 0 then 1 else 3× fact2(3− 1)→···
So, this restriction is not enough. An other possible restriction is to have the
operator fix3() with the following rule:

fix3(M)N → Mfix3(M)N (N is either a constant or a constructor)

With fact3 defined with fix3(), fact3n is strongly normalising for all integers n.
This is the approach given, for example, in Coq and in [GL02]. However, this
approach has some disadvantages: First, it is bound to the notion of constants and
constructors for the calculus: We cannot consider pure λ-calculus with this fixpoint
operator. Second, this does not work for some recursive functions that are supposed
to terminate (see examples in Section 5.2.1.3). Therefore, in this chapter we choose
another approach and use the operator fix4() defined with the rule:

fix4(M)N → MNfix4(M)

Apparently, this does not change anything compared to fix2(). For example, with
fact4 defined by:

fact4 := fix4(λn.λf.if n = 0 then 1 else n× f(n− 1))
we have a problem similar to fact2. However, if we construct fact5 as follows:

fact5 := fix4(λn.if n = 0 then λf.1 else λf.f(n− 1))
then, for all integers n, fact5n is strongly normalising. The trick is that f is replaced
by fact5 only after the condition n = 0 has been calculated. The only difference
compared to the usual style is to put the λf inside the branches (see more examples
in Section 5.2.1.3). Of course, we can still write non strongly normalising terms
with fix4() but by knowing the trick, for every recursive function that terminates
for an entry, we can easily write a term such that, applied to this entry, it is strongly
normalising. We could do the same trick with fix2(). However, as shown with fact6
defined by:

fact6 := fix2(λf.λn.(if n = 0 thenλg.1 else λg.n× g(n− 1))f)

we can notice that it is more natural to work with fix4().
Fixpoint operator fix4() has been introduced in [Ber09]. Even if this fixpoint

operator is useful when it is the only thing added to pure λ-calculus, the calculus
we present here also has constructors and matching. In this calculus, strong nor-
malisation might not be the only thing we expect from a program: we do not want
any crash. For example, we can have a normal form while having a λ-abstraction
as the argument of a branch (see Definition 36). One way to deal with this is that
every term M , which makes the program crash, reduces to itself: Therefore, it is
not strongly normalising. Such a of reduction is interesting and it is not a naive
definition. We would also like to study the naive version. Fortunately, most of the
work between these two versions of reductions can be factorised. Therefore, we will
study the two calculi.

We can prove strong normalisation of some small examples. However, we would
like more systematic tools to prove terms to be strongly normalising: Unlike weak
normalisation, exhibiting a reduction sequence to a normal form is not a proof of
strong normalisation. Therefore, we introduce a refined version of the reduction that
preserves strong normalisation both ways (Theorem 26). Using this tool to prove
strong normalisation is more powerful than using I-filters (see Section 5.2.2.2)
which are used for this purpose in Chapter 2 (and in[CS06, Ber09, BL11b]). In
order to prove Theorem 26, we introduce a typing system with intersection types
that characterises strong normalisation.

In Section 5.2, we present the calculus with its reductions and various examples.
In Section 5.3, we introduce the typing system that characterize strong normali-
sation and we prove Theorem 26. In Section 5.5, we prove the confluence of the
calculus. In Section 5.6, we give an example of implementation of this fixpoint
operator in a real strict functional language.

61

fv(x) := {x}
fv(λx.M) := fv(M)− {x}
fv(MN) := fv(M) ∪ fv(N)
fv(fix(M)) := fv(M)
fv(c) := ∅
fv((C1.M1, . . . , CnMn)) := (fv(M1)− fv(C1)) ∪ . . . ∪ (fv(Mn)− fv(Cn))

Figure 5.1: Free variables

5.2 Calculus

This section is purely syntax-based (no typing involved). In Section 5.2.1 we define
the calculus (the two versions of it). In Section 5.2.2 we introduce a refined version
of the reduction as a tool to prove results of strong normalisation.

5.2.1 Definition of the calculus

In Section 5.2.1.1 we give the syntax of the terms of the calculus. In Section 5.2.1.2
we define the two versions of reductions. In Section 5.2.1.3 we give examples of
terms that have a correct use of the fixpoint operator.

5.2.1.1 Syntax

In this section we define the terms of the calculus and the crash forms.
The calculus we present in this chapter is just pure λ-calculus enriched with

constructors, matching and a fixpoint operator described in Section 5.1.

Definition 34 (Grammar of the calculus).
Assume we have a set of constants c, an infinite set of variables x and a mapping

from the constants to the integers that we call arity.
The terms M , N of the calculus are defined with the following grammar:

M,N ::= x | λx.M |MN | fix(M) | c | B c constant
B ::= (C1.M1, . . . , Cn.Mn)
C ::= cx1 . . . xn c constant and n arity of c

We naturally define the free variables of a term.

Definition 35 (Free variables).
Assume M is a term.
The free variables of M is a finite set of variables fv(M) defined by induction

on M as described in Figure 5.1.

We consider terms up to α-equivalence.
To define one of the reductions, we need to identify ill-formed terms that we call

crash forms.

Definition 36 (Crash forms).
A crash form is a term of one of the following forms:

• Wrong arity: cM1 . . .Mn+1 with n the arity of c

• Matching a function: B(λx.M), BB, B(fix(M)), B(cN1 . . . Nn) with m arity
of c and n < m

• Unknown pattern: (c1 ~x1.M1, . . . , cn ~xn.Mn)(cN1 . . . Nm) such that for all i,
ci 6= c and m arity of c.

The set of crash forms is denoted CF.

62

(β)
(λx.M)N →α M{x := N}

(Fix)
fix(M)N →α MNfix(M)

~N = N1 . . . Nm m arity of ci
(Match)

(c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N)→α Mi{~xi := ~N}

M ∈ CF
(Crash Form)

M →s M

M →α M
′

MN →α M
′N

N →α N
′

MN →α MN ′

M →α M
′

λx.M →α λx.M
′

M →α M
′

fix(M)→α fix(M ′)

Mi →α M
′
i

(c1 ~x1.M1, . . . , cn ~xnMn)→α (c1 ~x1.M1 . . . , ci ~xi.M
′
i , . . . , cn ~xn.Mn)

Figure 5.2: Reductions

5.2.1.2 Reductions

In this section, we define the two reductions of the calculus in a modular way:
Reduction are parametrised by a α which can be either u or s:

• If α = u (u for “unsafe”): Then the reduction is the naive one. Therefore, if
M is strongly normalising for →u then the execution of M terminates, but
can also crash.

• If α = s (s for “safe”): Then the reduction →s is →u with the additional
rule that if M is ill-formed, then M →s M and therefore, M is not strongly
normalising for →s. Hence, if M is strongly normalising for →s, then the
execution of M terminates and does not crash.

More formally:

Definition 37 (Reductions).
Assume α is either u or s and M and N are terms.
We define M →α N with the rules of Figure 5.2.

Theorem 21 (Relation between the two reductions).

1. If M →u M
′ then M →s M

′.

2. If M →s M
′ then either M →u M

′ or M = M ′.

Proof. 1. By induction on M →u M
′.

2. By induction on M →s M
′.

Definition 38 (Strong normalisation).
Assume α is either s or u.
The set of strongly normalising terms for →α is denoted SNα.

Theorem 22 (Relation between the two strong normalisation).
If M ∈ SNs then M ∈ SNu.

Proof. Corollary of Theorem 21.1.

Theorem 23 (Confluence).
→α is confluent: If M−→∗α M1 and M−→∗α M2, then there exists M3 such

that M1−→∗α M3 and M2−→∗α M3.
Therefore, the normal form of M , if it exists, is unique.

63

Proof. With parallel reductions: similar to pure λ-calculus. See Appendix 5.5.

5.2.1.3 Examples

Assume O, True and False are constructors of arity 0 and S is a constructor of
arity 1.

add := λx.fix((O.λf.x, Sy.λf.S(fy)))
mult := λx.fix((O.λf.O, Sy.λf.add(fy)x))
findmin := λg.fix(λx.(True.λf.x,False.λf.f(Sx))(gx))

An integer n can be coded by the term SnO. We use the following definition to
express the fact that a term codes a function:

Definition 39 (Coding of a µ-recursive function).
We say that M codes with weak (resp. strong) normalisation a µ-recursive

function f (of arity k) if and only if, for all integers n1, . . .nk, if f is defined in
(n1, . . . , nn) then M(Sn1O) . . . (SnkO) is weakly (resp. strongly) normalising and
its normal form is Sf(n1,...,nk)O. Alternatively, we can also say that M is correct
for f with weak (resp. strong normalisation).

We can code the addition add and the multiplication mult. More generally we
can code any primitive recursive function.

Intuitively, findmingx return the smallest y such that gy is true and x ≤ y.
More generally, with findmin, we can code any µ-recursive function f .

For any term M we cannot code fix(M) without fix() and keep strong normali-
sation properties. However, we can do it for specific M (generally the ones we are
interested in). For example, we could use add1 and findmin1 defined by:

M1 := (O.λf.x, Sy.λf.S(fyf))
add1 := λx.λy.M1yM1

M2 := λx.(True.λf.x, False.λf.f(Sx)f)(gx)
findmin1 := λg.λx.M2xM2

But we can notice that it is much more simple to use fix().
In a program that use these examples, exhibiting a reduction sequence of →α

to the normal form is as simple as if we had used a more usual fixpoint operator.
Therefore, if we are not interested in strong normalisation, proving that these ex-
amples, written with this style, are correct with weak normalisation is as simple as
proving that they are correct with the usual style.

The proof that they are correct with strong normalisation is given in Sec-
tion 5.2.2.2.

Notice that with findmin defined with a fixpoint such as the one in Coq (named
fix3() in Section 5.1) we would not have strong normalisation.

5.2.2 Refined notion of reduction

In Section 5.2.2.1, we define the refined notion of reduction. In Section 5.2.2.2, we
illustrate how this reduction can be used to prove strong normalisation results.

5.2.2.1 Definition

Accumulators are terms which shape cannot be deconstructed. For example, a λ-
abstraction is not an accumulator. Usually accumulators are used to study the
shape of normal forms. In this chapter, they are also used to define the refined
notion of reduction.

64

Definition 40 (Accumulators).
Assume α is either s or u, M a term and E a set of variables with one element

or less.
We define accuα(M,E) as follows:

• accuα(M, {x}) is denoted accuα(M,x).

• accuα(M, ∅) is denoted accuα(M, ε)

• We write accuα(M) if there exists E such that accuα(M,E).

• We use the following rules:

accuα(x, x)

accuα(M,E)

accuα(MN,E)

accuα(M,E)

accuα(BM,E)

M ∈ CF

accuu(M, ε)

A good way of understanding these rules is that accuα() must satisfy Lemma 42.

We can have M →α M ′ with M ′ ∈ SNα and M /∈ SNα. Therefore, we
define the refined reductions α and ⇒α (mutually defined) that preserve strong
normalisation both ways.

• If M →α M
′ without any erasure then M α M

′.

• If M →α M
′ with the erasure of terms N1, . . . , Nn then we have M α M

′

as long as N1, . . . , Nn are normal forms and there is not conflict between the
free variables of N1, . . . , Nn and the bound variables of M . To determine if
there is a conflict, we collect the free variables in a set E.

• If one of the Ni is strongly normalising, then we can reduce Ni by ⇒α until
it reaches its normal form. Therefore, we have M ∗α M

′.

• If there is a conflict, we have to use⇒α which have stricter propagation rules.

• We also have some additional rules to be able to reduce any strongly normal-
ising terms to its normal form.

More formally:

Definition 41 (Refined reductions).
Assume α is either u or s, M and M ′ are terms and E a finite set of variables.
We define M E,α M

′ and M ⇒E,α M
′ with the rules given in Figure 5.3.

We write M α M
′ (resp. M ⇒α M

′) if and only if there exists E such that
M E,α M

′ (resp. M ⇒E,α M
′).

We write M n
E,α M ′ if and only if there exists E1, . . .En, M1, . . . , Mn−1

such that M E1,α M1 E2,α . . . En,α M
′ and E = E1 ∪ . . . ∪ En. We give a

similar definition for M ⇒n
E,α M

′.
A good way of understanding these rules is that α and ⇒α must satisfy The-

orem 29.

Theorem 24 (Basic relations between the reductions).

1. If M E,α M
′ then M ⇒E,α M

′.

2. If M α M
′ then M ⇒α M

′.

3. If M ⇒α M
′ then M →α M

′.

4. If M E,α M
′ (resp. M ⇒E,α M

′) then fv(M) = E ∪ fv(M ′).

Proof. 1. By definition of M E,α M
′ and M ⇒E,α M

′.

2. Corollary of 1.

3. We prove by induction on M ⇒E,α M
′ and M E,α M

′ that if M ⇒E,α M
′

or M E,α M
′ then M →α M

′.

65

x ∈ fv(M)

(λx.M)N ∅,α M{x := N}

x /∈ fv(M) N6−→α

(λx.M)N fv(N),α M

x /∈ fv(M) N ⇒E,α N
′

(λx.M)N E,α (λx.M)N ′

~xi = y1 . . . ym ~N = N1 . . . Nm X = {λ ~xj .Mj | j 6= i} ∪ {Nj | yj /∈ fv(Mi)} ∀N ′ ∈ X,N ′ 6−→α

(c1 ~x1.M1, . . . cn ~xn.Mn)(ci ~N) ⋃
N′∈X fv(N ′),α Mi{~xi := ~N}

i 6= j Mj ⇒E,α M
′
j ~xj = y1 . . . ym E′ = E − {yk | 1 ≤ k ≤ m}

(c1 ~x1.M1, . . . cn ~xn.Mn)(ci ~N) E′,α (c1 ~x1.M1, . . . cj ~xj .M
′
j , . . . cn ~xn.Mn)(ci ~N)

B = (c1 ~x1.M1, . . . cn ~xn.Mn) xi = y1 . . . ym yj /∈ fv(Mi) Nj ⇒E,α N
′
j

B(ciN1 . . . Nm) E,α B(ciN1 . . . N
′
j . . . Nm)

fix(M)N ∅,α MN(fix(M))

M E,α M
′

M ⇒E,α M
′

M E,α M
′

MN E,α M
′N

N E,α N
′

MN E,α MN ′

M E,α M
′ x /∈ E

λx.M E,α λx.M
′

M E,α M
′

fix(M) E,α fix(M ′)

~xi = y1 . . . ym Mi E,α M
′
i ∀j, yj /∈ E

(c1 ~x1.M1, . . . cn ~xn.Mn) E,α (c1 ~x1.M1, . . . ci ~xi.M
′
i , . . . cn ~xn.Mn)

M ⇒E,α M
′

λx.M ⇒E−{x},α λx.M
′

M ⇒E,α M
′

fix(M)⇒E,α fix(M ′)

Ni ⇒E,α N
′
i m arity of c n ≤ m

cN1 . . . Nn ⇒E,α cN1 . . . N
′
i . . . Nn

~xi = y1 . . . ym Mi ⇒E,α M
′
i E′ = E − {yk | 1 ≤ k ≤ m}

(c1 ~x1.M1, . . . cn ~xn.Mn)⇒E′,α (c1 ~x1.M1, . . . ci ~xi.M
′
i , . . . cn ~xn.Mn)

accuα(M,E1) N ⇒E2,α N
′

MN E1∪E2,α MN ′

accuα(M,E1) B⇒E2,α B′

BM E1∪E2,α B′M

M ⇒E,u M
′ MN ∈ CF

MN E,u M
′N

N ⇒E,u N
′ MN ∈ CF

MN E,u MN ′

M ∈ CF

M ∅,s M

Figure 5.3: Refined reductions

66

4. By induction on M E,α M
′ and M ⇒E,α M

′.

Lemma 36 (Shape of a normal form).
If M cannot be reduced by →α then we are in one of the following cases:

• M is of the form λx.M1, B, fix(M1), or cM1 . . .Mn with m arity of c and
n ≤ m.

• We have accuα(M).

Proof. By induction on M .
Assume M cannot be reduced by →α.
If M is an application M1M2: Then M1 and M2 cannot be reduced by →α.

Hence we can use the induction hypothesis on M1 and M2.
Then we are in one of the following cases:

• M is a variable x: Therefore accuα(x).

• M is a constant c.

• M is of the form λx.M1, B or fix(M1).

• M is of the form (λx.M1)M2. Therefore, M →α M1{x := M2}. Contradic-
tion.

• We have M ∈ CF:

– If α = s then M →α M . Contradiction.

– If α = u then we have accuu(M).

• M is of the form (c1 ~x1.M
′
1, . . . , cn ~xn.M

′
n)(ci ~N) with ~N = N1 . . . Nm and m

arity of ci. Therefore, M →α M
′
i{~xi := ~N}. Contradiction.

• M is of the form BM2 with accuα(M2). Therefore accuα(BM2).

• M is of the form fix(M3)M2. Therefore M →α M3M2fix(M3). Contradiction.

• M is of the form cM1 . . .Mn with m arity of c and n ≤ m.

• M is of the formM1M2 and we have accuα(M1). Therefore, we have accuα(M1M2).

Lemma 37 (⇒α can be used on a non-normal form).
If M can be reduced by →α then there exists M ′ such that M ⇒α M

′.

Proof. By induction on M . See Appendix A.

Lemma 38 (Reaching the normal form).
If M ∈ SNα then M ⇒∗α M ′ with M ′ the normal form of M .

Proof. By induction on the longest reduction from M of →α and as a corollary of
Lemma 37.

Theorem 25 (Common uses of α).

1. If x /∈ fv(M) and N ∈ SNα then (λx.M)N +
fv(N),α M .

2. If N ∈ SNα, then there exist E such that (λx.M)N +
E,α M{x := N} and

E ⊆ fv(N).

3. Assume ~N = N1 . . . Nm, ~xi = y1 . . . ym, m arity of ci,
X = {λ ~xj .Mj | i 6= j} ∪ {Nj | yj /∈ fv(Mi)} and for all N ′ ∈ X, N ′ ∈
SNα. Then (c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N) +

E,α Mi{~xi := ~N} with E =⋃
N ′∈X fv(N ′).

67

Proof. 1. By Lemma 38, there exists n such that N ⇒n
α N ′ with N ′ normal

form of N . By Theorem 24.4, and by induction on n, there exists E such that
N ⇒n

E,α N
′ and fv(N) = E ∪ fv(N ′). Hence, (λx.M)N n

E,α (λx.M)N ′. We

also have, (λx.M)N ′ n
fv(N ′),α M . Therefore (λx.M)N n+1

E∪fv(N ′),α M .

2. If x ∈ fv(M), then (λx.M)N ∅,α M{x := N}. If x /∈ fv(M), then, by 1,
(λx.M)N +

fv(N),α M .

3. We adapt the proof of 1.

Theorem 26 (Preservation of strong normalisation).
If M ⇒α M

′ and M ′ ∈ SNα then M ∈ SNα.

Proof. Proof given in Section 5.3.

We can notice, for example, that (λx.(λy.a)(xx))(λz.zz) →α (λx.a)(λz.zz).
However, we do not have (λx.(λy.a)(xx))(λz.zz) ⇒α (λx.a)(λz.zz). Indeed, we
have (λx.a)(λz.zz) ∈ SNα but (λx.(λy.a)(xx))(λz.zz) /∈ SNα.

5.2.2.2 Discussion

To prove that a term is strongly normalising we only have to exhibit a sequence of
⇒α (or α) to its normal form. To do this, Theorem 25 can be useful.

In Section 5.2.1.3, the reduction sequences of→α that we need in the proofs, are
reduction sequences of⇒α. Therefore, proving that the examples of Section 5.2.1.3
are correct with strong normalisation is almost as easy as proving that they are
correct with weak normalisation.

Let us compare this technique to prove strong normalisation to the technique
that uses I-filters (used in Chapter 2 and in [CS06, Ber09, BL11b]) . We have the
following tools:

• A denotational semantics: Each term can be interpreted as an I-filter.

• We have equations on I-filters.

• If the semantics of a term is different from ⊥ (the empty I-filter) then M is
strongly normalising.

A proof of strong normalisation that uses these tools is as follow: Assume we have a
specific term M . By using equations on I-filters, we can prove that the semantics of
M is equal to an I-filters which is trivially different from ⊥. We can then conclude
that M is strongly normalising.

If we can do such a proof, then we can use α to prove strong normalisation:
each equation on the I-filters correspond to a +

α . Therefore, using α is as
powerful as using equations on I-filters in order to prove strong normalisation. It is
even more powerful because, under certain conditions, we can reduce by α under
λ abstractions.

5.3 Strong normalisation

The main goal of this section is to prove Theorem 26 via non-idempotent intersection
types. In Section 5.3.1, we define the typing system. In Section 5.3.2, we prove
Soundness via subject reduction: if a term is typable then it is strongly normalising.
In Section 5.3.3, we prove Completeness via subject expansion: if a term is strongly
normalising, then it is typable. Then the proof of Theorem 26 is straightforward.

68

5.3.1 Intersection types

In Section 5.3.1.1, we define the types, the contexts and give their basic properties.
In Section 5.3.1.2, we introduce the typing rules and the basic properties of the
system.

5.3.1.1 Types

Definition 42 (Intersection types).
U -types, A-types and F -types are defined with the following grammar:

F,G,H ::= δ | O | cA1 . . . An | A→ F n arity of c
A,B,C ::= F | A ∩B
U, V,W ::= A | ω

With this grammar, U ∩ V is defined if and only if U and V are A-types.
Therefore, if we write A∩ ω := A, then ω ∩A := A and ω ∩ ω := ω, for all U

and V , U ∩ V is defined.

Some remarks:

• We have extended the intersection types of Chapter 2.

• cA1 . . . An is used to type cM1 . . .Mn.

• O can only be the type of something that is or reduces itself to an accumulator
(like xM1 . . .Mn). In particular, O cannot be the type of λx.M .

• δ is used to type the base case of fix(M).
Equivalence and inclusion between types is defined with the same definition

given in Chapter 2 and we have the same properties.
The same thing is done for contexts.
For factorization reasons, we define the following notion:

Definition 43 (Application of types).
Assume α is either u or s, F and G are F -types, and A is a A-type.
F@αA : G is defined with the following rules:

(A→ F)@αA : F (c ~A)@uB : F

5.3.1.2 Typing rules

We want a typing judgment Γ `u M : A that characterizes terms in SNu and
another one Γ `s M : A that characterizes terms in SNs. By the fact that SNs ⊆
SNu, it is natural that the rules of Γ `s M : A are a subset of the rules of
Γ `u M : A. We can define the two typing systems by defining Γ `α M : A as
follows:

Definition 44 (Typing judgements).
Assume α is either u or s, Γ is a context, M is a term, n is an integer and U

is a U -type.
We define Γ `nα M : U with the rules of Figure 5.4.
We write Γ `α M : U if there exists n such that Γ `nα M : U .
We can notice that Γ `α M : ω does not give any information on M and cannot

be found inside a typing tree. It is only used to have more concise lemmas and
proofs.

Some remarks:

• We have extended the typing system given in Chapter 2.

• The typing rule of c and the first typing rule of B (rule (B1)) is quite intuitive.

69

x : F `0α x : F

Γ, x : U `nα M : F A ⊆ U

Γ `nα λx.M : A→ F

Γ `nα M : F ∆ `mα N : A F@αA : G

Γ ∩∆ `n+m+1
α MN : G

(App)

Γ `nα M : A ∆ `mα M : B

Γ ∩∆ `n+mα M : A ∩B `0α M : ω

n arity of c

`0α c : A1 → . . .→ An → cA1 . . . An

∀j Γj `mjα λ ~xj .Mj : Aj,1 → . . .→ Aj,nj → Fj

(. . . (Γ1 ∩ Γ2) . . .) ∩ Γn `m1+...+mn
α (c1 ~x1.M1, . . . , cn ~xn.Mn) : ciAi,1 . . . Ai,ni → Fi

(B1)

Γ `nα B : A

Γ `nα B : O→ F

Γ `nu B : A1

Γ `nu B : (A→ F)→ G

Γ `mu (c1 ~x1.M1, . . . , cn ~xn.Mn) : B ∀j, cj 6= c

Γ `mu (c1 ~x1.M1, . . . , cn ~xn.Mn) : c ~A→ F

Γ `nα M : A

Γ `nα fix(M) : δ
(Fix1)

Γ `nu B : A

Γ `nu B : δ → F

Γ `nα M : F F@αA : G Γ `mα fix(M) : B G@αB : H

Γ ∩∆ `n+m+2
α fix(M) : A→ H

(Fix2)

Figure 5.4: Typing rules

• The accumulators can be typed by any type F , in particular they can by
typed by O.

• When α = u, there are more terms that are strongly normalising than in the
case where α = s. Therefore, when α = u, more terms are typed and it is
natural to have more typing rules. Theses extra rules are needed to type crash
forms (like B(λx.M)).

• When α = s, the application rule (App) is the same one as the one presented
in Chapter 2.

• The rules to type fix(M) are chosen as follow: From a typing of fix(M)N , we
can create a typing of MNfix(M). There is an intuitive typing rule of fix(M)
that satisfy this (the rule (Fix2)). This rule use a typing of fix(M) to give an
other typing of fix(M). For Completeness, we need an other rule that type
the base of recursion (Fix2): If M is typable, then fix(M) is of type δ.

When α = s, δ is not used in any other rules. When α = u, the only other
use of δ is to type crash forms (like B(fix(M))).

Lemma 39 (Basic properties of typing).

1. If Γ `nα M : U ∩ V then there exist Γ1, Γ2, n1 and n2 such that Γ = Γ1 ∩ Γ2,
n = n1 + n2, Γ1 `n1

α M : U and Γ2 `n2
α M : V .

2. If Γ `nα M : U and U ≈ V then there exists ∆ such that Γ ≈ ∆ and ∆ `nα M :
V .

3. If Γ `nα M : U and U ⊆ V then there exist ∆ and m such that Γ ⊆ ∆, m ≤ n
and ∆ `mα M : V .

4. If Γ `α M : A then Dom(Γ) = fv(M).

5. If Γ `nα cM1 . . .Mk : F with m arity of c and k ≤ m, then there exist Γ1, . . . ,
Γk, n1, . . . , nk, A1, . . . , Am and G such that Γ = (. . . (Γ1 ∩ Γ2) . . .) ∩ Γk,
n = n1 + . . .+ nk, for all i, Γi `niα Mi : Ai and F = Ai+1 → Am → G.

70

6. If Γ1 `n1
α M1 : A1, . . . , Γk `nkα Mk : Ak, m arity of c and k ≤ m, then

(. . . (Γ1 ∩ Γ2) . . .) ∩ Γk `n1+...+nk
α cM1 . . .Mk : Ak+1 → . . . Am → F for every

Ak+1, . . . , Am, G.

Proof.

1. Straightforward.

2. By induction on U ≈ V .

3. Corollary of 1 and 2.

4. By induction on Γ `α M : A.

5. By induction on k.

6. By induction on k.

5.3.2 Soundness

Lemma 40 (Substitution lemma).
If Γ, x : U `nα M : A and ∆ `mα N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆

and Γ′ `n+mα M{x := N} : A.

Proof. By induction on Γ, x : U `α M : A.

Theorem 27 (Subject reduction).
If Γ `nα M : A and M →α M ′, then there exists Γ′ and n′ such that Γ ⊆ Γ′,

n > n′ and Γ′ `n′

α M ′ : A.

Proof. First by induction on M →α M
′ then by induction on A. See Appendix A.

Theorem 28 (Soundness).
If Γ `α M : A, then M ∈ SNα.

Proof. Corollary of Theorem 27: We prove by induction on n that if Γ `nα M : A
then M ∈ SNα.

Let M ′ be a term such that M →α M
′. By Theorem 27, there exist Γ′ and n′

such that n′ < n and Γ′ `n′

α M ′ : A. By induction hypothesis, M ′ ∈ SNα.
Therefore M ∈ SNα.

5.3.3 Completeness

Lemma 41 (Anti-substitution lemma).
If Γ `nα M{x := N} : A, then there exists Γ1, Γ2 and U such that Γ ≈ Γ1 ∩ Γ2,

Γ1, x : U `α M : A and Γ2 `α N : U .

Proof. First induction on M , then by induction on A.

Lemma 42 (Typing accumulators).
If Γ, x1 : U1, . . . , xn : Un `α M : F and accuα(M, {x1, . . . , xn}) (we have n = 0

or n = 1), then for all G there exists U ′1, . . . , U ′n such that Γ, x1 : U ′1, . . . , xn : U ′n `α
M : G.

Proof. By induction on accuα(M, {x1, . . . , xn}). See Appendix A.

71

Lemma 43 (Typing normal forms).
If M cannot be reduced by →α, then there exist Γ and F such that Γ `α M : F .

Proof. By induction on M , using Lemma 36. See Appendix A.

Theorem 29 (Subject expansion).
Assume Γ, x1 : U1, . . . , xn : Un `α M ′ : A and E = {x1, . . . , xn}:
• If M E,α M

′ then there exists Γ′, U ′1, . . . , U ′n such that Γ ≈ Γ′ and
Γ′, x1 : U ′1, . . . , xn : U ′n `α M : A.

• If M ⇒E,α M
′ then there exists Γ′, U ′1, . . . , U ′n and B such that Γ ≈ Γ′ and

Γ′, x1 : U ′1, . . . , xn : U ′n `α M : B.

Proof. First by induction on M E,α M
′ and on M ⇒E,α M

′, then by induction
on A. See Appendix A.

Theorem 30 (Completeness).
If M ∈ SNα then there exist Γ and A such that Γ `α M : A.

Proof. Corollary of Theorem 27 and Lemma 43: By induction on the size of longest
reduction sequences of →α from M .

• If M cannot be reduced by →α then by Lemma 43 we can conclude.

• If M can be reduced by →α, then by Lemma 37, there exists M ′ such that
M ⇒α M ′. By Theorem 24.3, we have M →α M ′. Hence we can use the
induction hypothesis: There exist Γ′ and A′ such that Γ′ `α M ′ : A′. By
Theorem 29, there exist Γ and A such that Γ `α M : A.

Corollary 2. Theorem 26 is true.

Proof. Corollary of Theorems 28, 30, and 29: Assume M ⇒α M
′. By Theorem 30,

there exist Γ′ and A′ such that Γ′ `α M ′ : A′. By Theorem 29, there exist Γ and A
such that Γ `α M : A. Therefore, by Theorem 28, M ∈ SNα.

5.4 Conclusion

We have introduced a calculus with constructors, matching, and a fixpoint opera-
tor that allows to naturally write recursive functions that can be used in strongly
normalising terms. To facilitate proofs of strong normalisation (by →α), we have
introduced a refined reduction ⇒α that preserves strong normalisation both ways.
This was proved via a typing system with non-idempotent intersection types.

Also, accuα() and α could be used to define our own notion of reducibility
candidates to prove strong normalisation of a polymorphic type system over the
λ-calculus (à la System F). Moreover, for some specific M we could have a typing
rule for fix(M). And then the soundness lemma in the proof of strong normalisation
of the system for this rule would be just a use of ⇒∗α.

5.5 Confluence

In this section, we prove confluence of →α.

Definition 45 (Parallel reductions).
Assume M and M ′ are terms, we define M |→M ′ with the rules of Figure 5.5.

72

x |→ x c |→ c

M |→M ′

λx.M |→ λx.M ′

M |→M ′ N |→ N ′

MN |→M ′N ′

M |→M ′

fix(M) |→ fix(M ′)

∀i Mi |→M ′i

(c1 ~x1.M1, . . . , cn ~xn.Mn) |→ (c1 ~x1.M
′
1, . . . , cn ~xn.M

′
n)

M |→M ′ N |→ N ′

(λx.M)N |→M ′{x := N ′}

M |→M ′ N |→ N ′

fix(M)N |→M ′N ′fix(M ′)

~N = N1 . . . Nm ~N ′ = N ′1 . . . N
′
m m arity of ci Mi |→M ′i ∀j,Nj |→ N ′j

(c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N) |→M ′i{~xi := ~N ′}

Figure 5.5: Parallel reductions

Lemma 44 (Properties of |→).

1. For every M , M |→M .

2. If M →α M
′ then M |→M ′.

3. If M |→M ′ then M−→∗α M ′.
4. If M |→M ′ and N |→ N ′, then M{x := N} |→M ′{x := N ′}

Proof. 1. By induction on M .

2. By induction on M →α M .

3. By induction on M |→M .

4. By induction on M .

Definition 46 (Definition of M∗).
Assume M is a term. We define the term M∗ by induction on M as follows:

x∗ := x
c∗ := x
(λx.M)

∗
:= λx.M∗

fix(M)
∗

:= fix(M∗)
(c1 ~x1.M1, . . . , cn ~xn.Mn)

∗
:= (c1 ~x1.M1

∗, . . . , cn ~xn.M2
∗)

((λx.M)N)
∗

:= M∗{x := N∗}
(fix(M)N)

∗
:= M∗N∗fix(M∗)

(c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N) := Mi
∗{~xi := ~N∗} with good arity

(MN)
∗

:= M∗N∗ in all other cases

Lemma 45 (Propery of M∗).
If M |→M ′ then M ′ |→M∗.

Proof. By induction on M .

Corollary 3. Theorem 23 is true.

Proof. By Lemma 45, |→ has the diamond property: For every M , M1 and M2, if
M |→M1 and M |→M2, then there exists M3 such that M1 |→M3 and M2 |→M3

(we choose M3 = M∗). Hence, |→ is confluent. By Lemmas 44.2 and 44.3, →α is
confluent.

73

5.6 Example in Caml

To illustrate the fixpoint operator presented in this chapter in a real programming
languages, we have to choose a functional language with strict evaluation (which
Haskell, for example, is not). Here we choose OCaml.

Assume we have the following code:

let rec fix1 f x = f (fix1 f) x

let rec fix2 f x = f x (fix2 f)

let eif b x y = if b then x else y

let rec fact1 x = if x = 0 then 1 else x ∗ fact1 (x − 1)

let fact2 = fix1 (fun f x −> if x = 0 then 1 else x ∗ f (x − 1))

let fact3 =
fix2 (fun x −> if x = 0 then fun f −> 1 else fun f −> x ∗ f (x − 1))

let rec fact4 x = eif (x = 0) 1 (x ∗ fact4 (x − 1))

let fact5 = fix1 (fun f x −> eif (x = 0) 1 (x ∗ f (x − 1)))

let fact6 = fix2 (fun x −> eif (x = 0) (fun f −> 1) (fun f −> x ∗ f (x − 1)))

This gives various implementation of the factorial function. Each implementation
has been made with the following choices:

• How the recursion is done: Either with the usual way of coding recursive
functions, or with the usual fixpoint operator or with the fixpoint operator
presented in this chapter (and with the coding style that go within).

• How branching is done: Either with the usual way of branching (if . . . then
. . . else . . .) which is lazy or with a branching eif that is strict (it always
calculates the two possibilities).

With the usual branching it always terminates on a positive argument. However,
with a strict branching, only the implementation that uses the fixpoint operator of
this chapter terminates on a positive argument. This is a way to illustrate strong
normalisation.

74

Chapter 6

Conclusion

In the previous chapters, we have studied systems of non-idempotent intersection
types and their applications:

• In Chapter 2, we have introduced the simplest version of the typing system
of intersection types that we use. We have proved that a simpler measure on
the typing trees gives a bound on the longest β-reduction sequence and that
it characterizes strong normalisation. Moreover we have used it to define a
denotational semantics and we have showed that we can use it to prove strong
normalisation in other typing systems.

• In Chapter 3, we have adapted the typing system of Chapter 2 to a calculus
with explicit substitutions. By the fact that we have a better control on the
erasure of terms, we have a more precise result on the bound of size of the
longest reduction sequence.

• In Chapter 4, we have refined the types of Chapter 2, this gives us a more
refined result on the bound of the size of the longest β-reduction sequence
while still remaining in the pure λ-calculus. Moreover, the typing of a term
can give information about the normal form.

• In Chapter 5, we have adapted the typing system of Chapter 2 to a richer
calculus with constructors, matching and fixpoints.

We have proved that, by removing idempotency of the intersection in the inter-
section types, a typing tree gives more quantitative information about the typed
λ-term. We could wonder, what happens when we remove other properties. For
example, by removing the commutativity of the intersection (the type A ∩ B is no
longer equivalent to B ∩ A), we could describes the execution of side effects in a
λ-calculus with references:

• M : A ∩ B means that M will do an action described by the type A, then it
will do the action described by the type B.

• M : B ∩A means that M will do the action described by B and then, it will
do the action described by B.

This could be a lead for a further work.

75

Bibliography

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theoret.
Comput. Sci., 111:3–57, 1993. 12

[BBdH93] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus
for intuitionistic linear logic. In J. F. G. Groote and M. Bezem, editors,
Proc. of the 1st Int. Conf. on Typed Lambda Calculus and Applications,
volume 664 of LNCS, pages 75–90. Springer-Verlag, 1993. 12

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. of Symbolic Logic,
48(4):931–940, 1983. 46

[BEM10] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Categorical models for
simply typed resource calculi. ENTCS, 265:213–230, 2010. 12

[Ber09] A. Bernadet. Fixpoints and strong normalisation. Internship
report, ENS Cachan, Chalmers University, 2009. Available at
http://lix.polytechnique.fr/ bernadet/Publications.htm 61, 68

[BL11a] A. Bernadet and S. Lengrand. Complexity of strongly normalising
λ-terms via non-idempotent intersection types. In M. Hofmann, edi-
tor, Proc. of the 14th Int. Conf. on Foundations of Software Science
and Computation Structures (FOSSACS’11), volume 6604 of LNCS.
Springer-Verlag, 2011. 46, 47, 55, 58, 59

[BL11b] A. Bernadet and S. Lengrand. Filter models: non-idempotent inter-
section types, orthogonality and polymorphism. In M. Bezem, editor,
Proc. of the 20th Annual Conf. of the European Association for Com-
puter Science Logic (CSL’11), LIPIcs. Schloss Dagstuhl LCI, 2011. 46,
59, 61, 68

[BL13] A. Bernadet and S. Lengrand. Non-idempotent intersection types and
strong normalisation. Logical Methods in Computer Science, 9(4), 2013.
44, 46, 59

[BM03] P. Baillot and V. Mogbil. Soft lambda-calculus: a language for poly-
nomial time computation. CoRR, cs.LO/0312015, 2003. 12

[Böh68] C. Böhm. Alcune proprietà delle forme β-η-normali nel λK-calcolo.
Technical report, IAC, Roma, 1968. 28

[CD78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for
lambda-terms. Archiv für mathematische Logik und Grundlagen-
forschung, 19:139–156, 1978. 6,
12

76

http://lix.polytechnique.fr/~bernadet/Publications.htm

[Chu85] A. Church. The Calculi of Lambda Conversion. (AM-6) (Annals of
Mathematics Studies). Princeton University Press, 1985. 7

[CR36] A. Church and J. B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39:472–482, 1936.
http://www.jstor.org/stable/2268573Electronic Edition. 8

[CS06] T. Coquand and A. Spiwack. A proof of strong normalisation using
domain theory. In R. Alur, editor, 21st Annual IEEE Symp. on Logic
in Computer Science, pages 307–316. IEEE Computer Society Press,
2006. 61, 68

[CS07] T. Coquand and A. Spiwack. A proof of strong normalisation using
domain theory. Logic. Methods Comput. Science, 3(4), 2007.12, 20, 21

[csl07] Proc. of the 16th Annual Conf. of the European Association for Com-
puter Science Logic (CSL’07), volume 4646 of LNCS. Springer-Verlag,
2007. 77, 78

[dC05] D. de Carvalho. Intersection types for light affine lambda calculus.
ENTCS, 136:133–152, 2005. 12

[dC09] D. de Carvalho. Execution time of lambda-terms via denotational se-
mantics and intersection types. CoRR, abs/0905.4251, 2009. 12,
13

[DCHM00] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional
characterizations of lambda-terms using intersection types (extended
abstract). In MFCS: Symp. on Mathematical Foundations of Computer
Science, 2000. 12

[ER03] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoret.
Comput. Sci., 309(1-3):1–41, 2003. 12

[Ghi96] S. Ghilezan. Strong normalization and typability with intersection
types. Notre Dame J. Formal Loigc, 37(1):44–52, 1996. 12

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. Thèse d’état, Université Paris 7,
1972. 20

[Gir87] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101, 1987.
12, 39

[GL02] B. Grégoire and X. Leroy. A compiled implementation of strong reduc-
tion. In M. Wand and S. L. P. Jones, editors, Proc. of the 7th ACM
Intern. Conf. on Functional Programming, pages 235–246. ACM Press,
2002. 61

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1989. This is textbook on proof theory and type systems,
based on lectures by Girard. It contains an appendix by Lafont on lin-
ear logic, and also treats Girard’s polymorphic lambda calculus. 6,
7

[GR07] M. Gaboardi and S. R. D. Rocca. A soft type assignment system for
lambda -calculus. In Proc. of the 16th Annual Conf. of the European
Association for Computer Science Logic (CSL’07) [csl07], pages 253–
267. 12

77

[Hey71] A. Heyting. Intuitionism: an introduction. Studies in logic and the
foundations of mathematics. North-Holland Pub. Co., 1971. 6

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus, and Formalism, pages 479–490. Academic
Press, 1980. Reprint of a manuscript written 1969. 12

[Kes07] D. Kesner. The theory of calculi with explicit substitutions revisited.
In Proc. of the 16th Annual Conf. of the European Association for
Computer Science Logic (CSL’07) [csl07], pages 238–252. 35, 36

[KR11] D. Kesner and F. Renaud. A prismoid framework for languages with
resources. Theoret. Comput. Sci., 412(37):4867–4892, 2011. 80

[KvOvR93] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory
reduction systems: introduction and survey. THEORETICAL COM-
PUTER SCIENCE, 121:279–308, 1993. 46

[KW99] A. J. Kfoury and J. B. Wells. Principality and decidable type inference
for finite-rank intersection types. In Proc. of the 26th Annual ACM
Symp. on Principles of Programming Languages (POPL’99), pages
161–174. ACM Press, 1999. 13

[Laf04] Y. Lafont. Soft linear logic and polynomial time. Theoret. Comput.
Sci., 318(1-2):163–180, 2004. 12

[Lei86] D. Leivant. Typing and computational properties of lambda expres-
sions. Theoret. Comput. Sci., 44(1):51–68, 1986. 12

[LS09] F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics: A First
Introduction to Categories. Cambridge University Press, 2nd edition,
2009. 6

[NM04] P. M. Neergaard and H. G. Mairson. Types, potency, and idempotency:
why nonlinearity and amnesia make a type system work. In C. Okasaki
and K. Fisher, editors, Proc. of the 9th ACM Intern. Conf. on Func-
tional Programming, pages 138–149. ACM Press, 2004. 13,
58

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Inf. Comput., 186(2):165–193, 2003. 9

[Ren11] F. Renaud. Les ressources explicites vues par la théorie de la réécriture.
PhD thesis, Université Paris 7, 2011. 35, 36

[Sal10] S. Salvati. On the Membership Problem for Non-Linear Abstract Cat-
egorial Grammars. J. of Logic, Language, and Information, 19(2):163–
183, 2010. 57

[Sco82a] D. S. Scott. Domains for denotational semantics. In M. Nielsen and
E. M. Schmidt, editors, ICALP, volume 140 of Lecture Notes in Com-
puter Science, pages 577–613. Springer, 1982. 8

[Sco82b] D. S. Scott. Domains for denotational semantics. In M. Nielsen and
E. M. Schmidt, editors, Proc. of the 9th Intern. Col. on Automata,
Languages and Programming (ICALP), volume 140 of LNCS, pages
577–613. Springer-Verlag, 1982. 45

78

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In
Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages
240–251. Springer-Verlag, 1975. 20

[Tur36] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Soci-
ety, 2(42):230–265, 1936. 6,
8

[vB95] S. van Bakel. Intersection Type Assignment Systems. Theoret. Comput.
Sci., 151(2):385–435, 1995. 14

[vH02] J. van Heijenoort. From Frege to Gödel : A Source Book in Mathemat-
ical Logic, 1879-1931 (Source Books in the History of the Sciences).
Harvard University Press, 2002. 6

[vRSSX99] F. van Raamsdonk, P. Severi, M. H. B. Sørensen, and H. Xi. Perpetual
reductions in λ-calculus. Inform. and Comput., 149(2):173–225, 1999.
47

[Wel96] J. B. Wells. Typability and type checking in the second-order lambda-
calculus are equivalent and undecidable. In In Proceedings of the Ninth
Annual IEEE Symposium on Logic in Computer Science (LICS), pages
176–185. Society Press, 1996. 6

79

Appendix A

Full proofs

Lemma 15. →S,W terminates.

Proof. By a polynomial argument.
We define mx(M) as follow: if x /∈ fv(M), then mx(M) = 1. Otherwise we

have:
mx(x) = 1
mx(λy.M) = mx(M)
mx(M1M2) = mx(M1) +mx(M2) x ∈ fv(M1), x ∈ fv(M2)
mx(M1M2) = mx(M1) x /∈ fv(M2)
mx(M1M2) = mx(M2) x /∈ fv(M1)
mx(M [y := N]) = mx(M) +my(M)× (mx(N) + 1) x ∈ fv(M), x ∈ fv(N)
mx(M [y := N]) = my(M)× (mx(N) + 1) x /∈ fv(M), x ∈ fv(N)
mx(M [y := N]) = mx(M) x /∈ fv(N)

We also define S(M) as follow:

S(x) = 1
S(M1M2) = S(M1) + S(M2)
S(λx.M) = S(M)
S(M [x := N]) = S(M) +mx(M)× S(N)

Finally, we define I(M) as follow:

I(x) = 2
I(λx.M) = 2I(M) + 2
I(M1M2) = 2I(M1) + 2I(M2) + 2
I(M [x := N]) = I(M)× (I(N) + 1)

If we consider n = (S(M), I(M)) in lexical order, then →S,W strictly decreases
n and ≡ does not change it.

Hence→S,W terminates. This lemma and proof are a special case of [KR11].

Lemma 17 (Typing of explicit substitution).
Assume Γ, x : A `n M : B and ∆ `m N : A. Then, there exists Γ′ such that

Γ′ ≈ Γ ∩∆ and Γ′ `n+m M [x := N] : B.

Proof. By induction on B:

• If B = F , then the result is trivial : we use the (Subst) rule.

• If B = B1 ∩B2, then, by Lemma 16.1, there exist Γ1, Γ2, A1, A2, n1 and n2
such that Γ = Γ1 ∩ Γ2, A = A1 ∩A2, n = n1 + n2, Γ1, x : A1 `n1 M : B1 and
Γ2, x : A2 `n2 M : B2. By hypothesis, ∆ `m N : A. Hence, by Lemma 16.1,

80

there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2, m = m1 + m2,
∆1 `m1 N : A1 and ∆2 `m2 N : A2.

By induction hypothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1,
Γ′2 ≈ Γ2 ∩∆2, Γ′1 `n1+m1 M [x := N] : B1 and Γ′2 `n2+m2 M [x := N] : B2. So
we have Γ′1 ∩ Γ′2 `n1+m1+n2+m2 M [x := N] : B1 ∩B2 with n1+m1+n2+m2 =
n+m, Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1)∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2)∩ (∆1 ∩∆2) ≈ Γ∩∆ and
B = B1 ∩B2.

Theorem 8 (Subject Reduction for λS).
Assume Γ `n M : A. We have the following properties:

1. If M →B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n and
Γ′ `m M ′ : A

2. If M →S M
′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `n M ′ : A

3. If M →W M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and
Γ′ `m M ′ : A

4. If M ≡M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `n M ′ : A

Proof. First by induction on M →E M ′ and M ≡M ′, then by induction on A.
For modularity, the triplet (→E , R, r) can be one of the following triplets: (→B

,≈, <), (→S ,≈,=), (→W ,⊆,≤), (≡,≈,=).

• If A = A1 ∩ A2, then there exist Γ1, Γ2, n1 and n2 such that Γ = Γ1 ∩ Γ2,
n = n1 + n2, Γ1 `n1 M : A1 and Γ2 `n2 M : A2.

By induction hypothesis (on (M →E M ′, A1) and (M →E M ′, A2)), there
exist Γ′1, Γ′2, m1 and m2 such that Γ1 R Γ′1, Γ2 R Γ′2, m1 r n1, m2 r n2,
Γ′1 `m1 M ′ : A1 and Γ′2 `m2 M ′ : A2.

Hence, Γ′1 ∩ Γ′2 `m1+m2 M ′ : A1 ∩A2 with A = A1 ∩ A2, m1 + m2 r n,
Γ R Γ′1 ∩ Γ′2.

• (λx.M1)M2 →B M1[x := M2] and A = F : There exist Γ1, Γ2, n1, n2 and B
such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `n1 λx.M1 : B → F and Γ2 `n2

M2 : B. Hence, there exists U such that B ⊆ U and Γ1, x : U `n1 M1 : F .

– If U = C, then by using Lemma 16.4 there exist ∆ and m such that m ≤
n2, Γ2 ⊆ ∆ and ∆ `m M2 : C. Hence Γ1 ∩∆ `n1+m M1[x := M2] : F
with n1 +m < n, F = A and Γ ⊆ Γ1 ∩∆.

– If U = ω, then Γ1 ∩ Γ2 `n1+n2 M1[x := M2] : F with n1+n2 < n, A = F
and Γ ⊆ Γ1 ∩ Γ2.

• y[x := N] →W y, x 6= y and A = F : there exist Γ1, Γ2, n1, n2 and B such
that Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 N : B and Γ2, x : ω `n2 y : F . So we
have Γ2 `n2 y : A with Γ ⊆ (Γ2, x : ω) and n2 ≤ n.

• x[x := N] →S N and A = F : there exist Γ1, Γ2, n1, n2 and B such that
Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 N : B and Γ2, x : B `n2 x : F . Hence
Γ2 = () and B = F and n2 = 0. Therefore Γ = Γ1 and n1 = n. So we have
Γ `n N : A with Γ ≈ Γ.

• (M1M2)[x := N] →S M1[x := N]M2[x := N] with x ∈ fv(M1), x ∈ fv(M2)
and A = F : Then there exist Γ1, Γ2, Γ3, Γ4, A1, A2, B, n1, n2, n3 and n4
such that: Γ1, x : A1 `n1 M1 : B → F Γ2, x : A2 `n2 M2 : B, Γ3 `n3 N : A1,
Γ4 `n4 N : A2, n = n1 + n2 + n3 + n4 and Γ = (Γ1 ∩ Γ2) ∩ (Γ3 ∩ Γ4). Hence
(Γ1 ∩ Γ3) ∩ (Γ2 ∩ Γ4) `n1+n3+n2+n4 M1[x := N]M2[x := N] : F .

81

• (M1M2)[x := N] →S M1[x := N]M2 with x /∈ fv(M2) and A = F : Then
there exist Γ1, Γ2, Γ3, U , A1, B, n1, n2, and n3 such that: Γ1, x : U `n1

M1 : B → F Γ2, x : ω `n2 M2 : B, Γ3 `n3 N : A1, n = n1 + n2 + n3,
Γ = (Γ1 ∩ Γ2) ∩ Γ3, U = A1 or U = ω. Hence (Γ1 ∩ Γ3) ∩ Γ2 `n1+n3+n2

M1[x := N]M2 : F .

• (M1M2)[x := N]→S M1M2[x := N] with x /∈ fv(M1), x ∈ fv(M2) and A =
F : Then there exist Γ1, Γ2, Γ3, A1, B, n1, n2 and n3 such that Γ1, x : ω `n1

M1 : B → F , Γ2, x : A1 `n2 M2 : F , Γ3 `n3 N : A1, n = n1 + n2 + n3,
Γ = (Γ1 ∩ Γ2) ∩ Γ3, Hence Γ1 ∩ (Γ2 ∩ Γ3) `n1+n2+n3 M1M2[x := N] : F .

• For M [x := N1][y := N2] ≡ M [y := N2][x := N1] with x 6= y, x /∈ fv(N2),
y /∈ fv(N1) and A = F : There exist Γ1, Γ2, n1, n2, U and B such that
Γ = Γ1 ∩ Γ2, n = n1 + n2, U = B or U = ω, Γ1, y : U `n1 M [x := N1] : F
and Γ2 `n2 N2 : B. Therefore, there exist Γ3, Γ4, n3, n4, V and C such that
Γ1, y : U = Γ3 ∩ Γ4, n1 = n3 + n4, V = C or V = ω, Γ3, x : V `n3 M : F
and Γ4 `n4 N1 : C. By the fact that y /∈ fv(N1) and by Lemma 16.2, we
have Γ4 = Γ4, x : ω. Hence, there exists Γ5 such that Γ3 = Γ5, x : U and
Γ1 = Γ5 ∩ Γ4. So, Γ5, y : U, x : V `n3 M : F . Hence, (Γ5, x : V) ∩ Γ2 `n3+n2

M [y := N2] : F . By the fact that x /∈ fv(N2) and by Lemma 16, Γ2 = Γ2, x :
ω. Hence, (Γ5, x : V)∩Γ2 = Γ5∩Γ2, x : V . Therefore, (Γ5 ∩ Γ2)Γ4 `n3+n2+n4

M [y := N2][x := N1] : F with n3 + n2 + n4 = n and (Γ5 ∩ Γ2) ∩ Γ4 ≈ Γ.

• The other rules follow the same patterns, especially for the propagation of
an explicit substitution over another explicit substitution. Now concerning
the congruent closure of the rules, all cases are straightforward but for the
following one:

• M [x := N] →W M ′[x := N] with M →W M ′, x ∈ fv(M), x ∈ fv(M ′) and
A = F : Then there exist Γ1, Γ2, B, n1, n2 such that: Γ1, x : B `n1 M : F and
Γ2 `n2 N : B, n = n1 + n2 and Γ = Γ1 ∩ Γ2. By induction hypothesis, there
exist Γ′1, C and n′1 such that Γ1 ⊆ Γ′1, B ⊆ C, n′1 ≤ n1 and Γ′1, x : C `n′

1 M ′ :
A. Then there exist Γ′2 and n′2 such that Γ2 ⊆ Γ′2, n′2 ≤ n2 and Γ′2 `n

′
2 N : C.

Hence Γ′1 ∩ Γ′2 `n
′
1+n

′
2 M ′[x := N] : F with n′1 + n′2 ≤ n and Γ ⊆ Γ′1 ∩ Γ′2.

Lemma 20 (Most inefficient reduction).
Assume Γ `nopt M : A. If M can be reduced by →B and not by →S, then there

exist M ′ and Γ′ such that Γ ≈ Γ′, M →B M ′ and Γ′ `n−1opt M ′ : A.

Lemma 22 (Shape of a normal form).
If M cannot be reduced by →β, then

• either we have acc(M),

• or M is of the form λx.M1.

Proof. By induction on M .

• If M is of the form λx.M1, then we can conclude.

• If M is a variable x, then we have acc(M).

• If M is of the form M1M2: Then, M1 cannot be reduced by→β . By induction
hypothesis on M1, either we have acc(M1) or M1 is of the form λx.M3.

– If acc(M1), then acc(M1M2).

– If M1 is of the form λx.M3, then M →β M3{x := M2}. Contradiction.

82

Lemma 23 (Applicability of ⇒h). If M can be reduced by →β, then M can be
reduced by ⇒h.

Proof. We prove by induction on M that if M can be reduced by →β then:

• If M is of the form λx.M1, then there exists M ′ such that M ⇒h M
′.

• If not, then there exists M ′ such M h M
′.

Therefore, in both cases there exists M ′ such that M ⇒h M
′.

• If M is a variable, then M cannot be reduced by →β . Contradiction.

• If M is of the form λx.M1: Then, M1 can be reduced by →β . By induction
hypothesis, there exists M ′1 such that M1 ⇒h M

′
1. Therefore, M ⇒h λx.M

′
1.

• If M is of the form M1M2: Therefore, we are in one of the following cases:

– M1 is of the form λx.M3 and x ∈ fv(M3): Therefore, M h M3{x :=
M2}.

– M1 is of the form λx.M3, x /∈ fv(M3) and M2 can be reduced by→β : By
induction hypothesis, there exist M ′2 such that M2 ⇒h M

′
2. Therefore

M h (λx.M3)M ′2.

– M1 is of the form λx.M3, x /∈ fv(M3) and M2 cannot be reduced by→β :
Then, M h M3.

– M1 is not of the form λx.M3 and M1 can be reduced by→β : By induction
hypothesis, there exist M ′1 such that M1 h M ′1. Therefore, M h

M ′1M2.

– M1 is not of the form λx.M3 and M1 cannot be reduced by →β : By
the fact that M1 is not of the form λx.M3, M2 can be reduced by →β .
By induction hypothesis, there exist M ′2 such that M2 ⇒h M ′2. By
Lemma 22, we have acc(M1). Therefore, M h M1M

′
2.

Lemma 24 (Structure of a normal term). M cannot be reduced by →β if and only
if struct(M) is well-defined. Moreover, if we have acc(M), then struct(M) is of the
form k.

Proof. By induction on M .

• If M is of the form x: x cannot be reduced by →β , struct(x) is well-defined
and struct(x) = O which is of the form k.

• If M is of the form λx.M1:

– If λx.M1 cannot be reduced by →β : Then, M1 cannot be reduced by
→β . By induction hypothesis, struct(M1) is well-defined. Therefore,
struct(λx.M1) is well-defined and we do not have acc(λx.M1).

– If struct(λx.M1) is well-defined: Then, struct(M1) is well-defined. By
induction hypothesis, M1 cannot be reduced by →β . Therefore, λx.M1

cannot be reduced by →β .

• If M is of the form M1M2:

– If M1M2 cannot be reduced by→β : Then, M1 and M2 cannot be reduced
by →β . By induction hypothesis, struct(M1) and struct(M2) are well-
defined. By Lemma 22, we have acc(M1) or M1 is of the form λx.M3. If
M1 is of the form λx.M3, then M1M2 →β M3{x := M2}. Contradiction.
Hence, we have acc(M1). By induction hypothesis, struct(M1) is of the
form k. Therefore, struct(M1M2) is well-defined and struct(M1M2) =
struct(M1)struct(M2) which is of the form k′.

83

– If struct(M1M2) is well-defined: Then, struct(M1) and struct(M2) are
well-defined, and struct(M1) is of the form k. By induction hypothesis,
M1 and M2 cannot be reduced by →β . If M1 is of the form λx.M3, then
struct(M1) = λstruct(M3) which is not of the form k. Contradiction.
Hence, M1 is not of the form λx.M3. Therefore, M1M2 cannot be reduced
by →β .

Lemma 29 (Substitution lemma).
If Γ, x : U `n M : A and ∆ `m N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆

and Γ′ `n+m M{x := N} : A.

Proof. By induction on Γ, x : U `n M : A.

• For
x : F `0 x : F

with Γ = (), n = 0, M = x, U = F and A = F : We

have x{x := N} = N . By hypothesis, ∆ `m N : U . Therefore, ∆ `m
M{x := N} : F with n+m = m and Γ ∩∆ = () ∩∆ = ∆.

• For
y : F `0 y : F

with y 6= x, Γ = (y : F), n = 0, M = y, U = ω, and

A = F : By hypothesis, ∆ `m N : ω. Hence, ∆ = () and m = 0. We have
y{x := N} = y. Therefore, y : F `0 M{x := N} : F with n + m = 0 and
Γ ∩∆ = (y : F) ∩ () = (y : F).

• For
Γ1, x : U1 `n1 M : A1 Γ2, x : U2 `n2 M : A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2 M : A1 ∩A2

with Γ = Γ1∩Γ2, n = n1 +

n2, U = U1 ∩ U2 and A = A1 ∩ A2: By hypothesis, ∆ `m N : U1 ∩ U2. By
Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1∩∆2, m = m1+
m2, ∆1 `m1 N : U1 and ∆2 `m2 N : U2. By induction hypothesis, there exist
Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩∆1, Γ′2 ≈ Γ2 ∩∆2, Γ′1 `n1+m1 M{x := N} :
A1 and Γ′2 `n2+m2 M{x := N} : A2. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2

M{x := N} : A1 ∩A2 with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩
(∆1 ∩∆2) = Γ ∩∆ and n1 +m1 + n2 +m2 = n+m.

• For
Γ, x : U, y : V `n M1 : F B ⊆ V

Γ, x : U `n λy.M1 : B → F
with M = λy.M1, x 6= y, y /∈ fv(N)

and A = B → F . We have (λy.M1){x := N} = λy.M1{x := N}. By
induction hypothesis, there exists Γ′ such that Γ′ ≈ (Γ, y : V)∩∆ and Γ′ `n+m
M1{y := N} : F . By Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆)
and (Γ, y : V) ∩ ∆ = (Γ ∩ ∆, y : V). There exist a unique Γ′′ and a unique
V ′ such that (Γ′′, y : V ′) = Γ′. Therefore, Γ′′ ≈ Γ ∩∆ and V ≈ V ′. Hence,
B ⊆ V ′. Therefore, Γ′′ `n+m λy.M1{x := N} : B → F .

• For
Γ, x : U, y : V `n M1 : [v] input(V)

Γ, x : U `n λy.M1 : [λv]
with M = λy.M1, y /∈ fv(N), A =

[λv] and y 6= x: We have (λy.M1){x := N} = λy.M1{x := N}. By
induction hypothesis, there exists Γ′ such that Γ′ ≈ (Γ, y : V)∩∆ and Γ′ `n+m
M1{x := N} : [v]. By Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈
Dom(∆) and (Γ, y : V) ∩∆ = (Γ ∩∆, y : V). There exist a unique Γ′′ and a
unique V ′ such that (Γ′′, y : V ′) = Γ′. Therefore, Γ′′ ≈ Γ∩∆ and V ≈ V ′. By
Lemma 25.10, we have input(V ′). Therefore, Γ′′ `n+m λy.M1{x := N} : [λv].

• For
Γ1, x : U1 `n1 M1 : B → F Γ2, x : U2 `n2 M2 : B

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1 M1M2 : F
with Γ = Γ1∩Γ2, n =

n1 + n2 + 1, U = U1 ∩ U2, M = M1M2 and A = F : We have (M1M2){x :=
N} = M1{x := N}M2{x := N}. By hypothesis, ∆ `m N : U1 ∩ U2.

84

By Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2,
m = m1 + m2, ∆1 `m1 N : U1 and ∆2 `m2 N : U2. By induction hy-
pothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1, Γ′2 ≈ Γ2 ∩ ∆2,
Γ′1 `n1+m1 M1{x := N} : B → F and Γ′2 `n2+m2 M2{x := N} : B. There-
fore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2+1 M1M2 : F with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩
∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆ and n1 +m1 + n2 +m2 + 1 = n+m.

• For
Γ1, x : U1 `n1 M1 : [k] Γ2, x : U2 `n2 M2 : [v]

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2 M1M2 : [kv]
with Γ = Γ1 ∩ Γ2, n =

n1 + n2, U = U1 ∩ U2, M = M1M2 and A = [kv]: We have (M1M2){x :=
N} = M1{x := N}M2{x := N}. By hypothesis, ∆ `m N : U1 ∩ U2. By
Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1∩∆2, m = m1+
m2, ∆1 `m1 N : U1 and ∆2 `m2 N : U2. By induction hypothesis, there exist
Γ′1 and Γ′2 such that Γ′1 ≈ Γ1∩∆1, Γ′2 ≈ Γ2∩∆2, Γ′1 `n1+m1 M1{x := N} : [k]
and Γ′2 `n2+m2 M2{x := N} : [v]. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2 M1M2 :
[kv] with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆
and n1 +m1 + n2 +m2 = n+m.

Theorem 14 (Subject Reduction).
If Γ `n M : A and M →β M ′, then there exist Γ′ and n′ such that Γ ⊆ Γ′,

n > n′ and Γ′ `n′
M ′ : A.

Proof. First by induction on M →β M
′, then by induction on A.

• If A is of the form A1 ∩ A2: Then, there exist Γ1, Γ2, n1 and n2 such that
Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 M : A1 and Γ2 `n2 M : A2. By induction
hypothesis on (M →β M

′, A1) and (M →β M
′, A2), there exist Γ′1, Γ′2, n′1

and n′2 such that Γ1 ⊆ Γ′1, Γ2 ⊆ Γ′2, n1 > n′1, n2 > n′2, Γ′1 `n
′
1 M ′ : A1 and

Γ′2 `n
′
2 M ′ : A2. Therefore, Γ′1 ∩ Γ′2 `n

′
1+n

′
2 M ′ : A1 ∩A2 with Γ = Γ1 ∩ Γ2 ⊆

Γ′1 ∩ Γ′2 and n = n1 + n2 > n′1 + n′2.

• For (λx.M1)M2 →β M1{x := M2} with M = (λx.M1)M2 and A is of the

form F :

Then, we are in one of the following cases:

– There exist Γ1, Γ2, v and k such that Γ = Γ1 ∩ Γ2, Γ1 ` λx.M1 : [k],
Γ2 ` M2 : [v] and F = [kv]. An abstraction λx.M1 cannot have [k] as a
type (it is either an arrow B → G or of the form [λv1]). Contradiction.

– There exist Γ1, Γ2, n1, n2, B such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1,
Γ1 `n1 λx.M1 : B → F and Γ2 `n2 M2 : B: Then, there exists U such
that B ⊆ U and Γ1, x : U `n1 M1 : F . By Lemma 28.3, there exist Γ′2
and n′2 such that Γ2 ⊆ Γ′2, n2 ≥ n′2 and Γ′2 `n

′
2 M2 : U . By Lemma 29,

there exists Γ′ such that Γ′ ≈ Γ1 ∩ Γ′2 and Γ′ `n1+n
′
2 M1{x := M2} : F

with Γ = Γ1∩Γ2 ⊆ Γ1∩Γ′2 ≈ Γ′ and n = n1+n2+1 > n1+n2 ≥ n1+n′2.

• For
M1 →β M

′
1

λx.M1 →β λx.M
′
1

with M = λx.M1 and A is of the form F , we are in

one of the following cases:

– There exist B, G and U such that F = B → G, B ⊆ U and Γ, x : U `n
M1 : G. By induction hypothesis, there exists Γ′1 and n′ such that
(Γ, x : U) ⊆ Γ′1, n > n′ and Γ′1 `n

′
M ′1 : G. There exist a unique Γ′ and

a unique U ′ such that Γ′1 = (Γ′, x : U ′). Therefore, Γ ⊆ Γ′ and U ⊆ U ′.
Hence, B ⊆ U ′. Therefore Γ′ `n′

λx.M ′1 : B → G.

85

– There exist U and v such that input(U), F = [λv] and Γ, x : U `n M1 :
[v]. By induction hypothesis, there exist Γ′1 and n′ such that (Γ, x : U) ⊆
Γ′1, n > n′ and Γ′1 `n

′
M ′1 : [v]. There exist a unique Γ′ and a unique U ′

such that Γ′1 = (Γ′, x : U ′). Therefore, Γ ⊆ Γ′ and U ⊆ U ′. Hence, by
Lemma 26.5, we have input(U ′). Therefore, Γ′ `n′

λx.M ′1 : [λv].

• For
M1 →β M

′
1

M1M2 →β M
′
1M2

with M = M1M2 and A is of the form F , we are in

one of the following cases:

– There exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1∩Γ2, n = n1 +n2 + 1,
Γ1 `n1 M1 : B → F and Γ2 `n2 M2 : B. By induction hypothesis, there
exist Γ′1 and n′1 such that Γ1 ⊆ Γ′1, n1 > n′1 and Γ′1 `n

′
1 M ′1 : B → F .

Therefore, Γ′1 ∩ Γ2 `n
′
1+n2+1 M ′1M2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 and

n = n1 + n2 + 1 > n′1 + n2 + 1.

– There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
F = [kv], Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By induction hypothesis,
there exist Γ′1 and n′1 such that Γ1 ⊆ Γ′1, n1 > n′1 and Γ′1 `n

′
1 M ′1 : [k].

Therefore Γ′1 ∩ Γ2 `n
′
1+n2 M ′1M2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 and

n = n1 + n2 > n′1 + n2.

• For
M2 →β M

′
2

M1M2 →β M1M
′
2

with M = M1M2 and A is of the form F , we are in

one of the following cases:

– There exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1∩Γ2, n = n1 +n2 + 1,
Γ1 `n1 M1 : B → F and Γ2 `n2 M2 : B. By induction hypothesis,
there exist Γ′2 and n′2 such that Γ2 ⊆ Γ′2, n2 > n′2 and Γ′2 `n

′
2 M ′2 : B.

Therefore, Γ1 ∩ Γ′2 `n1+n
′
2+1 M1M

′
2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 and

n = n1 + n2 + 1 > n1 + n′2 + 1.

– There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
F = [kv], Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By induction hypothesis,
there exist Γ′2 and n′2 such that Γ2 ⊆ Γ′2, n2 > n′2 and Γ′2 `n

′
2 M ′2 : [v].

Therefore, Γ1 ∩ Γ′2 `n1+n
′
2 M1M

′
2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 and

n = n1 + n2 > n1 + n′2.

Lemma 30 (Anti-substitution lemma).
If Γ `ns M{x := N} : A, then there exist Γ′, ∆ and U such that:

• Γ ≈ Γ′ ∩∆.

• Γ′, x : U `ns M : A and ∆ `ns N : U .

• For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. First by induction on M , then by induction on A.

• If A is of the form A1 ∩ A2: Then, there exist Γ1 and Γ2 such that Γ =
Γ1 ∩ Γ2, Γ1 `ns M{x := N} : A1 and Γ2 `ns M{x := N} : A2. By induction
hypothesis on (M,A1) and (M,A2), there exist Γ′1, Γ′2, ∆1, ∆2, U1 and U2

such that:

– Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.

– Γ′1, x : U1 `ns M : A1, Γ′2, x : U2 `ns M : A2, ∆1 `ns N : U1 and
∆2 `ns N : U2.

– For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).

86

– For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:

– Γ = Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).

– We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M : A1 ∩A2 and, by Lemma 28.1,
∆1 ∩∆2 `ns N : U1 ∩ U2.

– Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).
Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) =
(Γ′1 ∩ Γ′2)(y).

• If M = x and A is of the form F : Then, M{x := N} = N . Therefore, with
Γ′ = (), ∆ = Γ and U = F :

– Γ = () ∩ Γ.

– We have x : F `ns x : F and Γ `ns N : F .

– Assume y /∈ Dom(Γ). Therefore, Γ(y) = ω = ()(y).

• If M is of the form y with y 6= x and A if of the form F : We have M{x :=
N} = y = M . Hence, Γ = (y : F). Therefore, with Γ′ = (y : F), ∆ = () and
U = ω:

– (y : F) = (y : F) ∩ ().

– We have y : F, x : ω `ns M : F and, by the rule (ω), `ns N : ω.

– Assume z /∈ Dom(()). Therefore, Γ(z) = (y : F)(z).

• If M is of the form λy.M1 with y 6= x and y /∈ fv(N), and A is of the form
B → F . We have (λy.M1){x := N} = λy.M1{x := N}. Therefore, there
exists V such that Γ, y : V `ns M1{x := N} : F and V = B or V = ω and
output(B). By induction hypothesis, there exist Γ′, ∆ and U such that:

– (Γ, y : V) ≈ Γ′ ∩∆.

– We have Γ′, x : U `ns M1 : F and ∆ `ns N : U .

– For all z /∈ Dom(∆), (Γ, y : V)(z) = Γ′(z).

There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) = Γ′. By
Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆). Hence, (Γ′′, y :
V ′) ∩∆ = (Γ′′ ∩∆, y : V ′). Therefore, (Γ, y : V) ≈ Γ′ ∩∆ = (Γ′′ ∩∆, y : V ′).
Hence, Γ ≈ Γ′′ ∩ ∆ and V ≈ V ′. By the fact that y /∈ Dom(∆), we have
V = (Γ, y : V)(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′. Therefore:

– We have Γ ≈ Γ′′ ∩∆.

– We have Γ′′, y : V, x : U `ns M1 : F and ∆ `ns N : U . Therefore,
Γ′′, x : U `ns λy.M1 : B → F .

– Assume z /∈ Dom(∆). Then, Γ(z) ≈ Γ′′(z) ∩∆(z) = Γ′′(z) ∩ ω = Γ′′(z).

If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(z) = (Γ, y : V)(z) = Γ′(z) =
(Γ′′, y : V)(z) = Γ′′(z).

If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

• If M is of the form λy.M1 with y 6= x and y /∈ fv(N), and A is of the form
[λv]. We have (λy.M1){x := N} = λy.M1{x := N}. Therefore, there exist
V and F such that Γ, y : V `ns M1{x := N} : [v] and input(V). By induction
hypothesis, there exist Γ′, ∆ and U such that:

– (Γ, y : V) ≈ Γ′ ∩∆.

– We have Γ′, x : U `ns M1 : [v] and ∆ `ns N : U .

– For all z /∈ Dom(∆), (Γ, y : V)(z) = Γ′(z).

There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) = Γ′. By
Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆). Hence, (Γ′′, y :
V ′) ∩∆ = (Γ′′ ∩∆, y : V ′). Therefore, (Γ, y : V) ≈ Γ′ ∩∆ = (Γ′′ ∩∆, y : V ′).

87

Hence, Γ ≈ Γ′′ ∩ ∆ and V ≈ V ′. By the fact that y /∈ Dom(∆), we have
V = (Γ, y : V)(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′. Therefore:

– We have Γ ≈ Γ′′ ∩∆.

– We have Γ′′, y : V, x : U `ns M1 : [v] and ∆ `ns N : U . Therefore,
Γ′′, x : U `ns λy.M1 : [λv].

– Assume z /∈ Dom(∆). Then, Γ(z) ≈ Γ′′(z) ∩∆(z) = Γ′′(z) ∩ ω = Γ′′(z).

If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(z) = (Γ, y : V)(z) = Γ′(z) =
(Γ′′, y : V)(z) = Γ′′(z).

If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

• If M is of the form M1M2 and A is of the form F : We have (M1M2){x :=
N} = M1{x := N}M2{x := N}. We are in one of the following cases:

– There exist Γ1, Γ2 and B such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1{x := N} :
B → F and Γ2 `ns M2{x := N} : B. By induction hypothesis, there
exist Γ′1, Γ′2, ∆1, ∆2, U1 and U2 such that:
∗ Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.
∗ We have Γ′1, x : U1 `ns M1 : B → F , Γ′2, x : U2 `ns M2 : B, ∆1 `ns
N : U1 and ∆2 `ns N : U2.

∗ For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
∗ For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:
∗ Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).
∗ We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M1M2 : F and, by Lemma 28.1,

∆1 ∩∆2 `ns N : U1 ∩ U2.
∗ Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).

Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) =
(Γ′1 ∩ Γ′2)(y).

– There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns
M1{x := N} : [k] and Γ2 `ns M2{x := N} : [v]. By induction hypothe-
sis, there exist Γ′1, Γ′2, ∆1, ∆2, U1 and U2 such that:
∗ Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.
∗ We have Γ′1, x : U1 `ns M1 : [k], Γ′2, x : U2 `ns M2 : [v], ∆1 `ns N :
U1 and ∆2 `ns N : U2.

∗ For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
∗ For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:
∗ Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).
∗ We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M1M2 : [kv] and, by Lemma 28.1,

∆1 ∩∆2 `ns N : U1 ∩ U2.
∗ Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).

Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) =
(Γ′1 ∩ Γ′2)(y).

Lemma 31 (Typing accumulators).
If Γ ` M : F , input(Γ) and acc(M), then F is of the form [k].

Proof. By induction on acc(M).

• For acc(x) with M = x: Then, Γ = (x : F). Hence, input(F). Therefore,

F = [O] which is of the form [k].

88

• For
acc(M1)

acc(M1M2)
with M = M1M2: Then, we are in one of the following cases:

– There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 ` M1 : A→ F
and Γ2 ` M2 : A. By Lemma 27.10, we have input(Γ1). By induction
hypothesis, A→ F is of the form [k]. Contradiction.

– There exist Γ1, Γ2, k and v such that Γ = Γ1∩Γ2, F = [kv], Γ1 ` M1 : [k]
and Γ2 ` M2 : [v]. Then, we can conclude.

Lemma 32 (Typing normal forms).
If M cannot be reduced by →β, then there exist Γ and v such that Γ `opt M : [v].

Proof. By induction on M .
By Lemma 22, either M is of the form λx.M1 or we have acc(M). Hence, we

are in one of the following cases:

• M is of the form λx.M1: By induction hypothesis, there exist Γ and v such that
Γ `opt M1 : [v]. Therefore, Γ `ns M1 : [v] and input(Γ). There exist a unique
Γ1 and a unique U such that Γ = (Γ1, x : U). Hence, input(Γ1) and input(U).
Then, Γ1 `ns λx.M1 : [λv] with input(Γ1). Therefore, Γ1 `opt M : [λv].

• M is a variable x: Then, x : [O] `opt M : [O].

• M is of the form M1M2 with acc(M1): Then, M1 and M2 cannot be reduced
by →β . By induction hypothesis, there exist Γ1, Γ2, v1 and v2 such that
Γ1 `opt M1 : [v1] and Γ2 `opt M2 : [v2]. Therefore, Γ1 `ns M1 : [v1],
Γ2 `ns M2 : [v2], input(Γ1) and input(Γ2). By Lemma 31, v1 if of the form k1.
By Lemma 27.11, we have input(Γ1 ∩ Γ2). Hence, Γ1 ∩ Γ2 `ns M1M2 : [k1v2]
with input(Γ1 ∩ Γ2). Therefore, Γ1 ∩ Γ2 `opt M : [k1v2].

Theorem 16 (Subject Expansion).
If Γ′ `opt M ′ : F and M ⇒h M ′, then there exists Γ such that Γ ⊆ Γ′ and

Γ `opt M : F .

Proof. We prove by induction on M ⇒h M
′ and M h M

′ that if Γ′ `ns M : F
and input(Γ′), and if we are in one of the following cases:

• We have M h M
′

• We have M ⇒h M
′ and output(F).

Then, there exists Γ such that Γ ⊆ Γ′, input(Γ), and Γ `ns M : F .

• For
x ∈ fv(M1)

(λx.M1)M2 h M1{x := M2}
withM ′ = M1{x := M2}: By Lemma 30,

there exist Γ1, Γ2 and U such that Γ′ ≈ Γ1 ∩ Γ2, Γ1, x : U `ns M1 : F
and Γ2 `ns M2 : U . By Lemma 28.4, U is of the form A. Therefore,
Γ1 `ns λx.M1 : A→ F . Hence, Γ1 ∩ Γ2 `ns (λx.M1)M2 : F with Γ1 ∩Γ2 ⊆ Γ′

and, by Lemma 27.10, input(Γ1 ∩ Γ2) (because Γ′ ⊆ Γ1 ∩ Γ2).

• For
x /∈ fv(M1) M2 ⇒h M

′
2

(λx.M1)M2 h (λx.M1)M ′2
with M ′ = (λx.M1)M ′2: Then, we are in one

of the following cases:

89

– There exist Γ1, Γ′2 and A such that Γ′ = Γ1 ∩ Γ′2, Γ1 `ns λx.M1 :
A→ F and Γ′2 `ns M ′2 : A. Therefore, by the fact that there are no
subsumptions, there exists U such that Γ1, x : U `ns M1 : F and we have
either U = A or U = ω and output(A). If U = A then, by Lemma 28.4,
x ∈ fv(M1): contradiction. Hence, U = ω and output(A). Therefore, A
is of the form G. By Lemma 27.10, we have input(Γ1) and input(Γ′2). By
induction hypothesis, there exists Γ2 such that input(Γ2), Γ2 ⊆ Γ′2 and
Γ2 `ns M2 : G. By Lemma 27.11, input(Γ1 ∩ Γ2). Therefore, Γ1 ∩ Γ2 `ns
(λx.M1)M2 : F with Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 = Γ′ and input(Γ1 ∩ Γ2).

– There exist Γ1, Γ2, k and v such that Γ′ = Γ1 ∩ Γ2, Γ1 `ns λx.M1 : [k]
and Γ2 `ns M ′2 : [v]. An abstraction λx.M1 cannot have [k] as a type (it
is either an arrow A→ G or of the form [λv1]). Contradiction.

• For
x /∈ fv(M1) M2 cannot be reduced by →β

(λx.M1)M2 h M1

withM ′ = M1: By Lemma 28.4,

x /∈ Dom(Γ′). Hence, Γ′ = (Γ′, x : ω). By Lemma 32, there exist Γ2 and G
such that Γ2 `opt M2 : G. Hence, input(Γ2), output(G) and Γ2 `ns M2 : G.
Therefore, Γ′ `ns λx.M1 : G→ F . By Lemma 27.11, we have input(Γ′ ∩ Γ2).
Therefore, Γ′ ∩ Γ2 `ns (λx.M1)M2 : F with Γ′ ∩ Γ2 ⊆ Γ′ and input(Γ′ ∩ Γ2).

• For
M1 h M

′
1

M1M2 h M
′
1M2

with M ′ = M ′1M2, we are in one of the following cases:

– There exist Γ′1, Γ2 and A such that Γ′ = Γ′1 ∩ Γ2, Γ′1 `ns M ′1 : A→ F
and Γ2 `ns M2 : A: Then, by Lemma 27.10, input(Γ′1) and input(Γ2).
By induction hypothesis, there exists Γ1 such that Γ1 ⊆ Γ′1, input(Γ1)
and Γ1 `ns M1 : A→ F . By Lemma 27.11, input(Γ1 ∩ Γ2). Therefore,
Γ1 ∩ Γ2 `ns M1M2 : F with Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 = Γ′ and input(Γ1 ∩ Γ2).

– There exist Γ′1, Γ2, k and v such that Γ′ = Γ′1∩Γ2, F = [kv], Γ′1 `ns M ′1 :
[k] and Γ2 `ns M2 : [v]: Then, by Lemma 27.10, input(Γ′1) and input(Γ2).
By induction hypothesis, there exists Γ1 such that Γ1 ⊆ Γ′1, input(Γ1)
and Γ1 `ns M1 : [k]. By Lemma 27.11, input(Γ1 ∩ Γ2). Therefore,
Γ1 ∩ Γ2 `ns M1M2 : [kv] with Γ1∩Γ2 ⊆ Γ′1∩Γ2 = Γ′ and input(Γ1 ∩ Γ2).

• For
acc(M1) M2 ⇒h M

′
2

M1M2 h M1M
′
2

with M ′ = M1M
′
2, we are in one of the two fol-

lowing cases:

– There exist Γ1, Γ2 and A such that Γ′ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ F
and Γ2 `ns M ′2 : A. By Lemma 27.10, input(Γ1). By Lemma 31, A→ F
is of the form [k]. Contradiction.

– There exist Γ1, Γ′2, k and v such that Γ′ = Γ1 ∩ Γ′2, F = [kv], Γ1 `ns
M1 : [k] and Γ′2 `ns M ′2 : [v]. By Lemma 27.10, input(Γ1) and input(Γ′2).
By induction hypothesis, there exists Γ2 such that Γ2 ⊆ Γ′2, input(Γ2)
and Γ2 `ns M2 : [v]. By Lemma 27.11, input(Γ1 ∩ Γ2). Therefore,
Γ1 ∩ Γ2 `ns M1M2 : [kv] with Γ1∩Γ2 ⊆ Γ1∩Γ′2 = Γ′ and input(Γ1 ∩ Γ′2).

• For
M h M

′

M ⇒h M
′

: Trivial.

• For
M1 ⇒h M

′
1

λx.M1 ⇒h λx.M
′
1

with M ′ = λx.M ′1 and output(F): We have output(F),

so F is not an arrow A → G. Therefore, there exist U ′ and v such that
F = [λv], input(U ′) and Γ′, x : U ′ `ns M ′1 : [v]. Hence, input(Γ′, x : U ′). By
induction hypothesis, there exists Γ1 such that Γ1 ⊆ (Γ′, x : U ′), input(Γ1)
and Γ1 `ns M1 : [v]. There exist an unique Γ and a unique U such that

90

Γ1 = (Γ, x : U). Therefore, Γ ⊆ Γ′, U ⊆ U ′, input(Γ) and input(U). Hence,
Γ `ns λx.M1 : [λv] with input(Γ).

Lemma 33 (Refined Substitution Lemma).
If Γ, x : U `nns M : A and ∆ `mns N : U , then there exists Γ′ such that:

• Γ′ ≈ Γ ∩∆.

• Γ′ `n+mns M{x := N} : A.

• For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. By induction on Γ, x : U `ns M : A.

• For x : F `0ns x : F with Γ = (), n = 0, U = F , M = x and A = F : We have

M{x := N} = N . Therefore, with Γ′ = ∆:

– ∆ = () ∩∆.

– ∆ `mns M{x := N} : F and n+m = m.

– Assume y /∈ Dom(∆). Then, ∆(y) = ω = ()(y).

• For y : F `0ns y : F with x 6= y, Γ = (y : F), n = 0, U = ω, M = y and

A = F : We have M{x := N} = y = M . By hypothesis, ∆ `mns N : ω. Hence,
m = 0 and ∆ = (). Therefore, with Γ′ = Γ = (y : F):

– (y : F) = Γ = Γ ∩ ().

– y : F `0ns M{x := N} : F and n+m = 0.

– Assume z /∈ Dom(()). Then, (y : F)(z) = Γ(z).

• For
Γ1, x : U1 `n1

ns M : A1 Γ2, x : U2 `n2
ns M : A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2
ns M : A1 ∩A2

with Γ = Γ1∩Γ2, n = n1 +

n2, U = U1 ∩ U2 and A = A1 ∩ A2. By hypothesis, ∆ `mns N : U1 ∩ U2.
By Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2,
m = m1 +m2, ∆1 `m1

ns N : U1 and ∆2 `m2
ns N : U2. By induction hypothesis,

there exist Γ′1 and Γ′2 such that:

– Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.

– Γ′1 `n1+m1
ns M{x := N} : A1 and Γ′2 `n2+m2

ns M{x := N} : A2.

– For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).

– For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:

– Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.

– We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2
ns M{x := N} : A1 ∩A2 and n + m =

n1 +m1 + n2 +m2.

– Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈
Dom(∆2). Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩
Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

• For
Γ, x : U, y : V `nns M1 : F

Γ, x : U `nns λy.M1 : B → F
with M = λy.M1, y /∈ fv(N), y 6= x, A =

B → F and V = B or V = ω and output(B). We have (λy.M1){x := N} =
λy.M1{x := N}. By induction hypothesis, there exist Γ′ such that:

– Γ′ ≈ (Γ, y : V) ∩∆.

– Γ′ `n+mns M1{x := N} : F .

– For all z /∈ Dom(∆), (Γ, y : V)(z) = Γ′(z).

91

By Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y :
V) ∩∆ = (Γ ∩∆, y : V). There exist a unique Γ′′ and a unique V ′ such that
Γ′ = (Γ′′, y : V ′). Hence, (Γ′′, y : V ′) ≈ (Γ, y : V) ∩ ∆ = (Γ ∩ ∆, y : V).
Therefore, Γ′′ ≈ Γ ∩ ∆ and V ′ ≈ V . We have y /∈ Dom(∆), so V = (Γ, y :
V)(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′. Therefore:

– Γ′′ ≈ Γ ∩∆.

– We have Γ′′, y : V `n+mns M1{x := N} : F . Therefore, Γ′′ `n+mns λy.M1{x := N} :
B → F .

– Assume z /∈ Dom(∆). Then, Γ′′(z) ≈ (Γ ∩ ∆)(z) = Γ(z) ∩ ∆(z) =
Γ(z) ∩ ω = Γ(z).

If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(y) = (Γ, y : V)(z) = Γ′(z) =
(Γ′′, y : V)(z) = Γ′′(z).

If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

• For
Γ, x : U, y : V `nns M1 : [v] input(V)

Γ, x : U `nns λy.M1 : [λv]
with M = λy.M1, y /∈ fv(N), y 6= x

and A = [λv]. We have (λy.M1){x := N} = λy.M1{x := N}. By induction
hypothesis, there exist Γ′ such that:

– Γ′ ≈ (Γ, y : V) ∩∆.

– Γ′ `n+mns M1{x := N} : [v].

– For all z /∈ Dom(∆), (Γ, y : V)(z) = Γ′(z).

By Lemma 28.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y :
V) ∩∆ = (Γ ∩∆, y : V). There exist a unique Γ′′ and a unique V ′ such that
Γ′ = (Γ′′, y : V ′). Hence, (Γ′′, y : V ′) ≈ (Γ, y : V) ∩ ∆ = (Γ ∩ ∆, y : V).
Therefore, Γ′′ ≈ Γ ∩ ∆ and V ′ ≈ V . We have y /∈ Dom(∆), so V = (Γ, y :
V)(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′. Therefore:

– Γ′′ ≈ Γ ∩∆.

– We have Γ′′, y : V `n+mns M1{x := N} : [v]. Therefore, Γ′′ `n+mns λy.M1{x := N} :
[λv].

– Assume z /∈ Dom(∆). Then, Γ′′(z) ≈ (Γ ∩ ∆)(z) = Γ(z) ∩ ∆(z) =
Γ(z) ∩ ω = Γ(z).

If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(y) = (Γ, y : V)(z) = Γ′(z) =
(Γ′′, y : V)(z) = Γ′′(z).

If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

• For
Γ1, x : U1 `n1

ns M1 : B → F Γ2, x : U2 `n2
ns M2 : B

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1
ns M1M2 : F

with Γ = Γ1∩Γ2, n =

n1 + n2 + 1, U = U1 ∩ U2, M = M1M2 and A = F . We have (M1M2){x :=
N} = M1{x := N}M2{x := N}. By hypothesis, ∆ `mns N : U1 ∩ U2.
By Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2,
m = m1 +m2, ∆1 `m1

ns N : U1 and ∆2 `m2
ns N : U2. By induction hypothesis,

there exist Γ′1 and Γ′2 such that:

– Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.

– Γ′1 `n1+m1
ns M1 : B → F and Γ′2 `n2+m2

ns M2 : B.

– For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).

– For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:

– Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.

– We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2+1
ns M1{x := N}M2{x := N} : F and

n+m = n1 +m1 + n2 +m2 + 1.

92

– Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈
Dom(∆2). Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩
Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

• For
Γ1, x : U1 `n1

ns M1 : [k] Γ2, x : U2 `n2
ns M2 : [v]

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2
ns M1M2 : [kv]

with Γ = Γ1 ∩ Γ2, n =

n1 + n2, U = U1 ∩ U2, M = M1M2 and A = [kv]. We have (M1M2){x :=
N} = M1{x := N}M2{x := N}. By hypothesis, ∆ `mns N : U1 ∩ U2.
By Lemma 28.1, there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2,
m = m1 +m2, ∆1 `m1

ns N : U1 and ∆2 `m2
ns N : U2. By induction hypothesis,

there exist Γ′1 and Γ′2 such that:

– Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.

– Γ′1 `n1+m1
ns M1 : [k] and Γ′2 `n2+m2

ns M2 : [v].

– For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).

– For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:

– Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.

– We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2
ns M1{x := N}M2{x := N} : [kv] and

n+m = n1 +m1 + n2 +m2.

– Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈
Dom(∆2). Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩
Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

Lemma 34 (Measure of normal forms).
If Γ `n M : F , M cannot be reduced by →β, input(Γ) and output(F), then

n = 0.

Proof. By induction on M : By Lemma 22, M is of the form λx.M1 or acc(M).
Therefore, we are in one of the following cases:

• M is of the form λx.M1: We have output(F), so F is not an arrow A → G.
Therefore, there exist U and G such that input(U), output(G) and Γ, x : U `n
M1 : G. Hence, input(Γ, x : U). By induction hypothesis, n = 0.

• M is a variable x: Then, n = 0.

• M is of the form M1M2 with acc(M1): Then, we are in one of the following
cases:

– There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 ` M1 : A→ F
and Γ2 ` M2 : A. By Lemma 27.10, we have input(Γ1). By Lemma 31,
A→ F is of the form [k]. Contradiction.

– There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
F = [kv], Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By Lemma 27.10,
input(Γ1) and input(Γ2). By induction hypothesis, n1 = 0 and n2 = 0.
Therefore n = 0.

Theorem 18 (Refined Subject Reduction).
If Γ `nopt M : F and M ⇒h M ′, then there exists Γ′ such that Γ ⊆ Γ′ and

Γ′ `n−1opt M ′ : F .

93

Proof. We prove by induction on M ⇒h M
′ and M h M

′ that if Γ `nns M : F ,
input(Γ), and if we are in one the following cases:

• We have M ⇒h M
′ and output(F).

• We have M h M
′.

Then, there exists Γ′ such that Γ ⊆ Γ′, Γ′ `n−1ns M ′ : F and then, by Lemma 27.10,
we have input(Γ′).

• For
x ∈ fv(M1)

(λx.M1)M2 h M1{x := M2}
with M = (λx.M1)M2, we are in one of

the following cases:

– There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩Γ2, n = n1 +n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1
ns M1 : F and U = A

or U = ω and output(A). By Lemma 28.4, if U = ω, then x /∈ fv(M1):
contradiction. Therefore, A = U . By Lemma 33, there exist Γ′ such that
Γ′ ≈ Γ1 ∩ Γ2 and Γ′ `n1+n2

ns M1{x := M2} : F with Γ ⊆ Γ′.

– There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns
λx.M1 : [k] and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as
a type (it is either an arrow A→ G or of the form [λv1]). Contradiction.

• For
x /∈ fv(M1) M2 ⇒h M

′
2

(λx.M1)M2 h (λx.M1)M ′2
with M = (λx.M1)M2, we are in one of the

following cases:

– There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩Γ2, n = n1 +n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1
ns M1 : F and U = A

or U = ω and output(A). By Lemma 28.4, if U = A, then x ∈ fv(M1):
contradiction. Therefore, U = ω and output(A). Hence, A is of the form
G. By Lemma 27.10, input(Γ1) and input(Γ2). By induction hypothesis,
there exists Γ′2 such that Γ2 ⊆ Γ′2 and Γ′2 `n2−1

ns M ′2 : G. Therefore,
Γ1 ∩ Γ′2 `n1+n2

ns (λx.M1)M ′2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2.

– There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns
λx.M1 : [k] and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as
a type (it is either an arrow A→ G or of the form [λv1]). Contradiction.

• For
x /∈ fv(M1) M2 cannot be reduced by →β

(λx.M1)M2 h M1

with M = (λx.M1)M2, we

are in one of the following cases:

– There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩Γ2, n = n1 +n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1 M1 : F and U = A
or U = ω and output(A). By Lemma 28.4, if U = A, then x ∈ fv(M1):
contradiction. Therefore, U = ω and output(A). Hence, A is of the form
G and Γ1 = (Γ1, x : U). By Lemma 27.10, input(Γ1) and input(Γ2). By
Lemma 34, n2 = 0. Therefore, Γ1 `n1+n2

ns M1 : F with Γ = Γ1∩Γ2 ⊆ Γ1.

– There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns
λx.M1 : [k] and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as
a type (it is either an arrow A→ G or of the form [λv1]). Contradiction.

• For
M1 h M

′
1

M1M2 h M
′
1M2

with M = M1M2, we are in one of the following cases:

– There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩Γ2, n = n1 +n2 + 1,
Γ1 `n1

ns M1 : A→ F and Γ2 `n2
ns M2 : A: By Lemma 27.10, input(Γ1) and

input(Γ2). By induction hypothesis, there exist Γ′1 such that Γ1 ⊆ Γ′1

94

and Γ′1 `n1−1 M ′1 : A→ F . Therefore, Γ′1 ∩ Γ2 `n1+n2
ns M ′1M2 : F with

Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2.

– There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
F = [kv], Γ1 `n1

ns M1 : [k] and Γ2 `n2
ns M2 : [v]: By Lemma 27.10,

input(Γ1) and input(Γ2). By induction hypothesis, there exists Γ′1 such
that Γ1 ⊆ Γ′1 and Γ′1 `n1−1

ns M ′1 : [k]. Therefore, Γ′1 ∩ Γ2 `n1+n2−1
ns

M ′1M2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2.

• For
acc(M1) M2 ⇒h M

′
2

M1M2 h M1M
′
2

, we are in one of the following cases:

– There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ F
and Γ2 `ns M2 : A. By Lemma 27.10, input(Γ1) and input(Γ2). By
Lemma 31, A→ F is of the form [k]. Contradiction.

– There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
F = [kv], Γ1 `n1

ns M1 : [k] and Γ2 `n2
ns M2 : [v]. By Lemma 27.10,

input(Γ1) and input(Γ2). By induction hypothesis, there exists Γ′2 such
that Γ2 ⊆ Γ′2 and Γ′2 `n2−1 M ′2 : [v]. Therefore, Γ1 ∩ Γ′2 `n1+n2−1

M1M
′
2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2.

• For
M h M

′

M ⇒h M
′

: Trivial.

• For
M1 ⇒h M

′
1

λx.M1 ⇒h λx.M
′
1

with M = λx.M1 and output(F): By the fact that we

have output(F), F is not an arrow A→ G. Therefore, there exist U and v such
that input(U), F = [λv] and Γ, x : U `nns M1 : [v]. Hence, input(Γ, x : U). By
induction hypothesis, there exists Γ1 such that (Γ, x : U) ⊆ Γ1 and Γ1 `n−1ns

M ′1 : [v]. There exist an unique Γ′ and a unique U ′ such that Γ1 = (Γ′, x : U ′).
Therefore, Γ ⊆ Γ′ and U ⊆ U ′. By Lemma 26.5, we have input(U ′). Hence,
Γ′ `n−1 λx.M ′1 : [λv].

Lemma 37 (⇒α can be used on a non-normal form).
If M can be reduced by →α then there exists M ′ such that M ⇒α M

′.

Proof. By induction on M , we prove that if M can be reduced by →α then:

• If M is of the form λx.M1, B, fix(M1) or cM1 . . .Mn with m arity of c and
n ≤ m: then there exists M ′ such that M ⇒α M

′.

• In all other cases, there exists M ′ such that M α M
′. Therefore, by Theo-

rem 24.1, we have M ⇒α M
′.

Assume M can be reduced by →α.
Therefore we are in one of the following cases:

• M is a variable x or M is a constant c. Therefore, M cannot be reduced by
→α. Contradiction.

• M is of the form λx.M1. Therefore, M1 can be reduced by →α. Hence,
by induction hypothesis, there exists M ′1 such that M1 ⇒α M ′1. Therefore,
M ⇒α λx.M

′
1.

• M is of the form (c1 ~x1.M1, . . . , cn ~xn.Mn). Therefore, there exist i such that
Mi can be reduced by →α. Hence, by induction hypothesis, there exists M ′i
such thatMi ⇒α M

′
i . Therefore, M ⇒α (c1 ~x1.M1, . . . , ci ~xi.M

′
i , . . . , cn ~xn.Mn).

• M is of the form fix(M1). Therefore, M1 can be reduced by →α. Hence,
by induction hypothesis, there exists M ′1 such that M1 ⇒α M ′1. Therefore,
M ⇒α fix(M ′1).

95

• M is of the form (λx.M1)M2.

– If x ∈ fv(M1), then M α M1{x := M2}.
– If x /∈ fv(M1) and M2 can be reduced by →α: By induction hypothesis,

there exists M ′2 such that M2 ⇒α M
′
2. Therefore M α (λx.M1)M ′2.

– If x /∈ fv(M1) and M2 cannot be reduced by →α, then M α M1.

• M is of the form M1M2 and M ∈ CF.

– If α = s, then M s M .

– If α = u: Then either M1 or M2 can be reduced by →u.

If M1 can be reduced by →u, then by induction hypothesis, there exists
M ′1 such that M1 ⇒u M

′
1. Therefore M u M

′
1M2.

By a similar argument, if M2 can be reduced by →u then there exists
M ′2 such that M u M1M

′
2.

• M is of the form (c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N) with ~N = N1 . . . Nm, ~xi =
y1 . . . ym and m arity of c.

– If there exists j such that i 6= j and Mj can be reduced by→α: Therefore,
by induction hypothesis, there exists M ′j such that Mj ⇒α M

′
j . Hence

M α (c1 ~x1.M1, . . . , cj ~xi.M
′
j , . . . , cn ~xn.Mn)(ci ~N).

– If there exists j such that yj /∈ fv(Mi) and Nj can be reduced by →α:
Therefore, by induction hypothesis, there exists N ′j such that Nj ⇒α N

′
j .

Hence M α (c1 ~x1.M1, . . . , cn ~xn.Mn)(cN1 . . . N
′
j . . . Nm).

– If for all j 6= i, Mj cannot be reduced by→α and for all j, if yj /∈ fv(Mi)

then Nj cannot be reduced by →α: Then M α Mi{~xi := ~N}.
• M is of the form BM1 and M1 is not of the form λx.M2, B′, fix(M2) or
cN1 . . . Nn with m arity of c and n ≤ m:

– If M1 can be reduced by →α: By induction hypothesis, there exists M ′1
such that M1 α M

′
1. Therefore, BM1 α BM ′1.

– If M1 cannot be reduced by →α: By Lemma 36, we have accuα(M1).
We can also deduce that B can be reduced by →α. Hence, by induction
hypothesis, there exists B′ such that B⇒α B′. Therefore M α B′M1.

• M is of the form fix(M1)M2: Therefore M α M1M2fix(M1).

• M is of the form cM1 . . .Mn with m arity of c and n ≤ m: Therefore, there
exists i such that Mi can be reduced by →α. Hence, there exists M ′i such
that Mi ⇒α M

′
i . Therefore, M ⇒α cM1 . . .M

′
i . . .Mn.

• M is of the form M1M2 and M1 is not of the form λx.M3, B, fix(M3),
cN1 . . . Nn with m arity of c and n ≤ m:

– If M1 can be reduced by →α: By induction hypothesis, there exists M ′1
such that M1 α M

′
1. Therefore, M α M

′
1M2.

– If M1 cannot be reduced by→α: By Lemma 36, we have accuα(M1). We
can also deduce thatM2 can be reduced by→α. By induction hypothesis,
there exists M ′2 such that M2 ⇒α M

′
2. Therefore M α M1M

′
2.

Lemma 40 (Substitution lemma).
If Γ, x : U `nα M : A and ∆ `mα N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆

and Γ′ `n+mα M{x := N} : A.

Proof. By induction on Γ, x : U `nα M : A.

96

• For x : F `0α x : F with M = x, A = F and Γ = (): We have M{x := N} =

N . By hypothesis, ∆ `mα N : U . We also have Γ ∩ ∆ = () ∩ ∆ = ∆ and
n+m = 0 +m = m.

• For y : F `0α x : F with M = y, Γ = (y : F), U = ω and y 6= x: We have

y{x := N} = y. By the fact that U = ω, we have m = 0 and ∆ = (). We
also have Γ ∩∆ = Γ ∩ () = Γ = (x : F) and n+m = 0 + 0 = 0 = n.

• For
Γ, x : U, y : V `nα M1 : F B ⊆ V

Γ, x : U `nα λy.M1 : B → F
with M = λx.M1, A = B → F and

y /∈ fv(N): We have (λy.M1){x := N} = λy.M1{x := N} and (Γ, x : U, y :
V) = (Γ, y : V, x : U). By induction hypothesis, there exists Γ′ such that Γ′ ≈
(Γ, y : V) ∩∆ and Γ′ `n+mα M1{x := N} : F . By Lemma 39.4, y /∈ Dom(∆).
Hence, ∆ = (∆, y : ω). There exists Γ′′ and V ′ such that Γ′ = (Γ′′, y : V ′).
Hence, (Γ′′, y : V ′) ≈ (Γ ∩∆, y : V ′ ∩ ω). Therefore, Γ′′ ≈ Γ ∩∆ and V ≈ V ′.
Hence, B ⊆ V ′ and Γ′′ `n+mα λy.M1{x := N} : B → F .

• For
Γ1, x : U1 `n1

α M1 : F Γ2, x : U2 `n2
α M2 : B F@αB : G

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1
α M1M2 : G

withM = M1M2,

Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, G = A and U = U1 ∩ U2: We have
(M1M2){x := N} = M1{x := N}M2{x := N}. By Lemma 39.1, there exist
∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩∆2, m = m1 + m2, ∆1 `m1

α N : U1

and ∆2 `m2
α N : U2.

By induction hypothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1,
Γ′2 ≈ Γ2 ∩ ∆2, Γ′1 `n1+m1

α M1{x := N} : F , Γ′2 `n1+m1
α M2{x := N} :

B. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+n2+1
α M1{x := N}M2{x := N} : G with

Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1)∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2)∩ (∆1 ∩∆2) = Γ∩∆, n1 +m1 +
n2 +m2 + 1 = n1 + n2 +m1 +m2 + 1 = n+m+ 1.

• We use similar proofs for the other rules.

Theorem 27 (Subject reduction).
If Γ `nα M : A and M →α M ′, then there exists Γ′ and n′ such that Γ ⊆ Γ′,

n > n′ and Γ′ `n′

α M ′ : A.

Proof. First by induction on M →α M
′ then by induction on A.

• If A is of the form A1 ∩ A2: By Lemma 39.1, there exist Γ1, Γ2, n1 and n2
such that Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1

α M : A1 and Γ2 `n2
α M : A2.

By induction hypothesis on (M →α M ′, A1) and (M →α M ′, A2), there
exist Γ′1, Γ′2, n′1 and n′2 such that Γ1 ⊆ Γ′1, Γ2 ⊆ Γ′2, n′1 < n1, n′2 < n2,

Γ′1 `
n′
1
α M ′ : A1 and Γ′2 `

n′
2
α M ′ : A2. Therefore, Γ′1 ∩ Γ′2 `

n′
1+n

′
2

α M : A1 ∩A2

with Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ′2 and n′1 + n′2 < n1 + n2.

• For (λx.M1)M2 →α M{x := N} with A is of the form F : There exist Γ1,

Γ2, n1, n2, G and B such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `n1
α M1 : G,

Γ2 `n2
α M2 : B and G@αB : F . Hence, there exist A1, F1 and U such that

G = A1 → F1, A1 ⊆ U , and Γ1, x : U `n1
α M1 : F1. Therefore, A1 = B and

F1 = F . By Lemma 39.3, there exist Γ′2 and m such that Γ2 ⊆ Γ′2, m ≤ n2
and Γ′2 `mα M2 : U . By Lemma 40, there exists ∆ such that ∆ ≈ Γ1 ∩ Γ′2
and ∆ `n1+m

α M1{x := M2} : F with Γ1 ∩ Γ2 ⊆ ∆ and n1 +m ≤ n1 + n2 <
n1 + n2 + 1.

97

• For fix(M1)M2 →α M1M2fix(M2) with A is of the form F : There exist Γ1,

Γ2, n1, n2, G and B such that Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1
α fix(M1) : G,

Γ2 `n2
α M2 : B and G@αB : F . Therefore, G 6= δ. Hence, there exist Γ3,

Γ4, n3, n4, F1, A1, A2, F2 and F3 such that Γ1 = Γ3 ∩ Γ4, n1 = n3 + n4,
Γ3 `n3

α M1 : F1, F1@αA1 : F2, Γ4 `n4
α fix(M1) : A2, F2@αA2 : F3, and

G = A1 → F3. Therefore, A1 = B and F3 = F . Hence, Γ3 ∩ Γ2 `n3+n2
α

M1M2 : F2. Therefore, (Γ3 ∩ Γ2) ∩ Γ4 `n3+n2+n4
α M1M2fix(M1) : F with

n3 + n2 + n4 = n1 + n2 = n and (Γ3 ∩ Γ2) ∩ Γ4 ≈ Γ1 ∩ Γ2.

• For (c1 ~x1.M1, . . . , cn ~xn.Mn)(ci ~N) with A is of the form F , ~xi = y1 . . . ym and

~N = N1 . . . Nm: we adapt the proof for a simple β-redex.

• For
M ∈ CF

M →s M
with A is of the form F : Then we have α = s and we cannot

type such a M if α = s. Contradiction.

• For
M →α M

′

λx.M1 →α λx.M
′
1

with A is of the form F : Therefore, there exist B,

G and U such that F = B → G, B ⊆ U and Γ, x : U `nα M1 : G. By
induction hypothesis, there exists Γ′ and n′ such that (Γ, x : U) ⊆ Γ′, n′ < n
and Γ′ `n′

α M ′1 : G. There exists a unique Γ1 and a unique U ′ such that
Γ′ = Γ1, x : U ′. Hence Γ ⊆ Γ1 and U ⊆ U ′. Therefore, B ⊆ U ′ and
Γ1 `n

′

α λx.M ′1 : B → G.

• For
Mi →α M

′
i

(c1 ~x1.M1, . . . , cn. ~xn.Mn)→α (c1 ~x1.M1, . . . , ci ~xi.M
′
i , . . . , cn ~xn.Mn)

with

A is of the form F : We adapt the proof in the previous case.

• If A is of the form F , the other propagation rules are straightforward.

Lemma 42 (Typing accumulators).
If Γ, x1 : U1, . . . , xn : Un `α M : F and accuα(M, {x1, . . . , xn}) (we have n = 0

or n = 1), then for all G there exists U ′1, . . . , U ′n such that Γ, x1 : U ′1, . . . , xn : U ′n `α
M : G.

Proof. By induction on accuα(M, {x1, . . . , xn}).

• For accuα(x, x) : Then n = 1, x1 = x and Γ = (). We also have x : G `α x : G.

Therefore, Γ, x : G `α x : G.

• For
accuα(M1, E)

accuα(M1M2, E)
: Then, there exist Γ1, Γ2, H and A such that (Γ, x1 :

U1, . . . , xn : Un) = Γ1 ∩ Γ2, Γ1 `α M1 : H, Γ2 `α M2 : A and H@αA :
F . There exist Γ′1, Γ′2, V1, . . . , Vn, W1, . . . , Wn such that Γ1 = (Γ′1, x1 :
V1, . . . , xn : Vn), Γ2 = (Γ′2, x1 : W1, . . . , xn : Wn). Therefore, Γ = Γ′1 ∩ Γ′2,
U1 = V1 ∩ W1, . . . , Un = Vn ∩ Wn. By induction hypothesis, there exist
V ′1 , . . . , V ′n, such that Γ′1, x1 : V ′1 , . . . , xn : V ′n `α M1 : A→ G. Therefore,
(Γ′1 ∩ Γ′2, x1 : V ′1 ∩W1, . . . , xnV

′
n ∩Wn `α M1M2 : G.

• For
accuα(N,E)

accuα(BN,E)
: There exist Γ1, Γ2, V1, . . . , Vn, W1, . . . , Wn, H and A

such that Γ = Γ1∩Γ2, U1 = V1∩W1, . . . , Un = Vn∩Wn, Γ1, x1 : V1, . . . , xn : Vn `α
B : H, Γ2, x1 : W1, . . . , xn : Wn `α N : A andH@αA : F . Hence Γ1, x1 : V1, . . . , xn : Vn `α

98

B : O→ G. We can also prove that A is of the form F1. By induction hy-
pothesis, there exist W ′1, . . . , W ′n such that Γ2, x1 : W ′1, . . . , xn : W ′n `α N : O.
Therefore, Γ1 ∩ Γ2, x1 : V1 ∩W ′1, . . . , xn : Vn ∩W ′n `α BN : G.

• For
cM1 . . .Mm+1 ∈ CF

accuu(cM1 . . .Mm+1, ε)
with m arity of c: Then n = 0, α = u and

there exist Γ1, Γ2 H and A such that Γ = Γ1 ∩ Γ2, Γ1 `u cM1 . . .Mm : H,

Γ2 `u Mm+1 : A and H@αA : F . We can prove that H is of the form c ~B and

(c ~B)@αA : G. Therefore Γ1 ∩ Γ2 `u cM1 . . .Mm+1 : G.

• For
BN ∈ CF

accuu(BN, ε)
with N is of the form λx.M1, B′, fix(M1) or cN1 . . . Nm′

with m arity of c and m′ < m: Then α = u, n = 0 and there exist Γ1, Γ2, H
and A such that Γ = Γ1 ∩ Γ2, Γ1 `u B : H, Γ2 `u N : A and H@αA : F . We
can prove that A is of the form F1. Therefore, F1 is either of the form B → F2

or F1 = δ. Hence, Γ1 `u B : F1 → G. Therefore, Γ1 ∩ Γ2 `u BN : G.

• For
B(c ~N) ∈ CF

accuu(B(c ~N), ε)
with ~N = N1 . . . Nm, m arity of c, B = (c1 ~x1.M1, . . . , cn ~xm′ .Mm′)

and for all i, ci 6= c: Then α = u, n = 0 and there exist Γ1, Γ2, H and A
such that Γ = Γ1 ∩ Γ2, Γ1 `u B : H, Γ2 `u c ~N : A. We can prove that A is

of the form F1. Therefore, F1 is of the form c ~B. Hence, Γ1 `u B : c ~B → G.

Therefore, Γ1 ∩ Γ2 `u B(c ~N) : G.

Lemma 43 (Typing normal forms).
If M cannot be reduced by →α, then there exist Γ and F such that Γ `α M : F .

Proof. By induction on M .
Assume M cannot be reduced by →α. By Lemma 36, we are in one of the

following cases:

• M is of the form λx.M1: By induction hypothesis, there exist Γ and F such
that Γ `α M1 : F . There exist Γ′ and U such that Γ = Γ′, x : U . Let
A := O if U = ω and A := U otherwise. Hence, A ⊆ U . Therefore
Γ′ `α λx.M1 : A→ F .

• M is of the form B with B = (c1 ~x1.M1, . . . , cn ~xn.Mn). By induction hypoth-
esis, we can type each Mi. By a similar argument from the previous point we
can type each λ~xi.Mi. Therefore, there exist Γ such that Γ `α B : O→ O.

• M is of the form fix(N): By induction hypothesis, there exist Γ and F such
that Γ `α N : F . Therefore Γ `α fix(N) : δ.

• M is of the form cM1 . . .Mn with m arity of c and n ≤ m: By induction
hypothesis, there exist Γ1, . . . , Γn, F1, . . . , Fn such that for all i, Γi `α
Mi : Fi. Let Fn+1 := O, . . . , Fm := O. Therefore, there exist Γ such that
Γ `α cM1 . . .Mn : Fn+1 → . . .→ Fm → cF1 . . . Fm.

• We have accuα(M): We adapt the proof of Lemma 42.

Theorem 29 (Subject expansion).
Assume Γ, x1 : U1, . . . , xn : Un `α M ′ : A and E = {x1, . . . , xn}:
• If M E,α M

′ then there exists Γ′, U ′1, . . . , U ′n such that Γ ≈ Γ′ and
Γ′, x1 : U ′1, . . . , xn : U ′n `α M : A.

99

• If M ⇒E,α M
′ then there exists Γ′, U ′1, . . . , U ′n and B such that Γ ≈ Γ′ and

Γ′, x1 : U ′1, . . . , xn : U ′n `α M : B.

Proof. First by induction on M E,α M
′ and on M ⇒E,α M

′, then by induction
on A.

• If A is of the form A1 ∩ A2: Then, there exist Γ1, Γ2, V1, . . . , Vn, W1,
. . . , Wn such that Γ = Γ1 ∩ Γ2, U1 = V1 ∩ W1, . . . , Un = Vn ∩ Wn,
Γ1, x1 : V1, . . . , xn : Vn `α M ′ : A1 and Γ2, x1 : W1, . . . , xn : Wn `α M ′ : A2.

– For M E,α M ′: By induction hypothesis on (M E,α M ′, A1) and
(M E,α M

′, A2), there exist Γ′1, Γ′2, V ′1 , . . . , V ′n, W ′1, . . . , W ′n such that
Γ′1, x1 : V ′1 , . . . , xn : V ′n `α M : A1 and Γ′2, x1 : W ′1, . . . , xn : W ′n `α M :
A2. Therefore
Γ′1 ∩ Γ′2, x1 : V ′1 ∩W ′1, . . . , V ′n ∩W ′n `α M : A1 ∩A2 with Γ ≈ Γ′1 ∩ Γ′2.

– For M ⇒E,α M ′: By induction hypothesis on (M ⇒E,α M ′, A1) and
(M ⇒E,α M

′, A2), there exist Γ′1, Γ′2, V ′1 , . . . , V ′n, W ′1, . . . , W ′n, B1 and
B2 such that
Γ′1, x1 : V ′1 , . . . , xn : V ′n `α M : B1 and Γ′2, x1 : W ′1, . . . , xn : W ′n `α M :
B2. Therefore Γ′1 ∩ Γ′2, x1 : V ′1 ∩W ′1, . . . , V ′n ∩W ′n `α M : B1 ∩B2 with
Γ ≈ Γ′1 ∩ Γ′2.

• For
x ∈ fv(M1)

(λx.M1)M2 ∅,α M1{x := M2}
withA is of the form F : Then n = 0. By

Lemma 41, there exist Γ1, Γ2 and U such that Γ ≈ Γ1∩Γ2, Γ1, x : U `α M1 : F
and Γ2 `α M2 : U . We have x ∈ fv(M1) = Dom(Γ1, x : U). Therefore U
is of the form B and B ⊆ U . Hence Γ1 `α λx.M : B → F . Therefore
Γ1 ∩ Γ2 `α (λx.M)N : F .

• For
x /∈ fv(M1) M2 6−→α

(λx.M1)M2 fv(M2),α M1

with A is of the form F and x /∈ E: Then

fv(M2) = {x1, . . . , xn}. By Lemma 43, there exist Γ1 and B such that Γ1 `α
M2 : B. Since E = fv(M2), there exist V1, . . . , Vn such that Γ1 = x1 :
V1, . . . , xn : Vn. Since x /∈ E and x /∈ fv(M1), we have Γ, x1 : U1, . . . , xn :
Un = Γ, x1 : U1, . . . , xn : Un, x : ω. Therefore, Γ, x1 : U1, . . . , xn : Un `α
λx.M1 : B → F . Hence, Γ, x1 : U1 ∩ V1, . . . , xn : Un ∩ Vn `α (λx.M1)M2 : F .

• For
x /∈ fv(M1) M2 ⇒E,α M

′
2

(λx.M1)M2 E,α (λx.M1)M ′2
with A is of the form F and x /∈ E: There

exist Γ1, Γ2, V1, . . . , Vn, W1, . . . , Wn and B such that Γ = Γ1 ∩ Γ2, U1 =
V1 ∩ W1, . . . , Un = Vn ∩ Wn, Γ1, x1 : V1, . . . , xn : Vn `α λx.M1 : B → F
and Γ2, x1 : W1, . . . , xn : Wn `α M ′2 : B. Since x /∈ E, there exist U such
that B ⊆ U and Γ1, x1 : V1, . . . , xn : Vn, x : U `α M1 : F . Since x /∈ fv(M1),
we have U = ω. By induction hypothesis, there exist Γ′2, W ′1, . . . , W ′n and
B′ such that Γ2 ≈ Γ′2 and Γ′2, x1 : W ′1, . . . , xn : W ′n `α M2 : B′. We have
B′ ⊆ U because ω = U . Hence Γ1, x1 : V1, . . . , xn : Vn `α λx.M1 : B′ → F .
Therefore Γ1 ∩ Γ′2, x1 : V1 ∩W ′1, . . . , xn : Vn ∩W ′n `α (λx.M1)M2 : F with
Γ1 ∩ Γ2 ≈ Γ1 ∩ Γ′2.

• For the three rules who are applied to a matching redex, we adapt the rules
for a simple β-redex.

• For fix(M1)M2 ω,α M1M2fix(M1) with A is of the form F : Then n = 0.

There exist Γ1, Γ2, G and B such that Γ = Γ1 ∩ Γ2, Γ1 `α M1M2 : G,
Γ2 `α fix(M1) : B and G@αB : F . There exist Γ3, Γ4, H and C such
that Γ1 = Γ3 ∩ Γ4, Γ3 `α M1 : H, Γ4 `α M2 : C and H@αC : G. Hence

100

Γ3 ∩ Γ2 `α fix(M1) : C → F . Therefore (Γ3 ∩ Γ2) ∩ Γ4 `α fix(M1)M2 : F
with Γ ≈ (Γ3 ∩ Γ2) ∩ Γ4.

• For the rules that propagate α and ⇒α with A is of the form F : Straight-
forward.

• For the rules that have α as their conclusion and ⇒α and accuα(,) as their
premises with A is of the form A: We adapt the proof of Lemma 42.

• For
M E,α M

′

M ⇒E,α M
′ and

M ∈ CF

M ∅,u M
: Trivial.

101

Appendix B

A simple presentation of de
Bruijn indices

B.1 Definitions

Assume we have a triplet (Var, O, S) such that :

• Var is a set, O ∈ Var and S : Var→ Var.

• ∀x ∈ Var, O 6= Sx.

• ∀x, y ∈ Var, Sx = Sy ⇒ x = y.

• ∀x ∈ Var, x = O ∨ ∃y ∈ Var, x = Sy.

Definition 47 (Terms).
We define Term the set of terms M with the following grammar:

M,N ::= x |MN | λM
x ∈ Var

Definition 48 (Free variables of a term).
If M ∈ Term we define fv(M) a finite subset of Var by induction on M as

follows:

fv(x) = {x}
fv(MN) = fv(M) ∪ fv(N)
fv(λM) = {x ∈ Var | S(x) ∈ fv(M)}

Definition 49 (Size of a term).
If M ∈ Term we define |M | an integer defined by induction on M as follows:

|x| = 1
|MN | = |M |+ |N |+ 1
|λM | = |M |+ 1

B.2 Binding

Definition 50 (Mapping).
If M ∈ Term, then for all f : Var→ Var, we define map(M,f) the term defined

by induction on M as follows:

map(x, f) = f(x)
map(MN, f) = map(M,f)map(N, f)
map(λM, f) = λmap(M,f ′)

102

with f ′ : Var→ Var the unique function such that :

f ′(O) = O
f ′(S(x)) = S(f(x)) (∀x ∈ Var)

Theorem 31 (Size after a map).
Assume M ∈ Term and f : Var→ Var. Then we have |map(M,f)| = |M |.

Proof. By induction on M .

Definition 51 (Successor of a term).
If x ∈ Var then map(x, S) = S(x). Therefore, if M is a term, we can write

S(M) for map(M,S).

Definition 52 (Binding).
If M ∈ Term, then for all f : Var → Term, we define bind(M,f) the term

defined by induction on M as follow:

bind(x, f) = f(x)
bind(MN, f) = bind(M,f)bind(N, f)
bind(λM, f) = λbind(M,f ′)

with f ′ : Var→ Term the unique function such that :

f ′(O) = O
f ′(S(x)) = S(f(x)) (∀x ∈ Var)

Theorem 32 (A mapping is a binding).
Assume M ∈ Term and f : Var→ Var. Then f : Var→ Term and bind(M,f) =

map(M,f).

Proof. By induction on M .

Theorem 33 (Binding with identity).
Assume M ∈ Term, then id : Var→ Term and bind(M, id) = M .

Proof. By induction on M .

Theorem 34 (Compare two bindings).
Assume M ∈ Term. Then for all f, g : Var → Term, if we have ∀x ∈

fv(M), f(x) = g(x) then bind(M,f) = bind(M, g).

Proof. By induction on M .

Lemma 46. Assume M ∈ Term and f : Var → Var. Then fv(map(M,f)) =
{f(x) | x ∈ fv(M)}.

Proof. By induction on M .

Corollary 4. ∀M ∈ Term, fv(S(M)) = {S(x) | x ∈ fv(M)}.

Theorem 35 (Free variables of a binding).
Assume M ∈ Term and f : Var→ Term. Then:

fv(bind(M,f)) =
⋃
x∈fv(M) fv(f(x))

Proof. By induction on M .

103

Lemma 47. Assume M ∈ Term, f : Var → Var and g : Var → Term. Then
g ◦ f : Var→ Term and bind(map(M,f), g) = bind(M, g ◦ f).

Proof. By induction on M .

Lemma 48. Assume M ∈ Term, f : Var → Term and g : Var → Var. We write
h : Var→ Term defined by:

∀x ∈ Var, h(x) = map(f(x), g)

Then we have map(bind(M,f), g) = bind(M,h).

Proof. By induction on M .

Theorem 36 (Composition of bindings).
Assume M ∈ Term, f : Var→ Term, and g : Var→ Term. We write h : Var→

Term defined by:

∀x ∈ Var, h(x) = bind(f(x), g)

Then we have bind(bind(M,f), g) = bind(M,h).

Proof. By induction on M .

B.3 Substitutions

Definition 53 (Substitution).
Assume M ∈ Term, x ∈ Var and N ∈ Term.
We write M{x := N} for bind(M,f) with f : Var→ Term defined as follow:

f(x) = N
f(y) = y (∀y 6= x)

Theorem 37 (Properties of substutions).
Assume M,N,M1,M2, N1, N2 ∈ Term and x, y ∈ Var. Then:

• If x /∈ fv(M), then M{x := N} = M .

• If x ∈ fv(M), then fv(M{x := N}) = (fv(M)− {x}) ∪ fv(N).

• x{x := N} = N .

• If x 6= y, then y{x := N} = y.

• (M1M2){x := N} = M1{x := N}M2{x := N}.
• (λM){x := N} = λM{S(x) := S(N)}.
• M{x := x} = M .

• If y /∈ fv(M) then M{x := y}{y := N} = M{x := N}.
• bind(M{x := N}, f) = bind(M,h) with f, g : Var→ Term, g(x) = bind(N, f)

and for all y ∈ Var, if x 6= y then g(y) = f(y).

• bind(M{x := N}, f) = bind(M,f){f(x) := bind(N, f)} with f : Var →
Term, f(x) ∈ Var and for all y ∈ fv(M), if f(x) ∈ fv(f(y)) then x = y.

• If x 6= y, and x /∈ fv(N2) then M{x := N1}{y := N2} = M{y := N2}{x :=
N1{y := N2}}.

• If x 6= y, y /∈ fv(N1) and x /∈ fv(N2) then M{x := N1}{y := N2} =
M{y := N2}{x := N1}.

104

Proof. Straightforward.

Definition 54 (Abstraction).
Assume x ∈ Var and M ∈ Term. We write λx.M for λbind(M,f) with f :

Var→ Term defined as follow:

f(x) = O
f(y) = S(y) (∀y 6= x)

Theorem 38 (Properties of abstraction).
Assume M,N ∈ Term and x, y ∈ Var. Then:

• fv(λx.M) = fv(M)− {x}.
• bind(λx.M, f) = λf(x).bind(M,f) if f : Var → Term, f(x) ∈ Var, and for

all y ∈ fv(M), if f(x) ∈ fv(f(y)) then x = y.

• (λy.M){x := N} = λy.M{x := N} if y 6= x and y /∈ fv(S(N).

• If y /∈ fv(M) then λx.M = λy.M{x := y}.
• If λx.M = λy.N then M{x := y} = N and if x 6= y then y /∈ fv(M).

• If λx.M = λx.M then M = N .

Proof. Straightforward.

Definition 55 (Terms built with usual abstraction).
Assume we have E an infinite subset of Term.
We write TE the smallest subset of Term such that:

• For all x ∈ Var, x ∈ TE.

• For all M,N ∈ TE, MN ∈ TE.

• For all x ∈ E, M ∈ TE, λx.M ∈ TE.

Theorem 39 (Shapes of λ-terms).
Assume E is an infinite subset of Var and M ∈ Term.
Then M ∈ TE.

Proof. By induction on |M |.

Definition 56 (Equivalence between λ-terms).
Assume M and N are terms.
For all x, y ∈ Var we define < x, y >: Var→ Var defined as follow:

< x, y > (x) = y
< x, y > (y) = x
< x, y > (z) = z (∀z /∈ {x, y})

We define M =α N with the rules of figure B.1.

Theorem 40 (Relation between equality and α-equivalence).
Assume M,N ∈ Term.
Then M = N if and only if M =α N .

Proof. One way is by induction on M ∈ TVar and the other way is by induction on
M =α N .

105

x =α x

M =α M
′ N =α N

′

MN =α M
′N ′

M =α N

λx.M =α λx.N

x 6= y y /∈ fv(M) map(M,< x, y >) =α N

λx.M =α λy.N

Figure B.1: α-equivalence

B.4 β-reduction

Definition 57 (β-rededuction).
We define the β-reduction →β with the congruence extension of the following

rule:

(λM)N → bind(M,f)
with f defined as follow:

f(0) = N
f(S(x)) = x (∀x ∈ Var)

Theorem 41 (β-reduction and abstraction).
Assume x ∈ Var and M ∈ Term. Then we have :

(λx.M)N →β M{x := N}

Proof. Straightforward.

Theorem 42 (Free variables and β-reduction).
Assume M,M ′ ∈ Term and M →β M

′ then fv(M ′) ⊆ fv(M).

Proof. By induction on M →β M
′.

Theorem 43 (β-reduction and binding).
Assume M,M ′ ∈ Term, f : Var→ Term and M →β M

′. Then:

bind(M,f)→β bind(M ′, f)

Proof. By induction on M →β M
′.

Corollary 5.
Assume M,M ′, N ∈ Term, x ∈ Var and M →β M

′. Then:

M{x := N} →β M ′{x := N}
λx.M →β λx.M ′

Theorem 44 (β-reduction and mapping).
Assume M,M ′ ∈ Term, f : Var→ Var and map(M,f)→β M

′.
Then, there exists M ′′ ∈ Term such that M →β M

′′ and map(M ′′, f) = M ′.

Proof. By induction on M →β M
′.

Corollary 6. Assume M,M ′, N ∈ Term and x, y ∈ Var. Then:

• If M{x := y} →β M
′ then there exists M ′′ ∈ Term such that M →β M

′′ and
M ′ = M ′′{x := y}.

106

x ∈ E

(λx.M)N →E M{x := N}
M →E M ′

MN →E M ′N

N →E N ′

MN →E MN ′

M →E M ′

λx.M →E λx.M ′

Figure B.2: Usual β-reduction

• If λx.M →β M ′ then there exists M ′′ ∈ Term such that M →β M ′′ and
M ′ = λx.M ′′.

Definition 58 (Usual β-reduction).
Assume E is an infinite subset of Var.
We define the reduction →E with the rules of figure B.2.

Theorem 45 (Comparaison bewteen the two reductions).
Assume M,M ′ ∈ Term and E is an infinite subset of Var.
Then M →E M ′ if and only if M →β M

′.

Proof. One way is by induction on M →E M ′ and the other way is by induction
on M ∈ TE .

B.5 Semantics

Assume we have a 4-uplet (C,U, inj,prj) such that:

• C is a cartesian closed category and U : C.

• inj : (U ⇒ U)→ U : C and prj : U → (U ⇒ U) such that prj ◦ inj = idU⇒U .

Definition 59 (Environments).
If X : C then we write EnvX the set of ρ such that for all x ∈ Var, ρ(x) : X →

U : C.

Definition 60 (Interpretation of terms).
Assume X : C, ρ ∈ EnvX , and M ∈ Term. We define [M]ρ : X → U by

induction on M as follow:

[x]ρ = ρ(x)
[MN]ρ = ev◦ < prj ◦ [M]ρ, [N]ρ >
[λM]ρ = inj ◦ Λ([M]ρ′)

with ρ′ ∈ EnvX×U defined as follow:

ρ′(O) = π2
ρ′(S(x)) = ρ(x) ◦ π1 (∀x ∈ Var)

Lemma 49. Semantics of a mapping
Assume X,Y : C, ρ1 ∈ EnvX , ρ2 ∈ EnvY , ϕ : X → Y : C, f : Var → Var, and

M ∈ Term such that for all x ∈ Var, ρ1(f(x)) = ρ2(x) ◦ ϕ.
Then [map(M,f)]ρ1 = [M]ρ2 ◦ ϕ.

Proof. By induction on M .

107

Corollary 7. Assume X : C, ρ ∈ EnvX and M ∈ Term. Then [S(M)]ρ′ = [M]ρ◦π1
with ρ′ ∈ EnvX×U defined as follow:

ρ′(O) = π2
ρ′(S(x)) = ρ(x) ◦ π1 (∀x ∈ Var)

Theorem 46 (Semantics of a binding).
Assume X,Y : C, ρ1 ∈ EnvX , ρ2 ∈ EnvY , ϕ : X → Y : C, f : Var → Term,

and M ∈ Term such that for all x ∈ fv(M), [f(x)]ρ1 = ρ2(x) ◦ ϕ.
Then [bind(M,f)]ρ1 = [M]ρ2 ◦ ϕ.

Proof. By induction on M .

Corollary 8. Assume X,Y : C, ρ ∈ EnvY , ϕ : X → Y : C, M ∈ Term. Then
[M]ρ′ = [M]ρ ◦ ϕ with ρ′ ∈ EnvX defined by ρ′(x) = ρ(x) ◦ ϕ.

Theorem 47 (Soundness).
Assume X : C, ρ ∈ EnvX , M,N ∈ Term and M →β N . Then [M]ρ = [N]ρ.

Proof. By induction on M →β N .

Theorem 48 (Semantics of a substitution).
Assume X : C, ρ ∈ EnvX , x ∈ Var and M,N ∈ Term. Then [M{x := N}]ρ =

[M]ρ′ with ρ′ ∈ EnvX defined as follow:

ρ′(x) = [N]ρ
ρ′(y) = ρ(y) (∀y 6= x)

Proof. Straightforward.

Theorem 49 (Coherence).

• If U is final then U ≈ 1.

• If π1 = π2(rel.U × U) then U is final.

• Assume x, y ∈ Var, x 6= y, and for all X : C and ρ ∈ EnvX , [x]ρ = [y]ρ. Then
U is final.

• If there exists X : C and ρ ∈ EnvX such that [λλO]ρ = [λλS(O)]ρ, then U is
final.

Proof. Straightforward

Theorem 50 (Free variables and semantics).
Assume X : C, ρ1, ρ2 ∈ EnvX , M ∈ Term and for all x ∈ fv(M), ρ1(x) = ρ2(x).

Then [M]ρ1 = [M]ρ2 .

Proof. Straightforward

108

	Acknowledgements
	Introduction
	Generalities
	About the -calculus
	Brief description of the Chapters
	Introduction to -equivalence

	A simple typing system of non-idempotent intersection types for pure -calculus
	Introduction
	Syntax and operational semantics
	The typing system
	Types
	Contexts
	Rules

	Soundness
	Semantics and applications
	Denotational semantics
	Example: System F

	Completeness
	Conclusion

	Intersection types with explicit substitutions
	Introduction
	Syntax
	Typing judgments
	Soundness
	Special property of typing trees: Optimality
	Completeness
	Complexity
	Conclusion

	A big-step operational semantics via non-idempotent intersection types
	Introduction
	Basic definitions and properties
	Syntax
	Intersection types and contexts
	Typing system

	Characterisation of the typing system
	Soundness
	Completeness

	Refined soundness
	Complexity
	Viewing optimal typing as a big-step semantics

	Alternative systems
	Variant with no information about the normal form
	Obtaining the exact normal form

	Conclusion

	Strong normalisation in a calculus with constructors and fixpoints via non-idempotent intersection types
	Introduction
	Calculus
	Definition of the calculus
	Refined notion of reduction

	Strong normalisation
	Intersection types
	Soundness
	Completeness

	Conclusion
	Confluence
	Example in Caml

	Conclusion
	Full proofs
	A simple presentation of de Bruijn indices
	Definitions
	Binding
	Substitutions
	-reduction
	Semantics

