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Introduction

Granular materials are assemblies of macroscopic solid particles, or grains, which interact at
their contacts, such as sands, gravels, powders or seeds. Their crucial role in many natural
processes and human activities, such as agriculture, civil engineering, mining and pharma-
ceutical industry and also their importance in many geological and medical studies, have
attracted a lot of attention in many research fields including soft matter physics, soil me-
chanics and geomaterial studies. They form a vast family of materials, composed of grains
with very different shapes and sizes. Depending on the size and the geometry of grains,
the density of particles, the applied external forces, the type of interactions in grain scale
and many other parameters, granular materials may exhibit quite different behaviors. Gen-
erally, these behaviors are very complex and it is very difficult to relate the macroscopic
properties to those of microscopic constituents. Despite these difficulties, recent studies on
granular materials have granted a remarkable progress to this field of study [6], especially
given the improvement of computer performances and the development of numerical simu-
lation techniques [109]. Computer simulation methods made it possible to investigate large
scale systems in both macroscopic and microscopic levels. They provided a convenient way
to study the different geometries and to define desired interaction models and also to have
access to various structural details such as, configuration of particles, spatial and temporal
distributions of velocities, local density, porosity, agglomeration and geometry of clusters.

A fundamental characteristic of granular material is their intermediate behavior: depend-
ing on the external load or the density of the particles, they may behave like a non-Newtonian
fluid in fast flows or like a solid in slow flows. For many years, the studies on granular ma-
terial have been mostly restricted to solid-like properties, motivated by many applications
such as building structures on soil grounds or grain storing in silos. However, the applica-
tions of granular flow are also numerous, e.g., landslides, rock, ice and snow avalanches, river
sedimentation, dune formation, soil liquefaction, and ice flow mechanics.

Most studies on granular flow have focused on dry materials, in which the effects of
the interstitial fluids are negligible for the particle dynamics. However, the presence of an
interstitial liquid is known to have important consequences, in solid-like as well as liquid-like
situations. The amount of liquid in a granular sample can strongly affect its mechanical
properties. For instance, to make a sand castle, one needs to add a small amount of water to
the beach sands. The small amount of the interstitial water strongly increases the stability
of the material and its resistance to the external load. On the other hand, large amounts
of water may decrease the material stability, e.g., the landslide phenomenon in which the
liquefied layer of a sand hill creeps down like a viscous fluid. Moreover, dense grains fully
saturated by a liquid occur very often in natural or man-made settings such as slurries or
composite materials. Understanding the flow properties of partially wetted granular materials
and dense suspensions is a significant challenge.

This thesis deals with the rheology of granular materials in the presence of an interstitial
liquid, which may entail capillary and/or viscous forces, depending on saturation and flow
conditions. Both effects are studied separately by grain-level numerical simulations for model
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systems: assemblies of spherical objects, with capillary or viscous forces acting in the liquid
bridges joining close neighbours. We mainly investigate slow flows (as opposed to strongly
agitated materials), which coincide in some quasi-static limit with plastic deformation. We
exploit the wealth of information supplied by numerical simulations to relate the macroscopic
mechanical properties of those materials to microscopic phenomena.

Granular flow modeling has benefited from important developments in recent years.
Chap. 1 first provides a brief review of the basic current knowledge about dry and wet
granular material and dense suspension rheology and of some of the recent advances which
the reported research elaborates upon. The rheological properties of granular materials at
small liquid saturation in studied in Chap. 2. In Chap. 3 we report and discuss the results
obtained on the rheology of dense suspensions. The final chapter (Chap. 4) is a synthetic
conclusion indicating future research directions.

— 2 —



Chapter 1

Rheophysics of dry and wet
granular materials and suspensions

This chapter briefly reviews the state of the art on rheophysics of wet granular materials or
granular pastes, which the results of this thesis rely on. We also present the basic ingredients
of the simulation methods employed in the following chapters, and introduce the appropriate
state variables, on the macroscopic (continuous) and microscopic (grains or contact networks)
scales. We focus on rather dense assemblies of grains which may be classified as solid-like or
liquid-like materials, and on large strain behaviour, excluding, on the one hand, the granular
gases often studied, in analogy with molecular gases, by kinetic theories [24, 56]; and, on
the other hand, the small-strain quasistatic behaviour and its complex modeling approaches,
many of which were developed for geomaterials [33, 64, 37].

Perhaps the most basic feature of the rheology of such materials is the existence of a flow
threshold: a surface, in stress space (generally implying the deviator stress, and most often its
magnitude, relative to the average pressure) separating possible static states from situations of
flow. Another, rather unique, feature of those materials is the coupling of density to deviatoric
stresses and strains – Reynolds dilatancy [117]. Such aspects of granular mechanics are
recalled in Sec. 1.1, which also evokes stress-strain relationships in the quasistatic regime and
introduces the essential concept of critical state. Section 1.2 introduces the microscopic, grain-
level interactions, and the most relevant variables describing the internal state of granular
assemblies, with a specific attention paid to cohesive systems and capillary forces. The
discrete simulation method exploiting those micromechanical ingredients is briefly presented
in Sec. 1.3. We then turn to the rheology of dense granular flow in Sec 1.4 and introduce
the recently developed approach and constitutive laws that we use as a starting point for the
numerical studies reported in the present dissertation. While the previous ones situate our
studies of low saturation wet granular materials (chapter 2), Section 1.5 defines the context
for our studies of suspensions (chapter 3), insisting on the analogies with granular systems,
and on the insights in very dense suspension rheology recently brought about by the adoption
of a “granular” point of view.

1.1 Some basic macroscopic mechanical properties of solid-
like granular materials

Solid-like granular materials are well-known in soil mechanics. There is a rich literature on the
properties and constitutive modeling of granular assemblies, mostly derived from geotechnical
engineering [152, 96]. Macroscopic constitutive laws have been designed, with various levels
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Rheophysics of dry and wet granular materials and suspensions

of sophistication, which adequately describe the basic trends of quasistatic granular materials
rheology.

In the context of our studies on the rheology in dense flow conditions, the most relevant
known features of solid-like granular materials are the ones related to dense, steady plastic
flows, their conditions of occurrence (the flow threshold or yield criterion, Sec. 1.1.1), the
evolution from initial packings to such flow conditions at large strains (Sec. 1.1.2) and the
critical state (Sec. 1.1.3)

1.1.1 Yield criterion

One essential basic feature of granular mechanics is the existence of a yield threshold, or
surface in stress space, within which the material is able to remain in a solid state and
support the applied load. As its boundary is reached, the material starts to flow. The most
simple criterion, or condition for absence of failure, is the Coulomb one, according to which
the tangential stress vector component, τ , imposed to a surface and the normal stress vector
component, σ, should satisfy the following inequality:

|τ | ≤ µ∗σ + c. (1.1)

µ∗ and c are respectively called the coefficient of internal friction and the cohesion, and depend
on the nature of the material [98]. On attempting to slide adjacent layers of materials along
their mutual separation plane, internal friction angle ϕ, such that tanϕ = µ∗, plays the role of
the friction angle between rigid solid bodies, while the cohesion, c, characterizes the resistance
to this tangential relative displacement in the absence of any normal load pressing the layers
onto one another. An interpretation of c is that it might be due to a mutual attraction of
those adjacent layers, giving rise to an equivalent normal stress σ0, with c = σ0 tanϕ (as
one would observe between two magnetic, frictional plane surfaces attracting each other with
force per unit area equal to σ0). Consequently, a non-vanishing cohesion is expected when
the grains are attracted to one another. Assemblies of non-adhesive grains, such as sands,
are generally devoid of macroscopic cohesion (c = 0). In conformity with the sliding block
analogy, failure is expected in materials abiding by the Mohr-Coulomb yield criterion in the
form of sliding along surfaces for which (1.1) holds as an equality.

Internal friction angle ϕ should coincide with the “angle of repose” for cohesionless ma-
terials. At least, it is easy to show that, under gravity, no slope inclined with an angle larger
than ϕ with respect to the horizontal can stay stable [98]. In a cohesive material, the repose
angle might exceed ϕ, but depends, then, on the height of the slope. In the case of a material
with homogeneous mass density ρ, the height H (measured vertically, as an elevation) of a
slope inclined at angle α > ϕ with the horizontal, and ending in a horizontal surface at the
top, has an upper bound [98]:

H ≤ 4c sinα cosϕ

ρg (1− cos(α− ϕ))
, (1.2)

g denoting the intensity of gravity. In particular, the free surface of a material sample under

gravity might comprise vertical steps or “cliffs” (α = 90◦) of maximum height
4c cosϕ

ρg (1− sin(ϕ))
.

The value of c introduces a stress scale in the yield properties of a cohesive material, which
gravity translates into a characteristic height.

σ and τ , in condition (1.1), are the coordinates in the so-called Mohr plane, i.e., the
normal and tangential components of stress vector σ · n on surfaces with unit normal vector
n. The locus of points of coordinates σ, τ in this plane for all possible values of n are the
three circles cutting the σ axis for abscissae σ1 ≤ σ2 ≤ σ3 equal to the three principal stresses,
eigenvalues of the stress tensor. Fig. 1.1 shows the Mohr-Coulomb yield condition, i.e., the
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1.1 – Some basic macroscopic mechanical properties of solid-like granular materials
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φ σ3 2θ
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c cotan φ

Figure 1.1: Mohr-Coulomb failure criterion.

cone where (1.1) holds as an equality. Condition (1.1) expresses that the largest Mohr circle,
cutting the axis at abscissae σ3 and σ1 should be included in the interior region of the cone.
Thus the Mohr-Coulomb condition may be expressed in terms of principal stresses as

σ1(1− sinϕ)− σ3(1 + sinϕ) ≤ c cosϕ. (1.3)

It is independent of the intermediate principal stress, σ2. Other criteria than Mohr-Coulomb
are often more accurate and involve all three principal stresses, such as the Lade-Duncan
criterion [79].

1.1.2 Stress-strain response and plastic behaviour

The yield criterion is quite a rough characterisation of the material, which is not sufficient
to describe and model the onset of flow. It is of fundamental interest, and also practically
useful in engineering applications, to be able to model the strains prior to failure.

One of the most common rheological tests on solid-like granular materials is the one
carried out with the triaxial apparatus, as schematized in Fig. 1.2. Its design is motivated by
the observation of a reasonably homogeneous state of stress and strain in a sample, thereby
enabling the identification of constitutive stress-strain laws, to be applied at the level of a
representative volume element in more general situations. In this test a cylindrical sample

Figure 1.2: Triaxial test.

of material is wrapped in a flexible, impervious membrane and then immersed in a confining
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Rheophysics of dry and wet granular materials and suspensions

cell filled with a fluid. Thus a lateral confining stress σ2 = σ3, equal to the fluid pressure,
is applied, on which an additional vertical stress (in the direction of the cylinder axis) may
be controlled through the force applied on the top and bottom horizontal platens, thus
ensuring σ1 > σ3. Most often, one actually controls the vertical strain rate ǫ̇1, set to a small
value (typically of order 10−4 or 10−5 s−1), in order to investigate the quasi-static material
behaviour. Special care has to be exercised in the preparation stage, especially for cohesionless
materials, to ensure sample homogeneity and axial symmetry. In careful experiments stresses
and strains are uniform, at least in the central part of the specimen, away from the top and
bottom boundaries. The most accurate results are obtained if strains are directly measured on
the sample itself, in its central part, with precision sensors. The most accurate measurements
are able to record strain variations of order 10−5 or 10−6 [78, 132, 65, 53]. More standard
devices, however, simply record the approach of the top and bottom platens, and the variation
of the internal sample volume, by monitoring the quantity of liquid contained in the pores of
a saturated sample (maintained at atmospheric pressure). It is standard to measure deviator
stress q = σ1 −σ3 and volumetric strain (relative volume decrease) ǫv, versus axial strain ǫ1

1

The material behaviour investigated in such a test concerns the effect of stress increments,
added to the initial isotropic state of stress. The application of the initial pressure is the
final part of the preparation process that determines the initial state of the material probed
in a triaxial test. The first part of the preparation stage is the assembling of the sample,
and it is known to be of crucial importance, as it influences the material properties such as
the maximum deviator stress. The maximum value of principal stress ratio in a cohesionless
material, according to the Mohr-Coulomb criterion is, from (1.3),

(

σ1
σ3

)

max

=
1 + sinϕ

1− sinϕ
,

and thus the internal friction angle corresponding to material stability (static angle) depends
on material preparation.

ǫ1

q = σ1 − σ3

−ǫv

“peak”

Figure 1.3: Aspect of stress-strain curves obtained in initially dense (upper
curves) and loose (lower curves) cohesionless systems: q versus ǫ1 (solid
lines), ǫvversus ǫ1 (dotted lines). The axis points downwards for volumetric
strains, so that a growing ǫv curve corresponds to positive dilatancy.

The most important factor by which the initial state influences the yield criterion, and

1Throughout the thesis we adopt the conventions of soil mechanics for stresses and strains: tensile stresses
are negative, and so are strains expressing relative increases of lengths. Thus the small strain tensor associated

with displacement field u is ǫ = −
1

2
(∇u+∇u

T ).
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1.1 – Some basic macroscopic mechanical properties of solid-like granular materials

the strains prior to the full mobilization of internal friction, is its density, or solid fraction Φ
(fraction of sample volume occupied by the solid grains). Fig. 1.3 schematically illustrates the
behaviours of a dense and of a loose cohesionless sample in triaxial compression. While the
initially dense systems reach a maximum deviator stress for some value of ǫ1 (typically, a few
percent), and then decreases to a plateau for larger strains (30-50%), the deviator in loose
ones grows monotonically, and approaches the same plateau for large strains. Meanwhile,
the density increases (positive, growing ǫv, or downward curve on the graph of Fig. 1.3) in
loose systems, and decreases (after an initial increase for small ǫ1) in dense ones. Dense states
exhibit positive dilatancy, loose ones negative dilatancy or contractancy. Upon reversal of the
load direction (changing the sign of ǫ̇1), the “unloading” stress-strain curves do not coincide
with the initial “loading” response (see the load reversal curve, with arrows, for some interval
of ǫ1 in Fig. 1.3, for the dense case). The response on the scale relevant for Fig. 1.3 is not
reversible, and if modeled as elastoplastic, should comprise work hardening (i.e., inside the
yield criterion, the response is not reversible elastic).

After large enough strains, the material (Fig. 1.3) keeps deforming at constant deviator
stress and constant density (constant ǫv). It turns out that, whatever the initial value of the
density, its value once this plateau is reached is the same (save for some possible pressure
effects, to be discussed below). This is the critical state, obtained after a sufficiently large
strain accumulated in the same direction.

1.1.3 The critical state

An important basic concept of soil mechanics [129, 152], the critical state is the product of
the deformation process, and independent of the initial state. The granular material, once
this attractor state is reached, keeps deforming at constant density, and behaves, for the same
load, as a perfectly plastic one.

The critical state, in general, and in particular the values of critical solid fraction Φc and
critical internal friction µ∗

c , depends on confining stress σ3, or equivalently on the average
pressure P, defined as

P =
1

3
(σ1 + σ2 + σ3) (1.4)

– an issue which we further discuss in Sec. 1.1.4.

The critical state solid fraction Φc is the value separating dense initial states, for which,
after a small initial contraction, the material will ditate towards its final steady state with
Φ = Φc, from loose ones, which will contract towards the same final density. The critical
state represents an important limit for rheology of dense flow, as we shall see in the next
sections, the limit of slow flow or quasistatic limit.

As we are to deal with granular flow, we will focus on shear tests, rather than triaxial
ones, as, in simple shear, arbitrary large strains can be attained and properties of steady flows
can be measured accurately on averaging over time. Shear tests are much easier to carry out
as virtual, numerical experiments than as real ones in the laboratory, and will therefore be
discussed in Sec. 1.3.

1.1.4 Some macroscopic effects of cohesion

The presence of cohesion in the Mohr-Coulomb yield criterion has the important consequence
of introducing a stress scale in the material behaviour – as previously remarked in connection
with Eq. 1.2 the maximum height of a steep slope is related to some maximum value of
stresses. While cohesionless materials are essentially sensitive to ratios of stress components,
cohesive ones will respond differently according to the absolute magnitude of stresses. This is
quite conspicuous on dealing with compression tests in which all stress ratios remain constant.
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Rheophysics of dry and wet granular materials and suspensions

The simplest one is the isotropic compression test. In the oedometric test, stress σ1 increases,
while all strains other than ǫ1 are maintained to zero. It is usually performed on horizontal
layers of material, or samples with low height to width ratio, assembled under gravity. The
oedometric test is also observed to correspond to constant principal stress ratio σ3/σ1. In
such situations, while cohesionless soils exhibit little density change on increasing stresses,
cohesive ones undergo some irreversible compaction under growing P (the average pressure,
as defined in (1.4)), which is traditionally modeled [12] as a linear variation of the void ratio,
i.e., e = −1 + 1/Φ, with the logarithm of P:

e = e0 − Cc ln

( P
P0

)

(1.5)

Relation 1.5, written with somewhat arbitrary reference values e0 and P0, applies to materials
such as clays [12] and also to cohesive powders, over rather wide interval of void ratios (e
varying by factors of 2 or even 4). It also applies to critical states, characterized by a specific
value of stress ratio σ3/σ1, and the compression curve is often modeled with the same slope
Cc (the compression index). For soils such laws are generally regarded as applicable in the
range 10 kPa to 1 MPa, relevant for most geotechnical applications. Relation 1.5 only applies
to growing pressures. The irreversibility of the plastic compression phenomenon implies that
it does not apply to pressure values lower than the highest pressure reached in the past,
or preconsolidation pressure. Similar observations on sands are reported, but the change of
density is considerably lower, and it is also remarked that irreversible compression is to a
large extent due to grain crushing and damage.

1.2 Grain-level mechanics and microstructure

This section is devoted to the description of grain interactions and of microstructural and
micromechanical variables pertaining to granular materials. We first deal with cohesionless
systems. We introduce the contact mechanics models (Sec. 1.2.1) used in numerical simula-
tions of granular assemblies, and then the variables characterizing contact networks and the
relations between microscopic and macroscopic descriptions (Sec. 1.2.2). Then we discuss
grain-level cohesion models, capillary forces and their effects on all previously introduced
features of granular micromechanics in Sec. 1.2.3.

1.2.1 Contact mechanics

In order to understand the microscopic origins of the mechanics of granular assemblies, we
need to specify the appropriate grain interaction models. Those have several origins, and
do not have the same physical status. Neither do they equally influence the mechanics of
the material on the macroscopic scale. We focus here on the choice of models that are
implemented in our own simulations, with a few words of justification. Most choices are
identical to the ones used in [1, 104].

Normal contact forces

Such forces are essentially due to elastic repulsion. Contact elasticity is well studied and
documented, at least for smooth, regular shaped grains with well-defined tangent planes and
curvatures all over their surfaces – in which case the Hertz theory applies [72].

Let us consider two interacting particles of diameter a1 and a2 and masses m1 and m2

interacting in their contact with an elastic force. The normal deflection h in the contact point
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1.2 – Grain-level mechanics and microstructure

of two spheres with the center to center distance d is defined as,

h = (a1 + a2)/2− d (1.6)

In a two dimensional case, the normal elastic force in proportional to the normal contact
deflection as N = KNh, in which KN is a normal stiffness constant. For 3D spheres it can be
calculated, and Hertz’s law [72] gives

N =
Ẽ

3

√
ah3/2. (1.7)

In this equation, a = 2a1a2/(a1 + a2) is the harmonic mean of diameters and Ẽ is a notation
for E/(1 − ν2), where E is the Young modulus of the grains and ν their Poisson ratio. The
normal stiffness KN can be defined as the rate of the change of the force with normal relative
displacement as

KN =
dN

dh
=

Ẽ

2

√
ah1/2 =

(3a)1/3

2
Ẽ2/3N1/3 (1.8)

In addition to the normal elastic force a damping force might be used in numerical simu-
lation models, although its physical origin is less known in general. The viscous force opposes
the relative normal velocity δv = ḣ and is given by

Nν = αN(h)ḣ (1.9)

In generically disordered systems, this damping force might be attributed to the viscoelastic
properties of the material which the grains are made of [21], but it is most often used as a
computational trick to ease the approach to mechanical equilibrium states in the practice of
numerical simulation of granular assemblies. In such cases, it is of course necessary to assess
the influence of this choice of a damping model on the investigated mechanical properties.
One may choose the damping coefficient as a fixed fraction ζ of the critical damping coefficient
in the linear spring of stiffness constant KN(h) (as in [1, 104]):

αN(h) = 2ζ
√
m∗KN = ζ(2m∗Ẽ)1/2(ah)1/4, (1.10)

where m∗ = m1m2/(m1 +m2) is the reduced mass of the pair of particles of masses m1 and
m2. Interestingly, such a choice, in spite of the nonlinearity of the contact law, results in a
velocity-independent normal restitution coefficient in binary collisions [21].

Tangential contact forces: elasticity and friction

Just like a normal relative displacement entails a normal elastic force, a tangential relative
displacement of the contact region gives rise to a tangential elastic force. The tangential
relative displacement, denoted as uT, in a small motion of contacting grains 1 and 2, is the
difference of displacements of the contact point (or center of the contact region), if regarded
as following the rigid body motion of grain 1, or if regarded as following the rigid body
motion of grain 2. Regarding the surfaces of the grain as frictional, with friction coefficient
µ, the ratio of the tangential to the normal component of the stress vector at any point of
the contact surface is requested not to exceed µ, and sliding might occur where this bound
is reached. A standard result of contact mechanics between smooth surfaces [72] is that
any non-vanishing uT, imposed at constant deflection h, gives rise to some slip in part of
the contact surface (initially on an external annulus). The resulting contact mechanics, as
studied in a classical paper by Mindlin and Deresiewicz [94], is very complex and hysteretic,
with the distribution of tangential stresses in the contact region sensitive to the history of uT.
Some authors [148] attempted to retain some of this complexity in a numerically tractable
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contact model. However, a more simplified version of the Mindlin-Deresiewicz results will be
implemented in our simulations, as in quite a few numerical works [1, 85]. In many cases
of interest, the model for tangential stiffness has little influence on macroscopic material
properties. Even elastic moduli [3] were observed to be hardly affected by a greater refinement
in the choice of the model for KT. The simplified model uses the following incremental
relation between tangential elastic force T and relative tangential displacement uT, involving
a tangential stiffness KT which depends on deflection h (or, equivalently, on normal elastic
force N):

dT = KTduT, (1.11)

with

KT =
2− 2ν

2− ν
KN =

1− ν

2− ν
Ẽ
√
ah1/2. (1.12)

The expression of (1.12) corresponds to the value of KT in the absence of any tangential
relative displacement uT. To enforce the Coulomb condition with friction coefficient µ this
relation is to be modified. Whenever the elastic force component T given by Eq. 1.11 is to
exceed µN , it is immediately projected back onto the circle of radius N in the tangential
plane. Furthermore, the norm of T should be reduced in proportion to the stiffness coefficient
KT when N decreases, as advocated by Elata & Berryman [41], to avoid spurious increases of
elastic energy. Finally, the tangential force should follow the material motion and satisfy the
objectivity rule [77]. Its intensity is assumed constant in any rolling relative motion, while
its direction follows the normal vector in its rotations, and spins around it by an angle equal
to the average of the pivoting angle of the two grains in contact [1].

As for normal forces, an additional viscous contribution to the tangential force could be
introduced, involving a damping coefficient αT(h). αN(h) and αT(h) were observed not to
influence the mechanical properties in quasistatic conditions or in dense, inertial flows [125].
They do nevertheless affect the results of some assembling procedures [42].

Many simulations of granular materials are carried out in which no attempt is made
to accurately model the elastic part of the contact law. The normal repulsive force, with
an intensity growing with h, is then regarded as a suitable numerical trick to prevent solid
particles from overlapping. The contact dynamics simulation method [112, 70] deals with
nominally rigid, undeformable grains (although small overlaps have to be tolerated). The
advantage of using more realistic elastic deflections, as in (1.7), is that elastic properties of
granular materials can be predicted in a simulation and confronted to experimental results [3].
The relevance of contact deflections for different rheological regimes [127] is briefly discussed
in Sec. 1.3.

Friction and rolling friction

In many situations of interest, the Coulomb inequality,

||T|| ≤ µN, (1.13)

and the value of friction coefficient µ it contains, plays a more important role than contact
elasticity and relations of force components N , T to relative displacements at contacts.

It has also been observed that rolling friction significantly affects the mechanics of granu-
lar assemblies. Rolling friction originates in surface roughness, causing intergranular contacts
to occur through several asperities. Contacts, having a finite extension (but small compared
to the grain diameter), may then transmit torques Γ, which are limited 2 by an inequality,
similar to (1.13):

||Γ|| ≤ µRN. (1.14)

2
Γ is a net torque at the center of the contact region itself. The contact force produces a torque at the

center of the contacting grains, but not in the contact itself [55, 44].
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1.2 – Grain-level mechanics and microstructure

By construction, the rolling friction coefficient, µR is a length (of the order of the distance
between contacting asperities).

In three-dimensional models, one should in general distinguish between rolling torque
stricto sensu, for which Γ is in the tangential plane, and pivoting (or twisting) torque, for
which Γ is normal to the contact. These different components may involve different “friction
coefficients” (or lengths).

1.2.2 Contact networks and internal states of granular assemblies

We now recall some of the most useful variables describing the internal state of granular
assemblies, and some of their important properties.

Stress tensor

The Cauchy stress tensor, σ, is related to microscopic variables in a granular sample by a
useful formula [29], as follows. Ω denoting the sample volume, it expresses σ as the sum of
a kinetic term, involving velocities vi of the N grains, 1 ≤ i ≤ N (vi is defined in the frame
of reference of the center of mass of the whole system) contained in Ω, and a second term
involving contact forces Fij transmitted from grain i to grain j in all contacts, and rij, the
branch vector, pointing from the center of i to the center of j:

σ =
1

Ω





N
∑

i=1

mivi ⊗ vi +
∑

i<j

Fij ⊗ rij



 . (1.15)

In quasistatic deformation, when the system is in mechanical equilibrium, the kinetic term
vanishes and the stress tensor is given by the static term involving forces.

Coordination number

The coordination number z in a granular material is defined as the average number of force-
carrying contacts per grain. If Nc is the number of force-carrying contacts between N grains,
then the coordination number is z = 2Nc/N – as product zN counts each contact twice. One
important constraint on z (with important consequences on mechanical properties of granular
packings) that the community became aware of in the past 20 years is that is has an upper
bound, in generically disordered systems, well below the values it may reach in ideal, regular
arrangements like perfect crystals. Thus, disordered packings of spherical balls, in the limit
of small contact deflections (rigid contact limit), satisfy [124, 100, 38, 1]

z ≤ 6. (1.16)

This is well below the value z = 12 corresponding to ideal FCC or HCP lattices (or hybrids
thereof), which represent the highest possible solid fraction, Φ = π/(3

√
2) ≃ 0.74 [7].

Some grains, in granular materials subjected to stresses from sample boundaries, do not
carry any load and are referred to as rattlers. Depending on grain size distribution, density
and assembling conditions, the proportion x0 of such rattlers in granular packings varies from
a few percent to large values for some granular classes (e.g., small grains inside the interstitial
voids of a force-carrying packed assembly of larger particles). The coordination number of the
force-carrying structure (the sample from which rattlers are eliminated) is z∗ = z/(1 − x0),
and inequality 1.16 actually applies to z∗ (a stronger constraint). On applying external forces
to every grain, as in a material under gravity, one may identify a subset of grains which are
shielded from the ambient stress level (e.g., not feeling the weight of the layers piled above):
such grains are similar to the rattlers.
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The origin of constraint (1.16) is a general property of disordered assemblies of rigid,
frictionless, particles, in which the contact structure should be devoid of force indeterminacy
(or hyperstaticity) [124]. As it is in fact a property of generically disordered geometries, it
also applies to frictional grains – which most often have coordination numbers strictly below
this upper bound [1], which tend to decrease for higher friction coefficients.

In equilibrated assemblies, a minimum value of z∗ is necessary to maintain stability, which
leads to

z∗ ≥ 4 (1.17)

in packings of frictional spheres. Lower bound (1.17) is based on a simple counting argument
(as many force components as there are equilibrium equations), assumingmechanism motions,
or non-vanishing velocities (and angular velocities) such that relative motions of all contacting
grain pairs consist in rolling without sliding, should not exist, because they would lead to
instabilities (absence of velocity indeterminacy or “hypostaticity” 3). This is apparently very
nearly true in sphere packings (save for the role of 2-coordinated grains, see [1]). Values
approaching lower bound (1.17) in assemblies of frictional spherical grains have only been
reported in the limit of very large friction coefficients [1].

Coordination numbers, understandably, tend to increase with contact deflections under
growing stress [87, 2], due to the closing of narrow gaps between neighbouring grains, and
to decrease in out-of-equilibrium situations such as inertial flows [31], for which the contact
network is strongly perturbed.

Relation between pressure and average force

The coordination number might be used, in a system of spheres of diameter a in mechanical
equilibrium, to write down a useful, exact relation between the average normal contact force,
〈FN〉 and the trace of the stress tensor, or the average pressure P = 1

3trσ. Neglecting
contact deflections, we might write rij = anij in (1.15), and, nij denoting the normal unit
vector pointing in contact i–j, the scalar product between force and branch vector is FNnij ·
anij = aFN. Upon replacing the sum over contacts by an average value and introducing the
definitions of z and Φ we obtain

P =
zΦ

πa2
〈FN〉. (1.18)

A generalized form of (1.18) is written in [118] for moderately polydisperse spheres.

Force disorder

The smaller the coordination number and the degree of force indeterminacy, the greater the
importance of packing geometry and the lesser the importance of contact laws in the determi-
nation of equilibrium forces. The bounded value of z∗ and the relative sparsity of contacts is
at the origin of the peculiar force patterns observed in granular materials, and most easily vi-
sualized in two dimensions. Experiments with photoelastic particles, initiated by Dantu [32],
and also employed in some more recent studies [97, 86], exploit the birefringent properties of
some material under stress to visualize the transmission of forces in 2D assemblies of parallel
cylinders. The technique may enable quantitative analyses [6]. Fig. 1.4 displays a picture
of photoelastic disks under oedometric compression, in which the brighter particles bear the
stronger forces [86]. This strong force heterogeneity, characterized with the near alignment

3Isostaticity, or the simultaneous absence of force and velocity indeterminacy, is a remarkable property
of force-carrying contact networks in equilibrated assemblies of (i) rigid, (ii) frictionless and cohesionless,
(iii) spherical grains, holding in that case before both inequalities should be written with the same exact
bound [124]. It does not apply in general if any one of conditions (i), (ii) and (iii) is not satisfied. Inequalities
similar to (1.16), with adequate values of the upper bound, apply generally to frictionless grains.
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1.2 – Grain-level mechanics and microstructure

Figure 1.4: Force network in compressed disk assembly [86].

of the larger forces over lengths of several diameters, or force chains, hints that macroscopic
mechanical properties are not easily obtained by averaging contact behaviour. Those pat-
terns, and the corresponding distributions of force values, were also largely documented in
numerical works [115, 114]. Fig. 1.5 displays a pattern of the force chains of a dry assembly of
disks under isotropic compression, as obtained in simulations of an assembly of polydisperse
disks.

Some probability distribution functions (pdf) of normal force component values are shown
in Fig. 1.6. Those pdfs were measured in 3D simulations of sphere packings. The normal
force f is normalized by the mean force f̄ [114]. The figure shows that the distribution of
forces is very wide, with strong forces several times as large as the mean force observed with
notable frequency. The distribution of the strong force network is often observed to decrease
exponentially for large values [114, 139].

Contact network and force anisotropies

In addition to the force intensity and its distribution, the orientation of the contact and forces
have a significant influence on mechanical properties of granular material. The angular distri-
bution of contacts is usually described with the probability distribution function E(n), which
determines the probability of finding a contact along the direction of unit vector n. And the
angular distribution of force intensities can be described with function 〈F 〉n, which determines
the average intensity of force in the direction of n. The observations on the force network of
sheared granular materials reveals the existence of anisotropy on the angular distributions of
both contacts and forces (Fig. 1.7). The anisotropy of contact orientation is usually referred
to as structural or geometrical anisotropy while the mechanical anisotropy refers to the force
anisotropy. Many recent studies employed different mathematical approaches to investigate
the anisotropy properties of granular materials and extract the mechanical properties from
the characteristics of force networks [106, 8, 43, 111, 122]. Under deviatoric loads, the contact
networks and the forces in granular materials adopt anisotropic distributions. In a triaxial or
a shear test the anisotropy in the angular distribution of contacts and forces correlates with
the anisotropy of stress. Fig. 1.7 illustrates the orientation and intensity of contact forces in
simple shear tests under controlled normal stress [43]. The anisotropy is very conspicuous in
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Figure 1.5: Force network in 2D simulation of dry granular assembly under
isotropic load. The thickness of lines represent the intensity of normal forces.
Note the rattlers and the periodic boundary condition.
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Figure 1.6: Distribution of normal contact forces in 3D packing simulation of
spheres in equilibrium [114] for two different values of friction coefficient, µ =
0.1 (white symbols) and µ = 0.4 (black symbols). This figure is extracted
from [6].

that case, especially for the stronger forces [115].
Structural anisotropies might be characterized by fabric tensors. The second rank fabric

tensor is defined as the volume average of the dyadic product of contact normals[69] as

F = 〈n⊗ n〉. (1.19)

Different components of fabric tensors quantify the tendency of contacts to be preferentially
oriented in certain directions. For example, in the plane shear flow of Fig. 1.7, F

12
is negative

(if axes x and y respectively oriented from left to right and from bottom to top on the fig-
ure), corresponding to a statistically favoured contact orientation at angle 3π/4 with respect
to direction of flow x. The shear flow, on average, tends to create more contacts in this
direction, for which the macroscopic strain corresponds to the largest compression; and the
compression effect in existing contacts also tends to increase force values. These properties
will be discussed in more detail in Sec.2.3.3, where we write down explicit relations between
shear stresses and anisotropy parameters.

1.2.3 Cohesive and wet granular assemblies

Cohesive grains

Due to molecular interactions, a small attraction always exists between two macroscopic
bodies of solid material [68]. The net force due to this effect becomes important when the size

— 15 —



Rheophysics of dry and wet granular materials and suspensions

Figure 1.7: Snapshots of the force network under shear in (a) a system com-
posed of disks with rolling friction (µr = 0.05) and (b) a system composed
of octagonal particles. The line thickness is proportional to the normal force
(from [43]).

of particles is small enough (e.g., in the micron range) and their range is limited to molecular
scales (nanometers). Such cohesion forces, sometimes referred as adhesive forces [6], are
the origin of macroscopic cohesion in some materials, such as clays and powders. Several
approaches have been used to calculate the adhesive force between macroscopic bodies [83,
71, 35]. Based on a simple energy balance, the adhesive force between two elastic spheres of
radius R in vacuum can be expressed as [6]:

Fadh = 2πγsR,

in which γs is the surface energy of the solid in vacuum. This approximation shows that the
adhesive force is proportional to the radius and surface tension of the particles. More accurate
calculations show that this force is different for soft and rigid particles. The DMT model,
proposed by Derjaguin et al. [35], confirms the above approximation for the adhesive force
between two rigid spheres, while the JKR model suggests (3/2)πγsR, for soft spheres [71]. In
the presence of asperities of micrometric scale, because of the nanometric range of adhesive
forces, some asperity size, instead of the particle diameter, should determine Fadh [26, 48].

Capillary forces

A liquid wetting the grains, if present as a small quantity in the intergranular voids, will
preferentially accumulate near the contacts or the narrow interstices, forming liquid bridges
that join contacting grains or near neighbours. The formation of those bridges, assuming the
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Figure 1.8: Schematic view of two smooth spheres with radius R, interacting
through a liquid bridge (from [6]).

form of the meniscus shown in Fig. 1.8, may be spontaneous if the liquid has exchanges with
its vapour, present in the surrounding atmosphere. According to the Young-Laplace law [80],
the pressure difference between the two sides of a curved liquid-vapour or liquid-void interface
is determined by the surface tension Γ and principal radii of curvature R1 and R2 as

pi − pe = Γ

(

1

R1
+

1

R2

)

, (1.20)

the radii being positive if region i (at pressure pi) is inside the curvature, region e (at pressure
pe) outside. In the case of the capillary bridge near the contact point of two spheres with
radius R, shown in Fig. 1.8, assuming the principal radii of curvature are by a and r, defined
on the figure, one should have, for the pressure inside the meniscus, relative to the outside,
atmospheric pressure:

P = Γ(
1

a
− 1

r
). (1.21)

As the diameter a of the meniscus is much larger than its meridian radius of curvature r,
P is negative. The liquid is sucked towards the contact region. Angle θ is the equilibrium
contact angle between the liquid and the grain surfaces. For perfectly wettable materials,
this contact angle is zero.

The capillary force between spheres in Fig. 1.8 is approximately equal to the suction force
πa2P . Assuming a ≫ r, the pressure difference is given by ∼ −Γ/r. Since the meniscus
compared to the grain size is small, one may also assume h ≪ R (2h is the distance between
grain surfaces) and then we have r ∼ h/ cos θ. Finally with the help of the geometrical
relation a2 ≃ 2hR2 we obtain the following expression,

Fcap ≃ 2πΓR cos θ. (1.22)

showing that the capillary force between two spheres in contact is proportional to surface
tension Γ and particle radius R, but is remarkably independent of the volume of meniscus V .
It should be mentioned here that the effect of gravity on the curvature of the liquid bridge and
on the capillary force is negligible when the grains are small enough. The capillary length lc
determines the length scale above which gravity plays a significant role in the capillary force.
It is defined as lc =

√

Γ/gρ, where g is the gravitational acceleration and ρ is the density of
the liquid. For water lc ≈ 2.7 millimeters.

To go beyond this first estimate of the capillary force, one needs to find the exact shape
of the meniscus, as a constant curvature surface (so that the liquid is at constant pressure).
On writing down (1.21), we already implicitly resorted to the toroidal approximation, which
assumes the bridge profile is a circular arc in a meridian plane. The resulting force by this
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Figure 1.9: Liquid bridge between two spheres.

approximation can be calculated either on defining radius a as the distance of the triple line
to the axis of revolution, or using the gorge (neck) radius of the bridge. The gorge method
appears to be more accurate, with a relative error below 10% compared to exact numerical
solutions [82] – an acceptable accuracy in practice. The capillary force between two spheres
of radius R at distance D is given by the sum of two terms, calculated at the neck of the
liquid bridge: first, the attractive force due to axial surface tension Γ, and, secondly, the
hydrostatic force due to capillary pressure P . It is given by [82, 108]

FGorge = πr22∆P + 2πr2Γ = πΓr2[1 +
r2
r1
], (1.23)

in which r1 and r2, respectively denoting the radius of the meridian profile and the radius at
the neck (Fig. 1.9) are given by







r1 =
D/2 +R(1− cosϕ)

cos(ϕ+ θ)
,

r2 = R sinϕ− [1− sin(ϕ+ θ)]r1.
(1.24)

The filling angle ϕ cannot be calculated explicitly and an iterative procedure must be used
to calculate it as a function of the other parameters. A simpler but less accurate expression
is proposed by Maugis [89], by which the capillary force is expressed as a function of the
meniscus volume V and the separation distance D as below,

FCap = 2πΓR cos θ[1− 1
√

1 + 2V
πRD2

]. (1.25)

Fig. 1.10 compares the result of the toroidal approximation and the Maugis approximation
with a parametrized form of the numerical solution as proposed by Soulié et al. [141]: ,

FCap = πΓR(C + exp(A
D

R
+B)), (1.26)

with










A = −1, 1(V ∗)−0.53

B = (−0.148 ln(V ∗)− 0.96)θ2 − 0.0082 ln(V ∗) + 0.48

C = 0.0018 ln(V ∗) + 0.078

(1.27)

in which V ∗ = V/R3.
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Figure 1.10: Capillary forces predicted by the Maugis formula (dashed line,
and the toroidal approximation (solid line) compared to the accurate Soulié
formula (dotted line), for meniscus volume V = 10−3a3.

Those solutions are only valid, for given volume V , as long as D does not exceed a rupture
distance Drup [63], given by

Drup = (1 +
θ

2
)(V 1/3 + 0.1V 2/3). (1.28)

An experimental study by Pitois et al. [108] shows that the rupture distance also varies with
the separation velocity.

Another important feature of capillary forces due liquid bridge is the existence of a hys-
teresis in liquid bridge formation, that is to say, the liquid bridge between particles forms
just after that they come into contact, but it pinches off when a certain finite separation,
Drup, is reached [63].

1.2.4 Wet granular materials

Adding a small amount of water to a granular material strongly affects its mechanical prop-
erties, such that it can be sculptured into quite stable structures, for instance a sand castle.
Even the humidity in the atmosphere may cause tiny liquid bridges to form at the contact
points between particles. The particles connected with a liquid bridge attract each other by
capillary force. For real particles, when due to asperities on their surfaces, the molecular
interactions scale down to small adhesive forces, the capillary forces are large and dominant.
Unlike nano-scale ranged adhesive forces, they can apply from an interparticle distance of the
order of the particle size. Such unique properties of capillary interactions lead to significant
changes in mechanical properties of granular materials in the presence of the liquid in their
interstitial spaces. It is well known that the mechanical properties of wet granular materials
depends on the amount of liquid in the system. Based on the liquid content, wet granular
materials classify in different regimes [95, 76]:
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Figure 1.11: Schematic diagrams for classification of wet granular materials
with various amount of liquid. The black circles represent the grains and
the grey region represent the interstitial liquid (from [95]).

� Pendular state: When a small amount of liquid is added to the granular material,
the liquid initially collect near the contact point of particles, and a three phase system
composed of liquid, solid and interstitial fluid, forms. In this regime the liquid content is
as large as the liquid bridges form without any coalescence of menisci and the capillary
forces are limited to pair-wise interactions.

� Funicular state: As the liquid content is increased further, the neighbour liquid
bridges start to coalesce. The liquid fills some pores and multiple grains can be in
contact with a volume of liquid.

� Capillary state: At higher values of liquid content most of the pores fill with liquid
and large contiguous wet clusters forms.

� Slurry state: In this regime all the pore space are fully saturated and the particles
are completely immersed in the liquid.

Fig. 1.11 schematically displays different states of wet granular materials. The capillary force
in the first 3 regimes is important while it is negligible in the slurry state. Here, in this
dissertation, we only focus on the properties of wet granular materials in the pendular state.

The role of roughness

Eq. 1.22 shows that the capillary force between two spheres in contact is independent of
the volume of meniscus. However, this relation is obtained for smooth particles and in the
presence of the surface roughness the capillary force varies with the volume of the liquid
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Figure 1.12: Different regimes of roughness and the variations of capillary
force Fcap with the Volume of liquid V in different regimes (from [6]).

bridge. For very small liquid contents, it is obvious that before a liquid bridge forms, the
crevices on the grain surface must first be filled. In respect of the meniscus volume and the
size of the asperities, the capillary force may be classified in three different regimes [59, 63, 6],
as illustrated in Fig. 1.12.

The roughness can be characterized with its amplitude lR, a typical lateral scale w and the
roughness exponent χ, with 0 < χ ≤ 1. The first regime called asperity regime, corresponds
to very small liquid volumes, V < lRw

2 (h < lR), when only micro-capillary bridges form
between asperities. The capillary force in this case is given by,

FCap ∼ Γw2

lR
(

V

lRw2
)
2−χ

2+χ . (1.29)

For rough surface where χ → 1, the capillary force is proportional to the cubic root of
the meniscus volume. Larger liquid volume (or equivalently when χ → 0) correspond to the
roughness regime, in which the interstitial space is filled with liquid, but the volume is still
so small that the curvatures of the particles play no role. Then the capillary force will be
proportional to the volume as

FCap ∼ ΓV

l2R
. (1.30)

Finally for still larger liquid volumes V > l2RR (h > lR), the spherical regime is obtained: the
lateral extent of the liquid is large so that the microscopic curvature of the particle becomes
important and the surface roughness becomes negligible. The capillary force in this regime
is correctly predicted by Eq. 1.22.

Liquid content, limit of pendular state

Depending on the amount of the liquid in the system, and on its resulting spatial distribution,
wet granular materials are classified in different states. Different definitions for the liquid
content are possible. Some authors use the liquid volume fraction or Vl/Ω (the total volume
of liquid ,Vl, divided by the total sample volume Ω) [63, 74]. With Nb liquid bridges of
volume V , between N particles of diameter a , the coordination number of liquid bridges is
z = 2Nb/N and the solid fraction is Φ = πNa3/6Ω. Then the liquid content W is given by

W =
Vl

Ω
=

3zΦ

π

V

a3
(1.31)
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Figure 1.13: Three spheres connected with liquid bridges. They do not
intersect as long as filling angle ϕ is smaller than π/6.

Other publications (see e.g., [118]) define the liquid content in terms of masses. It is also
possible [95, 130] to use saturation Sw instead of liquid content. Saturation is defined as the
ratio of the liquid volume to the total pore volume and is simply related to liquid content as
Sw = W/(1− Φ).

To estimate the minimum liquid content required for liquid bridge formation, we should
consider that the maximum amount of liquid which can be stored in asperities of a particle
is about 4πR2lR. Therefore, for a typical value of the roughness amplitude lR ≈ 500 nm and
a typical value of the particle diameter a = 500µm, the volume of liquid bridge should be
larger than 1.6×10−3a3. With the help of Eq. 1.31 and the typical values z = 6 and Φ = 0.5,
the lower threshold of liquid content in the pendular state is about 5×10−3. However, by the
experimental measurements [63], for the same values of the roughness amplitude and particle
size, it is determined to be Wmin = 7× 10−4, which is smaller than our estimation.

The upper threshold of the liquid content in the pendular regime, as menisci start to
coalesce, might also be estimated, as follows. Fig. 1.13, in which the closest possible menisci on
one common spherical grain are depicted, shows that the filling angle ϕ should be smaller than
π/6. The volume of the liquid is approximately the volume of a cylinder with radius d and
height h, excluding two small volumes vi. For contacting particles so far, h = 2R(1− cosϕ),
and so

V = πd2h− 2vi,

=
2πR3

3
(2 cos3 ϕ− 3 cos2 ϕ+ 1).

(1.32)

So the volume of the meniscus when ϕ = π/6 is about 10−2a3, which yields Wmax ≈ 0.03.
A similar value for the upper limit of liquid content in the pendular state is determined by
experiments [63].

Mechanical properties of wet granular materials

Capillary cohesion is known to strongly influence the strength and flow properties of granular
materials. It is observed in many numerical and experimental studies that in the presence
of small amount of an interstitial liquid, the yield stress of the material strongly increases.
The experiments reported by Fournier et al. [50] on sheared granular materials over a wide
range of liquid content W (Eq. 1.31) show that the shear strength rapidly increases as W
is increased from zero, and approaches a maximum for W ≈ 10−3, which coincides with
the transition from asperity regime to spherical regime (see Sec. 1.2.4). The shear strength

— 22 —



1.3 – Discrete simulations of granular materials (DEM)

remains nearly constant for larger saturations, up to W ≈ 0.04, close to the transition to the
funicular state. It decreases for larger values of W and finally goes to zero at W ≈ 0.35 [50].

The influence of water content on unsaturated granular materials is mostly studied through
the Coulomb cohesion parameter which represents the shear strength at zero confining pres-
sure (see Eq. 1.1). Richefeu et al. [118] studied the Coulomb cohesion in pendular state, both
numerically and experimentally, for different values of liquid content. They observed that
the Coulomb cohesion increases with liquid content and saturates to a maximum value. A
constant value of friction angle ϕ(= tan−1 µ∗), about 33 ◦ is reported, regardless of the level
of liquid content.

In soil mechanics, mechanical properties of water-saturated soils are usually described
with the help of the effective stress concept, originally proposed by Karl von Terzaghi [147].
Terzaghi’s principle states that “all measurable effects of a change of stress of the soil, that
is compression, distortion and change of shearing resistance, are exclusively due to changes
in the effective stress.” [99]. The effective stress is defined as

σ′
ij = σij − uwδij , (1.33)

with uw the pore water pressure and δij Kronecker’s delta. This principle was extended to
unsaturated soils by Bishop [13] as

σ′
ij = (σij − uaδij) + χ(ua − uw)δij , (1.34)

in which ua is the pore air pressure and χ is the effective stress parameter attaining a value of
one for saturated soils and zero for dry soils. Such models are based on regarding the capillary
force effect as an isotropic pressure. However, recent studies by Scholtès et al. [131, 130]
show that this assumption is not valid. These authors numerically simulated the triaxial
compression of unsaturated granular materials. In these studies, the components of the
stress tensor are split into two terms: the contributions of contact forces σc

ij (effective stress),
and an isotropic stress due to capillary interactions σcap

ij , assuming an isotropic distribution
of liquid bridges in the material. The additive influence of capillary forces in stress tensor is
verified for an initial isotropic configuration, although deformation creates a slight anisotropy
in liquid bridge distribution. Consequently, the contribution of capillary forces to the total
stress is not an isotropic pressure, which is not consistent with the Bishop form of the effective
stress, or any expression ignoring the deviatoric effect of the forces in liquid bridges.

The significant influence of the hydraulic hysteresis on the mechanical behaviour of wet
granular materials is reported in a recent publication by Shamy & Gröger [40]. They numeri-
cally studied the shear flow of wet granular material, during the wetting and drying stages. In
a wetting stage, as the saturation increases from low to high levels, liquid bridges only form
between particles in contact. But in a drying stage, the liquid bridges are already present
between particles, which are not necessarily in contact. They observed a different material
response for equal saturations on the imbibition and on the drainage curves, thereby showing
the important role of hydraulic hysteresis on rheological properties of unsaturated soils.

Mani et al. [88] have studied the liquid migration within the shear band in a wet granular
material in pendular state. Both experimentally and numerically, they showed that the
liquid content decreases within unsaturated shear bands, contrary to what have been seen in
saturated materials. This effect may be important in shearing tests, since the fluid depletion
in shear bands may strongly decrease the shear strength of the material.

1.3 Discrete simulations of granular materials (DEM)
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First proposed by Cundall and Strack [30] by adapting the molecular dynamics simulation
method, initially developed for molecules [5], to assemblies of solid grains, the “discrete ele-
ment method” (or DEM) is based on the integration of the equation of motion simultaneously
for all grains. The kinematics of the grain is that of a collection of rigid bodies, each of them
with six degrees of freedom in 3D, and the corresponding equations for the linear and angular
momentum balance involve the contact forces, as modeled in Sec. 1.2.1, and their moments.
While the grains have the kinematics of rigid, undeformable objects, they might slightly de-
form at their contacts, as described in Sec. 1.2.1. Implementations of DEM or molecular
dynamics are described in a number of treatises [5, 116, 109], in which various numerical
integration schemes are proposed, and technical issues, such as the choice of an appropriate
time step, are discussed.

Instead of a complete presentation of the method, we introduce here some specific proce-
dures, among the less often described in the literature, that will prove useful for our specific
study, and that we find useful to explain and illustrate (Sec. 1.3.3). We also recall the com-
plete list of dimensionless control parameters in the simulations carried out in order to probe
the material constitutive laws (Sec. 1.3.2), and their known influence (or absence thereof,
according to the investigated rheological regime), thereby justifying our own choices imple-
mented in the forthcoming chapters.

1.3.1 Some characteristic material states

Critical state

DEM computations have successfully reproduced the approach to the critical state, an “at-
tractor” to which stress and density curves originated from initial configurations of different
solid fraction all converge in triaxial compression (Fig. 1.14), or in simple shear tests [113].
Many results have now accumulated on the properties of the critical state for various systems.

q/σ
3

Φ

γ

Figure 1.14: DEM simulation of triaxial compression test on spherical bead
assemblies. Solid fraction and deviatoric stress as functions of axial strain
for different initial states. Note the different scales on left (deviator) and
right (solid fraction) vertical axes.
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For instance, it is known [81] that the macroscopic friction coefficient µ∗ in the critical state
is larger than its microscopic, intergranular analog µ for small µ (in particular, µ∗ ≃ 0.1
for µ = 0 in bead packs [104]), but reaches, as a function of µ, a plateau, near µ = 0.4
(µ∗ ≃ 0.35).

Remarkably [113, 123], the critical state is also defined in terms of internal variables
(coordination number, fabric...).

Loose configurations of adhesive particles.

Adhesive particles tend to form tenuous aggregates, which may support some confining stress,
as illustrated for a 2D model [54] in Fig. 1.15. It is also observed that the equilibrated

Figure 1.15: Loose cohesive assembly of disks, from [54]. Forces are encoded
as line thickness, with compressive ones in red, tensile ones in green. Blue
lines mean that the normal contact force is equal to zero (by compensation
of adhesion and elasticity).

configurations of cohesive packing are sensitive to the applied pressure P , relative to the
maximum adhesive contact force F0 (tensile strength) [54]. Defining the dimensionless number
reduced pressure, P ∗ = Pa/F0, structures like the one of Fig. 1.15 are stable for very small
P ∗. Note the striking difference with Fig. 1.5. They collapse on increasing the pressure, and
satisfy constitutive relation (1.5) in some pressure range [55].
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1.3.2 Dimensional analysis

The list of parameters governing rheological characterization tests in granular materials gen-
erally comprises, in addition to the material parameters, some pressure (or confining stress)
P and a shear rate (or some other strain rate), γ̇. These combine with particle diameter a,
mass m, interparticle friction coefficient µ, restitution coefficient e (or damping coefficient ζ),
contact stiffnesses (KN and KT), tensile strength F0 of cohesive grains (we assume gravity
can be neglected). Dimensional analysis provides a convenient approach to characterize the
material behaviour with only a few dimensionless parameters.

µ, and ζ or e, are already dimensionless. While friction coefficient µ has a significant
influence on the rheological properties of the material, the coefficient of viscous dissipation
ζ, which is related to restitution coefficient e, is observed to have negligible influence on the
properties of dense flows [31, 104]. In addition to those parameters, by dimensional analysis,
the mechanical properties of a granular system, subjected to a shear rate γ̇, and normal
stress P , depends only on 2 (or 3 in the presence of cohesive forces) more dimensionless
numbers [127].

Stiffness number

The importance of contact deformation is characterized by stiffness number κ. Comparing
normal stiffness KN to the stress level P , it is defined such that the average contact deflection
h, in contacts, satisfies [109, 126],

h/a ∼ κ−1 (1.35)

Since the average normal force in the contact of spherical particles is proportional to Pa2,
for the Hertzian law (Eq. 1.7) we obtain,

κ =
(Ẽ

P

)2/3
. (1.36)

The limit of κ → +∞ corresponds to rigid grains, for which the material properties should
not depend on κ any more. In this limit, the small deflections at contacts, of the order of
κ−1a, do not significantly modify the structure of the granular assembly in comparison to one
composed of ideally rigid grains. Practically κ & 104 might be considered to be stiff enough,
while a value of the order of 102 is too small.

Inertial number

The inertial number, I, characterizes the importance of inertial effects in a dense granular
flow [67, 52, 31]. It is defined as the ratio of the inertial time

√

m/aP (the time needed for a
particle of mass m, accelerated by force Pa2, to move on a distance a) to the shearing time
γ̇−1, as [109]

I = γ̇

√

m

aP
(1.37)

The inertial number provides a classification of flow regimes. For very small values of
I, when I → 0, we approach the quasistatic regime. Large values I & 1 correspond to
agitated, “gaseous” regime and the inertial regime lies in between [6]. (Some authors use
other equivalent expressions, e.g., Savage or Coulomb number ρa2γ̇2/P (with particle density
ρ), which is simply I2 [6]).
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Reduced pressure

The reduced pressure P ∗, as already mentioned in connection with Fig. 1.15, characterizes
the intensity of adhesion forces compared to confining forces, and for 3 dimensional systems
is defined as [109]

P ∗ =
Pa2

F0
, (1.38)

in which F0 is a force scale for the intensity of adhesive forces (usually maximum attractive
force). Typically for surface tension of water Γw = 73mJ/m2, particle diameter a = 0.1mm
and the atmosphere pressure, one gets P ∗ = 43.6. P ∗ → +∞ corresponds to cohesionless
systems, and when P ∗ ≫ 1, the confining forces are dominant and the effects of cohesive
forces are negligible. In the case P ∗ ≪ 1, the cohesion forces dominate, which may strongly
affect the material properties. The stiffness number for Hertzian contacts should then be
determined by replacing the typical force Pa2 by F0 [109], thereby defining:

κ0 =
(Ẽa2

F0

)2/3
= κP ∗2/3. (1.39)

Similarly, instead of inertial number I, the effect of inertia could be characterized by [109]:

Ia = γ̇

√

ma

F0
. (1.40)

Influence of dimensionless control parameters, in different regimes.

I κ (> 103) e or ζ µ µR/d P ∗

Assembling process Y N Y Y Y Y

Solid, strain type I, I < 10−3 N Y N Y Y Y

Solid, strain type II, I < 10−3 N N N Y Y Y

Critical state, I < 10−3 N N N Y Y Y

Dense flows, 10−3 < I < 0.1 Y N N Y Y Y

Collisional regime , I > 0.1 Y N Y Y Y Y

Table 1.1: Influence of the dimensionless parameters on the mechanical
behaviour in different regimes. (Y=Yes, N=No)

Table 1.1 (extracted from [126, 127]) sums up the state of the art on the rheological
regimes for which parameters influence the material behaviour. It is based on numerical
results obtained with 3D sphere assemblies or 2D disk systems, with limited polydispersity.
While the influence of κ, if large enough, is limited to a certain regime of small strains (of type
I, i.e., due to contact deflections, as opposed to type II, due to network rearrangements [128]),
and restitution coefficients mainly affect the strongly agitated flows (as in granular gases, but
also in the assembling stage), parameters µ, I and P ∗ are the ones governing dense flows.

1.3.3 Implementation of DEM for plane shear flow

The simplest geometries to study granular material rheology is the plane shear flow. Consider
a granular material confined between two rough plates (Fig. 1.16). The flow of the material
can be obtained by imposing a constant shear rate γ̇ = v1/L2, or a constant shear stress
τ ≡ σ

12
on the top plate. Most literature results were obtained on imposing the wall velocity

and measuring the shear stress [4]. Some are carried out controlling the shear force applied
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Figure 1.16: Plane shear flow.

Figure 1.17: Sketch of Lees-Edwards boundary condition. Main cell is sur-
rounded by its copies.

to the moving wall in order to study the flow thresholds [149]. We will see that it is more
convenient to control the pressure [6, 31], P ≡ σ

22
, onto the top plate and second and measure

solid fraction Φ, rather than keeping the volume constant [22]. To exploit fully the ability of
the simulation set-up to achieve arbitrary large shear strains, it is convenient to use periodic
boundary conditions in the direction of the flow, and in the transverse (vorticity) direction.
Furthermore, the wall effects might be entirely suppressed, if the system is also periodic in
the direction of the velocity gradient.

Boundary condition and stress control

The Lees-Edwards periodic boundary condition, as illustrated in Fig. 1.17, uses a rectangular
parallelepiped simulation cell that does not get distorted in the shear flow. Among the
periodic replica of the central cell, those that are immediately above or below, along axis x2,
move with velocity ±γ̇L

2
relative to the main cell, and the resulting shift along direction 1

should be taken into account as particles enter or leave the central cell (Fig. 1.17).

In order to control normal stress σ
22

= P the size of the box in the same direction, L
2
,

should be allowed to vary. One method, used in [1, 104], inspired by the Parrinello-Rahman
molecular dynamics scheme [103], is the following. Lengths L

1
and L

3
of cell edges parallel

to velocity direction and vorticity, are kept constant. Position vectors ri of particle centers
are written as

(1 ≤ i ≤ N) ri = L.si, (1.41)

in which L is a square 3 × 3 diagonal matrix with diagonal components (L
1
, L

2
, L

3
), and si
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is the rescaled position vector in a cubic box with unit edge lengths.

(1 ≤ i ≤ N) vi = L.ṡi + L̇.si. (1.42)

Note that coordinates 1 and 3 of the second term are identically zero (constant (L
1
and

L
3
)). The equation of motion in rescaled coordinates for each particle, with Fi the total force

exerted on particle i, now reads

(1 ≤ i ≤ N) mis̈i = L−1.Fi. (1.43)

In the original Parrinello-Rahman method, this equation also includes other terms, involv-
ing L̇, because of the Hamiltonian, conservative form of dynamics one should implement in
molecular systems. But these terms have almost no influence on the behaviour of a dissipative
system, and they can be neglected in a granular material simulation, in which energy conser-
vation is not an issue [1]. Eq. 1.43 should also be supplemented by the angular momentum
balance equation, for the grain rotations.

We also need to calculate the acceleration corresponding to the fluctuations of the system
size in x2 direction. The total normal stress in x2 direction is given by σ

22
− P , in which P

is the controlled normal stress and σ22 is the internal normal stress given by Eq. 1.15.

ML̈
2
=

Ω

L
2

(σ
22
− P ) =

1

L
2

[

N
∑

i=1

mi(ṡ
(2)
i )2 +

∑

i<j

F
(2)
ij r

(2)
ij

]

− Ω

L
2

P. (1.44)

M is a generalized mass associated with the degree of freedom L2. Its value, a fraction of the
total sample mass [1], should be chosen in such a way that condition σ

22
= P is satisfactorily

maintained. Eq. 1.43 and Eq. 1.44 provides all the necessary elements for modeling the
dynamics of a sheared sample – the fixed shear rate being imposed through the boundary
condition.

Steady state and measurements

The steady state, in shear flow, is reached when the strain is large enough, so that the flow
properties do not change further and are independent of the initial configuration. The critical
state, discussed in Sec. 1.1.3, is a special case of steady state, in the quasistatic limit of I → 0.
One can approach a steady state for any shear rate, which depends on inertial parameter I.
Fig. 1.18 displays typical evolutions of stress components σ

12
and σ

22
, with shear strain γ,

in simulated shear flow. The steady state is apparent as corresponding to the plateau value
of σ

12
, after the initial shear stress increase with strain, for γ & 0.1. In the steady state

the shear stress merely fluctuates about a mean value. These results are measured in shear
flow [104] under prescribed pressure P . The nearly constant value of σ

22
/P confirms that the

normal stress is well-controlled.
The approach to the steady state is usually detected with a small set of basic state

variables, among which are shear stress σ
12

and solid fraction Φ. Such quantities should be
measured by averaging over the time series, excluding the initial transient, e.g.,

µ∗ = 〈 |σ12
|

σ
22

〉t or Φ = 〈Φ〉t. (1.45)

In practice, some of these observables exhibit rather large fluctuations: thus, the typical
fluctuations of σ

12
, in Fig. 1.18, exceed 30% of the mean value. A proper evaluation of

the average value requires careful statistical approaches and error estimates. A convenient
method to estimate the statistical uncertainty on the measurements of averages over finite
time series, is the blocking (or renormalization group) technique presented in [47]. This
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Figure 1.18: σ
12

(left axis, in black) and σ
22

(right axis, in red) as functions
of shear strain γ. Results of [104], 3D simulations of rigid frictionless grains,
under a constant normal stress P , with I = 3× 10−5.

procedure amounts to break the whole time series, of duration T , into n subsets or “blocks”
extending over smaller time intervals T1 = T/n, evaluate averages over each one, check that
the variance of the values of such average scales as 1/T1 if T1 is large enough, and then
extrapolate to the complete steady state time series (n = 1). This yields error bars on
measurements of averages in finite systems which should not be confused with the quadratic
average of fluctuations of the observable quantity. The method identifies the minimum size
of independent blocks. It does not involve any approximation and gives the correct answer
when it exists provided the analyzed series is sufficiently long. In practice, due to intrinsic
long-lasting correlations in granular systems, quite long runs are necessary [104].

1.4 Dense flow: the “µ∗(I) rheology”

1.4.1 From numerical results to constitutive modeling

Simulations of model granular materials in steady uniform shear flows [31] under prescribed
normal stress P contributed to identify a classification of flow regimes, under controlled
normal stress, in terms of inertial parameter I (as recalled in Sec. 1.3.2, in relation with the
definition of I), which proved particularly convenient. For a given material (and a certain
value of µ, the intergranular friction coefficient), its state in steady uniform shear flow,
according to Tab 1.1, only depends on I, provided κ remains large. Thus, measurements of
shear stress σ

12
, or, equivalently, since σ

22
is kept constant, of effective friction coefficient

µ∗ = σ
12
/σ

22
, on the one hand; and of solid friction Φ, on the other hand, as functions of I,

provide essential constitutive laws, referred to as the friction law and the density law4:
{

µ∗ = µ∗(I, µ)

Φ = Φ(I, µ)
(1.46)

Fig. 1.19 expresses those laws in a model 2D system, with µ = 0.4, suggesting a linear form

4sometimes called dilatancy law – but this might be confusing, as Reynolds dilatancy does not correspond
to an increase of volume upon increasing the shear rate, but, rather, to an effect of shear strain in static
granular assemblies.
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Figure 1.19: Variation of µ∗ (a), and Φ with I, in a 2D simulation [31] of
disks, with µ = 0.4 and two different values of restitution coefficient: e = 0.1
(filled circles) and e = 0.9 (open squares).

for I dependences of µ∗ and Φ:

{

Φ(I) = Φmax − αI

µ∗(I) = µ∗
min + βI

(1.47)

for some interval of I (say 0.04 ≤ I ≤ 0.2), with µ∗
min = 0.25, β = 0.3 and Φmax = 0.81,

α = 1.1. The results, as announced, do not notably depend on e. µ∗
min and Φmax coincide

with the internal friction and the solid fraction of the material in the quasistatic critical state.
The change in the material state I increases from the quasistatic limit to 0.3 is illustrated

by Fig. 1.20, in which a gradual depletion of the force-chain network of quasi-static states is

Figure 1.20: Influence of inertial number I on contact network. (Obtained
by DEM simulation in [121]).

witnessed, while increasingly isolated, strong binary interactions resemble at larger I values
collisional momentum transport characterizing granular gases. The linear variations with I
of Φ and µ∗ were reported to cross over to different power laws in the quasistatic limit, for
small I [62, 104]. The simple classification of states, and parametrization of laws, with the
sole number I assumes κ to be large enough (κ > 5000 is, most often, sufficiently rigid).
When grains deform with larger contact deflections in the flow, various flow regimes are
charted, depending on two parameters [22, 23]. The variable most sensitive to a decrease in
stiffness parameter κ [31] is the coordination number. Fig. 1.21 reveals a weak dependence of
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Figure 1.21: Coordination number z as a function of inertial number I, for
stiffness number κ = 39000 (red square dots, dotted line) and κ = 8400
(blue crosses, dashed line) in simulations of frictionless beads [104].

z on κ while it varies significantly with I. z decreases for larger values of I, where a similar
behaviour of solid fraction Φ is also reported [104]. Note that the isostatic value z∗ = 6 is
retrieved in quasistatic limit (see footnote p. 12).

Constitutive laws of type (1.46) or (1.47) proved apt, once implemented locally in various
flow geometries, to quantitatively predict velocity fields [49]. The results reported in [73]
are particularly striking in that respect. Having first measured µ∗(I) in inclined planes
experiments (a simple case in which µ∗, and hence I, is constant in the flowing layer, save for
boundary effects), Jop et al. applied it (in suitably generalized tensorial form) to model the
rather complex velocity field in the flow of a granular layer between rough parallel lateral walls
on top of an erodible bed (with gradients in several directions). The resulting predictions,
involving no adjustable parameter, proved remarkably accurate.

1.4.2 Pressure controlled versus volume controlled behaviour

In a pressure-controlled shear flow, the system size L2 is allowed to fluctuate in order to
maintain the normal stress constant, σ

22
= P . In a more traditional approach, the volume is

kept constant rather than the normal stress [22].

The first advantage of pressure-controlled configurations is that this method permits to
approach quasistatic values of solid fraction and internal friction when I → 0. Such a flow
is not possible in volume-controlled tests, unless for Φ = Φc. For solid fractions below the
critical value, the volume increase is due to inertial effect and the flow is not quasistatic.
For solid fractions larger than Φc, the material cannot flow without imposing large enough
contact deflections to particles, which may damage the grains or the apparatus. When
Φ approaches Φc in steady shear flow, with fixed values of Φ and γ̇, considering that I
approaches zero for Φ → Φc, it leads to a divergence of P and τ (∼ µ∗P ). So when Φ is
used as a control parameter, the value Φ = Φc appears to be a singular point [81]. Ideally
rigid grains (κ → +∞), at Φ = Φc, would jam sooner or later [81]. With stiff, but not
perfectly rigid grains, the singularity is slightly smoothed out, but one expects normal and
shear stresses to have large fluctuations close to Φc. This is indeed apparent in Fig. 1.22a.
However, the amplitude of the fluctuation of ratio τ/P remain finite, similar to those obtained
in constant pressure tests [106](Fig. 1.22a). Fig. 1.22 compares the fluctuations of stress
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components and solid fraction in volume-controlled and pressure-controlled configurations.
The fluctuations of ratio τ/P in both cases are similar, although the fluctuations of Φ in the
constant pressure test are much smaller than the fluctuations of P in the constant volume
test. Those fluctuations regress in the large system limit [104]. Although both procedures

(a) (b)

Figure 1.22: Fluctuations of solid fraction and stress components in a
pressure-controlled simulation versus volume-controlled simulation. (a) For
γ < 1, P = σ

22
is controlled while Φ fluctuates. For γ > 1, Φ is controlled

and P fluctuates. (b) Fluctuations of τ/P for constant pressure (left) and
constant volume (right). The figures are extracted from [107, 105].

are equally valid and determine the same internal friction coefficient, the pressure-controlled
test avoids the singular fluctuations of stress, and should be more convenient.

1.4.3 Dense flow of cohesive grains

Cohesive forces are known to strongly influence the flow properties of granular materials.
Macroscopic friction coefficient µ∗ strongly increases in the presence of attractive interac-
tions [118, 143]. This is usually described by the Coulomb criterion [111, 118], Eq. 1.1, in
which c represents the macroscopic intensity of cohesion. The experimental studies on the
flow of powder in a rotating drum show that dense flows cannot be achieved using too small
grains such as fine powders [27, 28]. However, dense cohesive flows can be experimentally
observed with large enough grains such as wet glass beads [145], or with natural snow [121].
Fig. 1.23 represents internal friction µ∗ and solid fraction Φ as functions of inertial number
I, for dense flow of 2D cohesive grains. The results were obtained by Rognon et al. [122],
in simulations of steady plane shear flow. Instead of the reduced pressure P ∗, a cohesion
number η, defined as η = 1/P ∗ was used in that study. The curves show the usual behaviour
of granular materials, such that µ∗ increases and Φ decreases at growing I. Moreover, the
results show that for smaller values of P ∗, the solid fraction decreases and the internal friction
increases, an important effect for P ∗ below 0.1.

Rognon et al. also observed that, despite the decrease of solid fraction, the coordination
number z increases for smaller values of P ∗. The absence of a general relation between
density and coordination number in cohesive grain assemblies has also been reported in
isotropic cohesive disk packings [54, 55]5. Variations of Φ and of z in opposite directions
reveal the agglomeration of cohesive grains. As adhesive particles stick to one another, the
coordination number increases, while the formation of loose aggregates increases the porosity

5There is no general relation between Φ and z with cohesionless grains either [1] although their variations
are often correlated.
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(a) (b)

Figure 1.23: Macroscopic friction coefficient µ∗ and solid fraction Φ versus
I for different values of P ∗. The results are obtained by 2D simulations of
the shear flow of cohesive grains [122]. Note that η in the original paper
is replaced by P ∗. P ∗ = ∞ indicates the results for the simulation of dry
grains.

of the granular structure. The aggregation of cohesive grains is observed in many other
numerical studies and experiments [120, 144, 90, 20, 150].

1.5 Dense suspensions

Dense suspensions [142, 57] of solid particles are present in many natural and industrial
processes, with examples in civil engineering (fresh cement or bituminous road pavement
materials), biology (blood), food processing...

Here we limit our discussion to suspensions of rigid, non-Brownian particles, with no
distant interaction other than hydrodynamic, in a Newtonian viscous incompressible liquid,
with shear viscosity η0. Most reported experimental works studied model systems in which
spherical, nearly monodisperse grains were mixed in a liquid of equal density [14]. We refer
to this class of suspension as granular suspensions, or granular pastes.

1.5.1 Scope, basic properties

Granular suspensions

As compared to dry granular materials, granular suspensions share similar static aspects:
in particular, the grains, should they come into solid contact, should interact by elastic and
frictional forces, as described in Sec. 1.2.1. The dynamics are however dominated by viscosity,
rather than inertia. We focus on the limit of vanishing Reynolds number. Defined in terms
of particle diameter a, liquid viscosity η0, liquid mass density ρ and shear rate γ̇ as

Re =
γ̇a2ρ

η0
(1.48)

the Reynolds number [80] compares viscous and inertial terms in the Navier-Stokes equations.
In the limit of Re → 0, inertia plays no part, and the velocity field in the liquid is described
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by the Stokes equation:

−~∇pf + η0∆v = 0

~∇ · v = 0,
(1.49)

involving some pressure field pf in the liquid domain. Velocity field v should satisfy the
condition of continuity on all solid grain surfaces – on each point r of the boundary of grain
i, whose center of mass, at point Ri has velocity Vi, and of angular velocity Ωi, it should
coincide with the rigid body form

v(r) = Vi +Ωi ∧ (r−Ri). (1.50)

It is legitimate to neglect Brownian motion for very large Péclet number, usually defined
(with R = a/2 the particle diameter) as

Pe =
6πη0R

3γ̇

kBT
, (1.51)

in which kB is Boltzmann’s constant and T denotes the absolute temperature. The diffusion

coefficient for a Brownian sphere of radius R in a liquid of viscosity η0 being D =
kBT

6πη0R
[60],

Pe, as defined in (1.51), is the ratio of the characteristic diffusion time of one particle on
distance R, τD = R2/D, to the shearing time, 1/γ̇. Pe is very large for particles with
R > 10 µm and liquids with η0 ≥ 10−2 Pa.s, with shear rate in the 10−1 s−1 or above. As to
colloidal forces (see Sec. 1.2.3) they are usually negligible for such particles.

Diphasic aspects and the homogeneity issue

Apart from viscous hydrodynamic effects, suspensions differ from granular materials in their
diphasic character. In general, one should describe, in macroscopic constitutive laws, both
the motion of the suspending liquid and that of the grains, with such phenomena as sedimen-
tation, filtration flow, or particle migration [57]. Sedimentation might be avoided on using
neutrally buoyant particles [14]. In a steady flow, one should have a constant concentration
field – but not necessarily uniform, which motivated recent rheometric experiments [102, 16]
to track a local constitutive law relating the effective suspension viscosity to the strain rate
and the density at some point in the flow where all these data are simultaneously available.
Various experimental techniques might be used, such as Particle Image Velocimetry [16] or
Magnetic Resonance Imaging [102]. For lack of such local information, many measurements
of the effective viscosity of a suspension should be regarded with suspicion.

Macroscopic constitutive laws

The behaviour one is generally interested in is expressed by the effective viscosity η of the
suspension, measured (locally !) as the ratio of the shear stress to the shear rate. Let
us consider a Couette (simple shear) flow, and assume, for simplicity, the material to be
homogeneous, and the shear rate γ̇ uniform. Defining, conventionally, direction 1 as that of

the flow, direction 2 as that of the velocity gradient (thus γ̇ =
∂v1
∂x2

), so that the vorticity is

in direction 3, one measures:

η =
σ12
γ̇

. (1.52)

as a function of solid fraction Φ and of γ̇. The suspension is said to be shear thinning if η
is a decreasing function of γ̇, and shear thickening if it grows with γ̇. Newtonian liquids,
of course, have shear-rate independent viscosities. Brownian suspensions are usually shear
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thinning. Some shear-thickening might be observed in non-Brownian suspensions at high
enough shear rate, due to inertial effects [81, 45]. But suspensions of hard particles with no
Brownian motion should exhibit no dependence of η on γ̇, provided Re remains very small.
This may be understood from simple dimensional analysis [142]. The viscosity ratio η/η0
should only depend on dimensionless parameters:

η

η0
= f(Φ,Re,Pe) (1.53)

and all dependence on γ̇ should disappear in the double limit of Re → 0 and Pe → ∞. One
may also invoke an invariance argument [81]: hard particle interactions introduce no charac-
teristic time, and changing γ̇ amounts to going along the same trajectories in configuration
space, with a rescaled time.

Normal stresses and particle stresses

One also records the first and the second normal stress differences, defined as6

N1 = σ11 − σ22

N2 = σ22 − σ33
(1.54)

Those quantities are difficult to measure, and their values are still discussed in the liter-
ature [14]. Unlike Newtonian fluids, suspensions of hard non-Brownian objects have non-
vanishing normal stress differences, which relate to the formation of an anisotropic structure
in shear flow [14, 15]. This anisotropy gradually changes sign upon changing the sign of γ̇.
Upon such a reversal, the apparent viscosity goes through a minimum ηiso that is believed to
correspond to an isotropic structure.

In general the absolute values of normal stresses σii have no intrinsic meaning, because
the pressure pf of the incompressible liquid is determined by the flow conditions, rather than
its constitutive relations. One sometimes accesses to the so-called particle normal stresses,
defined as (for the considered simple shear flow, in which all components of the strain rate
vanish except 12 and 21)

σp
ij = σij + pfδij − η0γ̇(δi1δj2 + δi2δj1). (1.55)

if the liquid pressure is measurable.

Viscosity divergence in the jamming limit

The effective viscosity grows with solid fraction Φ and is observed to diverge at some maximum
value Φ∗ above which no flow is possible, due to solid particle jamming. This divergence is
usually fitted as a power law [75],

η

η0
∼

(

1− Φ

Φ∗

)−α

. (1.56)

Values near 2 are often reported for exponent α [142, 17, 16]. As to the viscosity of the
isotropic suspension, it is reported to diverge with a smaller exponent, α ≃ 1 [14].

Although apparently simple, suspensions of non-Brownian, non-colloidal hard spheres
thus possess a number of rheological properties that are not entirely understood. One diffi-
culty is the assessment of the nature and the role of interparticle contacts. Different contact
or near-contact properties should explain the different values of solid fraction Φ∗ reported in

6The sign convention here is that of fluid mechanics, i.e., tensile stresses are positive.

— 36 —



1.5 – Dense suspensions

the literature: about 0.605 in [102], 0.54 in [16]... But, in general, little is known about the
small-scale interactions, governing possible combinations between solid contacts and hydro-
dynamic interactions. One particular difficulty, which Sec. 1.5.2 will deal with in more detail,
is the lubrication phenomenon, by which the hydrodynamic force between two particles sep-
arated by a narrow interstice of thickness h ≪ a, for given relative normal velocity, diverges
as 1/h. Such a hydrodynamic coefficient A/h, with A a constant, implies, for a given force
F pushing two particles towards each other, the differential equation

dh

dt
= −F

A
h, (1.57)

whence for finite force an exponential decay of h, but no contact (h = 0) in a finite time.
This effect results from the local, asymptotic form in which the Stokes equations may be
approximated to in narrow channels between quasi-parallel solid surfaces [58, 61]. At close
approach, surfaces are no longer smooth and quasi-parallel, so the 1/h singularity is cut off
when h is of the order of a length lR – a characteristic size of surface asperities – and thus
solid contacts may occur within finite times. In most practical cases, lR/a is of order 10−4

to 10−2. Numerical simulations, in which all microscopic ingredients of the model are fully
controlled, should provide useful information on the effect of lR and other modeling choices
(implementation of solid contact models) on macroscopic material properties.

1.5.2 Micromechanical modeling and simulations

Hydrodynamic interactions and hydrodynamic resistance matrix

The most remarkable property of Stokes equations (1.49) is their linearity. A linear operator
Ξ thus relates viscous drags FH to velocities V, as

FH = −Ξ ·V, (1.58)

which defines the hydrodynamic resistance matrix Ξ [61]. On writing (1.58), it is most
convenient to include all velocities and angular velocities of particles in V, along with some
other kinematic parameters, such as, e.g., strain rate ǫ̇ = −L̇2/L2, if we are interested in a
deformable box as in the simulations of normal stress controlled shear flows.

The basic assumption of Stokes flow (Re = 0) requires external forces Fext to be balanced
by hydrodynamic ones:

Fext +FH = 0, (1.59)

whence a determination of velocities:

V = Ξ−1 · Fext, (1.60)

(1.60) is the equation of motion for viscous suspensions. External forces in (1.60) might be
identified by their power, and thus the force conjugate to strain rate ǫ̇ is just ΩΣ22, the prod-
uct of the system volume by the applied normal stress in direction 2. Eq. 1.60 is complicated
because of the dependence of the hydrodynamic resistance matrix on particle positions. The
Stokesian Dynamics simulation method [18] uses multipole developments of velocity fields to
evaluate Ξ, or its inverse, the mobility matrix Ξ−1, in suspensions of spherical particles. The
intrinsically long ranged nature of hydrodynamic interactions, and their complex, many-body
structure (those forces are not pairwise additive) entail considerable difficulties in the simu-
lation of suspensions, a field in which the progress in numerical performance appears much
slower than in DEM simulations of granular assemblies. As an example, the more calcula-
tions of [135], which benefited from an efficient numerical implementation of the “Stokesian
dynamics” method [136], are limited to 512 particles in the range 0.5 ≤ Φ ≤ 0.6 and higher
concentrations were not explored.
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The assumption of lubrication force dominance

Given that large hydrodynamic couplings between close neighbours should provide the dom-
inant forces, Melrose and Ball [92] – see also [11, 93] – proposed to keep only the asymptotic
form of such near-neighbour hydrodynamic interactions (h ≪ a), thereby considerably sim-
plifying the model. As we are going to implement our version of this approach in Chapter 3,
we introduce it in more detail here. In this approach one ignores the long ranged part of
hydrodynamic interactions and resorts to the “pair drag frame invariant” model of [11] and
[137], in which hydrodynamic forces are pairwise additive and only couple pairs of particles
separated by a distance h lower than some threshold hc. hc is arbitrarily chosen, but the
sensitivity of the results to its value can be assessed. The hydrodynamic force exerted by
particle i onto its neighbour j linearly depends on the relative velocity δVij , defined as the
difference between the velocities of the mid-gap point, on the line joining centers, regarded
as moving with solids i or with solid j. Those relative velocities are in turn determined
by velocities (Vi)1≤i≤N of the bead centers, and rotation velocities (ωi)1≤i≤N of the beads.
Denoting as Rij (Rji) the vector joining the center of i (respectively, of j) to the mid-gap
point (i.e., the middle point between centers if i and j have equal diameters), one has:

δVij = Vi + ωi ∧Rij −Vj − ωj ∧Rji. (1.61)

Forces are approximated by the dominant, lubrication terms in the limit of small interstices
hij between the surfaces of neighbouring particles i and j [11]. If nij denotes the normal unit
vector pointing from i toward j, then

Fij =
[

ξN (hij) nij ⊗ nij + ξT (hij)
(

1− nij ⊗ nij

)]

· δVij (1.62)

Expression (1.62) actually contains the leading order and some next to leading order terms
in the limit of hij → 0, as coefficients ξN and ξT (which both vanish for h > hc) diverge in
the limit of h → 0 [11]:

ξN (h) =
3πη0a

2

8h

ξT (h) =
πη0a

3

8
ln

( a

2h

)

.

(1.63)

Let us note at this stage, for future use, that combining Eqs 1.57 and 1.63, one gets a char-
acteristic squeezing time for interparticle gaps under normal force F as (ignoring numerical
factor 3π/8)

τS(F ) =
η0a

2

F
(1.64)

Total hydrodynamic forces and moments on particle i are then given by

FH
i =

∑

j

Fji

ΓH
i =

∑

j

Rij ∧ Fji

(1.65)

Relations (1.63) stem from calculations with the lubrication approximation within the inter-
particle gap, as recalled by [11]. (1.63) is admittedly a simplified form of the complete pair
drag interaction specified in this reference, as some terms comparable to ξT (h) have been
discarded. In the study of Chapter 3, we shall mostly resort to a model with only normal
forces, i.e. take ξT (h) = 0, as the 1/h divergence will dominate the hydrodynamic resistance
matrix anyway. This choice, as in other numerical studies [93], may greatly simplify the
model, especially if all other interaction forces are also purely normal. Since the rotation of
spheres with central force interactions can be ignored, the number of degrees of freedom Nf

decreases from Nf = 6N to Nf = 3N .
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Lubrication singularity and contact problem

The form of ξN (h) is a source of serious numerical problems at high particle concentration [11].
Confronted with those numerical difficulties, different groups chose to introduce various forms
of repulsive forces, keeping interparticle gaps within tractable range. One possibility is to
allow true intergranular contacts to occur, by cutting off the divergence of resistance matrix
element ξN (h) close to contact [140]. One may, thus, use the function depicted in Fig. 1.24.
For h ≤ hmin, the graph of function ξN (h) is replaced by its tangent in hmin. For h ≥ hmax

Figure 1.24: Resistance matrix element ξ(h) coupling normal approach
velocity to normal force in particle pair, separated by distance h.

the hydrodynamic coupling coefficient is set to zero – the asymptotic expression (1.63) is no
longer valid, and the remaining ξ(h) is deemed negligible. The weaker logarithmic divergence
of ξT can be dealt with in the same manner. Once particles have come into contact, one
may simply add the contact forces, as modeled in Se. 1.2.1 to the hydrodynamic ones. This
is justified if the change in the geometry of the contact region is small enough and does not
significantly perturb the velocity in the liquid region contributing to the hydrodynamic force.

Viscous jamming and hydroclusters

Non-hydrodynamic forces, however small, are reported to become important at high volume
fractions Φ [19]. Particle interactions at short distance, which many numerical simulation
studies have introduced in the model [39, 138, 135, 93], are difficult to control in laboratory
experiments, a likely explanation for the variety of results reported as to the divergence of
η as Φ approaches some maximum Φm [142]. Reported values of Φm may differ from the
random close packing solid fraction, ΦRCP.

Several authors contend that the basic model, without lubrication cutoff, is pathological
in the sense that no steady state could be achieved in simple shear [92, 10]. Such behaviour is
attributed to the formation of large clusters of particles separated by very narrow interstices.
Those “hydrodynamic clusters” should be very difficult to deform and reportedly cause the
cessation of flow as they percolate. A jamming transition would thus occur below ΦRCP,
as predicted in a theoretical approach based on a kinetic model for rod-shaped clusters [46].
Hence the statements, repeatedly made in the recent literature [91, 39, 135], that interparticle
forces are indispensable to observe continuous shear flow, and that shear-thickening is due to
the decreasing capacity of other forces, as hydrodynamic ones increase with γ̇, to limit the size
of the hydrodynamic clusters and overcome the jamming tendency of purely hydrodynamic
interactions.
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1.5.3 The “granular” approach to suspension rheology

The recent progress in the modeling of dry granular flows, with the development of the
approach of Sec. 1.4, inspired a new point of view [25, 17] on the rheology of dense assemblies
of particles interacting at their contacts. One may, instead of measuring a viscosity in shear

Figure 1.25: Rheometric device (c) used in [17] to study (a) pressure im-
posed shear flow of granular materials, or (b) particle pressure imposed shear
flow of suspensions, for which the vertically mobile lid applying the confining
pressure is permeable to the interstitial liquid.

flow at constant solid fraction, characterize the material rheology by the shear resistance
of the particle arrangement under a given normal (particle) stress, i.e. an internal friction
coefficient. The normal-stress controlled Couette apparatus of Fig. 1.25 was designed to carry
out such experiments, in which the granular phase may dilate or contract, depending on the
density necessary to support Pp under the imposed strain rate γ̇... Thus the analogy to
dry granular materials in pressure-controlled shear flow is complete if we define an analog of
inertial number I. Introducing the viscous number Vi, based on the squeezing time defined
with the typical grain-level force Ppa

2:

Vi = γ̇τS(Ppa
2) =

ηγ̇

Pp
(1.66)

one may use it as the inertial number of dry grains. Characterizing the suspension with
a friction law and a density law, as functions of parameter Vi offers the same advantages
as the µ∗(I) rheology for dry grains. In particular, the quasi-static limit is approached for
small Vi. Then the applied particle pressure has plenty of time to squeeze the fluid in narrow
gaps, and the behaviour should be dominated by intergranular contacts. The material should
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Figure 1.26: Macroscopic friction coefficient µ∗ for dry granular material
(polydisperse disks in 2D, with intergranular friction coefficient 0.3), versus
I (black curve, bottom axis); and for a model suspension of the same grains,
versus Vi (upper axis), with hmin = 10−2a (red curve) and with hmin =
10−4a (blue curve).

have a quasistatic plastic flow, with contact forces supporting the load... in other words, one
recovers the critical state in that limit.

The coincidence of the same critical state in the quasistatic limit for dry, frictional grains
and dense granular paste, in which a lubrication cutoff enables grains to touch one another,
was observed in a simple numerical model in 2D, of the Ball-Melrose (lubrication dominance)
type [107]. This is shown in Fig. 1.26, for the internal friction coefficient. In the experimental
study reported in [17], using the pressure-controlled Couette cell of Fig. 1.25, the quasi-static
value of the solid fraction and of the internal friction coefficient coincided with the critical
state value for dry grains.

These results are amenable to the more classical form of a relative viscosity and normal
particle stresses as functions of Φ. Thus one may write

η(Φ)

η0
=

σ12
η0γ̇

=
µ∗(Vi)Pp

η0γ̇
=

µ∗

Vi , (1.67)

which shows the effective viscosity to diverge at the critical solid fraction Φc , when Vi → 0.
Good measurements of high viscosities close to Φc showing α ≃ 1.9 in (1.56) are reported
in [17].
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Chapter 2

Shear flow of wet granular
materials: capillary effects

In this chapter we study the rheological behaviours of non-saturated model granular materials
in the pendular regime. We use a 3D discrete element method to simulate the plane shear flow
of wet granular material under a controlled normal stress (see Sec. 1.3.3). We focus on steady
state rheology under constant shear rate. The particles are spherical, mono-sized, frictional
and nearly rigid and they interact by contact forces as well as capillary attraction through
menisci. Our simulations are carried out in the range identified in Sec. 1.2.4 as corresponding
to the pendular state in realistic materials. We rather characterize the level of liquid in the
material with saturation Sw, which is proportional to liquid content as, Sw = W/(1−Φ). The
pendular state, for a typical value of the solid fraction, Φ = 0.5, corresponds to the interval
1.5× 10−3 . Sw . 0.06.

In Section 2.1 we first briefly discuss the model and the choice of parameters, relying on
Chap. 1. The macroscopic properties of the material are studied in Sec.2.2. After a discussion
of the conditions in which steady homogeneous flows can be observed, the corresponding
constitutive laws are identified, the main global effects of different interaction types are
investigated and the influence of model parameters tested. Both the intensity of the capillary
forces, even in conditions of rather large P ∗ in which they do not dominate stresses in the
system, and their small, yet finite range, are observed to significantly affect wet granular
rheology. In the second part of this chapter, Sec. 2.3, we investigate the corresponding
internal material states in steady shear flow and relate the important rheological effects of
capillary forces to the relevant internal variables introduced in Sec. 1.2.2. Sec. 2.4 presents a
synthesis of the essential results.

2.1 Model material and simulation technique

We simulate normal stress-controlled plane shear flows with periodic boundary conditions
and the Lees-Edwards technique, as described in Sec. 1.3.3 (Fig. 1.16). The imposed flow
parameters are shear rate γ̇ and normal stress σ

22
, simply denoted as P in the sequel (not to

be confused with the average pressure P). The system size in direction x2 can fluctuate in
order to control normal stress σ

22
= P .

The particles, N spherical mono-sized grains with diameter a, have Hertz-Mindlin contact
elasticity and friction, as described in Sec. 1.2.1, with deflection modulus Ẽ and friction
coefficient µ.

In the presence of liquid bridges, the capillary forces are calculated within the Maugis
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approximation (see Sec. 1.2.3):

FCap =















−F0 h ≤ 0

−F0[1− 1
√

1+ 2V

πah2

] 0 < h ≤ D0

0 h > D0

(2.1)

In Eq. 2.1, the maximum attractive force is F0 = πΓa cos θ, in which Γ is the liquid/air
surface tension, and θ is the contact angle, chosen equal to zero (we consider the case of
perfect wetting). For all pairs in contact the capillary force is set to its maximum value F0.
V , in Eq. 2.1, is the volume of the meniscus and D0 is the rupture distance. For θ = 0, D0

is the cubic root of the volume (D0 = V 1/3). The model has hydraulic hysteresis: the liquid
bridge forms right after two particles touch, and disappears for interparticle gaps larger than
D0.

The equation of motion of particles and the method implemented to control the normal
stress are discussed in Sec. 1.3.3. The Gear predictor-corrector scheme of order 3 [5] is used
to solve the second-order equations of motion. The simulations produce raw data in the form
of time series that should be averaged over, in steady state, to obtain accurate statistics
and macroscopic results. All the macroscopic and microscopic observables measured in the
sequel (except instantaneous velocity profiles in Sec. 2.2.2) are averages over such time series.
To estimate the statistical uncertainty in those measurements, we use the “blocking” (or
“renormalization group”) technique (see Sec. 1.3.3). Due to intrinsic long-lasting correlations
in the system we need to impose quite large shear strains to the sample to obtain enough
statistically uncorrelated data. For instance, for the main results with I = 0.562, the imposed
shear strain is γ > 400, and for I = 10−3 it is, in most cases, larger than 50.

2.1.1 Control Parameters

The control parameters in our system are those listed and discussed in Sec. 1.3.2: inertial
number I, reduced pressure P ∗, number of particles N , local friction coefficient µ, stiffness
number κ, level of viscous damping ζ and saturation Sw. From the results synthesized in
Tab. 1.1, we expect the influence of κ and ζ on macroscopic mechanical properties of the
material to be negligible. (Let us mention, though, that all our simulations use a strong
dissipation, ζ = 0.98). In order to enable comparison of macroscopic elastic properties with
experimental results we set stiffness number κ = 8400, which corresponds to glass beads with
Young modulus E = 70GPa and Poison ratio ν = 0.3 under pressure P = 100 kPa. This
value is also constant in our simulations and high enough for its value to be irrelevant (as
the characteristic properties of rigid grains are accurately approached). This leaves us with
two important control parameters, I and P ∗.

Let us now recall the expression of the saturation introduced in Sec. 1.2.4:

Sw =
3zΦ

π(1− Φ)

V

a3
(2.2)

The appearance of coordination number z and solid fraction Φ in Eq.2.2 precludes a direct
control of Sw. We may only estimate its value for a given meniscus volume V and typical
values of z and Φ. In Sec. 2.3.1, we shall show that the variation of Sw with P ∗ and I does
not significantly affect the results, within the range of investigated material states.

We choose volume V in order for the saturation to remain within the interval correspond-
ing to the pendular state (3× 10−4 . V/a3 . 10−2).

In most simulations we use V/a3 = 10−3 (corresponding to D0 = 0.1a, Eq. 1.28), but
other values of V/a3, between 10−2 and 10−6, are also tested. In order to investigate the
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influence of the attractive force range, we also carried out some simulations with a truncated
Maugis interaction, setting the cut-off distance D0 to values zero or 0.01a, while keeping the
same meniscus volume V/a3 = 10−3 in Eq. 2.1.

The main results are obtained over a wide range of I from 10−4 to 0.562, and for several
values of P ∗ between 0.436 and 10, in addition to the dry case with P ∗ = ∞. Tab. 2.1 gives
the values of parameters used in the present study.

κ 8400

µ 0.3

N 4000 (occasionally 8000)

I from 10−4 to 0.562 by factors of
√
10

P ∗ 0.436 ; 1 ; 2 ; 5 ; 10 ; ∞
V/a3 10−3 ( 10−6)

Table 2.1: List of dimensionless parameter values: N particles of diame-
ter a, interacting with friction coefficient µ, forming menisci of volume V
at contacts, are subjected to normal stress-controlled shear flow for which
inertial number I, reduced pressure P ∗ (evaluated with normal stress σ

22
)

and stiffness parameter κ take values as prescribed.

In addition to the simulations mentioned above, the effect of capillary force model is
studied, by replacing the Maugis approximation with the accurate parametrized capillary
force law suggested by Soulié et al. (Eq. 1.26). We also carried out one simulation without
hydraulic hysteresis, assuming the liquid bridges to form before approaching particles come
into contact, as soon as the distance is lower than 0.1a3. Our standard choice for the number
N of particles in the sample is 4000, with a few tests, motivated by the localization issue,
with twice as many.

2.2 Macroscopic analysis

The strong influence of the capillary forces on the shear strength is perhaps the most reported
property of wet granular materials. However, the investigations are mostly limited to the
quasistatic behaviours and the influence of shear rate on the mechanical properties is less
studied. In the following sections we investigate the global behaviour of a system of wet
grains in steady state shear flow. First, we examine the approach to the steady state and
the homogeneity of the flow, for which we establish a method to measure the intensity of
the localization in the granular medium. Then, we study the rheological properties from a
macroscopic point of view. We especially focus on the influence of inertial number I, and
reduced pressure P ∗, on macroscopic friction coefficient µ∗, and solid fraction Φ. In order
to understand the effect of the liquid bridges on the mechanical properties of the material,
we investigate the contribution of different forces to the stress components. At the end of
this section we present the results for the normal stress differences and the sensitivity of the
macroscopic results to the force model and the choice of the parameters.

2.2.1 Steady state, macroscopic measurements

To establish the constitutive laws of the flow of wet granular material, we impose a large
enough shear strain to the sample in order to approach the steady flow regime in which
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we can measure the macroscopic quantities by taking an average over the time series of
results. So it is essential to ensure that the flow, at least from a macroscopic point of view,
is homogeneous and time-invariant. On the other hand we also need to watch carefully that
the normal stress σ

22
is well-controlled.

The evolution of solid fraction Φ with strain γ is shown in Fig. 2.1a. We start from
an initial configuration with a large solid fraction close to the random close packing value
(ΦRCP = 0.64). Φ decreases until approaching its steady state value and then it fluctuates
about its mean value in steady state. Fig. 2.1b shows the evolutions of σ

22
and σ

12
with γ. It

checks that the normal stress σ
22

is well controlled since after approaching the steady state,
it fluctuates about its mean value equal to the prescribed normal stress P . The shear stress
σ

12
exhibits a fast increase at the beginning of the deformation up to a maximum value, and

then as the solid fractions decreases it starts to decrease monotonically toward its steady state
value. To calculate the mean values, due to the large fluctuations of the results especially in
the shear stress (about 20% of the mean value in the example of Fig. 2.1), we need to employ
an appropriate method to estimate the errors carefully. We use the “blocking method” (see
the discussions on “steady state and measurements” in Sec. 1.3.3) to calculate the error bars.
This usually requires a very long simulation to obtain enough statistically uncorrelated data.
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Figure 2.1: (a) Solid fraction Φ, (b) shear stress |σ
12
| (left axis in red) and

normal stress σ
22

(right axis in blue) versus shear strain γ. Note that the
scale in the left and right axes in graph (b) are different. Time series is
obtained with P ∗ = 1, I = 0.1 and N = 4000 when the rupture distance is
D0 = 0.1.

2.2.2 Localization

In the flow of granular materials localization is a fundamental phenomenon in which the
deformation becomes concentrated within one or several narrow bands within the granular
material. In soil mechanics and geomechanical researches it is reported to be a common
feature of those materials [146, 36]. In recent DEM studies of dense flow of dry grains, local-
ization in the bulk is mostly reported in the quasistatic limit and for high enough confining
pressure [4, 31, 104]. However, these observations show that the shear bands are not persis-
tent. They usually spontaneously appear and disappear in the bulk of the material, so that
they cannot disturb the homogeneity of the flow on average [104].
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Instantaneous velocity profile

Instantaneous velocity profile vs(≡ 〈v
1
(x2)〉s) is calculated by averaging over the velocities of

particles in x1 direction within the slices of thickness 0.01L
2
as below:

vsi =
1

msi

∑

j

msi
j vj .e1

, (2.3)

in which vsi is the average velocity in slice i, vj the velocity of particle j, e
1
the unit vector

in direction x1, m
si
j the fraction of the mass of the particle j which is located in slice i and

msi is the total mass in slice i.

Our simulations of the shear flow of wet grains show that localization might happen in the
presence of strong capillary forces (in our simulations for P ∗ = 0.1), even for fast flows. We
observe that for all I ≥ 0.178 the velocity gradient completely concentrates within a shear
band. In Fig. 2.2a, corresponding to P ∗ = 0.1 and I = 0.562, the strain is strongly localized
from the beginning, within a shear band of thickness H . 2a (with a the particle diameter),
and this localization pattern persists for all values of strain γ.

For P ∗ = 0.1 and I = 0.178, in the case shown in Fig. 2.2b, the velocity profile for all
γ < 250 is nearly linear but a fast strain localization transition takes place at this value of
γ, and persists ever after. The shear bands are slightly thicker than in the previous case
(for I = 0.562), with H between 2a and 3a. They may move vertically but persist for larger
deformations.
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Figure 2.2: Velocity profile for P ∗ = 0.1, I = 0.562 (a) and I = 0.178 (b)
chosen for different strain intervals.

Although, due to the lack of homogeneity in the flow, it is not possible to calculate
the global behaviour of the system, it is instructive to look at the evolutions of apparent
macroscopic behaviour while the localization occurs. Fig. 2.3a and Fig. 2.3b respectively
show shear stress |σ

12
| and solid fraction Φ as functions of γ for P ∗ = 0.1 and I = 0.178.

We see that, at the transition point (near γ = 250), due to the failure in a shear band, |σ
12
|

suddenly drops from about 1.8 down to 0.8. In the presence of the shear band the system is
divided into two parts, each of which moving like a rigid block, whence a strong increase of
Φ from 0.44 up to 0.49.
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Figure 2.3: Absolute value of shear stress |σ
12
| (a) and solid fraction Φ (b)

for P ∗ = 0.1 and I = 0.178 when the flow suddenly localizes at γ = 250.

For I = 10−1 when P ∗ = 0.1 the velocity profiles are nearly linear and we do not see
any sign of localization. The spontaneous shear bands may appear but they are temporary
and in average the flow is homogeneous. It is in contradiction to our expectation that the
localization would increase for slower flows. However, for smaller values of I, the shear bands
appear more often and localization tendencies increase, in agreement with other studies on
dry granular materials (P ∗ = ∞) [4, 31, 104]. The velocity profile for a simulation with
P ∗ = 0.1 and I = 10−2 is represented in Fig. 2.4a. In this case, we detect the localization
pattern regularly within the flow. The shear bands may disappear, but they form again and
the typical strain rate field is not uniform. For smaller values of I, for instance I = 10−3

(Fig. 2.4b), the strain rate is strongly localized in a shear band with a thickness mostly
between 5a to 10a.
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Figure 2.4: Velocity profile for P ∗ = 0.1, I = 10−2 (a) and I = 10−3 (b)
chosen for different strain intervals.

For all P ∗ larger than 0.1 the localization pattern are infrequent and temporary even in
the quasistatic limit. The velocity profiles for P ∗ = 0.436 and I = 10−3, as it is represented
in Fig. 2.5, is nearly linear and on average the flow is homogeneous.

— 48 —



2.2 – Macroscopic analysis

-8

-4

0

4

8

-0.015 -0.01 -0.005 0 0.005 0.01

x
2
/a

v1

γ = 6

20

34

48

76

104

Figure 2.5: Velocity profile for P ∗ = 0.436, I = 10−3 and different values of
strain γ.

Local solid fraction

Similarly we can calculate a solid fraction profile, on averaging the solid contents of slices
orthogonal to the velocity gradient (the volume of one grain might be shared between different
slices). Fig. 2.6 shows the velocity (vs)) and solid fraction (Φs) profiles for two different values
of shear strain, γ = 1 and γ = 352, which belong to the simulation of Fig. 2.3. We see that
in the homogeneous flow the distribution of mass in the system is almost uniform, but when
the localization occurs Φs strongly decreases within the shear bands below 0.2. It slightly
increases outside the shear band especially in its vicinity.

Fig. 2.7 also displays the velocity profiles and the corresponding Φs for two localized
sample, in the simulations with P ∗ = 0.1 and two different values of I. For I = 0.316, the
flow localizes in a narrow shear band with H ≈ 2a. Φs strongly decreases down to a value
smaller than 0.2 and the density of particles near the shear band increases. For I = 10−3

a shear band with a larger thickness (H ≈ 7a) forms and Φs undergoes a smaller decrease
inside the sheared zone (from 0.47 to about 0.4).

Deviation from linear profile

The deviation from a linear profile is characterized by parameter ∆̃, which is defined as

∆̃ =
1

L
2
γ̇2

L
2
/2

∫

−L
2
/2

(v
1
(x2)− γ̇x2)

2dx2 (2.4)

Fig. 2.8 displays an ideal case of maximum localization in which the strain is localized in
a plane, as if two solid blocks were sliding on each other. Considering this perfectly localized
case we can calculate the maximum value of velocity deviation ∆̃max when the velocity field
is defined as

v
1
=

{

u −L
2
/2 ≤ x2 < X

w X ≤ x2 ≤ −L
2
/2

(2.5)

Due to the implemented periodic boundary condition v
1
(x2 +L

2
)− v

1
(x2) = γ̇L

2
for any

x2 or in our ideal case w−u = γ̇L
2
. Furthermore, as the system dynamics requests the total
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Figure 2.6: Velocity profiles (lower axis in red) and local densities of grains
(upper axis in blue) for two configuration samples with shear strain γ = 1
(a) and γ = 352 (b) when P ∗ = 0.1 and I = 0.178. Average solid fraction
〈Φs〉, is shown with a vertical dashed line in blue, with a value of 0.46 in (a)
and 0.49 in (b).

momentum associated with the non-affine part of the motion to vanish, provided the density
might be regarded as uniform, function v1(x2) averages to zero:

∫ L
2
/2

−L
2
/2
v
1
(x2)dx2 = u(L

2
/2 +X) + w(L

2
/2−X) = 0, (2.6)

and then we obtain:
{

u = −γ̇L
2
/2 + γ̇X

w = γ̇L
2
/2 + γ̇X

(2.7)

Finally using these velocities in Eq. 2.4 gives us:

∆̃max =
1

L
2
γ̇2







X
∫

−L
2
/2

(u− γ̇x2)
2dx2 +

L
2
/2

∫

X

(w − γ̇x2)
2dx2






=

L2
2

12
(2.8)

Consequently, we can measure the rate of velocity deviation from linear profile, for a certain
configuration with strain γ, by using Eq. 2.4 normalized with ∆̃max, defining ∆ = ∆̃/∆̃max

as

∆(γ) =
12

L3
2
γ̇2

L
2
/2

∫

−L
2
/2

(v
1
(x2, γ)− γ̇x2)

2dx2. (2.9)

When the strain rate is homogeneous within the shear band of height H and vanishes
outside the band (Fig. 2.8), we can calculate ∆ from the same procedure in calculation of
Eq. 2.8, and then we obtain:

∆ = (1 − H

L
2

)2. (2.10)
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Figure 2.7: Velocity profiles (lower axis in red) and local densities of grains
(upper axis in blue) for two configuration samples with I = 0.316 (a) and
I = 10−3 (b) when P ∗ = 0.1. Average solid fraction 〈Φs〉s is shown with a
vertical dashed line in blue, with a value of 0.49 in (a) and 0.47 in (b).

By using this equation we can associate some equivalent band thickness H to measurements
of ∆. ∆ decreases and the flow homogeneity increases for thicker shear bands.

Fig. 2.9a displays the evolution of ∆ with strain γ, for the same value of P ∗ and I as
in Fig. 2.2b and Fig. 2.3. For γ < 250, when the flow is homogeneous, the value of ∆ is
very small, but near γ = 250 when the localization happens it increases to a value above
0.8. Fig. 2.9b also shows the result for ∆(γ) For I = 10−3. We may compare these direct
measurements to the values that we obtain from Eq. 2.10. In the fast flows we measured
the thickness of the bands about two particles diameter (see Fig.2.2b). So, Eq. 2.10 results
a ∆ about 0.8. For I = 10−3, H is mostly about 5 particles diameter (see Fig. 2.4b), which
results a smaller value of ∆ about 0.6.

The evolutions of ∆ for P ∗ = 0.1 and I = 10−2 is represented in Fig. 2.10a, when the
velocity patterns may tend to a linear profile (see Fig. 2.4a) and consequently ∆ tends to zero
for some values of γ, but it regularly increases to higher values, resulting a non-homogeneous
flow on average.

We can estimate the localization tendency of the flow, by taking a time average of ∆. For
P ∗ = 0.1 and fast flows, the average 〈∆〉t is notably large, ranging from 0.7 for I = 0.178
to 0.9 for I = 0.562. It drops down to 0.02 for I = 0.1, but increases for slower flows up to
0.6 when I = 10−3. For all values of P ∗ larger than 0.1, for instance in Fig. 2.10b, ∆ is very
small and the average 〈∆〉t does not exceed from 0.05.

Effect of system size

The influence of the system size is studied by simulating some samples of 8000 grains. In this
case, the height of the sample L

2
, is twice as large as in the standard sample, but L

1
and L

3

are the same. As we observed in Fig. 2.10a, in a sample of 4000 particles with P ∗ = 0.1 and
I = 10−2, ∆ is most often below 0.2, but it might also indicate strong localization when ∆
fluctuates between 0.4 and 0.8. The larger sample with N = 8000 and the same values of P ∗
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Figure 2.8: Velocity profile for two ideal cases, when the flow is localized in
a plane between two solid blocks (red solid line) and when it is limited to a
homogeneous flow in a shear band with thickness H.
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Figure 2.9: Deviation from linear profile ∆(γ) versus strain γ for P ∗ = 0.1,
I = 0.178 (a) and I = 10−3 (b).

and I, shows even a stronger localization effect, so that, ∆ fluctuates mostly between 0.6 and
1, however, it regularly decreases below 0.2. We also examined this effect for P ∗ = 0.436, in
which 〈∆〉t is measured about 0.1 for I = 10−2 and about 0.2 for I = 10−3, which is larger
than the results for smaller system with the same values of control parameters (〈∆〉t < 0.05).
For dry grains this average is below 0.02 regardless of the system size.

It should be noted that, in Eq. 2.10, ∆ varies with the system size L
2
and so the increase

in its value for the larger sample was expected. However, a better quantitative result needs
more simulations or probably an alternative method for the measurements of the localization
tendency, independent of the system size.

To summarize, in this section we studied the localization phenomena in the shear flow of
wet granular material. The velocity patterns are displayed for different values of P ∗ and I.
The deviation of the velocity patterns from the linear profile is characterized with a single
number ∆, and the localization tendency of the flow is described by the time average of this
parameter 〈∆〉t. We observed that the localization patterns are frequent and persistent for
P ∗ = 0.1 and almost all values of I. For smaller values of I, the localization patterns are
more persistent and regular and the localization tendency increases. Although, unexpectedly,
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Figure 2.10: Deviation from linear profile ∆(γ) versus strain γ for P ∗ = 0.1,
I = 10−2 (a) and P ∗ = 0.436, I = 0.316 × 10−3 (b).

for I = 0.1 the localization tendency 〈∆〉t decreases down to zero, for smaller values of I it
increases again up to 0.6 for I = 10−3. In the fast flows (I ≤ 0.178), when the flow is strongly
localized, the shear band are quite narrow a . H . 3a, but for I ≤ 10−2 the thickness of the
shear bands is larger about 5a to 10a. We also observed that the solid fraction Φ increases
for the flows with a large localization tendency. The local density of the particles Φs strongly
decreases within the shear bands, especially in the narrow bands and increases outside the
shear band near the shearing zone. No localization effect is observed for P ∗ ≥ 0.436. The
velocity profile are nearly linear and the localization tendency is below 0.05, for a system
of 4000 particles. The influence of the system size is also investigated, showing that the
localization tendency increases for larger systems.

As mentioned in Sec. 1.2.4, it is shown in a recent study that the liquid content decreases
within unsaturated shear bands [88]. This effect might have a strong influence on shear
strength of the material, and so the distribution of liquid and the dynamics of the liquid
migration within the liquid bridges should be considered in simulation of wet granular mate-
rials. However, the liquid distribution in our model is quite simple and inapplicable to study
this phenomenon.

Also, it should be noted that in our simulation the value of stiffness number κ is chosen
8400, that is determined by comparing the Hertzian elastic force to the typical force due to
confining pressure Pa2 (Eq. 1.36). Since for P ∗ = 0.1, the maximum capillary force is ten
times as large as Pa2, it is more convenient to characterize the stiffness of particles with
κ0 = κP ∗2/3 (Eq. 1.39). It results in a small value of stiffness, κ0 ≃ 1800, which might have
some influence on the flow homogeneity. However, for all other values of reduced pressure
(P ∗ ≥ 0.436), the choice of stiffness number is quite reasonable.

2.2.3 Macroscopic behaviour and constitutive relations

We now focus on homogeneous steady states (excluding too small P ∗ values, from Sec. 2.2.2)
and deduce macroscopic constitutive relations from the simulations. We investigate the rhe-
ological properties of the material for different values of the inertial number, ranging from
the quasistatic limit (I → 0) to fast flows: 10−4 ≤ I ≤ 0.562. As we discussed in Sec. 1.3.2,
the macroscopic behaviour of the system depends on five dimensionless parameters, ζ, κ, I,
P ∗ and µ. Previous studies on the rheology of dry grains [31, 104] showed that the prop-
erties of steady dense flows of rigid grains are not significantly influenced by parameters ζ
and κ > 1000, especially in the quasistatic limit. In this study we examine the influence
of the other two parameters, reduced pressure P ∗ and inertial number I on the rheological
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behaviour, as measured for large enough system size N . Local friction coefficient µ is kept
equal to 0.3.

In analogy to some recent studies on cohesive granular materials [122, 120], the macro-
scopic friction coefficient is conventionally defined as the time average of the ratio of the shear
stress σ

12
to the normal stress σ

22
in steady state:

µ∗ = 〈 |σ12
|

σ
22

〉t, (2.11)

in which the stress components are calculated by Eq. 1.15. It should be mentioned here that
due to the large fluctuation in σ

12
compared to the fluctuations in σ

22
, using the ratio of

average values in Eq. 2.11, instead of the average of the stress ratio, would strongly affect the
measurements. We also measure the average density of the grains in steady state, by taking
an average on the time series of solid fractions, Φ ≡ 〈Φ(t)〉t.

Fig. 2.11a and Fig. 2.11b respectively show µ∗ and Φ as functions of I for different
values of P ∗. The increase of µ∗ and decrease of Φ for larger I show the usual behaviour of
granular materials under shear flow, similar to other experimental and numerical studies on
dry grains [31, 62, 52, 22] (see Sec. 1.4.1). In the quasistatic limit, for I → 0, µ∗ approaches
its value in critical state µ∗

0, which is different for each value of P ∗. In the absence of the
capillary forces for P ∗ = ∞, we measured µ∗

0 about 0.34 when the local friction µ = 0.3.
This value is slightly larger than the result by Hatano (µ∗

0 = 0.3 for µ = 0.4) [62] and close
to the result by Campbell (µ∗

0 = 0.26 and 0.36 respectively for µ = 0.1 and µ = 0.5) [22],
considering that µ∗

0 is a growing function of µ with a decreasing rate [81].
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Figure 2.11: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ
(b) versus inertial number I for different values of reduced pressure P ∗.
Intergranular friction coefficient µ is set to 0.3.

Our results reveal a strong effect of the capillary force on the rheology, such that for
P ∗ = 0.436 when the capillary force is about twice as large as the force due to confining
pressure, µ∗

0 is about 2.5 times as large as its value for dry grains. Within the same range
of P ∗, Φ0 decreases from 0.6 to 0.52, a value that cannot be observed in the absence of
cohesion. These results are in contrast with the results reported for the shear flow of two
dimensional cohesive grains [120, 122] (see Sec. 1.4.3), in which the large effect of cohesion
on macroscopic behaviour is only reported for a value of P ∗ below 0.1. However, distant
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interactions are absent in a cohesive system, which might have an important role in the
system behaviour.

The strong effect of the capillary forces on the rheological behaviour of the granular ma-
terial is also observed in other experimental and numerical studies [50, 63, 118, 40, 131]. For
instance, Fournier et al. [50] measured the yield stress in an experimental setup of Poiseuille-
like flow of a dense granular material, by imposing an oscillatory homogeneous shear defor-
mation to spherical glass beads, assembled in a cylindrical cell. For a system of beads with
a diameter of 200 microns, wetted by water and under absolute pressure of 800 Pa, which
corresponds to P ∗ ≃ 0.7, their results show that the measured yield stress significantly in-
creases in the presence of an interstitial liquid with a maximum and nearly constant value
within the pendular regime (see Sec. 1.2.4).

Since the macroscopic behaviour for each value of P ∗ strongly depends on I, first we
express the evolutions of µ∗ and Φ as functions of I. We fit the following power law functions
to the data of µ∗ and Φ, in which µ∗

0 and Φ0 are respectively the critical state values of the
macroscopic friction coefficient and the solid fraction in the quasistatic limit:

{

µ∗ = µ∗
0 + cIα

Φ−1 = Φ−1
0 + eIν

(2.12)

Tab. 2.2 and Tab. 2.3 show the estimated values of the parameters for the fits on µ∗ and
Φ data. It should be noted that the approach to the quasistatic limit is faster for small values
of P ∗. As shown in Fig. 2.11, the quasistatic limit is nearly reached for I ≤ 0.01. This is
quantitatively expressed by the decrease of parameter c for smaller P ∗ values in Tab. 2.2. It
is more evident for the solid fraction in Tab. 2.3 in which for smaller P ∗ values, ν strongly
increases while the variations of parameter e is relatively small.

P ∗ µ∗
0 α c

0.436 0.867 ± 0.003 0.76 ± 0.04 0.36 ± 0.01
1 0.607 ± 0.003 0.79 ± 0.05 0.41± 0.02
2 0.477 ± 0.005 0.76 ± 0.05 0.45± 0.02
5 0.391 ± 0.006 0.73 ± 0.05 0.49± 0.02
10 0.367 ± 0.004 0.79 ± 0.04 0.51± 0.02
∞ 0.335 ± 0.001 0.84 ± 0.02 0.62± 0.02

Table 2.2: Fit parameters of the power law function for µ∗ in Eq. 2.12, for
different values of P ∗.

P ∗ Φ0 ν e

0.4360 0.5243 ± 2.10−4 1.727 ± 0.051 0.497 ± 0.017
1 0.5559 ± 10−4 1.337 ± 0.012 0.512 ± 0.005
2 0.5726 ± 10−4 1.210 ± 0.007 0.547 ± 0.003
5 0.5851 ± 10−4 1.120 ± 0.005 0.580 ± 0.003
10 0.5900 ± 10−4 1.085 ± 0.007 0.594 ± 0.004
∞ 0.5970 ± 10−4 0.958 ± 0.011 0.562 ± 0.008

Table 2.3: Fit parameters of the power law function for Φ in Eq. 2.12, for
different values of P ∗.

Seeing that, for a rather large range of I values, the macroscopic behaviour is independent
of I and is a sole function of P ∗, it is reasonable to characterize the rheological behaviour in

— 55 —



Shear flow of wet granular materials: capillary effects

the quasistatic limit with respect to P ∗. Fig. 2.12 (a) and (b) respectively display µ∗ and Φ
as functions of P ∗, in which the results for I = 10−2 and 10−3 are indistinguishable. We fit
the following power law functions to µ∗ and Φ at small values of I, in which µ∗

∞ and Φ∞ are
respectively the quasistatic values of internal friction and solid fraction, in the limit of dry
systems when P ∗ → ∞:

{

µ∗ = µ∗
∞ +BP ∗−β

Φ = Φ∞ − CP ∗−λ
(2.13)

Fig. 2.12 also shows a fit on the data of µ∗ and Φ for I = 10−3. The values of B and
β in this fit are respectively 0.274 ± 0.006 and 0.82 ± 0.02 while C = 0.041 ± 0.001 and
λ = 0.82 ± 0.02.
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Figure 2.12: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ (b)
versus reduced pressure P ∗, for different values of inertial numbers I.

The influence of the sample size is investigated by comparing the results for 4000 grains to
larger system with 8000 grains for P ∗ = 0.436 and two different values of I. The measurements
show that the results are independent of the system size and we obtained the same values for
µ∗ and Φ in both cases.

2.2.4 Contribution of different interactions to stresses

The contribution of the kinetic term in Eq. 1.15 to the shear stress is quite small. Even for
the fastest flow in our simulation (I = 0.562), this contribution does not exceed 2% of the
shear stress or 5% of the normal stress components, and for I = 0.178 is nearly zero for all
the stress components. Therefore, in this section we only discuss the contribution of forces
to the stress components, for the different values of the control parameters, P ∗ and I. The
contribution of forces could be split in various ways, on distinguishing different forces. First
we can consider the total stress as a sum of the contributions of the contacts and of the
distant interacting pairs, as

σαβ = σc
αβ + σd

αβ. (2.14)

Our results show that the contact forces have the dominant contribution to the total shear
stress, mostly larger than 90%, regardless of the value of P ∗ or I. The contribution of distant
interactions to σ

12
, as represented in Fig. 2.13a, is not negligible and increases for smaller

values of P ∗. However, it hardly exceeds 10% of the total shear stress.
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The contribution of distant interactions to σ
22

is displayed in Fig. 2.13b. Due to the
attractive nature of the capillary forcesm σd

22
is a tensile stress. For P ∗ = 0.436, in the

quasistatic limit, this contribution increases up to 20% in magnitude. Consequently, the
contribution of contact forces to σ

22
is positive and for P ∗ = 0.436 increases up to a value of

about 1.2σ
22
. σd

11
and σd

33
also have a similar trend as in Fig. 2.13b. In the quasistatic limit

and for P ∗ = 0.436, one has σd
11
/σ

11
≃ −0.16 and σd

33
/σ

33
≃ −0.25.
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Figure 2.13: Contribution of distant interactions to shear stress σ
12

(a) and
to normal stress σ

22
(b).

An alternative decomposition of stress components is:

σαβ = σcap
αβ + σNe

αβ + σT
αβ , (2.15)

in which σcap
αβ is the contribution of capillary forces (either for the contacts or the distant

interacting pairs), σNe
αβ is the contribution of normal elastic forces and σT

αβ is the contribution
of tangential forces.

The normal elastic forces have the dominant contribution to the stress components. They
contribute more that 90% to the shear stress, for any value of P ∗ and I. The contribution of
tangential forces to the normal stress components is negligible but for the small values of the
reduced pressure, the contribution of capillary forces is significantly large. For instance, for
P ∗ = 0.436, all the three compressive stress components of σcap

αα (with 1 ≤ α ≤ 3) are more
than twice as large as their corresponding total stress component (σαα) in magnitude, which
are compensated with the large contributions of repulsive normal elastic forces σNe

αα (> 3σαα).
Under such strong capillary pressure, the particles are strongly compressed onto one another
which enhance the tangential forces in the contacts. Fig. 2.14a shows the contribution of
tangential forces to the total shear stress in which for P ∗ = 0.436, the ratio σT

12
/σ

12
increases

up to 0.18. Remarkably, we see that the contribution of capillary forces to the total shear
stress is negative. Fig. 2.14b displays σcap

12
/σ

12
for different values of P ∗, which is always

negative and decreases down to -0.12 for P ∗ = 0.436. It may appear to be in contradiction
with the strong influence of capillary forces on the shear stress, discussed in Sec. 2.2.3.
Although the capillary forces directly reduce the shear stress, it will be discussed in Sec. 2.3
that the structural changes in the contact network and the force chain, due to the capillary
forces, strongly increase the material resistance to shear stress. We will also argue in Sec. 2.3.3
that this negative contribution and the positive contribution of distant interaction to σ

12

(Fig. 2.13a) are related to the favoured orientation of the interacting pairs.

— 57 —



Shear flow of wet granular materials: capillary effects

0.1

0.12

0.14

0.16

0.18

0.2

1 10

σ
1
2

T
/σ
1
2

P
*

I = 10
-3

I = 10
-2

I = 10
-1

(a)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

1 10

σ
1
2

c
a
/σ
1
2

P
*

I = 10
-3

I = 10
-2

I = 10
-1

(b)

Figure 2.14: Contributions of tangential (a) and capillary (b) interactions
to total shear stress σ

12
.

It should be noted that the strong influence of the capillary forces on the shear strength
of granular material cannot be expressed with the small contribution of distant interactions,
or negative contribution of capillary forces. It is in contrast with the interpretations based
on the effective stress principle (see Sec. 1.2.4), according to which the effect of the capillary
forces is considered as equivalent to an additive isotropic pressure. Consequently, one needs
to investigate the microstructural properties of the material in the presence of the capillary
forces. This issue will be discussed in detail in Sec. 2.3.

2.2.5 Normal stress differences

The first and the second normal stress differences are defined as
{

N1 = σ
11
− σ

22

N2 = σ
22
− σ

33

(2.16)

Fig. 2.15 displays N1 and N2 versus I for different values of P ∗. The first normal stress
difference is very small in the quasistatic limit and for large values of the reduced pressure. It
increases with I and for smaller values of P ∗, going through a transition from small negative
values to positive values near I = 0.03, for all P ∗ above 2. The rate of the increase of
N1 with inertial number is nearly constant for different P ∗ values. The measurements of
the contribution of different forces show that the normal contact forces have the dominant
contribution in N1, in most cases more than 80%. The contribution of distant interactions is
about than 15% for P ∗ = 0.436 and any value of I, and decreases down to zero for P ∗ = 10.
The tangential forces contribute more than 10% in the fast flows for every value of P ∗,
decreasing down to 0 at the quasistatic limit. The second normal stress difference N2 also
increases for faster flows and for smaller values of the reduced pressure. At the quasistatic
limit, it is larger in comparison to N1 and strongly increases for smaller values of P ∗. The
rate of the variations of N2 decreases as the value of reduced pressure decreases. Here again
the contribution of normal contact forces is dominant, more than 70% for smaller P ∗ values,
increasing up to 85% for P ∗ = 10. The contribution of distant interaction is very small, even
for strong capillary forces. Compared to the first normal stress difference, tangential forces
have the stronger influence on N2, about 22% for P ∗ = 0.436. It decreases below 15% for
larger P ∗ values.
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Figure 2.15: First (a) and second (b) normal stress differences as functions
of I for different P ∗ values. The same symbols and colour codes apply to
both figures.

2.2.6 Influence of capillary force model on macroscopic behaviour

We test here for the sensitivity of the macroscopic results to form and parameter choice for
the capillary forces.

The Soulié formula for capillary forces

Most of our simulation results rely on the Maugis approximation for the calculations of the
capillary forces. We assess the consequences of the inaccuracy of the Maugis approximation
by replacing it with the Soulié formula. The latter is an accurate parametrization, carried
out by Soulié et al. [141], of the capillary force between two smooth spheres, evaluated by
numerical means (see Sec. 1.2.3). Fig. 2.16 plots the capillary forces, normalized by maximum
cohesive force F0, versus interparticle gap h, for the Maugis and Soulié models. Keeping the
same values for the volume of menisci and the same rules for liquid bridge formation and
rupture, we obtained the same results for the two different models, as represented in Fig. 2.17.
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Figure 2.16: Force laws with Maugis model for two different volumes and
with Soulié formula.
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Figure 2.17: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ (b)
versus inertial number I for the two different force models, Maugis and
Soulié, when the volume of menisci is V/a3 = 10−3.

Influence of meniscus volume and force range

To understand the effect of the capillary attractions, it is instructive to assess the depen-
dence of the system rheology on the meniscus volume and rupture distance. It is known from
experimental studied that a liquid bridge of volume V will rupture at interparticle distance
D0 ≈ V 1/3 [151, 84]. Although it is in contrast with this experimental rule, we found it inter-
esting to change the rupture distance while the volume of the meniscus is constant, in order
to study the importance of the chosen model and the influence of the distant interactions on
the rheology. Let us insist however that we used the experimental rule D0 = V 1/3 for the
main series of results. Fig. 2.18 compares the values of the internal friction coefficient and
of the solid fraction for different rupture distances when the meniscus volume is constant
(V/a3 = 10−3). Changing the force range significantly affects the macroscopic friction coeffi-
cient such that if we set the rupture distance to one tenth of its value in the standard model
(Tab. 2.1), µ∗ decreases by about 10%. The µ∗ for the cohesive particles in the absence of
distant interactions (D0 = 0) is more than 20% below the results of the standard model, but
yet significantly larger than its value in cohesionless system (P ∗ = ∞ in Fig. 2.11a). It shows
that the cohesive forces and the distant interactions both have an important effect on the
rheology of the granular material. It is interesting to note that although distant interactions
contribute less than 10% of σ

12
(Fig. 2.13a), removing them would have a much stronger

influence on µ∗. It informs us that the distant interaction also affects the microstructure.
This issue will be discussed in Sec. 2.3 in detail.

Fig. 2.16 also shows the force law according to the Maugis approximation for different
values of meniscus volume. Changing the volume affects the force curve and also the rupture
distance given by D0 = V 1/3. The effect of the meniscus volume on the microscopic behaviour
is displayed in Fig. 2.19. Comparing the curves in Fig. 2.18 and Fig. 2.19 for the same values
of D0, reveals a significant effect of the volume change on the rheology. For a meniscus
volume of 10−6a3, compared to the standard case with V = 10−3a3, µ∗ decreases by about
20%, and becomes similar to the result for D0 = 0 shown in Fig. 2.18a.

We therefore predict, in principle, a dependence of the wet granular material rheology on
the saturation level. Of course, menisci as small as those chosen in the latter case (V/a3 =
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Figure 2.18: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ (b)
versus inertial number I for different values of P ∗ and rupture distance D0,
with a constant meniscus volume V = 10−3.

10−6) are unlikely to exist in practice, because the saturation level would lie below the lower
limit of the pendular state (see Sec. 2.1.1). Actually, in laboratory experiments, for such small
amounts of water, the liquid bridges cannot form and the capillary effect is negligible [63].
To understand the effect of the saturation level within a valid range of the pendular state, we
simulated two samples at upper and lower thresholds of the saturation in the pendular regime.
As we discussed in Sec. 2.1.1, the valid saturation level in pendular regime approximately
lies between 1.5 × 10−3 and 0.06. Since the saturation changes with solid fraction Φ and
coordination number z, we cannot accurately fix its value. The data in the first two columns
of Tab. 2.4 show that choosing the meniscus volume between 2 × 10−4a3 to 10−2a3 will
completely cover the saturation range in the pendular state. The results for macroscopic
parameters, µ∗ and Φ, and coordination number z (see Sec. 2.3.1) for different saturation
levels are presented in Tab. 2.4. A comparison of the results in the pendular state range
shows that the solid fraction varies by less than 1%, while the macroscopic friction coefficient
varies by about 20% in this range. We will argue in Sec. 2.3.1 that the variations of saturation
level in our simulations are rather small, which results in a small change in the rheological
properties.

V/a3 Sw z Φ µ

10−2 7.137 × 10−2 6.863 0.520 1.071
5× 10−3 3.418 × 10−2 6.556 0.522 1.003
10−3 6.305 × 10−3 5.970 0.524 0.875
2× 10−4 1.075 × 10−3 5.534 0.525 0.787
10−6 5.539 × 10−6 4.836 0.530 0.661

Table 2.4: Effect of the meniscus volume or the saturation level on different
parameters for I = 10−2 and P ∗ = 0.436.
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Figure 2.19: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ (b)
versus inertial number I for different values of P ∗ and meniscus volume V
(with D0 = V 1/3).

Influence of capillary force hysteresis

As we explained in Sec. 1.2.3 the liquid bridges form in contact but break at distance D0. We
showed that reducing the interaction range might strongly change the mechanical properties.
Here, we examine the influence of the hydraulic hysteresis by changing the rule: liquid bridges
form and disappear at the same interparticle distance D0.

Fig. 2.20 compares internal friction and solid fraction for different values of P ∗ and I with
two different models: the standard model adopted in this chapter (formation of menisci at
contact), and a model devoid of capillary force hysteresis, in which menisci appear as soon
as non-contacting grains approach below distance D0.
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Figure 2.20: Macroscopic friction coefficient µ∗ (a) and solid fraction Φ (b)
versus inertial number I for P ∗ = 0.436 and D0 = 0.1, with and without
capillary hysteresis.
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With the new rule of meniscus formation, Φ strongly increases, especially for small values
of I. The internal friction µ∗, for I ≃ 0.1, is close to the standard case, but larger values
are obtained as I decreases. Even for the smallest values of I investigated (I = 0.001),
the material properties still depend on shear rate and no proper critical state appears to be
approached in our simulations.

It should be mentioned that the strong influence of the hydraulic hysteresis on the be-
haviour of unsaturated granular soils is also reported in other studies [40]. It should be noted
that the decreasing variation of µ∗ as a function of I in interval 0.001 ≤ I ≤ 0.01 should
trigger instabilities, similar to those discussed in [133, 134], in a granular layer close to a
smooth wall.

2.3 Microscopic analysis

In the first part of this thesis we studied the macroscopic properties of the wet granular
material and we observed that the capillary forces have a strong influence on the rheological
properties. The system can form loose and quite stable structures with a solid fraction quite
smaller and a shear strength significantly larger than those of the cohesionless systems. We
showed that such strong influence cannot be explained as an additive contribution to the
stress components which may only introduce an extra isotropic pressure to the system. To
find the physical origin of these phenomena, we need to study the microstructural changes
due to capillary effect. In the following sections first we study the connectivity of the contact
network and the contribution of contact and distant interactions to the coordination number.
The force distribution and the influence of the capillary forces on the stability of the system
is studied in Sec. 2.3.2. Then we measure the anisotropies in the orientations and force
intensities, and the influence of control parameters on the anisotropy parameters. Finally,
we show that the stronger capillary forces increase the durability of the contacts and lead to
formation of large agglomeration of particles, which entails a more stable but looser structure.

2.3.1 Coordination number

Contact and distant coordination number

We define the coordination number z (Sec. 1.2.2) as a sum of two terms: the average number
of contacts per grain, zc, and the average number of liquid bridges joining a grain to non-
contacting neighbours, zd. Fig.2.21a shows that contact coordination number zc decreases
for a larger inertial number I, as previously observed in cohesionless [31, 104] systems and in
cohesive ones [122]. For the smaller P ∗ values we see a slower decrease of zc for larger I [122].
zc also increases as P ∗ decreases at constant I, as previously observed as well [122]. Note
that this latter trend is opposite to that of the solid fraction (Fig. 2.12b). As the importance
of adhesion relative to confinement stresses increases, looser systems are obtained, yet better
coordinated. Grains tend to stick to one another, and may form loose aggregates, as in static
or quasistatically compressed assemblies, for which little correlation is also observed [54, 55]
between density and coordination number.

An approach to critical state for small values of I is observed, similar to those observed
for macroscopic quantities (Sec. 2.2.3) and here again approaching the quasistatic limit is
faster for smaller values of P ∗. The curves for P ∗ = 0.436 and P ∗ = 1 in Fig. 2.21a show
that the quasistatic limit is nearly reached for I = 10−2 while for P ∗ = 10 or ∞ we need to
shear the system at a slower rate with I below 10−3.

Distant coordination number zd varies in the opposite direction of zc and increases with I
and P ∗ (Fig. 2.21b). When I increases, so does zd, as contacting pairs tend to open, but some
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Figure 2.21: Coordination number for contacting pairs (a) and distant in-
teractions (b).

remain bonded by liquid bridges. For stronger cohesion (smaller P ∗ values), zd is correlated
with the system density as observed in static packing for the number of neighbours at distance
≤ 0.1a [1]. As solid fraction decreases for the smaller values of P ∗, zd also decreases. Strictly
speaking, zd decreases for stronger capillary forces first because the particles attract their
neighbours stronger and some of the distant interacting pairs come into contact. Also, in the
tighter space around a particle the number of the close neighbours decreases. The variations
of coordination numbers with P ∗ are better visualized in Fig. 2.22a. The distribution of
the number of particles with Nc contact is available by Fig. 2.22b. The results for different
P ∗ values are very similar, close to an experimental result for packed grains with density
Φ = 0.57 [50]. The fraction of rattlers (beads carrying no force [104]) for non-cohesive system
of grains is about 5%. In the cohesive case, due to the attractive forces, nearly all of the
particles are captured by the force-carrying structure and the number of rattlers tends to
zero. This effect is also observed in the simulation of 2D cohesive powders [54, 55].

Total coordination number and saturation

Fig. 2.23 displays total coordination number z (or liquid bridge coordination number) as a
function of I for different values of P ∗. Our results in the quasistatic limit are comparable
to the experimental results by Kohonen et al. [74, 50] for random packing of spheres. They
obtained z ≈ 6 for their loose packing (Φ = 0.57) and z ≈ 6.5 for their dense packing
(Φ = 0.62). Due to the opposite variation of zd and zc, the sum z = zc + zd exhibits rather
smaller changes. The maximum variation of z, within the investigated range of I and P ∗

values, belongs to the cohesive system with P ∗ = 10 (see Fig. 2.23). It decreases from 6.8
in the quasistatic limit down to 4.8 for I = 0.562, which entails a decrease in saturation Sw

(Eq. 2.2) from 8 × 10−3 to 4 × 10−3. As we discussed in Sec. 2.2.6, the variations of the
saturation within the pendular regime do not affect the rheological behaviour of the system
significantly. Comparing the results for Sw = 1.075× 10−3, in Tab. 2.4, to the standard case
with Sw = 6.305 × 10−3, shows that the solid fraction just exhibits a tiny change and the
friction coefficient only varies about 10%. Consequently, the influence of saturation on our
results is below 5%.
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Figure 2.22: (a) Contact and distant Coordination numbers versus P ∗ for
different values of I. (b) Distribution of the number of contacts per grain for
different P ∗ values and I = 10−3, compared to an experimental result [50].

Coordination number of tensile and compressive bonds

An alternative decomposition of the coordination number is:

z = z+ + z−,

in which z+ is the coordination number of compressive bonds (positive forces) and z− is
the coordination number of tensile bonds (negative forces). Note that z+ includes only
the contacts in which the repulsive elastic force is larger than the capillary force, and z−

includes all the distant interacting pairs and also all the contacts in which the capillary force
dominates.

Richefeu et al. studied the random packing of a wet granular material under zero confining
pressure [119], when the network of self-equilibrated bond forces involves the tensile and the
compressive force chains. Under zero confining pressure they obtained z = 6.1 in which the
respective contributions of compressive and tensile bonds are z+ = 2.97 and z− = 3.13. They
showed that after the application of a confining pressure (with 0.5 . P ∗ . 1 with their
choice of parameters) a fraction of tensile bonds transform into compressive bonds and the
contribution of tensile bonds to z decreases (with z+ = 4.85 and z− = 0.85 when z = 5.7).

We also measured z+ and z− and we observed that in shear flow, the tensile and com-
pressive bonds contribute almost equally to the total coordination number. Tab. 2.5 displays
the variations of z+, z− and the distant coordination number, zd, with P ∗, for two different
values of I. For the smaller values of P ∗, in the quasistatic limit, despite the decrease of zd,
z+ decreases and z− increases. It should be noted that zc does not vary significantly with
P ∗ in the quasistatic limit (Fig. 2.22a). Increasing P ∗ would increase the number of contacts
with an attractive force (z−−zd). For faster flows, the number of contacts, and consequently
z+, increases for smaller P ∗, while zd and z− significantly decrease.

Coordination number of close neighbours

It is interesting to compare the number of distant interacting pairs to the total number of
neighbour pairs at distance below D0. The coordination number z(h) of the neighbour grains
at distance below h (such that z(0) = zc) grows with h as depicted in Fig. 2.24, corresponding
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Figure 2.23: Coordination number of all interactions as a function of I for
different P ∗ values.

I = 10−3 I = 10−1

P ∗ z+ z− zd z+ z− zd

0.436 3.381 2.579 0.924 3.133 2.785 1.278
1 3.797 2.471 1.269 3.242 2.885 1.801
2 4.105 2.401 1.544 3.227 3.046 2.235
5 4.400 2.328 1.825 3.140 3.257 2.710
10 4.520 2.308 1.965 3.084 3.359 2.934

Table 2.5: Coordination number of compressive z+ and tensile z− bonds
and also distant coordination number zd versus P ∗ for two different values
of I.

to I = 10−3 (quasistatic limit). z(h), like the contact coordination number, is a decreasing
function of P ∗ for small h/a (below about 2.5× 10−3, see the inset in Fig. 2.24). It increases
with P ∗, like the solid fraction, beyond that distance. In the denser systems the grains have
more neighbours on average, but this is only true if neighbours at some distance are included in
the count, and does not apply to the contacts (a situation reminiscent of some observations in
static packings of cohesionless grains [1]). Up to meniscus rupture distance D0, equal to 0.1a
in the present case, each grain has on average z(D0)− zc non-contacting neighbours, among
which zd neighbours are interacting by an attractive capillary force. The ratio zd/(z(D0)−zc)
for different values of P ∗ and two different I values are given in Tab. 2.6. The proportion of
the neighbours within the range D0 bonded by a liquid bridge varies between 0.61 to 0.71 for
I = 10−3 and between 0.68 to 0.79 for I = 10−1. These values are similar to the proportion
of about 50% reported by Kohonen et al. [74].
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Figure 2.24: Coordination number of neigh-
bour grains versus dimensionless interparticle
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10−3. The inset shows the same plot over a
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I = 10−3 I = 10−1

P ∗ zd zd/(z(D0)− zc) zd zd/(z(D0)− zc)

0.43 0.9228 0.60854 1.2782 0.68076
1 1.2691 0.64957 1.8007 0.72312
2 1.5437 0.67483 2.2353 0.75088
5 1.8251 0.70103 2.7102 0.77634
10 1.9652 0.71193 2.9341 0.78694

Table 2.6: Distant coordination number zd and the probability of meniscus
formation between close neighbours defined as zd/(z(D0) − zc), versus P ∗

for two different values of I.

2.3.2 Normal interactions

Pressure and average normal force

As we described in Sec. 1.2.2, there is a relation between the average pressure P and average
normal force 〈FN〉 (see Eq. 1.18). Now, we derive a similar relation including distant inter-
actions. The internal pressure is proportional to the trace of stress tensor (P = 1

3trσ). Thus,
by using Eq. 1.15 we obtain:

P =
1

3Ω

∑

i<j

FN
ij ||rij ||, (2.17)

in which ||rij || is the center to center distance between interacting particles. For distant
interactions we write it as a + hij (a is the particle diameter, hij is the interparticle gap)
and for contacts it is approximately equal to a. We can split this equation for contacts and
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distant interactions as:

P =
1

3Ω

∑

i<j

FN,c
ij a+

1

3Ω

∑

i<j

FN,d
ij (a+ hij)

=
1

3Ω

∑

i<j

FN
ij a+

1

3Ω

∑

i<j

FN,d
ij hij

(2.18)

Replacing the sums with the average values and using the definitions of Φ, z and zd gives us:

P =
Φz

πa2
〈FN〉+ Φzd

πa3
〈FN,dh〉 (2.19)

Tab. 2.7 checks that Eq. 2.19 is nearly exact and shows that the second term in Eq. 2.19
is very small of the order of 10−3.

P ∗ P z zd Φ 〈FN〉 〈FNh〉 P
0.436 0.943 5.960 0.923 0.524 0.949 -0.015 0.944
1 0.953 6.269 1.269 0.556 0.862 -0.007 0.956
2 0.952 6.506 1.544 0.572 0.806 -0.003 0.956
5 0.956 6.729 1.825 0.585 0.764 -0.001 0.957
10 0.955 6.829 1.965 0.590 0.745 -0.000 0.955

Table 2.7: Internal pressure P versus P ∗, obtained from the direct measure-
ment (second column) and calculated from Eq. 2.19 and other parameters
in this table (last column), for I = 10−3.

Probability distribution function of normal forces

The probability distribution function (pdf) of normal forces (normalized by maximum tensile
force F0) for P

∗ = 0.436 and different values of I is shown in Fig. 2.25a. The distribution of
compressive (positive) forces is similar to the results obtained in other numerical studies on
cohesionless [104, 1, 38, 139, 101, 110] or cohesive [119, 118] granular materials. We see an
approximately exponential decay of P (FN/F0) for larger values of FN/F0 with a peak close
to FN = 0. The slope of the decay increases as we approach the quasistatic limit [104]. The
contribution of contacts and distant interactions to pdf are separately plotted in Fig. 2.25b,
in which the distribution of the total interactions, indicated by black circles, is the sum
of the two other terms. The contribution of contacts decreases for the stronger tensile or
compressive forces, while the contribution of distant interaction sharply increases near −F0

and near another slightly negative value, which coincides with F (D0), the attrcative force
at meniscuc rupture distance. To describe these behaviours we plotted the distribution of
interparticle distances (or normal deflection of the contacts), P (h/a), for all interacting pairs
in Fig. 2.26a.

The inset in Fig. 2.26a shows P (h/a) for contacts (h/a ≤ 0) in a shorter range of h/a.
The vertical dashed line, which nearly coincides with the peak of P (h/a), indicates the in-
terparticle distance for which the normal elastic force and the capillary force compensate.
The normal force is compressive for smaller gaps and tensile for larger ones. The decrease of
P (h/a) in both directions explains the decrease of the contribution of contacts to P (FN/F0)
for the stronger compressive or tensile forces (Fig. 2.25b). The decrease of P (h/a) for larger
interparticle distances (with h/a > 0), in Fig. 2.26a, also shows that the distant interacting
pairs are more frequent with smaller gaps or with a capillary force near the maximum co-
hesion F0. That is why the contribution of distant interactions to P (FN/F0) increases near
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Figure 2.25: (a) Distributions of the normal forces for P ∗ = 0.436 and
different values of I normalized by the maximum cohesive force F0. (b)
Contribution of the contacts and the distant interactions to the normal force
distribution for P ∗ = 0.436 and I = 0.316. Note that just the distribution
for all interactions is normalized. The vertical dashed line shows the normal
force at rupture distance D0 = 0.1.

FN = −F0 (Fig. 2.25b). The rate of the variations in P (h/a) rapidly decreases and it tends
to a plateau for larger h/a. Since for the larger h the variation of capillary forces is small
(Fig. 2.16), the probability of finding pairs with the same value of FN/F0 increases. This
explains the increase of the contribution of the distant interaction to P (FN/F0) for larger val-
ues of FN/F0 in Fig. 2.25b, until the pdf drops off for the small negative value corresponding
to D0 = 0.1.

The influence of P ∗ on normal force distribution is shown in Fig. 2.26b. Since the variation
of the average normal force for different values of P ∗ (Tab. 2.7) is very small compared to the
large range of F0 used in our simulations (from 0.1 to 2.293), we normalized the pdf by 〈FN〉.
The decrease of the slope of the pdf for smaller values of P ∗ shows that the stronger capillary
forces reinforces the contact network and so it can support stronger repulsive interactions.
This effect is also reported by other numerical studies [118].

2.3.3 Anisotropy

In Sec. 2.2 we studied the influence of P ∗ and I on the rheology and we measured the
contributions of different forces to the stresses, from a macroscopic point of view. We also
investigated the different microscopic features of the material in previous sections. But to have
a comprehensive knowledge about the microscopic origin of the rheological behaviour, we also
need to examine the organization of the interacting pairs and possible favoured direction in
the orientation of pairs and strong forces. Several recent studies show that the shear strength
of granular materials can generally be attributed to the formation of an anisotropic structure
induced by mechanical loading [111, 9, 8] (see Sec. 1.2.2). Herein, we make a detailed inquiry
on the anisotropy of the pair orientations (structural anisotropy) and on the anisotropy of
the angular distribution of force intensities (mechanical anisotropy). We also relate stresses
to the microscopic parameters. We use these relations to describe the influence of anisotropy
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Figure 2.26: (a) Distributions of normal interparticle distances normalized
by particle diameter a for P ∗ = 0.436 with I = 0.316 (red empty squares)
and I = 10−3 (green filled squares) and also for P ∗ = 10 with I = 0.316
(blue empty circles) and I = 10−3 (magenta filled circles). Inset is the
same figure for a shorter range of h/a. Vertical dashed line indicates h/a =
−3.420×10−4 for which the normal elastic force balances the capillary force.
(b) Distributions of normal forces normalized by average normal force 〈FN 〉
for I = 10−3 and different values of P ∗.

parameters on the contribution of normal forces to stress components, σN
αβ , which represents

more than 80% of the total σαβ (see Fig. 2.14a).

Stress-anisotropy relation

We can replace the sum in Eq. 1.15 with the average of the tensor product of normal force
vector FN and branch vector r. So, for a system of N particles, including Nz/2 interacting
pairs we have:

σN =
Nz

2Ω
〈FN ⊗ r〉 (2.20)

We split this equation into two terms, the contribution of contacts σN,c, and the contribution

of distant interactions σN,d. Since the system under consideration is close to the rigid limit
(κ ≫ 1), small deformations at contacts are negligible. So for all pairs in contact we can
write r = an, with a the particle diameter and n the unit vector in the direction of r. Then
we get:

σN =
Nzca

2Ω
〈FN,c ⊗ n〉+ Nzd

2Ω
〈FN,d ⊗ r〉 (2.21)

Mathematically, material anisotropy can be characterized by the joint probability density
function P (n,F) defined as the probability of finding an interacting pair of particles oriented
along the unit vector n and carrying a force of intensity F . By using this function, the first
term in the right hand side of the above equation could be replaced by

σN,c =
Nzca

2Ω

∫

dΩ dFN,cP (n,FN,c) n⊗ n. (2.22)

Defining 〈FN,c〉n as the density of normal contact forces along the unit vector n and E(n) as
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Figure 2.27: An sketch of approaching (ϕ near 3π/4) and receding pairs (ϕ
near π/4) in shear flow.

the probability of finding a contact along n, we get:

σN,c =
Nzca

2Ω

∫

dΩE(n)〈FN,c〉n n⊗ n, (2.23)

in which E(n) describes the structural anisotropy and 〈FN,c〉n describes the mechanical
anisotropy in the system.

From a similar procedure, the second term in the right hand side of Eq.2.21, representing
σN,d, could be written as an integral over the anisotropy functions. Note that for the distant
interacting pairs, the center to center distances are not constant and we need also to consider
the anisotropy of the angular distribution of these distances, characterized by L(n) (see
sec. A.1.5). The result will be:

σN,d =
Nzda

2Ω

∫

dΩE(n)〈FN,d〉nL(n) n⊗ n (2.24)

Structural anisotropy

E(n) is defined on the unit sphere in R
3 and can thus be expanded in series of spherical

harmonics. Eq. A.7 shows the result of such an expansion in which the coefficients are the
components of the second-order fabric tensor F, defined by Eq. 1.19. To have an idea about
the fabric parameters, let us consider component F

12
of fabric tensor and Fig. 2.27. This

figure represents two different orientations of pairs according to angle ϕ from the direction of
the flow x1, in the x1x2 plane. Pairs with 0 < ϕ < π/2 are labeled receding pairs and pairs
with π/2 < ϕ < π are labeled approaching pairs, according to their normal relative motion
in the average shear flow (Fig. 2.27). Generally, a positive value of F

12
shows that the pairs

tend to be more often oriented in the direction of receding pairs and a negative value of F
12

shows that the approaching pairs are dominant.
Fig. 2.28 shows the variations of different components of fabric tensor as functions of

inertial number I for P ∗ = 0.436. The contribution of contacts and of distant interacting
pairs are shown in two separate graphs. In both cases F

13
and F

23
are negligible. Compared

to F
12
, terms (F

33
− 1/3) and (F

11
− F

22
) are also small. Those latter will be discussed more

in Sec. 2.2.5, but here we focus on the contributions of contact and distant interactions to
F

12
which exhibit the largest variations in both graphs.
The negative sign of F c

12
shows that the contacts are mostly oriented in the direction

of the approaching pairs. Therefore, they reinforce the shear strength and as the value of
|F c

12
| increases, µ∗ also increases (see Fig. 2.11a). The positive sign of F d

12
in Fig. 2.28b

shows that the distant interacting pairs are mostly oriented in the direction of the receding
pairs. Noting that these pairs interact with an attractive force and considering their favorite
orientation, they also enhance the shear strength. This explains the positive contribution of
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distant interactions to shear stress in Fig. 2.13a. The variation of F d
12

for larger values of I is
in the opposite direction to F c

12
and µ∗. The relatively large values of F d

12
compared to F c

12

are due to the hysteretic nature of the liquid bridges (see Sec. 1.2.3).
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Figure 2.28: Fabric parameters for contacts (a) and distant interactions (b)
versus I for P ∗ = 0.436.

The evolutions of fabric parameters F c
12

and F d
12

versus I, for different P ∗ values, are
displayed in Fig. 2.29. The decrease of F c

12
as I increases is also observed in Reference [104],

in which the shear flow of frictionless dry grains is studied and the value F c
12

≃ −0.02 is
obtained in the quasistatic limit. In our case, in the dry system (P ∗ = ∞), F c

12
undergoes

the largest variations within the applied range of I. Our results reveal that in the presence of
friction, the anisotropy in the contact orientations increases. As we decrease the value of P ∗,
the variation of F c

12
with I also decreases. Strictly speaking, it is more difficult to impose a

certain orientation to the pairs that are strongly connected with random orientations within
the clusters. The evolutions of F c

12
and F d

12
with P ∗ are better visualized in Fig. 2.30. For

smaller P ∗ values, the anisotropy of the contacts decreases and the anisotropy of the distant
interactions increases, in accordance with the increase of the contribution of the distant
interactions to the shear stress, for smaller values of P ∗ (Fig. 2.13a).

The decrease of the anisotropy of the contact orientations could be explained as follows.
Considering the relative motion of a pair of grains in the shear flow, as depicted in Fig. 2.27,
it is reasonable to expect the separation of contacting pairs to occur for 0 < ϕ < π/2. As the
capillary force opposes the receding motion, the separation angle increases for smaller values
of P ∗. As a consequence, the anisotropy of contacts decreases. On the other hand, as we
mentioned in Sec. 2.3.1, the opposite variations of the contact coordination number and the
solid fraction indicate the agglomeration of particles. Shear flow carries these agglomerates
for some distance before they break and in their random tumbling motion also tends to
increase the isotropy of the contact orientations.

Using the values of the fabric parameters and the coordination number of contacts and
distant interactions, the fabric parameters for total interactions (or liquid bridges) could be
calculated as below:

Fαβ =
F c
αβzc + F d

αβzd

zc + zd

We can use this equation to calculate F
12
, which results in a negative value for all values

of P ∗ and I. So, the total interactions (and also the contacts) are mostly oriented in the
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Figure 2.29: Fabric parameter F12 for contacting pairs (a) and distant in-
teractions (b) versus I for different P ∗.

direction of approaching pairs. Considering that the contacts carry strongest capillary force,
we can say: the attractive capillary forces with the largest population and strongest force in
the direction of approaching pairs, reduce the shear stress σ

12
, as displayed in Fig. 2.14b.

Mechanical anisotropy

The mechanical anisotropy is described with 〈FN〉n or equivalently with its dimensionless
form F(n) which is normalized by average normal force 〈FN〉. Similar to E(n), the angular
distribution of force intensity, F(n), can be expanded in series of spherical harmonics. The
result of the expansion is shown in Eq. A.8 in which Fαβ components are defined in analogy
to the fabric parameters and can be calculated using Eq. A.3. Here again the contribution of
contacts and distant interactions are separately calculated. For both contributions F

13
and

F
23

are negligible. The other terms in Eq. A.8, for the distant interactions, are also small of
the order of 10−2. For small values of P ∗ and I, Fd

12
is about -0.03, which decreases down

to -0.05 for larger values of P ∗ and I. It shows that the anisotropy in the intensity of the
distant forces induce shear softening in the system, however this influence is very small. The
values of (Fc

33
−1/3) and (Fc

11
−Fc

22
) are also small (the latter will be discussed in Sec. 2.2.5).

(Fc
33
−1/3) is displayed in Fig. 2.31a for the different values of P ∗ and I, in which it increases

with P ∗ from -0.03 to -0.01, nearly the same for different values of I. Fc
12

shows the largest
anisotropy and variation compared to the other terms (Fig. 2.31b). The negative sign of Fc

12

shows that statistically the strongest contact forces tend to be oriented in the direction of
approaching pairs. Consequently, the anisotropy in the angular distribution of force intensity
leads to the increase of shear strength. This anisotropy increases for smaller values of P ∗ and
does not vary significantly with I.

In addition to distribution functions E(n) and F(n), we also measured the anisotropy in
the angular distribution of the center to center distances, which is characterized by Ld(n).
Eq. A.9 shows the expansion of Ld(n), involving parameters Ld

αβ. All the measured compo-

nents of Ld
αβ are small. Ld

12
has the largest value, of the order of 10−3, which is nearly the

same for different P ∗ and I values. The positive sign of Ld
12

is in agreement with the result for
Fd
12, showing that the largest center to center distances (and so the weakest capillary forces)

are oriented like receding pairs. Since the contacts and so the formation of liquid bridges
mostly happen in the direction of approaching pairs, it could be regarded as a consequence
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of hysteretic nature of the liquid bridges.

2.3.4 Calculation of stress components from microscopic parameters

The anisotropy of the orientation of pairs and of the angular distribution of force intensities
are investigated in the previous sections. We also qualitatively studied the influence of the
anisotropies on the shear stress. Herein, we propose an approximate equation between each
stress component and the microscopic parameters for both the contributions of contacts and
distant interactions. The results are compared to their values from the direct measurements.

Contribution of contacts to shear stress

Expansions of E(n) and F(n) can be injected in Eq. 2.23, to express the components of tensor
σN,c as functions of the microscopic parameters. The equations are derived in Appendix A
for the diagonal (Eq. A.12) and non-diagonal (Eq. A.13) components of the stress tensor. By
replacing Ω with πNa3/(6Φ) in Eq. A.12, the shear stress will be:

σN,c
12

=
3Φzc
πa2

〈FN,c〉
[

F c
12
+Fc

12

]

(2.25)

This shows that the contribution of normal contact forces to shear stress (or internal
friction) partly stem from the anisotropy in the orientation of contacts that are more often
oriented in the direction of the approaching pairs, those that mostly interact by repulsive
forces. The larger intensity of the contact normal forces in the direction of the approaching
pairs, which is characterized by Fc

12
, is another source of the shear strength. The values of

coefficient 3Φzc/(πa
2) are given in Tab. 2.11. Tab. 2.8 compares the predictions of Eq. 2.25

to the directly measured values of σN,c
12

. The results are in good agreement, with a difference
lower than 5% in most cases.

On comparing Fig. 2.30 to Fig. 2.31b one observes that, for small values of P ∗ and I,
force anisotropy Fc

12
has the dominant contribution to σN,c

12
. As we increase P ∗ or I, this

contribution tends to decrease and that of fabric parameter F c
12

to increase. Tab. 2.9 gives
the contribution of fabric anisotropy to the shear stress for the different values of P ∗ and I.
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(a) (b)

Figure 2.31: (Fc
33

− 1/3) (a) and Fc
12

(b) components of force anisotropy
versus P ∗ for different values of I.

P ∗ = 0.436 P ∗ = 1 P ∗ = 10 P ∗ = ∞
I Micro. Direct Micro. Direct Micro. Direct Micro. Direct

0.562 −0.803 −0.804 −0.681 −0.683 −0.551 −0.574 −0.530 −0.561
0.316 −0.755 −0.741 −0.623 −0.611 −0.499 −0.505 −0.480 −0.534
10−1 −0.693 −0.662 −0.538 −0.511 −0.400 −0.393 −0.382 −0.409
10−2 −0.674 −0.641 −0.508 −0.474 −0.345 −0.330 −0.320 −0.334
10−3 −0.671 −0.639 −0.508 −0.474 −0.341 −0.325 −0.315 −0.327

Table 2.8: Comparision of the direct measurements of σN,c
12

to the results of
Eq. 2.25 for different values of P ∗ and I.

I P ∗ = 0.436 P ∗ = 1 P ∗ = 2 P ∗ = 5 P ∗ = 10 P ∗ = ∞
0.562 0.27 0.40 0.47 0.55 0.58 0.60
0.316 0.25 0.38 0.46 0.53 0.56 0.59
10−1 0.19 0.33 0.42 0.50 0.54 0.57
10−2 0.14 0.25 0.33 0.41 0.45 0.50
10−3 0.14 0.24 0.31 0.38 0.42 0.48

Table 2.9: Relative contribution of fabric anisotropy to σN,c
12

for different
values of P ∗ and I.

Contribution of distant interactions to shear stress

Eq. A.14 and Eq. A.15 are derived for the calculation of the contribution of distant interaction
to the stress components, from the microscopic parameters. By replacing Ω with πNa3/(6Φ)
for the shear stress we obtain:

σd
12

=
3Φzdl0
πa2

〈FN,d〉
[

F d
12
+ Fd

12
+ Ld

12

]

. (2.26)

l0 in this equation is the average center to center distant between the distant interactions
normalized by particle diameter a, about 1.025 for all P ∗ and I values. The values of the
coefficient are listed in Tab. 2.11. For large P ∗ values, the contribution of distant interactions
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is very small. Tab. 2.10 shows the good agreement between the results of Eq. 2.26 and the
results of the direct measurement, for two small values of P ∗. Note that Ld

12
is very small

and does not significantly affect the result. Fd
12

varies between -0.05 and -0.03, which reduces
the shear stress σd

12
. Consequently, for the distant interactions the main source of the shear

strength is the anisotropy of the orientation of pairs. The contributions of fabric anisotropy
F d

12
in σd

12
are displayed in the last two columns of Tab. 2.10.

P ∗ = 0.436 P ∗ = 1 P ∗ = 0.436 P ∗ = 1

I Micro. Direct Micro. Direct

0.562 −0.066 −0.069 −0.015 −0.019 1.656 2.926
0.316 −0.089 −0.092 −0.032 −0.035 1.462 1.892
10−1 −0.094 −0.094 −0.045 −0.047 1.310 1.479
10−2 −0.073 −0.072 −0.038 −0.039 1.251 1.356
10−3 −0.069 −0.069 −0.036 −0.037 1.256 1.356

Table 2.10: Comparison of the direct measurements of σd
12

to the results of
Eq. 2.26 (left side) and the contribution of fabric anisotropy to σd

12
(right

side) for different values of P ∗ and I.

P ∗ = 0.436 P ∗ = 1 P ∗ = 10 P ∗ = ∞
I A1 A2 A1 A2 A1 A2 A1

0.562 3.449 −1.214 2.958 −0.686 2.410 −0.091 0.718
0.316 3.558 −1.209 3.131 −0.725 2.602 −0.104 1.113
10−1 3.436 −1.937 3.176 −0.615 2.755 −0.103 1.812
10−2 3.177 −1.628 3.033 −0.413 2.793 −0.074 2.444
10−3 3.144 −1.601 3.011 −0.387 2.785 −0.063 2.548

Table 2.11: Values of the coefficient 3Φzc〈FN,c〉/(πa2) (labeled by A1) and
the coefficient 3Φzdl0〈FN,d〉/(πa2) (labeled by A2) for different values of P ∗

and I.

In addition to the shear stresses, we also measured the normal stress components for
contacts and distant interactions. Appendix B compares the results from microscopic esti-
mations to the results of direct measurements. Compared to the results for the shear stress,
the errors of the microscopic approximation of the normal stresses are noticeable, as large as
25% for some data with small P ∗ and large I values. For larger P ∗ and smaller I values the
results are closer to the direct measurements and the errors decrease below 10%.

2.3.5 Microscopic origin of normal stress differences

As we discussed in Sec. 2.2.5, the normal contact forces have the dominant contribution
to the first and second normal stress differences. Here, we calculate the first normal stress
difference due to the contact forces, N c

1 (= σN,c
11

−σN,c
22

), from the microscopic parameters and
we compare the results to the direct measurements. We also investigate the influence of the
fabric and force anisotropies on N c

1 . We can calculate the first normal stress difference from
Eq. A.12, as

N c
1 =

3Φzc
πa2

〈FN,c〉
[(

F c
11
− F c

22

)

+
(

Fc
11
−Fc

22

)]

. (2.27)

Tab. 2.12 compares the results of the above equation to the direct measurements. The
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results are in agreement for large values of P ∗ and I, but at small values of P ∗ and I, the
approximation becomes inaccurate, underestimating the true value by more than 50%.

P ∗ = 0.436 P ∗ = 1 P ∗ = 5 P ∗ = 10

I Micro. Direct Micro. Direct Micro. Direct Micro. Direct

0.562 0.197 0.202 0.142 0.144 0.121 0.119 0.112 0.117
0.316 0.130 0.152 0.103 0.108 0.080 0.075 0.077 0.069
10−1 0.059 0.089 0.044 0.060 0.023 0.024 0.017 0.016
10−2 0.028 0.059 0.016 0.033 -0.004 -0.003 -0.009 -0.010
10−3 0.021 0.054 0.016 0.035 -0.004 -0.002 -0.013 -0.013

Table 2.12: Comparison of the direct measurements of N c
1 to the result of

Eq. 2.27, for different values of P ∗ and I.

The evolutions of fabric and force anisotropy terms in Eq. 2.27 are displayed in Fig. 2.32
as functions of I, for different P ∗ values. The increase of the term (F c

11
− F c

22
) with I shows

that the contacts tend to align with the direction of the flow for large I. For small P ∗ it is
more difficult to violate the isotropy of the contacts which are confined in the clusters, and so
the rate of change of fabric anisotropy decreases. In the limit of small P ∗, and for the largest
I values, (Fc

11
−Fc

22
) and consequently the average intensity of normal forces in direction x1

increase. The fabric and force anisotropies both enhance N c
1 in this range but the influence

of the anisotropy of contact orientation becomes dominant as we increase the value of P ∗.
The curves in the limit of small I and large P ∗ values show that the negative sign of N c

1 in
this limit is due to the change in the favoured orientation of the contacts and of the strong
normal forces.
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Figure 2.32: Fabric anisotropy (F c
11
−F c

22
) (a) and force anisotropy (Fc

11
−Fc

22
)

(b) terms versus I for different values of P ∗.

The errors in the microscopic approximation of the second normal stress difference, N c
2 , are

large and the results are quite far from the direct measurements. However, in the quasistatic
limit, the anisotropy parameters in Fig. 2.33 show a similar trend as N c

2 in Fig. 2.15b.
For small values of I, for which the force anisotropy has the dominant contribution to N c

2 ,
increasing P ∗ causes a strong increase in (Fc

22
− Fc

33
), starting from a relatively large value

about 0.02 up to a value larger than 0.04. For small P ∗ values, the variations of N c
2 and

of the anisotropy parameters with I are similar but for smaller capillary forces they vary in
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opposite directions. As we increase the flow rate, the influence of P ∗ on the sum of the two
anisotropy terms, (Fc

22
−Fc

33
) and (F c

22
− F c

33
), decreases, while the variations of N c

2 with P ∗

also decrease.
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Figure 2.33: Fabric anisotropy (F c
22
−F c

33
) (a) and force anisotropy (Fc

22
−Fc

33
)

(b) terms versus I for different values of P ∗.

2.3.6 Influence of capillary force model on microscopic behaviours

The influence of the capillary force model on the macroscopic behaviour is discussed in
Sec. 2.2.6. Here, we report the effect of the force model on the microscopic behaviour of the
material.

Influence of the force range and meniscus volume

The contact coordination number does not change much with the force range or meniscus
volume. Setting D0 = 0 (instead 0.1 of the standard case) or decreasing the volume of the
meniscus from the standard value V = 10−3 down to 10−6, just leads to a small decrease of
zc, e.g., from 5 to 4.7 in the quasistatic limit, when P ∗ = 0.436. However, it has a strong
influence on zd. Compared to the standard case, for P ∗ = 0.436 and small values of I, it
decreases from 0.9 down to a value below 0.3 when we set D0 = 0.01, or down to about
zero when we set V = 10−6. In this range of P ∗ and I values, the fabric parameter F c

12

undergoes a small decrease, at most from -0.03 to -0.04. The results show similar values for
other anisotropy factors, (F c

11
−F c

22
) and (F c

ozz − 1/3). However, F d
12

changes a lot, from 0.15
down to 0.12 for D0 = 0.01 or down to 0.09 for V = 10−3.

Influence of capillary force hysteresis

In Sec. 2.2.6 we showed that changing the rule of liquid bridge formation has a significant
effect on macroscopic behaviour. If we assume that the liquid bridge forms right after two
particle approach a distance below D0, instead forming at contact, the number of contacts
slightly increases, e.g., in the quasistatic limit and P ∗ = 0.436, zc increases about 5%. For
these values of P ∗ and I, we see a strong increase of zd about 70%. The values of fabric
parameters due to contacts, are equivalent, but when the menisci form at D0, more distant
interactions can be found in the direction of approaching pairs and F d

12
exhibits a strong

decrease from 0.15 to 0.07.
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2.3.7 Agglomeration

The aggregation of cohesive grains is observed and reported in many numerical and exper-
imental studies. Gilabert et al. [54, 55] studied the aggregation of particles in a 2D model
powder under isotropic pressure. Rognon et al. [122] reported the increase of the porosity
due to the agglomeration in the simulation of the shear flow of 2D cohesive grains. Ennis
et al. [122] studied the agglomeration mechanism in powder granulation. An experimental
study on the granulation of the wet powders is also presented by Talu et al. [144]. In refer-
ence [90], the aggregation of dilute and dense granular materials i s studied by measuring the
fluctuations in the local concentration of the particles in a simple shear flow of wet powders.
A numerical study on the steady state 3D Chute flow is performed by Brewster et al. [20],
reporting the increase of the number of long-lasting contacts in the presence of the cohesive
forces. Weber et al. in [150], carried out a detailed study of the effect of capillary forces on
agglomerate duration and size.

We observed in Sec. 2.3.1 that the coordination number of contacts and the solid fraction
vary in opposite directions. We explained that this effect is a consequence of the agglomera-
tion of the particles. We also argued in Sec. 2.3.3 that the decrease of |F c

12
| for smaller values

of P ∗ is a result of the tumbling motion of the grain clusters within the flow. On the other
hand, we found in Sec. 2.2.4 that the significant effect of the capillary forces on the micro-
scopic behaviour could not be understood only by directly adding the effects of these forces.
In this section, we study and characterize the agglomeration phenomena in the presence of
capillary forces. First, we measure the age of the contacts and distant interactions and the
possible influence of the control parameter on durability of the individual pairs. Then, we
characterize the agglomeration effect with the size and duration of clusters and the effect of
P ∗ and I on the properties of the clusters. We use the information to explain our observations
of the macroscopic properties, particularly the strong influence of the capillary forces on the
solid fraction and the internal friction.

Age of contacts and of distant interactions

The distribution of the age τ
c of contacts for I = 10−1 and different values of P ∗ is shown in

Fig. 2.34. P (τcγ̇) is the probability distribution of contact ages τc, expressed as a function
of strain τ

cγ̇. The decrease of P (τcγ̇) is slower for smaller P ∗, showing that for the stronger
cohesive forces the contacts survive over larger strain intervals [20, 150]. For large strain
intervals, the curves might be described with an exponential function, P (τcγ̇) ∝ e−τ

c/τ0 , in
which τ

c
0 is the decay time of the age of contacts. We measure τ

c
0 by fitting an exponential

function to the data in Fig. 2.34, for all τcγ̇ > 0.5. The results are given in the second column
of Tab. 2.13, showing that the decay time increases as we decrease P ∗. Average contact ages,
τ
c
avg, are displayed in the third column of this table, which show the same behaviour. Since

the slope of the curve increases for smaller strain interval, which is not considered in the fit,
τ
c
avg is smaller than τ

c
0. The inset in Fig. 2.34, which is plotted for a shorter range of τcγ̇

values, displays the decrease of the slope with τ
cγ̇.

Fig. 2.35 shows the evolution of the pdf with I for two different values of P ∗. The results
show that the age of the contacts (in units of 1/γ̇) decreases in faster flows. For I ≤ 10−2, we
do not see a significant difference between the curves, showing nearly quasistatic behaviour.
The probability distribution function of the age of interaction P (τiγ̇) (or the pdf of the age
of liquid bridges) is also illustrated in Fig. 2.36 for different values of P ∗. The liquid bridges
survive for quite large strain intervals, reaching several units of strain with probability of
order 0.1. As the capillary force increases the slope of the curve and so the average age of
the menisci also increases. The rate of this increase is even larger for smaller values of P ∗.
For very small values of strain interval, τiγ̇ . 1, in the inset of Fig. 2.36, the slope decreases
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Figure 2.34: Distribution of the age of contacts for different values of P ∗

and I = 0.1. Inset shows the same graph in a shorter range of τcγ̇.

reaching a plateau near zero. It shows that most of the liquid bridges survive at least for
a few tens of unit strain. However, in the midrange (1 . τ

iγ̇ . 3), the curves have the
largest slope. Here again we fit an exponential function to the curves, by defining τ

i
0 as the

decay time of the age of distant interactions. The variation of τi0 and also average age of the
interactions τ

i
avg with P ∗, is displayed in Tab. 2.13. Note that here again, due to the larger

slopes of the curves in midrange, the values of τiavg is smaller than τ
i
0. We do not see any

noticeable difference between the curves for different values of I. The pairs may loose their
contacts in faster flows, but they are still bounded with the liquid bridges and cannot leave
the cluster.

We conclude that the evolutions of the age of contacts and of distant interactions reveal
the formation of aggregates in the presence of capillary forces. These clusters are transported
by the flow for some distance before they are broken or restructured. They may survive for
strain intervals of a few units, which confirms our previous discussion, in Sec. 2.3.3, of the
influence of P ∗ on the anisotropy of contact orientations. The influence of the agglomeration
on macroscopic behaviours could be explained with this scenario (as in [122]): considering
the sketch in Fig. 2.27, approaching pairs have to tumble, one grain moving over the other,
while they are pressed against each other in the shear flow. As the pair is then oriented in
the receding quadrant, theliquid bridge might break if the distance reaches D0. In the similar
motion of larger clusters their finite deformability and multiple connections might prevent
their rupture into a pair of separate objects during the receding phase.

Clusters

Particles glued by liquid bridges can form large clusters which significantly influence the
shear strength and the solid fraction of granular material. Here, we study the influence of
the capillary forces and the flow rates on the size and duration of these clusters. First we
need to define the the clusters by requesting all contacts or liquid bonds to have reached a
minimum age, τcl. We measure the size of the clusters for different values of τcl in the range of
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Figure 2.35: Distribution of the age of contacts for different values of I and
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P ∗ γ̇τc0 τ
cγ̇avg γ̇τi0 τ

iγ̇avg

0.436 0.306 0.258 1.704 1.609
1 0.180 0.154 1.437 1.325
2 0.153 0.111 1.295 1.187
5 0.128 0.087 1.164 1.072
10 0.120 0.080 1.102 1.021
∞ 0.118 0.074 — —

Table 2.13: Decay time of age distribution function for contacts, τ
c
0, and

force all interactions, τ
i
0, obtained by an exponential fit to the data of

Fig. 2.34 and Fig. 2.36); average contact age τ
c
avg and interaction age τ

i
avg,

for different values of P ∗ and I = 0.1. All three parameters are normalized
by shearing time 1/γ̇.

0.25 ≤ τ
clγ̇ ≤ 5. Fig. 2.37b displays the number of clusters N cl versus their size Scl. Note that

every data point counts the number of clusters in the interval of n/4 < log10(S
cl) ≤ (n+1)/4

with 1 ≤ n < 20. N cl is averaged over the results of several configurations in steady state
shear flow. The results of Fig. 2.37b are obtained for P ∗ = 0.436 and different values of I,
only considering the clusters with τ

clγ̇ ≥ 2. The sample typically comprises a number of small
clusters (e.g., more than 200 clusters consist of 2 or 3 grains, regardless of the value of I), and
a few large ones. One huge may contain a significant proportion of the grains in the whole
system. One interesting result in Fig. 2.37a is that the distribution of the size of clusters
for the smallest reduced pressure (P ∗ = 0.436) is nearly the same for I = 10−2 and 10−3 as
the quasistatic limit is approached, in agreement with the other macroscopic and microscopic
results. As we increase I, the large clusters break into smaller ones and consequently the
number of clusters of intermediate size increases while large clusters become scarce. Fig. 2.37b
represents the similar results for clusters which have sustained a strain of 5 units, showing
the same trends as Fig. 2.37a, with smaller cluster sizes (clusters of several tens of grains are
still present, albeit scarce).
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Figure 2.37: Number of clusters N cl versus size of clusters Scl for P ∗ = 0.436
and different values of I. Only clusters that survive for the strain interval
γ̇τcl = 2 (a) or γ̇τcl = 5 (b) count.
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The results in Fig. 2.37 should be compared to those in Fig. 2.38 that are plotted for
a larger value of P ∗ and two different values of τclγ̇. The number of the large clusters, for
larger values of P ∗, is decreased while larger numbers of small clusters (more that 500 clusters
for P ∗ = 10) consisting of 2 or 3 particles are formed in the material. The lifetime of these
scarce clusters is also lower than for P ∗ = 0.436 such that for τclγ̇ ≥ 3 almost no cluster with
Scl > 10 appears (Fig. 2.38b), and we observe that only about 100 clusters including 2 or 3
particles can sustain shear strains as large as 5.
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Figure 2.38: Number of clusters N cl versus size of clusters Scl for P ∗ = 10
and different values of I. Only clusters that survive for the strain interval
γ̇τcl = 2 (a) or γ̇τcl = 3 (b) count.

To characterize the intensity of the clustering effect we calculate the mass average of the
cluster sizes as below:

〈Scl〉m =

∑

i(S
cl
i )

2

∑

i S
cl
i

, (2.28)

in which the summations run over all the clusters with size Scl. The results for 〈Scl〉m for
the different values of P ∗ and I are shown in Fig. 2.39, as functions of τclγ̇. For small values
of τclγ̇ almost all particles are gathered in a single cluster and so we have only one cluster
including about 4000 grains, which results in 〈Scl〉m ≃ 4000. For large values of τclγ̇ most
particles are isolated or part of a very small cluster, and so a value close to 1 for 〈Scl〉m is
expected. In the midrange of τclγ̇, 〈Scl〉m decreases with P ∗ and I showing that for stronger
capillary forces or slower flows several small clusters are replaced by a few large clusters.
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Figure 2.39: Mass average, 〈Scl〉m, versus cluster age τclγ̇ for different values
of P ∗ and I.

2.4 Summary and discussion

In this chapter we studied the rheological properties of unsaturated granular materials, when
due to a small amount of liquid in the system, the liquid bridges between particles form
and create capillary forces. We focused on the pendular state, for which the liquid phase is
completely discontinuous and no coalescence occurs between liquid bridges. The homogeneity
of the flow was studied and we showed that localization may occur for small values of P ∗. On
investigating the flow homogeneity we showed that the localization patterns are regular and
persistent for P ∗ = 0.1, and that the localization tendency of the flow increases for smaller
values of inertial number. However, strong localization was also observed for large values
of the inertial number (I ≥ 0.178). In this range of I, the velocity patterns show that the
flow is completely concentrated within a shear bands with a thickness of one or two particle
diameters, but in the slow flow (I ≤ 10−2) the shear bands are thicker, between 5 and 10
particle diameters. The homogeneity of the flow was verified for all values of P ∗ ≥ 0.436, for
which well-defined steady state conditions under controlled normal stress were obtained.

The influence of the capillary forces on the material rheology was studied, based on
the constitutive laws, and observed to be important. In the presence of the liquid bridges,
the solid fraction can reach very small values (e.g., 0.52 for P ∗ = 0.436 in the quasistatic
limit) which cannot be observed in cohesionless systems. We also observed that the internal
friction of unsaturated granular materials is considerably larger than in the dry system. For
P ∗ = 0.436, the macroscopic friction coefficient, µ∗, was measured 2.5 times as large as its
value for dry grains. In contrast to the dry granular materials, for small enough values of P ∗,
wet granular assemblies can form loose and stable structures. Despite this strong influence
of capillary forces, our measurements showed that the capillary forces only contribute about
10% to the total shear stress. As a consequence, the influence of the capillary interactions on
the macroscopic properties cannot be expressed only as an additive effect due to the isotropic
capillary pressure (as usually proposed, based on effective stress ideas). The effect of the
capillary force model was studied, showing a negligible influence of the meniscus volume on
the solid fraction and a moderate effect on the shear stress, within the saturation range of
the pendular state. In addition, an important influence of the distant interacting pairs and
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the hydraulic hysteresis on mechanical properties were observed.
The microscopic properties of unsaturated granular material were investigated, in which

the contributions of contacts and the distant interactions were distinguished. The results
showed that for the smaller values of P ∗ the coordination number of the contacts slightly
increases while the solid fraction of the system decreases. We explain this behaviour with the
clustering effect: the particles strongly attract their close neighbours with the capillary forces.
Consequently, the particles agglomerate and form certain structures of clusters which increase
the void space and the porosity of the system. The distribution of normal forces was studied
showing that for larger values of I and smaller values of P ∗ the slope of the distribution of
repulsive force decreases and so the force network can support stronger repulsive forces.

We observed that the anisotropy of the orientation of distant interactions and the anisotropy
of the angular distribution of contact forces increase for smaller values of P ∗, which induce
shear strength in the material. The anisotropies in the system with different components of
fabric tensor and force anisotropy parameters was characterized and we related these param-
eters to different stress components. The contribution of the force anisotropies increases for
smaller values of I and P ∗ up to 85% for P ∗ = 0.436 in the quasistatic limit, however for
the cohesionless material the fabric and the force anisotropies have about the same contri-
bution. Finally we studied the agglomeration phenomenon with calculations of contact and
interaction age distributions, cluster sizes and lifetimes. We showed the age of the contacts
and distant interactions to increase for smaller P ∗ values, as well as the size and the age of
the clusters. We concluded that the formation of large and long-lasting clusters is the main
reason of the strong influence of capillary forces on rheological properties.

It is interesting to compare the quasistatic constitutive law obtained in Eq. 2.13 with the
Coulomb yield criterion, as defined in Fig. 1.1. Defining µ∗ = |τ |/σ and using F0/a

2 as the
unit of stress, Eq. 2.13 may be written as:

τ = µ∗
∞σ +Bσ1−β. (2.29)

Fig. 2.40 plots the above equation and also the equation for a dry material (τ = µ∗
∞σ) with

the parameters (µ∗
∞ ≃ 0.34,B = 0.27 and β = 0.82) obtained in our simulations. Note that

the range of σ in our study, with unit of stress F0/a
2, is between 0.436 and 10. Within

this range the graph, at first sight, may appear linear, in agreement with the Coulomb
yield criterion. However, discrepancies are predicted for the lower values of pressure, as (??)
predicts τ → 0 for σ → 0, and for larger values of pressure too as its increase is slightly faster.
Actually the observed yield locus σ−P is not a straight line and the calculations of Coulomb
cohesion by means of a fit to experimental data might be inaccurate. We can estimate the
apparent Coulomb cohesion, assuming that the yield locus is a straight line between (σ, τ)
and (2σ, τ(2σ)). Using Eq. 2.29 the slope of the line would be (µ∗

∞ + 0.036σ−0.82). Thus the
apparent Coulomb cohesion is:

capp = 0.234 σ0.18

which varies between 0.202 and 0.354 as σ grows from 0.436 to 10.
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Chapter 3

Rheology of very dense, viscous
suspensions

We now present another numerical study in which the interstitial liquid affects the granular
dynamics by its viscosity. The study of dense suspensions or granular pastes, which we report
on in this chapter, was tackled with a “granular” point of view and a “granular framework”,
as outlined in Sec. 1.5, on dealing with the very dense limit, when hydrodynamic forces are
dominated by near-neighbour lubrication forces. The system dynamics, however, is dealt
with in the limit of vanishing Reynolds number, and devoid of inertia, with the consequence
that the numerical method is quite different from standard DEM, and based on matrix
computations. Although the treatment of intergranular contacts was adapted to deal with
dense systems in a physically reasonable way, and the use of a pressure controlled set-up
greatly contributes to smooth out the singularities associated with the approach to jamming,
we were confronted with the numerical difficulties mentioned in Sec. 1.5, which we have
only imperfectly overcome. As a consequence, the results are still somewhat incomplete
in some respects, and call for more extensive calculations, relying on improved numerical
methods. In particular, we could not obtain statistically relevant results for frictional spheres.
Nevertheless, we shall see that our results, although still restricted in their scope, do confirm
conjectures, provide a few relevant measurements and suggest questions and perspectives for
further studies.

3.1 Numerical suspension model

3.1.1 Interactions

We implement the model outlined in Sec. 1.5.2, with the sole near-neighbour hydrodynamic
resistance matrix elements, and a cut-off at short distance, as introduced in connection with
Fig. 1.24.

We consider assemblies of N equal-sized spherical beads of diameter a enclosed in a
cuboidal simulation cell, and immersed in a Newtonian fluid of viscosity η0. The edges
of the cell are parallel to the unit vectors e1, e2, e3 that define the coordinate axes and
have lengths L1, L2, L3, the cell volume being denoted as Ω = L1L2L3. Beads interact
through hydrodynamic lubrication forces – we implement the Ball-Melrose approach [11, 137],
exploiting the assumption of lubrication force dominance, as introduced in Sec. 1.5.2. The
hydrodynamic forces are pairwise additive and couple neighbouring particles at distance
(between surfaces) h ≤ hmin.

As ξN (h) does not diverge as h → 0, interparticle contacts should be considered. In the
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present chapter, we only report on the simplest model, involving frictionless particles with
normal contact forces. Those are evaluated with linear unilateral contact elasticity, relating
normal elastic force FN to contact deflection h as

FN = KNh, (3.1)

involving a spring constant, KN Whenever two particles come into contact, we simply add
the viscous hydrodynamic force to normal contact force (3.1).

Stress components are given by the quasi-static form of Eq. 1.15:

σαβ =
1

Ω

∑

1≤i<j≤N

Fα
ijr

β
ij , (3.2)

where only the interacting pairs contribute to the sum, and rij is the “branch vector”, pointing
from the center of i to the center of j. On writing (3.2) we conform to the usual soil mechanics
convention, used throughout the present report, that tensile stresses are negative.

3.1.2 Boundary conditions

Our systems are subjected to simple shear flows in which a macroscopic motion along direction
x1 is set up, with velocity gradient γ̇ along direction x2. This flow is imposed within the
periodic cell with the Lees-Edwards procedure of Sec. 1.3.3 (see Fig. 1.17), which is now
standard in the simulation of homogeneously sheared suspensions [39, 135, 93]. The control
of the normal stress is however an innovation in this context: while L3 and L1 are fixed, the cell
height L2 in the direction of the velocity gradient is allowed to fluctuate in order to maintain
normal stress σ22 equal to a prescribed value Σ22 up to a small tolerance. Consequently,
volume Ω and solid fraction Φ will also fluctuate about some average values characterizing
the state of the flowing suspension in steady flow. Although this is the procedure applied
in the DEM simulations of Chapter 2, we need to specify how it is adapted to the viscous,
Stokesian dynamics of our suspension model. In the Lees-Edwards procedure, the simulation
cell, in which coordinate x2 is bounded by ±L2/2, is periodically replicated in all directions,
but its copy along direction x2 (for which L2/2 ≤ x2 ≤ 3L2/2) is moved in the x1 direction
by a shift ∆ such that

d∆

dt
= γ̇L2, (3.3)

in which L2 is evolving in time. As usual, quantities pertaining to any interacting pair i,
j, such as branch vector rij which is used to compute stresses by formula (3.2), should be
defined on associating with i the appropriate image of j (the nearest one) by the group of
translations defined by the cell periodicity.

Particle velocities are conveniently parametrized on writing, for any i, 1 ≤ i ≤ N , with

−L2/2 ≤ x
(2)
i ≤ L2/2,

Vi = Ṽi + γ̇x
(2)
i e1 − ǫ̇x

(2)
i e2 (3.4)

While velocities Ṽi are periodic, the other terms in (3.4) correspond to global strain rates.
ǫ̇ is a notation for ratio −L̇2/Ly. In the evaluation of relative velocity δVij that entails
hydrodynamic forces by (1.62), difference yj − yi, which appears in formula (1.61) because of
(3.4), should be adequately computed with the nearest image convention too.

3.1.3 Hydrodynamic resistance matrix, equations of motion

As forces are only sensitive to relative velocities, the motion is determined up to a global rigid
body translation (rigid rotations are forbidden by the cell periodicity) and it is convenient to
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3.1 – Numerical suspension model

impose Ṽ1 = 0. One thus has Nf = 3N −2 degrees of freedom in the considered central force
case (ξT = 0), while V would be 6N − 2-dimensional in the general case. A corresponding
(Nf -dimensional) hydrodynamic force vector FH can be defined on gathering coordinates of
forces FH

i (with i ≥ 2) (and of moments ΓH
i if ξT 6= 0), and −Ωσyy, with the tensor defined

in (3.2). The power of hydrodynamic forces is the scalar product (in Nf dimensions) FH ·V.
The equation of motion was written as (1.60), but we need to take into account the

contact forces, and the effect of the externally imposed shear rate. In general, all resultants
of non-hydrodynamic interparticle forces, such as contact or colloidal interactions, and all
external force fields (such as gravity) are to be included in Fext. In the present case, all
coordinates of the external force vector, which we denote as Fext

Σ are equal to zero except the
last one, ΩΣ22. The vector containing the resultant of contact forces on all grains is denoted
by Fc. Shear rate γ̇ is enforced in the system by a manipulation of boundary conditions
leading to relation (1.61). This amounts to applying a certain additional external force γ̇F ,
with a geometrically determined, γ̇ independent Nf dimensional vector F . To evaluate γ̇F ,
one has to compute the interparticle forces corresponding to the γ̇ term in (1.61), deduce
the corresponding interparticle hydrodynamic forces from (1.62), then compute the resulting
contributions to FH

i , ΓH
i (if necessary), and σ22, and finally reverse their signs. The final

equations of motion read:

V = Ξ−1 ·
[

γ̇F + Fc +Fext
Σ

]

. (3.5)

3.1.4 Practical computation procedure

To integrate Eq. 3.5 and compute particle trajectories, the algorithm is as follows:

(i) At time t, from the known positions of the particles in the simulation cell and the
current values of ∆ and L2 we deduce the elements of matrix Ξ and the coordinates of
vectors F , Fc and Fext

Σ .

(ii) We solve Eq. 3.5 by iterative techniques (see below), and thus find velocities and ǫ̇.

(iii) We move the particles, temporarily, to their positions at time t + ∆t as deduced to a
first order (Euler explicit) scheme. We change ∆ and L2 accordingly.

(iv) We use the temporary positions obtained at step (iii) to define a new Ξ, and recalculate
the velocities with this matrix. The final move of the particles to their positions at time
t+∆t uses the arithmetic average of the two previously calculated velocities. We thus
implement the “trapezoidal rule” of order 2. We also update ∆ and L2.

Time step ∆t is corrected at each integration step so that:

Maxi,j

{ |ξN (hij(t+∆t))− ξN (hij(t))|
ξN (hij(t))

, ||nij(t+∆t))− nij(t)||
}

= xobj (3.6)

In this work, we set xobj at 0.01. This condition ensures that the trajectories are determined
with a satisfactory accuracy. Particles do not overlap, and we also check that distances
between particles are consistently evaluated.1

To solve the linear system given by Eq. 3.5 we use the preconditioned conjugate gradient
method. This method is derived from the conjugate gradient method which enables to solve a
linear system of the type Ξ ·V = F in an iterative way. This method involves multiplications
by matrix Ξ, which in our case amounts to directly computing the net effect of lubrication

1The strong lubrication effect entails that relative velocities of close neighbours are essentially tangential,
and one has to make sure that the neglected higher order effects of this tangential motion do not spuriously
affect the normal motion.
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parameters simulated systems

Vi 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005
N 1372

hmin/a 10−4

hmax/a 0.1
κ 105

Table 3.1: Parameters characterizing the different systems used in this work.

forces in neighbouring pairs, on applying Eqs. (1.61), (1.62) and (1.65)–(3.2). The conjugate
gradient method has a very slow convergence rate and is quite sensitive to the accumulation
of numerical errors. We can speed it up thanks to the use of a preconditioner, .i.e a matrix
Ξ′ which is close to Ξ and for which Ξ′ · V = F can be solved rapidly. We proceed in
the following way: at some integration step, the resistance matrix is fully determined and
factorized using complete Cholesky decomposition (exploiting its “skyline” structure, once
particles are suitably renumbered). This matrix is thereafter used as a preconditioner for a
certain number of integration steps. Note that in step (i) of the algorithm, it is not necessary
to build the resistance matrix explicitly unless its Cholesky factorization is about to be
computed and the preconditioner updated. The Cholesky factorization is the slowest and
most memory-consuming step in the whole computation procedure, but its great advantage
is its robustness and ability to deal with ill-conditioned matrices (due to the divergence of
ξN at small h), for which the conjugate gradient algorithm without a preconditioner, or even
with the “incomplete Cholesky” preconditioner used by [135], tend to fail. With the system
sizes we study (up to N = 1372) this method is still practical and the current random access
memory capacities of tabletop computers are not exceeded. Average time step is dependent
on γ̇ and the number of iterations required to simulate a shear strain equal to 1 ranges from
102 for Vi = 0.1 to 105 for Vi = 0.0005. Computation times depend on shear rates and on
system sizes: our longest simulation runs took a couple of weeks.

Initial configurations are obtained from simulations of densely packed granular assemblies,
with the procedures presented in [1]. Isotropic configurations in periodic cubic cells at random
close packing solid fraction ΦRCP are slightly expanded, so that close neighbours are separated
by a distance at least equal to h0 = 0.01, and the algorithm outlined above is then applied
with a certain value of shear rate γ̇, and the boundary conditions of Sec. 3.1.2. In the steady
state flows we are interested in, the initial configuration becomes irrelevant after a transient
and it is convenient, to minimize the duration of this initial stage, to start a simulation with
a certain value of γ̇ from the final configuration obtained with the nearest previously studied
value of γ̇.

3.1.5 Dimensional analysis and state parameters

From the parameters of the problem, interstitial liquid viscosity η0, particle diameter a,
stiffness KN , imposed stress σ22 = P and shear rate γ̇, one extracts dimensionless parameters
Vi (introduced in Eq. 1.66), ratios hmin/a and hmax/a, and reduced stiffness κ = KN/(aP ).

Our simulations are carried out in systems of N=1372 beads, with hmin/a = 10−4,
hmax/a = 0.1, and 5.10−4 ≤ Vi ≤ 10−1. These data are listed in Table 3.1
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3.1 – Numerical suspension model

3.1.6 Macroscopic phenomena, rheology

Internal friction coefficient and solid fraction

The internal friction coefficient versus viscous number Vi is shown in Fig. 3.1a. We observe a
gradual decrease as I decreases. From the accurate measurements of dry frictionless beads in
shear flow carried out in [104] we expect for low Vi to retrieve the critical state value µ∗ ≃ 0.1.
This limit is still not closely approached for the lowest studied value of Vi, 5 × 10−4. This
is reminiscent of the observations made in [104], that the approach to the quasistatic limit
is particularly slow with frictionless grains. Similarly, the solid fraction, although very high
(larger than in most simulation results published), Φ ≃ 0.625, is still not very close to the
RCP value (≃ 0.64) that should be reached in the critical state of frictionless beads [104].
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Figure 3.1: Effective friction coefficient µ∗ (a) and solid fraction Φ (b) versus
Vi.

Effective suspension viscosity

Fig. 3.2a shows the variation of effective viscosity η, relative to the viscosity η0 of the sus-
pending liquid, as deduced from µ∗ by Eq. 1.67, as a function of solid fraction Φ. As expected,
we find that η/η0 is a strongly increasing function of Φ, reaches quite high values for large
solid fractions. The form of its divergence as ΦRCP is approached cannot, however, be accu-
rately determined. Let us note, however, that no singularity is detected at Φ < ΦRCP... The
pathological behaviour mentioned in Refs. [92, 10, 46] is likely due to the strong fluctuations
in small size numerical samples sheared at constant volume.

Viscosity of a random isotropic suspension

We also measured the viscosity for a random isotropic suspension, ηi, as a function of Φ.
This value is obtained by instantaneous measurement of the viscosity in an isotropic random
suspension subjected to a shear rate under a constant volume, before the action of shear
flow selects a specific internal suspension structure. ηi characterizes a random configuration
chosen with a uniform probability distribution in the set of all those for which particles are

— 91 —



Rheology of very dense, viscous suspensions

not overlapping – i.e., according to the statistics of a hard sphere system2. To measure
ηi, configurations at ΦRCP are first dilated to the desired solid fraction, then particles are
attributed random velocities, an event-driven (hard-sphere molecular dynamics), conservative
calculation is carried out at constant Φ, particle collisions preserving until each particle has
undergone 50 collisions on average. The results for different value of Φ are represented in
Fig. 3.2b. The values of η/η0 is quite below the viscosity in steady shear flow. The results
are compared to those obtained by Sierou and Brady [136]. For small values of solid fraction,
our results are slightly smaller, that might be due to the absence of long-range hydrodynamic
interactions in our model. However, for larger solid fractions, we observe a faster increase,
compared to the results by Sierou and Brady. The comparison of both graphs in Fig. 3.2
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Figure 3.2: Effective viscosity in steady shear flow (a) and isotropic suspen-
sion viscosity (b) as a function of solid fraction Φ.

shows that the steady-state velocity is considerably larger than its counterpart, measured in
a random isotropic suspension at the same density. Thus, the distribution of distances and
orientations of pairs of neighbours should greatly affect the shear stress. Let us also recall
that the isotropic system of Fig. 3.2b is completely devoid of intergranular contacts.

Contact contribution to shear stress

This contrasts with the important mechanical role of contacts in steady-state shear flow, as
revealed by Fig. 3.3, in which the relative contribution of contact forces to shear stress is
displayed. While viscous forces dominate for the largest values of Vi, in the approach to the
quasistatic limit, as the velocity dependent terms vanish, the contact forces gradually take
over and provide most of the shear stress.

Normal stress differences

Like the dry or unsaturated granular systems of 2.2, our model viscous suspensions develop
normal stress differences, as shown in Fig. 3.4(we plotted −N1 and −N2 to represent them
with the usual sign convention for stresses in fluid mechanics, which is opposite to the one
used in this report). Remarkably, those differences vary rapidly in the investigated Vi interval,
and become very small as Vi → 0. Once again, the behaviour of dry grains (frictionless ones

2The equilibrium phase of the hard sphere fluid [60] is a crystal for Φ ≥ 0.53, and therefore a random
isotropic configuration at larger solid fraction should belong to a metastable glassy state.
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in the present case) in the critical state is retrieved, for which in Ref. [104], normal stress
differences N1 and N2 were extremely small, not distinguishable form zero.

3.1.7 Microscopic characteristics

One may analyse the microscopic origins of shear stress, applying ideas similar to those of
Sec. 2.3.3.

Coordination numbers

The average number of interacting pairs per grain is shown in Fig. 3.5, distinguishing between
the coordination number of contacts, zc, and the total number z of neighbours within viscous
force range (h ≤ hmax). z grows, like Φ, for smaller Vi values. zc should approach the critical
value, zc = 6, which is that of RCP states in that case, for Vi → 0.

Fabric parameters

Finally, fabric parameters are shown in Fig. 3.6, both for all interactions (Fig. 3.6a) and for
contacts (Fig. 3.6b). While notable values of F11 − F22 and F33 − 1/3, in agreement with
results of normal stress differences, are observed for the lower densities, they tend to decrease
for smaller Vi. With rigid, frictionless dry grains in shear flow, all those parameters, except
F12, were found negligible [104].

3.2 Conclusion

Our simulations show that the “granular” approach, in terms of internal friction and density
laws, applies successfully to a model system for which the behaviour of rigid, perfectly lubri-
cated grains is closely approached (we use a high value of κ, and a small asperity scale cutting
off the lubrication effect for small gaps). Although the approach to the quasi-static limit (un-
der constant P ) or, equivalently, to the concentration for which the viscosity diverges, is not

— 93 —



Rheology of very dense, viscous suspensions

-0.04

0

0.04

0.08

0.12

0.16

0.2

0.56 0.58 0.6 0.62 0.64

-N
1
/P

(a) First normal stress difference versus solid frac-
tion.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.56 0.58 0.6 0.62 0.64

-N
/P

(b) Second normal stress difference versus solid
fraction.

Figure 3.4: Normal stress differences.

probed with very high accuracy in this study, our results do argue in favour of a critical state
identical to the one of dry grains in the quasistatic limit of Vi → 0. No singularity, if grains
are devoid of friction, occurs for Φ < ΦRCP. It might be hoped to approach the quasi-static
limit even closer, and then accurately characterize the diverging viscosities, on improving
the numerical procedure (with, possibly, higher order schemes and/or more efficient solvers
for the sparse system of linear equations). Many additional physical effects could also be
introduced to this basic, reference model, such as various short-ranged forces and contact
friction.
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Figure 3.6: (a) Fabric parameters of neighbours at distance hc = 0.1 and
(b) fabric parameters for contacts.
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Chapter 4

Conclusions and perspectives

In the framework of this thesis, we studied the rheological behavior of wet granular materials
either for small amounts of water in the presence of capillary interactions, or in fully saturated
materials when the particles interact by viscous hydrodynamic forces. The rheology of un-
saturated granular materials (in the pendular state) is studied in Chap. 2. The homogeneity
of the flow is examined showing that localization may occur in the bulk of the material for
small values of P ∗. We observed a strong decrease of the solid fraction and a strong increase
of the macroscopic friction coefficient to the values that cannot be observed in a cohesionless
system. It reveals that compared to the cohesionless materials, wet granular materials un-
der shear form much looser but more stable structures. We showed that the capillary effect
cannot be described only as an additive isotropic pressure, and one also needs to study the
microstructural changes due to capillary forces. Our studies on the microscopic properties of
the material revealed an opposite trend in the variations of the contact coordination number
and of the solid fraction which indicates the agglomeration and formation of clusters. We also
observed a strong influence of capillary forces on the age of contact and distant interactions.
We showed that for the stronger capillary effect, the age and the size of the clusters increase,
which explain the strong influence of the capillary forces on the rheology. The investigations
on the anisotropy of the contact orientations and forces, induced by shear flow and capillary
effect, showed that for large values of P ∗, both the fabric and force anisotropies are equally
at the origin of the shear stress, but for small values of P ∗ the contribution of the force
anisotropy dominates.

For the saturations above the limit of the pendular regime, the liquid bridges start to
merge and we enter the funicular regime. As we increase the saturation, we may pass through
different regimes up to the fully saturated case when the dominant interactions are viscous
hydrodynamic forces. Further studies on different regimes and the transitions between them
are necessary in order to calculate and unify the rheological laws in a wide range of saturation
including the dry grains and the suspensions. A coupled discrete element/lattice Boltzmann
model [34] might be employed to introduce the capillary and viscous forces between particles.
More investigations can be done on the localization phenomenon, and we need to study
the influence of the stiffness number on the flow homogeneity. In our simulations we used
a very simple model for liquid distribution, in which the volume of the liquid bridges is
always constant in time and for all particles. So the dynamics of the menisci volume are
not considered in our model and also the saturation may vary with the control parameters.
Although we showed that the variation of the saturation in our simulations is small and does
not affect the mechanical properties significantly, the dynamics of the menisci volume may
have an important effect on the rheology and should be introduced in our model. On the
other hand, such a more realistic model might permit studying some other features of wet
granular material like the fluid migration within the shear bands (see Sec. 1.2.4).
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In Chap. 3 we studied the rheological behavior of saturated granular materials when the
grains are completely immersed in a Newtonian fluid. A lower cut-off distance for hydrody-
namic forces is defined to permit the real contacts between particles. The variations of solid
fraction and microscopic friction coefficient with viscous number are studied which shows
that the results in quasistatic limit coincide with the dry grain results, as was expected. We
observed that as we approach smaller values of the viscous number, the importance of the
contact forces increases and they become dominant near the quasistatic limit. We showed
that the effective viscosity of suspensions diverges as we approach the critical state solid frac-
tion Φc which coincides with the random close packing solid fraction of frictionless grains,
ΦRCP. The effective viscosity of random isotropic suspensions is also measured, resulting the
values below the steady flow results, but a similar divergence trend near random close packing
solid fraction. It reveals the importance of the distribution of distances and orientation of
pairs. We also studied the microscopic properties of the flow by calculating the coordina-
tion number and fabric parameters. In this study, we assumed that the particles are ideally
frictionless. In a more realistic model the friction between contacts should be introduced.
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Appendix A

Force and fabric Anisotropies,
expression of stress components

A.1 Expansions with anisotropy parameters

A.1.1 Arbitrary functions

Let us introduce spherical coordinate angles θ, ϕ, w.r.t. coordinate axis Ox3, with usual
relations, for unit vector n:

n1 = sin θ cosϕ

n2 = sin θ sinϕ

n3 = cos θ.

We consider any real function f of normal vector f(n) such that f(−n) = f(n) and expand
it to second order in spherical harmonics.

f(n) = f0 +

2
∑

m=−2

cm2 Y m
2 (θ, ϕ) (A.1)

Parity f(−n) = f(n) ensures vanishing of all coefficients cml for l = 1.

Definitions of relevant spherical harmonic functions:

Y 0
2 (θ, ϕ) =

1

2

√

5

4π
(3 cos2 θ − 1)

Y ±1
2 (θ, ϕ) = ∓

√

15

8π
sin θ cos θe±iϕ

Y ±2
2 (θ, ϕ) =

1

2

√

15

2π
sin2 θe±2iϕ

and parity of f ensure that expansion A.1 may be rewritten as

f(n) = f0 +
5

8
(3f33 − f0)(3n

2
3 − 1) + 15[f13n1n3 + f23n2n3]

+
15

4

[

(f11 − f22)(n
2
1 − n2

2) + 4f12n1n2

]

,

(A.2)

as remarked in [], using the following notations for appropriate moments of f on the unit
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sphere S (dΩ = sin θdθdϕ)

f0 =
1

4π

∫

S
f(n)dΩ

fαβ =
1

4π

∫

S
f(n)nαnβdΩ (1 ≤ α, β ≤ 3)

(A.3)

All coefficients of functions of θ, ϕ appearing in the r.h.s. of Eq. (A.2) vanish for constant
(isotropic) f . By construction one has:

f11 + f22 + f33 = f0. (A.4)

A.1.2 Products, to leading order in anisotropy coefficients

On dealing with products of several functions f (1), f (2),... f (p):

f =

p
∏

k=1

f (k),

we shall often neglect terms beyond order one in anisotropy coefficients cml , so that denoting
as Cm

l the coefficients of the expansion of product f , the following approximation is adopted:

Cm
2 ≃

p
∑

k=1

cm2 (k)
∏

j 6=k

f
(j)
0 . (A.5)

One thus naturally assumes the following relation between averages over unit sphere S:

1

4π

∫

S
fdΩ ≃

p
∏

k=1

f
(k)
0 (A.6)

A.1.3 Fabric

The angular distribution of contact orientations E(θ, ϕ) is defined and normalized such that
∫

S EdΩ = 1. It is customary to define fabric parameters Fαβ as

Fαβ =

∫

S
E(n)nαnβdΩ,

differing from Eq.(A.3) by a factor of 4π, whence the expansion:

E(n) =
1

4π
+

5

16π
(3F33 − 1)(3n2

3 − 1) +
15

4π
[F13n1n3 + F23n2n3]

+
15

16π

[

(F11 − F22)(n
2
1 − n2

2) + 4F12n1n2

]

.

(A.7)

A.1.4 Average normal force

The average normal force conditioned by contact orientation n or θ, ϕ, is conveniently written
as 〈FN〉F(n), extracting a constant factor of 〈FN〉, the average normal force. One has, by
definition:

1

4π

∫

S
F(n)E(n)dΩ = 1,

but our approximations – see (A.6) – imply that

1

4π

∫

S
F(n)dΩ ≃ 1.
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A.2 – Stress components to first order in anisotropy parameters

Applying definitions (A.3) to function F , one may write

F(n) = 1 +
5

4
(3F33 − 1)(3n2

3 − 1) + 15[F13n1n3 +F23n2n3]

+
15

4

[

(F11 −F22)(n
2
1 − n2

2) + 4F12n1n2

]

.

(A.8)

A.1.5 Branch vector

It is defined as the vector pointing from the center of one grain to the center of its interacting
neighbour. For spherical grains, only its length matters, as its orientation is given by the unit
normal vector. Let us define L(n) as the ratio of its average length, conditioned by direction
n ∈ S, to the average diameter a, and denote its (dimensionless) average as l0. Function
L(n) is then expanded like L(n), and it will be convenient to define

Lαβ =
1

4πl0

∫

S
L(n)nαnβdΩ.

Thus
L(n)
l0

= 1 +
5

4
(3L33 − 1)(3n2

3 − 1) + 15[L13n1n3 + L23n2n3]

+
15

4

(

(L11 − L22)(n
2
1 − n2

2) + 4L12n1n2

)

.

(A.9)

A.2 Stress components to first order in anisotropy parameters

The contribution of normal forces to stresses are given by (z denoting coordination number,
n the number density of grains)

σN
αβ =

azn

2
〈FN〉

∫

S
E(n)F(n)L(n)nαnβdΩ. (A.10)

For contact forces between equal-sized beads (neglecting contact deflections), L(n) = 1. The
corresponding contribution σNc

αβ combines anisotropy parameters of fabric E and force F , it
is readily evaluated using expansions (A.7) and (A.8), and values of the following integrals:

∫

S
n2
αdΩ =

4π

3
(1 ≤ α ≤ 3)

∫

S
n4
αdΩ =

4π

5
(1 ≤ α ≤ 3)

∫

S
n2
αn

2
βdΩ =

4π

15
(1 ≤ α, β ≤ 3, β 6= α)

(A.11)

The final expressions might be rearranged using (A.4), resulting in the following formula for
diagonal stress components: (α = 1, 2, or 3, no summation)

σN,c
αα =

nzca

2
〈FN,c〉

[

1

3
+

(

F c
αα − 1

3

)

+

(

Fc
αα − 1

3

)]

, (A.12)

while non-diagonal ones read (α, β = 1, 2, or 3, β 6= α)

σN,c
αβ =

nzca

2
〈FN,c〉

[

F c
αβ + Fc

αβ

]

. (A.13)
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We use superscript c or d for parameters corresponding to contact or distant interactions.
In general, anisotropy parameters for L might also be introduced, whence a factor of l0
and terms Lαα − 1/3 or Lαβ in formulae (A.12, A.13). This applies in particular to the
contribution of distant capillary forces transmitted by liquid bridges. The result for diagonal
and non-diagonal components of stress are

σN,d
αα =

nzdal0
2

〈FN,d〉
[

1

3
+

(

F d
αα − 1

3

)

+

(

Fd
αα − 1

3

)

+

(

Ld
αα − 1

3

)]

, (A.14)

and

σN,d
αβ =

nzdal0
2

〈FN,d〉
[

F d
αβ + Fd

αβ + Ld
αβ

]

. (A.15)
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Appendix B

Normal stress components,
comparing microscopic estimation
with direct measurements

Contribution of the normal contact forces to the normal stress components for

different values of P ∗, comparing the results of Eq. A.12 with the direct mea-

surement:

I σN,c
11

σN,c
22

σN,c
33

0.562 1.307 1.544 1.110 1.342 1.032 1.118
0.316 1.298 1.505 1.168 1.353 1.092 1.167
10−1 1.218 1.358 1.158 1.269 1.060 1.103
10−2 1.119 1.234 1.091 1.175 0.968 1.003
10−3 1.104 1.219 1.083 1.165 0.957 0.990

Table B.1: P ∗ = 0.436.

I σN,c
11

σN,c
22

σN,c
33

0.562 1.104 1.320 0.961 1.175 0.893 0.968
0.316 1.132 1.310 1.030 1.202 0.969 1.036
10−1 1.112 1.234 1.068 1.174 0.996 1.043
10−2 1.050 1.147 1.034 1.113 0.948 0.982
10−3 1.043 1.139 1.027 1.105 0.940 0.973

Table B.2: P ∗ = 1.

I σN,c
11

σN,c
22

σN,c
33

0.562 0.903 1.098 0.790 0.980 0.717 0.790
0.316 0.940 1.075 0.863 1.006 0.799 0.849
10−1 0.953 1.038 0.935 1.023 0.867 0.902
10−2 0.947 1.007 0.956 1.017 0.889 0.913
10−3 0.942 1.001 0.955 1.014 0.887 0.910

Table B.3: P ∗ = 10.
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I σN,c
11

σN,c
22

σN,c
33

0.562 0.862 1.056 0.741 0.950 0.720 0.757
0.316 0.892 1.047 0.819 0.976 0.788 0.804
10−1 0.907 1.003 0.898 0.994 0.847 0.862
10−2 0.916 0.982 0.927 0.998 0.877 0.889
10−3 0.918 0.982 0.929 0.998 0.882 0.894

Table B.4: P ∗ = ∞.

Contribution of the distant interactions to the normal stress components for

different values of P ∗, comparing the results of Eq. A.14 with the direct mea-

surement:

I σd
11

σd
22

σd
33

0.562 -0.377 -0.350 -0.427 -0.396 -0.411 -0.396
0.316 -0.380 -0.350 -0.419 -0.386 -0.410 -0.395
10−1 -0.299 -0.272 -0.320 -0.289 -0.319 -0.304
10−2 -0.201 -0.183 -0.214 -0.192 -0.213 -0.204
10−3 -0.192 -0.175 -0.204 -0.183 -0.204 -0.194

Table B.5: P ∗ = 0.436.

I σd
11

σd
22

σd
33

0.562 -0.210 -0.197 -0.241 -0.225 -0.235 -0.227
0.316 -0.226 -0.210 -0.251 -0.232 -0.248 -0.240
10−1 -0.194 -0.179 -0.208 -0.189 -0.212 -0.203
10−2 -0.131 -0.119 -0.139 -0.125 -0.143 -0.136
10−3 -0.123 -0.112 -0.130 -0.117 -0.134 -0.128

Table B.6: P ∗ = 1.

I σd
11

σd
22

σd
33

0.562 -0.028 -0.028 -0.031 -0.030 -0.031 -0.031
0.316 -0.032 -0.031 -0.036 -0.034 -0.036 -0.035
10−1 -0.033 -0.031 -0.035 -0.032 -0.036 -0.035
10−2 -0.024 -0.023 -0.025 -0.023 -0.026 -0.025
10−3 -0.020 -0.019 -0.021 -0.019 -0.022 -0.021

Table B.7: P ∗ = 10.
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[14] F. Blanc. Rhéologie et microstructure de suspensions concentrées non browniennes. PhD thesis,
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[81] A. Lemâıtre, J.-N. Roux, and F. Chevoir. What do dry granular flows tell us about dense
non-brownian suspension rheology? Rheologica Acta, 48:925–942, 2009.

[82] G. Lian, C. Thornton, and M. J. Adams. A theoretical study of the liquid bridge forces between
two rigid spherical bodies. J. of Colloid and Interface Sci., 161(1):138–147, 1993.

[83] E.M. Lifshitz. The theory of molecular attraction forces between solid bodies. Sov. Phys. JETP,
2:73–85, 1956.

[84] N. Maeda, J.N. Israelachvili, and M.M. Kohonen. Evaporation and instabilities of microscopic
capillary bridges. Proc. Natl. Acad. Sci. USA, 100:803–808, 2003.

[85] V. Magnanimo, L. La Ragione, J. T. Jenkins, P. Wang, and H. A. Makse. Characterizing the
shear and bulk moduli of an idealized granular material. Europhys. Lett., 81:34006, 2008.

[86] T.S. Majmudar and R.P. Behringer. Contact force measurements and stress-induced anisotropy
in granular materials. Nature, 435:1079–1082, 2005.

[87] H. A. Makse, D. L. Johnson, and L. M. Schwartz. Packing of compressible granular materials.
Phys. Rev. Lett., 84(18):4160–4163, 2000.

[88] R. Mani, D. Kadau, D. Or, and H. J. Herrmann. Fluid depletion in shear bands. PRL,
109:248001:1–5, 2012.

[89] D. Maugis. Contact, adhesion and rupture of elastic solids. Springer, Berlin, 2000.

[90] R. Mei, H. Shang, O.R. Walton, and J.F. Klausner. Concentration non-uniformity in simple
shear flow of cohesive powders. Powder Technology, 112:102–110, 2000.

— 110 —



4.0 – References

[91] J. R. Melrose, J.H. van Vliet, and R.C. Ball. Continuous Shear Thickening and Colloid Surfaces.
Phys. Rev. Lett., 77:4660–4663, 1996.

[92] J.R. Melrose and R.C. Ball. The pathological behaviour of sheared hard spheres with hydrody-
namic interactions. Europhys. Lett., 32:535–540, 1995.

[93] J.R. Melrose and R.C. Ball. Continuous shear thickening transitions in model concentrated
colloids - the role of interparticle forces. J. Rheol., 48:937–960, 2004.

[94] R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces.
ASME Journal of Applied Mechanics, 20:327–340, 1953.

[95] N. Mitarai and F. Nori. Wet granular materials. Advances in Physics, 55:1, 1–45, 2006.

[96] J.K. Mitchell and K. Soga. Fundamentals of Soil Behavior. Wiley, 2005.

[97] D. M. Mueth, H. M. Jaeger, and S. R. Nagel. Force distribution in a granular medium. Phys.
Rev. E, 57:3164–3169, 1998.

[98] R.M. Nedderman. Statics and Kinetics of Granular Materials. Cambridge University Press,
Cambridge, UK, 1992.

[99] M. Nuth and L. Laloui. Effective stress concept in unsaturated solis: Clarification and validation
of a unified framewotk. Int. Journal for Numerical and Analytical Methods in Geomechanics,
32:771–801, 2008.

[100] C. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel. Jamming at zero temperature and zero
applied stress: The epitome of disorder. Phys. Rev. E, 68(1):011306, 2003.

[101] S. Ouaguenouni and J.-N. Roux. Force distribution in frictionless granular packings at rigidity
threshold. Europhysics Letters,, 39:117–122, 1997.

[102] G. Ovarlez, F. Bertrand, and S. Rodts. Local determination of the constitutive law of a dense
suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol., 50:259–292,
2006.

[103] M. Parrinello and A. Rahman. Polymorphic transitions in single cystals: A new molecular
dynamics method. Journal of Applied Physics, 52:7182–7190, 1981.

[104] P.-E. Peyneau and J.-N. Roux. Frictionless bead packs have macroscopic friction, but no dila-
tancy. Phys. Rev. E, 78:011307, 2008.

[105] P.-E. Peyneau and J.-N. Roux. Shear flow of sphere packings in the geometric limit. In
A. CO, L.G. Leal, R.H. Colby, and A.J. Giacomin, editors, Proceedings of the 15th Interna-
tional Congress on Rheology, Monterey, CA, 2008. American Institute of Physics.

[106] P.-E. Peyneau and J.-N. Roux. Solidlike behavior and anisotropy in rigid frictionless bead
assemblies. Phys. Rev. E, 78:041307, 2008.

[107] P.E. Peyneau. Étude du comportement et du compactage de pâtes granulaires par simulation
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