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Résumé xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Concurrent Constraint Programming (CCP) . . . . . . . . 3

1.2.2 Equivalences for CCP . . . . . . . . . . . . . . . . . . . 4

1.3 This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Checking Strong Bisimilarity in CCP . . . . . . . . . . . 6

1.3.2 Reducing Weak to Strong Bisimilarity . . . . . . . . . . . 7

1.3.3 Computing Bisimilarity in choice-free CCP . . . . . . . . 9

1.3.4 A Behavioral Congruence for CCP . . . . . . . . . . . . . 10

1.4 Contributions and Organization . . . . . . . . . . . . . . . . . . . 11

1.5 Publications from this Dissertation . . . . . . . . . . . . . . . . . 13

2 Preliminaries 17
2.1 Domain theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Labeled Transition System, Partition and Graphs . . . . . . . . . 19

2.3 Partition Refinement . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Concurrent Constraint Programming (CCP) . . . . . . . . . . . . 22

i



ii CONTENTS

2.4.1 Constraint Systems . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Syntax of CCP . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Reduction Semantics . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Barbed Semantics and Barbed Bisimilarity . . . . . . . . 28

2.4.5 Observational Equivalence . . . . . . . . . . . . . . . . . 30

2.4.6 Labeled Semantics . . . . . . . . . . . . . . . . . . . . . 33

2.4.7 Soundness and Completeness . . . . . . . . . . . . . . . 35

2.4.8 Strong and Weak Labeled Bisimilarity . . . . . . . . . . . 35

3 Verifying Strong Bisimilarity in CCP 39
3.1 Partition Refinement for CCP . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Derivation and Domination . . . . . . . . . . . . . . . . . 40

3.1.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Correctness and Complexity . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Irredundant and Symbolic Bisimilarity . . . . . . . . . . . 45

3.2.2 Proof of Correctness and Complexity . . . . . . . . . . . 54

3.3 Summary and Related Work . . . . . . . . . . . . . . . . . . . . 57

4 A Weak Semantics for CCP 59
4.1 The standard reduction from weak to strong . . . . . . . . . . . . 60

4.1.1 Incompleteness of Milner’s saturation method in CCP . . 61

4.2 Reducing Weak Bisimilarity to Strong in CCP . . . . . . . . . . . 64

4.2.1 Defining a new saturation method for CCP . . . . . . . . 65

4.2.2 The new saturation method is finitely branching . . . . . . 67

4.2.3 A Remark about our Saturation in CCS . . . . . . . . . . 69

4.2.4 Soundness and Completeness . . . . . . . . . . . . . . . 70

4.3 Deciding Weak Bisimilarity . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Weak Irredundant and Weak Saturated Bisimilarity coincide 72

4.3.2 Algorithm for weak bisimilarity in CCP . . . . . . . . . . 74

4.4 Summary and Related Work . . . . . . . . . . . . . . . . . . . . 75

5 Computing bisimilarity in Choice-Free CCP 79
5.1 Using Partition Refinement in choice-free CCP . . . . . . . . . . 80

5.1.1 Properties of CCP without choice . . . . . . . . . . . . . 82



CONTENTS iii

5.1.2 Optimizing partition refinement for choice-free CCP . . . 83
5.2 The compact input-output sets approach . . . . . . . . . . . . . . 86

5.2.1 Weak bisimilarity and barb equivalence . . . . . . . . . . 86
5.2.2 A canonical representation of choice-free configurations . 89

5.3 Improving the general partition refinement for CCP . . . . . . . . 94
5.4 Summary and Related Work . . . . . . . . . . . . . . . . . . . . 96

6 A Behavioral Congruence for CCP 99
6.1 Congruence issues . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Weak full bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 More than weak barbs . . . . . . . . . . . . . . . . . . . 104
6.2.2 Full Bisimilarity is a Congruence . . . . . . . . . . . . . 106
6.2.3 Relation with observational equivalence . . . . . . . . . . 107
6.2.4 Behavioral congruence . . . . . . . . . . . . . . . . . . . 108

6.3 Summary and Related Work . . . . . . . . . . . . . . . . . . . . 110

7 Conclusions 113
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



iv CONTENTS



List of Figures

2.3.1 Example of the refinement function . . . . . . . . . . . . . . . . 21

3.1.1 Example of the irredundant refinement function . . . . . . . . . . 45

4.1.1 Counterexample for completeness using Milner’s saturation method 62
4.1.2 LTS from Example 4.1.6 . . . . . . . . . . . . . . . . . . . . . . 63
4.1.3 Saturated LTS from Example 4.1.6 . . . . . . . . . . . . . . . . . 64
4.2.1 CCS Process P = a.P of Example 4.2.13 . . . . . . . . . . . . . 70

5.1.1 LTS from Example 5.1.2 . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Example improved partition refinement . . . . . . . . . . . . . . 95

6.1.1 Example from Theorem 6.1.4 . . . . . . . . . . . . . . . . . . . . 103

v



vi LIST OF FIGURES



List of Tables

2.4.1 Reduction Semantics for CCP . . . . . . . . . . . . . . . . . . . 27
2.4.2 Labeled Semantics for CCP . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Rules for additional states in the partition refinement for CCP . . . 44

4.1.1 Milner’s Saturation Method . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Milner’s Saturation Method for CCP . . . . . . . . . . . . . . . . 61
4.2.1 New saturation method. . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 New labeled transition system for CCS . . . . . . . . . . . . . . . 69

5.3.1 Rules for improved version of the partition refinement for CCP. . . 94

6.3.1 Summary of the contributions of Chapter 6 . . . . . . . . . . . . 112

vii



viii LIST OF TABLES



List of Definitions

To facilitate the reading of the present document we provide a list of the definitions
(and symbols) used throughout the dissertation. Below you will find the list twice,
first in order of appearance and then in alphabetical order.

In order of appearance

Symbol Name Definition Page
Partially ordered set 2.1.1 17
Upper bound 2.1.2 18

t,
⊔

Least upper bound 2.1.3 18
Directed set 2.1.4 18
Directed-complete partial order 2.1.5 18
Compact element 2.1.6 19
Algebraic dcpo 2.1.8 19
Complete lattice 2.1.9 19

(S, L, ) Labeled Transition System 2.2.1 20
P Partition 2.2.2 20
LTS LTSs and Graphs 2.2.3 20
∼ Standard Strong Bisimilarity 2.3.1 21
F (P) Refinement Function 2.3.2 21

Constraint Systems 2.4.1 22
↓c,⇓c Barbs 2.4.7 28
∼̇sb Saturated Barbed Bisimilarity 2.4.9 29
≈̇sb Weak Saturated Barbed Bisimilarity 2.4.10 29

ix



x LIST OF DEFINITIONS

Result(ξ) Result of a computation 2.4.15 32
Comp(γ) Set of Computations 2.4.17 32
O(P )(d) Observables 2.4.18 32
∼o Observational equivalence 2.4.19 33
Config (IS ) Reachable Configurations 2.4.23 34
∼S Syntactic bisimilarity 2.4.26 36
∼̇ Strong Bisimilarity 2.4.28 36
≈̇ Weak bisimilarity 2.4.29 37
`D Transition Derivation 3.1.2 40
�D Transition Domination 3.1.3 41
`R Transition Derivation w.r.t. R 3.1.5 42
�R Transition Domination w.r.t. R and Irre-

dundant Transition w.r.t. R
3.1.6 42

IR (P) Irredundant Refinement Function 3.1.9 44
∼̇I Irredundant Bisimilarity 3.2.1 46
∼̇sym Symbolic Bisimilarity 3.2.3 47

Closure under the addition of constraints 3.2.5 47
Completeness 4.1.1 61

 e Weak Barb w.r.t. =⇒ 4.1.3 62
∼̇=⇒
sym Weak Symbolic Bisimilarity 4.1.4 62
∼̇=⇒
I Weak Irredundant Bisimilarity 4.1.5 62

Reach(γ, ) Single-step Reachable Pairs 4.2.5 67
Reach∗(γ, ) Reachable Pairs 4.2.6 67

Finitely Branching 4.2.7 67
C,L Configurations and Labels of a reachable

pair
4.2.8 68

≈ CCS-Weak Bisimilarity 4.2.12 69
Soundness 4.2.14 71

Deriv(γ) Derivatives 5.1.4 82
=⇒max Maximal Weak Transition 5.1.6 83
∼wb Barb equivalence 5.2.1 87
J〈P, c〉K Input-Output set 5.2.4 88
� Relevant Pair 5.2.7 88



xi

M(〈P, c〉) Labeled Input-Output Set 5.2.11 89
MC(〈P, c〉) Compact Input-Output Set 5.2.13 90

Improved partition refinement for CCP 5.3.1 94
≈f Weak Full Bisimilarity 6.2.1 105
∼̇= Behavioral Congruence 6.2.8 108

In alphabetical order:

Symbol Name Definition Page
Algebraic dcpo 2.1.8 19

∼wb Barb equivalence 5.2.1 87
↓c,⇓c Barbs 2.4.7 28
∼̇= Behavioral Congruence 6.2.8 108
≈ CCS-Weak Bisimilarity 4.2.12 69

Closure under the addition of constraints 3.2.5 47
MC(〈P, c〉) Compact Input-Output Set 5.2.13 90

Compact element 2.1.6 19
Complete lattice 2.1.9 19
Completeness 4.1.1 61

C,L Configurations and Labels of a reachable
pair

4.2.8 68

Constraint Systems 2.4.1 22
Deriv(γ) Derivatives 5.1.4 82

Directed set 2.1.4 18
Directed-complete partial order 2.1.5 18
Finitely Branching 4.2.7 67
Improved partition refinement for CCP 5.3.1 94

J〈P, c〉K Input-Output set 5.2.4 88
∼̇I Irredundant Bisimilarity 3.2.1 46
IR (P) Irredundant Refinement Function 3.1.9 44
LTS LTSs and Graphs 2.2.3 20
M(〈P, c〉) Labeled Input-Output Set 5.2.11 89
(S, L, ) Labeled Transition System 2.2.1 20
t,

⊔
Least upper bound 2.1.3 18



xii LIST OF DEFINITIONS

=⇒max Maximal Weak Transition 5.1.6 83
O(P )(d) Observables 2.4.18 32
∼o Observational equivalence 2.4.19 33

Partially ordered set 2.1.1 17
P Partition 2.2.2 20
Config (IS ) Reachable Configurations 2.4.23 34
Reach∗(γ, ) Reachable Pairs 4.2.6 67
F (P) Refinement Function 2.3.2 21
� Relevant Pair 5.2.7 88
Result(ξ) Result of a computation 2.4.15 32
∼̇sb Saturated Barbed Bisimilarity 2.4.9 29
Comp(γ) Set of Computations 2.4.17 32
Reach(γ, ) Single-step Reachable Pairs 4.2.5 67

Soundness 4.2.14 71
∼ Standard Strong Bisimilarity 2.3.1 21
∼̇ Strong Bisimilarity 2.4.28 36
∼̇sym Symbolic Bisimilarity 3.2.3 47
∼S Syntactic bisimilarity 2.4.26 36
`R Transition Derivation w.r.t. R 3.1.5 42
`D Transition Derivation 3.1.2 40
�R Transition Domination w.r.t. R and Irre-

dundant Transition w.r.t. R
3.1.6 42

�D Transition Domination 3.1.3 41
Upper bound 2.1.2 18

 e Weak Barb w.r.t. =⇒ 4.1.3 62
≈f Weak Full Bisimilarity 6.2.1 105
∼̇=⇒
I Weak Irredundant Bisimilarity 4.1.5 62
≈̇sb Weak Saturated Barbed Bisimilarity 2.4.10 29
∼̇=⇒
sym Weak Symbolic Bisimilarity 4.1.4 62
≈̇ Weak bisimilarity 2.4.29 37



Acknowledgements

It is an extremely challenging task to acknowledge in just a few pages the support
and advice I have received through all these years from so many amazing people.
That said, in the next paragraphs, I will attempt to express my gratitude to those
who were by my side and, in one way or another, helped me succeed in this
journey.

I would like to start by thanking my supervisors Frank Valencia and Catus-
cia Palamidessi for giving me the unique opportunity to pursue my postgraduate
studies in France. Their aid and encouragement in these past five years cannot be
quantified with a single adjective; I am immensely grateful to have had them as
my advisors and ultimately as my friends. Their cleverness and tenacity taught
me the true meaning of never giving up and always striving for the best. Finally,
it was truly an honor to be part of their team and I will certainly miss our endless
discussions about science, technology, politics and sports.

I owe much to Juan Francisco Dı́az for being my mentor since my undergrad-
uate studies at Univalle. He introduced me to the world of computer science and
his advice was a cornerstone in my decision to do a PhD. Most importantly, his
continuous support was essential to my success in this endeavor.

I am also indebted to Filippo Bonchi, he has been the best collaborator one
could imagine; his guidance was fundamental to the development of my thesis. I
am deeply grateful to him for his advice before and during my PhD. My collabo-
ration with him was crucial for undertaking this enterprise.

I want to thank Ugo Montanari and Stefano Bistarelli for reviewing my disser-
tation and providing such insightful comments. Moreover, I would like to thank
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Abstract

Concurrent constraint programming (CCP) is a mature linguistic formalism from
the family of process calculi and hence it treats processes much like the λ-calculus
treats computable functions. CCP is based on shared-memory communication
where processes interact by adding and querying partial information represented
as constraints (e.g., x > 42) in a global store. This dissertation is focused on the
development of novel reasoning techniques for program equivalence in CCP and
their efficient verification.

The first part of the thesis describes an algorithm for deciding strong bisim-
ilarity for finite CCP processes. This is accomplished by first showing that the
standard partition refinement approach does not work for CCP. Then it is shown
how to adapt the standard approach for the case of CCP. Furthermore, it is proven
that this procedure suffers from the state explosion, common in the verification of
concurrent systems, due mostly to the presence of non-deterministic choices.

The second part is devoted to the development of a weak semantics for CCP.
As pointed out in the literature, one can use the procedure for strong bisimilarity
to decide weak bisimilarity. The idea is to define a new transition relation based
on the operational semantics. This method is known as saturation. The standard
saturation is defined by omitting the silent transitions in the calculus. This works
for CCS and other calculi, however in the case of CCP, because of its involved
labeled transitions, it is shown that the standard technique is not complete. Then
a new saturation is defined called weak semantics for CCP. It consists of the re-
flexive and transitive closure under any constraint in CCP instead of just closing
with respect to the silent transitions. Most importantly, it is proven that the pro-
posed weak semantics is sound and complete for CCP. As a consequence, the new
saturation can be used for checking weak bisimilarity.

xvii



xviii ABSTRACT

In the third part the focus is shifted toward efficiency on the verification of
weak bisimilarity. To achieve this, a representative sub-language of CCP is con-
sidered: the choice-free fragment (CCP\+). First, it is shown that the verification
algorithms described above have an exponential-time complexity even for pro-
grams from CCP\+. Then by exploiting confluence, a distinctive feature from
this fragment, two alternative polynomial-time decision procedures for CCP\+
weak bisimilarity are proposed. Each of these two procedures has an advantage
over the other. One has a better time complexity, while the other can be easily
adapted for the full language of CCP to produce significant state space reduc-
tions. The relevance of both procedures derives from the importance of CCP\+.
This fragment, which has been the subject of much theoretical study, has strong
ties to first-order logic and an elegant denotational semantics, and it can be used to
model real-world situations. Most importantly, previously it was proven that weak
bisimilarity in CCP\+ coincides with the standard observational equivalence for
CCP\+. Hence from the results presented in this part, two efficient algorithms for
checking program equivalence in CCP\+ are obtained.

The last part addresses the congruence issue for the full language of CCP. It
is shown that weak saturated barbed bisimilarity is not a congruence for CCP, as
is the case for weak bisimilarity in CCS. This problem is tackled by introducing a
new notion that characterizes the weakest equivalence included in the congruence
induced by weak bisimilarity for CCP. We call this new notion weak full bisim-
ilarity. More importantly, it is proven that weak full bisimilarity is a congruence
for the full language of CCP. It is also shown that weak full bisimilarity coincides
with the standard notion of observational equivalence in CCP\+. To the best of
our knowledge, this is the first notion of weak bisimilarity that is a congruence for
the full language of CCP.

This dissertation contributes to the study of program equivalence in CCP. It
provides an exponential-time decision procedure for strong bisimilarity in finite
CCP as well as its adaptation to checking weak bisimilarity. Furthermore, this
dissertation proposes two alternative polynomial-time algorithms for the verifica-
tion of observational equivalence in the absence of nondeterministic choice. It
concludes by proving that the existing notions of bisimilarity are not adequate for
CCP with choice. Finally, it defines a novel reasoning technique which is proven
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to be the right notion of equivalence for the full language of CCP.
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Résumé

La Programmation Concurrente par Contraintes (CCP) est un formalisme linguis-
tique mature de la famille des algèbres de processus, il traite les processus de la
même façon que le λ-calcul traite les fonctions calculables. CCP est basé sur
la communication à mémoire partagée où les processus interagissent en ajoutant
et en interrogeant des informations partielles représentées comme des contraintes
(par exemple, x > 42) dans une mémoire globale. Cette thèse se concentre sur
le développement de nouvelles techniques de raisonnement pour léquivalence des
processus dans CCP et leur vérification efficace.

La première partie de cette thèse décrit un algorithme pour calculer la bisimi-
larité forte pour des processus finis du CCP. Ceci est accompli en montrant d’abord
que l’approche de raffinement des partitions standard ne fonctionne pas pour CCP.
Ensuite, il est montré comment adapter l’approche standard pour le cas de CCP.
En outre, il est prouvé que cette procédure souffre de l’explosion combinatoire,
commune à la vérification de systèmes concurrents, principalement en raison de
la présence de choix non-déterministe.

La deuxième partie est consacrée à l’élaboration d’une sémantique faible pour
CCP. Comme il est souligné dans la littérature, on peut utiliser la procédure de
bisimilarité forte pour décider la faible. L’idée est de définir une nouvelle relation
de transition basée sur la sémantique opérationnelle, cette méthode est connue
comme la saturation. La saturation standard est définie par l’omission des transi-
tions silencieuses dans le calcul. Cela fonctionne pour le CCS et d’autres calculs,
mais dans le cas de la CCP, en raison de ses transitions plus complexes, il est
démontré que la technique standard n’est pas complète pour CCP. Ensuite, une
nouvelle saturation est définie, nous l’appelons sémantique faible pour CCP. Elle
consiste à la fermeture réflexive et transitive dans CCP au lieu de simplement la

xxi
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clôture sur les transitions silencieuses. Surtout, il est prouvé que la sémantique
faible proposée est correcte pour CCP. En conséquence, la nouvelle saturation
peut łtre utilisée pour le calcul de la bisimilarité faible.

La troisième partie est dédiée à l’efficacité de la vérification de la bisimilarité
faible. Pour ce faire, un sous-langage représentant du CCP est considérée: le frag-
ment sans choix non-déterministe (CCP\+). Tout d’abord, il est montré que les
algorithmes de vérification précédents ont une complexité exponentielle même
pour les processus de CCP\+. Ensuite, en exploitant la confluence, une car-
actéristique distinctive de ce fragment, deux algorithmes en temps polynomiales
alternatifs pour la bisimilarité faible CCP\+ sont proposés. Chacune de ces deux
procédures a un avantage sur l’autre. La première présente une meilleure com-
plexité en temps, alors que la seconde peut łtre facilement adaptée pour produire
des importants améliorations dans lalgorithme pour tout le langage de CCP.

La dernière partie aborde la question de la congruence dans tout CCP. Il est
montré que la bisimilarité faible n’est pas une congruence pour CCP, comme c’est
le cas pour CCS. Ce problème est abordé par l’introduction d’une nouvelle no-
tion qui caractérise l’équivalence la plus faible incluse dans la congruence in-
duite par la bisimilarité faible pour CCP. Nous appelons cette nouvelle notion
bisimilarité faible pleine. Plus important encore, il est prouvé que la bisimilarité
faible pleine est une congruence pour CCP avec de choix non-déterministe. Il est
également montré que la bisimilarité faible pleine concide avec la notion classique
de l’équivalence observationnelle de CCP\+.



Chapter 1

Introduction

This dissertation proposes co-inductive reasoning techniques and algorithms for
program equivalence in concurrent constraint programming (CCP). The thesis of
this dissertation is that these techniques represent a novel and significant contri-
bution for the automatic verification of CCP programs.

We first give the general motivation and main goal of the dissertation and then
continue to give more specific introduction to each one the results here presented.

1.1 Motivation

Concurrent and distributed systems have changed substantially with the advent of
phenomena such as social networks. In past research on concurrent distributed
systems the emphasis has mostly been on consistency, fault tolerance, resource
management and related topics; these aspects were all characterized by interac-
tion between processes. The new era of concurrent systems is marked by the
importance of managing access to information to a much greater degree than be-
fore.

Social networks can be roughly described as group of agents that interact with
each other by posting information in a shared-medium. The posted information
can be partial (e.g., “I am somewhere in Europe”) and it can be factual (e.g.,“today
is Friday”) and even epistemic and doxastic (e.g., “I believe/know Brazil won’t be
the world cup champion”). We believe that any model of this new era of systems

1
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should single out these inherent aspects rather than encode them indirectly.

In this setting concurrent constraint programming language (CCP) [63], a pro-
cess calculus for concurrency, has much to offer. CCP is a mature linguistic for-
malism from the family of process calculi and as such it treats processes like the
λ-calculus treats computable functions. It provides a language in which the struc-
ture of terms represents the structure of processes together with an operational se-
mantics to represent computational steps. Most representative process calculi for
concurrency such as CCS [41] and the π-calculus [43] are based on point-to-point
communication, instead CCP is based on shared-medium communication much
like in social networks: Processes (or agents) interact by posting partial informa-
tion represented as constraints in a shared store. Furthermore, CCP is parametric
in a constraint system that can be specialized to express the domain-specific lan-
guage (and its entailment) for the family of systems under consideration. In the
case of social networks, a constraint system can be used to specify epistemic and
doxastic modalities that are suitable for reasoning about social behavior: E.g.,
modalities to express familiar concepts in social networks such as beliefs, opin-
ions, knowledge, lies, and hoaxes.

Despite being a suitable language for the emergent shared-memory systems
of today’s digital world, the automatic or machine-assisted verification of system
properties in CCP has hitherto been far too little considered. This is unfortunate
because these systems are intrinsically big and thus “pen-and-pencil” analysis are
not sufficient. As argued by [30], the research agenda for theoretical concurrency
should address the design of efficient algorithms for translating and verifying for-
mal specifications of concurrent systems.

The automatic verification of concurrent systems, however, poses a fundamen-
tal challenge due to the state explosion problem. The number of states a system
has is exponential in the number of concurrent processes. In this dissertation we
rise to this challenge by identifying fragments of CCP amenable to automatic
verification and developing novel techniques and tools to machine assist the veri-
fication of CCP program equivalence.

We have motivated this dissertation by arguing that CCP is a suitable language
for the emergent shared-memory systems of today’s digital world and yet, in com-
parison with more traditional calculi such as [41, 43], there is no much work on
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verification techniques for CCP. The main goal of this dissertation is therefore to
advance significantly the theory and practice of CCP by endowing it with reason-
ing techniques that allows for automated verification of program equivalence. We
now wish to conclude this section with a quote from [30] that captures the goal of
the present dissertation:

“The times have gone, where formal methods were primarily a pen-and-pencil

activity for mathematicians. Today, only languages properly equipped with soft-

ware tools will have a chance to be adopted by industry. It is therefore essential

for the next generation of languages based on process calculi to be supported by

compilers, simulators, verification tools, etc.”.

In what follows we shall give some context and then explain the specific goals

and approach of this dissertation.

1.2 Context

In this section we shall present the general context in which this dissertation is
developed.

1.2.1 Concurrent Constraint Programming (CCP)

Concurrency theory studies the description and the analysis of systems consisting
of interacting processes. Processes are typically viewed as infinite objects, in the
sense that they can produce arbitrary and possibly endless interactions with their
environment. Process calculi treat these processes much like the λ-calculus treats
computable functions. They provide a formal language in which processes are
represented by terms, and a set of rewriting rules to represent process evolution
(or transitions). For example, the term P ‖ Q represents the process that results
from the parallel composition of the processes P and Q. A (labeled) transition
P

α−→ P ′ represents the evolution of P into P ′ given an interaction α with the
environment.

Concurrent Constraint Programming (CCP) [62, 63] is a mature formalism
from concurrency theory that combines the traditional algebraic and operational
view of process calculi with a declarative one based on first-order logic (see a
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survey in [47]). CCP processes can then be seen as computing agents as well as
first-order logic formulae. In CCP, processes interact asynchronously by posting

(or telling) and querying (or asking) information, traditionally referred to as con-

straints, in a shared-medium referred to as the store. Furthermore, CCP is para-
metric in a constraint system indicating interdependencies (entailment) between
constraints and providing for the specification of data types and other rich struc-
tures. The above features have recently attracted renewed attention as witnessed
by the works [52, 19, 11, 10] on calculi exhibiting data-types, logic assertions as
well as tell and ask operations. More recently in [36] the authors proposed the
post and ask interaction model of CCP as an abstraction of social networks.

The features of CCP (and variants) have been used in a variety of applications
in areas such as security, biology and multimedia interaction. For instance, CCP
has been exploited to analyze security breaches in cryptographic protocols [48],
for the prediction of organic malfunctions [31] and rhythmic coherence in music
improvisation [59]. Furthermore, CCP foundations and principles e.g., semantics,
proof systems, axiomatizations, have been thoroughly studied for over the last
two decades. In contrast, as we previously argued the development of algorithms
and automatic verification procedures for CCP have hitherto been far too little
considered. In the next section we shall discuss the existing notions of equivalence
for CCP.

1.2.2 Equivalences for CCP

In any computational model of processes, a central notion is that of behavioral

equivalences [22]. In the case of CCP, the standard notion of observational equiv-

alence from [63] (∼o), roughly speaking, decrees that two CCP programs are
observationally equivalent if each one can be replaced with the other in any CCP
context and produce the same final result.

By process context, we mean a term C with a single hole • such that if we
replace • with a process P , we obtain a process term C[P ]. For example, for the
parallel context C = • ‖ R we obtain C[P ] = P ‖ R.

Reasoning on processes and their equalities therefore means dealing with, and
comparing, infinite structures. For this, a widely used mathematical tool is coin-
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duction (see e.g. [4]). Coinduction is the dual of induction; while induction is a
pervasive tool for reasoning about finite and stratified structures, coinduction of-
fers similar strengths on structures that are circular or infinite. The most widely
applied coinductive concept is bisimulation: bisimilarity is used to study behav-
ioral equivalences, and the bisimulation proof method is used to prove such equiv-
alences. In fact, most process calculi are equipped with a notion of bisimilarity.

Intuitively, for two processes, say P and Q, to be bisimilar one typically re-
quires that whenever a process P performs an action α and evolves to P ′, typically
written P α−→ P ′, then Q must pick a successor Q′ such that Q α−→ Q′ where
P ′ and Q′ are now bisimilar. The idea is then that two processes are strongly
equivalent if they can mimic each other’s actions while arriving at equivalent suc-
cessors. The intuition above corresponds, roughly speaking, to the standard notion
of strong bisimilarity.

An alternative way of looking at bisimilarity is by using the so-called bisim-

ulation game [53, 42] explained as follows. Given two players, called attacker
and defender, the game starts with the attacker picking a transition P α−→ P ′ or
Q

α−→ Q′. Next the defender must reply by choosing a transition in Q α−→ Q′

or P α−→ P ′, respectively. Notice that they must perform the exact same ac-
tion. Now if this game can be played forever then the defender wins, thus P
and Q are considered strongly bisimilar. Otherwise, if the defender cannot reply
successfully to the attacker, either because at the current process no transition is
available, or no transition is tagged with the same action α, then P and Q are not
deemed strongly bisimilar.

There have been few attempts to define the notion of bisimilarity equivalence
for CCP processes and they have not been completely satisfactory. The first
one was proposed in the seminal work on the semantic foundations of CCP by
Saraswat et al. [62]. Their bisimilarity is based on the standard bisimilarity we
described above. Unfortunately, as shown in [6], the matching of actions from
the game above was proven to be too fine grained; i.e. it may tell apart processes
whose logical interpretation is identical.

Furthermore, similar notions were used in [68] to relate the fusion calculus
with the ρ-calculus, another concurrent constraint formalism. However, such no-
tions are not defined for the ρ-calculus itself. More recently, in [32] the author
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defines studies several notions of equivalence for linear CCP.

The latest attempt comes from [6] where the authors try to solve the aforemen-
tioned problems by introducing a notion of bisimilarity for CCP called saturated

barbed bisimilarity. The results obtained in [6] were part of the author’s master
thesis, and for this reason they will be presented in the background material of the
dissertation.

This approach is inspired by the notion of saturated bisimilarity from [14,
12] (pioneered by [46]). Intuitively, in order for two processes to be saturated
bisimilar, (i) they should expose the same barbs, which are basic observations on
the processes, (ii) whenever one of them moves then the other should reply and
arrive at an equivalent process (i.e. follow a bisimulation game similar to the one
described above), (iii) they should be equivalent under all the possible contexts of
the language.

Nevertheless, to the best of our knowledge, none of these notions are provided
with a decision procedure for their verification. Hence, one of the goals of this
dissertation is to study whether the existing equivalences are adequate for CCP and
to find efficient mechanisms to compute them, with particular emphasis on weak
bisimilarity since it characterizes the standard notion of observational equivalence
for CCP.

1.3 This Dissertation

We shall give some specific motivation and goals as well as a description of the
approach we followed to obtain the results of this dissertation. Each of the sections
below corresponds to a chapter in the present document.

1.3.1 Checking Strong Bisimilarity in CCP

Several efficient decision procedures and techniques for verifying bisimilarity
have been developed [67, 25, 27]. But perhaps the best known is the partition

refinement algorithm [34, 50]. This algorithm can be briefly explained as follows:
First it generates the state space of a labeled transition system (LTS), i.e., the set
of states reachable through the transitions. Then it creates a partition equating all
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states and finally, iteratively, it refines these partitions by splitting non equivalent
states. The criteria for splitting partitions usually depends on the notion of bisim-
ilarity, for instance, for the case of standard bisimilarity, the criteria would be the
matching of actions (as described in the previous section). The resulting partition
equates all and only bisimilar states.

In Chapter 3.1.2 we propose an adaptation of the partition refinement algo-
rithm to decide strong saturated barbed bisimilarity (∼̇sb) in CCP. Inspired by
[3], the adaptation is based on the observation that some of the transitions are
redundant, in the sense that they are logical consequences of other transitions.
Unfortunately, such a notion of redundancy is not syntactic, but semantic, more
precisely, it is based on ∼̇sb itself.

A possible solution would be then to consider the transition system having
only non-redundant transitions, thus the ordinary notion of bisimilarity coincides
with ∼̇sb. Hence, in principle, we could remove all the redundant transitions and
then check bisimilarity with a standard algorithm. But how can we decide which
transitions are redundant, if redundancy itself depends on ∼̇sb ?

As we shall explain later on, the main idea is to compute ∼̇sb and redun-
dancy at the same time. In the first step, the algorithm deems all the states to
be equivalent and all the (potentially redundant) transitions to be redundant. In
any iteration, states are distinguished according to (the current estimation of) non-
redundant transitions and then non-redundant transitions are updated according to
the new computed partition.

One peculiarity of the algorithm in Chapter 3.1.2 is that in the initial parti-
tion, we insert not only the reachable states, but also extra ones which are needed
to check for redundancy. We shall see that, unfortunately, the number of these
states might be exponentially bigger than the size of the original set of reachable
states and therefore the worst-case complexity is exponential. To the best of our
knowledge, this is the first algorithm for checking strong bisimilarity in CCP.

1.3.2 Reducing Weak to Strong Bisimilarity

In strong equivalences, and specifically strong bisimilarity, all the transitions per-
formed by a system are deemed observable. In other words, we have seen how two
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processes are strongly bisimilar if and only if they can mimic each other’s actions,
one by one. Instead in weak equivalences internal transitions are unobservable,
namely transitions P −→ P ′ which requires no interaction with the environment
are invisible for this notion of equivalence. Internal transitions (also called re-
ductions) are usually denoted by P τ−→ P ′ where τ is an invisible action. On
the one hand, weak equivalences are more abstract (and thus closer to the intu-
itive notion of behavior); on the other hand, strong equivalences are usually much
easier to check (for instance, in [37] a strong equivalence is introduced which is
computable for a Turing complete formalism).

The weak version of ∼̇sb is called weak saturated barbed bisimilarity (≈̇sb)
and it is defined as ∼̇sb but in this case both the observations on processes (barbs)
and the game may use zero or more steps (reductions) instead of exactly one.

Following [2], the problem of checking weak bisimilarity can be reduced to
the strong one. The standard reduction goes as follows. Given a (strong) LTS
−→ labeled with actions a, b, τ, . . . one can build a (weak) LTS =⇒ using the
following inference rules:

P
a−→ Q

P
a

=⇒ Q P
τ

=⇒ P

P
τ

=⇒ P1
a

=⇒ Q1
τ

=⇒ Q

P
a

=⇒ Q

One can prove that weak bisimilarity on a−→ coincides with strong bisimilarity
on a

=⇒. Hence weak bisimilarity can be checked with the algorithms for strong
bisimilarity on the new LTS a

=⇒.
Unfortunately, in the case of CCP, the above assertion does not hold. In Chap-

ter 4, we shall show that the standard method for reducing weak to strong bisim-
ilarity does not work for CCP. The core of the problem lies on the actions per-
formed by a CCP agent. Since the labels in the labeled transition system of a
CCP agent are constraints, in fact, they are “the minimal constraints” that the
store should satisfy in order to make the agent progress. These constraints form a
lattice where the least upper bound (denoted by t) intuitively corresponds to con-
junction and the bottom element is the constraint true. (As expected, transitions
labeled by true are internal transitions, corresponding to the τ moves in standard
process calculi).

As we shall explain in Chapter 4, in CCP, rather than closing the transitions
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just with respect to true, we shall need to close them with respect to all the con-
straints. Formally we build the new LTS with the following rules.

P
a−→ Q

P
a

=⇒ Q P
true
=⇒ P

P
a

=⇒ Q
b

=⇒ R

P
atb
=⇒ R

Notice that the above construction can also be done for CCS [41] by taking
sequences of actions a; b rather than a t b. Nevertheless, the resulting transition
system may be infinite-branching and hence not amenable to automatic verifica-
tion using standard algorithms such as partition refinement.

Since in CCP we have that t is idempotent then if the original LTS a−→ has
finitely many transitions, then also a

=⇒ is finite. This allows us to use the algo-
rithm in Chapter 4 to check ≈̇sb on (the finite fragment) of CCP. To the best of our
knowledge, this is the first algorithm for checking weak bisimilarity in CCP.

1.3.3 Computing Bisimilarity in choice-free CCP

Despite being able to successfully compute bisimilarity in CCP, the methods in
Chapters 3 and 4 briefly discussed previously are inefficient since they have an
exponential time (and space) complexity.

The main goal of Chapter 5 is to produce efficient decision procedures for
program equivalence for CCP. To achieve this, our approach is to restrict CCP
to a meaningful fragment. Namely, the choice-free fragment of CCP, henceforth
CCP\+. The CCP\+ formalism is perhaps the most representative sublanguage of
CCP. It has been the subject of much theoretical study because of its computational
expressivity, strong ties to first-order logic, and elegant denotational semantics
based on closure operators [63]. Its most distinctive property is that of confluence

in the sense that the final resulting store is the same regardless of the execution
order of the parallel processes. We shall use this property extensively in proving
the correctness of our decision procedures. Furthermore, from [6], we know that
in this fragment ≈̇sb coincides with the standard CCP observational equivalence
for CCP\+ programs from [63].

When considering the weak equivalence ≈̇sb and the approach from Chapter
4, confluence makes it possible to characterize redundant transitions syntactically,
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i.e., without any information about ≈̇sb. Therefore for checking ≈̇sb in CCP\+, we
can first prune redundant transitions and then check the standard bisimilarity with
one of the usual algorithms [34, 26, 16, 23]. Since redundancy can be determined
statically, the additional states needed by the algorithm in Chapter 4 will not be
necessary any more: in this way, the worst case complexity from exponential
becomes polynomial.

Unfortunately, this approach still suffers from the explosion of transitions
caused by the “closure” of the transition relation. In order to avoid this prob-
lem, we exploit a completely different approach (based on the semantic notion of
compact input-output sets) that works directly on the original LTS. Intuitively, this
approach consists of reducing the problem of checking ≈̇sb in CCP\+ to the prob-
lem of whether the inputs have the same minimal finite representation regarding
the outputs they produce in every possible context. We shall also show that the
results obtained for CCP\+ can be exploited to optimize the partition refinement
for the full language of CCP.

1.3.4 A Behavioral Congruence for CCP

The equivalences mentioned above determine what processes are deemed indis-
tinguishable and they are expected to be congruences. The congruence issue is
of great importance for algebraic and compositional reasoning: If two processes
are equivalent, one should be able to replace one with the other in any context
and preserve the equivalence (see e.g, [28]). For example, if ./ is a behavioral
congruence, then P ./ Q should imply P ‖ R ./ Q ‖ R.

We shall build on a result of [6] showing that ≈̇sb can be characterized by a
novel bisimulation game (called, for simplicity, weak bisimulation) which relies
at the same time on both barbs and labeled transitions. Recall that barbs are ba-
sically predicates on the states, processes or configuration stating the observation
we can make of them. This is rather peculiar with respect to the existing notions
of bisimulation introduced for other process calculi where one usually exploits
labeled transitions to avoid thinking about barbs and contexts. Indeed, labeled
transitions usually capture barbs, in the sense that a state exposes a certain barb
if and only if it performs a transition with a certain label. This is not the case
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in CCP, where barbs are observations on the store, while labeled transitions are
determined by the processes. A more abstract understanding of this peculiarity
of CCP can be given within the framework of [13] which is an extension of [38]
featuring barbs and weak semantics.

As is customary for weak barbed equivalences, in our weak bisimulation game
whenever a player exposes a barb ↓e, the opponent should expose the weak barb
⇓e, i.e. it should be able to reach a state satisfying ↓e, but then the game restarts
from the original state ignoring the arriving state. One of our contributions is to
show that for CCP the arriving state cannot be ignored.

In Chapter 6 we shall show that the weak saturated barbed bisimilarity (≈̇sb)
[6] is not a congruence for CCP with nondeterministic choice. This problem is
not particular to CCP, since many notions of weak bisimilarity are known not to
be congruences in the presence of nondeterminism, for instance in CCS [42]. The
problem is then to find a “good” variation of weak bisimilarity that is not too
restrictive. For CCP, we introduce a new notion called weak full bisimilarity (≈f )
and we prove that it is adequate for CCP since (i) it is a congruence for the full
CCP and (ii) it corresponds to the weakest equivalence included in the congruence
induced by ≈̇sb. In fact, it is also adequate since in the choice-free fragment ≈f

corresponds to the standard notion of observational equivalence [63]. This is the
first notion of weak bisimilarity that is a congruence for the full language of CCP.

1.4 Contributions and Organization

In this section we discuss the main contributions of this dissertation. Additionally,
each chapter starts with an overview of its contents and ends with a detailed recap
including a discussion of the related work.

Chapter 3. In this chapter we propose a decision procedure for verifying strong

saturated barbed bisimilarity (∼̇sb) in the finite fragment of CCP. To solve this
problem we adapt the well-known partition refinement algorithm to the case of
CCP, inspired by the results from [15]. We also explain in detail how to tackle the
issues arising from the adaptation to CCP as well as the correctness and complex-
ity of the algorithm proposed in this chapter. To the best of our knowledge, this is
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the first algorithm for the automatic verification of strong bisimilarity in CCP.

Chapter 4. In this chapter we introduce a weak semantics for CCP which can be
used, together with the algorithm from Chapter 3, to verify weak saturated barbed

bisimilarity (≈̇sb) in the finite fragment of CCP. Intuitively, one can start from the
labeled transition system generated using the operational semantics and then add
some extra transitions, called weak transitions. Thus checking strong bisimilarity
in the transformed input (with the new transitions) is equivalent to deciding weak
bisimilarity in the original input. We prove that the standard way of defining the
weak transitions, namely omitting the silent transitions, does not work for CCP.
Similarly, we define a new weak semantics and we prove it adequate for CCP.
Finally, using this new method, and based on Chapter 3, we propose a decision
procedure to check ≈̇sb. We conclude by proving the correctness and complexity
of the algorithm defined in this chapter. To the best of our knowledge, this is the
first algorithm for the automatic verification of weak bisimilarity in CCP.

Chapter 5. In this chapter we propose novel efficient methods for checking ≈̇sb
in a fragment of CCP. We first show that the algorithms from the previous chap-
ters have an exponential time complexity even in the restricted case of finite CCP
programs without nondeterministic choice. The main contribution of this chapter
is the introduction of two novel decision procedures that can be used to decide ≈̇sb
for the finite choice-free fragment of CCP in polynomial time. This is achieved by
exploiting certain distinctive features of this fragment such as confluence. Each
of these two new procedures has an advantage over the other. One has a better
time complexity. The other can be easily adapted for the full language of CCP to
produce significant state space reductions. Recall that from [6] we know that, in
the absence of nondeterminism, ≈̇sb coincides with the standard notion of obser-

vational equivalence (∼o) for CCP from [63], hence from this chapter we obtain
two polynomial decision procedures to decide program equivalence in choice-free
CCP.

Chapter 6. In this chapter, we tackle the congruence issues related to ≈̇sb. First
we prove that ≈̇sb is a congruence for CCP without nondeterministic choice but
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not for the full language of CCP. We then propose a new notion of bisimilarity,
called weak full bisimilarity (≈f ). We show that ≈f is a congruence for the full
language of CCP. We also show the adequacy of the new notion by establishing
that it is the largest congruence included in ≈̇sb. In other words≈f coincides with
the congruence induced by closing ≈̇sb under all contexts. Beyond being a con-
gruence, the advantage of ≈f is that it does not require quantifying over infinitely
many contexts. This is also important as it may simplify decision procedures for
the equivalence. To the best of our knowledge, this is the first behavioral equiv-
alence, which does not appeal to quantification over arbitrary process contexts in
its definition, that is a congruence for CCP with nondeterministic choice.

Remark 1.4.1. Part of the material in Chapters 3 and 4 is also included in the

thesis of Aristizabal [5]. However, those chapters are based on the journal paper

[54] instead of [8, 7] as in [5].

Chapters 3 and 4 are a generalization of the results in [8, 7]. This version

includes more detailed explanations and essential corrections to the original ma-

terial. It also contains new contributions such as the specification of the algorithm

for deciding observational equivalence in CCP.
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Chapter 2

Preliminaries

In this chapter we introduce the background we shall use throughout the disserta-
tion. In Section 2.1 we recall some basic notions about domain theory. In Section
2.2 we define the notions of labeled transition system (LTS), partition and the
graph induced by an LTS. In Section 2.3 we proceed to present the standard par-
tition refinement algorithm used to check bisimilarity between two LTSs. Finally,
in Section 2.4, we present in detail the concurrent constraint programming (CCP)
formalism. We introduce its syntax together with its reduction and labeled seman-
tics, as well as several equivalence relations including strong, weak bisimilarity
and the standard observational equivalence for CCP. The reader familiar with these
concepts may skip directly to Chapter 3.

2.1 Domain theory

Here we present the basic elements from domain theory that we shall use through-
out the dissertation. Most definitions are presented as in [35]. For a more detailed
explanation, see for instance [1].

We start with the notion of partially ordered set. Intuitively, a set is partially
ordered if it is equipped with a binary relation that is reflexive, transitive and
antisymmetric. Its name comes from the fact that the relation indicates the partial
order of the elements in the set.

Definition 2.1.1 (Partially ordered set). For a set S with a binary relation v,

17
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we say that (S,v) is a partially ordered set, or a poset, if the following three

properties hold for all x, y, z ∈ S:

1. Reflexivity: x v x.

2. Transitivity: if x v y and y v z then x v z.

3. Antisymmetry: if x v y and y v x then x = y.

If S with relation v is a partially ordered set then v is called a partial order.

Now we define the concept of upper bound. Roughly speaking, given a poset
(S,v), an upper bound for a subset A of S is an element u that belongs to S and
is greater or equal, w.r.t. the order v, than any element in A.

Definition 2.1.2 (Upper bound). If (S,v) is a poset and A ⊆ S, then u ∈ S is an

upper bound for A if for all a ∈ A, a v u.

The next definition is that of least upper bound. Intuitively, for a poset (S,v)

and a subset A of S, the least upper bound of A is the smallest, w.r.t. v, of all
possible upper bounds for A.

Definition 2.1.3 (Least upper bound). If (S,v) is a poset and A ⊆ S, then u ∈ S
is the supremum or least upper bound of A if u is an upper bound for A and for

all u′ ∈ S, if u′ is an upper bound for A then u v u′. We denote the least upper

bound of a set A as
⊔
A, and we denote the least upper bound of the set {a1, a2}

as a1 t a2. We also refer to a1 t a2 as the lub of a1 and a2.

Now we shall define the directed set: a set is directed if for any pair of elements
of the set one can find another element in the set that is above them.

Definition 2.1.4 (Directed set). Suppose (S,v) is a poset, and D ⊆ S. We say

that D is directed if for all a, b ∈ D there exists c ∈ D such that a v c and b v c.

Using this notion we proceed to define the concept of directed-complete par-

tial order.

Definition 2.1.5 (Directed-complete partial order). Suppose (S,v) is a poset.

(S,v) is a directed-complete partial order, or dcpo, if every directed subset of

S has a least upper bound.
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Next we define the concept of compact element. Intuitively, an element is
compact if whenever it is smaller than the least upper bound of a directed set D
then it is smaller than some element in D. In other words, an element is compact
if it can be finitely approximated by one of the elements in D.

Definition 2.1.6 (Compact element). Suppose (S,v) is a dcpo and d ∈ S. Then

d is a compact element of S if whenever D is a directed subset of S and d v
⊔
D

then there exists d∗ ∈ D such that d v d∗.

The proposition below states that the least upper bound of a finite set of com-
pact elements is also compact.

Proposition 2.1.7. If (S,v) is a dcpo and C is a finite set of compact elements of

S, then if
⊔
C exists, it is a compact element of S as well.

The following notion says that a dcpo is algebraic if each element c is the least
upper bound of the compact elements below c.

Definition 2.1.8 (Algebraic dcpo). Suppose (S,v) is a dcpo. Let K(S) denote

the compact elements of S. (S,v) is algebraic if for every a ∈ S,

a =
⊔
{d | d v a and d ∈ K(S)}.

Finally, the notion of complete lattice.

Definition 2.1.9 (Complete lattice). (S,v) is a complete lattice if (S,v) is a poset

and for every subset A of S, A has a least upper bound.

Note that a complete lattice is always a dcpo. We finish this section with the
following proposition.

Proposition 2.1.10. Every complete lattice has a unique greatest element and a

unique least element.

2.2 Labeled Transition System, Partition and Graphs

In this section we present the basic notions of labeled transition system, partition
and graphs. Intuitively, a transition system consists of a set of states and arrows
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between those states representing a transition from one state to the other. Addi-
tionally, its labeled version uses a set of labels to tag the transitions typically to
denote an interaction with the environment using this piece of information.

Definition 2.2.1 (Labeled Transition System). A labeled transition system (LTS)

is a triple (S, L, ) where S is a set of states, L a set of labels and ⊆ S×L×S
a transition relation. We shall use s a

 r to denote the transition (s, a, r) ∈ .

Given a transition t = (s, a, r) we define the source, the target and the label as

follows: src(t) = s, tar(t) = r and lab(t) = a. For a transition s a
 r, we shall

often say that s performs the action a and then becomes t.

We now proceed to define the notion of partition of a set. Roughly speaking,
a partition of a set S is a division of the set into blocks such that no element is in
two blocks at the same time and where the union of all blocks is S.

Definition 2.2.2 (Partition). Given a set S, a partition P of S is a set of non-empty

blocks, i.e., subsets of S, that are all disjoint and whose union is S. We write

{B1} . . . {Bn} to denote a partition consisting of (non-empty) blocks B1, . . . , Bn.

A partition represents an equivalence relation where equivalent elements belong

to the same block. We write sPr to mean that s and r are equivalent in the

partition P .

Finally, we adopt some notation relating LTSs and regular graphs.

Definition 2.2.3 (LTSs and Graphs). Given a LTS (S, L, ), we write LTS for

the directed graph whose vertices are the states in S and edges are the transitions

in . Given a set of initial states IS ⊆ S, we write LTS (IS ) for the subgraph

of LTS reachable from IS . Given a graph G we write V(G) and E(G) for the set

of vertices and edges of G, respectively.

2.3 Partition Refinement

In this section we recall the partition refinement algorithm [34, 50] for checking
bisimilarity over the states of an LTS (S, L, ).

First let us introduce the standard notion of strong bisimilarity. Intuitively,
two states s and t are considered strongly bisimilar if whenever s performs an
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s s′ s′′
a a

s, s′, s′′ s, s′ s′′ s s′ s′′

P F (P) F (F (P))

Figure 2.3.1: An example of the use of F (P) from Definition 2.3.2.

action a and becomes s′, i.e. s a
 s′, then t is able to perform a and reach a t′, i.e.

t
a
 t′, such that t′ is equivalent to s′. In short, s and t are bisimilar if they are

able to mimic each other’s moves.

Definition 2.3.1 (Standard Strong Bisimilarity). A symmetric relationR is a stan-

dard strong bisimulation if for every (s, t) ∈ R:

• If s a
 s′ then there exists t′ s.t. t a

 t′ and (s′, t′) ∈ R.

We say that s and t are standard strong bisimilar, written s ∼ t, iff there is a

standard strong bisimulation containing (s, t).

Given a set of initial states IS ⊆ S, the partition refinement algorithm (see
Algorithm 2.3.1) checks bisimilarity on IS as follows. First, it computes IS ? ,
that is the set of all states that are reachable from IS using . Then it creates the
partition P0 where all the elements of IS ? belong to the same block (i.e., they
are all equivalent). After the initialization, it iteratively refines the partitions by
employing the function on partitions F (−), defined as follows:

Definition 2.3.2 (Refinement Function). Given a partition P we define F (P) as

follows: sF (P)r iff

if s a
 s′ then exists r′ s.t. r a

 r′ and s′Pr′.

The Figure 2.3.1 shows an example of F (P). Algorithm 2.3.1 terminates
whenever two consecutive partitions are equivalent. In such a partition two states
(reachable from IS ) belong to the same block iff they are bisimilar (using the
standard notion of bisimilarity [41]).
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Algorithm 2.3.1 pr(IS , )

Initialization

1. IS ? is the set of all states reachable from IS using ,

2. P0 := IS ? ,

Iteration Pn+1 := F (Pn) as in Definition 2.3.2
Termination If Pn = Pn+1 then return Pn.

Proposition 2.3.3. If IS ? is finite then Algorithm 2.3.1 terminates and the result-

ing partition equates all the standard strongly bisimilar states (Definition 2.3.1).

2.4 Concurrent Constraint Programming (CCP)

We dedicate this section entirely to presenting the Concurrent Constraint Program-
ming (CCP) formalism. We begin this section by recalling the notion of constraint
system. We then introduce the syntax of CCP, its operational and labeled seman-
tics as well as several notions of equivalence for CCP.

2.4.1 Constraint Systems

The CCP model is parametric in a constraint system (cs) specifying the structure
and interdependencies of the information that processes can ask or add to a central

shared store. This information is represented as assertions traditionally referred
to as constraints.

Following [21, 40] we regard a cs as a complete algebraic lattice (Definitions
2.1.8 and 2.1.9) in which the ordering v is the reverse of an entailment relation:
c v d means d entails c, i.e., d contains “more information” than c. The top
element false represents inconsistency, the bottom element true is the empty con-
straint, and the least upper bound (lub) t is the join of information.

Definition 2.4.1 (Constraint Systems). A constraint system (cs) C is a complete

algebraic lattice (Con,Con0,v,t, true, false) where Con, the set of constraints,

is a partially ordered set w.r.t. v, Con0 is the subset of compact elements of Con,
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t is the lub operation defined on all subsets, and true, false are the least and

greatest elements of Con, respectively.

Recall that C is a complete lattice if every subset of Con has a least upper
bound in Con. An element c ∈ Con is compact if for any directed subset D of
Con, c v

⊔
D implies c v d for some d ∈ D. C is algebraic if each element

c ∈ Con is the least upper bound of the compact elements below c.

In order to model hiding of local variables and parameter passing, in [63]
the notion of constraint system is enriched with cylindrification operators and
diagonal elements, concepts borrowed from the theory of cylindric algebras [45].

Let us consider a (denumerable) set of variables Var with typical elements
x, y, z, . . . and let us define ∃Var as the family of operators and DVar as the set as
follows:

∃Var = {∃x | x ∈ Var} (cylindric operators)

DVar = {dxy | x, y ∈ Var} (diagonal elements)

A cylindric constraint system over a set of variables Var is a constraint system
whose underlying support set Con ⊇ DVar is closed under the cylindric operators
∃Var and quotiented by Axioms C1− C4, and whose ordering v satisfies Axioms
C5− C7:

C1. ∃x∃yc = ∃y∃xc C2. dxx = true

C3. if z 6= x, y then dxy = ∃z(dxz t dzy) C4. ∃x(c t ∃xd) = ∃xc t ∃xd
C5. ∃xc v c C6. if c v d then ∃xc v ∃xd
C7. if x 6= y then c v dxy t ∃x(c t dxy)

where c and d indicate compact constraints, and ∃xc t d stands for (∃xc) t d. For
our purposes, it is enough to think of the operator ∃x as existential quantifier and
the constraint dxy as the equality x = y.

Cylindrification and diagonal elements allow us to model the variable renam-
ing of a formula φ; in fact, by the aforementioned axioms, we have that the for-
mula ∃x(dxy tφ) can be depicted as the formula φ[y/x], i.e., the formula obtained
from φ by replacing all free occurrences of x by y.

We assume notions of free variable and of substitution that satisfy the follow-



24 CHAPTER 2. PRELIMINARIES

ing conditions, where c[y/x] is the constraint obtained by substituting x by y in c
and fv(c) is the set of free variables of c:

(1) if y /∈ fv(c) then (c[y/x])[x/y] = c;

(2) (c t d)[y/x] = c[y/x] t d[y/x];

(3) x /∈ fv(c[y/x]);

(4) fv(c t d) = fv(c) ∪ fv(d).

We now illustrate a constraint system for linear-order arithmetic.

Example 2.4.2 (A Constraint System of Linear Order Arithmetic). Consider the

following syntax:

φ, ψ . . . := t = t′ | t > t′ | φ ∨ ψ | ¬φ

where the terms t, t′ can be elements of a set of variables Var , or constant symbols

0, 1, . . .. Assume an underlying first-order structure of linear-order arithmetic

with the obvious interpretation in the natural numbers ω of =, > and the constant

symbols.

A variable assignment is a function µ : Var −→ ω. We use A to denote the

set of all assignments; P(X) to denote the powerset of a set X , ∅ the empty set

and ∩ the intersection of sets. We useM(φ) to denote the set of all assignments

that satisfy the formula φ, where the definition of satisfaction is as expected.

We can now introduce our constraint system as follows: the set of constraints

is P(A), and define c v d iff c ⊇ d. The constraint false is ∅, while true is A.

Given two constraints c and d, c t d is the intersection c ∩ d. By abusing the

notation, we will often use a formula φ to denote the corresponding constraint,

i.e., the set of all assignments satisfying φ. E.g. we use x > 1 v x > 5 to mean

M(x > 1) v M(x > 5). For this constraint system one can show that e is

a compact constraint (i.e., e is in Con0) iff e is a co-finite set in A (i.e., iff the

complement of e in A is a finite set). For example, x > 10 ∧ y > 42 is a compact

constraint for Var = {x, y}.
From this structure, let us now define the cylindric constraint system S as

follows. We say that an assignment µ′ is an x-variant of µ if ∀y 6= x, µ(y) = µ′(y).
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Given x ∈ Var and c ∈ P(A), the constraint ∃xc is the set of assignments µ such

that exists µ′ ∈ c that is an x-variant of µ. The diagonal element dxy is x = y.

Remark 2.4.3. We shall assume that the constraint system is well-founded. Namely,

there is no infinite strictly descending chain such that c1 A c2 A . . . . Well-

foundedness is needed for technical reasons in the definition of the labeled transi-

tion semantics in Section 2.4.6. Moreover, for practical reasons, we assume that

the ordering of the constraint system v is decidable.

2.4.2 Syntax of CCP

Let C = (Con,Con0,v,t, true, false) be a constraint system. The CCP pro-
cesses are given by the following syntax:

P,Q, . . . ::= tell(c) |
∑
i∈I

ask (ci) → Pi | P ‖ Q | ∃xP | p(~z)

where I is a finite set of indexes and c, ci ∈ Con0. We use Proc to denote the set
of all processes.

Finite processes. Intuitively, the tell process tell(c) adds c to the global store.
The addition is performed regardless of the generation of inconsistent information.
The process P ‖ Q stands for the parallel execution of P and Q.

The guarded-choice
∑

i∈I ask (ci) → Pi where I is a finite set of indexes,
represents a process that can nondeterministically choose one of the Pj (with j ∈
I) whose corresponding guard constraint cj is entailed by the store. The chosen
alternative, if any, precludes the others. We shall often write

ask (ci1) → Pi1 + . . .+ ask (cin) → Pin

if I = {i1, . . . , in}. If no ambiguity arises, we shall omit the “ ask(c) → ” when
c = true. The blind-choice process

∑
i∈I ask (true) → Pi, for example, can be

written
∑

i∈I Pi. We shall omit the “
∑

i∈I” when I is a singleton. We use stop as
an abbreviation of the empty summation

∑
i∈∅ Pi.

∃x is a hiding operator, namely it indicates that in ∃xP the variable x is local
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to P . The occurrences of x in ∃xP are said to be bound. The bound variables of
P , bv(P ), are those with a bound occurrence in P , and its free variables, fv(P ),

are those with an unbound occurrence1.

Infinite processes. To specify infinite behavior, CCP provides parametric pro-
cess definitions. A process p(~z) is said to be a procedure call with identifier p and
actual parameters ~z. We presuppose that for each procedure call p(z1 . . . zm) there
exists a unique procedure definition possibly recursive, of the form p(x1 . . . xm)

def
=

P where fv(P ) ⊆ {x1, . . . , xm}. Furthermore we require recursion to be guarded:
I.e., each procedure call within P must occur within an ask process. The behavior
of p(z1 . . . zm) is that of P [z1 . . . zm/x1 . . . xm], i.e., P with each xi replaced with
zi (applying α-conversion to avoid clashes). We shall use D to denote the set of
all process definitions.

Remark 2.4.4 (Choice-free fragment of CCP). Henceforth, we use CCP\+ to

refer to the fragment of CCP without nondeterministic choice. More precisely

CCP\+ processes are those in which every occurrence of
∑

i∈I ask (ci) → Pi

has its index set I of cardinality 0 or 1.

2.4.3 Reduction Semantics

A configuration is a pair 〈P, d〉 representing a state of a system; d is a constraint
representing the global store, and P is a process, i.e., a term of the syntax given
in the previous section. We use Conf with typical elements γ, γ′, . . . to denote
the set of all configurations. We will use Conf CCP\+ for the configurations whose
processes are in the CCP\+ fragment.

The operational semantics of CCP is given by an unlabeled transition relation
between configurations: a transition γ −→ γ′ intuitively means that the configu-
ration γ can reduce to γ′. We call these kind of unlabeled transitions reductions

and we use −→∗ to denote the reflexive and transitive closure of −→.

Formally, the reduction semantics of CCP is given by the relation −→ defined
in Table 2.4.1. Rules R1 and R2 are easily seen to realize the intuitions described

1Notice that we also defined fv(.) on constraints in the previous section.
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R1 〈tell(c), d〉 −→ 〈stop, d t c〉 R2
〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉

R3
j ∈ I and cj v d

〈
∑

i∈I ask (ci) → Pi, d〉 −→ 〈Pj , d〉
R4
〈P, e t ∃xd〉 −→ 〈P ′, e′ t ∃xd〉
〈∃exP, d〉 −→ 〈∃e

′
x P
′, d t ∃xe′〉

R5
〈P [~z/~x], d〉 −→ γ′

〈p(~z), d〉 −→ γ′
where p(~x) def= P is a process definition in D

Table 2.4.1: Reduction semantics for CCP (symmetric rule for R2 is omitted). D
is the set of process definitions.

in Section 2.4.2. Rule R3 states that
∑

i∈I ask (ci) → Pi can evolve to Pj
whenever the global store d entails cj and j ∈ I .

Rule R4 is somewhat more involved. First we extend the syntax by introduc-
ing a process ∃exP representing the evolution of a process of the form ∃xP , where
e is the local information (local store) produced during this evolution. The process
∃xP can be seen as a particular case of ∃exP : it represents the situation in which
the local store is empty. Namely, ∃xP = ∃true

x P .

Intuitively, ∃exP behaves like P , except that the variable x possibly present in
P must be considered local, and that the information present in e has to be taken
into account. It is convenient to distinguish between the external and the internal

points of view. From the internal point of view, the variable x, possibly occurring
in the global store d, is hidden. This corresponds to the usual scoping rules: the x
in d is global, hence “covered” by the local x. Therefore, P has no access to the
information on x in d, and this is achieved by filtering d with ∃x. Furthermore,
P can use the information (which may also concern the local x) that has been
produced locally and accumulated in e. In conclusion, if the visible store at the
external level is d, then the store that is visible internally by P is e t ∃xd. Now, if
P is able to make a step, thus reducing to P ′ and transforming the local store into
e′, what we see from the external point of view is that the process is transformed
into ∃e′x P ′, and that the information ∃xe present in the global store is transformed
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into ∃xe′. To show how this works we show an instructive example.

Example 2.4.5. Consider the constraint system from Example 2.4.2 and let Var =

{x}. Let P = ∃ex(ask (x > 10) → Q) with local store e = x > 42, and global

store d = x > 2.

R3
R4

(x > 10) v e t ∃xd = (x > 42 t ∃x(x > 2))

〈ask (x > 10) → Q, e t ∃xd〉 −→ 〈Q, e t ∃xd〉
〈∃x>42

x (ask (x > 10) → Q), x > 2〉 −→ 〈∃exQ, d t ∃xe〉

Note that the x in d is hidden, by using existential quantification in the re-

duction obtained by Rule R3. This expresses that the x in d is different from the

one bound by the local process. Otherwise the ask process ask (x > 10) → Q

would not be executed since the guard is not entailed by the global store d. Rule

R3 applies since (x > 10) v e t ∃xd. Note that the free x in e t ∃xd is hidden in

the global store, i.e. d t ∃xe, to indicate that is different from the global x.

Finally, notice that in CCP\+ configurations are confluent in the following
sense.

Proposition 2.4.6 (Confluence [63]). Let γ ∈ Conf CCP\+. If γ −→∗ γ1 and

γ −→∗ γ2 then there exists γ′ such that γ1 −→∗ γ′ and γ2 −→∗ γ′.

The proposition above will be a cornerstone for the results we shall obtain in
CCP\+.

2.4.4 Barbed Semantics and Barbed Bisimilarity

In [6], the authors introduced a barbed semantics for CCP. Barbed equivalences
have been introduced in [44] for CCS, and have become a classical way to de-
fine the semantics of formalisms equipped with unlabeled reduction semantics.
Intuitively, barbs are basic observations (predicates) on the states of a system. In
the case of CCP, barbs are taken from the underlying set Con0 of the constraint
system.

Definition 2.4.7 (Barbs). A configuration γ = 〈P, d〉 is said to satisfy the barb c,

written γ ↓c, iff c ∈ Con0 and c v d. Similarly, γ satisfies a weak barb c, written

γ ⇓c, iff there exists γ′ s.t. γ −→∗ γ′ ↓c.
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Example 2.4.8. Consider the constraint system from Example 2.4.2 and let Vars =

{x}. Let γ = 〈ask (x > 10) → tell(x > 42), x > 10〉. We have γ ↓x>5 since

(x > 5) v (x > 10) and γ ⇓x>42 since γ −→ 〈tell(x > 42), x > 10〉 −→
〈stop, (x > 42)〉 ↓x>42.

In this context, the equivalence proposed is the saturated bisimilarity [14, 12].
Intuitively, in order for two states to be saturated bisimilar, then (i) they should
expose the same barbs, (ii) whenever one of them moves then the other should
reply and arrive at an equivalent state (i.e. follow the bisimulation game), (iii)
they should be equivalent under all the possible contexts of the language.

Using this idea, in [6], the authors propose a saturated bisimilarity for CCP
where condition (iii) requires the bisimulations to be upward closed instead of
closing under any process context. Recall that a process context C is a term with
a single hole • such that if we replace •with a process P , we obtain a process term
C[P ]. For example, for the parallel context C = • ‖ R we obtain C[P ] = P ‖ R.

Definition 2.4.9 (Saturated Barbed Bisimilarity). A saturated barbed bisimulation

is a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with

γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c t a〉, 〈Q, d t a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2) if there is a

saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We shall write P ∼̇sbQ iff

〈P, true〉∼̇sb〈Q, true〉.

Weak saturated barbed bisimilarity (≈̇sb) is obtained from Definition 2.4.9
by replacing the strong barbs in condition (i) for its weak version (⇓) and the
transitions in condition (ii) for the reflexive and transitive closure of the transition
relation (−→∗).

Definition 2.4.10 (Weak Saturated Barbed Bisimilarity). A weak saturated barbed

bisimulation is a symmetric relationR on configurations s.t. whenever (γ1, γ2) ∈
R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:
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(i) if γ1 ⇓e then γ2 ⇓e,

(ii) if γ1 −→∗ γ′1 then there exists γ′2 s.t. γ2 −→∗ γ′2 and (γ′1, γ
′
2) ∈ R,

(iii) for every a ∈ Con0, (〈P, c t a〉, 〈Q, d t a〉) ∈ R.

We say that γ1 and γ2 are weak saturated barbed bisimilar (γ1 ≈̇sb γ2) if there

exists a weak saturated barbed bisimulation R s.t. (γ1, γ2) ∈ R. We shall write

P ≈̇sbQ iff 〈P, true〉≈̇sb〈Q, true〉.

We now illustrate ∼̇sb and ≈̇sb with the following two examples.

Example 2.4.11. Consider the constraint system from Example 2.4.2. Let Vars =

{x}. Take P = ask (x > 5) → stop and Q = ask (x > 7) → stop. One

can check that P 6 ∼̇sb Q since 〈P, x > 5〉 −→, while 〈Q, x > 5〉 6−→. Then

consider 〈P +Q, true〉 and observe that 〈P +Q, true〉∼̇sb〈P, true〉. Indeed, for

all constraints e, s.t. x > 5 v e, both the configurations evolve into 〈stop, e〉,
while for all e s.t. x > 5 6v e, both configurations cannot proceed. Since x > 5 v
x > 7, the behavior of Q is somehow absorbed by the behavior of P .

Example 2.4.12. Consider P and Q as in Example 2.4.11. We shall prove that

P ≈̇sbQ. First notice that 〈P, true〉 6−→ and also 〈Q, true〉 6−→. Moreover, since

none of the processes has the ability of adding information to the store, then for

all a ∈ Con0, 〈P, a〉 ⇓e iff e v a iff 〈Q, a〉 ⇓e. Recall from Example 2.4.11 that

P 6∼̇sbQ since an observer can plug P into x > 5 and observe a reduction, which

cannot be observed with Q. Instead P ≈̇sbQ since, intuitively, the discriminating

power of ≈̇sb cannot observe any reductions.

2.4.5 Observational Equivalence

In this section we shall define the standard notion of observational equivalence

(∼o) for CCP first introduced in [63]. Intuitively, two CCP programs are observa-
tionally equivalent if each one can be replaced with the other in any CCP context
and produce the same final result. In order to define ∼o we need to first talk about
CCP computations and fairness.

The notion of fairness is central to the definition of observational equivalence
for CCP. We introduce this notion following [24]. First notice that any derivation
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of a transition involves an application of R1 or R3. Now we say that P is active

in a transition t = γ −→ γ′ if there exists a derivation of t where rule R1 or R3
is used to produce a transition of the form 〈P, d〉 −→ γ′′. Moreover, we say that
P is enabled in γ if there exists γ′ such that P is active in γ −→ γ′.

Definition 2.4.13 (Fair Computation). A computation γ0 −→ γ1 −→ γ2 −→ . . .

is said to be fair if for each process enabled in some γi there exists j ≥ i such that

the process is active in γj .

Example 2.4.14. Consider the following process definition:

inf(x, y)
def
= tell(x > 10) ‖ tell(y > 20) ‖ inf(x, y)

Now consider the following infinite computation:

ξ = 〈inf(x, y), true〉 −→

〈tell(x > 10) ‖ inf(x, y), y > 20〉 −→

〈tell(x > 10) ‖ tell(x > 10) ‖ inf(x, y), y > 20〉 −→

〈tell(x > 10) ‖ tell(x > 10) ‖ tell(x > 10) ‖ inf(x, y), y > 20〉 −→ . . .

Note that ξ is not fair since x > 10 is never added to the store. For ξ to be fair the

computation should be, for instance, of the form:

ξ = 〈inf(x, y), true〉 −→

〈tell(x > 10) ‖ inf(x, y), y > 20〉 −→

〈inf(x, y), x > 10 t y > 20〉 −→

〈tell(y > 20) ‖ inf(x, y), x > 10 t y > 20〉 −→

〈inf(x, y), x > 10 t y > 20〉 −→ . . .

In other words, each of the tell operations has to be performed eventually.

Note that a finite fair computation is guaranteed to be maximal, namely no
outgoing transitions are possible from its last configuration.

The standard notion of observables for CCP are the results computed by a
process for a given initial store, where a result of a computation is defined as the
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least upper bound of all the stores occurring in the computation, which, due to the
monotonic properties of CCP, form an increasing chain. More formally:

Definition 2.4.15 (Result of a computation). Given a finite or infinite computation

ξ of the form:

ξ = 〈Q0, d0〉 −→ 〈Q1, d1〉 −→ 〈Q2, d2〉 −→ . . .

The result of ξ, denoted by Result(ξ), is the constraint
⊔
i di.

Note that for a finite computation the result coincides with the store of the last
configuration. In the case of CCP\+, because of the confluence property, all the
fair computations of a configuration have the same result as stated by the following
theorem from [63].

Proposition 2.4.16 ([63]). Let γ be CCP\+ configuration and let ξ1 and ξ2 be two

computations of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

Before introducing the notion of observational equivalence we need to fix
some notation. Below we define the set of possible computations of a given con-
figuration.

Definition 2.4.17 (Set of Computations). The set of computations starting from γ,

denoted Comp(γ), is defined as:

Comp(γ) = {ξ | ξ = γ −→ γ′ −→ γ′′ −→ . . .}

Now we introduce the notion of observables. Intuitively, the set of observables
of γ is the set of results of the fair computations starting from γ.

Definition 2.4.18 (Observables). Let O : Proc → Con0 → 2Con be given by:

O(P )(d) = {e | ξ ∈ Comp(〈P, d〉), ξ is fair and Result(ξ) = e}.

Using these elements we define the notion of observational equivalence. Two
configurations are deemed equivalent if they have the same set of observables for
any given store.
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Definition 2.4.19 (Observational equivalence). We say that P and Q are observa-

tional equivalent, written P ∼o Q, iff O(P ) = O(Q).

Notice that in the case of CCP\+, as defined in [63], the set of observables for
a given input is a singleton because of Proposition 2.4.16.

Remark 2.4.20. Let 〈P, d〉 ∈ Conf CCP\+. Note that O : Proc → Con0 → Con

because of Proposition 2.4.16 and it is defined as O(P )(d) = Result(ξ) where ξ

is any fair computation of 〈P, d〉.

In [6] it was shown that, in CCP\+, weak saturated barbed bisimilarity and ob-
servation equivalence coincide. Recall that P ≈̇sbQ stands for 〈P, true〉 ≈̇sb 〈Q, true〉.

Proposition 2.4.21 ([6]). Let P and Q be CCP\+ processes. Then P ∼o Q iff

P ≈̇sb Q.

2.4.6 Labeled Semantics

In the previous section we saw that, in CCP\+, ≈̇sb is fully abstract with respect
to the standard observational equivalence from [63] (See proposition 2.4.21). Un-
fortunately, the quantification over all constraints in condition (iii) of Definition
2.4.9 and Definition 2.4.10 makes it hard to check ∼̇sb and ≈̇sb, since one should
check infinitely many constraints. In order to avoid this problem the authors in [6]
introduced a labeled transition semantics where labels are constraints.

In a labeled transition of the form

〈P, d〉 α−→ 〈P ′, d′〉

the label α ∈ Con0 represents a minimal piece of information (from the environ-
ment) that needs to be added to the store d to reduce from 〈P, d〉 to 〈P ′, d′〉, i.e.,
〈P, d t α〉 −→ 〈P ′, d′〉. As a consequence, the transitions labeled with the con-
straint true are in one to one correspondence with the reductions defined in the
previous section. For this reason, hereafter we will sometimes write −→ to mean
true−→. Before formally introducing the labeled semantics, we fix some notation.

Notation 2.4.22. We will use  to denote a generic transition relation on the

state space Conf and labels Con0. Also in this case mean true
 .
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LR1 〈tell(c), d〉 true−→ 〈stop, d t c〉 LR2
〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉

LR3
j ∈ I and α ∈ min{a ∈ Con0 | cj v d t a}
〈
∑

i∈I ask (ci) → Pi, d〉
α−→ 〈Pj, d t α〉

LR4
〈P [z/x], e[z/x] t d〉 α−→ 〈P ′, e′ t d t α〉

〈∃exP, d〉
α−→ 〈∃e

′[x/z]
x P ′[x/z],∃x(e′[x/z]) t d t α〉

with x 6∈ fv(e′), z 6∈ fv(P ) ∪ fv(e t d t α)

LR5
〈P [~z/~x], d〉 α−→ γ′

〈p(~z), d〉 α−→ γ′
where p(~x)

def
= P is a process definition in D

Table 2.4.2: Labeled semantics for CCP (symmetric rule for LR2 is omitted).

The LTS (Conf ,Con0,−→) is defined by the rules in Table 2.4.2. The rule
LR3, for example, says that 〈

∑
i∈I ask (ci) → Pi, d〉 can evolve to 〈Pj, dtα〉 if

j ∈ I and the environment provides a minimal constraint α that added to the store
d entails the guard cj , i.e., α ∈ min{a ∈ Con0 | cj v d t a}. Notice that Remark
2.4.3 guarantees the existence of α. The rule LR4 follows the same approach
as R4, however it uses variable substitution instead of hiding with the existential
operator. Namely, in the antecedent derivation, the rule LR4 uses a fresh variable
z that acts as a substitute for the free occurrences of (the local) x in P and its local
store e. (Recall that T [z/x] represents T with x replaced with z). This way we
identify with z the free occurrences of x in P and e and avoid clashes with those
in α and d.2 The other rules are easily seen to realize the intuition given in Section
2.4.2.

Finally, we fix some notation for the set of reachable states of an initial set of
configurations as follows.

2See [6] for a detailed explanation of the rule LR4.
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Definition 2.4.23 (Reachable Configurations). Let IS be a set of initial configu-

rations, then the set of reachable configurations starting from IS and using is

defined as:

Config (IS ) = {γ′ | ∃γ ∈ IS s.t. γ α1 . . .
αn γ′ for some n ≥ 0}

2.4.7 Soundness and Completeness

In [6] it was proven that the labeled semantics is sound and complete w.r.t. the un-
labeled one. Soundness states that 〈P, d〉 α−→ 〈P ′, d′〉 corresponds to our intuition
that if α is added to d, P can reach 〈P ′, d′〉.

Lemma 2.4.24 (Soundness of−→, [6]). If 〈P, c〉 α−→ 〈P ′, c′〉 then 〈P, ctα〉 −→
〈P ′, c′〉.

Completeness states that if we add a to (the store in) 〈P, d〉 and reduce to
〈P ′, d′〉, there exists a minimal piece of information α below a such that 〈P, d〉 α−→
〈P ′, d′′〉 with d′′ below d′.

Lemma 2.4.25 (Completeness of −→, [6]). If 〈P, c t a〉 −→ 〈P ′, c′〉 then there

exist α and b such that 〈P, c〉 α−→ 〈P ′, c′′〉 where α t b = a and c′′ t b = c′.

2.4.8 Strong and Weak Labeled Bisimilarity

Having defined the labeled transitions for CCP, we now proceed to define an
equivalence from [6] that characterizes ∼̇sb (and ≈̇sb) without the upward closure
condition.

When defining bisimilarity over a labeled transition system, barbs are not usu-
ally needed because they can be somehow inferred by the labels of the transitions.
For example in CCS, P ↓a iff P a−→. The case of CCP is different: barbs cannot
be removed from the definition of bisimilarity because they cannot be inferred
by the transitions. In order to remove barbs from CCP, one could insert labels
showing the store of processes (as in [62]) but this is contrary to the philosophy of
“labels as minimal constraints”. Then, one could be tempted to define the labeled
bisimilarity in the standard way as follows.
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Definition 2.4.26 (Syntactic bisimilarity). A syntactic bisimulation is a symmetric

relationR on configurations such that whenever (γ1, γ2) ∈ R:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1
α−→ γ′1 then ∃γ′2 s.t. γ2

α−→ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are syntactically bisimilar, written γ1 ∼S γ2, if there

exists a syntactic bisimulation R such that (γ1, γ2) ∈ R. We write P ∼S Q iff

〈P, true〉 ∼S 〈Q, true〉.

The bisimilarity above is called “syntactic”, because it does not take into ac-
count the “real meaning” of the labels. This equivalence coincides with the one
in [62] (apart from the fact that in the latter, barbs are implicitly observed by the
transitions) and, from a more general point of view can be seen as an instance of
bisimilarity in [38] (by identifying contexts with constraints). In [14], it is argued
that the equivalence in [38] is often over-discriminating. This is also the case of
CCP, given that syntactic bisimilarity would distinguish configurations which are
in ∼̇sb, as illustrated by the next example.

Example 2.4.27. Recall P = ask (x > 5) → stop and Q = ask (x > 7) →
stop from Example 2.4.11. We saw that 〈P + Q, true〉∼̇sb〈P, true〉. However,

〈P +Q, true〉 x>7−→ 〈T, x > 7〉, while 〈P, true〉 6 x>7−→.

For this reason we need a notion of bisimilarity that captures the meaning of
the labels. To give some intuition on how this will be achieved, let us recall that
in 〈P, c〉 α−→ γ′ the label α represents minimal information from the environment
that needs to be added to the store d to evolve from 〈P, c〉 into γ′. We do not
require the transitions from 〈Q, d〉 to match α. Instead (ii) requires something
weaker: If α is added to the store e, it should be possible to reduce into some γ′′

that it is in bisimulation with γ′. This condition is weaker because α may not be
a minimal piece of information allowing a transition from 〈Q, d〉 into a γ′′ in the
bisimulation, as shown in the previous example.

Definition 2.4.28 (Strong Bisimilarity). A strong bisimulation is a symmetric re-

lationR on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and

γ2 = 〈Q, d〉 :
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(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1
α−→ γ′1 then ∃γ′2 s.t. 〈Q, d t α〉 −→ γ′2 and (γ′1, γ

′
2) ∈ R.

We say that γ1 and γ2 are strongly bisimilar, written γ1 ∼̇ γ2, if there exists a strong

bisimulationR such that (γ1, γ2) ∈ R. We write P ∼̇ Q iff 〈P, true〉∼̇〈Q, true〉.

Weak bisimilarity (≈̇) is obtained from the definition above by replacing the
strong barb requirement of γ2 in condition (i) for its weak version (⇓) and the tran-
sition of γ2 in condition (ii) for the reflexive and transitive closure of the transition
relation (−→∗).

Definition 2.4.29 (Weak bisimilarity). A weak bisimulation is a symmetric rela-

tion R on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and

γ2 = 〈Q, d〉 :

(i) if γ1 ↓e then γ2 ⇓e,

(ii) if γ1
α−→ γ′1 then ∃γ′2 s.t. 〈Q, d t α〉 −→∗ γ′2 and (γ′1, γ

′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar, written γ1 ≈̇ γ2, if there exists a weak

bisimulationR such that (γ1, γ2) ∈ R. We write P ≈̇ Q iff 〈P, true〉≈̇〈Q, true〉.

To illustrate this definition consider the following example.

Example 2.4.30. Let γ1 = 〈tell(true), true〉 and γ2 = 〈ask (c) → tell(d), true〉.
We can show that γ1 ≈̇ γ2 when d v c. Intuitively, this corresponds to the fact that

the implication c ⇒ d is equivalent to true when c already entails d. The LTSs

of γ1 and γ2 are the following: γ1 −→ 〈stop, true〉 and γ2
c−→ 〈tell(d), c〉 −→

〈stop, c〉. It is now easy to see that the symmetric closure of the relation

R = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉), (〈stop, c〉, 〈stop, c〉)}

is a weak bisimulation as in Definition 2.4.29.

In [6] it is shown that strong and weak bisimilarity coincide with strong and
weak saturated barbed bisimilarity respectively.

Proposition 2.4.31 ([6]). ∼̇sb = ∼̇ and ≈̇sb = ≈̇.

Notice that, by exploiting the labeled semantics, ∼̇ and ≈̇ avoid the upward
closure from condition (iii) in ∼̇sb and ≈̇sb.
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Chapter 3

Verifying Strong Bisimilarity in
CCP

As we saw in Section 2.3 we can use the partition refinement algorithm (Algo-
rithm 2.3.1) to verify whether two states are bisimilar. This approach works for
the standard notion of bisimilarity where the defender replies by matching the ex-
act action performed by the attacker, namely both the attacker and the defender
produce a transition with the same label. However, in Section 2.4.8 we saw how
this bisimulation game is too discriminating for CCP as evidenced by Example
2.4.27.

In this chapter we shall adapt Algorithm 2.3.1 to check strong saturated barbed
bisimilarity (∼̇sb) introduced in Definition 2.4.9. This chapter is divided in two
sections. Section 3.1 concerns the definition of the partition refinement algorithm
for CCP. The intuition of this algorithm, which is inspired on the abstract approach
from [15], is to detect certain kind of transitions that carry enough information
to reason about the behavior of the processes. As we shall see later on, these
transitions will allow the matching of exact labels as in the standard partition
refinement, however, to accomplish this task, some additional unreachable states
may need to be added to the LTS of the input. Section 3.2 contains all the technical
details regarding the correctness and complexity of the decision procedure defined
in 3.1.

39
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3.1 Partition Refinement for CCP

In this section we start by introducing the notion of derivation and domination
between transitions. These concepts arise from the idea that certain transitions
carry more information about the behavior of the program than others, i.e. they
are stronger in a way that we shall explain later on. Next we shall use these notions
to define in detail the partition refinement algorithm for CCP.

3.1.1 Derivation and Domination

In the case of CCP, syntactic bisimilarity is over-discriminating because not all the
transitions are important regarding the behavior of a program. To better explain
this, consider the following example:

Example 3.1.1. Let P = ask (x > 5) → stop and Q = ask (x > 7) → stop
as in Example 2.4.11 and consider the following transitions:

(1)〈P +Q, true〉 x>5−→ 〈stop, x > 5〉 (2)〈P +Q, true〉 x>7−→ 〈stop, x > 7〉

Transition (1) means that for all constraints e s.t. x > 5 v e we have:

(3)〈P +Q, e〉 −→ 〈stop, e〉

while transition (2) means that the reduction (3) is possible for all e s.t. x >

7 v e. Since x > 5 v x > 7, transition (2) is “redundant”, in the sense that its

meaning is “logically derived” by transition (1).

The following two notions capture the intuition described above:

Definition 3.1.2 (Transition Derivation). Let t and t′ be two transitions of the

form t = (γ, α, 〈P ′, c′〉) and t′ = (γ, β, 〈P ′, c′′〉). We say that t derives t′, written

t `D t′, iff α v β and c′′ = c′ t β.

Now we introduce the concept of domination, which consists in strengthening
the notion of derivation by requiring labels to be different.
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Definition 3.1.3 (Transition Domination). Let t and t′ be two transitions of the

form t = (γ, α, 〈P ′, c′〉) and t′ = (γ, β, 〈P ′, c′′〉). We say that t dominates t′,

written t �D t′, iff t `D t′ and α 6= β.

The intuition is that the transition t dominates t′ iff t requires less information
from the environment than t′ does (hence α @ β), and they end up in configura-
tions which differ only by the additional information in β not present in α (hence
c′′ = c′ t β).

One can verify in Example 3.1.1 that (1) �D (2). Notice that in order to check
if 〈P + Q, true〉∼̇sb〈P, true〉, we could first remove the redundant transition (2)

and then check syntactic bisimilarity ∼S (Definition 2.4.26).
More generally, a naive approach to compute ∼̇sb would be to first remove

all those transitions that can be dominated by others, and then apply the partition
refinement algorithm (Algorithm 2.3.1).

Algorithm 3.1.1 naive-pr-ccp(IS , )

Initialization

1. Compute G = LTS (IS ), i.e. all states reachable from IS using ,

2. G′ = remDom(G) where the graph remDom(G) results from removing from
G the transitions that are dominated by another transition,

3. P0 = {B1} . . . {Bm} is a partition of IS ? where γ and γ′ are in Bi iff they
satisfy the same barbs (↓c),

Iteration Pn+1 := F (Pn) as in Definition 2.3.2
Termination If Pn = Pn+1 then return Pn.

Notice that on top of the reachable states used in Algorithm 2.3.1, because
of condition (i) in ∼̇sb (Definition 2.4.9), the third step equates all the states that
satisfy the same barbs.

Nevertheless, Algorithm 3.1.1 approach would fail as proven by the following
proposition.

Counterexample 3.1.4. There exist γ, γ′ s.t. (i) γ ∼̇sb γ′, (ii) γ and γ′ are not

related inP whereP is the output of naive-pr-ccp({γ, γ′},−→) in Algorithm

3.1.1.
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Proof. Let P = ask (x > 5) → stop and Q = ask (x > 7) → stop as in
Example 2.4.11 and let R = ask (x > 1) → (P +Q) and S = ask (x > 3) →
P . Now take γ = 〈R + S, true〉 and γ′ = 〈R, true〉. To prove (i), following
the same reasoning as in Example 2.4.11 γ ∼̇sb γ′ since for all constraints e, s.t.
x > 1 v e, both the configurations evolve into 〈stop, e〉, while for all e s.t.
x > 1 6v e, both configurations cannot proceed. Since x > 1 v x > 3, the
behavior of S is somehow absorbed by the behavior of R.

As for (ii), consider the transitions of 〈R + S, true〉:

t1 = 〈R + S, true〉 x>1−→ 〈P, x > 1〉 t2 = 〈R + S, true〉 x>3−→ 〈P +Q, x > 3〉

Now notice that t1 6�D t2 since tar(t1) 6= tar(t2), namely P is different from
P +Q. Therefore both t1 and t2 would pass the test in step 2 of Algorithm 3.1.1.
However, 〈R, true〉 x>1−→ but 〈R, true〉 6 x>3−→ thus in the final partition γ and γ′ are
not related.

Note that in the theorem above t1 does not dominate t2 because P is syntacti-
cally different from P + Q. However, following Example 2.4.11, one can prove
that 〈P, x > 1〉∼̇sb〈P +Q, x > 3〉. Thus t2 is also “redundant”, since its behavior
“does not add anything” to the behavior of t1.

In Definition 3.1.3 we have that t and t′ end up in configurations whose pro-
cesses are syntactically identical (i.e., P ′). The following notion parameterizes the
notion of derivation and dominance w.r.t. a relation on configurations R (rather
than fixing it to the identity on configurations). Recall that for a given transition
t = (s, a, r) the source, the target and the label are src(t) = s, tar(t) = r and
lab(t) = a respectively.

Definition 3.1.5 (Transition Derivation w.r.t. R). We say that the transition t

derives a transition t′ w.r.t a relation on configurations R, written t `R t′, iff

there exists t′′ such that t `D t′′, lab(t′′) = lab(t′) and tar(t′′)R tar(t′).

And similarly for the domination relation we have:

Definition 3.1.6 (Transition Domination w.r.t. R and Irredundant Transition w.r.t.
R). We say that the transition t dominates a transition t′ w.r.t a relation on config-

urationsR, written t �R t′, iff there exists t′′ such that t �D t′′, lab(t′′) = lab(t′)
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and tar(t′′)R tar(t′). A transition is said to be redundant w.r.t. to R when it is

dominated by another w.r.t. R, otherwise it is said to be irredundant w.r.t. toR.

To better understand this definition consider the following examples.

Example 3.1.7. Consider P,Q,R and S as in Counterexample 3.1.4. Take R =

∼̇sb and t1, t2 as follows:

t1 = 〈R + S, true〉 x>1−→ 〈P, x > 1〉 t2 = 〈R + S, true〉 x>3−→ 〈P +Q, x > 3〉

Notice that t1 �R t2 since x > 1 @ x > 3 and 〈P, x > 1〉∼̇sb〈P +Q, x > 3〉.

Example 3.1.8. Consider the following processes:

Q1 = (ask (b) → (ask (c) → tell(d))) and Q2 = (ask (a) → stop)

Now let P = Q1 + Q2 where d v c and a @ b. Then take γ = 〈P, true〉 and

consider the transitions t and t′ as:

t = γ
a−→ 〈stop, a〉 and t′ = γ

b−→ 〈ask (c) → tell(d), b〉

Finally, let R = ≈̇sb and take t′′ = (γ, b, 〈stop, b〉). One can check that t �R t′

as in Definition 3.1.6. Firstly, t �D t′′ follows from a @ b. Secondly, we know

tar(t′′)R tar(t′) from Example 2.4.12, i.e. 〈stop, b〉≈̇sb〈ask (c) → tell(d), b〉
since 〈stop, true〉≈̇sb〈ask (c) → tell(d), true〉.

3.1.2 The Algorithm

From the previous section we can see that we could compute ∼̇sb, by removing
all those transitions that are redundant w.r.t. ∼̇sb. Unfortunately redundancy itself
depends on ∼̇sb, therefore we must compute bisimilarity and redundancy at the

same time.

To be able to check for redundant transitions we need not only the states reach-
able using −→ but some additional unreachable states used specifically for de-
tecting redundancy. More concretely, to compute IS ? we use the rules in Table
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(ISIS )
γ ∈ IS

γ ∈ IS ? 
(RSIS )

γ ∈ IS ? γ
α
 γ′

γ′ ∈ IS ? 

(RDIS
 ) γ ∈ IS ? t1 = γ

α
 〈P1, c1〉 t2 = γ

β
 〈P2, c2〉 α @ β c2 = c1 t β

〈P1, c2〉 ∈ IS ? 

Table 3.1.1: Rules for generating the states used in the partition refinement for
CCP

3.1.1. Rules (ISIS
 ) and (RSIS

 ) say that all the reachable states using should be
included, i.e., Config (IS ) ⊆ IS ? .

The rule (RDIS
 ) adds the additional states needed to check redundancy. Con-

sider the transitions t1 = γ
α
 〈P1, c1〉 and t2 = γ

β
 〈P2, c2〉 with α @ β

and c2 = c1 t β in Rule (RDIS
 ). Suppose that at some iteration of the partition

refinement algorithm the current partition is P and that 〈P2, c2〉P〈P1, c2〉. Then,
according to Definition 3.1.6 the transitions t1 would dominate t2 w.r.t P . This
makes t2 redundant w.r.t P . Since 〈P1, c2〉 may allow us to witness a potential
redundancy of t2, we include it in IS ? (and thus, from the definition of the initial
partition P0, also in the block of P0 where 〈P2, c2〉 is).

Finally, in the case of CCP the refinement must be done only w.r.t. the irre-

dundant transitions. Hence instead of using the function F (P) of Algorithm
2.3.1, the partitions are refined by employing the function IR (P) defined as:

Definition 3.1.9 (Irredundant Refinement Function). Given a partition P we de-

fine IR (P) as follows: γ1 IR (P) γ2 iff

if γ1
α
 γ′1 is irredundant w.r.t. P then there exists γ′2 s.t. γ2

α
 γ′2 and γ′1Pγ′2

See Figure 3.1.1 for an example of the use of IR (−). Using all these ele-
ments we can now define the partition refinement algorithm for CCP as follows:
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〈(ask (a) → stop) + (ask (b) → stop), true〉

〈stop, a〉 〈stop, b〉

〈(ask (a) → stop), true〉

〈stop, a〉

a b a

γ1

γa1 γb1

γ2

γa2

γ1, γ
a
1 , γ

b
1, γ2, γ

a
2

γ1, γ2 γa1 , γ
b
1, γ

a
2

P IR−→(P)

Figure 3.1.1: An example of the use of IR−→(P) as in Definition 3.1.9. Let a @ b,
notice that γ1 and γ2 end up in the same block after the refinement since γ1

b−→ γb1
is a redundant transition w.r.t P hence it is not required that γ2 matches it.

Algorithm 3.1.2 pr-ccp(IS , )

Initialization

1. Compute IS ? with the rules (ISIS
 ), (RSIS

 ), (RDIS
 ) defined in Table 3.1.1,

2. P0 = {B1} . . . {Bm} is a partition of IS ? where γ and γ′ are in Bi iff they
satisfy the same barbs (↓c),

Iteration Pn+1 := IR (Pn) as in Definition 3.1.9
Termination If Pn = Pn+1 then return Pn.

3.2 Correctness and Complexity

In this section we shall prove the correctness and efficiency of Algorithm 3.1.2.
We do this by first introducing the notion of irredundant and symbolic bisimilarity
to prove that Algorithm 3.1.2 computes ∼̇sb. Finally we discuss the complexity of
Algorithm 3.1.2.

3.2.1 Irredundant and Symbolic Bisimilarity

Now we shall see that the irredundant transitions (Definition 3.1.6) carry enough
information to check ∼̇sb. Irredundant bisimilarity follows the standard bisimula-
tion game where labels need to be matched, however only the irredundant transi-
tions must be considered.
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Definition 3.2.1 (Irredundant Bisimilarity). An irredundant bisimulation is a sym-

metric relationR on configurations s.t. whenever (γ1, γ2) ∈ R implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1
α−→ γ′1 and it is irredundant inR then there exists γ′2 s.t. γ2

α−→ γ′2 and

(γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are irredundant bisimilar (γ1 ∼̇I γ2) if there exists an irre-

dundant bisimulationR s.t. (γ1, γ2) ∈ R.

Notice that this bisimulation game is exactly what the IR−→(−) function in
Definition 3.1.9 captures. To better understand the definition above consider the
following example.

Example 3.2.2. Let P = ask (x > 5) → stop and Q = ask (x > 7) → stop
as in Example 2.4.11 and letR = {(〈P +Q, true〉, 〈P, true〉)} ∪ id where id is

the identity relation. We can verify thatR is an irredundant bisimulation to show

that 〈P + Q, true〉∼̇I〈P, true〉. We take the pair (〈P + Q, true〉, 〈P, true〉). The

first item in Definition 3.2.1 is obvious, and now notice that:

〈P +Q, true〉 x>5−→ 〈stop, x > 5〉 �R 〈P +Q, true〉 x>7−→ 〈stop, x > 7〉

hence 〈P + Q, true〉 x>7−→ 〈stop, x > 7〉 is redundant since (x > 5) @ (x > 7),

therefore it does not need to be matched by 〈P, true〉. On the other hand, 〈P +

Q, true〉 x>5−→ 〈stop, x > 5〉 is irredundant (Definition 3.1.6), thus this transition

must be matched by 〈P, true〉. Hence we can take 〈P, true〉 x>5−→ 〈stop, x > 5〉
and then 〈stop, x > 5〉R〈stop, x > 5〉. The other pairs are trivially verified using

the identity relation.

We shall prove that ∼̇I and ∼̇sb coincide, but in order to do so, we need to
introduce another notion of bisimilarity called symbolic bisimilarity.

Intuitively, two configurations γ1 and γ2 are symbolic bisimilar iff (i) they
have the same barbs and (ii) whenever there is a transition from γ1

α−→ γ′1, then
we require that γ2 must reply with a similar transition γ2

α−→ γ′2 (where γ′1 and
γ′2 are now equivalent) or some other transition that derives it. In other words,
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the move from the defender does not need to use exactly the same label, but a
transition that is “stronger or equal” (in terms of derivation `D) could also do the
job. Formally we have:

Definition 3.2.3 (Symbolic Bisimilarity). A symbolic bisimulation is a symmetric

relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and

γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if 〈P, c〉 α−→ 〈P ′, c′〉 then there exists a transition t = 〈Q, d〉 β−→ 〈Q′, d′′〉
and a store d′ s.t. t `D 〈Q, d〉

α
 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉.

We say that γ1 and γ2 are symbolic bisimilar (γ1 ∼̇sym γ2) if there exists a symbolic

bisimulationR s.t. (γ1, γ2) ∈ R.

To better explain this definition consider the following example.

Example 3.2.4. Let P,Q and R as in Example 3.2.2. We shall prove that 〈P +

Q, true〉 and 〈P, true〉 are symbolic bisimilar. To do this we prove thatR is a sym-

bolic bisimulation. Take the pair (〈P +Q, true〉, 〈P, true〉). The first condition in

Definition 3.2.3 is trivial. As for the second one, the only interesting transition is

〈P +Q, true〉 x>7−→ 〈stop, x > 7〉. We have to check that 〈P, true〉 is able to reply

with a stronger transition. Thus consider the transitions t and t′ as follows:

t = 〈P, true〉 x>5−→ 〈stop, x > 5〉 and t′ = 〈P, true〉 x>7
 〈stop, x > 7〉

Then we can observe that t `D t′ and 〈stop, x > 7〉R〈stop, x > 7〉. The remain-

ing pairs are trivially verified using the identity relation.

The rest of this section is devoted to prove that ∼̇sb, ∼̇sym and ∼̇I coincide. To
skip the details go directly to Section 3.2.2. First we need to fix some notation.

Definition 3.2.5 (Closure under the addition of constraints). We say that a rela-

tion R ⊆ Conf × Conf is closed under the addition of constraints iff whenever

〈P, c〉R〈Q, d〉 then for all e ∈ Con0 we have that 〈P, c t e〉R〈Q, d t e〉

We can now prove that ∼̇sb and ∼̇sym coincide as shown in the following two
lemmata.
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Lemma 3.2.6. If 〈P, c〉∼̇sym〈Q, d〉 then 〈P, c〉∼̇sb〈Q, d〉

Proof. We will prove that R = {(〈P, c t a〉, 〈Q, d t a〉) | 〈P, c〉∼̇sym〈Q, d〉} is a
saturated barbed bisimulation.

(i) Since 〈P, c〉∼̇sym〈Q, d〉 then from condition (i) and by monotonicity we have
that for all e s.t. 〈P, c t a〉 ↓e then 〈Q, d t a〉 ↓e.

(ii) We need to prove that if 〈P, c t a〉 −→ 〈P1, c1〉 then there exists 〈Q1, d1〉
s.t. 〈Q, d t a〉 −→ 〈Q1, d1〉 and 〈P1, c1〉R〈Q1, d1〉. Now let us assume that
〈P, c t a〉 −→ 〈P ′, c′〉 (take P1 = P ′ and c1 = c′) then by completeness
(Lemma 2.4.25) we know that there exists α and b s.t. 〈P, c〉 α−→ 〈P ′, c′′〉
where α t b = a and c′′ t b = c′, thus if such transition exists then by
〈P, c〉∼̇sym〈Q, d〉we get that there exists a transition t = 〈Q, d〉 β−→ 〈Q′, d′〉
s.t. t `D 〈Q, d〉

α−→ 〈Q′, d′′〉 and 〈P ′, c′′〉∼̇sym〈Q′, d′′〉. Expanding the
definition of `D there is a b′ s.t. β t b′ = α and d′ t b′ = d′′. We are
now able to apply soundness (Lemma 2.4.24) on t hence 〈Q, d t β〉 −→
〈Q′, d′〉, and by monotonicity we are able to add b t b′ to the store to obtain
〈Q, dtβtbtb′〉 −→ 〈Q′, d′tbtb′〉which is equivalent to say (by using the
equations above) 〈Q, dta〉 −→ 〈Q′, d′′tb〉. To conclude, takeQ1 = Q′ and
d1 = d′′tb, therefore 〈Q, dta〉 −→ 〈Q1, d1〉 and since 〈P ′, c′′〉∼̇sym〈Q′, d′′〉
then 〈P1, c1〉 = 〈P ′, c′〉 = 〈P ′, c′′ t b〉R〈Q′, d′′ t b〉 = 〈Q1, d1〉.

(iii) By definition ofR, it is already closed under the addition of constraints.

Lemma 3.2.7. If 〈P, c〉∼̇sb〈Q, d〉 then 〈P, c〉∼̇sym〈Q, d〉

Proof. We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇sb〈Q, d〉} is a symbolic
bisimulation.

(i) Since 〈P, c〉∼̇sb〈Q, d〉 then from condition (i) we have that if 〈P, c〉 ↓e then
〈Q, d〉 ↓e

(ii) Let us start by assuming that 〈P, c〉 α−→ 〈P ′, c′〉 then we need to prove that
there exists a transition t = 〈Q, d〉 β−→ 〈Q′, d′′〉 s.t. t `D 〈Q, d〉

α−→ 〈Q′, d′〉
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and 〈P ′, c′〉R〈Q′, d′〉. By soundness we know 〈P, c t α〉 −→ 〈P ′, c′〉, now
since 〈P, c〉∼̇sb〈Q, d〉 hence by condition (ii) we obtain 〈Q, d t α〉 −→
〈Q′, d′〉 where 〈P ′, c′〉∼̇sb〈Q′, d′〉. From this transition and completeness
we can deduce that there exist β and b s.t. 〈Q, d〉 β−→ 〈Q′, d′′〉 (let us call
this transition t) where β t b = α and d′′ t b = d′. Thus by definition of `D
we can conclude that t `D 〈Q, d〉

α−→ 〈Q′, d′〉 and since 〈P ′, c′〉∼̇sb〈Q′, d′〉
then 〈P ′, c′〉R〈Q′, d′〉.

Using the two lemmata above we can state the following theorem.

Theorem 3.2.8. 〈P, c〉∼̇sb〈Q, d〉 iff 〈P, c〉∼̇sym〈Q, d〉

Moreover, the following corollary is derived from the definition of ∼̇sb.

Corollary 3.2.9. If 〈P, c〉∼̇sym〈Q, d〉 then ∀a ∈ Con0, 〈P, c t a〉∼̇sym〈Q, d t a〉

Proof. Given that ∼̇sb is closed under the addition of constraints, then it follows
directly from Theorem 3.2.8.

We proceed to prove that ∼̇sym coincide with ∼̇I . To achieve this goal we need
the following proposition stating that the derivation and domination relations are
well-founded.

Proposition 3.2.10. `D,�D,`R and �R are well-founded.

Proof. Follows from the well-foundedness of v (Remark 2.4.3).

We also need to prove that ∼̇I is closed under the addition of constraints.

Lemma 3.2.11. If 〈P, c〉∼̇I〈Q, d〉 then for all a ∈ Con0, 〈P, c t a〉∼̇I〈Q, d t a〉

Proof. We need to prove that R = {(〈P, c t e〉, 〈Q, d t e〉) | 〈P, c〉∼̇I〈Q, d〉} is
an irredundant bisimulation.

(i) Since 〈P, c〉∼̇I〈Q, d〉 then from condition (i) and by monotonicity we have
that for all e s.t. 〈P, c t a〉 ↓e then 〈Q, d t a〉 ↓e.
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(ii) Let us start by assuming that

〈P, c t a〉 α−→ 〈P ′, c′〉 which is irredundant inR (3.1)

then we need to prove that there exists 〈Q′, d′〉 s.t. 〈Q, d〉 α−→ 〈Q′, d′〉 and
〈P ′, c′〉R〈Q′, d′〉. Now by soundness on the transition from 〈P, c t a〉 we
know that 〈P, c t a t α〉 −→ 〈P ′, c′〉 and from completeness we get that
there exist b and β s.t.

t1 = 〈P, c〉 β−→ 〈P ′, c′′〉 where β t b = a t α and c′′ t b = c′ (3.2)

Since �R is well founded then there exist an irredundant (not dominated by
the rest) transition t2 = 〈P, c〉 λ−→ 〈P1, c1〉 that dominates t1 in R (t2 �R
t1), therefore

t2 �D 〈P, c〉
β−→ 〈P1, c2〉 and 〈P1, c2〉R〈P ′, c′′〉 (3.3)

by definition of �D there exists b′ s.t.

λ t b′ = β, c1 t b′ = c2 and λ 6= β (3.4)

Now since 〈P, c〉∼̇I〈Q, d〉 and the irredundant t2, then there exists 〈Q1, d1〉
s.t.

〈Q, d〉 λ−→ 〈Q1, d1〉 and 〈P1, c1〉∼̇I〈Q1, d1〉 (3.5)

using soundness 〈Q, d t λ〉 −→ 〈Q1, d1〉 and monotonicity we can obtain

〈Q, d t
β︷ ︸︸ ︷

λ t b′ tb︸ ︷︷ ︸
atα

〉 −→ 〈Q1, d1 t b′ t b〉 and from the latter condition in

(3.5) we can also deduce that 〈Q1, d1 t b′ t b〉R〈P1, c1 t b′︸ ︷︷ ︸
c2

tb〉 therefore by

the second condition in (3.3) we know that 〈P1, c2 t b〉R〈P ′, c′′ t b︸ ︷︷ ︸
c′

〉. Let

d′1 = d1 t b′ t b, we can summarize this part by saying that

〈Q, d t a t α〉 −→ 〈Q1, d
′
1〉 and 〈P ′, c′〉R〈Q1, d

′
1〉 (3.6)
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Now let us reason on this transition, by completeness there exist α1 and b1
s.t.

t3 = 〈Q, d t a〉 α1−→ 〈Q1, d2〉 where α1 t b1 = α and d2 t b1 = d′1 (3.7)

by means of contradiction let us assume that α1 6= α, then by soundness (on
t3) 〈Q, dt atα1〉 −→ 〈Q1, d2〉 and, by completeness on this transition, we
know there exist α2 and b2 s.t.

t4 = 〈Q, d〉 α2−→ 〈Q1, d
′
2〉 where α2 t b2 = a t α1 and d′2 t b2 = d2 (3.8)

by the well-foundedness of �R, we know there exists an irredundant transi-
tion t5 = 〈Q, d〉 α′−→ 〈Q3, d3〉 s.t. t5 �R t4, namely,

t5 �D 〈Q, d〉
α2−→ 〈Q3, d

′
3〉 and 〈Q3, d

′
3〉R〈Q1, d

′
2〉 (3.9)

hence, there exists b3 s.t. α′t b3 = α2, d3t b3 = d′3 and α′ 6= α2. Now since
〈P, c〉∼̇I〈Q, d〉 then from the irredundant t5 we can deduce that

〈P, c〉 α′−→ 〈P3, c3〉 and 〈P3, c3〉R〈Q3, d3〉 (3.10)

by soundness we get 〈P, c t α′〉 −→ 〈P3, c3〉 and by monotonicity

〈P, c t
atα1︷ ︸︸ ︷

α′ t b2 t b3〉 −→ 〈P3,

c4︷ ︸︸ ︷
c3 t b2 t b3〉, (3.11)

from the latter condition in (3.10) and by definition of R we have 〈P3, c3 t
b2 t b3〉R〈Q3, d3 t b2 t b3〉, and since d3 t b3 = d′3 and from the latter
condition in (3.9) then 〈Q3, d

′
3tb2〉R〈Q1, d

′
2tb2〉 and using d′2tb2 = d2 we

can conclude that 〈P3, c4〉R〈Q1, d2〉. Going back to the transition in (3.11),
we can rewrite it as 〈P, c t a t α1〉 −→ 〈P3, c4〉, then by completeness we
know there exist b4 and α′1 s.t.

t6 = 〈P, c t a〉
α′1−→ 〈P3, c

′
4〉 where α′1 t b4 = α1 and c′4 t b4 = c4 (3.12)
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notice that if such transition exists then t6 �R (3.1), as we prove as follows

t6 �D 〈P, c t a〉
α′1tb4tb1−→ 〈P3,

c4︷ ︸︸ ︷
c′4 t b4 tb1〉 (3.13)

and now it is left to prove that 〈P3, c4tb1〉R〈P ′, c′〉, given that 〈P3, c4〉R〈Q1, d2〉
then by definition ofR we have 〈P3, c4t b1〉R〈Q1, d2t b1〉. Since 〈Q1, d2t
b1〉 = 〈Q1, d

′
1〉 and we have already proven that 〈P ′, c′〉R〈Q1, d

′
1〉 (latter

condition in (3.6)), finally we can conclude that 〈P3, c4 t b1〉R〈P ′, c′〉 and
therefore (3.1) is redundant, a contradiction. To conclude, α1 must be equal
to α, otherwise we would get an absurd as shown previously, thus we can
conclude our main result by using (3.6), (3.7) and assuming Q′ = Q1,
d′ = d′1,

〈Q, d t a〉 α−→ 〈Q1, d
′
1〉 and 〈P ′, c′〉R〈Q1, d

′
1〉 (3.14)

indeed 〈Q, d t a〉 can defend from the attacker’s move by using the same
label and still remain in the relation.

Using the lemma above we prove the correspondence between symbolic and
irredundant bisimilarity in the two following lemmata.

Lemma 3.2.12. If 〈P, c〉∼̇sym〈Q, d〉 then 〈P, c〉∼̇I〈Q, d〉

Proof. We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇sym〈Q, d〉} is an irre-
dundant bisimulation.

(i) Since 〈P, c〉∼̇sym〈Q, d〉 it is direct result from condition (i)

(ii) Assume that 〈P, c〉 α−→ 〈P ′, c′〉 (1) which is irredundant in R then we need
to prove that there exists 〈Q′, d′〉 s.t. 〈Q, d〉 α−→ 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉.
Since 〈P, c〉∼̇sym〈Q, d〉 and from (1), we have that there exists t = 〈Q, d〉 β−→
〈Q′, d′′〉 s.t. t `D 〈Q, d〉

α−→ 〈Q′, d′〉 and 〈P ′, c′〉∼̇sym〈Q′, d′〉, thus by
definition of `D, there is b s.t. β t b = α and d′′ t b = d′. Now let
us assume by means of contradiction that β 6= α, then we can use t to
reason about what 〈P, c〉 can do, again from 〈P, c〉∼̇sym〈Q, d〉 and t we



3.2. CORRECTNESS AND COMPLEXITY 53

can say that there exists a transition t′ = 〈P, c〉 λ−→ 〈P1, c
′
1〉 s.t. t′ `D

〈P, c〉 β−→ 〈P1, c1〉 and 〈P1, c1〉R〈Q′, d′′〉 (2). By definition of `D the last
derivation means that there is a b′ s.t. λ t b′ = β and c′1 t b′ = c1. Now
we can use Corollary 3.2.9 on (2) to get 〈P1, c1 t b〉R〈Q′, d′′ t b〉 there-
fore, given that d′′ t b = d′, then 〈P1, c1 t b〉R〈Q′, d′〉, which by definition
of R means 〈P1, c1 t b〉∼̇sym〈Q′, d′〉 (3). We can also conclude that since
〈P ′, c′〉∼̇sym〈Q′, d′〉 then by transitivity 〈P1, c1 t b〉∼̇sym〈P ′, c′〉 and hence
〈P1, c1 t b〉R〈P ′, c′〉 (4). On the other hand, notice that now t′ is able to
dominate our originally irredundant transition, namely t′ �R (1), as follows

t′ �D 〈P, c〉

α︷ ︸︸ ︷
β︷ ︸︸ ︷

λ t b′ tb−→ 〈P ′,
c1︷ ︸︸ ︷

c′1 t b′ tb〉 and 〈P1, c1 t b〉R〈P ′, c′〉 from (4)

therefore if α 6= β then we would get an absurd since (1) would be redundant
in R, thus we can finally say that α = β which allow us to conclude that
〈Q, d〉 α−→ 〈Q′, d′〉 and 〈P ′, c′〉∼̇sym〈Q′, d′〉 then 〈P ′, c′〉R〈Q′, d′〉.

Lemma 3.2.13. If 〈P, c〉∼̇I〈Q, d〉 then 〈P, c〉∼̇sym〈Q, d〉

Proof. We will prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉∼̇I〈Q, d〉} is a symbolic
bisimulation.

(i) Since 〈P, c〉∼̇I〈Q, d〉 it is direct result from condition (i)

(ii) Take t = 〈P, c〉 α−→ 〈P ′, c′〉 then since �R is well founded then there exists
an irredundant transition t′ = 〈P, c〉 β−→ 〈P1, c1〉 s.t. t′ �R t,

t′ �D 〈P, c〉
α−→ 〈P1, c

′
1〉 where 〈P1, c

′
1〉R〈P ′, c′〉 (3.15)

by definition of �D, there exists a b s.t. β t b = α, c1 t b = c′1 and
α 6= β. Now since 〈P, c〉∼̇I〈Q, d〉 and t′ then we know there is a transi-
tion t′′ = 〈Q, d〉 β−→ 〈Q′, d′〉 and 〈P1, c1〉R〈Q′, d′〉. Thus, from Lemma
3.2.11 〈P1, c1t b〉R〈Q′, d′t b〉, equivalently 〈P1, c

′
1〉R〈Q′, d′t b〉 and using
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the latter condition in (3.15) then 〈Q′, d′ t b〉R〈P ′, c′〉. We can finally con-
clude that t′′ �D 〈Q, d〉

α−→ 〈Q′, d′ t b〉 and 〈Q′, d′ t b〉R〈P ′, c′〉, therefore
the condition for being a symbolic bisimulation is proven.

Using these lemmata we can conclude the following theorem.

Theorem 3.2.14. 〈P, c〉∼̇sym〈Q, d〉 iff 〈P, c〉∼̇I〈Q, d〉

Proof. It follows directly from Lemma 3.2.12 and Lemma 3.2.13.

Finally, we obtain the correspondence between ∼̇sb and ∼̇I .

Corollary 3.2.15. 〈P, c〉∼̇sb〈Q, d〉 iff 〈P, c〉∼̇I〈Q, d〉

Proof. Follows from Theorem 3.2.8 and 3.2.14.

3.2.2 Proof of Correctness and Complexity

Using the results from the previous section we can establish the correctness of
Algorithm 3.1.2. Recall that Config−→(IS ) represents the set of states that are
reachable from the initial states IS using −→.

Theorem 3.2.16. Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′} and

let P be the output of pr-ccp(IS ,−→) in Algorithm 3.1.2. If IS ?−→ is finite then

the algorithm terminates and:

• γ P γ′ iff γ ∼̇sb γ′.

• pr-ccp(IS ,−→) may take exponential time in the size of Config−→(IS ).

Proof. The first item is obtained by using Corollary 1 of [15] and Corollary 3.2.15
as well as the decidability of `D (which follows from the decidability of v, Re-
mark 2.4.3). For the second item let n > 0. We define P n = P n

0 with P n
i , for

i ∈ {0, . . . , n− 1}, given by:

P n
i = (ask bi → stop) + (ask ai → P n

i+1)
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and P n
n = tell(bn). Furthermore, we assume that for all i ∈ {0, . . . , n − 1} we

have ai @ bi and for all j ∈ {0, . . . , n− 1} if i 6= j then ai 6v aj and bi 6v bj . The
reachable states from 〈P n, true〉 are illustrated below.

〈P n, true〉 〈stop, b0〉

〈P n
1 , a0〉 〈stop, a0 t b1〉

. . .

〈P n
n ,

⊔n−1
i=0 ai〉 〈stop, bn t

⊔n−1
i=0 ai〉

b0

b1

bn

a0

a1

an−1

Notice that that size of the set of reachable states |Config−→(IS )| is 2n. By
using the rules (ISIS

 ), (RSIS
 ) and (RDIS

 ) in Table 3.1.1 with = −→ and also
IS = {〈P n, true〉}, we obtain an IS ?−→ whose size is given by the following
recurrence relation, for n > 0: f(n) = 2f(n − 1) + 2 with f(0) = 2. Without
loss of generality consider the first level of transitions of 〈P n, true〉:

〈P n, true〉 〈stop, b0〉

〈P n
1 , a0〉

b0

a0

First, we count 〈P n, true〉 and 〈stop, b0〉, hence the +2 in f(n). Furthermore, the
rest of the states are those generated by 〈P n

1 , a0〉 and these are exactly f(n − 1).
Moreover, since a0 @ b0 then by rule (RDIS

 ) a new state 〈P n
1 , b0〉 is added to

IS ?=⇒. Note that 〈P n
1 , b0〉 produces the same number of states as 〈P n

1 , a0〉 since
by construction a0 and b0 are irrelevant in P n

1 . Therefore we count the states
generated by 〈P n

1 , b0〉 as another f(n − 1). Also note that the same reasoning
applies at every level of the process. By solving the recurrence we can conclude
that f(n) = Ω(2n) hence |IS ?=⇒| = Ω(2n) as wanted.

We now prove that if the set Config−→(IS ) of all configurations reachable
from IS is finite, then IS ?−→ is finite. This condition can be easily guaranteed by



56 CHAPTER 3. VERIFYING STRONG BISIMILARITY IN CCP

imposing some syntactic restrictions on CCP terms, like for instance, by excluding
either the procedure call or the hiding operator.

Theorem 3.2.17. Let IS be a set of configurations. If Config−→(IS ) is finite,

then IS ?−→ is finite.

Proof. As a first step, we observe that a configuration γ ∈ IS ?−→ only if γ =

〈P, dt e〉 and 〈P, d〉 ∈ Config−→(IS ). Then we prove that there are only finitely
many such constraints e. Let Label(IS ) be the set of all labels in LTS−→(IS ).
This set is finite (given that Config−→(IS ) is finite), and its downward closure
↓Label(IS ) = {a | ∃b ∈ Label(IS ) with a v b} is also finite (since v is well-
founded). The set of all e s.t. 〈P, dt e〉 ∈ IS ?−→ (with 〈P, d〉 ∈ Config−→(IS )) is
a subset of ↓Label(IS ) and thus it is finite. Indeed, observe that if 〈P, dt e〉 α−→,
then 〈P, d〉 β−→ with α v β. Therefore Label(IS ?−→) ⊆ ↓Label(IS ). Moreover,
if 〈P, d t e〉 is added to IS ?−→ by the rule (RDIS

 ) then e v c for c being a label in
Label(IS ?−→) (i.e., in ↓Label(IS )).

Finally we conclude this section by proving an upper-bound on the runtime
of Algorithm 3.1.2. Let fC be the function that represents the time complexity
of deciding (whether two given constraints are in) v. Recall that V(G) and E(G)

denote, respectively, the set of vertices and edges of a graph.

Theorem 3.2.18. Let n = |V(LTS−→(IS ))| and let m = |E(LTS−→(IS ))|. Then

n× 2O(m) × fC is an upper bound for the running time of Algorithm 3.1.2.

Proof. Let G be the graph obtained after constructing IS ?−→ using rules (ISIS
 ),

(RSIS
 ) and (RDIS

 ) in Table 3.1.1. Let N = |V(G)| and let M = |E(G)|. One
can verify that each state s in G corresponds to a state of s′ in LTS−→(IS ) so that
s and s′ have the same process and the store of s results from some least upper
bound of the stores in the transitions between the states of LTS−→(IS ). Hence,
N is bounded by O(n × 2m). Similarly, we can conclude that M is bounded by
O(m× 2m). Notice that we need to check for �R in each transition (between the
states) in IS ?−→. Hence, we conclude that constructing IS ?−→ takesO(fC×m×2m)

time. Using the partition refinement from Paige and Tarjan [50] and taking into
account the checks for irredundant transitions we can obtain a polynomial time
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bound on N and M for the overall executions of the iterations of Algorithm 3.1.2.
From the above upper-bounds for N and M it follows that n × 2O(m) × fC is an
upper bound for the execution time of Algorithm 3.1.2.

3.3 Summary and Related Work

In this chapter we introduced a novel decision procedure (Algorithm 3.1.2) for
computing strong saturated barbed bisimilarity for CCP (∼̇sb, Definition 2.4.9).
Algorithm 3.1.2 is an adaptation of the standard partition refinement algorithm
from [34, 51] typically used to check strong bisimilarity between two LTSs. The
adaptation is based on the idea that only certain special kind of transitions are nec-
essary (and sufficient) to analyze the behavior of the program. These transitions,
called irredundant, are the strongest transitions w.r.t. the order given by the dom-
ination relation (�R, Definition 3.1.6). In this chapter, we proposed a notion of
bisimilarity that considers only the irredundant transitions, we call it irredundant
bisimilarity (∼̇I , Definition 3.2.1), and we prove that it coincides with ∼̇sb.

Moreover, we demonstrate that using the irredundant transitions in the parti-
tion refinement algorithm we can compute ∼̇I , thus also ∼̇sb. However, we show
that, from the LTS of the input, we may not have enough information to determine
which of the transitions are irredundant. Hence, the procedure must consider some
additional unreachable states. Furthermore, from [15] we know that, even with the
new states, redundancy must be computed together with bisimilarity. Finally, we
prove that Algorithm 3.1.2 runs in exponential time in the size of the LTS of the
input, mainly because of the additional states needed for detecting redundancy.

The results of this chapter are based on the abstract approach of [15]. The
authors define a symbolic semantics for labeled transition systems in general and
they show how to use this semantics to compute saturated barbed bisimilarity. We
borrow their ideas of irredundant transitions and irredundant bisimilarity and we
adapt this approach to the case of CCP. In [15] the authors discuss that checking
for dominance may be costly in general. Hence, the novelty of our procedure
is that, for CCP, we characterize dominance between transitions (�R, Definition
3.1.6) in a simple manner. This allows us to exploit the partition refinement ap-
proach from [15] to obtain the main goal of this chapter: computing ∼̇sb.
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Chapter 4

A Weak Semantics for CCP

In the previous chapter we defined an algorithm to verify strong saturated barbed
bisimilarity in CCP (∼̇sb, Definition 2.4.9). To achieve this goal we used the irre-
dundant transitions, namely those that are not dominated by any other transition
(w.r.t. �R, Definition 3.1.6). Using them we proposed a notion of bisimilarity,
called irredundant bisimilarity ∼̇I (Definition 3.2.1), Which consists in playing
the standard label-matching bisimulation game but where the attacker can only
use irredundant transitions. We proved that ∼̇I coincides with ∼̇sb and that parti-
tion refinement, together with the check for redundancy, can be used to compute
∼̇I , thus also ∼̇sb.

The goal of this chapter is to exploit the algorithm for ∼̇sb in order to verify its
weak version ≈̇sb (Definition 2.4.10). Recall that, from the Proposition 2.4.21 we
know that, in the choice-free fragment (CCP\+), ≈̇sb coincides with the observa-
tional equivalence ∼o (Definition 2.4.19). In Section 4.1, we present the standard
strategy to reduce weak to strong bisimilarity. The idea is to add some extra tran-
sitions to the LTS of the input, this idea is usually called saturation. Then the
problem of checking weak bisimilarity is reduced to check the strong version in
the saturated LTS. The standard saturation method closes the LTS w.r.t. to the
internal transitions. However, as we shall explain later on, such approach does not
work for CCP.

In Section 4.2 we shall prove that, because of the involved transitions in CCP,
the saturation for CCP must be the reflexive and transitive closure of the input

59
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LTS. Moreover, we demonstrate that the our method is adequate for computing
≈̇sb using the algorithm for ∼̇sb presented in Section 3. Finally, in Section 4.3 we
specify the decision procedure for checking ≈̇sb based on Algorithm 3.1.2 and we
also prove its correctness and complexity.

4.1 The standard reduction from weak to strong

Following [2] the reduction of the problem of deciding weak bisimilarity to the
problem of deciding the strong one is obtained by adding some additional tran-
sitions, so called weak transitions, to the LTS. The idea is to start from the LTS
generated using the operational semantics (−→) and then saturate it using the
rules described in Table 4.1.1. Now the problem whether two states s and s′ are
weakly bisimilar can be reduced to checking whether they are strongly bisimilar
w.r.t. =⇒. Formally, we can call pr({s, s′},=⇒), i.e. the partition refinement
algorithm, to check whether s and s′ are weakly bisimilar. Henceforth, we shall
refer to this as Milner’s saturation method.

As we will show later on, this approach does not work in a formalism like
CCP. We shall see that the problem is related to the fact that the transitions in
CCP are labeled with constraints, thus they can be arbitrary combined (using t)
to form a new label. Notice that this is not the case for the transitions in CCS-like
process calculi. Therefore we will need to define a different saturation method
to be able to use the standard approach for verifying weak bisimilarity in CCP.
Namely, to achieve this goal, we shall modify the rules in Table 4.1.1.

MR1
P

a−→ P ′

P
a

=⇒ P ′
MR2

P
τ

=⇒ P

MR3
P

τ
=⇒ P1

a
=⇒ P2

τ
=⇒ P ′

P
a

=⇒ P ′

Table 4.1.1: Milner’s Saturation Method
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4.1.1 Incompleteness of Milner’s saturation method in CCP

The problem is that the transition relation proposed by Milner is not complete for
CCP, hence the relation among the saturated, symbolic and irredundant equiva-
lences (presented in Section 3.2.1) is broken.

In the next section we will provide a stronger saturation, which is complete,
and allows us to use the CCP partition refinement to compute ≈̇sb. But first, let
us show why Milner’s approach does not work. For this we need to introduce
formally the concept of completeness for a given transition relation.

Definition 4.1.1 (Completeness). We say that is complete if and only if when-

ever 〈P, c t a〉  〈P ′, c′〉 then there exist α, b ∈ Con0 s.t. 〈P, c〉 α
 〈P ′, c′′〉

where α t b = a and c′′ t b = c′.

Notice that −→ (i.e the reduction semantics, see Table 2.4.1) is complete as
proven in Lemma 2.4.25. Now Milner’s method defines a new transition relation
=⇒ using the rules in Table 4.1.2. However, the resulting =⇒ is not complete (in
the sense of Definition 4.1.1) as proven below.

Proposition 4.1.2. The relation =⇒ defined in Table 4.1.2 is not complete.

Proof. We will show a counter-example where the completeness for =⇒ does not
hold. Let P = ask α → (ask β → stop) and d = α t β. Now consider the
transition 〈P, d〉 =⇒ 〈stop, d〉 and let us apply the completeness lemma. We can
take c = true and a = α t β, therefore by completeness there must exist b and
λ s.t. 〈P, true〉 λ

=⇒ 〈stop, c′′〉 where λ t b = α t β and c′′ t b = d. However,
notice that the only transition possible is 〈P, true〉 α

=⇒ 〈(ask β → stop), α〉,
hence completeness does not hold since there is no transition from 〈P, true〉 to
〈stop, c′′〉 for some c′′. Figure 4.1.1 illustrates the problem.

MR1
γ

α−→ γ′

γ
α

=⇒ γ′
MR2

γ =⇒ γ

MR3
γ =⇒ γ1

α
=⇒ γ2 =⇒ γ′

γ
α

=⇒ γ′

Table 4.1.2: Milner’s Saturation Method for CCP
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〈ask α → (ask β → stop), α t β〉

〈ask β → stop, α t β〉

〈stop, α t β〉

〈ask α → (ask β → stop), true〉

〈ask β → stop, α〉

〈stop, α t β〉

α

β

missing

α t β

Figure 4.1.1: Counterexample for completeness using Milner’s saturation method
(cycles from MR2 omitted). Both graphs are obtained using Table 4.1.2. Also
notice that the dotted transition is not generated by the rules in Table 4.1.2.

We can now use this fact to see why the method does not work for computing
≈̇sb using CCP partition refinement. First, let us redefine some concepts using
the new transition relation =⇒. Because of condition (i) in ≈̇sb, we need a new
definition of barbs, namely weak barbs w.r.t. =⇒.

Definition 4.1.3 (Weak Barb w.r.t. =⇒). We say γ satisfies a weak barb e w.r.t.

=⇒, written γ e, if and only if γ =⇒∗ γ′ ↓e.

We shall see later on that  coincides with ⇓. Using this notion, we introduce
weak symbolic and weak irredundant bisimilarity denoted by ∼̇=⇒

sym and ∼̇=⇒
I re-

spectively. They are defined as in Definition 3.2.1 and 3.2.3, where in condition
(i) weak barbs (⇓) are replaced with  and in condition (ii) the transition relation
is now =⇒. More precisely:

Definition 4.1.4 (Weak Symbolic Bisimilarity). A weak symbolic bisimulation

is a symmetric relation R on configurations s.t. whenever (γ1, γ2) ∈ R with

γ1 = 〈P, c〉 and γ2 = 〈Q, d〉:

(i) if γ1 e then γ2 e,

(ii) if 〈P, c〉 α
=⇒ 〈P ′, c′〉 then there exists a transition t = 〈Q, d〉 β

=⇒ 〈Q′, d′′〉
s.t. t `D 〈Q, d〉

α
 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉

We say that γ1 and γ2 are weakly symbolic bisimilar, written γ1 ∼̇=⇒
sym γ2, if there

exists a weak symbolic bisimulation s.t. (γ1, γ2) ∈ R.

Definition 4.1.5 (Weak Irredundant Bisimilarity). A weak irredundant bisimula-

tion is a symmetric relationR on configurations s.t. whenever (γ1, γ2) ∈ R:
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(i) if γ1 e then γ2 e,

(ii) if γ1
α

=⇒ γ′1 and it is irredundant inR then there exists γ′2 s.t. γ2
α

=⇒ γ′2 and

(γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weakly irredundant bisimilar, written γ1 ∼̇=⇒
I γ2, if there

exists a weak irredundant bisimulation s.t. (γ1, γ2) ∈ R.

One would expect that since ∼̇sb = ∼̇sym = ∼̇I then it is the case that ≈̇sb =

∼̇=⇒
sym = ∼̇=⇒

I , given that these new notions are supposed to be the weak versions
of the former ones when using the saturation method. However, completeness is
necessary for proving ∼̇sb = ∼̇sym = ∼̇I , and from Proposition 4.1.2 we know
that =⇒ is not complete hence we might expect that ≈̇sb does not imply ∼̇=⇒

sym nor
∼̇=⇒
I . In fact, the following counter-example proves this.

Example 4.1.6. Let P, P ′ and Q as in Figure 4.1.2 and 4.1.3. The former shows

LTS−→(IS ) where IS = {〈P, true〉, 〈Q, true〉}. The latter presents LTS=⇒(IS )

where =⇒ is defined in Table 4.1.2 (Milner’s saturation method).

P = ask (α) → P ′ P ′ = (ask (β) → tell(c)) + (ask (true) → tell(d))

〈P, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α t β〉 〈stop, α t β t c〉

〈stop, α t d〉
α

β

Q = P + (ask (α t β) → tell(c))

〈Q, true〉

〈P ′, α〉

〈tell(d), α〉

〈tell(c), α t β〉 〈stop, α t β t c〉

〈stop, α t d〉

α β
α t β

Figure 4.1.2: LTS−→({〈P, true〉, 〈Q, true〉})

First, notice that 〈P, true〉≈̇sb 〈Q, true〉, since there exists a saturated weak

barbed bisimulation:

R = {(〈P, true〉, 〈Q, true〉)} ∪ id



64 CHAPTER 4. A WEAK SEMANTICS FOR CCP

P = ask (α) → P ′ P ′ = (ask (β) → tell(c)) + (ask (true) → tell(d))

〈P, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α t β〉 〈stop, α t β t c〉

〈stop, α t d〉
α

β

α
α

β

Q = P + (ask (α t β) → tell(c))

〈Q, true〉 〈P ′, α〉

〈tell(d), α〉

〈tell(c), α t β〉 〈stop, α t β t c〉

〈stop, α t d〉
α

βα t β

α
α

β

Figure 4.1.3: LTS=⇒({〈P, true〉, 〈Q, true〉}) where =⇒ is defined in Table 4.1.2
(Milner’s saturation method). The cycles from rule MR2 are omitted. The dashed
transitions are those added by the rules in Table 4.1.2. The dotted transition is the
(irredundant) one that 〈Q, true〉 can take but 〈P, true〉 cannot match, therefore
showing that 〈P, true〉 6∼̇=⇒

I 〈Q, true〉

However, 〈P, true〉 6∼̇=⇒
I 〈Q, true〉. To prove that, we need to pick an irredun-

dant transition from 〈P, true〉 or 〈Q, true〉 (after saturation) s.t. the other cannot

match. Thus, take 〈Q, true〉 αtβ−→ 〈tell(c), α t β〉 which is irredundant and given

that 〈P, true〉 does not have a transition labeled with αt β then we know that we

cannot find an irredundant bisimulation containing (〈P, true〉, 〈Q, true〉) there-

fore 〈P, true〉 6∼̇=⇒
I 〈Q, true〉. Using the same reasoning we can also show that

≈̇sb does not imply ∼̇=⇒
sym.

4.2 Reducing Weak Bisimilarity to Strong in CCP

In this section we shall provide a method for deciding weak bisimilarity in CCP.
We shall proceed by redefining =⇒ in such a way that it is sound and complete
for CCP. Then we prove that weak symbolic and irredundant bisimilarity coincide
with ≈̇sb, i.e. ≈̇sb = ∼̇=⇒

sym = ∼̇=⇒
I . We therefore conclude that the partition

refinement algorithm in Section 3.1 can be used to verify ≈̇sb.
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4.2.1 Defining a new saturation method for CCP

If we analyze the counter-example to completeness (see Figure 4.1.1), one can see
that the problem arises because of the nature of the labels in CCP, namely using
this method 〈ask α → (ask β → stop), true〉 does not have a transition
with α t β to 〈stop, α t β〉, hence that fact can be exploited to break the relation
among the weak equivalences. Following this reasoning, instead of only forgetting
about the silent actions we also take into account that labels in CCP can be added
together. Thus we have a new rule that creates a new transition for each two
consecutive ones, whose label is the lub of the labels in them. This method can
also be thought as the reflexive and transitive closure of the labeled transition
relation α−→. Such transition relation turns out to be sound and complete and it
can be used to decide ≈̇sb.

The remaining part of this section is structured as follows. First we define
a new saturation method and we proceed to prove that the weak barbs resulting
from such method are consistent with that of CCP (as in Definition 2.4.7). Then
under the assumption that −→ is finitely branching we prove that =⇒ is also
finitely branching. Moreover, we follow by showing how this method would be
inaccurate in CCS-like formalisms since it could turn a finitely branching LTS
into an infinitely branching one. With these elements we can prove soundness and
completeness, which can be finally used to prove the correspondence among ≈̇sb,
∼̇=⇒
sym and ∼̇=⇒

I .
Formally, our new transition relation =⇒ is defined by the rules in Table 4.2.1.

Remark 4.2.1. For simplicity, we shall use the same notation (=⇒) we used

for Milner’s method (Table 4.1.2) to denote the new saturation method (Table

4.2.1).Consequently the definitions of weak barbs, symbolic and irredundant bisim-

ilarity are now interpreted w.r.t. the new =⇒ as in Table 4.2.1 ( , ∼̇=⇒
sym and ∼̇=⇒

I

respectively).

First we show that  coincides with ⇓ since a transition in =⇒ corresponds to
a sequence of reductions.1

Lemma 4.2.2. γ −→∗ γ′ iff γ =⇒ γ′.
1Notice that Lemma 4.2.2 also holds for the Milner’s saturation method (Table 4.1.2)
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R-Tau
γ =⇒ γ

R-Label
γ

α−→ γ′

γ
α

=⇒ γ′
R-Add

γ
α

=⇒ γ′
β

=⇒ γ′′

γ
αtβ
=⇒ γ′′

Table 4.2.1: New saturation method.

Proof. (⇒) We can decompose γ −→∗ γ′ as follows γ −→ γ1 −→ . . . −→
γi −→ γ′, now we proceed by induction on i. The base case is i = 0, then
γ −→ γ′ and by rule R-Label we have γ =⇒ γ′. For the inductive step,
first we have by induction hypothesis that γ −→i γi implies γ =⇒ γi (1),
on the other hand, by rule R-Label on γi −→ γ′ we can deduce γi =⇒ γ′

(2). Finally by R-Add on (1) and (2) γ =⇒ γ′.

(⇐) We proceed by induction on the depth of the inference of γ =⇒ γ′. First,
using R-Tau, we can directly conclude γ −→∗ γ. Then, using R-Label,
γ =⇒ γ′ implies that γ −→ γ′. Finally, using R-Add and since α t β =

true implies α = β = true, we get γ =⇒ γ′′ =⇒ γ′ and by induction
hypothesis this means that γ −→∗ γ′′ −→∗ γ′ therefore γ −→∗ γ′.

Using this lemma, it is straightforward to see that the notions of weak barbs
coincide.2

Lemma 4.2.3. γ ⇓e iff γ e.

Proof. First, let us assume that γ ⇓e then by definition γ −→∗ γ′ ↓e, and from
Lemma 4.2.2 we know that γ =⇒ γ′ ↓e, hence γ e. On the other hand, if γ e
then by definition γ =⇒∗ γ′ ↓e, if we decompose these transitions then γ =⇒
. . . =⇒ γ′, and from Lemma 4.2.2 γ −→∗ . . . −→∗ γ′, therefore γ −→∗ γ′ ↓e,
finally γ ⇓e.

As we shall see later on, the lemma above will be used to prove the correspon-
dence between ≈̇sb and ∼̇=⇒

I .

2Notice that Lemma 4.2.3 also holds for the Milner’s saturation method (Table 4.1.2) because
of Lemma 4.2.2
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4.2.2 The new saturation method is finitely branching

An important property that the labeled transition system defined by the new rela-
tion =⇒ must fulfill is that it must be finitely branching, given that −→ is also
finitely branching. We prove this next but first let us introduce some useful nota-
tion.

Remark 4.2.4. Notice that, because of Rule R-Add, one of the requirements for

=⇒ to be finitely branching is that the number of reachable states of any con-

figuration is finite. For this reason, in this section, we shall restrict to the finite

fragment of CCP. However, even if we restrict the syntax of CCP to finite pro-

cesses, for some constraint systems −→ may be infinitely-branching due to Rule

LR3 in Table 2.4.2; i.e., there may be infinitely many minimal labels allowing

the transition. For this reason we shall sometimes explicitly assume that −→ is

defined in constraint systems that do not cause −→ to be infinitely-branching.

The set Reach(γ, ), defined below, represents the set of configurations which
results after performing one step starting from a given configuration γ and using
a relation  . Such set contains pairs of the form [γ′, α] in which the first item
(γ′) is the configuration reached and the second one (α) is the label used for that
purpose. Formally we have:

Definition 4.2.5 (Single-step Reachable Pairs). The set of Single-step reachable

pairs is defined as Reach(γ, ) = {[γ′, α] | γ α
 γ′}.

We can extend this definition to consider more than one step at a time. We will
call this new set Reach∗(γ, ) and it is defined below.

Definition 4.2.6 (Reachable Pairs). The set of reachable pairs is defined as fol-

lows: Reach∗(γ, ) = {[γ′, α] | ∃α1, . . . , αn. γ
α1 . . .

αn γ′ ∧ α = αn}.

Using the notation defined above, we shall define formally what we mean by
finitely branching as follows.

Definition 4.2.7 (Finitely Branching). We say that a transition relation  is

finitely branching if for all γ we have |Reach(γ, )| <∞.
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For convenience, in order to project the first or the second item of the reach-
able pairs we will define the functions C and L which, respectively, extract the
configuration and the label respectively (hence the name).

Definition 4.2.8 (Configurations and Labels of a reachable pair). The functions

C and L are defined as follows, C([γ, α]) = {γ} and L([γ, α]) = {α}. They

extend to set of pairs as expected, namely given a set of pairs S = {p1, . . . } then

L(S) =
⋃
pi∈S L(pi) and similarly for C.

Now, under the assumption that −→ is finitely branching, we can observe that
if the number of configurations that can be reached (in one or more steps) is finite,
then the number of labels should also be finite.

Proposition 4.2.9. Suppose −→ is finitely branching. If |C(Reach∗(γ,−→))| <
∞ for any γ, then |L(Reach∗(γ,−→))| <∞.

Proof. From the hypothesis we know that there are finite γ′ that can be reached,
and using the assumption of being finitely branching we can see that from each of
those γ′ there are only finitely possible α, hence the conclusion.

Finally, the nature of the labels in CCP is one of the reasons why our new
transition system works. The following lemma illustrates the fact that when gen-
erating new labels, with the rule R-Add (Table 4.2.1) we will not add an infinite
number of those. In the following, C∗t will represent the Kleene closure over t
of the set of constraints C.

Lemma 4.2.10. Given a set of constraints C, if |C| <∞ then |C∗t| <∞.

Proof. Follows from the commutativity and idempotence of t (c t c = c).

Using these elements, the finitely branching property of =⇒ follows directly
under the assumption that −→ is finitely branching and our restriction to finite
processes (see Remark 4.2.4).

Lemma 4.2.11. If −→ is finitely branching then =⇒ is finitely branching.
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Proof. (1) |C(Reach∗(γ,−→))| < ∞ for every γ due to our restriction to finite
processes and our assumption that −→ is finitely branching. One can verify
that C(Reach∗(γ,=⇒)) = C(Reach∗(γ,−→)) hence |C(Reach∗(γ,=⇒))| <
∞.

(2) From the hypothesis and from Proposition 4.2.9 |L(Reach∗(γ,−→))| <∞.

(3) One can check thatL(Reach(γ,=⇒)) ⊆ L(Reach∗(γ,−→))∗t therefore from
Lemma 4.2.10 and (2) |L(Reach(γ,=⇒))| <∞.
From (1) and (3) we can conclude that for any γ,=⇒ is finitely branching.

4.2.3 A Remark about our Saturation in CCS

In this section the transitions, processes and relations are understood in the con-

text of CCS [41]. It is worth noticing that we could use the saturation method
mentioned in the previous section for other formalisms like CCS, but unlike in
CCP it would not work as intended: now, the actions that a process can perform
need to be sequences and the rules in Table 4.2.1 must be replaced by those in Ta-
ble 4.2.2 (essentially, the lub operation t of CCP is replaced by the concatenation
of sequence).

RCCS1
P

τ
=⇒CCS P

RCCS2
P

s−→CCS P
′

P
s

=⇒CCS P
′

RCCS3
P

s
=⇒CCS P

′ s′
=⇒CCS P

′′

P
s.s′
=⇒CCS P

′′

Table 4.2.2: New labeled transition system for CCS. Let s = a1 . . . an be a se-
quence of observable actions. For the Rule RCCS3 we assume that s.τ = τ.s =
s.

Using these rules we can now define weak bisimilarity in terms of the new
relation =⇒CCS as follows.

Definition 4.2.12 (CCS-Weak Bisimilarity). A symmetric relation R is a CCS-

weak bisimulation if for every (P,Q) ∈ R:

• If P s
=⇒CCS P

′ then there exists Q′ s.t. Q s
=⇒CCS Q

′ and (P ′, Q′) ∈ R.
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P

a

(a) Original LTS (finitely branching).

P

...

a

a.a

τ

a.a...

(b) Saturated LTS (infinitely branching).

Figure 4.2.1: CCS Process P = a.P of Example 4.2.13

We say that P and Q are CCS-weakly bisimilar (P ≈ Q) iff there is a CSS-weak

bisimulation containing (P,Q).

This definition resembles the standard definition of strong bisimilarity, hence
we could use the procedure to verify the strong version under =⇒ in order to ver-
ify the weak one. However, by applying the rules in Table 4.2.2, even for a finite
LTS, we could end up adding an infinite number of transitions. The following
example illustrates the problem.

Example 4.2.13. Let us take a typical one-state finitely-branching CCS process

with a single transition labeled with a into itself (See Figure 4.2.1-(a)). However,

if we apply the rules in Table 4.2.2 for the example above, we end up adding an

infinite number of transitions. Hence, becoming infinitely branching (see Figure

4.2.1-(b)).

4.2.4 Soundness and Completeness

As mentioned before, soundness and completeness of the relation are the core
properties when proving ∼̇sb = ∼̇sym = ∼̇I . We now proceed to show that our
method enjoys these properties and they will allow us to prove the correspondence
among the equivalences for the weak case.

Recall that in Definition 4.1.1 we introduced the formal definition of com-
pleteness, now we shall introduce the notion of soundness.



4.2. REDUCING WEAK BISIMILARITY TO STRONG IN CCP 71

Definition 4.2.14 (Soundness). We say that  is sound iff whenever 〈P, c〉 α
 

〈P ′, c′〉 then 〈P, c t α〉 〈P ′, c′〉.

Below we shall prove that =⇒ from Table 4.2.1 is sound and complete.

Lemma 4.2.15 (Soundness of =⇒). If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then 〈P, c t α〉 =⇒

〈P ′, c′〉.

Proof. We proceed by induction on the depth of the inference of 〈P, c〉 α
=⇒

〈P ′, c′〉.

• Using R-Tau we have 〈P, c〉 =⇒ 〈P, c〉 and the result follows directly given
that α = true.

• Using R-Label we have 〈P, c〉 α
=⇒ 〈P ′, c′〉 then 〈P, c〉 α−→ 〈P ′, c′〉. By

Lemma 2.4.24 (soundness of−→) we get 〈P, ctα〉 −→ 〈P ′, c′〉 and finally
by rule R-Label 〈P, c t α〉 =⇒ 〈P ′, c′〉.

• Using R-Add then we have 〈P, c〉 βtλ=⇒ 〈P ′, c′〉 then 〈P, c〉 β
=⇒ 〈P ′′, c′′〉 λ

=⇒
〈P ′, c′〉 where β t λ = α. By induction hypothesis, 〈P, ct β〉 =⇒ 〈P ′′, c′′〉
(1) and 〈P ′′, c′′ t λ〉 =⇒ 〈P ′, c′〉 (2). By monotonicity on (1), 〈P, c t β t
λ〉 =⇒ 〈P ′′, c′′tλ〉 and by rule R-Add on this transition and (2) then, given
that β t λ = α, we obtain 〈P, c t α〉 =⇒ 〈P ′, c′〉.

Lemma 4.2.16 (Completeness of =⇒). If 〈P, c t a〉 =⇒ 〈P ′, c′〉 then there exist

α and b s.t. 〈P, c〉 α
=⇒ 〈P ′, c′′〉 where α t b = a and c′′ t b = c′.

Proof. Assuming that 〈P, c t a〉 =⇒ 〈P ′, c′〉 then, from Lemma 4.2.2, we can
say that 〈P, c t a〉 −→∗ 〈P ′, c′〉 which can be written as 〈P, c t a〉 −→ . . . −→
〈Pi, ci〉 −→ 〈P ′, c′〉, we will proceed by induction on i.

• (Base Case) Assuming i = 0 then 〈P, c t a〉 −→ 〈P ′, c′〉 and the result
follows directly from Lemma 2.4.25 (Completeness of −→) and R-Label.

• (Induction) Let us assume that 〈P, c t a〉 −→i 〈Pi, ci〉 −→ 〈P ′, c′〉 then
by induction hypothesis there exist β and b′ s.t. 〈P, c〉 β

=⇒ 〈Pi, c′i〉 (1)
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where β t b′ = a and c′i t b′ = ci. Now by completeness on the last

transition 〈Pi,
c′itb′︷︸︸︷
ci 〉 −→ 〈P ′, c′〉, there exists λ and b′′ s.t. 〈Pi, c′i〉

λ−→
〈P ′, c′′〉 where λ t b′′ = b′ and c′′ t b′′ = c′, thus by rule R-Label we have
〈Pi, c′i〉

λ
=⇒ 〈P ′, c′′〉 (2). We can now proceed to apply rule R-Add on (1)

and (2) to obtain the transition 〈P, c〉 α
=⇒ 〈P ′, c′′〉 where α = β t λ and

finally take b = b′′, therefore the conditions hold α t b = β t λ t b′′ = a

and c′′ t b = c′′ t b′′ = c′.

4.3 Deciding Weak Bisimilarity

In this section we shall show the main result of this chapter, a method for deciding
≈̇sb. Recall that ≈̇sb is the standard weak bisimilarity for CCP [6], and it is defined
in terms of −→, therefore it does not depend on =⇒. We start from the fact that
using CCP partition refinement (Section 3.1) one can check whether two config-
urations are irredundant bisimilar (∼̇I). Following the same approach, we prove
that ≈̇sb = ∼̇=⇒

sym = ∼̇=⇒
I hence we give a reduction from ≈̇sb to ∼̇=⇒

I . Finally,
∼̇=⇒
I can be verified using a modified version of the CCP partition refinement as

we shall see at the end of next section.

4.3.1 Weak Irredundant and Weak Saturated Bisimilarity co-
incide

First, given that =⇒ is sound and complete (Lemma 4.2.15 and Lemma 4.2.16),
the correspondence between the symbolic and irredundant bisimilarity follows
from the results in Section 3.2.1.

Corollary 4.3.1. γ ∼̇=⇒
sym γ′ iff γ ∼̇=⇒

I γ′

Finally, in the next two lemmata, we prove that ≈̇sb = ∼̇=⇒
sym.

Lemma 4.3.2. If γ ≈̇sb γ′ then γ ∼̇=⇒
sym γ′
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Proof. We need to prove that R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉≈̇sb〈Q, d〉} is a sym-
bolic bisimulation over =⇒. The first condition (i) of the bisimulation follows di-
rectly from Lemma 4.2.3. As for (ii), let us assume that 〈P, c〉 α

=⇒ 〈P ′, c′〉 then by
soundness of =⇒ we have 〈P, ctα〉 =⇒ 〈P ′, c′〉, now by Lemma 4.2.2 we obtain
〈P, ctα〉 −→∗ 〈P ′, c′〉. Given that 〈P, c〉≈̇sb〈Q, d〉 then from the latter transition
we can conclude that 〈Q, dtα〉 −→∗ 〈Q′, d′〉 where 〈P ′, c′〉≈̇sb〈Q′, d′〉, hence we
can use Lemma 4.2.2 again to deduce that 〈Q, dtα〉 =⇒ 〈Q′, d′〉. Finally, by com-
pleteness of =⇒, there exist β and b s.t. t = 〈Q, d〉 β

=⇒ 〈Q′, d′′〉 where β t b = α

and d′′ t b = d′, therefore t `D 〈Q, d〉
α
 〈Q′, d′〉 and 〈P ′, c′〉R〈Q′, d′〉.

Lemma 4.3.3. If γ ∼̇=⇒
sym γ′ then γ ≈̇sb γ′

Proof. We need to prove thatR = {(〈P, cta〉, 〈Q, dta〉) | 〈P, c〉∼̇=⇒
sym〈Q, d〉} is

a weak saturated bisimulation. First, condition (i) follows form Lemma 4.2.3 and
(iii) by definition ofR. Let us prove condition (ii), assume 〈P, cta〉 −→∗ 〈P ′, c′〉
then by Lemma 4.2.2 〈P, c t a〉 =⇒ 〈P ′, c′〉. Now by completeness of =⇒ there
exist α and b s.t. 〈P, c〉 α

=⇒ 〈P ′, c′′〉 where α t b = a and c′′ t b = c′. Since
〈P, c〉∼̇=⇒

sym〈Q, d〉 then we know there exists a transition t = 〈Q, d〉 β
=⇒ 〈Q′, d′〉

s.t. t `D 〈Q, d〉
α
 〈Q′, d′′〉 and (a)〈P ′, c′′〉∼̇=⇒

sym〈Q′, d′′〉, by definition of `D
there exists b′ s.t. βt b′ = α and d′t b′ = d′′. Using soundness of =⇒ on t we get
〈Q, dt β〉 =⇒ 〈Q′, d′〉, thus by Lemma 4.2.2 〈Q, dt β〉 −→∗ 〈Q′, d′〉 and finally
by monotonicity

〈Q, d t
a︷ ︸︸ ︷

β t b′︸ ︷︷ ︸
α

tb〉 −→∗ 〈Q′,
d′′︷ ︸︸ ︷

d′ t b′ tb〉 (4.1)

Then, the transition 〈P, c t a〉 −→∗ 〈P ′, c′〉 can be rewritten as 〈P, c t a〉 −→∗

〈P ′, c′′ t b〉, and using (4.1), 〈Q, d t a〉 −→∗ 〈Q′, d′′ t b〉. It is left to prove that
〈P ′, c′′ t b〉R〈Q′, d′′ t b〉 which follows from (a) and Corollary 3.2.15.

Using Lemma 4.3.2 and Lemma 4.3.3 we obtain the following theorem.

Theorem 4.3.4. 〈P, c〉∼̇=⇒
sym〈Q, d〉 iff 〈P, c〉≈̇sb〈Q, d〉

From the above results, we conclude that ≈̇sb = ∼̇=⇒
I .
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4.3.2 Algorithm for weak bisimilarity in CCP

In this section we describe the decision procedure for verifying weak version of
saturated bisimilarity (≈̇sb). Given two configurations γ and γ′, the first step is
to build G = LTS−→(IS ) where IS = {γ, γ′}. We proceed to compute G′ =

LTS=⇒(IS ), and then run an adaptation of Algorithm 3.1.2 on G′. The adaptation
consists in using weak barbs (⇓) instead of barbs (↓) for the initial partition P0,
and in using =⇒ as a parameter of Algorithm 4.3.1.

Algorithm 4.3.1 weak-pr-ccp(IS , )

Initialization

1. Compute IS ? with the rules (ISIS
 ), (RSIS

 ), (RDIS
 ) defined in Table 3.1.1,

2. P0 = {B1} . . . {Bm} is a partition of IS ? where γ and γ′ are in Bi iff they
satisfy the same weak barbs (⇓c),

Iteration Pn+1 := IR (Pn) as in Definition 3.1.9
Termination If Pn = Pn+1 then return Pn.

Using this algorithm we can decide ≈̇sb also with exponential time as we shall
see below. First, let us determine the complexity of computing LTS=⇒(IS ).

Proposition 4.3.5. Assume that −→ is finitely branching (Definition 4.2.7). Let

G = LTS−→(IS ) and G′ = LTS=⇒(IS ). Let N = |V(G)| = |E(G)|, N ′ =

|V(G′)| and M ′ = |E(G)|. We have that N ′ = N and M ′ = O(N2).

Proof. By construction of γ′ the rules in Table 4.2.1 never add a new vertex, thus
it follows directly that N ′ = N . As for the edges, the rules in Table 4.2.1 will
add, at most, a transition from each element in V(G) to every other configuration
in V(G). Since V(G) = N then the resulting transitions are M ′ = O(N2).

We now show that the size of IS ?=⇒ may be exponential w.r.t. |Config−→(IS )|
exploiting the same example as in Theorem 3.2.16.

Lemma 4.3.6. There exists IS such that |IS ?=⇒| = Ω(2|Config−→(IS)|).

Proof. Using the same approach as in Theorem 3.2.16

We can now state correctness and complexity of weak-pr-ccp(IS ,=⇒).
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Theorem 4.3.7. Assume that −→ is finitely branching (Definition 4.2.7). Let γ

and γ′ be two CCP configurations. Let IS = {γ, γ′} and let P be the output of

weak-pr-ccp(IS ,=⇒) in Algorithm 4.3.1. If IS ?=⇒ is finite then the algorithm

terminates and:

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-ccp(IS ,=⇒) may take exponential time in |Config−→(IS )|.

Proof. The first point follows from Corollary 4.3.1 (∼̇=⇒
sym = ∼̇=⇒

I ) and Theorem
4.3.4 (∼̇=⇒

sym = ≈̇sb). For the second point, as for the strong case, the exponential
time is due to construction of the set IS ?=⇒ in step 1 of weak-pr-ccp(IS ,=⇒),
whose size is exponential in |Config−→(IS )| as shown in Lemma 4.3.6).

As we did for the algorithm for strong bisimilarity (Algorithm 3.1.2 we need
to prove that if the set Config−→(IS ) of all configurations reachable from IS is fi-
nite, then IS ?−→ is finite. As we said before this condition can be easily guaranteed
by restricting to a finite fragment of CCP.

Theorem 4.3.8. Let IS be a set of configurations. If Config−→(IS ) is finite, then

IS ?=⇒ is finite.

Proof. Follows from Theorem 3.2.17 since =⇒ does not add any new state.

4.4 Summary and Related Work

We showed that the weak transition relation using Milner’s saturation method is
not complete for CCP (in the sense of Definition 4.1.1). This implied that ≈̇sb
(Definition 2.4.10) cannot be computed immediately by using the CCP partition
refinement algorithm for (strong) bisimilarity CCP on the saturated transition re-
lation. We then introduced a new transition relation using a different saturation
mechanism and showed that it is complete for CCP and also that it is finitely
branching. As a consequence, we also showed that the CCP partition refinement
can be used to compute ≈̇sb using this new relation. Likewise, we have shown
that although this new saturation method elaborated for CCP could be used for
any other formalisms such as CCS, it would not work as desired because it could
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transform a finitely branching LTS into an infinitely branching one. To the best of
our knowledge, this is the first approach to verifying weak bisimilarity for CCP.

CCP is not the only formalism where weak bisimilarity cannot be naively re-
duced to the strong one. Probably the first case in literature can be found in [67]
that introduces an algorithm for checking weak open bisimilarity of π-calculus.
This algorithm is rather different from ours, since it is on-the-fly [25] and thus it
checks the equivalence of only two given states (while our algorithm, and more
generally all algorithms based on partition refinement, check the equivalence of all
the states of a given LTS). These algorithms have a polynomial upper bound time
complexity. The present algorithm has an exponential time complexity. However,
they deal with very different formalisms. Also [9] defines weak labeled transitions
following the above-mentioned standard method which does not work in the CCP
case.

Analogous problems to the one discussed in this paper arise in Petri nets
[65, 18], in tile transition systems [29, 17] and, more generally, in the theory
of reactive systems [64, 39, 33] (the interested reader is referred to [66] for an
overview). In all these cases, labels form a monoid where the neutral element is
the label of internal transitions. In the case of CCS, the fact that a system may
perform a transition with a composed label a; b means that it may perform first a
transition with a and then a transition with b. This property, which in tile systems
[29, 17] is known as vertical decomposition, does not hold for CCP and for the
other formalisms mentioned above. As a consequence of this fact, when reducing
from weak to strong bisimilarity, one needs to close the transitions with respect
to the composition of the monoid (and not only with respect to the neutral ele-
ment). However, usually, labels composition is not idempotent (as it is for CCP)
and thus a finite LTS might be transformed into an infinite one. For this reason,
this procedure applied to the afore mentioned cases is not effective for automatic
verification.

Publications from this Chapter

The material of this chapter has been published in the following papers:
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• [7] A. Aristizabal, F. Bonchi, L. Pino, F. Valencia, Reducing Weak to Strong
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Chapter 5

Computing bisimilarity in
Choice-Free CCP

In the previous chapters we presented two methods for computing strong saturated
barbed bisimilarity ∼̇sb (Definition 2.4.9) and its weak version ≈̇sb (Definition
2.4.10). This is achieved by adapting the well-known partition refinement algo-
rithm from Section 2.3 together with the concept of irredundant bisimilarity ∼̇I
(Definition 3.2.1). This chapter is devoted to the development of more efficient
methods for computing ≈̇sb. Recall that, from the Proposition 2.4.21 we know
that, in the choice-free fragment (CCP\+), ≈̇sb coincides with the observational
equivalence ∼o (Definition 2.4.19).

In Section 5.1 we begin by proving that the partition refinement for CCP from
Section 3.1 is inefficient even for the choice-free fragment (CCP\+). Then we
explain some properties which are particular to CCP\+. Such properties are used
to develop a polynomial procedure, based on the partition refinement algorithm,
for checking observational equivalence in CCP\+. The intuition is that, in CCP\+,
irredundant transitions can be precomputed, thus we can avoid the exponential
explosion by deleting them before running the partition refinement. In Section
5.2 we introduce our second, more efficient, method for deciding observational
equivalence by using the compact input-output sets. Roughly speaking, the idea
is to find a canonical representation of the set of outputs obtained after running
the initial configurations with every possible input. This set is then compared to

79
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check whether or not the initial configurations have the same behavior. Finally, in
Section 5.3, we show how the procedure from Section 5.1 can be used as a sort of
heuristic for checking ≈̇sb in the full CCP.

5.1 Using Partition Refinement in choice-free CCP

In the previous chapter, we presented a procedure to verify ≈̇sb for CCP and we
saw how this method takes exponential time (in the size of the LTS) to check
whether two configurations are weakly bisimilar.

Remark 5.1.1. While some of our results in previous chapters regarding the dif-

ferent bisimilarity notions are true even for infinite CCP processes, in this chapter

we shall focus on a finite CCP since we shall only deal with new algorithms.

Notice that this is the same restriction we imposed for the correctness (Theorem

3.2.16 and 4.3.7) of the partition refinement algorithms defined previously (Algo-

rithm 3.1.2 and 4.3.1).

In this section, we will explore what happens with such procedure when we
restrict ourselves to CCP\+. We shall see that pr-ccp(IS ,−→) may also be
exponential time for inputs from the CCP\+ fragment.

Let us consider the following CCP\+ construction.

Example 5.1.2. Let n > 0. We define P n = P n
0 with P n

i , for i ∈ {0, . . . , n− 1},
given by:

P n
i = (ask (ai) → (ask (bi) → P n

i+1)) ‖ (ask (bi) → stop)

and P n
n = tell(bn). Furthermore, we assume that for all i ∈ {0, . . . , n − 1} we

have ai v bi and for all j ∈ {0, . . . , n− 1} if i 6= j then ai 6v aj and bi 6v bj . The

LTS for 〈P n, true〉 is illustrated in Figure 5.1.1.

One can verify that by taking IS = {〈P n, true〉} as in the example above,
then the size of IS ?−→ in Algorithm 3.1.2 grows exponentially with n, essentially
because of the rule (RDIS

−→).
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〈Pn, true〉

〈LPn0 , a0〉 〈RPn0 , b0〉

〈LLPn0 , b0〉 〈LRPn0 , b0〉

a0 b0

b0 b0

〈Pn1 , b0〉

Pn = (ask (a0) → (ask (b0) → Pn1 )) ‖ (ask (b0) → stop)

LPn0 = (ask (b0) → Pn1 ) ‖ (ask (b0) → stop)

RPn0 = (ask (ai) → (ask (bi) → Pni+1)) ‖ stop)

LLPn0 = Pn1 ‖ (ask (b0) → stop)

LRPn0 = (ask (b0) → Pn1 ) ‖ stop

New nodes after Rule (RDIS
−→)

〈LPn0 , b0〉

〈LPn1 , b0 t b1〉

〈LPn1 , b0 t b1〉

Figure 5.1.1: LTS−→(IS ) where IS = {〈P n, true〉} as in Example 5.1.2. The
configurations in the right part are generated by (RDIS

−→) applied to the source
nodes of the dotted arrows. Some transitions and stop processes were omitted for
clarity.

Proposition 5.1.3. Let γ = 〈P n, true〉 and take IS = {γ}. Let P be the output of

pr-ccp(IS ,−→) using Algorithm 3.1.2, then pr-ccp(IS ,−→) takes at least

exponential time in n.

Proof. Following the same approach of the proof of Theorem 3.2.16 notice that
that size of the set of reachable states |Config−→(IS )| is 6n. By using the rules
(ISIS
 ), (RSIS

 ) and (RDIS
 ) in Table 3.1.1 with =−→ and also IS = {〈P n, true〉},

we obtain an IS ?−→ whose size is given by the following recurrence relation, for
n > 0: f(n) = 2f(n− 1) + 6 with f(0) = 2. In this case, there are six states per
level as well as two copies of 〈LP n

1 , b0 t b1〉 which generate f(n− 1) states (one
level less). By solving the recurrence we can conclude that f(n) = Ω(2n) thus
constructing IS ?=⇒ takes at least exponential time in n.

The main problem is that the procedure does not distinguish between choice-
free processes and the normal CCP processes. Therefore, it is unable to exploit
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the underlying properties of CCP\+ and the algorithm will perform (in the worst-
case) inherently the same as for the full CCP, as evidenced in the example above.

5.1.1 Properties of CCP without choice

In this section we will state some features that (unlike the full CCP) this fragment
possess. The first property is that CCP\+ is confluent as shown in Proposition
2.4.6. Intuitively, in CCP\+, if from a given configuration we have two possible
reductions (−→), then we are guaranteed that they will coincide at some point of
the computation. Recall that Conf CCP\+ is the set of all CCP\+ configurations, i.e.
configurations whose process is choice-free.

Before discussing the second property, we need to introduce some notation.
We shall call derivatives (of γ) the successors reached via (zero or more) reduc-
tions (−→∗) starting from a given configuration γ.

Definition 5.1.4 (Derivatives). The derivatives of a configuration γ, written Deriv(γ),

are defined as Deriv(γ) = {γ′ | γ −→∗ γ′}.

Using this notation, we can now state another property of CCP\+. A CCP\+
configuration is weakly bisimilar to all its derivatives.

Lemma 5.1.5. Let γ ∈ Conf CCP\+. For all γ′ ∈ Deriv(γ) we have γ ≈̇sb γ′.

Proof. (i) If γ1 ⇓e then by definition γ1 −→∗ γ′1 ↓e. By confluence (Proposition
2.4.6) γ′1 −→∗ γ3 and thus γ3 ↓e (since constraints can only be added). Since
γ2 −→∗ γ3 ↓e we conclude that γ2 ⇓e.

(ii) If γ1 −→∗ γ′1, then by confluence γ′1 −→∗ γ3 and therefore (γ′1, γ2) ∈ R.

(iii) Finally, let γ1 = 〈P1, c1〉 and γ2 = 〈P2, c2〉. If 〈P1, c1〉 −→∗ 〈P3, c3〉 and
〈P2, c2〉 −→∗ 〈P3, c3〉, then 〈P1, c1te〉 −→∗ 〈P3, c3te〉 and 〈P2, c2te〉 −→∗

〈P3, c3 t e〉 and thus (〈P1, c1 t e〉, 〈P2, c2 t e〉) ∈ R.

The proof above relies on the intrinsic confluent nature of CCP\+ (Proposition
2.4.6) and this lemma will be central for the results we will present next. In the
next section we shall take advantage of these properties to check ≈̇sb for CCP\+
configurations.
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5.1.2 Optimizing partition refinement for choice-free CCP

We presented how the partition refinement for CCP performs for CCP\+ as well
as some properties of the configurations of this fragment. In this section, using
such features, we shall show that the complexity of weak-pr-ccp(IS ,=⇒) can
be improved, thus we can check ≈̇sb in a more efficient manner.

Due to the nature of CCP\+, determining which are the redundant transitions
w.r.t. ≈̇sb (Definition 3.1.6) becomes an easier task. As we explained in Section
3.1, the purpose of rule (RDIS

 ) from Table 3.1.1 is to add some configurations to
IS ? that will be used to check redundancy at each iteration of Algorithm 3.1.2.
In CCP\+ these additional configurations are not necessary. But before we arrive
to this let us introduce some definitions first.

Definition 5.1.6 (Maximal Weak Transition). We say that γ goes with α to γ′ with

a maximal weak transition, written γ α
=⇒max γ

′, iff γ α
=⇒ γ′ 6−→.

The definition above reflects the fact that when γ α
=⇒max γ

′ then γ′ has no
more information to deduce without the aid of the environment, namely no further
reduction (−→) is possible. As =⇒, the maximal weak transition relation =⇒max

is sound and complete.

Lemma 5.1.7. (Soundness) If 〈P, c〉 α
=⇒max 〈P ′, c′〉 then 〈P, c t α〉 =⇒max

〈P ′, c′〉. (Completeness) If 〈P, c t a〉 =⇒max 〈P ′, c′〉 then there exists α and b

such that 〈P, c〉 α
=⇒max 〈P ′, c′′〉 where α t b = a and c′′ t b = c′.

Proof. Follows from the soundness and completeness of =⇒ (Lemma 4.2.15 and
4.2.16) and from the fact that LTS−→({〈P, c〉}) is finite.

As one would expect, =⇒max can also be used to compute ≈̇sb and the com-
plexity of the procedure is similar to the case of =⇒ (Theorem 4.3.7).

Theorem 5.1.8. Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′}, let P
be the output weak-pr-ccp(IS ,=⇒max) using Algorithm 4.3.1. If IS ?=⇒max

is

finite then the algorithm terminates and:

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-ccp(IS ,=⇒max) may take exponential time in |Config−→(IS )|.
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Proof. Follows from the correctness of =⇒max (Lemma 5.1.7), the results in
Chapter 4 and Theorem 4.3.7.

Nevertheless, in CCP\+, the maximal weak transitions =⇒max satisfy a par-
ticular property that allow us to erase the redundant transitions w.r.t. ≈̇sb before
computing ≈̇sb itself.

Proposition 5.1.9. Let γ = 〈P, c〉 ∈ Conf CCP\+. Let t1 = γ
α

=⇒max 〈P1, c1〉 and

t2 = γ
β

=⇒max 〈P2, c2〉. We have that α @ β and 〈P1, c1 t β〉 −→∗ 〈P ′, c2〉 6−→
iff t1 �≈̇sb t2.

Proof. (⇒) By soundness on t1 we have 〈P, c t α〉 =⇒max 〈P1, c1〉 then by
definition 〈P, ctα〉 =⇒ 〈P1, c1〉 now by monotonicity 〈P, ctβ〉 =⇒ 〈P1, c1tβ〉
and then 〈P, ctβ〉 −→∗ 〈P1, c1tβ〉 then by Lemma 5.1.5 〈P, ctβ〉≈̇sb〈P1, c1tβ〉.
Using a similar reasoning on t2 we can conclude that 〈P, ctβ〉≈̇sb〈P2, c2〉 and by
transitivity 〈P1, c1 t β〉≈̇sb〈P2, c2〉. Finally take t′ = (γ, β, 〈P1, c1 t β〉), hence
we can conclude that t1 �≈̇sb t2 since t1 �D t′ and 〈P1, c1 t β〉≈̇sb〈P2, c2〉.

(⇐) Assume that t1 �≈̇sb t2 then there exists t′ = (γ, β, 〈P1, c
′〉) such that

t1 �D t′ and 〈P1, c
′〉≈̇sb〈P2, c2〉. By t1 �D t′ we know that α @ β and c′ = c1tβ.

Now since 〈P2, c2〉 6−→ by definition of =⇒max, therefore by condition (i) of
≈̇sb we have c′ v c2. Moreover, 〈P1, c

′〉 −→∗ 〈P ′, c3〉 where c2 v c3. By
contradiction let c2 6= c3 then c2 @ c3, thus there is e s.t. 〈P1, c

′〉 ⇓e but since
〈P2, c2〉 6−→ then 〈P2, c2〉 6⇓e and so 〈P1, c

′〉 6≈̇sb〈P2, c2〉, an absurd. Thus c3 = c2

hence 〈P1, c
′〉 −→∗ 〈P ′, c2〉 6−→ .

Using this property we can define a new procedure for deciding ≈̇sb that does
not use Rule (RDIS

 ) since redundancy can be checked and erased using Proposi-
tion 5.1.9 (Algorithm 5.1.1, Step 2).
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Algorithm 5.1.1 weak-pr-dccp(IS )

Initialization

1. Compute G = LTS=⇒max(IS ) using the rules (ISIS
=⇒max

) and (RSIS
=⇒max

),

2. G′ = remRed(G) where the graph remRed(G) results from removing from
G the redundant transitions w.r.t. ≈̇sb,

3. P0 = {B1} . . . {Bm} is a partition of V(G′) where γ and γ′ are inBi iff they
satisfy the same weak barbs (⇓e),

Iteration Pn+1 := F=⇒max(Pn) as defined in Definition 2.3.2
Termination If Pn = Pn+1 then return Pn.

The key idea is that in order to compute ≈̇sb, with the redundancy removed,
it suffices to refine the partitions using F=⇒max(P) (defined by Definition 2.3.2)
instead of IR=⇒max(P). Algorithm 5.1.1 can be used to decide ≈̇sb for configura-
tions in Conf CCP\+ with polynomial time.

Theorem 5.1.10. Let γ and γ′ be two CCP\+ configurations. Let IS = {γ, γ′},
let P be the output of weak-pr-dccp(IS ) in Algorithm 5.1.1 and let N =

|Config−→(IS )|. If IS ?=⇒max
is finite then the algorithm terminates and:

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-dccp(IS ) takes O(N3) time and uses O(N2) space.

Proof. The first item follows from the Theorem 4.3.7 and Proposition 5.1.9. As
for the second item:
(Step 1) G = LTS=⇒max(IS ) takes O(N2) time and space since =⇒max will add,
at most, a transition from each element in V(G) to every other configuration in
V(G) and |V(G)| = |Config−→(IS )| = N .
(Step 2) Each node in V(G) has at most N − 1 outgoing transitions, then G′ =

remRed(G) takes O((N − 1) ∗ (N − 1)) = O(N2) per node, thus this step takes
O(N2 ∗N) = O(N3) time.
(Step 3) P0 can be created in O(N2) by definition of =⇒max.
(Iteration) Using the procedure from Tarjan et al. [50], this step takesO(|E| log |V |)
time and uses O(|E|) space. Therefore, since |V(G)| = N and |E(G)| = N2,
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hence we have O(N2 logN) and O(N2) space.
We can conclude that weak-pr-dccp(IS ) takes O(N3) time and uses O(N2)

space.

Thanks to Proposition 5.1.9, by removing redundant transitions, we can solve
the problem of checking bisimilarity for CCP\+ with the standard solutions for
checking bisimilarity. In Algorithm 5.1.1, we have used the “classical” partition
refinement, but different, more effective solutions, are possible. For instance, ex-
ecuting the algorithm in [23] (after having removed all the redundant transitions)
would require at most O(|E| + |V |) steps. Note however that, due to the closure
needed for weak transitions (Table 4.2.1), |E| is usually quadratic w.r.t. the num-
ber of states |V |. In the following section, we introduce a novel procedure which
avoids such expensive closure.

5.2 The compact input-output sets approach

In the previous section we improved the CCP exponential-time decision procedure
for ≈̇sb to obtain a polynomial-time procedure for the special case of the choice-
free fragment CCP\+. Recall that in CCP\+, the relation ≈̇sb coincides with the
standard notion of observational equivalence.

In this section, we will present an alternative approach for verifying observa-
tional equivalence for CCP\+ that improves on the time and space complexity of
Algorithm 5.1.1.

Roughly speaking our approach consists in reducing the problem of whether
two given CCP\+ configurations γ, γ′ are in ≈̇sb to the problem of whether γ and
γ′ have the same minimal finite representation of the set of weak barbs they satisfy
in every possible context.

5.2.1 Weak bisimilarity and barb equivalence

First we will show that, in CCP\+, we can give characterization of ≈̇sb in terms
of the simpler notion of weak-barb equivalence defined below. Intuitively, two
configurations are saturated weakly bisimilar if and only if for every possible aug-
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mentation of their stores, the resulting configurations satisfy the same weak barbs.
More precisely,

Definition 5.2.1 (Barb equivalence). 〈P, c〉 and 〈Q, d〉 are (weak) barbed equiva-

lent, written 〈P, c〉 ∼wb 〈Q, d〉, iff

∀e, α ∈ Con0. 〈P, c t e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α

Let us give an example.

Example 5.2.2. Let P = tell(true) and Q = ask (c) → tell(d). We can

show that 〈P, true〉 ∼wb 〈Q, true〉 when d v c (as in Example 2.4.12). One can

check that for all c′ we have 〈P, c′〉 ⇓c′ and 〈Q, c′〉 ⇓c′ . Notice that whenever c is

entailed then tell(d) does not add any more information since d v c.

The full characterization of ≈̇sb in terms of weak-barbed equivalence is given
next. Notice that the following theorem uses Lemma 5.1.5 which itself depends
on the confluent nature of CCP\+.

Theorem 5.2.3. Let 〈P, c〉 and 〈Q, d〉 be CCP\+ configurations. 〈P, c〉≈̇sb〈Q, d〉
iff 〈P, c〉 ∼wb 〈Q, d〉

Proof. (⇒) Assume that 〈P, c〉≈̇sb〈Q, d〉 then by condition (i) of ≈̇sb (Definition
2.4.9) we have ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α, hence in combination with
condition (iii) we can conclude 〈P, c t e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α.

(⇐) LetR = {(〈P, c〉, 〈Q, d〉) | ∀e, α ∈ Con0. 〈P, cte〉 ⇓α⇔ 〈Q, dte〉 ⇓α},
we prove thatR is a weak saturated barbed bisimulation:
(i) Take e = true then ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α.
(ii) Assume that 〈P, c〉 −→∗ 〈P ′, c′〉, by Lemma 5.1.5 〈P, c〉≈̇sb〈P ′, c′〉 hence by
(⇒) we can conclude that 〈P ′, c′〉R〈Q, d〉.
(iii) Assume 〈P, c〉R〈Q, d〉 then for all e′ we have 〈P, c t e′〉R〈Q, d t e′〉 just by
taking e = e′.

We shall show a compact representation of the set of weak barbs of a config-
uration under any possible context. First we introduce some convenient notation
for this purpose. The set J〈P, c〉K will contain pairs of the form (α, e).
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Definition 5.2.4 (Input-Output set). The input-output set of a given configuration

〈P, c〉 is defined as follows:

J〈P, c〉K def
= {(α, e) | 〈P, c t α〉 ⇓e}

Let us give an example.

Example 5.2.5. Let γ = 〈ask a → tell(b), true〉 where b 6v a.

JγK = {(α, α)|α @ a or a 6v α} ∪ {(β, β t b)|a v β}

Intuitively, each pair (α, e) ∈ J〈P, c〉K denotes a stimulus-response, or input-
output, interaction of γ = 〈P, c〉: If the environment adds α to the store of γ,
the resulting configuration 〈P, c t α〉 may evolve, without any further interaction
with the environment, into a configuration whose store entails e. In other words
〈P, c t α〉 ⇓e. We can think of e as piece of information that 〈P, c t α〉 may
produce.

The following corollary is an immediate consequence of the definitions.

Corollary 5.2.6. J〈P, c〉K = J〈Q, d〉K iff 〈P, c〉 ∼wb 〈Q, d〉

Proof. (⇒) Assume (β, a) ∈ J〈P, c〉K then 〈P, c t β〉 ⇓a. Hence, we can take
e = β and by hypothesis 〈Q, d t β〉 ⇓a therefore (β, a) ∈ J〈Q, d〉K.

(⇐) Assume that 〈P, c t β〉 ⇓a for some β and a, then (β, a) ∈ J〈P, c〉K and by
hypothesis (β, a) ∈ J〈Q, d〉K therefore by definition 〈Q, d t β〉 ⇓a.

We now introduce the notion of relevant input-output pair.

Definition 5.2.7 (Relevant Pair). Let (α, e) and (β, e′) be elements from Con0 ×
Con0. We say that (α, e) is more relevant than (β, e′), written (α, e) � (β, e′), iff

α v β and e′ v (e t β). Similarly, given p = (β, e′) s.t. p ∈ S , we say that the

pair p is irrelevant in S if there is a pair (α, e) ∈ S more relevant than p, else p is

said to be relevant in S.

Let us illustrate this with an example.
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Example 5.2.8. Let S = {(true, true), (α, α), (αtβ, αtβt c)} where α, β, c ∈
Con0 are not related to each other. Notice that (true, true) � (α, α) however

(true, true) 6� (αtβ, αtβtc). This means that (true, true) and (αtβ, αtβtc)
are relevant in S and (α, α) is irrelevant in S.

Recall the stimulus-response intuition given above. In other words, the pair
(β, e′) is irrelevant in a given input-output set if there exists another pair (α, e)

in the set that represents the need for less stimulus from the environment, hence
the condition α v β, to produce at least as much information, with the possible
exception of information that β may entail but α does not. Hence e′ v e t β.

We now list two important properties of � that will be useful later on. The set
J〈P, c〉K is closed w.r.t. �.

Proposition 5.2.9. Let (α, e) ∈ J〈P, c〉K. If (α, e) � (β, e′) then (β, e′) ∈ J〈P, c〉K.

Proof. By definition 〈P, ctα〉 ⇓e then by monotonicity 〈P, ctβ〉 ⇓etβ so 〈P, ct
β〉 ⇓e′ since e′ v (e t β), therefore (β, e′) ∈ J〈P, c〉K.

Moreover, the relation � is well-founded. More precisely,

Proposition 5.2.10. There is no infinite strictly descending chain p1 ≺ p2 ≺ . . . .

Proof. Follows from the well-foundedness of v (Remark 2.4.3)

5.2.2 A canonical representation of choice-free configurations

Clearly J〈P, c〉Kmay be infinite due potential existence of infinitely many arbitrary
stimuli (inputs). By using the labeled transition semantics (Table 2.4.2) we shall
show that we do not need consider arbitrary inputs but only the minimal ones.
Recall that in γ α−→ γ′ the label α represents the minimal information needed to
evolve from γ to γ′.

Definition 5.2.11 (Labeled Input-Output Set). The Labeled Input-Output Set of a

configuration 〈P, c〉, denoted asM(〈P, c〉), is inductively defined as follows:

{(true, c)} ∪
⋃

〈P,c〉 α−→〈P ′,c′〉

({(α, c′)} ∪ (α⊗M(〈P ′, c′〉)))
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where ⊗ : Con0 × 2Con0×Con0 −→ 2Con0×Con0 is defined as:

α⊗ S def
= {(α t β, e) | (β, e) ∈ S)}

Let us illustrate this definition with an example.

Example 5.2.12. Let γ = 〈ask (α) → (ask (β) → tell(c)), true〉 and

γ′ = 〈ask (α t β) → tell(c), true〉 where α, β, c ∈ Con0 are not related to

each other. Let us assume that α and β are the minimal elements that allow γ and

γ′ to proceed. Their corresponding labeled input-output sets are as follows:

M(γ) = {(true, true), (α, α), (α t β, α t β), (α t β, α t β t c)}

M(γ′) = {(true, true), (α t β, α t β), (α t β, α t β t c)}

Nevertheless, labeled-based input-output sets do not give us a fully-abstract
representation of the input-output sets because of the existence of irrelevant pairs.
By excluding these pairs we obtain a compact and fully-abstract representation of
input-output sets.

Definition 5.2.13 (Compact Input-Output Set). The Compact Input-Output Set of

a configuration 〈P, c〉 is defined as follows:

MC(〈P, c〉) def
= {(α, e) | (α, e) ∈M(〈P, c〉) and (α, e) is relevant inM(〈P, c〉)}

Let us give an example.

Example 5.2.14. Let γ and γ′ as in Example 5.2.12. Using the same reasoning

as in Example 5.2.8 one can check that:

MC(γ) =MC(γ′) = {(true, true), (α t β, α t β t c)}

We shall now show the full-abstraction of the compact input-output sets. We
need the following lemmata. First, compact sets are closed under weak transitions
(=⇒). More precisely:

Proposition 5.2.15. If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then (α, c′) ∈M(〈P, c〉).
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Proof. By induction on the depth of the inference of 〈P, c〉 α
=⇒ 〈P ′, c′〉.

• Using Rule R-Tau we have 〈P, c〉 =⇒ 〈P, c〉 and (true, c) ∈M(〈P, c〉) by
definition.

• Using Rule R-Label we have 〈P, c〉 α−→ 〈P ′, c′〉 and (α, c′) ∈ M(〈P, c〉)
by definition.

• Using Rule R-Add we have 〈P, c〉 α′′
=⇒ 〈P ′′, c′′〉 α′

=⇒ 〈P ′, c′〉 where α′ t
α′′ = α. Then by induction hypothesis (α′′, c′′) ∈ M(〈P, c〉) and (α′, c′) ∈
M(〈P ′′, c′′〉), hence by definition of M(〈P, c〉) we have (α′ t α′′, c′) ∈
M(〈P, c〉) so (α, c′) ∈M(〈P, c〉).

The following proposition states that whenever a pair (α, e) is inM(〈P, c〉),
it means that e can be reached from 〈P, c t α〉 without aid of the environment.

Proposition 5.2.16. If (α, e) ∈M(〈P, c〉) then 〈P, c t α〉 −→∗ 〈P ′, e〉

Proof. By definition of M(〈P, c〉), since (α, e) ∈ M(〈P, c〉) then there exist
α1, . . . , αn such that α =

⊔n
i=1 αn and 〈P, c〉 α1−→ . . .

αn−→ 〈P ′, e〉. Hence by
soundness on each transition 〈P, c t

⊔n
i=1 αn〉 = 〈P, c t α〉 −→∗ 〈P ′, e〉.

We can now prove our main result, given two configurations 〈P, c〉 and 〈Q, d〉,
they are observationally equivalent if and only if their compact input-output sets
are identical. We split the proof in the following two lemmata.

Lemma 5.2.17. IfMC(〈P, c〉) =MC(〈Q, d〉) then J〈P, c〉K = J〈Q, d〉K

Proof. Let us assume that (α, β) ∈ J〈P, c〉K then by definition 〈P, c t α〉 ⇓β
hence there exists P ′ and β′ such that 〈P, c t α〉 −→∗ 〈P ′, β′〉 and β v β′.
By Lemma 4.2.2 we have 〈P, c t α〉 =⇒ 〈P ′, β′〉, then by completeness of =⇒
(Lemma 4.2.16) there exist α′, b s.t. 〈P, c〉 α′

=⇒ 〈P ′, c′〉 where α′ t b = α and
c′ t b = β′ (1). Now by Proposition 5.2.15 we know (α′, c′) ∈ M(〈P, c〉), then
since � is well-founded (Proposition 5.2.10) there is (α′′, c′′) that is relevant in
M(〈P, c〉) (then it belongs toMC(〈P, c〉)) such that (α′′, c′′) � (α′, c′), namely
α′′ v α′ (or equivalently ∃x.(α′′ t x) = α′ (2)) and c′ v (c′′ t α′). Given that



92 CHAPTER 5. COMPUTING BISIMILARITY IN CHOICE-FREE CCP

(α′′, c′′) ∈ MC(〈P, c〉) then by hypothesis (α′′, c′′) ∈ MC(〈Q, d〉), this means
also that (α′′, c′′) ∈ M(〈Q, d〉) and by Proposition 5.2.16 we know that 〈Q, d t
α′′〉 −→∗ 〈Q′, c′′〉. By monotonicity we have the following transition 〈Q, d t
α′′ t x t b〉 −→∗ 〈Q′, c′′ t x t b〉, now notice that from (1) and (2) we have
(dtα′′txtb) = (dtα′tb) = (dtα) then 〈Q, dtα〉 −→∗ 〈Q′, c′′txtb〉. Finally,
we have to prove that β v (c′′ t xt b) to conclude that (α, β) ∈ J〈Q, d〉K, for that
purpose, recall that β v β′ = (c′t b) v (c′′tα′t b) and since (c′′tα′′txt b) =

(c′′ t x t b) then β v (c′′ t x t b) and so (α, β) ∈ J〈Q, d〉K.

Lemma 5.2.18. If J〈P, c〉K = J〈Q, d〉K thenMC(〈P, c〉) =MC(〈Q, d〉)

Proof. Assume that (α, β) ∈ MC(〈P, c〉) our goal is to prove that (α, β) ∈
MC(〈Q, d〉). By definition (α, β) is relevant inM(〈P, c〉), moreover, by Propo-
sition 5.2.16 we have 〈P, c t α〉 −→∗ 〈P ′, β〉 then by definition (α, β) ∈ J〈P, c〉K
and by hypothesis (α, β) ∈ J〈Q, d〉K. This means that 〈Q, d t α〉 ⇓β then there
exists Q′, d′ s.t. 〈Q, d t α〉 −→∗ 〈Q′, d′〉 where β v d′. By Lemma 4.2.2 we
have 〈Q, d t α〉 =⇒ 〈Q′, d′〉, now by completeness of =⇒ (Lemma 4.2.16) there
exist α′, b s.t. 〈Q, d〉 α′

=⇒ 〈Q′, d′′〉 where (α′ t b) = α and (d′′ t b) = d′.
Now let us assume by means of contradiction that α′ 6= α. By soundness of
=⇒ (Lemma 4.2.15) we have 〈Q, d t α′〉 =⇒ 〈Q′, d′′〉 then by Lemma 4.2.2
we get 〈Q, d t α′〉 −→∗ 〈Q′, d′′〉 hence (α′, d′′) ∈ J〈Q, d〉K. By hypothesis then
(α′, d′′) ∈ J〈P, c〉K, now this means that 〈P, c t α′〉 −→∗ 〈P ′′, e〉 where d′′ v e

(equivalently ∃z.(d′′tz) = e). By Lemma 4.2.2 we get that 〈P, ctα′〉 =⇒ 〈P ′′, e〉
and by completeness there exist x, b′ s.t. 〈P, c〉 x

=⇒ 〈P ′′, c′〉 where (x t b′) = α′

and c′ t b′ = e. Using Lemma 5.2.15 we have that (x, c′) ∈ M(〈P, c〉), now
we will prove that (x, c′) � (α, β), namely x v α and β v (α t c′). Re-
call that x v α′ v α, now for the latter condition (α t c′) = (α′ t b t c′) =

(x t b′ t b t c′) = (x t b t e) then since d′′ v e we can check that β v
d′ v (d′ t x) = (d′′ t b t x) v (e t b t x) = (α t c′). Thus, this would
mean that (α, β) is irrelevant in M(〈P, c〉), a contradiction, therefore α′ = α

and by consequence d′′ = d′. Therefore, we know that 〈Q, d〉 α
=⇒ 〈Q′, d′〉,

now let us assume by contradiction that d′ 6= β (i.e. β @ d′). By sound-
ness and Lemma 4.2.2 we have that 〈Q, d t α〉 −→∗ 〈Q′, d′〉, this means that
(α, d′) ∈ J〈Q, d〉K. By hypothesis then (α, d′) ∈ J〈P, c〉K so there exist P1, c1 s.t.
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〈P, ctα〉 −→∗ 〈P1, c1〉 and d′ v c1. By Lemma 4.2.2 then 〈P, ctα〉 =⇒ 〈P1, c1〉,
now by completeness, there exist y, b′′ s.t. 〈P, c〉 y

=⇒ 〈P1, c
′
1〉 where y t b′′ = α

and c′1 t b′′ = c1. Using Lemma 5.2.15 we get that (y, c′1) ∈ M(〈P, c〉). Now let
us prove that (y, c′1) � (α, β), namely y v α and β v (α t c′1). The first condi-
tion follows from y t b′′ = α and for the latter condition we proceed as follows
β @ d′ v c1 v (c1 t y) = (c′1 t b′′ t y) = (c′1 t α). Again, this would mean that
(α, β) is irrelevant in M(〈P, c〉), a contradiction, therefore d′ = β. Hence, we
know that 〈Q, d〉 α

=⇒ 〈Q′, β〉 then by Proposition 5.2.15 (α, β) ∈M(〈Q, d〉). Fi-
nally, let us assume by contradiction that (α, β) is irrelevant inM(〈Q, d〉). Then
there exists (α1, β1) ∈ M(〈Q, d〉) such that (α1, β1) � (α, β), namely α1 v α

(equivalently ∃z′.α1tz′ = α) and β v αtβ1. By Proposition 5.2.16 we have that
〈Q, d t α1〉 −→∗ 〈Q1, β1〉, then (α1, β1) ∈ J〈Q, d〉K and by hypothesis (α1, β1) ∈
J〈P, c〉K. This means that 〈P, ctα1〉 −→∗ 〈P2, c2〉where β1 v c2, now by Lemma
4.2.2 we get 〈P, ctα1〉 =⇒ 〈P2, c2〉. By completeness of =⇒ there exist a, b1 s.t.
〈P, c〉 a

=⇒ 〈P2, c
′
2〉 where (at b1) = α1 and (c′2t b1) = c2. Hence, by Proposition

5.2.15 we know that (a, c′2) ∈ M(〈P, c〉). Now let us prove that (a, c′2) � (α, β)

namely a v α and β v (α t c′2). First a v α1 v α, for the latter condition we
proceed as follows (α t c′2) = (α1 t z′ t c′2) = (a t b1 t z′ t c′2) = (c2 t z′)
and since β1 v c2 and α v c2 then β v (α t β1) v (c2 t z′) = (α t c′2).
Once again, this would mean that (α, β) is irrelevant in M(〈P, c〉), a contra-
diction. Finally, we can conclude that (α, β) is relevant in M(〈Q, d〉) therefore
(α, β) ∈MC(〈Q, d〉).

Using the these lemmata above we conclude the following theorem.

Theorem 5.2.19. J〈P, c〉K = J〈Q, d〉K iffMC(〈P, c〉) =MC(〈Q, d〉)

Proof. Using Lemma 5.2.17 and Lemma 5.2.18.

By combining Theorem 5.2.3 and Theorem 5.2.19 we get a simple decision
procedure for ≈̇sb by reducing weak saturated equivalence between two given
configuration to the set equivalence of the corresponding compact input-output
representations. The complexity of this procedure is clearly determined by the
complexity of constructions of the compact input-output sets.
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Theorem 5.2.20. Let γ and γ′ be two CCP\+ configurations. Let IS = {γ, γ′}
and let N = |Config−→(IS )|. Then

• MC(γ) =MC(γ′) iff γ ≈̇sb γ′.

• Checking whether MC(γ) = MC(γ′) takes O(N2) time and uses O(N)

space.

Proof. The first item follows from Follows from Theorem 5.2.3 and Theorem
5.2.19 and the second item is derived from the construction ofMC(γ) andMC(γ′).

5.3 Improving the general partition refinement for
CCP

In this section we show that in the general case of CCP systems, the strategy from
Section 5.1.2 can be used for their CCP\+ components, thus producing a IS ? 

which may be significant smaller (although the worst case remains exponential).
Given a configuration γ the idea is to detect when an evolution of γ, i.e. a γ′

s.t. γ α1=⇒ . . .
αk=⇒ γ′, is a CCP\+ configuration. This way we can avoid adding

new configurations with Rule (RDIS
 ) whenever γ′ ∈ Conf CCP\+, and redundancy

can be then checked using Proposition 5.1.9.

(IS’ =⇒)
γ ∈ IS

γ ∈ IS ? 
(RS’ =⇒) γ ∈ IS ? γ

α
 γ′

γ′ ∈ IS ? 

(opt-RD =⇒)
γ ∈ IS ? γ 6∈ Conf CCP\+ t1 = γ

α
 〈P1, c1〉

t2 = γ
β
 〈P2, c2〉 α @ β c2 = c1 t β

〈P1, c2〉 ∈ IS ? 

Table 5.3.1: Rules for improved version of the partition refinement for CCP.

Definition 5.3.1 (Improved partition refinement for CCP). We define the proce-

dure imp-weak-pr-ccp(IS , ) by using the rules in Table 5.3.1 in Step 1 of

weak-pr-ccp(IS , ) from Algorithm 4.3.1.
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Using this algorithm we can decide ≈̇sb in a more efficient manner, although,
in the worst-case scenario, still with exponential time. This follows from Propo-
sition 5.1.9 and Theorem 3.2.16.

Theorem 5.3.2. Let γ and γ′ be two CCP configurations. Let IS = {γ, γ′} and

let P be the output of imp-weak-pr-ccp(IS ,=⇒) in Definition 5.3.1. If IS ?=⇒
is finite then the algorithm terminates and:

• γ P γ′ iff γ ≈̇sb γ′.

• imp-weak-pr-ccp(IS ,=⇒) may take exponential time in the size of

Config−→(IS ).

It is clear that it is better to use imp-weak-pr-ccp(IS ,=⇒) instead of
weak-pr-ccp(IS ,=⇒) since the new procedure avoids adding new states when-
ever they are not necessary to check redundancy w.r.t. ≈̇sb. Unfortunately, this
improvement does not escape from the worst-case of weak-pr-ccp(IS ,=⇒).
Nevertheless, this approach shows the applicability of the strategy developed in
Section 5.1.2. Notice that this scenario arises with the use of the nondeterministic
choice hence one may expect a practical impact on this improvement since most
configurations are composed by several CCP\+ subconfigurations. We want to
conclude this section by referencing Figure 5.3.1 which shows the main advan-
tage of using this method.

〈(tell(c) ‖ ask c → stop) + (tell(d)), true〉

〈ask c → stop, c〉 〈tell(c), c〉

〈stop, c〉〈stop, c〉

〈stop, d〉
c

c

Figure 5.3.1: This example above reflects the advantages of using the method
discussed in Section 5.3 since only the dashed transitions need to be considered
for checking ≈̇sb. Transitions are computed according to =⇒ (Table 4.2.1) and
loops are omitted.
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5.4 Summary and Related Work

In this chapter we explored the use of the partition refinement algorithm for CCP
from Chapters 3 and 4 for checking observational equivalence in the CCP\+ frag-
ment. In Chapter 3 we gave a decision procedure for ∼̇sb and in Chapter 4 we
proved how the algorithm for ∼̇sb can be used to compute ≈̇sb. In this chapter, we
proved that this procedure takes exponential time and space (in the size of the set
of reachable configurations) even for the restricted case of CCP\+. We then pro-
posed two alternative methods for checking observational equivalence in CCP\+
by exploiting some of the intrinsic properties of this fragment, in particular con-
fluence. We proved that both procedures take polynomial time (in the size of the
set of reachable configurations), thus significantly improving the exponential-time
approach from Chapters 3 and 4, which is, to the best of our knowledge the only
algorithm for checking observational equivalence in CCP. Each of the two meth-
ods has its advantages over the other. On the one hand, the algorithm from Section
5.1 uses significantly more time and space than the one from Section 5.2, however
it can be easily adapted for verifying observational equivalence for the full CCP
as shown in Section 5.3. On the other hand, the procedure from Section 5.2 takes
less time and uses only linear space nevertheless there is no “trivial” adaptation for
the full language since it does not use the partition refinement approach. Finally,
most of the related work was already discussed in the introduction, in Chapters 3
and 4.
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Chapter 6

A Behavioral Congruence for CCP

In the previous chapters we developed efficient methods for computing ∼̇sb (Def-
inition 2.4.9) and ≈̇sb (Definition 2.4.10). This was accomplished by defining
several decision procedures which exploited various characteristics of CCP as
well as the well-known partition refinement algorithm. Moreover, by utilizing
certain properties of the choice-free fragment (CCP\+), we were able to define
polynomial-time algorithms for checking ≈̇sb in finite CCP\+. In this chapter the
focus is shifted towards the congruence issues related to ≈̇sb

The goal of this chapter is then to tackle these issues by proposing a novel
notion of bisimilarity which is a congruence for the full CCP. In Section 6.1 we
show the relation between observational equivalence (∼o, Definition 2.4.19) and
weak saturated barbed bisimilarity (≈̇sb, Definition 2.4.10) for CCP with nonde-
terministic choice. We also prove that ≈̇sb is not a congruence for the full CCP.
Finally, in Section 6.2 we introduce our new notion ≈f , and we prove that (i) ≈f

coincides with ≈̇sb in the choice-free fragment of CCP; (ii)≈f is a congruence for
CCP with summation; and (iii) ≈f coincides with the equivalence obtained after
closing ≈̇sb under any context.

6.1 Congruence issues

A typical question in the realm of process calculi, and concurrency in general, is
whether a given process equivalence is a congruence. In other words, whether

99
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the fact that P and Q are equivalent implies that they are still equivalent in any
context. More precisely, an equivalence ∼= is a congruence if P ./ Q implies
C[P ] ./ C[Q] for every process context C1.

The congruence issue is fundamental for algebraic as well as practical rea-
sons; one may not be content with having P ./ Q equivalent but R ‖ P 6./ R ‖ Q.
Nevertheless, some of the representative equivalences in concurrency are not con-
gruences. For example, in CCS [41], trace equivalence and strong bisimilarity are
congruences but weak bisimilarity is not because it is not preserved by summation
contexts. So given a notion of equivalence one may wonder in what contexts the
equivalence is preserved. For instance, the problem with weak bisimilarity can be
avoided by using guarded-summation (see [43]).

We shall see that ≈̇sb is a congruence for CCP\+. However, this is not the case
for the full language of CCP. Moreover, unlike CCS, the problem arises even in
the presence of guarded summation/choice. In fact, our counterexample reveals
that the problem is intrinsic to CCP.

In section 2.4.5 we introduced the standard notion of observational equiva-
lence (∼o) [63] for CCP and we saw that, in CCP\+, it coincides with ≈̇sb.

Nevertheless, this is not true for the full language of CCP. We can show this
by using a counter-example reminiscent from the standard one for CCS. Namely,
in CCS one can prove that, in general, a + τ.P is not weakly bisimilar to a + P .
We can use a similar approach for CCP as follows.

Claim 6.1.1. In finite CCP there are P,Q s.t. P ∼o Q but P 6 ≈̇sbQ.

Proof. Let P = (ask (b) → tell(c)) + (ask (true) → ask (d) → tell(e))

and Q = (ask (b) → tell(c)) + (ask (d) → tell(e)) for unrelated elements
b, c, d, e ∈ Con0. It is straightforward to see that P ∼o Q since the only relevant
inputs are true, b and d for which both processes produce true, c and e respec-
tively. Now let us show that P 6 ≈̇sbQ. First notice that if we take the transition
〈P, true〉 −→ 〈ask (d) → tell(e), true〉 then 〈Q, true〉 can only stay still. Now
if we take the transition 〈Q, true〉 b−→ 〈tell(c), b〉 then note that 〈tell(c), b〉 ⇓c
but 〈ask (d) → tell(e), b〉 6⇓c. Hence P 6 ≈̇sb Q.

1Recall that the expression C[P ] denotes the process that results from replacing in C, the hole
• with P . For example C = R ‖ • then C[P ] = R ‖ P .
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However, the the (⇐) direction of the theorem does hold. We show this next.

Theorem 6.1.2. Let P and Q be finite CCP processes. If P ≈̇sb Q then P ∼o Q.

Proof. Let us assume by means of contradiction that P ≈̇sb Q and there exists
d s.t. O(P )(d) 6= O(Q)(d). By definition, this means that there is an α s.t.
α ∈ O(P )(d) but α 6∈ O(Q)(d). Hence 〈P, d〉 −→∗ 〈P ′, α〉 6−→ however there is
no Q′ s.t. 〈Q, d〉 −→∗ 〈Q′, α〉 6−→. Therefore, for each computation 〈Q, d〉 −→∗

〈Q′, β〉 6−→ we have that either (i) β @ α, (ii) α @ β or (iii) β 6v α. We
shall prove that there is no saturated barbed bisimulation R containing the pair
〈P ′, α〉R〈Q′, β〉 for any of the three cases of β. First, consider the computations
of type (i). Notice that since 〈Q′, β〉 6−→ and β @ α then 〈Q′, β〉 6⇓α while
〈P ′, α〉 ⇓α. Now take the type (ii) and this time 〈Q′, β〉 ⇓β but 〈P ′, α〉 6⇓β since
α @ β. Similarly, in the type (iii) computations we have that 〈Q′, β〉 6⇓α however
〈P ′, α〉 ⇓α. From these three cases we can conclude that 〈P ′, α〉 cannot be related
with 〈Q′, β〉 in R. Finally, in order to match 〈P ′, α〉 ⇓α then the only case left
would correspond to 〈Q, d〉 −→∗ 〈Q′, α〉 −→∗ 〈Q′′, α′〉 with α @ α′, but again
〈Q′, α〉 ⇓α′ while 〈P ′, α〉 6⇓α′ . Since 〈Q, d〉 is not able to match 〈P, d〉 −→∗

〈P ′, α〉 then there cannot be weak saturated barbed bisimulation relating 〈P, d〉
and 〈Q, d〉, a contradiction to the hypothesis P ≈̇sb Q.

On the other hand, weak bisimilarity is a congruence in a restricted sense: It
is preserved by all the contexts from the choice-free fragment.

Theorem 6.1.3. Let P and Q be CCP\+ processes and assume that P ≈̇sbQ.

Then for every process context C[•] in CCP\+ we have C[P ] ≈̇sbC[Q].

Proof. We will focus on the parallel context since the other cases are easily ver-
ified. We shall prove that R = {(〈P ‖ R, c〉, 〈Q ‖ R, d〉) | 〈P, c〉 ≈̇ 〈Q, d〉} is a
weak bisimulation (Definition 2.4.29). The result then follows from Proposition
2.4.31.

(i) Assume that 〈P ‖ R, c〉 ↓α then, since 〈P, c〉≈̇〈Q, d〉, by condition (i) we
have that 〈Q ‖ R, d〉 ⇓α.
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(ii) Now suppose that 〈P ‖ R, c〉 α−→ 〈P1, c1〉 for some 〈P1, c1〉. By induction
on (the depth) of the inference of 〈P ‖ R, c〉 α−→ 〈P1, c1〉 we have the
following two cases:

• Using Rule LR2 (left) we have that 〈P ‖ R, c〉 α−→ 〈P ′ ‖ R, c′〉, hence
〈P, c〉 α−→ 〈P ′, c′〉 by a shorter inference. Using this transition and the
hypothesis in R we can conclude that 〈Q, d t α〉 −→∗ 〈Q′, d′〉 and
〈P ′, c′〉≈̇〈Q′, d′〉 (1). Now using Rule LR2 we get that 〈Q ‖ R, d t
α〉 −→∗ 〈Q′ ‖ R, d′〉 and, because of (1), then 〈P ′ ‖ R, c′〉R〈Q′ ‖
R, d′〉.

• Using Rule LR2 (right) we have that 〈P ‖ R, c〉 α−→ 〈P ‖ R′, c′〉,
hence 〈R, c〉 α−→ 〈R′, c′〉 by a shorter inference, where c′ = c t
α t β. Given that 〈P, c〉 ↓c then by the hypothesis we know that
〈Q, d〉 ⇓c. This means that 〈Q, d〉 −→∗ 〈Q′, d′〉 ↓c, moreover by
Lemma 5.1.5, Proposition 2.4.31 and the hypothesis we can conclude
that 〈Q, d〉≈̇〈Q′, d′〉≈̇〈P, c〉. Therefore 〈Q ‖ R, d t α〉 −→∗ 〈Q′ ‖
R, d′ t α〉 since c v d′. Now from this transition notice that 〈Q′ ‖
R, d′ t α〉 −→∗ 〈Q′ ‖ R′, d′ t α t β〉 and it is the case that 〈Q′ ‖
R′, d′ t α t β〉R〈P ‖ R′, c t α t β〉 since 〈Q′, d′〉≈̇〈P, c〉.

Notice that this result implies that observational equivalence (∼o) is a congru-
ence. Unfortunately, due to the nondeterministic choice, the theorem above does
not hold for the full language of CCP, as shown next.

Theorem 6.1.4. There exists P ′, Q,R in CCP such that:

(a) P ′ ≈̇sb Q but

(b) P ′ ‖ R 6≈̇sb Q ‖ R.

Proof. To prove this claim let:

P = (ask (true) → tell(c)) + (ask (true) → tell(d))

P ′ = P ‖ tell(e)
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〈P, e〉

〈tell(c), e〉 〈tell(d), e〉

〈stop, c t e〉 〈stop, d t e〉

〈Q, true〉

〈tell(c t e), true〉 〈tell(d t e), true〉

〈stop, c t e〉 〈stop, d t e〉

Figure 6.1.1: Let P = (ask (true) → tell(c)) + (ask (true) → tell(d)) and
Q = (ask (true) → tell(c t e)) + (ask (true) → tell(d t e)). The linked
configurations are weakly bisimilar.

Q = (ask (true) → tell(c t e)) + (ask (true) → tell(d t e))

with c 6v d, c 6v e, d 6v c, d 6v e, e 6v c, e 6v d.
For (a) we can show that 〈P ′, true〉≈̇sb 〈P, e〉 ≈̇sb 〈Q, true〉. The first equation

is trivial. For the second we define a relation on configurationsR. The set of pairs
inR are those linked in Figure 6.1.1. It can easily be verified that (the symmetric
closure of) R is a weak bisimulation (see Definition 2.4.29). The point (a) then
follows from Proposition 2.4.31.

For proving the part (b) of the above claim, we letR = (ask (e) → tell(α))+

(ask (e) → tell(β)). We shall prove that no weak bisimulation can contain the
pair (〈P ‖ R, e〉, 〈Q ‖ R, true〉). The results then follows from Proposition 2.4.31
and the fact that 〈P ′ ‖ R, true〉≈̇sb 〈P ‖ R, e〉 which can be easily verified.

Consequently, let us assume that 〈P ‖ R, e〉 −→ 〈P ‖ tell(α), e〉 by execut-
ing the left summand of R. By condition (ii) of weak bisimulation 〈Q ‖ R, true〉
must match the move. We have two cases:

• 〈Q ‖ R, true〉 does not make a transition. And now let us suppose that 〈Q ‖
R, true〉 e−→ 〈Q ‖ tell(β), true〉. This means that 〈P ‖ tell(α), e〉 now
has to match this transition. However 〈Q ‖ tell(β), true〉 −→ 〈Q, β〉 ⇓β
while 〈P ‖ tell(α), e〉 6⇓β . Thus we cannot satisfy condition (i) of weak
bisimulation.

• 〈Q ‖ R, true〉 makes a transition. To match the move it should also execute
the left summand ofR. However, since e is not the store of 〈Q ‖ R, true〉,Q
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must be executed first. and this means executing of one of summands in Q
to be able to add e to the store. If the left summand of Q is executed, we get
〈Q ‖ R, true〉 −→∗ 〈tell(α), cte〉. In this case we could then take the move
〈P ‖ tell(α), e〉 −→ 〈tell(d) ‖ tell(α), e〉. But then 〈tell(α), cte〉 ⇓c and
notice that 〈tell(d) ‖ tell(α), e〉 6⇓c, thus we cannot satisfy condition (i) of
weak bisimulation. The case where the right summand of Q is executed is
symmetric.

6.2 Weak full bisimilarity

In the previous section we showed that ≈̇ (and ≈̇sb) for the full CCP is not entirely
satisfactory since it is not a congruence. By building on ≈̇, in this section we
propose a new equivalence which we call (weak) full bisimilarity, written ≈f .
This new equivalence does not quantify over infinitely many process contexts in
its definition yet we will show that is a congruence. Furthermore, we will also
prove that adequacy of≈f by showing that it is the largest congruence included in
≈̇sb.

6.2.1 More than weak barbs

The key to figure out the element missing in the definition of ≈̇sb (Definition
2.4.10) lies in Figure 6.1.1. If we look at the configurations in the figure we can
see that while 〈P, e〉 is able to produce a barb e without choosing between c and
d, 〈Q, true〉 is not. The definition of ≈̇sb tries to capture this in the condition (i),
namely by checking that 〈P, e〉 ⇓e then requiring that 〈Q, true〉 ⇓e. However,
this condition does not capture the fact that in order to produce e, 〈Q, true〉 may
have to evolve into a configuration which can no longer produce some of the weak
barbs 〈Q, true〉 can produce. 2

Using this insight, we shall define a new notion of weak bisimilarity that
changes condition (i) in ≈̇ (Definition 2.4.29) in order to deal with the problem

2In the case of CCP\+ this is not a concern given that in this fragment weak barbs are always
preserved during evolution.
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present in Figure 6.1.1. More concretely, condition (i) requires that whenever
〈P, c〉 ↓α then 〈Q, d〉 ⇓α, 〈Q, d〉 −→∗ 〈Q′, d′〉 ↓α without imposing any condition
between 〈P, c〉 and 〈Q′, d′〉. This makes it possible that 〈P, c〉 ↓β and 〈Q′, d′〉 does
not: indeed, it might be the case that that 〈Q, d〉 −→∗ 〈Q′′, d′′〉 ↓β for some other
branch 〈Q′′, d′′〉. Hence 〈P, c〉 and 〈Q, d〉 would pass condition (i) as in Figure
6.1.1.

Weak full bisimilarity deals with this problem by adding a condition between
〈P, c〉 and 〈Q′, d′〉, namely 〈Q, d〉 ⇓c has to hold by reaching a bisimilar configu-
ration: 〈P, c〉 has to be weakly bisimilar 〈Q′, d′〉.

Definition 6.2.1 (Weak Full Bisimilarity). A weak full bisimulation is a symmetric

relation R on configurations s.t. whenever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and

γ2 = 〈Q, d〉 implies that:

(i) there exists γ′2 = 〈Q′, d′〉 such that 〈Q, d〉 −→∗ γ′2 where c v d′ and

(γ1, γ
′
2) ∈ R,

(ii) if γ1
α−→ γ′1 then there exists γ′2 = 〈Q′, d′〉 s.t. 〈Q, d t α〉 −→∗ γ′2 where

c′ v d′ and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weak fully bisimilar (γ1 ≈f γ2) if there exists a weak full

bisimulationR s.t. (γ1, γ2) ∈ R. We write P ≈f Q iff 〈P, true〉 ≈f 〈Q, true〉.

In the definition above, the first condition states that 〈Q, d〉 has to produce
c by reaching a (weakly) bisimilar configuration. The second condition is the
bisimulation game from ≈̇ (Definition 2.4.29) plus a condition requiring the store
c′ to be matched too.

To better explain this notion consider again the counterexample to ≈̇ from
Figure 6.1.1.

Example 6.2.2. Let 〈P, e〉, 〈Q, true〉 as in Figure 6.1.1. Let us build a relation R
that is a weak full bisimulation where (〈P, e〉, 〈Q, true〉) ∈ R. By condition (i)

in Definition 6.2.1 we need a γ′2 = 〈Q′, d′〉 s.t. 〈Q, d〉 −→∗ γ′2 and e v d′ and

(γ1, γ
′
2) ∈ R. We have two options Q′ = stop and d′ = c t e or d′ = d t e.3

However, if we take (〈P, e〉, 〈stop, c t e〉) ∈ R we have that 〈P, e〉 ⇓d while

3The cases for Q′ = tell(c t e) or Q′ = tell(d t e) with d′ = true are equivalent.
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〈stop, c t e〉 6⇓d. A similar argument works for 〈stop, d t e〉. Therefore, no weak

full bisimulation may contain (〈P, e〉, 〈Q, true〉). Hence 〈P, e〉 6≈f 〈Q, true〉.

6.2.2 Full Bisimilarity is a Congruence

We shall now prove that full bisimilarity is a congruence w.r.t all possible contexts
in CCP. Namely, whenever γ and γ′ are in ≈f then they can be replaced for one
another in any context.

Theorem 6.2.3. Let P and Q be CCP processes and assume that P ≈f Q. Then

for every process context C[•] we have that C[P ] ≈f C[Q].

Proof. Here we consider the parallel case; the other cases are trivial or easier to
verify. We shall prove that R = {(〈P ‖ R, c〉, 〈Q ‖ R, d〉) | 〈P, c〉 ≈f 〈Q, d〉} is
a weak full bisimulation as in Definition 6.2.1.

To prove (i), since 〈P, c〉 ≈f 〈Q, d〉 we have that 〈Q, d〉 −→∗ 〈Q′, d′〉 where
c v d′ and 〈Q′, d′〉≈̇〈P, c〉 (1). Therefore by R2 we get 〈Q ‖ R, d〉 −→∗ 〈Q′ ‖
R, d′〉 and by (1) we can conclude that (〈Q′ ‖ R, d′〉, 〈P ‖ R, c〉) ∈ R.

To prove (ii) let us assume that 〈P ‖ R, c〉 α−→ 〈P1, c1〉. We proceed by
induction (on the depth) of the inference of 〈P ‖ R, c〉 α−→ 〈P1, c

′〉.
Using LR2 (left), then P1 = (P ′ ‖ R) with 〈P, c〉 α−→ 〈P ′, c′〉 by a shorter

inference. Since 〈P, c〉 ≈f 〈Q, d〉 then 〈Q, d t α〉 −→∗ 〈Q′, d′〉 where 〈P ′, c′〉 ≈f

〈Q′, d′〉 and c′ v d′ (3). By R2 we have 〈Q ‖ R, d t α〉 −→∗ 〈Q′ ‖ R, d′〉 and
from (3) we can conclude that (〈P ′ ‖ R, c〉, 〈Q′ ‖ R, d′〉) ∈ R.

Using LR2 (right), then P1 = (P ‖ R′) and c′ = (c t α t e) with 〈R, c〉 α−→
〈R′, c′〉 by a shorter inference. From (1) we know that 〈Q, d〉 −→∗ 〈Q′, d′〉 where
c v d′ and 〈Q′, d′〉≈̇〈P, c〉. Hence 〈Q ‖ R, d t α〉 −→∗ 〈Q′ ‖ R, d′ t α〉. Now
since c v d′ then by monotonicity 〈R, d′ tα〉 −→ 〈R, d′′〉 where d′′ = d′ tαt e.
Therefore by R2 we get 〈Q ‖ R, d t α〉 −→∗ 〈Q′ ‖ R′, d′′〉 and from (1) and
monotonicity 〈P, c′〉 = 〈P, c t α t e〉≈̇〈Q′, d′ t α t e〉 = 〈Q′, d′′〉. Using this we
can conclude that (〈P ‖ R′, c′〉, 〈Q′ ‖ R′, d′′〉) ∈ R.

It is clear that ≈f is more distinguishing than ≈̇ and the result above shows
that this level of granularity is needed if we want a weak bisimilarity that is a
congruence for the full CCP.
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6.2.3 Relation with observational equivalence

In section 2.4.5 we described the relation between weak (saturated) bisimilarity
(≈̇sb, Definition 2.4.10) and the standard observational equivalence (∼o, Defini-
tion 2.4.19) for CCP. Concretely, we know that, in CCP\+, ≈̇sb coincides with
∼o, while for the full CCP ≈̇sb implies ∼o but the converse does not hold. In this
section we shall see the relation between weak full bisimilarity (≈f , Definition
6.2.1) and ∼o. We shall prove that ≈f coincides with ∼o in CCP\+ by proving
that ≈f corresponds to ≈̇sb in the choice-free fragment of CCP. Furthermore, for
the full language of CCP, we shall prove that≈f implies∼o again by showing that
≈f implies ≈̇sb in CCP.

Let us start by showing that ≈f and ≈̇ coincide in CCP\+. This theorem
strongly relies on the confluent nature of CCP\+ (Proposition 2.4.6).

Theorem 6.2.4. Let γ, γ′ ∈ Conf CCP\+, γ ≈f γ
′ iff γ ≈̇ γ′.

Proof. For the (⇒) direction consider R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉 ≈f 〈Q, d〉}.
We shall prove thatR is a weak bisimulation (Definition 2.4.29).

(i) Assume that 〈P, c〉 ↓α then α v c. Since 〈P, c〉 ≈f 〈Q, d〉 then 〈Q, d〉 −→∗

〈Q′, d′〉 and c v d′. Hence 〈Q, d〉 ⇓d′ , given that α v c v d′ then 〈Q, d〉 ⇓α.

(ii) Assume that 〈P, c〉 α−→ 〈P ′, c′〉 then since 〈P, c〉 ≈f 〈Q, d〉 we have that
〈Q, dtα〉 −→∗ 〈Q′, d′〉 where 〈Q′, d′〉 ≈f 〈P ′, c′〉 and c′ v d′. Thus we can
conclude that 〈P ′, c′〉R〈Q′, d′〉.

For the (⇐) direction consider R = {(〈P, c〉, 〈Q, d〉) | 〈P, c〉≈̇〈Q, d〉}. We shall
prove thatR is a weak full bisimulation (Definition 6.2.1).

(i) By definition 〈P, c〉 ↓c. Now since 〈P, c〉≈̇〈Q, d〉 we have that 〈Q, d〉 ⇓c,
namely 〈Q, d〉 −→∗ 〈Q′, d′〉 ↓c. Hence by Lemma 5.1.5 (and Proposition
2.4.21) we get 〈Q′, d′〉≈̇〈Q, d〉≈̇〈P, c〉. Finally 〈Q, d〉 −→∗ 〈Q′, d′〉R〈P, c〉
and c v d′.

(ii) Assume that 〈P, c〉 α−→ 〈P ′, c′〉 then since 〈P, c〉≈̇〈Q, d〉we have that 〈Q, dt
α〉 −→∗ 〈Q′, d′〉 where 〈Q′, d′〉≈̇〈P ′, c′〉. This means that 〈Q′, d′〉 ⇓c′ ,
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namely 〈Q′, d′〉 −→∗ 〈Q′′, d′′〉 ↓c′ . Now by Lemma 5.1.5 (and Proposi-
tion 2.4.21) we obtain 〈Q′′, d′′〉≈̇〈Q′, d′〉≈̇〈P ′, c′〉. Finally 〈Q, d t α〉 −→∗

〈Q′′, d′′〉R〈P ′, c′〉 and c′ v d′′.

The corollary below follows from Proposition 2.4.21 and 2.4.31, and Theorem
6.2.4.

Corollary 6.2.5. Let P and Q be CCP\+ processes. Then P ≈f Q iff P ∼o Q.

We shall now prove that≈f implies∼o for the full CCP. In order to do this we
first prove that ≈f implies ≈̇sb.

Theorem 6.2.6. If γ ≈f γ
′ then γ ≈̇ γ′.

Proof. Following the same approach from the (⇒) direction in Theorem 6.2.4.

The corollary below follows from Theorem 6.1.2 and 6.2.6, and Proposition
2.4.31.

Corollary 6.2.7. If P ≈f Q then P ∼o Q.

The above statement allows us to use the co-inductive techniques of full bisim-
ulation to prove observational equivalence.

6.2.4 Behavioral congruence

Finally, we prove that ≈f is the largest congruence included in ≈̇ by showing that
it coincides with the congruence ∼̇= defined next.

Definition 6.2.8 (Behavioral Congruence). We say that P is behaviorally congru-

ent to Q, denoted P ∼̇=Q, iff for every process context C[•] we have C[P ] ≈̇ C[Q].

We use 〈P, e〉∼̇=〈Q, d〉 to denote (P ‖ tell(e))∼̇=(Q ‖ tell(d)).

We now state that ≈f coincides with ∼̇=.

Theorem 6.2.9. 〈P, e〉 ≈f 〈Q, d〉 iff 〈P, e〉∼̇=〈Q, d〉.
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Proof. For the (⇒) direction assume that 〈P, e〉 ≈f 〈Q, d〉 then since 〈P, e〉 ≈f

〈P ‖ tell(e), true〉 and 〈Q, d〉 ≈f 〈Q ‖ tell(d), true〉 therefore we obtain that
(P ‖ tell(e)) ≈f (Q ‖ tell(d)). Hence using Theorem 6.2.3 we know that for
every process context C[•] it is the case C[P ‖ tell(e)] ≈f C[Q ‖ tell(d)],
thus from Theorem 6.2.6 we have C[P ‖ tell(e)] ≈̇ C[Q ‖ tell(d)] hence
〈P, e〉∼̇=〈Q, d〉.

For the (⇐), by contradiction 〈P, e〉∼̇=〈Q, d〉 and 〈P, e〉 6≈f 〈Q, d〉. Hence we
have two cases from conditions (i) and (ii) of ≈f (Definition 6.2.1). For the case
(i), since 〈P, e〉 6≈f 〈Q, d〉, then there is no 〈Q′, d′〉 such that:

〈Q, d〉 −→∗ 〈Q′, d′〉 where 〈P, e〉 ≈f 〈Q′, d′〉 and e v d′ (1)

Now let C[•] = (R ‖ •) where:

R = ((ask (e) → tell(α)) + (ask (e) → tell(β))) and

(fv(α) ∪ fv(β)) ∩ (fv(P ) ∪ fv(Q) ∪ fv(e) ∪ fv(d)) = ∅ (2)

Now consider C[P ‖ tell(e)] and C[Q ‖ tell(d)] and let us prove that they are
not in ≈̇. For that purpose take:

〈C[P ‖ tell(e)], true〉 −→ 〈C[P ], e〉 −→ 〈P ‖ tell(α), e〉 −→ 〈P, e t α〉

First notice that 〈C[P ‖ tell(e)], true〉≈̇〈C[P ], e〉 and 〈P ‖ tell(α), e〉≈̇〈P, e t
α〉. By (1) and Theorem 6.2.6 we know that there is no 〈Q′, d′〉 s.t. 〈Q, d〉 −→∗

〈Q′, d′〉 where 〈P, e〉≈̇〈Q′, d′〉 and e v d′. From this we can conclude that for
all 〈Q′, d′〉 we have 〈Q, d〉 −→∗ 〈Q′, d′〉 where 〈P, e〉 6≈̇〈Q′, d′〉 and e v d′ (3).4

Note that 〈C[Q ‖ tell(d)], true〉≈̇〈C[Q], d〉 = 〈Q ‖ R, d〉, moreover 〈Q ‖ R, d〉
has to reach a 〈Q′′, d′′〉 such that 〈Q′′, d′′〉 ⇓α and 〈Q′′, d′′〉 6⇓β since 〈P, e t α〉 ↓α
however 〈P, e t α〉 6⇓β . Hence the only possible strategy is as follows:

〈Q ‖ R, d〉 −→∗ 〈Q′ ‖ R, d′〉 −→∗ 〈Q′, d′ t α〉 where e v d′

4Assuming e 6v d′ leads trivially to conclude that C[P ‖ tell(e)] and C[Q ‖ tell(d)] are not
in ≈̇ since 〈Q, d〉 6⇓e, thus a contradiction to the hypothesis.
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However, from (2) and (3) we know that 〈P, e t α〉 6≈̇〈Q′, d′ t α〉 for all 〈Q′, d′〉
where e v d′. Therefore C[P ‖ tell(e)] 6 ≈̇ C[Q ‖ tell(d)], a contradiction to
the hypothesis 〈P, e〉∼̇=〈Q, d〉. The case (ii) is similar, we assume that 〈P, e〉 a−→
〈P ′, c′〉 and the same reasoning applies.

6.3 Summary and Related Work

In this chapter we showed that the weak saturated barbed bisimilarity (≈̇sb) pro-
posed in [6] is not a congruence for CCP. Nevertheless, we also showed that the
upward closure, i.e. condition (iii), is enough to make ≈̇sb a congruence in the
choice-free fragment (CCP\+). We then proposed a new notion of bisimilarity,
called weak full bisimilarity (≈f ), and we proved that it is a congruence for the
full CCP despite the fact that ≈f does not require any quantification over a (po-
tentially) infinite number of contexts in its definition. Furthermore, we showed
that ≈f implies the standard observational equivalence (∼o) for CCP from [63].
Finally we demonstrated that ≈f is not too restrictive by showing that it is the
largest congruence included in ≈̇sb. See Table 6.3.1 for a summary of the contri-
butions of this chapter. This is the first weak behavioral CCP congruence for CCP
with nondeterministic choice that does not require implicit quantification over all
contexts.

There has been other attempts for finding a good notion of bisimilarity for
CCP such as [62] and [40]. In [62] the authors propose a CCP bisimilarity that
requires processes to match the exact label in the bisimulation game, a condition
which is standard in process calculi realm, however this notion is known to be
too distinguishing for CCP as shown in [6]. As for [40], their notion of (strong)
bisimilarity resembles to the saturated barbed bisimilarity from [6] and, although
they do not give a notion of weak bisimilarity, the results in this chapter can be
related directly.

Publications from this Chapter

The material of this chapter has been published in the following papers:
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• [58] L. Pino, F. Bonchi, F. Valencia. A Behavioral Congruence for Con-

current Constraint Programming with Non-deterministic Choice, in: In G.
Ciobanu and D. Méry (Eds.), Proceedings of the 11th International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2014), volume 8687
of Lecture Notes in Computer Science, pages 351-368. Springer, 2014.
DOI: http://dx.doi.org/10.1007/978-3-319-10882-7_21

• [55] L. Pino, F. Bonchi, F. Valencia. Efficient Algorithms for Program

Equivalence for Confluent Concurrent Constraint Programming. To appear
in the Journal of Science of Computer Programming, 2015.
DOI: http://dx.doi.org/10.1016/j.scico.2014.12.003.

http://dx.doi.org/10.1007/978-3-319-10882-7_21
http://dx.doi.org/10.1016/j.scico.2014.12.003
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Language Relation among equivalences
Congruence w.r.t.

C[•] C[•]\+

CCP\+ ∼̇= =≈f = ≈̇ = ≈̇sb = ∼o N/A ∼̇=,≈f , ≈̇, ≈̇sb,∼o

CCP ∼̇= =≈f⊆ ≈̇ = ≈̇sb ⊆ ∼o ∼̇=,≈f
∼̇=,≈f , ≈̇, ≈̇sb

Table 6.3.1: Summary of the contributions of Chapter 6. Recall that ≈̇sb stands for
the weak saturated barbed bisimilarity (Definition 2.4.10), ∼o is the standard ob-
servational equivalence (Definition 2.4.19), ≈̇ represents weak bisimilarity (Def-
inition 2.4.29), ≈f is the notion of weak full bisimilarity proposed in this paper
(Definition 6.2.1) and ∼̇= stands for the behavioral congruence (Definition 6.2.8).
C[•]\+ stands for the contexts where the summation operator does not occur,
while C[•] represents any possible context, hence the summation operator may
occur in C[•]. For this reason we put N/A (Not Applicable) in the row corre-
sponding to CCP\+. Notice that the correspondence ≈̇ = ≈̇sb = ∼o comes from
[6].



Chapter 7

Conclusions

We shall conclude this dissertation with an overall summary of its contents. The
reader can find a more detailed recap, including related work, at the end of each
chapter. We shall also describe possible future research directions.

7.1 Summary

In this dissertation we developed new reasoning techniques as well as efficient
methods for the verification of CCP programs.

We have proposed in Chapter 3 an algorithm for computing strong saturated
barbed bisimilarity (∼̇sb, Definition 2.4.9) and we proved that it runs in exponential-
time on the size of the LTS of the input. This is due to the combination of non-
deterministic choice and the peculiarity of the saturated bisimilarity where labels
are not matched exactly as in the standard definition of bisimilarity. We adapted
the well-known partition refinement algorithm [34, 50] to oblige the attacker, in
the bisimulation game, to use only irredundant transitions. These are transitions
which require less interaction with the environment than the rest and are able to
capture the behavior of the process. Unfortunately, to determine whether a transi-
tion is irredundant we need ∼̇sb itself, therefore they have to be computed at the
same time. For this task we may need to add some unreachable states, sometimes
an exponential number of them. We could then exploit the procedure for ∼̇sb in
Chapter 3 to check weak saturated barbed bisimilarity (≈̇sb, Definition 2.4.9). We
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proved that in CCP the weak transition relation (=⇒, Table 4.2.1) must be de-
fined as the reflexive and transitive closure of the labeled semantics (−→, Table
2.4.2) as opposed to omitting just the silent transitions as is standard in the pro-
cess calculi realm [2]. Using this procedure we could also check observational
equivalence in CCP, since from [6] we know it coincides with ≈̇sb.

Nevertheless, both algorithms in Chapters 3 and 4 have exponential-time com-
plexity. Hence, to improve the efficiency we restricted CCP to its fragment with-
out nondeterministic choice (CCP\+). In Chapter 5 we proposed more efficient
methods for computing program equivalence in CCP\+. We showed that the pro-
cedure in Chapter 4 for computing observational equivalence is exponential even
for CCP\+. We then proposed two alternative polynomial-time (on the size of
the LTS of the input) algorithms for verifying ≈̇sb in CCP\+. The first algorithm
is based on the idea that redundancy can be precomputed in this fragment, thus
reducing significantly the complexity. In the second algorithm the intuition is that
detecting if two programs have the same behavior is equivalent to check whether
the two inputs have the same minimal finite representation of the set of weak barbs
that they satisfy in every possible context. Both approaches are interesting since
even if the second procedure has better time complexity, the first one can be used
as a heuristic for the full CCP.

Finally, in Chapter 6, we addressed the congruence issues related to ≈̇sb. We
showed that ≈̇sb is a congruence for CCP\+ however this is not the case for the
full CCP. We then proposed weak full bisimilarity (≈f , Definition 6.2.1) as an
alternative way of characterizing the behavior of CCP programs. The idea is that
≈f is based on ≈̇sb but requires a stronger condition on barbs where in order for a
configuration to produce a weak barb it must do so by preserving its behavior. We
proved that ≈f is a congruence for the full CCP and we also showed that it is the
largest congruence included in ≈̇sb.

To the best of our knowledge, these are the first algorithms for verifying pro-
gram equivalence in CCP. Furthermore, in the case of CCP\+, it is the first time
observational equivalence can be checked efficiently. Finally, ≈f is also the first
behavioral equivalence, which does not appeal to quantification over arbitrary pro-
cess contexts in its definition, that is a congruence for the full CCP.

The author believes that the study of adequate equivalences for CCP and their
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efficient computation contributes to a better understanding of CCP-like languages.
Also that the study of efficient verification techniques is an essential for CCP and
its applications. Finally, the author thinks that the novel notion of weak full bisim-
ilarity contributes to the broad area of concurrency theory since it may provide a
way of obtaining more elegant behavioral congruences for asynchronous process
calculi.

7.2 Future Work

We now discuss some of the possible future research directions.

Concurrent Constraint Workbench (CCWB). Inspired in the seminal work
on tools for verification in process calculi, such as the concurrency workbench
[20] for CCS and the mobility workbench [67] for the π-calculus, as future work,
we plan to implement the algorithms presented in the present thesis as the first step
towards a workbench for the specification of concurrent constraint processes. It is
worth noticing that the algorithms in Chapters 3 and 4 have been implemented in
a early prototype as part of [5].

Aim for Efficiency. It remains as a future work to consider more efficient parti-
tion refinement algorithms [23] to see whether the algorithm from Section 5.1 can
be further improved. The challenge would be to find a more efficient version of
=⇒ that can still be used for deciding ≈̇sb and so it can be adapted to the case of
the full CCP.

Applications to CCP extensions We plan to investigate how the procedures
here defined can be extended to different versions of CCP, specially to those where
the choice operator is not present since program equivalence can be checked ef-
ficiently. Some examples include timed CCP (tcc) [61], universal temporal CCP
(utcc) [49] and, more recently, epistemic and spatial CCP (eccp) [36].

Computing full bisimilarity. We also plan to adapt the algorithms from Chap-
ters 4 and 5 to verify ≈f . We conjecture that the decision procedures for ≈̇sb can
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be adapted to check ≈f . The challenge would be to find an efficient way of de-
termining whether the two configurations can produce the same weak barbs and
remain in the bisimulation rather than just checking the barbs.

Full bisimilarity for asynchronous calculi. In this dissertation we obtained a
notion of weak bisimilarity that is a congruence even if we do not consider a la-
bel for observing the tell actions. Since CCP is an asynchronous language, not
observing the tell follows the philosophy of considering as labels the minimal in-
formation needed to proceed, namely a tell process does not need a stimulus from
the environment to post its information in the store. Following the same reason-
ing, we plan to investigate whether it is possible to define a labeled semantics for
the asynchronous π-calculus (Aπ) [43, 60] with a τ label for the output transi-
tions, instead of a co-action, and we shall check if a notion of bisimilarity similar
to ours would also be a congruence.
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[6] A. Aristizábal, F. Bonchi, C. Palamidessi, L. Pino, and F. D. Valencia. De-
riving labels and bisimilarity for concurrent constraint programming. In
M. Hofmann, editor, 14th International Conference on Foundations of Soft-

ware Science and Computational Structures (FOSSACS 2011), volume 6604
of Lecture Notes in Computer Science, pages 138–152. Springer, 2011.

117



118 BIBLIOGRAPHY
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