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Dr. Serge SIMOËNS LMFA, École Centrale de Lyon Referee

Prof. Gregoire ALLAIRE CMAP, École Polytechnique Examiner
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Abstract

Modeling the turbulence-chemistry interaction is a key point in the numerical sim-
ulation of the combustion in the air-breathing engines. The present work is devoted
to adaptation and integration of the different turbulent combustion models into the
ONERA industrial code CFD package for diphasic reactive flows (CEDRE). The first
part of the thesis is focused on the quasi-linear hyperbolic stochastic partial differential
equations (SPDEs) which are statistically equivalent to a transport equation for the
joint velocity-scalars probability density function (PDF). It is shown that in order to
preserve the equivalence between the SPDEs and the transport equation for the joint
velocity-scalars PDF, multivalued solutions of the SPDEs should be taken into account.
A new stochastic method to solve the SPDEs, recently proposed by O. Soulard [Emako-
Letizia2014], is considered and validated on one-dimensional test-cases. It is shown that
this method is able to recover the multivalued solutions of the SPDEs in the statistical
sense.

The numerical solution of the SPDEs is time consuming, therefore the second part
of the thesis is concerned with a flamelet tabulated chemistry (FTC) and an extended
partially stirred reactor (EPaSR) models. In the framework of CEDRE CFD software
the FTC approach is updated, presuming that the distribution is given by a 𝛽-PDF.
The adaptation of the LES/EPaSR model [SabelnikovFureby2013] to the RANS and its
integration into CEDRE are done. The EPaSR and the FTC with the presumed 𝛽-PDF
are validated against experimental data [MagreMoreau1988] on a configuration of a
backward-facing step combustor. It is shown that the RANS/EPaSR calculation yields
the best agreement with the experiment compared to other considered approaches.

Keywords: stochastic partial differential equations, probability density function,
multivalued solution, extended partially stirred reactor, flamelet tabulated chemistry
model
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Résumé

La modélisation de l’interaction turbulence-chimie est un point clé dans la si-
mulation numérique des écoulements réactifs turbulents. Cette thèse est consacrée à
l’adaptation et l’intégration de différents modèles de combustion turbulente dans le
code d’écoulements diphasiques réactifs pour l’énergétique (CEDRE) de l’ONERA.
La première partie de la thèse est dédiée à l’étude des équations quasi-linéaires hy-
perboliques stochastiques aux dérivées partielles (SPDEs) qui sont statistiquement
équivalentes à une équation de transport pour la fonction de densité de probabilité
(PDF) jointe vitesse-scalaires. Il est démontré que pour préserver l’équivalence entre les
SPDEs et l’équation de transport pour la PDF jointe vitesse-scalaires, les solutions mul-
tivaluées des SPDEs doivent être prises en compte. Une nouvelle méthode stochastique
pour résoudre les SPDEs, récemment proposée par O. Soulard [EmakoLetizia2014], est
étudiée et validée sur des cas-tests unidimensionnels. Il est montré que cette méthode
permet de trouver les solutions multivaluées des SPDEs au sens statistique.

La résolution numérique des SPDEs étant particulièrement coûteuse, une seconde
voie a été explorée au cours de cette thèse. Il s’agit, dans la deuxième partie de ce
mémoire, de la mise en œuvre du modèle ”flammelettes tabulées pour la chimie” (FTC)
et du modèle ”réacteur partiellement mélangé étendu” (EPaSR). Avec le code CEDRE,
l’approche des FTC est mise à jour en supposant une distribution de type 𝛽-PDF.
L’adaptation LES/EPaSR [SabelnikovFureby2013] pour le RANS et son intégration
dans CEDRE ont été réalisées. Les modèles EPaSR et ”FTC avec 𝛽-PDF présumée”
ont été validés par rapport aux données expérimentales [MagreMoreau1988] sur une
configuration de flamme stabilisée par une marche descendante. Il est montré que le
calcul RANS/EPaSR donne un meilleur accord avec l’expérience que les autres ap-
proches évaluées.

Mots clés : équations aux dérivées partielles stochastiques, fonction de densité de
probabilité, solutions multivaluées, réacteur partiellement mélangé étendu, flammelettes
tabulées pour la chimie
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𝐶𝑝 Specific heat capacity at constant pressure of the mix-
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J/(kg K)

𝐶𝑠 Smagorinsky model constant
𝐶𝜇 𝑘 − 𝜀 model constant
𝐶𝑝𝑘 Specific heat capacity at constant pressure of species
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𝑁𝑏𝑟 Number of different branches of multivalued solution
𝑁𝑟 Number of realizations
𝑁𝑠𝑝 Number of species
𝑃 Pressure Pa
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Δ𝑡 Time step s
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𝜂𝐾 Kolmogorov length scale m
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𝜇 Dynamic viscosity of the mixture kg/(m s)
𝜈 Kinematic viscosity m2/s
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𝜏𝐾 Kolmogorov time scale s
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Chapter 1

Introduction

The modern energy and environmental context motivate the improvement of combustion
systems in air-breathing chambers. The structure of turbulent flames in industrial combus-
tion chambers is complex: it is governed by turbulence, two-phase injection, chemical kinetics,
acoustics and radiation. Once validated by comparison with experimental data, numerical
simulations allow improving the understanding of the different physical mechanisms, in par-
ticular, analyzing combustion stability, and explaining formation of polluting emissions. The
description of the turbulence-chemistry interaction (TCI) is a key point in the development
of such numerical methods. Approaches based on probability density function (PDF) offer
compelling advantages for modeling reacting turbulent flows [Pope2000]. They provide an
effective resolution to the closure problems that arise from averaging or filtering of the highly
nonlinear chemical source terms, from modeling the effects of convection, body forces. There
are two different PDF-based methods: the first assumes a certain approximate shape of the
PDF (presumed PDF) and the second consists in solving a transport equation for the PDF.

Over the past years, the use of the presumed PDFs for combustion progress variable
or/and mixture fraction has been gaining popularity as an approach to average reaction
rates in premixed and non-premixed turbulent flames. Commonly invoked for this purpose
is a 𝛽-PDF, with the parameters determined by the values of its first and second moments.
These moments are computed by integrating proper balance equations. The disadvantage
of the presumed PDF method is the absence of an universality of the PDF. Therefore the
results of each simulation should be validated case by case.

The approach based on the transport equation for the one-time one-point joint velocity-
scalars PDF [Pope1985] is a natural and promising tool for the description of the TCI. It
is nonetheless counterbalanced by a severe numerical constraint: the joint velocity-scalars
PDF possesses a potentially high number of dimensions, which induces heavy computational
cost. The finite difference methods cannot be used, as their cost increases exponentially
with dimensionality. The common approach to circumvent this difficulty is to use the Monte
Carlo methods, which yield a linearly growing effort and therefore are well suited to solve
PDF equations.

In the field of turbulent combustion, Lagrangian Monte Carlo (LMC) methods [Pope1985]
have become an essential component of the PDF approach. The LMC methods are based
on stochastic particles, which evolve from prescribed stochastic ordinary differential equa-
tions (SODEs). Numerous publications document the convergence and accuracy of the LMC

19



20 CHAPTER 1. INTRODUCTION

methods. However, the development of new Eulerian Monte Carlo (EMC) methods are useful
and stimulating, since the competition between the LMC and the EMC methods could push
both approaches forward.

The EMC methods are based on stochastic Eulerian fields, which evolve according to the
stochastic partial differential equations (SPDEs) statistically equivalent to the PDF equa-
tion. The EMC methods have already been proposed in [Valiño1998; SabelnikovSoulard2005;
SabelnikovSoulard2006], in order to compute the one-time one-point PDF of turbulent re-
active scalars. The methods discussed in these works are still numerically expensive, since
their Courant-Friedrich-Lewy condition (CFL) criterion is similar to an advection/diffusion
stability criterion.

Recently O. Soulard and V. Sabelnikov [SoulardSabelnikov2006; SabelnikovSoulard2010]
have proposed SPDEs to solve a transport equation for the Favre joint PDF of velocity
fields and turbulent reactive scalars. The Ornstein-Uhlenbeck (O-U) process for fluctuating
velocity allows using the time step which is proportional to a grid size divided by total
stochastic velocity. From this point of view the SPDEs are less expensive and allow more
precise determination of PDF statistics.

The first part of the thesis is focused on the developing the EMC methods to solve the
transported joint velocity-scalars PDF. They are time consuming therefore the second part of
the thesis is concerned with a flamelet tabulated chemistry (FTC) with a presumed 𝛽-PDF
and with an extended partially stirred reactor (EPaSR) models. These standard turbulence
combustion approaches are less expensive.

The outline of this thesis is as follows. The fundamentals of the turbulence, the premixed
and the non-premixed flames are recalled in the chapter 2. Then some background infor-
mation on governing equations and various modeling approaches for turbulent combustion is
given.

The chapter 3 presents the quasi-linear hyperbolic SPDEs which are statistically equiv-
alent to the transport equation for the joint velocity-scalars PDF. It is shown that in order
to preserve the equivalence between the SPDEs and the joint velocity-scalars PDF transport
equation, the multivalued solutions of the SPDEs should be taken into account. Recently,
the level set method [LiuOsher2006] has been developed to capture multivalued solutions of
the deterministic hyperbolic PDEs. It should be noted that the level set method augments
the problem dimension by one in the physical space, i.e (𝑡,𝑥)+ 1. However, the direct appli-
cation of the level set method to the SPDEs needs a further development, because of a strong
variation of the number of the branches of multivalued solutions of the SPDEs. Therefore, in
the thesis a new stochastic method (proposed by O. Soulard [EmakoLetizia2014]) is applied
to solve the SPDEs.

Validation of the new method is carried out on a series of one-dimensional test-cases.
It is shown that the method is able to recover multivalued solution in the statistical sense.
Velocity moments are compared with the analytical solutions of the PDF equation if they
exist or with the numerical solutions of the PDF equation, and a good agreement is found.
Numerical accuracy issues, such as spatial and statistical convergence rates, are investigated.

A FTC method is updated into the current version of CFD package for diphasic reactive
flows (CEDRE) software, presuming that the distribution is given by a 𝛽-PDF. The chapter 4
describes the original algorithm [Savre2010] along with performed improvements. The semi-
analytic 𝛽 integration method [LienLiu2009] is extended from one variable (mixture fraction)
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to two variables case (mixture fraction variable and progress variable). This modification
permits to overcome boundary singularities in integration of the 𝛽-PDF over the mixture
fraction and the progress variables.

The chapter 5 describes the adaptation of the large eddy simulation (LES)/EPaSR model
[SabelnikovFureby2013] to the Reynolds-averaged Navier-Stokes equations (RANS) and its
integration into CEDRE. This model is referred to as the transported partially stirred reactor
(TPaSR) model.

RANS and LES simulations of a premixed methane/air flow in a backward-facing step
combustor are presented in the chapter 6. The TPaSR, the FTC without TCI and the FTC
with a presumed 𝛽-PDF models are considered, and the effects of various modeling assump-
tions are discussed. Validation of numerical results on experimental data [MagreMoreau1988]
are done. It is demonstrated that the RANS/TPaSR with a 𝑘−𝑙 turbulence model calculation
yields the best agreement with the experiment compared to other considered methods.

The conclusions are summarized in the chapter 7 along with suggestions for future work.
Some results of the thesis are published in the following communications:
∙ C. Emako, V. Letizia, N. Petrova, R. Sainct, R. Duclous, and O. Soulard. “Diffusion
limit of Langevin PDF models in weakly inhomogeneous turbulence”. In: CEMRACS
(2014)

∙ N. Petrova and V. Sabelnikov. “Simulation of turbulent combustion in air-breathing
chambers: extension of Eulerian Monte Carlo methods”. In: 13th Onera-DLR Aerospace
Symposium ODAS (2013)





Chapter 2

Background

Turbulent combustion is encountered in most practical combustion systems such as rock-
ets, internal combustion or aircraft engines, industrial burners and furnaces; while laminar
combustion applications are almost limited to candles, lighters and some domestic furnaces
(examples can be found in [PoinsotCandel1995; Pope2000]). Studying and modeling turbu-
lent combustion processes is therefore an important issue to develop and improve practical
systems (i.e. to increase efficiency and reduce fuel consumption and pollutant formation).
As combustion processes are difficult to handle using analytical techniques, numerical com-
bustion for turbulent flames is a fast growing area.

There are three main numerical approaches used in turbulent combustion:

∙ Direct numerical simulation (DNS): Direct Numerical Simulation consists in solv-
ing the Navier-Stokes equations, resolving all the scales of motion without any turbu-
lence model. The flow is described by the instantaneous fields from which all other
information is determined. DNS is the simplest and unrivaled in accuracy approach.
Yet its cost is extremely high and furthermore it increases very rapidly with Reynolds
number. Consequently, today this method is not applicable to the simulation of prac-
tical engineering problems, in particular, to high-Reynolds-number flows.

∙ LES: Large Eddy Simulation explicitly computes structures which are larger than the
computational mesh size of the flow field whereas the effects of the smallest ones are
modeled. LES provide unsteady and spatially-filtered quantities. These instantaneous
quantities cannot be directly compared to the experimental flow fields. Only the sta-
tistical quantities extracted from LES can be compared with the experimental data.
Computationally LES is less expensive than DNS.

∙ RANS: Reynolds averaged Navier-Stokes equations describe mean flow fields and are
adapted to practical industrial simulations. In this approach any instantaneous quantity
is decomposed into a time or ensemble average and a fluctuating component. Unclosed
quantities in the governing equations are modeled, using turbulence and combustion
models.

In the present work we limit ourselves to model the turbulent reactive flow within com-
putationally accessible RANS and LES approaches.

This chapter is organized as follows. First, we recall energy cascade and the Kolmogorov
hypotheses, and introduce various scales of motion. Then the general description of the

23



24 CHAPTER 2. BACKGROUND

flame structure is given. After that we formulate the governing equations describing the
fundamental properties of turbulent reacting flows. Finally, we describe some general models
of turbulent combustion.

2.1 Turbulence characteristics

Following the description of turbulent flows given in the book of [Peters2000], we mention
the main characteristics of turbulent flow (for simplicity, a nonreactive density constant case
is considered in this section).

Turbulent flow appears at sufficiently high Reynolds number

𝑅𝑒 =
𝑈𝐿

𝜈
, (2.1)

where 𝑈 is a characteristic velocity of the flow, 𝐿 is a characteristic length scale of the
geometry and 𝜈 is a kinematic viscosity of the fluid. It possesses several characteristic features

∙ Irregularity. Turbulent flow is irregular, random and chaotic, with a large number of
eddies of different length scales.

∙ Diffusivity. In turbulent flow the diffusivity increases.

∙ High Reynolds Numbers. Turbulent flow occurs at high Reynolds number.

∙ Three-Dimensional. Turbulent flow is always three-dimensional.

∙ Dissipation. Turbulent flow is dissipative, which means that there is a steady transfer
of kinetic energy from the large scales to the small scales and that this energy is then
transformed into the internal energy at the small scales by viscous dissipation. Such
the behavior is usually referred to as the eddy cascade hypothesis.

∙ Continuum. Even though we have small turbulent scales in the flow they are much
larger than the molecular scale and we can treat the flow as a continuum.

An example of a turbulent jet is shown in fig. 2.1. It enters with a high velocity into
initially quiescent surroundings. The large velocity difference between the jet and the sur-
roundings generates shear layer instability, which after a transition region, becomes turbulent.

In order to characterize the distribution of eddy length scales at any position within the
jet, the axial velocity 𝑢 is simultaneously measured at time 𝑡 at points 𝑥 and 𝑥+𝑟, where 𝑟 is
𝑟 = 𝑟𝑒𝑟, 𝑟 is a distance between two spatial points and 𝑒𝑟 is a unit vector in the direction 𝑟.
The correlation between two axial velocities 𝑢(𝑡,𝑥) and 𝑢(𝑡,𝑥+ 𝑟) is defined by the average

𝑅(𝑡,𝑥, 𝑟) = 𝑢′(𝑡,𝑥)𝑢′(𝑡,𝑥+ 𝑟), (2.2)

where 𝑢′ = 𝑢− 𝑢 is a fluctuating axial velocity and 𝑢 is a mean axial velocity of the flow.
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Figure 2.1: Schematic presentation of two-point correlation measurements in a turbulent jet

2.1.1 Homogeneous isotropic turbulence

For homogeneous isotropic turbulence the velocity field is invariant under translations, rota-
tions and reflections of the coordinate system. For this case the normalized axial correlation
is

𝑓(𝑡, 𝑟) =
𝑅(𝑡, 𝑟)

𝑢′2(𝑡)
, (2.3)

where 𝑅(𝑡, 𝑟) is given by
𝑅(𝑡, 𝑟) = 𝑢′(𝑡,𝑥)𝑢′(𝑡,𝑥+ 𝑟𝑒𝑟). (2.4)

The velocity fluctuations in the three coordinate directions are supposed to be equal. The
turbulent kinetic energy which is defined in general case as

𝑘 =
1

2
𝑢′𝑢′ (2.5)

reads

𝑘 =
3

2
𝑢′2. (2.6)

According to [Kolmogorov1941], the normalized axial correlation is

𝑓(𝑡, 𝑟) = 1− 3

4

𝐶

𝑘
(𝜀𝑟)2/3 , 𝜂𝐾 ≪ 𝑟 ≪ 𝑙𝑡, (2.7)

where 𝐶 is an universal Kolmogorov constant and 𝜀 is a viscous dissipation. 𝑙𝑡 is the integral
length scale defined by

𝑙𝑡(𝑡) =

+∞∫︁
0

𝑓(𝑡, 𝑟)𝑑𝑟. (2.8)

and 𝜂𝐾 is the Kolmogorov length scale

𝜂𝐾 =

(︂
𝜈3

𝜀

)︂1/4

. (2.9)
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Figure 2.2: The normalized axial two-point velocity correlation for homogeneous isotropic
turbulence as a function of the distance 𝑟 between the two points

Figure 2.2 schematically represents 𝑓(𝑡, 𝑟). When 𝑟 → 0, 𝑓(𝑡, 𝑟) remains close to one, and
then decays with increasing distance.

A Fourier transform of the isotropic two-point correlation function leads to a definition of
the kinetic energy spectrum 𝐸(𝜅), which is the density of kinetic energy per unit wavenumber
𝜅. Integrating over the whole wave number space, we obtain that the total kinetic energy 𝑘:

𝑘 =

∞∫︁
0

𝐸(𝜅)𝑑𝜅, (2.10)

where the wave number 𝜅 is inversely proportional to the eddy characteristic size 𝑙

𝜅 = 𝑙−1. (2.11)

The spectrum of the energy density is schematically presented in logarithmic scale in fig. 2.3.
There are three regions of the turbulent energy spectrum:
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Figure 2.3: Density spectrum of kinetic energy in logarithmic scale
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∙ Energy-containing integral scales
In this subrange 𝐸(𝜅) attains its maximal value, since eddies contain most of the kinetic
energy. The integral scales are characterized by the integral length scale 𝑙𝑡 (2.8). The
root mean square (RMS) velocity fluctuation which is

𝑣𝑡 =

√︂
2

3
𝑘 (2.12)

defines the integral velocity scale. One can deduce the turnover time 𝑙𝑡/𝑣𝑡 of these
eddies. It is proportional to the integral time scale

𝜏𝑡 =
𝑘

𝜀
. (2.13)

∙ Inertial subrange
The subrange of length scales between the integral scale and the Kolmogorov scale is
called the inertial subrange. Length scales 𝑙𝑛 such that 𝜂𝐾 ≪ ... < 𝑙𝑛 < ... < 𝑙2 <
𝑙1 ≪ 𝑙𝑡, 𝑛 = 1, .., velocity scales 𝑣𝑛, and timescales 𝜏𝑛 cannot be formed from 𝜀 alone.
However, given an eddy size 𝑙𝑛, characteristic velocity scales and timescales for the
eddy are those formed from 𝜀 and 𝑙𝑛 [Pope2000]:⎧⎪⎨⎪⎩𝜏𝑛 =

(︂
𝑙2𝑛
𝜀

)︂1/3

𝑣𝑛 = (𝜀𝑙𝑛)
1/3

The velocity scales and timescales 𝑣𝑛 and 𝜏𝑛 decrease as 𝑙𝑛 decreases. The kinetic
energy 𝑣2𝑛 at scale 𝑙𝑛 is

𝑣2𝑛 ∼ (𝜀𝑙𝑛)
2/3 = 𝜀2/3𝜅−2/3 (2.14)

and its density in wavenumber space is proportional to

𝐸(𝜅) =
𝑑𝑣2𝑛
𝑑𝜅

∼ 𝜀2/3𝜅−5/3. (2.15)

This is the 𝜅−5/3 law for the kinetic energy spectrum in the inertial subrange.
In this area, 𝑙𝑛 𝐸(𝜅) decreases linearly with 𝑙𝑛(𝜅). The turbulence kinetic energy is
neither dissipated nor produced, but only transferred to smaller scales by the breakup
of large structures. The corresponding energy flux is imposed by the large structures.

∙ Viscous subrange
For very small values of 𝑟 only very small eddies fit into the distance between 𝑥 and 𝑥+
𝑟. The motion of these small eddies is influenced by viscosity 𝜈. Dimensional analysis
yields the Kolmogorov length 𝜂𝐾 (2.9), the Kolmogorov time 𝜏𝐾 and the Kolmogorov
velocity 𝑣𝐾 scales: ⎧⎨⎩𝜏𝐾 =

(︁𝜈
𝜀

)︁1/2
𝑣𝐾 = (𝜀𝜈)1/4

Viscous subrange starts approximately from the Kolmogorov length scale 𝜂𝐾 . 𝐸(𝜅)
decreases exponentially owing to viscous effects.
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The Kolmogorov hypothesis

Let a quantity 𝒯 (𝑙) be the rate at which energy is transferred from eddies larger than 𝑙 to
those smaller than 𝑙. Accordingly to Kolmogorov’s 1941 energy cascade concept, the rate of
energy transfer from the large eddies of size 𝑙𝑡, determines the constant rate of energy transfer
through the inertial subrange; hence the rate at which energy leaves the inertial subrange
and enters the dissipation range; and hence the dissipation rate 𝜀 at the Kolmogorov scale
𝜂𝐾 . We have

𝒯 (𝑙𝑡) ∼ 𝒯 (𝑙𝑛) ∼ 𝒯 (𝜂𝐾) ∼ 𝜀. (2.16)

Accordingly to dimensional analysis we can write that

𝑣3𝑡
𝑙𝑡

∼ 𝑣2𝑛
𝜏𝑛

∼ 𝑣3𝑛
𝑙𝑛

∼ 𝑙2𝑛
𝜏 3𝑛

∼ 𝑣2𝐾
𝜏𝐾

∼ 𝑣3𝐾
𝜂𝐾

∼ 𝜀. (2.17)

Consequently, the viscous dissipation 𝜀 can be related to the turnover velocity and the length
scale of the integral scale eddies

𝜀 ∼ 𝑣3𝑡
𝑙𝑡
. (2.18)

2.2 Flame structure

2.2.1 Premixed flame

Premixed combustion regime corresponds to a limit case when fuel and oxidizer are com-
pletely mixed before combustion takes place. Once fuel and oxidizer are homogeneously
mixed and a heat source is supplied it becomes possible for a flame front to propagate through
the mixture. If we neglect the flame thickness then we can see that owing to the temperature
sensitivity of the reaction rates the gas behind the flame front rapidly approaches the burnt
gas state close to the chemical equilibrium, while the mixture in front of the flame typically
remains in the unburnt state. Therefore, the combustion system on the whole contains two
stable gas states: the unburnt and the burnt.

preheat zone reaction zone

temperatureoxidizer

fuel

reaction

rate

fresh gas burnt gasflame
SL

flame thickness

Figure 2.4: Structure of a laminar premixed flame
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In a duct after the ignition these two states are presented in fig. 2.4. If we zoom the flame,
then we can observe that both states exist in the system at the same time and are spatially
separated by the flame front where the transition from one to the other takes place. The
lower part of the fig. 2.4 is a close-up view of the structure of the flame. There are two zones:
the preheat zone and the combustion reaction zone. In the preheat zone, the fresh gases
mix and warm up due to molecular conductive effects. The temperature of the reactants
increases gradually from the unburnt mixture temperature to an elevated temperature near
the reaction zone. As the reactant temperature approaches the ignition temperature of the
fuel, the chemical reactions accelerates, marking the front of the combustion reaction zone.
Inside the flame, the reaction rate increases rapidly and then decreases as fuel and oxidizer
are consumed and products are generated. Because of the species concentration gradient,
the reactants diffuse toward the reaction zone and their concentration in the preheat zone
decreases as they approach the reaction zone, which is quite thin. The temperature of the
products is close to the adiabatic flame temperature.

Flame propagation through the unburnt mixture depends on two consecutive processes
(more details can be found, for example, in [PoinsotVeynante2005]). First, the heat produced
in the reaction zone is transferred upstream by molecular conductivity, heating the incom-
ing unburnt mixture up to the ignition temperature. Second, the preheated components
chemically react in the reaction zone.

The most important quantity in premixed combustion is the velocity at which the flame
front propagates normal to itself and relative to the flow into the unburnt mixture. This
velocity is called the laminar burning velocity 𝑆𝐿. It is a thermo-chemical transport prop-
erty that depends on the fuel-to-oxidizer equivalence ratio, the temperature in the unburnt
mixture, and the pressure.

The laminar premixed flame can be described using a reaction progress variable 𝐶, such
as 𝐶 = 0 in the fresh gases and 𝐶 = 1 in the fully burnt ones. If we consider that all
molecular diffusion coefficients for species are equal, this progress variable may be defined as
a reduced temperature or a reduced mass fraction:

𝐶 =
𝑇 − 𝑇𝑓
𝑇𝑏 − 𝑇𝑓

, 𝐶 =
𝑌 𝐹 − 𝑌 𝐹

𝑓

𝑌 𝐹
𝑏 − 𝑌 𝐹

𝑓

, (2.19)

where 𝑇 , 𝑇𝑓 , and 𝑇𝑏 are respectively the local, the fresh gases and the burnt gases temper-
atures. 𝑌 𝐹 , 𝑌 𝐹

𝑓 and 𝑌 𝐹
𝑏 are respectively the local, fresh gases and burnt gases fuel mass

fractions. 𝑌 𝐹
𝑏 is non-zero for a rich combustion (fuel excess).

Regimes in premixed combustion

According to [Peters2000] diagrams defining regimes of premixed turbulent combustion in
terms of velocity and lengths scale ratios have been proposed by [Peters1986; AbdelGayed-
Bradley1989; BorghiDestriau1995]. For scaling purposes let us assume equal diffusivity 𝐷
for all reactive scalars, take unity Schmidt number 𝜈/𝐷 = 1, and define flame thickness as

𝛿𝐿 =
𝐷

𝑆𝐿
(2.20)
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and flame transit time

𝜏𝐹 =
𝐷

𝑆2
𝐿

(2.21)

with 𝑆𝐿 being the front propagation speed.
The turbulent Reynolds number which is defined using turbulent intensity 𝑣𝑡 (see defini-

tion (2.12)) and turbulent length scale 𝑙𝑡:

𝑅𝑒𝑡 =
𝑣𝑡𝑙𝑡
𝜈

(2.22)

can be rewritten as

𝑅𝑒𝑡 =
𝑣𝑡𝑙𝑡
𝑆𝐿𝛿𝐿

. (2.23)

The turbulent Damkohler number reads

𝐷𝑎 =
𝑆𝐿𝑙𝑡
𝑣𝑡𝛿𝐿

. (2.24)

Using Kolmogorov time, length and velocity scales, denoted respectively by 𝜏𝐾 , 𝑙𝐾 and
𝑣𝐾 , let us introduce Karlovitz number as the measures the ratios of the flame scales in terms
of the Kolmogorov scales:

𝐾𝑎 =
𝜏𝐹
𝜏𝐾

=
𝛿2𝐿
𝜂2𝐾

=
𝑣2𝐾
𝑆2
𝐿

. (2.25)

For homogeneous isotropic turbulence if we assume that 𝜈 = 𝐷 and that the dissipation of
energy relates to the turnover velocity and the length scale of the integral scale eddies as

𝜀 ≈ 𝑣3𝑡
𝑙𝑡
, (2.26)

then it can be shown that
𝑅𝑒𝑡 = 𝐷𝑎2𝐾𝑎2. (2.27)

Given the appropriate reaction zone thickness 𝑙𝛿 in premixed flame

𝑙𝛿 = 𝛿𝛿𝐿, (2.28)

which is a fraction 𝛿 of the flame thickness, one can also introduce second Karlovitz number

𝐾𝑎𝛿 =
𝑙2𝛿
𝑙2𝐾

= 𝛿2𝐾𝑎. (2.29)

A diagram of Peters (1991) shows that 𝛿 varies from values of approximately 𝛿 = 0.1 at
atmospheric pressure to 𝛿 = 0.03 at pressures around 30 atm.

The ratios 𝑣𝑡/𝑆𝐿 and 𝑙𝑡/𝛿𝐿 may be expressed in terms of Reynolds and Karlovitz numbers
as

𝑣𝑡
𝑆𝐿

= 𝑅𝑒𝑡

(︂
𝑙𝑡
𝛿𝐿

)︂−1

= 𝐾𝑎2/3
(︂
𝑙𝑡
𝛿𝐿

)︂1/3

. (2.30)

In fig. 2.5 the boundaries of different regimes of premixed turbulent are described by lines
𝑅𝑒𝑡 = 1 and 𝐾𝑎 = 1. Another boundary of interest, namely 𝑣𝑡/𝑆𝐿 = 1 separates wrinkled
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flamelets from the corrugated flamelets, and the line denoted by 𝐾𝑎𝛿 = 1 separates thin
reaction zones from broken reaction zones. The line 𝑅𝑒𝑡 = 1 separates turbulent and laminar
flame regimes.

Several types of the premixed turbulent flame can be distinguished (fig. 2.5):
∙ Flamelet regime (𝑅𝑒𝑡 > 1, 𝐾𝑎 < 1)

– Wrinkled flamelet regime (𝑣𝑡 < 𝑆𝐿). In this regime, the turnover velocity 𝑣𝑡 of
even the large eddies is smaller than the laminar burning velocity 𝑆𝐿. Laminar
flame propagation therefore dominates over flame front corrugation by turbulence.

– Corrugated flamelets regime. Here 𝛿𝐿 < 𝜂𝐾 , which implies that the entire flame
structure is embedded within the eddies of the size of the Kolmogorov scale, where
the flow is quasi-laminar. Therefore the flame structure is not perturbed by tur-
bulent fluctuations and remains quasi-steady.

∙ Thin reaction zone (𝑅𝑒𝑡 > 1, 𝐾𝑎 > 1, 𝐾𝑎𝛿 < 1). In this regime the smallest eddies
can enter into the diffusive-reactive flame structure since 𝜂𝐾 < 𝛿𝐿. These small eddies
are still larger than the inner reaction layer thickness 𝑙𝛿 and therefore cannot penetrate
into that layer and modify the reaction zone.

∙ Broken reaction zones (𝑅𝑒𝑡 > 1, 𝐾𝑎𝛿 > 1). In this regime Kolmogorov eddies are
smaller than the inner reaction layer thickness 𝑙𝛿. These eddies may therefore enter into
the inner layer and perturb it with the consequence that chemistry breaks down locally
owing to enhanced heat loss to the preheat zone followed by temperature decrease and
the loss of radicals.

This classification of combustion regimes by characteristics numbers is rough but useful
approximation: in fact it allows choosing the appropriate turbulent combustion model prior
to the numerical calculation. Furthermore, once the calculation is done, the predicted flame
structure represents a first validation case for the obtained numerical results.

Figure 2.5: Regime diagram for premixed turbulent combustion [Peters2000]
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2.2.2 Non-premixed flame

Detailed description of non-premixed flame can be found, for example, in [PoinsotVey-
nante2005]. We will give some details taken from this book.

Schematic structure of a laminar diffusion flame is represented in fig. 2.6. The fuel and
oxidizer enter separately into the combustion chamber. There they diffuse towards the re-
action zone, mix and burn during continuous interdiffusion generating heat. Temperature
attains its maximum value in this zone and decreases away from the flame front towards fuel
and oxidizer streams.
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flame
burnt gaz
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reaction zone

diffusion
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diffusion
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Figure 2.6: Structure of a laminar diffusion flame

The lower part of fig. 2.6 illustrates a number of important considerations:
– Away from the flame, the gas is too rich on the fuel side and too lean on the oxidizer
side to burn. Chemical reactions can proceed only in a limited region, where fuel
and oxidizer are sufficiently mixed. The most favorable mixing is obtained where
fuel and oxidizer are in stoichiometric proportions: a diffusion flame usually lies
on the surface where mixing produces a stoichiometric mixture.

– The flame structure plotted in fig. 2.6 is steady only when strain is applied to the
flame, i.e. when fuel and oxidizer streams are pushed against each other at certain
speeds.

– Diffusion flame does not propagate and, therefore, exhibits no intrinsic characteris-
tic speed as premixed flame. In fact, the flame is unable to propagate towards fuel
because of the lack of oxidizer and it cannot propagate towards oxidizer stream be-
cause of the lack of fuel. Accordingly, the reaction zone does not move significantly
relatively to the flow field.

– There is no flame thickness defining a characteristic length scale, in contrast to
premixed combustion.

In the diffusion flame, the chemical reaction rate is generally much faster than the diffusion
rates of the gaseous reactants (i.e., the characteristic chemical reaction rime 𝜏𝑐ℎ is much
smaller than the characteristic diffusion time 𝜏𝑑). Consequently,

– Chemical reaction occurs in a narrow zone near the interface between the gaseous
fuel and oxidizer
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– Concentration of fuel and oxidizer are very low in the reaction zone (where most
of the products are generated)

– Combustion rate is controlled by the rate at which fuel and oxidizer flow into the
reaction zone.

The key parameter of non-premixed combustion is the mixture fraction 𝑍. In the simple
case, an infinitely fast one-step irreversible reaction equation can be written as

𝐹 + 𝑠𝑂 → (1 + 𝑠)𝑃, (2.31)

where 𝐹 is a fuel, 𝑂 is an oxidizer and 𝑃 is a product of combustion. 𝑠 = (𝑌𝐹/𝑌𝑂)𝑠𝑡 is the
mass stoichiometric coefficient. Thus, the mixture fraction is defined as

𝑍 =
𝑠𝑌𝐹 − 𝑌𝑂 + 1

1 + 𝑠
, (2.32)

where 𝑌𝐹 is the fuel mass fraction and 𝑌𝑂 is the oxidizer mass fraction. The mixture fraction
can be also interpreted as a normalized fuel-to-air equivalence ratio. In general way the
mixture fraction can be defined as a quantity related to chemical elements.

The role of the mixture fraction 𝑍 is to describe the mixture state, i.e. to qualify the
degree of inter-penetration of the fuel and the oxidizer. 𝑍 is usually taken as unity in the
fuel stream and is zero in the oxidizer stream. For a diffusion flame, the reaction surface is
located at the stoichiometric region 𝑍 = 𝑍𝑠𝑡. For a premixed flame, 𝑍 is a constant anywhere
in the flow.

There is no fixed reference length scale which can be easily identified for the diffusion
flame. Nevertheless, we can construct dimensionless numbers and make a similar classification
as for turbulent premixed flame.

Let us introduce a diffusive time which is the inverse of scalar dissipation rate of the
mixture fraction 𝑍:

𝜏𝜒 ≈ 𝜒−1
𝑍 =

(︀
𝐷| ▽ 𝑍|2

)︀−1
, (2.33)

where 𝐷 is a molecular diffusion coefficient. The Damkholer number is defined as:

𝐷𝑎 =
𝜏𝜒
𝜏𝑐

≈ (𝜏𝑐𝜒𝑍)
−1 (2.34)

This number is used to characterize the reaction zone. DNS calculations of the flame-
vortex interaction evidence two limit Damkholer numbers, 𝐷𝑎𝐿𝐹𝐴 (laminar flamelet assump-
tion (LFA)) and 𝐷𝑎𝑒𝑥𝑡. As shown in fig. 2.7, three regimes can then be distinguished for
non-premixed turbulent combustion:

∙ If 𝐷𝑎 > 𝐷𝑎𝐿𝐹𝐴, the flame front has a structure of a stationary laminar flame.

∙ When 𝐷𝑎𝑒𝑥𝑡 < 𝐷𝑎 < 𝐷𝑎𝐿𝐹𝐴: highly unsteady effects take place.

∙ When 𝐷𝑎 < 𝐷𝑎𝑒𝑥𝑡, local extinction appears.
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Figure 2.7: Regimes of non-premixed turbulent combustion

2.3 Navier-Stokes equations for aerothermochemistry

Navier-Stokes equations for aerothermochemistry can be found, for example, in [PoinsotVey-
nante2005]. They can be written as follows.

2.3.1 Conservation of mass and species

The total mass conservation equation is

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0. (2.35)

Here 𝜌 is a density and 𝑢𝑖 is the 𝑖
𝑡ℎ component of the velocity vector.

For a gas mixture consisting of 𝑁𝑠𝑝 species, the principle of mass conservation can be
expressed in the form of 𝑁𝑠𝑝 equations for each of species whose sum allows finding the
relationship (2.35):

𝜕𝜌𝑌𝑘
𝜕𝑡

+
𝜕𝜌(𝑢𝑖 + 𝑉𝑘,𝑖)𝑌𝑘

𝜕𝑥𝑖
= �̇�𝑘(𝑌 , 𝑇 ), 𝑘 = 1, .., 𝑁𝑠𝑝, (2.36)

where 𝑌𝑘 and �̇�𝑘 correspond respectively to the mass fraction and the rate of formation/extinction
of the species 𝑘 (in the units of [�̇�𝑘] = [kg m−3 s−1] detailed in ”chemical kinetics”. 𝑌 is a
vector of the mass fractions and 𝑇 represents temperature. 𝑉𝑘,𝑖 is the 𝑖-component of the
diffusion velocity 𝑉𝑘 of species 𝑘. By definition:

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘𝑉𝑘,𝑖 = 0,

𝑁𝑠𝑝∑︁
𝑘=1

�̇�𝑘 = 0. (2.37)

According to Fick’s law [Fick1855], one can define 𝑉𝑘,𝑖𝑌𝑘 as

𝑉𝑘,𝑖𝑌𝑘 = −𝐷𝑘
𝜕𝑌𝑘
𝜕𝑥𝑖

, (2.38)

where 𝐷𝑘 is a diffusion coefficient of the species 𝑘 in the mixture.
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2.3.2 Chemical kinetics

Consider a chemical system of 𝑁𝑠𝑝 species reacting through 𝑀 reactions

𝑁𝑠𝑝∑︁
𝑘=1

𝜈 ′𝑘,𝑗ℳ𝑘 

𝑁𝑠𝑝∑︁
𝑘=1

𝜈 ′′𝑘,𝑗ℳ𝑘, 𝑗 = 1, ..,𝑀, (2.39)

where ℳ𝑘 is a symbol for species 𝑘, 𝜈 ′𝑘,𝑗 and 𝜈
′′
𝑘,𝑗 are the molar stoichiometric coefficients of

species 𝑘 in reaction 𝑗. Mass conservation enforces

𝑁𝑠𝑝∑︁
𝑘=1

𝜈 ′𝑘,𝑗𝑊𝑘 =

𝑁𝑠𝑝∑︁
𝑘=1

𝜈 ′′𝑘,𝑗𝑊𝑘,

𝑁𝑠𝑝∑︁
𝑘=1

𝜈𝑘𝑗𝑊𝑘 = 0, 𝑗 = 1, ..,𝑀, (2.40)

where 𝑊𝑘 is the atomic weight of species 𝑘 and

𝜈𝑘𝑗 = 𝜈 ′′𝑘𝑗 − 𝜈 ′𝑘𝑗. (2.41)

The mass reaction rate �̇�𝑘 for species 𝑘 is the sum of rates �̇�𝑘𝑗 produced by all𝑀 reactions

�̇�𝑘 =
𝑀∑︁
𝑗=1

�̇�𝑘𝑗 = 𝑊𝑘

𝑀∑︁
𝑗=1

𝜈𝑘𝑗

(︃
𝐾𝑓𝑗

𝑁𝑠𝑝∏︁
𝑘=1

(︂
𝜌𝑌𝑘
𝑊𝑘

)︂𝜈′𝑘𝑗
−𝐾𝑟𝑗

𝑁𝑠𝑝∏︁
𝑘=1

(︂
𝜌𝑌𝑘
𝑊𝑘

)︂𝜈′′𝑘𝑗)︃
, (2.42)

where 𝐾𝑓𝑗 and 𝐾𝑟𝑗 are the forward and reverse rates of reaction 𝑗.
The rate constants 𝐾𝑓𝑗 and 𝐾𝑟𝑗 are usually modeled using the empirical Arrhenius law

𝐾𝑓𝑗 = 𝐴𝑓𝑗𝑇
𝛽𝑗 exp

(︂
−𝑇𝑎𝑗
𝑇

)︂
, (2.43)

here 𝐴𝑓𝑗 is the pre-exponential constant, 𝛽𝑗 is the temperature exponent and 𝑇𝑎𝑗 is the acti-
vation temperature. The backward rates 𝐾𝑟𝑗 are computed from the forward rates through
the equilibrium constants.

2.3.3 Conservation of momentum

Applying the fundamental law of dynamics to a fluid particle, we obtain the following equation
of momentum

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑖

= − 𝜕𝑃

𝜕𝑥𝑗
+
𝜕𝜏𝑗𝑖
𝜕𝑥𝑗

+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘𝑓𝑘,𝑖 =
𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘𝑓𝑘,𝑖, (2.44)

where 𝑃 is the pressure, 𝑓𝑘,𝑖 is the volume force acting on species 𝑘 in direction 𝑖. The viscous
tensor 𝜏𝑗𝑖 is defined by

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗 (2.45)

where 𝛿𝑖𝑗 denotes the Kronecker symbol, 𝜇 is the dynamic viscosity. The tensor 𝜎𝑖𝑗 is defined
as the sum of the viscous stress tensor and pressure tensor:

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗. (2.46)



36 CHAPTER 2. BACKGROUND

Equation (2.44) is the same in reacting and non-reacting flows. Even though this equation
does not include any explicit reaction terms, the flow is modified by combustion: the dynamic
viscosity 𝜇 strongly changes because of a temperature variation. As a consequence, the local
Reynolds number varies much more than in a non-reacting flow: even though the momentum
equations are the same with and without combustion, the flow behavior is very different.

2.3.4 Conservation of total energy

The conservation equation for total energy 𝑒𝑡 is

𝜕𝜌𝑒𝑡
𝜕𝑡

+
𝜕𝜌𝑒𝑡𝑢𝑖
𝜕𝑥𝑖

= − 𝜕𝑞𝑖
𝜕𝑥𝑖

+
𝜕 (𝜎𝑖𝑗𝑢𝑖)

𝜕𝑥𝑗
+ �̇�+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘𝑓𝑘,𝑖 (𝑢𝑖 + 𝑉𝑘,𝑖) , (2.47)

where �̇� is the heat source term (due for example to an electric spark, a laser or a radiative

flux). 𝜌
𝑁𝑠𝑝∑︀
𝑘=1

𝑌𝑘𝑓𝑘,𝑖 (𝑢𝑖 + 𝑉𝑘,𝑖) is the power produced by volume forces 𝑓𝑘 on species 𝑘. The

energy flux 𝑞𝑖 is

𝑞𝑖 = −𝜆 𝜕𝑇
𝜕𝑥𝑖

+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

ℎ𝑘𝑌𝑘𝑉𝑘,𝑖. (2.48)

This flux includes a heat diffusion term expressed bu Fourier’s Law 𝜆 𝜕𝑇
𝜕𝑥𝑖

(𝜆 is the heat
diffusion coefficient) and a second term associated with the diffusion of species with the
different enthalpies ℎ𝑘 which is specific of multi-species gas.

We recall that the total energy is defined by the relation

𝑒𝑡 =

𝑁𝑠𝑝∑︁
𝑘=1

⎛⎝ 𝑇∫︁
𝑇0

𝑌𝑘𝐶𝑝,𝑘(𝑇
*)𝑑𝑇 * + 𝑌𝑘ℎ

0
𝑘

⎞⎠− 𝑃

𝜌
+
𝑢𝑖𝑢𝑖
2
, (2.49)

where ℎ0𝑘 is the enthalpy of formation of the species 𝑘 at the reference temperature 𝑇0 and
𝐶𝑝,𝑘 represents the mass specific heat at a constant pressure of the species 𝑘.

2.3.5 State law of an ideal gas

A state law for the mixture of a perfect gas is also added to this system of equations:

𝑃 = 𝜌𝑅0

𝑁𝑠𝑝∑︁
𝑖=1

𝑌𝑘
𝑊𝑘

𝑇 , (2.50)

where 𝑅0 is the gas constant (𝑅0 = 8.314 J mol−1K−1) and𝑊𝑘 is the atomic weight of species
𝑘.
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2.4 Reynolds averaged Navier-Stokes (RANS)

approach

2.4.1 Definition of the ensemble average

The RANS approach consists in solving the Navier-Stokes equations to which a statistical
ensemble average with some closure hypothesis is applied. For constant density flows, the
averaging consists in splitting any quantity 𝑄(𝑡,𝑥) into a Reynolds mean component 𝑄(𝑡,𝑥)
and a fluctuating component 𝑄′(𝑡,𝑥)

𝑄(𝑡,𝑥) = 𝑄(𝑡,𝑥) +𝑄′(𝑡,𝑥). (2.51)

For variable density flows mass-weighted averages (Favre averages) are usually preferred.

̃︀𝑄 =
𝜌𝑄

𝜌
. (2.52)

(2.51) is replaced by a new decomposition

𝑄 = ̃︀𝑄+𝑄′′, (2.53)

where 𝑄′′ are the fluctuations relative to the Favre averages.

2.4.2 Averaged Navier-Stokes equations

Using the formalism proposed by Favre, the following RANS system is obtained:

∙ Mass

𝜕𝜌

𝜕𝑡
+
𝜕𝜌̃︀𝑢𝑖
𝜕𝑥𝑖

= 0, (2.54)

∙ Chemical species

𝜕𝜌̃︀𝑌𝑘
𝜕𝑡

+
𝜕𝜌̃︀𝑌𝑘̃︀𝑢𝑖
𝜕𝑥𝑖

= −𝜕(𝜌𝑉𝑘,𝑖𝑌𝑘 + 𝜌𝑢′′𝑖 𝑌
′′
𝑘 )

𝜕𝑥𝑖
+ �̇�𝑘, 𝑘 = 1, .., 𝑁𝑠𝑝. (2.55)

∙ Momentum

𝜕𝜌̃︀𝑢𝑖
𝜕𝑡

+
𝜕𝜌̃︀𝑢𝑖̃︀𝑢𝑗
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑖
=
𝜕(𝜏 𝑖𝑗 − 𝜌𝑢′′𝑖 𝑢

′′
𝑗 )

𝜕𝑥𝑗
, (2.56)

∙ Total energy

𝜕𝜌̃︀𝑒𝑡
𝜕𝑡

+
𝜕(𝜌̃︀𝑒𝑡 + 𝑃 )̃︀𝑢𝑖

𝜕𝑥𝑖
=

𝜕 (− (𝜌𝑢𝑖𝑒𝑡 − 𝜌̃︀𝑢𝑖̃︀𝑒𝑡) + (𝜏𝑗𝑖𝑢𝑗 − 𝜏𝑗𝑖̃︀𝑢𝑗)− 𝑞𝑖 + 𝜏 𝑗𝑖̃︀𝑢𝑗)
𝜕𝑥𝑖

+ �̇�+𝜌

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘𝑓𝑘,𝑖 (𝑢𝑖 + 𝑉𝑘,𝑖). (2.57)
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∙ Averaged thermodynamics law

𝑃 = 𝜌𝑅0 ̃︀𝑇 𝑁𝑠𝑝∑︁
𝑖=1

̃︀𝑌𝑘
𝑊𝑘

. (2.58)

2.4.3 Closure of the RANS equations

The averaged Navier-Stokes eqs. (2.55) to (2.58) for the compressible flows involve terms that
are not closed. They should be modeled.

∙ Averaged diffusive fluxes for species 𝜌𝑉𝑘,𝑖𝑌𝑘 and total energy 𝑞𝑖: According to
Boussinesq hypothesis these terms can be modeled as

𝜌𝑉𝑘,𝑖𝑌𝑘 = −𝜌𝐷𝑘
𝜕𝑌𝑘
𝜕𝑥𝑖

≈ 𝜌𝐷𝑘
𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑖

, (2.59)

where 𝐷𝑘 is a mean species molecular diffusion coefficient.

𝑞𝑖 = −𝜆 𝜕
̃︀𝑇

𝜕𝑥𝑖
+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

̃︀ℎ𝑘𝐷𝑘
𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑖

, (2.60)

where 𝜆 denotes a mean thermal diffusivity.

∙ Averaged viscous stress tensor 𝜏 𝑖𝑗: from (2.61) we deduce

𝜏 𝑖𝑗 = 𝜇

(︂
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

+
𝜕̃︀𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

𝛿𝑖𝑗, (2.61)

𝜇 is a mean dynamic viscosity.

∙ Reynolds stress tensor 𝜌̃︂𝑢′′𝑖 𝑢′′𝑗 : this term represents the turbulent flux of the momen-
tum. Following the turbulence viscosity assumption proposed by Boussinesq, it can be
modeled as

𝜌𝑢′′𝑖 𝑢
′′
𝑗 = −𝜏 𝑡𝑖𝑗 = −𝜇𝑡

(︂
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

+
𝜕̃︀𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕̃︀𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
+

2

3
𝜌𝑘𝛿𝑖𝑗, (2.62)

where 𝑘 is the kinetic energy of turbulence and 𝜇𝑡 is the turbulent dynamic viscosity.

∙ Species turbulent fluxes 𝜌 ̃︂𝑢′′𝑖 𝑌 ′′
𝑘 : it is usually closed using a classical gradient as-

sumption

𝜌𝑢′′𝑖 𝑌
′′
𝑘 = − 𝜇𝑡

𝑆𝑐𝑘𝑡

𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑖

= −𝜌𝐷𝑡
𝑘

𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑖

, (2.63)

where 𝑆𝑐𝑘𝑡 is a turbulent Schmidt number and 𝐷𝑡
𝑘 is a turbulent diffusion coefficient

for species 𝑘.
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∙ Turbulent fluxes of total energy: using a gradient assumption we obtain

(𝜌𝑢𝑖𝑒𝑡 − 𝜌̃︀𝑢𝑖̃︀𝑒𝑡)− (𝜏𝑗𝑖𝑢𝑗 − 𝜏𝑗𝑖̃︀𝑢𝑗) = −𝜆𝑡
𝜕 ̃︀𝑇
𝜕𝑥𝑖

+ 𝜌

𝑁𝑠𝑝∑︁
𝑘=1

𝐷𝑡
𝑘
̃︀ℎ𝑘 𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑖

+ 𝜏 𝑡𝑗𝑖̃︀𝑢𝑖. (2.64)

The coefficient of turbulent thermal conductivity is estimated from the turbulent Prandtl
number constant 𝜆𝑡 =

𝜇𝑡𝐶𝜇

𝑃𝑟𝑡
.

∙ Mean reaction rate �̇�𝑘: The most difficult task is to model the mean reaction rate.
In the following section 2.6 this problem will be discussed in details. Here we mention
a most simple approach, named quasi-laminar approach, to evaluate mean reaction
rate. If we consider a reaction at an irreversible stage, we can write the rate of fuel
consumption using the Arrhenius law:

𝐹 + 𝑠𝑂 → (1 + 𝑠)𝑃, (2.65)

where 𝐹 is a fuel and 𝑂 is an oxidizer. The fuel mass reaction rate �̇�𝐹 is

�̇�𝐹 = −𝐴1𝜌
2𝑇 𝛽1𝑌𝐹𝑌𝑂 exp (−𝑇𝐴/𝑇 ) , (2.66)

where 𝐴1 is the pre-exponential constant and 𝑇𝐴 the activation temperature. This
expression, related to the rate of reaction, is difficult to average. The nonlinearity of
the exponential term implies a significant error if one ”distributes” the operator of the
temperature averaging. Thus, the average reaction rate in the quasi-laminar approach
is written

�̇�𝐹 = −𝐴1𝜌2 ̃︀𝑇 𝛽1 ̃︀𝑌𝐹 ̃︀𝑌𝑂 exp
(︁
−𝑇𝐴/̃︀𝑇)︁ (2.67)

The approximated expression (2.67) is a very coarse approximation because even small
fluctuations in the reaction region can cause important fluctuations of the chemical
source.

2.4.4 Turbulence models

In the framework of RANS, the use of a turbulence model allows closing the Reynolds stresses
and the turbulent dynamic viscosity [Pope2000]. The parameter 𝜇𝑡 is often obtained from
algebraic equations (e.g. Prandtl mixing length model) which do not require any additional
balance equation, one-equation closure (e.g. Prandtl-Kolmogorov), and two-equation closure

(e.g. 𝑘− 𝜀 model). The Reynolds stresses 𝑢′′𝑖 𝑢
′′
𝑗 are also unclosed. Their closure may be done

directly or by deriving balance equations for the Reynolds stresses. Classical turbulence
models such 𝑘 − 𝜀, 𝑘 − 𝜔 or 𝑘 − 𝑙 are generally used. All of these are the first order models
designed to calculate the turbulent viscosity using, e.g., a Boussinesq hypothesis. Recall that:

𝑘 =
1

2
𝑢′′𝑖 𝑢

′′
𝑖 , 𝜀 = 𝜈𝑡

˜𝜕𝑢′′𝑖
𝜕𝑥𝑗

𝜕𝑢′′𝑖
𝜕𝑥𝑗

𝑙 = 𝐶𝜀
𝑘3/2

𝜀
, 𝜔 =

𝜀

𝑘
. (2.68)

where 𝜈𝑡 = 𝐶𝜇
𝑘2

𝜀
, where 𝐶𝜇 = 0.09, 𝐶𝜀 = 𝐶

3/4
𝜇 are model constants obtained from the

experiment. Transport equations of 𝑘 and 𝜀 (𝑙 or 𝜔) are then derived from the momentum
conservation equation.
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2.5 Large eddy simulation (LES)

The essential idea of the LES is that the spatial distribution of the grid nodes implicitly gener-
ates a scale separation, since scales smaller than a typical scale associated to the grid spacing
cannot be captured. The LES problem makes several subranges of scales appearing:

∙ Resolved scales which are large enough to be accurately captured on the grid with a
given numerical method;

∙ Unresolved scales which are too small to be represented on the computational grid.
Mathematically, scales are separated using a scale high-pass filter which is also a low-pass
filter in a frequency. The filtering corresponds to a convolution product in physical space. In
density constant flows, the resolved part 𝑄(𝑡,𝑥) of a space-time variable 𝑄(𝑡,𝑥) is defined
formally by the relation

𝑄(𝑡,𝑥) =
1

Δ

∞∫︁
−∞

∞∫︁
−∞

𝐺

(︂
𝑡− 𝑡′,

𝑥− 𝑥′

Δ

)︂
(𝑡′,𝑥′)𝑑𝑡′𝑑𝑥′ = 𝐺 *𝑄, (2.69)

where the convolution kernel 𝐺 is characteristic of the used filter, and is associated with the
cut-off scale in space and time, Δ and 𝜏𝑐𝑢𝑡, respectively. The non-resolved part of 𝑄(𝑡,𝑥),
denoted 𝑄′(𝑡,𝑥) is defined as

𝑄′(𝑡,𝑥) = 𝑄(𝑡,𝑥)−𝑄(𝑡,𝑥). (2.70)

Frequently, for variable density flows a change of variables in which filtered variables are
weighted by the density is used. This change of variables is written as

𝜌𝑄 = 𝜌 ̃︀𝑄. (2.71)

The operator ̃︀() is linear but does not commute with the derivative operators neither in
space nor in time in comparison with the Favre-averaged operator in the RANS approach.

2.5.1 Closure of the LES equations

The filtering Navier-Stokes equations read as eqs. (2.55) to (2.58). The closure should be
added. The closure of the LES equations as the calculation of the turbulent viscosity differs
from that of the RANS equations.

∙ The averaged diffusive fluxes for species 𝜌𝑉𝑘,𝑖𝑌𝑘 and total energy 𝑞𝑖 are exactly
the same that in the RANS equations and given by eq. (2.60) and eq. (2.60). In the
LES modeling the diffusion of the kinetic turbulent energy is neglected because the
turbulent kinetic energy of subgrid is negligible in comparison with other terms in the
eq. (2.57).

∙ The Reynolds stress tensor for the Favre-filtered momentum field is given by

(𝜌𝑢𝑖𝑢𝑗 − 𝜌̃︀𝑢𝑖̃︀𝑢𝑗) = −
(︁
𝜌̃︀𝑢𝑖̃︀𝑢𝑗 − 𝜌̃︀𝑢𝑖̃︀𝑢𝑗)︁− (︁𝜌̃︀𝑢𝑖𝑢′′𝑗 − 𝜌𝑢′′𝑖 ̃︀𝑢𝑗)︁− 𝜌𝑢′′𝑖 𝑢

′′
𝑗 . (2.72)
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The first term in eq. (2.72) is the Leonard tensor, representing interactions among
resolved scales; the second term is the Clark tensor, representing interactions between
resolved and unresolved scales; and the last is the Reynolds tensor, which represents
interactions among unresolved scales. The last two terms cannot be closed and thus
should be modeled. By analogy with the molecular viscosity for the instantaneous
equations, the Boussinesq hypothesis is used in order to explicit the turbulent stress
tensor. In LES it presents also by eq. (2.62).

∙ The turbulent viscosity of a subgrid can be calculated with different models, for ex-
ample, Smagorinsky-Lilly model [Smagorinsky1963], Wall-Adapting Local Eddy-Viscosity
model, Germano dynamic model [GermanoPiomelli1991], [MoinSquires1991] and so on.
For example, the Smagorinsky approach models the eddy viscosity as

𝜇𝑡 = 𝜌(𝐶𝑠Δ)2
√︁
2̃︀𝑆𝑖𝑗 ̃︀𝑆𝑖𝑗, (2.73)

where Δ is the grid size and 𝐶𝑠 is a Smagorinsky constant, usually equals to 0.18. 𝑆 is
a symmetric part of the filtered stress tensor of deformation, i.e.

̃︀𝑆𝑖𝑗 = 1

2

(︂
𝜕̃︀𝑢𝑗
𝜕𝑥𝑖

+
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

)︂
. (2.74)

The turbulent energy is calculated as

𝑘 =
2√︀
𝐶𝜇

(𝐶𝑠Δ)2 ̃︀𝑆𝑖𝑗 ̃︀𝑆𝑖𝑗. (2.75)

𝐶𝜇 is a modeled constant.

2.6 General models of turbulent combustion

2.6.1 PDF approach

Probability density function (PDF) methods are well-suited for studying turbulent reacting
flow problems, as they take into account the interaction between the chemistry and the
turbulence. We present various PDF methods following the work of [Pope1994].

Eulerian PDFs

Let consider a set of 𝑁 composition variables 𝜑(𝑡,𝑥), where 𝜑 = (𝜑1, ..., 𝜑𝑁) which describe
the flow. The joint PDF 𝑓𝜑(Ψ; 𝑡,𝑥) measures the probability of the random variable being
in any specified interval. Here Ψ = (Ψ1, ...,Ψ𝑁) denote the sample space variables. For
example, for Ψ* + ΔΨ*

2
> Ψ* − ΔΨ*

2
, the probability that at given time and position, the

quantities 𝜑(𝑡,𝑥) take values in the range [Ψ* − ΔΨ*

2
,Ψ* + ΔΨ*

2
] is

𝑃𝑟𝑜𝑏

{︂
Ψ* − ΔΨ*

2
≤ 𝜑(𝑡,𝑥) ≤ Ψ* +

ΔΨ*

2

}︂
=

Ψ*+ΔΨ*
2∫︁

Ψ*−ΔΨ*
2

𝑓𝜑(Ψ; 𝑡,𝑥)𝑑Ψ. (2.76)
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Given that the reactive flows are usually characterized by a varying density, the quantities
are often mass-weighed prior to averaging. Such the procedure is called Favre averaging. The
corresponding PDF ̃︀𝑓𝜑 is defined by:

̃︀𝑓𝜑(Ψ; 𝑡,𝑥) =
𝜌𝑓𝜑(Ψ; 𝑡,𝑥)

𝜌
. (2.77)

If 𝑢(𝑡,𝑥) is the Eulerian velocity of the fluid, we can introduce sample space velocity
variables 𝑉 = (𝑉1, 𝑉2, 𝑉3) and denote the one-time one-point Eulerian joint PDF of velocity
by 𝑓𝑢(𝑉 ; 𝑡,𝑥). The velocity-composition joint PDF is 𝑓𝑢𝜑(𝑉 ,Ψ; 𝑡,𝑥).

The PDF contains all the statistical information of the random variable at a given point
of space and time. For example, if we consider the Favre joint composition PDF ̃︀𝑓𝜑(Ψ; 𝑡,𝑥),
the Favre 𝑛th order moment of the quantity 𝑄(𝜑) can be calculated as follows

̃︁𝑄𝑛(𝜑) =

∞∫︁
−∞

𝑄𝑛 (Ψ) ̃︀𝑓𝜑(Ψ; 𝑡,𝑥)𝑑Ψ. (2.78)

The fundamental interest of the Favre composition or velocity-composition joint PDF resides
in an exact resolution of chemistry. The Favre-averaged source term is

̃̇︀𝜔(𝑡,𝑥) = ∫︁ �̇�(Ψ) ̃︀𝑓𝜑(Ψ; 𝑡,𝑥)𝑑Ψ. (2.79)

According to the definition given in [Pope1994], in a PDF method the probability density
function in a turbulent flow is determined as the solution of a modeled evolution equation.

Presumed PDF

Strictly speaking, the presumed PDF methods are not PDF methods in the sense of the
definition given above. It assumes that the PDF has a particular shape that is usually pa-
rameterized by its first and second moments and is not determined from a modeled evolution
equation. The moments of presumed PDF are found from modeled transport equations.
Different mathematical functions can be employed to model the shape of the scalar PDF
(different profiles of PDF can be found for example in [WarnatzMaas2006]).

Uni-dimensional beta function First, one can employ uni-dimensional 𝛽 function de-
fined on the interval [0, 1] in order to write the PDF:

̃︀𝑓(Ψ; 𝑡,𝑥) =
Γ(𝑎+ 𝑏)

Γ(𝑎)Γ(𝑏)
Ψ𝑎−1|1−Ψ|𝑏−1, (2.80)

where Γ function is defined by:

Γ(𝛼) =

+∞∫︁
0

𝑠𝛼−1𝑒−𝑠𝑑𝑠, 𝛼 > 0. (2.81)
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The first two moments ̃︀Ψ and ̃︂Ψ′′2 are expressed in terms of two parameters 𝑎 and 𝑏:⎧⎪⎪⎨⎪⎪⎩
̃︀Ψ =

𝑎

𝑎+ 𝑏
,

̃︂Ψ′′2 =
𝑎𝑏

(𝑎+ 𝑏)2(𝑎+ 𝑏+ 1)
.

By reversing these expressions, 𝑎 and 𝑏 can be expressed as function of moments of Ψ:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑎 = ̃︀Ψ(︃ ̃︀Ψ(1− ̃︀Ψ)̃︂Ψ′′2

− 1

)︃
,

𝑏 = (1− ̃︀Ψ)

(︃ ̃︀Ψ(1− ̃︀Ψ)̃︂Ψ′′2
− 1

)︃
.

Thus, the form taken by the 𝛽-PDF is determined by the first two statistical moments.
Assuming that the production rate of species 𝑘 depends on Ψ and using the expression
(2.80), the averaged production rate is

̃̇︀𝜔𝑘(𝑡,𝑥) = +∞∫︁
−∞

�̇�𝑘(Ψ) ̃︀𝑓(Ψ)𝑑Ψ =

+∞∫︁
−∞

�̇�𝑘(Ψ)
Γ(𝑎+ 𝑏)

Γ(𝑎)Γ(𝑏)
Ψ(𝑡,𝑥)𝑎−1 |1−Ψ(𝑡,𝑥)|𝑏−1 . (2.82)

Figure 2.8 presents the evolution of the 𝛽-PDF for variables 𝑎 and 𝑏. When ̃︂Ψ′′2 tends to
0, the 𝛽-PDF tends to a single Dirac delta peak centered at ̃︀Ψ. On the other hand, wheñ︂Ψ′′2 approaches its maximum value, the 𝛽-PDF approaches a bimodal shape represented by
two Dirac delta peaks localized at 0 and 1 (the latter limit is characterized by an infinitely
thin flame front).

[Girimaji1991] extends one-dimensional 𝛽-PDF approach towards multidimensional 𝛽-
functions. The latter enable the modelling of the joint PDF, such as for example PDF for
the mixture fraction 𝑍 and the progress variable 𝐶 [LandenfeldSadiki2002].
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Figure 2.8: 𝛽-PDF for different parameters 𝑎 and 𝑏, defined in eq. (2.80)
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Truncated Gaussian function For a second approach, as an example, we can cite the
truncated Gaussian function for analytical approximation to the one-dimensional PDFs. The
analytical representation of this PDF is given by [Warnatz1984]

̃︀𝑓(Ψ; 𝑡,𝑥) = 𝛼𝛿(Ψ) + 𝛽𝛿(1−Ψ) + 𝛾 exp

(︂
−(Ψ− 𝜁)2

2𝜎2

)︂
. (2.83)

Here 𝜁 and 𝜎 characterize the position and the width of the Gaussian distribution, respec-
tively, Ψ can be a progress variable 𝑐, a temperature 𝑇 and so on. The normalization constant
𝛾 is obtained (for given 𝛼 and 𝛽) from the relation

𝛾 =
(1− 𝛼− 𝛽)

√︁
2𝜎
𝜋

𝑒𝑟𝑓
(︁

1−𝜁√
2𝜎

)︁
+ 𝑒𝑟𝑓

(︁
𝜁√
2𝜎

)︁ , (2.84)

where ”erf” denotes the error function.
In conclusion, the 𝛽-function, Gaussian function and so on are an arbitrary choice for the

presumed PDFs, which is difficult to justify with solid physical reasoning. The flexibility of
the shape of a 𝛽 function or a Gaussian function is not sufficient to justify its use, because
PDF, calculated for a physical processes, often possess a shape very different from 𝛽 and
Gaussian PDFs and may not be successfully approximated by the latter. Consequently, the
validity of any presumed PDF must be checked case by case. In addition, no account is
taken of the influence of the dynamics (e.g. reaction) on the shape of the PDF. Another
disadvantage is that presumed PDF methods are computationally more expensive for the
general case of many compositions compared to the exact PDF methods.

Transported Eulerian PDF

The transported Eulerian PDF method consists of solving a model transport equation for the
PDF: a velocity PDF, a composition PDF and a velocity-composition joint PDF for reacting
ideal-gas mixtures. In Eulerian PDF methods, the quantities that have to be modeled are
one-time one-point conditional expectations. It presents an effective resolution to the closure
problems that arise from averaging or filtering chemical source terms, from modeling the
effects of convection, body forces and the mean pressure gradient (details can be found for
instance in [Haworth2010]). These terms appear exactly in the PDF transport equation and
so do not have to be modeled.

As reviewed in [KuznetsovSabelnikov1986], the first attempt to obtain an equation for
PDF in turbulent flow was performed by [Frost1960] when considering the turbulent combus-
tion of a homogeneous mixture of combustible gases. An equation for the temperature PDF
was derived in this work. A similar equation, this time entitled Langevin model, appeared
later in [Chung1969]. Later, this approach was developed further by Kuznetsov and Frost
[Frost1973; KuznetsovFrost1973; Frost1977].

Exact non-closed equations for n-point probability distribution densities of various fluid
dynamic characteristics, obtained from the Navier-Stokes equation, were introduced into the
theory of turbulence almost simultaneously by [Kuznetsov1967; Lundgren1967; Monin1967a;
Monin1967b; Novikov1968; Ulinich1968; UlinichLyubimov1968]. Subsequently, the equations
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for PDF were extended to the case of the Lagrangian motion description of a medium in [Lyu-
bimov1969; LyubimovUlinich1970]. The general method of deriving the equations for PDF
in an arbitrary continuum is given in [Ievlev1972; Fox1975; Ievlev1975; Hill1976]. These
methods are also reviewed in [Hoffmeister1980; Sabelnikov1985; Sabelnikov1986; BorghiDes-
triau1995].

Joint velocity PDF
The first works are based on the solution of a modeled transport equation for the joint

PDF of the velocity components 𝑓𝑢 (e.g. [Lundgren1969]). The obtained 𝑓𝑢 allows having
statistics about velocity fields and in particular, Reynolds stresses. However, despite the
statistical description of the velocity in the turbulent flow this PDF does not give a sufficiently
detailed description of underlying physics.

Joint scalars PDF
Later, a modeled equation for the PDF of a set of scalar variables 𝜑 = (𝑌1, .., 𝑌𝑁𝑠𝑝 , ℎ𝑡)

(e.g. mass fractions and enthalpy) was considered. It describes the thermochemical state
of a reacting medium (a composition joint PDF 𝑓𝜑) to model mixing and chemical re-
action. In this approach any complicated reactions can be treated exactly. There were
many researchers [JanickaKolbe1978; Pope1981; Bradbury1982; GiviSirignano1984; Nguyen-
Pope1984; Soulard2005; Ourliac2009] who demonstrated the ability of 𝑓𝜑 to handle nonlinear
reactions.

The transport equation for the Favre averaging PDF of ̃︀𝑓𝜑 governing the one-point statis-
tics of a turbulent reactive scalars 𝜑 is as follows [Pope1985]:

𝜕𝜌 ̃︀𝑓𝜑
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌̃︀𝑢𝑗 ̃︀𝑓𝜑) = − 𝜕

𝜕𝑥𝑗

(︁
𝜌⟨𝑢′′𝑗 |Ψ⟩ ̃︀𝑓𝜑)︁− 𝜕

𝜕Ψ𝛼

(︂
𝜌

⟨
− 𝜕

𝜕𝑥𝑗
𝐷𝛼

𝜕𝜑𝛼
𝜕𝑥𝑗

|Ψ
⟩ ̃︀𝑓𝜑)︂− 𝜕

𝜕Ψ𝛼

(︁
𝜌𝑆𝛼(Ψ) ̃︀𝑓𝜑)︁ .
(2.85)

Here, 𝛼 = 1, .., 𝑁𝑠𝑝 + 1, ⟨ |Ψ⟩ is a conditional mean given scalars variables Ψ from scalar
space. 𝑆𝛼 is a chemical source term for species 𝛼. The first term on the left-hand side (LHS)

of the eq. (2.85) is the temporal change of 𝜌 ̃︀𝑓𝜑. The second term on the LHS represents

the advection of ̃︀𝑓𝜑 in the physical space by the Favre-averaged velocity. The first term
on the right-hand side (RHS) of the equation (2.85) is the turbulent advection, which is
the transport by the fluctuating velocity in physical space. The second term on the right
represents the effects of molecular mixing, it is called ”micro-mixing term”. The last term is
the chemical source.

The turbulent advection term is modeled with a gradient diffusion hypothesis with coef-
ficient Γ𝑡:

⟨𝑢′′𝑗 |Ψ⟩ ̃︀𝑓𝜑 = −Γ𝑡
𝜕 ̃︀𝑓𝜑
𝜕𝑥𝑗

(2.86)

with Γ𝑡 =
𝜈𝑡
𝜎𝑡
, 𝜎𝑡 is a turbulent Schmidt number for the mass fraction components of ̃︀𝑓𝜑, and

turbulent Prandtl number for the last component of ̃︀𝑓𝜑, which is in fact the total enthalpy.
The micromixing is usually modeled using the Interaction by Exchange with the Mean

model [VillermauxDevillon1972]:⟨
− 𝜕

𝜕𝑥𝑗
𝐷𝛼

𝜕𝜑𝛼
𝜕𝑥𝑗

|Ψ
⟩ ̃︀𝑓𝜑 = −𝜔𝜑

(︁
Ψ𝛼 − ̃︀𝜑𝛼)︁ ̃︀𝑓𝜑 (2.87)
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with 𝜔𝜑 is a characteristic pulsation of the small scales of turbulence. In the end, we obtain
the following equation:

𝜕𝜌 ̃︀𝑓𝜑
𝜕𝑡

+
𝜕

𝜕𝑥𝑗

(︁
𝜌̃︀𝑢𝑗 ̃︀𝑓𝜑)︁ =

𝜕

𝜕𝑥𝑗

(︃
𝜌Γ𝑡

𝜕 ̃︀𝑓𝜑
𝜕𝑥𝑗

)︃
+

𝜕

𝜕Ψ𝛼

(︁
𝜌𝜔𝜑

(︁
Ψ𝛼 − ̃︀𝜑𝛼)︁ ̃︀𝑓𝜑)︁− 𝜕

𝜕Ψ𝛼

(︁
𝜌𝑆𝛼(Ψ) ̃︀𝑓𝜑)︁ .

(2.88)
For the inhomogeneous three dimensional flows, analytical solution to the PDF transport

equation (2.88) does not exist, so numerical methods are required. Standard techniques
such as finite differences are severely limited because of the large dimensionality of the joint
PDF ̃︀𝑓𝜑. They cannot be employed as their cost increases exponentially with dimensionality.
Monte Carlo methods, on the other hand, yield a linearly growing effort and are more adapted
to solve the PDF equations, but in the same time they are less accurate than the latter one.
In the field of the numerical turbulent combustion, LMC methods [Pope1985] have become
an essential component of the PDF approach since the 1980’s. LMC methods are based
on stochastic particles, which evolve from prescribed SODEs. The particles are randomly
distributed in the computational domain and are associated with the cell they are located in
at a given instant of time. They are used to compute the one-point statistics of the quantities
describing the state of a turbulent reactive flow. Due to the statistical nature of the method,
computed mean fields have inherent noise. The error scales as 𝑁

−1/2
𝑝 for a domain with 𝑁𝑝

particles, which increases the computational expense hyperlinearly. Numerous publications
document algorithms, convergence and accuracy of LMC methods [MuradogluJenny1999;
Pope2000; MuradogluPope2001; ViswanathanWang2011].

However, LMC methods have inherent difficulties for controlling statistical convergence.
In particular, the sampling error is not always controlled with precision, as it depends on
the particle distribution in the physical domain. Furthermore, to improve convergence rates,
it is often necessary to couple the LMC method to an Eulerian RANS (LES) solver [Jen-
nyPope2001; RemboldJenny2006; WangPope2008]; this can quickly result in a heavy tool
to manipulate, due to the different nature (Lagrangian/Eulerian) of the solvers. All of the
mentioned shortcomings arise from the Lagrangian nature of the LMC method.

Contrariwise, Eulerian Monte Carlo (EMC) methods are based on stochastic Eulerian
fields that evolve from stochastic partial differential equations (SPDEs). EMC methods have
been extensively used in several domains [WernerDrummond1997; OsnesLangtangen1998].
However, their application to the simulation of turbulent reactive flows only seems to be
dating back from the work by Valino [Valiño1998]. Valino derives the SPDEs statistical
equivalent to the joint composition PDF with several restrictive hypotheses: the stochas-
tic fields are required to be smooth and twice differentiable in space. V. Sabelnikov and
O. Soulard [SabelnikovSoulard2005; SabelnikovSoulard2006] developed a new path to derive
the SPDEs for solving equations of the PDF in the context of the EMC methods. The
principal idea is based on the rapidly decorrelating velocity field model first proposed in
[Kazantsev1968; Kraichnan2003]. The Kraichnan-Kazantsev model describes the advection
of a scalar by a solenoidal white-in-time Gaussian velocity field and leads to a Fokker-Planck
composition PDF equation with a diffusion term in physical space. V. Sabelnikov and O.
Soulard established the connection between the LMC and the EMC methods for the gen-
eral case of compressible, inhomogeneous, low-Mach-number turbulent flame with molecular
diffusion effects.
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The RANS/EMC solver was validated against experimental data taken from [Magre-
Moreau1988] on a configuration consisting in the turbulent combustion of a premixed stoi-
chiometric methane-air mixture [Soulard2005; Ourliac2009]. The flame was stabilized by a
recirculation zone in a plane channel with a sudden expansion (backward facing step). It was
also successfully applied to the ignition by a laser of a chamber filled by a co-axial 𝐻2 − 𝑂2

injector [Ourliac2009]. The RANS/EMC solver was implemented into CEDRE software plat-
form developed at ONERA. It was validated in terms of convergence and statistical precision
over the cited above configurations.

Let us briefly recall the system of the SPDEs statistically equivalent to the transport
equation of the Favre joint PDF of mass fractions and total enthalpy. Details with proof of
statements can be found in [SoulardSabelnikov2006]. The system of conservative SPDEs is
written as follows

𝜕𝑟𝑌𝑘
𝜕𝑡

+
𝜕
(︀
(̃︀𝑢𝑗 + 𝑢′′𝑗 ) ∘ 𝑟𝑌𝑘

)︀
𝜕𝑥𝑗

= −𝑟𝜔(𝑌𝑘 − ̃︀𝑌𝑘) + 𝑟𝑆𝑘(𝑌 , 𝑇 ), 𝑘 = 1, .., 𝑁𝑠𝑝, (2.89)

𝜕𝑟ℎ𝑡
𝜕𝑡

+
𝜕
(︀
(̃︀𝑢𝑗 + 𝑢′′𝑗 ) ∘ 𝑟ℎ𝑡

)︀
𝜕𝑥𝑗

= −𝑟𝜔(ℎ𝑡 − ̃︀ℎ𝑡) + 𝜕𝑃

𝜕𝑡
, (2.90)

𝑢′′𝑗 = −Γ𝑡
1

𝜌

𝜕𝜌

𝜕𝑥𝑗
+

1

2

𝜕Γ𝑡
𝜕𝑥𝑗

+
√︀

2Γ𝑡𝜉𝑗, 𝑗 = 1, .., 3, (2.91)

where 𝑟(𝑡,𝑥) is the stochastic density which is different from the physical density 𝜌(𝑡,𝑥), 𝜔
is a mean turbulent frequency. ∘ is a symbol in the Stratonovich interpretation. The velocity
contains the stochastic term

√
2Γ𝑡𝜉, which represents the derivative of a Brownian motion:

it is not differentiable in the sense of classical functions since infinite, which in the numerical
calculation results in overly high velocities.

The statistical equivalence between the stochastic fields and the model Reynolds and
Favre PDFs from eq. (2.88) is achieved by making use the stochastic density 𝑟(𝑡,𝑥). To
explicit this equivalence, we introduce the average operator ⟨ ⟩𝑠 of a stochastic quantity 𝑄 as

⟨𝑄⟩𝑆 =
1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑄𝑖𝑟𝑒𝑎(𝑡,𝑥), (2.92)

where 𝑁𝑟 is a number of stochastic fields. The Favre-averaged stochastic quantity 𝑄, noted
as ⟨𝑄⟩𝑟, is

⟨𝑄⟩𝑟 =
⟨𝑟𝑄⟩𝑆
⟨𝑟⟩𝑆

. (2.93)

The corresponding unweighted 𝑓𝑠 and weighted 𝑓𝑟 PDFs are related by

𝑓𝑟(𝑢
′′,𝑌 , ℎ𝑡; 𝑡,𝑥) =

⟨𝑟(𝑡,𝑥)|𝑢′′,𝑌 , ℎ𝑡⟩𝑆
⟨𝑟(𝑡,𝑥)⟩𝑆

𝑓𝑆(𝑢
′′,𝑌 , ℎ𝑡; 𝑡, 𝑥). (2.94)

If the following consistency condition is verified

⟨𝑟(𝑡,𝑥)⟩𝑆 =
1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑟𝑖𝑟𝑒𝑎(𝑡,𝑥) →
𝑁𝑟→+∞

𝜌(𝑡,𝑥), (2.95)
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and initial and boundary conditions are the same for the Favre joint fluctuating velocity-
composition PDF ̃︀𝑓𝑢′′,𝑌 ,ℎ𝑡 and the Favre stochastic PDF 𝑓𝑟, then their transport equations
are identical.

𝑓𝑟 →
𝑁𝑟→+∞

̃︀𝑓𝑢′′,𝜑, ⟨𝑄⟩𝑟 →
𝑁𝑟→+∞

̃︀𝑄. (2.96)

It should be noted that we use the same notation for stochastic fields of velocity 𝑢′′, mass
fractions 𝑌 and total enthalpy ℎ𝑡 in SPDEs and Eulerian variables in PDF equation.

Equations (2.89) and (2.90) are hyperbolic differential equations. They can be solved by
any hyperbolic scheme in space like Godunov, Lax-Wendroff or Lax-Friedrich scheme, other
examples can be found in [Toro1999], and a special stochastic scheme in time [BurrageBur-
rage1996] because of the Stratonovich interpretation of them. According to the analytical
results of V. Sabelnikov and O. Soulard any proposed numerical scheme is stable if and only
if

|𝑑𝑢𝑗|
Δ𝑥𝑗

< 1.

Since the velocity 𝑑𝑢𝑗 is proportional to
√
Δ𝑡, the stability condition reads

Δ𝑡 <
Δ𝑥2𝑗
2Γ𝑡

. (2.97)

The dependence of Δ𝑡 in Δ𝑥2𝑗 , due to the diffusive nature of the Brownian motion, plays a
negative role for fine meshes. Thus it is advisable to return to a time step with a conventional
Courant-Friedrichs-Lewy (CFL) condition. Other inconvenience of the composition PDF
equation (which is true for both LMC and EMC techniques) that it overcomes only the
closure problem of nonlinear chemical terms and it does not address to the problem of the
turbulent flow field. That is why it is important to consider the joint velocity-composition
PDF 𝑓𝑢,𝜑.

Joint velocity-scalars PDF
Let us introduce the Favre joint velocity-composition PDF ̃︀𝑓𝑢,𝜑(𝑉 ,Ψ; 𝑡,𝑥), where 𝑉 and

Ψ are independent variables from the velocity space and composition space. It allows finding
all one-point statistics of velocity 𝑢 and compositions 𝜑. For example, in the framework of the
RANS, the mean velocity, the Reynolds stresses, the flux of velocity and scalar fluctuations
and finally chemical source are treated exactly. We will work not only with statistics of the
velocity, but also with those of its fluctuations:

𝑢′′ = 𝑢− ̃︀𝑢. (2.98)

Let be ̃︀𝑔𝑢′′𝜑(𝑉
′′,𝜑; 𝑡,𝑥) - the Favre joint fluctuating velocity 𝑢′′(𝑡,𝑥) - composition

𝜑(𝑡,𝑥) PDF in the turbulent reactive gas flows (here 𝑉 ′′ is the fluctuating velocity space).
This PDF is related with the Favre joint velocity-composition PDF and with the Reynolds
PDF as:

̃︀𝑔𝑢′′,𝜑(𝑉
′′,Ψ; 𝑡,𝑥) = ̃︀𝑓̃︀𝑢+𝑢′′,𝜑( ̃︀𝑉 +𝑉 ′′,Ψ; 𝑡,𝑥) = ̃︀𝑓𝑢𝜑(𝑉 ,Ψ; 𝑡,𝑥) =

⟨𝜌|𝑉 ,Ψ⟩
𝜌

𝑓𝑢𝜑(𝑉 ,Ψ; 𝑡,𝑥),

(2.99)
where ⟨ |𝑉 ,Ψ⟩ is a conditional mean. Pope and his colleagues propose to model the evolution
equation for ̃︀𝑔 = ̃︀𝑔𝑢′′𝜑 as follows [Pope2000]:
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𝜕𝜌̃︀𝑔
𝜕𝑡

+
𝜕

𝜕𝑥𝑗

(︀
𝜌
(︀̃︀𝑢𝑗 + 𝑉 ′′

𝑗

)︀ ̃︀𝑔)︀ =
− 𝜕

𝜕𝑉 ′′
𝑗

(︂
𝜕

𝜕𝑥𝑘

(︁
𝜌𝑢′′𝑗𝑢

′′
𝑘

)︁̃︀𝑔)︂+
𝜕

𝜕𝑉 ′′
𝑗

(︂
𝜌

(︂
−𝐶1𝜔 +

𝜕̃︀𝑢𝑘
𝜕𝑥𝑘

)︂
𝑉 ′′
𝑗 ̃︀𝑔)︂

+
1

2
𝜌𝐶0𝜀

𝜕2̃︀𝑔
𝜕𝑉 ′′

𝑗 𝜕𝑉
′′
𝑗

+
𝜕

𝜕Ψ𝛼

(︁
𝜌𝐶𝜑𝜔(Ψ𝛼 − ̃︀𝜑𝛼)̃︀𝑔)︁− 𝜕

𝜕Ψ𝛼

(𝜌𝑆𝛼(Ψ)̃︀𝑔) ; 𝑗, 𝑘 = 1, .., 3. (2.100)

In this equation 𝜀 is the mean turbulent energy dissipation rate, 𝜔 is the mean turbulent
frequency, 𝐶0, 𝐶1 and 𝐶𝜑 are model constants.

The LHS of eq. (2.100) represents the temporal change and the advection of ̃︀𝑔 by the total
velocity. The first term on the RHS is the Reynolds stress tensor. The second is the sum
of the generalized Langevin model (GLM) [HaworthPope1986] which is used to model the
influence of molecular velocity diffusion and fluctuating pressure and the term of turbulence
production. The third term has its origin in the stochastic force, the fourth term describes
the effects of molecular mixing of the scalar 𝜑(𝑡,𝑥), and the last - the effects of chemical
reaction. Chemical reactions are treated exactly and do not require any particular model.
The eq. (2.100) need be completed by the mean continuity equation and the momentum
equation. As well as for the joint composition PDF 𝑓𝜑, the finite differences are not useful
to solve the eq. (2.100) because of their high computational cost. The classical methods are
replaced by Monte Carlo Methods such as LMC and EMC techniques.

There are many works which validated the RANS (LES)/LMC methods or the stand-
alone LMC method for the joint velocity (fluctuation of the velocity)-composition PDF. For
example one can cite works of Pope and his colleagues. RANS/LMC method was applied to
an axisymmetric non-premixed piloted jet methane-air flame [MuradogluPope2001] studied
experimentally by [MasriDibble1996]. Results were shown to be in good agreement with
available experimental data. The stand-alone particle method was used to calculate a bluff-
body stabilized flow [JennyPope2001]. [WangPope2008] investigated the hybrid solver on
calculations of the Sandia piloted flame E [BarlowFrank1998] and on the Cabra 𝐻2/𝑁2 lifted
flame [CabraMyhrvold2002].

Following [SoulardSabelnikov2006] let us present the conservative form of the SPDEs sta-
tistically equivalent to the equation of the Favre joint fluctuating velocity-turbulent scalars
PDF. The evolution equation for stochastic fluctuating velocity is given by (2.101). Equa-
tion (2.102) represents the equation for stochastic mass fractions and eq. (2.103) is the equa-
tion for stochastic total enthalpy.

𝜕𝑟𝑢′′𝑖
𝜕𝑡

+
𝜕𝑟(̃︀𝑢𝑘 + 𝑢′′𝑘)𝑢

′′
𝑖

𝜕𝑥𝑘
=
𝑟

𝜌

𝜕𝑟𝑢′′𝑘𝑢
′′
𝑖

𝜕𝑥𝑘
− 𝑟𝐶1𝜔𝑢

′′
𝑖 −

𝜕̃︀𝑢𝑖
𝜕𝑥𝑘

𝑟𝑢′′𝑘

+ 𝑟
√︀
𝐶0𝜀𝜉𝑖(𝑡); 𝑘, 𝑖 = 1, .., 3. (2.101)

𝜕𝑟𝑌𝑗
𝜕𝑡

+
𝜕𝑟 (̃︀𝑢𝑘 + 𝑢′′𝑘)𝑌𝑗

𝜕𝑥𝑘
= −𝑟𝐶𝑌 𝜔

(︁
𝑌𝑗 − ̃︀𝑌𝑗)︁+ 𝑟𝑆𝑗(𝑌 , 𝑇 ); 𝑗 = 1, .., 𝑁𝑠𝑝. (2.102)

𝜕𝑟ℎ𝑡
𝜕𝑡

+
𝜕𝑟 (̃︀𝑢𝑘 + 𝑢′′𝑘)ℎ𝑡

𝜕𝑥𝑘
= −𝑟𝐶ℎ𝜔

(︁
ℎ𝑡 − ̃︀ℎ𝑡)︁+ 𝑟

𝜌

𝜕𝑃

𝜕𝑡
. (2.103)
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Here, 𝑟 is a stochastic density (different from the physical density, i.e. 𝑟 ̸= 𝜌), 𝑇𝐿 is a
characteristic time of turbulence, 𝜉𝑖 are time derivatives of standard independent Wiener
noises, 𝑌𝑗 are stochastic mass fractions, ℎ𝑡 is a stochastic total enthalpy, 𝑢′′ is a stochastic
velocity. 𝐶ℎ, 𝐶𝑌 and 𝐶0 are model constants. Mean pressure is defined by the eq. (2.106).

As for the SPDEs statistically equivalent to the joint composition PDF equation, this set
of SPDEs is statistically equivalent to PDF eq. (2.100), if the stochastic density 𝑟(𝑡,𝑥) is
used. The equivalence is achieved if following two consistency conditions are verified

⟨𝑟⟩𝑆 →
𝑁𝑟→+∞

𝜌,

⟨
𝑟

𝜌

⟩
𝑆

→
𝑁𝑟→+∞

1. (2.104)

The first condition guarantees consistency at the level of Favre statistics, while the second
guarantees consistency at the level of Reynolds statistics. To ensure the first condition, it
is sufficient to take the same initial and boundary conditions for ⟨𝑟⟩𝑠 and 𝜌. The second
condition is unconditionally verified by the definition of the physical density

𝜌 =
𝑃

𝑅0𝑇
𝑁𝑠𝑝∑︀
𝑘=1

𝑌𝑘
𝑊𝑘

. (2.105)

As a consequence, the mean pressure can be found by⟨
𝑟𝑅0𝑇

𝑁𝑠𝑝∑︁
𝑘=1

𝑌𝑘
𝑊𝑘

⟩
𝑆

→
𝑁𝑟→+∞

𝑃 . (2.106)

The transport equation for fluctuating velocity 𝑢′′(𝑡,𝑥) is a Langevin equation. It in-
troduces the differentiable noise instead of non-differentiable white noise. As a result, the
stochastic velocity yielded by the Langevin equation tends to finite values and the time step
Δ𝑡 is proportional to Δ𝑥. This is the main advantage of stochastic equations in comparison
with the SPDEs (2.89) - (2.91) which are statistically equivalent to the joint composition
PDF equation. In order to solve the SPDEs (2.101) - (2.103), V. Sabelnikov and O. Soulard
considered classical spatial schemes which satisfy the entropy increase condition and vali-
dated the proposed numerical schemes in 1D case [SoulardSabelnikov2006]. But in fact, as
we will see in section 3.1, these schemes are not suitable in finding solutions of the SPDEs
which are statistically equivalent to the joint velocity-scalars PDF equation. The SPDEs
(2.101) - (2.103) have the following properties:

∙ The SPDEs can have the multivalued solutions. Only the multivalued solutions are
statistically equivalent to the solutions of the PDF equation.

∙ There is no pressure term. The SPDEs are similar to equations of pressureless gas
dynamics for which vacuum states and delta - shocks are present.

The resolution of the SPDEs (2.101)-(2.103) represents a challenge for numerical math-
ematics. It exists only level set methods in computation of multivalued solutions (see for
instance [LiuOsher2006]), which rely on a local increase in problem dimensionality. In the
present work we are interested in resolution of the SPDEs (2.101) - (2.103) without increasing
their dimensionality. We propose efficient numerical schemes for their resolution in statistical
sense and validate them in one-dimensional case. The details are given in appendix A.
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2.6.2 Partially stirred reactor models

Eddy dissipation concept

The eddy dissipation concept (EDC) gives an empirical expression for the mean reaction
rate based on the assumption that chemical reactions occur in the regions where the dissi-
pation of the turbulence energy takes places. Each computational cell is divided into two
subzones: the reacting ”fine structure” and ”the surrounding fluid” as shown in fig. 2.9. In
the mode expressions, subscripts ()* and ()0 refer to the fine structures and surrounding fluid
respectively. Micromixture areas are treated as adiabatic, isobaric, perfectly stirred reactors
(PSRs), where the chemical source terms are potentially high due to favorable mixing of final
products with fresh reactants in the volume. The surrounding regions are chemically inert.
According to the EDC, the reaction rates of all species can be calculated using only variables
of the fine structure regions 𝜓* = [𝑌 *, 𝑇 *]𝑇 , where 𝑌 * = (𝑌 *

1 , ..., 𝑌
*
𝑁𝑠𝑝

) is a mass fractions
vector and 𝑇 * is a temperature in the fine structure region. As

̃︀𝜓𝑘 = 𝛾*𝜓* + (1− 𝛾*)𝜓0, (2.107)

therefore
�̇�𝑘 ≈ 𝛾*�̇�𝑘(𝜓

*) + (1− 𝛾*)�̇�𝑘(𝜓
0) ≈ 𝛾*�̇�𝑘(𝜓

*), (2.108)

where 𝛾* is the volume fraction of each calculation cell wherein the process is conducted on
a small scale mixing.

The assumption of quasi-equilibrium between micromixing and chemical production,
which supposes the equilibrium of the mass transfer between two regions: the fine structure
region and its surrounding, allows writing the algebraic relation between the mean chemical
source and the mean mass fraction:

𝜌

𝜏 *
(︀
𝑌 *
𝑘 − 𝑌 0

𝑘

)︀
= �̇�𝑘(𝑇

*,𝑌 *) (2.109)

and the energy conservation is given by

𝜌

𝜏 *

𝑁𝑠𝑝∑︁
𝑘=1

(︀
𝑌 *
𝑘 ℎ

*
𝑘 − 𝑌 0

𝑘 ℎ
0
𝑘

)︀
=

𝑁𝑠𝑝∑︁
𝑘=1

ℎ𝜃𝑘,𝑓 �̇�𝑘 (𝑇
*,𝑌 *) , (2.110)

in which 𝜏 * is the micromixing time during which the variable 𝑌 *
𝑘 is reached from 𝑌 0

𝑘 by
action of the applied chemical reaction mechanism, ℎ𝑘 is the enthalpy and ℎ𝜃𝑘 is the enthalpy
of the formation of the species 𝑘.

If 𝛾* < 1 it is possible to exclude 𝑌 0, 𝑇 0 from eqs. (2.109) and (2.110) with aid of
eq. (2.107). The eqs. (2.109) and (2.110) become

𝜌

𝜏 *(1− 𝛾*)

(︁
𝑌 *
𝑘 − ̃︀𝑌𝑘)︁ = �̇�𝑘(𝑇

*,𝑌 *) (2.111)

and

𝜌

𝜏 *(1− 𝛾*)

𝑁𝑠𝑝∑︁
𝑘=1

(︁
𝑌 *
𝑘 ℎ

*
𝑘(𝑇

*)− ̃︀𝑌𝑘̃︀ℎ𝑘(̃︀𝑇 ))︁ =

𝑁𝑠𝑝∑︁
𝑘=1

ℎ𝜃𝑘,𝑓 �̇�𝑘 (𝑇
*,𝑌 *) . (2.112)
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Figure 2.9: Schematic computation cell based on EDC model [Magnussen1981]

Different expressions are proposed in the literature for the micromixing time and the
volume fraction. One of them states that the volume fraction of the fine structure is [Mag-
nussen1981]:

𝛾* = 𝛾3𝜒 = 2.133 (𝜈*𝜀/𝑘)3/4 𝜒, (2.113)

where 𝜒 is a parameter that expresses the probability that the conditions are suitable for
reactions to occur in the fine structures, and 𝜈* represents the kinetic viscosity in the fine
structures. Within [Magnussen1981] approach, the mass exchange between the fine structure

is 𝛾*3𝜒
𝜏*

with the time scale for the mass transferring between the fine structure and the
surroundings

𝜏 * = 0.41

√︂
𝜈*

𝜀
. (2.114)

Furthermore, Magnussen [Magnussen1981; Magnussen2005] assumed that only a 𝜒 part of
sheet-formed structures filled the necessary conditions for combustion.

Alternatively, the definition for the mass exchange between the fine structure and sur-
roundings used in [GranMagnussen1996; MagelSchnell1996] is 𝛾*2𝜒

𝜏*
.

Works of Batchelor and Townsend show that at high Reynolds number, the turbulent fine
structures responsible for mixing phenomena and small-scale dissipation are concentrated in
isolated regions [BatchelorTownsend1949]. The velocity gradients (in the case of nonreactive
flows) are intermittent. The fine structures, which are composed mainly of the fine scale
turbulence, are distributed non-uniformly.

Chomiak proposes a hypothesis that the chemical reactions take place mainly in these
dissipative and mixed at the molecular level zones [Chomiak1970]. Based on this assumption,
he describes a possible mechanism of propagation of premixed flame at high Reynolds number.

Kuo and Corrsin [KuoCorrsin1971; KuoCorrsin1972] further suggest the mechanisms of
vortices stretching and show that these intermittent fine structures are topologically complex
and may appear as vortex sheets, ribbons and tubes folded in specific regions of the flow.
They also associate 𝛾* to the intermittency factor 𝛾, which corresponds to the probability to
have turbulent flow at a given time-space point.
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The recent direct simulations of combustion [WoodwardPorter2000; TanahashiSato2008],
have numerically confirmed this flow structure, specifically that

∙ Vortex tubes of high intensity are indeed concentrated into filaments, immersed in
sheets of low-intensity vorticity

∙ Volume of such the fine structures is small

∙ This volume is inversely proportional to the Reynolds number
Kuo and Corrsin show that the fraction of fine structures in a volume Δ3 of sheet-like

structures, as well as in a surface Δ2 and the characteristic thickness of Kolmogorov scale
𝜂𝐾 is estimated by [KuoCorrsin1972]:

𝛾*𝑆 ≈ 𝜂𝐾Δ
2

Δ3 + 𝜂𝐾Δ2
≈ 𝜂𝐾

Δ+ 𝜂𝐾
≈ 𝑅𝑒

−3/4
Δ (2.115)

given that 𝜂𝐾 = Δ𝑅𝑒
−3/4
Δ , and 𝑅𝑒

−3/4
Δ = 𝑢′Δ/𝜈. In eq. (2.115), 𝑆 refers to the sheet-like

form adopted by thin structures.
Tennekes considers tube-like fine structures, with length comparable to Taylor scale 𝑙𝑇

and diameter on the order of magnitude of the Kolmogorov scale 𝜂𝐾 [Tennekes2003]. In this
case, the fraction of fine structure is estimated as:

𝛿𝑇 ≈ (𝜂2𝐾 𝑙𝑇 )(Δ/𝑙𝑇 )
3

Δ3
≈ 𝜂𝐾

Δ+ 𝜂𝐾
≈ 𝜂𝐾

Δ
≈ 𝑅𝑒

−3/4
Δ , (2.116)

where the subscript 𝑇 refers to tube like shape.
Figure 2.10 shows results in terms of vorticity and heat-release structures from DNS

of planar flame propagation in homogeneous isotropic turbulence. This direct simulation
confirms that structures of both forms coexist.

Figure 2.10: Results from recent DNS of combustion at moderate 𝑅𝑒𝑡 and 𝐷𝑎 numbers from
[TanahashiSato2008]. Figures show iso-surfaces of the heat-release (yellow) and vorticity
(gray) from a planar flame in homogeneous isotropic turbulence at 𝑅𝑒𝑡 ≈ 515 and 141,
𝐷𝑎 ≈ 21 and 5, and 𝐾𝑎 ≈ 1.3 and 2.8, respectively.

Partially stirred reactor model

The difference between the EDC and the partially stirred reactor (PaSR) combustion models
consists in the choice of the reacting volume fraction and the residence time 𝜏 *. Among
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different choices of the reacting volume fraction we mention here the following one [Vulis1950]:

𝛾* =
𝜏𝑐ℎ

𝜏𝑐ℎ + 𝜏 *
, (2.117)

where 𝜏𝑐ℎ is the characteristic chemical time. The same notations and the formulas (2.111)
and (2.112) are used. It is well-known that the solution of the algebraic equations (2.111)
and (2.112) is in general not unique. It raises some problems when applying the EDC or the
PaSR combustion models.

For more clarity let us consider just one equation for the temperature 𝑇 , namely ℎ = 𝐶𝑝𝑇 ,
𝑁 = 1. Then the RHS of the eq. (2.112) can be seen as a heat generation term. The LHS can
be considered as a heat transfer term that represents how much energy leaves the reactor per
unit time. The two terms schematically are shown in figs. 2.11 and 2.12. Curve 𝐻𝑅 presents
the RHS of the eq. (2.112) and is the heat generation. It starts at practically negligible values
at low temperatures, peaks close to the adiabatic flame temperature, and drops to zero at 𝑇𝑏,
because at least one of the reactants mass fractions becomes zero there. It is very important
to note that the peak occurs close to 𝑇𝑏, but is not situated exactly at the latter. Curve 𝐻𝑅
is determined by the nature of the fuel, the inlet conditions, and the pressure.

The LHS of the eq. (2.112) is a straight line with slope equal to

1

𝜏𝑟𝑒𝑠
=

1

𝜏 *(1− 𝛾*)
, 𝜏𝑟𝑒𝑠 = 𝜏 *(1− 𝛾*), (2.118)

i.e. it is steep when the residence time 𝜏𝑟𝑒𝑠 is short. Such lines are drawn as 𝐻𝑇ℎ𝑖𝑔ℎ to 𝐻𝑇𝑙𝑜𝑤
in fig. 2.11 or as 𝐻𝑇 in fig. 2.12. The reactor will operate at the intersection of such a line
with curve 𝐻𝑅. Let us describe the various possibilities.
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Figure 2.11: The dependence of the rates of heat release 𝐻𝑅 and of heat loses 𝐻𝑇𝑙𝑜𝑤, 𝐻𝑇𝑐𝑟,
𝐻𝑇𝑖𝑛𝑡 and 𝐻𝑇ℎ𝑖𝑔ℎ on the temperature for various heat transfer conditions

1. Long residence time 𝜏𝑟𝑒𝑠
This situation is denoted by 𝐻𝑇ℎ𝑖𝑔ℎ curve. The reactor can operate only at point 𝑆ℎ𝑖𝑔ℎ
practically at the thermodynamic equilibrium, at a temperature very close to 𝑇𝑏. Hence,
the amount of unburnt fuel escaping the reactor is very small and we achieve almost
complete combustion.
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Figure 2.12: The dependence of the rates of heat release 𝐻𝑅 and of heat loses 𝐻𝑇 on the
temperature; the case of self-ignition

2. Intermediate residence time 𝜏𝑟𝑒𝑠
This situation is shown by 𝐻𝑇𝑖𝑛𝑡 curve. Three intersections can be distinguished:

(a) The point at low temperatures (point 𝑆3) corresponds to negligibly small reaction
rates and temperature increments. It represents an un-ignited flow through the
reactor.

(b) The point 𝑆1 corresponds to a burning reactor, operating at high temperatures
(practically at the thermodynamic equilibrium). However, the reactor temper-
ature is now lower than the temperature point 𝑆ℎ𝑖𝑔ℎ. Decreasing the residence
time lowers the temperature and increases the amount of unburnt fuel leaving the
reactor.

(c) Point 𝑆2 is not physically realizable, as any small excursion (e.g. due to fuel supply
unsteadiness) will make the system go to 𝑆1 or to 𝑆3.

3. Short residence time 𝜏𝑟𝑒𝑠 This situation corresponds to 𝐻𝑇𝑙𝑜𝑤 curve. The reactor can
only operate at the low-temperature solution (𝑆𝑙𝑜𝑤). No high-temperature operation is
possible, the reactor has been quenched. At short residence time, the flame extinguishes
completely. The reactants just pass through the reactor without interaction.

4. Critical conditions: 𝐻𝑇𝑐𝑟 curve shows the critical condition. For a given type of fuel,
fuel and oxygen mass fractions, pressure, and inlet temperature (i.e. for a given 𝐻𝑅
curve), if the mass flow rate increases beyond this point, the reactor will extinguish
and will shift to the low-temperature intersection (cold, unreacted flow through the
reactor). Hence, point 𝐶 corresponds to the blow-off limit of the reactor. Any point
between 𝐶 and 𝑆4 (such as 𝑆2) is unstable (i.e. not physically realizable). Any point
to the right (such as 𝑆ℎ𝑖𝑔ℎ or 𝑆1) is stable, but can occur only at small flow rates.

5. Figure 2.12 shows a self-ignition in the reactor. It corresponds to the situation when
the heat transfer 𝐻𝑇 is less than the heat generation for any case discussed above, i.e.
when ̃︀𝑇 > ̃︀𝑇𝑐𝑟, where ̃︀𝑇𝑐𝑟 is the intersection point of the tangent at the heat release
curve (𝐻𝑅) at the inflection point and of the temperature axis.



56 CHAPTER 2. BACKGROUND

The numerical problem consists in choosing of a correct solution in the EDC or PaSR
combustion models during the computation of the system (2.109) and (2.110) or (2.111) and
(2.112). The difficulty can be explained by the fact that we have to do the choice between
two stable solutions (”cold” - small temperature, and ”hot” - large temperature). From the
physical point of view the choice of the solution is determined by the whole history of the
fluid particles arriving to the cell.

Y. Moule shows in his PhD thesis [Moule2013] that according to different initial conditions
for iterative Newton-Raphson method for the eqs. (2.111) and (2.112), the solution of this
system can converge and diverge. Other authors do not detail their approach to resolution
of this problem.

The possible solutions consist in using the extended partially stirred reactor model (EPaSR)
or unsteady partially stirred reactor model (UPaSR).

Extended partially stirred reactor model

V. Sabelnikov and C. Fureby developed a new model named Extended PaSR model for simula-
tion of turbulent combustion [SabelnikovFureby2013] in the framework of the LES approach.
This model, more complete than previous one, takes into account the unsteady convective
and diffusive terms in balance equations for 𝜓*. It makes use of the similarities between
the mathematical treatment of multiphase flows and the knowledge of fine-scale turbulence
and chemistry obtained by DNS and experiments. Following [SabelnikovFureby2013] let us
summarize the main principles of this model.

The concept of the EPaSR model is based on the idea that at high 𝑅𝑒 numbers the
turbulent fine structures are not uniformly distributed but concentrated in small isolated
regions, whose volume is a small fraction of the total volume. This has recently been verified
by DNS in nonreactive and reactive flows [WoodwardPorter2000]. Turbulent reacting flows
may be viewed as a muddle of vortex structures of different topological character, sheets,
ribbons, and tubes, in which the tubes and ribbons carry most of the high-intensity vorticity
and dissipation. This implies that the fine-structure regions, denoted by (*) as above, are
embedded in a surrounding fluid, here denoted by (0), will be responsible for most of the
molecular mixing, chemical reactions, and heat release.

For the derivation of the EPaSR model, let

𝜓 = [𝑌 , ℎ𝑠] (2.119)

be the composition space, where ℎ𝑠 is the sensible enthalpy. The evolution of 𝜓 is governed by
the local balance equations of mass fractions and total energy describing convection, diffusion,
and chemical reactions. Fine structures and surroundings are related with the averaged space
by the expression ̃︀𝜓 = 𝛾*𝜓* + (1− 𝛾0)𝜓0, (2.120)

where 𝛾* = 𝑉 𝑜𝑙*

𝑉 𝑜𝑙
is a fine-structure volume fraction, i.e. the fraction of each computation cell

in which the mixing process takes place on a small scale. 𝜓*, 𝜓0 is composition space in fine
structure and its surrounding, respectively.

According to theoretical [Chomiak1970; Chomiak1979], experimental [Fureby2007] and
computational [TanahashiFujimura2000; TanahashiSato2008] observations, most exothermic
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reactions mainly occur in the fine structures and so, it follows that the source term of the
species and energy is evaluated at the fine-structure conditions 𝜓*:

�̇�𝑘 ≈ 𝛾*�̇�𝑘(𝜓
*). (2.121)

Assuming that the fine structure density 𝜌* and velocity fields 𝑢* coincide with mean values,
i.e.

𝜌* ≈ 𝜌, ̃︀𝑢* ≈ ̃︀𝑢0 ≈ ̃︀𝑢, (2.122)

and using (2.120), the set of balance equations for the fine structure fractions 𝜓* together

with the LES balance equations for ̃︀𝜓 is

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝜓𝑖)︁+∇ ·

(︁
𝜌̃︀𝑢 ̃︀𝜓𝑖)︁ = ∇ ·

(︀
𝑘𝑖 − 𝑏𝑖

)︀
+ �̇�𝑖, 𝑖 = 1, .., 𝑁𝑠𝑝 + 1, (2.123)

𝜕

𝜕𝑡
(𝜌𝛾*𝜓*

𝑖 ) +∇ · (𝜌𝛾*𝜓*
𝑖 ̃︀𝑢) = ∇ ·

(︀
𝛾*
(︀
𝑘𝑖 − 𝑏𝑖

)︀)︀
+ 𝛾*�̇�

*
𝑖 +𝑀

*
𝑖 , (2.124)

𝜕

𝜕𝑡
(𝜌𝛾*) +∇ · (𝜌𝛾*̃︀𝑢) = −

𝜌(𝛾* − 𝛾*𝑒𝑞)

𝜏 *
, (2.125)

where 𝑘𝑖 ≈ 𝜇
𝑆𝑐𝑖

∇̃︀𝑌𝑖 for 𝑖 = 1, .., 𝑁𝑠𝑝 is the species mass flux; 𝑘𝑁𝑠𝑝+1 ≈ 𝜆∇̃︀𝑇 is the heat flux
vector. 𝑏 is flux vectors:

𝑏𝑖 = 𝜌
(︁̃︂𝑢𝑌𝑖 − ̃︀𝑢̃︀𝑌𝑖)︁ , 𝑖 = 1, .., 𝑁𝑠𝑝; 𝑏𝑁𝑠𝑝+1 = 𝜌

(︁̃︂𝑢ℎ𝑠 − ̃︀𝑢̃︀ℎ𝑠)︁ . (2.126)

The reaction rates are defined as

�̇�𝑖 = 𝛾*�̇�
*
𝑖 , 𝑖 = 1, .., 𝑁𝑠𝑝; �̇�𝑁𝑠𝑝+1 = 𝜏 ·∇̃︀𝑢+

𝜕𝑃

𝜕𝑡
+∇𝑃 · ̃︀𝑢− 𝛾*

𝑁𝑠𝑝∑︁
𝑖=1

(︀
�̇�𝑖ℎ

𝜃
𝑓,𝑖

)︀
, (2.127)

where 𝜏 is the viscous stress tensor, 𝑃 is the pressure, ℎ𝜃𝑓,𝑖 are the species formation enthalpies.
The RHS of the balance equations for the fine structure contains an additional term,

denoted 𝑀
*
. This is the exchange terms at the immaterial interface between the fine-

structure volume and the surrounding fluid. The sum of the exchange terms in fine structure

and its surroundings is equal to zero: 𝑀
*
+𝑀

0
= 0. As follows from the core physical

considerations, 𝑀
*
and 𝑀

0
= −𝑀 *

contain two kinds of terms:

𝑀
*
= Θ

*
+Ω

*
, (2.128)

Θ
*
=

1

2
(�̇�+ |�̇�|)𝜓0 +

1

2
(�̇�− |�̇�|)𝜓*, (2.129)

Ω
*
= −𝛾

*𝜌

𝜏 *
(︀
𝜓* −𝜓0

)︀
. (2.130)

The first type of term, here denoted by Θ, is due to the exchange rate of mass between
the fine structures and the surroundings. If the exchange rate of mass is absent, as in the
dynamic equilibrium state, the mass transport rate �̇� = 0, and these two terms become zero.
We recall that

�̇� = −
𝜌(𝛾* − 𝛾*𝑒𝑞)

𝜏 *
, (2.131)
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where 𝛾*𝑒𝑞 is the equilibrium fine structure volume fraction and 𝜏 * is the fine structure resi-
dence time.

The required closure models for 𝜏 * and 𝛾*𝑒𝑞 are based on the cartoon of turbulent combus-
tion (for example, illustrated in fig. 2.10). V. Sabelnikov and C. Fureby proposed following
submodels for these quantities at high 𝑅𝑒 and moderate 𝐷𝑎 numbers:

𝜏 * =
√
𝜏𝐾𝜏Δ, (2.132)

where 𝜏Δ = Δ
𝑢′

is the subgrid velocity stretch time. The fine-structure residence time repre-
sents the geometrical mean of the Kolmogorov time 𝜏𝐾 and the time scale associated with
the subgrid velocity stretch.

The equilibrium reacting fine-structure fraction is defined as

𝛾*𝑒𝑞 =
𝜏𝑐ℎ

𝜏𝑐ℎ + 𝜏 *
. (2.133)

The chemical time scale is representative of the overall chemical reaction and is assumed to
be for example

𝜏𝑐ℎ ≈
𝛿𝐿
𝑆𝐿
, (2.134)

where 𝛿𝐿 and 𝑆𝐿 are the laminar flame thickness and flame speeds, respectively
It can be concluded that if �̇� > 0, 𝛾* < 𝛾*𝑒𝑞, the exchange rate of mass is driven by the

surroundings to the fine structures. Otherwise, if �̇� < 0, 𝛾* > 𝛾*𝑒𝑞, then the exchange rate
of mass is directed from the fine structures to the surroundings. As we can see, 0 < 𝛾*𝑒𝑞 < 1,
and 𝛾* tends to its equilibrium state with the characteristic time 𝜏 *.

The second type of term in the expression (2.128), denoted by Ω is due to molecular
diffusion through the interface between the fine structures and surroundings. Indeed, even
if the exchange rate of mass is absent (i.e. in the dynamic equilibrium), there is exchange
through the interface due to molecular diffusion.

It should be noted that if subgrid convection can be neglected, the EPaSR model simplifies
to the PaSR model.

The LES/EPaSR model was evaluated against other LES turbulence-chemistry interac-
tion models for a high Reynolds number turbulent lean premixed bluff-body stabilized flame
[SabelnikovFureby2013]. Experimental data were used to provide the reference with which
the considered models are compared. For this combustor, the overall best performing model
is the LES/EPaSR model, closely followed by the LES/PaSR model.

Unsteady partially stirred reactor model

The abridged version of the EPaSR model, which is named unsteady partially stirred reactor
(UPaSR) model was used by Y. Moule, V. Sabelnikov and A. Mura [Moule2013; MouleSabel-
nikov2014]. It is obtained from eq. (2.124) by neglecting of convective and diffusive terms.
The system of equations of UPaSR model in the fine-structure regions reads

𝜕𝜌𝑌 *
𝑘

𝜕𝑡
+
𝜌 (𝑌 *

𝑘 − 𝑌 0
𝑘 )

𝜏 *
= �̇�(𝑇 *,𝑌 *). (2.135)

and the energy conservation stays the same that in eq. (2.110).
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Y. Moule, V. Sabelnikov and A. Mura validated LES/UPaSR model on the configu-
ration of the non-premixed supersonic co-flowing jets of hydrogen and vitiated air. The
comparisons performed between computational results and experimental data established
that the physical processes were well-described by the LES/UPaSR simulation [Moule2013;
MouleSabelnikov2014].

2.6.3 Thickened flame model

The objective of a thickened flame large eddy simulation (TFLES) is to artificially thicken the
flame front structure so it can be resolved on a LES mesh, but such that the laminar flame
speed remains unaltered. For laminar flame, Butler and O’Rourke [ButlerORourke1977]
propose to thicken the flame directly by altering the diffusion term. In such the approach,
it is important to ensure that the flame spreads at a proper speed, which is achieved by
artificially adjusting chemical production rates.

All quantities (flame thickness and velocity, diffusion coefficients and chemical production
rates) are related via simple relationships as shown via asymptotic analysis by Zel’dovich and
Frank Kamenetskii [ZeldovichFrankKamenetskii1938]:

1 (2.136)

⎧⎪⎨⎪⎩
𝑆𝐿 ∝

√︀
𝐷�̇�𝑐

𝛿𝐿 ∝ 𝐷

𝑆𝐿

(2.136a)

(2.136b)

where 𝐷 represents a characteristic diffusion coefficient of the flame and �̇�𝑐 is the chemical
production rate of a progress variable. According to eq. (2.136), an increase in flame thickness
by a factor 𝐹 with a constant flame speed 𝑆𝐿, can be achieved by multiplying the molecular
diffusivity 𝐷 by 𝐹 , and the reaction rate �̇� by 1/𝐹 .

In a turbulent environment, the flame propagates at 𝑆𝑡 ̸= 𝑆𝐿. A well-designed turbulent
combustion model should preserve the flame properties, and, in particular, its propagation
speed. For this reason, when the turbulent flame is thickened via TFLES model, the effects
of turbulence on the flame speed are to be accounted for by means of correction of chemical
sources. Colin and al. introduce an efficiency factor 𝐸 defined as the ratio between the
folding factor of non-thickened flame Ξ and thickened flame Ξ* [ColinDucros2000]:

𝐸 =
Ξ(𝛿𝐿)

Ξ*(𝐹𝛿𝐿)
. (2.137)

A detailed expression for 𝐸, which accounts for the local stretching and quenching of flame,
was proposed in [ColinDucros2000; CharletteMeneveau2002].

When the thickening coefficient is fixed so that the turbulent flame front is solved on
a given mesh the chemical sources can be evaluated directly using the filtered quantities.
Finally, the transport equation of the progress variable according to the TFLES model writes:

𝜕𝜌 ̃︀𝐶
𝜕𝑡

+∇ · (𝜌̃︀𝑢 ̃︀𝐶 − 𝜌𝐸𝐹𝐷𝑐∇ ̃︀𝐶) = 𝐸

𝐹
𝜌 · 𝜔𝑐( ̃︀𝐶, 𝑇 ), (2.138)

where 𝐷𝑐 is a diffusion coefficient of the progress variable 𝐶. In general, 𝐸 and 𝐹 can be
evaluated dynamically, so that the thickening of the flame depends directly on the local mesh
size. In this context, the thickening factor can be calculated according to
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𝐹 = 1 + (𝐹𝑚𝑎𝑥 − 1)𝛼1, (2.139)

where 𝛼1 is the flame sensor which allows locating the flame front in the flow and 𝐹𝑚𝑎𝑥 is
the maximum value of the thickening defined by

𝐹𝑚𝑎𝑥 =
𝑛𝑓Δ

𝛿𝐿
, (2.140)

where 𝑛𝑓 is the number of items needed to solve the laminar flame. The folding factor Ξ can
be evaluated using the expression:

Ξ(𝛿𝐿) = 1 + 𝛼Γ

(︂
Δ

𝛿𝐿
,
𝑢′Δ
𝑆𝐿

)︂
𝑢′Δ
𝑆𝐿
, (2.141)

where 𝛼 is the coefficient introduced by Charlette and al. [ColinDucros2000] and Γ is the
modified intermittent turbulent net flame stretch (ITNFS) function proposed by Meneveau
and Poinsot [MeneveauPoinsot1991]:

Γ = 0.75 exp

(︂
− 1.2

(𝑢′Δ/𝑆𝐿)
0.3

)︂(︂
Δ

𝛿𝐿

)︂2/3

. (2.142)

Δ is evaluated from the volume to surface ratio of each cell. The subgrid speed fluctuations
𝑢′Δ are evaluated following Smagorinsky model:

𝑢′Δ = 𝐶2
𝑆Δ

√︁̃︀𝑆𝑖𝑗 ̃︀𝑆𝑖𝑗, (2.143)

where 𝐶𝑆 is the constant of Smagorinsky model and 𝑆 is the symmetric part of the filtered
stress tensor of deformation.

TFLES is used with simple chemical mechanisms model, typically consisting of two equa-
tions. The extension of TFLES towards detailed chemistry (such as FTC tables) is complex
due to the nonlinear dependence between species, in this case the use of scalar thickening
factor is no longer justified.
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Chapter 3

Eulerian (Field) Monte Carlo methods
for solving the Favre one-time
one-point velocity PDF transport
equation

In turbulent reactive flows, the prediction of interesting phenomena (such as pollutant
production, soot formation or extinctions/ignitions) requires a precise knowledge of the one-
time one-point joint velocity-scalars PDF, satisfying the transport eq. (2.100). The advantage
of this PDF method is that both convection and reaction terms are represented exactly
without modeling assumptions. It is nonetheless counterbalanced by a severe numerical
constraint: the joint velocity-scalars PDF possesses a potentially high number of dimensions,
which induces heavy computational costs. In particular, finite difference methods cannot be
used, as their cost increases exponentially with dimensionality.

Due to the aforementioned problem, the PDF equations are often resolved by Monte
Carlo methods. In the field of turbulent combustion, Monte Carlo methods are mostly
considered under their Lagrangian form [Pope1985]. In LMCmethods SODEs are statistically
equivalent to the transport equation for the joint velocity-scalars PDF. In each realization
of the SODEs characteristics do not intersect in joint sample space. As a result, there are
no numerical difficulties to establish the solutions of the SODEs. Numerous publications
document the convergence and accuracy for the LMC methods. Nevertheless, the projection
of solution of the particles located at grid nodes into physical space and achievement of a
decent convergence are delicate in the LMC approach.

Therefore, the development and evaluation of an alternative EMC method is of interest.
EMC methods are based on stochastic Eulerian fields, which evolve from stochastic partial
differential eqs. (2.101) to (2.103) statistically equivalent to the joint velocity-scalars PDF
transport eq. (2.100). These SPDEs, similarly to the SPDE (2.101) statistically equivalent to
the velocity PDF transport equation1, belong to quasi-linear hyperbolic equations. Charac-
teristic curves of the SPDEs can cross, which results in a multivalued solution for the velocity
𝑢(𝑡,𝑥). At points where solution of the velocity is multivalued, the corresponding density

1This transport equation is a particular case of eq. (2.100).
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FAVRE ONE-TIME ONE-POINT VELOCITY PDF TRANSPORT EQUATION

𝑟(𝑡,𝑥) also becomes a multivalued function. In addition, when the velocity becomes multi-
valued, the density becomes unbounded (i.e. given for instance by a Dirac delta function).
Points of singularity where the velocity solution is multivalued develop in finite time even
for a large class of smooth initial values. Indeed, considering the characteristics equations
as a system of ordinary differential equations (ODEs) in its configuration space, one can see
crossing characteristics correspond to a multivalued solution.

If we want to preserve the equivalence between eqs. (2.101) to (2.103) and the underlying
joint velocity-scalars PDF transport eq. (2.100), we should take into account multivalued
solutions of the SPDEs, not considered in previous work [SoulardSabelnikov2006]. Numerical
schemes which satisfy entropy increase condition are not appropriate for the description of
the solution behavior beyond the singularity, where multivalued solutions in physical space
need to be accounted for.

Furthermore, the so called entropy or viscosity solution, which defines a unique weak so-
lution, is not the appropriate one for a large class of problems. Examples include dispersive
waves [FlaschkaForest1980; LaxDavid Levermore1983; Whitham2011], optical waves [En-
gquistRunborg1999; EngquistRunborg2003], seismic waves [TrierSymes1991; FomelSethian2002;
SymesQian2003], semi-classical limits of Schrodinger equations [ChengLiu2003; JinLi2003;
SparberMarkowich2003], electron beammodulation in vacuum electronic devices [LiWöhlbier2004].
For example, while resolving linear wave equation by a widely used WKB method2, the class
of weak solutions is not adequate for treating dispersive wave propagation problems because
crossing wave fronts and superposition of solutions are important [LiuOsher2006].

Capturing multivalued solutions of the SPDEs by efficient algorithms is an important
issue. There exist only level set methods for computing multivalued solutions to a class of
nonlinear first order partial differential equations. These methods are described for instance
in [LiuOsher2006]. In such methods the multivalued solutions are embedded as the zeroes
of a set of scalar functions that solve the initial value problems of a time-dependent partial
differential equation in an augmented space.

In this work we are interested in Eulerian method for solving the SPDEs statistically
equivalent to the velocity PDF transport equation without increasing space dimension. If we
are able to solve correctly these equations, then we can solve eqs. (2.101) to (2.103) corre-
sponding to the joint velocity-scalars PDF transport equation. Recently, O. Soulard proposed
a new approach to solve the SPDEs which allows taking into account the multivalued so-
lutions in a statistical sense [EmakoLetizia2014]. We develop and study these stochastic
schemes for the SPDEs eqs. (2.101) to (2.103) and show that these numerical methods yield
good agreement with theoretical solutions in the statistic sense for one-dimensional test-cases.

The chapter is organized as follows. Firstly, we describe a problem and recall a transport
equation for the velocity PDF with zero RHS. Secondly, we write the partial differential
equations (PDEs) equivalent to the PDF equation. Then we explain numerical schemes
which allow finding multivalued solutions in the statistical sense and give details of numerical
modeling of the SPDEs which are statistically equivalent to the velocity PDF equation. In
the third part the proposed numerical stochastic schemes are validated in one-dimensional
case on tests of progressively increasing complexity. Finally, the conclusion about this new

2This classical method, named after physicists Wentzel, Kramers, and Brillouin, yields an approximate
nonlinear models for the original linear wave equation.



3.1. DESCRIPTION OF THE PROBLEM 65

numerical approach is given.

3.1 Description of the problem

Section 3.1 is organized as follows. Section 3.1.1 is devoted to a description of the model
transport equation for the one-time one-point velocity PDF in one dimensional case. After-
wards a presentation of the SPDEs which are statistically equivalent to the PDF transport
equation is developed (section 3.1.2). Finally, the equivalence between the PDF transport
equation and the SPDEs are discussed (section 3.1.3).

3.1.1 One-dimensional model PDF equation

Let us consider the turbulent flow which is statistically homogeneous in the perpenducular
planes (𝑥2, 𝑥3) and inhomogeneous in 𝑥-direction (𝑥 = 𝑥1). Model equation for the one-time

one-point velocity PDF ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) reads (see eq. (2.100))

𝜕𝜌 ̃︀𝑓𝑢
𝜕𝑡

+
𝜕𝜌𝑉 ̃︀𝑓𝑢
𝜕𝑥

= − 𝜕

𝜕𝑉

(︂
𝜌

[︂
−1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝐶1𝜔 (𝑉 − ̃︀𝑢)]︂ ̃︀𝑓𝑢)︂+

1

2
𝜌𝐶0𝜀

𝜕2 ̃︀𝑓𝑢
𝜕𝑉 2

, (3.1)

Here, 𝑡 ∈ R+ = [0;+∞) is a time variable, 𝑥 ∈ R = (−∞; +∞) is a spatial variable, 𝑉 ∈ R is
a sample space for velocity 𝑢(𝑡, 𝑥). The variables 𝑉, 𝑡, 𝑥 are independent. 𝜌(𝑡, 𝑥) is a mean
density in a flow. We recall that 𝜀 is the mean turbulent energy dissipation rate, 𝜔 is the
mean turbulent frequency, 𝐶0 and 𝐶1 are model constants.

For illustration purposes we assume zero RHS of eq. (3.1) hereafter. Equation (3.1)
becomes

𝜕𝜌 ̃︀𝑓𝑢
𝜕𝑡

+
𝜕𝜌𝑉 ̃︀𝑓𝑢
𝜕𝑥

= 0 (3.2)

with initial conditions

𝜌(𝑡 = 0, 𝑥) = 𝜌0(𝑥), ̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = ̃︀𝑓0(𝑉 ;𝑥). (3.3)

This equation allows finding all Favre moments of the velocity. Indeed, multiplying eq. (3.2)
by 𝑉 𝑛, 𝑛 ≥ 0, integrating it over −∞ < 𝑉 < +∞, one can deduce the evolution equation
for ̃︁𝑢𝑛,

𝜕𝜌̃︁𝑢𝑛
𝜕𝑡

+
𝜕𝜌̃︂𝑢𝑛+1

𝜕𝑥
= 0, (3.4)

where

̃︁𝑢𝑛(𝑡, 𝑥) = +∞∫︁
−∞

𝑉 𝑛 ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥)𝑑𝑉. (3.5)

In particular, using a normalization condition

+∞∫︁
−∞

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥)𝑑𝑉 = 1 (3.6)
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for 𝑛 = 0 the first moment equation reads

𝜕𝜌

𝜕𝑡
+
𝜕𝜌̃︀𝑢
𝜕𝑥

= 0 (3.7)

and the second is
𝜕𝜌̃︀𝑢
𝜕𝑡

+
𝜕𝜌 ̃︀𝑢2
𝜕𝑥

= 0. (3.8)

Equation (3.2) is a first order PDE. It can be solved using the method of characteris-
tics along which the PDE becomes ordinary differential equations. The equations of the
characteristic curves are ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡 = 1,

�̇� = 𝑉,

�̇� = 0,

�̇� = 0,

(3.9)

where 𝐹 = 𝜌 ̃︀𝑓𝑢, (̇) = 𝑑
𝑑𝑠
, 𝑠 is a particular parameterization of the curves and (0, 𝑦, 𝑉0(𝑦)) is

a point from which characteristic curve emanates. Initial conditions for eq. (3.9) read⎧⎪⎨⎪⎩
𝑥(0) = 𝑦,

𝑉 (0) = 𝑉0(𝑦),

𝐹 (𝑉 ; 0, 𝑥) = 𝜌0(𝑥(0)) ̃︀𝑓0(𝑉 (0);𝑥(0)).

(3.10)

The solution of eq. (3.9) with the initial conditions (3.10) is given by{︃
𝑥 = 𝑦 + 𝑉 𝑠 = 𝑦 + 𝑉0(𝑦)𝑡,

𝐹 = 𝜌0(𝑦) ̃︀𝑓0(𝑉0(𝑦); 𝑦). (3.11)

It should be noted that the characteristics of the PDF eq. (3.2) do not cross.
Let us consider a backward step velocity profile which leads to analytical solution of the

PDF transport eq. (3.2). The initial conditions for eq. (3.2) read

̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = 𝐻(−(𝑥− 𝑥𝑐))𝛿(𝑉 − 𝑉0) +𝐻(𝑥− 𝑥𝑐)𝛿(𝑉 ), (3.12)

𝜌(𝑡 = 0, 𝑥) = 𝜌0, (3.13)

where 𝐻 is a Heaviside function and 𝑥𝑐 ∈ R, 𝑉0 ∈ R+, 𝜌0 ∈ R+.
Applying (3.11), the solution of the Cauchy problem (3.2), (3.12) and (3.13) results in

𝜌 ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) = 𝜌0𝐻(𝑉0𝑡− (𝑥− 𝑥𝑐))𝛿(𝑉 − 𝑉0) + 𝜌0𝐻(𝑥− 𝑥𝑐)𝛿(𝑉 ), 𝑡 > 0, (3.14)

where the mean density is

𝜌(𝑡, 𝑥) = 𝜌0𝐻(𝑉0𝑡− (𝑥− 𝑥𝑐)) + 𝜌0𝐻(𝑥− 𝑥𝑐) =

{︃
𝜌0, if 𝑥 < 𝑥𝑐 and 𝑥 > 𝑉0𝑡+ 𝑥𝑐,

2𝜌0, if 𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡].
(3.15)

(3.12) and (3.14) show that at the initial time 𝑡 = 0 each point in space is associated with
one Dirac delta function 𝛿(𝑉 − 𝑉0), if 𝑥 < 𝑥𝑐 and 𝛿(𝑉 ), if 𝑥 ≥ 𝑥𝑐. After the time 𝑡 > 0, the
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Figure 3.1: Backward step: solution of eqs. (3.2), (3.12) and (3.13)

interval 𝑥𝑐 ≤ 𝑥 ≤ 𝑥𝑐 + 𝑉0𝑡 contains two Dirac delta functions 𝛿(𝑉 − 𝑉0) and 𝛿(𝑉 ) (see in
fig. 3.1). Figure 3.1 illustrates the solution of the eqs. (3.2), (3.12) and (3.13). There are two
planes 𝑉0 and 0 in the phase space which do not intersect.

We are interested now in the transport equation for the Reynolds one-time one-point
fluctuating velocity PDF 𝑔𝑢′ denoted as 𝑔 in one dimensional case. At the initial time the
density is set to one and considered to be homogeneous in time and in space: 𝜌(𝑡, 𝑥) =
1 kg/m3. The mean velocity is assumed equal to zero. 𝑉 = 𝑉 ′ = 𝑉 ′′ is a sample space of
velocity 𝑢(𝑡, 𝑥) = 𝑢′(𝑡, 𝑥) = 𝑢′′(𝑡, 𝑥). Using eq. (2.100) and eq. (3.1), the model transport
equation reads

𝜕𝑔

𝜕𝑡
+
𝜕𝑉 ′𝑔

𝜕𝑥
= − 𝜕

𝜕𝑉 ′

(︂
𝜕

𝜕𝑥

(︁
𝑢′2
)︁
𝑔

)︂
− 𝐶1

𝜕

𝜕𝑉 ′ (𝜔𝑉
′𝑔) +

𝐶0

2
𝜀
𝜕2𝑔

𝜕𝑉 ′2 . (3.16)

At initial time the PDF is

𝑔(𝑉 ′; 𝑡 = 0, 𝑥) = 𝑔0(𝑉
′;𝑥). (3.17)

Equation (3.16) is a parabolic equation because of the second derivative with respect to 𝑉 ′.
In order to write the stochastic characteristic curves, the function 𝑔′ is considered. It satisfies
the following transport equation

𝜕𝑔′

𝜕𝑡
+
𝜕𝑉 ′𝑔′

𝜕𝑥
= − 𝜕

𝜕𝑉 ′

(︂
𝜕

𝜕𝑥

(︁
𝑢′2
)︁
𝑔′
)︂
− 𝐶1

𝜕

𝜕𝑉 ′ (𝜔𝑉
′𝑔′) +

√︀
𝐶0𝜀

𝜕𝑔′

𝜕𝑉 ′ ∘ 𝜉. (3.18)

Here ∘ is a symbol in the Stratonovich interpretation. Equation (3.18) contains the stochastic
term 𝜉, which represents the derivative of a Brownian motion. The Reynolds PDF 𝑔 is the
mean of the 𝑔′ over 𝜉. Equation (3.18) is a hyperbolic equation. The system of the equations
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for the stochastic characteristics of eq. (3.18) reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡 = 1,

�̇� = 𝑉 ′,

𝑉 ′ = 𝜕
𝜕𝑥

(︁
𝑢′2
)︁
+ 𝜔𝑉 ′ +

√
𝐶0𝜀𝜉,

𝑔′ = −𝐶1𝜔.

(3.19)

For each realization of white noise 𝜉 the characteristics of eq. (3.19) do not cross in phase
space.

3.1.2 One-dimensional SPDEs

The first three characteristic equations of (3.9) in physical space are the characteristics eq.
of the following PDE of velocity field

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0 (3.20)

with initial condition
𝑢(𝑡 = 0, 𝑥) = 𝑢0(𝑥). (3.21)

Equation (3.20) is a Burger equation. Introducing the density field 𝑟(𝑡, 𝑥) by the equation
(details can be found in [SoulardSabelnikov2006; SabelnikovSoulard2010])

𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢

𝜕𝑥
= 0, (3.22)

we can rewrite eq. (3.20) in conservative form

𝜕𝑟𝑢

𝜕𝑡
+
𝜕𝑟𝑢2

𝜕𝑥
= 0 (3.23)

with initial conditions:

𝑟(𝑡 = 0, 𝑥) = 𝑟0(𝑥), 𝑢(𝑡 = 0, 𝑥) = 𝑢0(𝑥). (3.24)

Equations (3.22) and (3.23) are nothing more than a system of pressureless gas dynamics
equations [BouchutJin2003]: eq. (3.23) does not contain pressure. The time evolution of the
density (eq. (3.22)) can be also represented as

𝑑𝑙𝑛(𝑟)

𝑑𝑡
= −𝜕𝑢

𝜕𝑥
, (3.25)

where 𝑑
𝑑𝑡
= 𝜕

𝜕𝑡
+𝑢 𝜕

𝜕𝑥
is a total derivative. As we can see from eq. (3.25), the density is strictly

positive.
The characteristics of eq. (3.20), contrary to the characteristics of eq. (3.9) in phase space,

cross in the general case. Indeed, let Γ = {(0, 𝑥)} be the curve in R2, where R = (−∞; +∞).
(Γ, 𝑢0) is the curve in R3 given by {(0, 𝑥, 𝑢0(𝑥))}. To construct a solution of eq. (3.20) we
start by picking a point (0, 𝑦, 𝑢0(𝑦)) on (Γ, 𝑢0) and then construct a characteristic curve
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emanating from (0, 𝑦, 𝑢0(𝑦)). Characteristics equations of the first order quasi-linear PDE
(3.20) read ⎧⎪⎨⎪⎩

𝑡 = 1,

�̇� = 𝑢,

�̇� = 0.

(3.26)

Initial conditions for eq. (3.26) are {︃
𝑥(0) = 𝑦,

𝑢(0) = 𝑢0(𝑦).
(3.27)

where (̇) = 𝑑
𝑑𝑠
, 𝑠 is a particular parameterization of the curves. The solution of eq. (3.26) is

given by ⎧⎪⎨⎪⎩
𝑡 = 𝑠,

𝑥 = 𝑦 + 𝑢0(𝑦)𝑠,

𝑢 = 𝑢0(𝑦)

(3.28)

or {︃
𝑥 = 𝑦 + 𝑢0(𝑦)𝑡,

𝑢 = 𝑢0(𝑦).
(3.29)

The inverse function theorem states that if the function 𝑦+𝑢0(𝑦)𝑡 : R2 → R is a continuously
differentiable function of two variables with non-zero derivatives at the point (𝑡*, 𝑦*), then 𝑦+
𝑢0(𝑦)𝑡 is invertible in a neighborhood of (𝑡*, 𝑦*) and the inverse is a continuously differentiable
function. If the function 𝑦 + 𝑢0(𝑦)𝑡 has zero derivatives at the point 𝑦*, i.e. if

𝑢0(𝑦
*) = 0, 𝑡*

𝜕𝑢0(𝑦
*)

𝜕𝑦
+ 1 = 0, (3.30)

or
𝜕𝑢0(𝑦

*)

𝜕𝑦
< 0, 𝑢0(𝑦*) = 0, 𝑡* =

−1
𝜕𝑢0(𝑦*)
𝜕𝑦

, (3.31)

then the point (𝑡*, 𝑦*) is singular. Multiplicity of the function 𝑦+𝑢0(𝑦)𝑡 at the singular point
(𝑡*, 𝑦*) is the order of tangency of the graphs 𝑥 = 𝑦+𝑢0(𝑦)𝑡 and 𝑥 = 𝑦*+𝑢0(𝑦

*)𝑡* at (𝑡*, 𝑦*), if
𝑦+𝑢0(𝑦)𝑡 is a smooth function (details can be found, for instance, in [ChechkinGoritsky2009]).
A solution satisfying the entropy increase condition after 𝑡 > 𝑡* contains shock waves. In
other words kinetic energy is dissipated [RojdestvenskiiYanenko1978].

To illustrate a multivalued solution of eqs. (3.20) and (3.22), let us consider the same
initial profile that is given in section 3.1.1. The initial conditions for velocity and density are
set according to the (3.12) and (3.13)

𝑢(𝑡 = 0, 𝑥) = 𝑢0(𝑥) = 𝑉0𝐻(−(𝑥− 𝑥𝑐)), 𝑟(𝑡 = 0, 𝑥) = 𝜌0. (3.32)

For time 𝑡 > 0 there are two velocity values 𝑢(𝑡, 𝑥) in the interval 𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡]

𝑢1(𝑡, 𝑥) = 𝑉0, 𝑢2(𝑡, 𝑥) = 0. (3.33)
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The corresponding density is

𝑟1(𝑡, 𝑥) = 𝜌0, 𝑟2(𝑡, 𝑥) = 𝜌0. (3.34)

Outside of this interval the solution of velocity and density is single-valued and is given by

𝑢(𝑡, 𝑥) = 𝑉0, 𝑟(𝑡, 𝑥) = 𝜌0, 𝑥 < 𝑥𝑐 (3.35)

and
𝑢(𝑡, 𝑥) = 0, 𝑟(𝑡, 𝑥) = 𝜌0, 𝑥 > 𝑥𝑐 + 𝑉0𝑡. (3.36)

The correspondence between PDF ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) of eq. (3.3) and eqs. (3.20) and (3.22) is
defined by the following relation

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝛿(𝑉 − 𝑉0), if 𝑥 < 𝑥𝑐,
𝛿(𝑉−𝑉0)+𝛿(𝑉 )

2
, if 𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡],

𝛿(𝑉 ), if 𝑥 > 𝑥𝑐 + 𝑉0𝑡.

(3.37)

The mean density is

𝑟 =

⎧⎪⎨⎪⎩
𝜌0, if 𝑥 < 𝑥𝑐,

2𝜌0, if 𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡],

𝜌0, if 𝑥 > 𝑥𝑐 + 𝑉0𝑡.

(3.38)

One can deduce immediately the equivalence between the solution of the PDF equation and
the PDEs.

Figure 3.2 shows two different solutions of the PDEs (3.20), (3.22) and (3.32). The first
one takes into account a multivalued solution and the second one is calculated with the
entropy increase condition on the discontinuity shocks.

x [m] x [m]xC

V0

x [m]

u [m/s]

V0T+xCxC

u [m/s]

V0T/2 + xC

u [m/s]t = T > 0 t = T > 0t = 0

Figure 3.2: Backward step: initial profile of the velocity (left); solution of the PDF (3.2),
(3.12) and (3.13) at 𝑡 = 𝑇 (center); solution of the PDEs (3.20), (3.22) and (3.32) by any
scheme with entropy increase condition at 𝑡 = 𝑇 (right).

The solution of the PDEs (3.22), (3.20) and (3.32) with entropy increase condition can
be written as

𝑢(𝑡, 𝑥) = 𝑉0𝐻

(︂
−𝑉0

𝑡

2
+ 𝑥

)︂
, 𝑡 > 0. (3.39)

The Favre PDF corresponding to the eq. (3.39) is

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) = 𝐻

(︂
𝑉0
𝑡

2
− 𝑥

)︂
𝛿(𝑉 − 𝑉0) +𝐻

(︂
−𝑉0

𝑡

2
+ 𝑥

)︂
𝛿(𝑉 ). (3.40)
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We can see that each point in space is associated with one Dirac delta function: 𝛿(𝑉 −𝑉0), if
𝑥 < 𝑉0

𝑡
2
and 𝛿(𝑉 ), if 𝑥 ≥ 𝑉0

𝑡
2
. The solution (3.40) is different from the solution (3.14), (3.15).

Thus, methods satisfying the entropy increase condition cannot predict a correct solution of
the PDF equation (3.2) with initial conditions (3.12) and (3.13).

The first three characteristic equations of (3.19) in physical space are the characteristics
eq. of the following SPDE of velocity field

𝜕𝑢′′

𝜕𝑡
+ 𝑢′′

𝜕𝑢′′

𝜕𝑥
=
𝜕𝑢′′2

𝜕𝑥
+ 𝐶1𝜔𝑢

′′ +
√︀
𝐶0𝜀𝜉. (3.41)

As a Favre-averaged velocity is zero and a mean density is equal to one, we write 𝑢′′(𝑡, 𝑥) =
𝑢(𝑡, 𝑥). Introducing the stochastic density 𝑟 as for eq. (3.20), the conservation form of
eq. (3.41) reads

𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢′′

𝜕𝑥
= 0, (3.42)

𝜕𝑟𝑢′′

𝜕𝑡
+
𝜕𝑟𝑢′′2

𝜕𝑥
=
𝑟

𝑟

𝜕𝑟𝑢′′2

𝜕𝑥
+ 𝑟𝐶1𝜔𝑢

′′ + 𝑟
√︀
𝐶0𝜀𝜉. (3.43)

The SPDEs (3.42) and (3.43) are statistically equivalent to the PDF eq. (3.18).

3.1.3 Equivalence between SPDEs and PDF equation

At the first time we consider the PDF eq. (3.2). The PDEs (3.22)-(3.24) are equivalent to
the PDF equations (3.2) and (3.3). If the solution of velocity 𝑢(𝑡, 𝑥) is single-valued, the
equivalence can readily be proven. For example, the proof can be written as follows. The
PDF of the velocity can be defined in terms of Dirac delta functions by

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) = ⟨𝑓 ′(𝑉 ; 𝑡, 𝑥)⟩ , (3.44)

where the angular brackets indicate an ensemble mean and

𝑓 ′(𝑉 ; 𝑡, 𝑥) = 𝛿 (𝑉 − 𝑢(𝑡, 𝑥)) (3.45)

is a fine-grained PDF. Differentiating eq. (3.45), we have

𝜕𝑓 ′

𝜕𝑡
= −𝜕𝑓

′

𝜕𝑉

𝜕𝑢

𝜕𝑡
, (3.46)

𝜕𝑓 ′

𝜕𝑥
= −𝜕𝑓

′

𝜕𝑉

𝜕𝑢

𝜕𝑥
. (3.47)

Equations (3.46) and (3.47) imply

𝜕𝑓 ′

𝜕𝑡
+ 𝑢(𝑡, 𝑥)

𝜕𝑓 ′

𝜕𝑥
= −𝜕𝑓

′

𝜕𝑉

𝜕𝑢

𝜕𝑡
− 𝑢(𝑡, 𝑥)

𝜕𝑓 ′

𝜕𝑉

𝜕𝑢

𝜕𝑥
. (3.48)

Multiplying eq. (3.48) by 𝑟(𝑡, 𝑥) and taking into account that

𝑟(𝑡, 𝑥)
𝜕𝑓 ′

𝜕𝑡
=
𝜕𝑟𝑓 ′

𝜕𝑡
− 𝑓 ′𝜕𝑟

𝜕𝑡
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and

𝑟(𝑡, 𝑥)𝑢(𝑡, 𝑥)
𝜕𝑓 ′

𝜕𝑥
=
𝜕𝑟𝑢𝑓 ′

𝜕𝑥
− 𝑓 ′𝜕𝑟𝑢

𝜕𝑥
,

we obtain
𝜕𝑟𝑓 ′

𝜕𝑡
− 𝑓 ′𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢𝑓 ′

𝜕𝑥
− 𝑓 ′𝜕𝑟𝑢

𝜕𝑥
= −𝑟𝜕𝑓

′

𝜕𝑉

(︂
𝜕𝑢

𝜕𝑡
− 𝑢

𝜕𝑢

𝜕𝑥

)︂
. (3.49)

It follows from eqs. (3.20), (3.23) and (3.49) that the transport equation for 𝑟(𝑡, 𝑥)𝑓 ′(𝑉 ; 𝑡, 𝑥)
is

𝜕𝑟𝑓 ′

𝜕𝑡
+
𝜕𝑟𝑢𝑓 ′

𝜕𝑥
= 0. (3.50)

Averaging eq. (3.50), we obtain the eq. (3.2) for 𝜌(𝑡, 𝑥) ̃︀𝑓(𝑉 ; 𝑡, 𝑥) (more details can be found
in [Pope1981]).

When the PDEs possess a multivalued solution, i.e. when the characteristics cross in
eq. (3.29), we should take into account multivalued solutions of the density 𝑟(𝑡, 𝑥) and the
velocity 𝑢(𝑡, 𝑥). The proof of this statement is based on the coincidence of three first charac-
teristics (see eq. (3.9) for the PDF transport equation and eq. (3.26) for the PDEs). Examples
given in appendix A.5.2, appendix A.5.3 demonstrate the equivalence between the multival-
ued solutions and the PDF solutions, when the solutions of the PDF eq. (3.2) and the PDEs
(3.22)-(3.24) are analytical.

Let us consider now the model transport equation for the fluctuating velocity PDF
eq. (3.16) and the SPDEs eqs. (3.42) and (3.43). In the case of the single-valued solu-
tion of eq. (3.41), the proof can be found in [SoulardSabelnikov2006]. When the multivalued
solution of eq. (3.41) appears, the proof of the equivalence between the eqs. (3.42) and (3.43)
and eq. (3.16) can be based on the stochastic characteristic for the function 𝑔′ and the char-
acteristics of eq. (3.41). Three fist characteristics of eq. (3.19) are the characteristics for
eq. (3.41). As we can see from eq. (3.19) the function 𝑔′ changes on all branches of the
multivalued solution of eq. (3.41).

3.2 Stochastic numerical schemes

This section is devoted to modeling stochastic processes for the SPDEs. Section 3.2.1 de-
scribed stochastic schemes for the PDEs (3.22)-(3.23) which are statistically equivalent to
the PDF model transport eq. (3.2) with zero RHS. Stochastic Lax-Friedrichs, Lax-Wendroff,
GForce and Godunov schemes are formulated. In section 3.2.2, stochastic schemes are pro-
posed for the SPDEs (3.42)-(3.43).

3.2.1 Schemes for partial differential equations

In order to calculate the multivalued solutions of the PDEs (3.22)-(3.24) in the statistical
sense O. Soulard inspired from the method of Glimm [Glimm1965], where the choice of
solution depends on stochastic noise. The starting point of Glimm’s method is identical to
that of Godunov [Godunov1959]. It assumes the existence of a discontinuity between each two
cells of grid. A Riemann problem is then solved to advance the solution in time. In the original
formulation, Glimm’s method finds the entropic solutions (see details in appendix A.1).
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As it was explained above, if we want to preserve the equivalence between the solution
of the PDF equation and the solution of the PDEs after the appearance of shock waves, we
should avoid the dissipativity in the numerical schemes taking into account the multivalued
solutions of the PDEs. Glimm’s method and other methods with entropy increase condition
are not suited to solve the PDEs (3.22)-(3.24) because they are dissipative. We propose a
new stochastic method to capture the multivalued solutions of the PDEs (3.22)-(3.24) only
in a statistical sense. The idea of a new method is following:

1. The numerical schemes for the PDEs are based on stochastic processes which are de-
duced from classical schemes for the PDF transport equation.

2. The choice of the velocity does not depend any more only on the length of the interval
as in the random choice method (RCM) method, but also on a weight proportional to
the stochastic density which is added in the probability.

The same procedure is applied for each velocity field realization. Each particular real-
ization of velocity and density always has a single solution.

3. In comparison with the RCM method, we do not solve the Riemann problem in the
classical sense. One realization of the density and the velocity has no physical inter-
pretation.

Let us provide a detailed description of the method. Consider one realization among the
ensemble of all realizations defined by the initial conditions. Thus the profiles of velocity
𝑢(0, 𝑥) and density 𝑟(0, 𝑥) are deterministic. For this initial data, using the statement of
equivalence, we can write the formula relating the solution of the PDEs (3.22)-(3.24) and the
solution of the PDF equation (3.2)-(3.3):

𝜌(𝑡, 𝑥) ̃︀𝑓(𝑡, 𝑥) = 𝑁𝑏𝑟(𝑡)∑︁
𝑠=1

𝑟𝑠(𝑡, 𝑥)𝛿 (𝑉 − 𝑢𝑠(𝑡, 𝑥)) , (3.51)

where 𝑁𝑏𝑟(𝑡) is a number of different branches of the multivalued solution of the PDEs at
time 𝑡.

We construct an inner stochastic process which allow approximating the solution (3.51)
of the PDEs in statistical sense by the following formula

𝑁𝑏𝑟(𝑡)∑︁
𝑠=1

𝑟𝑠(𝑡, 𝑥)𝛿 (𝑉 − 𝑢𝑠(𝑡, 𝑥)) ≈
1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑟*𝑖𝑟𝑒𝑎(𝑡, 𝑥)𝛿 (𝑉 − 𝑢*𝑖𝑟𝑒𝑎(𝑡, 𝑥)) , (3.52)

where 𝑁𝑟 tends to infinity. Here, (𝑟*𝑖𝑟𝑒𝑎(𝑡, 𝑥), 𝑢
*
𝑖𝑟𝑒𝑎(𝑡, 𝑥)), 𝑖𝑟𝑒𝑎 = 1, .., 𝑁𝑟 is some inner stochas-

tic realization such that at initial time

𝑟*𝑖𝑟𝑒𝑎(0, 𝑥) = 𝑟(0, 𝑥), 𝑢*𝑖𝑟𝑒𝑎(0, 𝑥) = 𝑢(0, 𝑥). (3.53)

During the time 𝑡 > 0, the realization (𝑟*𝑖𝑟𝑒𝑎(𝑡, 𝑥), 𝑢
*
𝑖𝑟𝑒𝑎(𝑡, 𝑥)) evolves accordingly to some

process and remains single-valued. The inner stochastic process must be such that all Favre
moments of velocity and mean density coincide with the statistics of the multivalued solution
(3.51) of the PDEs starting from the single initial condition (𝑟(0, 𝑥), 𝑢(0, 𝑥)) at time 0.
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In the general case the solution of the PDF equation is related with the solution of the
PDEs (or SPDEs) as

𝜌(𝑡, 𝑥) ̃︀𝑓(𝑡, 𝑥) = ⟨𝑁𝑏𝑟(𝑡)∑︁
𝑠=1

𝑟𝑠(𝑡, 𝑥)𝛿 (𝑉 − 𝑢𝑠(𝑡, 𝑥))

⟩
, (3.54)

where angular brackets signify ensemble average. At initial time the mass-weighted PDF
multiplied by mean density can be written as

𝜌(𝑡0, 𝑥) ̃︀𝑓(𝑡0, 𝑥) = ⟨𝑟(𝑡0, 𝑥)𝛿 (𝑉 − 𝑢(𝑡0, 𝑥))⟩ . (3.55)

At time 𝑡 the solution (3.56) is approximated by⟨
𝑁𝑏𝑟(𝑡)∑︁
𝑠=1

𝑟𝑠(𝑡, 𝑥)𝛿 (𝑉 − 𝑢𝑠(𝑡, 𝑥))

⟩
≈

⟨
1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑟*𝑖𝑟𝑒𝑎(𝑡, 𝑥)𝛿 (𝑉 − 𝑢*𝑖𝑟𝑒𝑎(𝑡, 𝑥))

⟩
, (3.56)

where 𝑁𝑟 → +∞. We will denote

1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑟*𝑖𝑟𝑒𝑎(𝑡, 𝑥)𝛿 (𝑉 − 𝑢*𝑖𝑟𝑒𝑎(𝑡, 𝑥))) = ⟨𝑟*(𝑡, 𝑥)𝛿 (𝑉 − 𝑢*(𝑡, 𝑥))⟩𝑆 . (3.57)

There exists obviously a large choice of inner stochastic process such that the Favre statistics
of velocity and mean density coincide with statistics of the multivalued solutions of the PDEs
(SPDEs).

Numerical notations for stochastic schemes

Let us describe the proposed numerical approach to solve multivalued problems in one-
dimensional case. Calculations are performed on domain 𝐷 = [𝑎 − ℎ

2
; 𝑏 + ℎ

2
]. 𝑁𝑥 is a

number of points in 𝑥 including boundary points 𝑎 and 𝑏. The spatial step is uniform,
so Δ𝑥 = ℎ = 𝑏−𝑎

𝑁𝑥−1
, points of the grid are 𝑥𝑗 = 𝑎+ (𝑗 − 1)Δ𝑥, 𝑗 = 1, .., 𝑁𝑥.

At left and right boundaries, either Neumann condition is imposed, i.e. 𝑟(𝑡, 𝑥1 = 𝑎) =
𝑟(𝑡, 𝑥2), 𝑢(𝑡, 𝑥1 = 𝑎) = 𝑢(𝑡, 𝑥2), 𝑟(𝑡, 𝑥𝑁𝑥 = 𝑏) = 𝑟(𝑡, 𝑥𝑁𝑥−1) and 𝑢(𝑡, 𝑥𝑁𝑥 = 𝑏) = 𝑢(𝑡, 𝑥𝑁𝑥−1) or
periodic condition is used: 𝑟(𝑡, 𝑥1 = 𝑎) = 𝑟(𝑡, 𝑥𝑁𝑥 = 𝑏), 𝑢(𝑡, 𝑥1 = 𝑎) = 𝑢(𝑡, 𝑥𝑁𝑥 = 𝑏).

We define some stochastic process (𝑟*𝑖𝑟𝑒𝑎, 𝑢
*
𝑖𝑟𝑒𝑎), 𝑖𝑟𝑒𝑎 = 1, .., 𝑁𝑟, where 𝑁𝑟 is a number of

stochastic realizations.

Δ𝑡𝑛 = 𝑐𝑓𝑙
Δ𝑥

max
𝑗=1,..,𝑁𝑥, 𝑖𝑟𝑒𝑎=1,..,𝑁𝑟

(|𝑢*𝑛𝑖𝑟𝑒𝑎,𝑗|)
, with constant 𝑐𝑓𝑙 < 1. (3.58)

At the initial time all realizations are the same, i.e.

𝑟*0𝑖𝑟𝑒𝑎,𝑗 = 𝑟0(𝑥𝑗), 𝑢*0𝑖𝑟𝑒𝑎,𝑗 = 𝑢0(𝑥𝑗). (3.59)

If at initial time the velocity profile depends also on the external stochastic process 𝜉1, ..., 𝜉𝑁 ,
we should associate with each realization 𝜉𝑖𝑟, 𝑖𝑟 = 1, .., 𝑁 some inner stochastic process(︀
𝑟*,𝑖𝑟𝑖𝑟𝑒𝑎, 𝑢

*,𝑖𝑟
𝑖𝑟𝑒𝑎

)︀
. Numerically, each external realization 𝜉𝑖𝑟 is associated with one inner realiza-

tion. It can be used, when 𝑁𝑟 ≫ 1 and 𝑡≫ 𝑡0.
The following notation is used for the PDF: ̃︀𝑓𝑢(𝑡𝑛, 𝑥𝑗) = ̃︀𝑓𝑛𝑗 .
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Numerical stochastic schemes

PDF Let us deduce a stochastic numerical scheme for the PDEs (3.22) and (3.23). We
suppose that the PDEs (3.22) is solved by the first order temporal and spatial schemes. For
example, the discretized PDEs (3.22) can be written as

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 =

𝑘=𝑙∑︁
𝑘=−𝑙

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑉𝑘

)︂
𝜌𝑛𝑗+𝑘

̃︀𝑓𝑛𝑗+𝑘, (3.60)

where 𝛼𝑘, 𝛽𝑘 are some coefficients, 𝑘 = −𝑙, .., 𝑙 and 𝑉𝑘 is a sample space of velocity.

Stochastic process Numerical stochastic scheme is deduced from the eq. (3.60). Accord-
ingly to the stochastic approximation (3.57) at the point (𝑡𝑛, 𝑥𝑗), we can write that

𝜌𝑛𝑗
̃︀𝑓𝑛𝑗 ≈

⟨⟨︀
𝑟𝑛*𝑗 𝛿

(︀
𝑉 − 𝑢𝑛*𝑗

)︀⟩︀
𝑆

⟩
. (3.61)

Using the definition (3.61), the finite difference scheme of eq. (3.60) can be transformed to

⟨⟨︀
𝑟*𝑛+1
𝑗 𝛿

(︀
𝑉 − 𝑢*𝑛+1

𝑗

)︀⟩︀
𝑆

⟩
=

𝑘=𝑙∑︁
𝑘=−𝑙

⟨⟨
𝑟*𝑛𝑗+𝑘

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑉𝑘

)︂
𝛿(𝑉 − 𝑢*𝑛𝑗+𝑘)

⟩
𝑆

⟩
. (3.62)

The ensemble averaged fine-grained PDF possess the following property [Pope1985]:

⟨𝑟*𝑉 𝛿(𝑉 − 𝑢*)⟩ = ⟨𝑟*𝑢*𝛿(𝑉 − 𝑢*)⟩ . (3.63)

Thus taking into account eq. (3.63), the eq. (3.62) yields

⟨⟨︀
𝑟*𝑛+1
𝑗 𝛿

(︀
𝑉 − 𝑢*𝑛+1

𝑗

)︀⟩︀
𝑆

⟩
=

𝑘=𝑙∑︁
𝑘=−𝑙

⟨⟨
𝑟*𝑛𝑗+𝑘

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑢

*𝑛
𝑗+𝑘

)︂
𝛿(𝑉 − 𝑢*𝑛𝑗+𝑘)

⟩
𝑆

⟩
. (3.64)

Equation (3.64) is

⟨⟨︀
𝑟*𝑛+1
𝑗 𝛿

(︀
𝑉 − 𝑢*𝑛+1

𝑗

)︀⟩︀
𝑆

⟩
=

⟨⟨
𝑘=𝑙∑︁
𝑘=−𝑙

𝑟*𝑛+1
𝑗

𝑟*𝑛𝑗+𝑘

𝑟*𝑛+1
𝑗+𝑘

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑢

*𝑛
𝑗+𝑘

)︂
𝛿(𝑉 − 𝑢*𝑛𝑗+𝑘)

⟩
𝑆

⟩
.

(3.65)
Let us introduce the following definition

𝑟*𝑛+1
𝑗 𝑃 𝑘

𝑗 = 𝑟*𝑛𝑗+𝑘

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑢

*𝑛
𝑗+𝑘

)︂
, (3.66)

where 𝑃 𝑘
𝑗 is the probability to expect the sample value of velocity to be equal to 𝑢*𝑛𝑗+𝑘. It

follows from eq. (3.67) that

⟨⟨︀
𝑟*𝑛+1
𝑗 𝛿

(︀
𝑉 − 𝑢*𝑛+1

𝑗

)︀⟩︀
𝑆

⟩
=

⟨⟨
𝑘=𝑙∑︁
𝑘=−𝑙

𝑟*𝑛+1
𝑗 𝑃 𝑘

𝑗 𝛿(𝑉 − 𝑢*𝑛𝑗+𝑘)

⟩
𝑆

⟩
. (3.67)
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We impose that the stochastic velocity at the following time step 𝑡𝑛+1 is equal to

𝑢*𝑛+1
𝑗 =

⎧⎪⎨⎪⎩
𝑢*𝑛𝑗−𝑙, with probability 𝑃−𝑙

𝑗 ,

...

𝑢*𝑛𝑗+𝑙, with probability 𝑃 𝑙
𝑗 .

(3.68)

The stochastic density is

𝑟*𝑛+1
𝑗 =

𝑘=𝑙∑︁
𝑘=−𝑙

𝑟*𝑛𝑗+𝑘

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑢

*𝑛
𝑗+𝑘

)︂
, (3.69)

where the probability is defined as

𝑃 𝑘
𝑗 =

𝑟*𝑛𝑗+𝑘

𝑟*𝑛+1
𝑗

(︂
𝛼𝑘 +

Δ𝑡𝑛

Δ𝑥
𝛽𝑘𝑢

*𝑛
𝑗+𝑘

)︂
. (3.70)

Stochastic Lax-Friedrichs method Let us write a stochastic Lax-Friedrichs method for
the PDEs (3.22) and (3.23). The PDF equation (3.2) is discretized with a Lax-Friedrichs
scheme in space and a forward Euler scheme in time. Thus, we have

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 =

𝜌𝑛𝑗−1
̃︀𝑓𝑛𝑗−1 + 𝜌𝑛𝑗+1

̃︀𝑓𝑛𝑗+1

2
− Δ𝑡𝑛

2Δ𝑥
𝑉
(︁
𝜌𝑛𝑗+1

̃︀𝑓𝑛𝑗+1 − 𝜌𝑛𝑗−1
̃︀𝑓𝑛𝑗−1

)︁
. (3.71)

Accordingly to eq. (3.60) 𝑙 = 1 and

𝛼−1 𝛼0 𝛼1 𝛽−1 𝛽0 𝛽1 𝑉−1 𝑉0 𝑉1
1
2

0 1
2

1
2

0 −1
2

𝑉 𝑉 𝑉

Table 3.1: Coefficients in eq. (3.60) discretized with Lax-Friedrichs scheme

Using (3.68), (3.69) and (3.70) we obtain that the stochastic velocity at the following time
step 𝑡𝑛+1 is equal to

𝑢*𝑛+1
𝑗 =

{︃
𝑢*𝑛𝑗+1, with probability 𝑃+1

𝑗 ,

𝑢*𝑛𝑗−1, with probability 𝑃−1
𝑗 = 1− 𝑃+1

𝑗 .
(3.72)

The stochastic density is

𝑟*𝑛+1
𝑗 = 𝑟*𝑛𝑗 − Δ𝑡𝑛

Δ𝑥

(︀
𝐹 𝑛
𝑗+1/2 − 𝐹 𝑛

𝑗−1/2

)︀
, (3.73)

where the probability is defined as

𝑃+1
𝑗 =

1

2

𝑟*𝑛𝑗+1

𝑟*𝑛+1
𝑗

(︂
1− Δ𝑡𝑛

Δ𝑥
𝑢*𝑛𝑗+1

)︂
, 𝑃−1

𝑗 = 1− 𝑃+1
𝑗 , (3.74)
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and the flux is

𝐹 𝑛
𝑗+1/2 =

𝑟*𝑛𝑗 𝑢
*𝑛
𝑗 + 𝑟*𝑛𝑗+1𝑢

*𝑛
𝑗+1

2
− Δ𝑥

2Δ𝑡𝑛
(︀
𝑟*𝑛𝑗+1 − 𝑟*𝑛𝑗

)︀
. (3.75)

It is known that the classical Lax-Friedrichs scheme in space with the Euler scheme in
time has the first order of the point-wise convergence. The stochastic scheme, given by (3.72)
and (3.73), has only a weak convergence for the mean density and for all Favre moments of
velocity. The expected order of convergence is one.

Stochastic GForce method The GForce scheme is a combination of the Lax-Friedrichs
and the Lax-Wendroff schemes. It is still first order accurate. If the problem consists in a
linear advection, the GForce method behaves similarly to the Godunov method. The GForce
scheme is defined by the following expression

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 = 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 +
𝑉Δ𝑡𝑛

Δ𝑥

(︁
−𝜌𝑛𝑗+1/2

̃︀𝑓𝑛𝑗+1/2 + 𝜌𝑛𝑗−1/2
̃︀𝑓𝑛𝑗−1/2

)︁
, (3.76)

where

𝜌𝑛𝑗+1/2
̃︀𝑓𝑛𝑗+1/2 =

1

2

Δ𝑥

Δ𝑡𝑛
(1+𝑐) [1− (1− 𝑐)𝜔] 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 − 1

2

Δ𝑥

Δ𝑡𝑛
(1−𝑐) [1− (1 + 𝑐)𝜔] 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 = −𝛽0𝜌𝑛𝑗 ̃︀𝑓𝑛𝑗 ,
(3.77)

𝑐 = 𝑉
Δ𝑡𝑛

Δ𝑥
, 𝜔 =

1

1 + 𝑐𝑓𝑙
. (3.78)

The definitions of 𝑐 and 𝜔 from eq. (3.78) imply that

1− (1− 𝑐)𝜔 > 0, 1− (1 + 𝑐)𝜔 > 0. (3.79)

where CFL constant is given by (3.58).
In terms of the stochastic process (3.68), (3.69) and (3.70), the stochastic GForce scheme

reads

𝑢*𝑛+1
𝑗 =

⎧⎪⎨⎪⎩
𝑢*𝑛𝑗+1, with probability 𝑃+1

𝑗 ,

𝑢*𝑛𝑗−1, with probability 𝑃−1
𝑗 ,

𝑢*𝑛𝑗 , with probability 𝑃 0
𝑗 = 1− 𝑃+1

𝑗 − 𝑃−1
𝑗 .

(3.80)

𝑟*𝑛+1
𝑗 = 𝑟*𝑛𝑗 − Δ𝑡𝑛

Δ𝑥
(𝐹 𝑛

𝑗+1/2 − 𝐹 𝑛
𝑗−1/2), (3.81)

𝑃+1
𝑗 =

1

2

𝑟*𝑛𝑗+1

𝑟*𝑛+1
𝑗

(1− 𝑐𝑗+1)[1− 𝜔(1 + 𝑐𝑗+1)], 𝑃
−1
𝑗 =

1

2

𝑟*𝑛𝑗−1

𝑟*𝑛+1
𝑗

(1− 𝑐𝑗−1)[1− 𝜔(1− 𝑐𝑗−1)],

𝑃 0
𝑗 = 1− 𝑃+1

𝑗 − 𝑃−1
𝑗 , (3.82)

where 𝑐𝑗 = 𝑢*𝑛𝑗
Δ𝑡𝑛

Δ𝑥
.

𝐹 𝑛
𝑗+1/2 =

𝑟*𝑛𝑗 𝑢
*𝑛
𝑗 + 𝑟*𝑛𝑗+1𝑢

*𝑛
𝑗+1

2
− Δ𝑥

2Δ𝑡𝑛

(︂
𝑐𝑓𝑙 + 𝑐2𝑗+1

1 + 𝑐𝑓𝑙
𝑟*𝑛𝑗+1 −

𝑐𝑓𝑙 + 𝑐2𝑗
1 + 𝑐𝑓𝑙

𝑟*𝑛𝑗

)︂
. (3.83)

Here again, the numerical stochastic process weakly converges to the PDF statistics with
first order of convergence.
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Stochastic Godunov method Godunov’s scheme is a conservative numerical scheme. It
is first order accurate in both space, and time. Discretized the PDF eq. (3.2) with this
scheme, we obtain

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 = 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 − Δ𝑡𝑛

Δ𝑥

(︁
|𝑉 |𝜌𝑛𝑗 ̃︀𝑓𝑛𝑗 + 𝑉 −𝜌𝑛𝑗+1

̃︀𝑓𝑛𝑗+1 − 𝑉 +𝜌𝑛𝑗−1
̃︀𝑓𝑛𝑗−1

)︁
, (3.84)

where

𝑉 + = max(𝑉, 0), 𝑉 − = min(𝑉, 0). (3.85)

Accordingly to eq. (3.60) 𝑙 = 1 and

𝛼−1 𝛼0 𝛼1 𝛽−1 𝛽0 𝛽1 𝑉−1 𝑉0 𝑉1

0 1 1 1 −1 −1 𝑉 + |𝑉 | 𝑉 −

Table 3.2: Coefficients in eq. (3.60) discretized with Godunov scheme

The numerical stochastic scheme for (3.84) reads

𝑟*𝑛+1
𝑗 = 𝑟*𝑛𝑗 − Δ𝑡𝑛

Δ𝑥

(︀
|𝑢*𝑛𝑗 |𝑟*𝑛𝑗 + 𝑢−𝑗+1𝑟

*𝑛
𝑗+1 − 𝑢+𝑗−1𝑟

*𝑛
𝑗−1

)︀
, (3.86)

where

𝑢+𝑗−1 = max(𝑢*𝑛𝑗−1, 0), 𝑢−𝑗+1 = min(𝑢*𝑛𝑗+1, 0). (3.87)

The associated stochastic process for velocity is given by

𝑢*𝑛+1
𝑗 =

⎧⎪⎨⎪⎩
𝑢*𝑛𝑗+1, with probability 𝑃+1

𝑗 ,

𝑢*𝑛𝑗−1, with probability 𝑃−1
𝑗 ,

𝑢*𝑛𝑗 , with probability 𝑃 0
𝑗 = 1− 𝑃+1

𝑗 − 𝑃−1
𝑗

(3.88)

with probabilities defined as

𝑃+1
𝑗 =

𝑟*𝑛𝑗+1

𝑟*𝑛+1
𝑗

𝑢−𝑗+1

Δ𝑡𝑛

Δ𝑥
, (3.89)

𝑃−1
𝑗 =

𝑟*𝑛𝑗−1

𝑟*𝑛+1
𝑗

𝑢+𝑗−1

Δ𝑡𝑛

Δ𝑥
, (3.90)

𝑃 0
𝑗 =

𝑟*𝑛𝑗

𝑟*𝑛+1
𝑗

(︂
1− |𝑢*𝑛𝑗 |Δ𝑡

𝑛

Δ𝑥

)︂
. (3.91)

This stochastic scheme also converges weakly to the PDF statistics with first order of
convergence in space and in time.

Stochastic Lax-Wendroff method In order to obtain the stochastic Lax-Wendroff method
in space the same procedure is used that for the stochastic Lax-Friedrichs method.
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PDF. The classical Lax-Wendroff method is a two-step approach. It is second-order accu-
rate in both space and time for smooth function. The first step in the Lax-Wendroff method
calculates values for ̃︀𝑓 at half time steps, 𝑡𝑛 + 1/2 and half grid points, 𝑥𝑗 + 1/2. In the
second step values at 𝑡𝑛 + 1 are calculated using the data for 𝑡𝑛 and 𝑡𝑛 + 1/2. Consequently,
at the first step the discretized equation for the PDF eq. (3.2) is

𝜌
𝑛+1/2
𝑗

̃︀𝑓𝑛+1/2
𝑗 =

𝜌𝑛𝑗
̃︀𝑓𝑛𝑗 + 𝜌𝑛𝑗+1

̃︀𝑓𝑛𝑗+1

2
− Δ𝑡𝑛

2Δ𝑥
𝑉
(︁
𝜌𝑛𝑗+1

̃︀𝑓𝑛𝑗+1 − 𝜌𝑛𝑗
̃︀𝑓𝑛𝑗 )︁ (3.92)

and at the second step

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 = 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 − Δ𝑡𝑛

Δ𝑥
𝑉
(︁
𝜌
𝑛+1/2
𝑗+1/2

̃︀𝑓𝑛+1/2
𝑗+1/2 − 𝜌

𝑛+1/2
𝑗−1/2

̃︀𝑓𝑛−1/2
𝑗−1/2

)︁
. (3.93)

Stochastic process. Replacing ̃︀𝑓 in eq. (3.92) by the stochastic approximation (3.57), at
time 𝑛+ 1/2 the probability to stay in the same cell with the velocity 𝑢*𝑛𝑗 is written as

𝑃 0
𝑗 =

1
2
𝑟*𝑛𝑗
(︀
1 + 𝑢*𝑛𝑗

Δ𝑡𝑛

Δ𝑥

)︀
𝑟*

, (3.94)

where

𝑟* =
1

2
(𝑟*𝑛𝑗 + 𝑟*𝑛𝑗+1) +

1

2

Δ𝑡𝑛

Δ𝑥

(︀
𝑟*𝑛𝑗 𝑢

*𝑛
𝑗 − 𝑟*𝑛𝑗+1𝑢

*𝑛
𝑗+1

)︀
. (3.95)

Here, 𝑟* is a mean density. The evolution of the velocity on interface is

𝑢
*𝑛+1/2
𝑗+1/2 =

{︃
𝑢*𝑛𝑗 , with probability 𝑃 0

𝑗

(︀
𝑟*𝑛𝑗 , 𝑢

*𝑛
𝑗 ; 𝑟*𝑛𝑗+1, 𝑢

*𝑛
𝑗+1

)︀
,

𝑢*𝑛𝑗+1, with probability 1− 𝑃 0
𝑗

(︀
𝑟*𝑛𝑗 , 𝑢

*𝑛
𝑗 ; 𝑟*𝑛𝑗+1, 𝑢

*𝑛
𝑗+1

)︀
,

(3.96)

𝑟
*𝑛+1/2
𝑗+1/2 = 𝑟*

(︀
𝑟*𝑛𝑗 , 𝑢

*𝑛
𝑗 ; 𝑟*𝑛𝑗+1, 𝑢

*𝑛
𝑗+1

)︀
. (3.97)

The evolution of the velocity at the center of cell at time 𝑡𝑛+1 is

𝑢*𝑛+1
𝑗 =

⎧⎨⎩𝑢
*𝑛+1/2
𝑗−1/2 , with probability 𝑃 0

𝑗

(︁
𝑟
*𝑛+1/2
𝑗−1/2 , 𝑢

*𝑛+1/2
𝑗−1/2 , 𝑟

*𝑛+1/2
𝑗+1/2 , 𝑢

*𝑛+1/2
𝑗+1/2

)︁
,

𝑢
*𝑛+1/2
𝑗+1/2 , with probability 1− 𝑃 0

𝑗

(︁
𝑟
*𝑛+1/2
𝑗−1/2 , 𝑢

*𝑛+1/2
𝑗−1/2 , 𝑟

*𝑛+1/2
𝑗+1/2 , 𝑢

*𝑛+1/2
𝑗+1/2

)︁
,

(3.98)

𝑟*𝑛+1
𝑗 = 𝑟*

(︁
𝑟
*𝑛+1/2
𝑗−1/2 , 𝑢

*𝑛+1/2
𝑗−1/2 , 𝑟

*𝑛+1/2
𝑗+1/2 , 𝑢

*𝑛+1/2
𝑗+1/2

)︁
. (3.99)

The construction of eqs. (3.96) to (3.99) can be rigorously justified in the manner similar
to that detailed in section 3.2.1. As the classical Lax-Wendroff is a second order accurate
scheme in time and in space for smooth functions, the numerical stochastic process should
also weakly converge to smooth PDF statistics with the second order of convergence in time
and in space.
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Mean density conservation in stochastic schemes

The proposed numerical schemes such as Lax-Friedrichs, Lax-Wendroff, GForce and Godunov
do not preserve the mean density 𝜌 exactly, so some fluctuations may appear in numerical
tests. For illustration purposes we assume, without loss of generality, that if the mean density
is homogeneous in space and in time: 𝜌 = 1 then the integration, e.g. of the discretized
eq. (3.84) in case of Godunov scheme, gives

∞∫︁
−∞

̃︀𝑓𝑛+1
𝑗 𝑑𝑉 = 1− Δ𝑡𝑛

Δ𝑥

⎡⎣ ∞∫︁
−∞

|𝑉 | ̃︀𝑓𝑛𝑗 𝑑𝑉 −
0∫︁

−∞

𝑉 ̃︀𝑓𝑛𝑗+1𝑑𝑉 −
∞∫︁
0

𝑉 ̃︀𝑓𝑛𝑗−1𝑑𝑉

⎤⎦ ̸= 1. (3.100)

This signifies that the mean density 𝜌 = 1 is not preserved. As a consequence, the mean of
the stochastic density is not constant:⟨

1

𝑁𝑟

𝑁𝑟∑︁
𝑖𝑟𝑒𝑎=1

𝑟*𝑛+1
𝑖𝑟𝑒𝑎,𝑗

⟩
= 1− ... ̸= 1. (3.101)

It means that the stochastic density will fluctuate.

3.2.2 Schemes for stochastic partial differential equations

In order to recover numerical solution of the SPDEs (3.42)-(3.43) we use a physical (or
differential) splitting method, the forward Euler scheme in time and the deduced above
stochastic schemes in space. The procedure can be written in four steps:

1. We start to solve the following PDEs:

𝜕𝑟𝑢′′

𝜕𝑡
+
𝜕𝑟𝑢′′2

𝜕𝑥
= 0, (3.102)

𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢′′

𝜕𝑥
= 0 (3.103)

with initial conditions at time 𝑡𝑛:

𝐼𝐶 : 𝑟(𝑡𝑛, 𝑥), 𝑢′′(𝑡𝑛, 𝑥). (3.104)

Stochastic schemes, proposed above for the PDEs (3.102) and (3.103) construct stochastic
process of density 𝑟*(𝑡, 𝑥) and velocity 𝑢′′*(𝑡, 𝑥) at time 𝑡𝑛+1/4 in such the manner that
their statistics coincide with statistics of eqs. (3.102) and (3.103). The eq. (3.103) for the
density is completely solved at this time step. Consequently, the obtained value of stochastic
density is the same for the following sub-temporal steps, i.e. 𝑟*(𝑡𝑛+1/4, 𝑥) = 𝑟*(𝑡𝑛+2/4, 𝑥) =
𝑟*(𝑡𝑛+3/4, 𝑥) = 𝑟*(𝑡𝑛+1, 𝑥).

2. At the second step of differential splitting equation for stochastic velocity is considered

𝜕𝑢′′

𝜕𝑡
=

1

𝑟

𝜕𝑟𝑢′′2

𝜕𝑥
, (3.105)

𝐼𝐶 : 𝑟*(𝑡𝑛+1/4, 𝑥), 𝑢′′*(𝑡𝑛+1/4, 𝑥). (3.106)
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Numerically, the solution at 𝑡𝑛+2/4 for stochastic velocity realization is

𝑢′′*𝑛+2/4 = 𝑢′′*𝑛+1/4 − 𝑟*𝑛+1/4

𝑟*𝑛
˜𝑢′′*𝑛+1/4 + ̃︂𝑢′′*𝑛. (3.107)

The idea behind the correction (3.107) can be understood if we consider the continuous
equation for the fluctuating velocity when the averaging operator is applied:

𝜕𝑟𝑢′′

𝜕𝑡
+
𝜕𝑟𝑢′′2

𝜕𝑥
=
𝜕𝑟𝑢′′2

𝜕𝑥
(3.108)

using one of the proposed above stochastic schemes the value of velocity is known at time
𝑡𝑛+1/4. On the other hand, the eq. (3.102) for velocity fluctuations discretized with a forward
Euler scheme reads

(𝑟𝑢′′)𝑛+1/4 − (𝑟𝑢′′)𝑛 = −Δ𝑡
𝑟𝑛

𝑟𝑛
𝜕𝑟𝑢′′2

𝜕𝑥
. (3.109)

Applying averaging to eq. (3.109), it yields

(𝑟𝑢′′)*𝑛+1/4 − (𝑟𝑢′′)*𝑛 = 𝑟*𝑛+1/4 ˜𝑢′′*𝑛+1/4 − 𝑟*𝑛̃︂𝑢′′*𝑛 = −Δ𝑡
𝜕𝑟𝑢′′2

𝜕𝑥
. (3.110)

Thus, the term −1
𝑟
Δ𝑡𝜕𝑟𝑢

′′2

𝜕𝑥
at time 𝑡𝑛 can be approximated by

𝑟𝑛+1/4

𝑟*𝑛
˜𝑢′′*𝑛+1/4 − ̃︂𝑢′′*𝑛, (3.111)

whence the formula (3.107) follows.
3. The Langevin term of eq. (3.43) is now added to the calculated variable. Equation

yields
𝜕𝑢′′

𝜕𝑡
= −𝐶1𝜔𝑢

′′ +
√︀
𝐶0𝜀𝜉(𝑡), (3.112)

𝐼𝐶 : 𝑟*(𝑡𝑛+2/4, 𝑥) = 𝑟*(𝑡𝑛+1/4, 𝑥), 𝑢′′*(𝑡𝑛+2/4, 𝑥). (3.113)

Numerical scheme reads

𝑢′′*𝑛+3/4 = 𝑢′′*𝑛+2/4 − 𝐶1𝜔
𝑛(𝑢′′*𝑛+2/4 − ˜𝑢′′*𝑛+2/4)𝑑𝑡+

√︀
𝐶0𝜀*𝑛+2/4𝜉𝑛+2/4

√
Δ𝑡. (3.114)

4. Due to the finite number of realizations of stochastic fields: 𝜉 ̸= 0 and 𝜉2 ̸= 1. In
addition, we are interested in the Favre statistics and first of all we want to conserve the
Favre-averaged fluctuating velocity. There are two possible solutions: either to adjust the
noise such that

𝑟*𝜉 = 0 (3.115)

(using for example the Gram-Schmidt process which allow constructing an orthogonal vector
𝜉 to 𝑟) or to correct the Favre-averaged velocity after step 3 [Ourliac2009]:

𝑢′′*𝑛+1 = 𝑢′′*𝑛+3/4 − ˜𝑢′′*𝑛+3/4. (3.116)
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If a second moment ̃︁𝑢′′2 calculated from stochastic fields is used in the definition of 𝜀 and
a first moment ̃︀𝑢′′ is not corrected after each time step, the finite sample noise of an Ornstein-
Uhlenbeck process can drive a numerical instability, which causes quantities that should be
conserved not only to fluctuate around a constant value but even to grow or decay away
from it [LemonsLackman1995]. In order to avoid a noise-induced instability in self-consistent
Monte-Carlo calculations Lemons proposes to linearly shift the stochastic variables so as to
return the ”conserved” quantities back to their desired values, for instance by applying a
correction to the Favre-averaged velocity (eq. (3.116)).

General remarks

The SPDEs have the multivalued solutions, whereas the proposed numerical stochastic pro-
cess in each realization has only a single solution which is discontinuous and takes values
from different branches of multiplicity of velocity and density. This process converges to the
PDF statistics only weakly but not in the sense of point-wise spatial convergence for each
velocity field. In fact, the stochastic velocity ”chooses” one branch of multivalued velocity
solution. The probability of such a choice of the branch depends on the uniformly distributed
noise and the density.

Spatial convergence for statistical moments can be considered only on intervals where
these statistics are continuous functions. One would expect that the spatial convergence
should be the same for the PDF statistics, i.e. if the PDF equation is discretized by the first
order scheme, then deduced stochastic scheme is a first accurate.

The separation of statistical error and spatial error in the SPDEs (3.42)-(3.43) is difficult
because of the presence of two stochastic errors: one from uniformly distributed noise, which
allows calculating velocity transport equation and another from Gaussian noise which takes
into account a stochastic force.
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3.3 Numerical tests

In this section several numerical tests are performed using the derived above numerical
stochastic schemes. In some tests we consider also a spatial scheme of Osher (details are
given in [Toro1999]) and a kinetic scheme for one-dimensional pressureless gas taken from
[BouchutJin2003]. These two schemes satisfy the entropy increase condition. The scheme,
which satisfy the entropy increase condition, will be called classical scheme. In order to min-
imize the numerical diffusion, we set the Courant-Friedrichs-Lewy constant close to one, but
still meeting the eq. (3.58): 𝑐𝑓𝑙 = 0.99. Backward and direct step, ramp, triangle and hat ini-
tial velocity profiles in one-dimensional case are considered for Riemann problem. Averaged
numerical solutions are compared with analytical solutions (if the latter exist) or numerical
solution of corresponding PDF equation. Further, the SPDEs (3.42)-(3.43) are solved for the
considered initial profiles of velocity, and solutions are compared to numerical solution of the
transport equation (3.16) for the velocity PDF.

Following abbreviations are used in the legends of figures:
∙ Stochastic Godunov method (SGod)

∙ Stochastic Lax-Friedrichs method (SL-F)

∙ Stochastic Lax-Wendroff method (SL-W)

∙ Stochastic GForce method (SGF)

∙ Exact solution, used as reference (Ex sol)
A logarithmic scale is used for spatial and statistical convergence.

3.3.1 Backward step velocity profile

In this test we investigate the ability of stochastic numerical scheme to recover a multivalued
solution for a Riemann problem described in section 3.1.1. The problem consists in the
transfer of the backward step velocity pattern centered at the middle of the domain. The
center of the strip is denoted by 𝑥𝑐 and is situated at 𝑥𝑐 = 0.5m. The velocity 𝑉0 is set
to 𝑉0 = 1m/s and the density 𝜌0 is 1 kg/m3. The length of the computational domain is
𝐿 = 1m. The investigated PDEs are given by eqs. (3.22) and (3.23).

Numerical solution

We consider a stochastic process (𝑟*𝑖𝑟𝑒𝑎, 𝑢
*
𝑖𝑟𝑒𝑎), 𝑖𝑟𝑒𝑎 = 1, .., 𝑁𝑟 satisfying following initial con-

ditions. At time 𝑡 = 0 the stochastic density and velocity are defined as

𝑟*𝑛=0
𝑖𝑟𝑒𝑎,𝑗 = 1kg/m3, 𝑢*𝑛=0

𝑖𝑟𝑒𝑎,𝑗 =

{︃
1m/s, if 𝑗 ≤ [𝑁𝑥

2
],

0, if 𝑗 > [𝑁𝑥

2
].
𝑗 = 1, .., 𝑁𝑥, 𝑖𝑟𝑒𝑎 = 1, .., 𝑁𝑟. (3.117)

The process (𝑟*𝑖𝑟𝑒𝑎, 𝑢
*
𝑖𝑟𝑒𝑎) evaluates accordingly to stochastic schemes (Lax-Friedrichs, Lax-

Wendroff, GForce or Godunov) described above.

Spatial profiles. To trace the mean profile of the density, the Favre moments of the velocity
and the distribution of the density and the velocity, the stochastic fields are fixed to 𝑁𝑟 = 104

and the domain 𝐷 is discretized with 𝑁𝑥 = 103 cells (figs. 3.3 to 3.16).
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Figure 3.3 shows spatial profiles of the mean density and its variance at time 𝑡 = 0.1 s.
The mean density is compared to the exact solution (3.15). Due to the numerical diffusion
at the left limit situated at 0.5m where a multivalued solution appears the mean density
is blurred, and then stochastic fluctuations of density are presented up to the right limit
situated at 0.6m of the multivalued solution.

The appearance of density fluctuations in the region of multivalued solution 𝑥 ∈ [0.5m; 0.6m]
can be explained by the nature of numerical stochastic schemes. The density takes the largest
values in this interval, because its calculation is based on the gradient of velocity. In fact, the
formula for density can be seen as a classical scheme for the density transport equation. The
numerical velocity derivative is proportional to 𝑂

(︀
1
Δ𝑥

)︀
, which results in large density fluc-

tuations. In the right panel of fig. 3.3 one can observe that the stochastic Godunov method
yields higher stochastic density fluctuations compared to other methods.
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Figure 3.3: Backward step: spatial profiles of mean density (left) and density variance (right)
at time 𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.

The Favre average, variance, flatness and hyperflatness of the velocity field are illustrated
in figs. 3.4 and 3.5 at the time 𝑡 = 0.1 s. We observe that the Favre moments of the velocity
remain continuous all along the regions of the single-valued solution of the PDEs. In the
region of the multivalued solution fluctuations appear, but even here the comparison of the
spatial profiles of the Favre moments of the velocity with the theoretical solution gives good
result. The skewness and the flatness of the velocity have two peaks at 𝑥 = 0.5m and
𝑥 = 0.6m, because of the stochastic nature of numerical schemes. One concludes that as
expected the greater the order of moments is, the more realizations are required to predict
it.

To understand the nature of fluctuations of density and, as a consequence, the velocity
statistics let us consider the sample space of density and velocity at time 0.1 s from which
statistics above are calculated (figs. 3.6 to 3.8).

Figure 3.6 illustrates one sample space of the density and the velocity obtained with the
stochastic Lax-Friedrichs scheme. It can be seen that the velocity alternates between one and
zero at each numerical point of space in the region [0.585m; 0.595m]. Such a behavior of the
velocity realization can be justified by the nature of the stochastic Lax-Friedrichs scheme, in
which at the following time step the velocity at point 𝑥𝑗 can take either the value 𝑥𝑗−1 or the
value 𝑥𝑗+1. As a consequence, there are two possible realizations of the velocity. The first is
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Figure 3.4: Backward step: spatial profiles of Favre average (left) and Favre variance (right)
of velocity at time 𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.5: Backward step: spatial profiles of Favre skewness (left) and flatness (right) of
velocity at time 𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.

similar to the realization presented in fig. 3.6, but the region where the velocity alternated
between one and zero is different from [0.585m; 0.595m]. The second possible realization
of the velocity is similar to the realization demonstrated on the right panel of fig. 3.7. The
corresponding stochastic density takes large values at points where the stochastic velocity
changes values. One can note in fig. 3.6 that even the velocity is equal to one in the interval
[0.575m; 0.585m], the density takes substantial values. It can be explicated by the fact that
on the previous time step the velocity alternated between one and zero on this interval.

Figures 3.7 and 3.8 show sample spaces of density and velocity obtained with stochastic
Lax-Wendroff, GForce and Godunov schemes. There are two possible velocity realizations
for three stochastic schemes. The first is when there is only one point where the velocity
jumps from one to zero. The density increases to the left limit of this point and decreases
from this point. Another possible realization is when the velocity is equal to one or to zero
in the intervals larger than Δ𝑥.

Figures 3.9 to 3.11 demonstrate the mean profile of the density, the Favre moments of



86
CHAPTER 3. EULERIAN (FIELD) MONTE CARLO METHODS FOR SOLVING THE

FAVRE ONE-TIME ONE-POINT VELOCITY PDF TRANSPORT EQUATION

0.56 0.57 0.58 0.59 0.6 0.61

5

10

15

20

25

x [m]

D
en

si
ty

 [k
g/

m
3 ]

0.56 0.57 0.58 0.59 0.6 0.61
0

0.2

0.4

0.6

0.8

1

x [m]

V
el

oc
ity

 [m
/s

]

Figure 3.6: Backward step: spatial profiles of one realization of density and velocity at time
𝑡 = 0.1 s obtained by stochastic Lax-Friedrichs method. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.7: Backward step: spatial profiles of one realization of density and velocity at time
𝑡 = 0.1 s obtained by stochastic Lax-Wendroff method. 𝑁𝑟 = 104, 𝑁𝑥 = 103.

the velocity when the following mean density correction is applied:

𝑟*𝑛+1
𝑖𝑟𝑒𝑎,𝑗 = 𝜌𝑛+1

𝑗

𝑟*𝑛+1
𝑖𝑟𝑒𝑎,𝑗

𝑟*𝑛+1
𝑗

. (3.118)

The same stochastic noise is used both in the construction of spatial profiles without mean
density correction (figs. 3.3 to 3.5) and with mean density correction (3.118) (figs. 3.9 to 3.11).
One can note that the proposed mean correction of density does not improve spatial profiles;
in particular, the Favre moments of velocity are more fluctuation-polluted than those without
correction. Consequently this correction will not be considered in following tests.

The PDF of the velocity is given by two Dirac delta functions concentrated at 𝑢1 = 0m/s
and 𝑢2 = 1m/s with the probability 1

2
. Numerical Favre-averaged PDF is defined by the

expression (2.94). Figures 3.12 to 3.15 show the calculated Favre-averaged PDF and the
distribution of the velocity at 𝑥 = 0.5505m, 𝑡 = 0.1 s non normalized. These diagrams detail
the ability of four stochastic schemes to predict the PDF. Numerical values of probability to
have 𝑢1 = 0m/s and 𝑢2 = 1m/s are close to 1

2
for four stochastic schemes. One can note that
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Figure 3.8: Backward step: spatial profiles of one realization of density and velocity at time
𝑡 = 0.1 s obtained by stochastic GForce method. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.9: Backward step: spatial profiles of mean density (left) and density variance (right)
at time 𝑡 = 0.1 s with mean correction of density (3.118). 𝑁𝑟 = 104, 𝑁𝑥 = 103.

the distribution of values 0m/s and 1m/s are not uniform, especially for stochastic GForce
scheme. But the weighted PDF is close to the theoretical PDF thanks to the correction
made by the conditional expectation of the density for given velocities which is plotted in
right panel of fig. 3.16.

The distribution of the density is presented in fig. 3.16. We can see that the values of the
stochastic density vary approximately from 0.5 kg/m3 to 100 kg/m3 for the given Δ𝑥 and Δ𝑡.
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Figure 3.10: Backward step: spatial profiles of Favre average (left) and Favre variance (right)
of velocity at time 𝑡 = 0.1 s with mean correction of density (3.118). 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.11: Backward step: spatial profiles of Favre skewness (left) and flatness (right) of
velocity at time 𝑡 = 0.1 s with mean correction of density (3.118). 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.12: Backward step: Favre-averaged PDF (left) and distribution of velocity (right)
at 𝑥 = 0.5505m, 𝑡 = 0.1 s. Stochastic Godunov method, 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.13: Backward step: Favre-averaged PDF (left) and distribution of velocity (right)
at 𝑥 = 0.5505m, 𝑡 = 0.1 s. Stochastic Lax-Friedrichs method, 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.14: Backward step: Favre-averaged PDF (left) and distribution of velocity (right)
at 𝑥 = 0.5505m, 𝑡 = 0.1 s. Stochastic Lax-Wendroff method, 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.15: Backward step: Favre-averaged PDF (left) and distribution of velocity (right)
at 𝑥 = 0.5505m, 𝑡 = 0.1 s. Stochastic GForce method, 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure 3.16: Backward step: PDF of density (left) and conditional expectation of density for
given velocities (right) at 𝑥 = 0.5505m, 𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Convergence. To assess the convergence of the stochastic methods, the domain of cal-
culation at a given time 𝑡 > 0 is divided on three parts where each solution is continuous,
i.e.

𝐷 =

⎧⎪⎨⎪⎩
𝐷1 = {𝑥 ∈ [0m;𝑥𝑐)},
𝐷2 = {𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡]},
𝐷3 = {𝑥 ∈ (𝑥𝑐 + 𝑉0𝑡; 1m]}, 𝑉0 = 1m/s.

(3.119)

The error is defined for each interval of 𝐷 as

𝐸𝑟𝑟𝑜𝑟𝑖 =
1

𝐷𝑖

∫︁
𝐷𝑖

|𝑄𝑛𝑢𝑚 −𝑄𝑟𝑒𝑓 |𝑑𝑥, 𝑖 = 1, 2, 3, (3.120)

where 𝑄𝑛𝑢𝑚 is a numerical solution and 𝑄𝑟𝑒𝑓 is the analytical solution. In the case of statis-
tical errors, calculations are performed for a fixed number of cells: 𝑁𝑥 = 105. The number of
stochastic fields varies from 𝑁𝑟 = 10 to 𝑁𝑟 = 1200 fields (𝑁𝑟 = [10, 100, 500, 900, 1200]).
The calculated points are best-fitted with the function 𝑓(𝑁𝑟) = exp(𝛼)𝑁𝛽

𝑟 . This operation
is repeated at different time steps.

Figures 3.17 to 3.20 show the evolution of the convergence rates 𝛽 and coefficients 𝛼
for the mean density and the Favre moments of the velocity plotted in the region where
the multivalued solution appears. We observe that the convergence rates are noised by the
spatial error, but they still fluctuate around the expected 𝑁−0.5. For stochastic Lax-Wendroff
method the statistical convergence of the Favre flatness of velocity in the given numerical
conditions is not observed. The convergence coefficients fluctuate between -10 and 2 for
different stochastic schemes.
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Figure 3.17: Backward step: time evolution of statistical convergence rates (left) and coef-
ficients (right) for 0.5m ≤ 𝑥 ≤ 0.5m + 𝑉0𝑡, 𝑉0 = 1m/s (stochastic Lax-Friedrichs method).
𝑁𝑥 = 105.

Figure 3.21 illustrates the convergence rates and coefficients for 𝑥 ≤ 0.5m in the interval
where only single-valued solution is defined. The first moments of the density and the velocity
converge. Higher velocity moments are dominated by spatial error and therefore no statistical
convergence can be observed for the chosen spatial discretization. One can explain it also by
numerical diffusion near the point 𝑥 = 0.5m.
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Figure 3.18: Backward step: time evolution of statistical convergence rates (left) and coef-
ficients (right) for 0.5m ≤ 𝑥 ≤ 0.5m + 𝑉0𝑡, 𝑉0 = 1m/s (stochastic Lax-Wendroff method).
𝑁𝑥 = 105.
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Figure 3.19: Backward step: time evolution of statistical convergence rates (left) and coeffi-
cients (right) for 0.5m ≤ 𝑥 ≤ 0.5m+𝑉0𝑡, 𝑉0 = 1m/s (stochastic GForce method). 𝑁𝑥 = 105.

The spatial convergence calculations are performed with a fixed number of stochastic fields
𝑁𝑟 = 107. The number of a grid cells is varied from 20 to 100. We recall that CFL constant
is 0.99. Indeed we failed to observe spatial convergence in a similar test with 𝑐𝑓𝑙 = 0.5. This
latter result can be explained either by the statistical error which dominates on the spatial
error for the chosen 𝑁𝑟 or by significant diffusion of the numerical solution.

The separation of statistical and spatial errors is a complicated problem. In order to
observe the spatial convergence it is necessary to consider a number of stochastic realizations
𝑁𝑟 ≫ 1. The statistical error should be much smaller than spatial: 𝑂( 1

𝑁𝑟
) ≪ 𝑂(Δ𝑥).

Figures 3.17 to 3.19 show statistical errors at 𝑡 = 0.2 s for stochastic Lax-Friedrichs, Lax-
Wendroff and GForce schemes.

We inject 𝑁𝑟 = 107 into the interpolated formula for statistical error, which allows us
to estimate the latter for this large number of realization. From this estimation we deduce
that value 107 is situated on the verge of validity for spatial convergence estimation for
the mean density, Favre-averaged velocity and velocity variance. For higher moments 107

realizations are simply not sufficient. For stochastic Godunov scheme (fig. 3.20), the sepa-
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Figure 3.20: Backward step: time evolution of statistical convergence rates (left) and co-
efficients (right) for 0.5m ≤ 𝑥 ≤ 0.5m + 𝑉0𝑡, 𝑉0 = 1m/s (stochastic Godunov method).
𝑁𝑥 = 105.
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Figure 3.21: Backward step: time evolution of statistical convergence rates (left) and coeffi-
cients (right) for 0 ≤ 𝑥 ≤ 0.5 (stochastic Lax-Friedrichs method). 𝑁𝑥 = 105.

ration of stochastic error from spatial error is even more complicated because the statistical
convergence rate is close to 0.

The spatial convergence in logarithmic scale 𝐴𝑖𝑙𝑜𝑔(𝑁𝑥) + 𝐵𝑖 for 𝑡 = 0.2 s is presented in
table 3.3. Convergence coefficients (𝐴1, 𝐵1) stand for the numerical solution in the interval
𝐷1, (𝐴2, 𝐵2) are the convergence coefficients in the domain 𝐷2 and (𝐴3, 𝐵3) correspond to
𝐷3. In the intervals 𝐷1 and 𝐷2 a

1
2
-order spatial convergence is indeed observed for the mean

density, the Favre-averaged velocity and the Favre variance of velocity (error in Δ𝑥). There
is first order of spatial convergence in the domain 𝐷3 for any proposed stochastic scheme.

As we can note there is no spatial convergence for the stochastic Godunov method. One
can justify it by the dominating influence of the statistical error.

One important point that the Lax-Wendroff method in its classical formulation, which is
a second order-precise for smooth functions, possess only a first order convergence rate when
it is applied to discontinuous functions. The adapted Lax-Wendroff method to stochastic
process gives also in the best case the first order of convergence.

Figures 3.22 and 3.23 show the spatial errors for the first and second moments for the
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Moments 𝐴1 𝐴2 𝐴3 𝐵1 𝐵2 𝐵3

Stochastic Lax-Friedrichs
Mean density -0.56 -0.54 -0.95 -0.74 0.13 1.04
Mean velocity -0.54 -0.49 -0.97 -1.04 -1.29 0.71
Velocity variance -0.53 -0.64 -0.99 -1.33 -2.96 0.35

Stochastic Lax-Wendroff
Mean density -0.54 -0.52 -0.97 -1.17 -0.33 1.12
Mean velocity -0.55 -0.5 -0.98 -1.4 -1.62 0.7
Velocity variance -0.55 -0.51 -0.98 -1.62 -4.01 0.26

Stochastic GForce
Mean density -0.53 -0.51 -0.98 -1.24 -0.35 1.13
Mean velocity -0.53 -0.51 -0.97 -1.47 -1.6 0.66
Velocity variance -0.53 -0.5 -0.98 -1.7 -4.03 0.23

Stochastic Godunov
Mean density - - -0.99 - - 1.18
Mean velocity - - -0.92 - - 0.32
Velocity variance - - -0.84 - - -0.53

Table 3.3: Backward step: spatial convergence of different methods. 𝑁𝑟 = 107. The error on
the interval 𝑖 (as defined in eq. (3.120)) is approximated with 𝐴𝑖𝑙𝑜𝑔(𝑁𝑥)+𝐵𝑖, with 𝑖 = 1, 2, 3.

density and the velocity as a function of 𝑁𝑥, at time 𝑡 = 0.2 s, calculated with the stochastic
GForce method. Its convergence rate is −0.5 in the region of multivalued solution .
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Figure 3.22: Backward step: spatial error for mean density at 𝑡 = 0.2 s calculated by stochas-
tic GForce method. 𝑁𝑟 = 107.
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Figure 3.23: Backward step: spatial error for the mean (left panel) and variance (right panel)
of velocity at 𝑡 = 0.2 s calculated by stochastic GForce method. 𝑁𝑟 = 107.



96
CHAPTER 3. EULERIAN (FIELD) MONTE CARLO METHODS FOR SOLVING THE

FAVRE ONE-TIME ONE-POINT VELOCITY PDF TRANSPORT EQUATION

3.3.2 Scheme non-dissipativity test

In this test we verify that the numerical stochastic schemes are non-dissipative.

PDF

The mean density identically equals to one in time and in space. The PDF satisfies the
following transport equation:

𝜕𝑔

𝜕𝑡
+
𝜕𝑉 ′𝑔

𝜕𝑥
= − 𝜕

𝜕𝑉 ′

(︂
𝜕

𝜕𝑥

(︁
𝑢′2
)︁
𝑔

)︂
, (3.121)

where 𝑢′(𝑡, 𝑥) denotes fluctuating velocity, and 𝑉 ′ stands for the sample space of velocity 𝑢′.
At the initial time the mean velocity is zero: 𝑢(𝑡 = 0, 𝑥) = 𝑢′(𝑡 = 0, 𝑥) = 0. The Favre
statistics coincide with the Reynolds statistics, 𝑢(𝑡, 𝑥) = 𝑢′(𝑡, 𝑥) = 𝑢′′(𝑡, 𝑥). Multiplying the
eq. (3.121) by 𝑉 ′ (𝑉 ′2), and integrating the result over 𝑉 ′ it can be shown that the first and
the second velocity moments satisfy

𝜕𝑢′

𝜕𝑡
+
𝜕𝑢′2

𝜕𝑥
=
𝜕𝑢′2

𝜕𝑥
(3.122)

and
𝜕𝑢′2

𝜕𝑡
+
𝜕𝑢′3

𝜕𝑥
= 0. (3.123)

According to (3.122) the first moment is constant in time

𝜕𝑢′

𝜕𝑡
= 0, (3.124)

𝑢′ ≡ 0. (3.125)

Integrating the eq. (3.123) over space we deduce that the integral in space of the second
moment of velocity is constant:

𝜕𝐼

𝜕𝑡
= 0, 𝐼 =

+∞∫︁
−∞

𝑢′2𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡. (3.126)

PDEs

The PDEs equivalent to the transported PDF (3.121) read

𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢′′

𝜕𝑥
= 0, (3.127)

𝜕𝑟𝑢′′

𝜕𝑡
+
𝜕𝑟𝑢′′2

𝜕𝑥
=
𝑟

𝑟

𝜕𝑟𝑢′′2

𝜕𝑥
. (3.128)

where the mean density 𝑟(𝑡, 𝑥) is equal to one. Multivalued solution of eqs. (3.127) and (3.128)
has to conserve the integral 𝐼 defined in (3.126).
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Numerical solution: test 1

Calculations are performed on the domain 𝐷 = [0m; 10m]. The initial fields of the velocity
are

𝑢′′ =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑥 < 4.75m,

𝜎𝜉 exp
(︁
− (𝑥−𝑥𝑐)2

𝐿2

)︁
, if 4.75m ≤ 𝑥 ≤ 5.25m, 𝜉 = 𝑁(0, 1),

0, if 𝑥 > 5.25m,

(3.129)

𝜉 is a normal Gaussian noise, 𝑥𝑐 = 5m, 𝐿 = 0.1m is a characteristic width of velocity domain
and 𝜎 = 1m/s is a maximum standard deviation. The initial profile of the velocity variance
is presented in fig. 3.24. The initial value of the integral is

𝐼(𝑡 = 0) = 0.1253m3/s2. (3.130)

We check here the convergence of the integral (3.126) calculated from the PDEs. The
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Figure 3.24: Scheme non-dissipativity test: initial spatial profile of velocity variance. 𝑁𝑟 =
104, 𝑁𝑥 = 104.

convergence for velocity moments are investigated in appendix A.5.5.

Spatial profiles. To illustrate spatial profiles of statistics, the computational domain 𝐷 is
discretized with 𝑁𝑥 = 104 points and the number of stochastic fields is set to 𝑁𝑟 = 104. We
suppose that the characteristic time 𝑡𝑐 is defined as

𝑡𝑐 =
𝐿

𝜎
. (3.131)

The evolution of the velocity variance integrated over space is shown in the left panel
of fig. 3.25. The time 𝑡 = 1 s corresponds to 10 characteristics times. Thus, the obtained
results from different stochastic schemes prove that the integral is indeed conserved at least
during ten characteristic times. The deviation of numerical integral from theoretical value
of 𝐼 which is 0.1253m3/s2 is a consequence of diffusion in time. For example, at 10𝑡𝑐, the
value of the integral calculated by stochastic Lax-Friedrichs scheme is 0.1174m3/s2 that is
about 6.3% of error from theoretical value. 𝐼𝑆𝐺𝑜𝑑(𝑡 = 10𝑡𝑐) = 0.094 64m3/s2, that is 24.48%.
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Errors for other methods are 𝐸𝑟𝑟𝑆𝐿−𝑊 (10𝑡𝑐) = 10.7% and 𝐸𝑟𝑟𝑆𝐺𝐹 (10𝑡𝑐) = 13.6%, where the
error is defined as

𝐸𝑟𝑟 =
|𝐼 𝑡ℎ𝑒𝑜𝑟𝑒𝑡 − 𝐼𝑛𝑢𝑚|

𝐼 𝑡ℎ𝑒𝑜𝑟𝑒𝑡
. (3.132)

For the time 𝑡 ≥ 3𝑡𝑐 stochastic Godunov method gives the error two times greater than other
methods. The error for stochastic Lax-Friedrichs method is minimal in comparison with
other approaches.

The right panel of fig. 3.25 shows evolution of spatial profile of velocity variance calculated
with stochastic Lax-Friedrichs method. One can note that the velocity variance is diffused
in space. At 2𝑡𝑐 the non-zero velocity variance is located in (4.5m; 5.5m). The value of the
maximum peak is approximately 0.25m2/s2. At 8𝑡𝑐 the non-zero velocity variance propagated
from 3.7m to 6.7m and its maximum peak is about 0.8m2/s2. In addition, one concludes
that the fluctuations accumulate with time.
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Figure 3.25: Scheme non-dissipativity test: evolution of integral on space of velocity variance
(left) and spatial profile of velocity variance at different time calculated with stochastic Lax-
Friedrichs scheme (right). 𝑁𝑟 = 104, 𝑁𝑥 = 104.

Figure 3.26 illustrates spatial profiles of velocity variance at time 𝑡 = 1 s = 10𝑡𝑐 calculated
with different numerical schemes from which the integrals 𝐼 at this time were calculated. As
it is shown, the velocity variance obtained by stochastic Godunov method is less diffused
in space than other variances and therefore the integral of velocity variance (right panel of
fig. 3.25) is lower compared to other methods.

The same test was also performed with a kinetic scheme taken from [BouchutJin2003]. We
considered first and second order schemes in space and in time. There was no conservation
of the integral (3.126). In fact, when the PDEs (3.127), (3.128) equivalent to the PDF
equation (3.121) are solved with entropy increase condition, we necessarily obtain the energy
dissipation. A fluctuating velocity tends to zero, because when the kinetic scheme treats
jumps, the energy dissipates.

The evolution of spatial profiles of velocity variance calculated with kinetic scheme are
shown in left panel of fig. 3.27. One can note that the velocity variance diffuses slowly in
space and dissipates faster when stochastic profiles. At 2𝑡𝑐 (right panel offig. 3.27) the velocity
variance calculated with kinetic scheme remains close to the velocity variance calculated with
stochastic Lax-Friedrichs scheme. At 4𝑡𝑐 it is two times lower than it is in stochastic schemes
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Figure 3.26: Scheme non-dissipativity test: spatial profile of velocity variance at 10𝑡𝑐. 𝑁𝑟 =
104, 𝑁𝑥 = 104.

(left panel of fig. 3.28) and at 10𝑡𝑐 it finally vanishes compared to the theoretical value (right
panel of fig. 3.28). This test demonstrates that classical scheme which satisfies the entropy
increase condition is not suited to solve the SPDEs if equivalence between the PDF equation
and the SPDEs need to be preserved.
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Figure 3.27: Scheme non-dissipativity test: evolution of velocity variance at different time
calculated with kinetic scheme (left), spatial profile of velocity variance at 2𝑡𝑐 (right). 𝑁𝑟 =
104, 𝑁𝑥 = 104.

In order to understand better the process of the energy dissipation we compare the evolu-
tion of sample space in time for two schemes: stochastic Lax-Friedrichs and kinetic scheme.

Figures 3.29 to 3.31 demonstrate the evolution of three realizations of density and velocity
at 2𝑡𝑐, 4𝑡𝑐 and 6𝑡𝑐 respectively obtained with kinetic scheme. At 2𝑡𝑐 each realization contains
a peak of density at different space point, where the velocity has a large jump. One can
note that sample space of velocity oscillates due the RHS of the velocity transport equation

containing the term 1
𝑟
𝜕𝑟𝑢′′2

𝜕𝑥
. The latter depends on 𝑥 and modifies profiles of velocity at

each point in time and in space. As a consequence, at next time step the velocity modifies
the density and vice versa. The same fluctuating profiles of velocity fields were obtained for
kinetic scheme with 𝑐𝑓𝑙 = 0.5 and for Osher scheme with 𝑐𝑓𝑙 = 0.99.



100
CHAPTER 3. EULERIAN (FIELD) MONTE CARLO METHODS FOR SOLVING THE

FAVRE ONE-TIME ONE-POINT VELOCITY PDF TRANSPORT EQUATION

0 2 4 6 8 10
0

0.05

0.1

0.15

x [m]

V
el

oc
ity

 v
ar

ia
nc

e 
[m

2 /s
2 ]

 

 
SL−F
kin

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

x [m]

V
el

oc
ity

 v
ar

ia
nc

e 
[m

2 /s
2 ]

 

 
SL−F
kin

Figure 3.28: Scheme non-dissipativity test: spatial profile of velocity variance at 4𝑡𝑐 (left)
and at 10𝑡𝑐 (right). 𝑁𝑟 = 104, 𝑁𝑥 = 104.

The same test was conducted with zero RHS in the velocity transport equation. There
were then no oscillations in velocity fields. Thus we can conclude that the nature of oscilla-

tions is related to the term 1
𝑟
𝜕𝑟𝑢′′2

𝜕𝑥
.

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

20

40

60

80

100

120

x [m]

D
en

si
ty

 [k
g/

m
3 ]

 

 
realization 1
realization 2
realization 3

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

−1.5

−1

−0.5

0

0.5

1

x [m]

V
el

oc
ity

 [m
/s

]

 

 
realization 1
realization 2
realization 3

Figure 3.29: Scheme non-dissipativity test: examples of stochastic density (left) and velocity
(right) fields at 2𝑡𝑐 calculated with kinetic scheme. 𝑁𝑟 = 104, 𝑁𝑥 = 104.

At time 4𝑡𝑐 = 0.4 s one can see that peaks of density and points of gradient catastrophe for
corresponding velocities move to the left boundary or to the right boundary accordingly the
sign of velocity. For example, the density peak for 1st realization, located at point 𝑥 = 4.7m,
at 6𝑡𝑐 = 0.6 s, moves to 𝑥 = 4.6m. The velocity at this point is lower than −1m/s.

The absolute values of stochastic velocity fields decrease in time. At time 6𝑡𝑐 the absolute
value of velocity is three times lower that at 2𝑡𝑐 for all the realizations. The propagation
in space of density Dirac delta function is slower than in previous time. The breakdown of
the velocity profile explains the energy dissipation observed in this test. In kinetic scheme
the velocity profiles usually have the same sign in space for each considered realization. Ac-
cordingly the density contains multiple Dirac delta functions corresponding to these velocity
jumps.
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Figure 3.30: Scheme non-dissipativity test: examples of stochastic density (left) and velocity
(right) fields at 4𝑡𝑐 calculated with kinetic scheme. 𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Figure 3.31: Scheme non-dissipativity test: examples of stochastic density (left) and velocity
(right) fields at 6𝑡𝑐 calculated with kinetic scheme. 𝑁𝑟 = 104, 𝑁𝑥 = 104.

Figures 3.32 and 3.33 show the evolution of stochastic density and velocity fields obtained
with stochastic Lax-Friedrichs scheme. The behavior of the scheme is completely different
from that of kinetic scheme. At time 2𝑡𝑐 a zoom in of the velocity profiles clearly oscillate. In
fact, such the profiles consist of multiple jumps between negative, zero and positive values.

At times 4𝑡𝑐 and 6𝑡𝑐 the maximum absolute value of velocity remains the same as for 2𝑡𝑐.
The amplitude of velocity jumps increases with simulation time. The density and velocity
profiles propagate in space faster than in kinetic scheme. In the mean this scheme give the
correct velocity variance while kinetic scheme dissipates the energy which tends finally to
zero and does not properly propagate in space.

Let us consider statistics at 𝑡 = 1 s = 10𝑡𝑐 for studied stochastic schemes. During the
calculations the mean velocity remains equal to zero (fig. 3.34).

Contrariwise, in fig. 3.35, the mean density fluctuates. The largest fluctuations of the
density are observed in the solution obtained with the stochastic Godunov method. One
can note that at the time 1 s the maximum deviation from the theoretical value 1 is about
20%. The right panel of the fig. 3.35 shows a zoom in of the mean density. As we can see,
the mean density calculated with stochastic Lax-Friedrichs, stochastic Lax-Wendroff and
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Figure 3.32: Scheme non-dissipativity test: examples of stochastic density (left) and velocity
(right) fields at 2𝑡𝑐 calculated with stochastic Lax-Friedrichs scheme. 𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Figure 3.33: Scheme non-dissipativity test: examples of stochastic density (left) and velocity
(right) fields at 6𝑡𝑐 calculated with stochastic Lax-Friedrichs scheme. 𝑁𝑟 = 104, 𝑁𝑥 = 104.

stochastic GForce methods is in a good agreement with the theoretical value (the error is
below 5× 10−5).

Figure 3.36 illustrates the density variance. Its values are significant in stochastic Go-
dunov scheme. High density fluctuations have impact on the velocity statistics. That is
why the integral 𝐼 calculated by stochastic Godunov scheme contains the largest error in
comparison with other schemes.

Figure 3.37 shows spatial profiles of skewness and flatness of velocity. We can observe
that these profiles are close for four stochastic schemes despite of some fluctuations of each
method.
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Figure 3.34: Scheme non-dissipativity test: spatial profile of mean velocity at time 𝑡 = 1 s.
𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Figure 3.35: Scheme non-dissipativity test: spatial profiles of mean density at time 𝑡 = 1 s.
𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Figure 3.36: Scheme non-dissipativity test: spatial profile of the variance of density at time
𝑡 = 1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Figure 3.37: Scheme non-dissipativity test: spatial profiles of skewness and flatness of velocity
at time 𝑡 = 1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 104.
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Convergence. We consider the statistical convergence for the integral 𝐼. The number of
cells is fixed to 𝑁𝑥 = 105 and the number of stochastic fields varies from 100 to 1700. As
above, the finite time, where statistical convergence is considered, is 𝑡 = 10𝑡𝑐 = 1 s. The
integral 𝐼 = 0.1253m3/s2 calculated from the initial velocity variance profile (fig. 3.24) is
taken as a reference solution with which other integrals are compared during the time 𝑡.
Figure 3.38 shows the time evolution of the convergence rates and coefficients of the integral
𝐼 in logarithmic scale (see the definition of 𝐼 in (3.126)). In the left panel of fig. 3.38 we
can observe that the convergence rate deteriorates for long calculation time. At the same
time the convergence coefficient decreases, which partially compensates the statistical error.
For example, at time 𝑡 = 0.2 s, the statistical convergence to the integral 𝐼 for the stochastic
Lax-Friedrichs method is 𝑒𝑟𝑟1 = 6.2339𝑁−0.48

𝑟 and at time 𝑡 = 1 s 𝑒𝑟𝑟2 = 1.05𝑁−0.08
𝑟 . If

𝑁𝑟 < 100, then 𝑒𝑟𝑟2 < 𝑒𝑟𝑟1. When 𝑁𝑟 > 3000, then 𝑒𝑟𝑟2 ≈ 5𝑒𝑟𝑟1.
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Figure 3.38: Scheme non-dissipativity test: time evolution of the statistical convergence rates
(left) and coefficients (right) for integral over space of velocity variance. 𝑁𝑥 = 105.
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3.3.3 Statistically homogeneous velocity fluctuations test

In this test, we consider the model PDF eq. (3.16) with all the terms in RHS. We want to
check that the solution still tends to the solution of the statistically homogeneous equation.

PDF

The PDF transport eq. (3.16) is investigated. It is assumed that a turbulent frequency is
constant and constants 𝐶0 and 𝐶1 are following

𝐶0 = 2𝐶1, 𝜔 = 𝑐𝑜𝑛𝑠𝑡. (3.133)

The mean density is supposed to be a constant

𝜌(𝑡, 𝑥) = 1 kg/m3. (3.134)

In this case Favre and Reynolds PDFs coincide. We consider statistically homogeneous case

̃︀𝑔𝑢′(𝑉 ′; 𝑡) = 𝑔𝑢′(𝑉
′; 𝑡) = 𝑔(𝑉 ′; 𝑡). (3.135)

with mean velocity equaled to zero at the initial time.

𝑢′(𝑡 = 0) = 0 (3.136)

The variance of the velocity is

𝑢′2(𝑡 = 0) = 𝜎2
0 = 𝑐𝑜𝑛𝑠𝑡, (3.137)

Equation (3.16) becomes
𝜕𝑔

𝜕𝑡
= 𝐶1𝜔

𝜕𝑉 ′𝑔

𝜕𝑉 ′ +
𝐶0

2
𝜔𝑢′2

𝜕2𝑔

𝜕𝑉 ′2 . (3.138)

The asymptotic solution of the PDF equation (3.138) with conditions (3.136) and (3.137) at
𝑡→ ∞ is a stationary Gaussian function

𝑔(𝑉 ′; 𝑡→ ∞) = 𝑔𝐺(𝑉
′) =

exp(−𝑉 ′2

2𝜎2
0
)√︀

2𝜋𝜎2
0

. (3.139)

It can be easily established because (3.138) is a parabolic equation. This asymptotic solution
does not depend on initial profile of the PDF. It is sufficient that two first moments were 0
and 𝜎2

0.
Multiplying eq. (3.138) by 𝑉 ′ and integrating it over 𝑉 ′, one can deduce the equation for

the first moment of velocity
𝜕𝑢′

𝜕𝑡
= −𝑢′𝐶1𝜔. (3.140)

The equation for the second moment of velocity is obtained from eq. (3.138) which is multi-
plied by 𝑉 ′2 and integrated over 𝑉 ′. It reads

𝜕𝑢′2

𝜕𝑡
= −2𝑢′2𝐶1𝜔 + 𝐶0𝜔𝑢′2 = 0. (3.141)
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It follows from eq. (3.140) and (3.136) that at any time the mean velocity is zero

𝑢′(𝑡) = 0 (3.142)

and
𝑢′2 = 𝜎2

0. (3.143)

The equation for the 𝑛th order velocity moment 𝑢′𝑛(𝑡, 𝑥), obtained by multiplication of
eq. (3.138) by 𝑉 ′𝑛 and integration of that over 𝑉 ′, reads

𝜕𝑢′𝑛

𝜕𝑡
= −𝑛𝑢′𝑛𝐶1𝜔 + 𝑛(𝑛− 1)𝑢′𝑛−2

𝐶0

2
𝜔𝑢′2, 𝑛 ≥ 1. (3.144)

SPDEs

The SPDEs statistically equivalent to the PDF eq. (3.16) are given by eqs. (3.42) and (3.43).
We supplement eqs. (3.42) and (3.43) with the following initial conditions

𝑟0 = 𝑟(𝑡 = 0, 𝑥) = 𝜌0ℎ(𝑥) exp

(︂
−𝜂

2

2

(︀
ℎ(𝑥)2 − 1

)︀)︂
, ℎ(𝑥) > 1, 𝜌0 = 1kg/m3, (3.145)

𝑢′′0(𝑥) = 𝜂𝜎0ℎ(𝑥). (3.146)

where 𝜂 is a standard normally distributed random variable, i.e. the distribution of 𝜂 is given
by

𝑓𝜂 =
exp(−𝜂2

2
)

√
2𝜋

. (3.147)

The function ℎ(𝑥) is strictly greater than 1. Below ℎ(𝑥) is taken as

ℎ(𝑥) = 2 +𝐻
(︁
−𝑥

𝐿

)︁
+
(︁
1− 𝑥

𝐿

)︁
𝐻
(︁𝑥
𝐿

)︁
𝐻
(︁
1− 𝑥

𝐿

)︁
, (3.148)

where 𝐿 > 0 is arbitrary length of interval. Figure 3.39 shows the spatial profile of the
function ℎ(𝑥). Obviously 𝜕ℎ

𝜕𝑥
≤ 0 and multivalued solutions are expected.

For statistically homogeneous case

𝜕𝑟𝑢′′2

𝜕𝑥
= 0. (3.149)

Taking into account (3.149), the explicit solution can be obtained from eqs. (3.42) and (3.43)
and initial conditions (3.145) and (3.146). It reads

𝑢′′(𝑡, 𝑥) = 𝜂𝜎0𝑤(𝑡, 𝑥), (3.150)

where
𝑤(𝑡, 𝑥) = 3𝐻 (3𝜂𝜎0𝑇𝑡 − (𝑥−𝑄𝑡)) + 2𝐻 (𝑥−𝑄𝑡 − (𝐿+ 2𝜂𝜎0𝑇𝑡)) +

𝐻 (𝑥−𝑄𝑡 − 3𝜂𝜎0𝑇𝑡)𝐻 (𝐿+ 2𝜂𝜎0𝑇𝑡 − (𝑥−𝑄𝑡))
3− (𝑥−𝑄𝑡)

1− 𝜂 𝜎0𝑇𝑡
𝐿

, (3.151)
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Figure 3.39: Statistically homogeneous velocity fluctuations test: an example of ℎ(𝑥)

where

𝑇𝑡 =
1− exp (−2𝐶1𝜔𝑡)

2𝐶1𝜔
(3.152)

and

𝑄𝑡 =
√︁
𝐶0𝜔𝜎2

0

𝑡∫︁
0

𝑠∫︁
0

exp (−2𝐶1𝜔(𝑠− 𝑧)) 𝑑𝑊𝑧𝑑𝑠. (3.153)

As it is seen from (3.151) a gradient catastrophe appears if 𝜂 > 0 and

𝜂𝜎0 > 2𝐶1𝜔𝐿. (3.154)

The moment when the gradient catastrophe takes place is given by

𝑡* =
1

2𝐶1𝜔
𝑙𝑛

(︃
1

1− 2𝐶1𝜔𝐿
𝜂𝜎0

)︃
. (3.155)

Using (3.151), we deduce that

𝑇 *
𝑡 =

𝐿

𝜂𝜎0
. (3.156)

Injecting (3.156) in (3.152) we obtain the critical time 𝑡*. The spatial position where the
gradient catastrophe appears is

𝑥 = 𝑄𝑡* + 3𝐿. (3.157)

When the time 𝑡 exceeds 𝑡*, multivalued solutions should be taken into account.
In conclusion, even if the Langevin term is present in the SPDEs (3.42)-(3.43) and initial

conditions (3.145)-(3.146) are regular, velocity discontinuity still appears. The dissipation
term −2𝐶1

2
𝜔𝑢 controls the time when discontinuity occurs and the Brownian term changes

the position where the shocks appear. 𝜂 < 0 corresponds to the rarefication wave.
Using the equivalence between the PDF eq. and the PDEs we obtain

𝑢′𝑛 = 𝑟0𝑢′′𝑛. (3.158)
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The mean stochastic density is one

𝑟(𝑡, 𝑥) = 𝜌(𝑡, 𝑥) = 1 kg/m3. (3.159)

At the initial time it can be directly shown from the definition of 𝑟0 (3.145) that

𝑟0 =
ℎ√
2𝜋

∞∫︁
−∞

exp

(︂
−𝜂

2

2
(ℎ2 − 1)

)︂
exp

(︂
−𝜂

2

2

)︂
𝑑𝜂 =

ℎ√
2𝜋

∞∫︁
−∞

exp

(︂
−𝜂

2

2

)︂
ℎ2𝑑𝜂 = 1. (3.160)

For the 𝑛th moment we deduce that

𝑟0𝑢′′𝑛0 =
1√
2𝜋

∞∫︁
−∞

ℎ(𝑥) exp

(︂
−𝜂

2

2
(ℎ2 − 1)

)︂
𝜂𝑛𝜎𝑛0 (ℎ(𝑥))

𝑛 exp

(︂
−𝜂

2

2

)︂
𝑑𝜂 =

𝜎𝑛0√
2𝜋

∞∫︁
−∞

𝜂𝑛 (ℎ(𝑥))𝑛+1 exp

(︂
−𝜂

2ℎ2

2

)︂
𝑑𝜂 =

𝜎𝑛0√
2𝜋

∞∫︁
−∞

𝜉𝑛 exp

(︂
−𝜉

2

2

)︂
𝑑𝜉. (3.161)

The first moment is

𝑟0𝑢′′0 =
𝜎0√
2𝜋

∞∫︁
−∞

𝜉 exp

(︂
−𝜉

2

2

)︂
𝑑𝜉 = 0. (3.162)

The second is

𝑟0𝑢′′20 =
𝜎2
0√
2𝜋

∞∫︁
−∞

𝜉2 exp

(︂
−𝜉

2

2

)︂
𝑑𝜉 = 𝜎2

0. (3.163)

Equations (3.42) and (3.43) can be written in dimensionless variables 𝑟, 𝑣 = 𝑢′′

𝜎0
, 𝜏 = 𝜔𝑡,

𝜁 = 𝑥
𝑙
, 𝑙 = 𝜎0

𝜔
and 𝐿0 =

𝐿
𝑙
, where 𝑙 is a length scale, 𝜔−1 is a time scale and 𝜎0 is a velocity

scale.
𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑣′′

𝜕𝜁
= 0, (3.164)

𝜕𝑣′′

𝜕𝜏
+ 𝑣′′

𝜕𝑣′′

𝜕𝜁
=

1

𝑟

𝜕𝑟𝑣′′2

𝜕𝜁
− 𝐶1𝑣

′′ +

√︁
𝐶0
̃︁𝑣′′2𝜉. (3.165)

The dimensionless profile of ℎ(𝑥) (3.148) is

ℎ(𝜁) = 2 +𝐻

(︂
− 𝜁

𝐿0

)︂
+

(︂
1− 𝜁

𝐿0

)︂
𝐻

(︂
𝜁

𝐿0

)︂
𝐻

(︂
1− 𝜁

𝐿0

)︂
. (3.166)

The term 1
𝑟
𝜕𝑟𝑣′′2

𝜕𝜁
is left in eq. (3.165) for the numerical algorithm, while it is theoretically

zero.
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Numerical solution

Stochastic numerical schemes are applied to solve eqs. (3.164) and (3.165). The parameters of
simulations are following: 𝐿0 = 0.25, the modeled constants are 𝐶0 = 2𝐶1 = 1. Calculations
are performed on the domain 𝐷 = [−150; 150]. Periodic boundary conditions are used at
both boundary points. The initial profiles of density and velocity are given by eqs. (3.145)
and (3.146) respectively. Numerically we impose that the mean density strictly equals to one,
the Favre-averaged velocity is zero and the Favre velocity variance is one at the initial time.
Other stochastic moments are not strictly equal to their theoretical values. At 𝜏 = 𝜔𝑡 = 10
the influence of boundary conditions are not observed and the density and velocity changes
are present only inside the interval (−40, 40). At 𝜏 = 2 the domain of prolongation on
initial conditions is (−10; 10). The stochastic Lax-Friedrichs scheme diverges from 𝜏 > 7.
Consequently, it is only considered for 𝜏 < 7.

Spatial profiles. Figures 3.40 to 3.42 illustrate spatial profiles of mean density, density
variance, Favre velocity variance, skewness and flatness calculated with 𝑁𝑥 = 3× 104 and
𝑁𝑟 = 4800 at 𝜏 = 𝜔𝑡 = 2. Only small deviations from the initial values are observed for four
stochastic schemes.

The mean density is close to its theoretical value. Stochastic Godunov scheme gives the
largest fluctuations among all the schemes. The maximum error of this method is about
3× 10−3. The stochastic Lax-Friedrichs method is exact. For other schemes the error is
approximately 10−4.

The density variance, which follows a ramp-shaped profile, is the same for three stochastic
schemes: Lax-Friedrichs, Lax-Wendroff and GForce. The ramp-shaped profile of the density
variance can be justified by initial data. Indeed, each realization of the density is positive
and given by (3.145). For 𝜁 < 0 its values are large than for 𝜁 ≥ 0, but strictly less than one
and greater than zero. The mean density is one. As a result, the density variance follows
the profile of ℎ(𝜁). The stochastic Godunov scheme yields a fluctuating profile of the density
variance in the interval (0; 1). Outside of this interval the behavior of the density variance is
identical to profiles calculated by other schemes.

−10 −5 0 5 10

0.997

0.998

0.999

1

1.001

1.002

ζ

M
ea

n 
de

ns
ity

 

 
SGod
SL−F
SL−W
SGF
Exact sol

−10 −5 0 5 10

0.6

0.7

0.8

0.9

1

1.1

1.2

ζ

D
en

si
ty

 v
ar

ia
nc

e

 

 
SGod
SL−F
SL−W
SGF

Figure 3.40: Statistically homogeneous velocity fluctuations test: spatial profiles of mean
density (left) and variance density (right) at 𝜏 = 2. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 =
[−150; 150].
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The mean velocity is not presented here because it is equal to zero as a result of correction
at each time step:

𝑣′′ = 𝑣′′ − ̃︀𝑣′′. (3.167)

The velocity variance (left panel of fig. 3.41) is in good agreement with the theoretical
value 1. The maximum error is approximately five times greater than that for the mean
density in the calculation by stochastic Godunov and 30 times greater for other schemes, but

it remains compatible with the theoretical error which is: 𝑂
(︁

1√
𝑁𝑟

)︁
= 0.0144 𝑂(1). As for

the mean density, the stochastic Godunov method gives the maximum error of 5%.
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Figure 3.41: Statistically homogeneous velocity fluctuations test: spatial profiles of Favre
velocity variance (left) and Favre velocity skewness (right) at 𝜏 = 2. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104

on 𝐷 = [−150; 150].

The error on the velocity skewness is on the same order of magnitude as that of velocity
variance. It fluctuates around the zero. Contrariwise, the velocity flatness is 10% different
from the theoretical value of 3 (fig. 3.42).
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Figure 3.42: Statistically homogeneous velocity fluctuations test: spatial profiles of Favre
velocity flatness at 𝜏 = 2. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

At 𝜏 = 2 the dissipation in kinetic scheme which satisfies the entropy increase condition
is not yet observed (fig. is not presented here), even if the probability to have multivalued
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solution is not zero at this characteristic time for some realizations of velocity. It can be
explained by two causes:

∙ Stochastic term
√︀̃︁𝑣′′2𝜂 alters the values of velocity and therefore forces the velocity

variance to fluctuate around its theoretical value.

∙ According to [LemonsLackman1995]
√︀̃︁𝑣′′2𝜂 can destabilize the stochastic process and

velocity variance can decrease or increase regardless of the selected scheme.
The time which is necessary to see the energy dissipation in kinetic scheme is larger than

in example given in section 3.3.2. Theoretically, even if the velocity variance differs from one,
the PDF for kinetic scheme remains a Gaussian function, if the normalization by velocity
variance for velocity statistics are used, i.e. the 𝑛-th moment of velocity is

𝑟𝑣′′𝑛

𝑟(
√︀̃︁𝑣′′2)𝑛 . (3.168)

The energy dissipation for kinetic scheme is observed after 𝜏 > 8, if the number of fields
is 𝑁𝑟 = 4800 and the number of cells is 𝑁𝑥 = 3× 104. Before this time the velocity variance
fluctuates around its theoretical value of one.

Figures 3.43 and 3.44 show spatial profiles of mean density at different times 𝜏 = [8.5; 9; 9.5; 10],
obtained with different schemes: stochastic Lax-Wendroff, Lax-Friedrichs, Godunov and ki-
netic. One can note that stochastic Lax-Wendroff and GForce approaches give the lowest
error (around 10−4 according to fig. 3.43) in comparison with other schemes. As in previ-
ous tests the mean density fluctuates more in stochastic Godunov scheme, for this test the
error is 1.5× 10−2 (left panel in fig. 3.44). It corresponds to the theoretical error which

is 𝑂
(︁

1√
4800

)︁
= 1.4× 10−2 𝑂(1). The kinetic scheme gives 4× 10−4 error (right panel in

fig. 3.44).
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Figure 3.43: Statistically homogeneous velocity fluctuations test: spatial profiles of mean
density at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

Figures 3.45 and 3.46 illustrate spatial profiles of density variance. In stochastic Lax-
Wendroff and GForce schemes the profile is the same and does not vary in time. It can
be explained by the fact that GForce scheme is a combination of Lax-Wendroff and Lax-
Friedrichs schemes. The stochastic Godunov scheme gives a peak of density variance near
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Figure 3.44: Statistically homogeneous velocity fluctuations test: spatial profiles of mean
density at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

𝜁 = 0 (left fig. 3.45). In the neighborhood of this point the profile fluctuates. The density
variance also fluctuates around 𝜁 = 0 in kinetic scheme (right fig. 3.45) but less significantly
compared to the stochastic Godunov scheme.
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Figure 3.45: Statistically homogeneous velocity fluctuations test: spatial profiles of density
variance at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

The velocity variance is presented in figs. 3.47 and 3.48. In stochastic GForce and Go-
dunov methods it fluctuates around the theoretical value of one at different time. One can
note that it somewhat decreases in kinetic scheme. In fact it is not so obvious to observe the
energy dissipation in kinetic scheme due the presence of the stochastic term. For example,
stochastic Lax-Wendroff scheme yields velocity variance bigger than one at 𝜏 ≥ 8.5. The
maximum error for this scheme is 17.5% at 𝜏 = 10, while for kinetic scheme it is 24.75% at
the same time.

Figures 3.49 to 3.51 show spatial profiles of velocity skewness. It fluctuates around zero
for three stochastic schemes (fig. 3.49 and left panel of fig. 3.50), while it remains negative
for kinetic scheme for 𝜏 ≥ 8.5 (right panel of fig. 3.50). One can also note that the velocity
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Figure 3.46: Statistically homogeneous velocity fluctuations test: spatial profiles of density
variance at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.47: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
variance at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

skewness contains the minimal deviation from the theoretical error at 𝜏 = 10 for kinetic
scheme in comparison with other time step 𝜏 ≥ 8.5. The corrected velocity skewness with
(3.168) for kinetic scheme is presented in fig. 3.51. The correction does not result in a
decreased error value and even increases the error between the theoretical value and calculated
statistics.

The theoretical and numerical velocity flatness are illustrated in figs. 3.52 to 3.54. The
tendency in kinetic scheme is the same that for previous considered moments (right fig. 3.53).
The velocity flatness is lower than the theoretical value of 3 for any 𝜏 ≥ 8.5. The correction
(3.168) improves its value (fig. 3.54). At time 𝜏 = 10 the error for kinetic scheme is approxi-
mately 13% while before the correction it is 40%. Stochastic Lax-Wendroff scheme contains
also 40% of error, while other schemes 20% at 𝜏 = 10.

Figures 3.55 to 3.57 show spatial profiles of velocity hyperskewness. In theory it should
equal zero. One can note that 𝑁𝑟 = 4800 stochastic fields are not sufficient to predict the
theoretical value. The stochastic methods give the error of about 60%. Nevertheless their
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Figure 3.48: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
variance at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.49: Statistically homogeneous velocity fluctuations test: spatial profiles of veloc-
ity skewness at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce
method. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

velocity hyperskewness fluctuate around zero at the considered moments of time. Kinetic
scheme gives negative values for hyperskewness for 𝜏 ≥ 8.5 (right fig. 3.56). The corrected
statistics for this scheme are presented in fig. 3.57. As for skewness it does not improve result.

Finally, we consider hyperflatness for four schemes (figs. 3.58 to 3.60). At time 𝜏 = 10
the maximum error for stochastic GForce and Godunov schemes is approximately 30%, for
other schemes it is 45%. The correction for kinetic scheme gives 60% of error.

In order to compare stochastic and classical approaches let us consider the evolution
of stochastic density and velocity fields in two schemes: stochastic Godunov and kinetic.
Figures 3.61 and 3.62 illustrate the evolution of three realizations of density and velocity at
𝜏 = 0.5. For stochastic scheme velocity fields fluctuate (right panel in fig. 3.61). We observe
that the velocity jumps from one value to another at the neighbor points.

In the case of the scheme satisfying the entropy increase condition there are no jumps
in velocity fields, which remain continuous functions. At this moment there is no gradient
catastrophe. The density oscillates more in stochastic scheme rather than in deterministic
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Figure 3.50: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
skewness at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.51: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
skewness at 𝜏 ≥ 8.5 calculated by kinetic scheme after normalization (3.168). 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

scheme as a result of numerical derivative of velocity. If the velocity is positive, the density
accumulates; if it is negative, the density decrease in the region of varying velocity gradient.

At time 𝜏 = 1 two terms 1
𝑟
𝜕𝑟𝑣′′2

𝜕𝜁
and 𝑣′′ = 𝑣′′ − ̃︀𝑣′′ depending on 𝜁 start influencing the

solution of kinetic scheme (fig. 3.64). 1st and 2nd realizations begin to oscillate in the interval
(0; 3). The region where the stochastic scheme fluctuates (−2; 4) is larger than in the scheme
satisfying the entropy increase condition. In addition the stochastic term which is added to
each realization changes the value of velocity fields. For example, the 3rd velocity realization
in stochastic Godunov scheme is −1 at 𝜁 = −1, 𝜏 = 0.5, while at 𝜁 = −1, 𝜏 = 1 it is −1.2.
The 2nd velocity realization in kinetic scheme changes the sign.

At times 𝜏 = 1.5 and 𝜏 = 2 (figs. 3.65 and 3.66) the behavior of schemes is identical
to that at 𝜏 = 1. Stochastic schemes completely transform the ramp velocity profiles into
fluctuations, while in kinetic scheme the imprint of the initial ramp can still be observed.
That said, solution calculated with the scheme satisfying the entropy increase condition ceases
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Figure 3.52: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
flatness at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.53: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
flatness at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

to be valid once it starts to oscillate.
At time 𝜏 = 2.5 the profiles of velocity in stochastic Godunov scheme takes different values

at each point where the initial solution spread. The density consists of multiple numerical
Dirac delta functions (fig. 3.67). In kinetic scheme the velocity ramp profile for the 3rd
realization moves to the left boundary of computational domain and fluctuates only in the
neighborhood of zero (fig. 3.68). Finally, two schemes will give fluctuating profiles of velocity
at any point in space.

The behavior of classical schemes is unclear when the transported profiles takes differ-
ent values at each interval Δ𝑥 in space. For example, if we consider deterministic Oscher
scheme, the solution diverges for 𝜏 > 5 and statistics tend to infinity. It can be justified by
the deterministic nature of this scheme or also by stochastic term in the velocity transport
equation.

Let us consider some sample space of density and velocity for stochastic schemes at time
𝜏 = 2. In previous tests, velocity and density fields have large jumps between two neighborly
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Figure 3.54: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
flatness at 𝜏 ≥ 8.5 calculated by kinetic scheme after normalization (3.168). 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.55: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperskewness at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce
method. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

numerical intervals Δ𝑥. This is especially well demonstrated by the samples calculated with
the stochastic Lax-Friedrichs method. For example, figs. 3.69 and 3.70 illustrate respectively
the density and the velocity fields for the same realization. The velocity is negative in the
computational domain 𝐷. Consequently, the initial profile of corresponding ramp moves to
the left boundary of 𝐷. If we zoom the profiles in the interval (−0.3, 0.3), we observe the
jumps of density and velocity at each point in space. One can also note that the interval
(−5;−3) contains the largest jumps of density and velocity. For instance, the density varies
from 0.05 to 0.5, while the velocity changes from −1.21 to −0.3. Analysis of different real-
izations of density and velocity for other schemes allows concluding that profiles calculated
with stochastic Lax-Friedrichs method contain more frequently large jumps of density and
velocity than other schemes.

Let us consider the numerical weighted PDF. Its profile depends on the number of re-
alizations and velocity regions in which we search the distribution. Figure 3.71 compares
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Figure 3.56: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperskewness at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 =
4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.57: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperskewness at 𝜏 ≥ 8.5 calculated by kinetic scheme after normalization (3.168). 𝑁𝑟 =
4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].

analytical profile and numerical profile of the PDF at 𝜁 = 0.005 at different time calculated
with stochastic Godunov method. We search the velocity in the interval [−4.5; 4.5], which is
divided into 9 uniformly distributed bins. One can conclude that the numerical PDF stays
close to the theoretical normal Gaussian PDF independently on the considered time. Ob-
viously increasing the number of bins decreases the maximal peak of the numerical PDF.

Figure 3.72 illustrates the conditional expectation of density for given velocities at 𝜁 =
0.005 and at different time moments. One can note that its profiles vary in time, but the
maximal peak does not exceed the value 1.35.
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Figure 3.58: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperflatness at 𝜏 ≥ 8.5. Left: stochastic Lax-Wendroff method; right: stochastic GForce
method. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.59: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperflatness at 𝜏 ≥ 8.5. Left: stochastic Godunov method; right: kinetic scheme. 𝑁𝑟 =
4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.60: Statistically homogeneous velocity fluctuations test: spatial profiles of velocity
hyperflatness at 𝜏 ≥ 8.5 calculated by kinetic scheme after normalization (3.168). 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.61: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 0.5 calculated with stochastic Godunov scheme.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.62: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 0.5 calculated with kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.63: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 1 calculated with stochastic Godunov scheme.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.64: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 1 calculated with kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.65: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 1.5 calculated with stochastic Godunov scheme.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.66: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 1.5 calculated with kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.67: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 2.5 calculated with stochastic Godunov scheme.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.68: Statistically homogeneous velocity fluctuations test: examples of stochastic
density (left) and velocity (right) fields at 𝜏 = 2.5 calculated with kinetic scheme. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.69: Statistically homogeneous velocity fluctuations test: spatial profile of one re-
alization of density (left) and its zoom (right) at 𝜏 = 2; stochastic Lax-Friedrichs method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.70: Statistically homogeneous velocity fluctuations test: spatial profile of one re-
alization of velocity (left) and its zoom (right) at 𝜏 = 2; stochastic Lax-Friedrichs method.
𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.71: Statistically homogeneous velocity fluctuations test: Favre PDF of velocity at
time 𝜏 = 2 (left) and 𝜏 = 8 (right), 𝜁 = 0.005; stochastic Godunov method. 𝑁𝑟 = 4800,
𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Figure 3.72: Statistically homogeneous velocity fluctuations test: conditional expectations
of density for given velocities at time 𝜏 = 2 (left) and 𝜏 = 8 (right), 𝜁 = 0.005; stochastic
Godunov method. 𝑁𝑟 = 4800, 𝑁𝑥 = 3× 104 on 𝐷 = [−150; 150].
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Convergence. In order to check the statistical convergence the number of cells is fixed to
𝑁𝑥 = 105 and the number of stochastic fields varies from 𝑁𝑟 = 72 to 480. The reference
solution is given by the PDF solution (3.139) which is a Gaussian function: the Favre-
averaged velocity is zero, the Favre velocity variance, skewness and flatness are respectively
one, zero and three. In this test the stochastic Lax-Friedrichs scheme does not diverge from
theoretical values for 𝜏 < 2. Therefore we again consider all the four schemes.

The time evolution of statistical convergence rate and coefficient for different moments
and schemes are shown in figs. 3.73 to 3.76 . The Favre velocity skewness does not converge
to its theoretical value in any of four schemes. It can be seen from the convergence coefficient
for the third velocity moment that the coefficient takes a very small value and is about 0.0067.
Such the behavior can be explained by the fact that at the initial time this moment was not
zero and the time that it is necessary for this moment to tend to its theoretical value is
longer than the considered time 𝜔𝑡 = 2. Other statistical convergence rates fluctuate around
their theoretical value −0.5. The mean density is equal to one in the case of the stochastic
Lax-Friedrichs method, i.e. this scheme is exact for the mean density, because this scheme
is linear.
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Figure 3.73: Statistically homogeneous velocity fluctuations test: time evolution of statistical
convergence rate (left) and coefficient (right) of stochastic Godunov scheme. 𝑁𝑥 = 105.
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Figure 3.74: Statistically homogeneous velocity fluctuations test: time evolution of statistical
convergence rate (left) and coefficient (right) of stochastic Lax-Wendroff scheme. 𝑁𝑥 = 105.
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Figure 3.75: Statistically homogeneous velocity fluctuations test: time evolution of statistical
convergence rate (left) and coefficient (right) of stochastic Lax-Friedrichs scheme. 𝑁𝑥 = 105.
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Figure 3.76: Statistically homogeneous velocity fluctuations test: time evolution of statistical
convergence rate (left) and coefficient (right) of stochastic GForce scheme. 𝑁𝑥 = 105.
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3.3.4 Model PDF equation with non-zero RHS

PDF

We consider the PDF transport eq. (3.16). At the initial time the density is set to one and
considered to be homogeneous in time and in space: 𝜌(𝑡, 𝑥) = 1 kg/m3. The mean velocity is
assumed equal to zero. 𝑉 = 𝑉 ′ = 𝑉 ′′ is a sample space of velocity 𝑢(𝑡, 𝑥) = 𝑢′(𝑡, 𝑥) = 𝑢′′(𝑡, 𝑥).

At the initial time the velocity variance is

̃︀𝑢2(𝑥) = ̃︁𝑢′2(𝑥) = 𝜎2max

(︂
exp

(︂
−𝑥2

𝐿2

)︂
, 0.01

)︂
, (3.169)

where 𝐿 = 0.1m is a width of Gaussian velocity profile and 𝜎 = 1m/s is a maximum standard
deviation. The turbulent frequency satisfies the equation

𝑑𝜔

𝑑𝑡
= −𝐶𝜔𝜔2, 𝜔(𝑡 = 0) = 𝜔0 = 1Hz. (3.170)

We suppose that it is homogeneous in space. Modeled constants are set to 𝐶𝜔 = 0.8, 𝐶1 = 3.6
and 𝐶0 =

𝐶1

2
− 1. Analytical solution of the eq. (3.170) with imposed initial condition is

𝜔(𝑡) =
1

𝜔−1
0 + 𝐶𝜔𝑡

. (3.171)

Turbulent energy 𝑘 is calculated from fluctuations of velocity and turbulent dissipation is
defined as

𝜀 = 𝜔𝑘 = 𝜔̃︁𝑢′′2 = 𝜔𝑢′2. (3.172)

One can show that when the time tends to infinity, the transfer coefficient of the third moment
of velocity 𝑢′′3 can be written as

𝜈𝑢′3 = − 𝑢′3𝜔

𝑢′2 𝜕𝑢
′2

𝜕𝑥

. (3.173)

Detailed proof of the statement (3.173) is given in [EmakoLetizia2014].

SPDEs

The SPDEs which are statistically equivalent to the PDF from eq. (3.16) read eqs. (3.42)
and (3.43) The velocity variance is given by (A.103). The turbulent dissipation is calculated
as

𝜀 = 𝜔̃︁𝑢′′2. (3.174)

Numerical solution

The purpose of this test is to check the ability of the numerical stochastic schemes to predict
correctly statistics and a transfer coefficient of the third velocity moment. As we can see,
the eq. (3.43) contains a stochastic term 𝑟

√
𝐶0𝜀𝜉 and as it was noted before it can change a

Favre-averaged velocity. The secondary objective of this test is to check a correction method
of the Favre-averaged fluctuating velocity:

𝑢′′ = 𝑢′′ − ̃︀𝑢′′. (3.175)
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The solution obtained via the numerical resolution of eq. (3.16) is taken as a reference solu-
tion with which statistics from the SPDEs (3.42), (3.43) and (A.103) are compared. The space
discretization parameters for the PDF transport equation are taken from appendix A.5.5.

We observe that the stochastic Lax-Friedrichs method diverges at 𝑡 = 1 s, whereas other
numerical schemes remain very close to the PDF solution. As a consequence, the stochastic
Lax-Friedrichs scheme is not suited to solve the SPDEs when the turbulent frequency varies
in time. At the same time, in the case when the turbulent frequency is zero, this method
yields the lowest density fluctuations and recovers solution.

Spatial profiles. In order to illustrate spatial profiles of statistics calculated by the SPDEs,
the number of cells is set to 612 and the number of stochastic fields is imposed to be 2000.
The computational domain is 𝐷 = [−6m; 6m].

Figure 3.77 shows a spatial profile of the transfer coefficient 𝜈𝑢′3 calculated with the PDF
solution at different moments in time. As stochastic statistics fluctuate significantly, the
calculation of 𝜈𝑢′3 cannot be direct and requires the use of some filter to smooth numerical
solutions at the initial time and then the application of a space derivative of the second
velocity moment.
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Figure 3.77: Model PDF eq. with non-zero RHS: transfer coefficient calculated with PDF

Figures 3.78 and 3.79 represent the value of third moment transfer coefficient 𝜈𝑢′3 defined

in eq. (3.173). The values of 𝑢′2 = ̃︁𝑢′′2 and 𝑢′3 = ̃︁𝑢′′3 are calculated using different stochastic

methods. The quantity 𝜕̃︁𝑢′′2/𝜕𝑥 is derived from ̃︁𝑢′′2 via 2nd order Savitzky-Golay filter
[SavitzkyGolay1964] of window 𝑥 = 1.2m.

One concludes that the transfer coefficient calculated with stochastic schemes follows
the same behavior that it obtained from deterministic equation, except the neighborhood
of 𝑥 = 0m. This is a particular point where the derivative of velocity variance is equal to
zero and where the velocity skewness is also zero in deterministic case, while for stochastic
schemes these moments fluctuate significantly for given number of fields 𝑁𝑟 = 2000 (right
panels of figs. 3.82 and 3.83).

Figures 3.80-3.84 show different spatial profiles of density and velocity statistics at time
3 s obtained without and with Favre-averaged velocity correction. The same sequence of
Gaussian noise is used in two tests: with mean correction and without it. This allows precisely
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Figure 3.78: Comparison of transfer coefficient calculated using PDF (black line) and stochas-
tic methods (colored lines). Left: 𝑡 = 1 s, right: 𝑡 = 2 s. 𝑁𝑟 = 2000, 𝑁𝑥 = 612.
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Figure 3.79: Comparison of transfer coefficient calculated using PDF (black line) and stochas-
tic methods (colored lines) for 𝑡 = 4 s. 𝑁𝑟 = 2000, 𝑁𝑥 = 612.

evaluating the influence of the mean velocity correction. All the profiles are compared with
the PDF solution.

Figure 3.80 shows spatial profiles of the mean density. The Favre-averaged velocity cor-
rection results in drastically decreasing density fluctuations for three numerical stochastic
schemes: Lax-Wendroff, GForce and Godunov. Without the Favre-averaged velocity correc-
tion the stochastic For example Lax-Wendroff scheme gives about 20% of density fluctuations
(left panel of fig. 3.80), while with velocity correction the density fluctuations for the same
scheme are only about 2% (right panel of fig. 3.80).

Figure 3.81 illustrates the Favre-averaged velocity when no correction is used. For all
methods the Favre-averaged velocity is different from zero. As a consequence, Favre velocity
statistics contain more noise than the same statistics with mean velocity correction (figs. 3.82
to 3.84). It should be noted that even if the Favre-averaged velocity correction is not used,
the calculated statistics approximate exact solution and do not diverge.
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Figure 3.80: Model PDF eq. with non-zero RHS: spatial profile of mean density at time
3 s; left: without mean velocity correction, right: with mean velocity correction. 𝑁𝑟 = 2000,
𝑁𝑥 = 612.
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Figure 3.81: Model PDF eq. with non-zero RHS: spatial profile of Favre-averaged velocity
at time 3 s; left: without mean velocity correction, right: with mean velocity correction.
𝑁𝑟 = 2000, 𝑁𝑥 = 612.
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Figure 3.82: Model PDF eq. with non-zero RHS: spatial profile of Favre velocity variance
at time 3 s; left: without mean velocity correction, right: with mean velocity correction.
𝑁𝑟 = 2000, 𝑁𝑥 = 612.
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Figure 3.83: Model PDF eq. with non-zero RHS: spatial profile of Favre velocity skewness
at time 3 s; left: without mean velocity correction, right: with mean velocity correction.
𝑁𝑟 = 2000, 𝑁𝑥 = 612.
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Figure 3.84: Model PDF eq. with non-zero RHS: spatial profile of Favre velocity flatness
at time 3 s; left: without mean velocity correction, right: with mean velocity correction.
𝑁𝑟 = 2000, 𝑁𝑥 = 612.
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Convergence. Let us consider a spatial convergence at time 0.2 s when a correction of
fluctuating velocity is applied to the stochastic process. The number of realizations is fixed
to 𝑁𝑟 = 106 and the number of grid cells is varied from 𝑁𝑥 = 40 to 𝑁𝑥 = 100. The numerical
domain of calculation is [−1m; 1m]. The solution obtained from numerical resolution of the
PDF is taken as a reference solution.

Spatial convergence of stochastic schemes for the mean density and first four moments of
velocity are shown in figs. 3.85 and 3.86. Due to the applied correction, the Favre average of
the velocity is identically zero. The rate of spatial convergence is very close to the theoretical
value, and it is about −1 for all the considered moments. Statistics calculated from the PDF
are continuous functions and therefore one can suppose that the stochastic Lax-Wendroff
method should weakly converge as 𝑁−2

𝑥 . However such the rate has been never observed in
practice.
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Figure 3.85: Model PDF eq. with non-zero RHS: spatial convergence of stochastic GForce
(left) and stochastic Lax-Wendroff (right). 𝑁𝑟 = 106.
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Figure 3.86: Model PDF eq. with non-zero RHS: spatial convergence of stochastic Godunov
method. 𝑁𝑟 = 106.

The determination of statistical error is complex in this test, because the solution of the

SPDEs depends on statistics of ̃︁𝑢′′2 which is used in resolution of eq. (3.43). If the Favre
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velocity variance is heavily noised, after some time the solution of the SPDEs diverges. For
example, is one takes 𝑁𝑟 = 8, the solution existence time is about 𝑡 = 0.02 s. If the number
of fields 𝑁𝑟 is increased, the time of existence of solution also increases. Consequently, the
observation of statistical error is limited in our case by the available numerical resources.
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3.4 Conclusions

The quasi-linear hyperbolic SPDEs which are statistically equivalent to the transport equa-
tion for the velocity PDF (or for the joint velocity-scalars PDF) are studied. It is shown that
in order to preserve the equivalence between the SPDEs and the PDF transport equation,
the multivalued solutions of the SPDEs should be taken into account. The entropy solutions
of the SPDEs are dissipative and single-valued. They are not equivalent to the transported
PDF solutions. It is demonstrated on several tests (see figs. 3.2 and 3.28).

The new stochastic method, recently proposed by O. Soulard, which capture the multi-
valued solutions is applied to solve the SPDEs in one-dimensional case. It is generalized to
the resolution of the SPDEs in the three-dimensional case (see appendix A.3, appendix A.4).

The stochastic Godunov, Lax-Friedrichs, Lax-Wendroff and GForce are used to solve the
SPDEs. The results of the numerical simulation are compared with the reference solutions,
which are found from direct numerical solution of the PDF equation (finite-volume method)
or which are analytical. In general, there is good agreement between the present stochastic
simulations and the reference solutions. It is shown that the stochastic Godunov, Lax-
Wendroff and GForce schemes give approximately the same results, while the stochastic
Lax-Friedrichs scheme is less accurate for some tests and can diverge (see section 3.3.3 and
section 3.3.4).

The accuracy of the EMC solver is quantified through a detailed study of numerical errors.
It is found that the statistical error depends on the time where singularities in the derivatives
of solutions develop. Before this time the statistical convergence rates are −0.5 (see fig. A.22)
for the mean stochastic density, the Favre-averaged velocity and velocity variance. After the
occurrence of the singularities the statistical error is scales as 𝑁−0.3

𝑟 (see, e.g., fig. 3.20). The
Favre velocity skewness and flatness converge statistically slower than velocity variance. The
greater the moment, the more stochastic fields are required to observe the convergence. It is
observed that the spatial error of the stochastic schemes depends on the smoothness of the
solutions. If the mean density and the velocity moments are smooth functions, the spatial
order of convergence scales as Δ𝑥, otherwise Δ𝑥0.5.

Overall, the present results give a satisfactory indication on the adequacy of the new
stochastic method. However, more validation is necessary before its further application for
numerical simulations of turbulent combustion.
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3.5 Perspectives

Further research for the new stochastic method could be aimed at the formulation and val-
idation of second order spatial schemes. Indeed, the Lax-Wendroff method applied to the
PDF transport equation is a second-order accurate both in both space and time for problems
having smooth solutions. From the numerical viewpoint, a first order spatial convergence
of the stochastic Lax-Wendroff method with respect to Δ𝑥 is observed. At the moment, we
have undertaken a currently unsuccessful attempt of constructing such scheme using limiters.

An optimal way of correcting the mean density has to be investigated. Indeed the simple

correction 𝑟*𝑛𝑗 = 𝜌𝑛𝑗
𝑟*𝑛𝑗
𝑟𝑛𝑗

has undesirable secondary effect of influencing higher Favre velocity

moments. The decorrelation between the Wiener noise and the stochastic fields (see, e.g.,
eq. (3.115)) should be used to improve the velocity statistics.

Finally, the development of a hybrid algorithm for the joint velocity-scalars PDF equation
should be investigated. This method is a combination of a finite-volume scheme which is used
to solve the RANS equations and the EMC method to solve the joint velocity-scalars PDF
equation. The motivation is to reduce the bias and the statistical error and to have an
algorithm which is more efficient than stand-alone method.
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Standard models of turbulent
combustion
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Chapter 4

Flamelet tabulated chemistry (FTC)
model

During his PhD work J. Savre implemented FTC models in CEDRE for premixed and
non-premixed flames. He validated these models on two configurations. The first validation
test was the turbulent premixed flame of Nandula [NandulaPitz1996] and the second was the
turbulent premixed flame of prediction and control of combustion instabilities in tubular and
annular gas turbine combustion systems (PRECCINSTA) [MeierWeigand2007].

The aim of this work is to revise existing FTC models in CEDRE and validate them
on different representative configurations of turbulent flames. The development effort of
restoring of the described in this section FTC models from an old CEDRE version into the
current one, as well as some numerical corrections for a 𝛽-PDF integration are parts of the
present work.

4.1 Original implementation of FTC beta-PDF model

in CEDRE

The details of FTC 𝛽-PDF models in CEDRE can be found in [Savre2010]. Let us recall
here only the key moments.

4.1.1 Modeling of Favre-averaged progress variable

Assuming that all molecular diffusion coefficients for species are equal

𝐷𝑘 = 𝐷, 𝑘 = 1, .., 𝑁𝑠𝑝 (4.1)

and that all turbulent diffusion coefficient for species are also equal

𝐷𝑡
𝑘 = 𝐷𝑡, (4.2)

the Favre-averaged progress variable ̃︀𝐶 is calculated from an algebraic equation, e.g.

̃︀𝐶 =
̃︀𝑌CO + ̃︀𝑌CO2̃︀𝑌 𝑒𝑞
CO + ̃︀𝑌 𝑒𝑞

CO2

, (4.3)
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where ̃︀𝑌 𝑒𝑞
CO and ̃︀𝑌 𝑒𝑞

CO2
are equilibrium values of 𝑌CO and 𝑌CO2

. Using the linear interpolation,
one can obtain that ̃︀𝑌 𝑒𝑞

CO = 𝑌 𝑒𝑞
CO(

̃︀𝑍), ̃︀𝑌 𝑒𝑞
CO2

= 𝑌 𝑒𝑞
CO2

( ̃︀𝑍). (4.4)

4.1.2 Modeling of Favre variance of progress variable

Transport equation

The second moment of the progress variable ̃︂𝐶 ′′2 is found from the transport equation

𝜕

𝜕𝑡

(︁
𝜌̃︂𝐶 ′′2

)︁
+

𝜕

𝜕𝑥𝑗

(︁
𝜌̃︀𝑢𝑗̃︂𝐶 ′′2

)︁
=

𝜕

𝜕𝑥𝑗

(︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗

(︁̃︂𝐶 ′′2
)︁)︂

+ 2𝜌𝐷𝑡|∇ ̃︀𝐶|2 − 2𝜌̃︀𝑠𝜒𝑐 + 2𝑆𝑐,

(4.5)
where 𝐷 and 𝐷𝑡 are molecular and turbulent diffusion coefficients, respectively. They are
taken the same that for species. 2𝜌̃︀𝑠𝜒𝑐 is a dissipation term and 𝑆𝑐 is a source.

CEDRE provides many options for modeling dissipation and source terms. The source
𝑆𝑐 can be calculated as shown in table 4.1.

𝑆𝑐

1 𝜌
(︁̃︂𝐶�̇�𝑐 − ̃︀𝐶 ̃̇︀𝜔𝑐)︁

2 𝜌(0.75− ̃︀𝐶)̃̇︀𝜔𝑐𝑠0.25
3 0.3(𝑐𝑚 − ̃︀𝐶)𝜌0𝑆𝐿Ξ𝑃𝑒𝑡|∇ ̃︀𝐶|𝑠0.25
4 0.3(0.75− ̃︀𝐶)𝜌0𝑆𝐿Ξ𝑃𝑒𝑡|∇ ̃︀𝐶|𝑠0.25
5 0.5𝜌(0.75− ̃︀𝐶)̃̇︀𝜔𝑐𝑠0.25
6 1.5(0.75− ̃︀𝐶)𝜌0𝑆𝐿|∇ ̃︀𝐶|𝑠0.25
7 0.3(𝑐𝑚 − ̃︀𝐶)𝜌0𝑆𝐿Ξ𝑍𝑖𝑚|∇ ̃︀𝐶|𝑠0.25
8 0.3(0.75− ̃︀𝐶)𝜌0𝑆𝐿Ξ𝑍𝑖𝑚|∇ ̃︀𝐶|𝑠0.25
9 3(0.75− ̃︀𝐶)𝜌0𝑆𝐿|∇ ̃︀𝐶|𝑠0.25

Table 4.1: Source 𝑆𝑐 in the transport equation of the Favre variance of progress variable ̃︂𝐶 ′′2

In table 4.1 𝜌0 denotes the laminar flame density, 𝑆𝐿 is the laminar flame speed, �̇�𝑐
is a chemical production rate of the progress variable and Ξ is wrinkling factor: Ξ𝑃𝑒𝑡 is
proposed by [Peters1999] for the RANS and by [Pitsch2005] for LES; Ξ𝑍𝑖𝑚 is proposed by
[KarpovLipatnikov1994] for two approaches. The value 𝑐𝑚 is defined as

𝑐𝑚 =
̃︂𝐶�̇�𝑐̃̇︀𝜔𝑐 (4.6)

and 𝑠 is

𝑠 =
̃︂𝐶 ′′2̃︀𝐶(1− ̃︀𝐶) . (4.7)

The available options for modeling of the dissipation term 2𝜌̃︀𝑠𝜒𝑐 are given in table 4.2.
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2𝜌̃︁𝑠𝜒𝑐

10 2𝑐𝑑𝜌𝜔̃︂𝐶 ′′2

20 2𝑐𝑑𝜌𝜔𝛾
𝐼𝑇𝑁𝐹𝑆̃︂𝐶 ′′2

30 𝑐𝑑(2𝑐𝑚 − 1)𝜌0𝑆𝐿Ξ
𝑃𝑒𝑡

√︁
|∇ ̃︀𝐶|2𝑠

40 𝑐𝑑(1.5− 1)𝜌0𝑆𝐿Ξ
𝑃𝑒𝑡

√︁
|∇ ̃︀𝐶|2𝑠

50 2𝑐𝑑𝜌𝜔 ̃︀𝐶(1− ̃︀𝐶)
60 5𝑐𝑑(2𝑐𝑚 − 1)𝜌0𝑆𝐿

√︁
|∇ ̃︀𝐶|2𝑠

70 𝑐𝑑(2𝑐𝑚 − 1)𝜌0𝑆𝐿Ξ
𝑍𝑖𝑚

√︁
|∇ ̃︀𝐶|2𝑠

80 𝑐𝑑(1.5− 1)𝜌0𝑆𝐿Ξ
𝑍𝑖𝑚

√︁
|∇ ̃︀𝐶|2𝑠

90 10𝑐𝑑(2𝑐𝑚 − 1)𝜌0𝑆𝐿

√︁
|∇ ̃︀𝐶|2𝑠

Table 4.2: Dissipation term 2𝜌̃︁𝑠𝜒𝑐 in the transport equation of the Favre variance of progress

variable ̃︂𝐶 ′′2

In table 4.2 𝜔 is a turbulent frequency, 𝛾𝐼𝑇𝑁𝐹𝑆 is an ITNFS function proposed by [Men-
eveauPoinsot1991] in order to take into account the interaction between chemistry and tur-
bulence. The constant 𝑐𝑑 in the term of production of the mixture fraction variance is set to
1.

Algebraic expression

Instead of solving the transport equation (4.5) the Favre progress variable variance can be
directly calculated from algebraic expression (table 4.3).

̃︂𝐶 ′′2

10 𝑐𝑑

(︁
𝜇𝑡

𝑆𝑐𝑡𝜌𝜔
|∇ ̃︀𝐶|2 + 𝑆𝑐

𝜌𝜔

)︁
20 𝑐𝑑𝛾

𝐼𝑇𝑁𝐹𝑆
(︁
𝜇𝑡
𝜌𝜔
|∇ ̃︀𝐶|2 + 𝑆𝑐

𝜌𝜔

)︁
30 2𝑐𝑑(2𝑐𝑚 − 1) ̃︀𝐶(1− ̃︀𝐶) 1

𝜌𝑆𝐿Ξ𝑃𝑒𝑡|∇ ̃︀𝐶|

(︁
𝜇𝑡
𝑆𝑐𝑡

|∇ ̃︀𝐶|2 + 𝑆𝑐

)︁
50 2𝑐𝑑(1.5− 1) ̃︀𝐶(1− ̃︀𝐶) 1

𝜌0𝑆𝐿Ξ𝑃𝑒𝑡|∇ ̃︀𝐶|

(︁
𝜇𝑡
𝑆𝑐𝑡

|∇ ̃︀𝐶|2 + 𝑆𝑐

)︁
70 2𝑐𝑑(2𝑐𝑚 − 1) ̃︀𝐶(1− ̃︀𝐶) 1

𝜌0𝑆𝐿Ξ𝑍𝑖𝑚|∇ ̃︀𝐶|

(︁
𝜇𝑡
𝑆𝑐𝑡

|∇ ̃︀𝐶|2 + 𝑆𝑐

)︁
80 2𝑐𝑑(1.5− 1) ̃︀𝐶(1− ̃︀𝐶) 1

𝜌0𝑆𝐿Ξ𝑍𝑖𝑚|∇ ̃︀𝐶|

(︁
𝜇𝑡
𝑆𝑐𝑡

|∇ ̃︀𝐶|2 + 𝑆𝑐

)︁
Table 4.3: Algebraic expressions for Favre progress variable variance



142 CHAPTER 4. FLAMELET TABULATED CHEMISTRY (FTC) MODEL

4.1.3 Modeling of Favre-averaged mixture fraction

In order to ensure the conservation of mass the first moment of the mixture fraction satisfies
the transport equation

𝜕

𝜕𝑡

(︁
𝜌 ̃︀𝑍)︁+ 𝜕

𝜕𝑥𝑗

(︁
𝜌̃︀𝑢𝑗 ̃︀𝑍)︁ =

𝜕

𝜕𝑥𝑗

(︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗

(︁ ̃︀𝑍)︁)︂ . (4.8)

4.1.4 Modeling of Favre variance of mixture fraction

Transport equation

The variance of the mixture fraction ̃︂𝑍 ′′2 is found from the transport equation

𝜕

𝜕𝑡

(︁
𝜌̃︂𝑍 ′′2

)︁
+

𝜕

𝜕𝑥𝑗

(︁
𝜌̃︀𝑢𝑗̃︂𝑍 ′′2

)︁
=

𝜕

𝜕𝑥𝑗

(︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗

(︁̃︂𝑍 ′′2
)︁)︂

+2𝜌𝐷𝑡|∇ ̃︀𝑍|2−2𝜌𝑐𝑑
̃︂𝑍 ′′2

𝜏𝑡
, (4.9)

where 𝜏𝑡 is a characteristic time of the turbulence-chemistry interaction.

Algebraic expression

To avoid solving the transport equation, the mixture fraction variance is calculated from an
algebraic expression ̃︂𝑍 ′′2 =

𝜇𝑡
𝑆𝑐𝑡𝜌𝜔

|∇ ̃︀𝑍|2. (4.10)

4.1.5 Gradient of Favre-averaged progress variable

Using the definition (4.3) for the Favre-averaged progress variable and assuming that ̃︀𝑍 =
𝑐𝑜𝑛𝑠𝑡, the gradient is

∇ ̃︀𝐶 =
∇̃︀𝑌CO +∇̃︀𝑌𝐶𝑂2̃︀𝑌 𝑒𝑞

CO + ̃︀𝑌 𝑒𝑞
CO2

. (4.11)

The formula (4.11) is exact for premixed flames.

4.1.6 Coupling between tabulated chemistry and CEDRE

In CEDRE only the major species are transported, whereas other species are found from the
table, which is constructed using [CANTERA] solver. The table contains the detailed chem-
ical sources, mass fractions, etc. The access to the table is done with two entry parameters:
mixture fraction 𝑍 and progress variable 𝐶. The chemical sources for the transported species
in CEDRE are interpolated from the table. In order to preserve the sum of chemical sources,
the source of nitrogen is adjusted in order to satisfy

�̇�
𝐶𝐸𝐷𝑅𝐸

𝑁2
= −

𝑁𝑠𝑝−1∑︁
𝑘=1

�̇�
𝑡𝑎𝑏𝑙𝑒

𝑘 , (4.12)

where 𝑁𝑠𝑝 is a number of transported species in CEDRE.
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4.1.7 Presumed beta-PDF

The presumed 𝛽-PDF ̃︀𝑓𝛽(𝑍,𝐶; 𝑡,𝑥), expressing at each spatial location in terms of the mean

values of ̃︀𝑍(𝑡,𝑥) and ̃︀𝐶(𝑡,𝑥) and also their variances ̃︂𝑍 ′′2(𝑡,𝑥) and ̃︂𝐶 ′′2(𝑡,𝑥), is defined as

̃︀𝑓𝛽(𝑍,𝐶; 𝑡,𝑥) = 1

𝐵(𝑝1, 𝑞1)𝐵(𝑝2, 𝑞2)
𝑍𝑝1−1(1− 𝑍)𝑞1−1𝐶𝑝2−1(1− 𝐶)𝑞2−1, (4.13)

where the 𝛽-functions 𝐵(𝑝1, 𝑞1) and 𝐵(𝑝2, 𝑞2) appear to be the normalization constants which
ensure that the total probability integrates to 1, i.e.

𝐵(𝑝𝑖, 𝑞𝑖) =

1∫︁
0

𝑍𝑝𝑖−1(1− 𝑍)𝑞𝑖−1𝑑𝑍, 𝑖 ∈ {1, 2}. (4.14)

Here the so-called shape parameters 𝑝1, 𝑞1, 𝑝2 and 𝑞2 are some functions of the position 𝑥
and time 𝑡. The properties of the 𝛽-distribution leads to the following expressions for these
shape parameters:

𝑝1 = ̃︀𝑧(︃ ̃︀𝑍(1− ̃︀𝑍)̃︂𝑍 ′′2
− 1

)︃
𝑞1 =

(︁
1− ̃︀𝑍)︁(︃ ̃︀𝑍(1− ̃︀𝑍)̃︂𝑍 ′′2

− 1

)︃
(4.15)

and

𝑝2 = ̃︀𝐶 (︃ ̃︀𝐶(1− ̃︀𝐶)̃︂𝐶 ′′2
− 1

)︃
𝑞2 =

(︁
1− ̃︀𝐶)︁(︃ ̃︀𝐶(1− ̃︀𝐶)̃︂𝐶 ′′2

− 1

)︃
. (4.16)

Note that in the case of infinitely fast chemistry, e.g. when at least one limit of ̃︂𝑍 ′′2 →̃︀𝑍(1 − ̃︀𝑍) or ̃︂𝐶 ′′2 → ̃︀𝐶(1 − ̃︀𝐶) holds, the parameters 𝑝1, 𝑞1 or respectively 𝑝2, 𝑞2 approach
zero.

4.1.8 Algorithm of beta-PDF integration

The approximate integration method of the 𝛽-PDF (4.13) consists in replacing the 𝛽-PDF
by the linear combination of two Dirac 𝛿 functions at singular points 0 and 1 and the 𝛽-PDF
in the inner interval (0; 1). The new PDF for one variable Ψ is

̃︀𝑓(Ψ; 𝑡,𝑥) = 𝛼(𝑡,𝑥)𝛿(0) + 𝛾(𝑡,𝑥)𝛿(Ψ− 1) + ̃︀𝑓𝛽(Ψ; 𝑡,𝑥)𝐻 (Ψ)𝐻 (1−Ψ) , (4.17)

where 𝛿 is Dirac function and 𝐻 is a Heaviside function of the following form

𝐻(Ψ) =

{︃
1 if Ψ > 0,

0 if Ψ ≤ 0.
(4.18)

Let 0 < 𝜖 < 10−6 be an arbitrary parameter. Integral of the PDF ̃︀𝑓(Ψ; 𝑡,𝑥) on the interval
[0; 1] is

1∫︁
0

̃︀𝑓(Ψ; 𝑡,𝑥)𝑑Ψ = 𝛼(𝑡,𝑥) + 𝛾(𝑡,𝑥) +

1−𝜖∫︁
𝜖

̃︀𝑓𝛽(Ψ; 𝑡,𝑥)𝑑Ψ = 1. (4.19)
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On the other hand

1∫︁
0

̃︀𝑓(Ψ; 𝑡,𝑥)Ψ𝑑Ψ = 𝛾(𝑡,𝑥) +

1−𝜖∫︁
𝜖

̃︀𝑓𝛽(Ψ; 𝑡,𝑥)Ψ𝑑Ψ = ̃︀Ψ. (4.20)

Therefore, the parameters 𝛼(𝑡,𝑥) and 𝛽(𝑡,𝑥) can be determined from formulas:

𝛾(𝑡,𝑥) = ̃︀Ψ−
1−𝜖∫︁
𝜖

̃︀𝑓𝛽(Ψ; 𝑡,𝑥)Ψ𝑑Ψ, (4.21)

𝛼(𝑡,𝑥) = 1−
1−𝜖∫︁
𝜖

̃︀𝑓𝛽(Ψ; 𝑡,𝑥)𝑑Ψ− ̃︀Ψ+

1−𝜖∫︁
𝜖

̃︀𝑓𝛽(Ψ; 𝑡,𝑥)Ψ𝑑Ψ. (4.22)

One can note that the 𝛽-PDF ̃︀𝑓𝛽(Ψ; 𝑡,𝑥) and the function Ψ ̃︀𝑓𝛽(Ψ; 𝑡,𝑥) can be easily inte-
grated in the interval (𝜖; 1− 𝜖), because this interval does not contain any singular points of
the 𝛽-distribution.

An important part of the algorithm is the numerical integration of the 𝛽-PDF ̃︀𝑓𝛽(𝑍,𝐶; 𝑡,𝑥).
It is observed that it may encounter singularity difficulties at mixture fraction values 𝑍 = 0
or 𝑍 = 1 and at progress variable values 𝐶 = 0 or 𝐶 = 1. Another drawback of the existing
𝛽-integration method is that for some combinations of shape parameters 𝑞1, 𝑞2, 𝑝1, 𝑝2 the
PDF can take numerically negative values due to the strong dependence on the grid of the
mixture fraction and the progress variable and on 𝜖.

In order to overcome these two numerical difficulties, we implement a piece-wise integra-
tion method, which was described in mono-dimensional case in [LienLiu2009], extending it
to the two-dimensional case (see section 4.2.3).

4.2 Updated FTC beta-PDF model

4.2.1 New models for dissipation and source terms

The options 6 and 9 from table 4.1 and options 60 and 90 from table 4.2 were added during
the present work in order to investigate the influence of model constants on the solution. The
wrinkling factor is approximated, for simplicity, by constants Ξ = 5 and Ξ = 10.

4.2.2 Gradient of Favre-averaged progress variable

Equation (4.11) for the calculation of Favre-averaged progress variable gradient is valid only

for the premixed flames (i.e. ̃︀𝑍 ≡ 𝑐𝑜𝑛𝑠𝑡). We propose following possibilities to approximate
this gradient for other flame types. Three cases should be distinguished:

∙ Premixed flame: ̃︀𝑍 ≡ 𝑐𝑜𝑛𝑠𝑡.
The sum of equilibrium mass fractions is constant:

̃︀𝑌 𝑒𝑞 = ̃︀𝑌 𝑒𝑞
CO + ̃︀𝑌 𝑒𝑞

CO2
= 𝑐𝑜𝑛𝑠𝑡. (4.23)
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Three components of the gradient ∇ ̃︀𝐶 are

𝜕 ̃︀𝐶
𝜕𝑥𝑗

=
1̃︀𝑌 𝑒𝑞

[︃
𝜕 ̃︀𝑌CO

𝜕𝑥𝑗
+
𝜕 ̃︀𝑌CO2

𝜕𝑥𝑗

]︃
, 𝑗 = 1, 2, 3. (4.24)

∙ Laminar non-premixed flame: ̃︀𝑍 ̸= 𝑐𝑜𝑛𝑠𝑡, ̃︂𝑍 ′′2 ≡ 0.
The sum of equilibrium mass fractions depends only on ̃︀𝑍:

̃︀𝑌 𝑒𝑞 = ̃︀𝑌 𝑒𝑞
(︁ ̃︀𝑍)︁ = 𝑌 𝑒𝑞

CO

(︁ ̃︀𝑍)︁+ 𝑌 𝑒𝑞
CO2

(︁ ̃︀𝑍)︁ . (4.25)

Therefore, the components of the Favre-averaged progress variable gradient are

𝜕 ̃︀𝐶
𝜕𝑥𝑗

=
1(︁̃︀𝑌 𝑒𝑞
)︁2
(︃̃︀𝑌 𝑒𝑞

[︃
𝜕 ̃︀𝑌CO

𝜕𝑥𝑗
+
𝜕 ̃︀𝑌CO2

𝜕𝑥𝑗

]︃
−
[︁̃︀𝑌CO + ̃︀𝑌CO2

]︁ 𝜕 ̃︀𝑍
𝜕𝑥𝑗

𝜕 ̃︀𝑌 𝑒𝑞

𝜕 ̃︀𝑍
)︃
. (4.26)

∙ Turbulent non-premixed flame: ̃︀𝑍 ̸= 𝑐𝑜𝑛𝑠𝑡, ̃︂𝑍 ′′2 ̸= 0.

The sum of equilibrium mass fractions depends on ̃︀𝑍 and ̃︂𝑍 ′′2:

̃︀𝑌 𝑒𝑞 = ̃︀𝑌 𝑒𝑞
(︁ ̃︀𝑍,̃︂𝑍 ′′2

)︁
= 𝑌 𝑒𝑞

CO

(︁ ̃︀𝑍,̃︂𝑍 ′′2
)︁
+ 𝑌 𝑒𝑞

CO2

(︁ ̃︀𝑍,̃︂𝑍 ′′2
)︁
. (4.27)

Thus,

𝜕 ̃︀𝐶
𝜕𝑥𝑗

=
1̃︀𝑌 𝑒𝑞

[︃
𝜕 ̃︀𝑌CO

𝜕𝑥𝑗
+
𝜕 ̃︀𝑌CO2

𝜕𝑥𝑗

]︃
−
̃︀𝑌CO + ̃︀𝑌CO2(︁̃︀𝑌 𝑒𝑞

)︁2
(︃
𝜕 ̃︀𝑍
𝜕𝑥𝑗

𝜕 ̃︀𝑌 𝑒𝑞

𝜕 ̃︀𝑍 +
𝜕̃︂𝑍 ′′2

𝜕𝑥𝑗

𝜕 ̃︀𝑌 𝑒𝑞

𝜕̃︂𝑍 ′′2

)︃
. (4.28)

As the mixture fraction is obtained from the transport equation, the value 𝜕 ̃︀𝑍
𝜕𝑥𝑗

is exact

in the given above expressions. The derivative of 𝜕 ̃︀𝑌 𝑒𝑞(Ψ)
𝜕Ψ

can be found for example using the
first order numerical approximation of the derivative:

𝜕 ̃︀𝑌 𝑒𝑞 (Ψ)

𝜕Ψ
=
𝜕 ̃︀𝑌 𝑒𝑞 (Ψ2)− 𝜕 ̃︀𝑌 𝑒𝑞 (Ψ1)

(Ψ2 −Ψ1)
, (4.29)

where Ψ ∈ (Ψ1; Ψ2).

4.2.3 Algorithm of beta-PDF integration

Let us consider two independent variables: a mixture fraction 𝑍 and a progress variable 𝐶.
The function 𝑔(𝑍,𝐶) is defined on the set of points (𝑍𝑘, 𝐶𝑛) such that

𝑍1 = 0 < 𝑍2 < .. < 𝑍𝑘 < .. < 𝑍𝑁𝑧 = 1

and
𝐶1 = 0 < 𝐶2 < .. < 𝐶𝑛 < .. < 𝐶𝑁𝑐 = 1,
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where 𝑁𝑧 and 𝑁𝑐 are numbers of discretization points of 𝑍 and 𝐶, respectively. Using the
bi-linear interpolation on a regular two-dimensional grid [𝑍𝑘−1;𝑍𝑘]× [𝐶𝑛−1;𝐶𝑛] the function
𝑔(𝑍,𝐶) can be presented as

𝑔(𝑍,𝐶) = 𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛. (4.30)

Since 𝑔(𝑍,𝐶) is

𝑔(𝑍,𝐶) =
1

(𝑍𝑘 − 𝑍𝑘−1)(𝐶𝑛 − 𝐶𝑛−1)
[𝑔(𝑍𝑘−1, 𝐶𝑛−1)(𝑍𝑘−𝑍)(𝐶𝑛−𝐶)+𝑔(𝑍𝑘, 𝐶𝑛−1)(𝑍−𝑍𝑘−1)(𝐶𝑛−𝐶)

+ 𝑔(𝑍𝑘−1, 𝐶𝑛)(𝑍𝑘 − 𝑍)(𝐶 − 𝐶𝑛−1) + 𝑔(𝑍𝑘, 𝐶𝑛)(𝑍 − 𝑍𝑘−1)(𝐶 − 𝐶𝑛−1)] (4.31)

The volume of [𝑍𝑘−1;𝑍𝑘]× [𝐶𝑛−1;𝐶𝑛] is

𝑉 𝑜𝑙 = (𝑍𝑘 − 𝑍𝑘−1)(𝐶𝑛 − 𝐶𝑛−1) (4.32)

The coefficients 𝛼𝑖𝑘𝑛, 𝑖 = 1, .., 4, 𝑘 = 1, .., 𝑁𝑧, 𝑛 = 1, .., 𝑁𝑐 of the eq. (4.30) can be found
from the expression (4.31), they are given by the following formulas:

𝛼1𝑘𝑛 = 𝑉 𝑜𝑙−1 [(𝑔(𝑍𝑘, 𝐶𝑛−1)− 𝑔(𝑍𝑘−1, 𝐶𝑛−1))𝐶𝑛 + (𝑔(𝑍𝑘−1, 𝐶𝑛)− 𝑔(𝑍𝑘, 𝐶𝑛))𝐶𝑛−1] (4.33)

𝛼2𝑘𝑛 = 𝑉 𝑜𝑙−1 [(𝑔(𝑍𝑘−1, 𝐶𝑛)− 𝑔(𝑍𝑘−1, 𝐶𝑛−1))𝑍𝑘 + (𝑔(𝑍𝑘, 𝐶𝑛−1)− 𝑔(𝑍𝑘, 𝐶𝑛))𝑍𝑘−1] (4.34)

𝛼3𝑘𝑛 = 𝑉 𝑜𝑙−1 [𝑔(𝑍𝑘−1, 𝐶𝑛−1)− 𝑔(𝑍𝑘, 𝐶𝑛−1)− 𝑔(𝑍𝑘−1, 𝐶𝑛) + 𝑔(𝑍𝑘, 𝐶𝑛)] (4.35)

𝛼4𝑘𝑛 = 𝑉 𝑜𝑙−1 [𝑔(𝑍𝑘−1, 𝐶𝑛−1)𝑍𝑘𝐶𝑛 − 𝑔(𝑍𝑘, 𝐶𝑛−1)𝑍𝑘−1𝐶𝑛 − 𝑔(𝑍𝑘−1, 𝐶𝑛)𝑍𝑘𝐶𝑛−1 + 𝑔(𝑍𝑘, 𝐶𝑛)𝑍𝑘−1𝐶𝑛−1]
(4.36)

It can be shown that the integral of the function 𝑔(𝑍,𝐶) defined in (4.31) with the 𝛽-PDF̃︀𝑓𝛽 given by (4.13) on the domain [𝑍𝑘−1;𝑍𝑘]× [𝐶𝑛−1;𝐶𝑛] for 2 ≤ 𝑘 ≤ 𝑁𝑧 and 2 ≤ 𝑛 ≤ 𝑁𝑐 is

𝑍𝑘∫︁
𝑍𝑘−1

𝐶𝑛∫︁
𝐶𝑛−1

(𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 =

𝑍𝑘∫︁
0

𝐶𝑛∫︁
0

(𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍
−

𝑍𝑘−1∫︁
0

𝐶𝑛∫︁
0

(𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍, 𝑐)𝑑𝐶𝑑𝑍
−

𝑍𝑘∫︁
0

𝐶𝑛−1∫︁
0

(𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍
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+

𝑍𝑘−1∫︁
0

𝐶𝑛−1∫︁
0

(𝛼1𝑘𝑛𝑍 + 𝛼2𝑘𝑛𝐶 + 𝛼3𝑘𝑛𝑍𝐶 + 𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 =

𝛼1𝑘𝑛
𝐵(𝑝1 + 1, 𝑞1)

𝐵(𝑝1, 𝑞1)
[𝐼𝑍𝑘

(𝑝1 + 1, 𝑞1)(𝐼𝐶𝑛(𝑝2, 𝑞2)− 𝐼𝐶𝑛−1(𝑝2, 𝑞2))

+𝐼𝑍𝑘−1
(𝑝1 + 1, 𝑞1)(−𝐼𝐶𝑛(𝑝2, 𝑞2) + 𝐼𝐶𝑛−1(𝑝2, 𝑞2)]

+𝛼2𝑘𝑛
𝐵(𝑝2 + 1, 𝑞2)

𝐵(𝑝2, 𝑞2)
[𝐼𝑍𝑘

(𝑝1, 𝑞1)(𝐼𝐶𝑛(𝑝2 + 1, 𝑞2)− 𝐼𝐶𝑛−1(𝑝2 + 1, 𝑞2))

+𝐼𝑍𝑘−1
(𝑝1, 𝑞1)(−𝐼𝐶𝑛(𝑝2 + 1, 𝑞2) + 𝐼𝐶𝑛−1(𝑝2 + 1, 𝑞2))]

+𝛼3𝑘𝑛
𝐵(𝑝1 + 1, 𝑞1)

𝐵(𝑝1, 𝑞1)

𝐵(𝑝2 + 1, 𝑞2)

𝐵(𝑝2, 𝑞2)
[𝐼𝑍𝑘

(𝑝1 + 1, 𝑞1)(𝐼𝐶𝑛(𝑝2 + 1, 𝑞2)− 𝐼𝐶𝑛−1(𝑝2 + 1, 𝑞2)) +

𝐼𝑍𝑘−1
(𝑝1 + 1, 𝑞1)(−𝐼𝐶𝑛(𝑝2 + 1, 𝑞2) + 𝐼𝐶𝑛−1(𝑝2 + 1, 𝑞2))]

+𝛼4𝑘𝑛[𝐼𝑍𝑘
(𝑝1, 𝑞1)(𝐼𝐶𝑛(𝑝2, 𝑞2)−𝐼𝐶𝑛−1(𝑝2, 𝑞2))+𝐼𝑍𝑘−1

(𝑝1, 𝑞1)(−𝐼𝐶𝑛(𝑝2, 𝑞2)+𝐼𝐶𝑛−1(𝑝2, 𝑞2)], (4.37)

where, 𝐼𝑍(𝑝1, 𝑞1) (𝐼𝐶(𝑝2, 𝑞2)), 0 < 𝑍 < 1 (0 < 𝐶 < 1) is regularized incomplete 𝛽-function,
i.e.

𝐼𝑍(𝑝1, 𝑞1) =
1

𝐵(𝑝1, 𝑞1)

𝑍∫︁
0

𝑧𝑝1−1(1− 𝑧)𝑞1−1𝑑𝑧. (4.38)

The averaged value ̃︀𝑔 is simply the sum of sub-integrals from (4.37):

̃︀𝑔 = 1∫︁
0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍, 𝑐)𝑑𝐶𝑑𝑍 =
𝑁𝑧∑︁
𝑘=2

𝑁𝑐∑︁
𝑛=2

𝑍𝑘∫︁
𝑍𝑘−1

𝐶𝑛∫︁
𝐶𝑛−1

(𝛼1𝑘𝑛𝑍+𝛼2𝑘𝑛𝐶+𝛼3𝑘𝑛𝑍𝐶+𝛼4𝑘𝑛) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍
(4.39)

4.2.4 Numerical implementation of beta-PDF integration

We consider the following grid for the variances of mixture fraction and progress variable:
𝑉 𝑎𝑟𝑍𝑖 = 0, .., ̃︀𝑍(1 − ̃︀𝑍) and 𝑉 𝑎𝑟𝐶𝑗 = 0, .., ̃︀𝐶(1 − ̃︀𝐶) for each ̃︀𝑍 and ̃︀𝐶, 𝑖 = 1, .., 𝑁𝑉 𝑎𝑟𝑍 ,
𝑗 = 1, .., 𝑁𝑉 𝑎𝑟𝐶 There are 8 particular cases which should be calculated differently.

1. ̃︂𝑍 ′′2 = 0, ̃︂𝐶 ′′2 ̸= {0, ̃︀𝐶(1− ̃︀𝐶)}
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 =

1∫︁
0

𝑔( ̃︀𝑍,𝐶) ̃︀𝑓𝛽(𝐶)𝑑𝐶. (4.40)

2. ̃︂𝑍 ′′2 = ̃︀𝑍(1− ̃︀𝑍), ̃︂𝐶 ′′2 ̸= {0, ̃︀𝐶(1− ̃︀𝐶)}
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = ̃︀𝑍 1∫︁
0

𝑔(1, 𝐶) ̃︀𝑓𝛽𝑑𝐶 + (1− ̃︀𝑍) 1∫︁
0

𝑔(0, 𝐶) ̃︀𝑓𝛽𝑑𝐶. (4.41)
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3. ̃︂𝐶 ′′2 = 0, ̃︂𝑍 ′′2 ̸= {0, ̃︀𝑍(1− ̃︀𝑍)}
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽𝑑𝐶𝑑𝑍 =

1∫︁
0

𝑔(𝑍, ̃︀𝐶) ̃︀𝑓𝛽(𝑍)𝑑𝑍. (4.42)

4. ̃︂𝐶 ′′2 = ̃︀𝐶(1− ̃︀𝐶), ̃︂𝑍 ′′2 ̸= {0, ̃︀𝑍(1− ̃︀𝑍)}
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = ̃︀𝐶 1∫︁
0

𝑔(𝑍, 1) ̃︀𝑓𝛽(𝑍)𝑑𝑍 + (1− ̃︀𝐶) 1∫︁
0

𝑔(𝑍, 0) ̃︀𝑓𝛽(𝑍)𝑑𝑍. (4.43)
5. ̃︂𝑍 ′′2 = 0, ̃︂𝐶 ′′2 = 0

̃︀𝑔 = 1∫︁
0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = 𝑔( ̃︀𝑍, ̃︀𝐶) (4.44)

6. ̃︂𝑍 ′′2 = 0, ̃︂𝐶 ′′2 = ̃︀𝐶(1− ̃︀𝐶)
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = ̃︀𝐶𝑔( ̃︀𝑍, 1) + (1− ̃︀𝐶)𝑔( ̃︀𝑍, 0) (4.45)

7. ̃︂𝑍 ′′2 = ̃︀𝑍(1− ̃︀𝑍), ̃︂𝐶 ′′2 = 0

̃︀𝑔 = 1∫︁
0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = ̃︀𝑍𝑔(1, ̃︀𝐶) + (1− ̃︀𝑍)𝑔(0, ̃︀𝐶) (4.46)

8. ̃︂𝑍 ′′2 = ̃︀𝑍(1− ̃︀𝑍), ̃︂𝐶 ′′2 = ̃︀𝐶(1− ̃︀𝐶)
̃︀𝑔 = 1∫︁

0

1∫︁
0

𝑔(𝑍,𝐶) ̃︀𝑓𝛽(𝑍,𝐶)𝑑𝐶𝑑𝑍 = ̃︀𝑍 ̃︀𝐶𝑔(1, 1)+(1− ̃︀𝑍) ̃︀𝐶𝑔(0, 1)+ ̃︀𝑍(1− ̃︀𝐶)𝑔(1, 0)+(1− ̃︀𝑍)(1− ̃︀𝐶)𝑔(0, 0)
(4.47)

We emphasize the importance of calculating the volume according to

𝑉 𝑜𝑙 = 𝑍(𝑘)𝐶(𝑛)− 𝑍(𝑘 − 1)𝐶(𝑛)− 𝑍(𝑘)𝐶(𝑛− 1) + 𝑍(𝑘 − 1)𝐶(𝑛− 1)

in order to properly preserve the normalization of the 𝛽-PDF.

Study of convergence of the semi-analytic beta integration method

In this section we study the numerical convergence. As the solver does not distinguish the
variables 𝑍 and 𝐶 in the 𝛽-integration function, we consider only two different cases: firstly,



4.2. UPDATED FTC BETA-PDF MODEL 149

when the function 𝑔(𝑍,𝐶) depends on 𝐶 and 𝑍 is constant, and secondly, when the function
𝑔(𝑍,𝐶) depends on 𝑍 and 𝐶 at the same time.

The first validation test is performed on the analytic function 𝑔(𝐶) = 𝐶20. The number
of points of the progress variable is varied from 𝑁𝑐 = 5 to 𝑁𝑐 = 5000. Different values of
parameters 𝑝 and 𝑞 are chosen. The second test function is taken as 𝑔(𝑍,𝐶) = 𝑍5𝐶2. The
number of points of the progress variable is varied from 𝑁𝑐 = 5 to 𝑁𝑐 = 55. The same set of
points is considered for the mixture fraction. The total number of points in the 2𝐷 grid is
given by 𝑁 = 𝑁𝑐 ×𝑁𝑧 and varies from 𝑁 = 25 to 𝑁 = 3025. Different shape parameters 𝑝𝑘
and 𝑞𝑘, 𝑘 = 1, 2 are considered. The solutions obtained from Matlab function 𝑏𝑒𝑡𝑎(𝑝+20,𝑞)

𝑏𝑒𝑡𝑎(𝑝,𝑞)
(the

first case) and 𝑏𝑒𝑡𝑎(𝑝1+5,𝑞1)𝑏𝑒𝑡𝑎(𝑝2+2,𝑞2)
𝑏𝑒𝑡𝑎(𝑝1,𝑞1)𝑏𝑒𝑡𝑎(𝑝2,𝑞2)

(the second case) are taken as the reference solutions to
which results from our solver are compared. The errors with respect to the reference solutions
are defined as

𝐸𝑁𝑐(𝑝, 𝑞) =
|̃︀𝑔𝑁𝑐(𝑝, 𝑞)− ̃︀𝑔𝑟𝑒𝑓 (𝑝, 𝑞)|̃︀𝑔𝑟𝑒𝑓 (𝑝, 𝑞) , (4.48)

𝐸𝑁(𝑝1, 𝑞1, 𝑝2, 𝑞2) =
|̃︀𝑔𝑁(𝑝1, 𝑞1, 𝑝2, 𝑞2)− ̃︀𝑔𝑟𝑒𝑓 (𝑝1, 𝑞1, 𝑝2, 𝑞2)|̃︀𝑔𝑟𝑒𝑓 (𝑝1, 𝑞1, 𝑝2, 𝑞2) . (4.49)

Figure 4.1 represents the evolution of 𝐸𝑁𝑐(𝑝, 𝑞) and 𝐸𝑁(𝑝1, 𝑞1, 𝑝2, 𝑞2) for the polynomial func-
tions 𝐶20 and 𝑍5𝐶2 as functions of 𝑁𝑧 and 𝑁𝑐. A second order convergence is observed for
the different shape parameters in the first test and the first order of convergence in the second
2𝐷 test.
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Figure 4.1: Logarithmic spatial convergence of the semi-analytical method of the integration
with the 𝛽-PDF. Left: convergence rate for 𝑔(𝐶) = 𝐶20, right: convergence rate for 𝑔(𝑍,𝐶) =
𝑍5𝐶2. The vector of 4 numbers corresponds to (𝑝1, 𝑞1, 𝑝2, 𝑞2).

Figure 4.2 illustrates production rates and mass fractions of CO2 obtained from the PFTC

𝛽-PDF table of the premixed flame CH4/O2, ̃︀𝑍 = 0.0455, ̃︂𝑍 ′′2 = 0, which is constructed with
the described piecewise integration method. The integration of PFTC table was done over
𝐶 and 𝑍.
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Figure 4.2: Production rate (left) and mass fraction (right) of CO2; obtained from PFTC

𝛽-PDF table of the premixed flame CH4/O2, ̃︀𝑍 = 0.0455, ̃︂𝑍 ′′2 = 0, 𝑁𝑐 = 25, 𝑁𝑉 𝑎𝑟𝐶 = 15



Chapter 5

Transported partially stirred reactor
(TPaSR) model

EPaSR model was developed by V. Sabelnikov and C. Fureby and presented in sec-
tion 2.6.2. The summarized equations are given by eqs. (2.123) to (2.125), where the compo-
sition space is defined in (2.119). The main idea of the EPaSR as well as the PaSR models
is that at high turbulent Reynolds numbers the most of the molecular mixing, chemical re-
actions, and heat release take place in the fine structure regions. The fine-structure regions,
embedded in a surrounding fluid, are not uniformly distributed but concentrated in small
isolated regions, whose volume is a small fraction of the total volume. The advantage of the
EPaSR model compared with the PaSR model that it takes into account the whole history
of the fluid particles arriving to the cell. We adapt the original EPaSR model to CEDRE
software platform, naming it by TPaSR model.

5.1 Original EPaSR model

Let us consider a subsonic reactive flow, when acoustic instability is absent. In this case the
temporal variation of the mean pressure can be neglected:

𝜕𝑃

𝜕𝑡
≈ 0. (5.1)

We assume also that all mean molecular 𝐷𝑘 and turbulent 𝐷𝑡
𝑘 diffusion coefficients for species

𝑘 = 1, .., 𝑁𝑠𝑝 are equal to each other, i.e.

𝐷 = 𝐷𝑘 =
𝜇

𝑆𝑐𝑘𝜌
, 𝐷𝑡 = 𝐷𝑡

𝑘 =
𝜇𝑡
𝑆𝑐𝑡𝑘𝜌

, 𝑘 = 1, .., 𝑁𝑠𝑝. (5.2)

𝜇 is the mean viscosity, 𝜇𝑡 is the turbulent viscosity, 𝑆𝑐𝑘 is the Schmidt number of species 𝑘.
The turbulent number of Schmidt is equal to the turbulent number of Prandtl

𝑆𝑐𝑡 = 𝑃𝑟𝑡. (5.3)

In the framework of the RANS using the Boussinesq hypothesis, (5.1), (5.2) and (5.3),

eq. (2.123) of the EPaSR model for the variables of the mean composition space ̃︀𝜓 = [ ̃︀𝑌 ,̃︀ℎ𝑠]
151
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are

𝜕

𝜕𝑡

(︁
𝜌̃︀𝑌𝑘)︁+ 𝜕

𝜕𝑥𝑗

(︁
𝜌 ̃︀𝑢𝑗 ̃︀𝑌𝑘)︁ =

𝜕

𝜕𝑥𝑗

[︃
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

]︃
+ 𝛾*�̇�

*
𝑘 (𝑌

*, 𝑇 *) , 𝑘 = 1, .., 𝑁𝑠𝑝. (5.4)

𝜕

𝜕𝑡

(︁
𝜌̃︀ℎ𝑠)︁+ 𝜕

𝜕𝑥𝑗

(︁
𝜌 ̃︀𝑢𝑗̃︀ℎ𝑠)︁ =

𝜕

𝜕𝑥𝑗

[︃(︃
𝜆
𝜕 ̃︀𝑇
𝜕𝑥𝑗

+ 𝜌𝐷𝑡𝜕
̃︀ℎ𝑠
𝜕𝑥𝑗

+ 𝜌𝐷

𝑁𝑠𝑝∑︁
𝑘=1

̃︀ℎ𝑠,𝑘 𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

)︃]︃

+

[︃
𝜏 𝑖𝑗

𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑗
̃︀𝑢𝑗 − 𝑁𝑠𝑝∑︁

𝑘=1

�̇�𝑘

(︁ ̃︀𝑌 , ̃︀𝑇)︁ℎ𝜃𝑘,𝑓
]︃
. (5.5)

Here ̃︀ℎ𝑠,𝑘 is the sensible enthalpy of species 𝑘, ℎ𝜃𝑓,𝑘 are the species formation enthalpy, 𝜏 is

the viscous stress tensor, 𝜆 is the heat diffusion coefficient, �̇�𝑘 is the mean reaction rate of
species 𝑘.

Equation (2.124) of the EPaSR model for the variables of the composition space in the
fine-structure regions are following. The equation for the mass fraction 𝑌 *

𝑘 is

𝜕

𝜕𝑡
(𝜌𝛾*𝑌 *

𝑘 )+
𝜕

𝜕𝑥𝑗
(𝜌 ̃︀𝑢𝑗𝛾*𝑌 *

𝑘 ) =
𝜕

𝜕𝑥𝑗

[︃
𝛾*𝜌

(︀
𝐷 +𝐷𝑡

)︀ 𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

]︃
+𝑀

*
𝑘+𝛾

*�̇�
*
𝑘 (𝑌

*, 𝑇 *) , 𝑘 = 1, .., 𝑁𝑠𝑝.

(5.6)
The equation for the sensible enthalpy ℎ*𝑠 reads

𝜕

𝜕𝑡
(𝜌𝛾*ℎ*𝑠) +

𝜕

𝜕𝑥𝑗
(𝜌 ̃︀𝑢𝑗𝛾*ℎ*𝑠) = 𝜕

𝜕𝑥𝑗

[︃
𝛾*

(︃
𝜆
𝜕 ̃︀𝑇
𝜕𝑥𝑗

+ 𝜌𝐷𝑡𝜕
̃︀ℎ𝑠
𝜕𝑥𝑗

+ 𝜌𝐷

𝑁𝑠𝑝∑︁
𝑘=1

̃︀ℎ𝑠,𝑘 𝜕 ̃︀𝑌𝑘
𝜕𝑥𝑗

)︃]︃
+𝑀

*
𝑁𝑠𝑝+1

+ 𝛾*

[︃
𝜏 𝑖𝑗

𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑗
̃︀𝑢𝑗 − 𝑁𝑠𝑝∑︁

𝑘=1

�̇�𝑘

(︁ ̃︀𝑌 , ̃︀𝑇)︁ℎ𝜃𝑘,𝑓
]︃
. (5.7)

𝑀
*
𝑘 is the exchange terms at the immaterial interface between the fine-structure volume and

the surrounding fluid defined in (2.128).

5.2 TPaSR model: EPaSR adaptation to CEDRE

The structure of CEDRE does not allow implementing directly the eqs. (5.5) to (5.7) for
the Favre-averaged sensible enthalpy and variables of the fine-structure regions and therefore
requires for the original EPaSR model to be modified. We will denominate this modified
EPaSR model by the TPaSR model.

In CEDRE the conservative quantities: mass fractions 𝜌 ̃︀𝑌 , momentum 𝜌̃︀𝑢, total energy
𝜌̃︀𝑒𝑡 and scalars 𝜌𝑧 = (𝜌𝑘, 𝜌𝜔, 𝜌𝑧1, ..., 𝜌𝑧𝑛𝑧) in RANS (or 𝜌𝑧 = (𝜌𝑧1, ..., 𝜌𝑧𝑛𝑧) in LES) satisfy
transport equations described in section 2.4.2 (see eqs. (2.55) to (2.57)). The evolution
equation for additional scalars 𝜌𝑧𝑚, 𝑚 = 1, .., 𝑛𝑧 with assumptions above is the following:

𝜕

𝜕𝑡
(𝜌𝑧𝑚)+

𝜕

𝜕𝑥𝑗
(𝜌̃︀𝑢𝑗𝑧𝑚) = 𝜕

𝜕𝑥𝑗

[︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗
(𝑧𝑚)

]︂
+𝜌𝑆𝑧𝑚 , 𝑗 = 1, .., 3, 𝑚 = 1, .., 𝑛𝑧, (5.8)
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where 𝜌𝑆𝑧𝑚 is a source for 𝑚-th scalar 𝑧𝑚.
Consequently, we can define the mean composition space as

̃︀𝜓 = [ ̃︀𝑌 , ̃︀𝑒𝑡]. (5.9)

Equation (5.4) is the same in the TPaSR model. Instead of eq. (5.5) for the Favre-averaged
sensible enthalpy the transport eq. (2.57) for the Favre-averaged total energy is used. Both
equations are equivalent.

As we can see from the evolution equation (5.8), there is no possibility to transport
𝜌𝛾*𝑒*𝑡 , because the exact equation for the conservative variable 𝜌𝛾*𝑒*𝑡 should contain the
mean pressure 𝑃 in the flux. As a result, the composition space in the fine-structure regions
is given by

𝜓* = [𝑌 *, ℎ*𝑡 ], (5.10)

where ℎ*𝑡 is a total enthalpy. The Favre-averaged total enthalpy ̃︀ℎ𝑡 can be calculated from
the Favre-averaged total energy ̃︀𝑒𝑡 by the formula

̃︀ℎ𝑡 = ̃︀𝑒𝑡 + 𝑃

𝜌
. (5.11)

The first terms on the RHS of the eqs. (5.6) and (5.7) consisting of the species, enthalpy
and heat fluxes for the mean quantity is replaced by the fluxes for the quantities in the
fine-structure regions multiplied by 𝛾*. In eq. (5.7) the term

𝛾*𝜏 𝑖𝑗
𝜕̃︀𝑢𝑖
𝜕𝑥𝑗

, (5.12)

which represents the heating associated with the friction of particles against each other, is
neglected in the RANS. Thus, the new equation for the mass fraction 𝑌 * in the fine-structure
regions reads

𝜕

𝜕𝑡
(𝜌𝛾*𝑌 *

𝑘 ) +
𝜕

𝜕𝑥𝑗
(𝜌 ̃︀𝑢𝑗𝛾*𝑌 *

𝑘 ) =
𝜕

𝜕𝑥𝑗

[︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗
(𝛾*𝑌 *

𝑘 )

]︂
+𝑀

*
𝑘 + 𝛾*�̇�

*
𝑘, 𝑘 = 1, .., 𝑁𝑠𝑝

(5.13)
and the new equation for the total enthalpy ℎ*𝑡 becomes

𝜕

𝜕𝑡
(𝜌𝛾*ℎ*𝑡 ) +

𝜕

𝜕𝑥𝑗
(𝜌 ̃︀𝑢𝑗𝛾*ℎ*𝑡 ) = 𝜕

𝜕𝑥𝑗

[︂
𝜌
(︀
𝐷 +𝐷𝑡

)︀ 𝜕

𝜕𝑥𝑗
(𝛾*ℎ*𝑡 )

]︂
+𝑀

*
ℎ𝑡 , 𝑗 = 1, .., 3. (5.14)

Let us rewrite the exchange terms given in 2.128 for the variables 𝑌 * and ℎ*𝑡 . The
exchange terms at the immaterial interface between the fine-structure volume and the sur-
rounding fluid are calculated as follows:

𝑀
*
= Θ

*
+Ω

*
. (5.15)

The first term Θ is

Θ
*
𝑘 =

1

2
(�̇�+ |�̇�|)𝑌 0

𝑘 +
1

2
(�̇�− |�̇�|)𝑌 *

𝑘 , 𝑘 = 1, .., 𝑁𝑠𝑝, (5.16)
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and

Θ
*
𝑁𝑠𝑝+1 =

1

2
(�̇�+ |�̇�|)ℎ0𝑡 +

1

2
(�̇�− |�̇�|)ℎ*𝑡 (5.17)

for the total enthalpy. The expression for �̇� is given by (2.131). Supposing that 1 − 𝛾* is
strictly positive, the mass fractions 𝑌 0

𝑘 and the total enthalpy ℎ0𝑡 in a surrounding fluid can
be calculated as

𝑌 0
𝑘 =

̃︀𝑌𝑘 − 𝛾*𝑌 *
𝑘

1− 𝛾*
, ℎ0𝑡 =

̃︀ℎ𝑡 − 𝛾*ℎ*𝑡
1− 𝛾*

, (5.18)

where ̃︀ℎ𝑡 is given by eq. (5.11). If 𝛾* = 1 or 𝛾* = 0, we impose

𝑌 0
𝑘 = 𝑌 *

𝑘 = ̃︀𝑌𝑘, ℎ0𝑡 = ℎ*𝑡 =
̃︀ℎ𝑡. (5.19)

The second term Ω
*
in the framework of the LES approach is

Ω
*
𝑘 = −𝜌𝛾

*

𝜏 *
(︀
𝑌 *
𝑘 − 𝑌 0

𝑘

)︀
, Ω

*
𝑁𝑠𝑝+1 = −𝜌𝛾

*

𝜏 *
(︀
ℎ*𝑡 − ℎ0𝑡

)︀
. (5.20)

It coincides with the definition (2.130) proposed by V. Sabelnikov and C. Fureby in [Sabel-
nikovFureby2013]. In the RANS approach Ω

*
was modified.

Ω
*
𝑘 = −𝜌𝐶𝜔𝜔

(︀
𝑌 *
𝑘 − 𝑌 0

𝑘

)︀
, Ω

*
𝑁𝑠𝑝+1 = −𝜌𝐶𝜔𝜔

(︀
ℎ*𝑡 − ℎ0𝑡

)︀
. (5.21)

The constant 𝐶𝜔 is set to 10.5. The comparison of eq. (2.130) and eq. (5.21) shows that
the last expression does not include 𝛾*. In fact, when the same definition of Ω

*
that in

the LES/EPaSR model is used for the RANS/TPaSR model, there is insufficient exchange
between a cold gas and a hot gas in the case of premixed flames. Based on works of Magnussen
[MagnussenHjertager1977], V. Sabelnikov has proposed to modify and adapt Ω

*
to the RANS

modeling.
Instead of solving the transport eq. (2.125) for the volume fraction 𝛾* of the fine structures

and 𝑁𝑠𝑝 − 1 eq. (5.4) for the mass fractions 𝑌 *
𝑘 , we solve 𝑁𝑠𝑝 eq. (5.4) and find 𝛾* from the

relation

𝛾* =

𝑁𝑠𝑝∑︁
𝑘=1

𝛾*𝑌 *
𝑘 , (5.22)

because the sum of the mass fractions 𝑌 *
𝑘 in the fine-structure regions are equal to one.

There are several possibilities to model the fine structure residence time 𝜏 * in the frame-
work of the RANS approach. The first choice represents the geometrical mean of the Kol-
mogorov time and the integral time scale.

𝜏 * =
√
𝜏𝐾𝜏𝑡. (5.23)

The second choice is
𝜏 * = 𝐶𝜏𝐾 , (5.24)

where 𝐶 is a free constant. If 𝐶 = 1, (5.24) is the Kolmogorov time and if 𝐶 = 0.41, it is the
Magnussen time. In the LES model the subgrid residence time 𝜏 * is defined as in eq. (2.132).



Chapter 6

Backward-facing step flow

In this thesis, the configuration of the backward-facing step, presented in figs. 6.2 and 6.3,
is chosen to validate premixed flamelet tabulated chemistry (PFTC) with presumed 𝛽-PDF
and TPaSR approaches against the experimental data [MagreMoreau1988] which was carried
out at ONERA. The backward-facing step configuration is a widespread mean to stabilize the
combustion at high velocities and is generally used to evaluate the performance of turbulence
models in the prediction of separated flows.

This configuration is interesting for several reasons:

1. Simple 2𝐷 geometry allows performing many calculations in a reasonable time. This
property is particularly relevant in the context of model validation, where many tests
are necessary. In particular, the turbulent flow is bi-dimensional.

2. The existence of experimental measurements in both nonreactive and reactive flows.
In addition, this flow was extensively studied numerically in the past. There are many
databases that can be used for validation of results. For instance, numerous investiga-
tions with different approaches were carried out on this topic at ONERA. R. Courtois
calculated a turbulent combustion on this configuration with a LES approach [Cour-
tois2005]. B. Sainte-Rose improved the results of R. Courtois using a hybrid RANS/LES
(DDES) model [SainteRose2010]. Hereafter, O. Soulard and M. Ourliac investigated
reactive flow with a hybrid RANS/EMC solver, which was based on solving stochastic
partial differential equations statistically equivalent to the joint turbulent scalars PDF
equation [Soulard2005; Ourliac2009]. We will discuss and compare their results with
our simulations in this chapter.

3. The extensive study on the backward-facing step is due to the fact that it gives rise to
a large number of distinctly different flow patterns, including boundary layers, mixing
layer, separation layer, reattachment, flow reversal.

This chapter deals with two- and three-dimensional simulations of backward-facing step
flows and provides results obtained by numerical computations for nonreactive and reactive
cases. We analyze numerical results comparing them with the experimental data and results

155



156 CHAPTER 6. BACKWARD-FACING STEP FLOW

of previous numerical simulations at ONERA.

6.1 A3C experimental setup

The combustion chamber used in [MagreMoreau1988] was mounted on the A3C test bench.
Its geometry is shown in fig. 6.1. The channel incorporates a backward-facing step of 0.1m
width, playing a flame holder role. The channel upstream of the step has a length of 1.5m
and a height of 6.5 cm. Downstream the step a larger channel of length 1.4m and a height
of 0.1m is located. Burnt gases are evacuated at outlet of this tunnel. The sonic nozzles
are installed at inlet and outlet of the main chamber in order to better control mass flow
rate and acoustics and enable experiments in a pressurized regime. The level of turbulence
is controlled by a honeycomb placed in the upstream pipe. Worthwhile characteristic of the
device is the high level of turbulence in the flow, even without combustion.

Air preheated to 520K passes through a long duct upstream of the step. The methane
is injected at about 1m upstream of the step. Then, it mixes with high temperature air
from clean air heater. Finally, air/methane mixture is injected in the chamber entrance.
The equivalence air-fuel ratio can vary in the range [0.8; 1], but usually the ratio of 1:0.8
is used. The injected velocity of the gas is typically around 50m/s. The level of velocity
fluctuations measured at 0.15m upstream of the step is 11% of the flow velocity in the case
of the honeycomb (in general, velocity fluctuations of 4m/s− 8m/s are observed).

The experimental studies consisted in shadowgraphic visualizations and wall pressure
measurements followed by gas sampling and analysis by chromatography in order to find the
mean concentration profile inside the flame. The velocity profile and turbulence level was
also studied in detail by laser Doppler anemometry. The measurement of the temperature
profiles was made also by means of a pneumatic probe and emission absorption spectroscopy.
A program of measurements by CARS (coherent anti-stokes Raman spectroscopy) led to
measurements of the fluctuating temperature.

1.5m

choked

nozzle

preheated

air

fuel injection PIV, OH, PLIF

CARS, LDV

trottling

plug

(instabilities)

1.4m

Step = 35mm
quartz window to exhaust

honeycomb

Figure 6.1: Scheme of A3C test bench along with optimal diagnostics
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6.2 RANS nonreactive backward-facing step flow

calculation

6.2.1 Computational domain and grid

The configuration is a backward-facing step (figs. 6.2 and 6.3). Given the size the rig A3C,
the computational domain consists only in the combustion chamber. Indeed, the simulation
of entire experimental domain would be computationally expensive and at the same time
unnecessary to describe the physical phenomena of interest. As shown in fig. 6.2, the phys-
ical domain is 𝐿𝑥 = 1.1m horizontally and 𝐻 = 0.1m vertically. The height of the step,
placed at the lower wall, is ℎ = 0.035m and its extremity is located at 0.1m inside the com-
putational domain. Positions will hereafter be given using the step extremity as the origin.
Figure 6.3 represents the main parts of the considered flow. In particular, the experimentally
predicted characteristic size of the recirculation zone is found to be 4.3ℎ in nonreactive flow
[MoreauLabbe1985]. The streamwise position of the reattachment point is denoted by 𝑋𝑟.

X

Y

h = 0.035m

H = 0.1m0.1m

Lx = 1.1m

backward

facing step

Ly = 0.065m

A
B

C
D

E

X

Figure 6.2: Backward-facing step dimensions (the aspect ratio is preserved in this figure) and
sensor point locations for convergence studies

separated shear layer

reattachment

zonerecirculation

zone

upstream boundary layer

4.3h Xr

Figure 6.3: Principal features of a backward step flow

Figure 6.4 shows a close-up view of the step extremity of a 2D grid. The grid is refined in
the 𝑋 and 𝑌 directions at the corner of the step and in the recirculation region. It is made
of 36956 rectangular cells.
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Figure 6.4: 2D grid for backward-facing step flow

6.2.2 Physical models

For nonreactive backward-facing step flow calculations, we consider 𝑘 − 𝑙 and 𝑘 − 𝜔 RANS
turbulence models. Boussinesq viscosity model (BVM) or explicit algebraic Reynolds stress
model (EARSM) is used. Turbulent Prandtl and Schmidt numbers are constant: 𝑃𝑟𝑡 =
𝑆𝑐𝑡 = 0.9. The used wall law allows recovering a skin friction of attached boundary layer.
The thermal conductivity is modeled with the Eucken law. The mixture viscosity is calculated
from the average of viscosities of species (obtained with the Sutherland law). The Schmidt
numbers for all species are constants and equal to unity. (Detailed model description can be
found in CEDRE documentation [ChevalierCourbet2005]).

6.2.3 Boundary conditions

∙ Inlet:

A methane/air mixture (̃︀𝑌CH4
= 0.0446557, ̃︀𝑌N2

= 0.7326543, ̃︀𝑌O2
= 0.22269) is injected

at ̃︀𝑇 = 525K with a equivalent ration being equal to 0.8 (therefore, the mean mixture

fraction ̃︀𝑍 ≈ 0.0446 is constant).

There are two types of inlet conditions for the velocity ̃︀𝑢𝑥, the turbulent energy 𝑘 and
the turbulent length scale 𝑙:

– Homogeneous profiles: The inflow velocity is ̃︀𝑢𝑥 = 58m/s. The inlet values of
the turbulent quantities are 𝑘 = 60m2/s2 and 𝑙 = 0.01m.

– Nonhomogeneous profiles: Figure 6.5 shows vertical profiles of the Favre-
averaged streamwise velocity ̃︀𝑢𝑥, the RMS velocity fluctuations

√︀
2/3𝑘 normalized

by a maximal value of ̃︀𝑢𝑥 and the turbulent length scale 𝑙 normalized by 𝐿𝑦 at inlet
of the backward step. These profiles were obtained after numerical simulation of
a 2D channel of height 𝐿𝑦 = 0.065m, and length 𝐿𝑐ℎ𝑥 = 30𝐿𝑦 = 1.95m. The grid
was uniform, consisting of 89401 cells, each of them has a size of 6.5mm×0.2mm.
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The calculation of this channel was performed with inlet velocity ̃︀𝑢𝑥 = 53m/s,
which yielded maximum outlet velocity of approximately 58m/s.
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Figure 6.5: Vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 (left),

√
2/3𝑘

max(̃︀𝑢𝑥) (center)

and 𝑙
𝐿𝑦

(right) at the inlet of A3C chamber

∙ Outlet:
At outlet, the pressure is set to 𝑃 = 1bar.

∙ Walls:
During numerical simulation the walls are assumed to be adiabatic. In the A3C ex-
periment, the walls are cooled by water, but the wall temperature was not measured.
Assumption of adiabatic walls overestimates the temperature near walls in case of re-
active flow.

In the outlet and inlet sections reflecting boundary conditions are applied.

6.2.4 Numerical methods

The backward Euler temporal integration scheme along with the second order monotonic
upstream scheme for conservation laws (MUSCL) scheme in space are applied. The time
step is fixed to Δ𝑡 = 1× 10−4 s.

6.2.5 Computational strategy

The current version of CEDRE enables grid parallelization by dynamically dividing physical
domain based on the number of available processors. Therefore, the physical domain was
divided into 72 or 128 parts distributed on 72 or 128 Nehalem nodes consisting of two 2.80GHz
quad-core processors. 30 minutes were sufficient to obtain a converged solution in nonreactive
case.

There are three main tools that are used in CEDRE to determine whether reasonable
convergence is achieved within a RANS simulation.

∙ Mass and energy flow balances
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∙ Residual behavior

∙ Mean values integrated over a computational domain; maximum, minimum values

Mass and energy flow balances

Mass and energy flow balances should give a low discrepancy between the positive and
negative sums. The force balance considered to be achieved if this discrepancy is lower than
0.1%. For example, for the converged solution obtained with a 𝑘 − 𝑙 (BVM) model with
nonhomogeneous inlet profiles the inlet of mass flow is equal to the outlet of mass flow at the
order 10−5. Figure 6.6 shows the level of fluctuations of the mass flow at inlet and outlet,
which is defined as the difference between mass flow at inlet and mass flow at outlet divided
by mass flow at inlet. We recall that the residence time in the chamber is
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Figure 6.6: Discrepancy between the positive and negative sums of mass flow during 40
characteristic time in A3C chamber (converged solution); 𝑘 − 𝑙 (BVM) model with nonho-
mogeneous inlet profiles

𝜏 =
𝐿𝑥̃︀𝑢𝑥 ≈ 0.019 s. (6.1)

Residual behavior

The residuals of the calculated quantities 𝑄 should decrease by some amount from the
initial value. They reach a certain value and then remain almost constant for longer compu-
tational time, oscillating about this value with small amplitude. There are many definitions
of residual of the quantity 𝑄 such as maximum, mean or global residuals. The criterion
requires in general that the normalized unscaled residuals drop by three orders of magnitude
(drop to 10−3).

Mean values integrated over a computational domain; maximum, minimum
values

From some point of computational time mean values of all the transported quantities
integrated over the computational domain should be constant in time in the sense that
their fluctuations are negligible compared to the maximal value of the mean considered
quantities. Figure 6.7 demonstrates the error 𝐸𝑟𝑟𝑜𝑟(𝑃 ) and 𝐸𝑟𝑟𝑜𝑟(̃︀𝑇 ) for the converged
solution obtained by the 𝑘 − 𝑙 (BVM) model with nonhomogeneous inlet conditions. The
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error of the quantity 𝑄 integrated over the computational domain is defined as

𝐸𝑟𝑟𝑜𝑟(𝑄) =

⃒⃒⃒⃒
1
𝑉 𝑜𝑙

∫︀
𝑉 𝑜𝑙

𝑄𝑑𝑥−max
𝑡𝑖𝑚𝑒

⃒⃒⃒⃒
1
𝑉 𝑜𝑙

∫︀
𝑉 𝑜𝑙

𝑄𝑑𝑥

⃒⃒⃒⃒⃒⃒⃒⃒
max
𝑡𝑖𝑚𝑒

⃒⃒⃒⃒
1
𝑉 𝑜𝑙

∫︀
𝑉 𝑜𝑙

𝑄𝑑𝑥

⃒⃒⃒⃒ . (6.2)

One can see that the fluctuations of 𝐸𝑟𝑟𝑜𝑟(𝑃 ) and 𝐸𝑟𝑟𝑜𝑟(̃︀𝑇 ) are on the order of 10−6. Let
us denote

𝐷𝑖𝑓𝑓(𝑃 ) =
max
𝑡𝑖𝑚𝑒,𝑥

𝑃 − min
𝑡𝑖𝑚𝑒,𝑥

𝑃

max
𝑡𝑖𝑚𝑒,𝑥

𝑃
, (6.3)

where max
𝑡𝑖𝑚𝑒,𝑥

𝑃 is a maximum pressure and min
𝑡𝑖𝑚𝑒,𝑥

𝑃 is a minimum pressure in the chamber

from some point of computational time. It is found that 𝐷𝑖𝑓𝑓(𝑃 ) ≈ 10−3. Normalized
fluctuations of the mean pressure 𝐸𝑟𝑟𝑜𝑟(𝑃 ) ≈ 10−6 are negligible in comparison with the
normalized difference between the maximum and minimum pressure 𝐷𝑖𝑓𝑓(𝑃 ) ≈ 10−3. These
quantities have the same behavior during about 40𝜏 . It means that the solution is converged.
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Figure 6.7: Errors of mean pressure 𝑃 (left) and Favre-averaged temperature ̃︀𝑇 (right)
integrated over the computational domain of converged solution during 40 characteristic
time in A3C chamber. 𝑘 − 𝑙 (BVM) model with the nonhomogeneous inlet profiles

Maximum and minimum quantities are constant in the same sense that in previous crite-
rion of convergence.

Quantities 𝑃 , ̃︀𝑢𝑥, ̃︀𝑢𝑦, ̃︀𝑇 , 𝑘 and 𝑙 integrated over the computational domain remain constant
in time at five points placed in the chamber at coordinates represented in table 6.1 in the
sense that their fluctuations can be neglected compared to the maximum value of considered
quantity. The same criterion is used for maximum and minimum values.
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Point X Y Z X/h Y/h Z/h in RANS Z/h in LES

A 0.005 0.02 0.035 0.14 0.57 0 1
B 0.01 -0.005 0.035 0.29 -0.14 0 1
C 0.035 0.012 0.035 1 0.34 0 1
D 0.55 0.027 0.035 15.7 0.77 0 1
E 0.77 0.04 0.035 22 1.14 0 1

Table 6.1: Position of sensor points in backward-facing step flow. Schematic distribution of
these points is given in fig. 6.2.

6.2.6 Results

The main interest of this calculation is an initialization of fields for the backward-facing step
reactive flow and a validation of turbulence models.

Recirculation region

The study of 𝑘−𝜀 (BVM) turbulence model was performed in [Ourliac2009]. During his work
M. Ourliac showed that in the given homogeneous boundary conditions cited in the previous
subsection, the 𝑘 − 𝜀 model underestimated the recirculation region, i.e. a fresh gas and a
burnt gas were too rapidly mixed. Therefore, we consider in this work only 𝑘 − 𝑙 and 𝑘 − 𝜔
turbulence models. As we can see in fig. 6.8 the numerical results are significantly different
depending on the turbulence model. A slight separation of the boundary layer occurs at the
upper wall (fig. 6.8). The transverse velocity ̃︀𝑢𝑦 is low throughout the flow, except in the
recirculation region where it is the same order of magnitude that the longitudinal velocitỹ︀𝑢𝑥.

A region of recirculating flow is clearly visible in all simulations (see fig. 6.8) No secondary
vortex is captured with the 𝑘 − 𝑙 and 𝑘 − 𝜔 turbulence models on the opposite side wall of
the step. It is known that the recirculation region is important for the flame stabilization.
However, the influence of the secondary recirculation region on the flame stabilization is
minor, so it is not necessary to further refine the grid for the RANS simulation in order to
properly capture this effect.

The table 6.2 summarizes the comparison of the ratio between the mean reattachment
length and the size of the step 𝑋𝑟/ℎ. The exact determination of 𝑋𝑟 is difficult due to
fuzzy character of the eddy edge. The error of estimation of 𝑋𝑟 is about ±0.2ℎ. The
mean experimental reattachment length is 4.3 [MoreauLabbe1985]. One can notice that
independently on inlet boundary conditions considered in section 6.2.3 the mean reattachment
length is in a better agreement with the experiment for the 𝑘 − 𝑙 turbulence model. In this
case, the relative error of the numerical results with the experimental value is 12.3%, which
is significantly lower than other errors obtained with the 𝑘−𝜔 turbulence models. Note that
in all the RANS simulations discussed here the reattachment length 𝑋𝑟 is overestimated. We
recall that 𝑋𝑟/ℎ = 7.8 in the PhD work of B. Saint-Rose (RANS, 𝑘 − 𝜔 (BVM) model with
nonhomogeneous inlet profiles) [SainteRose2010].
The analysis of the recirculation region length shows that the fresh and burnt gas intermix
slowly, especially in the case of the 𝑘 − 𝜔 model where the error exceeds 32%. As the flame
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𝑘 − 𝑙 (BVM) 𝑘 − 𝜔 (BVM) 𝑘 − 𝜔 (EARSM) Exp

𝑋𝑟/ℎ 4.83 6.34 5.77 4.3
Error 12.3% 47.4% 31.86% −

Table 6.2: Mean reattachment location 𝑋𝑟 in nonreactive backward-facing step flow rescaled
by the step height ℎ. The last column shows the relative error of the numerical results with
respect to the experimental value.

angle decreases with increasing 𝑋𝑟, it will be underestimated by the 𝑘 − 𝜔 model in the
reactive flow.

Figure 6.8: Recirculation regions in nonreactive backward-facing step flow; 2: 𝑘 − 𝑙 (BVM)
model with homogeneous inlet profiles, 3: 𝑘 − 𝑙 (BVM) model with nonhomogeneous inlet
profiles, 4: 𝑘 − 𝜔 (BVM) model with homogeneous inlet profiles, 5: 𝑘 − 𝜔 (EARSM) model
with homogeneous inlet profiles

Favre-averaged velocity

Vertical profiles of the Favre-averaged streamwise and transverse velocities are compared
with experimental data in figs. 6.9 and 6.10. According to the reference frame introduced
in fig. 6.2, 𝑋 denotes the distance from the step extremity. The solutions obtained with the
𝑘 − 𝜔 turbulence model using either BVM or EARSM almost coincide.

The comparison of mean streamwise velocity ̃︀𝑢𝑥 shows a satisfactory agreement between
the experimental and simulation data. Largest differences with the experimental measure-
ments are observed in the lower part of the chamber (𝑌 < 0m). Nevertheless, in this part of
the chamber the results of the 𝑘−𝜔 turbulence model calculation are in good agreement with
the experimental data when 𝑋 ≤ 0.02m. The absolute value of the mean streamwise velocitỹ︀𝑢𝑥 is overestimated by the 𝑘 − 𝑙 turbulence model when 𝑋 < 0.1m. However, one should
take into account that this area is difficult to cover experimentally because of a complicated
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particle seeding. Near the inlet, the profiles of the longitudinal velocity ̃︀𝑢𝑥 are overestimated
in all the simulations where the homogeneous boundary conditions are applied.

In the upstream area, ̃︀𝑢𝑥 is in good agreement with experimental measurements, in par-
ticular for the 𝑘 − 𝑙 turbulence model with nonhomogeneous inlet conditions.

Unlike to ̃︀𝑢𝑥, the profiles of transverse velocity ̃︀𝑢𝑦 show very pronounced differences with
the experimental data. When 𝑋 < 0.12m, the transverse velocity is largely overestimated
by the 𝑘 − 𝜔 turbulence model for 𝑌 < 0m. The 𝑘 − 𝑙 turbulence model seems to yield
better agreement in the recirculation region except near the step extremity (𝑋 ≤ 0.02m,
𝑌 < 0m). The absence of the secondary counter rotation vortex in the simulation can
explain this difference. The fluid rises along the wall without undergoing inverse influence.
For 𝑌 ∈ [0.02m; 0.06m], the simulation predicts the flow deflected downwardly whereas
experimentally the flow is directed upwards. In particular, there is an important gradient of
the mean transverse velocity near the upper wall in the 𝑌 direction. The presence of such
the gradient confirms the existence of a detachment of the boundary layer along the upper
wall.
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Figure 6.9: Vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 in nonreactive
backward-facing step flow; 1: experimental data, 2: 𝑘 − 𝑙 (BVM) model with homogeneous
inlet profiles, 3: 𝑘 − 𝑙 (BVM) model with nonhomogeneous inlet profiles, 4: 𝑘 − 𝜔 (BVM)
model with homogeneous inlet profiles, 5: 𝑘 − 𝜔 (EARSM) model with homogeneous inlet
profiles
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Figure 6.10: Vertical profiles of Favre-averaged transverse velocity ̃︀𝑢𝑦 in nonreactive
backward-facing step flow; 1: experimental data, 2: 𝑘 − 𝑙 (BVM) model with homogeneous
inlet profiles, 3: 𝑘 − 𝑙 (BVM) model with nonhomogeneous inlet profiles, 4: 𝑘 − 𝜔 (BVM)
model with homogeneous inlet profiles, 5: 𝑘 − 𝜔 (EARSM) model with homogeneous inlet
profiles

RMS velocity fluctuations

Within the RANS approach we consider that the fluctuating velocity is isotropic. Each
component is equal and calculated as

𝑢𝑅𝑀𝑆
𝑥 = 𝑢𝑅𝑀𝑆

𝑦 =

√︂
2

3
𝑘. (6.4)

Vertical profiles of RMS velocity fluctuations compared with experimental data are presented
in figs. 6.11 and 6.12. 𝑢𝑅𝑀𝑆

𝑥 and 𝑢𝑅𝑀𝑆
𝑦 calculated by the 𝑘−𝑙 turbulence model with nonhomo-

geneous initial conditions has good agreement with experimental RMS velocity fluctuations
in the upper part of the chamber. 𝑢𝑅𝑀𝑆

𝑥 and 𝑢𝑅𝑀𝑆
𝑦 obtained with homogeneous inlet profiles

independently on the turbulence model overestimate approximately twice the experimental
velocity fluctuations for 𝑋 > 0m. Independently on the turbulence model and inlet profiles,
numerical 𝑢𝑅𝑀𝑆

𝑥 and 𝑢𝑅𝑀𝑆
𝑦 overestimate the experimental velocity fluctuations in the lower

part of the chamber (𝑋 ≤ 0m). Thus, for example, the maximal calculated value of 𝑢𝑅𝑀𝑆
𝑦 is

approximately 12m/s, while it is 5m/s in the experiment.
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Figure 6.11: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑥 in nonreactive backward-facing step flow; 1: experi-

mental data, 2: 𝑘 − 𝑙 (BVM) model with homogeneous inlet profiles, 3: 𝑘 − 𝑙 (BVM) model
with nonhomogeneous inlet profiles, 4: 𝑘−𝜔 (BVM) model with homogeneous inlet profiles,
5: 𝑘 − 𝜔 (EARSM) model with homogeneous inlet profiles
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Figure 6.12: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑦 in nonreactive backward-facing step flow; 1: experi-

mental data, 2: 𝑘 − 𝑙 (BVM) model with homogeneous inlet profiles, 3: 𝑘 − 𝑙 (BVM) model
with nonhomogeneous inlet profiles, 4: 𝑘−𝜔 (BVM) model with homogeneous inlet profiles,
5: 𝑘 − 𝜔 (EARSM) model with homogeneous inlet profiles
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Turbulent frequency

The vertical profiles of turbulent frequency 𝜔 calculated with different turbulence models are
plotted in fig. 6.13. Near the walls, the turbulent frequency calculated with the 𝑘− 𝜔 model
is about 10 times greater than the turbulent frequency obtained with the 𝑘 − 𝑙 approach.
An important difference of 𝜔 takes place within 1 cm from the wall. Inside the chamber
the turbulent frequency is similar for turbulence models. The high values of the turbulent
frequency in the 𝑘 − 𝜔 model imply that the equilibrium reacting fine-structure fraction 𝛾*𝑒𝑞
will be close to one in the RANS/TPaSR approach when reactive flow will be considered. It
means that the behavior of the turbulent flame will be the same that in RANS/quasi-laminar
approach.

Y [m]
0 0.05

500

1000

1500

2000

2500

X = 0.02 m

Y [m]
0 0.05

500

1000

1500

X = 0.04 m

Y [m]
0 0.05

200

400

600

800

1000

X = 0.08 m

Y [m]
0 0.05

500

1000

1500

2000

2500

3000

3500

4000

2
3
4
5

X = 0.01 m

Y [m]
0 0.05

200

400

600

800

1000

X = 0.06 m

Y [m]
0 0.05

200

400

600

800

1000

X = 0.1 m

Y [m]
0 0.05

200

400

600

800

1000

X = 0.12 m

Y [m]
0 0.05

200

400

600

800

1000

X = 0.21 m

Figure 6.13: Vertical profiles of turbulent frequency 𝜔 [Hz] in nonreactive backward-facing
step flow; 2: 𝑘 − 𝑙 (BVM) model with homogeneous inlet profiles, 3: 𝑘 − 𝑙 (BVM) model
with nonhomogeneous inlet profiles, 4: 𝑘−𝜔 (BVM) model with homogeneous inlet profiles,
5: 𝑘 − 𝜔 (EARSM) model with homogeneous inlet profiles

6.2.7 Conclusions

The 𝑘− 𝑙 and 𝑘− 𝜔 turbulence models are used to simulate the nonreactive flow behind the
backward-facing step. The Reynolds stress tensor is modeled either with the BVM or with
the EARSM. The homogeneous and nonhomogeneous inlet profiles of the Favre-averaged
streamwise velocity, the turbulent energy and the turbulent length scale are considered.
Steady results are obtained and compared with the available experimental measurements.

It is found that the 𝑘 − 𝑙 (BVM) turbulence model yields a more accurate estimation of
the recirculation region length, than the 𝑘 − 𝜔 turbulence model (BVM or EARSM). The
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nonhomogeneous inlet profiles improve agreement between calculations and experimental
profiles in the upper part of the chamber.

6.3 RANS reactive backward-facing step flow

calculation

At ̃︀𝑇 = 525K, the kinematic viscosity of the mixture is 4× 10−5m2/s. It implies that the
turbulent Reynolds number (2.22) is

𝑅𝑒𝑡 = 5× 104 (6.5)

and the Kolmogorov length scale (2.9) is

𝜂𝐾 = 0.1mm. (6.6)

In our conditions for reactive backward-facing step flow, the laminar flame speed is 𝑆𝐿 =
0.9m/s and the flame thickness is 𝛿𝐿 = 5.483 54× 10−4m. From the chemical time scale
of 𝜏𝑐ℎ = 6.092 82× 10−4 s, we deduce that the turbulent Damkohler number (2.24) and the
Karlovitz number (2.25) are

𝐷𝑎 ≈ 9.5, 𝐾𝑎 ≈ 30.069. (6.7)

Consequently, one can conclude that this is a regime of thickened flame, where small eddies
of the turbulence disturb the internal structure of the flame, causing its thickening.

6.3.1 Numerical setup

In reactive case, we use the same computational domain, grid, boundary conditions and
physical models as in the calculation of nonreactive flow described above in section 6.2.2.
The 𝑘 − 𝑙 turbulence model with BVM is only considered.

The measurements of the temperature in [MagreMoreau1988] were done in a water-cooled
combustion facility. Thus, in the experiment wall heat fluxes and the redistribution of the
heat through metal walls by means of thermal diffusion took place. Since [MagreMoreau1988]
does not contain a detailed description of temperature balance of walls being simultaneously
cooled by water and heated by flame, during numerical simulation the walls are assumed to
be adiabatic. These boundary conditions obviously correspond to a simplified representation
of the experiment. As a consequence, the approximation of the adiabatic walls overestimates
temperature at the lower wall and underestimates the temperature in the upstream part of
upper wall (i.e. there no reaction takes place).

The physical domain was divided into 64 or 128 parts distributed on 64 or 128 Nehalem
nodes consisting of two 2.80GHz quad-core processors. 15 hours were sufficient to obtain
a converged solution in reactive case, if the flame was lit and calculation started from a
previous converged solution obtained by another model.
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6.3.2 Combustion modeling

In the case of the RANS/quasi-laminar with reduced chemical mechanism (QL RCM) and the
RANS/TPaSR model the methane combustion in air is modeled by a global two-step chemical
reaction, which describes a complete combustion of methane, the resultant products being
CO, CO2 and H2O [WestbrookDryer1981]:

CH4 + 1.5O2 → 2H2O+ CO 0.5O2 + CO ↔ CO2 (6.8)

The two-step reaction offers only an approximate description of methane oxidation and,
in particular, overestimates the Favre-averaged temperature ̃︀𝑇 . The implementation of a
detailed kinetic mechanism in a computational fluid dynamics (CFD) code is still prohibitive
due to the high associated computational costs. In order to overcome this difficulty, the FTC
approaches are also used:

∙ RANS/PFTC 𝛽-PDF

∙ RANS/PFTC without turbulence-chemistry interaction (noTCI)

These approaches allow accurate description of the main thermo-chemical phenomena
with a relatively low computational cost of methane combustion modeling. It aims to describe
the detailed chemistry by a reduced transported number of mass fractions in CEDRE such
as: ̃︀𝑌CH4

, ̃︀𝑌O2
, ̃︀𝑌N2

, ̃︀𝑌CO, ̃︀𝑌CO2
and ̃︀𝑌H2O

.

The quasi-laminar table is done with two entry parameters: mixture fraction ̃︀𝑍 and
progress variable ̃︀𝐶. In order to generate laminar premixed FTC table, one-dimensional
laminar unstretched premixed flames are first solved in physical space, for different values
of the mixture fraction. Then, the obtained solutions are stored in the FTC table, using
index variables 𝑍 and 𝐶 (considering that the variable 𝐶 is evaluated from the species mass

fractions). The Favre-averaged progress variable ̃︀𝐶 is defined as

̃︀𝐶 =
̃︀𝑌CO + ̃︀𝑌CO2

𝑌 𝑒𝑞
CO + 𝑌 𝑒𝑞

CO2

. (6.9)

The quasi-laminar table containing 60 species has 200 points in ̃︀𝐶 and 20 points in ̃︀𝑍 con-
centrated around ̃︀𝑍 = 0.0446. 𝛽-PDF integration is performed. The turbulent table have
the same size as quasi-laminar, but in addition it possess 25 points in the variance progress

variable space ̃︂𝐶 ′′2 uniformly distributed between 0 and ̃︀𝐶 (︁1− ̃︀𝐶)︁.
In previous PhD works on related subjects at ONERA [Courtois2005; Soulard2005;

Ourliac2009; SainteRose2010], the chemistry is taken into account only by one irreversible
global methane-air reaction.

6.3.3 Results

The first idea was to validate PFTC 𝛽-PDF and TPaSR models performing calculations
with the backward Euler and the second order Riemann invariants-based flow decentering
operator (ODFI) spatial schemes. Unfortunately, only the PFTC noTCI model converges
in this configuration. With other chemical mechanisms solutions do not converge, which
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could be possibly explained by numerical acoustic waves generated by reflecting boundary
conditions used at inlet and outlet of the computational domain.

The second step to achieve the convergence for other chemical models with the backward
Euler scheme and the second order MUSCL scheme consists in attaching a box at the outlet
boundary of the combustion chamber. Two different computational domains are presented
in fig. 6.14. The mesh is refined in the combustion chamber (𝑋 < 1m) as it is shown in
fig. 6.4, while the cell size progressively increases at the outlet of the box. In the domain
of the combustion chamber, the 2nd order spatial scheme was used and in the box the 1st
order or the 2nd order spatial scheme was applied. The reattachment boundary condition
was imposed between two domains in the case of using different orders of numerical spatial
scheme . For the box presented in the right part of the left panel of fig. 6.14 we considered slip
boundary conditions instead of adiabatic walls. For the right domain in fig. 6.14 the regular
grid was used everywhere. On these configurations with the reflecting boundary conditions
at inlet and outlet solutions calculated with chemical models described in section 6.3.2 did
not converge due to traveling numerical waves in the channel. That was why we considered
only the 1st order ODFI scheme in space.
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Figure 6.14: Two computational domains to evacuate acoustic waves; left: sudden enlarge-
ment, right: prolongation of domain

Quasi-laminar approaches

Table 6.3 presents some simulation details for quasi-laminar approaches.

Method Boundary condition Time step Δ𝑡

PFTC noTCI backward Euler with
MUSCL scheme

nonhomogeneous 3× 10−5 s

PFTC noTCI RK2 with 1st order ODFI
scheme

nonhomogeneous 4× 10−7 s

QL RCM RK2 with 1st order ODFI
scheme

nonhomogeneous 4× 10−7 s

Table 6.3: Considered test-cases for RANS/quasi-laminar models for reactive backward-
facing step flow. Explicit second-order Runge Kutta method in time is denoted by RK2.
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Favre-averaged temperature In fig. 6.15, isolines of ̃︀𝑇 = 1500K are displayed for three
quasi-laminar computations and compared to the measurements. In the recirculation region
(0.1m < 𝑋 < 0.3m) the PFTC noTCI model gives satisfying value of the flame angle. In the
main part of the combustion chamber (0.3m < 𝑋 < 0.7m) the flame angle is overestimated,
whereas it is underestimated near the upper wall. In the case of reduced chemistry, the flame
angle is overestimated in the entire domain.
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Figure 6.15: 1500K temperature isolines in reactive backward-facing step flow; RANS/quasi-
laminar approaches; blue curve: PFTC noTCI with 2nd order spatial scheme; red curve:
PFTC noTCI with 1st order spatial scheme

Figure 6.16 shows the vertical temperature profiles of ̃︀𝑇 calculated with quasi-laminar
approaches: tabulated detailed chemistry and reduced chemistry as presented in table 6.3.
They are compared with the experimental results obtained by [MagreMoreau1988]. In lower
part of the chamber (𝑌 < 0m) for 𝑋 ≤ 0.15m of the chamber the numerical temperature
is overestimated due to the adiabatic boundary conditions. For 𝑋 ≥ 0.25m the detailed
chemical mechanism of methane/air combustion describes better the experiment than the
global two-step chemical reaction. In the two cases it is necessary to take into account the
turbulence-chemistry interaction in order to spread the temperature profiles. One can also
note that the temperature profiles calculated with the 1st order ODFI scheme is close to the
temperature profiles obtained with the MUSCL scheme of the second order.
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Figure 6.16: Vertical profiles of Favre-averaged temperature ̃︀𝑇 in reactive backward-facing
step flow; RANS/quasi-laminar approaches; blue curve: PFTC noTCI with 2nd order spatial
scheme; black curve: PFTC noTCI with 1st order spatial scheme

Favre-averaged streamwise velocity The profiles of Favre-averaged streamwise velocitỹ︀𝑢𝑥 are demonstrated in fig. 6.17. One can note that the use of the detailed chemistry clearly
improves the results. The quasi-laminar approach with the reduced chemical mechanism
overestimates the velocity, especially in the low part of the chamber, where it is almost two
times greater than the experimentally observed velocity.

Favre-averaged transverse velocity Transverse velocity ̃︀𝑢𝑦 is presented in fig. 6.18. As
for streamwise velocity ̃︀𝑢𝑥 the detailed chemistry improves the results in case of quasi-laminar
model.

RMS velocity fluctuations The used 𝑘−𝑙 turbulence model is based on isotropic velocity
fluctuations. Each component of RMS velocity fluctuation is calculated as

𝑢𝑅𝑀𝑆
𝑥 = 𝑢𝑅𝑀𝑆

𝑦 =

√︂
2

3
𝑘. (6.10)

Figures 6.19 and 6.20 show the RMS values of velocity. They are underestimated for 𝑢𝑅𝑀𝑆
𝑥 and

overestimated for 𝑢𝑅𝑀𝑆
𝑦 , whereas both of these quantities are overestimated in the nonreactive

flow.
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Figure 6.17: Vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 in reactive backward-
facing step flow; RANS/quasi-laminar approaches; blue curve: PFTC noTCI with 2nd order
spatial scheme; black curve: PFTC noTCI with 1st order spatial scheme
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Figure 6.18: Vertical profiles of Favre-averaged transverse velocity ̃︀𝑢𝑦 in reactive backward-
facing step flow; RANS/quasi-laminar approaches; blue curve: PFTC noTCI with 2nd order
spatial scheme; black curve: PFTC noTCI with 1st order spatial scheme
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Figure 6.19: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑥 in reactive backward-facing step flow; RANS/quasi-

laminar approaches; blue curve: PFTC noTCI with 2nd order spatial scheme; black curve:
PFTC noTCI with 1st order spatial scheme
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Figure 6.20: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑦 in reactive backward-facing step flow; RANS/quasi-

laminar approaches; blue curve: PFTC noTCI with 2nd order spatial scheme; black curve:
PFTC noTCI with 1st order spatial scheme
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PFTC 𝛽-PDF models

Table 6.4 represents different test-cases which we investigate for the PFTC 𝛽-PDF model,
denoted as PFTC 𝛽-PDF 𝑁1−𝑁2. The first number 𝑁1 signifies the model used for modeling

of dissipation term in the transport equation of the Favre variance of progress variable ̃︂𝐶 ′′2

(see table 4.2). The second number 𝑁2 denotes the choice of modeling of source in the

transport equation of ̃︂𝐶 ′′2 (see table 4.1). The transport equation for ̃︂𝐶 ′′2 is considered.

Method Boundary condition Time step Δ𝑡

PFTC 𝛽-PDF 20-2 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 30-3 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 60-1 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 60-6 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 70-7 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 80-8 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
PFTC 𝛽-PDF 90-9 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s

Table 6.4: Considered test-cases for RANS/PFTC 𝛽-PDF models in reactive backward-facing
step flow

The models PFTC 𝛽-PDF 10-1 and PFTC 𝛽-PDF 10-2 are not presented, because the
flame is narrowed in these cases.

Favre-averaged temperature Similarly to the quasi-laminar approach, the Favre-averaged
temperature is overestimated within the PFTC 𝛽-PDF method at the lower wall due to sim-
plified boundary conditions, see fig. 6.21. In the entire domain, all models except of the
PFTC 𝛽-PDF 60-1 and 20-2 give similar profiles of Favre-averaged temperature. Both mod-
els remain in good agreement with the experimental data in comparison with other considered
PFTC 𝛽-PDF models.

The temperature fields for two models: PFTC 𝛽-PDF 20-2 and 60-1 are presented in
figs. 6.22 and 6.23. The option 20 corresponds to the ITNFS model for modeling of dissipa-

tion term in the transport equation of ̃︂𝐶 ′′2. In the option 60 for modeling of dissipation term
the wrinkling factor is approximated by constant of 5. ITNFS model (PFTC 𝛽-PDF 20-
2) underestimates the values of temperature, while PFTC 𝛽-PDF 60-1 overestimates them.

Close to the outlet boundary 𝑋 = 0.71m ̃︀𝑇 obtained with the ITNFS model follows the ex-
perimental data that is not the case for others models. In PFTC 𝛽-PDF 20-2 the temperature
diffuses more than in PFTC 𝛽-PDF 60-1 model.
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Figure 6.21: Vertical profiles of Favre-averaged temperature ̃︀𝑇 in reactive backward-facing
step flow; RANS/PFTC 𝛽-PDF
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Figure 6.22: Field of Favre-averaged temperature ̃︀𝑇 [K] in reactive backward-facing step flow;
RANS/PFTC 𝛽-PDF 20-2
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Figure 6.23: Field of Favre-averaged temperature ̃︀𝑇 [K] in reactive backward-facing step flow;
RANS/PFTC 𝛽-PDF 60-1
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Favre variance of progress variable in PFTC 𝛽-PDF approach Figure 6.24 rep-

resents a comparison of vertical profiles of progress variable variances ̃︂𝐶 ′′2 for four models:
20-2, 40-4, 60-1 and 80-8 at the same locations as the temperature profiles. The values of
progress variable variance calculated with 40-4 and 80-8 models are similar (the difference
between them is less than 20%).

Since the progress variable variance influences the temperature field, we can conclude

that the maximum value of ̃︂𝐶 ′′2 = 0.12 is not sufficient to diffuse the flame near the isolinẽ︀𝑇 = 1500K. The PFTC 𝛽-PDF 20-2 which underestimates the temperature has a peak

at ̃︂𝐶 ′′2 = 0.23, while the PFTC 𝛽-PDF 60-1 model has a maximal peak at ̃︂𝐶 ′′2 = 0.19
for 𝑋 ≤ 0.46m. As the experimental data for the temperature are located between two
numerical profiles calculated with PFTC 𝛽-PDF 20-2 and PFTC 𝛽-PDF 60-1 models, we

can conclude that the peaks of ̃︂𝐶 ′′2 and its maximal values should be located between two
profiles calculated with PFTC 𝛽-PDF 20-2 and PFTC 𝛽-PDF 60-1 models.
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Figure 6.24: Vertical profiles of Favre variance of progress variable ̃︂𝐶 ′′2 in reactive backward-
facing step flow; RANS/PFTC 𝛽-PDF

Favre-averaged streamwise velocity The streamwise velocity ̃︀𝑢𝑥 is shown in fig. 6.25.
PFTC noTCI model approximates the profiles better than PFTC 𝛽-PDF series of models.
Among PFTC 𝛽-PDF, the best results were obtained using PFTC 𝛽-PDF 20-2. All models
in this series overestimate the Favre-averaged streamwise velocity, except PFTC 𝛽-PDF 20-2,
which underestimates the velocity ̃︀𝑢𝑥 for 𝑋 ≥ 0.12m.
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Favre-averaged transverse velocity The Favre-averaged transverse velocity ̃︀𝑢𝑦 is pre-
sented in fig. 6.26. The PFTC 𝛽-PDF 20-2 model gives satisfying agreement of the numerical
profiles of mean transverse velocity with the experimental data. For other PFTC 𝛽-PDF
models, the absolute values of velocity are overestimated. PFTC 𝛽-PDF models improve the
velocity values in comparison with PFTC noTCI approach near the lower part of the step
nose region.

RMS velocity fluctuations The vertical profiles of RMS velocity fluctuations at different
locations are shown in figs. 6.27 and 6.28. The main point of the comparison of these
profiles with the experimental results is that nonhomogeneous inlet profiles allow decreasing
fluctuations in the upper step nose region approximating better the experimental data. We
also observe that the overestimation of 𝑢𝑅𝑀𝑆

𝑥 is compensated by the underestimation of 𝑢𝑅𝑀𝑆
𝑦 .
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Figure 6.25: Vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 in reactive backward-
facing step flow; RANS/PFTC 𝛽-PDF
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Figure 6.26: Vertical profiles of Favre-averaged transverse velocity ̃︀𝑢𝑦 in reactive backward-
facing step flow; RANS/PFTC 𝛽-PDF
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Figure 6.27: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑥 in reactive backward-facing step flow; RANS/PFTC
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Figure 6.28: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑦 in reactive backward-facing step flow; RANS/PFTC
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TPaSR model

Table 6.5 shows the test cases considered in the simulation with the RANS/TPaSR model.

Residence time 𝐶𝜔 Method Boundary condition Time step Δ𝑡

geom. 10.5 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
geom. 5 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
geom. 15 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
kol. 10.5 RK2 with 1st order ODFI sch. nonhomogeneous 4× 10−7 s
magn. 10.5 RK2 with 1st order ODFI sch. nonhomogeneous 1× 10−7 s

Table 6.5: Considered test-cases for RANS/TPaSR approach in reactive backward-facing step
flow. Following abbreviations are used: ”geom.” - geometrical fine structure residence time,
”kol.” - Kolmogorov fine structure residence time and ”magn.” - Magnussen fine structure
residence time.

Favre-averaged temperature Figure 6.29 shows the vertical profiles of mean tempera-
ture ̃︀𝑇 at different locations𝑋 calculated with the RANS/TPaSR model. Different definitions
of subgrid residence time 𝜏 * with variation of 𝐶𝜔 constant are considered. Profiles are com-
pared with the experimental points. The comparison shows that the TPaSR model with
the geometrical subgrid residence time 𝜏 * =

√
𝜏𝐾𝜏𝐿 yields the best agreement between the

calculation and the experiment. The variation of the constant 𝐶𝜔 for geometrical subgrid
residence time proves that the dependence of solution on 𝐶𝜔 is continuous.

When 𝐶𝜔 is less than 10.5, the fresh gas goes in the cell and the temperature decreases. On
the contrary, if 𝐶𝜔 exceed 10.5, the burned gas enters in the cell and the temperature increases
in the region of the chemical reactions. In order to preserve the model stability, the influence
of 𝐶𝜔 should be relatively weak, which is indeed fulfilled for the results described here. This
signifies that a small change of 𝐶𝜔 does not change a global solution of system. Furthermore,
according to our expectations, the best result is indeed obtained with theoretically predicted
value of 𝐶𝜔 = 10.5.

To understand the difference between the TPaSR solutions obtained with the Kolmogorov
𝜏𝐾 , the Magnussen 0.41𝜏𝐾 and the geometrical

√
𝜏𝐾𝜏𝐿 subgrid residence times, let us consider

the vertical profiles of the volume fraction of the fine structure region 𝛾* and its equilibrium
state 𝛾*𝑒𝑞, which are presented in fig. 6.30. The constant 0.41 in the definition of the Magnussen
time allows increasing the values of 𝛾* and 𝛾*𝑒𝑞. Indeed 𝛾

* and 𝛾*𝑒𝑞 calculated with Magnussen
time is approximately 1.3 larger than 𝛾* and 𝛾*𝑒𝑞 obtained with the Kolmogorov subgrid
residence time. In the lower region of the step nose the values of 𝛾* and 𝛾*𝑒𝑞 are lower than
0.5. Then, it continuously increases, thus for 𝑋 = 0.71m, at the lower wall 𝛾*𝑒𝑞 = 𝛾* = 0.82
for geometrical time and close to 𝛾*𝑒𝑞 = 𝛾* = 0.92 for the Magnussen and the Kolmogorov
times. In the vertical middle region the values of the volume fraction of the fine-structure
region in equilibrium state for

√
𝜏𝐾𝜏𝐿 are approximately 0.2, the volume fraction of the

fine-structure region is slightly overestimated compared to its equilibrium value. The large
variation of 𝛾*𝑒𝑞 (from 0.2 to 0.8) along the vertical cross-section with mean value 0.2 attained
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Figure 6.29: Vertical profiles of Favre-averaged temperature ̃︀𝑇 in reactive backward-facing
step flow; RANS/TPaSR

in the middle of the cross-section allows a more precise calculation of the flame than in the
case of the Kolmogorov and the Magnussen subgrid residence time. The adaptation of the
TPaSR model to the RANS simulation allows increasing 𝛾* in comparison with 𝛾*𝑒𝑞, that
improves the mixture between the burnt and fresh gases.

In order to provide the details of operation of the TPaSR model, let us consider the
vertical profiles of the mean temperature ̃︀𝑇 and the temperature 𝑇 * in the fine structure
region. Figure 6.31 evidences that the temperature in the fine-structure regions 𝑇 * is greater
than the mean temperature ̃︀𝑇 according to the following theoretical prediction:

̃︀𝑇 = 𝛾*𝑇 * + (1− 𝛾*)𝑇 0 ≤ 𝛾*𝑇 *. (6.11)

The gradient observed in 𝑇 * temperature profile is larger than the gradient in the profile
of ̃︀𝑇 . The similar behavior is observed for mass fractions.

Figure 6.32 shows the distribution of the Favre-averaged temperature ̃︀𝑇 in the combustion
chamber, obtained with the geometrical fine structure residence time.

The temperature calculated with TPaSR model using the geometrical subgrid residence
time better approaches the experimental data than other considered models (i.e. quasi-

laminar and PFTC 𝛽-PDF models). Isolines of temperature ̃︀𝑇 = 1500K in reactive backward-
facing step flow calculated with the TPaSR and the PFTC 𝛽-PDF 20-2, 60-1 are presented
in fig. 6.33. The PFTC 𝛽-PDF 60-1 model overestimates the flame angle, while the PFTC
𝛽-PDF 20-2 model underestimates it in the entire domain except the region where the flame
impacts the upper wall. The flame angle reconstructed with the TPaSR model stays close
to the experimental values for 𝑋 ≤ 0.4m. The angle is overestimated for 0.4m < 𝑋 < 0.7m
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Figure 6.30: Vertical profiles of volume fraction 𝛾* of the fine structure and its equilibrium
state 𝛾*𝑒𝑞 in reactive backward-facing step flow; RANS/TPaSR

and underestimated at the point 𝑋 = 0.8m. Calculation using the PFTC noTCI model on
the same grid with the same inlet and outlet boundary conditions overestimates the flame
angle for 𝑋 ≥ 0.25m and underestimates it at 𝑋 = 0.8m (see fig. 6.15).

The chemical source calculated with variables of fine-structure region and then multiplied
by 𝛾* is used in the transport equation for the Favre-averaged mass fractions. It is significantly
lower than in the RANS/QL RCM approach. Consequently, as represented in figs. 6.15
and 6.33, the angle of the flame front decreases.
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Figure 6.31: Comparison of vertical profiles of Favre-averaged temperature ̃︀𝑇 and tempera-
ture in fine structure region 𝑇 * in reactive backward-facing step flow; RANS/TPaSR
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Figure 6.33: Isolines of temperature ̃︀𝑇 = 1500K in reactive backward-facing step flow; RANS
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Favre-averaged streamwise velocity The vertical profiles of Favre-averaged streamwise
velocity ̃︀𝑢𝑥 at different 𝑋 locations are presented in fig. 6.34. They are obtained according
different subgrid residence times 𝜏 *: geometrical, Kolmogorov and Magnussen. The best
result is observed for the geometrical subgrid residence time. The variation of 𝐶𝜔 constant
for the geometrical subgrid residence time gives approximately the same results. The curves
remain close to each other for 𝑋 ≤ 0.15m. The profiles for 𝐶𝜔 = 10.5 are located between the
profiles obtained with 𝐶𝜔 = 5 and 𝐶𝜔 = 15. That signifies that the TPaSR model depends
continuously on 𝐶𝜔.

Favre-averaged transverse velocity Figure 6.35 shows vertical profiles of the Favre-
averaged transverse velocity ̃︀𝑢𝑦. In the step nose region the numerical transverse velocity is
negative while in the experiment it is positive. In the middle part of the combustion chamber
the velocity has a satisfactory agreement with the experimental data for the TPaSR model
with the geometrical subgrid residence time 𝜏 *. The minimal peaks of the transverse velocity
are shifted to the upper wall. For 𝑋 ≥ 0.25m the absolute values of ̃︀𝑢𝑦 are overestimated.
The model with Kolmogorov subgrid residence time better approximates the experimental
results than the model with Magnussen subgrid residence time. The variation of 𝐶𝜔 constant
does not induce a global change in the solution.

RMS velocity fluctuations The RMS velocity fluctuations are presented in figs. 6.36
and 6.37. One can note that the RMS velocity fluctuations for three subgrid residence time
formulas follows approximately the same curve for𝑋 ≤ 0.1m. For𝑋 > 0.1m the Kolmogorov
and the Magnussen approaches gives larger values of the RMS than the geometrical modeling
of the subgrid time. As for other models, the underestimation of the fluctuations in the case
of RMS streamwise velocity is compensated by their overestimation for RMS vertical velocity.
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Figure 6.34: Vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 in reactive backward-
facing step flow; RANS/TPaSR
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Figure 6.35: Vertical profiles of Favre-averaged transverse velocity ̃︀𝑢𝑦 in reactive backward-
facing step flow with homogeneous inlet profiles; RANS/TPaSR
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Figure 6.36: Vertical profiles of 𝑢𝑅𝑀𝑆
𝑥 in reactive backward-facing step flow; RANS/TPaSR
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Figure 6.37: Vertical profiles of Favre average of 𝑢𝑅𝑀𝑆
𝑦 in reactive backward-facing step flow;

RANS/TPaSR
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6.3.4 Conclusions

The quasi-laminar approach with reduced chemical mechanism (QL RCM) and the premixed
flamelet chemistry without turbulence-chemistry interaction (PFTC noTCI) are used in the
RANS calculations of the premixed turbulent flame on the configuration of the backward-
facing step. The analysis of the Favre-averaged temperature and velocity fields demonstrates
the need to take into account the turbulence-chemistry interaction.

The TPaSR model adapted to the RANS is implemented into the industrial code CEDRE
of ONERA. The PFTC 𝛽-PDF model is integrated into the current version of CEDRE with
the modifications proposed in chapter 4. The reactive flow behind the step is calculated
and analyzed with different options of the PFTC 𝛽-PDF and the TPaSR models. The
obtained results are compared with the experimental data. It is shown that the most close
to experimental data temperature and velocity [MagreMoreau1988] predictions are obtained
with the TPaSR model with the subgrid residence time defined as the geometrical mean of the
Kolmogorov time and the integral time scale (5.23). It is found (results are not given here)
that in the case of the TPaSR model (reduced chemistry) the match between the calculated
and the experimental flame angle is observed for the grid of 8000 cells. The QL RCM, the
PFTC noTCI and the PFTC 𝛽-PDF approaches on the same grid are not able to predict the
flame.

6.4 LES reactive backward-facing step flow calculation

6.4.1 Computational domain and grid

In order to perform the LES calculation, we have to extend the 2D domain used for the RANS
calculation (described in section 6.2.1) into a three-dimensional one. Given the computational
cost of the resolution of the lateral boundary layers, we add only a width of 2ℎ in the third
direction 𝑍. B. Sainte-Rose has shown that due to the use of periodic boundary conditions
at the walls 𝑍 ≡ 𝑐𝑜𝑛𝑠𝑡 the choice of computational domain depth does not influence the
solution [SainteRose2010]. In the 𝑍 direction the grid is uniform and consists in 30 cells,
thus Δ𝑍 is about 0.0023m. As for 2D case, the grid is refined in the 𝑋 and 𝑌 directions at
the corner of the step, in the recirculation region and in near the lower wall of the chamber.
At the corner of the step a grid resolution Δ𝑋 is equal to Δ𝑌 and is 1× 10−4m. Figure 6.39
illustrates a slice of the 3D grid at 𝑍 = ℎ. The total number of inner cells is 4 106 010.
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Figure 6.38: Extrusion of the bidimensional domain used for RANS calculations into a three-
dimensional domain for LES

Figure 6.39: Slice of 3D grid at 𝑍 = ℎ for backward-facing step flow

6.4.2 Physical models

The same physical models are used that in section 6.2.2. Modeling of turbulence is performed
with Smagorinsky model.

6.4.3 Boundary conditions

In this following work the symbol ̃︀𝑄 signifies a filtering of the variable 𝑄 in the sense of Favre
in transport equations of the LES. The symbol ⟨⟩ is used to describe the temporal mean in
the sense of Reynolds.

∙ Inlet:

There are two different types of inlet streamwise velocity.

– Nonhomogeneous steady-state profile of streamwise velocity ̃︀𝑢𝑥 (left panel of fig. 6.5)
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– Synthesized inlet velocity fluctuations, which are added to the nonhomogeneous
steady-state profiles of ̃︀𝑢𝑥, ̃︀𝑢𝑦 and ̃︀𝑢𝑧, are used to generate incoming turbulence.
In order to generate the unsteady synthesized profiles of velocity 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧, we
use the Ornstein-Uhlenbeck process for velocity fluctuations 𝑣′, which allows con-
structing time-correlated velocity fluctuations. We suppose that the distribution
of the velocity fluctuations is isotropic in the three directions:

𝑣′𝑥 ≈ 𝑣′𝑦 ≈ 𝑣′𝑧 ≈
√︂

2

3
𝑘. (6.12)

This statement is not exact because the velocity fluctuations are not isotropic.
Due to the absence of the experimental data for each component of velocity fluc-
tuations at inlet of the combustion chamber, we use a simplified hypothesis taking
isotropic velocity fluctuations 𝑣′. The data for the turbulent energy and the tur-
bulent frequency are obtained from the calculation of the 2D channel explained
in section 6.2.3. Applying the formula (A.116) detailed in appendix A.6 to each
component of the velocity fluctuations, we obtain

𝑣′(𝑡+Δ𝑡, 𝑦) = exp [−𝜔(𝑦)Δ𝑡]𝑣′(𝑡, 𝑦)+𝜎(𝑦)
√︀
1− exp [−2𝜔(𝑦)Δ𝑡]𝜉(𝑡+Δ𝑡), (6.13)

where 𝜎 =
√︁

2
3
𝑘, 𝜉 is a normal Gaussian vector which does not depend on space

and Δ𝑡 = 1× 10−6 s. At the initial time 𝑡0 the fluctuation velocity 𝑣′(𝑡0) is
supposed to be a normal Gaussian vector 𝜉(𝑡0). The total velocity at time 𝑡+Δ𝑡
is

𝑢(𝑡+Δ𝑡, 𝑦) = ̃︀𝑢(𝑦) + 𝑣′(𝑡+Δ𝑡, 𝑦). (6.14)

The profiles of ̃︀𝑢 are taken from 2D channel (see section 6.2.3), ̃︀𝑢𝑧 = 0. In order
to guarantee that the inlet does not become the outlet, the cutting by zero of the
total velocity is used at some points. Figure 6.41 illustrates the temporal profiles
of total velocity 𝑢𝑥 and 𝑢𝑦 at points 𝑋 = 0m, 𝑋 = 0.0046m and 𝑋 = 0.0325m.
As we can see the transverse velocities are close to each other, because ̃︀𝑢𝑦 is almost
zero.
The time-averaged profiles of streamwise velocity and 𝜎2, calculated by the fol-
lowing formula

⟨𝑄⟩ = 1

𝑇

𝑇∫︁
𝑡0

𝑄(𝜏)𝑑𝜏, (6.15)

where 𝑄 is any quantity, are plotted in fig. 6.40, 𝑡0 is the initial time. The total
averaged time is

𝑇 − 𝑡0 = 0.21 s. (6.16)

It corresponds to about 11 characteristic residence time in the combustion cham-
ber.
After all corrections used to ensure the positive sign of inlet velocity and the
velocity fluctuations corrections (such as the centralization and the normalization),
the total deviation of the time-averaged velocity from the initial velocity profiles
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Figure 6.40: Time-averaged profiles of streamwise velocity (left) and 2
3
𝑘 (right); the averaged

time is 0.21 s
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Figure 6.41: Time evolution of inlet longitudinal and transverse velocity at different points

Error (%) ̃︀𝑢𝑥 ̃︀𝑢𝑦 ̃︀𝑢𝑧
𝐿∞ norm 0.0001 10.5 0.0001
𝐿2 norm 0.01 5.96 0.0001̃︁𝑢′′2𝑥 ̃︁𝑢′′2𝑦 ̃︁𝑢′′2𝑧
𝐿∞ norm 6.1 3.31 3.23
𝐿2 norm 1.15 5.2 1.17

Table 6.6: Deviation of time-averaged velocity and velocity variance profiles from initial
velocity profile in different norm; the averaged time is 0.21 s

and the initial variance 𝜎2 = 2
3
𝑘 of each velocity components are presented in

different norms in table 6.6.
Other inlet parameters are described in section 6.2.3.

∙ Lateral boundary:
Periodic boundary conditions are imposed at the lateral boundaries to get the accurate
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development of the 3D shear layer.

∙ Walls:

Adiabatic walls are supposed.

6.4.4 Combustion modeling and numerical schemes

Four types of simulations were considered in the framework of LES. They are presented in
table 6.7.

Method Boundary condition Time step Δ𝑡

QL RCM backward Euler with
MUSCL scheme

steady nonhomogeneous 1× 10−6 s

QL RCM (OU) backward Euler with
MUSCL scheme

unsteady nonhomogeneous 1× 10−6 s

PFTC TFLES backward Euler with
MUSCL scheme

steady nonhomogeneous 1× 10−6 s

PFTC 𝛽-PDF of
Peters

backward Euler with
MUSCL scheme

steady nonhomogeneous 1× 10−6 s

Table 6.7: Considered test-cases within LES for reactive backward-facing step flow

The details of the chemical reduced mechanism and the construction of the FTC tables
are described in section 6.3.2. The LES/TPaSR model is not considered, because it is very
sensitive to the grid size. As the grid is not sufficiently refined, the volume fraction of the
fine-structure region 𝛾*𝑒𝑞 responsible for the combustion in the chamber is less than 0.01 for
the considered 3D grid. As a result, the combustion does not take place. In order to have
the combustion, the order of 𝛾*𝑒𝑞 must be greater than 0.3.

6.4.5 Computational strategy

The physical domain was divided into 256 parts distributed on 256 Nehalem nodes consisting
of two 2.80GHz quad-core processors. In order to obtain time-averaged fields for one con-
sidered model starting from a solution calculated by another model, around 210 hours were
necessary.

After a transition time which corresponds to 3 residence times in the combustion chamber
(6.1), unsteady fields are averaged. The averaged time for the LES in all four cases is
approximately 0.21 s, that corresponds to 11 residence times in the chamber. The time-
averaged vertical profiles at 10 residence times are compared with the time-averaged profiles
at 11 residence times at 𝑋 points where the experimental data at 𝑍 = ℎ are available (see,

e.g. fig. 6.46). The obtained numerical profiles of ⟨̃︀𝑇 ⟩, ⟨̃︀𝑢𝑥⟩, ⟨̃︀𝑢𝑦⟩, ⟨𝑢𝑅𝑀𝑆
𝑥 ⟩, ⟨𝑢𝑅𝑀𝑆

𝑦 ⟩ at 10
characteristic times superimpose visually to the respective profiles at 11 characteristic times.
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6.4.6 Results

Mean temperature

Vertical profile of ⟨̃︀𝑇 ⟩ compared with experimental data We compare the calcu-
lated vertical mean temperature profiles with the results of experimental measurement (see
fig. 6.42). In the recirculation region, the experimentally obtained temperature is significantly
below than the adiabatic temperature at the end of the combustion process. This is due to
a significant cooling of the fluid particles along the bottom wall (which is non-adiabatic) due
to their long residence time in this region. Despite this, the average thickness of the flame is
well reproduced by the numerical simulations because the temperature gradient is correctly
modeled. In the experiment, behind the reattachment region (which distance from the step
in the experiment is between 0.1m and 0.12m), the acceleration of the flow considerably
reduces the residence time of the particles flowing along the wall. This results in lower ther-
mal losses and a gradual temperature rise, which therefore becomes closer to the calculated
temperature field. The area 𝑋 > 0.25m is characterized by a good agreement between the
experimental and numerical profiles. However, for much higher values of 𝑋 a discrepancy
in temperature re-appears due to the fact that the calculated flame front impacts the upper
wall earlier than in the experiment.
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Figure 6.42: Vertical profiles of mean temperature ⟨̃︀𝑇 ⟩ in reactive backward-facing step flow;
LES

Isolines of mean temperature ⟨̃︀𝑇 ⟩ = 1500K In order to better understand the flame

front position, let us consider the isolines of ⟨̃︀𝑇 ⟩ = 1500K, compared with the experimental
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isoline in fig. 6.43. Even if all the performed simulations generally underestimate the hori-
zontal position of the point where the flame impacts the upper wall, the choice of model still
has an influence. For 0m < 𝑋 < 0.45m the quasi-laminar models better reproduce the flame
front positions whereas the PFTC 𝛽-PDF and the quasi-laminar PFTC TFLES overestimate
it. By contrast, for 𝑋 > 0.55m, all the models underestimate the flame angle, but the PFTC
TFLES and the PFTC 𝛽-PDF profiles better estimate the point of flame contact with the
upper wall (6.8). Such an underestimation for large values of 𝑋 may be due to excessively
large recirculation zone. Indeed, a larger recirculation zone induces lean mixing and therefore
a slower burning than in the experiment. In the experiment, the flame front clearly flattens

Case X [m] Error [%]

Experiment 0.8
LES/QL RCM 0.6 25
LES/QL RCM (OU) 0.58 27.5
PFTC TFLES 0.65 18.7
LES/PFTC 𝛽-PDF 0.65 18.7

Table 6.8: Flame contact point with the upper wall and its relative error in reactive backward-
facing step flow

before raising near the contact with the upper wall (0.6m < 𝑋 < 0.8m), which is due to the
acceleration of the fresh gas. If such the raising can be also seen in the numerical profiles,
the flattening is not reproduced numerically. This will be explained in section 6.4.6 devoted
to the description of streamwise velocity.
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Figure 6.43: Isolines of mean temperature ⟨̃︀𝑇 ⟩ = 1500K in reactive backward-facing step
flow; LES

Fields of ⟨̃︀𝑇 ⟩ The mean temperature field for 𝑍 = 0.035m is presented in fig. 6.44. This
temperature distribution is obtained with the LES/QL RCM mechanism and unsteady syn-
thesized inlet velocity profiles. Approximately the same temperature fields are obtained with
other combustion models.
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Figure 6.44: Field of mean temperature ⟨̃︀𝑇 ⟩ [K] in reactive backward-facing step flow calcu-
lated with LES/QL RCM (OU); 𝑍 = 0.035m

Comparison of LES and RANS approaches In the framework of RANS approach
the TPaSR model gives the best profiles of Favre-averaged temperature in comparison with
other RANS models. As a consequence, we consider only the RANS/TPaSR model with
the geometrical subgrid residence time. It should be noted the quantities that we compare
with the same experimental profiles have slightly different signification in RANS and LES
approaches. Nevertheless, the comparison of fig. 6.29 and fig. 6.42 shows that the temperature
gradient near the upper wall is better predicted by the LES/QL RCM mechanism than by
the RANS/TPaSR model. At 𝑋 = 0.71m the LES models overestimate more the mean
temperature than the RANS/TPaSR model, because the point where the flame front impacts
the upper wall for the LES calculations is about 0.6m, for the RANS/TPaSR it is about 1m,
while in the experiment the location of this point is approximately 0.8m. In general, the
isoline of ̃︀𝑇 = 1500K calculated with the RANS/TPaSR model is closer to the experience
than LES approaches.

Recirculation region

Before investigating the flow structure through its velocity profiles, it is necessary to examine
the structure of the recirculation region. Figure 6.45 shows the recirculation zones for four
considered models. The numerical fields, downstream of the step, present a main vortex
rotating clockwise. In the simulation this recirculation region is longer than in the experiment.
The reattachment length is 𝑋𝑟 = 0.168m to 0.195m depending on the combustion models
(see table 6.9), while the experimental value is located in the interval [0.1m; 0.12m]. Such
the difference can be due to the fact that the grid used in the current simulation is not
sufficiently refined. The increase of the reattachment length is caused by the absence of the
turbulent longitudinal vortices associated with the inflow boundary layer.

Figure 6.45 highlights the presence of a secondary recirculation region close to the upper
wall of the step. This vortex rotates counter-clockwise. Although this small structure was
not experimentally observed by laser velocimetry, its existence cannot be excluded to the
extent that the measurement technique did not correctly follow the particles near the wall
step region1.

1In fact, only a small proportion of particles used for flow visualization penetrates into this region.
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𝑋𝑟 𝑋𝑟/ℎ Error 𝑋𝑟/𝑋
𝑒𝑥𝑝
𝑟

Experiment 0.1m− 0.12m 2.8571− 3.4286
QL RCM 0.168m 4.8 1.4 - 1.68
QL RCM (OU) 0.167 cm 4.7714 1.3916 - 1.67
PFTC TFLES 0.195m 5.5714 1.625 - 1.95
PFTC 𝛽-PDF 0.188m 5.3714 1.5666 - 1.88

Table 6.9: The mean reattachment location 𝑋𝑟 in reactive backward-facing step flow. The
last column shows the error of the numerical results with respect to the experimental value.
LES.

Figure 6.45: Recirculation regions in reactive backward-facing step flow; LES

Mean streamwise velocity

The mean longitudinal velocity obtained with four different models follow the same trend
as the experimental measurements (fig. 6.46). The upper part of the chamber (𝑌 > 0m)
and particularly the recirculation region (0.01m < 𝑋 < 0.12m) is characterized by a good
agreement between numerical and experimental data. At the flame front, flow gradually ac-
celerates due to the injection of the fresh gas between the upper wall and the flame. However,
in the region behind the reattachment point the longitudinal velocity is underestimated. As
discussed in section 6.4.6, this underestimation may be due to excessively large recirculation
zone which yields to an inefficient mixture. In the downstream region (0.45m < 𝑋 < 0.71m)
the calculations overestimate velocity profiles. Here, PFTC TFLES and the PFTC 𝛽-PDF
models yield the best agreement with the experimental values; in particular they reproduce
better the position of the flame contact point with the upper wall. With increasing 𝑋 the
velocity progressively increases in order to discharge the burnt gas, and the velocity gradient
between lower and upper parts of the chamber vanishes. In the lower part of the chamber
(𝑌 < 0m), the velocities up to −11m/s are measured. Despite of a slight underestimation
of this value, the simulation reasonably reproduces the experimental profiles. On the profiles
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0.01m < 𝑋 < 0.04m, a velocity maximum is observed along the bottom wall, which corre-
sponds to the previously identified secondary vortex. It is not experimentally observed for
the reasons discussed in section 6.4.6.

Comparison of LES and RANS approaches The comparison of mean streamwise ve-
locity plotted in figs. 6.34 and 6.46 shows that LES approaches predict better the velocity
for 𝑋 ≤ 0.12m than the RANS/TPaSR model. Contrariwise, for 0.25m ≤ 𝑋 ≤ 0.46m and
𝑌 < 0m the RANS/TPaSR model leads to a good agreement with the experimental data,
because the 𝑘 − 𝑙 turbulence model reproduces correctly the recirculation region with the
mean reattachment location 𝑋𝑟 = 0.107m. Contrariwise to the results of LES calculation,
it locates exactly in the experimental interval of 𝑋𝑟. For 𝑋 ≥ 0.25𝑚 we observe that ̃︀𝑢𝑥
calculated with the RANS/TPaSR model coincides with experimental profiles.

Mean transverse velocity

Vertical profiles of the mean transverse velocity calculated in the framework of the LES
and the experimental measurements are compared in fig. 6.47. As we can see, numerical
⟨̃︀𝑢𝑦⟩ depends on the model and there are two different class of solutions: obtained with
the tabulated chemistry and with the reduced chemical mechanism. For 𝑋 = 0.01m the
general trend of down-deflected flow is reproduced in the numerical profiles, but the absolute
values are two to four times overestimated, especially by PFTC TFLES and PFTC 𝛽-PDF
models. The simulations predict also transverse velocity minimum near the lower wall, which
corresponds to the already discussed secondary vortex. In the experiment, the flow deviation
decreases for 𝑋 ≥ 0.15m but remains maintained by the flame front in the upper part of
the chamber. The same behavior is reproduced numerically, yet with overestimation. For
instance, the quasi-laminar models with the reduced chemical mechanism predict a minimum
velocity of ⟨̃︀𝑢𝑦⟩ = −14m/s in 𝑋 = 0.46m cross-section, whereas it should be only ⟨̃︀𝑢𝑦⟩ =
−5m/s according to the measurement. In the next profile at 𝑋 = 0.71m ⟨̃︀𝑢𝑦⟩ drastically
decreases for these models. In fact, 𝑋 = 0.71m is behind the flame contact point with the
upper wall. The flow deflection disappears, since it is no longer maintained by the flame
front. Such the phenomenon is not yet observed for PFTC TFLES and the PFTC 𝛽-PDF
profiles since in these latter cases the contact point is situated at larger 𝑋.

Comparison of LES and RANS approaches From figs. 6.35 and 6.47 we can see that
the RANS modeling does not predict the secondary vortex placed near the step corner,
because the grid is not sufficiently refined. For 𝑋 ≥ 0.06m the 𝑘 − 𝑙 turbulence model
approximates better the experimental profiles than LES, due the correct length of the main
recirculation region.
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Figure 6.46: Vertical profiles of mean streamwise velocity ⟨̃︀𝑢𝑥⟩ in reactive backward-facing
step flow; LES
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Figure 6.47: Vertical profiles of mean transverse velocity ⟨̃︀𝑢𝑦⟩ in reactive backward-facing
step flow; LES
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Mean mass fractions

To evaluate the influence of the tabulated chemistry let us consider vertical profiles of mean
mass fractions of N2, CO2 and CO which can change the density, which in its turn affects
the velocity profiles.

The mean mass fraction of the nitrogen obtained with the tabulated detailed chemistry
remains close to the mean mass fraction of the nitrogen obtained with the quasi-laminar
approach with the reduced chemical mechanism (⟨̃︀𝑌N2

⟩ = 0.732 65). As we can see from
fig. 6.48 the difference is less than 1%. The vertical profiles of the mean mass fractions of
CO2 in all the models are similar to each other for 𝑋 ≤ 0.15m, while for 𝑋 > 0.15m the
tabulated detailed chemistry overestimate them by a factor of two in comparison with the
reduced chemistry.

However, the vertical profiles of the mean mass fraction of CO calculated with PFTC
noTCI and PFTC 𝛽-PDF are very different from each other and from the reduced chemical
mechanism. Figure 6.49 shows the vertical profiles of ⟨̃︀𝑌CO⟩. We observe that in the lower

part of the chamber PFTC 𝛽-PDF profiles of ⟨̃︀𝑌CO⟩ are close to those calculated with the
reduced chemical mechanism, while PFTC TFLES model yields an overestimation by a factor
of two. In the combustion region (i.e. close to the temperature isoline ⟨̃︀𝑇 ⟩ = 1500K), ⟨̃︀𝑌CO⟩
is three-four times overestimated by PFTC TFLES and twice by the PFTC 𝛽-PDF.

Such a behavior of the detailed chemistry model is expected. As the progress variable
is based on mass fractions ⟨̃︀𝑌CO⟩ and ⟨̃︀𝑌CO2

⟩, the chemical source differs from the chemical
source of the reduced chemistry and as a result, the fields of velocity are different as well.
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Figure 6.48: Vertical profiles of ⟨̃︀𝑌N2
⟩ in reactive backward-facing step flow; LES
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Figure 6.49: Vertical profiles of ⟨̃︀𝑌CO⟩ in reactive backward-facing step flow; LES
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Velocity fluctuations

Figures 6.50 and 6.51 show that the levels of numerical velocity fluctuations do not match
those of the experiment. For example, in the lower part of the combustion chamber the lon-
gitudinal numerical velocity fluctuations are approximately three to four times overestimated
with respect to the experimental profiles. Such the fluctuations are caused by intense eddies
that are present in this region. Concerning the transverse velocity fluctuations, the numerical
results are again four times greater than experimental data in the lower part of the chamber.
The possible reason to justify such the discrepancy between the experiment and simulations
is that the flow is controlled by numerical acoustics, and not by the turbulence.

The presence of numerical acoustic modes may cause a significant increase of velocity
in the recirculation region, thus causing a strong flow deflection downwards. Therefore the
negative velocities behind the step are high and vortices are intense. The resulting fluctua-
tion levels of velocity are well above levels detected by the experiment, sometimes with an
overestimation by a factor of 3. This trend progressively fades outside the recirculation zone.

Comparison of LES and RANS approaches The comparison of the RANS/TPaSR
RMS velocity plotted in figs. 6.36 and 6.37 and the LES velocity fluctuations presented in
figs. 6.50 and 6.51 shows that in the framework of the RANS due to the first order spatial
scheme and coarse grid, the RMS velocity fluctuations follow the experimental data. This is
not the case for the LES models.
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Figure 6.50: Vertical profiles of ⟨𝑢𝑅𝑀𝑆
𝑥 ⟩ in reactive backward-facing step flow; LES
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Figure 6.51: Vertical profiles of ⟨𝑢𝑅𝑀𝑆
𝑦 ⟩ in reactive backward-facing step flow; LES
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Impact of reflecting boundary conditions

Currently the non-reflecting boundary conditions, which would allow evacuating numerical
acoustic pressure waves from the computational domain, are not available in CEDRE. In
the present work we use reflecting boundary conditions at inlet and outlet of the chamber.
The inlet experimental condition enables the existence of the quarter wave acoustic mode.
We emphasize that the numerical acoustic pressure waves induced by non-ideal reflecting
conditions are different from physical acoustic waves. In addition, the computational domain
represents only a part of the experimental setup. Furthermore, the acoustic characterization
of experimental bench, required to impose the proper impedance conditions at inlet and
outlet of the simulation domain, is not provided within the description of the experimental
results.

In order to observe numerical acoustic pressure waves for four simulations, spectra of pres-
sure, velocity and temperature at different positions in the chamber (see table 6.1) are con-
sidered. For instance, the temporal spectra of pressure and temperature for the LES/PFTC
𝛽-PDF model are plotted in figs. 6.52 to 6.56. The symbol F in figures means a Fourier
transformation.

The development of large vortices in the shear layer is most likely related to the numerical
longitudinal acoustic modes. The spectral analysis of signals of pressure and temperature at
the point 𝐴 seems to confirm this: the fundamental frequency is predominant. This result
shows that near the step, the flame heat and flapping are indeed controlled by numerical
acoustics. The fact that the spectra of temperature and pressure have a similar shape at the
point 𝐴 reflects a substantial coupling between the flame and the numerical acoustics.

One can note from figs. 6.52 to 6.56 that the pressure spectra evidence an important
contribution of the fundamental frequency. The contribution of higher harmonics increase
while moving downstream the flow. Such the observation confirms the presence of several
numerical acoustic modes in the chamber, namely the quarter wave mode and its satellites
(for example, the fundamental frequency of 180Hz, and higher harmonics of 400Hz and
650Hz are visible on fig. 6.56). These frequencies can be reasonably compared to those given
by the analytical expression:

𝑓𝑛 =
𝑛𝑐

4𝐿𝑥
(6.17)

where 𝑛 is an integer number, 𝑐 is the speed of sound in the chamber and 𝐿𝑥 is the chamber
length. The speed of sound in fresh gas is about 461m/s and in burnt gas is about 909m/s.
The average speed of sound in the chamber is roughly 830m/s. As a consequence, one can
deduce from eq. (6.17) that

𝑓1 = 188Hz, 𝑓2 = 376Hz, 𝑓3 = 564Hz. (6.18)

In all the figures (some of them are omitted here) the peaks representing numerical quarter-
wave harmonics are visible. However, it may happen that the energy is mainly condensed in
higher harmonics (see for instance fig. 6.53). These results are similar to those obtained in
[SainteRose2010].

The spectra of temperature and transverse velocity (not presented here) are similar at
𝐷 and 𝐸 points, which indicates that the downstream flow is likely to be controlled by
turbulence. On the temperature spectra at 𝐵, 𝐶, 𝐷 and 𝐸 points, we see that the spectrum
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remains non-zero in a rather long frequency interval, i.e. that eddies of different sizes are
generated. Furthermore, the amplitude of spectra decreases in the downstream, which reflects
reduction in eddies energy.
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Figure 6.52: Spectra of pressure (left) and temperature (right) at point A in reactive
backward-facing step flow; LES/PFTC 𝛽-PDF
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Figure 6.53: Spectra of pressure (left) and temperature (right) at point B in reactive
backward-facing step flow; LES/PFTC 𝛽-PDF
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Figure 6.54: Spectra of pressure (left) and temperature (right) at point C in reactive
backward-facing step flow; LES/PFTC 𝛽-PDF
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Figure 6.55: Spectra of pressure (left) and temperature (right) at point D in reactive
backward-facing step flow; LES/PFTC 𝛽-PDF
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Figure 6.56: Spectra of pressure (left) and temperature (right) at point E in reactive
backward-facing step flow; LES/PFTC 𝛽-PDF
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6.4.7 Conclusions

Different combustion models, namely the quasi-laminar approach with the reduced chemical
mechanism (QL RCM), the PFTC 𝛽-PDF model, the PFTC TFLES are applied for LES of
the turbulent methane/air combustion behind the backward-facing step. Synthesized inlet
velocity fluctuations are used to generate incoming turbulence.

Analysis of numerical results shows that the reflecting boundary conditions used in CE-
DRE for inlet and outlet of the chamber significantly impact the obtained solutions indepen-
dently on the QL RCM, the PFTC 𝛽-PDF and the PFTC TFLES models. The numerical
pressure fluctuations dominate over the velocity fluctuations and alter the averaged fields
of the velocity and the temperature. In addition, the unsteady synthesized inlet velocity
profiles do not improve results. These results confirm the conclusion of the previous work
[Courtois2005]. R. Courtois showed that in the code AVBP CERFACS the use of reflecting
boundary conditions generated numerical acoustic pressure waves, while the use of non-
reflecting boundary conditions (not yet implemented into CEDRE) allowed evacuating the
numerical acoustic waves and obtaining the mean temperature, velocity and velocity fluctu-
ations fields in satisfactory agreement with the experiment data.

The comparison of the obtained numerical results with the experimental measurements
shows that the divergence between numerical and experimental velocity profiles is mainly
due to the recirculation region overestimation which is 40% in the QL RCM approach and
60% in the PFTC 𝛽-PDF and the PFTC TFLES models. The QL RCM, the PFTC 𝛽-PDF
and the PFTC TFLES models give practically the same results for the mean temperature.
For example (see fig. 6.42), at 𝑋 = 0.34m, the mean experimental temperature is better
approximated by the QL RCM approach, while at 𝑋 = 0.46m by the PFTC 𝛽-PDF and the
PFTC TFLES models.

6.5 Conclusions

The 𝑘 − 𝑙 and 𝑘 − 𝜔 turbulence models are used in RANS calculations of turbulent non-
reactive backward-facing step flow. The results are compared with the experimental data
[MagreMoreau1988]. It is shown that the 𝑘− 𝑙 turbulence model with nonhomogeneous inlet
profiles yields the most accurate recirculation region estimation for the nonreactive flow.

The quasi-laminar approach with the reduced chemical mechanism (QL RCM), the pre-
mixed flamelet chemistry model without turbulence-chemistry interaction (PFTC noTCI),
the PFTC model with a presumed 𝛽-PDF (PFTC 𝛽-PDF) and the transported partially
stirred reactor with the reduced chemical mechanism (TPaSR) in the framework of RANS
are applied to simulate the reactive flow behind the step combustor. In LES the QL RCM, the
PFTC 𝛽-PDF and the PFTC TFLES are used. Obtained results are analyzed and compared
with the available experimental data [MagreMoreau1988].

The RANS/TPaSR model with the subgrid residence time defined as the geometrical
mean of the Kolmogorov time and the integral time scale (5.23) gives the best result among
all the considered models and has good agreement with experimental measurements.

The LES/QL RCM, the LES/PFTC 𝛽-PDF and the PFTC TFLES give practically the
same results. It is found that reflecting boundary conditions do not allow evacuating nu-
merical acoustic waves in the LES. As a consequence they impact the calculated solutions
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independently on the considered model. Therefore, it is difficult to evaluate a behavior of
the LES/QL RCM, the LES/PFTC 𝛽-PDF and the PFTC TFLES models.

A further study of these models should be performed with non-reflecting boundary con-
ditions. It will allow clearly seeing advantages and disadvantages of the LES/PFTC 𝛽-PDF
and the PFTC TFLES approaches.





Chapter 7

Conclusions and future work

7.1 Conclusions

In the present work we studied different approaches for modeling the TCI. The first part of the
thesis is devoted to the presentation of the numerical method to solve the SPDEs statistically
equivalent to the one-time one-point joint velocity-scalars PDF transport equation. These
SPDEs are quasi-linear hyperbolic PDEs, therefore they can have multivalued solutions. It is
shown that in order to preserve the equivalence between the SPDEs and the PDF equation, it
is necessary to take into account the multivalued solutions. The classical numerical schemes
satisfying the entropy increase condition are not appropriated to solve the SPDEs because
they are dissipative and do not capture the multivalued solutions.

A new stochastic method proposed by O. Soulard [EmakoLetizia2014] is applied to solve
the SPDEs. It permits to recover the multivalued solutions of the SPDEs in the statistical
sense. Numerical schemes for the SPDEs statistically equivalent to the transport equation
for the one-time one-point velocity PDF are implemented and several validation tests are
performed in one-dimensional case. Velocity moments and PDF are compared with analytical
or numerical solutions of the PDF equation, and good agreement is found.

Numerical accuracy issues are investigated, and in particular statistical and spatial errors
are studied. Depending on a test-case, the spatial discretization order of convergence varies
from −0.5 to −1 with respect to the number of cells, the number of stochastic fields and
considered time interval, while the expected theoretical order of convergence is −1. The
statistical order of convergence is also found to be dependent on the spatial discretization,
time interval and test-case. In general, the order of convergence fluctuates around −0.5 and
decreases with time to −0.3.

Since the solution of the SPDEs remains time consuming, in the second part of the the-
sis we consider standard turbulent combustion approaches such as the FTC model with a
presumed 𝛽-PDF and the TPaSR model in the framework of RANS and LES. The TPaSR
model is adapted to a low Mach number combustion and implemented into the ONERA
industrial code CEDRE. In parallel, the FTC model based on the presumed 𝛽-PDF is mod-
ified from its original version implemented by J. Savre [Savre2010]. The semi-analytic 𝛽
integration method [LienLiu2009] is extended from one variable (mixture fraction) to two
variables case (mixture fraction variable and progress variable). This modification permits
to overcome boundary singularities in integration of the 𝛽-PDF over the mixture fraction

219
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and the progress variables.
Different models, including the TPaSR, the quasi-laminar with reduced chemical mecha-

nism, the FTC without TCI and the FTC with the presumed 𝛽-PDF models are applied to
the reactive backward-facing step flow, experimentally studied by [MagreMoreau1988]. The
RANS/TPaSR with a 𝑘 − 𝑙 turbulence model has a good agreement with experimental data
and is closer to the experimental profiles of Favre-averaged temperature and velocity than
other considered models. Due to the difficulties linked with numerical convergence towards
a stationary field, only the first order spatial scheme is used in the framework of the RANS.

Within the LES, numerical acoustic pressure waves do not dissipate and impact averaged
fields of temperature, velocity and velocity fluctuations. We can conclude that reflecting
boundary conditions which are only currently available in CEDRE have to be improved.
Because of this difficulty it was impossible to validate the flame front calculated by the
LES/PFTC with the presumed 𝛽-PDF, the PFTC noTCI/TFLES and the quasi-laminar
with reduced chemical mechanism models. Concerning the LES/TPaSR model, it is shown
that the numerical solution depends strongly on the mesh size. We expect that using non-
reflecting boundary conditions and a fine mesh would allow a more precise flame calculation.

7.2 Future work

7.2.1 SPDEs

It would be of interest to explore the capabilities of the proposed EMC method of solving
reactive flows in complex real-life geometries defined by multi-block grids (both structured
and non-structured). The Eulerian character of EMC methods makes it more suited (than
LMC methods) for tackling these issues. One can expect that the development of more
efficient algorithms LES/EMC may become a powerful instrument for gas turbine industry.

7.2.2 TPaSR model

The adaptation and the integration into CEDRE of the TPaSR model opens new perspectives.
Firstly it should be extended to the general case of subsonic and supersonic flows. This can
be performed by resolving the set of transport equations for the fine structure regions and
its surrounding with a multiphase flow solver.

Numerical simulations show that the LES/TPaSR model is sensible to the computational
mesh size due to the definition of the fine structure residence time based on the cell size.
It would be interesting to continue the research of the fine structure residence time in the
framework of the LES and validate the TPaSR model on the configuration of the backward-
facing step combustor.

These approaches should be evaluated in the frameworks of the RANS and the LES
against existing combustion models for high Reynolds number turbulent premixed flames
and compared with experimental data.

The extension of the model to non-premixed flames should also be considered. Different
methods to calculate the chemical characteristic time must be appropriated. It can be the
tabulated chemical time widely used in the field of the turbulent combustion, such as in the
non-premixed turbulent combustion in high-speed flows [IzardLehnasch2009].
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7.2.3 FTC with presumed beta-PDF model

It should be noted that the large choice of modeling sources in the transport equation for a
progress variable variance, does not allow determining the best closure using only a configu-
ration of the backward-facing step. Therefore, it is necessary to continue studying behavior
of the presumed 𝛽-PDF for premixed flames on other configurations. In addition, it will be
interesting to recalculate the reactive backward-facing step flow with non-reflecting boundary
conditions at inlet and outlet of the chamber.

It would be interesting to investigate different non-premixed flames where it is possible to
use the presumed 𝛽-PDF for two variables: mixture fraction and progress variable in order to
validate a semi-analytical method of the 𝛽-function integration for two variables. Moreover,
the idea of piece-wise reconstruction method can be extended for other presumed PDFs.





Appendix A

Some aspects of SPDEs modelling

A.1 Random choice method (RCM) for solution

satisfying entropy increase condition

According to the book [Toro1999] the initial problem for hyperbolic conservation laws in one
space variable is

𝜕𝑞

𝜕𝑡
+
𝜕𝐹 (𝑞)

𝜕𝑥
= 0, (A.1)

𝑞(𝑡, 𝑥) = 𝑞 : R+ × R → R𝑁 , (A.2)

𝑞(0, 𝑥) = 𝑞0(𝑥), (A.3)

where the flux function 𝐹 : R𝑁 → R𝑁 is a continuous function with its two fist derivatives
satisfying the condition that the Jacobian matrix

𝐷𝑞𝐹 = 𝐴(𝑞) (A.4)

has 𝑁 real distinct right eigenvalues

𝜆1(𝑞) < 𝜆2(𝑞)... < 𝜆𝑁(𝑞) (A.5)

known as the characteristic velocities. The function 𝑞0 : R → R𝑁 is the given initial data.
For example, Euler’s equations for the one-dimensional motion of an ideal compressible gas
are a system of hyperbolic conservation laws.

A domain [0, 𝑇 ] × [0, 𝐿] in the 𝑡 − 𝑥 plane is discretized as shown in fig. A.1. The
spatial domain of length 𝐿 is subdivided into 𝑁𝑥 finite volumes, called computing cells
𝐼𝑖 = [𝑥𝑖−1/2, 𝑥𝑖+1/2] of size Δ𝑥 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2, with 𝑖 = 1, ..., 𝑁𝑥. For simplicity we
assume regular meshes.

We suppose also that at any time the solution has a piece-wise constant distribution
illustrated in fig. A.2. The solution may be locally seen as a pair of constant states (𝑞𝑛𝑖 , 𝑞

𝑛
𝑖+1)

separated by a discontinuity situated at the intercell boundary 𝑥𝑖+1/2. A local Riemann
problem 𝑅𝑃 (𝑞𝑛𝑖 , 𝑞

𝑛
𝑖+1) can be written as

𝜕𝑞

𝜕𝑡
+
𝜕𝐹 (𝑞)

𝜕𝑥
= 0 (A.6)
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Figure A.1: Discretization of [0, 𝐿] interval into 𝑁𝑥 finite volumes
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Figure A.2: Piece-wise constant distribution of the solution at time 𝑡𝑛

with the initial condition

𝑞(𝑥, 0) = 𝑞0(𝑥) =

{︃
𝑞𝑛𝑖 if 𝑥 < 0,

𝑞𝑛𝑖+1 if 𝑥 > 0.
(A.7)

At each given time step 𝑡𝑛 and each intercell boundary 𝑥𝑖+1/2 eqs. (A.6) and (A.7) define
a local Riemann problem, which can be solved either numerically or analytically. Based on
that, a solution of the global problem for time index 𝑛+ 1 can be constructed.

The RCM updates the solution from the data value 𝑞𝑛𝑖 in cell 𝐼𝑖 at time level 𝑛, to the
value 𝑞𝑛+1

𝑖 at time level 𝑛+ 1, in two steps as follows:

1. Solve the Riemann problems 𝑅𝑃 (𝑞𝑛𝑖−1, 𝑞
𝑛
𝑖 ) and 𝑅𝑃 (𝑞𝑛𝑖 , 𝑞

𝑛
𝑖+1) to find their respective

solutions 𝑞𝑖−1/2(𝑥/𝑡) and 𝑞𝑖+1/2(𝑥/𝑡). Figure A.3 shows typical wave patterns emerging
from intercell boundaries 𝑥𝑖−1/2 and 𝑥𝑖+1/2.

2. Random sample the obtained solutions at time Δ𝑡 within cell 𝐼𝑖 to pick up a state and
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assign to cell 𝐼𝑖:

𝑞𝑛+1
𝑖 =

{︃
𝑞𝑖−1/2(𝜃

𝑛Δ𝑥/Δ𝑡), if 0 ≤ 𝜃𝑛 ≤ 1
2
,

𝑞𝑖+1/2((𝜃
𝑛 − 1)Δ𝑥/Δ𝑡), if 1

2
< 𝜃𝑛 ≤ 1.

(A.8)

Figure A.3: Random choice method: solution is updated to 𝑡𝑛 by random sampling of Rie-
mann problem solution at 𝐼𝑖 cell. The random sampling is represented by thick horizontal
line.

The case in which 0 ≤ 𝜃𝑛 ≤ 1
2
is detailed in fig. A.4. The updated solution depends on the

random sampling procedure applied to the right side of the left Riemann problem solution
𝑞𝑖−1/2(𝑥/𝑡).

Figure A.4: RCM sampling of the RHS of the left Riemann problem solution with 0 ≤ 𝜃𝑛 ≤ 1
2
.

Sampled state is assigned to the center of 𝐼𝑖 cell.

The RCM is not strictly conservative, but only conservative in a statistical sense. In such
a method no spreading of a discontinuity is possible. The Godunov method takes an integral
average of local solutions of Riemann problems, while the RCM randomly picks a single state,
contained in the local solutions. The main property of these methods is that the solution
satisfies the entropy increase condition and the solution is unique in space and in time.
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A.2 Stochastic Runge-Kutta method

We adapt here the second order Runge-Kutta scheme to solve numerically the PDEs (3.22)
and (3.23).

PDF. At the midpoint 𝑡𝑛+1/2 of a time interval the discretized PDF equation (3.2) is

𝜌
𝑛+1/2
𝑗

̃︀𝑓𝑛+1/2
𝑗 = 𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 −Δ𝑡𝑛

[︃
𝜕𝜌𝑉 ̃︀𝑓
𝜕𝑥

]︃𝑛
. (A.9)

At time 𝑡𝑛+1 we deduce that

𝜌𝑛+1
𝑗
̃︀𝑓𝑛+1
𝑗 = 𝛼𝜌𝑛𝑗

̃︀𝑓𝑛𝑗 + 𝛽

⎛⎝𝜌𝑛+1/2
𝑗

̃︀𝑓𝑛+1/2
𝑗 −Δ𝑡𝑛

[︃
𝜕𝜌𝑉 ̃︀𝑓
𝜕𝑥

]︃𝑛+1/2
⎞⎠ , (A.10)

where 𝛼 and 𝛽 are some positive coefficients such as 𝛼 + 𝛽 = 1.

Stochastic process. The stochastic process (𝑟*, 𝑢*) given by (3.57) can be interpreted in
two-steps scheme: at the midpoint 𝑡𝑛+1/2 the stochastic process (𝑟*𝑛+1/2, 𝑢*𝑛+1/2) is found by
any of the space schemes proposed in sections 3.2.1 to 3.2.1. At time 𝑡𝑛+1 with probability
𝛼 the stochastic process (𝑟*𝑛+1, 𝑢*𝑛+1) is calculated using (𝑟*𝑛, 𝑢*𝑛) and with probability 𝛽
using the data of (𝑟*𝑛+1/2, 𝑢*𝑛+1/2). For example, if we consider a stochastic Lax-Friedrichs
method the stochastic process (𝑟*, 𝑢*) can be written at time 𝑡𝑛+1/2 as

𝑢
*𝑛+1/2
𝑗 =

{︃
𝑢*𝑛𝑗+1, with probability 𝑃+1

𝑗 ,

𝑢*𝑛𝑗−1, with probability 𝑃−1
𝑗 = 1− 𝑃+1

𝑗 .
(A.11)

𝑃+1
𝑗 =

1

2

𝑟*𝑛𝑗+1

𝑟
*𝑛+1/2
𝑗

(︂
1− Δ𝑡𝑛

Δ𝑥
𝑢*𝑛𝑗+1

)︂
, 𝑃−1

𝑗 = 1− 𝑃+1
𝑗 , (A.12)

𝑟
*𝑛+1/2
𝑗 = 𝑟*𝑛𝑗 − Δ𝑡𝑛

Δ𝑥

(︀
𝐹 𝑛
𝑗+1/2 − 𝐹 𝑛

𝑗−1/2

)︀
, (A.13)

where

𝐹 𝑛
𝑗+1/2 =

𝑟*𝑛𝑗 𝑢
*𝑛
𝑗 + 𝑟*𝑛𝑗+1𝑢

*𝑛
𝑗+1

2
− Δ𝑥

2Δ𝑡𝑛
(︀
𝑟*𝑛𝑗+1 − 𝑟*𝑛𝑗

)︀
. (A.14)

After the step 𝑛+1/2 a random number 𝜂 uniformly distributed on interval (0, 1) is generated.
Let us suppose that 𝛼 ≤ 𝛽 = 1 − 𝛼. If 𝜂 < 𝛼 then (𝑟*𝑛+1

𝑗 , 𝑢*𝑛+1
𝑗 ) is calculated using

(𝑟𝑛
*
, 𝑢𝑛

*
) = (𝑟*𝑛, 𝑢*𝑛) or with (𝑟𝑛

*
, 𝑢𝑛

*
) = (𝑟*𝑛+1/2, 𝑢*𝑛+1/2):

𝑢*𝑛+1
𝑗 =

{︃
𝑢𝑛

*
𝑗+1, with probability 𝑃+1

𝑗 ,

𝑢𝑛
*
𝑗−1, with probability 𝑃−1

𝑗 = 1− 𝑃+1
𝑖𝑟𝑒𝑎,𝑗.

(A.15)

𝑃+1
𝑗 =

1

2

𝑟𝑛
*
𝑗+1

𝑟*𝑛+1
𝑗

(︂
1− Δ𝑡𝑛

Δ𝑥
𝑢𝑛

*

𝑗+1

)︂
, 𝑃−1

𝑖𝑟𝑒𝑎,𝑗 = 1− 𝑃+1
𝑗 , (A.16)



A.3. SCHEMES FOR SPDES STATISTICALLY EQUIVALENT TO THE JOINT
VELOCITY-SCALAR PDF EQUATION 227

𝑟*𝑛+1
𝑗 = 𝑟𝑛

*

𝑗 − Δ𝑡𝑛

Δ𝑥

(︀
𝐹 𝑛*

𝑗+1/2 − 𝐹 𝑛*

𝑗−1/2

)︀
, (A.17)

where

𝐹 𝑛
𝑗+1/2 =

𝑟𝑛
*
𝑗 𝑢

𝑛*
𝑗 + 𝑟𝑛

*
𝑗+1𝑢

𝑛*
𝑗+1

2
− Δ𝑥

2Δ𝑡𝑛
(︀
𝑟𝑛

*

𝑗+1 − 𝑟𝑛
*

𝑗

)︀
. (A.18)

Numerical definitions of stochastic density and velocity should be applied to each external
realization 𝑖𝑟 = 1, .., 𝑁𝜂 and each inner realization 𝑖𝑟𝑒𝑎 = 1, .., 𝑁𝑟.

A.3 Schemes for SPDEs statistically equivalent to the

joint velocity-scalar PDF equation

Let us consider a transport equation for the Favre joint fluctuating velocity 𝑢 = 𝑢′′ - scalar 𝜑
PDF ̃︀𝑔(𝑉, 𝜓; 𝑡, 𝑥) in one-dimensional case. For simplification we assume that Favre-averaged
velocity is identically zero ̃︀𝑢 ≡ 0:

𝜕𝜌̃︀𝑔
𝜕𝑡

+
𝜕𝜌𝑉 ′′̃︀𝑔
𝜕𝑥

= − 𝜕

𝜕𝑉 ′′

(︂
𝜕

𝜕𝑥

(︁
𝜌̃︁𝑢′′2)︁̃︀𝑔)︂− 𝜕𝜌𝐶1𝜔𝑉

′′2

𝜕𝑉 ′′ +
1

2
𝜌𝐶0𝜀

𝜕2̃︀𝑔
𝜕𝑉 ′′2 +

𝜕

𝜕𝜓

(︁
𝜌𝐶𝜓𝜔(𝜓 − ̃︀𝜑)̃︀𝑔)︁ ,

(A.19)
where 𝜓 and 𝑉 ′′ are respectively the sample space of scalar 𝑐(𝑡, 𝑥) and fluctuating velocity
𝑢′′(𝑡, 𝑥). The SPDEs which are statistically equivalent to the joint fluctuating velocity-scalar
PDF ̃︀𝑔 from eq. (A.19) are

𝜕𝑟𝑢′′

𝜕𝑡
+
𝜕𝑟𝑢′′2

𝜕𝑥
=
𝑟

𝑟

𝜕𝑟𝑢′′2

𝜕𝑥
− 𝑟𝐶1𝜔𝑢

′′ + 𝑟
√︀
𝐶0𝜀𝜉(𝑡), (A.20)

𝜕𝑟𝑐

𝜕𝑡
+
𝜕𝑟𝑢′′𝑐

𝜕𝑥
= −𝑟𝐶𝑐𝜔 (𝑐− ̃︀𝑐) , (A.21)

𝜕𝑟

𝜕𝑡
+
𝜕𝑟𝑢′′

𝜕𝑥
= 0, (A.22)

where 𝜀 = 𝜔̃︁𝑢′′2, 𝑐 and 𝑢′′ are stochastic scalar and fluctuating velocity.
The stochastic process for eqs. (A.20) and (A.22) is given in section 3.2.2. Using also a

physical (or differential) splitting method, Euler scheme in time, we can add the following
resolutions allowing establishing the concentration for the global step defined in section 3.2.2.

1. We start to solve the following PDE:

𝜕𝑟𝑐

𝜕𝑡
+
𝜕𝑟𝑢′′𝑐

𝜕𝑥
= 0, (A.23)

with initial conditions at time 𝑡𝑛:

𝐼𝐶 : 𝑐(𝑡𝑛, 𝑥). (A.24)

The stochastic scalar 𝑐*(𝑡, 𝑥) is calculated by the same procedure that the stochastic velocity
𝑢′′*(𝑡, 𝑥) at time 𝑡𝑛+1/4.
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3. The micromixing and Langevin terms of eqs. (A.20) and (A.21) are now added to the
calculated variables. Equation for the concentration yields

𝜕𝑐

𝜕𝑡
= −𝐶𝑐𝜔 (𝑐− ̃︀𝑐) , (A.25)

𝐼𝐶 : 𝑐*(𝑡𝑛+2/4, 𝑥) = 𝑐*(𝑡𝑛+1/4, 𝑥). (A.26)

Numerical scheme reads

𝑐*𝑛+3/4 = 𝑐*𝑛+2/4 − 𝐶0𝜔
𝑛(𝑐*𝑛+2/4 − 𝑐*𝑛+2/4)Δ𝑡. (A.27)

Obtained solution for scalar 𝑐*(𝑡𝑛+3/4, 𝑥) is a finite value for the time 𝑡𝑛+1, i.e. 𝑐*(𝑡𝑛+1, 𝑥) =
𝑐*(𝑡𝑛+3/4, 𝑥).

A.4 𝑛 dimensional space schemes for PDEs

The idea of the numerical scheme in 𝑛 dimensions space is the same that in one-dimensional
case.

PDF. Let us consider, for example, Godunov scheme in three-dimensional space. Let be
𝑉 = (𝑉1, 𝑉2, 𝑉3) ∈ R3 is a sample space for velocity 𝑢(𝑡,𝑥) = (𝑢1(𝑡,𝑥), 𝑢2(𝑡,𝑥), 𝑢3(𝑡,𝑥)) ∈
R3, where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 is a space variable. The transport equation for the PDF̃︀𝑓𝑢(𝑉 ; 𝑡,𝑥) denoted as ̃︀𝑓 is

𝜕𝜌 ̃︀𝑓
𝜕𝑡

+ 𝑉1
𝜕𝜌 ̃︀𝑓
𝜕𝑥1

+ 𝑉2
𝜕𝜌 ̃︀𝑓
𝜕𝑥2

+ 𝑉3
𝜕𝜌 ̃︀𝑓
𝜕𝑥3

= 0. (A.28)

The eq. (A.28) can be solved directly or with coordinate splitting method. To be specific, let
us consider here the second option. In this approach one applies one-dimensional Godunov
methods in each coordinate direction, which yields first order temporal and spatial accuracy.
The sweep in the 𝑥1 direction of eq. (A.28) gives

𝜕𝜌 ̃︀𝑓
𝜕𝑡

+ 𝑉1
𝜕𝜌 ̃︀𝑓
𝜕𝑥1

= 0. (A.29)

The initial condition (IC) for this problem (A.29) is the initial data for the original full
problem (A.28)

𝐼𝐶 : 𝜌𝑛, ̃︀𝑓𝑛, (A.30)

where the index 𝑛 signifies 𝑛-temporal step, i.e. 𝜌𝑛 = 𝜌(𝑡𝑛,𝑥) and ̃︀𝑓𝑛 = ̃︀𝑓(𝑡𝑛,𝑥).
In order to solve numerically eq. (A.29), we introduce the following parameters of the

simulation. The computational domain [𝑥min
1 ;𝑥max

1 ]× [𝑥min
2 ;𝑥max

2 ]× [𝑥min
3 ;𝑥max

3 ] is discretized
with 𝑁𝑥1 × 𝑁𝑥2 × 𝑁𝑥3 points. Spatial steps Δ𝑥𝑖 is uniform in each direction 𝑥𝑖, 𝑖 = 1, 2, 3,
points of the grid are 𝑥𝑗,𝑘,𝑙 = (𝑥min

1 + (𝑗 − 1)Δ𝑥1; 𝑥
min
2 + (𝑘 − 1)Δ𝑥2; 𝑥

min
3 + (𝑙 − 1)Δ𝑥3),

where 𝑗 = 1, .., 𝑁𝑥1 , 𝑘 = 1, .., 𝑁𝑥2 and 𝑙 = 1, .., 𝑁𝑥3 .
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Applying Godunov scheme to the eq. (A.29), we deduce

𝜌
𝑛+1/3
𝑗,𝑘,𝑙

̃︀𝑓𝑛+1/3
𝑗,𝑘,𝑙 = 𝜌𝑛𝑗,𝑘,𝑙

̃︀𝑓𝑛𝑗,𝑘,𝑙 + Δ𝑡𝑛

Δ𝑥1

(︁
|𝑉1|𝜌𝑛𝑗,𝑘,𝑙 ̃︀𝑓𝑛𝑗,𝑘,𝑙 + 𝑉 −

1 𝜌
𝑛
𝑗+1,𝑘,𝑙

̃︀𝑓𝑛𝑗+1,𝑘,𝑙 − 𝑉 +
1 𝜌

𝑛
𝑗−1,𝑘,𝑙

̃︀𝑓𝑛𝑗−1,𝑘,𝑙

)︁
,

(A.31)

𝐼𝐶 : 𝜌𝑛, ̃︀𝑓𝑛, (A.32)

𝑉 −
1 and 𝑉 +

1 are defined as in (3.85). The solution of eqs. (A.31) and (A.32) after a time Δ𝑡𝑛

is denoted by 𝜌𝑛+1/3, 𝑓𝑛+1/3.
The sweep in 𝑥2 direction of eq. (A.28) is given by

𝜕𝜌 ̃︀𝑓
𝜕𝑡

+ 𝑉2
𝜕𝜌 ̃︀𝑓
𝜕𝑥2

= 0, (A.33)

𝐼𝐶 : 𝜌𝑛+1/3, ̃︀𝑓𝑛+1/3. (A.34)

With Godunov scheme eq. (A.33) can be formulated as

𝜌
𝑛+2/3
𝑗,𝑘,𝑙

̃︀𝑓𝑛+2/3
𝑗,𝑘,𝑙 =

Δ𝑡𝑛

Δ𝑥2

(︁
|𝑉2|𝜌𝑛+1/3

𝑗,𝑘,𝑙
̃︀𝑓𝑛+1/3
𝑗,𝑘,𝑙 + 𝑉 −

2 𝜌
𝑛+1/3
𝑗,𝑘+1,𝑙

̃︀𝑓𝑛+1/3
𝑗,𝑘+1,𝑙 − 𝑉 +

2 𝜌
𝑛+1/3
𝑗,𝑘−1,𝑙

̃︀𝑓𝑛+1/3
𝑗,𝑘−1,𝑙

)︁
. (A.35)

The solution of eqs. (A.33) and (A.34) after a time Δ𝑡𝑛 is denoted by 𝜌𝑛+2/3, ̃︀𝑓𝑛+2/3.
The sweep in 𝑥3 direction of eq. (A.28) is

𝜕𝜌 ̃︀𝑓
𝜕𝑡

+ 𝑉3
𝜕𝜌 ̃︀𝑓
𝜕𝑥3

= 0, (A.36)

𝐼𝐶 : 𝜌𝑛+2/3, ̃︀𝑓𝑛+2/3. (A.37)

Numerically, it reads

𝜌𝑛+1
𝑗,𝑘,𝑙
̃︀𝑓𝑛+1
𝑗,𝑘,𝑙 =

Δ𝑡𝑛

Δ𝑥3

(︁
|𝑉3|𝜌𝑛+2/3

𝑗,𝑘,𝑙
̃︀𝑓𝑛+2/3
𝑗,𝑘,𝑙 + 𝑉 −

3 𝜌
𝑛+2/3
𝑗,𝑘,𝑙+1

̃︀𝑓𝑛+2/3
𝑗,𝑘,𝑙+1 − 𝑉 +

3 𝜌
𝑛+2/3
𝑗,𝑘,𝑙−1

̃︀𝑓𝑛+2/3
𝑗,𝑘,𝑙−1

)︁
. (A.38)

The solution of eqs. (A.36) and (A.37) after a time Δ𝑡𝑛 is denoted by 𝜌𝑛+1, ̃︀𝑓𝑛+1, which is
then regarded as the solution to the full problem (A.28) at time 𝑡𝑛+1.

Stochastic process. Let note (𝑟*, 𝑢*, 𝑣*, 𝑤*) a stochastic process in 3-dimensional space.
Thus the sweep in the 𝑥1 direction in terms of stochastic numerical scheme for the PDEs,
accordingly to eq. (A.31) is

𝑢
*𝑛+1/3
𝑗,𝑘,𝑙 =

⎧⎪⎨⎪⎩
𝑢*𝑛𝑗,𝑘,𝑙, with probability 𝑃+1

𝑗 ,

𝑢*𝑛𝑗+1,𝑘,𝑙, with probability 𝑃−1
𝑗 ,

𝑢*𝑛𝑗−1,𝑘,𝑙, with probability 𝑃 0
𝑗 = 1− 𝑃+1

𝑗 − 𝑃−1
𝑗 .

(A.39)

Probabilities are calculated using formulas:

𝑃+1
𝑗 =

𝑟*𝑛𝑗+1,𝑘,𝑙

𝑟
*𝑛+1/3
𝑗,𝑘,𝑙

𝑢−𝑗+1,𝑘,𝑙

Δ𝑡𝑛

Δ𝑥1
, (A.40)
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𝑃−1
𝑗 =

𝑟*𝑛𝑗−1,𝑘,𝑙

𝑟
*𝑛+1/3
𝑗,𝑘,𝑙

𝑢+𝑗−1,𝑘,𝑙

Δ𝑡𝑛

Δ𝑥1
, (A.41)

𝑃 0
𝑗 =

𝑟*𝑛𝑗,𝑘,𝑙

𝑟
*𝑛+1/3
𝑗,𝑘,𝑙

(︂
1− |𝑢*𝑗,𝑘,𝑙|

Δ𝑡𝑛

Δ𝑥1

)︂
. (A.42)

At this step, other unknown terms stay the same.
The sweep in the 𝑥2 direction, accordingly to eq. (A.35), is

𝑣
*𝑛+2/3
𝑗,𝑘,𝑙 =

⎧⎪⎨⎪⎩
𝑣*𝑛𝑗,𝑘,𝑙, with probability 𝑃+1

𝑘 ,

𝑣*𝑛𝑗,𝑘+1,𝑙, with probability 𝑃−1
𝑘 ,

𝑣*𝑛𝑗,𝑘−1,𝑙, with probability 𝑃 0
𝑘 = 1− 𝑃+1

𝑘 − 𝑃−1
𝑘 .

(A.43)

where the probability is calculated as in eqs. (A.40) to (A.42), but instead of 𝑟*𝑛 and 𝑢*, the
stochastic density 𝑟*𝑛+1/3 and velocity 𝑣* are used respectively, Δ𝑥1 is replaced by Δ𝑥2.

Finally we deduce from eq. (A.38) that

𝑤*𝑛+1
𝑗,𝑘,𝑙 =

⎧⎪⎨⎪⎩
𝑤*𝑛
𝑗,𝑘,𝑙, with probability 𝑃+1

𝑙 ,

𝑤*𝑛
𝑗,𝑘,𝑙+1, with probability 𝑃−1

𝑙 ,

𝑤*𝑛
𝑗,𝑘,𝑙−1, with probability 𝑃 0

𝑙 = 1− 𝑃+1
𝑙 − 𝑃−1

𝑙 .

(A.44)

Here the probabilities are calculated with 𝑟*𝑛+2/3 and with velocity 𝑤.
The proposed 3-dimensional stochastic Godunov process should weakly converge to the

PDF statistics with first order of convergence in space and in time.

A.5 Numerical tests
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A.5.1 Step velocity profile

As there is no pressure term in the PDE (3.20), the rarefaction waves may appear. The
stochastic density 𝑟(𝑡, 𝑥) can attain zero at some points. In the proposed stochastic Lax-
Friedrichs, Lax-Wendroff, GForce and Godunov schemes the density cannot be equal to zero
due to the CFL condition: 𝑐𝑓𝑙 < 1. Nevertheless, we demonstrate in the present test, which
can be interpreted as a vacuum test, that the mean density tends to zero. The investigated
PDEs are given by eqs. (3.22) and (3.23).

PDF

The initial conditions at time 𝑡 = 0 s for the PDF transport eq. (3.2) is given by

̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = 𝐻(𝑥− 𝑥𝑐)𝛿(𝑉 − 𝑉0) +𝐻(−(𝑥− 𝑥𝑐))𝛿(𝑉 ), 𝑉0 = 1m/s (A.45)

𝜌(𝑡 = 0, 𝑥) = 1 kg/m3. (A.46)

The solution of the Cauchy problem (3.2), (A.45) and (A.46) is

𝜌 ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) = 𝐻(𝑥− 𝑥𝑐 − 𝑉0𝑡)𝛿(𝑉 − 𝑉0) +𝐻(−(𝑥− 𝑥𝑐))𝛿(𝑉 ), 𝑡 > 0 s, (A.47)

where the density is defined by

𝜌(𝑡, 𝑥) = 𝐻(𝑥−𝑥𝑐−𝑉0𝑡)+𝐻(−(𝑥−𝑥𝑐)) =

{︃
1 kg/m3, if 𝑥 < 𝑥𝑐 and 𝑥 > 𝑉0𝑡+ 𝑥𝑐,

0, if 𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡].
(A.48)

The velocity is zero for any 𝑥 < 𝑥𝑐, one for any 𝑥 > 𝑉0𝑡+ 𝑥𝑐 and is undefined on the interval
𝑥 ∈ [𝑥𝑐;𝑥𝑐 + 𝑉0𝑡].

PDEs

The PDEs equivalent to the PDF eq. (3.2) are given by eqs. (3.20) and (3.22). The initial
conditions for velocity and density are set according to the (A.45) and (A.46):

𝑢(𝑡 = 0, 𝑥) = 𝑉0𝐻(𝑥− 𝑥𝑐), 𝑟(𝑡 = 0, 𝑥) = 1 kg/m3. (A.49)

Figure A.5 show initial profile of the velocity (left) and a solution of the Riemann problem
at 𝑡 = 𝑇 (right) of eqs. (3.20), (3.22) and (A.49). The yellow region signifies that the velocity
is not defined while the density is zero.
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x [m]x [m]xC

V0

u [m/s]

V0T+xCxC

u [m/s] t = Tt = 0

Figure A.5: Step: initial profile of the velocity (left); solution of the Riemann problem at
𝑡 = 𝑇 (right)

Numerical solution

Calculations are performed on 𝐿 = 1m domain. At the initial time, the profile of velocity
is a step centered at the middle of the domain 𝑥𝑐 = 0.5m. The density equals to one and
𝑉0 = 1m/s.

Spatial profiles. We consider spatial profiles of statistics at the time 𝑡 = 0.2 s, calculated
with 𝑁𝑥 = 103 points and 𝑁𝑟 = 104 stochastic fields.

Figure A.6 shows the spatial profile of the mean density (left panel) and the Favre-
averaged velocity (right panel). The mean density is very close to zero (its exact value is
about 10−4) on the interval 𝑥 ∈ [0.5m; 0.7m]. It can never be equal to zero due to the
CFL condition (3.58). The interpretation of values of stochastic velocity for each scheme is
different in the region of vacuum. Thus, the stochastic Godunov method gives the value one
for all velocity realization with the probability one. As a consequence, the Favre-averaged
velocity is one on the interval 𝑥 ∈ [0.5m; 0.7m]. For other stochastic schemes the probability
to obtain the value zero for the velocity is much more than the probability to have one
in the vacuum region. The probability to have zero for the velocity increases with time
in the region of the vacuum. As a result, at time 0.1 s all profiles of stochastic velocity
fields coincide. Right fig. A.6 shows the Favre-averaged velocity profiles for stochastic Lax-
Friedrichs, Lax-Wendroff and GForce are close to each other. The mean velocity is zero on
the interval 𝑥 ∈ [0.5m; 0.63m] and one on the interval 𝑥 ∈ [0.63m; 0.7m]. Thus, stochastic
numerical schemes interpret a vacuum state by the mean density closing to zero and by the
mean velocity taking the values zero or one.

The density and velocity variance are presented in fig. A.7. Figure A.8 shows the velocity
skewness and flatness. One can conclude that the stochastic Godunov method recovers better
the theoretical solution for the density; contrariwise, the stochastic Lax-Friedrichs method
gives the largest fluctuations in comparison with other schemes.
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Figure A.6: Step: spatial profiles of mean density (left) and Favre-averaged velocity (right)
at time 𝑡 = 0.2 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure A.7: Step: spatial profiles of density (left) and velocity (right) variance at time
𝑡 = 0.2 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure A.8: Step: spatial profiles of velocity skewness (left) and flatness (right) at time
𝑡 = 0.2 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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A.5.2 Ramp velocity profile

This is the case when the velocity is multivalued. It takes three values with different prob-
ability. The purpose of this test is to check again the ability of the numerical methods to
yield correct solution. The investigated PDEs are given by eqs. (3.22) and (3.23).

PDF

The initial conditions for eq. (3.2) are given by the following profiles:

𝜌(𝑡 = 0, 𝑥) = 𝜌0, ̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = 𝛿 (𝑉 − 𝑢0(𝑥)) , (A.50)

where

𝑢0(𝑥) = 𝑉0𝐻(𝑥𝑙 − 𝑥) + 𝑉0

(︂
𝑥𝑟 − 𝑥

𝑥𝑟 − 𝑥𝑙

)︂
𝐻(𝑥− 𝑥𝑙)𝐻(𝑥𝑟 − 𝑥). (A.51)

𝜌 ̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = 𝜌0𝐻(𝑥𝑙−𝑥)𝛿(𝑉−𝑉0)+𝜌0𝛿 (𝑉 − 𝑉0(𝑥))𝐻(𝑥−𝑥𝑙)𝐻(𝑥𝑟−𝑥)+𝜌0𝐻(𝑥−𝑥𝑟)𝛿(𝑉 ),
(A.52)

𝑉0(𝑥) = 𝑉0
𝑥𝑟 − 𝑥

𝑥𝑟 − 𝑥𝑙
. (A.53)

The solution of eq. (3.9) for 𝑥 is

𝑥(𝑡) = 𝑦 + 𝑢0(𝑦)𝑡 = 𝑦 +

[︂
𝐻(𝑥𝑙 − 𝑦) +

(︂
𝑥𝑟 − 𝑦

𝑥𝑟 − 𝑥𝑙

)︂
𝐻(𝑦 − 𝑥𝑙)𝐻(𝑥𝑟 − 𝑦)

]︂
𝑉0𝑡. (A.54)

We can find from (A.54) 𝑦 as the function of 𝑡 and 𝑥, 𝑦 = 𝑦(𝑡, 𝑥), if 𝑡 ̸= 𝑥𝑟−𝑥𝑙
𝑉0

. Substituting
𝑦(𝑡, 𝑥) into

𝐹 = 𝜌0𝛿 (𝑉 − 𝑢0(𝑦)) , (A.55)

we obtain

𝜌 ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) = 𝜌0𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥)𝛿(𝑉 − 𝑉0) +

𝜌0𝛿 (𝑉 − 𝑉𝑡) (𝐻(𝑥−(𝑥𝑙+𝑉0𝑡))𝐻(𝑥𝑟−𝑥)+𝐻((𝑥𝑙+𝑉0𝑡)−𝑥)𝐻(𝑥−𝑥𝑟))
𝑡𝑐

|𝑡𝑐 − 𝑡|
+𝜌0𝐻(𝑥−𝑥𝑟)𝛿(𝑉 ),

(A.56)
where

𝑉𝑡(𝑡, 𝑥) = 𝑉0
𝑥𝑟 − 𝑥

𝑥𝑟 − 𝑥𝑙 − 𝑉0𝑡
(A.57)

and

𝑡𝑐 =
𝑥𝑟 − 𝑥𝑙
𝑉0

. (A.58)

We conclude from (A.56) that 𝑡𝑐 = 𝑥𝑟−𝑥𝑙
𝑉0

is a critical time. Before 𝑡 < 𝑡𝑐 any point in
space corresponds to a single Dirac delta function: 𝛿(𝑉 − 𝑉0) for 𝑥 < 𝑥𝑙 + 𝑉0𝑡, 𝛿(𝑉 − 𝑉𝑡)
for 𝑥 ∈ [𝑥𝑙 + 𝑉0𝑡;𝑥𝑟] and 𝛿(𝑉 ) for 𝑥 > 𝑥𝑟. After the time 𝑡 > 𝑡𝑐, the interval [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡]
contains three Dirac delta functions.

Using the normalization condition of the PDF (3.6) we deduce that
∙ For 𝑡 < 𝑡𝑐 =

𝑥𝑟−𝑥𝑙
𝑉0
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𝜌(𝑡, 𝑥) = 𝜌0𝐻(𝑉0𝑡+𝑥𝑙−𝑥)+𝜌0𝐻(𝑥− (𝑥𝑙+𝑉0𝑡))𝐻(𝑥𝑟−𝑥)
𝑡𝑐

𝑡𝑐 − 𝑡
+𝜌0𝐻(𝑥−𝑥𝑟). (A.59)

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =
𝜌 ̃︀𝑓𝑢
𝜌

=

𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥)𝛿(𝑉 − 𝑉0) + 𝛿 (𝑉 − 𝑉𝑡)𝐻(𝑥− (𝑥𝑙 + 𝑉0𝑡))𝐻(𝑥𝑟 − 𝑥) +𝐻(𝑥− 𝑥𝑟)𝛿(𝑉 )

𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥) +𝐻(𝑥− (𝑥𝑙 + 𝑉0𝑡))𝐻(𝑥𝑟 − 𝑥) 𝑡𝑐
𝑡𝑐−𝑡 +𝐻(𝑥− 𝑥𝑟)

.

(A.60)

∙ For 𝑡 > 𝑡𝑐 =
𝑥𝑟−𝑥𝑙
𝑉0

𝜌(𝑡, 𝑥) = 𝜌0𝐻(𝑉0𝑡+𝑥𝑙−𝑥)+ 𝜌0𝐻(𝑥𝑙+𝑉0𝑡−𝑥)𝐻(𝑥−𝑥𝑟)
𝑡𝑐

𝑡− 𝑡𝑐
+ 𝜌0𝐻(𝑥−𝑥𝑟). (A.61)

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =

𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥)𝛿(𝑉 − 𝑉0) + 𝛿 (𝑉 − 𝑉𝑡)𝐻((𝑥𝑙 + 𝑉0𝑡)− 𝑥)𝐻(𝑥− 𝑥𝑟)
𝑡𝑐
𝑡−𝑡𝑐 +𝐻(𝑥− 𝑥𝑟)𝛿(𝑉 )

𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥) +𝐻(𝑥𝑙 + 𝑉0𝑡− 𝑥)𝐻(𝑥− 𝑥𝑟)
𝑡𝑐
𝑡−𝑡𝑐 +𝐻(𝑥− 𝑥𝑟)

.

(A.62)
It follows from the definition (3.5), when 𝑛 = 1, that the Favre-averaged velocity is

̃︀𝑢(𝑡, 𝑥) =
𝑉0𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥) + 𝑉𝑡(𝐻(𝑥− (𝑥𝑙 + 𝑉0𝑡))𝐻(𝑥𝑟 − 𝑥) +𝐻((𝑥𝑙 + 𝑉0𝑡)− 𝑥)𝐻(𝑥− 𝑥𝑟))

𝑡𝑐
|𝑡𝑐−𝑡|

𝐻(𝑉0𝑡+ 𝑥𝑙 − 𝑥) + (𝐻(𝑥− (𝑥𝑙 + 𝑉0𝑡))𝐻(𝑥𝑟 − 𝑥) +𝐻((𝑥𝑙 + 𝑉0𝑡)− 𝑥)𝐻(𝑥− 𝑥𝑟))
𝑡𝑐

|𝑡𝑐−𝑡| +𝐻(𝑥− 𝑥𝑟)
.

(A.63)
The expressions for velocity moments of higher order are not written here.

PDEs

Accordingly to the initial conditions (A.50) and (A.51) for the PDF eq. (3.2), the density is
𝜌0 and the velocity profile is a ramp:

𝑢0(𝑥) =

⎧⎪⎨⎪⎩
𝑉0, if 𝑥 < 𝑥𝑙,

𝑉0
𝑥𝑟−𝑥
𝑥𝑟−𝑥𝑙

, if 𝑥 ∈ [𝑥𝑙;𝑥𝑟],

0, if 𝑥 > 𝑥𝑟,

(A.64)

𝑟0(𝑥) = 𝜌0. (A.65)

The solution of eqs. (3.20) and (3.22) with given initial conditions (A.64) and (A.65) is
presented in fig. A.9. Using the method of characteristics and formula (3.29), and assuming
that the characteristics can cross, we deduce the following solutions:

∙ 0 < 𝑡 < 𝑥𝑟−𝑥𝑙
𝑉0

:
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The solution is single-valued and it can be written as

𝑟(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜌0, if 𝑥 < 𝑥𝑙 + 𝑉0𝑡,

𝜌0
𝑥𝑟−𝑥𝑙

𝑥𝑟−(𝑥𝑙+𝑉0𝑡)
, if 𝑥 ∈ [𝑥𝑙 + 𝑉0𝑡;𝑥𝑟],

𝜌0, if 𝑥 > 𝑥𝑟.

(A.66)

𝑢(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝑉0, if 𝑥 < 𝑥𝑙 + 𝑉0𝑡,

𝑉0
𝑥𝑟−𝑥

𝑥𝑟−(𝑥𝑙+𝑉0𝑡)
, if 𝑥 ∈ [𝑥𝑙 + 𝑉0𝑡;𝑥𝑟],

0, if 𝑥 > 𝑥𝑟.

(A.67)

∙ 𝑡 = 𝑡𝑐 =
𝑥𝑟−𝑥𝑙
𝑉0

:
The velocity takes all values from zero to one and the density is a Dirac delta function
at point 𝑥 = 𝑥𝑟. For other values of 𝑥 the solution is single-valued.

𝑟(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜌0, if 𝑥 < 𝑥𝑟,

𝜌0𝛿(𝑥𝑟 − 𝑥), if 𝑥 = 𝑥𝑟,

𝜌0, if 𝑥 > 𝑥𝑟.

(A.68)

𝑢(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝑉0, if 𝑥 < 𝑥𝑟,

[0;𝑉0], if 𝑥 = 𝑥𝑟,

0, if 𝑥 > 𝑥𝑟.

(A.69)

∙ 𝑡 > 𝑥𝑟−𝑥𝑙
𝑉0

:
The system of eqs. (3.20) and (3.22) with the initial conditions (A.64) and (A.65) has
three solutions (𝑟𝑖, 𝑢𝑖), 𝑖 = 1, 2, 3 on the interval 𝑥 ∈ [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡]. Outside the interval
[𝑥𝑟;𝑥𝑙 + 𝑉0𝑡], the solution is single-valued.

𝑟(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜌0, if 𝑥 < 𝑥𝑟,

(𝑟1, 𝑟2, 𝑟3), if 𝑥 ∈ [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡],

𝜌0, if 𝑥 > 𝑥𝑙 + 𝑉0𝑡.

(A.70)

𝑢(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝑉0, if 𝑥 < 𝑥𝑟,

(𝑢1, 𝑢2, 𝑢3), if 𝑥 ∈ [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡],

0, if 𝑥 > 𝑥𝑙 + 𝑉0𝑡.

(A.71)

where

(𝑟1, 𝑢1) = (𝜌0, 𝑉0), (A.72)

(𝑟2, 𝑢2) = (𝜌0, 0) (A.73)

and

(𝑟3, 𝑢3) =

(︂
𝜌0

𝑥𝑟 − 𝑥𝑙
−𝑥𝑟 + 𝑥𝑙 + 𝑉0𝑡

, 𝑉0
𝑥− 𝑥𝑟

𝑥𝑙 − 𝑥𝑟 + 𝑉0𝑡

)︂
. (A.74)
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In the strip 0 < 𝑡 < 𝑥𝑟−𝑥𝑙
𝑉0

the mean density and the Favre-averaged velocity coincide with

their solution (A.70) and (A.71) respectively. When the time is longer than 𝑥𝑟−𝑥𝑙
𝑉0

, the mean
density 𝑟 = 𝜌 is calculated as a sum of possible values of the density, i.e. the mean density is

𝑟(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜌0, if 𝑥 < 𝑥𝑟,

2𝜌0 + 𝜌0
𝑥𝑟−𝑥𝑙

𝑉0𝑡−(𝑥𝑟+𝑥𝑙)
, if 𝑥 ∈ [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡],

𝜌0, if 𝑥 > 𝑥𝑙 + 𝑉0𝑡.

(A.75)

The Favre-averaged velocity is

̃︀𝑢(𝑡, 𝑥) =
⎧⎪⎪⎨⎪⎪⎩
𝑉0, if 𝑥 < 𝑥𝑟,

𝑉0

(︁
1 + (𝑥𝑟−𝑥𝑙)(𝑥−𝑥𝑟)

(𝑉0𝑡−(𝑥𝑟−𝑥𝑙))2

)︁
𝑉0𝑡−(𝑥𝑟−𝑥𝑙)
2𝑉0𝑡−(𝑥𝑟−𝑥𝑙)

, if 𝑥 ∈ [𝑥𝑟;𝑥𝑙 + 𝑉0𝑡],

0, if 𝑥 > 𝑥𝑙 + 𝑉0𝑡.

(A.76)

The correspondence between ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) from the transport PDF eqs. (3.2) and (A.50)
and solution of PDEs (eqs. (3.20), (3.22), (A.64) and (A.65)) is following. If 𝑡 < 𝑡𝑐, then

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =
𝑟(𝑡, 𝑥)𝛿(𝑉 − 𝑢(𝑡, 𝑥))

𝑟(𝑡, 𝑥)
. (A.77)

The mean density is
𝜌 = 𝑟 = 𝑟(𝑡, 𝑥) (A.78)

and the Favre-averaged velocity is ̃︀𝑢 = 𝑢(𝑡, 𝑥). (A.79)

If 𝑡 > 𝑡𝑐, then

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =
𝑟1(𝑡, 𝑥)𝛿(𝑉 − 𝑢1(𝑡, 𝑥)) + 𝑟2(𝑡, 𝑥)𝛿(𝑉 − 𝑢2(𝑡, 𝑥)) + 𝑟3(𝑡, 𝑥)𝛿(𝑉 − 𝑢3(𝑡, 𝑥))

𝑟1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥)
.

(A.80)
The mean density is

𝜌 = 𝑟 = 𝑟1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥) (A.81)

and the Favre-averaged velocity is

̃︀𝑢 =
𝑟1(𝑡, 𝑥)𝑢1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥)𝑢2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥)𝑢3(𝑡, 𝑥)

𝑟1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥)
. (A.82)

Other moments can be calculated as

̃︁𝑢′′𝑛 =
𝑟1(𝑡, 𝑥)(𝑢1(𝑡, 𝑥)− ̃︀𝑢)𝑛 + 𝑟2(𝑡, 𝑥)(𝑢2(𝑡, 𝑥)− ̃︀𝑢)𝑛 + 𝑟3(𝑡, 𝑥)(𝑢3(𝑡, 𝑥)− ̃︀𝑢)𝑛

𝑟1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥)
. (A.83)

Figure A.9 shows a temporal variation of the mean density 𝜌 = 𝑟 and velocity and density
profiles. During the time the graph of velocity ”overturns”. At time 𝑡 = 𝑥𝑟−𝑥𝑙

𝑉0
and at point

𝑥 = 𝑥𝑟 the singularity appears. The mean density becomes a Dirac delta function. It
accumulates here all mass coming from 𝑡 < 𝑥𝑟−𝑥𝑙

𝑉0
. The velocity takes all values from 0 to 𝑉0.

After that the velocity flips and the density begins to spread from 𝑥𝑟 to 𝑥𝑙 + 𝑉0𝑡.
As we can see from the analytical solution, the PDEs are equivalent to the PDF equation

if all branches of density and velocity are taken into account.
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Figure A.9: Ramp: temporal variation of mean density and velocity profiles. Eulerian density
𝑟 (red, green and blue curves in the right column) coincides with mean density 𝜌 (black curve)
for 𝑡 ≤ 𝑥𝑟−𝑥𝑙

𝑉0
, and differs in multivalued region for 𝑡 > 𝑥𝑟−𝑥𝑙

𝑉0
.
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Numerical solution

The computational domain has length 𝐿 = 1m. The left boundary of the ramp is located at
𝑥𝑙 = 0.25m and the right at 𝑥𝑟 = 0.5m. 𝑉0 is taken as 𝑉0 = 1m/s.

Spatial profiles. In order to illustrate the spatial profiles of the moments, we perform
calculations with a number of stochastic fields 𝑁𝑟 = 104 and with a number of cells 𝑁𝑥 =
5× 103.

Numerical solutions of the PDEs are presented in fig. A.10 at time 0.1 s, where the an-
alytical solution is still single-valued. It can be seen that before overlap the profiles of the
mean density and the Favre-averaged velocity compared to the exact solution have a good
agreement for any stochastic process.
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Figure A.10: Ramp: profiles of mean density (left) and velocity (right) at time 0.1 s. 𝑁𝑟 =
104, 𝑁𝑥 = 5× 103.

The left panel of fig. A.11 illustrates the density variance calculated by the stochastic
GForce method with different number of stochastic fields. One can note that strong den-
sity fluctuations take place, even if the solution of problem is single-valued. In the interval
[0.35m, 0.5m] the density variance converges to the constant 0.09 kg2/m6. Outside of this
interval, it is equal to zero. The right panel of fig. A.11 demonstrates the Favre velocity
variance also at time 0.1 s, obtained with varied numbers of realizations by the stochastic
GForce method. It is known that theoretically the Favre velocity variance is zero, numeri-
cally it fluctuates around the value 2.2500× 10−5m2s−2 at 𝑥 = 0.5m. The increase of the
stochastic fields allows decreasing the velocity fluctuations, but at the same time for plot-
ted fields 𝑁𝑟 = [100, 1100, 2100, 3100, 4100] the given profile is close to zero. The order
10−5m2/s2 for the Favre velocity variance is the consequence of the spatial error which starts
to dominate for large 𝑁𝑟. We can conclude that before the overlap of solutions, there are
no large fluctuations of velocity. The stochastic numerical schemes are in agreement with
schemes satisfying the entropy increase condition. They give the same results.

A multivalued solution appears after 𝑡 ≥ 0.25 s. Figure A.12 shows the numerical solutions
for the average density and velocity at time 0.3 s. The mean density fluctuates in the region
of multivalued solution; while Favre-averaged velocity does not. One can also note that two
spatial profiles are blurred near the point 𝑥 = 0.5m where multivalued solution appears.



240 APPENDIX A. SOME ASPECTS OF SPDES MODELLING

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

x [m]

D
en

si
ty

 v
ar

ia
nc

e 
[k

g2 /m
6 ]

 

 
N

r
 = 100

N
r
 = 1100

N
r
 = 2100

N
r
 = 3100

N
r
 = 4100

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x 10
−5

x [m]

F
av

re
 v

el
oc

ity
 v

ar
ia

nc
e 

[m
2 /s

2 ]

 

 
N

r
 = 100

N
r
 = 1100

N
r
 = 2100

N
r
 = 3100

N
r
 = 4100

Figure A.11: Ramp: profiles of density variance (left) and velocity Favre variance (right) at
time 0.1 s obtained with stochastic GForce method. 𝑁𝑥 = 5× 103.
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Figure A.12: Ramp: profiles of mean density (left) and velocity (right) at time 0.3 s. 𝑁𝑟 =
104, 𝑁𝑥 = 5× 103.

Two different realizations of the stochastic density and velocity fields at 𝑡 = 0.3 s are
presented in figs. A.13 and A.14. These profiles are part of the realizations set from which
the presented above moments of density and velocity are computed. The density has large
peaks, whereas the velocity can be either continuous in the interval greater than Δ𝑥 if the
solution is single or alternate different values in the region of multivalued solution.

At the time 0.4 s (figs. A.15 and A.16) the mean profiles of density, velocity and velocity
variance begin to fluctuate significantly in comparison with profiles at 0.3 s. The largest
fluctuations of the mean density are observed in the solution calculated with the stochastic
Godunov method. Even if 𝑁𝑟 = 104, numerical velocity variance gives 40% error at points
𝑥 = 0.5m and 𝑥 = 0.75m for four stochastic scheme. Despite of this fact, the numerical
schemes still allow reconstructing statistics.

We examine the Favre-averaged PDF of the velocity when the system of the PDEs has
three solutions. The considered time is 0.3 s, the spatial point is 𝑥 = 0.5249m. The ana-
lytical solution of the PDF equation or Eulerian PDEs in 𝑡 = 0.3 s and 𝑥 = 0.5249m is the
following. The velocity takes three values: 𝑢1 = 0m/s, 𝑢2 = 1m/s and 𝑢3 = 0.498m/s. The
corresponding probabilities are 1

7
, 1

7
and 5

7
respectively (see the formula (A.62)). Numerical
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Figure A.13: Ramp: profiles of stochastic density (left) and velocity (right) at time 0.3 s;
stochastic GForce method. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.14: Ramp: profiles of stochastic density (left) and velocity (right) at time 0.3 s;
stochastic GForce method. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.

Favre-averaged PDF is defined by the expression (2.94).
Left panels of figs. A.17 to A.20 show the weighted PDF of the velocity at point 𝑥 =

0.5249m. The profile of numerical PDF depends on the choice of histogram intervals and
number of considered realizations. As we can see from right panels of figs. A.17 to A.20 the
stochastic velocity takes all values on the interval [0m/s; 1m/s]. In particular, it takes mostly
the values of 0m/s and 1m/s. At the same time the conditional PDF of density for given
velocities, presented in the right panel of fig. A.21 takes large values in the neighborhood
of 0.5m/s and very low values in 0m/s and 1m/s. Due to such the conditional PDF, the
probability of achieving 𝑢3 = 0.498m/s is higher that of achieving 𝑢1 = 0m/s, 𝑢2 = 1m/s.
The stochastic Godunov method gives the best weighted PDF in comparison with other
stochastic schemes.

Left fig. A.21 demonstrates the distribution of the density. The stochastic Godunov
method yields non-zero probability to attain high values of the density (there exists for
instance a value exceeding 250 kg/m3 for given Δ𝑥 and Δ𝑡).
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Figure A.15: Ramp: profiles of mean density (left) and velocity (right) at time 0.4 s. 𝑁𝑟 =
104, 𝑁𝑥 = 5× 103.
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Figure A.16: Ramp: profiles of Favre variance of velocity at time 0.4 s. 𝑁𝑟 = 104, 𝑁𝑥 =
5× 103.
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Figure A.17: Ramp: Favre-averaged PDF (left) and distribution of velocity (right) at 𝑥 =
0.5249m, 𝑡 = 0.3 s. Stochastic Lax-Friedrichs method, 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.18: Ramp: Favre-averaged PDF (left) and distribution of velocity (right) at 𝑥 =
0.5249m, 𝑡 = 0.3 s. Stochastic Lax-Wendroff method, 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.19: Ramp: Favre-averaged PDF (left) and distribution of velocity (right) at 𝑥 =
0.5249m, 𝑡 = 0.3 s. Stochastic GForce method, 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.20: Ramp: Favre-averaged PDF (left) and distribution of velocity (right) at 𝑥 =
0.5249m, 𝑡 = 0.3 s. Stochastic Godunov method, 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.21: Ramp: PDF of density (left) and conditional PDF of density for given velocities
(right) obtained by different methods at time 𝑡 = 0.3 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Convergence. We consider the statistical convergence. Calculations are performed for a
fixed number of cells 𝑁𝑥 = 105. The number of stochastic fields is varied:

𝑁𝑟 = [100, 1100, 2100, 3100, 4100].

The reference solution is exact and given above. Figures A.22 and A.23 show the evolution
of statistical convergence rates and coefficients for the mean density and the Favre-averaged
velocity obtained by different numerical schemes before overlap. We observe that the con-
vergence rates increase with time because both spatial and stochastic errors accumulate and
do not allow observing convergence. Stochastic Godunov method gives the convergence rate
around the theoretical value 𝑁−0.5

𝑟 , whereas other methods yield about 𝑁−0.35
𝑟 for the mean

density and 𝑁−0.38
𝑟 for the Favre-averaged velocity at time 𝑡 = 0.1 s. The convergence co-

efficients also increase with the time. One can conclude that the stochastic Lax-Friedrichs
method converges slower than others with respect to the theoretical solution.
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Figure A.22: Ramp: time evolution of statistical convergence rates for mean density (left)
and Favre-averaged velocity (right). 𝑁𝑥 = 105.

0.02 0.04 0.06 0.08 0.1

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

Time [s]

C
on

v.
 c

oe
ff.

 o
f m

ea
n 

de
ns

ity

 

 

SL−F
SL−W
SGF
SGod

0.02 0.04 0.06 0.08 0.1
−9.5

−9

−8.5

−8

Time [s]

C
on

v.
 c

oe
ff.

 o
f m

ea
n 

ve
lo

ci
ty

 

 

SL−F
SL−W
SGF
SGod

Figure A.23: Ramp: time evolution of statistical convergence coefficients for mean density
(left) and Favre-averaged velocity (right). 𝑁𝑥 = 105.
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Finally, we check the spatial convergence. Calculations are performed with a fixed number
of the stochastic fields 𝑁𝑟 = 107. The number of grid cells is varied as:

𝑁𝑥 = [20, 40, 60, 80, 100].

Numerical solutions are compared with the exact solution. Figure A.24 shows the evolu-
tion of spatial errors for the mean density and for the Favre-averaged velocity as a function
of 𝑙𝑜𝑔(𝑁𝑥) at time 𝑡 = 0.2 s (i.e. before the characteristics overlap). The errors are calculated
for the stochastic Lax-Friedrichs method.
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Figure A.24: Ramp: spatial convergence of mean density (left) and Favre-averaged velocity
(right) at 𝑡 = 0.2 s on interval [𝑥𝑙;𝑥𝑟 + 𝑉0𝑡], 𝑉0 = 1m/s, stochastic Lax-Friedrichs method.
𝑁𝑟 = 107.

In the table A.1, the convergence spatial rate and convergence spatial coefficient are
summarized for all the schemes. The order of convergence is about −0.5 for the averaged
velocity and −0.3 for the mean density. The spatial convergence rate for the mean density is
lower than the spatial convergence rate for the Favre-averaged velocity due to the numerical
spatial derivative of the velocity which is proportional to 𝑂( 1

Δ𝑥
) and which is implicitly used

in order to reconstruct the density.

SLax-Friedrichs SLax-Wendroff SGForce SGodunov

Favre-averaged velocity: rate (A) -0.52 -0.54 -0.54 -0.41
Favre-averaged velocity: coeff (B) -0.95 -1.26 -1.26 -2.36

Mean density: rate (A) -0.23 -0.32 -0.32 -0.34
Mean density: coeff (B) -0.43 -0.28 -0.28 -0.34

Table A.1: Ramp: approximation of spatial error of Favre-averaged velocity and mean density
by 𝐴 log(𝑁𝑥) +𝐵 at time 𝑡 = 0.2 s. 𝑁𝑟 = 107.
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A.5.3 Triangle velocity profile

Let us check the reconstruction of multivalued solution on the initial triangle velocity profile.
This case corresponds to combination of the rarefication zone and three values of velocity.
The investigated PDEs are given by eqs. (3.22) and (3.23).

PDF

The initial conditions for eq. (3.2) read

𝜌(𝑡 = 0, 𝑥) = 𝜌0, ̃︀𝑓𝑢(𝑉 ; 𝑡 = 0, 𝑥) = 𝛿 (𝑉 − 𝑢0(𝑥)) , (A.84)

where

𝑢0(𝑥) = 𝑉0

(︂
𝑥− 𝑥𝑙
𝑥𝑐 − 𝑥𝑙

)︂
𝐻(𝑥− 𝑥𝑙)𝐻(𝑥𝑐 − 𝑥) + 𝑉0

(︂
𝑥− 𝑥𝑟
𝑥𝑐 − 𝑥𝑟

)︂
𝐻(𝑥− 𝑥𝑐)𝐻(𝑥𝑟 − 𝑥). (A.85)

The initial condition for 𝜌 ̃︀𝑓𝑢 is
𝜌 ̃︀𝑓𝑢(𝑡 = 0, 𝑥) =

𝜌0(𝐻(𝑥𝑙−𝑥)+𝐻(𝑥−𝑥𝑟))𝛿(𝑉 )+𝜌0𝛿(𝑉 −𝑉1)𝐻(𝑥−𝑥𝑙)𝐻(𝑥𝑐−𝑥)+𝜌0𝛿(𝑉 −𝑉2)𝐻(𝑥−𝑥𝑐)𝐻(𝑥𝑟−𝑥),
(A.86)

where

𝑉1 = 𝑉0

(︂
𝑥− 𝑥𝑙
𝑥𝑐 − 𝑥𝑙

)︂
, 𝑉2 = 𝑉0

(︂
𝑥− 𝑥𝑟
𝑥𝑐 − 𝑥𝑟

)︂
. (A.87)

Accordingly to eq. (3.11), solutions for 𝑥 and for 𝐹 = 𝜌 ̃︀𝑓𝑢 are{︃
𝑥 = 𝑦 +

[︁(︁
𝑦−𝑥𝑙
𝑥𝑐−𝑥𝑙

)︁
𝐻(𝑦 − 𝑥𝑙)𝐻(𝑥𝑐 − 𝑦) +

(︁
𝑦−𝑥𝑟
𝑥𝑐−𝑥𝑟

)︁
𝐻(𝑦 − 𝑥𝑐)𝐻(𝑥𝑟 − 𝑦)

]︁
𝑉0𝑡,

𝐹 = 𝜌0𝛿 (𝑉 − 𝑢0(𝑦)) .
(A.88)

The variable 𝑦 can be rewritten in terms of 𝑥 and 𝑡. If the time 𝑡 ̸= 𝑥𝑟 − 𝑥𝑐, we deduce that
the solution of Cauchy problem (eqs. (3.2) and (A.86)) is

𝜌 ̃︀𝑓𝑢(𝑡, 𝑥) = 𝜌0(𝐻(𝑥𝑙 − 𝑥) +𝐻(𝑥− 𝑥𝑟))𝛿(𝑉 ) +

𝜌0𝐻(𝑥− 𝑥𝑙)𝐻(𝑥𝑐 + 𝑉0𝑡− 𝑥)𝛿(𝑉 − 𝑉𝑡1)
𝑥𝑐 − 𝑥𝑙

𝑥𝑐 + 𝑉0𝑡− 𝑥𝑙
+

𝜌0 (𝐻(𝑥− 𝑥𝑐 − 𝑉0𝑡)𝐻(𝑥𝑟 − 𝑥) +𝐻(𝑥𝑐 + 𝑉0𝑡− 𝑥)𝐻(𝑥− 𝑥𝑟)) 𝛿(𝑉 − 𝑉2𝑡)
𝑡𝑐

|𝑡− 𝑡𝑐|
, (A.89)

where

𝑡𝑐 =
𝑥𝑟 − 𝑥𝑐
𝑉0

, 𝑉𝑡1 = 𝑉0
𝑥− 𝑥𝑙

𝑥𝑐 − 𝑥𝑙 + 𝑉0𝑡
, 𝑉𝑡2 = 𝑉0

𝑥− 𝑥𝑟
𝑥𝑐 − 𝑥𝑟 + 𝑉0𝑡

. (A.90)

As we can see from (A.89) there exists the critical time 𝑡𝑐 = 𝑥𝑟−𝑥𝑐
𝑉0

. Before 𝑡 < 𝑡𝑐 any
point in space corresponds to a single Dirac delta function: 𝛿(𝑉 ) for 𝑥 ≤ 𝑥𝑙 and for 𝑥 ≥ 𝑥𝑟,
𝛿(𝑉 − 𝑉𝑡1) for 𝑥 ∈ [𝑥𝑙;𝑥𝑐 + 𝑉0𝑡] and 𝛿(𝑉 − 𝑉𝑡2) for 𝑥 ∈ [𝑥𝑐 + 𝑉0𝑡;𝑥𝑟]. After the time 𝑡𝑐, the
interval [𝑥𝑟;𝑥𝑐 + 𝑉0𝑡] is associated with three Dirac delta functions.
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The mean density is

𝜌 = 𝜌0(𝐻(𝑥𝑙 − 𝑥) +𝐻(𝑥− 𝑥𝑟)) + 𝜌0𝐻(𝑥− 𝑥𝑙)𝐻(𝑥𝑐 + 𝑉0𝑡− 𝑥)
𝑥𝑐 − 𝑥𝑙

𝑥𝑐 + 𝑉0𝑡− 𝑥𝑙
+

𝜌0 (𝐻(𝑥− 𝑥𝑐 − 𝑉0𝑡)𝐻(𝑥𝑟 − 𝑥) +𝐻(𝑥𝑐 + 𝑉0𝑡− 𝑥)𝐻(𝑥− 𝑥𝑟))
𝑡𝑐

|𝑡− 𝑡𝑐|
. (A.91)

Using eqs. (A.89) and (A.91) we can find all moments of velocity.

PDEs

At the initial time the density is constant in space and it is

𝑟0(𝑡 = 0, 𝑥) = 𝜌0, (A.92)

The profile of velocity is a triangle-shaped function:

𝑢0(𝑡 = 0, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑥 < 𝑥𝑙,

𝑉0
𝑥−𝑥𝑙
𝑥𝑐−𝑥𝑙

, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑐,

𝑉0
𝑥−𝑥𝑟
𝑥𝑐−𝑥𝑟 , if 𝑥𝑐 < 𝑥 ≤ 𝑥𝑟.

0, if 𝑥 > 𝑥𝑟,

(A.93)

The solution of the PDEs (3.20) and (3.22) with the initial conditions (A.92) and (A.93)
can be found via the characteristics method. When the time 𝑡 < 𝑥𝑟−𝑥𝑐

𝑉0
, the solution of this

problem is single-valued, but when the time 𝑡 ≥ 𝑥𝑟−𝑥𝑐
𝑉0

a multivalued solution appears.

∙ The solution of velocity when the time 𝑡 < 𝑥𝑟−𝑥𝑐
𝑉0

can be written as

𝑢(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑥 < 𝑥𝑙,

𝑉0
𝑥−𝑥𝑙

𝑥𝑐−𝑥𝑙+𝑉0𝑡
, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑐 + 𝑉0𝑡,

𝑉0
𝑥−𝑥𝑟

𝑥𝑐−𝑥𝑟+𝑉0𝑡 , if 𝑥𝑐 + 𝑉0𝑡 < 𝑥 ≤ 𝑥𝑟.

0, if 𝑥 > 𝑥𝑟,

(A.94)

The density is

𝑟(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌0, if 𝑥 < 𝑥𝑙,

𝜌0
𝑥𝑐−𝑥𝑙

𝑥𝑐−𝑥𝑙+𝑉0𝑡
, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑐 + 𝑉0𝑡,

𝜌0
𝑥𝑟−𝑥𝑐

𝑥𝑟−𝑥𝑐−𝑉0𝑡 , if 𝑥𝑐 + 𝑉0𝑡 < 𝑥 ≤ 𝑥𝑟.

𝜌0, if 𝑥 > 𝑥𝑟,

(A.95)

∙ At time 𝑡 = 𝑥𝑟−𝑥𝑐
𝑉0

, the density is a Dirac delta function at point 𝑥 = 𝑥𝑟 and the velocity
takes any value from [0;𝑉0] interval.

𝑢(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑥 < 𝑥𝑙,

𝑉0
𝑥−𝑥𝑙

𝑥𝑐−𝑥𝑙+𝑉0𝑡
, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑟,

[0;𝑉0], if 𝑥 = 𝑥𝑟.

0, if 𝑥 > 𝑥𝑟,

(A.96)
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𝑟(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌0, if 𝑥 < 𝑥𝑙,

𝜌0
𝑥𝑐−𝑥𝑙
𝑥𝑐−𝑥𝑙+𝑡

, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑟,

𝜌0𝛿(𝑥− 𝑥𝑟), if 𝑥 = 𝑥𝑟.

𝜌0, if 𝑥 > 𝑥𝑟,

(A.97)

∙ When the time is 𝑡 > 𝑥𝑟−𝑥𝑐
𝑉0

, the velocity and density have three solutions:

𝑢 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝑥 < 𝑥𝑙,

𝑉0
𝑥−𝑥𝑙

𝑥𝑐−𝑥𝑙+𝑉0𝑡
, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑟,

(𝑢1, 𝑢2, 𝑢3) =
(︁
𝑉0

𝑥−𝑥𝑙
𝑥𝑐−𝑥𝑙+𝑉0𝑡

; 0; 𝑉0
𝑥−𝑥𝑟

𝑥𝑐−𝑥𝑟+𝑉0𝑡

)︁
, if 𝑥𝑟 < 𝑥 ≤ 𝑥𝑐 + 𝑉0𝑡.

0, if 𝑥 > 𝑥𝑟,

(A.98)

𝑟(𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌0, if 𝑥 < 𝑥𝑙,

𝜌0
𝑥𝑐−𝑥𝑙

𝑥𝑐−𝑥𝑙+𝑉0𝑡
, if 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑟,

(𝑟1, 𝑟2, 𝑟3) =
(︁
𝜌0

𝑥𝑐−𝑥𝑙
𝑥𝑐−𝑥𝑙+𝑉0𝑡

; 𝜌0; 𝜌0
𝑥𝑟−𝑥𝑐

𝑥𝑐−𝑥𝑟+𝑉0𝑡

)︁
, if 𝑥𝑟 < 𝑥 ≤ 𝑥𝑐 + 𝑉0𝑡,

𝜌0, if 𝑥 > 𝑥𝑐 + 𝑉0𝑡,

(A.99)
One can conclude that the solutions of the PDF eqs. (3.2) and (A.86) and the PDEs
(3.20) and (3.22) with the initial conditions (A.92) and (A.93) are equivalent. The
PDF is defined as ̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =

𝑟(𝑡, 𝑥)𝛿(𝑉 − 𝑢(𝑡, 𝑥))

𝑟(𝑡, 𝑥)
, (A.100)

if the solution of Eulerian PDEs is single-valued and as

̃︀𝑓𝑢(𝑉 ; 𝑡, 𝑥) =
𝑟1(𝑡, 𝑥)𝛿(𝑉 − 𝑢1(𝑡, 𝑥)) + 𝑟2(𝑡, 𝑥)𝛿(𝑉 − 𝑢2(𝑡, 𝑥)) + 𝑟3(𝑡, 𝑥)𝛿(𝑉 − 𝑢3(𝑡, 𝑥))

𝑟1(𝑡, 𝑥) + 𝑟2(𝑡, 𝑥) + 𝑟3(𝑡, 𝑥)
(A.101)

for time 𝑡 > 𝑥𝑟−𝑥𝑐
𝑉0

.
Figure A.25 shows temporal variation of the mean density and velocity profiles.



250 APPENDIX A. SOME ASPECTS OF SPDES MODELLING

t = 0

xl

x [m]

u [m/s]

xrxc

, r [kg/m3]

x [m]

xl xrxc

xc+V0t xc+V0t

xc+V0t

V0t < xr-xc

V0t = xr-xc

V0t > xr-xc

x-xl
xc-xl

x-xr
xc-xr

x-xl
xr-xl

0
xr-xc

xr-xc+V0t

xc-xl

xc-xl+V0t

xc-xl

xr-xl

xc-xl

xc-xl+V0t

xc-xl

xc-xl+V0t
xr-xc

xr-xc+V0t
1+ +

(xr-x)

xr-xc

xr-xc+V0t

xc-xl

xc-xl+V0t

0

0

0

0V0

V0

V0

V0

V0 V0

x-xr

xc-xr+V0t
V0

x-xl

xc-xl+V0t
V0

V0

x-xl

xc-xl+V0t
V0

x-xr

xc-xr+V0t
V0

0

0

0

0

0

0

0

0

xc+V0t

)(

Figure A.25: Triangle: temporal variation of the mean density and velocity profiles. Eulerian
density 𝑟 (red, green and blue curves in the right column) coincides with mean density 𝜌 (black
curve) for 𝑡 < 𝑥𝑟−𝑥𝑐

𝑉0
, and differs in multivalued region for 𝑡 ≥ 𝑥𝑟−𝑥𝑐

𝑉0
.
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Numerical solution

Calculations are performed on 𝐿 = 1m domain. At the initial time, the profile of velocity
is a triangle centered at the middle of the domain 𝑥𝑐 = 0.5m, 𝑥𝑙 = 0.25m and 𝑥𝑟 = 0.75m,
𝑉0 = 1m/s (fig. A.26).
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Figure A.26: Triangle: spatial initial profile of velocity. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.

Spatial profiles. To illustrate the behavior of stochastic schemes we take 𝑁𝑥 = 5× 103

and 𝑁𝑟 = 104. In figs. A.27 to A.29 different statistics of density and velocity are presented
before the overlap at time 𝑡 = 0.1 s. As for other numerical tests stochastic fluctuations
appear, but their influence of statistics is negligible before overlap. Favre velocity variance,
skewness and flatness stay close to zero containing some fluctuations due to the spatial error.
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Figure A.27: Triangle: spatial profiles of mean density (left) and velocity (right) at time
𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.

The averaged fields after overlap are shown in figs. A.30 to A.32. One can conclude that
numerical schemes are able to find multivalued solution of the problem despite the numerical
spatial diffusion and statistical error of stochastic schemes. One can note that in the region
of multivalued solution [0.75m; 0.9m] the density fluctuates for four stochastic schemes. The
highest fluctuations appear for the solution calculated with stochastic Godunov scheme. In
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Figure A.28: Triangle: spatial profiles of density (left) and velocity (right) variance at time
𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.29: Triangle: spatial profiles of velocity skewness (left) and flatness (right) at time
𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.

addition, the numerical diffusion smooths the profile of the mean density at points where the
solution contains jumps: 𝑥 = 0.25m, 𝑥 = 0.75m and 𝑥 = 0.9m. As velocity statistics are
calculated from the density, the latter changes significantly statistics at these points.
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Figure A.30: Triangle: spatial profiles of mean density (left) and velocity (right) at time
𝑡 = 0.4 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.31: Triangle: spatial profiles of density (left) and velocity (right) variance at time
𝑡 = 0.4 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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Figure A.32: Triangle: spatial profiles of velocity skewness (left) and flatness (right) at time
𝑡 = 0.4 s. 𝑁𝑟 = 104, 𝑁𝑥 = 5× 103.
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A.5.4 Hat velocity profile

The aim of this test is to check the stochastic numerical schemes when initial profiles of the
density and the velocity are smooth functions. The investigated PDEs are given by eqs. (3.22)
and (3.23).

PDEs

As in previous subsection the PDEs are eqs. (3.20) and (3.22). At the initial time, the profile
of velocity is a smooth hat-like function centered at 𝑥𝑐 = 0.5m the middle of the domain
𝐷 = [0m; 1m] with a length 𝐿 = 1m.

𝑢0(𝑥) =

⎧⎪⎨⎪⎩
0, if 𝑥 < 0.25m,

𝑉0𝑒𝑥𝑝(−(𝑥− 𝑥𝑐)
2/𝐿2

0), if 0.25m ≤ 𝑥 ≤ 0.75m,

0, if 𝑥 > 0.75m,

(A.102)

where 𝑉0 = 1m/s and 𝐿0 = 0.1m. The density is set identically to one. There is no analytical
solution for this problem; as a consequence, only numerical solutions will be investigated.

Numerical solution

Spatial profiles. In order to reconstruct spatial profiles, the number of cells are imposed
to 𝑁𝑥 = 103 and the number of stochastic fields are set to 𝑁𝑟 = 104. The considered time is
𝑡 = 0.1 s.

Figure A.33 compares spatial profiles of the mean density and the Favre-averaged velocity
calculated using different numerical schemes. The profiles of the mean density calculated
with all the four methods coincide almost everywhere except the neighborhood of the point
𝑥 = 0.62m. The stochastic Lax-Friedrichs method gives the value of the mean density 20%
smaller than other methods. The profiles of the Favre-averaged velocity are the same in all
the cases.
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Figure A.33: Hat: spatial profiles of mean density (left) and velocity (right) at time 𝑡 = 0.1 s.
𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figures A.34 and A.35 represent the second and third statistics for the density and the
velocity. The profiles obtained with the stochastic Lax-Wendroff and stochastic GForce
schemes are very close to each other.
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Figure A.34: Hat: spatial profiles of density (left) and velocity (right) variances at time
𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.
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Figure A.35: Hat: spatial profiles of skewness(left) and flatness (right) of velocity at time
𝑡 = 0.1 s. 𝑁𝑟 = 104, 𝑁𝑥 = 103.

Convergence. To assess the stochastic convergence of the numerical solutions we set 𝑁𝑥 =
104 while the number of fields 𝑁𝑟 varies from 20 to 80. The solution obtained with 1200
stochastic fields is taken as a reference solution to which other calculations are compared.
Figures A.36 to A.39 show statistical convergence rates and coefficients of the hat problem.
The order of convergence for the mean density, mean velocity and velocity variance is about
−0.45 for all the numerical schemes. Other Favre statistics of the velocity slowly converge
to the reference solutions, with the rate of about −0.3. The order of convergence of Favre-
averaged statistics of the velocity (i.e. variance, skewness and flatness) decreases with time.
It signifies that over the time the spatial error progressively extends its influence on the
numerical solution.
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Figure A.36: Hat: time evolution of the statistical convergence rates (left) and coefficients
(right) for moments of density and velocity; stochastic Godunov method. 𝑁𝑥 = 104.
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Figure A.37: Hat: time evolution of the statistical convergence rates (left) and coefficients
(right) for moments of density and velocity; stochastic GForce method. 𝑁𝑥 = 104.

The spatial convergence calculations are now performed with a fixed number of stochastic
fields 𝑁𝑟 = 107. The number of grid cells is varied from 𝑁𝑥 = 20 to 𝑁𝑥 = 80. The reference
solution is obtained using 𝑁𝑥 = 100. In figs. A.40 to A.42 the spatial convergence of statistics
of the density and the velocity is presented. It can be seen that the order of convergence
with respect to 𝑁𝑥 slightly exceeds one. Such the behavior could be due to the approximate
character of the chosen in this section reference solution.
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Figure A.38: Hat: time evolution of the statistical convergence rates (left) and coefficients
(right) for moments of density and velocity; stochastic Lax-Friedrichs method. 𝑁𝑥 = 104.
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Figure A.39: Hat: time evolution of the statistical convergence rates (left) and coefficients
(right) for moments of density and velocity; stochastic Lax-Wendroff method. 𝑁𝑥 = 104.
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Figure A.40: Hat: spatial convergence of means density (left) and velocity (right) at time
𝑡 = 0.1 s. 𝑁𝑟 = 107.
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Figure A.41: Hat: spatial convergence of variance (left) and skewness (right) of velocity at
time 𝑡 = 0.1 s. 𝑁𝑟 = 107.
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Figure A.42: Hat: spatial convergence of velocity flatness at time 𝑡 = 0.1 s. 𝑁𝑟 = 107.
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A.5.5 Scheme non-dissipativity test

The solution of the PDF transport eq. (3.121) was not performed in the first test because
of the numerical difficulties in solving the PDF equation in the region where 𝑢′ = 0. Con-
sequently, to compare solutions of the PDF eq. (3.121) and PDEs (3.127) and (3.128) we
modified the initial fluctuating velocity profiles

Numerical solution

The initial fluctuating velocity profiles are

𝑢′′ = 𝜎𝜉max

(︃√︃
exp

(︂
−𝑥2

𝐿2

)︂
, 0.1

)︃
, (A.103)

where 𝜉 is a normal Gaussian noise, 𝐿 = 0.1m is a width of non-zero velocity domain and
𝜎 = 1m/s is a maximum standard deviation.

Obtained numerical solutions of the PDEs (3.127)-(3.128) are compared with the numeri-
cal solution of the PDF transport equation (3.121). The numerical modeling of velocity near
points where the cut of velocity 𝑢′′ by 0.1 is used is different in two approaches, due to the
presence of Dirac delta function at this point. The solver of the PDF equation was written by
R. Duclous in the framework of summer school in CIRM (Marseille). It is a direct numerical
solver based on finite volume approximations [EmakoLetizia2014].

The calculation domain is 𝐷 = [−5m; 5m]. In order to obtain a reference solution of the
PDF equation (3.121), number of points in 𝑥 is set to 512, number of points in 𝑉 ′′ is 256.
Minimum value of 𝑉 ′′ is −5m/s and maximum value of 𝑉 ′′ is 5m/s.

Spatial profiles. We demonstrate here spatial profiles of velocity variance (figs. A.43
and A.44), skewness (figs. A.45 and A.46), flatness (figs. A.48 and A.49) and mean den-
sity (figs. A.49 and A.50). The number of stochastic fields is large: 𝑁𝑟 = 107 and the number
of cells 𝑁𝑥 varies. The considered time is 𝑡 = 0.2 s. Based on these profiles the spatial con-
vergence is calculated in the section ”convergence”. One can note that there is no difference
between velocity statistics obtained from deterministic PDF equation and similar statistics
calculated with any of the stochastic schemes.

The impact of statistical error is negligible: it is 𝑂( 1
107

) ≈ 3.1623× 10−4𝑂(1). Even if
the exact constant is unknown, the statistical error is very small in comparison with the
spatial error, because the decreasing of number of cells allows converging to expected values
of statistics.

The observation of spatial error is the most straightforward for the mean density, since
its theoretical value is simply one. For example, the stochastic Godunov scheme gives 2% of
error for 𝑁𝑥 = 100. For other schemes the error is approximately 0.2% for 𝑁𝑥 = 100. The
solution obtained with stochastic Lax-Friedrichs scheme coincides with the exact solution,
because this scheme is linear.

Figures A.51 and A.52 illustrate the spatial profiles of the velocity variance for different
numbers of realizations at time 𝑡 = 0.2 s with which the statistical convergence has been
constructed (𝑁𝑥 = 105). One can note that 𝑁𝑟 = 1056 allows recovering the second moment
of velocity, whereas 𝑁𝑟 ≤ 360 is not sufficient to establish a spatial profile. The stochastic
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Figure A.43: Scheme non-dissipativity test: spatial profile of velocity variance at time 𝑡 =
0.2 s. Left: stochastic Lax-Friedrichs method, right: stochastic Lax-Wendroff method. 𝑁𝑟 =
107.
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Figure A.44: Scheme non-dissipativity test: spatial profile of velocity variance at time 𝑡 =
0.2 s. Left: stochastic GForce method, right: stochastic Godunov method. 𝑁𝑟 = 107.

Godunov method does not give good agreement with theoretical velocity variance even with
𝑁𝑟 = 1056, which is in fact related to a particular realization of noise sequence used in this
calculation.

Figures A.53 and A.54 show spatial profiles of the mean density, velocity variance, skew-
ness and flatness at time 𝑡 = 2 s calculated with 𝑁𝑟 = 9600, 𝑁𝑥 = 1000. Spatial statistics
follow the statistics calculated using the PDF. In limit points of the spatial interval a small
difference in solutions between the SPDEs and the PDF methods is present, as a consequence
of Dirac delta function for velocity located in these points during PDF calculation.

Figures A.55 to A.62 represent several examples of the stochastic velocity and density
fields at time 𝑡 = 2 s from which the presented earlier in figs. A.53 and A.54 statistics are
obtained. As we can see on these figures, the velocity field has large jumps between two
numerical neighbor points. In particular, when the velocity changes its sign, the stochastic
Lax-Friedrichs scheme yields the multiple velocity jumps, because in this scheme the velocity
at the middle point takes the left or the right value of velocity at the following time step.
For other methods only a single large jump of velocity is observed at this point.
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Figure A.45: Scheme non-dissipativity test: spatial convergence for velocity skewness at time
𝑡 = 0.2 s. Left: stochastic Lax-Friedrichs method, right: stochastic Lax-Wendroff method.
𝑁𝑟 = 107.
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Figure A.46: Scheme non-dissipativity test: spatial profile of velocity skewness at time 𝑡 =
0.2 s. Left: stochastic GForce method, right: stochastic Godunov method. 𝑁𝑟 = 107.
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Figure A.47: Scheme non-dissipativity test: spatial profile of velocity flatness at time 𝑡 =
0.2 s. Left: stochastic Lax-Friedrichs method, right: stochastic Lax-Wendroff method. 𝑁𝑟 =
107.



262 APPENDIX A. SOME ASPECTS OF SPDES MODELLING

−4 −2 0 2 4

0.2

0.4

0.6

0.8

x [m]

V
el

oc
ity

 fl
at

ne
ss

 [m
4 /s

4 ]

 

 
N

x
=40

N
x
=60

N
x
=80

N
x
=100

Sol PDF

−4 −2 0 2 4

0.2

0.4

0.6

0.8

x [m]

V
el

oc
ity

 fl
at

ne
ss

 [m
4 /s

4 ]

 

 
N

x
=40

N
x
=60

N
x
=80

N
x
=100

Sol PDF

Figure A.48: Scheme non-dissipativity test: spatial profile of velocity flatness at time 𝑡 =
0.2 s. Left: stochastic GForce method, right: stochastic Godunov method. 𝑁𝑟 = 107.
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Figure A.49: Scheme non-dissipativity test: spatial profile of mean density at time 𝑡 = 0.2 s.
Left: stochastic Lax-Friedrihs method, right: stochastic Lax-Wendroff method. 𝑁𝑟 = 107.

−4 −2 0 2 4

0.997

0.998

0.999

1

1.001

x [m]

M
ea

n 
de

ns
ity

 [k
g/

m
3 ]

 

 
N

x
=40

N
x
=60

N
x
=80

N
x
=100

Sol PDF

−4 −2 0 2 4

0.98

0.99

1

1.01

1.02

1.03

1.04

x [m]

M
ea

n 
de

ns
ity

 [k
g/

m
3 ]

 

 
N

x
=40

N
x
=60

N
x
=80

N
x
=100

Sol PDF

Figure A.50: Scheme non-dissipativity test: spatial profile of mean density at time 𝑡 = 0.2 s.
Left: stochastic GForce method, right: stochastic Godunov method. 𝑁𝑟 = 107.
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Figure A.51: Scheme non-dissipativity test: spatial convergence for velocity variance at time
𝑡 = 0.2 s. Left: stochastic Lax-Friedrichs method, right: stochastic Lax-Wendroff method.
𝑁𝑥 = 105.
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Figure A.52: Scheme non-dissipativity test: spatial profile of velocity variance at time 𝑡 =
0.2 s. Left: stochastic GForce method, right: stochastic Godunov method. 𝑁𝑥 = 105.
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Figure A.53: Scheme non-dissipativity test: spatial profile of mean density (left) and velocity
variance (right) at time 𝑡 = 2 s. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.54: Scheme non-dissipativity test: spatial profile of velocity skewness (left) and
flatness (right) at time 𝑡 = 2 s. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.55: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Lax-Friedrichs method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.56: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Lax-Friedrichs method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.57: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Lax-Wendroff method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.58: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Lax-Wendroff method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.59: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic GForce method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.60: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic GForce method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.61: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Godunov method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Figure A.62: Scheme non-dissipativity test: profiles of stochastic density (left) and velocity
(right) at time 𝑡 = 2 s, stochastic Godunov method. 𝑁𝑟 = 9600, 𝑁𝑥 = 103.
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Convergence. To illustrate spatial convergence we perform calculations with a fixed num-
ber of stochastic fields 𝑁𝑟 = 107 and we vary the number of cells 𝑁𝑥 from 40 to 100. The
length of the domain is shortened: 𝐿 = [−1m; 1m]. The spatial error is calculated using the
solution of the PDF transport equation. Figures A.63 and A.64 show that the spatial order
of convergence is lower than −1 for the number of cells 𝑁𝑥. The convergence rate of 𝑁

−0.7
𝑥 is

observed for the mean density, velocity variance and skewness in three stochastic methods:
Lax-Friedrichs, Lax-Wendroff and GForce. For these approaches 𝑁−0.4

𝑥 is the approximate
convergence rate for the velocity flatness. The stochastic Godunov method converges slower
than other methods.
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Figure A.63: Scheme non-dissipativity test: spatial convergence for velocity variance, skew-
ness, flatness and mean density at time 𝑡 = 0.2 s, left: stochastic Lax-Friedrichs method,
right: stochastic Lax-Wendroff method. 𝑁𝑟 = 107.
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Figure A.64: Scheme non-dissipativity test: spatial convergence for velocity variance, skew-
ness, flatness and mean density at time 𝑡 = 0.2 s. Left: stochastic GForce method, right:
stochastic Godunov method. 𝑁𝑟 = 107.

In a second time we assess the stochastic convergence of the numerical solution. The
number of cells is set to 𝑁𝑥 = 105. The number of stochastic fields is varied from 𝑁𝑟 = 8 to
𝑁𝑟 = 1056. Statistical convergence of the mean density for four stochastic schemes is given
in the table A.2. As we can see, the statistical convergence for the mean density for three
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stochastic methods is about 𝑁−0.275
𝑟 . Figures A.65 and A.66 show the statistical convergence

of the first three Favre moments of the velocity at time 𝑡 = 0.2 s. The stochastic Lax-
Friedrichs, Lax-Wendroff and GForce schemes give good rate of the statistical convergence
for the Favre velocity variance. The stochastic Godunov method converges slowly for all
represented three Favre statistics of the velocity.
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Figure A.65: Scheme non-dissipativity test: statistical convergence for velocity variance,
skewness and flatness at time 𝑡 = 0.2 s. Left: stochastic Lax-Friedrichs method, right:
stochastic Lax-Wendroff method. 𝑁𝑥 = 105.
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Figure A.66: Scheme non-dissipativity test: statistical convergence for velocity variance,
skewness and flatness at time 𝑡 = 0.2 s. Left: stochastic GForce method, right: stochastic
Godunov method. 𝑁𝑥 = 105.

Method stochastic L-F stochastic L-W stochastic GF stochastic God

Rate (A) exact -0.24 -0.31 -0.25
Coeff (B) exact -37.45 -36.62 -37.42

Table A.2: Scheme non-dissipativity test: approximation of statistical error of the mean
density in logarithmic scale by 𝐴 log(𝑁𝑥) +𝐵 at time 𝑡 = 0.2 s. 𝑁𝑥 = 105.
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A.6 Study of Langevin equation

The Ornstein-Uhlenbeck process has a long history in physics. Introduced in essence by
Langevin in his famous 1908 paper on Brownian motion [Langevin1908], the process re-
ceived a more thorough mathematical examination several decades later by Uhlenbeck and
Ornstein [UhlenbeckOrnstein1930], Chandrasekhar [Chandrasekhar1943], and Wang and Uh-
lenbeck [WangUhlenbeck1945], and it is nowadays offered as a fairly standard textbook topic
[Gardiner1985].

Let us consider in one-dimensional case a velocity 𝑢 which evolves with time 𝑡 according
to a differential equation of the form{︂

𝑑𝑢 = −𝜔𝑢𝑑𝑡+
√
2𝜔𝜎2𝑑𝜉,

𝑢(𝑡0) = 𝑢0,
(A.104)

where 𝜔 is a characteristic turbulent frequency which does not depend on time, 𝜎2 is a velocity
variance (it is also supposed to be a constant), 𝑑𝜉 is a differential of standard Wiener process,
() is a symbol of the mathematical average of all fields 𝜉. At initial time 𝑡0, the velocity 𝑢0
follows a Gaussian law with the mean 𝑢0 and the variance 𝑢′20 , i.e.

𝑢0 = 𝑁
(︁
𝑢0, 𝑢′20

)︁
. (A.105)

The analytical solution of the stochastic eqs. (A.104) and (A.105) is

𝑢(𝑡) = exp(−𝜔(𝑡− 𝑡0))𝑢0 +
√
2𝜔𝜎2

𝑡∫︁
𝑡0

exp(−𝜔(𝑡− 𝑠))𝑑𝜉, 0 ≤ 𝑠 ≤ 𝑡. (A.106)

𝑢(𝑡) is a Gaussian variable with the mean exp(−𝜔(𝑡 − 𝑡0))𝑢0. Indeed taking the average of
eq. (A.106) we deduce that

𝑢(𝑡) = exp(−𝜔(𝑡− 𝑡0))𝑢0, (A.107)

because
𝑡∫︁

𝑡0

exp(−𝜔(𝑡− 𝑠))𝑑𝜉 = 0. (A.108)

Let us recall the Itô formula [Itô1944]. Consider a stochastic differential equation

𝑑𝑋(𝑡) = 𝑓(𝑡,𝑋(𝑡))𝑑𝑡+ 𝑔(𝑡,𝑋(𝑡))𝑑𝜉(𝑡), (A.109)

where 0 ≤ 𝑡 ≤ 𝑇 with 𝑋(0) a random variable. Let be 𝐹 a smooth function and 𝑓, 𝑔 and 𝐹
satisfy conditions of the Ito theorem, then

𝑑𝐹 (𝑡,𝑋(𝑡)) =

(︂
𝜕𝐹 (𝑡,𝑋)

𝜕𝑡
+ 𝑓(𝑡,𝑋)

𝜕𝐹 (𝑡,𝑋)

𝜕𝑥
+

1

2
𝑔2(𝑡,𝑋)

𝜕2𝐹 (𝑡,𝑋)

𝜕𝑥2

)︂
𝑑𝑡+𝑔(𝑡,𝑋)

𝜕𝐹 (𝑡,𝑋)

𝜕𝑥
𝑑𝜉(𝑡).

(A.110)
Using the Itô formula (A.110) the equation for 𝑣2 can be written as{︂

𝑑𝑢2 = −2𝜔(𝑢2 − 𝜎2)𝑑𝑡+ 2𝑢
√
2𝜔𝜎2𝑑𝜉,

𝑢(𝑡0)
2 = 𝑢20.

(A.111)
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Whence {︂
𝑑𝑢2 = −2𝜔(𝑢2 − 𝜎2)𝑑𝑡,

𝑢(𝑡0)2 = 𝑢20.
(A.112)

𝑑(exp(2𝜔𝑡)𝑢2) = 2𝜔 exp(2𝜔𝑡)𝜎2𝑑𝑡, (A.113)

𝑢2(𝑡) = exp(−2𝜔(𝑡− 𝑡0))𝑢20 + 𝜎2(1− exp(−2𝜔(𝑡− 𝑡0))). (A.114)

As 𝑢′2(𝑡) = 𝑢2(𝑡)− (𝑢(𝑡))2 we obtain

𝑢′2(𝑡) = exp(−2𝜔(𝑡− 𝑡0))𝑢′20 + 𝜎2(1− exp(−2𝜔(𝑡− 𝑡0))). (A.115)

When the time tends to infinity, the variance tends to 𝜎2. Thus we can conclude that 𝑢(𝑡)
follows a Gaussian law with the mean

exp(−𝜔(𝑡− 𝑡0))𝑢0

and the variance
exp(−2𝜔(𝑡− 𝑡0))𝑢′20 + 𝜎2(1− exp(−2𝜔(𝑡− 𝑡0)))

By changing variables, 𝑢(𝑡) satisfies a recursive formula:

𝑢(𝑡+Δ𝑡) = exp(−𝜔Δ𝑡)𝑢(𝑡) + 𝜎
√︀

1− exp(−2𝜔Δ𝑡)𝜉, (A.116)

where 𝜉 = 𝑁(0, 1).
Let us consider a simple example of 𝑢(𝑡). Let be 𝜎 = 1m/s, 𝜔 = 20Hz and 𝑢(𝑡0) =

𝑁(0, 1). Δ𝑡 is set to 5× 10−4 s, a number of fields is 𝑁𝑟 = 104. According to the eq. (A.116),
𝑢(𝑡) is a Gaussian variable with the mean 0 and the variance 1. Figures A.67 and A.68
compare variance, flatness and hyperflatness obtained numerically by the recurrent formula
(A.116) against their theoretical values 1m2/s2, 3m3/s3 and 15m4/s4 respectively. There
is a bias because the number of realizations is finite. The higher the moment is, the more
realizations of the fields 𝑢 are required to approximate the exact solution.
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Figure A.67: Comparison of variance (left), flatness (right) with their theoretical values
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Appendix B

Dependence of solution on
computational grid in reactive
backward-facing step flow

B.1 Numerical setup

The 2D computational domain is presented in section 6.2.1. For this domain we consider
several grids, denoted by 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5. They contain 16068, 23990, 36956, 77030
and 106351 of inner cells respectively. Figure B.1 shows a close-up view of the step extremity
of 2D grids. The grid 𝑚3 corresponds to fig. 6.4.

The physical models and boundary conditions are described in sections 6.2.2 and 6.3.1.
In order to study the dependence of solution on computational grid, PFTC 𝛽-PDF 40-4 and
TPaSR with geometrical fine structure residence time with 𝐶𝜔 = 10.5 are investigated. The
second order Runge-Kutta method with first order ODFI scheme is used.
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Figure B.1: 2D grids for backward-facing step flow; grids 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5
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B.2 Results

B.2.1 RANS/PFTC beta-PDF

The following test-cases are considered.

Method Boundary condition Grid Time step Δ𝑡

PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous m1 8× 10−7 s
PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous m2 5× 10−7 s
PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous m3 4× 10−7 s
PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous m4 1× 10−7 s
PFTC 𝛽-PDF 40-4 RK2 with 1st order ODFI sch. nonhomogeneous m5 1× 10−7 s

Table B.1: Considered test-cases for RANS/PFTC 𝛽-PDF models in reactive backward-facing
step flow

Figure B.2 demonstrates the effect of the grid resolution in the case of PFTC 𝛽-PDF
40-4 model, when the first order spatial scheme is used. With decreasing grid step solution
better approaches the experimental temperature (see fig. B.2). The vertical profiles of Favre-
averaged temperature calculated on the grid 𝑚3 are located between temperature profiles
calculated on 𝑚1, 𝑚2 and on 𝑚4, 𝑚5, which are pairwise close to each other.

Figure B.3 illustrates the influence of the number of cells used in the simulation on the
profiles of ̃︀𝑢𝑥. The grid refinement allows decreasing the velocity values, e.g, for 𝑋 = 0.25m
the maximum of ̃︀𝑢𝑥 on 𝑚5 grid decreases by 1.2162 times in comparison with the solution
on 𝑚1 grid and in 1.1351 times in comparison with the solution on 𝑚3 grid, given that the
experimental value is still 1.1563 times lower that the numerical solution on 𝑚5 grid.

Similarly to the streamwise velocity the transverse velocity converges to the experimental
data with respect to the grid size. Figure B.4 illustrates five calculations on grids𝑚1,𝑚2,𝑚3,
𝑚4 and𝑚5 of the Favre-averaged transverse velocity ̃︀𝑢𝑦. The converged result, approximately
given by 𝑚4 and 𝑚5, is closer to the experimental solution than the calculations for coarser
grids, but still remains significantly different for 0.25m ≤ 𝑋 ≤ 0.46m.

Concerning the dependence on the grid of RMS velocity fluctuations, similarly to the
previous profiles, the refined 𝑚5 grid better approaches the measurement results that coarser
𝑚1, 𝑚2, 𝑚3 and 𝑚4 grids.
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Figure B.2: Dependence of vertical profiles of Favre-averaged temperature ̃︀𝑇 on computa-
tional grid in reactive backward facing step flow; RANS/PFTC 𝛽-PDF 40-4 with nonhomo-
geneous inlet profile
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Figure B.3: Dependence of vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 on
computational grid in reactive backward-facing step flow; RANS/PFTC 𝛽-PDF 40-4
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B.2.2 RANS/TPaSR

Table B.2 represents the test-cases under study.

Chemical model Method Boundary condition Grid Time step Δ𝑡

geom. 𝐶𝜔 = 10.5 RK2 with 1st or-
der ODFI sch.

nonhomogeneous m1 8× 10−7 s

geom. 𝐶𝜔 = 10.5 RK2 with 1st or-
der ODFI sch.

nonhomogeneous m2 5× 10−7 s

geom. 𝐶𝜔 = 10.5 RK2 with 1st or-
der ODFI sch.

nonhomogeneous m3 4× 10−7 s

geom. 𝐶𝜔 = 10.5 RK2 with 1st or-
der ODFI sch.

nonhomogeneous m4 5× 10−8 s

Table B.2: Considered test-cases for RANS/TPaSR approach in reactive backward-facing
step flow. Following abbreviations are used in this section: ”geom.” - geometrical fine struc-
ture residence time, ”kol.” - Kolmogorov fine structure residence time and ”magn.” - Mag-
nussen fine structure residence time.

The influence of the number of cells used in the simulation on the profiles of the Favre-
averaged temperature ̃︀𝑇 is presented in fig. B.7. On four considered grids the vertical profiles
of the mean temperature remain close to each other.

The dependence of vertical profiles of Favre-averaged streamwise velocity ̃︀𝑢𝑥 on compu-
tational grid is demonstrated in fig. B.8. In the lower part of step nose region the solution on
the refined grid 𝑚4 better approximates the experimental data than the solutions on coarse
grids. Only for 𝑋 = 0.21m the solution ̃︀𝑢𝑥 on 𝑚4 underestimates the experimental profile
whereas the solutions on grids 𝑚1, 𝑚2 and 𝑚3 remain in reasonable agreement.

The converged vertical profiles of transverse velocity with respect to the grid size (𝑚1,
𝑚2, 𝑚3 and 𝑚4) are presented in fig. B.9. In the lower region of the step nose the solution on
the refined grid 𝑚4 describes better the experimental data. The velocity becomes positive,
while for the coarse grids the velocity is negative in this region. For 𝑋 ≥ 0.71m the solution
on the refined grid 𝑚4 overestimates experimental profile larger than solutions on the coarse
grids.

The refined grid 𝑚4 allows decreasing RMS velocity values for 𝑢𝑅𝑀𝑆
𝑥 and 𝑢𝑅𝑀𝑆

𝑦 (see
figs. B.10 and B.11).
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prédiction des émissions polluantes”. PhD thesis. Ecole
Polytechnique, 2010 (cit. on pp. 20, 139, 219).

[Smagorinsky1963] J. Smagorinsky. “General circulation experiments with
the primitive equations: I. The basic experiment*”. In:
Monthly weather review 91.3 (1963), pp. 99–164 (cit. on
p. 41).

[SoulardSabelnikov2006] O. Soulard and V. Sabelnikov. “Eulerian Monte Carlo
method for the joint velocity and mass-fraction proba-
bility density function in turbulent reactive gas flows”.
In: Combustion, Explosion and Shock Waves 42.6 (2006),
pp. 753–762 (cit. on pp. 20, 47, 49, 50, 64, 68, 72).

[Soulard2005] O. Soulard. “Approches PDF pour la combustion turbu-
lente, prise en compte d’un spectre d’échelles turbulentes
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