
HAL Id: tel-01119730
https://pastel.hal.science/tel-01119730v2

Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AltaRica 3.0: a Model-Based approach for Safety
Analyses

Tatiana Prosvirnova

To cite this version:
Tatiana Prosvirnova. AltaRica 3.0: a Model-Based approach for Safety Analyses. Computational
Engineering, Finance, and Science [cs.CE]. Ecole Polytechnique, 2014. English. �NNT : �. �tel-
01119730v2�

https://pastel.hal.science/tel-01119730v2
https://hal.archives-ouvertes.fr

Thèse présentée pour obtenir le grade de

DOCTEUR DE L’ECOLE POLYTECHNIQUE

Spécialité : Informatique

Tatiana PROSVIRNOVA

AltaRica 3.0 :

une approche orientée modèles

pour

la Sûreté de Fonctionnement

AltaRica 3.0:

a Model-Based approach for

Safety Analyses

Soutenue publiquement le 21 Novembre 2014 à l’Ecole Polytechnique
devant le jury composé de :

Président du jury : Lëıla KLOUL Université de Versailles St-Quentin-en-Yvelines

Rapporteurs : Mohamed KAANICHE Laas-CNRS, Toulouse

Olivier ROUX IRCCyN, Ecole Centrale de Nantes

Directeur de thèse : Antoine RAUZY Ecole Polytechnique, Palaiseau

Examinateurs : Michel BATTEUX IRT SystemX, Palaiseau

Frank ORTMEIER Otto-von-Guericke University of Magdeburg

Christel SEGUIN ONERA, Toulouse

Tatiana PROSVIRNOVA

AltaRica 3.0 :

une approche orientée modèles

pour

la Sûreté de Fonctionnement

AltaRica 3.0:

a Model-Based approach for

Safety Analyses

2014

Laboratoire d’Informatique (LIX)
Ecole Polytechnique

France

A mes parents et mon mari...

Моим родителям и мужу посвящается...

Remerciements

2007 – Découverte du langage AltaRica pendant le stage à Thales Research & Technology.
2008 – Rencontre avec Antoine Rauzy, l’un des créateurs du langage AltaRica.
2011 – Début de la thèse sous la direction d’Antoine Rauzy sur la nouvelle version du langage AltaRica.

A l’issue de ma scolarité à l’Ecole Polytechnique je n’avais pas forcément envie de poursuivre une
thèse. Mais j’ai eu l’opportunité de faire partie d’un projet de recherche innovant ayant de réelles
applications industrielles. Je tiens à remercier mon directeur de thèse, Antoine Rauzy, pour cette
expérience unique que j’ai vécue durant ces trois années. Un grand merci pour m’avoir permis de
travailler dans un contexte scientifique de grande qualité, d’avoir cru en moi d’abord en m’embauchant
chez Dassault Systèmes et ensuite en m’offrant la possibilité de faire une thèse à l’Ecole Polytechnique.

Je voudrais également remercier Lëıla Kloul avec qui j’ai collaboré pendant ma thèse. Tu m’as
permis de découvrir de nouveaux domaines de recherche, ainsi que l’enseignement à l’Université de
Versailles.

Un grand merci à Jean-Marc Roussel pour sa pédagogie. Tes conseils très pertinents m’ont été
très utiles pour ma soutenance de thèse.

Un grand merci aussi à Michel Batteux. Ton aide pour ma soutenance de thèse et pour mon
manuscrit, ainsi que ton soutien tout au long de ces trois années, m’ont été très précieux.

Je tiens également à remercier mes rapporteurs Mohamed Kaâniche et Olivier Roux ainsi que tous
les autres membres de mon jury Lëıla Kloul, Michel Batteux, Frank Ortmeier et Christel Seguin. Vous
m’avez tous fait un grand honneur en acceptant d’être présents à ma soutenance et en prenant le
temps de lire attentivement mon manuscrit. Vos questions et remarques m’ont été très précieux pour
améliorer mon travail et approfondir encore mes connaissances dans le domaine.

Ma reconnaissance va aussi à tous les membres de l’équipe AltaRica 3.0, que j’ai pu côtoyer depuis
septembre 2011. Chacun d’entre vous a contribué à sa manière au résultat que vous voyez aujourd’hui.
Merci à nos doctorants Pierre-Antoine Brameret, Thomas Friedlhuber, Abraham Cherfi, Melissa Is-
sad et Huixing Meng pour leur aide, leurs conseils et les moments que nous avons partagés ensemble
pendant les conférences, les séminaires et les petites fêtes. Merci à nos stagiaires Renaud Lancelot,
Ksenïıa Isaeva, Hala Mortada et Nawaal Mamadou pour leur travail, leur bonne humeur et les mo-
ments que j’ai partagés avec eux.

Mais le labo ne se résume pas qu’au groupe AltaRica 3.0. Je tiens à remercier aussi notre secrétaire
Evelyne Rayssac et notre informaticien James Regis sans qui le labo ne fonctionnerait pas aussi bien.

A ce sujet, merci à l’Ecole Doctorale (EDX) pour son soutien financier pendant ces trois ans à
travers l’allocation internationale de thèse Gaspard Monge. Plus particulièrement, merci à Fabrice et
Audrey pour leur disponibilité et leur écoute.

Je souhaite enfin exprimer toute ma gratitude envers le professeur Frank Ortmeier et ses doctorants
Michael Lipaczewski et Simon Struck qui m’ont accueilli et fait découvrir leur culture lors de mes deux
séjours en Allemagne en 2012 et en 2013.

Je voudrais remercier mon mâıtre de stage Stéphane Mallat qui m’a fait découvrir les domaines
de l’ingénierie dirigée par des modèles et de la sûreté de fonctionnement.

Merci à Marc Bouissou pour le partage de son expertise en sûreté de fonctionnement.

Je voudrais également remercier tous mes anciens collègues de Dassault Systèmes, en particulier

v

vi REMERCIEMENTS

Benôıt Perrot pour m’avoir donné goût à la programmation.
Je tiens à remercier tous mes amis qui ont toujours été à mes côtés pour me soutenir. Merci à

Cyril et Alexandra qui ont commencé leurs thèses en même temps que moi mais dans un domaine
complétement différent, pour tous les moments que nous avons vécus ensemble durant ces trois années.
Merci à Nicolas pour ses conseils et ses idées. Je remercie également mes amis de Master d’Ingénierie
des Systèmes Industriels Complexes Marcel, Jujhar et Mounir. Un grand merci à mes amis Sunanda
et Juan qui ont soutenu leurs thèses quelques mois avant moi. Merci à Gaela, Cécile et Hélène pour
les moments que nous avons partagés au badminton. Merci à Erwana pour son soutien et son amitié
dès le début de mon arrivée en France. Merci à Charlotte que je connais depuis très longtemps et que
j’ai retrouvée à Paris durant ma thèse.

Je voudrais remercier ma belle famille et mon mari Cyril qui m’a toujours soutenu et aidé tout
au long de cette aventure. Tu m’as montré la voie, m’a aidé avec tes conseils et a toujours été pour
moi un exemple à suivre. Merci à ce cours d’anglais du 10 septembre 2007 qui nous a permis de se
rencontrer. Merci à notre bébé qui me donnait des petits coups de pied le jour de ma soutenance, le
21 novembre 2014.

Le 21 février 2015, à Toulouse.
Tatiana.

Introduction

Safety and Reliability of systems is of great importance for environmental, social and economic reasons.
Whether it be for nuclear engineering or for the design of new means of transport (like the Falcon or the
Shinkansen), system designers have to perform Safety and Reliability Analyses from the earliest phases
of the project. These analyses are codified by the regulation authorities through safety standards such
as IEC 61508, ISO 26262, ARP4754 or ARP4761.

Reliability engineers have developed various methods of risk analysis which are now well-mastered:
Failure Modes and Effects Analyses (FMEA), Fault Tree Analyses [6], Event Tree Analyses [107], etc.
Efficient algorithms and powerful assessment tools are available for them. However, these formalisms
have a major drawback. They rely on too low level modeling formalisms. As a consequence, there is
always a gap between the specification of the system under study and the associated safety models.
This gap makes safety models hard to share amongst the stakeholders and to maintain throughout
the life cycle of systems. Even a minor change in the specification may require a complete review of
the safety model which is both resource consuming and error prone.

Nowadays, Model-Based Safety Assessment (MBSA) – the Reliability Engineering declension of
Model-Based System Engineering – focuses more and more attention in the world. The idea is to write
models in high level description formalisms so as to keep them close to the functional and physical
architecture of the system under study. High level models can be processed directly (typically by
stochastic simulation) or automatically compiled into a lower level formalism (e.g. a Fault Tree).

AltaRica is such a high level modeling language dedicated to Safety Analysis. The first version
of the language has been created in the Computer Science Laboratory of the University of Bordeaux
(LaBRI) at the end of nineties [80, 7]. This first version made it possible to set-up the basic concepts
but was too resource consuming for industrial scale models. Therefore, a second version, AltaRica
Data-Flow, has been created at Institute of Mathematics of Luminy (IML, Marseilles) a few years
later [88, 14]. AltaRica Data-Flow is now in the core of several industrial Integrated Modeling and
Simulation Environments: Cecilia OCAS (Dassault Aviation), Simfia (EADS Apsys) and Safety De-
signer (Dassault Systemes). In addition, a great number of tools have been developed to assess
AltaRica Data-Flow models, such as Fault Tree compilers, compilers to Markov chains, generators of
critical sequences of events, stochastic simulators and model-checkers. AltaRica Data-Flow Integrated
Modeling and Simulation Environments are widely used across various industries. Many successful
industrial applications have been reported in the literature [10, 97, 52, 85, 4]. AltaRica Data-Flow
has now reached an industrial maturity.

AltaRica is an event-based modeling language. Deterministic or stochastic delays can be associated
with events. The behavior of components is described by means of state machines. The state of a
component is represented by variables (so called state variables) and their values. The changes of
state are possible when, and only when, an event occurs. They are described by the transitions.
Flow variables are used to model information circulating between components. They are updated
by the assertion, which is executed after each transition firing. Components can be assembled into
hierarchies, their inputs and outputs can be connected and their transitions can be synchronized.

The aim of the AltaRica 3.0 project [82], conducted at the Computer Science Laboratory of Ecole
Polytechnique (LIX), is to develop a modeling, simulation and assessment platform to perform Safety

vii

viii INTRODUCTION

Analyses with AltaRica 3.0 modeling language. The new version of the AltaRica language, the so-
called AltaRica 3.0, is in the core of this project. AltaRica 3.0 improves AltaRica Data-Flow into two
directions. First, its underlying mathematical model is based on Guarded Transition Systems (GTS).
Second, the language provides new constructs to structure models.

The project aims to develop the following assessment tools (see Figure 1):

• The compiler from AltaRica 3.0 to Guarded Transition Systems;

• The stepwise simulator for Guarded Transition Systems;

• The graphical simulator of AltaRica 3.0 models;

• The compiler from Guarded Transition Systems to Fault Trees;

• The Fault Tree assessment tool XFTA;

• The Sequence Generator for Guarded Transition Systems;

• The compiler from Guarded Transition Systems to Markov chains;

• XMRK, a tool to assess multi-phase Markov chains with rewards;

• The Stochastic Simulator for Guarded Transition Systems;

• The Model-checker for Guarded Transition Systems;

• The Reliability allocation module for Guarded Transition Systems.

Figure 1: The AltaRica 3.0 project

These tools enable the user to perform virtual experiments on systems, to perform end-to-end
risk assessment with AltaRica 3.0 and also to do cross check calculations. Thanks to these tools

ix

AltaRica models can be used to perform Preliminary System Safety Analysis (PSSA) and System
Safety Analysis (SSA).

In other words, with AltaRica 3.0 models, it will be possible:

• To perform Fault Tree Analysis (FTA) for static and some kinds of dynamic models;

• To calculate different probabilistic indicators for dynamic models using Markov chain analysis;

• To perform stochastic simulation of dynamic models;

• To verify system and model properties using model-checking techniques;

• To graphically simulate the model in order to validate it;

• To perform reliability and availability allocation for different components given the overall ob-
jective.

Within the AltaRica 3.0 project, it is also planned to develop bridges with other tools, especially
to work on the integration of system architecture with Safety Analyses through the development of
methods and tools to synchronize models of both disciplines.

The contribution of this PhD thesis to the AltaRica 3.0 project is as follows:

• Chapter 2 presents Guarded Transition Systems (GTS), the new underlying mathematical model
of AltaRica 3.0. In addition to the ability to handle looped systems thanks to the introduction
of a fixpoint mechanism to calculate assertions, as proposed in [90], GTS make it possible to
define acausal components (components for which the input and output flows are decided at run
time). Different algorithms to calculate assertions and to optimize them are discussed. They
have been implemented in the stepwise simulator of GTS. Experiments have been performed,
e.g. modeling of network systems, as reported in [71].

• Chapter 3 introduces the structural constructs of AltaRica 3.0. These new structural constructs
come from object-oriented and prototype-oriented modeling languages. From our point of view,
they make it possible to match better with cognitive processes of engineers. They are assembled
into System Structure Modeling Language (S2ML). A new algorithm to flatten hierarchical
models, i.e to collapse a hierarchy of nested blocks and instances of classes into a single block, is
proposed. It has been implemented in the compiler of AltaRica 3.0 models to Guarded Transition
Systems.

• Chapter 4 describes the principle of compilation of Guarded Transition Systems to Fault Trees
and critical sequences of events. The compilation algorithm is presented in details. It has been
implemented in the compiler of Guarded Transition Systems to Fault Trees. Some experiments
are reported.

• Chapter 5 presents the overall architecture of the modeling, simulation and assessment platform
developed within the AltaRica 3.0 project. It pays a particular attention to the tools developed
as a part of this PhD thesis.

• The series of appendices regroups additional works on AltaRica 3.0 done during this PhD thesis.

Outline of the thesis

To summarize, this thesis is organized in 5 chapters:

• Chapter 1 gives an overview of the main concepts and of the state-of-the-art modeling languages
and tools dedicated to Safety Analyses.

x INTRODUCTION

• In chapter 2, we introduce Guarded Transition Systems (GTS), the underlying mathematical
formalism of AltaRica 3.0.

• In chapter 3, we describe structural constructs of AltaRica 3.0, assembled into System Structure
Modeling Language (S2ML).

• In chapter 4, we present the algorithm of compilation of GTS into Fault Trees and critical
sequences of events.

• Chapter 5 describes the architecture of the AltaRica 3.0 Modeling, Simulation and Assessment
platform.

Finally, this manuscript ends with a series of appendices, which regroup additional works on
AltaRica 3.0 done during this PhD thesis:

• Appendix A is dedicated to the modeling of systems with mobile components, e.g. production
chains or mobile networks. It presents a comparison between AltaRica and PEPA (Performance
Evaluation Process Algebra) nets – a modeling formalism for mobility modeling.

• In appendix B, we compare AltaRica with SAML (Safety Analysis Modeling Language).

• Appendix C gives an overview of GraphXica – a high level modeling language for graphical
representation and animation of models. It also describes the graphical simulation of AltaRica
3.0 models.

• In appendix D, we present some modeling patterns to represent common cause failures, cold
redundancies, system reconfiguration and shared resources on the example of an electrical system.

Contents

Remerciements v

Introduction vii

Table of contents xiii

List of figures xvi

List of tables xvii

1 Model-Based Safety Assessment 1

1.1 Safety and Reliability studies . 1

1.1.1 Probabilistic indicators . 2

1.1.2 Redundancies . 3

1.1.3 Safety Assessment . 3

1.2 Classical approach for Safety Analysis . 4

1.2.1 Boolean Formalisms . 4

1.2.2 States/Transitions Formalisms . 7

1.2.3 Extensions of classical formalisms for Safety Analysis 10

1.3 Model-Based approach for Safety Analysis . 12

1.3.1 Advantages of Model-Based approach . 12

1.3.2 Prerequisites for a high level modeling language for Safety Analyses 13

1.3.3 High level formalisms for Safety Analysis . 14

1.4 AltaRica . 15

1.4.1 Assessment tools . 16

1.4.2 AltaRica 3.0 . 18

2 Guarded Transition Systems (GTS) 21

2.1 Motivations . 21

2.2 Informal presentation . 22

2.2.1 Data-Flow components . 23

2.2.2 Acausal components . 24

2.2.3 Hierarchical models . 25

2.3 Formal definition . 26

2.3.1 Expressions . 26

2.3.2 Instructions . 28

2.3.3 Definition . 28

2.4 Composition of GTS . 29

2.4.1 Free product . 29

2.4.2 Connection . 30

xi

xii CONTENTS

2.4.3 Synchronization . 31

2.5 Semantics . 33

2.5.1 Semantics of instructions . 33

2.5.2 Reachability graph . 39

2.6 On the modeling of flow propagation . 40

2.6.1 Dependency relation . 41

2.6.2 Handling looped models . 43

2.6.3 Algorithms to calculate assertions . 44

2.6.4 Different approaches to interpret assertions . 47

2.7 Timed/Stochastic Guarded Transition Systems . 49

2.7.1 Timed Guarded Transition Systems . 49

2.7.2 Stochastic Guarded Transition Systems . 50

2.8 Comparison with classical formalisms for Safety Analyses 52

3 System Structure Modeling Language (S2ML) 55

3.1 Motivations . 55

3.2 Object-oriented paradigm vs. prototype-oriented paradigm 58

3.3 Structural constructs . 60

3.3.1 Blocks . 60

3.3.2 Classes . 61

3.3.3 Using Classes or Blocks? . 62

3.4 Structural operations . 63

3.4.1 Composition (declaration clause) . 63

3.4.2 Inheritance (extends clause) . 64

3.4.3 Aggregation (embeds clause) . 65

3.4.4 Relations between components . 66

3.5 Flattening . 68

3.5.1 Flattening of the hierarchy . 68

3.5.2 Flattening of the synchronizations . 72

3.5.3 Hiding . 74

3.6 Discussion . 74

3.6.1 About models reuse . 74

3.6.2 About parametric models and scripts . 74

3.6.3 About graphical representation of models . 75

4 Compilation into Fault Trees or critical sequences of events 79

4.1 Motivations . 79

4.2 Related Works . 83

4.2.1 Algorithms based on backward analysis . 84

4.2.2 Algorithms based on fault injection . 84

4.3 Compilation algorithm . 85

4.3.1 Compilation of labeled Kripke Structures into Boolean formulae 86

4.3.2 Partitioning . 86

4.3.3 Reachability Graph generation . 88

4.3.4 Compilation of Reachability Graphs . 90

4.3.5 Compilation of the independent assertion . 93

4.3.6 Results . 96

4.4 Compilation of stochastic models . 99

4.5 Complexity Analysis and correctness . 102

4.5.1 Complexity . 102

CONTENTS xiii

4.5.2 Correctness . 103

5 AltaRica 3.0 Modeling, Simulation and Assessment Platform 107
5.1 Motivations: the AltaRica 3.0 project . 107
5.2 Overall architecture of the platform . 109
5.3 XGTSCore library . 110

5.3.1 Optimization of Guarded Transition Systems 110
5.4 Stepwise simulator . 112
5.5 AltaRica 3.0 compiler . 113
5.6 Fault Tree compiler . 115

6 Conclusion 119

A Mobility modeling 123

B AltaRica and Safety Analysis Modeling Language (SAML) 145

C Graphical representation and animation of models 157

D Modeling patterns 167

Bibliography 183

xiv CONTENTS

List of Figures

1 The AltaRica 3.0 project . viii

1.1 Safety Assessment . 3

1.2 A fault-tolerant multiprocessor system . 5

1.3 Fault Tree of the fault-tolerant multiprocessor system 6

1.4 RBD for the fault-tolerant multiprocessor system . 6

1.5 Markov chain representing a repairable component . 8

1.6 Petri Net representing a repairable component . 9

1.7 Comparison of classical formalisms for Safety Analysis 11

1.8 AltaRica Tools . 17

2.1 An irrigation system . 22

2.2 A Data-Flow pump . 23

2.3 GTS representing a Data-Flow pump . 23

2.4 GTS representing an acausal pump . 24

2.5 A Valve . 25

2.6 GTS representing a valve . 25

2.7 GTS of a Field . 25

2.8 GTS of the irrigation system . 32

2.9 Flattened GTS of the irrigation system . 34

2.10 The Reachability graph of the system . 40

2.11 Dependency graph of the assertion of the Irrigation System 42

2.12 A pumping system . 43

2.13 GTS representing the Pumping system . 44

2.14 The Dependency graph of the assertion of the pumping system 44

2.15 Stochastic GTS of a spare pump . 51

2.16 Stochastic GTS code of a spare pump . 52

3.1 Power Supply System . 56

3.2 Power Supply System model according to the object-oriented paradigm 57

3.3 Power Supply System: break down structure . 58

3.4 Primary Power Supply System: Fault Tree view . 58

3.5 C-K theory applied to model design . 59

3.6 Illustration of block usage . 61

3.7 The behavior of the transformer . 61

3.8 The AltaRica 3.0 code of the transformer . 62

3.9 Illustration of class usage . 62

3.10 Declaration of structural constructs . 63

3.11 extends clause . 64

3.12 embeds clause . 65

xv

xvi LIST OF FIGURES

3.13 Relations between classes, objects and blocks . 66
3.14 AltaRica 3.0 model of the Primary Power Supply system: assertions 67
3.15 AltaRica 3.0 model of the Primary Power Supply system: synchronizations 68
3.16 Class flattening . 70
3.17 Block flattening . 71
3.18 Flattened Primary Power Supply system . 73
3.19 Flattened Primary Power Supply system: synchronizations 74
3.20 Illustration of parameters usage . 75
3.21 Tree representation of the Power Supply System . 77
3.22 1D representation of the Power Supply System . 77
3.23 Tabular representation of the Power Supply System . 78

4.1 A Data Gathering and Processing Network . 80
4.2 AltaRica 3.0 model of the Data Gathering and Processing Network: main block 83
4.3 Fault Tree Analysis with AltaRica 3.0 models . 85
4.4 Compilation of GTS into Fault Trees or event sequences 86
4.5 Partitioning of GTS . 87
4.6 Partitioned GTS representing the Data Gathering and Processing Network 89
4.7 Reachability graph of workstations . 90
4.8 The algorithm to compile a GTS into Boolean expressions 91
4.9 Dependency graph of the Independent Assertion . 97
4.10 Probability of the top events . 97
4.11 The algorithm to compile a GTS into Boolean expressions 100
4.12 GTS of a spare workstation with on demand failures 101
4.13 Reachability graph of the system made of two spare workstations 102

5.1 The AltaRica 3.0 project . 108
5.2 Architecture of the platform . 109
5.3 GTS class diagram: global view . 111
5.4 GTS class diagram: instructions . 111
5.5 GTS class diagram: distributions . 112
5.6 Stepwise simulator class diagram . 114
5.7 Compilation of AltaRica 3.0 models . 114
5.8 AltaRica 3.0 class diagram: part 1 . 115
5.9 AltaRica 3.0 class diagram: part 2 . 116
5.10 Compilation of GTS into Fault Trees . 117
5.11 Compilation of GTS into Fault Trees: the fourth step 117
5.12 Boolean equations: class diagram . 118

List of Tables

1.1 Boolean formalisms . 8
1.2 States/Transitions formalisms . 10
1.3 AltaRica Tools . 19

2.1 The semantics of actions . 35
2.2 The semantics of assertions . 37
2.3 Comparison of flow propagation mechanisms . 49
2.4 Comparison of the formalisms for Safety Analysis . 54

3.1 Object-oriented paradigm vs. prototype-oriented paradigm 60
3.2 Classes vs. Blocks . 66

4.1 Failure rates of components of the network . 81
4.2 Execution times of the program for the model of the Network system 97
4.3 Minimal cutsets for the top event “P1 cannot send data to the plant” 98
4.4 Minimal cutsets for the top event “P2 cannot send data to the plant” 98
4.5 Minimal cutsets for the top event “Neither P1 nor P2 can send data to the plant” . . 99

xvii

xviii LIST OF TABLES

Chapter 1

Model-Based Safety Assessment

The goal of this chapter is to give an overview of the concepts, modeling formalisms and assessment
tools related to the Safety Analysis of critical systems. First, we introduce some basic notions of Safety
and Reliability studies. Then, we present the traditional approaches to perform Safety Analyses and
compare some classical modeling formalisms: the Fault Trees, the Reliability Block Diagrams, the
Markov chains and the Generalized Stochastic Petri nets. The third section is dedicated to Model-
Based Safety Assessment. We present the advantages of this approach and give an overview of the
existing high level modeling languages dedicated to Safety Analyses. Finally, in the last section, we
introduce AltaRica – a high level modeling language dedicated to Safety Analyses, which is the core
of this PhD thesis.

1.1 Safety and Reliability studies

Safety and Reliability of systems is of great importance for environmental, social and economic reasons.
System designers have to perform Safety and Reliability Analyses from the earliest phases of their
projects. These analyses are codified by regulation authorities through safety standards such as:

• IEC 61508 (Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems), intended to be a basic functional safety standard applicable to all kinds of industry;

• IEC 61839 (Probabilistic Risk Assessment (PRA));

• IEC 60812 (Failure Mode and Effects Analysis (FMEA));

• IEC 61025 (Fault Tree Analysis (FTA));

• ISO 26262, an adaptation of IEC 61508 for Automotive Electric/Electronic Systems;

• IEC 62279, a specific interpretation of IEC 61508 for railway applications;

• DO 178B (Software considerations in airborne systems and equipment certification), etc.

Risk has a bi-dimensional nature. Any threat against the system under study must be analyzed
along two criteria: its frequency and its severity. That is why, most of the Safety and Reliability
Analyses rely on a probabilistic approach: the goal is to determine the most frequent and severe
failure scenarios. If the risk is considered as too high and thus unacceptable, then safety mechanisms
can be used to minimize its frequency, its severity or both.

The goal of Safety and Reliability studies is to ensure that the system under study satisfies the
safety requirements. Safety requirements can be of different nature:

• Qualitative, e.g. ”no single failure should lead the system to its failure state”, and

1

2 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

• Quantitative, e.g. ”the probability of system failure should be less than 10−9”.

In other words, Safety and Reliability studies aim to determine different failure scenarios leading the
system from the nominal state to its failure state and to assess different indicators, e.g. the probability
of system failure.

Safety Analyses are divided into two groups:

• Qualitative analysis, which goal is to determine different failure scenarios leading the system
from its nominal state to its failure state;

• Quantitative analysis, which aim is to assess different probabilistic indicators, such as the prob-
ability of system failure.

1.1.1 Probabilistic indicators

Different probabilistic indicators have been introduced in Safety and Reliability studies [8]:

• The Reliability of a system or a component is its ability to function under stated conditions for
a specified period of time. Let T be a random variable representing the time of well functioning
of a component or of a system. The reliability is denoted by R(t) and is calculated as follows:

R(t) = P [T > t]

This indicator is of paramount importance for non-repairable systems. Sometimes the Unreli-
ability is considered instead of the reliability. It is defined as follows: R(t) = 1−R(t).

• The Availability of a system or a component is its ability to function under stated conditions
at a specified time t. Let X be a random variable which is equal to 1 at time t if the system is
operational at time t and it is equal to 0 otherwise. Then the availability, denoted by A(t), is
calculated as follows:

A(t) = P [X(t) = 1]

The availability is important for systems with repairable components. In some situations, the
Unavailability is used instead of the availability. It is calculated as follows: A(t) = 1−A(t).

• The Maintainability of a system or a component is its ability to be repaired before a given
time t. Let TM be a random variable, representing the time needed to repair a component or a
system. Considering that a system or a component is failed at time t = 0, the maintainability,
denoted M(t), is calculated as follows:

M(t) = P [TM < t]

One often considers the average values of the indicators:

• Mean Time To Failure (MTTF), the average value of the Reliability;

• Mean Time To Repair (MTTR), the average value of the Maintainability.

Probability distributions are used to model failures and repairs of individual components. The
most commonly used distribution is the exponential distribution

F (t) = 1− e−λt, t ≥ 0,

where λ is called a failure rate. The same distribution with a repair rate µ instead of λ is often used
to represent repairs.

1.1. SAFETY AND RELIABILITY STUDIES 3

1.1.2 Redundancies

In order to reduce the risk of system failure, redundancies can be introduced in the systems: as a result,
the system under study is composed of a ”main component” and one or more ”spare components”.
The spare components are in ”standby” state (also called dormant state), if the main component
is ”operational” (is in ”active” state). When the main component fails, it is replaced by a spare
component which then becomes active. A spare component may fail in both the dormant and the
active states. However, in standby mode, the failure rate is reduced by a factor α, called the dormancy
factor, which takes values in [0; 1]. According to the value of α, a spare component may be:

• In Cold redundancy: that means that the spare component cannot fail in standby mode and
it corresponds to the case when α = 0;

• In Hot redundancy: the spare component is working at the same time as the main component
(α = 1);

• In Warm redundancy: if 0 < α < 1, that means that the spare component may, however, fail
in standby mode.

Spare components may be shared between several main components. If a spare component has
already replaced a main component, it cannot replace another component.

1.1.3 Safety Assessment

In order to perform Safety Analyses of a given system, Safety Analysts proceed in three steps as
illustrated in Figure 1.1.

Figure 1.1: Safety Assessment

The Modeling: First of all, given a system description, the safety analyst creates an appropriate
safety model of the system under study. The choice of the formalism depends on the system
to model and on the requirements to verify. In practice, this choice depends on the available
assessment tools. In the following sections we will see different formalisms used for Safety
Analyses.

The Assessment: The second step consists in assessing the created model in order to calculate
failure scenarios and different probabilistic indicators.

The Results analysis: Finally, the engineer analyzes the obtained results and produces a report
describing if the system satisfies the given safety requirements.

4 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

1.2 Classical approach for Safety Analysis

Formalisms, traditionally used for Safety and Reliability studies, can be classified in two categories:

• Boolean formalisms, such as Fault Trees [6], Event Trees [107], Reliability Block Diagrams [6].

• States/Transitions formalisms such as Markov chains [101] and Stochastic Petri Nets [63].

Boolean formalisms are the most popular formalisms used for Safety and Reliability studies. Efficient
assessment algorithms have been developed for this category of models. They give good approximations
of system behaviour. However, these models are not able to represent dependencies between failures
and thus cannot capture phenomena such as system reconfigurations or shared resources.

States/Transitions formalisms have an improved expressive power: they allow to capture the order
of appearance of events and to represent different types of dependencies. They are a good trade-off
between the expressive power and the efficiency of assessment algorithms. Many states/transitions
formalisms have been proposed in the literature. Special assessment algorithms have been developed
for each of these formalisms.

In this section we present some classical modeling formalisms for Safety Analysis and discuss their
advantages and drawbacks. Section 1.2.1 is dedicated to Boolean formalisms for Safety Analysis.
Fault Trees and Reliability Block Diagrams are presented. Section 1.2.2 introduces States/Transitions
formalisms used for Safety studies. Section 1.2.3 presents some extensions of classical formalisms for
Safety Analysis.

1.2.1 Boolean Formalisms

Boolean formalisms are most commonly used in Safety and Reliability studies of industrial systems.
They are simple, cover a large spectrum of modeling problems. In addition, very efficient assessment
algorithms are available for them.

This category of formalisms mainly includes:

• Fault Trees (FT) [6],

• Event Trees (ET) and

• Reliability Block Diagrams (RBD) [6].

In this section we present Fault Trees and Reliability Block Diagrams. The interested reader can refer
to [107] for a detailed description of Event Trees.

Fault Trees (FT)

Fault Tree Analysis (FTA) [6] is the most commonly used method for Safety Analysis of industrial
systems.

A Fault Tree is a graphical representation of the relationships between the failure events of the
modeled system. The root of the Fault Tree, called the ”top event”, represents the global system
failure (the undesirable event). The leaves of the Fault Tree, called ”basic events”, represent the
failures of the individual components. Probability distributions can be associated with basic events.
Basic events are connected to the top event by means of intermediate events and gates. A “gate” is
a logical operator: it has several Boolean inputs and one Boolean output. The most commonly used
gates are: OR, AND, K-out-of-N (see [6] for a more detailed description). “Intermediate events” are
used to name the outputs of gates.

1.2. CLASSICAL APPROACH FOR SAFETY ANALYSIS 5

Example 1.1 (A fault-tolerant multiprocessor system). Consider a fault-tolerant multiprocessor sys-
tem depicted Figure 1.2. The system is inspired from [63]. It is made of two redundant processing
subsystems S1 and S2, a shared memory bank M3 and a bus N. Each subsystem consists of a processor,
a local memory bank and two redundant disks. Both processors have access to a shared memory bank
M3, through a bus N. We assume that each component may fail in operation and its probability of
failure is exponentially distributed with a failure rate λ = 0.001.

Figure 1.2: A fault-tolerant multiprocessor system

The goal is to determine failure scenarios leading the system from the nominal state (when all
components are operational) to a failure state (when the system cannot process data) and to assess
the probability of the system failure.

The Fault Tree representing this system is depicted in Figure 1.3. Basic events are represented by
rectangles with circles below and are marked in grey. They model failures of individual components:
memories, processors and disks. The top event, “System failed”, occurs when the bus N is failed or
subsystems S1 and S2 are both failed. So it is connected to the basic event “N failed” and to the
intermediate event “S1 & S2 failed” via an OR gate. The intermediate event “S1 & S2 failed” is then
further broken down. It is connected via an AND to another two intermediate events “S1 failed” and
“S2 failed”. Each of these intermediate events is then connected to basic events via OR and AND
gates.

Note that a Fault Tree is represented by a Directed Acyclic Graph (DAG), thus the same leaf
can be shared between several branches of the tree (see, for example, the basic event “M3 failed”
Figure 1.3).

Reliability Block Diagrams (RBD)

In Reliability Block Diagrams, the logic diagram is arranged to indicate the combinations of properly
working components keeping the system operational. A Reliability Block Diagram is a set of blocks
connected together in parallel or in series. Blocks connected together can be assembled into hierarchies
of blocks. Blocks represent system components or subsystems. Each block can be only in two states:
working or failed. Only two types of connections between blocks are considered: in parallel or in series.
They can be combined.

When modeling a system, it should be abstracted into a hierarchy of blocks connected in parallel
or in series.

Example 1.2 (A fault-tolerant multiprocessor system). The RBD representing the fault-tolerant
multiprocessor system, described earlier, is given Figure 1.4. The block N represents the bus N and

6 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

Figure 1.3: Fault Tree of the fault-tolerant multiprocessor system

the hierarchical blocks S1 and S2 represent the subsystems S1 and S2, respectively. The blocks S1
and S2 are connected in parallel. They are connected in series with the block N. Each hierarchical
block Si, i=1,2, is then broken down into blocks connected together in parallel or in series. Blocks
representing disks (Di1 and Di2, i=1,2) are connected in parallel, thus they are redundant. Blocks
representing memories are also connected in parallel. Block Pi, i=1,2, parallel blocks Di1 and Di2,
and parallel blocks Mi and M3 are connected in series.

Note that the block M3 is the same in the blocks S1 and S2.

Figure 1.4: RBD for the fault-tolerant multiprocessor system

Analysis and assessment tools

Reliability Block diagrams can be easily transformed into Fault Trees [99]. A Fault Tree encodes a
set of Boolean equations. Both qualitative and quantitative analysis can be performed on a Fault
Tree. Qualitative analysis consists of calculation of minimal cutsets. A minimal cutset (MCS) is the
smallest combination of basic events that leads to the top event (see [87] for a mathematical definition
of a minimal cutset).

Quantitative analysis mainly consists of assessing the probability of the top event and the proba-
bilities of the intermediate events, knowing the probability distributions of basic events. Fault Trees
can be used to calculate Safety Integrity Levels (SIL) [31] and importance factors [32].

Very efficient algorithms have been developed to assess Fault Trees with up to several thousand
Basic Events (see e.g. [93, 91]). Some of them are based on symbolic representations of FT as binary
decision diagrams (BDD) as proposed in [86].

1.2. CLASSICAL APPROACH FOR SAFETY ANALYSIS 7

A lot of commercial RAMS (Reliability, Availability, Maintainability, Safety) workbenches are
available: Aralia Fault Tree Analyzer (Dassault Systemes), FaultTree+ (Isograph), BlockSim (Relia-
Soft Corporation), Item Toolkit (ITEM Software), CAFTA (Electric Power Research Institute), etc.
In general, these workbenches include a graphical user interface and assessment tools to calculate
minimal cutsets and probabilities of events.

In 2008 an Open-PSA initiative was launched: its objective is to create a model exchange format
for PSA models [33, 51]. The main idea is to be able to exchange models (Fault Trees, Event Trees,
etc.) between different assessment tools in order to perform cross check verifications.

Advantages and drawbacks

Boolean formalisms present many advantages. First of all, they are event-based. However, only failure
events can be considered. Other events (e.g. repairs, reconfigurations) cannot be represented explicitly.

Second, they are naturally hierarchical. They make it possible to structure models into hierarchies
and to represent break-down structures, as previously seen in Figures 1.3 and 1.4.

Third, they make it possible to represent remote interactions between components, what is espe-
cially clear in case of Reliability Block Diagrams.

Finally, they have convenient graphical representations which is important for industrial scale
models. Very efficient algorithms and tools are available. Indeed, Boolean formalisms are a good
trade-off between the expressive power of the formalism and the efficiency of the assessment algorithms.

However, Boolean formalisms put very strong constraints on events (failures) to be considered.
All events are assumed to be statistically independent. Among other consequences, it is not possible
to take into account the order in which events occur and events can occur any time, no matter the
current state of the system.

In the system, described in Example 1.1 and depicted in Figure 1.2, consider that the memory
bank M3 is a spare unit shared by the subsystems S1 and S2. When the memory banks M1 and M2
are operational, M3 is not used. When M1 is failed, it is replaced by M3, and M3 cannot be used to
replace M2 anymore. In that case the order of occurrence of events is important. Indeed, the event
“M3 failed” cannot occur before the failures of the memory banks M1 and M2. The events can no
longer be considered as independent.

This type of systems is called dynamic, converse to static systems, i.e. systems for which all events
are considered to be independent. Boolean models give approximated results for dynamic systems. To
get more precise results, one needs to use more expressive modeling formalisms (e.g. States/Transitions
formalisms described in Section 1.2.2).

Also, from a system engineering point of view, Fault Trees and Reliability Block Diagrams are
too low level modeling formalisms. Consequently, there is always a gap between the specifications of
the systems under study and the associated safety models. This gap makes safety models hard to
design, to share amongst stakeholders and to maintain throughout the life cycle of systems. Even
a minor change in the specifications may require a complete review of the safety models, which is
time consuming, costly and error prone. It is also difficult to ensure the traceability between system
specifications and safety models.

The advantages and drawbacks of Boolean formalisms are summarized in Table 1.1.

1.2.2 States/Transitions Formalisms

States/transitions formalisms make it possible to capture dependencies amongst components, such as
cold redundancies, resources sharing and sequences of actions. They can handle dynamic models. This
greater expressive power comes indeed with a price in terms of practical calculability. They should
be used when approximations made with Boolean formalisms are not suitable for the problem under
study. This category basically includes:

8 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

Formalism Advantages Drawbacks

Boolean
formalisms

Event-based Low expressive power

Hierarchical Low level formalism

Remote interactions (far from system specifications)

Graphical representation Hard to design and to maintain

Efficient assessment algorithms

Table 1.1: Boolean formalisms

• Markov Chains (MC), and

• Generalized Stochastic Petri Nets (GSPN).

Markov Chains (MC)

Markov chains [101] used for Safety Analyses are probabilistic finite state machines. They have a
convenient graphical representation:

• System states are represented by circles;

• Transitions between states are represented by arrows labeled by the probabilities. These proba-
bilities typically correspond to the failure rate λ or to the repair rate µ of system components.

Some states are considered as operational for the system under study (some components may be failed
in these states), others are considered as failure states.

To be represented by a Markov chain, the system should verify Markov assumption: ”System
evolution depends only on the current state of the system”. In other words, the process is without
memory. The assumption is very strong. But it is verified if the delays associated with components
failures and repairs are exponentially distributed.

Figure 1.5 illustrates a Markov chain representing a repairable component.

Figure 1.5: Markov chain representing a repairable component

Generalized Stochastic Petri Nets (GSPN)

When using Generalized Stochastic Petri Nets [63] to perform Safety Analyses of systems, places can
be interpreted as system states and transitions are often associated with events. A delay possibly
stochastic is associated with each transition. Transitions may be immediate or timed. When there
are several immediate transitions fireable at a time, the choice is done according to the probability
associated with each fireable transition. To be valid the sum of probabilities of all fireable immediate
transition should be equal to 1.

Figure 1.6 shows a Petri net representing a repairable component. There two places representing
the working state (W) and the failure state (F). Events ”failure” and ”repair” are associated with

1.2. CLASSICAL APPROACH FOR SAFETY ANALYSIS 9

transitions. These transitions are timed. It is possible to define their probability distributions. For
example, it can be exponential distributions with a failure rate λ and a repair rate µ. In general,
GSPN are assessed by stochastic simulation.

Figure 1.6: Petri Net representing a repairable component

Analysis and assessment tools

Basically, there are three methods to assess dynamic models:

• If the model verifies Markov assumption, then it can be assessed by Markov analysis, in order
to calculate reliability indicators.

• When the model does not verify Markov assumption or is too big to be assessed by Markov
analysis, stochastic simulation can be used to calculate reliability indicators.

• It is possible to generate critical sequences of events. The limit can be the length, also called
the order, of the sequence or its probability.

Each of these methods has its advantages and drawbacks.

Markov analysis The corresponding Markov chain is transformed into a system of differential
equations of first order with constant coefficients [101]. From this system of differential equations, it
is possible to calculate:

• the three most important instantaneous indicators of Safety Analyses: the reliability R(t), the
availability A(t), the maintainability M(t), and

• the average values: Mean Time To Failure (MTTF), Mean Time To Repair (MTTR).

The size of the Markov chain grows, in general, exponentially with the number of components of the
system under study. Some tools can deal with Markov chains with over than 1 million states [89].
Nevertheless, the method is applicable only for quite small systems.

Stochastic simulation The principle of stochastic (Monte-Carlo) simulation [2] is to run many
histories by drawing at pseudo-random the delays of the transitions and to make statistics on these
histories in order to evaluate different performance and reliability indicators. The first advantage of
this method is that different probability distributions (not only exponential) are accepted. The second
one is the fact that large scale models can be processed using stochastic simulation. The only limit
is the execution time of the program because many histories should be simulated to get acceptable
results.

10 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

Generation of critical sequences of events A critical sequence is a sequence of events leading
from the initial state to a critical state. In the case of dynamic models, the order of occurrences of
events is important and thus the approximation consisting in extracting minimal cutsets is not suit-
able: minimal or most probable sequences or sequences of a given length (also called order) can be
extracted by simulation of the model.

Total has developed GRIF, a system analysis software platform used to calculate system reliabil-
ity, availability, performance and safety indicators. It includes several graphical modeling modules
(Reliability Block Diagrams, Fault Trees, Markov graphs and Generalized Stochastic Petri Nets) and
classical RAMS assessment tools together with a Monte-Carlo simulation engine.

Advantages and drawbacks

Despite their usefulness to represent dynamic models, Markov Chains become rapidly unmanageable
because of the exponential explosion of the number of states. Its graphical representation is convenient
for small systems and becomes intractable for large scale models. States of the system are represented
in an explicit way. The formalism is not compositional (i.e. it does not allow the description of
systems as hierarchies of (reusable) components), and it is difficult to represent flow propagation like
in Reliability Block Diagrams.

Generalized Stochastic Petri Nets also enable to represent dynamic models. They have a convenient
graphical representation but this representation becomes unreadable for large scale models. They are
compositional but with some limits. First, it is only possible to represent simple synchronization of
events by fusion of transitions. Second, it is quite difficult to represent the propagation of flows. The
modeling should provide mechanisms to describe the inputs, the outputs and the relationships amongst
them. We can imagine to introduce input and output places and to use the fusion of places [58].
However, it has its limitations.

In [100] J.-P Signoret describes Generalized Stochastic Petri Nets with predicates and messages to
be able to represent the propagation of flows easily.

The advantages and drawbacks of classical States/Transitions formalisms are summarized in Ta-
ble 1.2.

Formalism Advantages Drawbacks

Markov chains

Event-based Lack of structure

Graphical representation Difficult to represent remote interactions

Dynamic and static models Only quite small systems

Generalized
Stochastic
Petri Nets

Event-based Lack of structure

Compositional Difficult to represent remote interactions

Graphical representation

Dynamic and static models

Table 1.2: States/Transitions formalisms

1.2.3 Extensions of classical formalisms for Safety Analysis

In Safety Analyses, we can use either Boolean formalisms or States/Transitions formalisms. A com-
parison between these two categories of modeling formalisms is summarized in Figure 1.7. On the one
hand, Boolean formalisms are hierarchical, enable to represent easily remote interactions and have

1.2. CLASSICAL APPROACH FOR SAFETY ANALYSIS 11

convenient graphical representations but they cannot represent dynamic models. On the other hand,
States/Transitions formalisms are more expressive but suffer from a lack of structure and difficulties
to represent remote interactions.

As a consequence, many proposals to extend classical (Boolean) formalisms in order to improve
their expressive power, to be able to capture dependencies between events, can be found in the
literature. In this section we present some of them.

Figure 1.7: Comparison of classical formalisms for Safety Analysis

Dynamic Fault Trees (DFT)

Dynamic Fault Trees (DFT) [102] extend traditional (called static) Fault Trees to be able to represent
the failure modes which depend on the order of components failures. They introduce different new
gates:

PAND Gate: A Priority-AND gate has been introduced to model sequences of failures. The output
event of this gate occurs if the input events occur in a specified order.

Spare Gate: A spare gate models components in redundancy. It comprises a main input event and
one or more spare input events. When the main input fails, a spare is passed from the standby
state to the active state, replacing the main input in its function. A spare gate fails when the
main input fails and all spare components are failed or unavailable. A spare component may fail
in both the standby and the active states. However, during the standby state, the failure rate is
reduced by a factor α.

SEQ Gate: The Sequence enforcing gate forces its events to occur in a specific order.

FDEP Gate: A Functional Dependency gate consists of a trigger event and a set of dependent basic
events. The occurrence of the trigger event causes the failure of the basic events.

Dynamic Fault Trees can be assessed by automatic conversion to Markov chains. However, solving
a Markov model is much more time and memory consuming than solving a standard Fault Tree. The
Markov models can grow exponentially with the number of components used in the modeled systems.

An alternative approach is to use stochastic simulation. The advantages and drawbacks of this
method have been discussed earlier.

In [64], the DIFTree methodology has been introduced: it combines solution techniques based on
Markov chains, Binary Decision Diagrams (BDD) and simulation.

12 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

The Galileo [30, 102] software supports Dynamic and Static Fault Trees and provides a set of
assessment tools including a Monte-Carlo simulation engine that uses variance reduction techniques
for the analysis of reliable systems.

Boolean logic Driven Markov Processes (BDMP)

Boolean logic Driven Markov Processes (BDMP) [16] is a formalism combining concepts inherited
from Fault Trees and Markov chains. Informally speaking, a BDMP is a Fault Tree, where

• leaves (basic events) are represented by Markov processes, and

• gates may trigger other gates (which is used to represent cold redundancies).

The overall tree describes a Markov process. BDMP are implemented as a Library of KB3 work-
bench, developed by EDF R&D [15]. In practice, BDMP are assessed by generation of most probable
sequences of events (performed by FIGSEQ tool integrated in KB3 workbench).

GO-FLOW

GO-FLOW [66] was introduced as an oriented systems analysis technique. This methodology consists
of constructing a GO-FLOW chart, by using a set of logical and transition operators connected together
to identify the inputs and the outputs of the operators. These connections can represent any physical
variable, time or any information. A procedure, to include common cause failures with uncertainty,
was introduced [67]. GO-FLOW has been applied to a wide variety of systems in Japan, ranging from
the marine reactor MRX [68] to the Shinkansen (Bullet Train) [69].

1.3 Model-Based approach for Safety Analysis

Nowadays, traditional risk assessment methods (Fault Tree Analysis, Event Trees Analysis), presented
in Section 1.2 of this chapter, have reached their limits. They rely on too low level modeling formalisms.
As a consequence, there is always a gap between the system specifications and the associated safety
models. This gap makes safety models hard to design, to share amongst stakeholders and to maintain
through the life cycle of systems. Even a minor change in the specification may require a total revisiting
of the safety model, which is both time consuming and error prone.

Model-Based Safety Assessment – the reliability engineering branch of Model-Based System En-
gineering – focuses more and more worldwide attention. The idea is to write models in high level
modeling formalisms so as to keep them close to the functional and physical architecture of the sys-
tem [55]. The high level model can be assessed directly or by its compilation into a low level model,
e.g. Fault Tree or Markov chain.

1.3.1 Advantages of Model-Based approach

Compared to classical approaches such as Fault Tree Analysis, Model-Based Safety Assessment presents
many advantages:

• Safety models are kept close to functional and physical architectures of the systems under study.
Therefore, it is much easier to propagate changes in system specifications as well as to trace
changes in safety models.

• Safety models are structurally close to models designed by other system engineering disciplines
(system architecture, dynamic system modeling, etc.). This proximity is of a great help to better
integrate Safety Analyses with other system design processes.

1.3. MODEL-BASED APPROACH FOR SAFETY ANALYSIS 13

• Models can be graphically animated. The incident or accident scenarios can be visualized and
discussed. In a word, high level models are much easier to share amongst the different stake-
holders than lower level ones.

• In general high level modeling languages have a greater expressive power than Boolean formalisms
such as Fault Trees or Reliability Blocks Diagrams. It is therefore possible to capture phenomena,
such as spare redundancies, shared components, etc.

• High level modeling favors the reuse of models at the component level (via the design of libraries)
and at the system level (via the adaptation of a model designed for a project to another project).
Experience shows that this is a great source of cost saving.

• For the same reasons, high level modeling favors knowledge capitalization.

1.3.2 Prerequisites for a high level modeling language for Safety Analyses

In this section we discuss different properties that a high level modeling language for Safety Analyses
should have.

First of all, a high level modeling language should be formal, i.e. its semantics should be formally
defined. In order to be assessed (compiled into a low level formalism, e.g. Fault Tree or Markov chain,
simulated, etc.) the model interpretation must not be ambiguous. The formal semantics ensures the
correctness of the obtained results.

Second, a high level modeling language should combine the advantages of both Boolean and
States/Transitions formalisms:

• It should be event-based. The goal of Safety and Reliability studies is to determine the most
probable failure scenarios, i.e. sequences of events leading the system from its nominal state to
a failure state (an incident or an accident). As it was seen in Section 1.2 all classical formalisms
are event-based. It should be possible to associate probability distributions to events.

• It should have the expressive power of at least States/Transitions formalisms to be able to
represent dynamic models.

• At the same time the language must be compositional in order to make it possible to describe
systems as hierarchies of components, like in Fault Trees and Reliability Block Diagrams.

• For any reasonable size system, the number of reachable states is just astronomical. It is im-
possible to represent all the states the system may reach. Therefore, the state space should be
represented in an implicit way.

• Fault Trees and Reliability Block Diagrams make it possible to represent instant remote inter-
actions between components of the system under study. The language should make it easy to
assemble components “in a Lego way” and to represent the propagation of flows through the
system.

Third, the language should be textual but it must be possible to associate different graphical
representations with textual models. From our point of view, it is not possible to have a unique
graphical representation of the whole model due to its expressiveness: it would be just unreadable.
Diagrams like Markov Chains or Generalized Stochastic Petri Nets are very convenient for small
systems but their interest is lost in case of industrial scale systems. Graphical representations must
be seen as partial views on the whole model, which in practice can be very complex.

Finally, the language must favor models reuse and knowledge capitalization.

14 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

1.3.3 High level formalisms for Safety Analysis

Different high level modeling formalisms have been proposed to perform Model-Based Safety Assess-
ment. As suggested in [60], these formalisms can be classified according to the engineering semantics
of components interfaces, as follows:

• Failure logic modeling formalisms;

• Failure effects modeling formalisms;

• Hybrid approaches.

In the following section we introduce some high level modeling formalisms dedicated to Safety
Analysis.

Some of them are extension of formalisms widely used in other system engineering domains to
perform Safety and Reliability Analyses. The system model is expressed in a dedicated formalism (e.g.
Matlab/SIMULINK, SysML, AADL, etc.). It is then annotated with reliability data and converted
into a low level formalism for Safety and Reliability Analyses (e.g. Fault Trees, Markov chain, etc.).

Some other formalisms have been especially created to represent system failures and perform Safety
and Reliability studies.

Hip-HOPS

Based on a structural system model, Hip-HOPS (Hierarchically Performed Hazard Origin and Propa-
gation Studies) [78] is a Safety Analysis technique for automatic generation of Fault Trees and FMEA
tables. It describes the structure of the system, in which the basic elements are the system compo-
nents. Components can be connected via input and output ports which model the Data-Flow through
the system. The failure behavior is specified as the failure of system components, failure effects can
then propagate along the defined connections to other components. Models can be imported from
different modeling tools: Matlab/SIMULINK, Eclipse-based UML tools or SimulationX [76].

In [106], M. Walker and Y. Papadopoulos propose to generate Temporal Fault Trees from Hip-
HOPS models. The Hip-HOPS approach has been used to perform architecture optimisation [76] and
to develop an automatic, optimal SIL allocation for the automotive domain [77].

AADL Error model

AADL (Architecture Analysis & Design Language) [34], developed and standardized by SAE (Society
of Automotive Engineers), is used to model embedded real-time systems. AADL can be used to model
both software and hardware components and represent system models as a hierarchy of interconnected
components. An Error Model annex [35] has been recently added to AADL specification.

In [95], A.E. Rugina et al. propose to transform AADL Error models into GSPN in order to
evaluate dependability indicators. An algorithm to automatically generate Fault Trees from AADL
Error models is described in [54].

FIGARO

Developed by EDF R&D, Figaro [17] is a textual modeling language dedicated to dependability as-
sessment of complex systems. It combines object-orientation language features (e.g. inheritance and
hierarchical representation) and first order production rules: interaction rules to model the propaga-
tion of instantaneous effects and occurrence rules, yielding a list of events that may happen in a state
of the system and have a particular semantics related to time.

Figaro is used as a description language to create knowledge bases (i.e. libraries of reusable
components) for KB3 [15], a workbench developed by EDF R&D to automatically perform systems

1.4. ALTARICA 15

dependability assessment, including Monte-Carlo simulation, Markov chain generation and quantifi-
cation and generation of critical sequences.

SAML

SAML (Safety Analysis Modeling Language) [45], is a formal synchronous language. A SAML model is
expressed in terms of finite stochastic state automata. Automata are all executed in discrete time steps
with parallel composition. The semantics of a SAML model is defined as Markov decision process.
S3E is a design and verification environment focused on SAML models. It provides a model editor and
model analysis tools: a stepwise simulator and translators to the input languages of the probabilistic
model checker PRISM and the symbolic model checker NuSMV.

More information about SAML can be found in appendix B, where we compare SAML with
AltaRica.

UML, SysML profiles

Constructed as a subset of UML 2.0, SysML is a modeling language for system engineering applications.
UML and SysML are graphical modeling languages. They use different types of diagrams to model
systems. UML and SysML are notations rather than formal languages.

In [27], P. David et al. propose a method to unify and enhance the development of safety critical
systems by linking functional design phase, using SysML, with commonly used reliability techniques
(i.e. FMEA and dysfunctional models construction in AltaRica Data Flow). In [109], a framework to
automatically generate static Fault Trees from system models specified with SysML is described. Many
translations have been defined from specialized UML models to Petri Nets or Fault Trees [12, 70, 61]
in order to evaluate system performance or reliability.

1.4 AltaRica

AltaRica is a high level formal modeling language dedicated to Safety Analysis. The first version of
the language has been created at the Computer Science Laboratory of Bordeaux (LaBRI) at the end of
the nineties [80, 7]. AltaRica is an event-centric language because the primary objective of Safety and
Reliability studies is to detect and quantify the most probable sequences of events (failures) leading
the system from a nominal state to a degraded state (accident). Deterministic or stochastic delays
can be associated with events in order to obtain (stochastic) timed models. In AltaRica, the behavior
of components is described by means of state machines. The state of a component is represented by
variables (so-called state variables) and their values. The changes of state are possible when, and only
when, an event occurs. The occurrence of an event updates the values of the variables.

AltaRica distinguished two types of variables:

• State variables that can be modified only through the firing of transitions;

• Flow variables whose values are calculated from those of state variables thanks to a mechanism
described by means of so-called assertions. The assertion is executed after each transition firing.

Flow variables are used to model information circulating between components of a model, i.e. eventu-
ally to model remote interactions between these components. This ability to model remote interactions
is especially important for Safety Analyses, where one of the primary objectives is to study the conse-
quences of failures of individual components into the system as whole. Widely used Fault Trees and
Reliability Block Diagrams rely almost exclusively on this ability.

The behavior of components is described by nodes (also called classes). Components can be
assembled into hierarchies, their inputs and outputs can be connected and their transitions can be

16 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

synchronized. Models of components can be stored in libraries, what favors the reuse of models and
the capitalization of knowledge.

AltaRica is an asynchronous language: only one transition can be fired at a time. However, it
offers a versatile mechanism to synchronize events. This mechanism is also useful to represent remote
interactions. Common cause failures, shared repair crews, broadcast, etc. can be represented by means
of synchronizations.

The semantics of the first version of AltaRica is defined in terms of Constraint Automata [7]. It is
still developed by LaBRI’s team. AltaRica studio is a workbench developed by LaBRI that supports
the modeling and the assessment of this version of AltaRica. Several assessment tools have been
developed, such as model-checkers [44], Fault Tree compilers and generators of critical sequences of
events [43].

This first version was too resource consuming for industrial scale systems. To be able to assess
industrial scale systems, a second version, AltaRica Data-Flow, has been created at IML (Marseilles)
in 2002 [88, 14]. Its semantics is based on Mode Automata [88]. In this version only Data-Flow
assignments are allowed in the assertion, what made it possible to develop a set of efficient assessment
tools such as, Fault Tree compilers [88], generators of critical sequences of events, compilers to Markov
chains [89], stochastic [58] and stepwise simulators.

AltaRica Data-Flow is now the core language of several industrial, commercially distributed Inte-
grated Modeling and Simulation Environments:

• Cecilia OCAS (Dassault Aviation),

• Simfia v2 (EADS Apsys), and

• Safety Designer(Dassault Systemes).

These environments make it possible to create, to edit and to simulate models graphically. AltaRica
Data-Flow Integrated Modeling and Simulation Environments are widely used across various indus-
tries. Many successful industrial applications have been reported in the literature (see for exam-
ple [10, 97, 13, 11, 52, 85, 98, 23, 4]). The Flight Control System of Dassault Aviation Falcon 7x
aircraft have been certified on the basis of AltaRica Data-Flow models [5]. AltaRica Data-Flow mod-
els have been used to assess the average production of plants in presence of aleas (e.g. unavailability
of machines or human operators) [14].

In 2011, an initiative was launched to standardize the syntax of AltaRica Data-Flow [92]. At the
same time a decision was made to change the syntax of the language to make it closer to Modelica [37].

AltaRica is the subject of several PhD thesis. In her PhD thesis [74], C. Pagetti proposes a
Timed and a Hybrid extensions of AltaRica to model real time systems, i.e. systems dealing with time
constraints. In his PhD thesis, C. Kehren [56] studies architecture modeling patterns to perform Safety
Analysis. P. David, in his PhD thesis [26], describes an algorithm to automatically generate AltaRica
Data-Flow models from SysML diagrams and FMEA tables. L. Sagaspe, in his PhD thesis [96], uses
AltaRica modeling language for reliability allocation in avionic systems.

1.4.1 Assessment tools

A high level modeling language cannot be separated from its assessment tools. Different assessment
tools have been created for AltaRica models (see Figure 1.8):

• compilers to Fault Trees [88],

• compilers to Markov chains [89],

• generators of critical sequences,

• stochastic simulators [58],

1.4. ALTARICA 17

• stepwise simulators, and

• model checkers [44].

Figure 1.8: AltaRica Tools

Fault Tree compiler

Fault Trees are widely used to perform Safety Analyses and some regulation authorities require to use
them to support the certification process. Since high level modeling greatly improves the design, the
sharing and the maintenance of models, it is of interest to use them to automatically generate Fault
Trees. In many cases high level models can be efficiently compiled into Fault Trees. The generated
Fault Tree can be then assessed with calculation engines, such as XFTA [91], in order to calculate
minimal cutsets, probabilities of failures, importance factors and other reliability indicators.

In [88], A. Rauzy describes an algorithm to compile AltaRica Data-Flow models into Fault Trees.
The proposed algorithm is very efficient on simple but very huge models. Compilers based on this
algorithm are integrated in Cecilia OCAS and Safety Designer.

In [43], the authors adapted the algorithm of [88] to the first version of AltaRica (called here
AltaRica LaBRI). The compiler is integrated into AltaRica Studio.

Generator of critical sequences of events

A critical sequence is a sequence of events leading from the initial state to a critical state. In some cases,
the order of occurrences of events is important and thus the approximation consisting in extracting
minimal cutsets (through a compilation of the model into a Fault Tree) is not suitable. In that case,
minimal sequences can be extracted.

In [43], authors propose algorithms to generate minimal sequences from AltaRica (LaBRI) models.
The generator of critical sequences is integrated into AltaRica Studio.

Markov chain generator

The semantics of AltaRica is a labeled Kripke structure (a reachability graph) that can be interpreted
as a Continuous-Time Markov chain, under the condition that all the transitions are either with
exponential delays or immediate. Immediate transitions are just collapsed using the fact that an
exponential delay with rate λ followed by an immediate transition of probability p is equivalent to
a transition with an exponential delay of rate pλ. The problem of such a compilation is indeed the
combinatorial explosion of the number of states and transitions.

The generated Markov chain can be then assessed in order to calculate reliability indicators.
Assessment algorithms proposed in [89] deal with Markov chains containing up to 1 million states.

18 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

Stepwise simulator

Stepwise simulator enables to perform an interactive step by step simulation of the model. This
interactive tool can be very useful to debug models, to play different failure scenarios, etc. The stepwise
simulator can be coupled with a graphical simulator as illustrated in [79]. Graphical simulation
of models can be used to perform virtual experiments on systems, via models, helping to better
understand the system behavior.

Graphical simulators are integrated in all Integrated Modeling and Simulation Environments for
AltaRica Data-Flow.

Stochastic simulator

Stochastic (Monte-Carlo) simulation is used when other assessment methods fail. The principle is to
run many histories by drawing at pseudo-random the delays of the transitions and to make statistics
on these histories. Two types of observers can be defined to calculate the reliability indicators:

• observers on formulas (e.g. the average number of times a formula takes a given value),

• observers on events (e.g. the average number of times an event has been fired).

The only limit of stochastic simulation is the number of histories and the length of histories that are
necessary to stabilize the measures.

In his PhD thesis [58], M.-T. Khuu proposes some compilation techniques for AltaRica Data-Flow
models in order to improve the efficiency of stochastic simulation.

Model-checker

Model-checking is applied to AltaRica models in two ways:

• The first one consists in designing dedicated model-checkers.

• The second one consists in translating models into the input language of a model-checker.

Model-checking can be used for two reasons:

• To check the temporal properties of the system.

• To check the validity of the model, e.g. to check that all transitions are fireable through some
path from the initial state.

Two model-checkers have been designed for AltaRica (LaBRI). The first one is MEC V [44], a
symbolic model-checker designed by A. Vincent. The second one is ARC and is an extension of MEC
V.

In [19], the authors propose to transform AltaRica Data-Flow models into NuSMV input format.

1.4.2 AltaRica 3.0

AltaRica Data-Flow has now reached an industrial maturity. However, more than ten years of ex-
perience showed that both the language and the assessment tools can be improved. To improve
the language, we adopted an original approach which consists in viewing a modeling language as a
combination of:

• an underlying mathematical formalism: algebraic and ordinary differential equations for Model-
ica [37], Mealy machines for Lustre [47], Guarded Transitions Systems [90, 84] for AltaRica 3.0,
and

1.4. ALTARICA 19

AltaRica (LaBRI) AltaRica Data-Flow

Integrated Modeling
and Simulation
Environment

AltaRica Studio Cecilia OCAS

Safety Designer

Simfia v2

Assessment tools

Model-checkers Graphical simulator

Fault Tree compiler Fault Tree compiler

Sequence generator Sequence generator

Stochastic simulator

Table 1.3: AltaRica Tools

• a paradigm to structure models: the functional paradigm as in Lucid Synchrone [24], the object-
oriented paradigm as in Modelica [37] or the prototype oriented paradigm as in the programming
language SELF [73] (or more recently Javascript).

To a large extent, the choice of the underlying mathematical formalism and the structuring
paradigm are independent.

The new version of AltaRica, the so-called AltaRica 3.0, improves AltaRica Data-Flow into two
directions:

1. First, the new underlying mathematical model – Guarded Transition Systems [90, 84] – makes it
possible to handle systems with instant loops and to define acausal components (components for
which the input and output flows are decided at run time). It is the subject of the next chapter.

2. Second, the language provides new constructs to structure models. These new constructs makes
it possible to match better with cognitive processes of engineers. They are presented in the third
chapter of this thesis.

AltaRica 3.0 modeling language is, in fact, the combination of its underlying mathematical for-
malism, Guarded Transition Systems (GTS), and the paradigm to structure models, System Structure
Modeling Language (S2ML):

AltaRica 3.0 = S2ML + GTS

In summary, AltaRica 3.0 models are made of:

• A set of domains, user-defined enumerations to represent types of variables;

• A set of records, user-defined composed types;

• A set of functions, used to group instructions together so that they may be easily reused;

• A set of classes or blocks, the structural constructs which are presented in details in chapter 3.

The behavior of each individual component, represented by a class or a block, is modeled by means
of:

• Variables. State variables are used to represent the component state, they have the attribute init.
Flow variables represent flows of matter circulating through the component, they are introduced
by the attribute reset.

• Parameters. They are often used to represent failure or repair rates of the components.

20 CHAPTER 1. MODEL-BASED SAFETY ASSESSMENT

• Events. They represent failures, repairs, etc. of components. Attributes can be associated with
events, e.g. delay or expectation.

• Observers. They are quantities to be observed by the assessment tools.

• Transitions. They are used to represent how the component changes its state, if an event occurs.

• Assertion. It is an instruction that is used to calculate the value of flow variables after each
transition firing.

All these concepts will be presented in details in the next chapters of this thesis.

Summary

In this chapter, we have introduced the basic notions of Safety and Reliability studies. We gave an
overview of classical formalisms used to perform Safety Analyses. We also discussed the Model-Based
approach for Safety Assessment and introduced some related high level modeling languages. Finally,
we presented AltaRica – a high level modeling language dedicated to Safety Analyses.

In the next chapter we will inroduce Guarded Transition Systems, the underlying mathematical
formalism of AltaRica 3.0, the new version of AltaRica.

Chapter 2

Guarded Transition Systems (GTS)

High level modeling languages can be seen as a combination of an underlying mathematical formalism
and a paradigm to structure models. This chapter presents the underlying mathematical model of the
AltaRica 3.0 modeling language – Guarded Transition Systems (GTS). GTS [90] is a states/transitions
formalism dedicated to Safety Analyses that generalizes Reliability Block Diagrams, Markov chains
and Stochastic Petri nets.

Three operations (free product, connection, synchronization) are defined on Guarded Transition
Systems. These operations make it possible to assemble them into hierarchies. Guarded Transition
Systems are thus a complete description language (conversely to flat formalisms like Finite State
Machines or regular Petri nets).

By introducing a fixpoint mechanism to stabilize the values of flow variables after each transition
firing, GTS makes it possible to represent systems with instant loops (for example network systems or
electrical systems) and to design acausal components, i.e. components in which the direction of the
flow propagation is determined at run time. Thus, GTS also generalizes Mode automata [88] – the
underlying mathematical model of AltaRica Data-Flow.

AltaRica 3.0 can just be seen as a convenient way to describe and to structure Guarded Transition
Systems.

This chapter is organized as follows. Section 2.1 presents a red wire example of this chapter and
discusses its modeling issues. Section 2.2 gives an informal presentation of GTS using examples and
discusses its properties. Section 2.3 is dedicated to the formal definition of Guarded Transition Sys-
tems. Section 2.4 introduces three operations to compose GTS. Section 2.5 defines the semantics of
Guarded Transition Systems. Section 2.6 discusses the representation of flow propagation. Section 2.7
presents Timed and Stochastic extensions of Guarded Transition Systems. Finally, section 2.8 sum-
marizes the properties of formalisms dedicated to Safety Analyses and compares Guarded Transition
System with classical formalisms for Safety Analyses.

2.1 Motivations

Example 2.1 (An irrigation system). Consider an irrigation system, depicted Figure 2.1, made of

• Two pumps P1 and P2 supplying water from the rivers R1 and R2 to the fields F1, F2 and F3;

• Three valves V1, V2 and V3.

Both pumps may fail in operation. In normal mode the field F1 is irrigated by the pump P1 and
the field F2 is irrigated by the pump P2. The field F3 can be irrigated by both pumps depending on
which valve is open V1 or V2 (in Figure 2.1 the valve V1 is open and the valve V2 is closed). If the
pump P1 fails, the Field F1 can be irrigated by the pump P2 via the valve V3 if it is open or via the

21

22 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

Figure 2.1: An irrigation system

valves V2 and V1 if both are open. In the same way the Field F2 can be irrigated by the pump P1 if
the pump P2 is failed.

Valves can also fail in operation: they can be stuck open or stuck closed. Moreover, assume that
the pumps may have a common cause failure. To simplify, consider that both pumps are always
supplied in water.

The goal of this system is to ensure the irrigation of all of the three fields F1, F2 and F3.

The example given above encompasses several modeling issues:

• First of all, it contains bidirectional connections between components. Indeed, connections
between the valves are bidirectional. For example, the flow can circulate from the valve V1 to
the valve V2 and vice-versa from V2 to V1, depending on the global state of the system.

• Second, the system contains an instant feedback loop: when all of the three valves are open, the
flow can circulate from the valve V3 to the valve V2, then from V2 to V1 and then go back from
V1 to V3. In that case, for example, the left stream of the valve V3 depends instantaneously on
its right stream (without the firing of any transition). Electrical systems or computer networks
are typical examples of systems for which it is very hard to avoid to introduce loops in models.
Difficulties of modeling such systems with instant loops are discussed in [90].

We shall use this system as a red wire of this chapter in order to illustrate different concepts of
Guarded Transitions Systems. We show how it is possible to model acausal components and handle
looped systems with GTS. We also explain here why some mechanisms with at least the expressive
power of fixpoints needs to be introduced in order to deal with looped systems and why fixpoint
provides a minimal solution for that purpose.

2.2 Informal presentation

A Guarded Transition System (GTS) is an automaton where states are represented by variable as-
signments, i.e. variables and their values. Changes of states are represented by transitions triggered
by events. It is also possible to represent flows circulating through a network and to synchronize
events in order to describe remote interactions between components of the system under study. GTS
generalizes both Reliability Block Diagrams, Markov chains and Petri nets.

2.2. INFORMAL PRESENTATION 23

In this section we present different concepts of GTS. We use AltaRica 3.0 syntax to describe GTS.
Note that other syntax can be used to represent GTS.

2.2.1 Data-Flow components

Figure 2.2: A Data-Flow pump

Consider a pump depicted Figure 2.2(a). Assume that it can be either working or failed. In the
initial state the pump is working. When an event failure occurs, the pump changes its state to failed.
Also, if the pump is working its output flow, represented by the variable downStream, is equal to its
input flow, represented by the variable upStream. Otherwise, it is null.

Such a pump can be represented by a Guarded Transition System in the following way. (See
Figure 2.3.)

domain ComponentState { WORKING, FAILED }

class DataFlowPump

ComponentState s (init = WORKING);

Boolean upStream, downStream(reset = FALSE);

event failure;

transition
failure: s == WORKING -> s := FAILED;

assertion
downStream := if s == WORKING then upStream else FALSE;

end

Figure 2.3: GTS representing a Data-Flow pump

The variable s represents the state of the pump. It takes its value into the domain ComponentState.
Its initial value is given by the attribute init and is equal to WORKING. Its value is modified by the
post-condition of the transition labeled by the event failure. State variables can be modified only
in the post-condition (also called the action) of the transition.

Variables upStream and downStream represent the input flow and the output flow of the pump
respectively. They are called flow variables. Their initial or default values are given by the attribute
reset. They depend on the state variables and can be modified only in the assertion. The assertion
stays that if the variable s is equal to WORKING then the variable downStream equals to the variable
upStream, otherwise it equals to FALSE. The value of flow variables is updated after each transition
firing.

The transition, labelled by the event failure, is fireable only when the value of the state variable
s is WORKING. The firing of the transition first sets the value of s to FAILED, then it updates the values

24 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

of flow variables.

Figure 2.2(b) shows a graphical representation of the GTS that describes the pump. States are
represented by rectangles with rounded corners. They are labeled by the state variable and its value.
The value of flow variables is given under the separation line. The initial state is marked in bold.
Transitions are represented by arrows joining states.

The model of the pump is called a Data-Flow component (see section 2.6 for more details on
Data-Flow assertions). It can be represented by a Mode automaton [88].

2.2.2 Acausal components

With Guarded Transition Systems it is also possible to represent acausal components, i.e. components
for which inputs and outputs are decided at run time, which is not the case of Mode automata where
all components are assumed to be Data-Flow.

In the example of the Irrigation system, depicted in Figure 2.1, flows between components are
bidirectional. To be able to represent bidirectional flows, we need to define acausal components. As a
consequence, we should modify the model of the Data-Flow pump in order to make it acausal.

An acausal pump

The GTS, describing an acausal pump, is given in Figure 2.4.

domain ComponentState { WORKING, FAILED }

class Pump

ComponentState s (init = WORKING);

Boolean upStream, downStream(reset = FALSE);

event failure;

transition
failure: s == WORKING -> s := FAILED;

assertion
if s == WORKING and upStream then downStream := TRUE;

end

Figure 2.4: GTS representing an acausal pump

This model is similar to the previous one: only the assertion is different from the previous model
of the pump. The assertion stands that if the pump is working and there is a flow in the upstream
then there is a flow in the downstream. Otherwise, nothing can be said about the downstream of the
pump. In this last case, the value of the flow variable is set to its default value, given by the attribute
reset.

A valve

Now consider the valve pictured Figure 2.5(a). It can be either open or closed and it may be stuck
(failed). The valve changes from open to closed (respectively from closed to open) if it is not failed
and if the event close (respectively open) occurs. It gets stuck when the event failure occurs. If the
valve is open, the flow can circulate through the valve. Otherwise, nothing can go through it. In the
last case, the value of flow variables is set to their default value.

The GTS representing such a valve is given Figure 2.6.

In this model, it is not specified which flow variable represents the input flow and the output
flow of the valve. The assertion stays that if the variable s equals to WORKING then flow variables

2.2. INFORMAL PRESENTATION 25

Figure 2.5: A Valve

domain ComponentState { WORKING, FAILED }

class Valve

ComponentState s (init = WORKING);

Boolean isClosed(init = FALSE);

Boolean rightStream, leftStream(reset = FALSE);

event open, close, failure;

transition
open: s==WORKING and isClosed -> isClosed := FALSE;

close: s==WORKING and not isClosed -> isClosed := TRUE;

failure: s == WORKING -> s := FAILED;

assertion
if s == WORKING then rightStream :=: leftStream;

end

Figure 2.6: GTS representing a valve

leftStream and rightStream are connected together; otherwise there is no relation amongst them.
The direction of the flow propagation is determined at run time: either the variable leftStream may
give value to the variable rightStream or vice-versa depending on the global state of the system where
the component Valve is used. This mechanism will be explained in more details later.

Figure 2.5(b) shows a graphical representation of the GTS that describes the valve.

2.2.3 Hierarchical models

Consider the Irrigation system from Example 2.1. The GTS representing a field is given Figure 2.7.

class Field

Boolean inStream(reset = FALSE);

end

Figure 2.7: GTS of a Field

Now, the GTS representing the three valves, the two pumps and the three fields have to be
combined together to get the GTS that represents the system as a whole. We need to compose GTS,
to connect together some variables and to synchronize some events (to represent the common cause

26 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

failure of the pumps).
Guarded Transitions Systems can be easily assembled into hierarchies of reusable models of com-

ponents by means of three operations: the free product, the connection and the synchronization.

Free product

First we need to assemble together the independent Guarded Transition Systems representing the
valves, the pumps and the fields. This operation is called a free product and consists in putting
together two or more independent GTS. The result of this operation is a Guarded Transition System
that contains all variables, events, transitions and assertions of the independent GTS. In the resulting
GTS every named object (e.g. variable, event, etc.) is prefixed by the name of the GTS followed by
a dot.

Connection

Now, pumps, valves and fields are completely independent. To represent the circulation of water
from pumps to fields, we need to connect some flow variables together. The connection consists in
compelling one or more variables to be equal to a function of some other variables. It is performed by
adding several assertions to the previous model.

Synchronization

As for other states/events formalisms such as Petri nets, transitions of Guarded Transition Systems
are assumed to be asynchronous: two transitions cannot be fired simultaneously. Synchronizations
are used to compel a set of events to occur simultaneously.

In our example, we shall use the synchronization to represent the common cause failure of the
pumps. A new event is defined. It synchronizes the individual failures of the pumps.

The three operations (free product, connection and synchronization) are presented in more details
in Section 2.4.

2.3 Formal definition

In order to formally introduce Guarded Transition Systems, we need to define some syntactic con-
structs. They are described hereafter.

2.3.1 Expressions

Consider a Universe U :

• a denumerable set of constants C,

• a finite set of operators O,

• a function α : O → N, that associates an arity to each operator, and

• a standard interpretation, denoted by J.K, that associates to each operator op ∈ O a partial
function JopK : Cα(op) → C.

We assume moreover that C contains at least the Boolean constants TRUE and FALSE and that O
contains at least the Boolean operators ”and”, ”or” and ”not” with their usual interpretation.

Let V be a finite set of symbols, called variables, and let dom be a function that associates with
each variable its domain (a set of values of the variable v), i.e. finite or denumerable subset of C.

2.3. FORMAL DEFINITION 27

Definition 2.1 (Expressions). The set of expressions E is built as the smallest set such that:

• ∀c ∈ C, c is an expression;

• ∀v ∈ V, v is an expression;

• if op is an operator and E1, . . . , Eα(op) are expressions, then op(E1, . . . , Eα(op)) is also an expres-
sion.

Let us denote by var(e) ⊆ V a set of variables occurring in the expression e, formally defined as
follows:

• for all constant c ∈ C, var(c) = ∅;

• for all variable v ∈ V, var(v) = {v};

• var(op(E1, E2, . . . , Eα(op))) = var(E1) ∪ var(E2) ∪ ... ∪ var(Eα(op)).

Definition 2.2 (Variable assignment). A variable assignment is a function σ : V → C, that associates
for each variable v ∈ V its value.

We say that the variable assignment σ is acceptable if

∀v ∈ V, σ(v) ∈ dom(v).

Variable assignments are lifted-up into functions from E to C in the usual way: let σ be an acceptable
variable assignment, let c be a constant, let op be an operator, and finally let E1, E2, . . . , Eα(op) be
expressions, then

σ(c) = c

σ(op(E1, E2, . . . , Eα(op))) = JopK(σ(E1), σ(E2), . . . , σ(Eα(op)))
(2.1)

Let σ be a possibly partial variable assignment, let v be a variable and finally let E be an expression.
If σ does not give a value to a variable v, we write

σ(v) =?

By extension, if σ does not give a value to sufficiently many variables to evaluate the expression E,
we write

σ(E) =?

The calculation of σ(E) may raise an error because operators are interpreted with only partial
functions. In that case we say that σ is not acceptable for E and we write

σ(E) = ERROR

Let c be a constant, we denote by σ[c/v] the assignment such that

σ[c/v](w) =





c if w = v,

σ(w) for any other variable w.
(2.2)

From now, we assume that the set of variables V is a disjoint union of the set S of state variables
and the set F of flow variables, V = S] F . Moreover, we assume that each variable has a default or
initial value.

28 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

2.3.2 Instructions

Guarded Transition Systems are built on the following instructions: an empty instruction, an assign-
ment, a conditional assignment and a parallel composition.

Definition 2.3 (Instructions). The set I of instructions is the smallest set such that:

• ”skip” is an instruction;

• if v is a variable and E is an expression, then ”v := E” is an instruction;

• if C is a Boolean expression, I is an instruction, then ”if C then I” is an instruction;

• if I1 and I2 are instructions, then so is the parallel composition ”I1; I2”.

We shall consider two types of instructions:

• Instructions in which left members of assignments are only state variables. We call these in-
structions actions of transitions.

• Instructions in which left members of assignments are only flow variables. We call these instruc-
tions assertions.

Example 2.2 (A valve). Consider the GTS of the valve (see Figure 2.5) given Figure 2.6. The
assertion is equivalent to the following block of instructions.

{if s==WORKING then leftStream := rightStream;

if s==WORKING then rightStream := leftStream;}

Only flow variables are assigned in the assertion. This block of instructions is composed of two
conditional assignments.

2.3.3 Definition

Definition 2.4 (Guarded Transition System). A Guarded Transition System is a quintuple

G = 〈V,E, T,A, ι〉,
where:

• V is a set of variables, divided into two disjoint sets S of state variables and F of flow variables:
V = S] F ;

• E is a set of symbols, called events;

• T is a set of transitions, i.e. of triples 〈e,G, P 〉 also denoted e : G→ P , where e is an event of E,
G is a guard, a Boolean formula built over the set V , and P is an instruction built on variables
of V , called an action or a post-condition;

• A is an assertion, i.e. an instruction built on variables of V ;

• ι is an assignment of variables of V , so-called an initial or default assignment.

A transition e : G→ P is fireable in a given state σ, i.e. for a given variable assignment σ, if

σ(G) = TRUE.

The firing of transition e : G → P is performed into two steps: first, state variables are updated by
applying the instruction P to σ; second, flow variables are propagated using the assertion A. This
mechanism is described in Section 2.5.

2.4. COMPOSITION OF GTS 29

Example 2.3 (A valve). Consider again the valve given Figure 2.5. The GTS G = 〈V,E, T,A, ι〉 that
describes the valve is formally defined as follows.

• The set of variables V = S] F is the disjoint set of

– the state variables S = {s; isClosed} with

dom(s) = {WORKING;FAILED}

dom(isClosed) = {TRUE;FALSE},
and

– the flow variables F = {leftStream; rightStream} with

dom(lefStream) = dom(rightStream) = {TRUE;FALSE}

• The set of events E contains three events E = {open; close; failure}.

• T contains the following transitions:
open : isClosed and s == WORKING → isClosed := FALSE
close : not isClosed and s == WORKING → isClosed := TRUE
failure : s == WORKING → s := FAILED

• The assertion A is a block of instructions that contains two conditional assignments:
if s == WORKING then leftStream := rightStream
if s == WORKING then rightStream := leftStream

• Finally, the initial or default variable assignment ι is as follows:
(s = WORKING, isClosed = FALSE, leftStream = FALSE, rightStream = FALSE).

2.4 Composition of GTS

A major prerequisite for a high level description language is to be compositional, i.e. to allow the
description of systems as hierarchies of (reusable) components. Guarded Transition Systems can
be assembled by means of three operations: free product, connection and synchronization. These
operations produce a Guarded Transition System: any hierarchy can be flattened into an equivalent
Guarded Transition System.

2.4.1 Free product

To build hierarchies, we need an operation that groups together several GTS. The first operation
defined to assemble two GTS is the free product.

Definition 2.5 (Independence of two GTS). Let G1 = 〈V1, E1, T1, A1, ι1〉 and G2 = 〈V2, E2, T2, A2, ι2〉
be two GTS. G1 and G2 are said independent if they are built over distinct sets of variables and events,
i.e.

1. V1 ∩ V2 = ∅;

2. E1 ∩ E2 = ∅;
Definition 2.6 (Free product). Let G1 = 〈V1, E1, T1, A1, ι1〉 and G2 = 〈V2, E2, T2, A2, ι2〉 be two
independent GTS. The free product G = 〈V,E, T,A, ι〉 of G1 and G2, denoted G1 ×G2 is defined as
follows:

30 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

• V = V1 ∪ V2;

• E = E1 ∪ E2;

• T = T1 ∪ T2;

• A = A1;A2, where ; denotes the parallel composition of instructions;

• ι = ι1 ◦ ι2, where ◦ denotes the composition of functions.

Note that since the two GTS are assumed to be built over distinct sets of variables and events,
the product × is commutative and associative.

In practice, this operation can be represented as an instantiation of classes representing each
independent component.

Example 2.4 (An irrigation system). Consider the irrigation system from Example 2.1. It is made of
two pumps, three valves and three fields. The GTS representing the irrigation system is a composition
of the Guarded Transition Systems representing the valves, the pumps and the fields:

block IrrigationSystem

Pump P1, P2(upStream.reset = true);

Valve V1, V2, V3;

Field F1, F2, F3;

end

In concrete terms the block IrrigationSystem embeds two instances of the class Pump, named P1 and
P2, three instances of the class Valve, named V1, V2 and V3, and three instances of the class Field,
named F1, F2 and F3.

The resulting GTS contains all variables, events, transitions and assertions of the independent
Guarded Transition Systems. All named objects, e.g. variables or events, are prefixed by the name of
the instance (see Figure 2.9).

2.4.2 Connection

The connection consists in compelling one or more flow variables to be equal to a function of some other
variables. Guarded Transition Systems introduce a special operator to represent acausal connections:
“:=:”.

Definition 2.7 (Acausal connection). Let G = 〈V = S]F,E, T,A, ι〉 be a GTS. Let v and w be two
flow variables: v, w ∈ F . An(The) acausal connection of flow variables v and w is an(the) instruction
of the form v :=: w. It is equivalent to the two assignments: {v := w;w := v; }.

It is important to notice that, acausal connections introduce loops.

In practice, connections are represented by assertions.

Example 2.5 (An irrigation system). In order to represent flows of water circulating from the pumps
to the fields, the following connections are added to the previous model of the irrigation system:

2.4. COMPOSITION OF GTS 31

block IrrigationSystem

Pump P1, P2(upStream.reset = true);

Valve V1, V2, V3;

Field F1, F2, F3;

assertion
V1.rightStream :=: V2.leftStream;

V2.rightStream :=: V3.rightStream;

V3.leftStream :=: V1.leftStream;

V3.rightStream :=: P2.downStream;

V3.leftStream :=: P1.downStream;

F1.inStream := P1.downStream;

F2.inStream := P2.downStream;

F3.inStream := V1.rightStream;

end

The Guarded Transition Systems are not completely independent anymore. Their flow variables are
connected together.

2.4.3 Synchronization

As in other states/transitions formalisms such as Petri nets, transitions of GTS are assumed to be
asynchronous: two transitions cannot be fired simultaneously. The synchronization mechanism con-
sists in compelling a set of events to occur simultaneously.

Definition 2.8 (Synchronization). Let G = 〈V,E, T,A, ι〉 be a GTS. A synchronization is a transition
in the following form:

e : !a1 & . . . & !am & ?b1 & . . . & ?bn & L1 → R1 & . . . & Lr → Rr,

m ≥ 0, n ≥ 0, r ≥ 0,

where

1. e, ai, i = 0..m, bj , j = 0..n, are events from E;

2. Events are prefixed by either ! or ?, called the modality: ! meaning that the event is mandatory
and ? meaning that the event is optional;

3. Lk → Rk, k = 0..r, are unnamed transitions, Lk, k = 0..r, are guards (i.e. Boolean expressions
built over variables from V), Rk, k = 0..r, are actions built over V .

The synchronization defines a set of new transitions. They are calculated in the following way.
First case: m ≥ 1 or r ≥ 1
For each set of transitions (there may be several):

a1 : G1 → P1, . . . , am : Gm → Pm

b1 : H1 → Q1, . . . , bn : Hn → Qn, n ≥ 0

the following new transition is created:

e : G1 and . . . and Gm and L1 and . . . and Lr →

{P1; . . . ;Pm; if H1 then Q1; . . . ; if Hn then Qn;R1; . . . ;Rr}
The modality ! forces the corresponding synchronized transition to be fireable.

32 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

Second case: m = 0, r = 0, n > 1
For each set of transitions (there may be several):

b1 : H1 → Q1, . . . , bn : Hn → Qn

the following new transition is created:

e : H1 or . . . or Hn → { if H1 then Q1; . . . ; if Hn then Qn}

In other words, the synchronizing transition is fireable if at least one of the synchronized transitions
is. The action of the synchronizing transition consists in firing all fireable synchronized transitions.

We will see in Section 2.5.1 that all instructions in the action of a transition are executed in
parallel. As a result the order in which the instructions are written (and therefore the order in which
events appear in the synchronization) is not important. The operation of events synchronization is
commutative and associative.

Just as assertions make it possible to link variables from different GTS, synchronizations make it
possible to link their events (and therefore transitions).

Transitions involved in a synchronization continue to exist individually. Together with synchro-
nizations it is useful to have a hiding mechanism. If an event is hidden, the transitions labelled with
this event are not fireable anymore.

Example 2.6 (An irrigation system). To illustrate the synchronization mechanism, consider again
the irrigation system pictured Figure 2.1. We shall use the synchronization to represent the common
cause failure of the pumps. To do so, we define a new event ccf, and a new transition labelled by this
event.

block IrrigationSystem

Pump P1, P2(upStream.reset = true);

Valve V1, V2, V3;

Field F1, F2, F3;

event ccf;

transition
ccf: ?P1.failure & ?P2.failure;

assertion
...

end

Figure 2.8: GTS of the irrigation system

The transition ccf synchronizes the events P1.failure and P2.failure. It corresponds to the
following flattened transition:

ccf: P1.s==WORKING or P2.s==WORKING ->

{if P1.s==WORKING then P1.s := FAILED;

if P2.s==WORKING then P2.s := FAILED;}

All events involved in the synchronization are optional (modality ?). The synchronized transition is
fireable if at least one of the pumps is operational. Synchronized events (and transitions) are not
removed from the model. They represent individual failures of the pumps.

2.5. SEMANTICS 33

With the operations defined to compose Guarded Transition Systems (free product, connection
and synchronization), it is easy to create hierarchical models, i.e. to assemble ”on-the-shelf” models
of components in a Lego way. Any hierarchical model can be flattened into an equivalent GTS
using previously defined rules. As an illustration, the flattened GTS of the irrigation system is given
Figure 2.9. The hierarchical model is presented Figure 2.8.

2.5 Semantics

Guarded Transition Systems G = 〈V,E, T,A, ι〉 are implicit representations of Kripke structures, i.e.
of graphs whose nodes are labeled by variable assignments and whose edges are labeled by events.
This graph is called a Reachability graph of G.

To explain how this graph is calculated, we first need to define the semantics of instructions.

2.5.1 Semantics of instructions

As it was mentioned earlier, instructions are interpreted in a different way depending they are used
in the action of a transition or in an assertion. Actions of transitions are used to change locally the
state of the model. Assertion is used to calculate flow variables, representing information circulating
amongst the components of the model. Their value depends on the value of state variables. It is
recalculated after each transition firing.

So, we shall consider two types of instructions:

• Instructions in which left members of assignments are only state variables. We call these in-
structions actions of transitions.

• Instructions in which left members of assignments are only flow variables. We call these instruc-
tions assertions.

Semantics of actions

Let σ be the variable assignment just before the firing of the transition t = 〈e,G, P 〉. Applying
the instruction P to the variable assignment σ consists in calculating a new variable assignment τ
according to the rules given in a Structural Operational Semantics style in the Table 2.1.
We start with τ = ∅. Then,

• (S0): P is an empty instruction: τ is left unchanged.

• P is an assignment ”v := E”:
(S1): If τ does not give a value to v, then τ(v) is set to σ(E).
(S2): If v already has a value in τ and τ(v) = σ(E), then τ is left unchanged.
(S3): If v already has a value in τ and τ(v) 6= σ(E), then an error is raised.

• P is a conditional assignment ”if C then I”:
(S4): If σ(C) = TRUE, then the instruction I is applied to τ .
(S5): Otherwise, τ is left unchanged.

• P is a block of instructions ”{I1, . . . , In}”:
(S7)-(S12): Instructions I1, . . . , In are successively applied to τ . The set of rules is non-
deterministic. The execution of a parallel composition I1; I2 may start with the execution of I1

or the execution of I2. Although tools will probably make a systematic choice, this semantics is
independent of this choice.

34 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

class FlattenIrrigationSystem

ComponentState V1.s, V2.s, V3.s, P1.s, P2.s(init = WORKING);

Boolean V3.isClosed, V2.isClosed(init = TRUE);

Boolean V1.isClosed (init = FALSE);

Boolean P1.upStream, P2.upStream (reset = TRUE);

Boolean P1.downStream, P2.downStream (reset = FALSE);

Boolean F1.inStream, F2.inStream, F3.inStream (reset = FALSE);

Boolean V1.leftStream, V2.leftStream, V3.leftStream(reset = FALSE);

Boolean V1.rightStream, V2.rightStream, V3.rightStream(reset = FALSE);

event V1.open, V2.open, V3.open, V1.close, V2.close, V3.close;

event V1.failure, V2.failure, V3.failure, P1.failure, P2.failure, ccf;

transition
V1.open : V1.isClosed and V1.s == WORKING -> V1.isClosed := FALSE;

V2.open : V2.isClosed and V2.s == WORKING -> V2.isClosed := FALSE;

V3.open : V3.isClosed and V3.s == WORKING -> V3.isClosed := FALSE;

V1.close : not V1.isClosed and V1.s == WORKING -> V1.isClosed := TRUE;

V2.close : not V2.isClosed and V2.s == WORKING -> V2.isClosed := TRUE;

V3.close : not V3.isClosed and V3.s == WORKING -> V3.isClosed := TRUE;

V1.failure : V1.s == WORKING -> V1.s := FAILED;

V2.failure : V2.s == WORKING -> V2.s := FAILED;

V3.failure : V3.s == WORKING -> V3.s := FAILED;

P1.failure : P1.s == WORKING -> P1.s := FAILED;

P2.failure : P2.s == WORKING -> P2.s := FAILED;

ccf: P1.s==WORKING or P2.s==WORKING ->

{if P1.s==WORKING then P1.s := FAILED;

if P2.s==WORKING then P2.s := FAILED;}
assertion

if P1.s==WORKING and P1.upStream then P1.downStream := TRUE;

if P2.s==WORKING and P2.upStream then P2.downStream := TRUE;

if not V1.isClosed then V1.leftStream := V1.rightStream;

if not V1.isClosed then V1.rightStream := V1.leftStream;

if not V2.isClosed then V2.leftStream := V2.rightStream;

if not V2.isClosed then V2.rightStream := V2.leftStream;

if not V3.isClosed then V3.leftStream := V3.rightStream;

if not V3.isClosed then V3.rightStream := V3.leftStream;

V1.rightStream := V2.leftStream;

V2.leftStream := V1.rightStream;

V2.rightStream := V3.rightStream;

V3.rightStream := V2.rightStream;

V3.leftStream := V1.leftStream;

V1.leftStream := V3.leftStream;

V3.rightStream := P2.downStream;

P2.downStream := V3.rightStream;

V3.leftStream := P1.downStream;

P1.downStream := V3.leftStream;

F1.inStream := P1.downStream;

F2.inStream := P2.downStream;

F3.inStream := V1.rightStream;

end

Figure 2.9: Flattened GTS of the irrigation system

2.5. SEMANTICS 35

S0 :
〈skip, σ, τ〉 → τ

S1 :
τ(v) =?, σ(E) ∈ dom(v)

〈v := E, σ, τ〉 → τ [σ(E)/v]
S2 :

τ(v) = σ(E), σ(E) ∈ dom(v)

〈v := E, σ, τ〉 → τ

S3 :
σ(E) = ERROR or σ(E) /∈ dom(v) or τ(v) 6=?, σ(E) 6= τ(v)

〈v := E, σ, τ〉 → ERROR

S4 :
σ(C) = TRUE

〈v := if C then I, σ, τ〉 → 〈I, σ, τ〉
S5 :

σ(C) = FALSE

〈if C then I, σ, τ〉 → τ

S6 :
σ(C) = ERROR

〈if C then I, σ, τ〉 → ERROR

S7 :
〈I1, σ, τ〉 → τ ′

〈I1; I2, σ, τ〉 → 〈I2, σ, τ
′〉

S8 :
〈I2, σ, τ〉 → τ ′

〈I1; I2, σ, τ〉 → 〈I1, σ, τ
′〉

S9 :
〈I1, σ, τ〉 → 〈I ′1, σ, τ ′〉

〈I1; I2, σ, τ〉 → 〈I ′1; I2, σ, τ
′〉

S10 :
〈I2, σ, τ〉 → 〈I ′2, σ, τ ′〉

〈I1; I2, σ, τ〉 → 〈I1; I ′2, σ, τ
′〉

S11 :
〈I1, σ, τ〉 → ERROR

〈I1; I2, σ, τ〉 → ERROR
S12 :

〈I2, σ, τ〉 → ERROR

〈I1; I2, σ, τ〉 → ERROR

Table 2.1: The semantics of actions

It is important to note that in the above mechanism, right hand side of assignments and condi-
tions of conditional instructions are evaluated in the variable assignment σ. This has an important
consequence: the result does not depend on the order in which instructions of a block are applied.
In other words, instructions of a block are applied in parallel. For this reason, a variable cannot be
assigned twice to a different value without raising an error. For example, a conditional assignment if
x < 5 then x := x + 1; is executed in the following way: if σ(x) < 5, then τ(x) is set to σ(x) + 1,
otherwise it is left unchanged.

We denote by Update(P, σ) a function that:

• Extends a given partial variable assignment τ of S by means of a total variable assignment σ of
V from the instruction P according to the rules given in the Table 2.1 and starting with τ = ∅.

• Completes τ by setting τ(v) = σ(v) for all variables from S that are not given a value by the
previous step.

Example 2.7 (An irrigation system). Consider the transition ccf in the model of the irrigation
system, depicted Figure 2.1,

ccf: P1.s==WORKING or P2.s==WORKING ->

{if P1.s==WORKING then P1.s := FAILED;

if P2.s==WORKING then P2.s := FAILED;}

and a variable assignment

σ = (P1.s = FAILED, P2.s = WORKING, . . .)

36 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

The transition ccf is fireable in σ, since its guard is verified. The new variable assignment τ , obtained
after the transition firing, is calculated as follows. τ is empty at the beginning.

τ = (P1.s = ∅, P2.s = ∅, . . .)

After the execution of the action, τ is as follows:

τ = (P1.s = ∅, P2.s = FAILED, . . .)

The variable P1.s has not been given a value. So it receives its value in σ and finally:

τ = (P1.s = FAILED, P2.s = FAILED, . . .)

Semantics of instructions in assertion

Let A be the assertion and π the variable assignment obtained after the application of the action of a
transition.

π = Update(P, σ)

Applying A to π consists in calculating a new variable assignment (of flow variables) τ as follows. We
start by setting all state variables in τ to their values in π: ∀v ∈ S, τ(v) = π(v). An assertion A
extends a variable assignment τ which is total on S but possibly partial on F , according to the rules
given in the Table 2.2.
Let D be a set of unevaluated flow variables, we start with D = F . Then,

• (S0): A is an empty instruction: τ is left unchanged.

• A is an assignment ”v := E”:

1. τ(Exp) can be evaluated in τ , i.e. all variables of E have a value in τ .
(S3): If v already has a value in τ , then if τ(v) 6= τ(E) then an error is raised
(S1): else τ is left unchanged.
(S2): Otherwise, τ(v) is set to τ(E) and v is removed from D.

2. τ(Exp) cannot be evaluated in τ , then τ is left unchanged.

• A is a conditional assignment ”if C then I”:

1. τ(C) can be evaluated in τ .
(S4): If τ(C) = TRUE, then the instruction I is applied to τ .
(S5): Otherwise, τ is left unchanged.

2. Otherwise, τ is left unchanged.

• A is a block of instructions ”{I1, . . . , In}”:
(S7)-(S12): Instructions I1, . . . , In are repeatedly applied to τ until there is no more possibility
to assign a flow variable. This set of rules is non-deterministic but its result does not depend on
the execution order.

Let ι be an assignment that associates each variable with its initial or default value. If after
applying A to π there are unevaluated variables in D, then all these variables are set to their default
values (∀v ∈ D τ(v) = ι(v)) and A is applied to τ in order to verify that all assignments are satisfied.
If there is at least one assignment that is not satisfied, then an error is raised.

We denote by Propagate(A, ι, τ) a function that:

2.5. SEMANTICS 37

S0 :
〈skip, τ〉 → τ

S1 :
τ(v) =?, τ(E) 6=?, τ(E) ∈ dom(v)

〈v := E, τ〉 → τ [τ(E)/v]
S2 :

τ(v) = τ(E), τ(E) ∈ dom(v)

〈v := E, τ〉 → τ

S3 :
τ(E) = ERROR or τ(E) /∈ dom(v) or τ(v) 6=?, τ(E) 6= τ(v)

〈v := E, τ〉 → ERROR

S4 :
τ(C) = TRUE

〈v := if C then I, τ〉 → 〈I, τ〉
S5 :

τ(C) = FALSE

〈if C then I, τ〉 → τ

S6 :
τ(C) = ERROR

〈if C then I, τ〉 → ERROR

S7 :
〈I1, τ〉 → τ ′

〈I1; I2, τ〉 → 〈I2, τ
′〉

S8 :
〈I2, τ〉 → τ ′

〈I1; I2, τ〉 → 〈I1, τ
′〉

S9 :
〈I1, τ〉 → 〈I ′1, τ ′〉

〈I1; I2, τ〉 → 〈I ′1; I2, τ
′〉

S10 :
〈I2, τ〉 → 〈I ′2, τ ′〉

〈I1; I2, τ〉 → 〈I1; I ′2, τ
′〉

S11 :
〈I1, τ〉 → ERROR

〈I1; I2, τ〉 → ERROR
S12 :

〈I2, τ〉 → ERROR

〈I1; I2, τ〉 → ERROR

Table 2.2: The semantics of assertions

• Extends the partial variable assignment τ by the instruction A according to the rules given in
the Table 2.2.

• Completes τ by setting all unassigned variables to its default values

∀v ∈ F : τ(v) =?/τ(v) = ι(v).

Example 2.8 (An irrigation system). Consider the irrigation system, depicted Figure 2.1, and the
assertion of the corresponding GTS given Figure 2.9.

38 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

(1) if P1.s==WORKING and P1.upStream then P1.downStream := TRUE;

(2) if P2.s==WORKING and P2.upStream then P2.downStream := TRUE;

(3) if not V1.isClosed then V1.leftStream := V1.rightStream;

(4) if not V1.isClosed then V1.rightStream := V1.leftStream;

(5) if not V2.isClosed then V2.leftStream := V2.rightStream;

(6) if not V2.isClosed then V2.rightStream := V2.leftStream;

(7) if not V3.isClosed then V3.leftStream := V3.rightStream;

(8) if not V3.isClosed then V3.rightStream := V3.leftStream;

(9) V1.rightStream := V2.leftStream;

(10) V2.leftStream := V1.rightStream;

(11) V2.rightStream := V3.rightStream;

(12) V3.rightStream := V2.rightStream;

(13) V3.leftStream := V1.leftStream;

(14) V1.leftStream := V3.leftStream;

(15) V3.rightStream := P2.downStream;

(16) P2.downStream := V3.rightStream;

(17) V3.leftStream := P1.downStream;

(18) P1.downStream := V3.leftStream;

(19) F1.inStream := P1.downStream;

(20) F2.inStream := P2.downStream;

(21) F3.inStream := V1.rightStream;

Let us illustrate how this assertion is calculated on a couple of configurations. First, consider a con-
figuration, where both pumps are operational, valves V3 and V2 are closed and V1 is open. In this
configuration conditional assignments (5) – (9) cannot be executed because their conditions are not
verified. The propagation algorithm works as follows:

From the instruction (1), P1.downStream← true.
From the instruction (2), P2.downStream← true.
From the instruction (17), V 3.leftStream← true.
From the instruction (15), V 3.rightStream← true.
From the instruction (19), F1.inStream← true.
From the instruction (20), F2.inStream← true.
From the instruction (14), V 1.leftStream← true.
From the instruction (4), V 1.rightStream← true.
From the instruction (21), F3.inStream← true.
From the instruction (10), V 2.leftStream← true.
From the instruction (11), V 2.rightStream← true.

In this configuration the fields F1 and F3 are irrigated by the pump P1 and the field F2 is irrigated
by the pump P2. The flow is propagated from the pump P1 to the valve V1, then from the valve V1
to the valve V2 and to the field F3. In the same way, the flow is propagated from the pump P2 to the
valve V2 and to the field F2.

Now consider another configuration, where the pump P1 is failed, the valve V2 is open. In this
configuration conditional assignments (1), (7), (8) cannot be evaluated thus their conditions are not
verified. The propagation algorithm works as follows:

From the instruction (2), P2.downStream← true.
From the instruction (15), V 3.rightStream← true.
From the instruction (11), V 2.rightStream← true.

2.5. SEMANTICS 39

From the instruction (20), F2.inStream← true.
From the instruction (5), V 2.leftStream← true.
From the instruction (9), V 1.rightStream← true.
From the instruction (21), F3.inStream← true.
From the instruction (3), V 1.leftStream← true.
From the instruction (13), V 3.leftStream← true.
From the instruction (18), P1.downStream← true.
From the instruction (19), F1.inStream← true.

In this configuration the fields F1, F2 and F3 are irrigated by the pump P2: the flow is propagated
from P2 to the fields through the valves V2 and V1.

Let ι be a total assignment that associates for each variable v from V its initial or default value.
Let P be an action, let A be an assertion and let σ be a total variable assignment. We denote by
Fire(P,A, ι, σ) an assignment defined as follows:

Fire(P,A, ι, σ) = Propagate(A, ι, Update(P, σ)).

2.5.2 Reachability graph

Guarded Transition Systems are implicit representations of Kripke structures, i.e. of graphs whose
nodes are labeled by variable assignments and whose edges are labeled by events.

Definition 2.9 (Reachability graph). The semantics of a Guarded Transition System G = 〈V =
S] F,E, T,A, ι〉 is a Kripke structure, i.e. a graph Γ = (Σ,Θ), where

• Σ is a set of variable assignments, also called states (nodes of the graph),

• Θ is a set of triples 〈s, e, q〉, s, q ∈ Σ, e ∈ E (transitions of the graph).

Γ is the smallest Kripke structure, such that the following is verified:

1. σ0 = Propagate(A, ι, ι) ∈ Σ. σ0 is the initial state of the Kripke structure.

2. If σ ∈ Σ and ∃t = 〈e,G, P 〉 ∈ T such that σ(G) = TRUE, then the state τ = Fire(P,A, ι, σ) ∈ Σ
and the transition (σ, e, τ) ∈ Θ,

The graph Γ is called the Reachability graph of G.

The calculation of Γ = (Σ,Θ) may raise errors. A well-designed Guarded Transition Systems
avoids this problem.

Example 2.9 (A pump and a valve connected in series). Consider a part of the irrigation system,
depicted Figure 2.1, composed of a pump P1, a valve V1 and a field F1. The Guarded Transition
Systems representing a pump, a valve and a field are given in Figures 2.4, 2.6, and 2.7 respectively.

The reachability graph of this system is pictured Figure 2.10. States are represented by rectangles
with rounded corners. They are labelled by state variables and their value. For the sake of clarity, the
value of only one flow variable is indicated under the separation line: F1.isIrrigated. The initial state
is marked in bold. Transitions are represented by arrows joining states and are labelled by events.

Definition 2.10 (Free product of reachability graphs). Let G1 and G2 be two independent GTS and
let Γ1 = (Σ1,Θ1) and Γ2 = (Σ2,Θ2) be their reachability graphs. The reachability graph Γ = (Σ,Θ)
is a free product of Γ1 and Γ2, denoted Γ1 ⊗ Γ2, if the following holds:

40 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

Figure 2.10: The Reachability graph of the system

• Σ = Σ1 × Σ2, i.e. ∀σ1 ∈ Σ1, σ
2 ∈ Σ2 the state σ = σ1 ◦ σ2 belongs to Σ.

• If (σ1, e1, τ1) ∈ Θ1, then the set of transitions {(σ1 ◦ σ2, e1, τ1 ◦ σ2),∀σ2 ∈ Σ2} belongs to Θ.

• If (σ2, e2, τ2) ∈ Θ2, then the set of transitions {(σ1 ◦ σ2, e2, σ1 ◦ τ2),∀σ1 ∈ Σ1} belongs to Θ.

Definition 2.11 (A path in a reachability graph). Let Γ = (Σ,Θ) be a reachability graph. A sequence
of events e1, . . . , en is a path in the reachability graph Γ if the transitions (σ1, e1σ2), (σ2, e2, σ3), . . . ,
(σn, en, σn+1) belong to Θ.

Definition 2.12 (Extension of a reachability graph). Let G = 〈V = S] F,E, T,A, ι〉 be a GTS and
let Γ = (Σ,Θ) its reachability graph. Let 〈V ∗, A∗, ι∗〉 be an assertion such that

• V ∩ V ∗ = ∅,

• A∗ is an assertion built over the variables from V ∪ V ∗.
Then the reachability graph Γ|<V ∗,A∗,ι∗> = (Σ∗,Θ), such that:
for each variable assignment σ : V → C ∈ Σ, the variable assignment σ∗ = σ|V ∪V ∗ belongs to Σ∗:

1. ∀v ∈ V σ∗(v) = σ(v)

2. σ∗ = Propagate(A∗, ι∗, σ∗),

is called the extension of the reachability graph Γ by 〈V ∗, A∗, ι∗〉

2.6 On the modeling of flow propagation

The ability to represent flows circulating through the system, as in Reliability Block Diagrams, is an
important property for formalisms dedicated to Safety Analyses. In a Guarded Transition System

G = 〈V = S] F,E, T,A, ι〉,

2.6. ON THE MODELING OF FLOW PROPAGATION 41

flows circulating through the system are represented by means of flow variables F and an assertion A.
Flow variables can be assigned only in the assertion (never in the action of a transition). An assertion
is an instruction: it expresses dependencies between flow and state variables. After each transition
firing, first the action of the transition is executed to update state variables S, then the assertion A is
executed to calculate flow variables F according to the modified values of state variables.

Assertions are very convenient to represent remote interactions between components because they
make it possible to create complex hierarchical models from simple component descriptions just by
plugging these descriptions together. In other words, assertions are the glue between the components.

The successive versions of AltaRica differ mainly by the way assertions are set and calculated.
Guarded Transition Systems introduce a fixpoint mechanism to calculate assertions. This fixpoint
mechanism makes it possible to handle looped models, i.e. models with flow variables that depend
instantaneously on one another (without the firing of any transition).

In this section, we formally define the notion of a looped model-based on the dependency relation of
variables in the instruction. Then, we explain why at least a fixpoint mechanism is needed to handle
looped models. Finally, we show that the fixpoint mechanism can be implemented in an efficient
way, i.e. (more or less) in linear time with the respect of the size of the assertion, thanks to the
ideas stemmed in theoretical computer science (Tarjan’s algorithm to compute strongly connected
components in graphs [103]) and in Artificial Intelligence (Unit Resolution [29]).

2.6.1 Dependency relation

Let us denote by var(Exp) variables used in the expression Exp, and by var(I) variables used in the
instruction I. Basically

• if I is an empty instruction ”skip”, then var(I) = ∅;

• if I is in the form ”v := E”, then var(I) = {v} ∪ var(E);

• if I is in the form ”if C then J”, then var(I) = var(C) ∪ var(J);

• if I is in the form ”I1; I2”, then var(I) = var(I1) ∪ var(I2).

Definition 2.13 (Immediate dependency of variables). Let v and w be two variables from V and let
I be an instruction built over the variables from V . We say that v depends immediately on w in I if
one of the following holds:

• I is in the form ”v := E” and w ∈ var(E);

• I is in the form ”if C then J”, where J is an instruction, and w ∈ var(C) or v depends
immediately on w in J ;

• I is in the form ”I1; I2” and v depends immediately on w either in I1 or in I2.

Definition 2.14 (Dependency of variables). Let v and w be two variables from V and let I be an
instruction built over the variables from V . We say that v depends on w in the instruction I, if there
is a variable u ∈ V such that v depends immediately on u in I and u depends on w in I.

The dependency relation of variables in an instruction I can be represented by a dependency graph.

Definition 2.15 (Dependency graph of an instruction). Let us consider an instruction I built over
variables from V . An oriented graph GD[I] = (VD, ED), where

• VD is a set of vertices, each vertex is labeled by a variable from var(I) ⊆ V ,

42 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

• ED is a set of edges, such that if u and w are variables from var(I), vu ∈ VD and vw ∈ VD are
the corresponding vertices of the graph, then if u depends immediately on w in I then the edge
euw = (u,w) is in ED,

is called a dependency graph of an instruction I.

Remarks:

• Let u and w be two variables from V , let I be an instruction built over variables from V and let
GD be a dependency graph of I. If u depends on w in I then there is a path from the vertex vu
to the vertex vw in the graph GD.

• Let I be an instruction built over variables from V and let GD[I] be its dependency graph. If
there are two variables u,w from V such that u depends on w in I and w depends on u in I, then
the graph GD[I] contains cycles. Moreover, the vertices vu and vw belong to the same strongly
connected component.

• Let A be an assertion, i.e. an instruction built over the variables from V = S]F and let GD[A]
be a dependency graph of A. If s is a state variable from S ⊆ V and vs the corresponding vertex,
then the vertex vs has no out-going edges.

Looped assertion

Definition 2.16 (Looped Instruction). Let I be an instruction built over variables from V . We say
that an instruction I is looped if it contains a variable that depends on itself in I:

∃v ∈ var(I)|v depends on itself in I

Example 2.10 (An irrigation system). Consider the irrigation system from Example 2.1 and its GTS,
given Figure 2.9. The dependency graph of the assertion is given Figure 2.11. Vertices labeled by
state variables are marked in gray. Vertices labeled by flow variables are marked in white. Note that
this graph contains cycles.

Figure 2.11: Dependency graph of the assertion of the Irrigation System

2.6. ON THE MODELING OF FLOW PROPAGATION 43

Data-Flow assertion

Definition 2.17 (Data-Flow Instruction). Let I be an instruction built over the variables from V . I
is said Data-Flow if no variable w ∈ var(I) depends on itself in I.

Remark: Let I be an instruction built over the variables from V , and let GD[I] be its dependency
graph. If I is a Data-Flow instruction, then GD[I] is a Directed Acyclic Graph (DAG). Topological
sort of the vertices in the dependency graph GD[I] determines the order in which instructions from I
should be evaluated.

In practice, this order is calculated during the compilation of the model and a reordering of blocks
of instructions is performed. Thanks to the reordering of blocks of instructions, each assignment is
executed only once. There is always a unique variable assignment satisfying a Data-Flow instruction.

Assume that n is the number of assignments in the assertion A which is Data-Flow. Then the
complexity of the execution of the assertion A is O(n), i.e. linear on the number of assignments.

Example 2.11 (A pumping system). Consider a pumping system depicted Figure 2.12. It is made
of a tank, two pumps connected in parallel and a reactor. The flow goes from the tank to the reactor
through the pumps. Pumps may fail in operation and tank may become empty. The GTS representing
such a pump is given Figure 2.3. The GTS representing a tank, a reactor and the hole pumping system
is given Figure 2.13.

Figure 2.12: A pumping system

The assertion of the flattened GTS of the Pumping system is as follows:

T.outFlow := if not T.isEmpty then 100 else 0.0;

P1.outFlow := if P1.state==WORKING then P1.inFlow else 0.0;

P2.outFlow := if P2.state==WORKING then P2.inFlow else 0.0;

P1.inFlow := T.outFlow;

P2.inFlow := T.outFlow;

R.inFlow := P1.outFlow + P2.outFlow;

This assertion is a Data-Flow assertion. Its dependency graph is given Figure 2.14. Note that it
is a Directed Acyclic Graph (DAG).

2.6.2 Handling looped models

Handling of looped systems requires to solve reachability problems, i.e. to determine whether a node
is accessible from another one in a graph. In his paper on Guarded Transition Systems [90], Antoine
Rauzy proposes to introduce the fixpoint mechanisms to calculate the assertion in order to handle
looped systems. One iterates to accumulate reachable states until no more states can be added, i.e. a

44 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

class Tank

Boolean isEmpty (init = FALSE);

Real outFlow (reset = 0.0);

event getEmpty;

transition
getEmpty: not isEmpty -> isEmpty := TRUE;

assertion
outflow := if not isEmpty then 100 else 0;

end
class Reactor

Real inFlow (reset = 0.0);

end
class PumpingSystem

Tank T;

Pump P1, P2;

Reactor R;

assertion
P1.inFlow := T.outFlow;

P2.inFlow := T.outFlow;

R.inFlow := P1.outFlow + P2.outFlow;

end

Figure 2.13: GTS representing the Pumping system

Figure 2.14: The Dependency graph of the assertion of the pumping system

fixpoint is reached. Not only the fixpoint semantics for the assertion provides an elegant solution to
complex modeling problems, but it can be implemented in an efficient way, i.e. (more or less) in linear
time with respect to the size of the assertion. That is what we show in the following subsection.

2.6.3 Algorithms to calculate assertions

The calculation of the fixpoint is performed as follows: first, one attempts to calculate (via the
assertion) a value for each and every flow variable, assuming that these variables have no value at the
beginning of the calculation; second, flow variables that remain free are assigned to their default value

2.6. ON THE MODELING OF FLOW PROPAGATION 45

and the assertion is used to check the consistency of the assignment.

In this section, we present different algorithms of fixpoint calculation.

Let A be an assertion, i.e. an instruction built over variables from V . Four types of instructions
are defined for GTS: an empty instruction, an assignment, a conditional assignment and a parallel
composition, also called a block of instructions.

It is possible to transform any block of instructions into a block containing only conditional assign-
ments in the form 〈v, C,E〉, where v is a flow variable, C is a Boolean expression built over variables
from V (i.e a condition), and E is an expression built over variables from V (i.e. a right hand side of
an assignment). In case of a simple assignment, we consider that C = ∅. From now, the instruction
of the form 〈v, C,E〉 is called an assignment.

In the following, we assume that the assertion A has been transformed into a block of assignments
A[i], i = 1..n. Let n be the number of assignments in the assertion A.

Simple algorithm

Let D be a set of flow variables assigned in A: D ⊆ F . Let m be the number of variables in D, m ≤ n.
Let τ be a variable assignment obtained after the execution of the action of a transition. Let ι be the
default variable assignment. Then the assertion A is calculated as follows.

ExecuteAssertion(A, ι, τ)
D ← ∅
GetAssignedVariables(A, D);

ComputeValues(D, A, τ)
ResetValues(D, ι, τ);
VerifyValues(D, A, τ);

GetAssignedVariables(A, D)

forall A[i] = 〈v, C,E〉, i = 1..n do

D ← D ∪ {v}
done

ComputeValues(D, A, τ)
while D 6= ∅ do

int x = size(D);

forall A[i] = 〈v, C,E〉, i = 1..n do

ExecuteAssignment(〈v, C,E〉, D, τ);
done

if x==size(D) then break;

done

ExecuteAssignment(〈v, C,E〉, D, τ)
if C = ∅ or τ(C) = TRUE then

if τ(E) 6=? then

if τ(v) =? then

1. τ(v)← τ(E)
2. D ← D \ {v}

else

if τ(v) 6= τ(E) then ReportError; break;

46 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

ResetValues(D, ι, τ)
∀v ∈ D τ(v)← ι(v)

VerifyValues(D, A, τ)
∀v ∈ D, ∀〈v, C,E〉 ∈ A
if C = ∅ or τ(C) = TRUE then

if τ(v) 6= τ(E) then ReportError; break;

In the worst case the complexity of the algorithm given above is O(nm), where n is the number
of assignments and m is the number of assigned flow variables, n ≥ m.

Efficient algorithm

In this section, we propose a more efficient algorithm to calculate assertions. It relies on a unit
propagation algorithm à la Dowling and Gallier [29].

Let D be a set of flow variables assigned in A: D ⊆ F . Let τ be a variable assignment obtained
after the execution of the action of a transition. Let ι be the default variable assignment.

Before starting the calculation of the assertion A, let define a hash table H that associates with
each variable v ∈ var(A) ⊆ V a set of assignments {ai = 〈w,C,E〉 ∈ A|v ∈ var(C) ∨ v ∈ var(E)}.
Let U be a set of variables evaluated in τ . At the beginning, U contains state variables used in A.
U = {s ∈ S|s ∈ var(A)}.

ExecuteAssertion(A, H, U, ι, τ)
D ← ∅, W ← ∅
GetAssignedVariables(A, D);

ComputeValues(W, U, H, τ);
D ← D \W
ResetValues(D, ι, τ);
VerifyValues(D, A, τ);

ComputeValues(W, U, H, τ)
while U 6= ∅ do

Let w ∈ U
U ← U \ {w}
forall H[w] = 〈v, C,E〉 do

ExecuteAssignment(〈v, C,E〉, W, U, τ);
done

done

ExecuteAssignment(〈v, C,E〉, W, U, τ)
if C = ∅ or τ(C) = TRUE then

if τ(E) 6=? then

if τ(v) =? then

1. τ(v)← τ(E)
2. U ← U ∪ {v}
3. W ←W ∪ {v}

else

if τ(v) 6= τ(E) then ReportError; break;

2.6. ON THE MODELING OF FLOW PROPAGATION 47

Let k be the number of variables used in conditions C and expressions E of assignments of the
assertion A. The complexity of the algorithm presented above is O(k), i.e. linear on the number of
variables used in the conditions and expressions of assignments of A.

Optimized assertion

The dependency graph of the assertion A, GD[A], is used to determine whether the assertion is a Data-
Flow instruction. If GD[A] is a Directed Acyclic Graph (DAG), then A is a Data-Flow instruction.
The topological sort of the graph determines the order of the execution of the assignments in A. Only
one pass is needed to calculate all variables assigned in A.

If GD[A] has cycles, its graph of strongly connected components GSCCD should be considered. GSCCD

enables to find groups of variables that should be calculated together. Indeed, variables that label
vertices belonging to the same strongly connected component should be calculated together. The
assertion A is decomposed into blocks of assignments A = A1;A2; . . . ;Ar, where r is the number of
strongly connected components and Aj is a block of assignments 〈v, C,E〉 such that the variable v
belongs to the strongly connected component j. The graph of strongly connected components GSCCD

is a Directed Acyclic Graph (DAG). The topological sort of this graph determines the best order of
execution of Aj .

The optimization algorithm works as follows:

1. BuildDependencyGraph(A, GD);

2. BuildStronglyConnectedComponents(GD, GSCCD);
Note that Tarjan’s algorithm to compute strongly connected components of the graph [103] is
linear on the number vertices in the graph (which is equal to the number of variables in var(A)).

3. DoTopologicalSort(GSCCD , A′);

The result is the instruction A∗ decomposed into blocks of assignments A′ = A1;A2; . . . ;Ar with
blocks sorted in the best execution order.

A′ is the optimized assertion. It is calculated as follows:

ComputeAssertion(A′ = A1; . . . ;Ar, ι, τ)
forall Aj , j = 1..r do

ExecuteAssertion(Aj, ι, τ);
done

Thanks to optimization techniques based on Tarjan’s algorithm to calculate strongly connected
components of a graph, and thanks to the efficient algorithm to calculate fixpoints based on unit
propagation à la Dowling and Gallier [29], it is possible to implement the calculation of fixpoints
efficiently: the algorithm is linear on the size of the assertion (more precisely on the number of
variables used in condition and right members of assignments).

2.6.4 Different approaches to interpret assertions

Different variants of AltaRica modeling language have been developed since its creation in nineties.
Besides syntactic distinctions, different approaches have been proposed to interpret assertions (i.e. to
propagate flows):

1. Solving constraints (Constraint automata) in the first version of AltaRica (also called AltaRica
LaBRI);

48 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

2. Propagation (Mode automata) in AltaRica Data-Flow;

3. Fix point (Guarded Transition Systems) in AltaRica 3.0.

The goal of this section is to compare these different mechanisms of flow propagation and to discuss
their advantages and drawbacks.

Constraint automata

The semantics of the first version of AltaRica modeling language (also called AltaRica LaBRI), devel-
oped at the Computer Science Laboratory of University of Bordeaux (LaBRI) in nineties, is expressed
in terms of Constraint automata [80, 7]. Constraint automaton is a special kind of a finite state ma-
chine, where assertions are interpreted as constraints, i.e. after each transition firing, the flow variables
are updated by solving constraints. It is a very powerful mechanism. Particularly, it is possible to
represent bidirectional flows.

However, the experience has shown that the assessment algorithms are too resource consuming for
industrial scale applications. For instance, it would be just impossible to call a constraint solver at
each step of a stochastic simulation. Also, if the system of constraints has several solutions or does
not have any solution at all, it can only be detected during the execution of the model, i.e. at run
time.

Mode automata

To be able to handle industrial scale models, a new Data-Flow version of AltaRica has been pro-
posed [88, 14]. The formal semantics of AltaRica Data-Flow is based on the notion of Mode au-
tomata [88] and can also be expressed in terms of Data-Flow Guarded Transition Systems [92].

A strong constraint is put on the assertion: it should be Data-Flow (see Definition 2.17). If the
instruction is Data-Flow, it has a unique solution which is calculated in a very efficient way, only one
pass is needed. The fact that an assertion does not satisfy the Data-Flow condition can be detected
during the compilation of the model. Efficient assessment tools have been developed for AltaRica
Data-Flow, such as compilers to Fault Trees and Markov chains, generator of critical sequences of
events, model-checkers, stochastic and stepwise simulators.

However the Data-Flow condition put on the assertion prevents from modeling systems with instant
loops, such as for example electrical or network systems. It is also difficult to represent acausal
components, i.e. components for which the input and output flows are decided at run time (see
example of the Irrigation system in Section 2.2).

Guarded Transition Systems

Guarded Transitions Systems (GTS) extend Mode automata: they remove the Data-Flow constraint
for the assertion. Thereby GTS enable to represent systems with instant loops. The example of the
Irrigation system, presented in Section 2.2, shows how acausal components can be represented. The
direction of the flow is determined at run time for it depends on the global state of the system. Ef-
ficient fix point calculation algorithm is used in order to calculate flows: only one pass is needed for
the propagation. All assessment algorithms developed for AltaRica Data-Flow can be extended for
Guarded Transition Systems without significant loss of efficiency. Modeling errors (e.g. nonexistence
of the fix point) are detected at run time.

Note that neither constraint resolution nor flow propagation make it possible to handle systems with
instant loops. As seen in Section 2.6.2, at least a fixpoint mechanism to execute assertions is required.

Comparison of the three mechanisms of assertion calculation is summarized in Table 2.3.

2.7. TIMED/STOCHASTIC GUARDED TRANSITION SYSTEMS 49

Table 2.3: Comparison of flow propagation mechanisms

Variant AltaRica LaBRI AltaRica Data-Flow AltaRica 3.0

Mathematical model Constraint Automata Mode Automata GTS

Mechanism to update
flows

Constraint solving Propagation Fix point

Algorithm efficiency Low High* High**

Looped systems No No Yes

Acausality Yes No Yes

Error detection Run time Compilation Run time

* - linear on the number of assignments, ** - linear on the number of variables used in the expressions
of assignments

2.7 Timed/Stochastic Guarded Transition Systems

A probabilistic timed structure can be put on the top of Guarded Transition Systems.

2.7.1 Timed Guarded Transition Systems

Definition 2.18 (Timed Guarded Transition System). A Timed Guarded Transition System is a
tuple 〈V,E, T,A, ι, delay〉, where

• 〈V,E, T,A, ι〉 is a Guarded Transition System,

• delay : E → R+ is a function, that associates to each event a non-negative real number.

The state of a Timed Guarded Transition System is a couple (σ, d) ∈ Σ×D, where σ is a variable
assignment as defined previously and d : T → R+ is a delay assignment (i.e. a function that associated
for each transition tr ∈ T a delay d(tr)), Σ =

∏
v∈V

dom(v) is a set of all variable assignments, called

states, and D = R+
#T is a set of delay assignments. If d(tr) = 0 then the transition tr should be

fired.

The semantics of a Timed Guarded Transition System is defined in terms of Timed Transition
Systems, including transitions labeled by the events from E and timed transitions labeled by real
delays.

Definition 2.19 (Timed Transition System). A Timed Transition System S is a quadruple (S, s0,→
, E), where S is a set of states, E is a set of events, s0 ∈ S is an initial state, →⊆ S × (E ∪ R+)× S
is a transition relation.

Definition 2.20 (A run). A run ρ of a Timed Transition System S is a sequence of transitions

ρ = s0
l0→ s1 . . . sn−1

ln−1→ sn, where ∀ 0 ≤ i ≤ n− 1, si
li→ si+1. A state σ ∈ Σ is reachable if there is a

run from σ0 to σ.

Definition 2.21 (Semantics of Timed Guarded Transition Systems). Given a Timed Guarded Tran-
sition System TGTS = 〈V,E, T,A, ι, delay〉, the semantics of TGTS is a Timed Transition System
STGTS = (S, s0,→, E), such that:

• S = Σ×D,

50 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

• s0 = (σ0, d0), where σ0 is the initial state of the Guarded Transition System 〈V,E, T,A, ι〉,
calculated as follows:

σ0 = Propagate(A, ι, ι),

and for each transition tr = 〈e,G, P 〉 ∈ T, e ∈ E, its initial delay is calculated as follows:

d0(tr) =





delay(e), if σ0(G) = TRUE,

+∞, otherwise.

• →⊆ S × (E ∪ R+)× S describes two types of transitions:

– transitions labeled by events: (σi, di)
e→ (σi+1, di+1) iff

1. ∃ tr = 〈e,G, P 〉 ∈ T, e ∈ E such that di(tr) = 0,

2. σi+1 = Fire(P,A, ι, σi),

3. for each transition tr = 〈e,G, P 〉 ∈ T, e ∈ E, its delay is calculated according to the
new state σi+1

di+1(tr) =





delay(e), if σi+1(G) = TRUE,

+∞, otherwise.

– timed transitions: (σi, di)
δ→ (σi, di+1) iff

1. δ = min
t̄r∈T

(di(t̄r)),

2. for each transition tr ∈ T

di+1(tr) =





di(tr)− δ, if σi(G) = TRUE,

+∞, otherwise.

Informally speaking, the execution of a Timed Guarded Transition System is as follows: the system
starts from the initial configuration or the initial state, where the initial system state σ0 and the initial
delays d0 are calculated as defined previously, then two types of transitions are possible:

• If ∃ tr = 〈e,G, P 〉 ∈ T, e ∈ E, such that its delay is equal to 0, then this transition is fired (new
state and new delays are calculated).

• If there is no transition with a delay equal to 0, then the minimal delay δ is chosen and the time
is advanced according to this value (the system state does not change but the delays decrease
by δ).

A run of a Timed Transition System can be also seen as a timed word, i.e. a set of couples (e, t), where
e ∈ E is an event and t ∈ R+ is the date, when the event e occurred. A run can be also represented

as a sequence (σ0, d0, t0)
e0→ (σ1, d1, t1) . . . (σn−1, dn−1, tn−1)

en−1→ (σn, dn, tn), where ti ∈ R+ represents
the date when the event ei occurs and the transition labeled by this event is fired. t0 = 0, ti+1 = ti+δ.
The step (σi, di, ti)

ei→ (σi+1, di+1, ti+1) corresponds to the advancement of time and to the firing of
the transition labeled by the event e.

2.7.2 Stochastic Guarded Transition Systems

The timed interpretation of GTS does not specify how delays are calculated. Therefore, it encompasses
the case where delays are stochastic. Let define an oracle o : N → [0; 1] ⊂ R, an infinite sequence of
real numbers comprised between 0 and 1 (included). The only operation available on an oracle is to
consume its first element. This operation returns the first element and the remaining of the sequence
(which is itself an oracle).

2.7. TIMED/STOCHASTIC GUARDED TRANSITION SYSTEMS 51

Definition 2.22 (Stochastic Guarded Transition System). A Stochastic Guarded Transition System
is a tuple 〈V,E, T,A, ι, delay, expectation〉, where

• 〈V,E, T,A, ι〉 is a GTS;

• delay is a function from events and oracles to non-negative real numbers delay : E×O → T ⊆ R+;

• expectation is a function from events to positive real numbers expectation : E → R+.

For the sake of simplicity, we made delay depend only on the event and the oracle. As previously,
it is however possible that delay depends on the current state and the elapsed time since the beginning
of the mission.
The semantics of Stochastic GTS is essentially similar to the semantics of Timed GTS, with two ex-
ceptions.

• The calculation of delays di(t), t ∈ T depends on an oracle o.

• When several transitions are scheduled to be fired at the same date, i.e. ∃t1, t2, . . . , tk such that
dn(t1) = 0, dn(t2) = 0, . . . , dn(tk) = 0, one is picked at random by using the oracle and according
to their expectations. The probability p(ek : Gk → Pk) to fire the transition ek : Gk → Pk, is
defined as follows.

p(ek : Gk → Pk) =
expectation(ek)∑

ti=〈ei,Gi,Pi〉:dn(ti)=0

expectation(ei)
(2.3)

Example 2.12 (A spare pump). As an illustration, consider that in the pumping system from Ex-
ample 2.11, there is a main pump and a spare one. The spare pump is normally in standby. It is
attempted to start when it gets demanded, i.e. when the main pump fails. It is stopped as soon as
the main pump is working again. The model for such a pump is pictured Figure 2.15.

Figure 2.15: Stochastic GTS of a spare pump

On the GTS pictured Figure 2.15, transitions stop, start and failureOnDemand are deterministic
and instantaneous: they are associated with a delay 0. They are represented by dashed lines. Tran-
sitions failure and repair are timed and stochastic. They obey typically exponential distributions
with a failure rate λ and a repair rate µ. They are represented by plain lines. Finally, when the
pump is attempted to start, it fails on demand with a probability γ, and is correctly started with a
probability 1− γ.

The stochastic GTS representing a spare pump is given Figure 2.16. The component is initially

52 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

domain StandbyComponentState { STANDBY, WORKING, FAILED }

class SparePump

StandbyComponentState s (init = STANDBY);

Boolean demanded(reset = FALSE);

Real outFlow, inFlow(reset = 0.0);

parameter Real lambda = 1.0e-5;

parameter Real mu = 0.01;

parameter Real gamma = 0.02;

event failure (delay = exponential(lambda));
event repair (delay = exponential(mu));
event failureOnDemand (delay = 0, expectation = gamma);

event start (delay = 0, expectation = 1-gamma);

event stop (delay = 0);

transition
failure: s == WORKING -> s := FAILED;

repair: s == FAILED -> s := STANDBY;

start: s == STANDBY and demanded -> s := WORKING;

failureOnDemand: s == STANDBY and demanded -> s := FAILED;

stop: s == WORKING and not demanded -> s := STANDBY;

assertion
outFlow := if s == WORKING then inFlow else 0.0;

end

Figure 2.16: Stochastic GTS code of a spare pump

in standby. When it is demanded, i.e. when the flow demanded is turned to true, the component is
attempted to start. This operation takes no time (the delay is null) but may fail with a probability
given by the parameter gamma or be successful with a probability (1-gamma).

2.8 Comparison with classical formalisms for Safety Analyses

The prerequisites of a high level modeling language for Safety Analyses have been discussed in chap-
ter 1. Within our original approach, they imply some expected properties for the underlying formal-
ism. Here we review these properties and compare GTS with the classical formalisms (Booleans and
States/Transitions) introduced in chapter 1.

Event based

The goal of Safety and Reliability studies is to determine the most probable failure scenarios,
i.e. sequences of events leading the system from its nominal state to a failure state (an incident or
an accident). So, the formalism should make it possible to describe systems in terms of states and
transitions labeled with events. It should be possible to associate probability distributions to events.
Events can be timed, or stochastic or immediate.

As mentioned in chapter 1, Boolean formalisms are naturally event-based. However, events are
assumed to be completely independent, and only timed events (mainly failures) are considered.

Markov chains (MC) and Generalized Stochastic Petri nets (GSPN) are also event-based for-
malisms. Markov chains manipulate only exponentially distributed and immediate events. Generalized

2.8. COMPARISON WITH CLASSICAL FORMALISMS FOR SAFETY ANALYSES 53

Stochastic Petri nets deal with all the probability distributions.

Guarded Transition Systems (GTS) are also event based. Events can be immediate or timed.
Different probability distributions can be associated with events in order to create Timed/Stochastic
models (see section 2.7).

Implicit representation of a state space

For any reasonable size system, the number of reachable states and failure scenarios are just
astronomical. It is impossible to represent all the states the system may reach. So, states must be
given in an implicit way to avoid the exponential blow-up of the model and to allow approximations
consisting in considering only the most probable states.

When modeling with Markov chains (MC), one needs to represent the state graph explicitly.
However, Generalized Stochastic Petri nets (GSPN) give the state space in an implicit way.

As seen in section 2.4, GTS represent the state space of the system in an implicit way.

Composition

Systems are modeled recursively by assembling sub-systems and components. The formalism
should be compositional in order to make it possible to describe systems as hierarchies of components
and to assemble models of components “in a Lego way”.

Boolean formalisms are naturally hierarchical (see e.g. Figure 1.4 for Reliability Block Diagrams
(RBD)). However, classical States/Transitions formalisms, Markov chains and Generalized Stochastic
Petri nets, do not have this property.

As seen in section 2.4, GTS can be assembled into hierarchies of reusable components by means
of three operations: the free product, the connection and the synchronization.

Remote interactions

Fault Trees or Reliability Block Diagrams make it possible to describe instant remote interactions
between components of the system under study. It should be possible to describe easily remote
interactions between components, i.e. flows of matter or information circulating through the system.

Markov chains and Generalized Stochastic Petri nets do not allow to easily represent remote
interactions.

Thanks to flow variables and assertions (see section 2.6), GTS can easily represent the propaga-
tion of flows. Synchronizations can also be used to represent remote interactions between components.

Efficiency of the assessment algorithms

Efficient assessment algorithms should be available to assess models.

As seen in chapter 1, very efficient assessment algorithms are available for Boolean formalisms.
There are tools, able to deal with Markov chains having up to one million states. Generalized Stochastic
Petri nets can be efficiently assessed by a stochastic simulation.

All the assessment algorithms, developed for AltaRica Data-Flow (see section 1.4), can be extended
to GTS without loosing their efficiency:

• GTS can be compiled into Fault Trees and critical sequences of events. It is the subject of the
fourth chapter of this thesis.

• GTS can be compiled into Markov chains [21].

• GTS can be assessed by a stochastic simulation [9], etc.

54 CHAPTER 2. GUARDED TRANSITION SYSTEMS (GTS)

GTS are a States/Transitions formalism that generalizes Reliability Block Diagrams (RBD) and
Markov chains (MC). GTS have all the good properties of Boolean formalisms. As seen in section 2.6,
thanks to the fixpoint mechanism to calculate assertions, GTS make it possible to represent systems
with acausal components and to handle looped systems, such as electrical systems or communication
networks. Comparison between GTS and classical formalisms for Safety Analyses is summarized in
Table 2.4.

Table 2.4: Comparison of the formalisms for Safety Analysis

FT RBD MC GSPN GTS

Event-centric Yes Yes Yes Yes Yes

States/Transitions No No Yes Yes Yes

Implicit representation of state space Yes Yes No Yes Yes

Hierarchical representation Yes Yes No No Yes

Remote interactions Yes Yes No No Yes

Efficient assessment tools Yes Yes Yes Yes Yes

Summary

In this chapter we presented Guarded Transition Systems (GTS) – a States/Transitions formalism
dedicated to Safety Analyses. GTS have all the good modeling properties, as summarized in Table 2.4.
They have a versatile synchronization mechanism, which enables to easily represent common cause
failures, shared resources, etc. In addition, they make it possible to represent acausal components and
to handle looped systems.

GTS generalize classical formalisms for Safety Analysis, such as Markov chains and Reliability
Block Diagrams. They can be seen as a pivot formalism for Safety studies. Other Safety models can
be compiled into Guarded Transition Systems in order to take advantage from the assessment tools.

GTS are the underlying mathematical formalism of AltaRica 3.0. The next chapter is dedicated
to the structural constructs of AltaRica 3.0.

Chapter 3

System Structure Modeling Language
(S2ML)

Models of large, multi-scale systems are necessarily large and complex. Therefore, they need to be well
structured to ensure their maintainability through the life cycle of systems as well as the capitalization
of knowledge from project to project. Thus, high level modeling languages should not only embed the
suitable mathematical concepts, but also provide powerful constructs to structure models.

This chapter introduces structural constructs of AltaRica 3.0. To a large extent, these structural
constructs are independent from the underlying mathematical formalism of AltaRica 3.0. They are
assembled into System Structure Modeling Language (S2ML).

Many system engineering modeling languages (e.g. Modelica [38]) relies on the object-oriented
paradigm to structure models. AltaRica 3.0 enriches it with some prototype-oriented constructs (for
a detailed presentation of prototype-oriented languages see e.g. [73]) which correspond better to the
abstraction level of Safety and Reliability models.

Any hierarchical AltaRica 3.0 model can be transformed into an equivalent flat model (i.e. a model
without any hierarchy). This operation is called flattening.

This chapter is organized as follows. Section 3.1 presents the motivations for integrating new
structural constructs into AltaRica 3.0. Section 3.2 summarizes some differences between the object-
oriented and the prototype-oriented paradigms. Section 3.3 describes the structural constructs of the
language. Section 3.4 is dedicated to structural operations which make it possible to create hierarchical
models. Section 3.5 defines flattening rules. Section 3.6 discusses several important aspects of modeling
and lists some still open questions.

3.1 Motivations

Different paradigms to structure models are used in programming and high level modeling languages.
In functional languages the components are represented by functions with inputs and outputs; outputs
of functions depend only on their inputs and not on the program state. This principle is implemented
in Lucid Synchrone [24] – a modeling language for the implementation of reactive systems.

In object-oriented programming languages, components of systems are represented by classes.
Classes are stored in libraries and can be reused by instantiation or by extension [3]. In order to create
hierarchical models, a class must embed instances of other classes. Modelica [37], a high level modeling
language dedicated to dynamic behavior modeling and simulation of systems, and FIGARO [15], a
modeling language for dependability studies developed by EDF R&D, adopt this paradigm to structure
models. Previous versions of AltaRica modeling language (AltaRica LaBRI [80, 7] and AltaRica
Data-Flow [88, 14]) use the paradigm of structured programming to organize models into hierarchies.
Components of systems are represented by classes, called nodes, that can be stored in libraries. Nodes

55

56 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

can be reused by instantiation. A node embeds instances of other nodes in order to create hierarchical
models.

However, experience shows that the object-oriented paradigm is not really adapted to structure
safety models. First, object-orientation implies that each hierarchical level of the model should be
an instance of a class. But in Safety Analyses, due to the abstraction level of models, most of the
instances are unique. Consequently the creation of a class stored in a library for each hierarchical level
is not really justified. To illustrate this point let’s consider the following power supply system.

Example 3.1 (A Power Supply system). Figure 3.1 depicts a power supply system, adopted from
[16]. The system is composed of two redundant supply systems:

• a Primary Power Supply system, and

• a Backup Power Supply system,

to avoid the total system failure. The Primary Power Supply system is composed of two redundant
supply lines. In the normal mode, the energy is provided via the first supply line: from the grid GR
via the first upper circuit breaker (CBU1), the first transformer (TR1) and the first down circuit
breaker (CBD1). In case of a failure, the circuit breakers CBU2 and CBD2 are attempted to close
and the energy is provided via the second supply line. If the Primary Power Supply system is failed
(when both lines fail to provide the power to the Busbar), a Backup Power Supply system is used.
The Backup Power Supply system is made of a diesel generator DG and a circuit breaker CB3. All
components of the Power Supply system can fail. An undesirable event occurs if the system fails to
provide the power to the Busbar.

Figure 3.1: Power Supply System

According to the object-oriented paradigm,

• Each type of component is represented by a class (e.g. classes ”CircuitBreaker”, ”Transformer”,
”Grid” and ”DieselGenerator” model respectively circuit breakers, transformers, grids and diesel
generators).

• CBU1, CBD1, CBU2, CBD2 and CB3 are instances of the class ”CircuitBreaker”, TR1 and
TR2 are instances of the class ”Transformer”, GR is an instance of the class ”Grid” and DG is
an instance of the class ”DieselGenerator”.

3.1. MOTIVATIONS 57

• To create the hierarchical levels, two additional classes should be created: ”PrimaryPowerSup-
plySystem” and ”BackupPowerSupplySystem”. The former embeds the instances CBU1, CBD1,
CBU2, CBD2, TR1, TR2 and GR. The latter embeds the instances CB3 and DG.

• The model of the whole system embeds an instance of the class ”PrimaryPowerSupplySystem”
and an instance of the class ”BackupPowerSupplySystem”.

The model is given in Figure 3.2.

class PrimaryPowerSupplySystem

Grid GR;

CircuitBreaker CBU1, CBU2, CBD1, CBD2;

Transformer TR1, TR2;

end

class BackupPowerSupplySystem

DieselGenerator DG;

CircuitBreaker CB3;

end

class PowerSupplySystem

PrimaryPowerSupplySystem primarySystem;

BackupPowerSupplySystem backupSystem;

end

Figure 3.2: Power Supply System model according to the object-oriented paradigm

Unlike the classes ”CircuitBreaker”, ”Transformer”, ”Grid” and ”DieselGenerator”, created to
represent individual components and having several instances (classes ”Grid” and ”DieselGenerator”
are instantiated only once but we can imagine other power supply systems, where these models can be
reused), the classes ”PrimaryPowerSupplySystem” and ”BackupPowerSupplySystem”, used to create
the hierarchical levels, have unique instances.

In addition, according to the object-oriented paradigm each class instance (i.e. each component,
each sub-system) should be contained only in one class instance.

For example, the Primary Power Supply system can be broken down into two sub-systems: Line1
and Line2 (see Figure 3.3). Line1 embeds components GR, CBU1, TR1 and CBD1. Line2 embeds
components GR, CBU2, TR2 and CBD2. The grid GR is shared by the sub-systems Line1 and Line2.
The instance ”GR” cannot belong to the instances ”Line1” and ”Line2” at the same time, so, this
decomposition is not in agreement with the object-oriented paradigm.

In other words, according to the object-oriented paradigm, models can only be structured in trees,
i.e. each node of the tree can have only one parent. If we consider only the physical architecture of
the system, the object-oriented paradigm to structure models can be sufficient. But if we also want
to describe the functional architecture, there are difficult problems to overcome.

Safety studies take into account both physical and functional aspects of a system. In practice, the
top event of a Fault Tree is almost always functional, e.g. ”loss of the ability to provide the power to
the Busbar” in our example. The basic events of the Fault Tree, however, are almost always failures of
physical components. A natural consequence of this association is that the failure of one component
can impact different functions. In fact, Fault Trees are not structured in trees (contrary to what their
name suggests). They are Directed Acyclic Graphs, because in a Fault Tree a basic event or a gate
can have multiple parents. See, for example, Figure 3.4 representing the Fault Tree corresponding to
the Primary Power Supply system, where the basic event ”GR failed” has two parents: gates ”Line1

58 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

Figure 3.3: Power Supply System: break down structure

failed ” and ”Line2 failed”. As a conclusion, the object-oriented paradigm is not adapted to represent
Fault Trees – the most commonly used formalism in Safety Analysis.

Figure 3.4: Primary Power Supply System: Fault Tree view

In the area of system architecture, this issue was discussed through the concept of functional chain
(see e.g. [105]). The idea is that the system architecture (functional and physical) is never given
globally, but via the functional chains or via the components involved in the implementation of the
tasks of the system. These functional chains may not only share components, but they do not generally
overlap the physical decomposition of the system.

The discussed problems do not appear in modeling languages for physical simulation, such as
Matlab / Simulink or Modelica, precisely because they are focused on the physical architecture of the
system under study and do not consider its functional aspects.

3.2 Object-oriented paradigm vs. prototype-oriented paradigm

Choosing a paradigm to structure models is closely related to the method used to construct models.
Indeed, at least implicitly, every modeling formalism relies on and defines such a method. We can
classify the methods in two large families:

3.2. OBJECT-ORIENTED PARADIGM VS. PROTOTYPE-ORIENTED PARADIGM 59

”Top-down” approach: The model is built via a top-down system analysis. Amongst the for-
malisms supporting the ”top-down” approach we can typically found SysML [36], BPMN [108],
StateCharts [48], but also Fault Trees, Reliability Block Diagrams and Generalized Stochastic
Petri nets [65].

”Bottom-up” approach: The model is constructed by assembling components (possibly grouped
into libraries of ”on-the-shelf” components). Amongst the formalisms supporting the ”bottom-
up” approach we can found Modelica [37] and Lustre [47].

This distinction goes beyond the issues of modeling. For example, the same idea can be found in
Hatchuel C-K theory [49, 50] – a unified design theory. The central idea of this theory is the distinction
between two spaces:

The K-space: the space of knowledge, that represents the stabilized knowledge, e.g. libraries of
reusable components.

The C-space: the space of concepts, that regroups knowledge under development, i.e. the ”new
ideas”.

The process of design is defined as a double expansion of the C and K spaces through the iterative
exchange between them: the existing knowledge becomes the initial concept, then the concept is
explored, new knowledge is added to the K-space, the knowledge from the K-space is then reused
in the C-space to create new concepts, which in turn become new knowledge and are added to the
K-space, etc.

In the domain of model design, the K-space can be seen as the space of stabilized knowledge,
i.e libraries of ”on-the-shelf” components, whereas the C-space is the ”sandbox”, the space where
the model is created. The components from the libraries are reused in order to create new models
(prototypes). In the ”sandbox” some components are unique, some others come from the libraries.
When a model is finalized, it is added to the library and can be reused for further modeling. This
process is illustrated in Figure 3.5.

Figure 3.5: C-K theory applied to model design

In the domain of system engineering, the distinction between methods may be related to the level
of abstraction at which one considers the system:

• the ”top-down” methods are preferred when the system is analyzed globally,

• while the ”bottom-up” methods are preferred at a lower level of abstraction.

60 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

These methods correspond to different mechanisms of models structuring. The ”bottom-up” meth-
ods correspond to the object-oriented paradigm, while the ”top-down” methods – to the prototype-
oriented paradigm.

As mentioned before, in object-oriented languages, models are reused by instantiation of already
defined classes [3]. In prototype-based programming languages [73] models are reused by cloning
and modifying a model designed for a previous project. Examples of prototype-based programming
languages are the programming language SELF [73] or, more recently, Javascript.

Differences between object-oriented and prototype-oriented paradigms to structure models are
summarized in Table 3.1.

Paradigm Object-oriented Prototype-oriented

Concepts class & object prototype

Reuse principle instantiation and inheritance cloning and modifying

Corresponding sys-
tem analysis method

”Bottom-up” ”Top-down”

Abstraction level Low level analysis Global analysis

Corresponding type
of models reuse

Libraries of classes Modeling patterns

C-K theory K-space C-space

stabilized knowledge knowledge under development

Examples Modelica, Figaro SELF, Javascript

Table 3.1: Object-oriented paradigm vs. prototype-oriented paradigm

Safety models (and therefore AltaRica models) are ambivalent. Because they consider systems
with a high level of abstraction, they naturally emerge from the prototype-oriented paradigm; but
because they reuse components (e.g. to take into account the redundancy), they also emerge from the
object-oriented paradigm.

3.3 Structural constructs

AltaRica 3.0 provides constructs to build hierarchical models, i.e. to organize models as hierarchies
of nested components. There are two concepts to structure models: block and class.

3.3.1 Blocks

Definition 3.1 (Block). Block is a structural construct that represents a prototype, i.e. a component
having a unique occurrence in the model.

Let’s consider the Primary Power Supply system from the Example 3.1. Figure 3.6 shows the
structural part of AltaRica 3.0 code, which represents its hierarchical structure, depicted in Figure 3.3.

This (partial) model contains a hierarchy of nested blocks. Each block is unique. The behaviour
of each component should be defined individually.

Blocks are similar to prototypes from prototype-based programming languages. They are used to
represent components having unique occurrences in the model. Since the model of the whole system
is unique, it is always represented by a block.

3.3. STRUCTURAL CONSTRUCTS 61

block PrimaryPowerSupplySystem

block Grid ...end
block Line1

block CBU1 ...end
block TR1 ...end
block CBD1 ...end

end
block Line2

block CBU2 ...end
block TR2 ...end
block CBD2 ...end

end
end

Figure 3.6: Illustration of block usage

However, if two transformers are identical, which is probably the case, duplicate models is both
tedious and error prone (copy and paste, update, . . .). The idea is to define a generic component
”Transformer” that can be then instantiated several times in the model. The definition of such a
generic component is achieved via a class.

3.3.2 Classes

Definition 3.2 (Class). Class is a structural construct that defines a generic component. It is used
in the model via instantiation, i.e. cloning of a generic component.

The behavior of the transformer can be defined by a Guarded Transition System (see chapter 2),
depicted in Figure 3.7. The corresponding AltaRica 3.0 code is given Figure 3.8.

Figure 3.7: The behavior of the transformer

Instead of using blocks to define the behavior of individual components, classes are used to represent
the transformer, the circuit breakers and the grid. They are then instantiated in the model as shown
by the code given Figure 3.9.

Definition 3.3 (Object). An instance of a class is called an object.

AltaRica 3.0 classes are similar to classes in object-oriented programming languages. They are
used to represent stabilized knowledge, the so-called ”on-the-shelf” components. They are stored in
the libraries and can be reused by instantiation.

62 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

domain RepairableComponentState { WORKING, FAILED }

class Transformer

RepairableComponentState s(init = WORKING);

Boolean inFlow, outFlow(reset = FALSE);

event failure;

event repair;

transition
failure: s==WORKING -> s := FAILED;

repair: s==FAILED -> s := WORKING;

assertion
outFlow := (s==WORKING) and inFlow;

end

Figure 3.8: The AltaRica 3.0 code of the transformer

block PrimaryPowerSupplySystem

Grid GR;

block Line1

CircuitBreaker CBU1, CBD1;

Transformer TR1;

end
block Line2

CircuitBreaker CBU2, CBD2;

Transformer TR2;

end
end

Figure 3.9: Illustration of class usage

3.3.3 Using Classes or Blocks?

Some modeling languages like Modelica and the previous versions of AltaRica implement only the
concept of class. Others, such as SysML, only have the notion of block. AltaRica 3.0 introduces both.

In safety models a lot of components are unique. In our example the ”PrimaryPowerSupply”
system, the ”BackupPowerSupply” system, and also the lines inside the ”PrimaryPowerSupply” system
have unique occurrences in the model. In fact, they are more organizational or functional entities than
physical components. Even if formally it is possible to represent them by classes, it is however better
to distinguish them from generic components. Thus, it is preferred to model them by blocks.

AltaRica 3.0 makes a clear distinction between:

• the stabilized knowledge which is incorporated into libraries of ”on-the-shelf” modeling compo-
nents, for which classes are used; and

• the ”sandbox” in which the analyst is designing his model of the system under study. In the
sandbox, many components are unique; some others are instances of reusable components.

Declaring a class is in some sens creating another ”sandbox”. Amongst other consequences, this
means that it is not possible to refer in a class to an object which is declared outside of the class,
neither to declare a class into a class or a block. A class may of course contain blocks and instances

3.4. STRUCTURAL OPERATIONS 63

of other classes up to the condition that this introduces no circular definitions (recursive data types
are not allowed in AltaRica 3.0).

Blocks may contain other blocks and objects. They can also aggregate the objects and blocks
defined outside of them.

To summarize, a hierarchical model is a set of nested components. Components can be of two
sorts:

• Blocks (also called prototypes), i.e. components that have a unique occurrence in the model.

• Objects (also called instances of classes), i.e. components that are created by cloning a generic
component described separately.

All components are identified by a unique name.

Classes and blocks are declared in a similar way. Figure 3.10 presents grammar rules to declare
classes and blocks.

Model ::= (Declaration)*

Declaration ::= ClassDeclaration | BlockDeclaration

ClassDeclaration ::=

"class" IDENTIFIER

ExtendsClause* DeclarationClause* BehaviorClause*

"end"

BlockDeclaration ::=

"block" IDENTIFIER

ExtendsClause* (EmbedsClause | DeclarationClause)* BehaviorClause*

"end"

ExtendsClause ::= "extends" Path Attributes? ";"

EmbedsClause ::= "embeds" Path "as" IDENTIFIER ";"

DeclarationClause ::= ObjectDeclaration | BlockDeclaration

ObjectDeclaration ::= Type IDENTIFIER ("," IDENTIFIER)* Attributes? ";"

Type ::= "Boolean" | "Integer" | "Real" | "Symbol" | Path

Attributes ::= "(" Attribute ("," Attribute)* ")"

Attribute ::= IDENTIFIER "=" Expression

Path ::= IDENTIFIER ("." IDENTIFIER)*

Figure 3.10: Declaration of structural constructs

3.4 Structural operations

Models can be organized into hierarchies of nested components by means of three operations: compo-
sition, inheritance and aggregation.

3.4.1 Composition (declaration clause)

Composition allows the creation of hierarchies of nested components. Components may be of two
sorts: blocks and objects (instances of classes).

In the example given Figure 3.9, the block ”Line1” contains an instance of the class ”Transformer”
named ”TR1”. We say that the block ”Line1” is composed of the instance ”TR1”. Similarly, the block
”PrimaryPowerSupplySystem” is composed of the blocks ”Line1” and ”Line2”.

64 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

A block and also a class can be composed of blocks and objects (see Figure 3.13) with the additional
constraint that this introduces no circular definitions, e.g. a class C cannot contain an instance of a
class B if B already contains an instance of C.

When a class A (or a block B) is composed of an instance of a class C, named c, then the
components of C are added to the class A (or to the block B) and their names are prefixed by the
name of the instance followed by a dot. Thus, it is possible to refer the state of the transformer ”TR1”
in the block ”PrimaryPowerSupplySystem” via the identifier ”Line1.TR1.s”. The prefixes ”Line1” and
”TR1” result from the compositions.

3.4.2 Inheritance (extends clause)

Besides composition, inheritance is another way to embed the elements of a class into another class
or into a block.

In the Example 3.1, a transformer and a grid (and also probably circuit breakers and a diesel
generator) are repairable components. So, the model of the transformer must extend the model of the
repairable component, and not be composed of it.

The inheritance mechanism (found in all object-oriented programming and modeling languages)
represents this type of relation between components. It is implemented in AltaRica 3.0 via the extends
clause.

A class may extend another class, a block may extend a class, with an additional constraint that
this introduces no circular definitions, e.g. a class C cannot extend a class B if the class B already
extends the class C. Multiple inheritance is possible in AltaRica 3.0, although not recommended (as
in all object-oriented languages).

The usage of the extends clause is illustrated in Figure 3.11. The class ”Transformer” extends the
class ”RepairableComponent” and adds to it the flow variables representing the input and the output
streams and the corresponding assertion. This definition of the class ”Transformer” is equivalent to
the one given Figure 3.8.

domain RepairableComponentState { WORKING, FAILED }

class RepairableComponent

RepairableComponentState s(init = WORKING);

event failure;

event repair;

transition
failure: s==WORKING -> s := FAILED;

repair: s==FAILED -> s := WORKING;

end

class Transformer extends RepairableComponent;

Boolean inFlow, outFlow(reset = FALSE);

assertion
outFlow := (s==WORKING) and inFlow;

end

Figure 3.11: extends clause

From a technical point of view, there is less difference between composition and inheritance than
it can appear at a first glance. When a class A (or a block B) extends a class C then the components
of C are added to the class A (or to the block B) without any prefix. Thus, it is possible to reference

3.4. STRUCTURAL OPERATIONS 65

block PrimaryPowerSupplySystem

Grid GR;

block Line1

embeds GR as GRID;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

end
block Line2

embeds GR;

CircuitBreaker CBU2, CBD2;

Transformer TR2;

end
end

Figure 3.12: embeds clause

the components of C in the class A (or in the block B) directly by their names. For example, in
the class ”Transformer” that extends the class ”RepairableComponent” (see Figure 3.11), the state
variable ”s” of the latter is referenced in the former by its name (without any prefix).

3.4.3 Aggregation (embeds clause)

Composition and inheritance are used to build hierarchical models organized in a tree. A block or a
class can be composed of multiple blocks or instances of classes. However each block or each class
instance is contained in only one block or in only one class instance. Thus, the component Grid from
the Example 3.1 cannot be contained in the block ”Line1” and in the block ”Line2” at the same time.

Safety studies take into account both physical and functional aspects of a system. In practice,
the top event of a Fault Tree is almost always functional, e.g. ”loss of the ability to provide the
power to the Busbar” in the Example 3.1. But the basic events of the Fault Tree are almost always
failures of physical components. Also several undesirable events are often considered for the same
system. Generally a component contributes to several functions and each function requires several
components. So, the question is how to create hierarchical models whose structure is not a tree but a
Directed Acyclic Graph, i.e. how different branches of the hierarchy can share components.

In AltaRica 3.0 blocks and objects may belong to different branches of a hierarchical model via
the embeds clause. The use of this clause is illustrated by the (partial) code given Figure 3.12. The
instance ”GR” of the class ”Grid” is shared between the blocks ”Line1” and ”Line2”. Inside the block
”Line1” the embedded object ”GR” is given an alias ”GRID”. Thus it can be referenced inside of the
block ”Line1” either as ”GR” or as ”GRID”.

It is important to understand that only the prototype-oriented paradigm allows the definition of
shared components. Indeed, a class defines an ”on-the-shelf” component. So, a class cannot reference
objects defined outside of this class. On the contrary, a block is always localized. It can refer to objects
in the same model, i.e. in the block of the highest level (here the block ”PrimaryPowerSupplySystem”)
or in the class in which it is declared. A block declared inside a class cannot be referenced outside of
this class.

The comparison between classes and blocks is summarized in Table 3.2. Relations between classes,
objects and blocks are represented in the diagram Figure 3.13.

66 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

Figure 3.13: Relations between classes, objects and blocks

Concept Class Block

Definition Generic component Component having a unique

occurrence in the model

Reuse Instantiation and inheritance Cloning and modifying

Usage Multiple instances Unique occurrence

”On-the-shelf” component ”Sandbox”

stored in a library

C-K theory K-space C-space

Composition Contains Contains

objects & blocks objects & blocks

Inheritance Extends Extends

classes classes

Aggregation – Embeds

objects & blocks

Table 3.2: Classes vs. Blocks

3.4.4 Relations between components

Besides the ”vertical” relations between components (composition, inheritance), there are also their
”horizontal” links, i.e. the means by which they interact. AltaRica provides two mechanisms to

3.4. STRUCTURAL OPERATIONS 67

represent interactions between components:

• connections, i.e. the propagation of flows (of data, of matter, etc.) via the assertions, and

• synchronizations of events.

Assertions

In the model of the Primary Power Supply system given Figure 3.12 all components are independent.
To represent the propagation of power from the grid to the Busbar, we need to connect some flow
variables together. To do that, several assertions are added to the previous model (see Figure 3.14).

block PrimaryPowerSupplySystem

Boolean outFlow(reset = false);
Grid GR;

block Line1

Boolean outFlow(reset = false);
embeds GR as GRID;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

assertion
CBU1.inFlow := GRID.outFlow;

TR1.inFlow := CBU1.outFlow;

CBD1.inFlow := TR1.outFlow;

outFlow := CBD1.outFlow;

end
block Line2

Boolean outFlow(reset = false);
embeds GR;

CircuitBreaker CBU2, CBD2;

Transformer TR2;

assertion
CBU2.inFlow := GR.outFlow;

TR2.inFlow := CBU2.outFlow;

CBD2.inFlow := TR2.outFlow;

outFlow := CBD2.outFlow;

end
assertion
outFlow := Line1.outFlow or Line2.outFlow;

end

Figure 3.14: AltaRica 3.0 model of the Primary Power Supply system: assertions

In AltaRica 3.0, there are two types of variables:

State variables: They represent the state of components. They are identified by the attribute ”init”.
The state variables are initialized once and for all at the beginning of the simulation. Their
value is changed by the action of the fired transition. The ”state” of the repairable component
presented in Figure 3.7 is represented by a state variable ”s”.

Flow variables: They are used to model the propagation of the information, of the matter, of the
energy, etc. between the components. They are identified by the attribute ”reset”. Flow

68 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

variables are recalculated after each transition firing via the assertions. The variables ”inFlow”
and ”outFlow” in the class ”Transformer” in Figure 3.11 are flow variables. In the model given
Figure 3.14 the input flow of ”CBU1” is connected to output flow of the grid ”GRID”, the input
flow of the transformer is connected to the output flow of ”CBU1”, etc.

Assertions are presented in details in section 2.6.

Synchronizations

Another way to represent interactions between components is the synchronization of events. AltaRica
3.0 provides a powerful synchronization mechanism, which consists in compelling two or more events to
occur simultaneously. For example, to represent a common cause failure between the two transformers
we need to add the new event ”CCFTransformers” and the corresponding transition in the block
”PrimaryPowerSupplySystem” (its AltaRica code is given Figure 3.14).

The new model is given Figure 3.15. The transition ”CCFTransformers” is fireable if at least one

block PrimaryPowerSupplySystem

...

event CCFTransformers;

...

transition
CCFTransformers : ?Line1.TR1.failure & ?Line2.TR2.failure ;

...

end

Figure 3.15: AltaRica 3.0 model of the Primary Power Supply system: synchronizations

of the synchronized transitions is fireable.

Synchronizations are described in details in section 2.4.

3.5 Flattening

Each hierarchy of nested components can be flattened into a unique ”flat” component, i.e. a component
that does not contain any nested blocks and instances of classes, but only simple declarations and
behavior clauses. This operation is called flattening.

Each hierarchical AltaRica 3.0 model can be flattened into a unique Guarded Transition System.
Flattening of a hierarchical AltaRica 3.0 model is a purely syntactic operation. It works in three steps:

1. Flattening of the hierarchy,

2. Flattening of the synchronizations,

3. Hiding.

3.5.1 Flattening of the hierarchy

Classes and blocks are flattened in a similar way. However, there are some differences due to the fact
that the structure of classes and blocks is not the same.

3.5. FLATTENING 69

Class flattening

Consider a class C = 〈CE , BA, D, T,A〉 composed of:

• a set of extended classes CE ,

• a set of declared elements D, including objects (instances of classes) and atomic elements, i.e.
variables, events, parameters and observers.

• a set of declared blocks BA,

• a behavior clause, including a set of transitions T and a set of assertions A.

A class Cflat is a flat form of the class C. It is obtained in the following way:

1. First of all an empty class Cflat is created.

2. Second, the flattening of extended classes from CE is performed:

• Each class K from CE (i.e. such that C extends K) is flattened into a class Kflat.

• For each class K, a copy (without any prefix) of Kflat is added to Cflat.

3. Third, declared blocks BA are flattened:

• Each block b such that C is composed of b (b ∈ BA) is flattened into a block bflat.

• For each block b, the block bflat is added to Cflat.

4. Then, declared objects from D are flattened:

• Each class Q such that C is composed of an instance q of Q (q ∈ D) is flattened into a class
Qflat.

• For each instance q of a class Q, a copy of the class Qflat is added to Cflat. During the
copy, all named objects (variables, events, parameters, observers and their references in
expressions and synchronizations) are prefixed with the name of the object followed by a
dot.

5. Next, simple variable declarations, event declarations, parameter declarations and observer dec-
larations of C are copied to Cflat. By simple variable we mean variable whose type is either a
basic type (Boolean, Integer, Real, Symbol or a user defined domain).

6. Finally, the behavior clause is flattened:

• Transitions of C are copied to Cflat.

• Assertions of C are copied to Cflat.

This algorithm is represented Figure 3.16, where

• the function nameOf(o) returns the name of its argument o,

• the function Copy(X, Y) copies elements of X into Y , and

• the function CopyWithPrefix(prefix, X, Y) copies elements of X into Y , during the copy all
named elements (i.e. variables, observers, parameters, events and their references in expressions
and synchronizations) are prefixed by prefix followed by a dot.

70 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

FlattenClass(C, Cflat)
Cflat ← {∅}
forall K ∈ CE
FlattenClass(K, Kflat);

Copy(Kflat, Cflat);
done

forall b ∈ BA
FlattenBlock(b, bflat);
Copy(bflat, Cflat);

done

forall d ∈ D
if d == instanceOf(Q) then

FlattenClass(Q, Qflat);
CopyWithPrefix(nameOf(d), Qflat, Cflat);

else

Copy(d, Cflat);
done

Copy(T, Cflat);
Copy(A, Cflat);

Figure 3.16: Class flattening

Block flattening

Consider a block B = 〈CE , BA, BE , D, T,A〉 composed of:

• a set of extended classes CE ,

• a set of declared blocks BA,

• a set of embedded blocks and objects BE ,

• a set of declared elements D, including objects (instances of classes) and atomic elements, i.e.
simple variables, events, parameters and observers,

• a behavior clause, including a set of transitions T and a set of assertions A.

A block Bflat is a flat form of block B. It is obtained in the following way:

1. First, an empty block Bflat is created.

2. Second, extended classes are flattened:

• Each class K from CE (i.e. such that B extends K) is flattened into a class Kflat.

• For each class K, a copy (without any prefix) of Kflat is added to Bflat.

3. Third, declared blocks from BA are flattened:

• Each block b such that B is composed of b (b ∈ BA) is flattened into a block bflat.

• For each block b, bflat is added to Bflat.

4. Then, declared objects of D are flattened:

• Each class Q such that B is composed of an instance q of Q (q ∈ D) is flattened into a class
Qflat.

3.5. FLATTENING 71

• For each instance q of a class Q, a copy of the class Qflat is added to the block Bflat. During
the copy, all named objects (variables, events, parameters, observers and their references
in expressions and synchronizations) are prefixed with the name of the object followed by
a dot.

5. Next, simple variable declarations, event declarations, parameter declarations and observer dec-
larations of B are copied to Bflat. During the copy they are prefixed by the name of the block
followed by a dot. References of variables and parameters in expressions are also prefixed by
the name of the block followed by a dot, except for those that belong to embedded blocks and
objects.

6. Finally, the behaviour clause is flattened:

• Transitions of B are copied to Bflat.

• Assertions of B are copied to Bflat.

• During the copy references to variables in expressions are prefixed by the name of the block
followed by a dot. References to variables and events belonging to embedded blocks and
objects are not prefixed. Aliases of embedded blocks and objects are replaced by their
paths.

The algorithm is depicted Figure 3.17, where the function CopyWithPrefixExceptEmbeds(prefix,

X, Y , Z) copies elements of X into Z, during the copy all named objects (variables, parameters,
events and observers and their references in expressions and synchronizations) are prefixed by prefix

followed by a dot, except for those that belong to elements from Y (their aliases are also replaced by
the paths of the elements from Y).

FlattenBlock(B, Bflat)
Bflat ← {∅}
forall K ∈ CE
FlattenClass(K, Kflat);

Copy(Kflat, Bflat);
done

forall b ∈ BA
FlattenBlock(b, bflat);
Copy(bflat, Bflat);

done

forall d ∈ D
if d == instanceOf(Q) then

FlattenClass(Q, Qflat);
CopyWithPrefix(nameOf(d), Qflat, Bflat);

else

CopyWithPrefixExceptEmbeds(nameOf(B), d, BE, Bflat);
done

CopyWithPrefixExceptEmbeds(nameOf(B), T, BE, Bflat);
CopyWithPrefixExceptEmbeds(nameOf(B), A, BE, Bflat);

Figure 3.17: Block flattening

Example 3.2 (A Primary Power Supply system). Consider the model of the Primary Power Sup-
ply given Figure 3.14. Moreover suppose that classes ”CircuitBreaker” and ”Grid” extend the class

72 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

”RepairableComponent”, in the same way as the class ”Transformer”(see Figure 3.11). Figure 3.18
illustrates how the algorithm of hierarchy flattening works; it presents the flattened Primary Power
Supply system corresponding to the model given Figure 3.14.

3.5.2 Flattening of the synchronizations

Transitions of the class C (or the block B) are in the following form:

e : !a1 & . . . & !am & ?b1 & . . . & ?bn & L1 → R1 & . . . & Lr → Rr,

m ≥ 0, n ≥ 0, r ≥ 0,

where

1. e, ai, i = 0..m, bj , j = 0..n, are the events;

2. Events are prefixed by either ! or ?, called the modality: ! meaning that the event is mandatory
and ? meaning that the event is optional;

3. Lk, k = 0..r, are Boolean expressions, Rk, k = 0..r, are instructions.

They are flattened in the following way.
First case: m ≥ 1 or r ≥ 1
For each set of transitions (there may be several):

a1 : G1 → P1, . . . , am : Gm → Pm

b1 : H1 → Q1, . . . , bn : Hn → Qn, n ≥ 0

the following new transition is created:

e : G1 and . . . and Gm and L1 and . . . and Lr →

{P1; . . . ;Pm; if H1 then Q1; . . . ; if Hn then Qn;R1; . . . ;Rr}
The modality ! forces the corresponding synchronized transition to be fireable.
Second case: m = 0, r = 0
a. n > 1
For each set of transitions (there may be several):

b1 : H1 → Q1, . . . , bn : Hn → Qn

the following new transition is created:

e : H1 or . . . or Hn → { if H1 then Q1; . . . ; if Hn then Qn}

b. n = 1
For each set of transitions (there may be several):

b1 : H1 → Q1

the following new transition is created:

e : true→ { if H1 then Q1}

In other words, the synchronizing transition is fireable if at least one of the synchronized transitions
is. The action of the synchronizing transition consists in firing all fireable synchronized transitions.

3.5. FLATTENING 73

block FlattenedPrimaryPowerSupplySystem

RepairableComponentState GR.s, Line1.TR1.s, Line2.TR2.s(init=WORKING);
RepairableComponentState Line1.CBD1.s, Line1.CBU1.s(init=WORKING);
RepairableComponentState Line2.CBD2.s, Line2.CBU2.s(init=WORKING);
Boolean GR.inFlow(reset=true);
Boolean outFlow, GR.outFlow, Line1.outFlow, Line2.outFlow(reset=false);
Boolean Line1.TR1.inFlow, Line1.CBD1.inFlow, Line1.CBU1.inFlow(reset=false);
Boolean Line2.TR2.inFlow, Line2.CBU2.inFlow, Line2.CBD2.inFlow(reset=false);
Boolean Line1.TR1.outFlow, Line1.CBD1.outFlow(reset=false);
Boolean Line2.TR2.outFlow, Line2.CBD2.outFlow(reset=false);
Boolean Line1.CBU1.outFlow, Line2.CBU2.outFlow(reset=false);
event GR.repair, GR.failure, Line2.CBD2.repair;

event Line1.TR1.failure, Line1.TR1.repair, Line1.CBU1.failure;

event Line1.CBD1.failure, Line1.CBD1.repair, Line2.TR2.failure;

event Line2.CBU2.failure, Line2.CBU2.repair, Line2.CBD2.failure;

event Line1.CBU1.repair, Line2.TR2.repair;

transition
Line1.TR1.failure: Line1.TR1.s==WORKING -> Line1.TR1.s := FAILED ;

Line1.TR1.repair: Line1.TR1.s==FAILED -> Line1.TR1.s := WORKING ;

Line1.CBD1.failure: Line1.CBD1.s==WORKING -> Line1.CBD1.s := FAILED ;

Line1.CBD1.repair: Line1.CBD1.s==FAILED -> Line1.CBD1.s := WORKING ;

Line1.CBU1.failure: Line1.CBU1.s==WORKING -> Line1.CBU1.s := FAILED ;

Line1.CBU1.repair: Line1.CBU1.s==FAILED -> Line1.CBU1.s := WORKING ;

Line2.TR2.failure: Line2.TR2.s==WORKING -> Line2.TR2.s := FAILED ;

Line2.TR2.repair: Line2.TR2.s==FAILED -> Line2.TR2.s := WORKING ;

Line2.CBD2.failure: Line2.CBD2.s==WORKING -> Line2.CBD2.s := FAILED ;

Line2.CBD2.repair: Line2.CBD2.s==FAILED -> Line2.CBD2.s := WORKING ;

Line2.CBU2.failure: Line2.CBU2.s==WORKING -> Line2.CBU2.s := FAILED ;

Line2.CBU2.repair: Line2.CBU2.s==FAILED -> Line2.CBU2.s := WORKING ;

GR.failure: GR.s==WORKING -> GR.s := FAILED ;

GR.repair: GR.s==FAILED -> GR.s := WORKING ;

assertion
Line1.TR1.outFlow := (Line1.TR1.s==WORKING) and Line1.TR1.inFlow;

Line1.CBD1.outFlow := (Line1.CBD1.s==WORKING) and Line1.CBD1.inFlow;

Line1.CBU1.outFlow := (Line1.CBU1.s==WORKING) and Line1.CBU1.inFlow;

Line1.CBU1.inFlow := GR.outFlow ;

Line1.TR1.inFlow := Line1.CBU1.outFlow ;

Line1.CBD1.inFlow := Line1.TR1.outFlow ;

Line1.outFlow := Line1.CBD1.outFlow ;

Line2.TR2.outFlow := (Line2.TR2.s==WORKING) and Line2.TR2.inFlow;

Line2.CBD2.outFlow := (Line2.CBD2.s==WORKING) and Line2.CBD2.inFlow;

Line2.CBU2.outFlow := (Line2.CBU2.s==WORKING) and Line2.CBU2.inFlow;

Line2.CBU2.inFlow := GR.outFlow;

Line2.TR2.inFlow := Line2.CBU2.outFlow;

Line2.CBD2.inFlow := Line2.TR2.outFlow;

Line2.outFlow := Line2.CBD2.outFlow;

GR.outFlow := (GR.s== WORKING) and GR.inFlow;

outFlow := Line1.outFlow or Line2.outFlow;

end

Figure 3.18: Flattened Primary Power Supply system

74 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

3.5.3 Hiding

Events involved in a synchronization continue to exist individually. However, if they must not occur
individually, they can be hidden using the hiding mechanism: the keyword ”hide” followed by the
names of the events, separated by commas. Hidden events and the transitions they label are just
removed from Cflat or from Bflat.

Example 3.3 (A Primary Power Supply system). In the model given Figure 3.15 the synchronized
transition ”CCFTransformers” is added to the model depicted Figure 3.14. The resulting flattened
model is the model presented Figure 3.18, in which the event ”CCFTranformers” and the corresponding
transition (see Figure 3.19) have been added.

block PrimaryPowerSupplySystem

...

event CCFTransformers;

transition
CCFTransformers : (Line1.TR1.s==WORKING) or (Line2.TR2.s==WORKING) ->

{ if Line1.TR1.s==WORKING then Line1.TR1.s = FAILED;

if Line2.TR2.s==WORKING then Line2.TR2.s = FAILED;}
...

end

Figure 3.19: Flattened Primary Power Supply system: synchronizations

3.6 Discussion

3.6.1 About models reuse

The great advantage of high level modeling languages is the ability to reuse models of components or
even models of systems, i.e. to capitalize knowledge. There are actually two quite distinct types of
reuse:

1. The reuse of components, and

2. The reuse of modeling patterns.

They correspond to the respective strengths of object-oriented and prototype-oriented paradigms.
In the first case, libraries of reusable components (e.g. classes or functions) are defined. A reusable

component is integrated as it is in the model. The notion of libraries of reusable components comes
directly from programming languages, e.g. Qt library [18] or STL for C++. It made the success
of modeling languages such as Matlab/Simulink and Modelica [81]: multiple libraries dedicated to a
particular area are available. This type of models reuse corresponds to the object-oriented paradigm.

The reuse of modeling patterns follows another principle. The idea is to start from an existing
code, to duplicate it and to adapt it to particular needs. The famous ”design patterns” [40] are the
epitome of this approach. It naturally corresponds to the prototype-oriented paradigm.

Experience shows that for AltaRica the reuse of modeling patterns is really advantageous (see
e.g. [57]). Although the definition of libraries of reusable components can be also beneficial.

3.6.2 About parametric models and scripts

One often has to adapt a generic component to a particular need. For example, in the model of the
repairable component defined in Figure 3.7, one may want to define a failure rate and a repair rate

3.6. DISCUSSION 75

of the component (they will be named lambda and mu). These rates will be given a value at the
instantiation of the component.

AltaRica 3.0 introduces the notion of parameter (directly inspired from Modelica). A parameter has
a default value that can be changed when the class is instantiated. The use of parameters is illustrated
Figure 3.20. In this example we define a parameter ”lambda” inside the class ”RepairableComponent”.
This parameter has a default value, which is equal to 1.0e− 3. When the class ”Transformer” which
extends the class ”RepairableComponent” is instantiated inside the block ”Line1”, the value of the
parameter ”lambda” is set to 2.34e− 5.

class RepairableComponent

...

event failure (delay = exponential(lambda));

parameter Real lambda = 1.0e-3;

...

end
block PrimaryPowerSupplySystem

...

block Line1

Transformer TR1(lambda = 2.34e-5);

...

end
...

end

Figure 3.20: Illustration of parameters usage

Another need of generic components is the ability to define components with a variable number
of inputs (or outputs). For example, imagine that one needs to define a repairable component with a
variable number of Boolean inputs and one Boolean output which is equal to the disjunction of inputs
if the component is operational and false if it is failed. It is obviously preferable to avoid defining
such a component with two inputs, another one with three inputs and so on. Ideally, we would like to
define a generic component with a variable number of inputs and set this number at the instantiation.

In Figaro modeling language (see e.g. [17]) the design of such generic components was implemented
by means of quantifiers. In Modelica (see e.g. [37]) it can be done using arrays.

A general solution is to use a scripting language, integrated in the modeling language, to auto-
matically generate models. This is the conclusion of our work on comparison between AltaRica and
PEPA nets for modeling systems with mobile components ([59]). No decision has been taken yet on
this subject for AltaRica 3.0.

3.6.3 About graphical representation of models

AltaRica 3.0 is a textual language. However graphical representations can be associated with textual
models. They are of great interest for several reasons:

• Graphical representations offer a convenient way to create and edit models.

• They help to better understand models and to communicate.

• They can be used to animate models, i.e. to graphically visualize the simulation of AltaRica 3.0
models.

• They allow navigation in the model, etc.

76 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

From our point of view,

1. First, it is necessary to distinguish between graphical editing and graphical simulation of models.
Different graphical representations, technologies and tools can be used in each of these cases.

2. Second, it is necessary to distinguish between the model and its graphical representation. Graph-
ical representations are only partial views of the model.

We have recently shown in [83] that graphical simulation of models can be implemented using a
graphical modeling language and the corresponding simulator. The idea is that the graphical simulator
and the AltaRica 3.0 simulator communicate via the exchange of variables value. Graphical animations
are totally independent from AltaRica 3.0 models. Also the language for graphical representation and
animation of models can be coupled with other tools (not necessarily dedicated to AltaRica). The
immediate benefit is that the behavioral model can be designed independently from its graphical
representation for animation, which can be created later.

The desire to have a complete correspondence between the model and its graphical representation
results either in the significant reduction of the expressive power of the modeling language or in the
considerably more complex graphical representations to make them lose their interest.

Therefore, AltaRica 3.0 model cannot have a unique graphical representation. But several dif-
ferent graphical representation can be associated with textual models. Each representation gives a
partial view of the model. The idea is that these views can be generated automatically. Graphical
representations of AltaRica models may be of different nature:

• Structural diagrams, representing only the structural part of the model. This type of diagrams
is used in all AltaRica workshops.

• Automaton diagrams, representing the behavioral part of the model, as the one depicted Fig-
ure 3.7. The corresponding AltaRica code is given Figure 3.8.

• Sequence diagrams to represent synchronizations.

Structural diagrams can be of different form. At least, we can cite four graphical representations
for hierarchical models:

Planar representation: ”Process & Instrumentation Diagram” scheme, represents the structure as
nested boxes connected together by wires. See for example Figure 3.1 as an illustration. It
represents not only the hierarchy, but also the ”horizontal” links between components. This is
the most common type of representation. It is implemented in all AltaRica workshops and also
in Modelica or Matlab Simulink workshops. SysML Internal Block Diagram is based on this type
of representation. However, it seems difficult to automatically generate planar representation as
pointed out by Fuhrmann [39].

Tree representation: Makes clear the hierarchical structure of the model. The tree representation
of the Power Supply System is given Figure 3.21. Blocks declaration can be folded/unfolded just
as in planar representation. Conversely to the planar representation, only ”vertical” relations
between components can be represented using this type of diagram. Fault Trees and SysML
Block Definition diagrams are based on this type of graphical representation. It is possible to
automatically generate this representation from textual models, like it is done for example for
Fault Trees.

1D representation: Explorer like representation. It gives a hierarchical view of the model structure.
The 1D representation of the Power Supply System is depicted Figure 3.22. Each level can
folded/unfolded like in navigation panel of Windows explorer. Like Tree representation, it cannot
be used to represent links between components. It is possible to automatically generate this
representation from textual models.

3.6. DISCUSSION 77

Figure 3.21: Tree representation of the Power Supply System

Figure 3.22: 1D representation of the Power Supply System

78 CHAPTER 3. SYSTEM STRUCTURE MODELING LANGUAGE (S2ML)

Tabular representation: Is a simplified textual representation that makes it possible to edit the
model via a spreadsheet. The tabular representation of the Power Supply System is given
Figure 3.23.

Figure 3.23: Tabular representation of the Power Supply System

These graphical views of model structure can be used to visualize and also to edit the model.
Anyway, textual models should be independent from graphical representations, like CSS (Cascading
Style Sheets) are independent from HTML.

Summary

In this chapter we presented structural constructs of AltaRica 3.0. AltaRica 3.0 introduces two
concepts to build hierarchical models: classes and blocks. Blocks represent components having a
unique occurrence in the model. The concept of block comes from prototype-oriented programming
languages. Classes define generic components. They are used in the model via instantiation. The
concept of class comes from object-oriented programming languages. Models can be organized in
hierarchies of components by means of three operations: composition, inheritance and aggregation.

AltaRica 3.0 makes a clear distinction between:

• the stabilized knowledge, which is incorporated into libraries of ”on-the-shelf” components, rep-
resented by classes, and

• the ”sandbox” in which the analyst is designing his model of the system under study. In the
sandbox some components are unique; some others are instances of reusable components.

AltaRica 3.0 modeling language is, in fact, the combination of its underlying mathematical for-
malism, Guarded Transition Systems (GTS), presented in chapter 2, and the paradigm to structure
models, System Structure Modeling Language (S2ML), introduced in this chapter:

AltaRica 3.0 = S2ML + GTS

Each hierarchical AltaRica 3.0 model can be flattened into a unique GTS according to the flattening
rules defined in this chapter.

In the next chapter we will see how to compile GTS into Fault Trees and critical sequences of
events.

Chapter 4

Compilation into Fault Trees or critical
sequences of events

Guarded Transition Systems (or AltaRica 3.0 models) can be compiled into Fault Trees or critical
sequences of events. The compilation into Fault Trees is of interest for several reasons: first, auto-
matically generating Fault Trees from high-level models is easier and less time consuming rather than
creating them from scratch; second, high level models greatly improve the design, the sharing and
the maintenance of models; finally, assessment tools for Boolean models are much more efficient than
those for states/transitions models. In general, the price to pay is the loss of sequencing among events:
sequences of events are compiled into conjuncts of events. However, if the GTS is combinatorial, its
compilation to Fault Trees is efficient and does not loose information. Many real-life models are rel-
atively simple extensions of Reliability Block Diagrams and, thus, can be compiled efficiently into
Fault Trees. When the events of the model are not statistically independent, it is more appropriate
to generate critical sequences of event rather than Fault Trees.

The goal of this chapter is to present the principle of the algorithm to compile Guarded Transition
Systems into Fault Trees and critical sequences of events. This algorithm extends the algorithm,
proposed in [88] for Mode Automata (or AltaRica Data-Flow) to GTS. It is based on the advanced
partitioning techniques that ensure its efficiency for some categories of models.

This chapter is organized as follows. Section 4.1 presents a motivating example that is used as a
red wire in this chapter. Section 4.2 is dedicated to related works. Section 4.3 describes the algorithm
of compilation of Guarded Transition Systems into Fault Trees and critical sequences of events. In
Section 4.4, we extend the algorithm presented in the previous section to Timed/Stochastic Guarded
Transition Systems. Finally, Section 4.5 discusses the complexity of the presented algorithm and its
correctness.

4.1 Motivations

Fault Trees are probably the most popular formalism to support Probabilistic Risk and Safety Anal-
yses. Efficient algorithms have been designed to assess these models (see e.g. [93, 91]) and mature
commercial tools are now available. Despite their interest, Fault Trees suffer from the severe drawback
to be very far from the specifications of the system under study. They rely on a great deal of implicit
knowledge and expertise of the analyst. As a consequence, they are hard to share amongst the stake-
holders and to maintain throughout the life cycle of systems. A small change in the specifications
of a system may require revisiting the Fault Trees designed for that system, which is both resource
consuming and error prone.

AltaRica modeling language has been created to tackle this problem. An algorithm to compile
AltaRica Data-Flow (or Mode Automata) to Fault Trees has been proposed in [88]. The compilation

79

80CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

to Fault Trees and critical sequences of events of the first version of AltaRica, based on constraint
automata [80, 7], also called here AltaRica LaBRI, has been reported in [43].

AltaRica 3.0 is a new version of the language [82]. Its new underlying mathematical model,
Guarded Transition Systems [90, 84], improves the expressive power of the previous versions by intro-
ducing a fixpoint mechanism to stabilize the values of the flow variables after each transition firing.
This mechanism allows the design of acausal components and the treatment of systems with instant
loops. It makes the generation of Fault Trees more complex. Nevertheless, we show here that this
generation can remain efficient thanks to advanced partitioning techniques.

In order to illustrate the different steps of the algorithm, we propose to study a Data Gathering and
Processing network. This system is interesting because it contains acausal components and instant
loops.

Example 4.1 (A Data Gathering and Processing Network). Consider the network depicted Figure 4.1,
which is inspired from [94]. This network is made of:

• Three workstations W1, W2, and W3 producing data;

• Two processing units P1 and P2 in charge of processing data;

• Six switches SW1,. . . , SW6 receiving data from workstations and/or other switches and trans-
mitting them to processing units or other switches.

W2 is a spare workstation for W1, i.e. when the workstation W1 is working, the workstation W2
is in standby mode, if W1 is failed, then it is replaced by W2. Connections between switches are
bidirectional, i.e. each switch receives data from all of its neighbors and broadcasts data to all of
them.

Figure 4.1: A Data Gathering and Processing Network

All components may fail in operation. Moreover, workstations may have a common cause failure.
Failure rates are given in Table 4.1.

This network is considered as robust if at least one of the processing units can send information to
the plant. Since it is asymmetric, we want actually to assess the probability of each of the following
three events:

4.1. MOTIVATIONS 81

Table 4.1: Failure rates of components of the network

Component Failure rate

Switch 10−4 1/h

Workstation 10−5 1/h

Processing Unit 10−4 1/h

• Processing unit P1 cannot send data to the plant.

• Processing unit P2 cannot send data to the plant.

• Neither P1 nor P2 can send data to the plant.

We shall use this network as a red wire example to describe the different steps of the compilation
of Guarded Transition Systems into Fault Trees.

This system contains loops since information between switches can be transmitted both ways. As
a consequence, the manual construction of a Fault Tree for each of the above top events is far from
easy. It requires to analyze the various combinations of failures of components in order to determine
if they lead to a total or a partial loss of the data processing capacity.

AltaRica 3.0 model of the Data Gathering and Processing network

Modeling non-repairable components Since all the components of the described system are
non-repairable we define a class representing a non-repairable component:

domain ComponentState { WORKING, FAILED }
class NonRepairableComponent

ComponentState s (init = WORKING);

parameter Real lambda = 1.0e-5;

event failure (delay = exponential(lambda));
transition
failure: s == WORKING -> s := FAILED;

end

Models of other components will extend this class.

Modeling processing units Processing units are represented by the following class:

class ProcessingUnit

extends NonRepairableComponent (lambda = 1.0e-4);

Boolean inFlow, outFlow (reset = false);
assertion
outFlow := s == WORKING and inFlow;

end

This class extends the class NonRepairableComponent. Its assertion states that if the processing unit
is working, it receives data in input, process them, and emits data as output. If the processing unit is
failed, it does not process, nor output any data.

82CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Modeling workstations The model of the workstations is different from the model of the non-
repairable component, because we should take into account the fact that the workstation W2 is in
standby mode. The class representing workstations is as follows:

domain SpareComponentState {STANDBY, WORKING, FAILED}
class Workstation

SpareComponentState s (init = STANDBY);

Boolean outFlow (reset = false);
parameter Real lambda = 1.0e-5;

event start;

event failure(delay = exponential(lambda));

transition
start: s == STANDBY -> s := WORKING;

failure: s == WORKING -> s := FAILED;

assertion
outFlow := s == WORKING;

end

In the initial state, the workstation is in standby mode. The event start makes it change its state to
working. When the workstation is operational, it produces data (its flow variable outFlow is true);
otherwise, it does not output any data (outFlow is equal to false).

Modeling switches Models of processing units and workstations are directional (Data-Flow): their
inputs and outputs and the direction of the propagation of flows is clearly identified. The model of
the switch is more interesting as it is acausal.

class Switch extends NonRepairableComponent;

Boolean leftFlow, rightFlow (reset = false);
Boolean inFlow, outFlow (reset = false);

assertion
if s == WORKING then { leftFlow := rightFlow or inFlow;

rightFlow := leftFlow or inFlow;}
outFlow := (s == WORKING) and (leftFlow or rightFlow or inFlow);

end

In the above model, when the switch is working it may receive data from workstations via the flow
variable inFlow, but also from its neighbors (the other switches) via the flow variables leftFlow and
rightFlow. If the switch is working, the flows linking it to its neighbors are all true as soon as one of
them is true. If the switch is failed, then there is no relation amongst them.

Modeling the whole system The model of the whole system is given Figure 4.2. In this model
the operator :=: is used to represent bidirectional connections (see definition in Section 2.4) between
switches: data can circulate both ways between them. The direction of the flow is determined at run
time for it depends on the global state of the system.

Observers: Observers are like flow variables, except they cannot be used in transitions and as-
sertions. They are quantities to be observed by the assessment tools. In the model, we define three
observers: P1failed, P2failed and P1P2failed corresponding to the three events that we want to
observe for the network.

Synchronizations: Synchronizations are used to compel several events to occur at the same time

4.2. RELATED WORKS 83

(see section 2.4 for more details about synchronizations). Here synchronizations are used to represent
the fact that the workstation W2 starts when the workstation W1 is failed (transition W1 failure)
and also to model the common cause failure of the workstations (transition ccf). Events involved in
a synchronization continue to exist individually. However, it is possible to hide the events that should
not occur independently of a synchronization: this is precisely the case of the events W2.start and
W1.failure.

block Network

Workstation W1, W3;

Workstation W2(s.init = STANDBY);

Switch SW1, SW2, SW3, SW4, SW5, SW6;

ProcessingUnit P1, P2;

parameter Real lambda = 5e-6;

event ccf(delay = exponential(lambda));

event W1 failure(delay = exponential(W1.lambda));

observer Boolean P1P2failed = not P1.outFlow and not P2.outFlow;

observer Boolean P1failed = not P1.outFlow;

observer Boolean P2failed = not P2.outFlow;

transition
W1 failure: !W1.failure & ?W2.start;

ccf: ?W1 failure & ?W2.failure & ?W3.failure;

hide W1.failure, W2.start;

assertion
SW1.rightFlow :=: SW2.leftFlow;

SW2.rightFlow :=: SW3.leftFlow;

SW3.rightFlow :=: SW4.leftFlow;

SW4.rightFlow :=: SW5.leftFlow;

SW5.rightFlow :=: SW6.leftFlow;

SW6.rightFlow :=: SW1.leftFlow;

SW1.inFlow := W1.outFlow or W2.outFlow;

SW3.inFlow := W3.outFlow;

P1.inFlow := SW5.outFlow;

P2.inFlow := SW4.outFlow;

end

Figure 4.2: AltaRica 3.0 model of the Data Gathering and Processing Network: main block

4.2 Related Works

The automatic generation of Fault Trees from high level models is a wide domain of research. Different
algorithms have been proposed in the literature. Most of them can be divided into two groups:

• The algorithms based on backward analysis;

• The algorithms based on fault injection.

84CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

4.2.1 Algorithms based on backward analysis

In this category, most of the proposed approaches rely on various extensions of Reliability Block
Diagrams (see e.g. [62]). Basic blocks of the diagram carry out both failures and inputs/outputs
relations. The flow circulating in the diagram is analyzed backward to generate the Fault Tree. This
idea stems from Artificial Intelligence tools such as Assumption-based Truth Maintenance Systems [28].

A similar idea is used in the HiP-HOPS workbench [78, 75]. This workbench enables to add
reliability data to models imported from different modeling tools such as Matlab/SIMULINK, Eclipse-
based UML tools, etc. It then enables to automatically generate Fault Trees and FMEA tables. The
underlying formalism of Hip-HOPS is also an extension of Reliability Block Diagrams, in which the
system is described by hierarchies of blocks and the outputs of the blocks are written as a discrete
function of internal failures and inputs. AltaRica 3.0 generalizes this kind of models and the algorithm
described in this chapter is very efficient on them.

The same principle is used in [54], where Fault Trees are automatically generated from AADL
models.

4.2.2 Algorithms based on fault injection

In this case, the model is simulated step by step in order to discover sequences of events leading from
the nominal state to a failure state. Then the generated Fault Tree is just a disjunction over all
the found sequences of conjunctions of events involved in each sequence. This approach implies to
enumerate all the combinations of failure events and to test them.

In this category, we can find the algorithm used in KB3 workbench [15], developed by EDF R&D,
where Fault Trees are automatically generated from Figaro models [17]. The proposed algorithm is
based on the exploration of all the possible combinations of failure events in order to determine if they
lead to the system failure. Different truncation criteria are applied, such as the maximum number of
events in a sequence, the probability of the sequence, etc.

The same principle is used in [20], where M. Bozzano et al. use NuSMV for Fault Tree analysis and
apply different symbolic model-checking techniques in order to improve the efficiency of the algorithm.

In [19], M. Bozzano et al. translate AltaRica Data-Flow models, created within Cecilia OCAS
workbench, into NuSMV input format and apply algorithms from [20] to automatically generate Fault
Trees. They also compare the efficiency of NuSMV with the sequence generator of AltaRica Data-Flow
used in Cecilia OCAS workbench. The sequence generator of AltaRica Data-Flow basically explores
all the possible combinations of events that lead the system from its nominal state to failure state.
The truncation criterion is the number of events involved in a sequence.

In [43], A. Griffault et al. describe algorithms for the automatic generation of Fault Trees and criti-
cal sequences of events from AltaRica LaBRI [80, 7] models using symbolic model-checking techniques.

As seen in chapter 2, GTS generalize Reliability Block Diagrams. However, it is essentially a for-
malism to describe (finite) state machines and to compose them. It is therefore more expressive than
all extensions of Reliability Block Diagrams proposed so far. For instance, it is possible to model
Common Cause Failures or shared resources amongst different blocks by synchronizing events. Be-
cause of its expressiveness, GTS cannot be compiled into Fault Trees just by backward induction on
the values of the flow variables. More elaborated compilation schemes must be applied. Fortunately,
thanks to advanced partitioning techniques, we do not need to explore the whole system model in
order to discover sequences of events leading the system from its nominal state to its failure state.

4.3. COMPILATION ALGORITHM 85

Figure 4.3: Fault Tree Analysis with AltaRica 3.0 models

4.3 Compilation algorithm

The automatic generation of a Fault Tree from an AltaRica 3.0 model is performed according to the
following ideas:

• The basic events of the Fault Tree are the events of the AltaRica 3.0 model.

• There is (at least) an intermediate event for each pair (variable, value) of the AltaRica 3.0 model.

• For each minimal cutset of the Fault Tree rooted by an intermediate event (variable, value),
there exists at least one sequence of transitions in the AltaRica 3.0 model labeled by the events
of the cutset that ends up in a state where this variable takes this value. Moreover this sequence
is minimal in the sense that no strict subset of the minimal cutsets can label a sequence of
transitions ending up in a state where this variable takes this value.

The whole assessment process is illustrated in Figure 4.3:

• First, AltaRica 3.0 model is flattened into a Guarded Transition System (GTS) according to the
rules defined in Section 3.5.

• Then, the GTS generated by the previous step is compiled into a Fault Tree which is exported
in Open-PSA format [51].

• Finally, the generated Fault Tree is assessed with any calculation engine supporting this format,
in order to calculate minimal cutsets, probabilities of the top events, importance factors, etc.
For instance, the calculation engine XFTA [91] can be used for this purpose.

From now, assume that AltaRica 3.0 model has been flattened into a GTS G = 〈V = S]F,E, T, ι, A〉
according to the rules defined in Section 3.5. The algorithm of compilation of G into Fault Trees or
sequences of events works in 4 steps (see Figure 4.4):

Step 1: First, a given GTS G is partitioned into one or more independent GTS (see definition 2.5)
and an independent assertion.

Step 2: Second, the reachability graphs of each independent GTS are calculated.

Step 3: Then, each reachability graph is separately compiled into Boolean equations or sequences of
events.

Step 4: Finally, the independent assertion is compiled into Boolean equations.

Each of these steps is described in details in the following.

86CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Figure 4.4: Compilation of GTS into Fault Trees or event sequences

4.3.1 Compilation of labeled Kripke Structures into Boolean formulae

From now, we assume that a GTS G = 〈V,E, T,A, ι〉 describes a system that may fail. The graph
Γ = (Σ,Θ) is the reachability graph of G. The initial state, or initial variable assignment, σ0 ∈ Σ
represents the nominal state of the system. Events from E represent failures of system components.
Some states (variables assignments) σ ∈ Σ represent failure states. Paths from σ0 to these states
represent scenarios of failure.

Let us consider that the set of events E is an alphabet. Then let us denote by LE a language built
over the alphabet E and by ε an empty word. First of all, we search for all the paths π from the initial
state σ0 to each state of the graph σ and associate a word φ(σ) from LE to each state σ ∈ Σi of the
reachability graph Γ. This word φ(σ) is calculated as follows:

1.

φ(σ0) = ε

2.

φ(σ) =
∑

σk:(σk,ek,σ)∈Θ

φ(σk)⊗ ek,

where the operators
∑

and ⊗ can be interpreted in different ways.

In case of the generation of critical sequences of events the operator ⊗ is interpreted as a concate-
nation of sequences and the operator

∑
denotes sets of sequences.

In case of the compilation into Fault Trees, the operator
∑

is interpreted as a disjunction and the
operator ⊗ as a conjunction. The algorithm captures failure scenarios into a set of Boolean equations.
It produces a Boolean formula φ(v,c) for each pair (v, c), where v is a variable from V and c is its value,
c ∈ dom(v), such that the variables of φ(v,c) are events from E.

Due to the exponential blow up of the number of nodes in the Reachability graph, it is not possible
to directly generate the Reachability graph and to compile it into Boolean formulae. Means should be
found to take advantage of independence of subsystems. Thus, before proceeding to the generation of
the Reachability graph, the model should be partitioned into independent parts.

4.3.2 Partitioning

In general, components of a system fail in a relatively independent way. To ensure the efficiency of
the compilation algorithm, we should take advantage of this independence.

4.3. COMPILATION ALGORITHM 87

Figure 4.5: Partitioning of GTS

Definition 4.1 (Partition of a GTS). Partitioning of a GTS G = 〈V,E, T,A, ι〉 consists in representing
G in the following way (see Figure 4.5 as an illustration):

G = G1 ×G2 × ...×Gn] 〈V ∗, A∗, ι∗〉,

where

• Gi = 〈Vi, Ei, Ti, Ai, ιi〉, i = 1..n are independent Guarded Transition Systems in the sense of the
definition 2.5,

• × denotes the free product of GTS (see definition 2.6) and

• 〈V ∗, A∗, ι∗〉 is an independent assertion, also called a glue,

such that

• V = V1] V2] . . .] Vn] V ∗,

• E = E1] E2] . . .] En,

• T = T1] T2] . . .] Tn,

• A = A1;A2; . . . ;An;A∗, where the operator ; denotes the parallel composition of instructions,

• ι = ι1 ◦ ι2 ◦ . . . ◦ ιn ◦ ι∗, where the operator ◦ denotes the composition of functions.

The last part (the glue) does not contain any behavior. Variables in V ∗ are only flow variables, they
depend on the state variables and the flow variables of independent GTS Gi.

Partitioning is the key point of the algorithm that ensures its efficiency. A similar idea can be
found in [42].

To partition a Guarded Transition System, one needs to analyze dependencies between its tran-
sitions in order to divide them into independent groups. That is why, variables involved in each
transition, i.e. variables used in the guard and in the action of the transition, should be considered.

Definition 4.2 (Variables of a transition). Let G = 〈V,E, T,A, ι〉 be a GTS and let t = 〈e,G, P 〉 be
one of its transitions. We denote by var(t) variables involved in the transition t:

var(t) = var(G) ∪ var(P) ∪ V ′,

where V ′ are variables, such that variables from var(G)∪ var(P) depend on them via the assertion A
(see Definition 2.14):

V ′ = {v ∈ V : ∃u ∈ var(G) ∪ var(P) | u depends on v in A}

Definition 4.3 (Independence of transitions). Let G = 〈V,E, T,A, ι〉 be a GTS and let t1 and t2 be
two transitions of G. We say that two transitions t1 and t2 are independent if they do not share any
variables: var(t1) ∩ var(t2) = ∅.

88CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

The last relation enables to divide transitions and, as a consequence, events and variables into
independent sets Ti, Ei, Vi.

In practice, we consider an undirected graph GT with nodes labeled by the transitions of G. There
is an edge between two nodes of the graph GT if the transitions labeling the nodes are dependent, i.e.
var(ti)∩var(tj) 6= ∅, ti, tj ∈ T . The connected components of GT give us a partition of the transitions
and, therefore, of the variables and the events:

T = T1] T2] . . .] Tn, Ti ∩ Tj = ∅ ∀ i 6= j

E = E1] E2] . . .] En, Ei ∩ Ej = ∅ ∀ i 6= j

V = V1] V2] . . .] Vn] V ∗, Vi ∩ Vj = ∅ ∀ i 6= j

From the previous step, we have Gi = 〈Vi, Ei, Ti, ιi, Ai〉, i = 1..n, with Ai = skip ∀i = 1..n, and
〈V ∗, A, ι∗〉. We say that a flow variable v ∈ V ∗ belongs to Vi iff the following holds:

∃ w ∈ Vi, such that v depends on w in A and @ u ∈ ∪
j 6=i
Vj , such that v depends on u in A.

In other words, a flow variable belongs to a partition Gi if it depends on variables from this
partition and it does not depend on variables from other partitions.

In practice, the dependency graph GD[A] of the assertion A (see definition 2.15) enables to detect
the flow variables, belonging to each independent GTS and to partition the assertion A into indepen-
dent parts Ai according to the criterion given above. The remaining flow variables and instructions
from A constitute the independent assertion < V ∗, A∗, ι∗ >. Note that the instruction A∗ is built over
variables from V .

Example 4.2 (A Data Gathering and Processing Network). In the model of the Network System,
the transition ccf involves the variables W1.s, W2.s and W3.s. Since the transitions ccf, W1 failure,
W2.failure, W3.failure share variables, used in their guards and actions, they belong to the same
partition. Since the flow variables Wi.outFlow, i = 1..3, and SWi.inFlow, i = 1, 3 depend only on the
variables from this partition, they also belong to it. Other transitions SW1.failure, . . . , SW6.failure,
P1.failure, P2.failure are independent from each other and belong to different partitions. So the
partitioned Network System contains 9 independent GTS and an independent assertion. They are
represented by blocks in Figure 4.6.

Remark 4.1. Partitioning is a purely syntactic operation. Note that generally the partitioned GTS
does not correspond to the structure of the initial AltaRica 3.0 model. It is particularly the case of the
example given above. Only in the case of completely independent components, the partition corresponds
to the structure of the AltaRica 3.0 model.

4.3.3 Reachability Graph generation

For each independent Guarded Transition System G = 〈V,E, T, ι, A〉 its reachability graph Γ = (Σ,Θ)
is constructed according to the definition given in Section 2.5. Starting from the initial state σ0 =
Propagate(A, ι, ι), calculated using the initial variable assignment ι and the assertion A, other states
are discovered by firing step by step all transitions, fireable in the current state: if σ ∈ Σ and there is
a transition t = 〈e,G, P 〉 which is fireable in σ, then τ = Fire(t, A, ι, σ) ∈ Σ and (σ, e, τ) ∈ Θ.

4.3. COMPILATION ALGORITHM 89

block Part1

ComponentState W1.s, W3.s (init = WORKING);

ComponentState W2.s (init = STANDBY);

Boolean W1.outFlow,..., SW3.inFlow(reset = FALSE);
...

event W1 failure(delay = exponential(W1.lambda));

event W2.failure(delay = exponential(W2.lambda));

event W3.failure(delay = exponential(W3.lambda));

event ccf(delay = exponential(lambda));

transition
W1 failure: W1.s == WORKING ->

{ W1.s = FAILED;

if (W2.s == STANDBY) then W2.s = WORKING; }
W2.failure: W2.s == WORKING -> W2.s := FAILED;

W3.failure: W3.s == WORKING -> W3.s := FAILED;

ccf : W1.s==WORKING or W2.s==WORKING or W3.s==WORKING ->

{ if (W1.s == WORKING) then W1.s = FAILED;

if W1.s == WORKING and W2.s == STANDBY then W2.s = WORKING;

if W2.s == WORKING then W2.s = FAILED;

if W3.s == WORKING then W3.s = FAILED;}
assertion
W1.outFlow := W1.s == WORKING;

W2.outFlow := W2.s == WORKING;

W3.outFlow := W3.s == WORKING;

SW1.inFlow := W1.outFlow or W2.outFlow;

SW3.inFlow := W3.outFlow;

end
...

block Part9

ComponentState P2.s (init = WORKING);

parameter Real P2.lambda = 1.0e-4;

event P2.failure(delay = exponential(P2.lambda));

transition
P2.failure: P2.s == WORKING -> P2.s := FAILED;

end
block IndependentAssertion

Boolean SW2.leftFlow (reset = FALSE);

Boolean SW2.rightFlow (reset = FALSE);
...

assertion
if SW2.s == WORKING then SW2.leftFlow := SW2.rightFlow or SW2.inFlow;

if SW2.s == WORKING then SW2.rightFlow := SW2.leftFlow or SW2.inFlow;
...

SW1.rightFlow := SW2.leftFlow;

SW2.leftFlow := SW1.rightFlow;

end

Figure 4.6: Partitioned GTS representing the Data Gathering and Processing Network

90CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Example 4.3 (A Data Gathering and Processing Network). The reachability graph of the block Part1

is depicted Figure 4.7. It contains 6 nodes (or states) S0, . . . , S5, labeled by variable assignments.
Its transitions are labeled by the events of the block Part1: ccf, W1 failure, W2.failure and
W3.failure. We shall use this graph in order to illustrate how a reachability graph is compiled into
Boolean formulae.

Figure 4.7: Reachability graph of workstations

Reachability graphs for other partitions of the Data Gathering and Processing Network are trivial.
They contain only two states (when state variable s of each component is equal to WORKING and
when it is equal to FAILED) and one transition labeled by the event failure of the corresponding
component.

4.3.4 Compilation of Reachability Graphs

From now, we assume that each independent partition G = 〈V,E, T,A, ι〉 describes a system that
may fail. The graph Γ = (Σ,Θ) is the reachability graph of G. The initial state, or initial variable
assignment, σ0 ∈ Σ represents the nominal state of the system. Events from E represent failures of
system components. Some states (variables assignments) σ ∈ Σ represent failure states. Paths from
σ0 to these states represent scenarios of failure.

The principle of compilation of Γ is given in Section 4.3.1. Here we explain in details the algorithms
of:

• compilation of Γ into Fault Trees.

• generation of sequences of events from Γ.

We illustrate them on the red wire example of this chapter.

Compilation into Fault Trees

The algorithm captures failure scenarios into a set of Boolean equations. It produces a Boolean formula
φ(v,c) for each pair (v, c), where v is a variable from V and c is its value, c ∈ dom(v), such that the
variables of φ(v,c) are events from E.

Note that if {e1, . . . , ek}, ej ∈ E ∀j = 1..k, is a minimal cutset of φv,c, then there is a path in the
reachability graph Γ, such that (σ0, e1, σ1) ∈ Θ, (σ1, e2, σ2) ∈ Θ, . . . , (σk−1, ek, σk) ∈ Θ, and σk(v) = c.

In order to avoid conflicts raised by the composition of components (for more details, see [88]), we
need to consider not only events occurring along the path π but also those that do not. Finally, the
algorithm works as follows:

4.3. COMPILATION ALGORITHM 91

1. Associate with each state σ ∈ Σ a set of Boolean vectors Pσ : E → {TRUE,FALSE}, with
Pσ(ek) = TRUE if the event ek occurs along the path π from σ0 to σ.

2. Then for each couple (σ, Pσ), associate a Boolean equation φ(σ,Pσ) obtained as follows

φ(σ,Pσ) =
∧

ek∈E:Pσ(ek)=TRUE

ek
∧

ej∈E:Pσ(ej)=FALSE

ēj

3. For each state σ, associate a Boolean equation φσ obtained as follows:

φσ =
∨

(σ,Pσ)

φ(σ,Pσ)

4. Finally, for each couple (v, c), where v ∈ V is a variable and c ∈ dom(v) is its value, associate a
Boolean equation as follows:

φ(v,c) =
∨

σ∈Σ:σ(v)=c

φσ

In practice, the reachability graph is created and compiled into Boolean formulae at the same
time according to the algorithm given Figure 4.8. The algorithm comes from [88] and is adapted to
Guarded Transition Systems.

C ← {〈σ0,~0〉}, D ← ∅
while C 6= ∅ do

Let 〈σ, ~P 〉 ∈ C
C ← C \ {〈σ, ~P 〉}, D ← D ∪ {〈σ, ~P 〉}
forall t = 〈e,G,Q〉 ∈ T, σ(G) = true do

τ = Fire(Q,A, ι, σ)

C ← C ∪ {〈τ, ~P [e]← 1〉}
done

done

Figure 4.8: The algorithm to compile a GTS into Boolean expressions

Example 4.4 (A Data Gathering and Processing Network). In order to illustrate this algorithm,
consider the reachability graph given Figure 4.7. Boolean equations associated with each node (or
state) of the this graph (step 3 of the algorithm) are the following:

• φS0 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

• φS1 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

• φS2 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

• φS3 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

• φS4 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

92CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

• φS5 = ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

∨

ccf
∧
W1 failure

∧
W2.failure

∧
W3.failure

Then, Boolean equations for each couple variable and its value (v, c) (step 4 of the algorithm) are
calculated:

φ(W1.s,WORKING) = φS0
∨
φS3 φ(W1.s,FAILED) = φS1

∨
φS2

∨
φS4

∨
φS5

φ(W2.s,STANDBY) = φS0
∨
φS3 φ(W2.s,WORKING) = φS1

∨
φS4

φ(W2.s,FAILED) = φS2
∨
φS5

φ(W3.s,WORKING) = φS0
∨
φS1

∨
φS2 φ(W3.s,FAILED) = φS3

∨
φS4

∨
φS5

φ(W1.outF low,true) = φS0
∨
φS2 φ(W1.outF low,false) = φS1

∨
φS3

∨
φS4

∨
φS5

φ(W2.outF low,true) = φS1
∨
φS3 φ(W2.outF low,false) = φS0

∨
φS2

∨
φS4

∨
φS5

φ(W3.outF low,true) = φS0
∨
φS1

∨
φS4 φ(W3.outF low,false) = φS2

∨
φS3

∨
φS5

φ(SW1.inF low,false) = φS4
∨
φS5 φ(SW1.inF low,true) = φS0

∨
φS1

∨
φS2

∨
φS3

φ(SW3.inF low,true) = φS0
∨
φS1

∨
φS4 φ(SW3.inF low,false) = φS2

∨
φS3

∨
φS5

Boolean equations generated from other reachability graphs are very simple. For example,

φ(SW1.s,WORKING) = SW1.failure

φ(SW1.s,FAILED) = SW1.failure

Generation of sequences of events

In the case of generation of critical sequences of events the operator ⊗ is interpreted as a concatenation
of sequences and the operator

∑
denotes sets of sequences. The operator of concatenation will be

further noted as ·. We search for all the paths from the state σ0 to other states of the graph. Events
occurring along a path π are transformed into a concatenation of events. First, we associate with each
state of the graph a disjunction of sequences obtained by the compilation of paths. Then, we associate
with each couple (variable, value) a disjunction of sequences associated with each state, where this
variable takes this value.

Example 4.5 (A Data Gathering and Processing network). In order to illustrate this algorithm,
consider the reachability graph given Figure 4.7. Sequence generated for each state of this graph are
the following:

• φS0 = ε

• φS1 = W1 failure

• φS2 = W1 failure ·W2.failure

• φS3 = W2.failure

4.3. COMPILATION ALGORITHM 93

• φS4 = ccf +W3.failure · ccf +W3.failure ·W1 failure+W1 failure ·W3.failure

• φS5 = ccf · ccf +W1 failure · ccf + ccf ·W2.failure+
+W3.failure ·W1 failure ·W2.failure+W1 failure ·W3.failure ·W2.failure+
+W3.failure ·W1 failure · ccf +W1 failure ·W3.failure · ccf+
+W1 failure ·W2.failure ·W3.failure+W3.failure · ccf ·W2.failure+
+W3.failure · ccf · ccf +W1 failure ·W2.failure · ccf

Sequences associated with each pair (variable, value) are as follows:

φ(W1.s,WORKING) = φS0 + φS3 φ(W1.s,FAILED) = φS1 + φS2 + φS4 + φS5

φ(W2.s,STANDBY) = φS0 + φS3 φ(W2.s,WORKING) = φS1 + φS4

φ(W2.s,FAILED) = φS2 + φS5

φ(W3.s,WORKING) = φS0 + φS1 + φS2 φ(W3.s,FAILED) = φS3 + φS4 + φS5

φ(W1.outF low,true) = φS0 + φS2 φ(W1.outF low,false) = φS1 + φS3 + φS4 + φS5

φ(W2.outF low,true) = φS1 + φS3 φ(W2.outF low,false) = φS0 + φS2 + φS4 + φS5

φ(W3.outF low,true) = φS0 + φS1 + φS4 φ(W3.outF low,false) = φS2 + φS3 + φS5

φ(SW1.inF low,false) = φS4 + φS5 φ(SW1.inF low,true) = φS0 + φS1 + φS2 + φS3

φ(SW3.inF low,true) = φS0 + φS1 + φS4 φ(SW3.inF low,false) = φS2 + φS3 + φS5

Sequences generated for other reachability graphs are quite similar. For example,

φ(SW1.s,WORKING) = ε

φ(SW1.s,FAILED) = SW1.failure

4.3.5 Compilation of the independent assertion

Let us denote by U the set of variables from independent GTS:

U = V1] V2] . . .] Vn

In the previous step, ∀ u ∈ U, c ∈ dom(u) a Boolean equation φ(u,c) has been calculated.

The independent assertion 〈V ∗, A∗, ι∗〉 is transformed into a set of Boolean formulae in the following
way. For each pair (f, q), where f ∈ V ∗ is a flow variable and q ∈ dom(f) is its value, a Boolean
formula φ(f,q) is constructed according to the instructions in the assertion A∗ and Boolean formulae
{φ(u,c), u ∈ U, c ∈ dom(u)} obtained from the compilation of the independent GTS.

In order to compile the assertion into Boolean formulae efficiently, one need to separate it into
independent parts. Here we use the same technique as for the optimization of the assertion A, presented
in section 2.6. Consider GD[A∗] - the dependency graph of the assertion A∗ (see Definition 2.15). This
graph contains cycles. The strongly connected components of GD[A∗] divide variables of A∗ into sets
Wi, i = 1..m and enable to decompose the assertion A∗ into blocks of instructions A∗i , i = 1..m, where
m is the number of strongly connected components of GD[A∗]:

A∗ = A∗1;A∗2; . . . ;A∗m

The algorithm calculates Φ = {φ(v,c), v ∈ V, c ∈ dom(v)}, the set of Boolean equations, and
D = {〈v, dom(v)〉, v ∈ V }, the set of pairs that associated to each variable v its domain dom(v). It
works as follows:

94CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Φ = ∅, Φ← Φ ∪ {φ(u,c), u ∈ U, c ∈ dom(u)}
D = ∅, D ← D ∪ {〈u, dom(u)〉, u ∈ U}
CompileAssertion2BooleanExpressions(V ∗, A∗, ι∗, Φ, D)

BuildDependencyGraph(A∗, GD);
BuildStronglyConnectedComponents(GD, GSCCD);

C = ∅, C ← C ∪ V ∗
while C 6= ∅ do

Let f ∈ C
〈f, dom(f)〉 ← ComputeVariableDomain(f, GSCCD , C, Φ, D);

done

The function ComputeVariableDomain(f, GSCCD , C, Φ, D) calculates recursively the domain
of the variable f and Boolean expressions associated with each value from dom(f). It is done according
to the following principle. Let us denote by

• V ∗i - a set of variables labeling the vertices of the strongly connected component number i;

• A∗i - an instruction that calculates the values of variables from V ∗i ;

• ι∗i - an initial assignment of variables from V ∗i ;

• W ∗i - a set of variables such that variables from V ∗i depend on them.

Assume that ∀w ∈ W ∗i , dom(w) and {φ(w,c), w ∈ W ∗i , c ∈ dom(w)} has been calculated (either by
the step 3 of the algorithm or by the previous step of the recursion). Then to compute {φ(v,c), v ∈
V ∗i , c ∈ dom(v)}, one need

1. First, to compute the cartesian product of the domains of variables from W ∗i , i.e. the set

Σ = ×
w∈W ∗

i

dom(w)

2. Then, for each assignment of variables from W ∗i σ ∈ Σ:

(a) to compute a Boolean equation associated with the variable assignment σ

φσ =
∧

w∈W ∗
i

φ(w,σ(w))

(b) to compute a partial variable assignment τ : V ∗i ∪W ∗i → C as follows:

∀w ∈W ∗i τ(w) = σ(w)

(c) to complete the partial variable assignment τ by propagating the assertion A∗i :

τ = Propagate(A∗i , ι
∗
i , τ)

(d) to update Boolean equation associated with each couple (v, c), v ∈ V ∗i , such that τ(v) = c,
as follows:

φ(v,c) ← φ(v,c)

∨
φσ

In the following assume that the graph of strongly connected components GSCCD enables to:

1. Get the set of dependent variables W ∗ of the variable f via the function
GetDependentVariables(GSCCD , f).

4.3. COMPILATION ALGORITHM 95

2. Get the set of variables V ∗ belonging to the same strongly connected component as f via the
function GetVariablesFromTheSameStronglyConnectedComponent(GSCCD , f).

3. Get the instruction A∗ to calculate the value of variables from the same strongly connected
component as f via the function GetInstructionToCalculate(GSCCD , f).

4. Get the default variable assignment ι∗ of variables from the same strongly connected component
as f via the function GetDefaultAssignment(GSCCD , f).

Then the algorithm to calculate the domains of variables and the associated Boolean expressions
works as follows:

ComputeVariableDomain(f, GSCCD , C, Φ, D) returns 〈f, dom(f)〉
if 〈f, dom(f)〉 ∈ D then return 〈f, dom(f)〉
else

W ∗ ← GetDependentVariables(GSCCD , f);
V ∗ ← GetVariablesFromTheSameStronglyConnectedComponent(GSCCD , f);
A∗ ← GetInstructionToCalculate(GSCCD , f);
ι∗ ← GetDefaultAssignment(GSCCD , f);

D = ∅
forall w ∈W ∗ do

D ← D ∪ ComputeVariableDomain(w, GSCCD , C, Φ, D)

done

Σ ← ComputeCartesianProduct(D);

∀v ∈ V ∗ dom(v) = ∅, ∀v ∈ V ∗ φv = ∅
forall σ ∈ Σ do

φσ =
∧

w∈W ∗
φ(w,σ(w)), φ(w,σ(w)) ∈ Φ

Let τ : W ∗ ∪ V ∗ → C
∀v ∈W ∗ τ(v) = σ(v)
τ = Propagate(A∗, ι∗, τ)
forall v ∈ V ∗ do

dom(v)← dom(v) ∪ {τ(v)}
φ(v,τ(v)) ← φ(v,τ(v))

∨
φσ

φv ← φv ∪ {φ(v,τ(v))}
done

done

forall v ∈ V ∗ do

D ← D ∪ 〈v, dom(v)〉
Φ← Φ ∪ φv
C ← C \ {v}
if (v == f) then p = 〈v, dom(v)〉

done

return p

Remark 4.2. In the case of a Data-Flow assertion, the dependency graph does not contain any cycles
and the number of strongly connected components is equal to the number of variables and also to the
number of the assignments (as long as each variable is assigned only once). Since the number of
variables used in the right hand side of the assignments is never big, this operation is performed very
efficiently.

Example 4.6 (A Data Gathering and Processing Network). Let us explain how this algorithm
works for the independent assertion of the red wire example of this chapter. The Boolean formu-
lae for variables of the independent GTS of the Network system Wi.s, i = 1..3, Wi.outF low, i = 1..3,

96CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

SWi.s, i = 1..6, SWi.inF low, i = 1, 3 and Pi.s, i = 1, 2 have been calculated by the previous step of
the algorithm. The variables of the independent assertion V ∗ (i.e. the flow variables) depend on them
via the assertion A∗. The dependency graph of A∗ contains cycles, because acausal components have
been used in the model. Strongly connected components of this dependency graph are represented
Figure 4.9.

Variables SWi.leftF low, SWi.rightF low, i = 1..6 belong to the same strongly connected compo-
nent and depend on variables SWi.inF low, i = 1..6 and SWi.s, i = 1..6 (see Figure 4.9). Let us denote
this set of variables V ∗0 . The Boolean equations for the variables from the same strongly connected
component are calculated together.

1. We start with

φ(v,c) = ∅, ∀v ∈ V ∗0 , c ∈ dom(v)

2. For each assignment σ of variables SWi.inF low, i = 1, 3, SWi.s, i = 1..6

(a) First, the corresponding Boolean formula φπ is calculated.

(b) Then, the values of the variables from V ∗0 are calculated according to the assertion A∗ and
the assignment σ.

(c) Finally, for each variable v ∈ V ∗0 and its value c, the corresponding Boolean formula φ(v,c)

is updated as follows:

φ(v,c) ← φ(v,c)

∨
φσ

For example, consider a configuration where W1, W3 and SW6 are failed and all the other components
are working. In that case SW1.inF low = true and SW3.inF low = false. The corresponding Boolean
equation is as follows:

φσ = φ(SW1.inF low,true)

∧
φ(SW3.inF low,true)

∧
φ(SW6.s,FAILED)

∧

φ(SW1.s,WORKING)

∧
· · ·
∧
φ(SW5.s,WORKING)

Since W2 is working, W2.outF low = true and by propagation all the other variables are equal to
true. The following Boolean equations are generated:

φ(SW1.leftF low,true) ← φ(SW1.leftF low,true)

∨
φσ

...

φ(SW6.leftF low,true) ← φ(SW6.leftF low,true)

∨
φσ

The same procedure is applied recursively for all the strongly connected components of the de-
pendency graph of A∗. Finally, we obtain a set of Boolean equations {φ(v,c), v ∈ V ∗, c ∈ dom(v)}.
Along with Boolean equations obtained by the compilation of the independent reachability graphs,
they encode a set of Fault Trees for the model of the Network system.

4.3.6 Results

In this section, we give some experimental results for the red wire example of this chapter obtained
by compilation of the model into Fault Trees. For technical reasons, the Fault Trees generated by the
AltaRica 3.0 compiler are quite different from those an analyst would write. The minimal cutsets are
however the expected ones. For instance, the minimal cutsets, their probabilities and contributions
for the top event “P1 cannot send data to the plant”, defined by the observer P1failed, are given in
Table 4.3. The same results for the top events “P2 cannot send data to the plant” (observer P2failed)

4.3. COMPILATION ALGORITHM 97

Figure 4.9: Dependency graph of the Independent Assertion

and “Neither P1 nor P2 can send data to the plant” (observer P1P2failed) are summarized in Table 4.4
and in Table 4.5 respectively.

Note that the top events are specified via the observers (e.g. observers P1failed, P2failed,
P1P2failed) and their value (e.g. true). Several observers can be defined for the same AltaRica 3.0
model. Thus, several Fault Trees can be generated from a unique model.

From the generated Fault Trees, it is also possible to calculate probabilities of the top events,
importance factors, etc. Probabilities of the top events, calculated for the period from 0 to 1000
hours, are presented in Figure 4.10.

The generated Fault Trees have been assessed with XFTA [1] calculation engine.

Figure 4.10: Probability of the top events

The initial model of the Data Gathering and Processing network contains 45 variables and 12
events. The complete reachability graph contains 1536 states and 9216 transitions. The partitioned
model has 9 parts: reachability graphs of 8 parts are very similar and contain only 2 states, the last
one contains 6 states (see Figure 4.7). For comparison, execution times of the program with and
without partitioning for the red wire example of this article are given in Table 4.2. These results have
been obtained on a laptop computer with a single processor Intel Core i7, a 6GB memory and running
on Windows 7.

Table 4.2: Execution times of the program for the model of the Network system

Model Without partitioning With partitioning

Network system 4.852 sec. 0.187 sec.

98CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Rank Order Probability Contribution Minimal cutset

1 1 0.0951626 0.409152 P1.failure

2 1 0.0951626 0.409152 SW5.failure

3 2 0.00905592 0.038936 SW3.failure SW6.failure

4 2 0.00905592 0.038936 SW4.failure SW6.failure

5 2 0.00905592 0.038936 SW1.failure SW4.failure

6 2 0.00905592 0.038936 SW1.failure SW3.failure

7 1 0.00498752 0.0214439 ccf

8 2 0.000946884 0.00416035 SW1.failure W3.failure

9 3 9.01079e-5 0.00038742 SW2.failure SW6.failure W3.failure

10 3 9.42165e-6 4.05085e-5 SW3.failure W1 failure W2.failure

11 3 9.85124e-7 4.23555e-6 W1 failure W2.failure W3.failure

12 4 8.96588e-7 3.85489e-6 SW2.failure SW4.failure W1 failure W2.failure

Table 4.3: Minimal cutsets for the top event “P1 cannot send data to the plant”

Rank Order Probability Contribution Minimal cutset

1 1 0.0951626 0.425559 P2.failure

2 1 0.0951626 0.425559 SW4.failure

3 2 0.00905592 0.0404973 SW3.failure SW5.failure

4 2 0.00905592 0.0404973 SW3.failure SW6.failure

5 2 0.00905592 0.0404973 SW1.failure SW3.failure

6 1 0.00498752 0.0223038 ccf

7 2 0.000946884 0.00423438 SW1.failure W3.failure

8 3 9.01079e-5 0.000402955 SW2.failure SW5.failure W3.failure

9 3 9.01079e-5 0.000402955 SW2.failure SW6.failure W3.failure

10 3 9.42165e-6 4.21328e-5 SW3.failure W1 failure W2.failure

11 3 9.85124e-7 4.40539e-6 W1 failure W2.failure W3.failure

Table 4.4: Minimal cutsets for the top event “P2 cannot send data to the plant”

4.4. COMPILATION OF STOCHASTIC MODELS 99

Rank Order Probability Contribution Minimal cutset

1 2 0.00905592 0.103344 P1.failure P2.failure

2 2 0.00905592 0.103344 P1.failure SW4.failure

3 2 0.00905592 0.103344 P2.failure SW5.failure

4 2 0.00905592 0.103344 SW4.failure SW6.failure

5 2 0.00905592 0.103344 SW1.failure SW4.failure

6 2 0.00905592 0.103344 SW4.failure SW5.failure

7 2 0.00905592 0.103344 SW3.failure SW5.failure

8 2 0.00905592 0.103344 SW1.failure SW3.failure

9 2 0.00905592 0.103344 SW3.failure SW6.failure

10 1 0.00498752 0.0569162 ccf

11 2 0.000946884 0.0108056 SW1.failure W3.failure

12 3 9.01079e-5 0.00102829 SW2.failure SW5.failure W3.failure

13 3 9.01079e-5 0.00102829 SW2.failure SW6.failure W3.failure

14 3 9.42165e-6 0.00010752 SW3.failure W1 failure W2.failure

15 3 9.85124e-7 1.1242e-5 W1 failure W2.failure W3.failure

16 4 8.96588e-7 1.02316e-5 SW2.failure SW4.failure W1 failure W2.failure

Table 4.5: Minimal cutsets for the top event “Neither P1 nor P2 can send data to the plant”

4.4 Compilation of stochastic models

Now consider a stochastic Guarded Transition System

G = 〈V,E, T,A, ι, delay, expectation〉,

as defined in Section 2.7. In that case, a delay of firing d(t) is associated with each transition t ∈ T .
It is calculated according to the rules defined in Section 2.7. To compile Timed/Stochastic GTS into
Fault Trees or critical sequences of events, we need to abstract from the delays of transition firings.
We consider only two possible cases:

• immediate transitions, and

• timed stochastic transitions.

For all immediate transitions, the delay of firing is set to 0; for all other transitions it is set to ∞.
Let σ be an assignment of variables from V , then the delay of transition firing d(t) is abstracted as
follows:
∀t = 〈e,G,Q〉 ∈ T , such that σ(G) = true

d(t) =





0 if delay(e) = 0

∞ otherwise.

The corresponding reachability graph Γ = (Σ,Θ) is defined as follows:

100CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

1. The initial state σ0 = Propagate(A, ι, ι) belongs to Σ.

2. If σ ∈ Σ and there is a transition t = 〈e,G,Q〉 ∈ T with d(t) = 0, then the state τ =
Fire(Q,A, ι, σ) belongs to Σ and the transition (σ, e, τ) belongs to Θ.

3. If σ ∈ Σ and there is a transition t = 〈e,G,Q〉 ∈ T with σ(G) = true and d(t) =∞ and there is
no transitions t′ ∈ T , such that d(t′) = 0, then the state τ = Fire(Q,A, ι, σ) belongs to Σ and
the transition (σ, e, τ) belongs to Θ.

Note that in the case of immediate transitions (case 2), the probability p(ti) (i.e. the probability
to be fired) associated with each immediate transition ti = 〈ei, Gi, Pi〉 fireable in state σ is calculated
as follows:

p(ti = 〈ei, Gi, Pi〉) =
expectation(ei)∑

tk=〈ek,Gk,Pk〉:d(tk)=0

expectation(ek)

Step 2 of the compilation algorithm is slightly modified to take into account the definition of the
reachability graph given above. The reachability graph is constructed according to the algorithm given
Figure 4.11.

C ← {〈σ0,~0〉}, D ← ∅
while C 6= ∅ do

Let 〈σ, ~P 〉 ∈ C
flag ← false

C ← C \ {〈σ, ~P 〉}, D ← D ∪ {〈σ, ~P 〉}
forall t = 〈e,G,Q〉 ∈ T, t) = 0 do

flag ← true

τ = Fire(Q,A, ι, σ)

C ← C ∪ {〈τ, ~P [e]← 1〉}
done

if not flag then

forall t = 〈e,G,Q〉 ∈ T, σ(G) = true do

τ = Fire(Q,A, ι, σ)

C ← C ∪ {〈τ, ~P [e]← 1〉}
done

flag ← false

done

Figure 4.11: The algorithm to compile a GTS into Boolean expressions

Example 4.7 (Spare workstations with on demand failures). To illustrate how the algorithm works,
consider the subsystem of the Data Gathering and Processing network from the Example 4.1, composed
of two spare workstations W1 and W2. Moreover assume that when the spare workstation W2 is
attempted to start, it fails on demand with a probability γ, and is correctly started with a probability
1− γ.

The GTS representing a spare workstation with on demand failures is depicted Figure 4.12 and
the corresponding AltaRica 3.0 code is as follows:

4.4. COMPILATION OF STOCHASTIC MODELS 101

Figure 4.12: GTS of a spare workstation with on demand failures

domain SpareComponentState {STANDBY, WORKING, FAILED}
class OnDemandWorkstation

SpareComponentState s (init = STANDBY);

Boolean outFlow (reset = false);
Boolean demanded (reset = false);
event start(delay = 0, expectation = 1 - gamma);

event failureOnDemand(delay = 0, expectation = gamma);

event failure(delay = exponential(lambda));

parameter Real lambda = 1.0e-5;

parameter Real gamma = 0.01;

transition
start: s == STANDBY and demanded -> s := WORKING;

failureOnDemand: s == STANDBY and demanded -> s := FAILED;

failure: s == WORKING -> s := FAILED;

assertion
outFlow := s == WORKING;

end

The AltaRica 3.0 model of the subsystem is given below:

block TwoSpareWorkstations

OnDemandWorkstation W1(s.init = WORKING);

OnDemandWorkstation W2(s.init = STANDBY);

Boolean outFlow (reset = false);
assertion
W1.demanded := true;

W2.demanded := W1.s == FAILED;

outFlow := W1.outFlow or W2.outFlow;

end

In the initial state the workstation W1 is working and the workstation W2 is in standby mode.
When the workstation W1 is failed, the flow variable W2.demanded becomes true and the immedi-
ate transitions W2.start and W2.failureOnDemand become fireable. The corresponding reachability
graph is depicted Figure 4.13. Immediate transitions are represented by dashed lines and timed tran-
sitions by plane lines. The initial state S0 is marked in bold. The failure state is S2 (it is marked in
grey). It corresponds to the state, where both workstations W1 and W2 are failed.

102CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Figure 4.13: Reachability graph of the system made of two spare workstations

This reachability graph is then transformed into a set of Boolean equations. Boolean equation
corresponding to the failure state S2 is as follows:

φS2 = W1.failure
∧
W2.failureOnDemand

∧
W2.failure

∧
W2.start

∨

∨
W1.failure

∧
W2.start

∧
W2.failure

∧
W1.failureOnDemand

Note that the sequencing between events is lost during the compilation. For example, the sequence
W1.failure, W2.failureOnDemand is transformed into the conjunction

W1.failure
∧
W2.failureOnDemand.

The minimal cutsets of this Fault Tree are:

• {W1.failure,W2.failureOnDemand}

• {W1.failure,W2.failure,W2.start}

In the case of the compilation into critical sequences of events, the following sequences are gener-
ated: φS2 = W1.failure ·W2.failureOnDemand+W1.failure ·W2.start ·W2.failure

4.5 Complexity Analysis and correctness

4.5.1 Complexity

In the following, we estimate the (time) complexity of each step of the algorithm depending on the
size of the input model:

Step 1: Partitioning is a syntactical operation. The complexity of this step is linear on the size of
the GTS model generated by the previous step.

Step 2: Reachability graph generation is exponential on the number of state variables of the model
but the partitioning of the model enables not to generate the reachability graph of the whole
model. Assume that there are n Boolean state variables in the model. In the worst case (when
there is only 1 part) the complexity is O(2n). In the best case (when all state variables belong
to different parts) the complexity is O(n).

Step 3: Compilation of the reachability graphs into Boolean formulae is linear on the size of the graph.

4.5. COMPLEXITY ANALYSIS AND CORRECTNESS 103

Step 4: The independent assertion is compiled symbolically into Boolean equations. The complexity
of this operation depends on the number of strongly connected components of the dependency
graph of A∗. Let us consider that the dependency graph has m strongly connected components.
Note that in case of a Data-Flow assertion m is equal to the number of variables in V ∗. The
complexity of each step of the algorithm is exponential on the number of outgoing edges of each
strongly connected component. But in general the number of outgoing edges (i.e. the number of
variables used in the right hand side of the assignments and in conditions) is never big and then
can be considered as constant. Thus, the complexity can be considered as linear on the number
of strongly connected components of the dependency graph of A∗. In the best case, when the
assertion A∗ is Data-Flow, the complexity is linear on the number of flow variables assigned in
A∗ (O(m)). In the worst case, there is only one strongly connected component (m = 1) and
there are n outgoing edges, where n is the number of state variables of the model, the complexity
is exponential on n and the advantage of the partitioning is lost.

4.5.2 Correctness

The correctness of the algorithm relies on the following properties.

Property 4.1. Let G = G1×G2× . . .×Gn] < V ∗, A∗, ι∗ > be a partitioned GTS and let Γ = (Σ,Θ)
be a reachability graph of G. Then

Γ = (Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn)|<V ∗,A∗,ι∗>,

where

• ⊗ is the free product of reachability graphs,

• |<V ∗,A∗,ι∗> is the extension of the reachability graph by the assertion A∗, which is calculated as
follows.

Let Γ′ = Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn and Γ′ = (Σ′,Θ′). Each variable assignment σ : V \ V ∗ → C is extended
to V : τ = σ|V . The assignment τ is calculated as follows:

1. ∀v ∈ V \ V ∗ τ(v) = σ(v)

2. τ = Propagate(A∗, ι∗, τ)

Proof 4.1. The proof is based on the fact that the GTS Gi are built over distinct sets of variables
and transitions and on the fact that the variables from V ∗ are also distinct from the variables of the
independent Guarded Transtion Systems.

Let G = 〈V,E, T,A, ι〉 be a partitioned GTS:

G = G1 ×G2 × . . .×Gn] 〈V ∗, A∗, ι∗〉.

Let Γ = (Σ,Θ) be its reachability graph. Let Γi = (Σi,Θi) be the reachability graph of Gi ∀i = 1..n.
Let φ(v,c), v ∈ V, c ∈ dom(v) be a Boolean equation generated from G by the algorithm described in
Section 4.3.
According to this algorithm:

φ(v,c) =
∨

σ∈Σ:σ(v)=c

φσ, (4.1)

where φσ is a Boolean expression associated with the state σ ∈ Σ.

104CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Since Γ = (Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn)|<V ∗,A∗,ι∗>, each state σ of Γ can be represented as follows:

σ = (σ1 ◦ σ2 ◦ . . . ◦ σn)|<V ∗,A∗,ι∗>, σi ∈ Σi∀i = 1..n (4.2)

Then the Boolean expression associated with the state σ ∈ Σ can be expressed as a conjunction
of Boolean expressions φσi , σi ∈ Σi associated with states of independent reachability graphs Γi:

φσ =
∧

i=1..n

φσi , σi ∈ Σi (4.3)

As explained in section 4.3.4, φσi are obtained by the compilation of the paths of the independent
reachability graphs Γi.

Property 4.2. Let G = 〈V,E, T,A, ι〉 be a partitioned GTS:

G = G1 ×G2 × . . .×Gn] 〈V ∗, A∗, ι∗〉.

Let Γ = (Σ,Θ) be its reachability graph. Let Γi = (Σi,Θi) be the reachability graph of Gi, ∀ i = 1..n.
Let φ(v,c) be a Boolean expression, generated by the algorithm. If π = e1, e2, . . . , ek, ej ∈ E ∀i = 1..k,
is a path in the reachability graph Γ, such that (σ0, e1, σ1) ∈ Θ, (σ1, e2, σ2) ∈ Θ, . . . , (σk−1, ek, σk) ∈ Θ
and σk(v) = c, then e1 ∧ . . . ∧ ek is a cutset of φ(v,c).

Proof 4.2. Since Γ = (Γ1 ⊗ Γ2 ⊗ . . .⊗ Γn)|<V ∗,A∗,ι∗>, we can write that

σ0 = (σ1
0 ◦ σ2

0 ◦ . . . ◦ σn0)|<V ∗,A∗,ι∗>, σ
i
0 ∈ Σi ∀ i = 1..n

and
σk = (σ1

k ◦ σ2
k ◦ . . . ◦ σnk)|<V ∗,A∗,ι∗>, σ

i
k ∈ Σi ∀ i = 1..n

The path π can be projected on the independent reachability graphs Γi and represents the path from
σi0 to σik. This path can be empty. Let us denote by πΓi the projection of the path π on the reachability
graph Γi. According to the rules of compilation of reachability graphs defined in Section 4.3.4, the
Boolean expression φσik

associated with the state σik is as follows:

φσik
=

∧

ek∈πΓi

ek
∧

ej∈Ei,ej /∈πΓi

ej
∨
φ′,

where φ′ is a Boolean expression built from other paths of the graph (it may be empty).
Then from 4.3

φσk =
∧

i=1..n

φσik

φσk =
∧

i=1..n

(∧

ek∈πΓi

ek
∧

ej∈Ei,ej /∈πΓi

ej
∨
φ′
)

φσk =
∧

ek∈π
ek

(∧

i=1..n

(∧

ej∈Ei,ej /∈πΓi

ej)
))∨

φ′′,

where φ′′ represents other terms of the disjunction. As a consequence

∧

ek∈π
ek

is a cutset of φσk .
From 4.1 it is also a cutset of φ(v,c).

4.5. COMPLEXITY ANALYSIS AND CORRECTNESS 105

Property 4.3. Let G = 〈V,E, T,A, ι〉 be a partitioned GTS:

G = G1 ×G2 × . . .×Gn] 〈V ∗, A∗, ι∗〉.

Let Γ = (Σ,Θ) be its reachability graph. Let Γi = (Σi,Θi) be the reachability graph of Gi ∀i = 1..n.
Moreover assume that all the paths in the reachability graphs are labeled with distinct events (assuming
that events represent only failures of components, that means that a component cannot be failed twice).
Let φ(v,c) be a Boolean expression, generated by the algorithm. If e1, e2, . . . , ek, ej ∈ E ∀ i = 1..k, is
a cutset of φ(v,c), then there is a path in the reachability graph Γ from σ0 to σ, such that σ(v) = c
labeled by the events from the cutset.

Proof 4.3. If e1 ∧ e2 ∧ . . . ∧ ek |= φ(v,c) then from Equation 4.1
∃ at least one state σ ∈ Σ such that e1 ∧ e2 ∧ . . . ∧ ek |= φσ.
From Equation 4.3 φσ =

∧
i=1..n

φσi , σi ∈ Σi and as a consequence the projection of the conjunction

e1 ∧ e2 ∧ . . . ∧ ek to each Γi satisfies φσi:

∀i = 1..n e1 ∧ e2 ∧ . . . ∧ ek|Γi |= φσi

From now, we must prove that the projection of the cutset into Γi corresponds to a path in the
reachability graph Γi. As we have assumed that all the events in a path are distinct, then there is a
correspondence (the order does not matter) between the paths in the graph and the cutsets generated
from the paths. So, by compilation of independent reachability graphs (see section 4.3.4), the projection
corresponds to a path from σ0

i to σi (this path may be empty).
The local paths in Γi are combined into a set of corresponding paths in the reachability graph Γ.

Remark 4.3. Assume that the events can be repeated along the paths in the graphs. This may happen
when we try to compile models with repairs, i.e. models whose graphs contain cycles. It also may
happen when there is a transition of reconfiguration which is fired after a set of failures. In that case,
information is lost during the compilation of the path into a conjunction of events. If e1, e2, . . . , en
is a cutset, it corresponds, in fact, to a set of words built over the alphabet {e1, e2, . . . , en}, such that
each letter (event) ei appears at least once in the word. At least one of these words corresponds to the
path in the graph.

Summary

In this chapter we presented the algorithm to compile Guarded Transition Systems into Fault Trees and
critical sequences of events. This algorithm uses advanced partitioning techniques to take advantage
from the independence of components. It is efficient on models containing independent parts. It looses
its efficiency if the model contains only one partition (and is quite big) or if the assertion cannot be
divided into independent parts (in that case the advantage of the partitioning is lost).

In the next chapter we will present the overall architecture of the Modeling, Simulation and
Assessment platform of AltaRica 3.0 developed as a part of this thesis.

106CHAPTER 4. COMPILATION INTO FAULT TREES OR CRITICAL SEQUENCES OF EVENTS

Chapter 5

AltaRica 3.0 Modeling, Simulation and
Assessment Platform

This PhD thesis is done as a part of the AltaRica 3.0 project which aims to develop a Modeling,
Simulation and Assessment platform for AltaRica 3.0. The goal of this chapter is to present the
architecture of this platform and to describe the developed prototypes. Section 5.1 discusses the
motivations of the project. Section 5.2 describes the overall architecture of the platform. Section 5.3
presents the core library of the platform. Section 5.4 gives an overview of the implementation of
the stepwise simulator. Section 5.5 describes the implementation of the compiler of AltaRica 3.0
models into Guarded Transition Systems (GTS). Finally, section 5.6 presents the implementation of
the compiler of GTS into Fault Trees.

5.1 Motivations: the AltaRica 3.0 project

The aim of the AltaRica 3.0 project [82] is to develop a modeling, simulation and assessment platform
to perform Safety Analyses with AltaRica 3.0 modeling language. Figure 5.1 presents the overview of
the project.

The new version of the AltaRica language is in the core of this project. It increases the expressive
power of AltaRica Data-Flow without decreasing the efficiency of the assessment algorithms. The
semantics of AltaRica 3.0 is defined in terms of Guarded Transition Systems (GTS) (see Chapter 2).

The project aims to develop the following assessment tools:

• The compiler from AltaRica 3.0 to Guarded Transition Systems;

• The stepwise simulator for Guarded Transition Systems;

• The graphical simulator of AltaRica 3.0 models;

• The compiler from Guarded Transition Systems to Fault Trees;

• The Fault Tree assessment tool XFTA;

• The Sequence Generator for Guarded Transition Systems;

• The compiler from Guarded Transition Systems to Markov chains;

• XMRK, a tool to assess multi-phase Markov chains with rewards;

• The Stochastic Simulator for Guarded Transition Systems;

• The Model-checker for Guarded Transition Systems;

107

108CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

Figure 5.1: The AltaRica 3.0 project

• The Reliability allocation module for Guarded Transition Systems.

These tools enable the user to perform virtual experiments on systems, to perform end-to-end
risk assessment with AltaRica 3.0 and also to do cross check calculations. Thanks to these tools
AltaRica models can be used to perform Preliminary System Safety Analysis (PSSA) and System
Safety Analysis (SSA).

In other words, with AltaRica 3.0 models, it will be possible:

• To perform Fault Tree Analysis (FTA) for static and some kinds of dynamic models;

• To calculate different probabilistic indicators for dynamic models using Markov chain analysis;

• To perform stochastic simulation of dynamic models;

• To verify system and models properties using model-checking techniques;

• To graphically simulate the model in order to validate it;

• To perform reliability and availability allocation for different components given the overall ob-
jective.

AltaRica models are first compiled into Guarded Transition Systems (GTS). As seen in Chapter 2,
GTS generalize classical safety formalisms, such as Reliability Block Diagrams and Markov chains.
It is a pivot formalism for Safety Analyses: other safety models can be compiled into GTS to take
benefits from the assessment tools.

In the AltaRica 3.0 project, it is also planned to develop bridges with other tools, especially to work
on the integration of system architecture with Safety Analyses through the development of methods
and tools to synchronize models of both disciplines.

As part of my thesis, the prototypes of the following tools have been developed:

5.2. OVERALL ARCHITECTURE OF THE PLATFORM 109

• The compiler from AltaRica 3.0 into Guarded Transition Systems;

• The compiler from Guarded Transition Systems into Fault Trees;

• The stepwise simulator for Guarded Transition Systems;

• The AltaRica 3.0 textual editor based on Eclipse XText.

Moreover, the overall architecture of the platform has been defined. The achieved developments are
described in the following sections.

5.2 Overall architecture of the platform

The overall architecture of the platform is given Figure 5.2. All prototypes of the platform have been
developed in C++ to ensure their efficiency.

Figure 5.2: Architecture of the platform

XGTSInfrastructure: Library of basic classes. It includes containers, graph structures, parsers for
XML files, classes to represent Abstract Syntax Trees (AST), etc. . . This library is used by the
library XGTSCore and all the other tools of the project.

XGTSCore (LOC1 = 9088): Library of classes, common to all the tools of the project. It contains
data structures to represent Guarded Transition Systems, classes to read and write, to optimize,
to simulate Guarded Transition System and to generate Reachability graphs for them. It uses
the XGTSInfrastructure library and is used by all the other tools of the project.

XARCompiler (LOC = 7584): The compiler from AltaRica 3.0 to Guarded Transition Systems.
This tool takes a file containing an AltaRica 3.0 model in input and generates a Guarded Transi-
tion System in XML or textual format. It uses both the XGTSInfrastructure and the XGTSCore
libraries.

XGTSStepSim (LOC = 985): The stepwise simulator for Guarded Transition Systems. It is an
interactive tool. It takes a GTS in XML format in input and enables the user to simulate the
model step by step. It uses both the XGTSInfrastructure and the XGTSCore libraries.

XGTSFTCompiler (LOC = 5881): The compiler from Guarded Transition Systems to Fault Trees.
It takes a Guarded Transition System in XML format in input and generates the corresponding
Fault Tree in Open-PSA format [51]. It uses both the XGTSInfrastructure and the XGTSCore
libraries.

110CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

XGTSMCGenerator: The compiler from Guarded Transition Systems to Markov chains (using ap-
proximation techniques sketched in [21]) It uses both the XGTSInfrastructure and the XGTSCore
libraries and is developed by another member of the project.

XGTSSSTOSim The stochastic simulator [9] for Guarded Transition Systems. It uses both the
XGTSInfrastructure and the XGTSCore libraries and is based on the compilation techniques
developed by M.T. Khuu in his PhD thesis [58]. It is developed by another member of the
project.

Each package is compiled via a makefile. All the makefiles have the same structure. They contain
the following targets:

install: to create all the necessary directories for the compilation;

compile: to compile the project;

all: to generate all the necessary files (e.g. files generated by flex and bison) and to compile the
project;

test: to launch the application on a test case (not available for libraries).

tests: to launch a set of unit tests (not available for libraries).

clean: to clean the project;

cleanAll: to delete all the automatically generated files and to clean the project.

5.3 XGTSCore library

The library XGTSCore contains 9088 lines of code and 55 classes. This library is shared by all the
assessment tools. It is composed of the following packages:

XGTSModel: Data structures to represent Guarded Transition Systems (GTS). Partial class dia-
grams representing GTS are given in Figures 5.3– 5.5.

XGTSXMLParser: To read files with GTS in XML format and load them in memory.

XGTSPrinter: To print a GTS in XML or text format.

XGTSOptimizer: To optimize a GTS according to the principles presented below.

XGTSReachabilityGraph: To generate a reachability graph of a GTS according to the definition
given in Section 2.5.2.

XGTSStepSimulator: To simulate a GTS step by step. The stepwise simulation is performed
according to the algorithm described in Section 2.6.3.

5.3.1 Optimization of Guarded Transition Systems

The optimization of a Guarded Transition System is done in two steps. The first step consists in the
separation of the assertion into independent parts according to the algorithm described in Section 2.6.3.
This optimization enables:

• To detect if the assertion is Data-Flow (see definition 2.17) and to find the optimal execution
order of the instructions in the assertion.

5.3. XGTSCORE LIBRARY 111

Figure 5.3: GTS class diagram: global view

Figure 5.4: GTS class diagram: instructions

112CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

Figure 5.5: GTS class diagram: distributions

• To separate the assertion into independent parts and to find the optimal execution order of the
independent parts.

The second optimization is based on the following observation. The firing of a transition is per-
formed in two steps (see Section 2.5):

• First, the action of the transition is executed to update the value of the state variables.

• Second, the assertion is executed to calculate the value of the flow variables according to the
value of the state variables.

Since the action of a transition does not generally modify all the state variables of the model, not
all the flow variables must be recalculated but only those that depend on the state variables updated
by the action of the transition. We use this fact to compute its own assertion for each transition of
a model. In practice, this is done using the dependency graph of the assertion (see definition 2.15).
This graph enables to find all the flow variables depending on a given set of state variables and to
build the instruction to calculate them. Finally, each transition has its own assertion.

The optimization of a GTS can be performed at the compilation of the AltaRica 3.0 model or at
the beginning of the assessment by all the tools.

5.4 Stepwise simulator

The stepwise simulator is a command line tool. It enables to load a GTS and to simulate it step by
step. The following commands are available:

help: to print the list of available commands.

print gts: to print the loaded GTS model.

print v(ariables)? to print the value of the variables in the current state.

print o(bservers)? to print the value of the observers in the current state.

5.5. ALTARICA 3.0 COMPILER 113

print tr(ansitions)? to print the list of the transitions, fireable in the current state.

print h(istory)? to print the execution history, i.e. the list of transitions that have been fired from
the beginning of the simulation.

fire i to fire the transition number i.

back to undo the last transition firing.

reset to restart the simulation.

set (no)? trace to turn on/off the trace mode.

set (no)? display to turn on/off the display mode. In the display mode, the values of the observers
and the fireable transitions are automatically displayed after each transition firing.

q(uit)? to exit the program.

To be able to perform graphical simulation of models, it is possible to couple the stepwise sim-
ulation with an Interpreter of Graphical Animation models. The principle is described in details in
Appendix C.

The stepwise simulator (XGTSStepSim) contains 985 lines of code and 4 classes. It uses the pack-
age XGTSStepSimulator of XGTSCore library to execute transitions. The class diagram of XGTSStep-
Sim is depicted in Figure 5.6. The class XGTSStepSim is the main class of this project: it performs
the execution of user commands listed above. It contains the instances of the following classes:

• XGTSContext, which represents the initial context, i.e. the initial value of variables. It is
used to reset the simulation.

• XGTSInterpretedStepper, which contains an instance of loaded GTS model. It is used to
simulate the model.

• XGTSStepSimMessenger, which regroups and prints all the messages of the tool. It is a
good software engineering practice to regroup all messages of the program together.

• XGTSStepSimHistoryManager, which is used to store all the transitions fired by the user
from the beginning of the simulation.

5.5 AltaRica 3.0 compiler

AltaRica 3.0 compiler transforms AltaRica 3.0 models (possibly separated into several files) into
Guarded Transition Systems according to the principles given in Section 3.5.

The project XARCompiler contains 7584 lines of code and 36 classes. It uses XGTSInfrastructure
and XGTSCore libraries. It is composed of the following packages:

XARParser: Contains all the necessary files to automatically generate a parser for AltaRica 3.0
models using flex and bison.

XARModel: Data structures used to store AltaRica 3.0 models in memory.

XARApplications: Contains all the classes used to compile AltaRica 3.0 models into GTS. They
are presented hereafter.

Figure 5.7 represents the different steps of the compilation of an AltaRica 3.0 model:

114CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

Figure 5.6: Stepwise simulator class diagram

Figure 5.7: Compilation of AltaRica 3.0 models

Step 1 (XARParser): The first step consists in reading an input file (an AltaRica 3.0 model),
parsing it and generating a corresponding Abstract Syntax Tree (AST). During this step, the
lexical and syntactic rules are verified. XARParser is automatically generated by flex and bison
using a formal grammar description file.

Step 2 (XARModelGenerator): During this step, an AST generated by the previous step is trans-
formed into XARModel, a more appropriate data model to store AltaRica 3.0 models. The class
diagram representing an AltaRica 3.0 data model is partially depicted in Figures 5.8 and 5.9.

Step 3 (XARModelFlattener): Then the main block or class (typically the last one in the file or

5.6. FAULT TREE COMPILER 115

the one specified by the user) is flattened according to the algorithm described in Section 3.5.
During this step, some semantics rules are verified such as the circular definitions of classes
and records, the declarations of all used events, classes and blocks, the multiple definitions of
declared elements, etc.

Step 4 (XARGTSModelGenerator): During this step, synchronization are flattened according
to the algorithm presented in Section 3.5. A Guarded Transition System (XGTSModel) is
generated. All remaining semantics rules are verified: the circular definitions in synchronizations,
the declaration of all the variables used in the expressions, the declarations of all the events used
in the synchronizations, etc.

Step 5 (XARTypeChecker): XARTypeChecker2 checks types in the instructions and expressions.

Step 6 (XGTSOptimizer): This step is optional. XGTSOptimizer performs GTS optimizations
according to the principles given in Section 5.3.1.

Step 7 (XGTSPrinter): During this step, the generated XGTSModel is printed to the output file.
It can be printed either in XML format or in text format. Text format is used for debugging,
while XML format is used for the assessment tools.

If an error is detected at any step of the compilation, an exception is raised and nothing is generated.
All the error messages of the compiler are managed by the class XARCompilerErrorMessenger. It is
implemented using the singleton design pattern [40].

Figure 5.8: AltaRica 3.0 class diagram: part 1

5.6 Fault Tree compiler

The Fault Tree compiler takes a GTS in XML format in input and generates a Fault Tree in Open-PSA
format [51] according to the algorithm given in Chapter 4.

2Has not yet been implemented in the current version of the prototype.

116CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

Figure 5.9: AltaRica 3.0 class diagram: part 2

XGTSFTCompiler project contains 5881 lines of code and 28 classes. It is organized in the
following packages:

XGTSPartition: Regroups the classes used to partition a given GTS and to store it in memory.

XGTSFTCReachGraph: Regroups the classes used to generate the reachability graph of a given
GTS according to the principles explained in Section 4.4.

XGTSBOOLExp: Regroups the classes used to generate the Boolean equations from reachability
graphs and from the assertion and to store them in memory.

Figure 5.10 represents the different steps of the compilation of GTS into Fault Trees:

Step 1 (XGTSXMLParser): The first step consists in reading a GTS model in XML format and
to load it in the memory to obtain XGTSModel.

Step 2 (XGTSPartitionBuilder): During the second step, the loaded GTS is partitioned according
to the algorithm described in Section 4.3.2. A XGTSComposedModel is generated.

Step 3 (XGTSComposedModelOptimizer): The third step consists in optimizing the partitioned
GTS. Each independent GTS is optimized according to the principles given in Section 5.3.1. The
independent assertion is also optimized according to the algorithm described in Section 2.6.3.

Step 4 (XGTSFTCompiler): The fourth step is detailed in Figure 5.11. For each independent
GTS, its reachability graph is generated by XGTSRGBuilder and then this generated reachability
graph is compiled into Boolean equations by XGTSDomainBuilder according to the algorithm
given in Section 4.3.4. XGTSDomains denotes a set of pairs that associates to each pair (variable,
value) its corresponding Boolean equation. Finally, the independent assertion (XGTSAssertion)
is compiled into Boolean equations by XGTSDomainBuilder, which generates XGTSDomains
according to the algorithm described in Section 4.3.5. The result of this operation is a set
XGTSDomains, which regroups all the generated Boolean equations.

5.6. FAULT TREE COMPILER 117

Figure 5.10: Compilation of GTS into Fault Trees

Figure 5.11: Compilation of GTS into Fault Trees: the fourth step

Step 5 (XGTSFTPrinter): During the last step the generated Boolean equations are printed in a
file in Open-PSA format.

Figure 5.12 depicts partial the class diagram of the data structures used to store Boolean equations.
Alternative (more sophisticated) data structures can be used to store Boolean equations, based on
Decision Diagrams [22, 25]. These data structures have not been implemented in the current version
of the prototype.

118CHAPTER 5. ALTARICA 3.0 MODELING, SIMULATION AND ASSESSMENT PLATFORM

Figure 5.12: Boolean equations: class diagram

Summary

In this chapter, we presented the overall architecture of the Modeling, Simulation and Assessment
platform for AltaRica 3.0. The following prototypes have been developed:

• The core library of the project, used to store, to simulate and to process GTS. It is used by all
the assessment tools for GTS. Other tools for GTS, e.g. model-checker, can use this library.

• The stepwise simulator of GTS.

• The compiler of AltaRica 3.0 models into GTS.

• The compiler of GTS into Fault Trees.

All the developed prototypes will be the basis of OpenAltaRica project, held by IRT SystemX
together with industrial partners such as Airbus, Thales and Safran. The goal of this project is to
make high level modeling for Safety Analysis, based on AltaRica 3.0 modeling language, available for
a wide audience (both academic and industrial). The main objectives of the project are to:

• Implement tools for editing, animation and assessment of AltaRica 3.0 models;

• Develop libraries of reusable components and modeling patterns;

• Work on the modeling methodologies and training materials.

The developed tools will be improved in order to become robust and efficient to be able to handle
industrial scale models.

Chapter 6

Conclusion

In this PhD thesis, we worked on the Model-Based approach for Safety Assessment and, in particular,
on the new version of AltaRica – a high level modeling language dedicated to Safety Analysis. Model-
Based approach for Safety Assessment presents many advantages compared to classical approaches,
such as Fault Tree Analysis.

• First, safety models are kept close to functional and physical architectures of the systems under
study. Therefore, it gets much easier to propagate changes in system specifications and to trace
changes in safety models.

• Second, models can be graphically animated. The incident or accident scenarios can be visualized
and discussed. High level models are much easier to share amongst the different stakeholders
than low level models.

• Third, high level modeling favors the reuse of models and knowledge capitalization.

• Fourth, high level modeling languages such as AltaRica have a greater expressive power than
Boolean formalisms (e.g. Fault Trees or Reliability Block Diagrams). It is therefore possible to
capture phenomena such as spare redundancies, system reconfigurations, etc.

• Fifth, high level modeling languages such as AltaRica provide constructs to structure models
into hierarchies of components contrary to flat formalisms such as Markov chains.

• Sixth, high level modeling languages such as AltaRica have a formal semantics defined in terms
of state machines. This semantics makes it possible to enlarge the palette of assessment tools
with technologies coming from other disciplines, e.g. model-checking.

• Finally, high level modeling languages such as AltaRica make it possible to calculate performance
indicators beyond classical reliability indicators. Typically, AltaRica models have been used to
assess the average production of plants in presence of hazards (e.g. unavailability of machines
or human operators).

This is the reason why many successful industrial experiences using AltaRica (Data-Flow) have
been reported. However, even if AltaRica Data-Flow has now reached an industrial maturity, the
language and the assessment tools can still be improved. Based on an original viewpoint, which
consists in viewing a modeling language as a combination of an underlying mathematical formalism
and a paradigm to structure models, the new version AltaRica 3.0, improves the language into two
directions.

In the first part of this manuscript, we introduced in details the new underlying mathematical
formalism of AltaRica 3.0, the Guarded Transition Systems (GTS). This states/transitions formalism
dedicated to Safety Analyses makes it possible to handle systems with instant loops and to define

119

120 CHAPTER 6. CONCLUSION

acausal components (i.e. components for which input and output flows are decided at run time). In
addition, Guarded Transition Systems fulfill all the expected requirements of a modeling formalism
for Safety Analysis:

• They are event-based.

• They make it possible to easily represent remote interactions by means of flow variables and
assertions.

• GTS are compositional. They make it possible to represent reachable states in an implicit way
and to structure models into hierarchies of components and subsystems.

• GTS have a versatile synchronization mechanism, which enables to easily represent common
cause failures, shared resources, etc.

• GTS make it possible to represent acausal components and to handle looped systems.

• The semantics of (Stochastic) GTS is formally defined.

• Many efficient assessment algorithms are available for GTS.

Indeed, Guarded Transition Systems generalize classical formalisms for Safety Analysis such as Markov
chains and Reliability Block Diagrams. They can be seen as a pivot formalism for Safety studies. Other
safety models can be compiled into Guarded Transition Systems in order to take advantage from the
assessment tools.

Despite all these interesting modeling properties, Guarded Transition Systems still have several lim-
itations. First, they are not designed to capture continuous phenomena, typically modeled with Ordi-
nary Differential Equations. Some formalisms to handle continuous phenomena are Matlab/Simulink,
Modelica, Hybrid & Timed Automata. To be able to handle dynamic reliability problems (e.g. when
the failure rate of a component depends on its stress), one has to mix continuous and discrete descrip-
tions of the system. Thus, one of the scientific challenges for Guarded Transition Systems will be the
introduction of continuous variables in order to handle dynamic reliability problems.

Second, GTS are not designed to handle processes or actors which are dynamically created and
destroyed during the mission. Some formalisms to handle dynamically created processes are process
Algebras, e.g. π-calculus, Colored Petri-Nets. As seen in appendix A, PEPA nets are more adapted to
handle systems with mobile components than GTS. Modeling systems with mobile components and
components that can be created and destroyed at run time, is another scientific challenge for Guarded
Transition Systems.

In the second part of this manuscript, we presented the new structural constructs of AltaRica 3.0.
Safety models usually stand at a rather high abstraction level. Physical details are abstracted away
and only important changes of the system are modeled as events. Because they consider systems with
a high level of abstraction, safety models naturally emerge from the prototype-oriented paradigm.
However, safety models can be reused, for example to take into account the redundancy. Therefore,
they also emerge from the object-oriented paradigm. AltaRica 3.0 borrows concepts to both the
object-oriented and the prototype-oriented programming:

• Blocks can be seen as prototypes and come from prototype-oriented modeling languages,

• Classes come from object-oriented modeling languages.

AltaRica 3.0 makes a clear distinction between:

• the stabilized knowledge which is incorporated into libraries of ”on-the-shelf” modeling compo-
nents, for which classes are used; and

121

• the ”sandbox” in which the analyst is designing his model of the system under study. In the sand-
box, many components are unique (they are represented by blocks); some others are instances
of reusable components.

In that way, AltaRica 3.0 provides the analyst with powerful structuring constructs that are well-suited
for the level of abstraction of Safety Analyses.

Still, other structural operations can be introduced such as the ability to clone blocks. The same
structural constructs can be used for modeling languages coming from other engineering disciplines
(e.g. system architecture). One of the scientific challenges is to show that these structural constructs
can be used to synchronize models, coming from different engineering disciplines, and to manage them
in the collaborative databases.

In the last part of this manuscript, we worked on the compilation of GTS into Fault Trees and
critical sequences of events. The algorithm, proposed in this PhD thesis, extends the algorithm
from [88] to the case of Guarded Transition Systems. The first prototype of the Fault Tree compiler
has been developed. It has allowed the validation of the algorithm and gives the first good results.
This prototype can still be improved by using a more sophisticated data structures, based on Decision
Diagrams [22, 25], to handle Boolean equations, in order to be able to support industrial scale mod-
els. The generation of critical sequences can also be improved in order to take into account different
filtering criteria such the order of the sequence, its probability or its minimality.

This PhD thesis and all the developed prototypes (the common library for GTS, the AltaRica 3.0
compiler, the Fault Tree compiler and the stepwise simulator) will be the basis of the OpenAltaRica
project, held by IRT SystemX together with the industrial partners such as Airbus, Thales and Safran.
The goal of this project is to make high level modeling for Safety Analysis, based on AltaRica 3.0
modeling language, available for a wide audience (academic and industrial). The main objectives of
the project are:

• To implement tools for editing, animation and assessment of AltaRica 3.0 models;

• To develop libraries of reusable components and modeling patterns;

• To work on the modeling methodologies and training materials.

Thanks to this project, AltaRica 3.0 models will be designed for more and more industrial systems.
Experience will show how well-adapted the new structural constructs and the underlying mathematical
formalism of AltaRica 3.0 are for the design of safety models.

122 CHAPTER 6. CONCLUSION

Appendix A

Mobility modeling

In this chapter, we show that AltaRica modeling language can be effectively used to model systems
with mobile components and to evaluate their performance and reliability indicators. Many complex
systems have mobile components. This is typically the case of the production chains or communication
networks. Modeling and performance evaluation of such systems have specific problems. Indeed,
modeling formalisms have mostly been designed for systems whose architecture does not change during
the mission. Systems with mobile components can be quite naturally described according to the
place/component paradigm. In this paradigm, there are two types of objects:

• Topology, i.e. a number of places and neighborhood relations between these places.

• Static or mobile components, each with its own behavior. Any component is situated in a unique
place. Mobile components can change their places. Most of the interactions between components
take place between the components being located in the same place.

For example, a production chain has a number of places where the machines (static components) are
located. Products (mobile components), processed by these machines, move (or are moved) from one
place to another.

We can find in the literature several formalisms more or less dedicated to the modeling of such
systems: the π-calculus [72], PEPA (Performance Evaluation Process Algebra) Nets [41], Colored Petri
nets [53], etc.

Amongst AltaRica models, created so far, there are two main classes of models:

• Models of static systems. These simple but very huge models are basically assessed by automatic
generation of Fault Trees.

• Models of dynamic systems. They are processed by automatic generation of sequences to find
the failure scenarios and by stochastic simulation to calculate the reliability indicators.

However, the expressive power of AltaRica modeling language is not limited to these two classes of
models. We therefore try to determine whether it is suitable for the modeling of systems with mobile
components and whether the algorithms developed to assess AltaRica models could be used to evaluate
the performance of such systems.

In the following article, we compare AltaRica and PEPA Nets [41] - a modeling formalism dedicated
to systems with mobile components. A case study of a production system is used to illustrate the
concepts of both formalisms. We also propose a modeling pattern to represent systems with mobile
components using AltaRica 3.0 and present some experimental results.

123

Modeling Systems with Mobile Components:

A comparison between AltaRica and PEPA nets

Lëıla Kloul∗1,2, Tatiana Prosvirnova†2 and Antoine Rauzy‡2

1PRiSM, Université de Versailles, 45 Avenue des États-Unis, 78000 Versailles, France
2LIX, Ecole Polytechnique, route de Saclay, 91128 Palaiseau, France

Abstract

Assessing the reliability of systems with mobile components, that is components whose locations
and interactions change during the mission of the system, raises a number of specific modeling issues.
In this article, we compare two candidate modeling formalisms to do so: AltaRica and PEPA nets.
We study their respective advantages and drawbacks and we show benefits of a cross fertilization.

Keywords
Model-based safety analysis, modeling formalisms, mobility modeling, PEPA Nets, AltaRica.

1 Introduction

Many industrial systems embed mobile components, that is components whose locations and interactions
change during the mission of the system. Systems of systems, like battlefields or mobile phone networks,
enter obviously into this category. But mobile components can also be found in simpler systems, such
as production chains. Assessing the reliability of systems with mobile components raises a number of
specific modeling issues.

As an illustration, we consider in this article a simple plant that produces different types of goods
within the same production chain. To calculate the reliability and other performance indicators on
this system, one must be able to follow products individually, i.e. to capture dynamic behaviors such
as dynamic change of locations of products and dynamic change of interactions between products and
processing units.

We compare two candidate modeling formalisms to do so: PEPA nets [12] and AltaRica [7, 20].
These two formalisms have been developed by two different communities. Their “look-and-feel” are
thus quite different. Yet, their underlying mathematical foundations are very similar: both rely on state
automata and can be used to generate continuous-time Markov chains. It is therefore of interest to study
their ability to assess the reliability of systems with mobile components, their respective advantages and
drawbacks and to seek for opportunities of a cross fertilization.

PEPA nets combine the stochastic process algebra PEPA (Performance Evaluation Process Algebra
[15]) with (stochastic) colored Petri nets [16]. Components are described as processes just as in PEPA,
but they can additionally migrate from one place of the net to another, just as tokens in a colored Petri
net. Components can interact (through synchronization of their actions) only if they are located in the
same place. Operators behind PEPA nets remain simple to implement for dynamic creation/deletion
of processes is not allowed. Any PEPA net model can be eventually compiled into a continuous-time
Markov chain. The elegance of PEPA nets comes from its mathematical purity: only a very limited
number of operators is sufficient to describe complex behaviors.

AltaRica has been designed with an engineering perspective. In AltaRica, the behavior of components
is described by means of Guarded Transition Systems [18, 20]. Guarded Transition Systems (GTS)

∗Leila.Kloul@prism.uvsq.fr
†Tatiana.Prosvirnova@polytechnique.edu
‡Antoine.Rauzy@lix.polytechnique.fr

1

124 APPENDIX A. MOBILITY MODELING

Figure 1: Production system.

generalize widely used formalisms such as Reliability Block Diagrams (see e.g. [4]) and Stochastic Petri
nets [3]. Components can be assembled into hierarchies, their inputs and outputs can be connected and
their transitions can be synchronized. Any hierarchical description can be “flattened” into a unique
GTS. The semantics of a GTS is a Kripke structure (a reachability graph) that can be interpreted
as a continuous-time Markov chain, under the condition that delays associated with transitions are
exponentially distributed.

The richness of AltaRica makes it possible to design and to maintain industrial scale models [2, 6].
However, the previous versions of AltaRica embed no construct to model mobility. Since PEPA nets and
AltaRica rely on similar mathematical foundations, it was worth to establish their respective strengths
and weaknesses. This study resulted in the incorporation in the new version of AltaRica (AltaRica
3.0, still under specification) of the concept of guarded synchronization. This new concept unifies and
simplifies previous AltaRica description of transitions and synchronizations and thus it eases modeling
mobile components.

The contribution of this article is multiple. First, we examine, based on a simple example, the
issues raised by the modeling of systems with mobile components. Second, we compare PEPA nets and
AltaRica. We discuss their respective advantages and drawbacks. Third, we present the extension of
AltaRica with the concept of guarded synchronization.

The remainder of this article is organized as follows. Section 2 presents the production system we
shall use as a redwire throughout the article. Section 3 is dedicated to the related works. Section 4 and
Section 5 present respectively PEPA nets and AltaRica and illustrate their philosophies by modeling
(parts of) the production system. Section 6 compares the two approaches. Section 7 presents some
experiences, performed to calculate reliability and performance indicators. Finally, Section 8 concludes
the article.

2 Motivating Example

The example described in this section will be used as an illustration in the following sections.

2.1 Production System

We consider a production system made of two chains, as illustrated in Figure 1. The system is supplied
by a source unit S. The upper chain, consisting of processing units U1 and U2 in series, is the main chain.
The lower chain, consisting of processing units L1 and L2 in series, is a spare chain. The spare chain is
normally used for other purposes but products can be rerouted to that chain in case the main chain is
not available. The whole system supplies itself a target unit T. Units U1 and L1 on the one hand; U2
and L2 on the other hand play symmetrical roles. When either U1 or U2 fails, the other unit in the same
chain is stopped and the lower chain is attempted to start. When both U1 and U2 are restarted (after
their repair), the lower chain is stopped (or at least goes back to its primary purpose).

2

125

Figure 2: The Finite State Automaton modeling a Machine.

Figure 3: The Finite State Automaton modeling the board (of slots).

2.2 Production Units

For the sake of simplicity, source and target units are assumed to be perfect (and are never stopped).
Each processing unit (U1, U2, L1 and L2) is composed of a machine M and a board B with a number
κB of slots in which products are inserted. Source and target units can be seen simply as boards with
slots.

All machines work (and fail) the same way. They can process only one product at a time. A machine
M has a per hour failure rate λM (e.g. 1.0 10−3) when it is working. It is assumed not to fail when
it is in a standby mode. When it is attempted to be turned on, it has a probability to fail on demand
γM (e.g. 0.02), and thefore a probability 1 − γM to start correctly. It has a per hour repair rate µM

(e.g. 2.0 10−1). It is assumed to be as good as new after a repair. When a machine fails the product
it was processing (if any) needs to be reprocessed from scratch. Machines are not turned off when they
are processing a product. The finite state automata modeling a machine is pictured in Figure 2. The
machine starts to process a product, i.e. loads it, as soon as there is a non already processed product
in a slot. The time taken by the processing of a product depends on the (type of the) product. On this
figure, timed transitions are pictured with thick plain lines while instantaneous transitions are pictured
with thin dashed lines. We shall keep this convention for subsequent figures.

The finite state automata modeling the board is pictured in Figure 3. For the sake of the simplicity,
slots are not distinguished. Two actions can be performed on slots: pulling a product (from the previous
unit) and pushing a product (to the next unit). Pulling and pushing a product are actually the two faces
of the same action: transferring a product from one production unit to the next one. This action takes
some time. We can assume without a loss of generality that the average transfer time tB depends on
the board B that “pulls” the product. A board B has therefore a per hour pulling rate θB = 1/tB (e.g.
θB = 100).

3

126 APPENDIX A. MOBILITY MODELING

Figure 4: The Finite State Automaton modeling a product.

Figure 5: The Sequence Diagram for a successful processing of a product.

2.3 Products

Products are transferred from one unit to the next one. Once in the unit, a product can be either waiting
to be processed, in process, or waiting to be transferred to the next unit. The average processing time
pP depends on the product so we have a processing rate πP = 1/pP (e.g. πP = 10). Figure 4 pictures the
finite state automaton modeling a product. This automaton does not show the location of the product
(which changes with the transition transfer).

2.4 Synchronizations/Simultaneity

We described so far individual behaviors of each component of the system. To complete the description,
we need to describe which transitions are synchronized.

The sequence diagram pictured in Figure 5 shows synchronizations (horizontal lines) occurring in a
successful processing sequence of a product. On this diagram, timed transitions are represented with
plain rectangles, instantaneous transitions are represented with hatched rectangles.

The sequence diagram pictured in Figure 6 shows synchronizations occurring in a sequence in which
a failure occurs during the processing of a product. Note that timed transitions may be synchronized
with instantaneous transitions, e.g. the transition failure of the machine and the transition unload of
the product. In this case, the resulting transition is indeed timed. The instantaneous transition takes
place at the end of the timed action.

2.5 Wrap-Up

We want eventually to study the expected production of the system, throughout a given period of time
and possibly additional performance indicators such as the mean down time of the main chain.

All the above hypotheses may be not very realistic. We just tried to concentrate into a small example
a number of modeling issues:

4

127

Figure 6: The Sequence Diagram for a sequence with a failure during the processing of a product.

• Products are mobile components. Some parameters, such as the processing rate, depend on prod-
ucts. Moreover, it may be worth to observe the individual trajectories of products.

• Products have to interact with processing units. These interactions can take place only in some
locations and circumstances.

• The state of a processing unit depends on the states of other processing units, due to the command
strategy of the system.

• Some transitions are instantaneous, some other take time. Timed transitions have rates that differ
by orders of magnitude (the model is stiff).

The main modeling issue is to synchronize correctly actions of machines, boards and products and
to do that for sufficiently many products while keeping the model tractable.

3 Related Works

Classical safety formalisms, such as Reliability Block Diagrams (RBD), Markov chains and Generalized
Stochastic Petri Nets (GSPN) [3] are the most well known and widely used formalisms to assess reliability
indicators of systems.

Boolean formalisms, such as RBD, are event based, naturally hierarchical and make it possible to
describe remote interactions between components, i.e. flows of matter or information circulating through
the system. They can be easily transformed into Fault Trees and assessed with very efficient algorithms
(see e.g [19, 21]). However, Boolean formalisms put very strong constraints on events to be considered:
they are assumed to be statistically independent, thus, it is not possible to take into account the order
in which events occur any time.

States/transitions formalisms, such as Markov chains and Petri Nets, make it possible to capture
dependencies amongst components, such as cold redundancies, resource sharing and sequences of actions.
But it is quite difficult to use them, on the one hand, to represent remote interactions between components
and on the other to compose seamlessly components into hierarchies.

Currently, rare are the modeling techniques that provide modeling mechanisms for systems with
dynamic behaviors. Milner’s π-calculus [17] is a paradigmatic formalism designed to capture dynamic
behaviors, and probably one of the most widely studied. It has been developed to model communicating
and mobile agents. It is very simple yet very powerful. However, its ability to create and to delete
objects comes with a significant price in terms of assessment algorithms. This cost is so high that it is
reasonably arguable whether such powerful formalism can be used for performance analyses. Like the
π-calculus, PEPA-nets [8,11–13] are a simple modeling technique that makes possible the description of
migrations of components and of changes in their interactions. However, unlike π-calculus, the operators

5

128 APPENDIX A. MOBILITY MODELING

Table 1: Comparison of Safety formalisms.

RBD Markov chains GSPN π-calculus PEPA Nets AltaRica DF*

Event based N © © © © ©
Composition

⊙
�

⊙ ⊙ ⊙ ©
Hierarchical © � � � � ©
Remote interactions © � � N N ©
Mobility modeling � �

⊙ © © N
Algorithm efficiency © ⊙ ⊙

�
⊙ ⊙

� not suitable N acceptable
⊙

good © very good

* DF = Data-Flow

and the paradigms behind PEPA nets remain simple to implement for dynamic creation/deletion of
objects is not allowed. As all state based modeling techniques, PEPA nets formalism remains prone to
the problem of state space explosion. Moreover it does not provide a modeling mechanism to capture
remote interactions amongst components.

Petri nets based techniques may be considered candidates to dynamic systems modeling. However,
SPN models are constructed without explicit compositional structure regardless of the structure of the
system being modeled. Consequently, subsequent techniques, such as Donatelli’s Superposed GSPN
[10] and Sanders’ Stochastic Activity Networks [22] have aimed to provide mechanisms to represent
the increasing complexity of the synchronization constraints of modern systems whilst retaining the
compositional structure explicitly within the model. However, Petri nets based techniques do not provide
an appropriate mechanism to capture dynamic change of interactions between objects as they do not
allow the distinction between different contexts.

An extension of (non-stochastic) Petri nets which provides modeling concepts similar to PEPA nets is
Valk’s Elementary Object Systems (EOS) [23]. The tokens in an elementary object system are themselves
Petri nets having individual dynamic behavior. However, like all Petri nets based formalism, EOS
formalism suffers from a lack of an explicit compositional structure.

AltaRica DataFlow modeling language generalizes classical safety formalisms: it is a states/transitions
formalism that allows hierarchical structuring of models and representing remote interactions. Never-
theless it would be quite difficult, from the practical modeling perspective, to use states/transitions
formalisms to describe systems with mobile components, as presented in the example Section 2.

Table 1 summarizes this section.

4 Overview of PEPA nets

PEPA nets [12] combine the stochastic process algebra PEPA (Performance Evaluation Process Algebra)
with stochastic colored Petri nets. This hybrid formalism is motivated by the observation that, in many
systems, two distinct types of change of state can be identified: the global and local changes of states.
The resulting formalism can be used to model applications such as mobile code systems where the PEPA
terms are used to model the program code moving between the network hosts (the places in the net).

In the following, we first give an overview of the modeling language PEPA, then present the hybrid
formalism PEPA nets.

4.1 PEPA

In PEPA [15], a system is described as an interaction of components which engage, either singly or
multiply, in activities. These activities represent changes of state within a system. Each activity has
an action type and a duration which is represented by the parameter of the associated exponential
distribution: the activity rate. This parameter may be any positive real number, or the distinguished

6

129

symbol ⊤ (read as unspecified). Thus each activity is a pair (α, r) where α is the action type and r is
the activity rate. We assume a countable set of components, denoted C, and a countable set, Y, of all
possible action types. We denote by Act ⊆ Y ×R+, the set of activities, where R+ is the set of positive
real numbers together with the symbol ⊤.

PEPA provides a small but expressive set of combinators which allow expressions to be constructed
defining the behavior of components, via the activities they undertake and the interactions between
them.

Prefix (α, r).P : this is the basic mechanism for constructing component behaviors. The component
carries out activity (α, r) and subsequently behaves as component P .

Choice P + Q: the component may behave either as P or as Q: all the current activities of both
components are enabled. The first activity to complete, determined by the race condition, distinguishes
one component, the other is discarded.

Cooperation P ⊲⊳
L

Q: the components proceed independently with any activities whose types do not
occur in the cooperation set L (individual activities). However, activities with action types in the set L
require the simultaneous involvement of both components (shared activities). When the set L is empty,
we use the more concise notation P ‖ Q to represent P ⊲⊳

∅
Q.

The published stochastic process algebras differ on how the rate of shared activities are defined [14]. In
PEPA the shared activity occurs at the rate of the slowest participant. If an activity has an unspecified
rate, denoted ⊤, the component is passive with respect to that action type. This means that the
component does not influence the rate at which any shared activity occurs.

Hiding P/L: the component behaves as P except that any activities of types within the set L are
hidden, i.e. they exhibit the unknown type τ and can be regarded as an internal delay by the component.
These activities cannot be carried out in cooperation with another component.

Constant A
def
= P : Constants are components whose meaning is given by a defining equation. A

def
=

P gives the constant A the behavior of component P . This is how we assign names to components
(behaviors).

The evolution of a PEPA model is governed by the Structured Operational Semantics (SOS) rules of
the language. These rules define the admissible transitions or state changes associated with each combina-
tor. They give rise to a multi-labeled transition system or derivation graph from which a continuous-time
Markov chain can be derived.

Example: Consider the upper train of the production system described in Section 2. If we want to
model the first processing unit, U1, one can use two PEPA components, namely Machine1 and Product.
The first component models the behavior of the machine in the processing unit, whereas the second one
models the items provided by the source, in order to be processed by U1.

• ComponentMachine1: when the processing unit is working properly, it first loads a new item if this
one is available. This is modeled using action type load1 which rate l1 is supposed to be high as the
action of loading is assumed to be instantaneous. Once the item loaded, three different events may
occur: the processing of the item, a failure of the machine, or the arrival of an order for the machine
to be switched off because U2, the other processing unit in the main train, is in the failure state.
The three events are modeled using action types process1, failure1 and turnOff1, respectively.
In the failure state Machine1 FAILED, the machine can be either repaired (action type repair1),
or receive a turn off order that will not make the component change state. When repaired, the
machine is stopped (state Machine1 OFF) until a switch on order is received. This is modeled
using activity (turnOn1, 1− γu1), whereas the occurrence of a failure on demand is modeled using
activity (failureOnDemand1, γu1). The initial state of the component is Machine1 ON . Thus,

7

130 APPENDIX A. MOBILITY MODELING

the complete component is defined as follows:

Machine1 ON
def
= (load, l1).Machine1 WORKING

+ (failure1, λu1).Machine1 FAILED

+ (turnOff1, s1).Machine1 OFF

Machine1 WORKING
def
= (process1, πp).Machine1 ON

+ (failure1, λu1).Machine1 FAILED

Machine1 FAILED
def
= (repair1, µu1).Machine1 OFF

+ (turnOff1, s2).Machine1 FAILED

Machine1 OFF
def
= (turnOn1, s2 × (1− γu1)).Machine1 ON

+ (failureOnDemand1, s0 × γu1).Machine1 FAILED

As loading a product to be processed is assumed to be an instantaneous action and does not really
make the machine change state, we do not consider it in the PEPA model. However, we have to
take into account the instantaneous events failure on demand, turn off and turn on, because
they make the machine change states. For that we suppose that these actions occur at the rates
s0, s1 and s2, respectively.

• Component Product: it can be defined by the loading and processing undertaken in unit U1 as
follows:

Product
def
= (load1,⊤).P roduct′

Product′
def
= (process1,⊤).P roduct

In this component the rates associated with action types load1 and process1 are unspecified; com-
ponent Machine1 specifies the rate at which the loading and the processing occur.

• The behavior of the complete processing unit U1 is modeled using the PEPA equation which
specifies that components Machine1 and Product must cooperate (synchronize) on action types
load1 and process1.

U1
def
= Machine1 ON ⊲⊳

{load1,process1}
Product

4.2 PEPA nets

As PEPA nets combine PEPA with colored stochastic Petri nets, two types of change of state are possible:
the transitions of PEPA components and the firings of the net. Transitions of PEPA components will
typically be used to model small-scale (local) changes of state as components undertake activities. Firings
of the net will be used to model macro-step (global) changes of state such as context switches or mobile
software agents moving from one network host to another.

A PEPA net is made up of PEPA contexts, one at each place in the net. A context consists of a
number of static components (possibly zero) and a number of cells (at least one). A cell is a storage
area dedicated to storing a PEPA component of the specified type. The components which fill cells are
the mobile components and can circulate as the tokens of the net. In contrast, the static components
cannot move.

The mobile components or tokens of a PEPA net are terms of the PEPA stochastic process algebra
which define the behavior of components via the activities they undertake and the interactions between
them. Thus each token has a type given by its definition. This type determines the transitions and
firings which a token can engage in. It also restricts the places in which it may be, since it may only
enter a cell of the corresponding type.

As the firings, on the one hand, and the transitions, on the other hand, are special cases of PEPA
activities, we differentiate the action types associated with each of these. We denote by Yf the set of
action types at the net level and by Yt the set of action types inside the places such that Y = Yf ∪ Yt.
Similarly, we denote by Act t ⊆ Yt × R+ the set of activities undertaken by the components inside the
places and by Actf ⊆ Yf × R+ the set of activities at the net level such that Act = Actf ∪ Act t.

8

131

Definition 4.1 A PEPA net V is a tuple V = (P , T , I, O, ℓ, π,FP ,K,M0) such that

• P is a finite set of places;

• T is a finite set of net transitions;

• I : T → P is the input function;

• O : T → P is the output function;

• ℓ : T → (Yf ,R+ ∪ {⊤}) is the labeling function, which assigns a PEPA activity ((type, rate) pair)
to each transition. The rate determines the negative exponential distribution governing the delay
associated with the transition;

• π : Yf → N is the priority function which assigns priorities (represented by natural numbers) to
firing action types;

• FP : P → P is the place definition function which assigns a PEPA context, containing at least one
cell, to each place;

• K is the set of token component definitions;

• M0 is the initial marking of the net.

PEPA net behavior is governed by structured operational semantic rules. These consist of the original
rules for PEPA and some additional rules capturing the meaning of a cell, as well as the enabling and
firing rules of the net level structure [12]. The states of the model are the marking vectors, which have
one entry for each place of the PEPA net. The semantic rules govern the possible evolution of a state,
giving rise to a labeled transition system or derivation graph. The nodes of the graph are the marking
vectors and the activities (individual, shared or firing activities) give the arcs of the graph. This graph
gives rise to a CTMC which can be solved to obtain a steady-state probability distribution from which
performance measures can be derived.

The syntax of PEPA nets is given in Figure 7.

N ::= D+M (net)

(definitions and marking)

M ::= (MP, . . .) (marking) D ::= I
def
= S (component defn)

MP ::= P[C, . . .] (place marking) | P[C]
def
= P [C] (place defn)

| P[C, . . .]
def
= P [C]⊲⊳

L
P (place defn)

(marking vectors) (identifier declarations)

S ::= (α, r).S (prefix) P ::= P ⊲⊳
L

P (cooperation) C ::= ‘ ’ (empty)

| S + S (choice) | P/L (hiding) | S (full)

| I (identifier) | P [C] (cell)

| I (identifier)

(sequential components) (concurrent components) (cell term expressions)

Figure 7: The syntax of PEPA nets.

In the grammar S denotes a sequential component and P denotes a concurrent component which
executes in parallel. I stands for a constant which denotes either a sequential or a concurrent component,
as bound by definition.

9

132 APPENDIX A. MOBILITY MODELING

Example: Consider the sub-system composed of source S, processing units U1 and U2, and the
target unit T of the production system described in Section 2. The PEPA net model of this sub-system
consists of four places: SOURCE, MAIN UNIT1, MAIN UNIT2 and TARGET . The net structure
of the model is depicted in Figure 8.

MAIN_UNIT 1 MAIN_UNIT 2

S1 T(transfer ,)

12 T(transfer ,)

2T T(transfer ,)

TARGETSOURCE

Figure 8: The PEPA net model.

• Place SOURCE: it models the source which supplies unit U1 with the items to process. Thus
we model each of these items using component Product (see Section 4.1) which now is a mobile
component since each item has to go through all the units of the system to be completed. Thus
the definition of component Product is enriched with activities that model the movements of the
component between the places. These activities label the firing transitions on the net structure
(Figure 8).

Product
def
= (transferS1,⊤).P roduct1

Product1
def
= (load1,⊤).P roduct′1

Product′1
def
= (process1,⊤).P roduct2

Product2
def
= (transfer12,⊤).P roduct3

Product3
def
= (load2,⊤).P roduct′3

Product′3
def
= (process2,⊤).P roduct4

Product4
def
= (transfer2T,⊤).P roduct

Place SOURCE consists solely of the items to provide to unit U1. Thus initially all the items are
in this place.

SOURCE[, . . . ,]
def
= Product[Product]|| . . . ||Product[Product]

• Place MAIN UNIT1: it models the processing unit U1. The behavior of the corresponding pro-
cessing machine is modeled using static component Machine1 (see Section 4.1).

The whole place is then modeled as the interaction of Machine1 and mobile component Product
on action type process1. The maximum number of mobile components in the place corresponds to
the storage capacity of unit U1, that is κU1 .

MAIN UNIT1[, . . . ,]
def
= Machine1 ON ⊲⊳

{process1}
(Product[]|| . . . ||Product[])

• Place MAIN UNIT2: it models the behavior of processing unit U2 which has the same behavior
as U1. Thus we use a similar component, namely Machine2, to model the processing machine in

10

133

U2.

Machine2 ON
def
= (load2, l2).Machine2 WORKING

+ (failure2, λu2).Machine2 FAILED

+ (turnOff2, s
′
1).Machine2 OFF

Machine2 WORKING
def
= (process2, πp).Machine2 ON

+ (failure2, λu2).Machine2 FAILED

Machine2 FAILED
def
= (repair2, µu2).Machine2 OFF

+ (turnOff2, s
′
2).Machine2 FAILED

Machine2 OFF
def
= (turnOn2, s

′
2 × (1− γu2)).Machine2 ON

+ (failureOnDemand2, s
′
0 × γu2).Machine2 FAILED

The complete place is then modeled as the cooperation of Machine2 ON and Product on action
types load2 and process2.

MAIN UNIT2[, . . . ,]
def
= Machine2 ON ⊲⊳

{load2,process2}
(Product[]|| . . . ||Product[])

Similarly to MAIN UNIT1, the maximum number of components Product in MAIN UNIT2 is
κU2 , the storage capacity of unit U2.

• Place TARGET : it models the target unit and consists solely of the finished items arriving from
unit U2. Initially, it is empty.

TARGET [, . . . ,]
def
= Product[]|| . . . ||Product[]

Note that the maximum number of components Product in places SOURCE and TARGET is
defined by storage capacity κS and κT , respectively.

5 AltaRica Overview

AltaRica is a high level modeling language initially dedicated to safety analysis. The first version of
AltaRica modeling language has been developed in LaBRI in ninetieth [5]. A few years later, a second
(data-flow) version has been developed to handle industrial scale models that the first version, too
expressive, was inefficient to tackle. A number of processing tools have been developed for AltaRica such
as compilers to Fault Trees, compilers to Markov chains, generators of critical sequences, model-checkers
and stochastic simulators. Several Integrated Modeling Environments use AltaRica as their internal
representation language.

The third version (AltaRica 3.0) is under specification at the time we write these lines. AltaRica
3.0 will be a major evolution of the language (and the processing tools). This new version integrates
notions of object-oriented programming languages such as inheritance and prototypes. It improves the
reusability of components and knowledge capitalization. It adds also the ability to handle looped systems.
The models presented below are written in AltaRica 3.0. The formal semantics of AltaRica 3.0 is based
on the notion of Guarded Transition Systems - a states/events formalism defined in Reference [20].

5.1 Guarded Transition Systems

Guarded Transition Systems, GTS for short, are input/output automata. The state space is described
implicitly as, for instance, in Petri nets. We shall introduce here GTS by means of an example. Consider
first the automaton for the machine pictured Figure 2. The AltaRica code for this automaton is given
Figure 9.

11

134 APPENDIX A. MOBILITY MODELING

domain MachineState { OFF, ON, WORKING, FAILED }
lass Machine

MachineState state (init = OFF);Boolean demanded (reset = false);event turnOn (delay = 0, expe
tation = 1 - gamma);event failureOnDemand (delay = 0, expe
tation = gamma);event failure (delay = exponential(lambda));event repair (delay = exponential(mu));event turnOff (delay = 0);event load (delay = 0);event process;parameter Real gamma = 0.02;parameter Real lambda = 0.001;parameter Real mu = 0.1;transition
turnOn: state==OFF and demanded -> state := ON;

failureOnDemand: state==OFF and demanded -> state := FAILED;

turnOff: state==ON and not demanded -> state := OFF;

failure: state==ON or state==WORKING -> state := FAILED;

repair: state==FAILED -> state := OFF;

load: state==ON -> state := WORKING;

process: state==WORKING -> state := ON;end
Figure 9: The AltaRica code for the Finite State Automaton modeling a machine.

Variables: The internal state of the machine is represented by means of the state variable state.
state takes its value in the domain MachineState declared upfront. The initial values of state variables
(there may be several) are specified by means of the attribute init.

Another variable is declared: demanded. This variable is a Boolean flow variable. It is used to
implement the command, i.e. to tell when to turn on and off the machine. Values of flow variables
are reset after each transition firing, then updated by means of an assertion. This mechanism will be
described latter. From a syntaxic viewpoint, flow variables are introduced (and distinguished from state
variables) by means of the attribute reset.

Events: The state of the machine changes under the occurrence of an event. Events are introduced
with the keyword event. A delay is associated with each event by means of the attribute delay. In
our example, delays of events failure and repair are random variables exponentially distributed with
respective rates lambda and mu. In other words, they obey a Markovian hypothesis. Events turnOn

and failureOnDemand are instantaneous (their delay is 0). Both are fireable when the machine is OFF.
turnOn has the probability 1 - gamma to be fired while failureOnDemand has a probability gamma to be
fired in this state. This probability is given through the attribute expectation. Delays of events load
and process are left unspecified.

Transitions: A transition is a triple 〈e,G, P 〉, also denoted e : G → P , where e is an event, G is
a Boolean expression, so-called the guard (or the pre-condition) of the transition, P is an instruction,
so-called the action (or the post-condition) of the transition. Transitions are described in the clause
transitions. In the example above if the state of the processing machine is WORKING, then two transitions
are fireable: the transition labeled with the event failure and the transition labeled with the event
process. If the delay drawn for the transition failure is the shortest, then this transition is fired and
its action is executed: state is switched to FAILED.

12

135

Parameters: Parameters are constant values that come with the definition of the GTS. When the
GTS is instantiated, their values may be changed. In the above example, there are three parameters
gamma, lambda and mu that define respectively the probability of failure on demand and the failure and
repair rates.

5.2 Composition and Synchronization

The AltaRica code for the automaton describing the board (as pictured Figure 3) is given Figure 10.
This code deserves no additional explanation.
lass BoardInteger count (init = 0);event pull (delay = exponential(theta));event push (delay = 0);parameter Integer capacity = 3;parameter Real theta = 60;transition

pull: count<capacity -> count := count+1;

push: count>0 -> count := count-1;end
Figure 10: The AltaRica code for the Finite State Automaton modeling the board.

Now we can consider the model for a processing unit. AltaRica 3.0 is an object oriented language.
Therefore, the AltaRica class that describes a processing unit embeds an instance of the class describing
the machine and an instance of the class describing the board, as illustrated Figure 11.
lass ProcessingUnit

Machine M;

Board B;transition
M.load: !M.load & B.count>0 -> skip;end

Figure 11: The AltaRica code for a Processing Unit.

This combination is however not a mere product: the machine cannot load a product if the board is
empty. This additional constraint is described by means of a synchronization. The transition load of
the machine M (M.load) is synchronized with an anonymous transition that just checks that B.count is
positive and does nothing (its action is the empty instruction skip). This synchronization creates a new
transition. This transition is obtained by and-ing the guards of synchronized transitions and composing
their actions. In our case, the synchronization creates the following transition.

M.state==ON and B.count>0 -> M.state := WORKING;

A synchronization can involve any number of transitions. Transitions involved in a synchronization
cease to exist individually. It is the case here for the transition M.load. Since we don’t want to create a
fresh event for the created transition, we use the event M.load. Note finally that M.load is prefixed with
an exclamation mark (!). This modality indicates that the individual transition M.load is mandatory
for the synchronized transition to be fired. Anonymous transitions are always mandatory. The modality
? makes it possible to synchronize transitions only when they are fireable. We won’t describe it here
fully for we shall not use it in our model.

13

136 APPENDIX A. MOBILITY MODELING

5.3 Flow Variables and Assertions

In the AltaRica code for the machine, given Figure 9, the flow variable demanded is used to guard the
instantaneous transitions turnOn and turnOff. Conversely to state variables, that are initialized at the
beginning of a run and then modified through actions of transitions, the value of flow variables are recal-
culated after each transition firing. This recalculation is performed by means of assertions. Assertions
are instructions just as actions of transitions. The difference stands in that actions of transitions assign
state variables only while assertions assign flow variables only. Moreover, each component has a unique
assertion that is applied after each transition firing.

Most of AltaRica models make a great use of flow variables and assertions. They are used to model
information flows circulating through a system. They may represent physical connections between com-
ponents, control commands, fluid circulation, electric power, etc. They offer an easy and elegant way to
express dependencies on external factors.

In our example, we shall use them to a limited extent, in order to implement the command strategy.
The AltaRica code for the plant is pictured Figure 12. This code composes four processing units. When
one of the two main units fails, the other one must be stopped (possibly after finishing to process a
product) and the production must be switched to the spare line. Conversely, both units of the main line
are attempted to start as soon as they are OFF, i.e. after a repair.
lass Plant

Board S, T;

ProcessingUnit U1, U2, L1, L2;Boolean mainLineFailed, spareLineFailed (reset = false);assertion
mainLineFailed := U1.M.state==FAILED or U2.M.state==FAILED;

spareLineFailed := L1.M.state==FAILED or L2.M.state==FAILED;

U1.M.demanded := not mainLineFailed;

U2.M.demanded := U1.M.demanded;

L1.M.demanded := mainLineFailed and not spareLineFailed;

L2.M.demanded := L1.M.demanded;end
Figure 12: The AltaRica code for the Plant.

5.4 Mobile Components

It remains now to model products and to synchronize them with the plant. The AltaRica code for
products is given Figure 13. It implements the automaton pictured Figure 4.

Now, we have to synchronize the plant with a number of products. Figure 14 shows a part of the
code to do so. This code uses the same mechanism of synchronization as previously, except that more
transitions are involved in synchronizations.

6 Comparison of two approaches

Both PEPA nets and AltaRica rely heavily on state automata, but are quite different in the way they
represent them. To some extent, whether to use a Process Algebra style or a Guarded Transition Systems
style is a matter of taste. Guarded Transition Systems are probably more powerful and more compact,
thanks to the use of state variables. Aside the way automata are encoded, there are two main differences
between the two formalisms:

• AltaRica embeds the concept of flow variables. Flow variables (and assertion) make it possible to
describe remote interactions between components. Modeling such interactions with PEPA nets is
more complex, although possible.

14

137

domain ProductState { PROCESSED, TO PROCESS, IN PROCESS }domain Location { SOURCE, UNIT U1, UNIT U2, UNIT L1, UNIT L2, TARGET }
lass Product

ProductState state (init = PROCESSED);

Location location (init = SOURCE);event transfer;event load (delay = 0);event unload (delay = 0);event process (delay = exponential(pi));parameter Real pi = 10;transition
transfer: state==PROCESSED -> state := TO PROCESS;

load: state==TO PROCESS -> state := IN PROCESS;

unload: state==IN PROCESS -> state := TO PROCESS;

process: state==IN PROCESS -> state := PROCESSED;end
Figure 13: The AltaRica code for the Products.
lass System

Plant plant;

Product p1; Product p2; Product p3; . . .transition
...

plant.U1.B.pull:

!plant.U1.B.pull & !p3.transfer & p3.location==SOURCE -> p3.location := UNIT U1;

plant.U1.M.load:

!plant.U1.M.load & !p3.load & p3.location==UNIT U1 -> skip;

plant.U1.M.process:

!plant.U1.M.process & !p3.process & p3.location==UNIT U1 -> skip;

plant.U1.M.failure:

!plant.U1.M.failure & !p3.unload & p3.location==UNIT U1 -> skip;
...end

Figure 14: The AltaRica code for the System.

• PEPA nets provides a mechanism to describe component locations, while such a mechanism has to
be modeled in AltaRica.

In the remainder of this section, we shall examine both issues.

6.1 Modeling Remote Interactions between Components in PEPA nets

In PEPA nets, there is no direct means to express behavioral dependencies between components located
in different places for components can cooperate or synchronize only if they are in the same place. Thus
the notion of flows does not exist as a such. However, it is always possible to model systems with flows.
To do so we have to introduce in the model mobile components which are, a priori, unnecessary, but
which allow us to express remote interactions between components. The following example is a good
illustration of that.

15

138 APPENDIX A. MOBILITY MODELING

Example: Consider the system used in the example of Section 4.2. In order to complete modeling
the upper train of the example, actions turnOff and turnOn have to be synchronizing actions. Indeed
both machine units U1 and U2 must be stopped if one of them fails and both must be restarted if
the failure is repaired. Thus, we assume that the production system has a control center in charge of
generating the stoppage/restart orders. When a failure occurs at the upper train, the control center has
to send a stoppage signal to the working unit in the main train, and a start signal to the units in the
spare train. Once the failed unit is repaired, the control center has to stop the spare train while starting
the upper train again.

The net structure of the corresponding PEPA net model is depicted in Figure 15. This structure
consists of the net structure in Figure 8 to which a new place, namely CENTER, has been added. This
place models the control center of the production system.

T(ack ,)1

(ack,)T T(ack,)

2(ack ,)T

S1 T(transfer ,)

12 T(transfer ,)

2T T(transfer ,)

2(call_U ,)T

1(call_U ,)T

T(call_C,)T(call_C,)

SOURCE CENTER TARGET

MAIN_UNIT MAIN_UNIT1 2

Figure 15: The net structure of the PEPA net model.

In the new PEPA net model, the definitions of places SOURCE and TARGET remain unchanged.
However, the definitions of places MAIN UNIT1 and MAIN UNIT2 have to be changed in order
to take into account their interactions with the control center. In the case of the interaction between
MAIN UNIT1 and CENTER, we use two mobile components, Signal 1 and Signal C. The role of
the former is to inform the control center about the state of the machine in U1 (failed, repaired). The
reception of this information is then acknowledged to U1, using the same mobile component (Signal 1).
The latter is sent by the control center to U1 in order to stop/start its machine in the case of the
failure/repair of the machine in U2. Thus MAIN UNIT1 is defined as follows.

MAIN UNIT1[, . . . ,]
def
= ((Signal C[]||Signal 1[Signal 1])⊲⊳

L
Machine1 ON)

⊲⊳
{process1}

(Product[]|| . . . ||Product[])

where L = {turnOn1, turnOff1, failureOnDemand1} and mobile component Signal 1 has the fol-
lowing behavior.

Signal 1
def
= (failure1,⊤).Signal 11

Signal 11
def
= (call C, e1).Signal 12

Signal 12
def
= (failed1, e2).Signal 13

Signal 13
def
= (ack1, e4).Signal 14

Signal 14
def
= (repaire1,⊤).Signal 15

Signal 15
def
= (call C, e1).Signal 16

Signal 16
def
= (repaired1, e2).Signal 17

Signal 17
def
= (ack1, e4).Signal 1

As specified in the equation of MAIN UNIT1, component Signal 1 is initially located in place
MAIN UNIT1. The behavior of component Signal C, which is initially located in place CENTER, is

16

139

Table 2: Comparison of Safety formalisms: AltaRica 3.0.

PEPA Nets AltaRica DataFlow AltaRica 3.0

Event based © © ©
Composition

⊙ © ©
Hierarchical � © ©
Remote interactions N © ©
Mobility modeling © N

⊙

Algorithm efficiency
⊙ ⊙ ⊙

� not suitable N acceptable
⊙

good © very good

defined as follows:

Signal C
def
= (failed2,⊤).Signal C1 + (repaired2,⊤).Signal C1

Signal C1
def
= (call U1, e1).Signal C2

Signal C2
def
= (turnOff, e2).Signal C3 + (turnOn, e3).Signal C3

Signal C3
def
= (ack, e4).Signal C

Similarly place MAIN UNIT2 is changed in order to include two mobile components, namely
Signal 2 and Signal′ C. These components are similar to Signal 1 and Signal C, respectively. Thus,
place CENTER can be modeled as the interaction between the four mobiles components as follows:

CENTER[, . . . ,]
def
= (Signal C[Signal C] || Signal′ C[Signal′ C]) ⊲⊳

M
(Signal 1[] || Signal 2[])

where cooperation set M = {failed1, repaired1, failed2, repaired2}.
This example shows that it is always possible de model remote interactions between components

located in different places. However, it comes at a certain price as it requires the use of additional
components, which leads to the increase of the model size.

6.2 Modeling Mobility with AltaRica

AltaRica provides no specific construct to model mobility. The location of a component can be modeled
as symbolic state variable. In the code presented Figure 13, the type of this variable is an user declared
domain. It would be also possible to declare it just as Symbol, the set of all symbolic constants. In this
way, the topography of the underlying network could be changed without changing the code for products.

PEPA nets synchronize events on their names, so that many components can be synchronized by
means of a single rule. AltaRica requires to write down each synchronization explicitly, as sketched
Figure 14. Writing all synchronizations for all products by hand would be both tedious and error prone,
even if the concept of guarded synchronization, introduced in AltaRica thanks to the present study,
simplifies greatly the task. We are presently using scripts (typically written in Python or Pearl) to
generate automatically synchronizations. In the future, some specific constructs or some meta-modeling
facilities should be added to the language in order to avoid to use external tools.

Table 2 summarizes this section.

7 Experiments

We have performed some experiments with AltaRica and PEPA Nets models of the motivating example.
A continuous time Markov chain (CTMC) has been generated from the AltaRica model. This genera-

tion is done in the following way. First, the AltaRica model is flattened into a unique Guarded Transition
System [18, 20]. Second, the corresponding reachability graph is generated. Indeed, the semantics of a

17

140 APPENDIX A. MOBILITY MODELING

Mobile products AltaRica PEPA Nets

MC states number Running time MC states number Running time

1 155 0.01 sec. 982936 1159 sec.

2 2473 0.62 sec. - -

3 37379 257 sec. - -

4 - - - -

Table 3: Experiments.

Mobile products Time Reliability Availability

1 24h 0.996656 0.999616

2 24h 0.992918 0.999156

3 24h 0.988702 0.998616

Table 4: Availability and Reliability.

Guarded Transition System is a Kripke structure (a reachability graph) with nodes defined by variable
assignments (i.e. variables and their values) and edges defined by transitions and labeled by events. If
the delays associated with the events are exponentially distributed, than the reachability graph can be
interpreted as a continuous time Markov chain. In case when the graph contains immediate transitions
(delays associated with labeling events are equal to 0), they are just collapsed using the fact that an
exponential delay with rate λ followed by an immediate transition of probability p is equivalent to a
transition with an exponential delay of rate pλ.

Similarly, we have generated a continuous time Markov chain from the PEPA nets model, using the
PEPA Workbench for PEPA nets models [1]. The semantic rules governing the possible evolution of a
state, give rise to a multi-labelled transition system or derivation graph. The nodes of the graph are
the marking vectors and the activities (individual, shared or firing activities) give the arcs of the graph.
This graph gives rise to a CTMC.

As it is shown in Table 3, the size of the generated Markov chains grows exponentially with the number
of mobile products, and this in both cases. However, the problem of exponential growth is more striking
in the case of PEPA nets models. Indeed for a model containing only one mobile product, the generated
Markov chain has almost one million states. For more than one product, the PEPA Workbench just
could not generate the associated Markov chain. This is due to the fact that flows cannot be represented
implicitly with PEPA nets; they have to be explicitly modeled using additional components. In our
model, four components, with eight, five, eight and nine states respectively, have been added into the
model, in order to take into account the flows in the system. Moreover, unlike in AltaRica model, we
had to model explicitly the control center by adding a place in the model, and consequently increasing
the model size.

The generation of Markov chains seems to be hardly usable in case of such a complex model. It might
be promising to generate an approximated Markov chain as proposed in [9].

The generated Markov chains can be assessed with specific tools in order to calculate performance
indicators. Some results of system availability and reliability, calculated for the AltaRica model are given
in Table 4.

It would be more interesting and efficient in our case to perform stochastic simulations of models.
Thus, the model captures not only failures and repairs of components, but also their functional behavior
(e.g. pulling, processing and loading of products), we need to focus on short periods of time (e.g. 24h
against 10000h in traditional reliability studies) to calculate performance indicators.

18

141

8 Conclusion

In this article, we showed that assessing the reliability of systems with mobile components raises a number
of specific modeling issues. Most of these issues stand in the modeling of interactions between compo-
nents: these interactions can take place only under certain conditions, but many different components
can exhibit the same behavior.

We investigated the relationship between PEPA nets, a performance modeling process algebra, and
AltaRica, an engineering oriented modeling language for safety analysis. These formalisms rely on very
similar mathematical foundations: they are based on finite state automata and they can be compiled
into Markov chains. Thus, we have sought to compare their expressiveness at the modeling, rather than
at the Markovian, level. Our comparison revealed that AltaRica provides no direct mechanisms for
mobility modeling, in particular it does not allow modeling location dependent synchronizations. Thus
we have enhanced AltaRica by incorporating this modeling construct and showed that it offers increased
flexibility to the modeler. On the other way round, while the flow in a system can be naturally modeled
with AltaRica, PEPA nets provide no direct modeling mechanisms for it. The net structure prevents a
direct modeling of remote interactions between components located in different places.

References

[1] http://www.dcs.ed.ac.uk/pepa/tools/.

[2] R. Adeline, J. Cardoso, P. Darfeuil, S. Humbert, and C. Seguin. Toward a methodology for the
altarica modelling of multi-physical systems. In Proceedings of European Safety and Reliability
Conference, ESREL 2010, Rhodes (Greece), September 2010.

[3] M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Gener-
alized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons, 1994.

[4] J. Andrews and T. Moss. Reliability and Risk Assessment. John Wiley & Sons, 1993. ISBN
0-582-09615-4.

[5] A. Arnold, A. Griffault, G. Point, and A. Rauzy. The altarica language and its semantics. Funda-
menta Informaticae, 34:109–124, 2000.

[6] P. Bieber, J.-P. Blanquart, G. Durrieu, D. Lesens, J. Lucotte, F. Tardy, M. Turin, C. Seguin,
and E. Conquet. Integration of formal fault analysis in assert: Case studies and lessons learnt.
In Proceedings of 4th European Congress Embedded Real Time Software, ERTS 2008, Toulouse
(France), January 2008.

[7] M. Boiteau, Y. Dutuit, A. Rauzy, and J.-P. Signoret. The altarica data-flow language in use:
Assessment of production availability of a multistates system. Reliability Engineering and System
Safety, 91:747–755, 2006.

[8] J. Bowles and L. Kloul. Synthesising pepa nets from iods for performance analysis. In Proceed-
ings of the 1st ACM SIGMETRICS/SIGSOFT Joint WOSP/SIPEW International Conference on
Performance Engineering, San Jose, California, 2010.

[9] P. Brameret, A. Rauzy, and J. Roussel. Assessing the dependability of systems with repairable and
spare components. In J. Barbet, editor, Actes du Congrès Lambda-Mu 18, Octobre 2012.

[10] S. Donatelli. Superposed generalised stochastic petri nets: Definition and efficient solution. In
M. Silva, editor, Proceedings of 15th International Conference on Application and Theory of Petri
Nets, 1994.

[11] S. Gilmore, J. Hillston, and L. Kloul. Pepa nets. In M. Calzarossa and E. Gelenbe, editors,
Performance Tools and Applications to Networked Systems, volume 2965, pages 311–335. LNCS,
Springer-Verlag, 2004.

[12] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Pepa nets: a structured performance modelling
formalism. Performance Evaluation, 54(2):79–104, 2003.

19

142 APPENDIX A. MOBILITY MODELING

[13] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software performance modelling using pepa nets.
In Proceedings of the 4th ACM SIGSOFT International Workshop on Software and Performance
(WOSP’04), Redwood City, California, 2004.

[14] J. Hillston. The nature of synchronisation. In U. Herzog and M. Rettelbach, editors, Proceedings of
2nd Process Algebra and Performance Modelling Workshop, November 1994.

[15] J. Hillston. Tuning systems: From composition to performance. The Computer Journal, 48(4):385–
400, 2005.

[16] K. Jensen. Coloured Petri Nets, Volume 1: Basic Concepts. Springer-Verlag, 1992.

[17] R. Milner. Communicating and mobile systems: The pi-calculus. Cambridge University Press, 1999.

[18] T. Prosvirnova and A. Rauzy. Système de transitions gardées : formalisme pivot de modélisation
pour la sûreté de fonctionnement. In J. Barbet, editor, Actes du Congrès Lambda-Mu 18, Octobre
2012.

[19] A. Rauzy. BDD for Reliability Studies. In K. Misra, editor, Handbook of Performability Engineering,
pages 381–396. Elsevier, 2008. ISBN 978-1-84800-130-5.

[20] A. Rauzy. Guarded transition systems: a new states/events formalism for reliability studies. Journal
of Risk and Reliability, 222(4):495–505, 2008.

[21] A. Rauzy. Anatomy of an efficient fault tree assessment engine. In R. Virolainen, editor, Proceedings
of International Joint Conference PSAM’11/ESREL’12, June 2012.

[22] W. Sanders and J. Meyer. Reduced base model construction methods for stochastic activity net-
works. IEEE Journal on Selected Areas in Communications, 9(1):25?36, January 1991.

[23] R. Valk. Petri nets as token objects-an introduction to elementary object nets. In Proc. of the 19th
International Conference on Application and Theory of Petri Nets, volume 1420 of LNCS, pages
1?25, Lisbon. Springer Verlag, 1998.

20

143

144 APPENDIX A. MOBILITY MODELING

Appendix B

AltaRica and Safety Analysis Modeling
Language (SAML)

Many states/transitions formalisms have been proposed in the literature to perform Safety Analyses.
In this chapter, we compare two of them: Safety Analysis Modeling Language (SAML) and AltaRica.
These formalisms have been developed by different communities. Their look-and-feel are thus quite
different. Yet, their underlying mathematical foundations are very similar: both of them rely on state
automata.

SAML was designed as a tool independent formal system specification and modeling language [46].
A SAML model is expressed in terms of finite stochastic state automata. A model may consist of more
than one automata, which are all executed in discrete time with parallel composition. Besides technical
systems with deterministic behavior, SAML may also denote failure models with stochastic behavior
and system environments which often have non-deterministic behavior. Due to the combination of
stochastic and non-deterministic specification, the semantics of a SAML model is defined as a Markov
decision process.

AltaRica [7, 88] has been designed with an engineering perspective. AltaRica models are made of
hierarchies of reusable components. Graphical representations are associated to components, making
models visually very close to Process and Instrumentation Diagrams.

It is of interest to compare both formalisms in order to study their ability to assess the reliability
of systems, to highlight their respective advantages and drawbacks and to seek for opportunities of a
cross fertilization. We compare these two formalisms according to the following axes:

• the high level structural constructions;

• the underlying finite state automata;

• the representation and interpretation of time.

145

Comparison of Modeling Formalisms for Safety Analyses: SAML and AltaRica

Michael Lipaczewskia, Frank Ortmeiera, Tatiana Prosvirnovab, Antoine Rauzyb, Simon Strucka

aOtto-von-Guericke University Magdeburg, Computer Systems in Engineering, Magdeburg, GERMANY
bLIX - Ecole Polytechnique, route de Saclay, 91128 Palaiseau cedex, FRANCE

Abstract

Many states/transitions formalisms have been proposed in the literature to perform Safety Analyses. In this paper we compare
two of them: SAML and AltaRica. These formalisms have been developed by different communities. Their ”look-and-feel” are
thus quite different. Yet, their underlying mathematical foundations are very similar: both of them rely on state automata. It is
therefore of interest to study their ability to assess the reliability of systems, their respective advantages and drawbacks and to seek
for opportunities of a cross fertilization.

Keywords: Model-based Safety Analysis, SAML, AltaRica

1. Introduction

Model based approach for Safety Analysis is gradually win-
ing the trust of safety engineers but is still a wide domain of
research. “Traditional” risk modeling formalisms, such as Fault
Trees (FT) [1], Markov Processes, Generalized Stochastic Petri
Nets (GSPN) [2], etc. are well known and widely used by
safety engineers; and efficient algorithms and tools are avail-
able to study these models. However, despite of their qualities,
these formalisms share a major drawback: models designed
with these formalisms are far from the functional architecture
of the system under study. As a consequence, models are hard
to design and to maintain throughout the life cycle of systems.
A small change in the specifications may require a complete
revisit of the safety models, which is both resource consuming
and error prone. The high-level modeling languages AltaRica
[3, 4] and SAML [5] have been created to tackle this problem.

SAML was designed as a tool independent formal system
specification and modeling language [5]. A SAML model is
expressed in terms of finite stochastic state automata. A model
may consists of more than one automata, which are all executed
in discrete time with parallel composition. Besides technical
systems with deterministic behavior SAML may also denote
failure models with stochastic behavior and system environ-
ments which often have non-deterministic behavior. Due to the
combination of stochastic and non-deterministic specification,
the semantics of a SAML model is defined as Markov decision
process.

AltaRica[3, 4] has been designed with engineering perspec-
tive. AltaRica models are made of hierarchies of reusable com-
ponents. Graphical representations are associated to compo-
nents, making models visually very close to Process and Instru-

Email addresses: frank.ortmeier@ovgu.de (Frank Ortmeier),
prosvirnova@lix.polytechnique.fr (Tatiana Prosvirnova),
rauzy@lix.polytechnique.fr (Antoine Rauzy),
simon.struck@ovgu.de (Simon Struck)

mentation Diagrams. AltaRica is used as internal representation
language by several Safety Analyses workshops: Cecilia OCAS
(Dassault Aviation), Simfia (EADS Apsys), Safety Designer
(Dassault Systèmes) and AltaRica Studio (LaBRI). AltaRica is
a formal modeling language. Efficient algorithms have been de-
veloped to assess AltaRica models: compilation to fault trees,
stochastic simulation, model-checking, generation of Markov
chains, etc.

It is of interest to compare both formalisms in order to study
their ability to assess the reliability of systems, their respective
advantages and drawbacks and to seek for opportunities of a
cross fertilization. These two formalisms are compared accord-
ing to the following axes:

• the high-level structural constructions;

• the underlying finite state automata;

• the representation and interpretation of time.

To illustrate our comparison we use a case study: a power
supply system. We present some qualitative and quantitative
results obtained with both formalisms and the advantages and
drawbacks of both formalisms.

The remainder of this article is organized as follows. Sec-
tions 2 and 3 introduce respectively SAML and AltaRica mod-
eling languages. Section 4 gives an overview of the related
works. Section 5 describes a case study, a power supply sys-
tem that will be used to illustrate both formalisms. Section 6
presents SAML model and AltaRica model of the power sup-
ply system. Section 7 gives some qualitative and quantitative
results obtained with SAML and AltaRica models. Section 8
compares both formalisms and, finally, Section 9 concludes this
article.

Preprint submitted to RESS August 21, 2014

146 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

2. SAML

2.1. The Language

This section provides a brief introduction to SAML. An ex-
tensive explanation of the semantics is out of scope of this pa-
per. The interested reader is referred to Güdemann et al. [5]. In
addition we evolved the language in the mean time. Thus we
present the model in the currently most up to date version.

Semantically, a SAML model denotes a Markov Decision
Process (MDP). This allows the modeling of time and value
discrete systems with deterministic, probabilistic and non-
deterministic aspects. For a formal definition of MDP see,
e.g. [6].

From a syntactically point of view SAML consists of a set
of components. Every component may contain additional com-
ponents and/or state automaton. Every automaton is defined
by one ore more state variables and a set of update rules. The
state variables are bounded integer variables. The update rule
consists of an activation condition in propositional logic and a
set of states reachable if the activation condition is true. The
set of reachable states is specified as a set of non-deterministic
choices. Within each choice a probability distribution may be
denoted. The initial state of the automaton is specified with
the initial value of the state variables. Constants, formulas and
enums can be used to increase the readability of the model. For-
mulas are named abbreviations for propositional logic expres-
sions. Enums are primarily used to label system states with
handy names.

Multiple automata are combined in terms of synchronous
parallel composition. This means that all automata in the model
move exactly one step at every time step.

2.2. Tools and Analysis

SAML was designed as tool-independent modeling lan-
guage. Rather than implementing dedicated SAML centric
analysis tools we use automatic semantic-preserving model
transformations to transform SAML models into the input lan-
guage of state-of-the-art verification engines. Integrating as
much model checkers as possible allows the user to choose the
most appropriate one for the problem at hand. So far there are
transformations for NuSMV [7] and PRISM [8]. This transfor-
mations are semantic preserving and fully automatic [5]. With
PRISM as an intermediate converter it is also possible to use
MRMC [9] and we are currently busy with a converter to UP-
PAAL1. Note that none of the proposed analysis tools is limited
to safety analysis.

We use NuSMV for symbolic model checking of SAML
models. Due to the qualitative nature of NuSMV, the transfor-
mation from SAML into the NuSMV input language replaces
all probability distributions with appropriate non-deterministic
choices. The symbolic model checking approach allows the
verification of SAML models against arbitrary CTL [10] prop-
erties. This solves questions like, “Is a certain (dangerous) state

12013-03-21: http://www.uppaal.org

reachable” or “When ever X is true in one state, Y is true in the
next state”.

For qualitative safety analysis we use the deductive cause
consequence analysis (DCCA) [11] to compute all minimal cut-
sets (i.e. critical failure combinations). It is a structured ap-
proach to search the space of failure combinations and uses
model checking to test whether a hazardous state is reachable
if a certain failure combination occurs. The DCCA approach
is optimized to use only a minimal number of model-checking
runs to exploit the complete search space. In addition to the
minimal set of critical failure combinations, every combination
is demonstrated by an example (i.e. sequence of states) leading
to the hazard.

In addition to NuSMVs qualitative analysis, PRISM is a
probabilistic model checker that exploits the stochastic infor-
mation in the model. It can perform quantitative analysis like
“How likely is it in the worse-case that a certain (dangerous)
state is reached”. It can analyze any kind of pCTL [6] formula.
Rather than calculating sets of failure combinations, the pD-
CCA calculates the overall hazard probability. The calculation
is based on the occurrence probabilities of all discrete failures
as well as the functional behavior of the model. In case of non-
deterministic model components, the result is either a worse-
case or best-case analysis.

3. AltaRica

This section gives an overview of AltaRica modeling lan-
guage and of the associated assessment tools.

3.1. The Language

AltaRica is a high level modeling language dedicated to
Safety Analyses. The first version of AltaRica was developed
in LaBRI in ninetieth [12, 3]. A few years later, a second (Data-
Flow) version has been developed to handle industrial scale
models. A number of assessment tools have been developed for
AltaRica such as compilers to Fault Trees, compilers to Markov
chains, generators of critical sequences, stochastic simulators
and model-checkers. Several Integrated Modeling and Simu-
lation Environments use AltaRica as their internal representa-
tion language. Successful industrial applications have been re-
ported [13, 14].

The third version (AltaRica 3.0) is still under specification.
AltaRica 3.0 will be a major evolution of the language (and
the processing tools). This new version integrates notions of
object-oriented programming languages, such as inheritance
and prototypes. It improves the reusability of components and
knowledge capitalization. It adds also the ability to handle
looped systems and to define acausal components. The mod-
els presented in this article are written in AltaRica 3.0.

AltaRica is an event-centric language because the primary
objective of Safety and Reliability studies is to detect and quan-
tify the most probable sequences of events (failures) leading the
system from a nominal state to a degraded state (accident). In
AltaRica, the behavior of components is described by means
of Guarded Transition Systems [15, 16]. Guarded Transition

2

147

Systems generalize widely used formalisms such as Reliabil-
ity Block Diagrams, Markov chains and Generalized Stochastic
Petri nets. The state of a component is represented by variables
(so-called state variables) and their values. The changes of state
are possible when, and only when, an event occurs. The occur-
rence of an event updates the values of variables. Deterministic
or stochastic delays can be associated with events in order to ob-
tain (stochastic) timed models. Components can be assembled
into hierarchies, their inputs and outputs can be connected and
their transitions can be synchronized. So, an AltaRica model
can be seen as a hierarchy of interconnected components that
can be “flattened” into a unique Guarded Transition System.

3.2. Analysis

The semantics of a Guarded Transition System is a Kripke
structure (a reachability graph) that can be interpreted as a
Continuous-Time Markov Chain, under the condition that de-
lays associated with transitions are exponentially distributed,
or compiled into a Fault Tree.

A number of efficient assessment tools have been developed
for Data-Flow Guarded Transition Systems, such as compilers
to Fault Trees [17], compilers to Markov chains, generators of
critical sequences of events, stochastic and stepwise simulators
and model-checkers.

All the underlying algorithms can be extended to a general
case of Guarded Transition Systems (without Data-Flow condi-
tion). Guarded Transition Systems make it possible to handle
systems with instant loops and to define acausal components,
i.e. components for which the input and output flows are de-
cided at run time (e.g. electrical systems).

Fault Tree compiler. Fault trees are widely used to perform
Safety Analyses and some regulation authorities require to use
them to support the certification process. Since high-level mod-
eling greatly improves the design, the sharing and the mainte-
nance of models, it is of interest to use them to automatically
generate Fault Trees. In many cases high-level models can
be efficiently compiled into Fault Trees. The generated Fault
Tree can be then assessed with calculation engines, such as
XFTA [18], in order to calculate minimal cutsets, probabilities
of failures, importance factors and other reliability indicators.

Markov chain generator. The compilation into Markov chains
requires all the transitions to be either with exponential delays
or immediate. Immediate transitions are just collapsed using
the fact that an exponential delay with rate λ followed by an
immediate transition of probability p is equivalent to a transi-
tion with an exponential delay of rate pλ. The problem of such
a compilation is indeed the combinatorial explosion of the num-
ber of states and transitions.

Stepwise simulator. Stepwise simulator enables to perform an
interactive step by step simulation of the model. This interac-
tive tool can be very useful to debug models, to play different
failure scenarios, etc. The stepwise simulator can be coupled
with a graphical simulator as illustrated in [19]. Graphical sim-
ulation of models can be used to perform virtual experiments

on systems, via models, helping to better understand the sys-
tem behavior.

Stochastic simulator. Stochastic (Monte-Carlo) simulation is
used when other assessment methods fail. The principle is to
run many histories drawing at pseudo-random the delays of the
transitions and to make statistics on these histories. Two types
of observers can be defined to calculate reliability indicators:
observers on formulas (e.g. the average number of times a for-
mula takes a given value), observers on events (e.g. the average
number of times an event has been fired). The only limit of
stochastic simulation is the number of histories and the length
of histories that are necessary to stabilize the measures.

Generator of critical sequences of events. A critical sequence
is a sequence of events leading from the initial state to a critical
state. In some cases, the order of occurrences of events does
matter and thus the approximation consisting in extracting min-
imal cutsets (through a compilation of the model into a Fault
Tree) is not suitable. In that case, minimal sequences can be
extracted.

4. Related works

Many other high-level modeling languages for Safety Analy-
ses have been defined. Two approaches for (high-level) Model-
Based Safety Assessment can be found. The first one consists
in creating extensions of high-level modeling languages used
in other domains. The second approach consists in defining do-
main specific languages, dedicated to Safety Analyses. In this
section we will cite some of them.

In the first category, we can find [20] who added an Error
Model annex to AADL specifications, the modeling formalism
for embedded real-time systems.

In the same way the HiP-HOPS workbench [21] enables
the addition of reliability data to models imported from differ-
ent modeling tools: Matlab/SIMULINK, Eclipse-based UML
tools, etc., and then to automatically generate Fault Trees,
FMEA tables, Temporal Fault Trees [22] and also to perform
architecture optimisation [23] and SIL allocation [24].

Similarly, translations have been defined from specialized
UML or SysML models to Fault Trees or Petri nets (see [25]
or [26] for example). In [27], functional design phase, using
SysML, is combined with commonly used reliability techniques
(i.e. FMEA and construction of AltaRica Data-Flow models).

In the second category, we can find Figaro [28], developed
by EDF R&D. It is a textual modeling language dedicated to
dependability assessment of complex systems. It combines
object-orientation languages features, such as inheritance, and
first order production rules (interaction and occurrence rules).
It is used as a description language to create knowledge bases
for the workbench KB3 [29], to automatically perform systems
dependability assessment: Monte-Carlo simulation, Markov
Chain generation, quantification and generation of critical se-
quences, etc.

3

148 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

Component Failure Rate On-Demand Probability

Grid 10−4 1/h -
TR1 10−4 1/h -
TR2 10−4 1/h -
S W1 - 10−3

S W2 - 10−3

S W3 - 10−3

D 10−4 1/h 10−3

Table 1: Specification of the component failures

5. The Case-Study

The case study comprises of a power supply system. We
adopted the case study from [30]. The model is depicted as
block diagram in Figure 1. It features redundant supply lanes
to avoid total system failure. In normal mode, the energy is
provided from the grid via the first transformer (TR1) and the
first switch (S W1). In case of a failure, the switch S W2 is closed
and the energy is provided via the second transformer (TR2). If
the grid or the second lane fails, the diesel engine (D) is started
and the switch S W3 is closed.

All components of the system may fail. The transformers are
modeled with a per time failure. All three switches are modeled
with an on-demand failure. This means that the switches can
only fail to close in the instant moment where they are requested
to close. Only the diesel engine is modeled with a failure rate
and an on-demand failure. The failure rates and on-demand
failure probabilities are denoted in Table 1. For all components,
a repair rate of 10−11/h is specified.

The three lanes are used according to their priority, where the
first lane (TR1 and S W1) has the highest and the third lane (D
and S W3) has the least priority. This means that when ever a
component with a higher priority is repaired the according lane
is used immediately after repairing.

As the case study is from the safety analysis domain, we an-
alyze the reachability of hazardous system states. A hazard in
this case is if the system fails to provide power to the Busbar.

TR2

TR1

Grid

D

S W1

S W2

S W3

BusBar Out

Figure 1: Block diagram of the power supply system. The arcs denote the
energy flow, the blocks denote system components.

6. Modeling the System

6.1. SAML Model
Our SAML model consists of 13 modules. Eight of them

are dedicated to the error modes of the components. The trans-

formers have no internal state, so that their complete behavior
is already covered by the failure modules. Four modules are
reserved for the state of the three switches (i.e. open or closed)
and the diesel engine (i.e. idle, running). The Busbar has no
internal state, neither can it fail. This leaves one remaining
module, which we explain later on. Besides the modules, our
model heavily exploits formulas, denoting if a component is de-
manded or if certain lanes are in fail state. Constants are used
for the failure and repair probabilities.

An extract of the complete SAML model is listed in Figure
2. Note that due to page limitations we listed only a minimal
summary that shows the principal of the model. The formulas
state elementary propositions and are mainly used to increase
the maintainability and readability of the model. As there are
many similar propositions for the three lanes or redundant com-
ponents only some of them are listed in Figure 2.

Following the formulas, Figure 2 lists three modules: sw1,
tra f o1 err and sw1 demand err. These modules were chosen,
because they all three are characteristic for different types of
modules. The sw1 module represents functional behavior of
the system. It has two states (representing opened and closed).
It closes if is l1 demand evaluates to true and if the switch does
not suffer from on-demand error (is sw1 demand f ail).

The module tra f o err represents a repairable (transient) per-
time failure. It has two states which describe if the failure oc-
curs or not. If in the operational state, it turns to failure state
with a probability of f tra f o1. Otherwise it stays in the opera-
tional state. The behavior in the failed state is similar, but with
a different probability.

The third module (sw1 demand err) covers an on-demand
failure automaton. This is slightly more complicated than the
per-time failure. This remains from the following situation. The
on-demand failure automaton is only allowed to change its state
if the according component is demanded. At the same time the
component reacts on the demand. Due to parallel composition
and discrete time modeling the component in question and the
failure automaton change at exactly the same time. Thus the
component can only react on the changing of the failure au-
tomaton one step after the demand. The solution is to move the
failure automation exactly once some time before it is required.
This requires the model to have a zeroed time step where the
on-demand failure modules are initialized. That is why the on-
demand failure module has three states (initial, failure and op-
erational). A detailed explanation of failure modeling in SAML
is provided in [5]. A more detailed discussion about the initial
step can be found in [31]

To comply with the discrete time semantics of SAML we as-
signed a time of 1 minute to every step (∆t = 1min). This affects
the conversion from failure rates in the system specification to
per-step probabilities in the model.

The formula is no power denotes if the system fails to pro-
vide power to the BusBar. However it is not sufficient to an-
alyze whether the system may reach such a state. Because
SAML uses a discrete timed semantics, an information needs
some time to propagate throw the component structure. For the
presented case study, the redundant power lanes can only react
after the system has failed. Thus a single powerless state is not

4

149

component main

constant double f_trafo1 := 10E-12; // 1/min

constant double r_trafo1 := 6E-12; // 1/min

constant double f_sw1_demand := 10E-12; // 1/min

constant double r_sw1 := 6E-12; // 1/min

[..]

formula is_l1_demand := !is_l1_fail

formula is_sw1_demand :=

(is_l1_demand & is_sw1_open);

formula is_trafo1_fail := trafo1_e = 1;

formula is_sw1_demand_fail := sw1_demand_e = 1;

formula is_l1_fail :=

(is_grid_fail|is_sw1_open|is_trafo1_fail);

formula is_no_power :=

(is_l1_fail & is_l2_fail & is_l3_fail);

[..]

component sw1

enum SW_STATE := [OPEN, CLOSE];

sw1_s : SW_STATE init CLOSE; // OPEN, CLOSE

sw1_s=OPEN & (!is_sw1_demand | is_sw1_demand_fail) ->

choice:(1:(sw1_s’= OPEN));

sw1_s=OPEN & is_sw1_demand & !is_sw1_demand_fail ->

choice:(1:(sw1_s’= CLOSE));

sw1_s=CLOSE & !is_l1_demand -> choice:(1:(sw1_s’= OPEN));

sw1_s=CLOSE & is_l1_demand -> choice:(1:(sw1_s’= CLOSE));

endcomponent

component trafo1_err

enum ERR_STATE := [OK, FAIL];

trafo1_e : ERR_STATE init OK; // OK, FAIL

trafo1_e=OK -> choice:(f_trafo1:(trafo1_e’=FAIL) +

(1-f_trafo1):(trafo1_e’=OK));

trafo1_e=FAIL -> choice:(r_trafo1:(trafo1_e’=OK) +

(1-r_trafo1):(trafo1_e’=FAIL));

endcomponent

component sw1_demand_err

enum DEMAND_STATE := [OK, ERR, INI];

sw1_demand_e : DEMAND_STATE init INI; // OK, ERR, INIT

sw1_demand_e=INI -> f_sw1_demand:(s’=DE_E.ERR) +

(1-f_sw1_demand):(s’=DE_E.OK);

sw1_demand_e=OK & !is_sw1_demand ->

choice:(1:(sw1_demand_e’=0));

sw1_demand_e=OK & is_sw1_demand ->

choice:(f_sw1_demand:(sw1_demand_e’=ERR) +

(1-f_sw1_demand):(sw1_demand_e’=OK));

sw1_demand_e=ERR -> choice:(r_sw1:(sw1_demand_e’=OK) +

(1-r_sw1):(sw1_demand_e’=ERR));

endcomponent

[..]

endcomponent

Figure 2: Extract of the SAML model

considered a hazardous state. To compensate this effect, a last
module was introduced. This module counts the subsequent
steps where the system fails to provide power. A failure occurs
whenever the counter reaches two. The counter has the state
variable obs s so that the hazard is defined as H := obs s = 2.

6.2. AltaRica Model

The power supply system is composed of 4 types of compo-
nents: a grid, a transformer, a switch and a diesel engine. As
discussed in Section 5, we shall consider the following failure
modes:

• a grid and a transformer can only fail in operation (stochas-
tic exponentially distributed event with a failure rate λ);

• a switch can fail on demand (with a probability γ) or be
turned on successfully;

• a diesel engine can either fail in operation or on demand.

The behavior of these components can be represented by differ-
ent modeling patterns of Guarded Transition Systems, pictured
Figure 3. The AltaRica code corresponding to the finite state
machine of a spare component (representing a diesel engine) is
given Figure 4.

6.2.1. States
The internal state of the SpareComponent is represented by

means of the state variable state. state takes its values in the
domain SpareComponentState declared upfront. The initial
values of state variables are specified by means of the attribute
init.

6.2.2. Events
The state of the component changes under the occurrence

of an event. Events are introduced with the keyword event.
A delay is associated with each event by means of the at-
tribute delay. Delays of events failure and repair are ran-
dom variables exponentially distributed with respective rates
lambda and mu. Events start and failureOnDemand are
instantaneous (their delay is 0). Both are fireable when the
component is OFF. start has the probability 1 - gamma to be
fired while failureOnDemand has a probability gamma to be
fired in this state. This probability is given through the attribute
expectation. The expectation of the event e is used to deter-
mine the probability that the transition labeled with e is fired in
case of several transitions are fireable at the same date. When
transitions labeled with e1, e2, . . . , ek are scheduled at the same
date, the probability p(ei) to fire the transition labeled with ei

(1 ≤ i ≤ k) is defined as follows:

p(ei) =
expectation(ei)∑

1≤ j≤k expectation(e j)

5

150 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

Figure 3: Patterns of Guarded Transition Systems.

domain SpareComponentState { ON, OFF, FAIL }

class SpareComponent

SpareComponentState state (init = OFF);

Boolean demanded (reset = false);

Boolean input (reset = false);

Boolean output (reset = false);

Boolean failed (reset = false);

event start (delay = 0, expectation = 1 - gamma);

event failureOnDemand (delay = 0,

expectation = gamma);

event failure (delay = exponential(lambda));

event repair (delay = exponential(mu));

event stop (delay = 0);

parameter Real gamma = 10e-3;

parameter Real lambda = 10e-4;

parameter Real mu = 10e-1;

transition

start: state==OFF and demanded → state := ON;

failureOnDemand:state==OFF and demanded →
state := FAILED;

failure: state==ON → state := FAIL;

repair: state==FAIL → state := OFF;

stop: state==ON and not demanded → state := OFF;

assertion

output := if state==ON then input else false;

failed := (state==FAIL);

end

Figure 4: The AltaRica code for the Finite State Automaton modeling a spare
component.

6.2.3. Transitions
A transition is a triple 〈e,G, P〉, also denoted e : G → P,

where e is an event, G is a Boolean expression, so-called the
guard (or the pre-condition) of the transition, P is an instruc-
tion, so-called the action (or the post-condition) of the transi-
tion. Transitions are described in the clause transition. If the
state of the component is OFF, then two transitions are fireable:
the transition labeled with the event start and the transition
labeled with the event failureOnDemand. These transitions
are deterministic and instantaneous because they are associated
with a delay 0. The transition labeled by failureOnDemand

has the probability to be fired gamma and the transition labeled
by start has the probability to be fired 1-gamma. If the tran-
sition labeled by failureOnDemand is fired, then its action is
executed: state is switched to FAIL. In the Figure 3 instan-
taneous transitions are marked with dashed lines. Transitions
failure and repair are timed and stochastic. They obey typi-
cally exponential distributions. In the Figure 3 timed transitions
are marked with plain lines. If the state of the component is ON
and the delay drawn for the transition failure is the shortest,
then this transition is fired.

6.2.4. Parameters
Parameters are constant values that come with the definition

of the AltaRica class. When a class is instantiated, their values
may be changed. In the model above, there are three parameters
gamma, lambda and mu that define respectively the probability
of failure on demand and the failure and repair rates.

6

151

6.2.5. Flow variables and assertions

Variables demanded, input, output are Boolean flow vari-
ables. The variable demanded is used to implement the com-
mand, i.e. to tell when to turn on and off the component.
The variables input and output represent the flow circulat-
ing through the component, and in this case it is the electrical
power. From a syntactic viewpoint, flow variables are intro-
duced (and distinguished from state variables) by means of the
attribute reset. Conversely to state variables, that are initial-
ized at the beginning of a run and then modified through actions
of transitions, the value of flow variables are recalculated after
each transition firing. This recalculation is performed by means
of assertions. Assertions are instructions just as actions of tran-
sitions. The difference stands in that actions of transitions as-
sign state variables only while assertions assign flow variables
only. Moreover, each component has a unique assertion that is
applied after each transition firing.

Flow variables and assertions are used to model information
flows circulating through a system. They may represent physi-
cal connections between components, control commands, fluid
circulation, electric power, etc. They offer an easy and elegant
way to express dependencies on external factors.

The AltaRica code for the SpareComponent and
for the other patterns (OnDemandComponent and
RepairableComponent) are quite similar.

6.2.6. Composition

Now we can consider the model for the whole power supply
system. AltaRica 3.0 is an object-oriented modeling language.
Therefore, the AltaRica class that describes the power sup-
ply system embeds an instance of the class SpareComponent
describing the diesel engine D, three instances of the class
OnDemandComponent representing the switches SW1, SW2,

SW3, and three instances of the class RepairableComponent
describing the grid Grid and the transformers TR1, TR2, as
illustrated Figure 5.

When the lane 1 is failed, the switch of the second lane
SW2 is attempted to turn on. If it fails then the diesel genera-
tor D is attempted to start and the switch SW3 is attempted to
turn on. These rules are expressed in the assertion of the class
PowerSupplySystem.

6.2.7. Observers

Observers are like flow variables, except that they cannot be
used in transitions and assertions, i.e. they cannot be used to
describe the behavior of a system. Rather, as their name indi-
cates, they are quantities to be observed. They can be used or
not by the assessment tools. Observers are updated after each
transition firing.

In the AltaRica code of the class PowerSupplySystem we
declared an observer failed that detects if the system is in the
hazardous state (when all the lanes are failed and, therefore, the
system cannot supply power to the Busbar).

class PowerSupplySystem

RepairableComponent Grid, TR1, TR2;

SpareComponent D;

OnDemandComponent SW1(s.init = CLOSE);

OnDemandComponent SW2, SW3;

Boolean lane1 failed(reset = false);

Boolean lane2 failed(reset = false);

Boolean lane3 failed(reset = false);

observer Boolean failed = lane1 failed and

lane2 failed and lane3 failed;

assertion

lane1 failed := Grid.failed or TR1.failed

or SW1.failed;

lane2 failed := Grid.failed or TR2.failed

or SW2.failed;

lane3 failed := D.failed or SW3.failed;

Grid.demanded := not lane1 failed or

not lane2 failed;

TR1.demanded := not lane1 failed;

SW1.demanded := TR1.demanded;

TR2.demanded := lane1 failed and

not lane2 failed;

SW2.demanded := TR2.demanded;

D.demanded := lane1 failed and lane2 failed

and not lane2 failed;

SW3.demanded := D.demanded;

Grid.input := true;

D.input := true;

TR1.input := Grid.output;

SW1.input := TR1.output;

TR2.input := Grid.output;

SW2.input := TR2.output;

SW3.input := D.output;

end;

Figure 5: The AltaRica code for the whole system.

7

152 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

7. Analyzing the System

7.1. SAML
We performed a DCCA on the SAML model, which lead to

the following minimal cut-sets:

• Γ1 = {grid e, sw3 demand e}
• Γ2 = {grid e, diesel demand e}
• Γ3 = {grid e, diesel e}
• Γ4 = {tra f o1 e, sw2 demand e, sw3 demand e}
• Γ5 = {tra f o1 e, tra f o2 e, sw3 demand e}
• Γ6 = {tra f o1 e, diesel demand e, sw2 demand e}
• Γ7 = {tra f o1 e, diesel e, sw2 demand e}
• Γ8 = {tra f o1 e, tra f o2 e, diesel demand e}
• Γ9 = {tra f o1 e, tra f o2 e, diesel e}
In addition to DCCA we use PRISM to perform a proba-

bilistic deductive cause consequence analysis (pDCCA) [5]. To
analyze the overall hazard probability we used the pCTL prop-
erty Pmax=?[trueU <= nobss = 2] where n denotes the number
of steps to analyze. According to ∆t = 1min one hour leads to
n = 60, two hours to n = 600 and so forth. The results of the
PRISM based analysis are listed in Table 2.

1h 10h 100h 10000h
1.00e-9 1.36e-6 2.24e-5 2.47e-3

Table 2: Hazard Probability

7.2. AltaRica
In order to perform different types of analyses, the AltaRica

model given in Figure 5 is first of all “flattened” into a unique
Guarded Transition System (GTS). For the obtained GTS it is
possible to generate a Reachability graph that can be explored
in order to compute reliability indicators. In this article we fo-
cus on two types of model analyses:

• the generation of critical sequences of events;

• the compilation into a Markov chain in order to compute
the system unreliability P[T < t], the probability that the
system fails (the property f ailed == true becomes veri-
fied) before the time t.

The generated critical sequences are:
1. G.failure SW3.start D.failureOnDemand
2. G.failure SW3.start D.start, D.failure
3. G.failure SW3.failureOnDemand
4. TR1.failure SW2.start TR2.failure SW3.start D.failureOnDemand
5. TR1.failure SW2.start TR2.failure SW3.start D.start D.failure
6. TR1.failure SW2.start TR2.failure SW3.failureOnDemand
7. TR1.failure SW2.failureOnDemand SW3.start D.failureOnDemand
8. TR1.failure SW2.failureOnDemand SW3.start D.start D.failure
9. TR1.failure SW2.failureOnDemand SW3.failureOnDemand

The generated Markov graph contains 72 states and 248 tran-
sitions. The obtained results are summarized in Table 3.

1h 10h 100h 10000h
2.06e-5 2.11e-4 2.12e-3 1.91e-1

Table 3: Unreliability

8. Comparison and Evaluation

To compare Safety modeling formalisms we have established
several comparison criteria. They are discussed below.

Event based. The goal of Safety Analyses is to determine the
most probable failure scenarios, i.e. sequences of events lead-
ing from the nominal state to a failure/hazardous state. There
are potentially different types of events: stochastic, instanta-
neous, timed deterministic, etc.

AltaRica 3.0 is an event based modeling language: it is
possible to explicitly name events and associate them to tran-
sitions. Events can be stochastic (e.g. events f ailure and
repair in the model Figure 4) and instantaneous (e.g. events
f ailureOnDemand, start and stop in the model Figure 4).

In the sense of SAML, all continuous functions are sampled
and processed in discrete time steps. Though, the subsequent
state of a SAML model is solely based on the current state
and the decision of non-deterministic and probabilistic choices.
Events that occur in between two time steps, are cumulatively
processed when forming the next state.

Composition. Models of systems should be obtained by com-
posing models of subsystems. States of the system should be
given in a implicit way to avoid the user to enumerate all of
them and to allow approximations, based on the most probable
scenarios/states.

AltaRica 3.0 and SAML are both compositional and rep-
resent implicitly state graphs of modeled systems. A SAML
model is composed of several components that are all executed
in parallel. Recently, templates have been added to SAML:
it allows to create component instances based on a pattern.
They not only greatly improve the reusability of models but
allow the convenient modeling of equal components. In Al-
taRica 3.0 each system component is represented by a class;
a system model is obtained by instantiating previously defined
classes, connecting their inputs and outputs and synchronizing
their events (see, for example, the model of the case study Fig-
ure 5). Unlike SAML, in AltaRica only one transition can be
fired at a time.

Hierarchy. Models of systems should be obtained by compos-
ing models of subsystems or different views of the system into
hierarchies.

AltaRica 3.0 integrates notions of object-oriented program-
ming languages such as inheritance and prototypes. It offers
constructs to structure models into hierarchies of reusable com-
ponents. An AltaRica 3.0 model can be seen as a hierarchy of
interconnected components (see, for example, the model of the
case study Figure 5).

Recently, the notion of nested component has been added to
SAML. A SAML model can be represented as a hierarchy of
nested components.

8

153

no yes

1−p_fails p_fails

true
true

Figure 6: Graphical representation of transient failure automaton.

Remote interactions. It should be possible to describe easily
remote interactions between components, i.e. flows of matter
or information circulating through the system (without enumer-
ating them explicitly).

In AltaRica 3.0 remote interactions are represented by flow
variables and assertions. In the example Figure 5 the assertion
calculates system flow variables. The principle is explained in
Section 6.2. The assertion is recalculated after each transition
firing. Remote interactions can be also expressed by synchro-
nizations of events. Examples can be found in [32].

In SAML the remote interactions can be represented by
means of shared variables. In general, every state variable in
SAML is globally readable so the current state of one compo-
nent is implicitly distributed to all others. To increase readabil-
ity of the model, we use formulas to assign names to relevant
(sets of) states. For example, in the model, given Figure 2 the
formulas are used for that purpose.

Graphical representation. Graphical representation of models
has its own interest. One should be able to represent graphi-
cally models, at least partly, for communication and animation
purposes.

It is not possible to have a unique graphical representation of
an AltaRica 3.0 model. At least three different graphical views
can be used to represent it:

1. Representations, like Process & Instrumentation Diagrams
or Block Diagrams (see Figure 1), can be used to capture
the hierarchy, the connections between components and
the circulating flows of AltaRica 3.0 models.

2. State diagrams, like those given Figure 3, can represent the
internal behavior of each AltaRica 3.0 class.

3. Thus events in AltaRica 3.0 can be synchronized, dia-
grams, like UML sequence diagrams, can be used to rep-
resent synchronizations.

Each of these graphical representations gives a partial view of
an AltaRica 3.0 model.

SAML naturally maps to state charts. An example for a tran-
sient failure module is given in Figure 6. The combination of
non-deterministic and probabilistic choices leads to a slightly
more extensive notation. Every probability distribution is de-
noted by dashed arrows leaving the same black dot. Possible
non-deterministic choices can then be expressed by multiple ar-
rows with the same guard and leaving the same state.

SAML AltaRica 3.0
Event based No Yes
Composition Templates Object-oriented
Hierarchy Nested components Object-oriented
Remote in-
teractions

Shared variables Flow variables & as-
sertion, synchroniza-
tions

Graphical State charts State, Sequence &
Block diagrams

Assessment
tools

Model-checking,
probabilistic model-
checking, stochastic
simulation

Compilation to Fault
Trees & Markov
graphs, stochastic &
stepwise simulation

Time Discrete Triggered by events

Table 4: Comparison of Safety formalisms: SAML and AltaRica 3.0.

Available assessment tools. Prototypes of a set of assessment
tools for the new version of AltaRica are currently developed.
They include a Fault Tree compiler, a Markov chain generator,
a stepwise and a stochastic simulators. These assessment tools
will be distributed under a free licence.

At the current state, there exist three assessment tools for
SAML. For one there are the NuSMV and Prism model check-
ers (described in Section 2). In addition the VECS2 [33] tool
contains a step by step simulator. Besides the existing tools, the
framework is designed in a flexible way, so that additional tools
can be integrated easily.

Interpretation of time. Time in AltaRica and SAML is inter-
preted differently. SAML is synchronous. It uses a discrete
time model. The state of all automaton in the model is updated
only at discrete time steps. The successive state solely depends
on the current state.

The time in AltaRica is triggered by events. It is an interme-
diate model between discrete and continuous time. A delay is
associated with each event. It can be deterministic or stochastic
and may depend on the state. When the transition labeled with
the event gets fireable at time t, a delay d is calculated, and the
transition is actually fired at time t + d if it stays fireable from t
to t + d. The semantics of AltaRica model is a Kripke structure
(a reachability graph) that can be interpreted as a continuous-
time Markov chain, under the condition that delays associated
with transitions are exponentially distributed.

9. Conclusion and Outlook

In this paper we compared SAML and AltaRica. Both are
formal modeling languages for Model-Based Safety Analysis.
On the syntactical level the set of language constructs in SAML
appeared to be smaller than the one in AltaRica. On the one
hand this simplifies the models but on the other hand also makes
it more difficult to express large and/or complex systems.

2The tool was formerly named S3E.

9

154 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

On the semantic level the two languages chose fundamentally
different approaches. SAML uses a discrete time model with
equidistant time steps. AltaRica is based on continuous time
with discrete events. In practice this means that in SAML all
automata perform exactly one transition at the same time. In
AltaRica only one transition is fired at one time.

In future work we will evaluate the conversion between Al-
taRica and SAML. Even though not trivial, an automatic con-
version between the two languages extends their set of available
analysis tools. The main challenge for such a transformation is
for sure the different time-model in the two languages.

For SAML we are currently busy with the evaluation of a
data-flow based modeling approach like in AltaRica. The case-
study we used in this paper mostly consists of data-flow, which
was rather difficult to express in SAML. Never the less, the
SAML language should remain as simple as possible.

References

[1] J. Andrews, T. Moss, Reliability and Risk Assessment, John Wiley &
Sons, 1993, iSBN 0-582-09615-4.

[2] M. AjmoneMarsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis,
Modelling with Generalized Stochastic Petri Nets, Wiley Series in Paral-
lel Computing, John Wiley and Sons, 1994.

[3] A. Arnold, A. Griffault, G. Point, A. Rauzy, The altarica language and its
semantics, Fundamenta Informaticae 34 (2000) 109–124.

[4] M. Boiteau, Y. Dutuit, A. Rauzy, J.-P. Signoret, The altarica data-flow
language in use: Assessment of production availability of a multistates
system, Reliability Engineering and System Safety 91 (2006) 747–755.

[5] M. Güdemann, F. Ortmeier, A framework for qualitative and quantitative
model-based safety analysis, in: Proceedings of the 12th High Assurance
System Engineering Symposium (HASE 2010), 2010, pp. 132–141.

[6] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, M. Stoelinga,
Model checking discounted temporal properties, Theoretical Computer
Science 345 (2005) 139–170.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, NuSMV Version 2: An Open-
Source Tool for Symbolic Model Checking, in: Proceedings of the 14th

International Conference on Computer Aided Verification (CAV 2002),
Vol. 2404 of LNCS, Springer, 2002.

[8] M. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model
checking with PRISM: A hybrid approach, in: Proceedings of the 8th

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2002), Vol. 2280 of LNCS, Springer,
2002.

[9] J.-P. Katoen, M. Khattri, I. Zapreev, A Markov reward model checker, in:
Proceedings of the 2nd International Conference on Quantitative Evalua-
tion of Systems (QEST 2005), IEEE Computer Society, 2005.

[10] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 2000.
[11] M. Güdemann, F. Ortmeier, W. Reif, Computing ordered minimal critical

sets, in: E. Schnieder, G. Tarnai (Eds.), Proceedings of the 7th Symposium
on Formal Methods for Automation and Safety in Railway and Automo-
tive Systems (FORMS/FORMAT 2008), 2008.

[12] G. Point, A. Rauzy, AltaRica: Constraint automata as a description lan-
guage, Journal Européen des Systèmes Automatisés 33 (8–9) (1999)
1033–1052.

[13] R. Bernard, J.-J. Aubert, P. Bieber, C. Merlini, S. Metge, Experiments
in model-based safety analysis: flight controls, in: Proceedings of IFAC
workshop on Dependable Control of Discrete Systems, Cachan, 2007.

[14] R. Bernard, S. Metge, F. Pouzolz, P. Bieber, A. Griffault, M. Zeitoun, Al-
tarica refinement for heterogeneous granularity model analysis, in: Actes
du congrs Lambda-Mu16, Avignon, 2008.

[15] A. Rauzy, Guarded transition systems: a new states/events formalism for
reliability studies, Journal of Risk and Reliability 222 (4) (2008) 495–505.

[16] T. Prosvirnova, A. Rauzy, Guarded transition systems: Pivot modelling
formalism for safety analysis, in: J. Barbet (Ed.), Actes du Congrès
Lambda-Mu 18, 2012.

[17] A. Rauzy, Modes automata and their compilation into fault trees, Relia-
bility Engineering and System Safety 78 (2002) 1–12.

[18] A. Rauzy, Anatomy of an efficient fault tree assessment engine, in:
R. Virolainen (Ed.), Proceedings of International Joint Conference
PSAM’11/ESREL’12, 2012.

[19] B. Perrot, T. Prosvirnova, A. Rauzy, J.-P. S. d’Izarn, R. Schoening,
Expériences de couplages de modèles AltaRica avec des interfaces
métiers, in: E. Fadier (Ed.), Actes du congrès LambdaMu’17 (actes
électroniques), IMdR, 2010.

[20] P. Feiler, A. Rugina, Dependability modeling with the architecture anal-
ysis & design language (aadl), Tech. rep., Carnegie Mellon University
(2007).

[21] A. Pasquini, Y. Papadopoulos, J. McDermid, Hierarchically performed
hazard origin and propagation studies, Computer Safety, Reliability and
Security 1698 of LNCS (1999) 688–688.

[22] M. Walker, Y.Papadopoulos, Qualitative temporal analysis: Towards a full
implementation of the fault tree handbook, Control Engineering Practice
17 (2009) 1115 – 1125.

[23] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uhlig,
U. Grätz, R. Lien, Engineering failure analysis and design optimisation
with HiP-HOPS, Engineering Failure Analysis 18 (2) (2011) 590 – 608,
the Fourth International Conference on Engineering Failure Analysis Part
1.

[24] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen,
M. Törngren, D. Servat, A. Abele, F. Stappert, H. Lonn, L. Berntsson,
R. Johansson, F. Tagliabo, S. Torchiaro, A. Sandberg, Automatic allo-
cation of safety integrity levels, in: Proceedings of the 1st Workshop
on Critical Automotive Applications: Robustness & Safety, CARS ’10,
ACM, New York, USA, 2010, pp. 7–10.

[25] J. Xiang, K. Yanoo, Y. Maeno, K. Tadano, Automatic synthesis of static
fault trees from system models, in: Conference on Secure Software Inte-
gration and Reliability Improvement, 2011, p. 127136.

[26] S. Bernardi, S. Donatelli, J. Merseguer, From uml sequence diagrams and
statecharts to analyzable petri net models, in: In Proceedings of the Third
International Workshop on Software on Performance, 2002.

[27] P. David, V. Idasiak, F. Kratz, Reliability study of complex physical sys-
tems using sysml, Reliability Engineering and System Safety (2010) 431–
450.

[28] M. Bouissou, H. Bouhadana, M. Bannelier, N. Villatte, Knowledge mod-
elling and reliability processing: presentation of the figaro modelling lan-
guage and associated tools, in: Proceedings of Safecomp’91, 1991.

[29] M. Bouissou, Automated dependability analysis of complex systems with
the kb3 workbench: the experience of edf r&d, in: Proceedings of the
International Conference on Energy and Environment, 2005.

[30] M. Bouissou, J.-L. Bon, A new formalism that combines advantages of
fault-trees and markov models: Boolean logic driven markov processes,
Reliability Engineering & System Safety 82 (2) (2003) 149 – 163.
doi:DOI: 10.1016/S0951-8320(03)00143-1.
URL http://www.sciencedirect.com/science/article/

B6V4T-49DFH1M-1/2/bd15510dc655e0bbc55f3e5758bdeb42

[31] M. Güdemann, Qualitative and Quantitative Formal Model-Based Safety
Analysis, Ph.D. thesis, Otto-von-Guericke-Universitä Magdeburg (2011).
URL http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-385

[32] L. Kloul, T. Prosvirnova, , A. Rauzy, Modeling systems with mobile com-
ponents: a comparison between altarica and pepa nets, Journal of Risk
and Reliability 227 (6) (2013) 599–613.

[33] M. Lipaczewski, S. Struck, F. Ortmeier, Saml goes eclipse - combining
model-based safety analysis and high-level editor support, in: Proceed-
ings of the 2nd International Workshop on Developing Tools as Plug-Ins
(TOPI), IEEE, 2012, pp. 67–72.

10

155

156 APPENDIX B. ALTARICA AND SAFETY ANALYSIS MODELING LANGUAGE (SAML)

Appendix C

Graphical representation and
animation of models

One of the main contributions of the Model-Based approach for Safety Assessment is the ability to
graphically simulate incident or accident scenarios. As a consequence, incident or accident scenarios
can be visualized and discussed.

Graphical simulators are integrated into all the Integrated Modeling and Simulation Environments
for AltaRica Data-Flow: Cecilia OCAS (Dassault Aviation), Safety Designer (Dassault Systemes) and
Simfia (EADS Apsys). These environments make it possible to create, to edit and to simulate models
graphically. The same graphical representation is used to create and to animate the model.

In this chapter we propose a different approach: distinguish the modeling environment (i.e. graphi-
cal representation/creation/edition of models) from the simulation/animation environment (i.e. graph-
ical animation of models) as illustrated in reference [79]. We use a Model-Based approach for graphical
animation of models, which consists in the definition of a high level modeling language for graphical
animation of models.

In the following article, we present GraphXica - a Domain Specific Language for graphical anima-
tion of models. GraphXica has the same structural constructs as AltaRica 3.0 (see Chapter 3). It
enables to describe graphical primitives (lines, rectangles, circles, etc.) and their animations (color
change, scale, rotation, translation, etc.) according to the value of external variables. The value of
variables can be given by the user or can be provided by a simulator.

The following prototype has been developed: the stepwise simulator of AltaRica 3.0 described
in Chapter 5 has been coupled with GraphXica Displayer. The communication between the tools is
performed via a text file. The stepwise simulator of AltaRica 3.0 writes the value of all variables in
the file after each simulation step (typically the firing of a transition). The GraphXica Displayer reads
the value of variables every two seconds (this parameter can be defined by the user) and refreshes the
graphical representation according to the described animation rules and the value of variables.

157

GraphXica: a Language for Graphical Animation of Models

T. Prosvirnova, M. Batteux, A. Maarouf & A. Rauzy
LIX
Ecole Polytechnique, Palaiseau, France

ABSTRACT: The objective of this article is to present GraphXica – a Domain Specific Language (DSL)
for graphical animation of models. GraphXica enables to describe graphical representations of models and
their animations. Given a graphical representation and animation description of the model, different kinds of
Graphical User Interfaces (GUIs) can be generated to simulate it, for example a web based interface, a Java
interface, etc.
This work is a part of AltaRica 3.0 project, which aims to propose a set of authoring, simulation and assessment
tools to perform Model-Based Safety Analyses. The new version of AltaRica modeling language is in the heart
of the project. It is a textual language but graphical representations can be easily associated to textual models.
GraphXica can be used to define graphical representations and animations of AltaRica 3.0 models. Then a GUI
can be generated to animate these models. Coupled with a stepwise simulator, it enables to perform virtual
experiments on systems, via models.
GraphXica is a generic DSL and can be used to describe graphical representations and animations of any kind
of models and data.

1 INTRODUCTION

The Model-Based approach for safety and reliabil-
ity analysis is gradually wining the trust of engineers
but is still an active domain of research. Safety engi-
neers master “traditional” risk modeling formalisms,
such as “Failure Mode, Effects and Criticality Anal-
ysis” (FMECA), Fault Trees (FT), Event Trees (ET),
Markov Processes. Efficient algorithms and tools are
available. However, despite of their qualities, these
formalisms share a major drawback: models are far
from the specifications of the systems under study.
As a consequence, models are hard to design and
to maintain throughout the life cycle of systems. A
small change in the specifications may require revisit-
ing completely safety models, which is both resource
consuming and error prone.

The high-level modeling language AltaRica Data-
Flow (Rauzy 2002, Boiteau et al. 2006) has been cre-
ated to tackle this problem. AltaRica Data-Flow mod-
els are made of hierarchies of reusable components.
Graphical representations are associated with compo-
nents, making models visually very close to Process
and Instrumentation Diagrams. It is in the core of sev-
eral Safety Analysis workshops and several success-
ful industrial experiments have been held using Al-
taRica Data-Flow (Bernard et al. 2007, Bieber et al.
2008).

However, more than ten years of experience
showed that both the language and the assessment
tools can be improved. AltaRica 3.0 is an entirely new
version of the language. Its underlying mathematical
model – Guarded Transition Systems (Rauzy 2008,
Prosvirnova and Rauzy 2012) – makes it possible to
design acausal components and to handle looped sys-
tems. The development of a complete set of freeware
authoring, simulation and assessment tools is planed,
so to make them available to a wide audience.

The success AltaRica, partially, comes from the
fact that graphical representations can be easily asso-
ciated to textual models. Thus, models can be graphi-
cally animated. The incident or accident scenarios can
be visualized and discussed. In a word, virtual experi-
ments on systems can be performed using these mod-
els.

As a part of AltaRica 3.0 project our team works
on the graphical representation and simulation of Al-
taRica 3.0 models. The goal of this communication is
to present a Model-Based approach for 2D-3D event
driven simulation. This approach consists in the def-
inition of a Domain Specific Language (DSL) for
graphical animation of models. This language enables
to describe graphical 2D-3D representations of mod-
els and their animations. Then, it can be used to gen-
erate a graphical user interface (GUI) to animate mod-
els. The major advantage of this approach is that given

158 APPENDIX C. GRAPHICAL REPRESENTATION AND ANIMATION OF MODELS

a graphical representation and an animation descrip-
tion of the model, different kinds of GUIs can be gen-
erated to simulate it, for example, a web interface or
a java interface. The generated GUI can be coupled
with a stepwise simulator to perform graphical simu-
lations of models.

In fact, the main goal of such a DSL is to visual-
ize the (dynamical) behavior of physical models. This
visualization is particularly helpful during the de-
sign phases of complex systems. Until now, no com-
mon language dedicated to the graphical animation of
models (independent of the application domain) has
been designed. Our objective is to propose a DSL for
graphical animation of models.

The remainder of this article is organized as fol-
lows. Section 2 gives an overview of the AltaRica
3.0 project. Section 3 presents the motivations of this
work. Section 4 introduces GraphXica – a language
for graphical animation of models. Section 5 summa-
rizes the related works. Finally Section 6 concludes
the article and outlines directions for future works.

2 ALTARICA 3.0 PROJECT

The objective of the AltaRica 3.0 project is to propose
a set of authoring, simulation and assessment tools to
perform Model-Based Safety Analyses. The overview
of the project is presented Figure 1.

The new version of AltaRica modeling language,
AltaRica 3.0, is in the heart of this project. It sup-
ports modeling of looped systems and bidirectional
flows. This new version significantly increases the ex-
pressive power of the previous one without decreas-
ing the efficiency of the assessment algorithms. Al-
taRica 3.0 models are compiled into a low level for-
malism: Guarded Transition Systems (Rauzy 2008,
Prosvirnova and Rauzy 2012). Guarded Transition
Systems is a states/transitions formalism that gener-
alizes classical safety formalisms, such as Reliability
Block Diagrams, Petri Nets and Markov chains. It is
a pivot formalism for Safety Analyses: other safety
models, not only AltaRica 3.0, can be compiled into
Guarded Transition Systems to take benefits from the
assessment tools. The assessment tools for Guarded
Transition Systems already include prototypes of a
compiler to Fault Trees, a compiler to Markov chains,
a stochastic and a stepwise simulators. Prototypes of
a model-checker and a reliability allocation module
are planed to be developed. Distributed under a free
license, the assessment tools enable users to perform
virtual experiments on systems, via models, to com-
pute different kinds of reliability indicators and, also,
to perform cross check calculations.

3 MOTIVATIONS

As a part of AltaRica 3.0 Project our team works on
the graphical simulation of AltaRica models. Graph-

Figure 2: Graphical representation and animation of a water sup-
ply system

ical simulation of models has its own interest. First
of all, it enables to better understand the system be-
havior. Second, virtual experiments can be performed
on systems, via models, for example, it is possible to
play calculated failure scenarii. Finally, it helps to de-
bug and to validate the model.

Consider a simple water supply system, composed
of a pump and a tank. A pump can be in two states:
WORKING or FAILED. If the pump is in state
WORKING, then the tank is full, otherwise, it is
empty. This system is represented in AltaRica as fol-
lows:

domain PumpState {WORKING, FAILED}
class Pump

PumpState state (init = WORKING);
Real input (reset = 0.0), output (reset = 0.0);
event failure (delay = exponential(0.0005));
event repair (delay = exponential(0.02));
transition
failure: state==WORKING -> state := FAILED;
repair: state==FAILED -> state := WORKING;

assertion
output := if (state==WORKING) then input

else 0.0;
end
class Tank

Real input (reset = 0.0);
end
block WaterSupplySystem

Pump pump;
Tank tank;
Real input (reset = 1.0);
observer Boolean tank.isEmpty =

(tank.input == 0.0);
assertion
pump.input := input;
tank.input := pump.output;

end

Our goal is to perform graphical simulation of this
model. For that we need to define a graphical repre-
sentation of the model and its animation, i.e. how the
representation changes according to the values of sys-
tem variables (see for example Figure 2). Basically,
we would like to define the following animations:

1. If the pump is failed (pump.state == FAILED),
then change the outline color to red.

2. If the tank is empty (tank.input == 0.0), then
hide the blue rectangle.

To be able to perform graphical animations of mod-
els we will

159

Figure 1: Overview of the AltaRica 3.0 project

• First, define a Domain Specific Language (DSL)
to describe graphical representations and anima-
tions of models.

• Then, use this DSL to generate Graphical User
Interfaces (GUIs) for event-driven simulation of
models.

• Finally, couple the generated GUI with a step-
wise simulator of AltaRica.

3.1 DSL for graphical animation of models

DSL for graphical animation should provide specific
primitives to represent graphical objects (i.e. figures)
and to describe their animations.

Graphical primitives Graphical objects give the
static representation of the model (i.e. its 2D or 3D
representation). The language should include at least
the following graphical objects:

• Basic geometric figures: Rectangle, Ellipsoid,
Line, etc.

• Links: Line, Point (to represent connections be-
tween graphical objects).

• Text (to display textual annotations of models).

• Bitmap (to use predefined pictures).

All graphical primitives should have some shared
attributes, such as size, color, hidden, opacity, etc.

Composition It should be possible to design li-
braries of reusable graphical components (i.e. figures
and their animations) and to assemble them in order
to create graphical representations and animations of
systems. In the example given Figure 2, one should
be able to create graphical representations of a pump

and a tank, their animations and to use them to create
the graphical representation of the system, composed
of the pump and the tank connected together.

Animation The ability to describe the animations
of the model, i.e. how changes the graphical repre-
sentation of the model in time, is the most important
part of the language. Graphical animations of models
should be done in two ways:

• Depending on external variables.

• According to user actions.

In the first case, the animation may depend on some
external variables. When these variables change their
values, the graphical representation is updated ac-
cording to the defined animation rules. The values of
these variables may be obtained from a model sim-
ulator, such as, for example, the stepwise simulator
of AltaRica 3.0, from a file or a database, etc. The
second way of animation is done through a Graphical
User Interface (GUI) that gives the user the ability to
interact with the model.

Animations are related to previously defined graph-
ical primitives (figures). We should consider at least
the following animations for them:

• Move.

• Hide or Show.

• Modify attribute values (e.g. color, size, etc.).

3.2 Graphical user interfaces for simulation

The generated GUI for simulation can be imple-
mented in different programming languages, for ex-
ample:

160 APPENDIX C. GRAPHICAL REPRESENTATION AND ANIMATION OF MODELS

Figure 3: DSL for graphical animation of models

• All programming languages with Graphical li-
braries: C++ with Qt, C with SDL, Java with its
standard graphics library, etc.

• Html and CSS to use with a web browser.

• Visual basic to use with the presentation program
PowerPoint.

The GUI generator takes a graphical representation
and animation of an AltaRica 3.0 model, generates a
GUI that displays graphical animations of the model,
as illustrated Figure 3.

3.3 Graphical animation of AltaRica 3.0 models

The stepwise simulator of AltaRica can be coupled
with a graphical simulator in order to perform graphi-
cal simulation of models (e.g. see Perrot et al. (2010)).
The link between the stepwise simulator and simula-
tion GUI is done by a communication protocol.

Given an AltaRica model, it will be possible to de-
fine its graphical representation and animation using
the DSL. Then a simulation GUI will be generated; it
will be linked with a stepwise simulator by a commu-
nication protocol in order to perform graphical sim-
ulation of AltaRica models. The procedure is illus-
trated Figure 4.

4 GRAPHXICA

In this section we present GraphXica – a Domain
Specific Language (DSL) for graphical animation of
models. As shown figure 4, we use GraphXica with
the stepwise simulator of the AltaRica 3.0. The gener-
ated simulation GUI, so called GraphXica Displayer,
is implemented in Java. It takes a GraphXica model,
corresponding to the graphical representation of the
AltaRica 3.0 model. According to fired transitions,
the stepwise simulator emits a vector of variables val-
ues. The GraphXica Displayer receives this vector
and performs animations of figures. These animations
are defined by the animation rules and depend on the
values of variables received from the stepwise simu-
lator.

GraphXica is, like AltaRica 3.0, a prototype ori-
ented modeling language, see e.g. Noble et al. (1999)
for a discussion on objects versus prototypes. Pro-
totype orientation makes it possible to separate the
knowledge into two distinct spaces: the stabilized
knowledge, incorporated into libraries of on-the-shelf
modeling components; the sandbox in which the sys-
tem under study is modeled. In the sandbox, many
components are unique and some others are instances
of reusable components. With prototype-orientation,
models can be reused in two ways: at component
level by instantiating on-the-shelf components; at sys-
tem level by cloning and modifying a model designed
for a previous project. Classes represent the stabilized
knowledge: they can be instantiated and extended like
in object-oriented languages. Blocks model unique
components, that cannot be instantiated. The system
is always represented by a block.

A GraphXica model is made up of declarations.
It is possible to declare global variables, variable
domains (i.e. enumerated types) and components
(i.e. classes or blocks) to describe figures and their
animation rules. In the following, we present the
grammar in extended BNF.

Model ::= (Declaration)* ;
Declaration ::=

DomainDeclaration
| ExternVariableDeclaration
| VariableDeclaration
| ClassDeclaration
| BlockDeclaration
;

4.1 Domains

Domains are named sets of symbolic constants. They
are defined in the following way:

DomainDeclaration ::=
’domain’ Identifier ’{’ Identifier (’,’ Identifier)* ’}’ ;

An identifier is a letter followed (not necessary) by a
sequence of letters or numbers. The special character
‘ ’ is also included to define an identifier. The rule
Identifier is the following:

Identifier ::=
(Letter | ‘ ’) (Letter | Number | ‘ ’)* ;

Letter ::= ‘a’ | ... | ‘z’ | ‘A’ | ... | ‘Z’ ;
Number ::= ‘0’ |... | ‘9’ ;

Declared domains can be used as a type for vari-
ables anywhere in the model. In the example given
Figure 2, domains expressing the state of the pump
and the tank are declared as follows:

domain PumpState {WORKING, FAILED}
domain TankLevel {FULL, EMPTY}

161

Figure 4: Graphical simulation of models

4.2 Global variables

Variables are declared in the following way:

ExternVariableDeclaration ::=
‘extern’ VariableDeclaration ;

VariableDeclaration ::=
Type Variable (‘,’ Variable)* ‘;’ ;

Type ::=
NumericalType’
| FigureType
| Identifier
;

NumericalType ::=
‘Boolean’
| ‘Integer’
| ‘Real’
;

Variable ::=
Identifier [‘(’ Attributes ‘)’] ;

Attributes ::=
Attribute (‘,’ Attribute)* ;

Attribute ::=
Identifier ‘=’ Expression ;

The rule Expression defines formulas built over vari-
ables and parameters using common arithmetic, com-
parison and logical operators. We will not detail it
here. Global variables can only have numerical or user
defined type. Thus, the rule FigureType will be de-
fined later.

Global variables have the same sense like in the
programming languages C, C++ or Java. A global
variable can be used anywhere in the model. The key-
word extern can be added to the declaration of a
variable. It expresses the fact that the variable will be
linked to a variable coming from the vector of val-
ues (from an assessment tool linked to the GraphXica
Displayer). When a variable is declared, a set of at-
tributes (e.g. its initial value) can also be declared. In

the example given Figure 2, we will declare two exter-
nal variables ext pumpState and ext tankInput,
corresponding to variables from AltaRica 3.0 model:

extern PumpState ext_pumpState (init = WORKING);
extern Boolean ext_tankInput (reset = false);

4.3 Classes and Blocks

Classes are used to create libraries of reusable graph-
ical representations and animations. Blocks are used
to design graphical representations of systems using
libraries of reusable components. They represent
clearly the separation between stabilized knowledge,
incorporated into libraries of on-the-shelf modeling
components, and the sandbox in which the system
under study is modeled. Classes are declared as
follows:

ClassDeclaration ::=
‘class’ Identifier

(ComponentDeclaration)*
[Animations]

‘end’ ;

Blocks are declared as follows:

BlockDeclaration ::=
‘block’ Identifier

(ComponentDeclaration)*
[Animations]

‘end’ ;

Components are declared as follows:

ComponentDeclaration ::=
VariableDeclaration
| ParameterDeclaration
;

162 APPENDIX C. GRAPHICAL REPRESENTATION AND ANIMATION OF MODELS

Classes may embed instances of other classes so
to get hierarchical representations of systems under
study. Blocks may be composed of other blocks and
instantiated classes. Blocks and classes may contain
variables, parameters, figures and animation rules.
Here, types of variables can be figures type (e.g.: rect-
angle, oval, line, etc.) or user declared classes.

The following classes describe the graphical repre-
sentations of the pump and the tank from the system
given Figure 2.

class PumpRep
parameter PumpState state = WORKING;
Oval cir (x = 0, y = 0, width = 5, height = 5,

color = blue, lineColor = black,
thickness = 2);

Line delta1 (x = 1.5, y = 8.5, width = 7,
height = -7, color = black, thickness = 2);

Line delta2 (x = 1.5, y = 1.5, width = 7,
height = 7, color = black, thickness = 2);

animation
state == FAILED ->
{
delta1.color := red;
delta2.color := red;
cir.lineColor := red;

}
state == WORKING ->
{
delta1.color := green;
delta2.color := green;
cir.lineColor := green;

}
end

class TankRep
parameter TankLevel level = FULL;
Line horLeft (x = 0 ,y = 0, width = 14,

height = 0, color = black,
thickness = 2);

Line horRight (x = 10 ,y = 0, width = 14,
height = 0, color = black,
thickness = 2);

Line base (x = 0 ,y = 14, width = 0,
height = 10, color = black,
thickness = 2);

Rectangle rectFull (x = 0, y = 2,
width = 10, height = 12,
color = blue, thickness = 0,
visible = true);

animation
level == EMPTY -> rectFull.visible := false;
level == FULL -> rectFull.visible := true;

end

Graphical primitives GraphXica contains specific
primitives to represent figures and to define their ani-
mations. Figures are declared as variables: they have
a type, a name and a list of attributes. Different types
of figures are included, such as, for example, Line,
Rectangle, Oval, Bitmap, Text, etc. Each type of
figure has its own list of attributes. However, there are
some common attributes, such as the color of the fig-
ure, its position (with two dimensions), its size (with
two dimensions), its visibility and its opacity. The

idea is to consider a figure inscribed inside an ”imagi-
nary” rectangle (it is not a figure of the language) and
positions are according to the left-top corner.

In the example given above a pump is represented
by a circle (an oval) cir and two lines delta1 and
delta2 and a tank is described by three lines horLeft,
horRight, base and a rectangle rectFull. A line is de-
fined by the coordinates of its source and its target, by
its color and its thickness. A rectangle is defined by
the coordinates of its left-top corner, its size, its color
and the thickness of its border. Note, that users don’t
have to fill in all the attributes, GraphXica Displayer
gives a default value for all unspecified attributes.

Parameters Parameters are introduced by a key-
word parameter, followed by the type, the name and
the value (i.e. an expression depending on variables
and other parameters). They are declared in the
following way:

ParameterDeclaration ::=
‘parameter’ NumericalType Identifier ‘=’ Expression ‘;’ ;

In the example given earlier we declare two pa-
rameters: level in the class TankRep and state in the
class PumpRep. The values of this parameters can be
changed when the classes are instantiated. Parameters
can be used in different manners: they can be linked to
external variables or they can define constant values,
such as circle radius, rectangle height, etc.

Variables Local variables within a class or a block
can be declared in the same way as global variables.

Animations Animations are defined by a set
of rules. Each rule is represented by a condition
followed by a set of instructions. Animations are
declared in the following way:

Animations ::=
‘animation’ (Animation)* ;

Animation ::=
Condition ‘→’ Instruction ;

Condition ::=
LogicalExpression ;

Instruction ::=
Assignment
| Block
;

Assignment ::= Identifier ‘:=’ Expression ‘;’ ;
Block ::= ‘{’ Instruction+ ‘}’ ;

Conditions are Boolean expressions, built over
variables and parameters of the model (e.g. state
== FAILED) or user actions (e.g. click on a figure).
Boolean expressions are evaluated according to the
vectors of values, received from a linked assessment

163

tool. Instructions enable to modify the values of at-
tributes of figures (e.g. change the color or visibility
of a figure, move or enlarge a figure, etc.). Of course,
the modifications of attribute values are defined ac-
cording to the considered figures. For example, it is
possible to change the color of a Rectangle, but it is
not possible to modify the color of a Bitmap.

In the example given above, the class Pump defines
the following animation rules: if the value of the pa-
rameter state is WORKING, then the color of lines
is green, otherwise it is red. In the class Tank if the
value of the parameter level is EMPTY then the rect-
angle rectFull is hidden.

Composition To create a GraphXica model of the
water supply system, given Figure 2, we use the pre-
viously defined classes PumpRep and TankRep. The
block WaterSupplySystemRep is composed of an in-
stance of class PumpRep and an instance of class
TankRep. The parameter state of the pumpRep is set
to the external variable ext pumpState (this variable
comes from AltaRica model of the system). The pa-
rameter level of the tankRep is calculated according
to the external variable ext tankInput coming from
the AltaRica model.

block WaterSupplySystemRep
TankRep tankRep (posX = 1, posY = 8,

level = if ext tankInput then FULL
else EMPTY);

PumpRep pumpRep (x = 35, y = 2,
state = ext pumpState);

Line hLineLeft (x = 0, y = 5, width = 10,
height = 0, color = blue, thickness = 6);

Line vLineLeft (x = 30, y = 5, width = 0,
height = 7, color = blue, thickness = 6);

Line hLineRight (x = 20, y = 5, width = 10,
height = 0, color = blue, thickness = 6);

end

The animation rules of the block are executed in the
following way: first, animation rules of all instantiated
classes and nested blocks are executed in the same
order as they are declared in the block, then animation
rules of the main block are performed.

5 RELATED WORKS

In this section we introduce some existing languages
for graphical representation and animation of models.

Modelica (Fritzson 2004) is an object-oriented lan-
guage based on equations for modeling continuous
or discrete event behavior of physical systems. The
grammar of Modelica, amongst others, defines anno-
tations used to store additional information about the
model, such as its graphical representation. They are
used to graphically represent a model and its compo-
nents by means of graphical objects (rectangles, cir-
cles, etc.), component icons and connection lines. Al-
though Modelica’s annotations define all the neces-
sary properties and primitives to represent a model

in a graphical way. These representations are purely
static. There is no animation of models and also no
interaction between the user and a model.

Some existing languages are specifically dedicated
to animation of algorithms: JAWAA (Rodger 2002),
XAAL (Karavirta 2005), AnimalScript (Rößling and
Freisleben 2001), JSamba (Stasko 1998), JHAVÉ
(Naps et al. 2000). They are scripting languages for
creating animation of algorithms. They contain prim-
itives to represent graphical objects such as circles,
rectangles, lines, etc.; and to animate them. The main
principle is to write, or automatically generate, a
script from an algorithm. This script corresponds to
a translation from the algorithm to its graphical rep-
resentation and animation. The script is then used by
a ”displayer”, e.g. a web browser for JAWAA. Nev-
ertheless, no communication is possible between the
”displayer” and the user or another tool. For example,
if one want to change the value of a variable, he has
to rewrite the script.

SVG, for Scalable Vector Graphics (Eisenberg
2002), is a language for describing two-dimensional
graphics in XML. SVG allows to create graphical
forms (e.g.: circles, polygon, etc.), images and texts.
SVG representations (i.e. drawing) are interactive.
They can react to user’s actions such as pressed button
by the mouse.

The study of existing languages containing a part
dedicated to graphical animation and the limited do-
main of use of these languages give us the reason to
create a new language of graphical animation of mod-
els (GraphXica).

6 CONCLUSION AND PERSPECTIVES

In this article, we introduced GraphXica – a high-
level modeling language for graphical animation of
models. GraphXica enables to describe graphical rep-
resentations of models and their animations. Anima-
tions are defined according to values of external vari-
ables and user actions. GraphXica models can be used
to generate different types of Graphical User Inter-
faces (e.g. a Java interface, a web based interface,
etc.). The generated GUI, so called GraphXica dis-
player, can be coupled with simulators in order to per-
form graphical simulations of models. GraphXica is a
prototyped based modeling language. Thus, it is pos-
sible to create libraries of reusable graphical compo-
nents and to use them to design graphical representa-
tions and animations of complex systems.

This work is done as a part of AltaRica 3.0 Project
which aims to propose a complete set of authoring,
simulation and assessment tools to perform Model-
Based Safety Analyses. The idea is to couple GraphX-
ica displayer with AltaRica 3.0 stepwise simulator in
order to perform graphical simulation of models.

GraphXica displayers, implemented in Java and in
C++ Qt, are currently under development. We also

164 APPENDIX C. GRAPHICAL REPRESENTATION AND ANIMATION OF MODELS

plan to implement a web based GraphXica displayer
using HTML 5 and CSS. Forthcoming papers will
completely present the grammar of GraphXica and its
semantic. Furthermore, our future works will focus on
the definition and on the implementation of the com-
munication protocol between GraphXica displayers
and stepwise simulator. The redaction of pedagogical
materials for GraphXica, including a primer, a best
practices guide and a book of exercises is also an im-
portant part of the project. These materials will help
interested persons to quickly understand and learn
how to use GraphXica. Another interesting tools will
be a generator of GraphXica models from AltaRica
3.0 models and an authoring tool for GraphXica.

REFERENCES

Bernard, R., J.-J. Aubert, P. Bieber, C. Merlini, & S. Metge
(2007). Experiments in model-based safety analysis:
flight controls. In Proceedings of IFAC workshop on
Dependable Control of Discrete Systems, Cachan.

Bieber, P., J.-P. Blanquart, G. Durrieu, D. Lesens, J. Lu-
cotte, F. Tardy, M. Turin, C. Seguin, & E. Conquet
(2008, January). Integration of formal fault analysis in
assert: Case studies and lessons learnt. In Proceedings
of 4th European Congress Embedded Real Time Soft-
ware, ERTS 2008, Toulouse (France).

Boiteau, M., Y. Dutuit, A. Rauzy, & J.-P. Signoret (2006).
The altarica data-flow language in use: Assessment of
production availability of a multistates system. Relia-
bility Engineering and System Safety 91, 747–755.

Eisenberg, J. (2002, February). SVG Essentials. O’Reilly
Media.

Fritzson, P. (2004). Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1. John Wiley &
Sons Inc.

Karavirta, V. (2005). Xaal - extensible algorithm animation
language. Master’s thesis, Helsinki University of Tech-
nology.

Naps, T., J. Eagan, & L. Norton (2000). JHAVÉ: An envi-
ronment to actively engage students in web-based al-
gorithm visualizations. 31st ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE
2000), Austin, Texas, 109–113.

Noble, J., A. Taivalsaari, & I. Moore (1999). Prototype-
Based Programming: Concepts, Languages and Appli-
cations. Springer-Verlag.

Perrot, B., T. Prosvirnova, A. Rauzy, J.-P. S. d’Izarn, &
R. Schoening (2010, October). Expériences de cou-
plages de modèles AltaRica avec des interfaces métiers.
In E. Fadier (Ed.), Actes du congrès LambdaMu’17
(actes électroniques). IMdR.

Prosvirnova, T. & A. Rauzy (2012, Octobre). Guarded tran-
sition systems: Pivot modelling formalism for safety
analysis. In J. Barbet (Ed.), Actes du Congrès Lambda-
Mu 18.

Rauzy, A. (2002). Modes automata and their compila-
tion into fault trees. Reliability Engineering and System
Safety 78, 1–12.

Rauzy, A. (2008). Guarded transition systems: a new
states/events formalism for reliability studies. Journal

of Risk and Reliability 222(4), 495–505.
Rodger, S. (2002, June). Using hands-on visualizations to

teach computer science from beginning curses to ad-
vanced courses. In Proceeding of the Second Program
Visualization Workshop.

Rößling, G. & B. Freisleben (2001). Animalscript: An ex-
tensible scripting language for algorithm animation.

Stasko, J. (1998). Smooth continuous animation for por-
traying algorithms and processes. In Software Visual-
ization, pp. 103–118. MIT Press.

165

166 APPENDIX C. GRAPHICAL REPRESENTATION AND ANIMATION OF MODELS

Appendix D

Modeling patterns

One cannot expect models of complex systems to be simple. To capture (at least some aspects of)
the complexity of the system, they need to be large and complex. The process by which they are
designed is thus necessarily complex as well. Therefore, not only suitable modeling languages and
efficient assessment tools must be used, but well-defined modeling methodologies must be applied so
as to make this process effective.

In this article, we advocate that it is nearly impossible to get the good model for a system at once
for at least two reasons: first, calculations of reliability indicators are provably hard (#P-hard for most
of them [104]). Therefore, a model is always a tradeoff between the accuracy of the description and the
ability one has to perform calculations within reasonable amounts of time and resources. Obviously,
one cannot expect to reach the good tradeoff without some (and often more than many) trials.

Second, the different assessment tools at hand have their own advantages and drawbacks. So it
is worth to use them in turn. However assessment tools put constraints on the model: compilation
into Fault Trees makes it possible to handle very large models, but prevent from taking into account
dependencies amongst failures of components; at the other extreme, stochastic simulation is a very
versatile tool, but cannot be applied to capture low probabilities.

In a word, a Reliability and Safety Assessment should better consist in the design of a family of
models rather than in the design of a unique model. This fact should be accepted by the analysts and
be at the core of the modeling methodologies.

Nevetheless, this raises in turn the question of how to relate and to maintain these models through-
out the life cycle of the systems. Thanks to our red wire example, we shall illustrate that AltaRica
3.0 is of a great help for that purpose. We show how, starting from the same root model, different
variants can be obtained by successive refinements. Each variant, or subset of variants, is tailored for
a particular assessment tool, i.e. to capture a particular aspect of the system under study.

167

Safety Assessment of an Electrical System
with AltaRica 3.0

Hala Mortada1, Tatiana Prosvirnova1, and Antoine Rauzy2

1 Computer Science Lab, Ecole Polytechnique, Route de Saclay, Palaiseau, France
Hala.Mortada@lix.polytechnique.fr Prosvirnova@lix.polytechnique.fr

2 Chaire Blériot Fabre, LGI Ecole Centrale de Paris Grande voie des vignes, 92295
Châtenay-Malabry, France Antoine.Rauzy@ecp.fr

Abstract. This article presents the high level, modeling language Al-
taRica 3.0 through the safety assessment of an electrical system. It shows
how, starting from a purely structural model, several variants can be de-
rived.Two of them target a compilation into Fault Trees and two others
target a compilation into Markov chains. Experimental results are re-
ported to show that each of these variants has its own interest. It also
advocates that this approach made of successive derivation of variants is
a solid ground to build a modeling methodology onto.

Keywords: AltaRica3.0, Complex systems, Reliability, Modeling, Safety

1 Introduction

The increasing complexity of industrial systems calls for the development of so-
phisticated engineering tools. This is indeed true for all engineering disciplines,
but especially for safety and reliability engineering. Experience shows that tradi-
tional modeling formalisms such as Fault Trees, Petri nets or Markov processes
do not allow a smooth integration of risk analysis within the overall development
process. These analysis require both considerable time and expertise. The spe-
cialization and the lack of model’s structures make it difficult to share models
amongst stakeholders, to maintain them throughout the life-cycle of the systems,
and to reuse them from one a project to another.

The AltaRica modeling language ([1],[2]) has been created at the end of the
nineties to tackle these problems. AltaRica makes it possible to design high-
level models with a structure that is very close to the functional or the physical
architecture of the system under study. Its constructions allow models to be
structured into a hierarchy of reusable components. It is also possible to asso-
ciate graphical representations to these components in order to make models
visually close to Process and Instrumentation Diagrams. The formal semantics
of AltaRica allowed the development of a versatile set of processing tools such
as compilers into Fault Trees ([2]), model-checkers ([3]) or stochastic simulators
([4]). A large number of successful industrial experiments with the language have
been reported (see e.g. [5], [6], [7], [8] and [9]). Despite its quality, AltaRica faced
two issues of very different natures. First, systems with instant feedback’s loops

168 APPENDIX D. MODELING PATTERNS

turned out to be hard to handle. Second, constructs of model’s structuring were
not fully satisfying.

AltaRica 3.0 [10] is a new version of the language that has been designed to
tackle these two issues. Regarding model structuring, AltaRica 3.0 implements
the prototype-oriented paradigm [11]. This paradigm fits well with the level
of abstraction reliability and safety analysis stand at. Regarding mathematical
foundations, AltaRica 3.0 is based on Guarded Transition Systems (GTS) [12].
GTS combine the advantages of state/event formalisms such as Petri nets and
combinatorial formalisms such as block diagrams. This combination is necessary
to model system patterns namely cold redundancies, cascading failures or remote
interactions.

AltaRica 3.0 comes with a variety of assessment tools. In this article, we show
how, starting from the same root model, different variants can be obtained by
successive refinements: a first series targeting a compilation into Fault Trees and
a second one targeting a compilation into Markov chains. Each of these variants
capture a particular aspect of the system under study. We advocate that this
approach made of successive derivation of variants is a solid ground to build a
modeling methodology onto.

The remainder of this article is organized as follows. Section 2 presents the
electrical system that is used as a red-wire example throughout the paper. Sec-
tion 3 discusses how to describe the architecture of the system with a purely
structural model. Section 4 proposes a first variant of this structural model
which targets a compilation into Fault Trees. Section 5 presents a second vari-
ant which targets a compilation into Markov Chains. Finally, section 6 concludes
this article.

2 Red Wire Example

Figure 1 shows a simple electrical system with cascade redundancies borrowed
from [13] (we present it here with some additional complexity).

In a normal operating mode, the busbar BB is powered by the grid GR either
through line 1 or through line 2. Each line is made of an upper circuit breaker
CBUi, a transformer TRi and a lower circuit breaker CBDi. The two lines are in
cold redundancy: Let’s assume for instance that line 1 was working and that it
failed either because one of the circuit breakers CBU1 or CBD1 failed, or because
the transformer failed. In this case, the line 2 is attempted to start. This requires
opening the circuit breaker CBD1 (if possible/necessary) and closing the circuit
breakers of line 2. Since line 2 was out of service, the circuit breaker CBD2 was
necessarily open.

If both lines fail, the diesel generator DG is expected to function, which
requires closing the circuit breaker CB3. Circuit breakers may fail to open and
to close on demand. The diesel generator may fail on demand as well. The grid
GR may be lost either because of an internal failure or because of a short circuit
in the transformer TRi followed by a failure to open the corresponding circuit
breaker CBUi.

169

The two transformers are subject to a common cause failure.
There is a limited repair crew that can work on only two components at a

time. After maintenance, the components are as good as new, but may be badly
reconfigured.

Fig. 1. A small electrical system

The problem is to estimate the reliability and the availability of this sys-
tem. This example is small but concentrates on a number of modeling difficul-
ties (warm redundancies, on demand failures, short-circuit propagation, common
cause failures, limited resources), due to its multi-domains aspects.

3 Describing the Architecture of the System

The first step in analyzing a system consists of describing its functional and phys-
ical architecture. Figure 1 describes a possible decomposition of our electrical
system. This decomposition deserves three important remarks.

First, it mixes functional and physical aspects. In fact, due to the small size
of the example, only basic blocks (leaves of the decomposition) represent phys-
ical components. The others represent functions. We could consider functional
and physical architectures separately. However, considering both in the same
diagram simplifies things here. Moreover, it matches better with the usual way
of designing models for safety and dependability analysis. Note also that at this
step, we do not consider interactions between components.

Second, the underlying structure of this decomposition is not a tree, but a
directed acyclic graph for the external power supply is shared between Line 1
and Line 2. As we shall see, this has very important consequences in terms of
structuring constructs.

170 APPENDIX D. MODELING PATTERNS

Third, the system embeds five circuit breakers and two transformers. We
can assume that the circuit breakers on the one hand, the transformers on the
other hand are all the same. From a modeling point of view, it means that
we need to be able to define generic components and to instantiate them in
different places in our model. On the contrary, components like ”Primary Power
Supply”, ”Backup Power Supply” and ”Busbar Power Supply” are specific to
that particular system.

Fig. 2. Architecture of the Busbar Power Supply System

The structure of the AltaRica 3.0 model that reflects this architecture is
sketched in Figure 2. In AltaRica 3.0, components are represented by means of
blocks. Blocks contain variables, events, transitions, and everything necessary to
describe their behavior. At this step, the behavioral part is still empty. Blocks can
also contain other blocks and form hierarchies. The block ”BusbarPowerSupply”
contains two blocks: ”PrimaryPowerSupply” and ”BackupPowerSupply”. ”Bus-
barPowerSupply” is the parent block of ”PrimaryPowerSupply” and an ancestor
of ”CBU1”. Objects defined in a block are visible in all its ancestors. For instance,
if the class ”CircuitBreaker” defines an event ”failToOpen”, the instantiation of
this event in ”CBU1” is visible in the block ”BusbarPowerSupply” through the
dot notation, i.e. ”PrimaryPowerSupply.Line1.CBU1.failToOpen”.

An instance ”GR” of the class ”Grid” is declared in the block ”PrimaryPow-
erSupply”. It is convenient to be able to refer to it as ”GR” as if it was declared
in ”Line1”. This is the purpose of the ”embeds” clause. This clause makes it clear
that ”GR” is part of ”Line1”, even if it is probably shared with some sibling
blocks.

Classes in AltaRica 3.0 are similar to classes in object-oriented programming
languages (see e.g. [14], [15] for conceptual presentations of the object-oriented
paradigm). A class is a block that can be instantiated, i.e. copied, elsewhere
in the model. There are several differences however between blocks and classes.
AltaRica 3.0 makes a clear distinction between ”on-the-shelf”, stabilized knowl-

171

edge, for which classes are used, from the model itself, i.e. the implicit main
block and all its descendants. Such a distinction has been conceptualized in CK-
Theory ([16]). The implicit main block can be seen as the sandbox in which
the analyst is designing his model. Declaring a class is in some sense creating
another sandbox. Amongst other consequences, this means that it is neither pos-
sible to refer in a class to an object which is declared outside of the class, nor to
declare a class inside another one or in a block. A class may of course contain
blocks and instances of other classes up to the condition that this introduces
no circular definition (recursive data types are not allowed in AltaRica 3.0). To
summarize, AltaRica 3.0 borrows concepts to both object-oriented programming
and prototype-oriented programming [11] - blocks can be seen as prototypes - so
to provide the analyst with powerful structuring constructs that are well suited
for the level of abstraction of safety analysis.

block BusbarPowerSupply

block PrimaryPowerSupply

Grid GR;

block Line1

embeds GR;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

end
block Line2

embeds GR;

CircuitBreaker CBU2, CBD2;

Transformer TR2;

end
end
block BackupPowerSupply

DieselGenerator DG;

CircuitBreaker CB3;

end
end
class Grid

end
...

Fig. 3. Structure of the AltaRica 3.0 Model for the Electrical System (partial view)

4 Targeting Compilation into Fault Trees

4.1 A Simple Block-Diagram like Model

We shall consider first a very simple model, close to a block diagram, in which
basic blocks have a (Boolean) input, a (Boolean) output and an internal state

172 APPENDIX D. MODELING PATTERNS

(WORKING or FAILED). This basic block changes its state, from WORKING
to FAILED, when the event “failure” occurs. The diagram for the whole system
is pictured in Figure 4.

Fig. 4. A Block Diagram for the electric supply system

The AltaRica code for the diagram (with the architecture defined in the pre-
vious section) is sketched in Figure 5. The class “NonRepairableComponent”
declares a state variable “s” and two Boolean flow variables: “inFlow” and “out-
Flow”. “s” takes its value in the domain ”ComponentState” and is initially set
to WORKING. “inFlow” and “outFlow” are (at least conceptually) reset to false
after each transition firing. Their default value is false. The class also declares
the event “failure” which is associated with an exponential probability distribu-
tion of parameter “lambda”. This parameter has the value “1.0e-4” unless stated
otherwise.

After the declaration part, which consists in declaring flow and state vari-
ables, events and parameters, comes the behavioral part. This behavioral part
itself includes transitions and assertions. In our example, there is only one tran-
sition and one assertion. The transition is labeled with the event “failure” and
can be read as follows. The event “failure” can occur when the condition “s ==
WORKING” is satisfied. The firing of the transition gives the value FAILED to
the variable “s”.

The assertion describes the action to be performed to stabilize the system
after each transition firing (and in the initial state). In our example, the variable
“outFlow” takes the value true if “s” is equal to WORKING and “inFlow” is
true, and false otherwise. In the initial state, all components are working, so the
value true propagates from the input flow of the grid “GR” to the output flow of
the system. If the circuit breaker “CBU2” fails, then the value false propagates
from the output flow of “CBU2” to the output flow of the Line 2.

It would be possible to copy-paste the declaration of “NonRepairableCom-
ponent” in the declaration of the basic components of our model (“Grid”, “Cir-
cuitBreaker”, etc.). However, AltaRica 3.0 is an object-oriented language and
thus provides a much more elegant way to obtain the same result: inheritance. It
suffices to declare that the class “Grid” inherits from class “NonRepairableCom-
ponent”. This is done in the code of Figure 5. In the class “Grid” the default
value of the input flow is set to “true”. “This change makes the grid a source

173

domain ComponentState { WORKING, FAILED }
class NonRepairableComponent

Boolean s (init = WORKING);

Boolean inFlow, outFlow (reset = false);
event failure (delay = exponential(lambda));

parameter Real lambda = 0.0001;

transition
failure: s == WORKING -> s := FAILED;

assertion
outFlow := s == WORKING and inFlow;

end
class Grid extends NonRepairableComponent(inFlow.reset = true);
end
...

block BusbarPowerSupply

Boolean outFlow(reset = false);
Grid GR;

block PrimaryPowerSupply

Boolean outFlow (reset = false);
block Line1

Boolean outFlow (reset = false);
embeds GR;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

assertion
CBU1.inFlow := GR.outFlow;

...

end
block Line2

... // similar to Line1

end
assertion

outFlow := Line1.outFlow or Line2.outFlow;

end
...

assertion
outFlow := PrimaryPowerSupply.outFlow or BackupPowerSupply.outFlow;

end

Fig. 5. A simple model targeting a compilation into Fault Trees (partial view)

block. The remainder of the model consists in plugging inputs and outputs of the
components in order to build the system. Note that the resulting model is not
just a flat block diagram, but a hierarchical one. The compilation of this model
into Fault Trees is performed according to the principle defined in [2]. The idea
is to build a Fault Tree such that:

– The basic events of this Fault Tree are the events of the AltaRica model.

174 APPENDIX D. MODELING PATTERNS

– There is (at least) an intermediate event for each pair (variable, value) of
the AltaRica model.

– For each minimal cutset of the Fault Tree rooted by an intermediate event
(variable, value), there exists at least one sequence of transitions in the
AltaRica model labeled with events of the cutset that ends up in a state
where this variable takes this value. Moreover, this sequence is minimal in
the sense that no strict subset of the minimal cutsets can label a sequence
of transitions ending up in a state where this variable takes this value.

For technical reasons, the Fault Trees generated by the AltaRica compiler are
quite different from those an analyst would write by hand. The minimal cutsets
are however the expected ones. For instance, the minimal cutsets for the target
“(BusbarPowerSupply.outFlow, false)”, i.e. the busbar is not powered, with our
first model are as follows.

GR.failure DG.failure GR.failure CB3.failure
CBU1.failure CBU2.failure DG.failure CBU1.failure TR2.failure DG.failure
CBU1.failure CBU2.failure CB3.failure TR1.failure CBD2.failure DG.failure
CBU1.failure CBD2.failure CB3.failure TR1.failure CBU2.failure DG.failure
CBU1.failure CBD2.failure DG.failure TR1.failure CBU2.failure CB3.failure
CBD1.failure CBU2.failure DG.failure TR1.failure TR2.failure CB3.failure
CBU1.failure TR2.failure CB3.failure TR1.failure CBD2.failure CB3.failure
CBD1.failure CBU2.failure CB3.failure TR1.failure TR2.failure DG.failure
CBD1.failure CBD2.failure DG.failure CBD1.failure TR2.failure CB3.failure
CBD1.failure CBD2.failure CB3.failure CBD1.failure TR2.failure DG.failure

4.2 Taking into account Common Cause Failures

We shall now design a second model in order to take into account the common
cause failure of the two transformers (due for instance to fire propagation). To
do so, we have to model that transformers fail simultaneously when the common
cause failure occurs. AltaRica provides powerful synchronization mechanisms to
make transitions simultaneous. The idea is to create an event “CCF” and a
transition at the first common ancestor of the two transformers, i.e. “Prima-
ryPowerSupply”. The new code for the “PrimaryPowerSupply” is sketched in
Figure 6. The operator & synchronizes the transitions “failure” defined for each
transformer. The operator & is associative and commutative. Any number of
transitions can be thus synchronized. To fire the synchronizing transition, at
least one of the synchronized transitions must be fireable. If the synchroniz-
ing transition is fired, then all the possible synchronized transitions are fired
simultaneously. The modality ? indicates that the corresponding synchronized
transition is not mandatory to fire the synchronizing transition. The modality !
indicates that the corresponding transition is mandatory.

Note that the synchronized transitions continue to exist independently of
the synchronizing transition. It is possible to hide transitions by means of a
special clause “hide”. Our second model has the following two additional minimal
cutsets.

175

block PrimaryPowerSupply

...

event CCF (delay = exponential(lambdaCCF));

parameter Real lambdaCCF = 1.0e-5;

...

transition
CCF: ?Line1.TR1.failure & ?Line2.TR2.failure;

assertion
...

end

Fig. 6. Synchronization mechanism to model the Common Cause Failures

PrimaryPowerSupply.CCF, BackupPowerSupply.DG.failure
PrimaryPowerSupply.CCF, BackupPowerSupply.CB3.failure

5 Targeting Compilation into Markov Chains

In this section we consider repairs of components, reconfigurations and limited
resources. First, we assume that there is an unlimited number of repairers. Then,
we refine our model to take into account a limited number of repairers. Both
models are compiled into Markov chains.

5.1 Unlimited number of repairers

All components are repairable. The AltaRica code in this case is similar to the
one of the “NonRepairableComponent” (see Figure 5), except that a new event
“repair”, the corresponding parameter mu and the corresponding transition are
added to the previous model. Instead of the ”NonRepairableComponent”, the
classes ”Transformer” and ”Grid” of this model, will inherit from a ”Repairable-
Component”.

The on demand failures of the circuit breakers and the diesel generator are
also considered. The automata describing the behavior of the diesel generator,
the transformer, the grid and the circuit breakers are figured in 7 and 8. The solid
lines correspond to the stochastic transitions, whereas the dashes correspond to
the immediate ones.

Figure 9 represents the AltaRica 3.0 model of the spare component corre-
sponding to the left automaton depicted in Figure 7. Transitions ”stop”, ”start”
and ”failureOnDemand” are immediate (their delays are equal to 0). When the
state variable ”s” is equal to STANDBY and the flow variable ”demanded” is
true, the event ”start” may occur with the probability ”1-gamma” and the event
”failureOnDemand” may occur with the probability ”gamma”. The values of the
probabilities are given through the attribute ”expectation”.

In this example, we also take into consideration the short circuit case (see
the automaton in the right hand side of the Figure 8). For the transformer, the

176 APPENDIX D. MODELING PATTERNS

Fig. 7. Two automata describing the behavior of the Diesel Generator and the Trans-
former

Fig. 8. Two automata describing the behavior of the Circuit Breaker and the Grid

event failure is considered as a short circuit, that will propagate into the whole
line and make it instantly fail. If the short circuit is in the ”Grid”, the whole
”Primary Power Supply” system will eventually fail, inducing the spare block
(the ”Backup Power Supply” system) to take over. The structure of the whole
model remains the same as in Figure 3. Some additional assertions are added
in order to represent the propagation of the short circuit from the transformers
to the grid and the reconfigurations (orders to open/close circuit breakers, to
start/stop the diesel generator).

The semantics of AltaRica 3.0 are a Kripke structure (a reachability graph)
with nodes defined by variable assignments (i.e. variables and their values) and
edges defined by transitions and labeled by events. If the delays associated to
the events are exponentially distributed, then the reachability graph can be
interpreted as a continuous time Markov chain. In the case when the graph

177

domain SpareComponentState { STANDBY, WORKING, FAILED }
class SpareComponent

Boolean s (init = WORKING);

Boolean demanded, inFlow, outFlow (reset = false);
event failure (delay = exponential(lambda));

event repair (delay = exponential(mu));

event start (delay = 0, expectation = 1 - gamma);

event failureOnDemand (delay = 0, expectation = gamma);

event stop(delay = 0);

parameter Real lambda = 0.0001;

parameter Real mu = 0.1;

parameter Real gamma = 0.001;

transition
failure: s == WORKING -> s := FAILED;

repair: s == FAILED -> s := STANDBY;

start: s == STANDBY and demanded -> s := WORKING;

failureOnDemand: s == STANDBY and demanded -> s := FAILED;

stop: s == WORKING and not demanded -> s := STANDBY;

assertion
outFlow := s == WORKING and inFlow;

end

Fig. 9. AltaRica 3.0 model of a spare component (Diesel generator)

contains immediate transitions, they are just collapsed using the fact that an
exponential delay with rate λ followed by an immediate transition of probability
p is equivalent to a transition with an exponential delay of rate pλ.

The generated Markov Chain contains 7270 states and 24679 transitions.
The tool XMRK calculates the unavailability for different mission times. For
λ = 10−4, γ = 10−3 and µ = 10−1, the probabilities are represented in Figure
12.

5.2 Limited number of repairers

In this part, we consider the case of a limited number of repairers, namely
lower than the number of failures. Counter to the previous model, in order for
a repair to take place, the repairer should be available and not used by another
component. In this case, some changes in the behavior of the system take place.
We will not only be interested in the ”repair” transition, but also in the time it
starts and ends at. Therefore, the ”repair” transition is replaced by a whole set
of transitions: startRepair and endRepair (see for example the automaton in the
right hand side of the Figure 8). Besides, a new class called ”RepairCrew” that
defines when a job can start is added to the previous model (see Figure 10).

The transitions ”startRepair” and ”startJob”, as well as ”endRepair” and
”endJob” are synchronized using the operator & as shown in Figure 11.

Compared to the definition of the common cause failure (see Figure 6), here
the modality ! is used in the synchronization, which means that both synchro-

178 APPENDIX D. MODELING PATTERNS

class RepairCrew

Integer numberOfBusyRep (init = 0);

parameter Integer totalNumberOfRepairers = 1;

event startJob, endJob;

transition
startJob: numberOfBusyRep < totalNumberOfRep ->

numberOfBusyRep := numberOfBusyRep + 1;

endJob: numberOfBusyRep > 0 ->

numberOfBusyRep := numberOfBusyRep - 1;

end

Fig. 10. AltaRica model of the Repair Crew

block BusbarPowerSupply

RepairCrew R;

block PrimaryPowerSupply

...

end
block BackupPowerSupplySystem

...

end
event PPS GR startRepair, PPS GR endRepair;

...

transition
PPS GR startRepair: !R.startJob & !PrimaryPowerSupply.GR.startRepair;

PPS GR endRepair: !R.endJob & !PrimaryPowerSupply.GR.endRepair;

hide R.startJob, PrimaryPowerSupply.GR.startRepair;

hide R.endJob, PrimaryPowerSupply.GR.endRepair;

...

end

Fig. 11. A model targeting a compilation into Markov Chains (partial view)

nized events should be fireable to be able to fire the synchronizing transitions.
In this example, the synchronized events are hidden explicitly using the clause
”hide”.

In order to make the results more interesting, two numbers of repairers n = 1
and n = 3 are considered. This will allow us to compare the two graphs of
unavailability. The same parameters mentioned in the first subsection are used
here as well. The Markov Chain consists of 29332 states and 98010 transitions.
The graph in figure12 shows indeed that the unavailability is lower when the
number of repairers is bigger, and even lower when it is unlimited.

179

Fig. 12. Unavailability for a different number of repairers

6 Conclusion

In this paper we showed, using an electrical system as a red-wire example, how
AltaRica 3.0 can be used to model complex phenomena. A purely structural
model was designed. Then, we derived four variants from it: two of them target-
ing a compilation into Fault Trees and two others targeting a compilation into
Markov chains. Each variant, or subset of variants, was tailored for a particular
assessment tool, i.e. to capture a particular aspect of the system under study.
Based on this experience (and several others we have performed), we are con-
vinced that this approach, consisting of deriving models by means of successive
refinements, is a solid ground to build a modeling methodology. The calcula-
tions to be performed are actually very resource consuming. Therefore, a model
is always a trade-off between the accuracy of the description and the ability to
perform calculations. Refining a model in successive variants is a good way to
seek a good trade-off. Moreover, the trade-off depends on the characteristics of
the system to be observed. Therefore, different tools must be applied. As a con-
sequence, the refinement process should not be linear, but rather have a tree-like
structure.

References

1. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The altarica formalism for describ-
ing concurrent systems. Fundamenta Informaticae 34 (2000) 109–124

2. Rauzy, A.: Modes automata and their compilation into fault trees. Reliability
Engneering and System Safety (2002)

3. Griffault, A., Vincent, A.: The mec 5 model-checker. In: Proceedings of the 16th
International Conference on Computed Aided Verification (CAV 2004). Volume
3114., Boston MA, USA (2004) 488–491

4. Khuu, M.: Contribution à l’accélération de la simulation stochastique sur des
modèles AltaRica Data Flow. PhD thesis, Université de la Mèditerranée, Aix-
Marseille II (2008)

180 APPENDIX D. MODELING PATTERNS

5. Humbert, S., Seguin, C., Castel, C., Bosc, J.M.: Deriving safety software require-
ments from an altarica system model. In: Proceedings SAFECOMP2008. Volume
5219., Newcastle upon Tyne, England (2008) 320–331

6. Quayzin, X., Arbaretier, E.: Performance modeling of a surveillance mission. In:
Proceedings of the Annual Reliability and Maintainability Symposium, RAMS
2009, Fort Worth, Texas USA (2009) 206–211 ISBN 978-1-4244-2508-2.

7. Sghairi, M., De-Bonneval, A., Crouzet, Y., Aubert, J.J., Brot, P., Laarouchi, Y.:
Distributed and reconfigurable architecture for flight control system. In: Proceed-
ings of 28th Digital Avionics Systems Conference (DASC’09), Orlando, USA (2009)

8. Chaudemar, J.C., Bensana, E., Castel, C., Seguin, C.: Altarica and event-b models
for operational safety analysis: Unmanned aerial vehicle case study. In: Proceedings
Formal Methods and Tools, FMT’09, London, England (2009)

9. Adeline, R., Cardoso, J., Darfeuil, P., Humbert, S., Seguin, C.: Toward a method-
ology for the altarica modelling of multi-physical systems. In: Proceedings of Eu-
ropean Safety and Reliability Conference, ESREL 2010, Rhodes, Greece (2010)

10. Prosvirnova, T., Batteux, M., Brameret, P.A., Cherfi, A., Friedlhuber, T., Roussel,
J.M., Rauzy, A.: The altarica 3.0 project for model-based safety assessment. In:
Proceedings of 4th IFAC Workshop on Dependable Control of Discrete Systems,
DCDS’2013, York, Great Britain, International Federation of Automatic Control
(2013) 127–132 ISBN: 978-3-902823-49-6, ISSN: 1474-6670.

11. Noble, J., Taivalsaari, A., Moore, I.: Prototype-Based Programming: Concepts,
Languages and Applications. Springer-Verlag, Berlin and Heidelberg, Germany
(1999) ISBN-10: 9814021253. ISBN-13: 978-9814021258.

12. Rauzy, A.: Guarded transition systems: a new states/events formalism for relia-
bility studies. Journal of Risk and Reliability 222 (2008) 495–505

13. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees
and markov models: Boolean logic-driven markov processes. Reliability Engineer-
ing and System Safety 82 (2003) 149–163

14. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1988) ISBN-10:
0136290493. ISBN-13: 978-0136290490.

15. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Sci-
ence. Springer-Verlag. New York Inc (1998) ISBN-10: 0387947752. ISBN-13: 978-
0387947754.

16. Hatchuel, A., Weil, B.: C-k design theory: an advanced formulation. research in
engineering design. Research in Engineering Design 19 (2009) 181–192

181

182 APPENDIX D. MODELING PATTERNS

Bibliography

[1] http://www.lix.polytechnique.fr/ rauzy/xfta/xfta.htm.

[2] Dubi A. Monte Carlo application in Systems Engineering. John Wiley and Sons Ltd., 2000.

[3] M. Abadi and L. Cardelli. A theory of Objects. Springer New York, 1996.

[4] Romain Adeline, Janette Cardoso, Pierre Darfeuil, Sophie Humbert, and Christel Seguin. To-
ward a methodology for the AltaRica modelling of multi-physical systems. In Ben J.M. Ale,
Ioannis A. Papazoglou, and Enrico Zio, editors, Proceedings of European Safety and Reliability
Conference, ESREL 2010, Rhodes, Greece, September 2010. Taylor and Francis Group. ISBN
978-0-415-60427-7.

[5] O. Akerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider, C. Castel, A. Cavallo,
M. Cifaldi, J. Gauthier, A. Griffault, O. Lisagor, A. Luedtke, S. Metge, C. Papadopoulos,
T. Peikenkamp, L. Sagaspe, C. Seguin, H. Trivedi, and L. Valacca. ISAAC, a framework for
integrated safety analysis of functional, geometrical and human aspects. In Proceedings of 3rd
European Congress Embedded Real Time Software, ERTS 2006, 2006.

[6] J.D. Andrews and T.R. Moss. Reliability and Risk Assessment. John Wiley & Sons, 1993. ISBN
0-582-09615-4.

[7] Andr Arnold, Alain Griffault, Gérald Point, and Antoine Rauzy. The AltaRica language for
Describing Concurrent Systems. Fundamenta Informaticae, 34(2–3):109–124, 2000.

[8] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability and its threats - A
taxonomy. In IFIP Congress Topical Sessions, pages 91–120, 2004.

[9] M. Batteux and A. Rauzy. Stochastic Simulation of AltaRica 3.0 models. In Proceedings of
the European Safety and Reliability Conference, ESREL 2013, Amsterdam (The Netherlands),
September-October 2013. CRC Press.

[10] Romain Bernard, Jean-Jacques Aubert, Pierre Bieber, Christophe Merlini, and Sylvain Metge.
Experiments in model-based safety analysis: flight controls. In Jean-Marc Faure, editor, Pro-
ceedings of IFAC workshop on Dependable Control of Discrete Systems, pages 43–48, Cachan,
France, June 2007. Curran Associates, Inc. ISBN 9781617389948.

[11] Romain Bernard, Sylvain Metge, François Pouzolz, Pierre Bieber, Alain Griffault, and Marc
Zeitoun. AltaRica Refinement for Heterogeneous Granularity Model Analysis. In Actes du
congrès Lambda-Mu’16, page 2B, Avignon, France, October 2008. IMdR (actes électroniques).

[12] S.A. Bernardi, S. Donatelli, and J. Merseguer. From UML Sequence Diagrams and StateCharts
to analyzable Petri Net models. In In Proceedings of the Third International Workshop on
Software on Performance, 2002.

183

184 BIBLIOGRAPHY

[13] Pierre Bieber, Jean-Paul Blanquart, Guy Durrieu, David Lesens, Jocelyn Lucotte, FrédéricTardy,
Michel Turin, Christel Seguin, and Eric Conquet. Integration of formal fault analysis in ASSERT:
Case studies and lessons learnt. In Proceedings of 4th European Congress Embedded Real Time
Software, ERTS 2008, Toulouse, France, January 2008. SIA (electronic proceedings). code R-
2008-01-2B04.

[14] M. Boiteau, Y. Dutuit, A. Rauzy, and J.-P. Signoret. The AltaRica Data-Flow Language in
Use: Assessment of Production Availability of a MultiStates System. Reliability Engineering
and System Safety, 91(7):747–755, 2006.

[15] M. Bouissou. Automated Dependability Analysis of Complex Systems with the KB3 Workbench:
the Experience of EDF R&D. In Proceedings of the International Conference on Energy and
Environment, 2005.

[16] M. Bouissou and J.L. Bon. A new formalism that combines advantages of fault-trees and Markov
models: Boolean Logic Driven Markov Processes. Reliability Engineering and System Safety,
82:149–163, 2003.

[17] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte. Knowledge modelling and reliability
processing: presentation of the Figaro modelling language and associated tools. In Proceedings
of Safecomp’91, 1991.

[18] M. Bouissou and C. Seguin. Comparaison des langages de modélisation AltaRica et Figaro. In
15me colloque de fiabilit et maintenabilit, Lille, France, 2006.

[19] M. Bozzano, A. Cimatti, O. Lisagor, C. Mattarei, S. Mover, M. Roveri, and S. Tonetta. Symbolic
Model Checking and Safety Assessment of AltaRica Models. In Proceedings of the 11th Inter-
national Workshop on Automated Verification of Critical Systems (AVoCS 2011), volume 46.
Electronic Communications of the EASST, 2011.

[20] Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo. Symbolic fault tree analysis for
reactive systems. In Proceedings of the 5th international conference on Automated technology
for verification and analysis, pages 162–176, Berlin, Heidelberg, 2007. Springer-Verlag.

[21] Pierre-Antoine Brameret, Antoine Rauzy, and Jean-Marc Roussel. Preliminary System Safety
Analysis with Limited Markov Chain Generation. In Proceedings of 4th IFAC Workshop on De-
pendable Control of Discrete Systems, DCDS’2013, pages 13–18, York, Great Britain, September
2013. International Federation of Automatic Control. ISBN: 978-3-902823-49-6, ISSN: 1474-6670.

[22] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. Computers, IEEE
Transactions on, C-35(8):677 – 691, 1986.

[23] Jean-Charles Chaudemar, Eric Bensana, Charles Castel, and Christel Seguin. AltaRica and
Event-B Models for Operational Safety Analysis: Unmanned Aerial Vehicle Case Study. In
Proceedings of Workshop on Integration of Model-Based Formal Methods and Tools, Dusseldorf,
Germany, February 2009.

[24] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet. Towards a Higher-order
Synchronous Data-flow Language. In ACM Fourth International Conference on Embedded Soft-
ware (EMSOFT’04), Pisa, Italy, September 2004.

[25] M.-M. Corsini and A. Rauzy. Toupie: The µ-calculus over finite domains as a constraint lan-
guage. J. Autom. Reasoning, 19(2):143–171, 1997.

BIBLIOGRAPHY 185

[26] P. David. Contribution à l’analyse de sûreté de fonctionnement des systèmes complexes en
phase de conception : application l’évaluation des missions d’un réseau de capteurs de présence
humaine. Thèse de doctorat, Université d’Orléans, 2009.

[27] P. David, V. Idasiak, and F. Kratz. Reliability study of complex physical systems using SysML.
Reliability Engineering and System Safety, pages 431–450, 2010.

[28] Johan de Kleer. An assumption based TMS. Artificial Intelligence, 278(2):127–162, March 1986.

[29] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.

[30] J.B. Dugan, K.J. Sullivan, and D. Coppit. Developing a High-quality Software Tool for Fault
Tree Analysis. In Proceedings of the International Symposium on Software Reliability Engineer-
ing, pages 222–231, 1999.

[31] Y. Dutuit, F. Innal, A. Rauzy, and J.-P. Signoret. Probabilistic assessments in relationship
with Safety Integrity Levels by using Fault Trees. Reliability Engineering and System Safety,
93(12):1867–1876, December 2008.

[32] Y. Dutuit and A. Rauzy. Efficient Algorithms to Assess Components and Gates Importances in
Fault Tree Analysis. Reliability Engineering and System Safety, 72(2):213–222, May 2001.

[33] S. Epstein and A. Rauzy. Open-PSA Model Exchange Format. Technical report, The Open-PSA
Initiative, 2008.

[34] P. Feiler, D. Gluch, and J. Hudak. The Architecture Analysis & Design Language (AADL): An
Introduction. Technical report, Carnegie Mellon University, 2006.

[35] P. Feiler and A.E. Rugina. Dependability Modeling with the Architecture Analysis & Design
Language (AADL). Technical report, Carnegie Mellon University, 2007.

[36] S. Friedenthal, A. Moore, and R. Steiner. A Practical Guide to SysML: The Systems Modeling
Language. The MK/OMG Press, 2011.

[37] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. John
Wiley & Sons Inc, 2004.

[38] P. Fritzson and P. Bunus. Modelica - a general object-oriented language for continuous and
discrete-event system modeling and simulation. In Simulation Symposium, 2002. Proceedings.
35th Annual, pages 365–380, April 2002.

[39] Hauke A. L. Fuhrmann. On the Pragmatics of Graphical Modeling. Number 2011-1 in Kiel
Computer Science Series. Department of Computer Science, May 2011. Dissertation, Faculty of
Engineering, Christian-Albrechts-Universität zu Kiel.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[41] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: a structured performance
modelling formalism. Performance Evaluation, 54(2):79–104, 2003.

[42] Gregor Gössler and Joseph Sifakis. Composition for component-based modeling. Science of
Computer Programming, 55(1-3):161–183, 2005.

[43] A. Griffault, G. Point, F. Kuntz, and A. Vincent. Symbolic computation of minimal cuts for
AltaRica models. Technical report, LaBRI, Université de Bordeaux, 2011.

186 BIBLIOGRAPHY

[44] Alain Griffault and Aymeric Vincent. The Mec 5 model-checker. In Proceedings of the 16th
International Conference on Computed Aided Verification (CAV 2004), volume 3114 of Lectures
Notes in Computer Science, pages 488–491, Boston, MA, USA, July 2004. Springer Verlag.

[45] M. Güdemann and F. Ortmeier. A framework for qualitative and quantitative model-based
safety analysis. In Proceedings of 12th High Assurance System Engineering Symposium, pages
132–141, 2010.

[46] M. Güdemann and F. Ortmeier. A Framework for Qualitative and Quantitative Model-Based
Safety Analysis. In Proceedings of the 12th High Assurance System Engineering Symposium
(HASE 2010), pages 132–141, 2010.

[47] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Methods and Tools for Constraint System
Architectering. In Proceedings of the IEEE, volume 79, pages 1305–1320, September 1991.

[48] D. Harel. StateCharts: A Visual Formalism For Complex Systems. Science of Computer Pro-
gramming, 8(3):231–274, 1987.

[49] A. Hatchuel and B. Weil. La théorie C-K : Fondements et usages d’une théorie unifiée de la
conception. In Actes du Colloque ”Sciences de la conception”, Lyon, France, March 2002.

[50] A. Hatchuel and B. Weil. A new approach of innovative design: an introduction to C-K theory.
In Proceedings of the International Conference on Engineering Design (ICED’03), Stockhholm,
Sweden, August 2003.

[51] M. Hibti, T. Friedlhuber, and A. Rauzy. Overview of The Open PSA Platform. In R. Virolainen,
editor, Proceedings of International Joint Conference PSAM’11/ESREL’12, June 2012.

[52] Sophie Humbert, Christel Seguin, Charles Castel, and Jean-Marc Bosc. Deriving Safety Software
Requirements from an AltaRica System Model. In Michael D. Harrison and Mark-Alexander
Sujan, editors, Proceedings of 27th International Conference on Computer Safety, Reliability,
and Security, SAFECOMP’2008, volume 5219, pages 320–331, Newcastle upon Tyne, England,
September 2008. Springer, LNCS. ISBN 978-3-540-87697-7.

[53] K. Jensen. Coloured Petri Nets, Volume 1: Basic Concepts. Springer-Verlag, 1992.

[54] A. Joshi, P. Binns, , and S. Vestal. Automatic generation of Fault Trees from AADL Models.
In Proceedings of the ICSE Workshop on Aerospace Software Engineering, Minneapolis, USA,
2007.

[55] A. Joshi, S.P. Miller, M.Whalen, and Mats P.E. Heimdahl. A proposal for Model-Based Safety
Analysis. In Proceedings of the 24th Digital Avionics Systems Conference, Washington, USA,
October 2005.

[56] C. Kehren. Motifs formels d’architectures de systèmes pour la sûreté de fonctionnement. Thèse
de doctorat, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO), 2005.

[57] C. Kehren, C. Seguin, P. Bieber, C. Castel, C. Bougnol, J.-P. Heckmann, and S. Metge. Architec-
ture Patterns for Safe Design. In AAAF 1st Complex and Safe Systems Engineering Conference
(CS2E 2004), 2004.

[58] Minh Thang Khuu. Contribution à l’accélération de la simulation stochastique sur des modèles
AltaRica Data-Flow. Thèse de doctorat, Université de la Méditerranée (Aix-Marseille II), 2008.

BIBLIOGRAPHY 187

[59] L. Kloul, T. Prosvirnova, , and A. Rauzy. Modeling systems with mobile components: a com-
parison between AltaRica and PEPA nets. Journal of Risk and Reliability, 227(6):599–613,
2013.

[60] O. Lisagor, T. Kelly, and Ru Niu. Model-based safety assessment: Review of the discipline
and its challenges. In Reliability, Maintainability and Safety (ICRMS), 2011 9th International
Conference on, pages 625–632, June 2011.

[61] J.-P. Lopez-Grao, J. Merseguer, and J. Campos. From UML Activity Diagrams to Stochastic
Petri Nets: Application to software performance engineering. In In Proceedings of the Fourth
International Workshop on Software and Performance, 2004.

[62] A. Majdara and T. Wakabayashi. Component-based modeling of systems for automated Fault
Tree generation. Reliability Engineering and System Safety, 94(6):1076–1086, 2009.

[63] M. Malhotra and K.S. Trivedi. Dependability modeling using Petri-nets. Reliability, IEEE
Transactions on, 44(3):428–440, Sep 1995.

[64] R. Manian, J. Bechta Dugan, D. Coppit, and K.J. Sullivan. Combining various solution tech-
niques for dynamic fault tree analysis of computer systems. In High-Assurance Systems En-
gineering Symposium, 1998. Proceedings. Third IEEE International, pages 21–28, November
1998.

[65] M. Ajmone Marsan, M. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. John Wiley & Sons Inc, 1995.

[66] T. Matsuoka and M. Kobayashi. New reliability analysis methodology. Nuclear Engineering and
Design, 98:64–78, 1988.

[67] T. Matsuoka and M. Kobayashi. The GO-FLOW reliability analysis methodology - analysis of
common cause failures with uncertainty. Nuclear Engineering and Design, 175:205–214, 1997.

[68] T. Matsuoka, N. Mitomo, and T. Hoshi. An application of the GO-FLOW methodology –
evaluation of component cooling water system for a new type of marine reactor. In Proceedings of
the 4th International Conference on Probabilistic Safety Assessment and Management (PSAM),
volume 1, pages 221–226, New York, USA, 1998.

[69] T. Matsuoka and K. Nakagawa. An application of the GO-FLOW Methodology – a reliability
analysis of automatic train control system of Shinkansen in Japan. In Proceedings of the 4th In-
ternational Conference on Probabilistic Safety Assessment and Management (PSAM), volume 1,
pages 233–238, New York, USA, 1998.

[70] J. Merseguer, J. Campos, S. Bernardi, and S.A. Donatelli. Compositional Semantics for UML
State Machines Aimed at Performance Evaluation. In In Proceedings of the Sixth International
Workshop on Discrete Event Systems, 2002.

[71] F. Milcent, T. Prosvirnova, and A. Rauzy. Modeling network systems with AltaRica 3.0. In
Actes du congrès LambdaMu’19 (actes électroniques), Dijon (France), October 2014. IMdR.

[72] R. Milner. Communicating and Mobile Systems: The pi-calculus. Cambridge University Press,
1999.

[73] J. Noble, A. Taivalsaari, and I. Moore. Prototype-Based Programming: Concepts, Languages
and Applications. Springer-Verlag, 1999.

188 BIBLIOGRAPHY

[74] C. Pagetti. Extension temps réel du langage AltaRica. Thèse de doctorat, École Centrale de
Nantes et de l’Université de Nantes, 2004.

[75] Y. Papadopoulos and M. Maruhn. Model-Based Synthesis of Fault Trees from Matlab-Simulink
Models. In Proceedings of the 2001 International Conference on Dependable Systems and Net-
works, DSN ’01, pages 77–82, Washington, DC, USA, 2001. IEEE Computer Society.

[76] Y. Papadopoulos, M. Walker, D. Parker, E. Rude, R. Hamann, A. Uhlig, U. Gratz, and R. Lien.
Engineering failure analysis and design optimization with HiP-HOPS. Engineering Failure Anal-
ysis, 18:590–608, 2011.

[77] Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren, David Servat,
A. Abele, F. Stappert, H. Lonn, L. Berntsson, Rolf Johansson, F. Tagliabo, S. Torchiaro, and
Anders Sandberg. Automatic Allocation of Safety Integrity Levels. In Proceedings of the 1st
Workshop on Critical Automotive Applications: Robustness & Safety, CARS ’10, pages 7–10,
New York, USA, 2010. ACM.

[78] A. Pasquini, Y. Papadopoulos, and J. McDermid. Hierarchically performed hazard origin and
propagation studies. Computer Safety, Reliability and Security, 1698 of LNCS:688–688, 1999.

[79] B. Perrot, T. Prosvirnova, A. Rauzy, J.-P. Sahut d’Izarn, and R. Schoening. Expériences de
couplages de modèles AltaRica avec des interfaces métiers. In E. Fadier, editor, Actes du congrès
LambdaMu’17 (actes électroniques). IMdR, October 2010.

[80] G. Point and A. Rauzy. AltaRica: Constraint automata as a description language. Journal
Européen des Systèmes Automatisés, 33(8–9):1033–1052, 1999.

[81] Adrian Pop and Peter Fritzson. The Modelica Standard Library as an Ontology for Modeling and
Simulation of Physical Systems. Technical report, Linkping University, PELAB - Programming
Environment Laboratory, 2004.

[82] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedlhuber, J.-M. Roussel, and
A. Rauzy. The AltaRica 3.0 project for Model-Based Safety Assessment. In Proceedings of 4th
IFAC Workshop on Dependable Control of Discrete Systems, DCDS 2013, York (Great Britain),
September 2013. IFAC.

[83] T. Prosvirnova, M. Batteux, A. Maarouf, and A. Rauzy. GraphXica: a Language for Graphical
Animation of models. In Proceedings of the European Safety and Reliability conference, ESREL
2013, Amsterdam (The Netherlands), September-October 2013. CRC Press.

[84] T. Prosvirnova and A. Rauzy. Guarded Transition Systems: Pivot Modelling Formalism For
Safety Analysis. In J.F. Barbet, editor, Actes du Congrès Lambda-Mu 18, Octobre 2012.

[85] Xavier Quayzin and Emmanuel Arbaretier. Performance Modeling of a Surveillance Mission.
In Proceedings of the Annual Reliability and Maintainability Symposium, RAMS’2009, pages
206–211, Fort Worth, Texas, USA, January 2009. IEEE. ISBN 978-1-4244-2508-2.

[86] A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering and System Safety,
05(59):203–211, 1993.

[87] A. Rauzy. Mathematical Foundation of Minimal Cutsets. IEEE Transactions on Reliability,
50(4):389–396, december 2001.

[88] A. Rauzy. Mode Automata and their Compilation into Fault Trees. Reliability Engineering and
System Safety, 78(1):1–12, 2002.

BIBLIOGRAPHY 189

[89] A. Rauzy. An experimental study on iterative methods to compute transient solutions of large
Markov models. Reliability Engineering & System Safety, 86(1):105–115, 2004.

[90] A. Rauzy. Guarded Transition Systems: a new States/Events Formalism for Reliability Studies.
Journal of Risk and Reliability, 222(4):495–505, 2008.

[91] A. Rauzy. Anatomy of an Efficient Fault Tree Assessment Engine. In R. Virolainen, editor,
Proceedings of International Joint Conference PSAM’11/ESREL’12, Helsinki, Finland, June
2012.

[92] A. Rauzy. AltaRica Data-Flow language specification. Technical report, Ecole Polytechnique,
2013. version 2.1.

[93] Antoine Rauzy. BDD for Reliability Studies. In K.B. Misra, editor, Handbook of Performability
Engineering, pages 381–396. Elsevier, 2008. ISBN 978-1-84800-130-5.

[94] D. Riera, F. Milcent, J .Parisot, and E. Clement. Dynamic modeling for dependability and
safety evaluation: an advance for the analysis of complex systems, Octobre 2012.

[95] A.E. Rugina, K. Kanoun, and M. KAANICHE. The ADAPT Tool: from AADL Architectural
Models to Stochastic Petri Nets through Model Transformation. In 7th European Dependable
Computing Conference, Kaunas, Lithuanie, 2008.

[96] L. Sagaspe. Allocation sûre dans les systèmes aéronautiques : Modélisation, Vérification et
Génération. Thèse de doctorat, Université BORDEAUX I, 2008.

[97] Laurent Sagaspe and Pierre Bieber. Constraint-Based Design and Allocation of Shared Avionics
Resources. In Proceedings of 26th AIAA-IEEE Digital Avionics Systems Conference, pages
2.A.5–1–2.A.5–10, Dallas, Texas, USA, October 2007. IEEE.

[98] Manel Sghairi, Agnan De Bonneval, Yves Crouzet, Yves Aubert, Patrice Brot, and Youssef
Laarouchi. Distributed and reconfigurable architecture for flight control system. In Proceed-
ings of 28th Digital Avionics Systems Conference (DASC’09), pages 6.B.2–1–6.B.2–10, Orlando,
Florida, Etats-Unis, October 2009.

[99] M.L. Shooman. The Equivalence of Reliability Diagrams and Fault-Tree Analysis. Reliability,
IEEE Transactions on, R-19(2):74–75, May 1970.

[100] J.-P. Signoret. Dependability & Safety Modeling and calculation: Petri Nets. In Proceeding of
the 2nd IFAC Workshop on Dependable Control of Descrete Systems, DCDS 2009, Bari, Italy,
June 2009.

[101] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton Uni-
versity Press, 1994.

[102] K.J. Sullivan, J.B. Dugan, , and D. Coppit. The Galileo Fault Tree Analysis Tool. In Proceedings
of the 29th Annual International Symposium on Fault-Tolerant Computing, 1999.

[103] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

[104] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal of
Computing, 8(3):410–421, 1979.

[105] J.-L. Voirin. Methods and Tools for Constraint System Architectering. In Proceedings of the
18th International Symposium of the International Council on System Engineering (INCOSE
2008), pages 775–789. Curran Associates Incorporated, 2008, June 2008.

190 BIBLIOGRAPHY

[106] M. Walker and Y.Papadopoulos. Qualitative temporal analysis: Towards a full implementation
of the Fault Tree Handbook. Control Engineering Practice, 17:1115 – 1125, 2009.

[107] John X. Wang and Marvin L. Roush. What Every Engineer Should Know About Risk Engineering
and Management. CRC Press, 2000. ISBN 0824793013.

[108] S. White and D. Miers. BPMN Modeling and Reference Guide: Understanding and Using
BPMN. Future Strategies Inc., 2008.

[109] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano. Automatic Synthesis of Static Fault Trees from
System Models. In Conference on Secure Software Integration and Reliability Improvement,
pages 127–136, 2011.

AltaRica 3.0 : une approche orientée modèles
pour la Sûreté de Fonctionnement

Thèse de Doctorat en Informatique Tatiana Prosvirnova

Résumé

La sûreté de fonctionnement des systèmes est un domaine en plein essor. Les ingénieurs fiabilistes ont mis au point

diverses méthodes d’analyse du risque qui sont aujourd’hui bien mâıtrisées: les Arbres de Défaillance ou les Arbres

d’Evénements. Des algorithmes efficaces et des outils performants sont disponibles pour évaluer les modèles. Ces

formalismes ont cependant comme inconvénient majeur d’être éloignés des descriptions fonctionnelles des systèmes. Il

en résulte un décalage, toujours dangereux, entre les spécifications techniques du système étudié et les modèles utilisés

par les fiabilistes. Maintenir ces derniers tout au long du cycle de vie des produits est donc une tâche difficile, coûteuse

et susceptible de comporter des erreurs.

Le langage AltaRica Data-Flow a été créé pour pallier ce problème. AltaRica Data-Flow est un langage de

modélisation de haut niveau permettant de décrire des composants sous forme d’automates d’états finis, de créer des

bibliothèques de modèles de composants et d’assembler ces modèles en des hiérarchies. Il a été choisi comme langage

support de plusieurs ateliers logiciels utilisés dans l’industrie.

La thèse porte sur la nouvelle version du langage AltaRica 3.0. Elle améliore AltaRica Data-Flow selon deux axes:

son modèle d’exécution est basé sur les Systèmes de Transitions Gardées, ce qui permet de modéliser les systèmes bouclés

et les composants avec les flux bidirectionnels; nouvelles constructions pour structurer les modèles, qui proviennent des

langages orientés prototype, sont introduites. La thèse comporte une partie formelle décrivant les nouvelles constructions

structurelles et précisant la sémantique du langage, une partie algorithmique expliquant la compilation des modèles

AltaRica 3.0 vers les Arbres de Défaillance et la mise en oeuvre des algorithmes dans un prototype.

* * *
AltaRica 3.0: a Model-Based approach

for Safety Analyses

Abstract

The Model-Based approach for safety and reliability analyses is gradually wining the trust of engineers but is still an

active domain of research. Safety engineers master ”traditional” risk modeling formalisms, such as Fault Trees and Event

Trees. Efficient algorithms and tools are available. However, despite of their qualities, these formalisms share a major

drawback: models are far from the specifications of the systems under study. As a consequence, models are hard to

design and to maintain throughout the life cycle of systems. A small change in the specifications may require a complete

revisiting of the safety models, which is both resource consuming and error prone.

The high level modeling language AltaRica Data-Flow has been created to tackle this problem. AltaRica Data-Flow

models are made of hierarchies of reusable components. Graphical representations are associated with components,

making models visually very close to Process and Instrumentation Diagrams. AltaRica Data-Flow is at the core of

several Integrated Modeling and Simulation Environments used in industry.

AltaRica 3.0 is a new version of the language. It improves AltaRica Data-Flow into two directions: its semantics

is based on the new underlying mathematical model Guarded Transition Systems (GTS), which makes it possible to

handle systems with instant loops and to define acausal components, i.e. components for which the input and output

flows are decided at run time; it provides new constructs to structure models, coming from prototype-oriented modeling

languages. The thesis includes a formal part describing in detail the new structural constructs and the semantics of the

language, an algorithmic part explaining the compilation of AltaRica 3.0 models into Fault Trees and an implementation

of the algorithms in a prototype.

LIX Ecole Polytechnique – Novembre 2014

