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M. R. Kaiser Rapporteur

M. E. Rasel Rapporteur

M. S. Bize Examinateur

M. J.-M. Courty Examinateur

M. P. Pillet Président du jury

M. P. Bouyer Membre invité
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Introduction

On 22 October 1707 four English warships, the Association, Eagle, Firebrand

and Romney, hit ground in a foggy night at the Scilly Islands on the English

coast and sank. Two thousand lives were lost. The accident would have been

avoidable - had only the crews known their longitude. At that time, no reliable

method existed to determine the longitude of a ship. An astronomical solution

seemed most promising and had led before to the construction of the astronomical

observatories in Greenwich and Paris, but without any success so far for the

longitude problem.

In 1714, the English government issued the “longitude act”, awarding 20.000

pounds (the equivalent of several million euros today) to anybody who could

determine a longitude within half a degree. Although everybody expected an

astronomical solution, the final answer turned out to be much simpler: a good

clock. With the ability to take a timekeeper with you, and the possibility to

determine the local time over the position of the sun, the time difference to the

home port could be calculated.

At the beginning of the 18th century, the best available clocks went wrong by

several seconds a day and were far from being transportable. Leading scientists

including Isaac Newton considered the determination of longitude by a portable

timekeeper hopeless. They were proven wrong by John Harrison, a former

carpenter and then clockmaker. He built in a life work from 1713 to 1776

transportable clocks which went only wrong in a fraction of a second over a whole

month, and his portable clock, called the chronometer, became the standard for

determining longitude. The stability of the chronometer was owed to a careful

choice of materials and new inventions (for example, it used bimetallic strips and

caged roller bearings, both invented by John Harrison), and became the standard

for the determination of longitude in the navy1.

1Nevertheless, John Harrison has never been awarded the official longitude act prize as a result
of political quarrels. A very good book about the history of the chronometer and the longitude
act can be found in [Sobel 07].
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Introduction

Today’s best clocks are based on the laws of quantum mechanics. They go

wrong only by a fraction of a second over the age of the universe, or in other words

have an instability of 10−18 [Hinkley 13, Bloom 13]. Quantum mechanics is based

on a set of rules which are not common with the classical world we face every

day. First, we know the energy can only exist in fixed packages, so called quanta.

This gives an exact building plan for single atoms, and because its constituents

(protons, neutrons and electrons) are always the same, all atoms with the same

number of constituents are the same as well. The difference between the energy

levels ∆E = E2 − E1 in atoms can serve then as an absolute frequency reference

via Planck’s law ∆E = ~ω, where ~ = 2π 6.626× 10−34 Js is the reduced Planck’s

constant and ω an angular frequency.

Another property of quantum mechanics is that objects very well isolated

from their environment can be prepared, and survive, in a superposition of

different states. A single electron can behave as if it travels two paths at the

same time, as if it were an electromagnetic wave. In an atomic interferometer,

it is the internal or external states of atoms which are put in superposition

states. Dedicated protocols, such as the Ramsey scheme [Ramsey 80], use the

creation and combination of superposition states for the measurement of physical

quantities such as frequencies, accelerations and magnetic fields [Berman 97].

In an atomic clock, the frequency of a macroscopic oscillator (e.g. a quartz

crystal) is periodically compared to a transition frequency of an atomic species.

This oscillator (also called local oscillator LO) is then stabilized on the atomic

transition frequency. The frequency of the classical oscillator can be measured

with a counter and is used for the definition of time. The stability of the LO

improves when its frequency is compared to the frequency of the atomic reference

for a longer interval. But this interrogation time is usually limited: during the

interrogation, the atoms are in a superposition of states, and the superposition

can be destroyed under the influence of the environment. This process is

called decoherence, and the initial ability of the atomic states to interfere, their

coherence, is reduced.

The most precise atomic clocks are based on atomic ensembles, and the main

decoherence source is the frequency noise of the free running LO itself. Noise

of this kind is called “collective noise” because it affects all atoms in the same

2



way. A direct approach to reduce the effect of the bare LO frequency noise is to

pre-stabilize the LO as well as possible. In atomic clocks working with optical

transitions, the LO is a laser. The stabilization of lasers on ultra-stable optical

resonators is a target pursued by a large number of groups around the world, and

tremendous progress has been made with instabilities down to the 10−16 level at

one second [Jiang 11, Thorpe 11, Kessler 12]. However, the interrogation times

of optical atomic clocks have remained below a fraction of a second. In trapped

microwave clocks, the recently found spin-self rephasing of atoms [Deutsch 10]

could potentially enable interrogation times of tens of seconds, but the quality of

the existing microwave oscillators does not allow it.

An alternative solution to protect a quantum system against decoherence

is to measure it, and to apply feedback either on the quantum system itself

or on its environment. Another feature in quantum mechanics comes into

play here, the property that measuring a quantum system also modifies it.

The control laws in quantum mechanics can be therefore very distinct from

classical control laws and have been subject to extensive theoretical efforts

[Doherty 00, Lloyd 00, Ahn 02, Mancini 07] and first experimental demonstra-

tions [Armen 02, Smith 02, Gillett 10]. Only recently, for the first time a quantum

state, a photon number state, was permanently stabilized against decoherence

[Sayrin 11]. Experiments on superconducting qubits show fast progress in the

same direction, with the real time stabilization of Rabi-oscillations [Vijay 12] and

quantum measurements with variable measurement strength [Hatridge 13]. The

main application area is likely to be here quantum information processing.

In this thesis, we bring the concept of feedback on a quantum system to atomic

interferometers. From a first glance, this approach might appear to be a bad

idea. The atoms in the interferometer act as a probe, and as such should by no

means be disturbed during their evolution. But simply measuring the atoms does

exactly that. However, there is a way out of this problem: atomic ensembles can

be measured gently, or “weakly”, to provide significant information while changing

the quantum state only very little [Aharonov 88, Smith 04, Aharonov 10]. This

makes it possible to use classical feedback control for the collective quantum

system. We will show that in this way decoherence by collective noise in atomic

interferometers can at least be partially removed. Our experimental results and

feedback protocols indicate a realistic potential for the improvement of atomic

sensors by active feedback control.
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Introduction

This is the third PhD thesis handed in on the experimental apparatus after

Simon Bernon [Bernon 11a] and Thomas Vanderbruggen [Vanderbruggen 12]. As

a postdoc, Andrea Bertoldi took both part in the experimental work and later

took over a large part of the direction of the experiment. Arnaud Landragin

and Philippe Bouyer were the scientific directors of the experiment and Alain

Aspect as the head of the Atom Optics group and my PhD supervisor advised

the performed work. Etienne Cantin is a new PhD student who contributed to

the last experimental results in this manuscript. The results presented in this

manuscript have been already partially covered by our previous publications

[Bernon 11b, Kohlhaas 12, Vanderbruggen 13], and results from the last two

chapters remain to be published. The feedback protocols in the last chapter have

been submitted for a patent application.

The experimental setup as it already existed at the beginning is described only

briefly, as a basis for the understanding of the further work. Detailed calculations

or derivations will only be shown if they are original and are otherwise cited.

For most explanations, at first a simple picture is given before a more formal

description. The manuscript is organized in 5 chapters. Below a summary of the

chapters is given.

� Chapter 1. In this chapter, the main theoretical concepts used in the the-

sis are introduced. The Bloch sphere picture describes the structure and

evolution of the internal states of atomic ensembles. The formulation in

the Dicke state basis allows for arbitrary state transformations. Generalized

quantum measurements are introduced as a generalization of the ideal pro-

jective measurement. The concept of generalized quantum measurements on

collective spin states is explained, and the special case of weak measurements

is discussed.

� Chapter 2. The experimental setup for the preparation of cold atomic

clouds is presented. It contains several unique features, including a dipole

trap in an optical cavity in butterfly configuration. We present novel tech-

nological solutions such as a new stabilization scheme of a laser on a cavity,

and the production of a Bose-Einstein condensate with a cavity-enhanced

dipole trap. We show a new procedure to engineer the atomic light shift on

an optical transition and demonstrate how we prepare a pure internal state

of a dense ensemble of atoms with optical methods.
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� Chapter 3. In this chapter, we describe the development of our system

for nondestructive measurements of cold atomic ensembles. It is based on

frequency modulation spectroscopy, and is the only system where the popu-

lation difference of two non-magnetic atomic states can be read out nonde-

structively with a single optical beam. We show how to set the couplings of

the light to the atomic levels correctly, avoid light shifts from the probe and

balance the spontaneous emission to the probed states. The beam waist of

the beam is optimized for a maximal signal-to-noise ratio. We show some

first results with the nondestructive detection system such as the real time

observation of Rabi oscillations.

� Chapter 4. We present the feedback control of the collective internal states

in an atomic ensemble. All atoms are prepared in a superposition state of two

atomic levels, and artificial noise is applied on the atoms. The state of the

atoms is measured weakly, and feedback with coherent manipulations restores

partly the initial state. We study theoretically different parameters over

which the feedback efficiency can be characterized, and choose experimentally

to observe the output coherence of the state. We show that there is a trade-

off between the information and the perturbation from the measurement.

Different noise and feedback scenarios are studied. The work in this chapter

represents the first demonstration of the protection of a superposition state

against decoherence with feedback control, although only for the case of an

ensemble and collective noise.

� Chapter 5. We stabilize the phase of a LO in an atomic clock on the phase

of a superposition state of the atoms, as it was proposed in [Shiga 12] to

improve atomic clocks. The scheme is equivalent to remove the decoherence

of the atoms by feedback on the environment, which is here the LO. We find

a drawback in the original phase lock scheme proposed in [Shiga 12], and

develop a new feedback protocol. The experimental results raise realistic

hopes that our methods could be used to improve atomic clocks. It is shown

that our feedback protocol is versatile, and could be applied to other atomic

interferometers such as gravimeters. The work in this chapter shows for the

first time the stabilization of a classical object to a quantum system in a

superposition state, which could have widespread applications for precision

measurements.

The content of this manuscript is more focused on new ideas and techniques than

on pushing an instrument to its limits. The hope is expressed here that the reader
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Introduction

will find some of it interesting, and that perhaps part of the work will be the basis

for further research.
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1. Collective Spin States and Generalized Quantum

Measurements

1.1. Introduction

The central goal of this thesis is to demonstrate how trapped coherent atomic

ensembles can be measured nondestructively and controlled via feedback, and to

investigate if this could lead to an improvement of atomic interferometers. In this

chapter, the theoretical basics for this work are given. The trapped atoms that we

use can be approximated by a two-level system, one of the most basic systems in

quantum mechanics. A useful tool to illustrate the evolution of a single two-level

system is the Bloch sphere model, which is introduced in Section 1.2.1. In this

model, the state of a two-level system becomes a pseudo-spin, in analogy to a real

spin vector of for example a magnetic moment.

Since we work with an ensemble of atoms, a generalization of the Bloch sphere

picture to many atoms is needed. The simplest collective state of an ensemble of

two-level atoms, a coherent spin state (CSS), is then introduced in Section 1.2.2.

In a CSS, all atoms are in the same pure internal state, and all single pseudo-spins

can be added up to from a giant collective spin. Although we do not work with

entangled states, the concept of a spin squeezed state (SSS) is introduced in

Section 1.2.3. In a spin squeezed state, a constraint is imposed on the collective

spin state and the indistinguishable individual spins are correlated. Since a SSS

can be the result of a partially projective quantum measurement, it is a good

starting point for the introduction of generalized quantum measurements on

collective atomic states.

To actively control any system, one has to measure it. In quantum mechanics,

the measurement process itself can modify the system of interest. The prime

example here is an ideal projective measurement, where before the measurement

a particle can be in a superposition of two states, and after the measurement it is

only in one of the two states. The projective measurement is the textbook example

7



Chapter 1. Collective Spin States and Generalized Quantum Measurements

of a quantum measurement, but unfortunately often also the only type of quantum

measurement taught to students of quantum mechanics. As a matter of fact, the

ideal projective measurement does not exist in practice, since any measurement

always contains some residual noise. The experiments which have so far come

the closest to an ideal projective measurement were performed on microwave

photons measured by Rydberg atoms [Guerlin 07] and on trapped ions [Hume 07]1.

The main results of this thesis will rely on the fact that a measurement on a

quantum system does not necessarily have to be projective. In fact, our goal will

be to project the measured state as little as possible while still obtaining sufficient

information to perform feedback on the atoms. The concept of general quantum

measurements is introduced in Section 1.3 with the Kraus operator formalism,

which gives the rules to formulate general quantum measurements. We apply the

concept then to collective atomic states in Section 1.3.3.5, and define the important

parameters for the measurement process. The results from this last section will

then be repeatedly used throughout this manuscript. The feedback control of

collective atomic states is not treated in this chapter, and is developed alongside

with the experimental results in Chapter 4.

1.2. Collective Spin States

1.2.1. Bloch Sphere

The Bloch sphere representation has been introduced for the description of

nuclear magnetic resonance (NMR) phenomena, and named in honor of F.

Bloch for his pioneering work on nuclear induction [Bloch 46]. In NMR, the

real nuclear magnetic spin with a vector M in an external magnetic field B is

the Bloch vector. It can have any direction in space, and the Bloch sphere is

formed by the set of all spin directions. By going in the rotating frame of a

transverse oscillating magnetic field, an easy picture for manipulations of the

nuclear spin can be obtained, and this is still the basic model in NMR experiments.

It was later pointed out by R. Feynman and coworkers [Feynman 57] that the

Bloch sphere model can be generalized to other systems containing at least two

1The atomic state of 27Al+ could be measured in [Hume 07] with a certainty of 99.94%. The
development of measurement tools for ions and microwave photons were one reason for the
Nobel prize in Physics in 2012 to S. Haroche and D. Wineland.
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1.2 Collective Spin States

Figure 1.1.: Introduction to the Bloch sphere picture. The state of a two-level system
can be represented as a spin vector on the Bloch sphere. The z-axis
corresponds to the population difference and the x − y plane designates
the phase between the superposition state referenced on the phase of a
local oscillator (LO). The spin direction is described with the azimuthal
angle ϕ and the polar angle θ.

distinct levels. A single atom containing two quantized energy levels can then

be represented as a pseudo-spin on the Bloch sphere. The same holds as well

for superposition states of the polarization of a photon [O’Brien 07], but also for

classical systems such as coupled modes of a mechanical oscillator [Faust 13]. The

Bloch sphere is a useful tool to describe atomic interferometers, notably atomic

clocks. The state of a single two-level system can be described as

|φ⟩ = a |0⟩+ be−iωatt |1⟩ , (1.1)

where a and b are the probability amplitudes to be in state |0⟩ or |1⟩ and it holds

|a|2 + |b|2 = 1. We will later identify in the experimental work |0⟩ and |1⟩ to be

two hyperfine ground states of 87Rb. The frequency ωat comes from the energy

difference of the two energy states with E = ~(ω1 − ω0) = ~ωat. We can therefore

imagine the two states |0⟩ and |1⟩ as two oscillators with angular frequencies ω0

and ω1. For a superposition state, the relative phase ϕat = ωatt oscillates then at

an angular frequency ωat.

The fast oscillating term e−iωatt can be removed by entering a rotating frame at

a frequency ωat. In practice, this requires a LO with a frequency ωLO = ωat as

9



Chapter 1. Collective Spin States and Generalized Quantum Measurements

a reference. However, in general the frequency ωLO of the LO is not stable. In

the special case of an atom clock, the task is even to stabilize ωLO on ωat. In the

rotating frame of the LO, the phase of the superposition state is ϕ = ϕLO − ϕat.

The state from Equation (1.1) referenced to the LO frame should be represented

with both its amplitude and phase, which makes the Bloch sphere a suitable

model as presented in Figure 1.1. Note that in the Bloch sphere picture there is

no information if the phase of the LO or of the atoms is changed.

For the formal description of the state as a Bloch vector, the state is written as a

spin-1
2
particle similar as for the description of angular momentum operators. The

spin vector j can be decomposed in three orthogonal components via the operators

[Itano 93]

jx =
1

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|) , (1.2)

jy =
i

2
(|0⟩ ⟨1| − |1⟩ ⟨0|) , (1.3)

jz =
1

2
(|1⟩ ⟨1| − |0⟩ ⟨0|) , (1.4)

which fulfill the commutation relations

[jk, jl] = iϵklmjm . (1.5)

When the spin vector is written in spherical coordinates the expectation values of

its components are

⟨jx⟩ =
1

2
sin θ cosϕ, (1.6)

⟨jy⟩ =
i

2
sin θ sinϕ, (1.7)

⟨jz⟩ =
1

2
cos θ, (1.8)

where as before ϕ is the phase between the LO and the atoms and θ parametrizes

the population difference.

1.2.2. Coherent Spin States

On the experiment, we will work with a cloud of cold atoms, which corresponds to

an ensemble of two-level systems. The picture above can be easily extended to this

10



1.2 Collective Spin States

Figure 1.2.: Construction of a CSS. The pseudo-spins of a an ensemble of two-level
atoms with the same pure internal state are added to form a large spin.
The noise around the CSS is the projection noise.

case, especially if all the two-level systems are in the same (pure) internal state.

All the single pseudo-spins can then simply be added up to form a giant collective

spin (Figure 1.2), similarly to adding single dipoles to obtain the full polarization.

The new collective state is called a coherent spin state (CSS), and has a length

of J = Nat

2
, where Nat is the total number of particles or atoms belonging to the

state.

The operators for the spin components can be constructed with the single spin

operator by Jc =
∑

n j
(n)
c , with c = x, y, z and n numbers the operator for each

single spin. In the same way as for a single spin, the commutation relations

[Jk, Jl] = 2iϵklmJm, (1.9)

for the total spin hold. Equation (1.9) also holds if the components k, l,m are

not the axes x, y, z, but any set of three orthogonal directions on the Bloch sphere

α, β, γ. The Robertson-Schroedinger uncertainty relation2 [Robertson 29] then

writes

∆Jα∆Jβ ≥ 1

2
|⟨Jα, Jβ⟩| , (1.10)

2The first heuristic arguments of an uncertainty relation for the observables of the same quan-
tum system was given by W. Heisenberg [Heisenberg 27]. Its general form given here was
formulated however by H. P. Robertson and E. Schrödinger.
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Chapter 1. Collective Spin States and Generalized Quantum Measurements

which leads for a CSS to

∆Jα∆Jβ =
1

2
|⟨Jγ⟩| , (1.11)

and by symmetry we have

∆Jα = ∆Jβ =

√
J

2
=

√
Nat

4
. (1.12)

We can therefore draw a circular noise region perpendicular to any CSS on the

Bloch sphere which is called the atomic projection noise.

The Robertson-Schrödinger uncertainty relation gives information about the

distribution of the measurement results of one of the observables if the same

quantum state is prepared several times. It is intrinsically not a statement

about the results of successive quantum measurements on the same system, as

it was the first motivation by Werner Heisenberg for the uncertainty relation.

For example, consider Equation (1.11) with a first precise measurement result

such that ∆Jα = 0. This would imply that ∆Jβ = ∞, which is obviously wrong

because Jβ is bounded by the full spin length J.3 What is the lowest limit on the

uncertainty of successive measurements on the same quantum system is at the

moment a topic of an open debate, in which the Ozawa error-disturbance relation

[Ozawa 03, Erhart 12, Rozema 12] is one possible answer.

The uncertainty from the Robertson-Schrödinger relation has its origin in the

microscopic properties of the collective quantum system. For a formal description

of a CSS, we can write it in the basis of the energy eigenstates of Jz, which are

called the Dicke states named after R. H. Dicke [Dicke 54]. The eigenvalues and

eigenstates of Jz are

Jz |J,m⟩ = m |J,m⟩ . (1.13)

The CSS in spherical coordinates and in the single particle basis is

|θ, ϕ⟩ =
Nat⊗
n

[
cos

θ

2
|0⟩n + eiϕ sin

θ

2
|1⟩n

]
. (1.14)

3A general proof that the Heisenberg uncertainty relation as a statement about measurements is
violated for projective measurements and bounded variables is given in [Ozawa 05] (theorem
5).
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1.2 Collective Spin States

In the Dicke state basis, this becomes [Zhang 90]

|θ, ϕ⟩ =
J∑

m=−J

cm(θ)e
−i(J+m)ϕ |J,m⟩ , (1.15)

where the coefficients cm give a binomial distribution with

cm =

[
(2J)!

(J +m)!(Jm)!

] 1
2

cosJ−m θ

2
sinJ+m θ

2
. (1.16)

From the Moivre-Laplace theorem, we can approximate the binomial distribution

for J ≫ 1 by

cm =
1√√
πJ sin θ

e−
(m−J cos θ)2

2J sin2 θ . (1.17)

For example, in the case of θ = π
2
(state on the equator of the Bloch sphere), the

probability distribution p(m) to measure the result m with the operator Jz is

p(m, θ =
π

2
) = c2m =

1√
πJ

e−
m2

J , (1.18)

which is the same distribution as expected from the Robertson-Schrödinger

uncertainty relation in Equation (1.11). The atomic shot noise results from the

fact that each individual spin can be after the measurement either in |0⟩ or |1⟩.
This leads for all particles to a binomial distribution of the total population

difference.

Under a global measurement of the collective spin, the individual spins are in-

distinguishable. If the system is therefore found after the measurement in a Dicke

state, the collective state is in a superposition of all possibilities of how the indi-

vidual spins can form the found energy state. A Dicke state is therefore a highly

entangled state, in which the individual spins are correlated. For example, the

Dicke state |J,m = −J + 1⟩, where only one spin is in an excited state, can be

written as

|J,m = −J + 1⟩ = 1√
Nat

∑
n

j+,n |00 . . . 0⟩ , (1.19)

where j+ = jx + ijy is the single spin raising operator which transforms a spin n

from |0⟩ to |1⟩ (j− = jx − ijy performs the opposite operation). A Dicke state

has no mean spin direction and is represented as a ring around the Bloch sphere

13



Chapter 1. Collective Spin States and Generalized Quantum Measurements

(see Figure 1.3). It is interesting to note that although the spins in a CSS are

uncorrelated, it can be constructed from a basis where the single spins are highly

entangled.

1.2.3. Spin Squeezed States

Figure 1.3.: Entangled states on the Bloch sphere. (a) Dicke state. (b) Spin squeezed
state.

A spin squeezed state (SSS) resembles strongly a CSS, only that one of its

noise components orthogonal to the mean spin direction is below the noise level

of a CSS (see Figure 1.3). Because the total area of uncertainty of the state is

fixed by the uncertainty relation, the direction orthogonal to the squeezed noise

is expanded as if one would squeeze a balloon. In many precision measurements,

only one noise component of the collective state is important, and a SSS can

therefore lead to metrological gain. However, this assumes no or a low influence

of the environment on the state (see e.g. [André 04, Shaji 07, Dorner 12]), and a

detection system whose noise is below the projection noise of the SSS.

There are several criteria to define spin squeezing, and a good review can

be found in [Ma 11]. Nevertheless, only two criteria are in common use, the

Kitagawa-Ueda criterion [Kitagawa 93] and the Wineland criterion [Wineland 92].

The Kitagawa-Ueda criterion can be written with the spin squeezing parameter
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1.2 Collective Spin States

[Kitagawa 93, Ma 11]

ξ2KU =
min (∆J2

⊥)

J/2
, (1.20)

where ∆J2
⊥ is the variance of the noise perpendicular to the mean spin direction.

For a CSS we have min (∆J2
⊥) =

J
2
and ξKU = 1. If ξKU < 1, the projection noise

is below the noise of a CSS and the state is squeezed. The fulfillment of the

Kitagawa-Ueda criterion implies that the particles are at least pairwise entangled

(see proof in [Wang 03]).

The relation |⟨J⟩| = Nat

2
is only valid when the system is in a pure state. For a

single two-level system, a state which has partly decohered by the interaction with

the environment can be represented by a spin with a length shorter than j = 1
2
.

We can apply the same model for a CSS, where a lower coherence is depicted by

a shorter spin vector. A better criterion to take into account that the squeezing

process can partially decohere the state is the Wineland criterion [Wineland 92].

It is motivated by the condition that squeezing should enable an increase in the

sensitivity of a phase measurement with the collective state,

∆ϕ =
ξS√
Nat

, (1.21)

where 1/
√
Nat is the limit of the phase estimation with a coherent state. We obtain

then

ξ2S =
(∆ϕ)2

(∆ϕ)2CSS

=

(∆J⊥)2

|⟨J⟩|
J
2

J2

=
Nat (∆J⊥)2

|⟨J⟩|2
. (1.22)

Loosely speaking, the Wineland criterion says that for spin squeezing the pro-

jection noise has to be decreased as least as much as the coherence of the state

that is lost during the squeezing process. Spin squeezing in atomic systems has

been achieved in several experiments via atomic interactions (e.g. in [Esteve 08]),

by cavity-mediated light atom interaction [Leroux 10a] and nondestructive mea-

surements of the atomic spin (e.g. [Appel 09b, Schleier-Smith 10]). In Chapter 3,

we will show in the characterization of our nondestructive measurement system

that we are experimentally close to fulfill the Wineland criterion, but that the

destructivity from spontaneous emission from the optical probe is slightly higher

than the reduction in quantum noise.

First demonstration experiments have been given that spin squeezed
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Chapter 1. Collective Spin States and Generalized Quantum Measurements

states can improve the performance of atomic interferometers [Leroux 10b,

Louchet-Chauvet 10, Ockeloen 13]. Nevertheless, it remains to be shown that for

absolute precision measurements spin squeezing introduces no systematic errors.

The highest amount of spin squeezing so far (10.2 dB in variance) has been ob-

tained with a cavity-aided nondestructive detection system [Bohnet 13].

1.2.4. Evolution under Unitary Operations

1.2.4.1. Rotation Operators

The operation of atomic interferometers relies on coherent manipulations of the

atomic spin. Those unitary transformations can be represented by rotation oper-

ators on the Bloch sphere. We will experimentally apply rotations only around

the x, y, z axes of the Bloch sphere, which are naturally defined by the rotation

operators

Rx(θ1) = e−iθ1Jx , Ry(θ2) = e−iθ2Jy , Rz(ϕ) = e−iϕJz . (1.23)

Experimentally, rotations around the z-axis will be usually phase shifts on the

LO or a detuning between the LO frequency and the frequency of the atomic

transition during an interrogation time. Rotations around x- and y-axis will be

implemented by sending a coherent microwave pulse on resonance with an atomic

transition onto the atoms. The rotation axis and direction can be set by changing

the phase of the LO in steps of π
2
.

The rotation operators alone are sufficient to describe the evolution of CSSs in

an atomic interferometer. Nevertheless, for a highly entangled input state it is

more difficult to know the distribution of the state in the Dicke state basis after

a rotation from Equation (1.23). The way to solve this problem is based on the

work of E. Wigner on the algebra of angular momentum states [Wigner 59]. For

this purpose, we introduce the rotation operator

R(α, β, γ) = e−iαJze−iβJye−iγJz , (1.24)

in which contrary to before the rotations are around the z-axis, then around the

y-axis, and then again around the z-axis4. With this operator, any rotation on the

Bloch sphere can be performed. From a physical perspective, it is equivalent to per-

4This is the z − y − z convention for Euler angles.
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1.2 Collective Spin States

forming any other sequence of rotations with the operators from Equation (1.23).

The rotation of a Dicke state can then be written as

R(α, β, γ) |J,m⟩ =
∑
m′

⟨J,m′|R(α, β, γ)|J,m⟩|J,m′⟩ (1.25)

=
∑
m′

DJ
m′m(α, β, γ)|J,m′⟩ , (1.26)

where DJ
m′m(α, β, γ) is the Wigner-D matrix. It can be decomposed into

DJ
m′m(α, β, γ) = ⟨J,m′|R(α, β, γ)|J,m⟩ = e−im′αdJm′m(β)e

−imγ , (1.27)

where we used the definition for the (small) Wigner-d matrix elements

dJm′m(β) = ⟨J,m′|e−iβJy |J,m⟩ . (1.28)

The key difficulty is to determine the coefficients dJm′m(β), which were found by

Wigner [Wigner 59]

dJm′m(β) = [(J +m′)!(J −m′)!(J +m)!(J −m)!]1/2

×
∑
s

[
(−1)m

′−m+s

(J +m− s)!s!(m′ −m+ s)!(J −m′ − s)!

×
(
cos

β

2

)2J+m−m′−2s(
sin

β

2

)m′−m+2s
]
. (1.29)

Equations (1.24) - (1.29) will be used in Chapter 4 for the Monte-Carlo simulation

of the feedback control of a collective spin state.

1.2.4.2. Ramsey Interferometer

We show now that the rotation operators from Equation (1.23) are sufficient to

describe both the mean spin direction and the projection noise of a CSS after

unitary evolution on the Bloch sphere. As an example, a Ramsey interferometer

is treated. Ramsey interferometry will be the basis of many measurements in

this thesis, and is one method to operate atomic clocks as it will be presented in

Chapter 5. For the development of his “separated oscillatory field method”, N. F.

Ramsey received the Nobel prize in physics in 1989.
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Chapter 1. Collective Spin States and Generalized Quantum Measurements

Figure 1.4.: Operation principle of a Ramsey interferometer. It includes the prepara-
tion of a superposition state, a free evolution time T and the mapping of
the acquired phase on the z-axis of the Bloch sphere.

The operation principle of a Ramsey interferometer is depicted in Figure 1.4.

The interferometer begins with all atoms prepared in the ground state, i.e. |Ψ0⟩ =
|θ = π, ϕ = 0⟩. A first rotation, called a π

2
-pulse, prepares the superposition state∣∣θ = π

2
, ϕ = 0

⟩
. During a free evolution time T , the spin rotates by an angle ϕr

around the equator of the Bloch sphere which gives the state
∣∣θ = π

2
, ϕ = ϕr

⟩
. The

goal of the Ramsey interferometer is to measure the phase ϕr, but usually only the

population difference can be read out directly. A final π
2
-pulse therefore maps the

phase on the z-axis of the Bloch sphere and gives the final state
∣∣θ = ϕr, ϕ = π

2

⟩
.

The complete interferometer sequence can be described by the unitary evolution

operator

UR = ei
π
2
Jye−iϕrJzei

π
2
Jy . (1.30)

We are interested in the expectation value and the noise of the final measurement

along the z-axis. For the expectation value, we have

⟨Jz⟩ =
⟨
Ψ0

∣∣∣U †
RJzUR

∣∣∣Ψ0

⟩
(1.31)

= − cosϕr ⟨Jz⟩0 + sinϕr ⟨Jy⟩0 (1.32)

= J cosϕr , (1.33)

and for the noise variance

(∆Jz)
2 = (∆Jz)

2
0 cos

2 ϕr + (∆Jy)
2
0 sin

2 ϕr − sinϕr cosϕr ⟨JzJy + JyJz⟩ (1.34)

=
J

2
sin2 ϕr . (1.35)

The only noise source for the phase for a perfectly precise detection is the projection
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1.3 Generalized Quantum Measurements

noise, and from error propagation one obtains

∆ϕ =
∆Jz∣∣∣∂⟨Jz⟩∂ϕ

∣∣∣ = 1√
Nat

. (1.36)

The read out noise for a CSS is therefore independent of the rotation angle.

However, this is only true as long as there is no additional detection noise

which would be added to the variance in Equation (1.35). The precision of the

phase estimation decreases then with the distance from the equator of the Bloch

sphere. In many interferometry schemes the phase ϕr is typically small, and

it is therefore beneficial to perform the last π
2
-pulse not around the y- but the

x-axis. The expectation value is then ⟨Jz⟩ = J sinϕr and the projection noise

∆Jz =
√

J
2
cos2 ϕr.

The same calculations can be repeated with entangled input states, where the ex-

pectation values and projection noise can be obtained with the help of the Wigner-

D matrix introduced before. The unitary rotations from Equation (1.23) maintain

the shape of Gaussian states. A particular problem for a SSS is that if after the

interferometer operation the state is close to the poles of the Bloch sphere, the

noise of a SSS is even larger than that of a CSS. In this case, the entangled state

performs worse in the phase measurement than the uncorrelated state. A solution

for this problem based on feedback control with weak measurements was proposed

in [Borregaard 13b] and is discussed at the end of Chapter 4.

1.3. Generalized Quantum Measurements

1.3.1. Motivation

Without any specification, the term measurement in quantum mechanics usually

refers to an ideal projective measurement. Here, one starts with a quantum

system about which some a priori information may or may not be available, and

one determines a property by a precise measurement. Since the quantum system

possesses with certainty the measured property after the measurement, the a

posteriori quantum state is then in a state both in conformity with the a priori

knowledge and the measurement result. If the quantum state is measured again,

the same measurement result will be obtained.
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Figure 1.5.: A simple which-path experiment. A single photon is in a superposition of
two paths after a beamsplitter (BS). The measurement of the path of the
photon by the two photodiodes PD1 and PD2 is not an ideal projective
measurement because the photon is destroyed after the measurement and
the photodiodes have a technical detection noise.

Although the above way is the standard procedure to define a measurement in

quantum mechanics (its mathematical formulation is given below), this situation is

never encountered in practice. As an example, consider the which-path experiment

depicted in Figure 1.5. A single photons is prepared in a superposition of two

paths with two photodiodes PD1 and PD2 for the detection. The photodiodes are

connected to a counter and if in one of the two paths there is a “click” we could

deduce that a photon arrived. However, the photon has been destroyed by the

interaction with the photodiode, and it cannot be measured again. In addition,

a photodiode is usually not a perfect detector, and has for example a quantum

efficiency (the ratio of the generated charge carriers to photons) below one, and

dark counts by thermally generated carriers. Even if a “click” is registered on one

of the two counters, it cannot be ascertained that a photon has arrived. Also

without the destruction of the photon, the photodetection is therefore not an

ideal measurement.

A general way to describe a measurement has to take into account both the

possible destructivity by the measurement and uncertainties in the state determi-

nation. Here, we will focus on the uncertainty in the state determination, because

we treat later the destructivity for our collective spin systems phenomenologically.

The understanding of general quantum measurements of collective spins will be

the basis for the measurement based feedback control used in this thesis.
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1.3 Generalized Quantum Measurements

As before, a language close to the Kopenhagen interpretation of quantum me-

chanics is chosen, although phrases such as “collapse of the wavefunction” are

omitted. This does not reflect a bias towards any interpretation, but is merely

a practical choice to use formulations with which most physicists are comfortable

with. In any case, it should be noted that with strong evidence quantum mechan-

ics is a complete theory [Bell 64, Aspect 82, Weihs 98, Rowe 01], and that formal

descriptions can be used without reference to any additional interpretation.

1.3.2. Ideal Projective Measurement

We recall at first the concept of an ideal projective measurements on a pure quan-

tum state. It is characterized by so called projectors,

Pm = |m⟩ ⟨m| , (1.37)

where m is a measurement result and the vectors {|m⟩} span a basis of the Hilbert

space of interest. The projector Pm can be applied to a quantum state |Ψin⟩ to

give

|Ψout⟩ =
Pm |Ψin⟩√

⟨Ψin |Pm|Ψin⟩
(1.38)

=
cm
|cm|

|m⟩ , (1.39)

where we have used the relation |Ψin⟩ =
∑

m cm |m⟩ in the final equality. The

coefficients c′ms are the probability amplitudes of |Ψin⟩ in the basis {|m⟩}. In the

limit where the basis becomes a continuous set, the coefficients c′ms correspond to

the wavefunction of the state. The probability to obtain a measurement result m

is

p(m) = ⟨Ψin |Pm|Ψin⟩ (1.40)

= |⟨m|Ψin⟩|2 (1.41)

= |cm|2 . (1.42)

This equation is also known as the Born rule, named after M. Born who obtained

for its statistical interpretation of the wave-function the Physics Nobel prize in
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1957. The expectation or average value for the measurement results m is then

E(m) =
∑
m

mp(m) (1.43)

=
∑
m

m ⟨Ψin |Pm|Ψin⟩ (1.44)

≡ ⟨Ψin |Om|Ψin⟩ , (1.45)

where the definition of the observable for the physical property measured was used:

Om =
∑
m

mPm . (1.46)

In the definitions above, no conditions for the measurement process are needed,

except that a measurement result m is obtained using an ideal measurement appa-

ratus. We are ready to see now how the model of an ideal projective measurement

can be extended to the case where the measurement is not performed with a projec-

tor as in Equation (1.39), but with a measurement which contains some uncertainty

in the measurement result.

1.3.3. Generalized Measurement Operators

1.3.3.1. Definition

A general quantum measurement is defined by the general measurement operators

Mm, where m is a measurement result. The state after the measurement is

|Ψout⟩ =
Mm |Ψin⟩√⟨

Ψin

∣∣∣M †
mMm

∣∣∣Ψin

⟩ , (1.47)

and the probability to measure m

p(m) =
⟨
Ψin

∣∣M †
mMm

∣∣Ψin

⟩
. (1.48)
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The probabilities should all sum to unity, i.e.

1 =
∑
m

p(m) (1.49)

=
∑
m

⟨
Ψin

∣∣M †
mMm

∣∣Ψin

⟩
, (1.50)

which is equivalent to require ∑
m

M †
mMm = I , (1.51)

where I denotes the identity operator.

1.3.3.2. Example

Consider a two level system prepared in the input state

|Ψin⟩ =
1√
2
(|0⟩+ |1⟩) . (1.52)

We consider the two measurement operators

M0 =
√
p |0⟩ ⟨0|+

√
1− p |1⟩ ⟨1| , (1.53)

M1 =
√
1− p |0⟩ ⟨0|+√

p |1⟩ ⟨1| . (1.54)

The operator M0 (M1) is applied when the measurement result m = 0 (m = 1)

is obtained. The form of the measurement operators reflects a situation where a

measurement result m is obtained but the measurement system has an intrinsic

uncertainty. The factor 1−p then corresponds to the probability of a measurement

error. The measurement operators fulfill the completeness condition M †
0M0 +

M †
1M1 = I. The state after a measurement result m = 0 is

|Ψout⟩ =
M0 |Ψin⟩√⟨

Ψin

∣∣∣M †
0M0

∣∣∣Ψin

⟩ (1.55)

=
√
p |0⟩+

√
1− p |1⟩ . (1.56)

The state is therefore partially projected by the partial information from the mea-

surement. In an interesting scenario, another measurement on the state is per-

23



Chapter 1. Collective Spin States and Generalized Quantum Measurements

formed and the result is m = 1. The output state is then

|Ψ′
out⟩ =

M1 |Ψout⟩√⟨
Ψout

∣∣∣M †
1M1

∣∣∣Ψout

⟩ (1.57)

=
1√
2
(|0⟩+ |1⟩) , (1.58)

which is same as the input state |Ψin⟩. The presented case where performing a

measurement can remove the partial projection of a state is known under the name

“weak measurement reversal” (see e.g. [Ueda 92, Katz 08]).

1.3.3.3. Relation to Bayes Theorem

Note that the probability amplitudes are very similarly treated in a general quan-

tum measurement as one would update the probability of a classical system. In

fact, the principle is the same, only that in one case the information about proba-

bilities and in the other case about probability amplitudes is updated. It appears

natural for the estimation of a parameter to take the probabilities from the a pri-

ori knowledge of a system, and multiply them with the probabilities from a new

estimate. Normalization gives then the a posteriori probability distribution. This

is common practice for the determination of errors and can be formalized writing

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (1.59)

where p(x, y) is the joint probability to have both x and y and p(x|y) and p(y|x)
are conditional probabilities. A simple rearrangement of Equation (1.59) leads to

Bayes theorem

p(x|y) = p(y|x)p(x)
p(y)

, (1.60)

where

p(y) =

∫ ∞

−∞
p(y|x)p(x)dx . (1.61)

Bayes theorem tells how the state of knowledge of the variable x, represented by

the probability distribution p(x) is updated. A measurement gives new data y,

and in order to change our knowledge about x, we have to know how y is related

to x. This relationship is usually known in practice. If for example x is a position

and y is the measured position with a Gaussian uncertainty, then p(y|x) is peaked
at x and has a Gaussian shape. Inserting this in Equation (1.60) gives then the
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a posteriori knowledge of x. The general measurement law in Equation (1.47)

is therefore nothing else than the Bayes theorem applied to state vectors with

probability amplitudes. An ideal projective measurement is analogous to the case

where p(y|x) is a delta function.

1.3.3.4. Extension to Density Operators

State vectors are intrinsically probabilistic in nature because they can be expressed

as superposition of quantum states with different probability amplitudes. There

exists, however, the possibility that for a quantum system there are only informa-

tion available about its classical probabilities to be in a certain state5. We assume

that we have an ensemble of states |Ψk⟩, which were prepared with different prob-

abilities pk, with
∑

k pk = 1. For each state the conditional probability to measure

a result m is

p(m|k) =
⟨
Ψk

∣∣M †
mMm

∣∣Ψk

⟩
(1.62)

=
∑
k

⟨
k
∣∣M †

mMm

∣∣Ψk

⟩
⟨Ψk|k⟩ (1.63)

= tr
(
M †

mMm |Ψk⟩ ⟨Ψk|
)
, (1.64)

where we have used the definition for a trace. The total probability p(m) is

p(m) =
∑
k

p(m|k)pk (1.65)

=
∑
k

pktr
(
M †

mMm |Ψk⟩ ⟨Ψk|
)

(1.66)

= tr
(
M †

mMmρ
)
, (1.67)

where the density operator ρ is introduced

ρ =
∑
k

pk |Ψk⟩ ⟨Ψk| . (1.68)

Even though the density operator is an operator in its nature, it contains all

information available about a quantum system. A general measurement can be

treated as if the measurement operator acts on each state |Ψk⟩ singularly, and we

5The distinction between probability amplitudes and probabilities is clear in a mathematical
formulation, but harder to express in words. In general, the two can be distinguished by the
property that probability amplitudes can lead to interference.
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can therefore write

ρout =
∑
k

p(k|m)
Mm |Ψk⟩ ⟨Ψk|M †

m⟨
Ψk

∣∣∣M †
mMm

∣∣∣Ψk

⟩ (1.69)

=
∑
k

MmρinM
†
m

tr
(
M †

mMmρ
) , (1.70)

where Equation (1.64) and Equation (1.59) were used. The operators inMm could

be in principle replaced by any other set of operators satisfying the completeness

relation (and so the conservation of the total probability). The measurement

operators are therefore only a special case of a more general class of operators,

called Kraus operators [Kraus 71, Kraus 83]. A map from one density operator

to another one is then called a quantum channel which gives a general mean to

describe any evolution of a quantum system. A unitary evolution is also a special

case of such an evolution, with

ρout = UρinU
† . (1.71)

In the case of a general quantum measurement, it is possible that not the full form

of the Kraus operatorsMm is known, but only the probabilities of the measurement

results. This is expressed by the operators Em =M †
mMm, which are non-negative

and Hermitian, and form a so called positive-operator valued measure (POVM).

To each probability operator Em of the POVM several different measurement op-

erators Mm and therefore output states can correspond. With the probability

operators, a quantum measurement can be expressed without the knowledge of

the all details of the measurement process.

1.3.3.5. General Quantum Measurements of Collective Spin States

Our target is to measure the population difference of a CSS along the z-axis of the

Bloch sphere, which is the observable variable in atom interferometry. In the limit

of J ≫ 1, we have shown that the state in the Dicke basis is given by

|Ψin⟩ = |θ, ϕ⟩ =
J∑

m=−J

cm(θ)e
−i(J+m)ϕ |J,m⟩ , (1.72)
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with

cm =
1√√
πJ sin θ

e−
(m−J cos θ)2

2J sin2 θ . (1.73)

The projector in this basis is

Jz = |J,m⟩ ⟨J,m| . (1.74)

We assume that the measurements are nondestructive, i.e. the system remains in a

pure state after the measurement. Furthermore, we assume that the measurement

has a Gaussian uncertainty with a value σdet with respect to the full spin length

J . The situation is then similar to measuring the position on a ruler with a bad

vision. From the probability distribution of the measurement itself, we know the

form of M †
mMm, and taking the square root for the probability amplitudes leads

to

Mm =
(
2πσ2

det

)−1/4
e
− 1

4σ2
det

(Jz−m)2

. (1.75)

When the measurement operator is applied on the CSS from Equation (1.72), one

obtains the output state

|Ψout⟩ =
Mm0 |Ψin⟩√

p(m0)
(1.76)

=
(
2πξ2J sin2 θ

)−1/4
J∑

m=−J

e
− (m−µ0)

2

2ξ2J sin2 θ e−i(J+m)ϕ |J,m⟩ . (1.77)

The index m0 in Equation (1.77) was introduced to distinguish a specific measure-

ment result from the variable m for the state vectors. The other variables are the

squared squeezing factor

ξ2 =
1

1 + κ2 sin2 θ
, (1.78)

the squared measurement strength

κ2 =
σ2
J

σ2
det

(1.79)

=
J

4σ2
det

, (1.80)
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and the peak position of the Gaussian distribution after the measurement

µ0 =
κ2 sin2 θm0 + J cos θ

1 + κ2 sin2 . (1.81)

The probability of a measurement result m0 is

p (m0) = ⟨θ, φ|M †
m0
Mm0 |θ, φ⟩ (1.82)

=
1√
2π

ξθ
σdet

exp

[
−ξ

2
θ (m0 − J cos θ)2

2σ2
det

]
. (1.83)

The definition for the measurement strength is related to the situation when a CSS

is prepared on the equator of the Bloch sphere. In this case, the state after the

measurement is

|Ψout⟩ =
(
2π

1

1 + κ2
J

)−1/4 J∑
m=−J

e
−

(
m− κ2

1+κ2
m0

)2
2 1
1+κ2

J
e−i(J+m)ϕ |J,m⟩ . (1.84)

The measurement strength κ is the ratio of the size of the initial Gaussian

wavefunction for a CSS on the equator of the Bloch sphere to the uncertainty

of the measurement. The squeezing factor ξ is the ratio of the sizes of the new

and the old wavefunction. With an increasing precision of the measurement, the

measurement strength increases and the quantum noise of the output state in the

measured direction is reduced.

The measurement process can be nicely illustrated by considering only the ab-

solute value of the wavefunction as depicted in Figure 1.6. The wavefunction after

the measurement is simply the initial wavefunction multiplied with another func-

tion defined by the measurement operator Equation (1.75). It seems reasonable to

call this function “measurement function” in analogy to the term wavefunction6.

At every position m one then has to multiply the probability amplitudes of the

wavefunction and the measurement function. Finally, one normalizes the result

by requiring that the total probability of the output wavefunction is equal to 1.

In the same spirit, the probability distribution of the measurement results is the

6We only became later aware of the already existing formalism for generalized quantum mea-
surements, and derived the above results without this knowledge. The term “measurement
function” was very useful in the discussions with the team members, and it is proposed here
to keep it for the future.
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Figure 1.6.: Illustration of a general quantum measurement with Gaussian variables.
The wavefunction Ψout after the measurement is simply the multiplication
of the initial wavefunction Ψin and the measurement function Mm (with
a final normalization).

squared convolution of the measurement function and wavefunction.

The situation where a CSS is prepared on the equator of the Bloch sphere and

undergoes a partial projection is the basic procedure to generate a spin-squeezed

state by a nondestructive measurement. The Wineland criterion (Section 1.2.3) is

then given by

ξ2S =
2J (∆J⊥)

2

|⟨J⟩|2
=

ξ2J2

|⟨J⟩|2
=

ξ2

η2coh
, (1.85)

where ηcoh = |⟨J⟩|
J

accounts for the possible decoherence during the measurement

process. Another property is that from Equation (1.84) the expectation value

for a next measurement is ϵm0 = κ2

1+κ2m0. The variable ϵ is therefore the corre-

lation coefficient between two successive measurements on the same axis on a CSS.

Partial projective measurements are an interesting tool to prepare entangled

states for metrology. Nevertheless, we take in this manuscript a different path

and explore the active control of quantum states in atomic interferometers. The

projectivity of the quantum measurements can in this case be a disadvantage. For

example, consider the case of an ideal projective measurement. It prepares a Dicke
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Chapter 1. Collective Spin States and Generalized Quantum Measurements

Figure 1.7.: Weak measurement of a collective spin. Although the uncertainty of
the measurement is larger than the projection noise, still the mean spin
direction can be determined. If the measurement is nondestructive the
spin state is preserved.

state, which has no mean spin direction and can therefore not be read out with

the standard Ramsey scheme introduced before. Furthermore, the projectivity of

the measurements is in practice linked to their destructivity. In our experiment

this will be the case with the number of photons in the optical beam to probe the

atoms. To both reduce the projectivity and the destructivity, we can choose the

parameter range
1

2J
< κ2 ≪ 1 , ξ ≈ 1 , ϵ ≈ 0 . (1.86)

The situation is illustrated in Figure 1.7: even though the uncertainty of the

measurement is much larger than the size of the atomic projection noise, it is still

possible to obtain information about the population difference. The state after the

measurement is

|Ψout⟩ ≈ |Ψin⟩ . (1.87)

Collective quantum states such as a CSS therefore have the interesting property

that valuable information about them can be obtained while the state remains

basically unchanged. We can therefore obtain information with almost no cost,

unlike in most other situations with quantum systems. The precision to which a

population difference can be measured goes as σdet

J
→ 0 for J → ∞.
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1.3 Generalized Quantum Measurements

We call such measurements where the uncertainty of the measurement is larger

than the uncertainty of the state “weak measurements”. This term has been

introduced in connection to schemes where at first one performs on a quantum

system a weak (almost non-projective) measurement, and subsequently a strong

projective measurement [Aharonov 88]. When the results are postselected accord-

ing to the results of the strong final measurements, unexpected predictions about

the results of the weak measurements can be made7. In particular, one comes to

the non-intuitive result that the weak intermediate measurement could find a spin

which is systematically larger then the length of the real spin (see [Aharonov 10]

for a good explanation of this effect). Such “weak value amplification” schemes

have been used for the measurement of tiny physical effects [Hosten 08, Dixon 09].

Nevertheless, the question of whether weak value amplification can lead to a gain

in metrology is still open [Knee 13, Jordan 13, Ferrie 13]. In Appendix A an

example for weak measurements with postselection is given.

Weak measurements in the sense of Equation (1.86) will be a central tool in this

manuscript. They will be used in combination with feedback control to protect

collective spin states against a typical form of decoherence in atomic interferome-

ters. On this basis, we develop and demonstrate a feedback protocol to increase

the interrogation time in atomic interferometers.

1.3.3.6. Relation to Quantum Non-Demolition Measurements

It should be noted that in the discussion in this chapter, no assumptions on the

measurement process itself were made. We have seen that such assumptions are

not required, and any quantum measurement can be completely described by the

information gain and the general measurement operators Mm. However, there is

the question of how a nondestructive measurement can be performed in practice.

The strategy is usually to use an indirect measurement. Here, an auxilary “meter”

quantum system interacts and is entangled with the“signal”quantum system. The

meter can then be destroyed and its information content treated with a classical

apparatus. Because the meter and the signal were entangled by the interaction,

the signal quantum system is then fully or partially projected. Such kind of

measurement schemes were at first devised by J. von Neumann [von Neumann 96],

and conditions for quantum non-demolition (QND) measurements were given

7In the community of quantum optics, the term “weak measurement” is often used equivalently
for the case of a weak measurement with postselection, which leads to semantic problems. To
make the distinction, it could be better to call the latter “weak value measurement”.
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Chapter 1. Collective Spin States and Generalized Quantum Measurements

in [Braginsky 80]. In [Grangier 98], criteria to evaluate the quality of the QND

measurements are given.

We assume that the total Hamiltonian of the system is H = HS +HM +HMS,

where HS is the Hamiltonian of the system, HM is the Hamiltonian of the me-

ter and HMS is the interaction Hamiltonian between the system and the meter.

Furthermore, we call the observables of the system and of the meter AS and AM ,

respectively. We have then the following three requirements for a QND measure-

ment. At first, the meter has to interact with the quantum system,

[HMS, AM ] ̸= 0 , (1.88)

the interaction between the meter and the signal should not change the signal,

[HMS, AS] = 0 , (1.89)

and the observable should be conserved under free evolution,

[HS, AS] = 0 . (1.90)

In practice, the first and last condition are easily fulfilled, whereas the second

condition is problematic. It implies that the meter should not cause any decoher-

ence on the signal at all. Experiments with close to no destructivity and variable

measurement strength were so far performed on photons in a microwave cavity

[Guerlin 07] and on superconducting qubits [Hatridge 13].

Nondestructive measurements on the internal state of atoms are usually per-

formed by the dispersive probing with off-resonant light on an atomic transi-

tion. There is always a contribution from spontaneous emission and the condi-

tion [HMS, AS] = 0 can therefore not be strictly fulfilled. However, within the

scientific community, it has become common practice to take the Wineland cri-

terion as a benchmark for a QND measurement on collective spin states. If a

CSS can be squeezed according to the Wineland criterion, then the nondestructive

measurement can be called a quantum non-demolition measurement. Since in our

experimental setup we cannot fulfill the Wineland criterion, we use in the following

chapters the term nondestructive measurements to describe our detection system.
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2. Preparation of Cold Atomic Samples

2.1. Introduction

In this chapter, our procedure to prepare a large coherent ensemble of two-level

atoms is described. Coherence can refer for an atomic cloud to the internal states,

the external states, or both. In atomic clocks, mainly the internal state purity

is of interest. In a matter-wave Bragg interferometer, only the external states

are manipulated, and therefore an atomic sample should be as cold as possible

and preferably be without atomic interactions. In a Raman interferometer, both

the internal and external states are equally crucial. Nevertheless, since in most

interferometers the internal and external states of the atoms can couple to each

other, we aim to achieve at the same time a high purity both of the internal and

external states.

In its initial orientation, our experimental setup was designed as a compact

prototype for matter-wave experiments, combined with a nondestructive detec-

tion system for the atoms. We work with the atomic species 87Rb, which is

routinely used for cold atom experiments in laboratories around the world, and

for which first companies sell dedicated products1. The focus in this chapter is

therefore on the non-standard experimental solutions we have chosen for our setup.

A unique feature in our experimental setup is an optical cavity with mirrors

arranged in a butterfly configuration, presented in Section 2.3. The optical cavity

stores and therefore enhances the field derived from a telecom laser at 1560 nm.

The light in the cavity is used as an optical trap for the atoms, and because

of the power enhancement of the cavity less laser power is needed for the same

depth of the trap. A detailed description of the vacuum system for the atoms,

the magneto-optical trap and the optical cavity was already given in the PhD

thesis of Simon Bernon [Bernon 11a], and I will therefore only highlight the

1One company, Quantel, used our setup to test one of their laser systems especially designed
for the cooling of 87Rb. Another company, ColdQuanta, sells even an entire setup for the
production of cold atomic clouds.
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main characteristics here (Section 2.2 and Section 2.3). To use the the optical

cavity, the frequency of the dipole trap laser has to be kept on resonance with

the cavity via a feedback system. We developed a new method for such a stabi-

lization system based on serrodyne frequency shifting as described in Section 2.3.4.

One of our first goals with the experimental setup was to obtain a Bose-Einstein

condensate with the help of the cavity-enhanced light field, and our results are

shown in Sections 2.4 and 2.5. For our experiments with the nondestructive

detection system we were only interested in the internal states of the atoms.

Because of their higher atom number we therefore chose to continue our work

with trapped thermal clouds with a temperature of around 10 µK.

The optical dipole trap at 1560 nm causes a large light shift on the optical

transitions used to probe the atoms. In Section 2.6, we describe a compensation

method which cancels this large light shift with an auxiliary laser at 1529 nm. This

allows us to treat the optical transitions of 87Rb as if the atoms would be probed

in free space. Since we worked with a very dense atomic cloud, multiple scattering

of light did not allow us to use a conventional technique for the preparation of the

internal atomic states. In the last part of this chapter (Section 2.6.2), we show

how we dealt with this problem and describe our state preparation method. The

trapped atomic ensembles with no differential light shift on the optical transitions

are then the basis for the work in the succeeding chapters.

2.2. Vacuum System and Magneto-Optical Trap

Cold atoms must me hold in ultra high vacuum to avoid their random interaction

with the environment. This prevents heating of the atoms or random changes

of their internal atomic states. To obtain a cold atomic cloud with a high atom

number and a long lifetime, we use the vacuum system shown in Figure 2.1.

It consists of two chambers, one to cool atoms from the background pressure

of a solid sample of 87Rb, and one for the storage of the atoms in ultra high vacuum.

The first vacuum chamber contains a two dimensional magneto-optical trap

(2D MOT) and the second chamber a three dimensional magneto-optical trap (3D

MOT) and a dipole trap enhanced by an optical cavity. In the second chamber

the experiments are performed and it is called the science chamber. The pressure

in the 2D MOT chamber is below 10−7 mbar and in the science chamber below
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Figure 2.1.: Side (a) and bottom (b) view of the vacuum system with the 2D MOT
and the science chamber. The 2D MOT is used to load fast the 3D MOT
which is placed at the center of the crossed optical cavity.

10−9 mbar. The vacuum is maintained in the science chamber thanks to a 50 l/s

getter pump and two 20 l/s ion pumps.

The purpose of a MOT is both to cool and to trap atoms. The 2D MOT

and 3D MOT use laser Doppler cooling of 87Rb with radiation at 780 nm,

derived from extended cavity diode lasers (ECDLs, 300 kHz linewidth). Doppler

cooling relies on the red-detuning of the laser beams from an optical transition

(F = 2 → F ′ = 3, see level scheme in Figure 2.2(a)), such that because of the

Doppler effect only atoms which move in the direction of the laser absorb light.

Since the spontaneous emission from the atoms is isotropic in space, the full cycle

of absorption and reemission results in a net reduction in the atomic velocity, and

therefore cooling2.

A magnetic gradient is applied with coils in anti-Helmholtz configuration and

the cooling light is circularly σ+/σ− polarized (see Figure 2.2(b)). Since the

Zeeman-sublevels of the optical transition are more shifted in resonance with the

laser when leaving the trap center, a magneto-optical trap is formed3. The atoms

2Doppler cooling has been simultaneously proposed by D. J. Wineland and H. G. Dehmelt
[Wineland 75] and T. W. Hänsch and A. L. Schawlow [Hänsch 75]. It was first demonstrated
by D. J. Wineland, R. E. Drullinger and F. L. Walls [Wineland 78].

3More details for the operation of an magneto-optical trap can be found in numerous PhD
theses, books and review articles, see e.g. [Adams 97].
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Figure 2.2.: (a) Level scheme on the D2 line of 87Rb. A more detailed level scheme
is given in Appendix B. (b) Operation principle of a MOT. The atomic
levels are shifted closer to resonance of the laser light when they leave
the trap center.

are confined in vacuum.

In our experiment, the 2D MOT serves as a source of atoms to load fast and

efficiently the 3D MOT. It is loaded from the background vapor pressure of a

solid rubidium sample which had an initial mass of 1 g at the construction of

the experiment. The atoms are cooled down from 2 orthogonal directions, with

a total cooling laser power of 100 mW and detuned by 2.5 times the linewidth

Γ = 6.07 MHz4 from the F = 2 → F ′ = 3 transition. The cooling transition

is in principle a closed transition, but the cooling light can also off-resonantly

excite the state F ′ = 2 which is 267 MHz to the red of the F ′ = 3 state. From

F ′ = 2 the atoms can decay and accumulate in F = 1, which is not addressed by

the cooling radiation. To pump the atoms back to F = 2, repump light on the

F = 1 → F ′ = 2 transition is added to the MOT beams.

We frequency lock the repump laser on the F = 1 → F ′ = 1, 2 cross-over and

shift it with an AOM on the F = 1 → F ′ = 2 atomic transition. The cooling laser

is frequency offset locked on the repumper. The servo control relies on an optical

phase locked loop (PLL), which allows to continuously frequency shift the cooling

laser frequency over a range of 400 MHz. This is later used in the loading of the

4Throughout this thesis the convention Γ = 6.07 MHz is used. Note that e.g. in [Steck 01]
instead Γ = 2π × 6.07 MHz

36



2.3 Cavity Enhanced Optical Dipole Trap

dipole trap from the 3D MOT. The repump laser is superimposed with all cooling

beams in the 2D and 3D MOT. All laser beams are prepared on a separated

optical table and transported to the setup via optical fibers.

The 2D MOT loads the 3D MOT with a rate of about 5 × 108 atoms per

second, guided by a push beam of 2 mW power. The magnetic field of the 3D

MOT has a gradient of 7.7 G cm−1, and there are six beams on three orthogonal

axis of the MOT for the cooling (Figure 2.2(b)). Each beam has an optical

power of about 8 mW and is in addition retro-reflected to recycle the light for

a higher effective laser power. The atomic cloud reaches its maximal size with

typically 109 atoms after about 2 s loading time. The lifetime of the atoms in

the 3D MOT is 20 s as measured with fluorescence after switching off the 2D MOT.

2.3. Cavity Enhanced Optical Dipole Trap

2.3.1. Motivation for Optical Cavity

The temperature limit in a 3D MOT for rubidium atoms is the Doppler limit

TD =
~Γ
2kb

= 146 µK , (2.1)

which is due to the random walk from spontaneous emission. In general, we

would prefer to work with atomic clouds of lower temperatures. Furthermore,

the atoms cycle incoherently between F = 2 and F ′ = 3, which prevents

experiments based on coherent manipulations of the internal states. To gain a

better control of the internal states and to further decrease their temperature,

the atoms can be loaded in a conservative potential. Cooling can for example

then be achieved by suitably lowering the potential barriers. Here, similar as

in the evaporation in a coffee cup, atoms with high energies escape the trap.

After thermalization the overall temperature of the remaining atoms is decreased5.

For neutral atoms, there are typically two choices for the conservative trap,

either a magnetic trap or an optical dipole trap. A magnetic trap has the advan-

tage that the trap barriers can be lowered without reducing the trap frequency,

5see [Ketterle 96] for a good review article about the history and physical principles of the
evaporative cooling of atoms.
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which leads to a more effective evaporation process. On the other hand it has the

disadvantage that internal magnetic states of the atoms cannot be manipulated

independently. Furthermore, magnetic traps can introduce systematic errors for

matter wave sensors because of residual magnetic fields during the propagation of

the atoms in the interferometer.

We therefore decided in our experiment to load the atoms in an optical dipole

trap. The wavelength of the dipole trap was chosen at 1560 nm because of the

availability of a variety of telecom lasers at this wavelength6. Telecom lasers at

1560 nm have very favorable linewidth characteristics (down to a few KHz), and

several fibered optical components at this wavelength are available with which

robust optical setups can be built [Ménoret 11]. In addition, the light at 1560

nm can be doubled to obtain lasers with a narrow linewidth at 780 nm. As a

disadvantage, the optical power of the lasers at 1560 nm is comparably low, and

commercially available erbium doped fiber amplifiers (EDFA) can deliver at the

moment only up to a few tens of W of optical power. To overcome this limitation,

we decided to use the power enhancement in an optical cavity.

2.3.2. Geometrical Description

For the design of the optical cavity, a configuration with four mirrors on a square

with a diagonal of 90 mm was chosen as seen in Figure 2.3.

With the four mirrors, the light can travel along a butterfly shape in the optical

cavity and the cavity arms cross in the middle. Each laser beam gives a tight

confinement along its transverse directions and the crossing leads to a high trap

depth in three dimensions. Because of the crossing angle of 90° and because the

polarization is chosen to be in the cavity plane, there is no interference of the

beams at the cavity center. The injection of laser light at one input port gives rise

to a running wave configuration and there is no standing wave as in a Fabry-Perot

cavity.

Each mirror is plane concave with a curvature of R = 100 mm and has a diameter

of 1/2 inch. As shown in Figure 2.3, the MOT coils are directly mounted on the

titanium plate of the optical cavity. This is of advantage for a steep magnetic

gradient, but has the disadvantage that changes in the magnetic field lead to

6The wavelength range from 1530 nm to 1565 nm is called in fiber communications the C band
and benefits from the low losses of silica optical fibers in this region.
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(a) (b)

Figure 2.3.: (a) Scheme of the optical cavity and (b) experimental implementation
with surrounding MOT coils

correlated changes of the cavity length.

2.3.3. Optical Properties

An optical cavity can be considered as a reservoir of light which is continuously

pumped from the outside and leaking through the output mirrors. To determine

completely the properties of the dipole trap in the cavity, one has to know

the intracavity field and the optical beam waists in the cavity crossing. The

beam waists are imposed by the cavity size, the curvature of the mirrors and

the wavelength at 1560 nm. The calculation with the ABDC formalism of

Gaussian beams7 gives a beam waist of w∥ = 93.1 µm in the cavity plane and

w⊥ = 129.8 µm in the vertical direction.

The field build-up in the optical cavity results from the constructive interference

of the input light with the intracavity light. It occurs therefore only at distinct

frequencies, separated by the free spectral range (FSR). The FSR of our cavity

is 976.2 MHz, which has been measured by injecting both the carrier and

the frequency sidebands generated with an electro-optical modulator (EOM)

into adjacent fundamental modes of the cavity. The value is consistent with

7A review article about the ABCD formalism of Gaussian beams applied to optical resonators
can be found in [Kogelnik 66]. The calculation for our optical cavity is described in the PhD
thesis of Simon Bernon [Bernon 11a].
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Property Value

Finesse F 1788
Free spectral range (FSR) 976.2 MHz
Beam waist w∥ 93.1 µm
Beam waist w⊥ 129.8 µm
Ratio Pintra/Pout 2800

Table 2.1.: Summary of the optical properties of the crossed optical cavity at 1560
nm. Pintra is the power in one cavity arm and Pout the power at one cavity
output

FSR = c/L, where L = 30.73 cm is the total travel length inside the optical cavity.

The linewidth of a cavity indicates the rate at which the cavity field decays and

the full-width half-maximum (FWHM) linewidth at at 1560 nm is for our cavity

γ = 546 kHz. The finesse is therefore F1560 = FSR/γ = 1788. Divided by π it

corresponds to how many cycles a photon travels on average in the cavity before

it leaves it.

A perfect Fabry-Perot cavity consists of two mirrors with the same reflectivity

and its power enhancement factor is ηFP = 2F/π. The optical power inside the

cavity can be therefore directly deduced from the input power. In our cavity in

butterfly configuration, the condition that all incoming light interferes construc-

tively with the light in the cavity is not fulfilled and a major part of the incoming

light on the cavity is reflected. An additional difficulty is that there are three

outputs ports instead of one. A practical method therefore is for a complex cavity

to measure the optical power at one output port and then deduce from this the

intracavity power. We assume that each mirror in the optical cavity is identical

and

R +D + T = 1 , (2.2)

where R is the mirror reflectivity, T is the transmission and D are diffusive losses.

The cavity finesse for a symmetrical four mirror cavity is given by

F =
πR

1−R2
. (2.3)

Further, by definition of the transmission T we have that the output power of the
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cavity is

Pintra =
1

T
Pout . (2.4)

Using the definition x = D/T and inserting Equation (2.2) and Equation (2.3) in

Equation (2.4) one arrives then at

Pintra =
2F

π
(1 + x)Pout . (2.5)

The measurement of the intracavity power for a given input power has been

performed with the light shift method described in [Bertoldi 10], which gave

Pintra/Pout = 2800 and so x = 1.46.

For the dipole trap, a distributed feedback erbium doped fiber laser (DFB EDFL,

Koheras, from NKT Photonics) was used which was amplified with an EDFA to 5

W. We obtained typically a coupling efficiency of 25%− 30%, close to the largest

theoretically possible value of 35(2)%. As a maximum value, we could reach an

intracavity power of 200 W, sufficiently enough to trap and further cool down the

atoms.

2.3.4. Laser Stabilization by Serrodyne Modulation

2.3.4.1. Motivation

The frequency of the dipole trap laser has to be kept on a resonance of the optical

cavity to optically pump it. However, the resonator is subject to fluctuations from

the environment and therefore the cavity resonances drift. The same holds for the

laser frequency which is in general not stable over time. We therefore have to sta-

bilize either the frequency of the laser on the optical cavity or the other way around.

The relative frequency fluctuations between the dipole trap laser and a resonance

of the optical cavity should be kept as small as possible, and the laser should never

unlock from the cavity. A crucial parameter for this is the bandwidth of the actu-

ator used to apply frequency corrections. The bandwidth, and so the speed of the

actuator should be always above the frequencies of the dominating noise sources

and in general be as big as possible. This rules out feedback on the mirrors of our

optical cavity, because the mirrors are to heavy and allow only a correction band-

width of a few tens of Hertz. We therefore perform feedback on the laser frequency.
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For a large class of lasers, such as fiber or diode pumped solid state lasers, the

only possibility to act directly on the laser frequency is on their piezo-electric

transducers (PZT). The correction bandwidth is here only a few kHz. Higher

bandwidths can be achieved with an external frequency actuator, which is

typically an acousto-optical modulator (AOM). It is often used in a double pass

configuration, so that the output beam alignment is independent of the frequency

shift. The bandwidth with which an AOM can perform frequency corrections

is typically of the order of a few hundred kHz, and limited by the time it takes

the radio frequency waves to travel in the crystal of the actuator. The range of

frequency deviations for which an AOM can correct is usually about 10% of its

nominal working frequency or less. Low frequency drifts are then corrected on the

PZT of the laser.

We used in our experiment an AOM in double pass for the stabilization of the

dipole trap laser on the optical cavity (see details in [Bertoldi 10]). This was

sufficient for all our experimental work, but the stabilization system sometimes

tended to unlock. We therefore decided to develop a new stabilization scheme

[Kohlhaas 12], based on an actuator with both a larger correction bandwidth and

correction range than an AOM. The results are shown in the following sections.

2.3.4.2. Principle of Serrodyne Modulation

An alternative component to an AOM to change the frequency of an optical

beam is an electro-optical actuator (EOM), which at a wavelength of 1560 nm

can have a bandwidth of several tens of GHz. An EOM is a phase modulator

where the phase of the light is changed by the application of a voltage. Since

the frequency is the time derivative of the phase, frequency corrections can be

applied by an EOM by the application of a voltage ramp which results in a phase

ramp. The maximal voltage before the EOM is damaged corresponds usually to

a phase shift of a few times π. In a frequency stabilization system, it is therefore

not possible to simply apply directly a correction voltage to an EOM, because

frequency corrections cannot be maintained and the laser would unlock. An EOM

can in this situation only be used in combination with a slower actuator, usually

an AOM, as it was at first demonstrated in [Hall 84].

Preferentially, an EOM should be used as a single fast frequency actuator. This

can be achieved by producing frequency sidebands of the light with a sinusoidal
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radio-frequency or microwave field at the modulation input. The spectrum of the

optical field E after modulation is:

E = E0

∞∑
n=−∞

Jn(β) cos (ωt+ nΩmt) , (2.6)

where ω is the frequency of the light, Ωm is the modulation frequency, Jn are

Bessel functions of the first kind and β is called the modulation depth. The

frequency spectrum after modulation is a comb of equally spaced sidebands with

a distance Ωm from the central laser frequency. One of the first order sidebands

n = ±1 could be injected in an optical cavity, and then frequency shifted with

a correction bandwidth and range which corresponds to the bandwidth of the

EOM. However, only a maximal fraction of η = (J1(βmax))
2 ≈ 0.34 of the optical

power can be put in an optical sideband and a large fraction of the light is lost.

Since for most technological applications the optical power is a crucial parameter

for the system performance this constitutes a significant drawback.

The limitation can be overcome by considering other modulation methods. In

particular, by using a saw-tooth modulation with a frequency fsaw and phase am-

plitude 2πm with m ∈ N [Johnson 88], the field after modulation is

E = E0 cos (ωt+mfsawt) (2.7)

and so all light is shifted to a new frequency ω +mfsaw. The frequency shifting

effect can be easily understood as coming from a phase ramp, but where the phase

is set back to zero at multiple values of 2πm to avoid damage on the EOM.

In practice, the quality of the frequency shifting depends on the quality of the

generated saw-tooth form. A cheap and efficient method to generate the saw-tooth

form relies on a non-linear transmission line (NLTL), which transforms a sinusoidal

waveform to a high fidelity saw-tooth signal with the same fundamental frequency.

A NLTL is a passive non-linear component and its output can be directly connected

to an EOM. Using this technology, serrodyne frequency shifts from 200 MHz to

1.6 GHz and efficiencies up to 80% [Houtz 09, Johnson 10] were achieved.
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Figure 2.4.: Schematic overview of the laser stabilization on an optical cavity based
on serrodyne frequency shifting. The optional feedback path on the piezo
transducer (dashed lines) is used for long term drifts of the optical cavity.

2.3.4.3. Locking Scheme

We show now how serrodyne frequency shifting can be adopted for the stabiliza-

tion of a laser on an optical cavity. The scheme is based on changing the frequency

of the sinusoidal wave at the input of the NLTL, which tunes the frequency of the

light after the EOM. A schematic overview of the stabilization setup is shown in

Figure 2.4.

The feedback scheme is demonstrated with the dipole trap fiber laser at 1560

nm. The typical linewidth of the laser is a few kilohertz and therefore much

smaller than the linewidth of the optical cavity equal to γ = 546 kHz. An active

feedback system requires an error signal, which indicates by which distance and

direction the system deviates from the target state. For the laser frequency

stabilization on an optical cavity this error signal is usually derived with the

Pound-Drever-Hall (PDH) method [Drever 83].

The method to generate a PDH signal is contained in Figure 2.4. An EOM

(PM-0K5-00-PFA-PFA, Eospace) generates frequency sidebands with the help of
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a local oscillator (LO, f = 20 MHz), and the carrier is injected in the optical

cavity. The reflected light is detected on a photodiode (PD1, PDA10-CF from

Thorlabs) and demodulated with a mixer. Each sideband beats with the optical

carrier. Nevertheless, when the laser frequency is exactly resonant to the cavity,

the beat-notes cancel each other because the sidebands have a relative phase

π. When the carrier is not perfectly on cavity resonance, the carrier light in

reflection is phase shifted with respect to the sidebands and the two beat-notes

are asymmetric. After detection and demodulation, an error signal as in the

bottom part of Figure 2.5 is obtained.

The error signal is converted by an electronic servo controller into a correction

signal. It is then sent to a voltage controlled oscillator (VCO, ZX95-625-S+,

Minicircuits, nominal frequency range 280 MHz to 625 MHz). The correction

signal is added to a voltage offset that sets the central operation frequency

of the VCO to 390 MHz. The output of the VCO is amplified by a radio

frequency (RF) amplifier (ZHL-1-2W-S-09-SMA, Minicircuits, output power

33 dBm) and then attenuated to 26 dBm to optimize the serrodyne shifting

efficiency. The RF field is fed into the NLTL (7112-110, Picosecond Pulse

Labs, 300-700 MHz nominal input range) to generate the saw-tooth signal. The

saw-tooth is combined with the signal from the LO for the generation of the PDH

sidebands on the same EOM with a power combiner (ZX10R-14-S+, Minicircuits).

The total range over which the frequency of the light can be shifted is from 280

MHz (limited by the VCO) to 500 MHz (limited by high frequency cut-off of the

RF amplifier before the NLTL). This corresponds to a span of 220 MHz, which is

a correction range of about one magnitude higher than typically obtained with

an AOM. The correction range is not limited by the EOM, but by the electronic

components used to generate the saw-tooth form. To improve the performance

of the servo control, one should adopt a NLTL, a VCO and a RF amplifier with

a higher dynamic range. The cavity can drift outside the correction range of 220

MHz by long term thermal drifts. We added therefore a low frequency correction

channel on the laser piezo transducer (PZT) for very large frequency deviations.

The correction signal used for the piezo is an integrated version of the correction

signal for the EOM, which ensures that the piezo always dominates for low

frequencies.

An important technical feature of the feedback system is that both the
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Figure 2.5.: Transmission signal (top) and error signal (bottom) when the frequency
of the optical cavity is scanned. Both the transmission signal and the
error signal are shifted by 390 MHz by the serrodyne modulation.

frequency shifting and the sideband modulation for the PDH signal are performed

on the same EOM. Since one EOM is in any case needed to generate the PDH

signal, this means that effectively no additional external modulator is needed.

Only electronic components are added to perform the feedback. Both the laser

and the EOM are fibered components, which results in low optical losses and a

high robustness of the setup.

To demonstrate that we can both generate the frequency shifting and the

optical sidebands on the same EOM, we observe the transmission of the optical

cavity when we scan the resonator length in Figure 2.5. Both the transmission

signal (top) and the error signal (bottom) are shifted by 390 MHz when the

saw-tooth modulation is applied. The shifting efficiency for the transmission

signal is 69% which is the only source of optical losses from the correction path.

Light which is not frequency shifted either stays at the initial frequency (about

3%) or is diffracted to higher harmonics of the saw-tooth frequency (28%).

For our system the spurious frequency components do not pose a problem, since

they are filtered by the optical cavity and we are only interested in the intracavity

field. However, in other laser frequency stabilization schemes, only a small frac-
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Figure 2.6.: Noise PSD of the error signal for the laser stabilized on the optical cavity
with serrodyne frequency shifting (black) and an AOM in double pass
(gray). The dashed line is the light shot noise limit on PD1.

tion of the light is used for the error signal on the optical cavity and feedback on

the whole light field is performed. In this case, the spurious frequency compo-

nents would stay in the beam. This is in general the main drawback of serrodyne

frequency shifting schemes, also without an optical cavity, and limits its possible

applications8.

2.3.4.4. Lock Performance

The performance of the serrodyne technique in a closed feedback loop is analyzed

by measuring the error signal. The fluctuations of the voltage of the error signal

are taken after the mixer with a directional coupler and fed into fast-fourier

transform (FFT) spectrum analyzer to measure the power-spectral density (PSD)

of the noise. It is then converted to frequency noise with the slope of the

Pound-Drever Hall signal and additionally corrected for the transfer function

of the cavity of (1+(2f/f0)
2)−1 where f0 = 546 kHz is the FWHM cavity linewidth.

The results are shown in Figure 2.6 in black. The bump of the PSD at 2.3 MHz

indicates the bandwidth of the feedback system over which frequency fluctuations

8A solution to this problem could be to stabilize all the light of the laser on a Fabry-Perot cavity
and take the transmission signal. If the length of the Fabry-Perot cavity is made tunable this
would result in narrow linewidth tunable laser source.
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cannot any more be corrected. It is limited for our system by phase shifts in the

feedback controller at high frequencies, which brings the correction signal out of

phase with the noise. The value of 2.3 MHz is about one magnitude higher what

can be typically obtained with an AOM. The noise spectrum is from 2 kHz to

50 kHz close (within 3 dB) to the light shot noise on the photodiode. Below 2

kHz it is mainly limited by the voltage noise of the input operational amplifier

(THS4601, Texas Instruments) of the electronic feedback controller board.

The same laser at 1560 nm was also stabilized on the optical cavity with a

double pass AOM and the same photodiode. We can therefore compare the

performance of the serrodyne lock with the one relying on a conventional double

pass AOM as shown in gray in Figure 2.6. The bandwidth of the AOM system

is only 250 kHz which is a factor 10 less than with the serrodyne scheme. The

higher correction bandwidth gives the serrodyne method an advantage to reduce

relative frequency noise, because the error signal can be started to be integrated

one decade earlier. This leads to a higher feedback gain at low frequencies, which

gives the serrodyne locking technique a better noise performance compared to a

double pass AOM.

For the absolute frequency stabilization of lasers, the noise is mainly dominated

by the length fluctuations of the ultra stable reference cavity. Feedback schemes

with a higher correction bandwidth are therefore currently not required. Instead,

the motivation for the serrodyne stabilization method was to design a lock that

is very robust against perturbations from the environment. The bandwidth

tells how fast the feedback system can correct against disturbances, whereas the

correction range determines until which noise amplitudes the correction works.

Both parameters, correction bandwidth and range, are very high for the serrodyne

lock and could be even further extended.

To quantify the robustness of the locking system, we apply artificial external

perturbations on the feedback loop. This is done by adding a sinusoidal voltage to

the correction signal on the VCO. The maximal range until where perturbations

on the frequency can be corrected for is defined as the position until where the

relative noise between the laser and the cavity is the same as the cavity linewidth.

We apply sinusoidal disturbances with different frequencies, and find for each

frequency the maximal correction range, as shown in Figure 2.7 in black squares.

From 1 kHz to 10 kHz, the maximal correction range corresponds to the dynam-
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Figure 2.7.: Robustness of the stabilization system based on serrodyne (squares) or
acousto-optic modulation (triangles).

ical range for the serrodyne frequency shifting of 220 MHz. Above 10 kHz, the

feedback gain of the controller is not sufficient to keep the frequency fluctuations

within the cavity linewidth and the maximal correction range decreases. Still, at

800 kHz the feedback controller can correct for maximal frequency shifts of 8 MHz.

We performed the same experiment with the double pass AOM system as shown

in black triangles. The serrodyne technique can always correct for perturbations

which are about one magnitude higher than as with the AOM technique. In

addition, due to its higher bandwidth, it can still correct for fast perturbations

for which the AOMs bandwidth would be not sufficient. We have not shown in

Figure 2.7 the behaviour for frequencies below a few hundred Hz, because the cor-

rection in this range is applied in both system with a similar piezoelectric actuator.

The feedback method based on the serrodyne shifting technique performs better

for all considered parameters (optical losses, bandwidth and robustness) than an

AOM system. This is especially interesting if one considers that laser stabilization

systems based on AOMs are mature technological components used in physics

laboratories around the world, whereas we described here only a first experimental

demonstration for the serrodyne technique. The demonstrated technique could be

of interest for atomic physics experiments in harsh environments. For example, it

could be used to operate a cavity enhanced dipole trap in an airplane for atom
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interferometry experiments [Geiger 11].

In our experiment, we used the stabilization system not for the laser at 1560 nm

for which we had already the AOM double pass system, but for a similar fiber laser

at 1529 nm which was used for the light shift compensation method described in

Section 2.6.1.

2.4. Dipole Trap Loading

2.4.1. AC Stark Shift

The interaction of atoms with light leads to an energy shift of the internal states

of the atoms, called an alternating current (AC) Stark shift or light shift. The

gradient of the energy shift leads to a force and it is this force which is used in

an optical dipole trap. The energy shift by an external light field on the atoms is

given by [Grimm 00]

Udip = −1

2

⟨
p⃗E⃗

⟩
= − 1

2ϵ0c
Re(α)I(r) , (2.8)

where Re(α) is the real part of the atomic polarizability and I(r) is the spatial

dependent light intensity on the atoms which is for us Gaussian. The polarizability

is defined over the induced dipole moment p⃗ = αE⃗ from the external light field

E⃗. For brevity, the notation α is used instead of Re(α), because spontaneous

emission in an optical dipole trap is usually negligible. We work with linearly

polarized light far more detuned than the hyperfine splitting of the atomic states.

The polarizability is

αµ =
1

~
∑
k

|⟨k |d|µ⟩|2 ωk,µ

ω2
k,µ − ω2

, (2.9)

where µ is the state for which the polarizability is calculated, k are all the states to

which the light couples from µ, ωk,µ are the transition frequencies and ⟨k |d|µ⟩ are
the dipole moments. The dipole moments for the dominant transition frequencies

in 87Rb are summarized in Appendix C.

2.4.2. Loading Scheme

The light shift on the excited states affects the loading and probing of the atoms

in the optical dipole trap. We load the cavity enhanced dipole trap with the
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Figure 2.8.: Light shift on the D2 line (5P3/2→5P3/2) and on the 4D5/2,3/2 states by
the dipole trap laser at 1560 nm.

atoms trapped in the 3D MOT. The maximal laser power is 200 W at 1560 nm

per beam in the cavity. Because the dipole trap light is red detuned on the D2

line, the Gaussian beam lowers (red shifts) the energy of the 5S1/2 ground state

of 87Rb. This leads to an attractive potential at the center of the cavity with a

depth of U0 = 1.4 mK9. The trapping frequencies along the axis of the cavity

beams in the plane of the cavity are ωx/2π = ωy/2π = 1.2 kHz and vertical to

it ωz/2π = 1.6 kHz. The radiation from the dipole trap at 1560 nm introduces

an exceptionally high light shift on the 5P3/2 state because it is close to the

5P3/2 →4D5/2,3/2 transitions at 1529 nm, as seen in Figure 2.8.

At the center of the cavity, the light shift on the D2 line (5S1/2→5P3/2) brings

both the cooling and the repumper radiation out of resonance, which has to be

taken into account for the dipole trap loading. An efficient method to load a dipole

trap at 1560 nm, based on a light shift induced dark MOT, has been developed

in [Clément 09]. A similar version of the scheme is used in our experiment, and

Figure 2.9 illustrates the atomic transition and laser frequencies in the adopted

trap loading scheme.

We start with a cavity field with an initial trap depth of 100 µK to keep the light

shift on the D2 line at 35 Γ = 212 MHz, such that it is smaller than the 267 MHz

splitting between the F ′ = 3 and F ′ = 2 states. To make the loading more efficient,

we need to at first compress the MOT. For this we increase the detuning of the

9The depth of an optical dipole trap is expressed in temperature units via U0 = k0T0
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Figure 2.9.: (a) Loading with a light shift induced dark MOT. The cooling light is
everywhere red-detuned with respect to the atomic transition, the cooling
light is shifted out of resonance by the dipole trap. (b) Atoms imaged
just after release from the dipole trap by absorption imaging. A part of
the atoms is trapped in the cavity arms outside of the trap center.

cooling beams from 2.5 Γ to 5 Γ from the bare atomic transition. After that, we

suddenly increase the detuning to 40 Γ for 100 ms10. The cooling light thus stays

always on the red side of the atomic lines, also in the dipole trap region. In the

dipole trap, the cooling beams are close to the 5P3/2→5P3/2 cooling transition. The

repumper frequency is unchanged during the whole loading process, and therefore

out of resonance in the dipole trap. The atoms in the dipole trap region fall into

the F = 1 state from which they cannot be repumped to F = 2. Neither the

repumper or the cooling radiation then interact anymore with the atoms which

have become “dark” and accumulate in the dipole trap.

2.4.3. Atom Number and Trap Lifetime

After the loading in the trap at a low cavity field power, the cooling radiation

and the MOT coils are turned off and the dipole trap is ramped up to full power

in 10 ms. Finally, 2 × 107 atoms at a temperature of 230 µK are trapped in the

dipole trap. The temperature to trap ratio is kBT/U0 ≈ 6. A major problem

in the beginning of the experimental work was that the lifetime of the atoms in

the dipole trap was only of the order of 100 ms. We found the problem to be

10Note that we do not switch off the magnetic field and there is therefore no Sisyphus cooling.
The magnetic field cannot be switched off abruptly because the coils sit on the cavity mount
and the servo control of the laser frequency on the cavity would unlock.
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Figure 2.10.: Lifetime and atom number in the dipole trap after loading.

the back-reflection from diffusion in the optical cavity, where the back-reflected

light interferes with the forward propagating light to form an optical lattice. In

principle, the optical lattice should be no limitation for the atomic lifetime, but

the optical cavity is not stabilized and therefore vibrates, which induces a motion

of the lattice potential. To lower the effect, we reduced the fraction of the back-

reflected light by changing slightly the alignment of the cavity mirrors. We could

reach then lifetimes in the dipole trap of up to 6.6 s, as shown in Figure 2.10.

2.5. Evaporation and Bose-Einstein Condensation

2.5.1. Motivation

When an ensemble of Bosons is cooled down sufficiently, a large fraction of the

atoms takes on the ground state wavefunction of the external potential. This

means that the motional state of the single atoms cannot be distinguished anymore

and the external state of the atomic ensemble can be regarded as a macroscopic

quantum object. The main interest of such a Bose-Einstein condensate (BEC) for

atom interferometry is in matter wave interferometry with the external atomic

states. The temperature of a BEC of atoms is very low, typically in the tens of

nK range, and the spread of the atomic cloud after a long interrogation time is

therefore much lower than with a thermal atomic cloud with a temperature in the

µK range. BECs are therefore used in new experiments such as in the drop tower

experiments in Bremen [Müntinga 13] (where a whole experimental apparatus

is dropped for 4.7 s) and fountain experiments with large interferometer arms

[Dickerson 13]. One of the possible future directions of our experiment would be
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to explore long interrogation times with BECs in an interferometer with bouncing

schemes as in [Hughes 09].

On the other hand, experiments with BECs fall so far short in comparison with

thermal clouds for absolute precision measurements. One main problem are the

collisional interactions between the atoms in a BEC, which lead to systematic shifts

of the energy of the internal states of Es = µ/~, where µ is the chemical potential

of the BEC. Furthermore, the preparation of a BEC takes usually several seconds,

significantly increasing the cycle time in an atomic interferometer in comparison

to the operation with thermal clouds. However, recently in [Stellmer 13] the direct

Bose-Einstein condensation of strontium only by laser cooling was demonstrated.

With this technique the condensation time could be significantly decreased and

the cycle rate in a BEC atomic interferometer improved.

2.5.2. Evaporation and Condensation

It is shown now that with the cavity-enhanced dipole trap a BEC can be produced.

For the evaporation, we ramp down the potential in the optical cavity. The goal

is to increase the phase space density in the atomic cloud, given by

D = n0λ
3
dB = Nat

(
~ω̄
kBT

)3

, (2.10)

where n0 is the atomic density, λdB is the thermal de Broglie wavelength, Nat

is the number of atoms, ω̄ = (ωxωyωz)
1/3 is the average trap frequency and T

is the temperature of the atomic cloud. Above D ≈ 1, the thermal de Broglie

wavelength of the atoms becomes higher than the distance between the atoms

and the gas becomes a BEC. During the evaporation process, the temperature T

decreases by the release of hot atoms from the cloud and successive thermalization.

In addition, also the trap frequencies decrease, since they are linked to the optical

potential by

ωx,y =

√
4U0

mω2
∥
, ωz =

√
8U0

mω2
⊥
, (2.11)

where U0 is the potential in one cavity arm, m is the mass of 87Rb and the

coordinate system is defined along the cavity axes. The ramp for the optical

power is separated in several connected linear parts. Each part is optimized by

choosing a final power level and then optimizing the ramp time. The time for
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each ramp part is chosen as the point over which the phase space density does

not increase anymore when the length of the ramp increases. Starting from this

point, we start a new ramp and the process is iterated. With this procedure, we

reached from the starting condition D = 10−4 (T = 230 µK, ω̄ = 2π× 790 Hz,

Nat = 107) a maximum phase space density of D = 10−2, and therefore no BEC.

Nevertheless, from Equations (2.10) and (2.11) we see that the final phase space

density is highly dependent on the beam waist of the dipole trap, and in addition

a smaller beam waist leads to higher collision rate and therefore a more effective

evaporation. Although our large beam waist of 100 µm in the dipole trap is

practical for trapping a high number of atoms, it is less favorable for Bose-Einstein

condensation. To nevertheless obtain a BEC, we add an additional beam at 1560

nm vertical to the cavity plane. This beam is called a dimple, and was at first

used for the formation of BEC of cesium [Weber 03]. We use a dimple beam with

an optical power of 200 mW and a small beam waist of 23 µm, and therefore with

transversal frequencies of ωx = ωy = 2π× 550 Hz. At full power of the dipole trap

at the beginning of the ramp, the dimple potential is small with respect to the full

field in the cavity. The cavity power is then ramped down to a frequency of 2π×50

Hz in the vertical direction just sufficient to hold the atoms against gravity. At

this low cavity power, the dimple potential is dominant in the transversal direction

and the average trap frequency is ω̄ = 2π × 250 Hz. The phase space density in

Equation (2.10) is therefore increased by a considerable factor of 125, due to the

final frequency values. After a ramp of 3 s, we reach then a BEC of typically 5×104

atoms at a critical transition temperature of Tc = 190 nK. The phase phase space

density is usually of the order D ≈ 4.

2.5.3. Properties of BEC

In Figure 2.11, we see the density profile of the atomic cloud after a free time of

flight (TOF) of 8 ms after switching off the dipole trap. To obtain the pictures, we

used absorption imaging with a beam resonant on the F = 2 → F ′ = 3 transition.

The repumping light is switched on to ensure that the atoms are maintained in

F = 2 and the absorption from the atoms follows the Beer-Lambert law. We

observe the density profile for 3 different temperatures (T = 0.8 Tc, T = 0.7 Tc
and T = 0.4 Tc (74 nK)) and see an emerging double structure.

A BEC can be described as consisting of a thermal part which follows Maxwell-
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(a) (b) (c)

Figure 2.11.: Density profile of the BEC close to the critical transition temperature
Tc after a time of flight of 8 ms . (Top) Color representation of the
column density distribution. (Bottom) Density profile after integration
of the previous images along the y−axis. The condensed part is fitted
with a parabolic function and the thermal part with a Gaussian. The
cloud temperatures T and condensed fraction ηc are from left to right
(a) T = 0.8 Tc (145 nK), ηc = 0.12. (b) T = 0.7 Tc (131 nK), ηc = 0.27.
(c) T = 0.4 Tc (74 nK), ηc = 0.55.
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2.5 Evaporation and Bose-Einstein Condensation
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Figure 2.12.: Condensed fraction as a function of the temperature. The solid line is a
fit with Equation (2.12) for a gas with interaction in the Thomas-Fermi
regime, whereas the dotted line would be the result without interactions
(µ=0)

Boltzmann statistics and a condensed part with the particles in the ground state

of the trap. The density of the atomic cloud after the TOF describes the momen-

tum distribution of the trapped cloud and consists therefore of two components.

In the Thomas-Fermi approximation, the interaction energy is much larger than

the kinetic energy. The condensed part then takes the form of the trap, which

can be approximated by a parabola at its center. With a lower temperature the

condensed fraction increases and a sharp peak appears. From the bimodal dis-

tribution the condensed fraction ηc=No/Nat can be determined as a function of

the transition temperature, which is shown in Figure 2.12. The dependence of the

condensed fraction on the temperature is given for a BEC with atomic interactions

by [Dalfovo 99]

N0

N
= 1−

(
T

Tc

)3

− ζ(2)

ζ(3)

µ

kbTc

(
T

Tc

)2
[
1−

(
T

Tc

)3
]2/5

, (2.12)

where ζ is the Riemann-zeta function. The chemical potential µ is the energy

needed to add one extra particle. We fit the data in Figure 2.12 with Equa-

tion (2.12). The critical temperature as mentioned before is Tc = 190 nK and the

57



Chapter 2. Preparation of Cold Atomic Samples

chemical potential is µ= h × 1.55 kHz.

2.5.4. Outlook with BEC

The finesse of F = 1788 of the optical cavity at 1560 nm is relatively modest, and

can be easily increased by at least one order of magnitude. Only a few tens of

mW of input power than have to be used to pump the optical cavity which could

be derived from compact diode lasers at 1560 nm (e.g. with the PLANEX series

from RIO). Combining optimized cavity parameters (i.e. a smaller beam waist)

and a Sisyphus cooling phase, the dimple beam could be removed so that no laser

amplifiers would be needed anymore. Such a setup could then serve as a cheap

and compact all-optical BEC apparatus.

The number of atoms in the BEC of the order of 104 atoms is much lower than

in a thermal cloud with up to 107 atoms. Since a higher atom number increases

the signal-to-noise ratio and facilitates the nondestructive detection, we worked

in all experiments with thermal atoms and not with a BEC. Nevertheless, based

on the results of feedback control of atoms reported in this thesis, we propose in

Section 5.7.1 a modification of a bouncing interferometer scheme for very long co-

herence times. Since the method would strongly benefit from atoms with ultracold

temperatures, it is likely that for future work on the experimental setup BECs will

be used.

2.6. Preparation of Internal States

2.6.1. Cancellation of Differential Light Shift

2.6.1.1. Compensation Method

The differential light shift from the dipole trap on the D2 line in 87Rb was used for

the loading of the atoms in the dipole trap. Unfortunately, the same differential

light shift is a complication for other optical manipulation or probing techniques.

The light shift is inhomogeneous in space and atoms at different position would

therefore couple differently to incoming radiation. The compensation of the differ-

ential light shift by the dipole trap would therefore be preferential. To achieve this

goal, we use a laser blue detuned to the 5P3/2 →4D5/2,3/2 transitions at 1529 nm.

The light from this laser blue shifts the 5P3/2 state and can therefore compensate

for the red shift from the 1560 laser. The principle of the compensation scheme is
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Figure 2.13.: Compensation scheme of the differential light shift from the dipole trap.
A compensation laser at 1529 nm leads to an equal frequency difference
for all spatial position on the D2 line while the ground state remains
red shifted by the laser radiation.

shown in Figure 2.13.

Injecting both the dipole trap and the compensation laser in the fundamental

mode of an optical cavity, a good mode overlap between the lasers is guaranteed,

which allows a high spatial homogeneity. In the following we present the

light shift compensation for a DFB EDFL at 1550 nm instead of a laser at

1560 nm. We repeatedly changed between fiber lasers at 1550 nm and 1560

nm because of technical problems (a broken laser piezo actuator) and because

the laser at 1560 nm had a higher relative intensity noise than the laser at 1550 nm.

In Section 2.4, it was discussed that the light shift on the atomic levels is

proportional to the atomic polarizability and the light intensity. Since the laser at

1529 nm is close to the 5P3/2 →4D5/2,3/2 transitions at 1529.261 nm and 1529.366

nm, its exact wavelength is crucial. We tuned the wavelength of the compensation

laser to 1529.072 nm over the laser temperature and measured its wavelength

with an optical spectrum analyzer. The atomic polarizabilities for our detunings

are summarized in Table 2.2 and the calculation is described in Appendix C.

Since the polarizabilities for the 5P3/2 state have a different sign for the two

wavelengths, it is possible to compensate the light shift on the excited state. In

contrast, the light shift contributions add up for the ground state. As a condition
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5S1/2 5P3/2

1550 nm 6.79× 10−39 4.74× 10−37

1529 nm 6.8553× 10−39 −3.34× 10−35

Table 2.2.: Polarizability of the 5S1/2 and 5P3/2 states from the dipole trap and com-
pensation laser. The unit of the polarizabilities is Jm2/W.

for the light shift compensation, we set that the light shift at the center of the

trap is equal both for the 5S1/2 and the 5P3/2 state. In this way, the transition

frequency of the atoms at the trap center is the same as without a dipole trap.

The compensation condition is fulfilled for

P1550

P1529

=
α1529
P1/2

− α1529
S1/2

α1550
S1/2

− α1550
P3/2

(2.13)

= 71.6 . (2.14)

2.6.1.2. Experimental implementation

We find experimentally the compensation position by scanning the power of the

1529 nm laser versus the power of the 1550 nm laser and imaging the atomic

cloud when trapped in the dipole trap. For this we extinguish the 1529 nm laser

from the cavity during the loading of the dipole trap11, ramp the dipole trap

power at 1550 nm in the cavity down to 6.4 W and switch on again the 1529

nm laser which is set at a different power level for each experimental run. The

atomic cloud is imaged by absorption imaging. The result for the effective optical

density in the trap as function of the 1529 laser power in the cavity is shown in

Figure 2.14. The intracavity powers were calculated with Equation (2.5) from the

output power of the cavity, where the finesse at 1529 nm was measured to be 103

by scanning over the cavity resonance with serrodyne frequency shifting.

The Lorentzian shape in Figure 2.14 is due to the line profile on the D2

transition. From the fit we find that the light shift from the dipole trap is

compensated with the laser at 1529 nm with an intracavity power of 77 mW. The

calculated power ratio from the lasers in the cavity is therefore 83, close to the

11The laser light is also serrodyne shifted out of the cavity resonance to ensure that no light
enters the resonator during the loading.
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Figure 2.14.: Experimental compensation of the light shift in the dipole trap with the
laser at 1529 nm. The light shift is canceled when the optical density of
the cloud at the D2 line is maximal.

predicted value of 71.6. The deviation could be due to the cavity parameters at

1550 nm and 1529 nm, for which for example the contribution from light diffusion

in the cavity is unknown. The direct measurement of the light shift compensation

is therefore a better tool than just fixing the injection powers at 1529 nm and

1550 nm from the known properties of the optical cavity.

The differential light shift before the compensation is 60 MHz on the D2 line

and is set by the 1529 nm laser to zero. Nevertheless, when the light shift at the

center of the cavity is completely compensated, there is still a residual differential

light shift in the trap from the different beam waists at 1529 nm and 1550 nm, as

plotted in Figure 2.15. However, the highest absolute shift is less than 0.5 MHz

over the size of the beams. This will be negligibly small for the large detunings

chosen for the optical probe in Chapter 3.

The compensation method introduced here prevents that the atoms in the

dipole trap are probed with spatially different couplings. Nevertheless, the

presented method has some limitations for our experiment. Because the laser is

stabilized on the optical cavity, we can set the laser frequency only in steps of

1 FSR≈1 GHz. The 1529 nm laser is only 24 GHz and 38 GHz detuned from

the 5P3/2 →4D5/2,3/2 transitions, so that a change in the position of the cavity
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Figure 2.15.: Calculated light shift on the D2 line after compensation with the laser
at 1529 nm. A residual light shift outside of the trap center remains
because of the different beam sizes.

resonance changes the polarizability from the 1529 nm laser. The non-stabilized

optical cavity is therefore the main weakness of the compensation scheme and

the cavity should be actively stabilized12. An additional strategy to reduce the

relative frequency fluctuations is to use a compensation laser with a higher power

such that the laser detuning from the atomic transitions can be increased. Both

the lasers at 1529 nm and 1550 nm were power stabilized on a bandwidth of 5

kHz and 100 kHz, respectively. The power fluctuations are negligibly small with

respect to the frequency fluctuations of the cavity.

In general, the light shift manipulation with the laser at 1529 nm is an interesting

tool to change the properties of the trapped atoms. It could be further explored

by considering other loading schemes in the optical dipole trap. As an example,

the dimple of Section 2.5 at 1560 nm could be replaced by a dimple at 1529 nm

to invert the light shift on the D2 line and test loading schemes similar as in

[Stellmer 13].

12The cavity could be stabilized by doubling the 1560 nm dipole laser, beating it with the
repumper, and taking the error signal to act on the piezoelectric actuators controlling the
length of the cavity.
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2.6.2. State Purification

After the trap loading, the internal state of the atoms is a statistical mixture of

the magnetic sublevels mF = 0,±1 of F = 1. Without any external magnetic

field, the states are degenerate, but nevertheless couple differently to different

polarizations of coherent microwave radiation at 6.835 GHz13, which can drive

the atoms into the magnetic substates mF = 0,±1,±2 of F = 2. In an optics

analog the state of the atoms is equivalent to different polarizations of an optical

beam. We want to work with an atomic ensemble with internal states as pure as

possible and therefore want to clean the “polarization” of the atoms and prepare

all atoms in the atomic cloud in |F = 1,mF = 0⟩. The states |F = 1, 2;mF = 0⟩
are insensitive to first order to the Zeeman effect and are therefore the stable

clock states in the optical dipole trap.

A conventional method to prepare the atoms in mF = 0 consists in the

direct optical pumping on the F = 2 → F ′ = 2 transition with counter

propagating linearly polarized light. Since all the excitation paths on

|F = 2,mF = 0⟩ → |F ′ = 2,mF = 0⟩ interfere destructively, no atoms can

be pumped back on this transition and the atoms accumulate in |F = 2,mF = 0⟩.
Unfortunately, this procedure could not be applied in our experimental ap-

paratus, because we start with a high density atomic cloud with typically

3×106 atoms in a cloud size of 50 µm after the ramp. In a very dense cloud,

each scattered photon can excite again other atoms in the cloud. Since the

polarization of the light is then not defined anymore, it can pump electrons

back from mF = 0 in the other mF states and the optical pumping is inefficient

(less than 30% in our case typically), and the state is not pure after the pumping14.

The state can be cleaned by applying a π-pulse15 on the |F = 2,mF = 0⟩ →
|F = 1,mF = 0⟩ transition and sending a strong unidirectional σ+, σ−-polarized

“blast” pulse on the F = 2 → F ′ = 2 transition to eject the remaining atoms in

F = 2 from the trap. Nevertheless, also this procedure cannot completely clean

the atomic state, because the blast light can still, although with a low probability,

13We use as a microwave source a frequency chain at 7 GHz derived from a 10 MHz blue top
quartz crystal, mixed with a radio frequency generator at 165 MHz. The microwave radiation
at 6.835 GHz is then amplified to 500 mW and send on the atoms with an antenna

14A detailed treatment on the limitations of optical pumping in a dense atomic cloud can be
found in [Boyer 00]

15The degeneracy of the mF states is lifted by the application of a magnetic field offset of 0.5
Gauss such that only the mF=0 states are addressed by the microwave.
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Figure 2.16.: State preparation scheme for a dense atomic cloud. The sequence con-
sists of (a) a π-pulse, (b) repumping, (c) another π-pulse and (d) a blast
pulse to remove atoms in F = 2. Steps (a) to (d) are repeated until the
atomic state is pure.

excite the state F ′ = 2 from which the atoms can fall into F = 1. In a dense

cloud, due to the rescattering of photons this effect is increased and the state

after the blast is still not pure. The effect is enhanced when the atoms are in a

deep trap since many recoils are needed in order go over the trap barriers.

To obtain nevertheless an atomic sample with pure internal states, we therefore

developed a state preparation scheme based on the repeated purification of the

internal states as shown in Figure 2.16. The state preparation starts with a

π-pulse on the |F = 1,mF = 0⟩ → |F = 2,mF = 0⟩ transition and a repump pulse

to pump the remaining atoms into F = 2. After that, slightly more than 1/3 of

the atoms are in |F = 2,mF = 0⟩. We swap then the state from |F = 2,mF = 0⟩
to |F = 1,mF = 0⟩ with a π-pulse and blast away the atoms in F = 2. Then we

repeat the procedure as often as necessary, typically 3 times, until there are no

atoms anymore in the wrong mF states.

The purity of the state is more than 99.9%, which was verified with absorption

imaging. At first, we checked that there are no atoms in F = 2 after the
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state preparation. In other experimental runs we transferred all atoms to

|F = 2,mF = 0⟩ with a π-pulse, and measured the total atom number with

and without radiation from the repumper. Because in both cases we mea-

sured the same atom numbers this proved that the atomic state was pure.

With the presented state preparation method one can practically prepare atomic

clouds of any density in a pure state in mF = 0, but with an efficiency of only 30%.

After the state preparation and cleaning, we have an atomic ensemble with

typically 8 × 105 to 106 atoms in the dipole trap with a cloud size of 50 µm and

a temperature of 10 µK. The light shift compensation on the D2 line allows us

to probe the atoms as if they are in free space. This configuration is kept for all

results in the following chapters.
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3. Nondestructive Detection System

3.1. Introduction

In this chapter, the development of our nondestructive detection system is

described. Our goal was to construct a system where only a single beam

passes through an atomic cloud in free space, measuring directly the popu-

lation difference of two non-magnetic atomic states, while causing minimal

spontaneous emission and no other spurious effects. The detection scheme

relies on off-resonant dispersive probing of the atoms. In the development

of nondestructive techniques to probe atoms, this approach has been very

successful in the measurement of magnetic states by Faraday rotation (e.g. in

[Smith 04, Takano 09, Koschorreck 10, Sewell 12]), and of non-magnetic states

with an optical Mach-Zehnder interferometer [Appel 09b]. The most successful

detection systems with the lowest probe-related decoherence rely on optical cavi-

ties to increase the atom-light interaction [Schleier-Smith 10, Chen 11, Bohnet 13].

Our nondestructive detection method is based on frequency modulation (FM)

spectroscopy. A beam with several frequency components passes through an

atomic cloud, and the components are dephased. This results in an amplitude

modulation of the beam which is detected by a photodiode, and the demodulation

of the beat-note signal gives information of the state population. The main

interest of the method is that it represents until now the only solution to measure

non-magnetic states with a single probe beam in free space, i.e. without an optical

Mach-Zehnder interferometer. It can therefore be added to existing setups by the

addition of only one beam.

In Section 3.2, an introduction of the basic principles of FM spectroscopy

[Bjorklund 80] is given, with a focus on the design of a nondestructive detection

system. In Section 3.3, our experimental setup is presented. Much room is then

dedicated in Section 3.4 to the choice of the probe frequencies and powers, and

to push the free space detection to its limits. In particular, an elegant solution
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will be presented to avoid light shifts by the optical probe. First measurements

with the nondestructive detection system are shown then in Section 3.5. We show,

among others, the observation of Rabi-oscillations of the atoms in real time, and

the measurement of the atomic projection noise.

3.2. FM Spectroscopy

FM spectroscopy has been first demonstrated by G. C. Bjorklund in 1980

[Bjorklund 80], and has since then become one of the main tools for precision

measurements in atomic physics. The principles of FM spectroscopy applied to

nondestructive measurements of atoms is outlined in the following.

3.2.1. Operation Principle

The operation principle of FM spectroscopy is shown in Figure 3.1. The light

from a laser with carrier frequency ω0 is phase modulated with a local oscillator

(LO) of frequency Ωm to form frequency sidebands, and passes through the

atoms. Before the interaction with the atoms there is no amplitude modulation

of the light, because the sidebands have phases of ±π
2
and the beat-note of the

upper sideband with the carrier cancels with the one of the lower sideband and

the carrier. Asymmetric dephasing of the sidebands due to interaction with the

atoms leads then to an amplitude modulation of the light, which is detected on a

photodiode and demodulated with a mixer.

Since all probe light passes through the same optical path, the detection

is robust against path length fluctuations. Furthermore, the detection of the

beat-note is performed at microwave frequencies (between 3 GHz to 4 GHz),

whereas typical stray light only has components in the low frequency or in the

THz range. The detection can therefore be used in a fully illuminated room

without any addition of noise in principle.

In our probe scheme, we will always set the frequencies and powers of the probe

light such that one sideband interacts mainly with atomic populations in F = 2

and the other one with F = 1, giving a direct measurement of the population

difference between the states. The optical carrier therefore only acts as a phase

reference and the spontaneous emission is dominated by the frequency sidebands.
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Figure 3.1.: Operation principle of FM spectroscopy with atoms trapped in our optical
cavity. (a) Main components of detection system (details in main text).
(b) Frequencies and phases in the probe light from left to right with no
frequency sidebands, with freqency sidebands, and having passed through
the atomic cloud. The corresponding light fields are sketched (exagger-
ated) below.

3.2.2. Detection Noise

In the state detection, the interference term between the electric fields of the

carrier (power Pc) and the two sidebands (each with a power Ps) is recorded. The

sidebands are coupled with the same coupling coefficient to an atomic transition

and beat with the optical carrier. The maximal signal expressed as the electronic

current after the photodetection is

S = ⟨iS⟩ = 2
ηqe

~ν
√
Pc

√
Ps|Φmax| , (3.1)

where |Φmax| is the total phase shift when all atoms are in one of the probed states,

ηq is the quantum efficiency of the detector, e the electronic charge, and ν is the
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frequency of the light. The phase shift Φmax is the sum off all phase shifts from

each atom in the addressed state,

Φ = Nat|ϕ| , (3.2)

where Nat is the total number of atoms in the cloud and ϕ the phase shift for a

single atom. Under the assumption that the detection noise is dominated by the

shot noise of the carrier, the current noise after detection is given by

N = ⟨iN⟩ =
√

2e
ηqe

~ν
Pc∆f , (3.3)

with the detection linewidth (inverse of the detection time) ∆f . Calculating the

signal-to-noise ratio (SNR) and expressing it in terms of the photon number Ns,

one arrives at

SNR =
√

2ηqNsNat|ϕ| . (3.4)

The operator form of the quantum measurement can be directly derived from the

SNR of the detection. Since the photonic shot noise is white (it is due to the

interference with the fluctuations of the vacuum field), the measurement operator

has a Gaussian profile. The inverse of the SNR, the NSR, is the precision of the

measurement. If we translate the NSR to the spin basis, i.e. to a full scale value

of J = Nat/2, the measurement uncertainty expressed in the Dicke state basis

becomes

σdet = NSR×Nat/2 =
(
2
√
2
√
ηqNs|ϕ|

)−1

, (3.5)

and the measurement operator is as in Equation (1.75)

Mm0 =
(
2πσ2

det

)−1/4
e
− 1

4σ2
det

(Jz−m0)
2

. (3.6)

As discussed in Section 1.3.3.5, the relevant parameter for spin squeezing is the

measurement strength

κ =
σJ
σdet

=
√

2ηqNsNat|ϕ| . (3.7)

The results from Equations (3.5)-(3.7) are valid only if the detection is limited by

photonic shot noise. If this is not the case, and the additional noise is Gaussian,

it should be added to the variance in Equation (3.3). For different additional

noise sources, the measurement operator may no longer be an unbiased Gaussian

estimator as in Equation (1.75), and the operator has to be modified.

70



3.2 FM Spectroscopy

The above derivation shows how a generalized measurement operator can be

found with very simple means, where the only requirement is the knowledge about

the noise spectrum of the detection. The presented procedure holds in general

and can be applied to any nondestructive measurement system. A similar result

as in Equations (3.5) and (3.6) has been found in [Vanderbruggen 11] with a

photon-to-photon method, requiring a much longer derivation.

From Equations 3.4 and (3.7), it can be seen that the precision of a measure-

ment can be improved by a better quantum efficiency ηq of the detector, a higher

atom number Nat, more photons in the sidebands Ns and a higher phase shift per

atom |ϕ|. However, the relevant parameter for nondestructive detection is not the

measurement precision alone, but the measurement precision for a given destruc-

tivity from the probe. In the next section, we will show that precision for a given

destructivity is independent of the detuning of the probe frequencies as long as

the detuning is larger than the linewidth of the probed atomic transition. The

dependence of the SNR versus the destructivity as a function of the probe waist

is discussed in Section 3.4.4.

3.2.3. Dispersive Probing

In this section, we give the expressions for the phase shift and the spontaneous

emission in the semi-classical approximation for a two-level system. This gives

an overview of the experimentally relevant parameters, and serves as a starting

point for the choice of the probe frequencies. The full treatment with all atomic

sublevels is introduced in Section 3.4.

First, we look at the elastically scattered light from the atoms to estimate its

phase shift. The on-resonance scattering cross section of a two-level system is

σ0 =
3λ20
2π

, (3.8)

where λ0 is the wavelength of the transition on resonance. The fraction of the

incoming light that is elastically scattered is therefore

σ0
A

=
3λ2

0

2π

πw2
=

3

2

λ20
π2w2

. (3.9)
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Elastic scattering uses the Lorentz-model for a weakly driven oscillator. The phase

lag of the oscillator with respect to the driving field is π/2 on resonance. Due to the

geometrical overlap of the incoming Gaussian beam and the spherically emitted

light field, another π/2 factor in the far field appears. Therefore, the light has a

phase shift of π and interferes destructively with the incoming field. The Lorentzian

line shape from this interference process is

Ld = − 2∆Γ

Γ2 + 4∆2
, (3.10)

where ∆ = ω − ω0, ω is the laser frequency, and ω0 the transition frequency.

When one multiplies this result with the scattered fraction of the incoming light

(Equation (3.9)) on resonance, one arrives at the phase shift from one atom,

ϕ =
3

2

λ20
π2w2

2∆Γ

Γ2 + 4∆2
≈ −3

2

λ20
π2w2

Γ

2∆
. (3.11)

For spontaneous emission, a relevant parameter is the excited state population. It

is given by

ρee =
Ω2

Γ2 + 4∆2
≈

(Ω
Γ
)2

4(∆
Γ
)2

=
I

2Isat

Γ2

4∆2
, (3.12)

where Ω is the Rabi frequency and Isat is defined via

I

Isat
= 2

(
Ω

∆

)2

. (3.13)

Spontaneous emission leads to decoherence, and the atomic state decays with a

rate Γρee. From the comparison of Equations (3.11) and (3.12), one might be

misled that an increase of the detuning improves the measurement precision for the

same destructivity, because the phase shift scales with 1/∆ and the spontaneous

emission with 1/∆2. However, to compensate the loss in SNR in Equation (3.4)

by a lower phase shift, the photon number in the sidebands Ns has to be increased

quadratically by the same amount. This in turn leads to the same spontaneous

emission rate for the same measurement precision. As long as the detection is in the

dispersive regime with ∆ ≫ Γ, the obtained information for a given destructivity

is independent of the detuning.
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3.2.4. Stability Against Path Length Fluctuations

FM spectroscopy can be considered as a lock-in amplifier with a built-in optical

interferometer. The latter is robust against fluctuations of its path length since

the light is only split in frequency space. In the lock-in amplifier, the signal at

frequency Ωm is multiplied with the reference signal at Ωm to obtain a DC voltage.

If the two signals are preset to have the same phase, the output voltage is

Vout = Vd cos

(
2π

∆L

λm

)
≈ Vd

[
1− 2

(
π
∆L

λm

)2
]
, (3.14)

where Vd ranges from −Vmax to +Vmax and Vmax ∝ Nat. The fluctuations in the

microwave phase are denoted by ∆L and are usually dominated by fluctuations in

the optical path. The maximal absolute output voltage of Vd corresponds to the

case that all atoms are in one of the probed states, and is zero for no atoms or for

a CSS on the equator of the Bloch sphere. When Vd = Vmax, the absolute error in

the estimation of the population difference from path length fluctuations is highest.

In a standard Mach-Zehnder interferometer, optical path length fluctuations of

1 µm would completely wash out the interference signal. Instead, at a modulation

frequency of Ωm = 3.42 GHz, as used in our experimental work, the wavelength

of the microwave radiation is λm = 8.8 cm. From Equation (3.14), we see that

the error from path length fluctuations of 1 µm is then only 2.6 × 10−9, and so

completely negligible. The disadvantage of working at high modulation frequencies

is that it can be technically very demanding to reach a detection which is limited

by photonic shot noise, which is discussed in more detail in the next section.

3.3. Experimental Setup

3.3.1. Optical Bench

The experimental setup for our probe is shown in Figure 3.2. An extended-cavity

diode laser (ECDL) is frequency offset locked with respect to the repumper

radiation (i.e. F = 1 → F ′ = 2 transition of the D2 line) to provide the carrier

frequency. The error signal is obtained by detection of the beat-note between the

probe laser and the repumper laser on a fast photodiode (G4176, from Hamamatsu,

terminated on a 50Ω bias-T). The beat-note is amplified with two microwave

amplifiers (LCA-0408, from Miteq), and sent to a phase detector (ADF4108,

73



Chapter 3. Nondestructive Detection System

Figure 3.2.: Experimental system for the optical probe (details in main text). Light
from an extended-cavity diode laser (ECDL) is frequency offset locked cia
beat-note with repumper light and then sent with pulses from an AOM
and EOM 1 through the atoms. The light is phase modulated using the
local LO and EOM 2, and the beat-note is demodulated with a mixer
and stored in a digital oscilloscope

from Analog Devices), following the method in [Appel 09a]. Feedback on the

piezo and current of the ECDL is then performed to stabilize the carrier frequency.

Light pulses are sent by an acousto-optical modulator (AOM) with a rise time

of 250 ns. Shorter pulses with a rise time of 1 ns can be sent with a Mach-Zehnder

type amplitude EOM (NIR-MX800-LN-20, from Photline), and the outer AOM

pulse window acts as a means for an additional probe attenuation. The short

pulses for the EOM were derived from a pulse generator (33250A, from Agilent).

The light is then phase modulated with an EOM (NIR-MPX800-LN-05, from

Photline) with a LO (68017C, from Anritsu) in the microwave range, and the

light is sent through the atoms.

Two different photodiodes were used for the experimental work in this thesis.

The first one is a photodiode with integrated transimpedance amplifier (HFD3180-

203, from Finisar) mounted on a homemade printed circuit board, which was used

for all results in Chapter 4. The photodiode has the weakness of a depletion of the

nondestructive signal under a sudden change of the power on the photodiode (we

suspect as a reason the automatic gain control in the photodiode). We therefore

added another light path on the PD (not shown in Figure 3.2), which was switched

on when no pulses from the nondestructive detection were sent. In this way, the
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light level on the photodiode was always constant.

The problem of the signal depletion was resolved by a different photodiode,

used for all results in Chapter 5. This photodiode (1591 NF, from New Focus) is

equipped with a fiber input. To avoid loosing a part of the signal, we dismantled

the photodiode and focused the optical beam directly on the photodiode pin. The

signal from the photodiode is amplified with two microwave amplifiers (716-PC7,

from Hittite) and sent to a mixer (ZX05-73C-C+, from Minicircuits), where it

is demodulated with the LO. The output signal is then stored in an oscilloscope

(6100A, from LeCroy) for further treatment.

All the optics for the optical path were planned and designed with the ABCD

matrix formalism for Gaussian beams and the beam waists on the atoms (245 µm

for Chapter 4 and 47 µm for Chapter 5) were measured with a chopper wheel

before adding the optics to the experimental setup. In Section 3.4, the choices for

the locking position of the carrier and for the LO frequency and power are given.

3.3.2. Photodiode Characteristics

In order to avoid adding technical noise to the measurement, the photodiode noise

spectrum at the detection frequency should be limited by the optical shot noise

of the probe. We call the shot noise limit the light level for which the optical

shot noise is at the same level as the electronic noise. The design of a photodiode

with several GHz bandwidth and a low shot noise level is a demanding task.

For example, we attempted to use a G4176 photodiode from Hamamatsu on a

50Ω bias-T, but were limited by the 50 Ω resistance converting the photocurrent

to a shot noise limit of several mW. On the other hand, for photodiodes with

transimpedance amplifiers, the bandwidth decreases when the transimpedance

resistance increases. This limits the highest possible transimpedance resistance,

and implies a reduced signal with respect to noise sources such as the Johnson

noise of the transimpedance resistance. A low shot noise limit at high frequencies

is therefore hard to reach.

We found a good solution with the photodiode 1591 NF (nominal bandwidth 4.5

GHz) from New Focus of which we removed the fibered input parts. We measured

the shot noise limit as seen in Figure 3.3 at a frequency of Ωm= 3.852 GHz. The

signal was taken at the output of the mixer with a spectrum analyzer at a resolution

bandwidth (RBW) of 300 kHz. By varying the optical power on the photodiode, we
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Figure 3.3.: Variance of the photodiode noise at 3.852 GHz as a function of the optical
power on the photodiode. The linear part is from optical shot noise while
the offset is the technical noise from the photodiode. The shot-noise limit
is at 430 µW.

observe the change in the noise variance which increases linearly with the optical

power. The linear slope proves that the light is dominated by white quantum

noise1, so that technical amplitude noise from the laser is negligible. We find from

Figure 3.3 a shot noise limit of 430 µW. Most experimental results at modulation

frequency of Ωm= 3.852 GHz where performed at optical powers above this level.

3.4. Direct Population Measurement

The first results for the nondestructive detection were obtained by the probing

of only one atomic level, and are explained in detail in the PhD thesis of Simon

Bernon [Bernon 11a]. We are interested here in frequency configurations for the

probe in which the population difference of two atomic states can be read out with

a single pulse. At first, we give the scheme for the direct population measurement

which is also used for the experimental results in Chapter 4. Several improvements

of this scheme are presented, and the measurement of the atomic shot noise is

reported. The updated probe scheme is used for the nondestructive measurements

in Chapter 5.

1The variance of a light field with Nph photons is σ2
ph = Nph.
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3.4 Direct Population Measurement

3.4.1. Probe Scheme

In order to measure the population difference of the atomic levels |F = 1,mF = 0⟩
and |F = 2,mF = 0⟩, they should be probed with the same absolute couplings

but with opposite sign. The strategy is to place the optical carrier between the

hyperfine states and set the frequency sidebands close to the probed states. The

frequency sidebands have to be on opposite sides of their respective dominating

optical transitions. Since we want that the spontaneous emission induced by the

carrier is negligible compared to that of the sidebands, it is reasonable to choose

the modulation frequency Ωm within the range 2.5 GHz - 4.5 GHz.

Our first probe scheme for the population difference measurement is shown in

Figure 3.4. We placed one sideband close to the F = 1 → F ′ = 2 transition, and
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Figure 3.4.: (a) Hyperfine structure of the D2 transition of 87Rb with the frequency
triplet from the optical probe. The bold arrow is the carrier and the thin
arrows are the optical sidebands. The light is linearly polarized and only
the mF=0 states are populated in F = 1 and F = 2. (b) Dispersive
signal when the position of the frequency triplet is scanned with respect
to the atomic transitions. The x-axis is the frequency difference between
the carrier and the F = 1 → F ′ = 2 transition. The experimental points
are shown in filled circles and the solid line is the calculation for the
modulation frequency Ωm = 3.421 GHz.
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the other one close to the F = 2 → F ′ = 3 transition. The phase shift of the

optical sidebands is proportional to SF , which is the coupling coefficient from the

probed hyperfine state F to all other excited states F ′. It can be calculated by

SF =
∑
F ′

γ∆FF ′

∆2
FF ′ + γ2 (1 + I/Isat)

SFF ′ , (3.15)

where SFF ′ is here the coupling coefficient only for the transitions starting

from mF = 0 as taken from [Steck 01] and depicted in Table 3.1 for the relevant

transitions.

S10 S11 S12 S13 S20 S21 S22 S23

1
6

0 1
6

0 0 1
30

0 3
10

Table 3.1.: Transition coefficients for π-polarized light for all hyperfine transitions on
the D2 line from mF=0. The transition coefficients for S11 and S22 are
zero due to destructive interference of the excitation paths, whereas the
transitions S13 and S20 are dipole forbidden.

For a direct population difference measurement, we must set S1 = −S2, i.e.

the coupling coefficient from one sideband to the atoms should be opposite to

the coupling coefficient from the other sideband. The condition of equal absolute

couplings of the sidebands if fulfilled by adjusting the detunings ∆FF ′ for each

sideband. After demodulation of the beat-note, one obtains then a signal which

is proportional to the population difference with Vout ∝ (N1 −N2) ∝ Jz.

Experimentally, we fix the modulation frequency Ωm = 3.421 GHz and prepare

all atoms in an equal superposition of |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩ with a

π/2-microwave pulse. Since N1 = N2, we require that after demodulation we have

Vout = 0. We scan the position of the carrier with respect to the F = 1 → F ′ = 2

transition, which moves the three probe frequencies together. The experimental

results are shown in Figure 3.4. They are in good agreement with the couplings

calculated from Equation (3.15), and are drawn with a solid line. The carrier

power for the measurement was 153 µW and a power per sideband of 7.1 µW.

With a beam waist of the probe on the atomic sample of 245 µm, the intensity

on the sample was 13.7 mW/cm2. We take here for all transitions the saturation

intensity for linearly polarized light on the D2 line of Isat = 2.503 mW/cm2
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[Steck 01]. The condition S1 = −S2 is fulfilled when the carrier is 3.291 GHz away

from the F = 1 → F ′ = 2 transition, and the detunings of the sidebands to their

closest transitions are ∆12 = -126.7 MHz and ∆23 = 148.5 MHz.

3.4.2. Suppression of Probe Light Shift

Besides spontaneous emission, another deteriorating effect that can affect the

internal atomic states is the light shift from the optical probe. It can be split

in two contributions, a global one, which describes how the total state is turned

around the equator of the Bloch sphere, and an inhomogeneous part due the

spatial variation of the probe intensity over the size of the cloud. In principle,

both effects can be reversed by a spin-echo, i.e. π-pulse and a repetition of the

probe pulse. However, experimentally, the time for the spin-echo cannot be chosen

arbitrarily short, and the inhomogeneous contribution cannot be completely

reversed, since the atoms move in the optical trap. The light shift from the probe

represents then a source of decoherence.

Our three-frequency configuration allows to cancel the light shift from the optical

probe. We can compensate the light shift from the strong carrier with the light

shift from the optical sidebands. Since the sidebands and the carrier are perfectly

overlapped spatially, the compensation is homogeneous. For the calculation of the

required power in the sidebands, we use Equations (2.8) and (2.9) from Chapter 2

which are approximated as (see [Grimm 00], Equation 18)

∆EF =
3πc2Γ

2ω3
0

I(r)

h

∑
F ′

SFF ′

∆FF ′
. (3.16)

The light shift on the atomic levels as a function of the probe power is shown

in Figure 3.5. We assume for the calculation a carrier power of Pc = 1 mW and

the frequency configuration from the previous section. The expected percentage

of the power in the sidebands needed for the compensation is 5.3%.

Experimentally, we find the power in the sidebands for the light shift compen-

sation by starting a Ramsey interferometer with a π/2-pulse, and then sending

a probe pulse with a duration of 40 µs. The Ramsey interferometer is closed by

another π/2-pulse. The results of the measurements are shown in Figure 3.6. The

power in each sideband is changed from 2.4% to 7.5% of the power of the carrier
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Figure 3.5.: (a) Principle of the light shift compensation scheme. The light shift from
the sidebands cancels the light shift from the carrier. (b) Total light
shift on the hyperfine states by the optical probe as a function of the
sideband power. The black solid lines are the carrier light shift without
sidebands, the blue dashed lines the light shift from both the carrier and
the sidebands.

and a position with a maximal fringe contrast is found for 4.6%. The difference

in power to the calculation could be due to the calibration of the sideband power

from the phase modulation which was done at 2 GHz and not at 3.4 GHz. The

sinusoidal form as a function of the sideband power is due to the rotation of the

spin state around the equator of the Bloch sphere, induced by the light shift

from the probe. The contrast of the signal decreases from the optimal light shift

compensation point because of the inhomogeneous dephasing.

An additional drift in the Ramsey signal arises from optical pumping effects of

the probe. From Figure 3.4(a), we can see that the upper sideband is close to

the F = 2 → F ′ = 3 transition, where the upper level can only decay to F = 2,

whereas the lower sideband is close to the F = 1 → F ′ = 2 transition, and the

F ′ = 2 can both decay to F = 1 and F = 2. The probe therefore acts as a

repumping beam and a long measurement pulse will cause an offset in the signal.

The offset can be identified and systematically subtracted, but should be better

avoided from the beginning. A probe scheme which can reject to first order the

optical pumping effect is presented in the next section.
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Figure 3.6.: Cancellation of the light shift due to the optical probe. The collective
spin state rotates around the equator of the Bloch sphere and atoms
dephase with respect to each other. For a minimal light shift from the
optical probe, the contrast of the Ramsey interferometer is maximal.
Inset: fringes for a longer pulse duration of 70 µs instead of 40 µs.

3.4.3. Balancing of Decoherence

Ideally, the population in each hyperfine state should remain the same under

spontaneous emission. Furthermore, the hyperfine states should ideally not mix

by spontaneous emission, which is a random process and therefore can add noise.

However, we have the additional conditions for a direct population measurement

(S1 = −S2) and for the cancellation of the probe light shift. We are therefore

forced to keep a probe configuration similar as before, unless an additional light

shift compensation beam should be superimposed with the probe. The population

mixing during the measurement process is then inevitable. Nevertheless, the

couplings can be set such that the decay is pointed towards the equatorial plane

of the Bloch sphere, thus avoiding offsets.

For the calculation of the state redistribution from spontaneous emission, we

approximate each transition as a separate two-level system, as it is valid in the

limit of low excitations. The excited state population for each hyperfine state is
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calculated from the stationary solution of the optical Bloch equations,

ρee =
1

2

I
Isat

1 + 4
(
∆
Γ

)2
+ I

Isat

, (3.17)

with

Isat =
cϵ0~2Γ2

4µ2SFF ′
. (3.18)

We consider only the initial distribution with atoms in the ground states in mF=0,

and the interaction with linearly polarized light, so that only the mF=0 excited

states are populated. Each excited state is then only populated by one separate

transition (only S10,S12,S21 and S23 are nonzero). Since spontaneous emission

is due to the interaction of the atoms with the unpolarized vacuum field, the

atoms can decay with ∆m=± 1 to the ground states. The branching ratio is cal-

culated from the transition strengths SFF ′ on the D2 line and listed in Appendix C.

The optimal probe configuration is calculated iteratively by fixing each time
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Figure 3.7.: Probe scheme with balanced decoherence. (a) Carrier and sideband fre-
quencies. (b) Probe coupling and branching ratio to F = 1 and F = 2
as a function of the carrier detuning with respect to the F = 1 → F ′ = 2
transition. A position with equal couplings and branching ratio is found
at 3.379 GHz at a modulation frequency of 3.852 GHz.
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Figure 3.8.: Destruction of the atomic state by the optical probe. (a) Population
difference measurement for a CSS prepared on the equator of the Bloch
sphere. (b) Decay of state coherence measured with a Ramsey interefer-
ometer.

the modulation frequency Ωm, scanning the frequency triplet for the position of

equal couplings, and calculating the spontaneous emission decay paths. When

the two conditions of equal couplings and symmetric decoherence are fulfilled, the

sideband power needed for the light shift compensation is calculated. It is then

verified that the sideband power does not affect the found position for the probe

frequencies. The configuration for which all conditions for the optical probe are

fulfilled is at a modulation frequency of Ωm= 3.852 GHz, a carrier lock position

of 3.379 GHz and a modulation depth of 14.8%. The chosen frequency scheme is

depicted in Figure 3.7(a), and the couplings and spontaneous emission branching

is shown in Figure 3.7(b).

We show now that offsets are avoided in the new measurement scheme. For this

we prepare a CSS on the equator of the Bloch sphere, and send a probe pulse at

a power of 1.16 mW. The result is shown in Figure 3.8(a), where the signal is an

average of 200 measurements. We use here a beam with a waist of 47 µm, which

implies a high probe intensity. Together with the modulation index of 14.8%, this

causes a decay of the state with a time of 1.18 µs, as seen in Figure 3.8(b). We

see that the state stays close to Jz=0, even when more than 50% of the state

coherence is destroyed. The fast decay of the state coherence is the reason for the

amplitude EOM introduced in Section 3.3, with which probe pulses of only a few

tens of ns length can be sent.
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It is remarked that the mixing of the hyperfine states is still a constraint for the

state measurements. The effect that the state decays towards the equatorial plane

of the Bloch sphere implies that only short probe pulses can be used, or that the

decay has to be fitted with an exponential. Moreover, when a CSS on the equator

of the Bloch sphere is prepared, spontaneous emission leads to a random redistri-

bution of the population difference, which counteracts measurement-induced spin

squeezing. Another problem for precision measurements might be the redistribu-

tion of the mF states. Since only the mF = 0 states are coherently manipulated,

an unequal distribution of the decay in the different mF states leads to a chang-

ing background for high destructivities. The considered problems can in principle

be overcome by preparing and probing the atoms on closed transitions such as

|F = 2,mF = 2⟩ → |F ′ = 3,mF = 3⟩, but this cannot be combined with the con-

dition of a direct population difference measurement, and not be performed with

atoms in the mF = 0 states.

3.4.4. Maximization of SNR for a Given Decoherence

The geometry of the probe should be chosen such that the SNR of the detection

is the highest for a given destructivity. From Equations (3.4) and (3.11), we see

that

SNR ∝
√
NsNat

1

w2
, (3.19)

while the destructivity scales as

destr. ∝ Ns
1

w2
. (3.20)

In order to keep the destructivity constant when the size of the of the probe waist

w is multiplied by a factor ϵ, the number of photons has to be multiplied by ϵ2.

In Equation (3.19), the SNR is then changed by a factor ϵ−1. However, the atom

number Nat is then an effective atom number from the Gaussian overlap of the

beam and the atoms, which is

Nat =
w2

w2
at + w2

Nat0 . (3.21)

If we set w = wat in Equations (3.19) and (3.20) as the initial conditions so that

w = ϵwat, then the efficiency from the overlap of the probe and the cloud becomes

ηw,SNR =
ϵ

1 + ϵ2
. (3.22)
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Figure 3.9.: Dependence of the signal-to-noise ratio (SNR, red line) or the projectivity
(κ, black dashed line) on the ratio ϵ between the beam waist and the size
of the atomic cloud

It should be noted, however, that if the criterion for the optimization is not the

SNR, but the projectivity κ ∝
√
Nat, the efficiency becomes

ηw,κ =
1

1 + ϵ2
(3.23)

The two formulas are plotted in Figure 3.9, normalized to their maximum

values. Both formulas are only valid as long as w ≫ λ. It can be seen from

Figure 3.9 that for the SNR, there is a maximum at ϵ = 1, while for κ it is always

better to go to a smaller probe waist. Nevertheless, if the goal is real metrological

gain, it is not beneficial to go below ϵ = 1 because this reduces the SNR for

the atomic interferometer due to a lower effective atom number. Note that the

only demonstration so far on spin squeezing of nonmagnetic atomic states by free

space probing in [Appel 09b] was performed by probing the column density of an

atomic cloud with a beam waist of 27 µm.

We started our experiment with an initial beam waist of 245 µm, and then

updated the experiment to a beam waist of 47 µm, which sets ϵ ≈ 1 and optimizes

the SNR for a given destructivity. We measure the SNR by taking the full scale

value after all atoms are pumped in F = 2, remove all atoms by a blast pulse, and

take the measurement result without atoms. The pulse time is chosen such that

the residual coherence is 98% after the pulse, so that we can compare the SNR for

the same nominal destructivity. By repeating the experiment, we get a Gaussian
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distribution of the measurement results which corresponds to the uncertainty of

the measurement, shown in Figure 3.10. For a probe waist of 245 µm, we have a

measurement uncertainty of 6.73%, and for a probe waist of 47 µm an uncertainty

of 1.24%. The precision of the measurement is therefore increased by a factor

5.4 for the same destructivity. From Figure 3.9, we would have only expected an

increase by a factor 2.6. The difference can be explained because in conjunction

with the 47 µm prove waist we have also used the new photodiode, where we were

are over the technical noise of the photodiode.
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Figure 3.10.: Measurement uncertainty for a residual coherence of 98% (a) for a probe
beam waist of 245 µm and (b) for a probe beam waist of 47 µm

3.5. FM Spectroscopy as a Calibration Tool

We show here some first results with our probe system. It is at first used as a tool to

measure the frequency of Rabi oscillations induced by microwave radiation, and to

precisely tune the microwave frequency on the clock transition. The main interest

here is to use the FM spectroscopy as a fast calibration tool, since the cycle time

for the experiment is up to a factor 10 shorter than with absorption imaging, which

suffers from dead times because of the camera. We use then for the first time the

nondestructive character of the measurements, and follow the Rabi oscillations in

real time, which shows that the Rabi frequency can be approximately determined

after only a single run of the experiment. Finally, we present the measurement

of the atomic projection noise that shows the intrinsic quantum noise feature of

the coherent spin state (CSS). Furthermore, it gives us a convenient method to
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determine the effective atom number without the need to determine any couplings

as for example in fluorescence imaging.

3.5.1. Characterization of Microwave Source

3.5.1.1. Measurement of Rabi Frequency

The measurement of the Rabi frequency is shown in Figure 3.11. The measurement

was performed with the probe scheme from Section 3.4.3, with a beam power of

450 µW and a beam waist of 47 µm. The atoms start in F = 1 and cycle through

the superposition states between F = 1 and F = 2 because they are shined with

resonant microwave radiation. For each point in Figure 3.11, we change the length

of the microwave radiation pulse, and destroy at the end with a long probe pulse

the internal state of the atomic ensemble. We found here a Rabi period of 268.6(4)

µs.
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Figure 3.11.: Measurement of the Rabi frequency with FM spectroscopy. Each point
was taken from 10 repetitions of the experiment

3.5.1.2. Setting of Microwave Detuning

In order to set the microwave frequency, we run a Ramsey interferometer with

different interrogation times. We prepare all atoms on the equator of the Bloch

sphere with a π/2-pulse, let them freely evolve during a Ramsey interrogation time

T and read out the result with another π/2-pulse. The result can be found in Fig-

ure 3.12. We use here the probe scheme with sidebands generated by modulation

at 3.4 GHz, and a probe pulse length of 10 µs with 1.1 mW beam power. The Ram-

sey interrogation time is 40 ms, and the position of zero microwave detuning was
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Figure 3.12.: Output of Ramsey interferometer after 40 ms interrogation time for a
changing microwave frequency.

confirmed for other interrogation times. We could fix the microwave-atom detun-

ing with 1 Hz precision, limited by the resolution of the RF generator (IFR2023A)

mixed with the 7 GHz signal from the frequency chain to deliver the signal at 6.834

GHz2.

3.5.2. Real Time Observation of Rabi Oscillations

The methods in the previous section did not use the nondestructive character of

the measurements by FM spectroscopy. For a first demonstration of the interest

of the non-demolition measurements, we observe in real time the Rabi oscillations

of an atomic cloud in a single experimental run as shown in Figure 3.13. The

results presented here are similar to those obtained in the group of E. Polzik

[Windpassinger 08]. We use the probe scheme described in Section 3.4.3, with a

beam power of 0.12 mW, a beam waist of 47 µm and pulses of 100 ns duration.

The collective internal state of the atomic ensemble is read out every 1.1 ms and

the period of the Rabi oscillations is 311 µs. After 200 measurements on the

same state, the coherence of the internal state is still 45%. The nondestructive

measurement allows therefore to interrogate the atomic state repeatedly during

its coherent evolution. This tool will be used in Chapters 4 and 5 to either

perform feedback on the atoms or on the LO in an atomic clock. In addition,

the nondestructive detection is a useful tool for the precalibration of the Rabi

2The frequency of the chain was typically drifting a few Hz over one week. The frequency was
therefore set periodically, especially before important measurements.
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frequency and of the microwave frequency from the result of a single experimental

run. The real time observation of the phase in a Ramsey interferometer will be

shown in Chapter 5.
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Figure 3.13.: Real time observation of Rabi oscillations in a single experimental run.
Continuous microwave radiation coherently drives the transition be-
tween the clock states and the superposition state is read out approxi-
mately every 1.1 ms.

3.5.3. Observation of Atomic Projection Noise

3.5.3.1. Detection Scheme

We describe in this section the measurement of atomic projection noise, which

serves as a calibration for the total atom number and can be seen as an intermediate

step towards the realization of spin squeezing. For the preparation of a CSS on

the equator of Bloch sphere, we apply a π/2-pulse around the x-axis, followed by

a π/2-pulse around the y-axis to reject fluctuations in the power of the microwave

source. The state is read out with a long detection pulse of 11 µs and a probe

power of 1.1 mW. All atoms are repumped into F = 2 and the total atom number

is measured. The probe power is chosen here with a lower probe power of 240 µW

to avoid saturation of the demodulated signal. The atoms are then ejected from

the trap by the application of a blast pulse with simultaneous repumping. After

this, the background of the FM spectroscopy both for a high and low probe power

is measured.
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3.5.3.2. Data Treatment

For the detection of the atomic shot noise, all technical noise sources have to be

below the projection noise limit. As an example, for an atom number of Nat=106,

all technical noise contributions have to be below 0.1%. Such a stability level

could not be obtained on our experiment for the total time of the measurements

of several hours, and so we had to reject the technical noise below the required

threshold with the data treatment. Below is a list of all noise rejection steps in

the data treatment.

� Background fluctuations The background signal without atoms is sub-

tracted from the signal for the projection noise measurement. This ensures

that background fluctuations over one run do not add noise. The same is

done for the full scale atom number measurement.

� Atom number fluctuations In each run, the projection noise measurement

is normalized with respect to the full atom number. Furthermore, in the data

treatment a filter of ±5% is used to reject runs with too high atom number

fluctuations.

� Probe frequency fluctuations In some runs, the frequency lock of the

probe laser jitters during the probe pulse for unknown reasons. We reject

those runs by fitting each pulse of 11 µs with an exponential function3 and

reject all cases where the decay time is a factor of more then two away from

the average value.

� Probe power fluctuations Runs with power fluctuations of more than

±5% of the average probe power are rejected.

� Dipole trap fluctuations We reject all runs in which the dipole trap power

fluctuations are above 0.5% between succeeding experimental runs.

� General rejection of long term fluctuations We take the difference

of the results from succeeding experimental runs, take the variance of the

differences, and then divide it by two. For white noise (which is projection

noise), this is equivalent of taking the variance of all measurements. In

contrast, correlated noise (which technical noise usually is), is highly rejected

with this two-point variance method.

3For very long probe pulses the atoms are slightly asymmetrically pumped to F = 2 which gives
an exponential shape.
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� Manual rejectionWe reject all runs in which we notice that the experiment

does not operate as wanted. This is typically only the case when one of the

dipole trap lasers unlocks from the optical cavity.

After the filtering, typically 50% to 80% of the runs are kept. All technical noise

which spans more than two adjacent experimental runs is rejected by the two-point

variance method. The other steps reduce the run-to-run fluctuations.

3.5.3.3. Results

In principle, the measurement of the atomic projection noise can be verified by

preparing repeatedly a known number of atoms Nat in a CSS on the equator of the

Bloch sphere, and verifying that the standard deviation in the number difference

measurement is ∆N =
√
Nat. However, the probe beam has a waist similar to

the size of the atomic cloud and therefore defines an effective atom number. We

measure therefore the variance of the repeated CSS measurements as a function

of the full scale signal. For the case of atomic shot noise, this should give a linear

dependence.

The results of the measurements are shown in Figure 3.14. The probe pulse of

11 µs was cut such that only the first 1.5 µs are used for the CSS measurement.

The power in the QND beam is 1.16 mW on the atoms and well over the photonic

shot noise limit on the PD. Each experimental point in Figure 3.14 is the variance

from 600-1100 experimental runs after filtering. The red line is a parabolic fit, the

blue line is the linear contribution and the black line is the detection noise, which

is independent of the atom number. The original data (not shown) contained only

voltages for the full scale value (Vat) and the variance (Vvar). The effective atom

number was defined over the linear slope between Vat and Vvar,
4 which ensures

the ∆N =
√
Nat condition. The maximal effective atom number measured here

is Nat = 3.8 × 105,5 which is consistent with typical atom numbers measured by

absorption imaging from 8 × 105 to 106, and probe beam being of the size of the

atomic cloud.

4In detail, we had Vvar = P (1)V 2
at + P (2)Vat + P (3). The atom number was defined via Nat =

Vat/P (2).
5Due to the significant number of experimental runs for Figure 3.14 (≈ 15.000) the loading
time of the dipole trap was chosen as short as possible. For a loading time as long as for
absorption imaging we reached typically Nat = 5× 105.
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Figure 3.14.: Measurement of the atomic shot noise. The variance from the repeated
measurement of CSSs on the equator of the Bloch sphere is plotted vs.
the effective atom number. The black horizontal line is the detection
noise dominated by the shot noise in the optical probe, the blue dashed
line is the contribution from atomic shot noise, and the red line is a
parabolic fit of the experimental data. The quadratic part in the scaling
of the noise variance is due to technical noise.

From the quadratic contribution to the variance, we deduce a remaining

technical noise level of σtec = 1.4× 10−3Nat from run to run which is not rejected.

A likely candidate for this noise is the frequency lock of the probe laser. The

beat-note of the probe laser with the repumper shows a noise spectrum with a

width of a few MHz which is above the intrinsic typical linewidth of the ECDLs

of 300 kHz. Since the bandwidth of the frequency lock is only 50 kHz, this

indicates that the probe laser frequency can jitter in this range within the probe

pulse time of 1.5 µs. A solution of this problem could consists in using a probe

laser with a more narrow linewidth. An option is here to double a stable laser at

1560 nm, and to offset lock with a very small bandwidth on the repumer radiation.

The destructivity of the probe pulse of 1.5 µs leaves a residual coherence of

28%, which means that the largest part of the atomic state is destroyed after the

long measurement pulse. We have at the maximum atom number a ratio between
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atomic noise to shot noise of κ = 1.16 and therefore a reduction in the atomic shot

noise by a factor ξ =
√

1
1+κ2 = 0.65. The decoherence for the given projectivity

is therefore too high to either fulfill the Wineland or the Kitagawa-Ueda criterion

for spin squeezing.

The treatment in this section has shown that one of the necessary conditions

to obtain spin squeezing, the measurement of the atomic projection noise, can be

fulfilled in our experiment. In the present configuration, spin squeezing could be

reached by increasing the atom number but would at most lead to a few dB of

squeezing. It is therefore planned to change to a cavity aided detection scheme.

In an optical cavity, the photons interact several times with the atoms, while the

photonic shot noise on the photodiode remains constant. With similar arguments

as for the probe waist, then the shot noise from the light is reduced for the same

destructivity. This improves the measurement by
√
F/π, the square root of the

number of cycles in the cavity.
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4. Feedback Control of Collective Spin States

4.1. Introduction

In this chapter, we show some of the first experimental demonstrations on the

feedback control of the internal states of an atomic ensemble. Our work is similar

to feedback schemes to prepare non-classical atomic states, as theoretically treated

in [Thomsen 02], and with first experimental results in this direction in [Inoue 13]

and [Behbood 13]. The main objective of our work instead is to present how with

relative simple means a collective atomic quantum state can be protected against

some of the dominating decoherence sources in atomic interferometers.

The class of decoherence we consider are random rotations of the collective

pseudo-spin. Examples of corresponding noise sources are, depending on the

experimental context, fluctuations of surrounding magnetic or electric fields, or

also the phase noise of the local oscillator (LO) in an atomic clock. On the other

hand, our feedback method is not able to prevent the decoherence from incoherent

processes such as spontaneous emission.

In Section 4.2, we give a general description of the control problems which we

will consider, and introduce different parameters that can be used to characterize

our feedback system. The theoretical treatment is developed in close analogy to

the description of the feedback control of a single qubit in [Brańczyk 07]. The

experimental setup for the feedback control is described in Section 4.3.1.

We start in Section 4.3.2 with a simple noise model, where a coherent spin

state (CSS) is rotated randomly either in one or another direction with a fixed

angle and rotation axis. On this example, we derive analytical solutions for

the controller efficiency in the weak measurement regime and give solutions for

all the measurement strength regimes, also in the partially projective one, by

Monte-Carlo simulations. From the theoretical treatment, we choose the state

coherence as the best parameter to measure the efficiency of the experimental
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feedback controller. We characterize the trade-off between gained information

and destructivity, over which the feedback controller can be optimized. The noise

action is then repeated on the same CSS, and it is demonstrated how the state

can be preserved by feedback over time.

In Section 4.3.3, the noise model is extended to arbitrary angles in a given

interval, which makes it more similar to a realistic disturbance. A short theoretical

treatment in the weak measurement regime discusses the optimization of the

feedback controller. After this, its ability to protect the coherence of a CSS

is experimentally demonstrated. We discuss then in Section 4.3.3.3 in which

scenarios the feedback scheme could be directly useful to increase the sensitivity

of an atomic interferometer.

The work in this chapter shows that for particular quantum systems and noise

models, a classical feedback approach can be efficient to protect a quantum system,

in contrast to the case of a single qubit as in [Brańczyk 07]. This is the basis of the

work in Chapter 5, where instead on performing feedback on the quantum system

we perform feedback on its environment in order to prolong the coherence lifetime

in an atomic clock.

4.2. General Description of the Control Problem

4.2.1. Decoherence by Collective Noise

We investigate noise which randomly rotates a collective spin around the Bloch

sphere. At least one of the two rotation parameters, rotation axis or rotation angle,

is random. Such noise creates a statistical mixture from a pure state, and the state

decoheres. It transforms an initially pure CSS into a probabilistic mixture of CSSs

and the output has to be described as a density matrix. We assume that the

noise acts instantaneously and write the corresponding rotations as a set of Kraus

operators of the form

N (α, γ) =
√
p (α, γ)Rx (α)Rz (γ) , (4.1)

where the rotation operators from Section 1.2.4 were taken, with −π/2 ≤ α ≤
+π/2 and −π ≤ γ ≤ +π. We use here that the result of any rotation of a CSS

on the Bloch sphere can be described with only two orthogonal rotations. The

probability to perform such a rotation is then p(α, γ). The Kraus map of the
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decoherence channel is

E(ρ) =
∫ +π/2

−π/2

∫ +π

−π

N (α, γ) ρN † (α, γ) dα dγ . (4.2)

As discussed in the introduction, collective noise of this form can describe different

decoherence sources in atomic interferometers. Most notably it can be used to

describe the decoherence by the frequency noise of the LO in an atomic clock.

Other decoherence sources could be intensity noise of the LO during the coherent

manipulations on the Bloch sphere, or as well stray magnetic and microwave fields.

The noise can be made time dependent by writing p(α, γ) as a function of time.

4.2.2. Feedback Control

We design now a general form of a feedback controller map as it might be used

in an atomic interferometer. We want to describe a simple sequence, where an

initially pure atomic state experiences collective noise, several measurements are

taken, and a single feedback step is performed.

We assume that during the measurements that there are no state rotations. Only

measurements the z-axis of the Bloch sphere with the measurement operator Mz

can be performed directly in the experiment. Nevertheless, measurements along

the x- and y-axis can be obtained by mapping the respective direction onto the

z-axis, and turning the state back after the measurement. This is described with

the generalized measurement operators

My = Rx (π/2)MzRx (−π/2) , Mx = Rx (π/2)MzRx (−π/2) . (4.3)

The measurement operators Mx, My and Mz do not commute and their order and

measurement strength has to be determined prior to the experiment. If we further

assume that all measurements are taken in a row, then the full measurement oper-

ator can be written as Mx,y,z ≡MxMyMz. The conditional probability to measure

the results m = (x, y, z) given a noise with angles α and γ is p(m|α, γ). The feed-

back is performed with the rotations C (α′, γ′) = Rx (α
′)Rz (γ

′). The dependence

of the correction angles on the measurement results is called the controller law

(e.g. α′ = α′(x, y, z)), and has to be found and optimized with respect to a specific
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feedback goal. We can write the full controller map including the noise action as

C(ρ) =
+π/2∫

−π/2

dα

+π∫
−π

dγ

+∞∫
−∞

dm p(m|α, γ)C (α′, γ′)MmN (α, γ)

×ρN † (α, γ)M †
mC

† (α′, γ′) . (4.4)

The feedback controller is in general a complex map which transforms one den-

sity matrix to another one. In Equation (4.4), several assumptions have been

made such as successive noise and measurement operations, which are not fulfilled

in most realistic situations. Nevertheless, the goal of this chapter is to obtain

a simple set of easily comprehensible and testable models. This will be used to

highlight the experimental and theoretical challenges for the active state control

in an atomic interferometer, and point out the directions for further study. Note

that dissipative processes, as for example the simple state re-preparation by opti-

cal pumping, are not considered in the feedback action in Equation (4.4), since in

general the phase information in an atomic interferometer shall be preserved.

4.2.3. Feedback Efficiency

We set the feedback goal to recover the same state as before the noise action. A

feedback controller can be optimized with respect to several parameters, and its

exact form will therefore depend on the choice of the feedback criterion. We choose

here to analyze the feedback efficiency via the fidelity, the von Neumann entropy

and the coherence which are defined below.

Fidelity. The fidelity is defined as the projection of the output state ρout on

the input one |ψ0⟩, F (ρout, |ψ0⟩) ≡ ⟨ψ0| ρout |ψ0⟩. The feedback controller is

efficient if the output state is closer to the input state than without feedback

action. The fidelity is a commonly used parameter in quantum information

science to characterize the performance of state operations.

Von Neumann entropy. The von Neumann entropy of a system with density

operator ρ is S(ρ) ≡ −Tr (ρ log2 ρ). It is both used in quantum information

to characterize the overall information content of a system and in general

in quantum statistical mechanics. Similarly as in classical mechanics, the

feedback controller is efficient if it reduces the entropy of the system.

Coherence. The coherence is defined as the norm of the mean Bloch vector
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normalized to its maximal possible value: η(ρ) ≡ ∥⟨J⟩∥ /J , where ⟨J⟩ =

(⟨Jx⟩ , ⟨Jy⟩ , ⟨Jz⟩) and ⟨Jk⟩ = Tr (Jkρ). Coherence is an essential feature of

quantum systems and the performance of an atomic interferometer is directly

proportional to the coherence of the atomic system, since a higher coherence

implies a higher interferometric contrast. A feedback controller is therefore

efficient if it increases the coherence of the atomic system.

In Section 4.3.2.1, the quantities above are used for a theoretical evaluation of

the feedback control of collective spin states. The only parameter used for the

experimental part will be the state coherence, because it is the one which can be

most easily accessed experimentally.

4.3. Experimental Implementation

4.3.1. Experimental Setup

The experimental setup is updated with respect to the one in the previous chapter

by the addition of a phase shifter on the LO to be able to rotate the atomic

state in any direction around the x- and y-axis of the Bloch sphere, a quantum

random number generator (QRNG) to set the random parameters of the noise,

and a micro-controller to calculate and send the feedback signal. The complete

experimental setup is shown in Figure 4.1.

The commercial QRNG (Quantis, from Id-Quantique) employs single photons

on a 50/50 beam splitter and two photodiodes which detects transmission

“1” or reflection “0” events. The random bits are sent with a bit rate of 4

Mbits/sec together with a clock counter. A single random bit is used to set

the rotation direction, whereas N bits are combined to set the rotation angle.

The phase shifter for the state rotations was originally designed for Quadrature

Phase-Shift Keying (QPSK), which is a digital modulation technique used for

data transfer, and which shifts the phase of a carrier wave to 4 different possible

phase positions. A QPSK phase shifter at 165 MHz (AD8345, from Analog De-

vices) was soldered on a homemade electronic board and connected to the output

from the RF generator before the mixing with the 7 GHz from the frequency chain.

As the feedback controller serves a micro-controller unit (MCU, ADuC814,

from Analog Devices). It was chosen because of its on-board 12 bit analog-to-

digital (ADC) and digital-to-analog convertors (DAC). Nevertheless, only integer
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Figure 4.1.: Experimental setup. A FPGA (field-programmable gate array) card con-
trols the amplitude and phase of microwave radiation shined onto the
atoms, which is chosen from the input from a quantum random number
generator (QRNG). The atomic state is measured with the nondestruc-
tive detection system, the result is analogically integrated and digitized
with an analog-to-digital convertor (ADC), and sent to a micro-controller
unit (MCU). Feedback is then performed with microwave pulses with a
controlled phase.

operations with positive numbers could be directly programmed on the MCU,

and the additional constraint of a low calculation speed of the micro-controller

made the experimental work unnecessarily difficult. We therefore recommend for

future feedback experiments in atom interferometry to use controllers which have

a better performance and are more versatile, for example FPGAs equipped with

external ADCs/DACs.

For the experimental results in this chapter, the beam size for the nondestructive

measurements is 245 µm. The other parameters are the ones from Section 3.4.2,

with the carrier locked at 3.291 GHz, a modulation frequency of 3.4213 GHz and

a modulation depth of 5%.
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4.3.2. Study of Binary Collective Noise

4.3.2.1. Theoretical Description

We consider at the beginning the decoherence by a simple noise model, a random

rotation of the collective state around a fixed axis and a fixed angle, but whose

rotation direction (up/down) is unknown. This represents both experimentally

and theoretically an easy configuration, and lays the basis for the study of

more complex situations. As seen in Figure 4.2 in the Bloch sphere picture, a

superposition state is either rotated up or down, weakly measured, and finally

rotated back to the initial state if the state was correctly measured. We study

at first theoretically the efficiency limits of this process and then proceed to the

experimental demonstration.

Figure 4.2.: Bloch sphere description of the feedback problem with binary collective
noise. A CSS decoheres by binary collective noise and the feedback con-
troller recovers the initial state.

The decoherence ρ 7→ Eα (ρ) by a binary random collective rotation of an angle

α around the x-axis of the Bloch sphere is described by

Eα (ρ) =
1

2
Rx (α) ρR

†
x (α) +

1

2
Rx (−α) ρR†

x (−α) . (4.5)

If the noise acts on an initial CSS |ψ0⟩ ≡ |π/2⟩, the state will decohere into a

statistical mixture of the states |π/2 + α⟩ and |π/2− α⟩. The density operator

after the noise action is therefore

Eα (ρ0) =
1

2
ρ
(π
2
+ α

)
+

1

2
ρ
(π
2
− α

)
, (4.6)
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where ρ0 ≡ |ψ0⟩ ⟨ψ0| and ρ (θ) ≡ |θ⟩ ⟨θ|.

For the feedback controller, it suffices to determine the hemisphere in which

the CSS lies and to apply a rotation in the opposite direction. If the rotation

is considered perfect, the limit for the feedback efficiency is then set by the

properties of the measurement. A low measurement precision implies control

errors, over which the state could be even further destroyed. On the other

hand, the measurements can also directly destroy the atomic state, either by

incoherent processes like spontaneous emission, or by (partial) projection. In

the following analysis, we assume that spontaneous emission and dephasing are

negligibly low. The feedback efficiency is then governed by a trade-off from the

measurement precision to avoid both control errors and the projection of the

state. The different feedback efficiency criteria from Section 4.2.3 are applied to

this scenario to illustrate how the measurement back-action will ultimately limit

the performance of the feedback controller.

The Gaussian measurement operator on the z-axis from Equation (3.6) is

Mm0 =
(
2πσ2

det

)−1/4
e
− 1

4σ2
det

(Jz−m0)
2

, (4.7)

where σdet is the measurement uncertainty expressed in the angular momentum

basis, and m0 is the measurement result. The probability for the measurement

result m0 is given by

p (m0|θ, φ) = ⟨θ, φ|M †
m0
Mm0 |θ, φ⟩ (4.8)

=
1√
2π

ξθ
σdet

exp

[
−ξ

2
θ (m0 − J cos θ)2

2σ2
det

]
. (4.9)

As defined in Chapter 1, κ2 = σ2
J/σ

2
det is the squared measurement strength and

ξ2θ = 1/
(
1 + κ2 sin2 θ

)
is the squared squeezing factor. The probability to deter-

mine the right hemisphere is then the integral of the probability of all measurement

results m0 which have the same sign as the mean spin vector,

ps =

∫ ∞

0

p (m0| − α) dm0 (4.10)

=
1

2

[
1 + erf

(√
Jξ2π/2−ακ

2 sinα
)]
. (4.11)
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According to the measurement result, the feedback controller rotates the state up

or down. The full feedback controller action is described by the map

Cα (ρ) =
1

2

∫ 0

−∞
dm0

{
p (m0|+ α)Rx (−α)Mm0Rx (+α) ρRx (+α)

†M †
m0
R†

x (−α)

+p (m0| − α)Rx (−α)Mm0Rx (−α) ρR†
x (−α)M †

m0
R†

x (−α)
}

+
1

2

∫ ∞

0

dm0

{
p (m0| − α)Rx (α)Mm0Rx (−α) ρR†

x (−α)M †
m0
R†

x (+α)

+p (m0|+ α)Rx (+α)Mm0Rx (+α) ρR
†
x (+α)M

†
m0
R†

x (+α)
}

(4.12)

In the weak measurement limit, analytical expressions for the feedback efficiency

can be obtained. With Equation (4.11) and assuming a negligible projectivity

(Mm0 ∼ 1), the controller map becomes

Cα (ρ) ∼ psρ+
1− ps

2

[
Rx (2α) ρR

†
x (2α) +Rx (−2α) ρR†

x (−2α)
]
. (4.13)

In other words, the feedback controller recovers the initial state with a probability

ps or doubles the initial angle θ with a probability 1-ps. The controller map can be

inserted into the definitions of the von Neumann entropy, fidelity and coherence

from Section 4.2.3 to evaluate the efficiency of the controller. The results for

the different parameters are summarized in Table 4.1. The full derivation of the

expressions in Table 4.1 can be found in Appendix E.

|ψ0⟩ Eα (ρ0) Cα (ρ0)

Fidelity 1 e−2Jα2
ps + (1− ps) e

−2Jα2

Entropy 0 1 −ps log2 ps + (1− ps) [1− log2 (1− ps)]
Coherence 1 |cosα| ps + (1− ps) cos 2α

Table 4.1.: Coherence, entropy and fidelity for a CSS after the noise action (Eα (ρ0))
and after the feedback (ρout = Cα (ρ0)) in the weak measurement regime
and assuming no other decoherence sources than the collective noise.

Without any other decoherence sources than the collective noise, the different

feedback efficiency criteria only depend on the success probability ps. The evolution
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Chapter 4. Feedback Control of Collective Spin States

of the fidelity, entropy and coherence is illustrated in Figure 4.3 for a fixed noise

angle of α=π
4
.
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Figure 4.3.: Coherence, von Neumann entropy and fidelity after the feedback versus
the success probability for a noise angle of α = π/4 and in the limit of
a large atom number (Nat → ∞), i.e. always in the weak measurement
regime. The dotted lines are the values after the noise but without feed-
back and are therefore the limit above which the controller is efficient.

For the specific noise and feedback controller model, the fidelity always

increases and approaches a value of one for ps → 1 because the initial state is

fully recovered. Similarly, for ps → 1, the entropy approaches 0 and the coherence

1 as expected for a pure state. In contrast, for too low values of ps, the feedback

controller decreases the coherence of the state, and increases the entropy.

To compare the different parameters, we can define the critical success proba-

bilities p̄s
(e)(α) (entropy),p̄s

(f)(α) (fidelity) and p̄s
(c)(α) (coherence), above which

the feedback controller is efficient for the corresponding quantities. For the fidelity

criterion, p̄
(f)
s = 0 and the feedback controller is always efficient, because it suffices

that only sometimes the initial state is recovered. Also, the critical success proba-

bility for the entropy is independent of the noise angle α with a value p̄
(e)
s ∼ 0.77.

The critical success probability for the coherence with π/2 ≤ α ≤ π/2 is

p̄(c)s (α) =
cosα− cos 2α

2 sin2 α
. (4.14)

For α = π/2, p̄
(c)
s = 1/2, and it increases to p̄

(c)
s = 3/4 when α = 0. The

feedback controller is therefore efficient in different parameter regimes with

p̄
(f)
s < p̄

(c)
s (α) < p̄

(e)
s and the entropy efficiency criterion is the hardest to fulfill.
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4.3 Experimental Implementation

The above results are only valid for no decoherence by the state detection and

negligible measurement backaction. For a finite number of particles, the latter

condition cannot be fulfilled for all values of the success probability ps. Instead of

the success probability ps, the measurement strength κ = σJ

σdet
becomes then the

critical parameter, which defines both the success probability via Equation (4.11)

and the projectivity of the measurements. Since the measurement modifies the

state as described in Chapter 1, it can be expected that the feedback efficiency

criteria reaches an optimum for values of κ < ∞ and therefore for success

probabilities which are smaller than one.

Instead of attempting an analytical solutions, a Monte-Carlo simulation is

used to study the controller action for a fixed number of particles Nat = 100,

and two different noise angles α = π
4
and α = π

8
. The simulation starts by

preparing an initial |ψ0⟩ = |π/2⟩, which randomly experiences a rotation Rx (α) or

Rx (−α) calculated from Equation (1.26) for collective rotations. The probability

distribution for the measurement outcome m0 is calculated from Equation (4.9)

and a random value from the distribution is drawn. The measurement operator

from Equation (4.7) is then applied to determine the state after the measurement,

and finally from the sign of m0 the direction for the correction by the feedback

controller is chosen to be up or down.

In Figure 4.4, examples for one feedback cycle are shown for α = π
4
and different

measurement strengths. For low measurement strengths (e.g. κ=10−3), the

wavefunction always stays approximately Gaussian but the probability of a wrong

feedback correction is close to 50% and the state can be rotated to the poles of the

Bloch sphere leading to a delta-Dirac shaped wavefunction. For high measurement

strengths (e.g. κ=50), the state is wrapped by the measurement backaction in a

Banana-like shape around the Bloch sphere as expected for squeezed spin states

(SSS). The feedback controller almost always applies the right counter rotation but

the rotation creates a non-Gaussian wavefunction from the squeezed spin state.

Since the length of the mean spin vector is reduced for a SSS with respect to a

CSS, the coherence of the state is reduced. Furthermore, but not contained in the

coherence criterion, the uncertainty along the z-axis is increased with respect to a

CSS, which would additionally decrease the sensitivity in an atomic interferometer.

The simulation is repeated for 1000 trajectories for different measurements

strengths. The coherence is calculated from the mean spin length averaged over all
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Figure 4.4.: Example distributions of the atomic wavefunction in the basis {|m⟩} for
different values of κ2 with α = π/4 and Nat = 100. One sees the initial
CSS (black), the state after the noise action (red), after the measurement
(blue) and after the correction (green). (a) The measurement does not
modify the state, but the feedback controller rotates the state by mistake
on the south-pole of the Bloch sphere. (b) The state is projected only
very weakly and rotated back. (c) The state is partially projected and
rotated back. (d) The state is strongly projected and is spread over the
z-axis of the Bloch sphere after the feedback.

trajectories and the fidelity is the average from the projection of each final state

on the initial CSS. The von Neumann entropy is S = −Tr(ρout log2 ρout) with

ρout =
1

Ntraj

Ntraj∑
k=1

|ψout(k)⟩ ⟨ψout(k)| , (4.15)

where Ntraj is the number of simulated trajectories and |ψout(k)⟩ is the output

state for each trajectory. The results for the different feedback efficiency criteria

for measurement strengths from κ=10−5 to κ=102 are shown in Figure 4.5 for an

angle of α = π
4
(black squares) and α = π

8
(blue triangles) and Nat = 100.
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Figure 4.5.: Success probability, coherence, entropy and the fidelity after the feedback
as a function of the squared measurement strength κ2 for α = π/4 (black
squares) and α = π/8 (blue triangles). In the Monte-Carlo simulation
Nat = 100 atoms were used and the results are the average from 1000
trajectories. The solid lines are the analytical results from the weak
measurement limit and are therefore not valid outside (κ2 > 1).

In Figure 4.5, the analytical solution from the weak measurement regime

is drawn in solid black and blue lines. Instead of increasing efficiencies with

higher measurement strengths and therefore higher success probabilities, optima

are reached for a finite measurement strengths. Furthermore, the optima for

the different parameters are close to each other in the region of 1 < κ2 < 10,

and therefore in the partially projective regime. Only the success probability

follows the analytical solution in all the measurement regimes, since the result is

independent of the measurement backaction. Interestingly, for our specific noise

model and feedback controller, the fidelity and entropy of the output state are
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always more favorable for a higher noise amplitude than for a smaller one (α = π
4

instead of α = π
8
), since both parameters are strongly dependent on the success

probability, which is higher for a high noise angle for the same measurement

strength.

The main result from Figure 4.5 is that even in the absence of additional de-

coherence sources related to the state measurement, the state projection prevents

for the presented feedback scheme that an initial CSS can be perfectly stabilized

against the noise from the environment. The question is if a better feedback con-

troller can at least partially overcome this limitation. A possibility could be here

to apply strategies close to weak measurement reversal methods. It could be for

example interesting to attempt a partially projective measurement of a SSS along

its elongated axis and so to “unsqueeze” it in accordance with the Schrödinger-

Robertson uncertainty relation. In this way the state could be restored close to

the initial CSS.

4.3.2.2. Experimental Results

All experimental results presented in the following are obtained in the weak mea-

surement regime, where the back-action from the measurements can be neglected.

We consider only the coherence as an efficiency criterion for the feedback controller

since the it can be easily measured experimentally. We take the concept of the

coherence measurement from optics, where the fringe contrast after an interferom-

eter corresponds to the coherence of the output state. Equivalently, we take the

atomic coherence from the fringe contrast at the end of a Ramsey interferometer.

The crucial parameter for the feedback action is the success probability. In the

weak measurement regime, Equation (4.11) becomes

ps =

∫ ∞

0

p(m0| − α) dm0 =
1

2

[
1 + erf

(
J sinα√
2σdet

)]
, (4.16)

where it is important to note that σdet is expressed in the units of the spin vari-

ables. The analytical solution for coherence in the weak measurement regime in

the previous section should be modified for the decoherence from the optical probe,

and the output coherence after the feedback action becomes

ηoutα = [ps + (1− ps) cos(2α)] e
−γNph , (4.17)
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where the atomic state decays exponentially with a decay constant γ because of

the spontaneous emission induced by Nph probe photons. Since both the decay

by spontaneous emission and the measurement uncertainty are a function of the

photon number, there will be an optimal photon number where the coherence is

maximal for a given noise angle.

We experimentally study the error-destructivity trade-off for α = π/4. We first

prepare the initial CSS | θ = π/2 ⟩ by optically pumping the atoms in | 0 ⟩ and

applying a π/2 microwave pulse of duration τπ/2 = 75.6(2) µs. The noise is sent as

a α = π/4 microwave pulse, but with a random direction, chosen with the QRNG.

The measurement contains a 1.5 µs long probe pulse with a varying photon

number. The voltage after demodulation is analogically integrated and given

to the input of the analog-to-digital convertor of the MCU. After a comparison

with the background value, obtained from the average over 16 measurements in

the previous run and saved in the MCU, the rotation direction for the feedback

is decided by the controller and a π/4 correction pulse is sent. To determine

the coherence of the atomic state at the end of the cycle, we send a second

π/2-pulse to close the Ramsey interferometer. The direction of the last π/2-pulse

is chosen alternately from run-to-run down or up to measure either the minimum

or maximum of the fringe. The atoms are then repumped into F = 2 to measure

the full atom number and the output of the Ramsey interferometer is normalized

to this value in each run to reject atom number fluctuations.

In Figure 4.6 the result of the measurement of the residual coherence as a func-

tion of the photon number per sideband is shown. The measured points (solid

squares) are obtained from 50 repetitions of the contrast measurement, and the

error bars are the standard error of the measurement. The curve is fitted from

Equation (4.17) with

ηoutπ/4 = ps e
−γNph , (4.18)

where ps is the success probability from Equation (4.16). The shape of the

coherence curve has two main contributions, one an error function from the

success probability, dominating at low photon numbers, and the second an ex-

ponential decay from spontaneous emission dominating at high photon numbers.

The weak measurements were in this experiment not limited by photon shot

noise but by technical noise, most likely due to amplitude noise of the detection

laser in the experiment. The measurement uncertainty in Equation (4.16)
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Figure 4.6.: Coherence of the atomic state after feedback as a function of the number
of photons in the optical probe. The coherence (red squares) shows a
trade-off between the information gained from the optical probe and its
destructivity. The success probability for the feedback controller to make
the right rotation is shown in blue squares and always increases with the
photon number. For low photon numbers, it overlaps with the directly
measured coherence.

is therefore inversely proportional to the photon number and the fit gives a

value of σ = 9.6(5) × 1011/Nph, consistent with the value directly measured

in Section (3.4.4). The state decay by spontaneous emission per probe photon

from the fit is γ = 7.6(4) × 10−10. From the trade-off between the decoherence

by spontaneous emission and the measurement uncertainty a maximum output

coherence of 0.993(1) is reached for 9.1× 106 photons per sideband. The feedback

scheme is efficient for a wide range of photon numbers, and exceeds the coherence

without feedback of ηπ/4 = 1/
√
2 from 2× 106 to 5× 108 photons.

To further confirm Equation 4.17, we measured the success probability ps inde-

pendently: the rotation directions set by the noise and by the feedback controller

were saved during several experimental repetitions, and ps was calculated off-line

from how often the feedback controller took the right decision. The result is shown

with blue squares in Figure 4.6 and fitted with Equation (4.16). Since ηoutπ/4 = ps
without other decoherence sources, one sees directly that the output coherence
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Figure 4.7.: Success probability versus the number of atoms for 1.4× 107 photons per
sideband and α = π/4.

fits to the simple model developed in Section 4.3.2.1 when it is multiplied with

the decoherence from spontaneous emission.

The success probability and therefore the output coherence is not only a function

of the photon number, but as well of the atom number Nat. The photon number

fixes the measurement uncertainty which has to be compared to the full scale value

of the atomic spin which is proportional to the atom number. For α = π/4, the

success probability scales from Equation (4.16) as

ps =
1

2

[
1 + erf

(
Nat

4σdet

)]
, (4.19)

which is confirmed in Figure 4.7 by scanning the success probability vs. the

number of atoms. The photon number was fixed to 2.8×107 photons per sideband.

To change the atom number, the repumper power in the MOT phase was

varied while keeping all the other experimental parameters are constant. The

measurement uncertainty obtained at this photon number is σdet = 4.9 × 104,

consistent with the result obtained in Figure 4.6.

So far, we only treated situations consisting of a single cycle of decoherence and

successive correction. It is interesting to see how a feedback controller can protect
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the coherence of an atomic state against a decoherence source over time. To design

a simple scenario of this form we iterate the cycle binary noise - measurement

- correction several times for a noise angle of α = π/4 with a repetition time of

140 µs. A direct measurement of the state coherence for each number of noise

and correction cycles would be experimentally too time consuming. We therefore

instead only record the rotation directions for 200 experimental repetitions. This

allows us to reconstruct the average population for each possible mean spin

direction for each iteration and therefore the evolution of the coherence, once the

other decoherence sources are characterized.

Figure 4.8.: State and coherence evolution with and without feedback. (a) State oc-
cupancy with feedback versus the number of cycles for the state | 0 ⟩
(solid circles), |π/2 ⟩ (open squares), |π ⟩ (open circles) and | 3π/2 ⟩ (solid
squares). (b) State occupancy without feedback correction. Inset: State
occupancy for the first 15 cycles. The solid lines with and without feed-
back are drawn from the return probabilities at each cycle. (c) State
coherence with (black line) and without (blue line) feedback. The experi-
mental points with feedback are above the black line because of a limited
statistical sample size of 200 runs.
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The population of the atomic states with feedback is shown in Figure 4.8(a).

After the feedback correction, only the states |π/2 ⟩, | 0 ⟩ , | π ⟩, and | 3π/2 ⟩ are

populated. Without any other decoherence sources, a steady state population

of the different angular positions would be expected, corresponding to the

probabilities of the return paths to each position. Nevertheless, at each cycle

ps decreases because of the decoherence from the dephasing in the dipole trap

and due to the spontaneous emission induced by the measurement probe, and

therefore the probability to return to the initial state | π/2 ⟩ is reduced for each

iteration. The solid lines are drawn taking into account the initial measurement

uncertainty and the decrease of ps for each cycle.

Without feedback, the state vector diffuses quickly around the Bloch sphere

(Figure 4.8(b)) under the action of the collective noise. For even iterations, only

the states {| 0 ⟩ , |π/2 ⟩ , |π ⟩ , | 3π/2 ⟩} are occupied and for odd iterations the states

{|π/4 ⟩ , | 3π/4 ⟩ , | 5π/4 ⟩ , | 7π/4 ⟩}. The coherence of the state with and without

feedback can be calculated from the norm of the mean spin directions multiplied

with the residual coherence after dephasing and spontaneous emission. The coher-

ence η(ρ) is calculated from the measured probability pk to occupy each angular

position,

η(ρ) =

√
(
∑

k pk sin θk)
2 + (

∑
k pk cos θk)

2 , (4.20)

which gives the mean spin length of the statistical mixture. The residual coher-

ence taking all decoherence sources into account is shown in Figure 4.8. Without

feedback, the coherence decays with ηπ/4
N = 1/2N/2 and the Gaussian decoherence

from the trap. With feedback, the coherence of the state is strongly increased and

the coherence lifetime of the state is improved by one order of magnitude. For

example for 10 iterations the coherence is increased from 0.03 to 0.77.

4.3.3. Study of Analog Collective Noise

4.3.3.1. Theoretical Description

The binary noise model in the previous section is now extended to arbitrary noise

angles, but still with a fixed rotation axis. We treat only the case where all

measurements are in the weak measurement regime as in our experimental con-

figuration, and only investigate the coherence criterion. As a decoherence model,

we set the noise angle α to be uniformly distributed in [−π/2,+π/2]. The set of
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Kraus operators related to this decoherence channel is

E (α) = Rx (α) /
√
π, −π/2 ≤ α ≤ +π/2 , (4.21)

which generates the map

E(ρ) = 1

π

∫ +π/2

−π/2

Rx (α) ρR
†
x (α) dα , (4.22)

where the prefactor arises from the completeness condition
∫ +π/2

−π/2
E (α)E† (α) =

1. As in the previous section, we choose |π/2⟩ as the initial state. After the

decoherence action from Equation (4.22), the output state is

E(|π/2⟩) = 1

π

∫ +π/2

−π/2

ρ (π/2 + α) dα , (4.23)

and the coherence of this statistical mixture is (see derivation in Appendix E)

η [E(|π/2⟩)] = 1

π

∣∣∣∣∣
∫ +π/2

−π/2

eiα dα

∣∣∣∣∣ = 2

π
≈ 0.63 . (4.24)

The controller can be described by summing over all possible noise angles α and

all possible measurement outcomes that decide the feedback action

C(ρ) =
+π/2∫

−π/2

dα

π

+∞∫
−∞

dz p (z|α)Rx (Θg(z))MzRx (α) ρR
†
x (α)M

†
zR

†
x (Θg(z)) , (4.25)

where z ≡ m0/J is the measurement output normalized to the Bloch sphere radius,

and Θg(z) is the correction angle depending on the measurement result z. The

conditional probability to measure z given that the state has been rotated by an

angle α around the x-axis is obtained from Equation (4.9),

p (z|α) = 1√
2πσ2

det

exp

[
−(z − sinα)2

2σ2
det

]
. (4.26)

The probability to have |z| > 1 is non-zero due to the measurement uncertainty,

but we cannot directly assign an angle to values outside of the Bloch sphere. A
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feedback correction strategy which takes this problem into account is

Θg(z) =


−g arcsin z for |z| ≤ 1

−gπ/2 for z > 1

+gπ/2 for z < 1

, (4.27)

where g is the feedback gain. In the case of binary noise, there was no feedback

gain because the feedback angle was preset. The feedback controller might have a

maximum efficiency for different values of the feedback gain for different feedback

strengths. Assuming that we are in the weak measurement regime with Mz ∼ 1,

the output state after feedback is

ρout =
1

π

+π/2∫
−π/2

dα

+∞∫
−∞

dz p(z|α)ρ
(π
2
+ Θg(z) + α

)
, (4.28)

with an output coherence of (see Appendix E)

ηout =

∣∣∣∣∣ 1π
∫ +π/2

−π/2

dα

∫ +∞

−∞
dz p(z|α)ei(α+Θg(z))

∣∣∣∣∣ . (4.29)

If one assumes Nat → ∞, we have (σ → 0) even though κ≪ 1 and the conditional

probability is p(z|α) = δ(z − sinα). In this case, the output coherence becomes

ηout(g) ≈
2

π

cos (πg/2)

1− g
, (4.30)

and a coherence close to unity is reached for an optimal gain of g = 1. In general,

the output coherence is from Equation 4.29 a function of the measurement

uncertainty and the coherence does usually not reach unity. In Figure 4.9(a),

the output coherence is shown as a function of the measurement uncertainty for

different gains. The feedback gain determines the maximal output coherence and

in a region close to σ = 1 a roll-off occurs and the coherence decreases rapidly

because of the random feedback controller action.

The optimal gain is not at unity for a measurement resolution larger than

zero, as shown in Figure 4.9(b). This is due to the curvature of the Bloch sphere

together with the measurement uncertainty, which causes that there is a higher

probability to estimate a too large angle than a too small one. The optimal
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Feedback gain g

Figure 4.9.: (a) Coherence after feedback vs. the measurement resolution σ for g = 1
(dark green), g = 3/4 (violet) and g = 1/2 (blue). (b) Coherence after
feedback vs. the feedback gain g for σ = 0 (dark green), σ = 1/10 (violet)
and σ = 1/3 (blue). For both graphs, the dashed line is the coherence
directly after the noise action.

feedback gain is therefore below unity. For example, if σ = 1/3, a maximum

output coherence of about 0.85 is reached for g ∼ 0.75.

A feedback strategy which is easier to implement experimentally consists in the

application of a correction rotation with an angle proportional to the measurement

output: Θg(z) = −gz, since no correction for the curvature of the Bloch sphere

has to be calculated in the feedback controller. Moreover, the saturation problem

for |z| > 1 is avoided. A comparison of this correction strategy with the previous

strategy is presented in Figure 4.10 for σ = 0.14. Interestingly, the second

strategy leads to a better result: with the previous strategy a coherence of 0.975

is recovered for an optimum gain g = 0.95, whereas it reaches 0.979 for g = 1.22

with the second strategy.

The optimal gain for the proportional strategy is larger than unity since |z| =
|sinα| ≤ |α|. Experimentally, the overall gain factors of the feedback system

might not be known. A strategy to optimize the feedback gain consists in fixing

a noise angle and maximizing the coherence of the output state by changing the

feedback gain. The angle α0 which should be chosen to optimize the gain satisfies

α0 − gz0 = 0 and since z0 = sinα0

g =
α0

sinα0

. (4.31)
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Figure 4.10.: Coherence after feedback versus the feedback gain for the two different
correction strategies for a fixed detection resolution of σ = 0.14. The
solid black line corresponds to the scheme with the correction for the
curvature of the Bloch sphere while the solid blue line corresponds to the
scheme where the correction angle is proportional to the measurement.
The pointed line is the coherence directly after the noise. Inset: zoom
at the optimum position.

For g = 1.22, we find α0 ∼ π/2.9.

4.3.3.2. Experimental Results

For the analog noise, both the noise and the feedback have to be able to take

continuous values in addition to the decision for the rotation directions. The

random noise pulse is set with a stream of bits from the QRNG, which generates

an integer number corresponding to a time in the FPGA card. The FPGA card

then sends a TTL pulse to the LO to send a microwave pulse. Similarly, for the

feedback, the MCU sends a TTL pulse to the LO and sets in addition the phase

of the LO with the QPSK phase shifter for the rotation direction. The signals

from the FPGA and MCU are combined with logical XORs before the LO.

We use 2.8 × 107 photons in the probe pulse, and the length of the microwave

feedback pulses is proportional to Jz. We choose a fixed noise angle of π/3 close

to the value proposed in the theoretical part and optimize the gain factor in

the micro-controller in such a way that the length of the noise pulse and of the

feedback pulse is on average equal.
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Figure 4.11.: Angular distribution for the collective spin right after application of
the analog noise (blue circles) and after the succesive measurement and
feedback (red squares).

We measure the coherence with and without feedback directly from the fringe

contrast of a Ramsey interferometer from the average of 400 experimental

repetitions. We find without feedback a coherence of 0.63(3), consistent with

the expected value of 2/π ≈ 0.637, and with feedback 0.964(5). The feedback

therefore greatly enhances the coherence of the state, also when we extend the

noise model from Section 4.3.2 to arbitrary angles.

To see how the feedback controller corrects for the collective noise, we record

the noise and controller rotations for 5000 repetitions, and plot the angular distri-

bution with (θC) and without (θN) feedback, as presented in Figure 4.11. Without

feedback, θN is uniformly distributed over [−π/2,+π/2], whereas with feedback θC
is well described by a Gaussian distribution centered at zero and of standard de-

viation 207(10) mrad. The angular spread is twice as big as expected for 2.8× 107

probe photons (corresponding to a measurement uncertainty of 6.8%), and this was

mainly due to digitization losses by bit shifts in the micro-controller. Considering

only the spread of the spins without feedback, the coherence of the output state

would be 0.979(2), but the probe induced decoherence reduces the coherence by

another factor 0.979(1). The total residual coherence from the multiplication of
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the two factors is therefore 0.958(2), which is consistent with the directly measured

coherence of 0.964(5).

4.3.3.3. Applications

The feedback scheme demonstrated here with feedback on the atomic population

difference could be directly used to reduce the read-out noise in an atomic

interferometer. As an example, collective noise can increase the projection noise

of highly squeezed input states which can then give an even worse interferometric

performance than with a CSS. This problem was pointed out for the first time

by D. Wineland in the appendix of [Wineland 98] and treated thoroughly in

[André 04]. It corresponds to the observation made in Section 4.4 for κ ≫ 1,

that after unitary rotations the entangled state has a larger spread on the z-axis,

opposed to the initial motivation for spin squeezing. Nevertheless, as only pro-

posed recently in [Borregaard 13b], a lower uncertainty on z-axis can be recovered

by turning the state back on the equator by a weak measurement and feedback.

The scheme is depicted in Figure 4.12, which is a higher quality picture from

[Borregaard 13b] and was kindly provided by J. Borregaard. With this scheme,

the decoherence by the collective noise can be reversed, and near-Heisenberg

scaling of the interferometer sensitivity can be reached.

The feedback scheme could be also used if the measurement uncertainty is above

projection noise. The angular sensitivity from the Jz measurement then decreases

as the spin vector gets closer to the poles of the Bloch sphere, and so the read-

out noise increases. As before, it can be therefore beneficial to apply a weak

measurement, rotate the state back on the equator of the Bloch sphere, and then

apply the final measurement. One of the crucial points in the feedback method

here, the saving of the correction angle for later reconstruction of the total angle,

will also be used in our feedback control protocol to increase the interrogation time

in an atomic clock in the next chapter.
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Chapter 4. Feedback Control of Collective Spin States

Figure 4.12.: Feedback scheme to reduce the read-out noise in an atomic interfer-
ometer, taken from [Borregaard 13b]. The position of the spin state is
weakly read out and the state is turned back on the equator of the Bloch
sphere. The total angle is then the finally measured angle minus the
correction angle from the feedback controller.

120



5. Atomic Phase Lock

5.1. Introduction

In this chapter, we investigate how the tools introduced in this thesis can be

used to improve atomic interferometers. As a model system, we consider an

atomic clock. Atomic clocks are frequency locks, where the frequency of an

electromagnetic wave (the local oscillator LO) is stabilized on the frequency of

an atomic transition. Atomic frequency references offer the advantage of being

universally comparable since the transition frequencies of the same atomic species

are always and everywhere equal (as far as we know). Furthermore, atomic

samples reach unprecedented high Q factors1, since they can be trapped in

vacuum and cooled to ultra-low temperatures. The stabilization of the LO on

the atomic resonance is typically performed by either maximizing the contrast

of Rabi oscillations or with the Ramsey interrogation scheme. The translation

to the time domain is then obtained with a counter which counts the number of

oscillation periods. We will focus here on the Ramsey interrogation scheme which

has a higher sensitivity to phase drifts.

A main function of atomic clocks is the definition of time. The second is at the

moment defined via the transition frequency of 133Cs [Parker 10] and the redefi-

nition of the second with optical lattice clocks is under discussion [Le Targat 13].

Recently, atomic clocks have reached a 10−18 precision [Hinkley 13, Bloom 13],

which makes them susceptible to the gravitational red shift at the 1 cm level.

These clocks have the potential to revolutionize geodesy applications with the

mapping of gravitational fields at the highest precision. Furthermore, atomic

clocks are at the forefront of fundamental physics tests, the comparison of clocks

with different atomic species tests whether fundamental constants are changing

over time [Marion 03]. So far, any improvement in the performance of atomic

clocks has lead to unpredicted technological applications and is a backbone of

1The Q factor is defined as the ratio of the resonator frequency, for us ωLO, to its linewidth
∆ωLO.
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technological advance.

An atomic clock relies on the repeated comparison of the atomic frequency and

the LO frequency. The longer the two frequencies can be compared, the more

precise the frequency error can be estimated and feedback on the LO can be

performed. In the Ramsey scheme, the atoms are in a superposition state during

the interrogation, and the time for the comparison is limited by its coherence

lifetime. In many atomic clocks, the frequency drift of the LO is the main

decoherence source, and limits the interrogation time. In this chapter, we develop

a feedback protocol to remove the decoherence caused by the LO and to increase

the interrogation time in an atomic clock.

In Section 5.2, the standard Ramsey scheme for a conventional atomic clock is

recalled. The detection noise and Dick limit are then introduced as the stability

limits. In Section 5.3, we introduce the idea of the atomic phase lock. The proposal

to lock the LO on the phase of the atomic ensemble came from two Japanese

researchers, N. Shiga and M. Takeuchi, and is presented here. A drawback in

their feedback scheme led to our formulation of a new protocol which is presented

thereafter. We stabilize then the phase of the classical LO on the phase of a

collective superposition state, and show the potential of the technique to improve

atomic clocks (Section 5.4). Finally, we discuss then possible variation of our

feedback scheme (Section 5.5) and the application of the atomic phase lock to

inertial sensors (Section 5.7).

5.2. Atomic Clock Operated with the Standard Ramsey

Protocol

5.2.1. Operation Principle

An atomic clock can be operated with a Ramsey interferometer. The pulse se-

quence is shown in Figure 5.1. At first, a superposition state is prepared with a

π/2-pulse around the y-axis of the Bloch sphere. During a free interrogation time

T , the relative phase between the atoms and the LO evolves because of the LO

frequency noise. The phase is read out with another π/2-pulse, where the rotation

is chosen to be around the x-axis to increase the sensitivity in case the detection is

not at the atomic shot noise limit. From the phase drift during the interrogation

time T , a frequency error is deduced and feedback on the frequency of the LO is
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performed. The repetition of the basic feedback cycle ensures that the LO is kept

frequency locked on the transition frequency of the atoms.

Figure 5.1.: Standard Ramsey protocol for an atomic clock. The last π/2-pulse is
applied around the x-axis of the Bloch sphere such that the output state
is closer to the equator of the Bloch sphere.

5.2.2. Stability Limits

The performance of atomic clocks is characterized in terms of their accuracy and

stability. Accuracy can be understood as a systematic error between the LO and

the bare atomic frequency. Stability refers to the fluctuations of the LO frequency

in time. It defines how much time error an atomic clock would accumulate over

a given period of time if it is referenced to itself. The most accurate and stable

atomic clock, at the time of writing, is a strontium optical lattice clock with a value

at the 10−18 level for both parameters [Bloom 13]. An atomic clock can never be

more accurate than it is stable, and we will focus in this chapter on the stability

of atomic clocks.

5.2.2.1. Allan deviation

The difficulty of determining the stability of an atomic clock lies typically in the

problem that no absolute reference of higher stability is available. D. W. Allan

therefore introduced the concept of the so called Allan deviation [Allan 66], where

the frequency of the clock oscillator is compared to itself after a time delay.

The concept of the Allan deviation can be most easily understood by considering

the fractional frequency error y = ∆fLO

fLO
of a clock oscillator as shown in Figure 5.2.

The Allan deviation is a function of an averaging time τ in which a frequency error

is determined. It is calculated by taking the means yn,yn+1 of y in two subsequent

intervals n of length τ and subtracting the results to ∆yn = yn+1 − yn. The
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Figure 5.2.: Variables for the calculation of the Allan deviation. In gray the evolution
of the fractional frequency error y over time is shown, which is char-
acterized with the mean fractional frequency errors yn and yn+1 for an
integration time τ .

procedure is repeated for all neighboring intervals τ and the standard deviation

for all ∆yn is taken

σy =
1√
2

√⟨
(yn+1 − yn)

2⟩ . (5.1)

The factor 1√
2
arises from the comparison with an oscillator with white frequency

noise where the subtraction of two random variables yn+1, yn would overestimate

the variance by a factor two. If only the time error x(t) is given then yn is calculated

by

yn =
xn+1 − xn

τ
. (5.2)

In other words, for a time sequence x(t) the elements yn are the slope of x(t) in

an interval τ .

5.2.2.2. Detection Noise Limit

In principle, any feedback control system can suppress the noise of a system until a

white noise level is reached. In a conventional atomic clock, where the frequency of

a LO is stabilized on an atomic frequency reference, this white noise limit is white

frequency noise. There are no frequency correlations in time, and the feedback
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controller cannot decrease the noise level further. Such a white frequency noise

level appears in atomic clocks with the (Gaussian) uncertainty in the final state

readout. The uncertainty can be dominated by the detection system itself, for

example by photon shot noise (κ = σJ

σdet
≪ 1), or by the atomic projection noise

(κ ≫ 1). It leads to the addition of a white noise level by the feedback on the

frequency. The detection noise limit can be expressed as

σy,det =
1

ωLO

1

SNR

1

T

√
TC
τ
, (5.3)

where SNR is the signal-to-noise ratio for each measurement of the relative

phase, ωLO the frequency of the LO and τ the averaging time over which the

relative frequency error was determined. T denotes the interrogation time and

TC = T + TD is the time for one clock cycle, consisting of the interrogation phase

and the dead time TD. The dead time is the interval needed to prepare a new

coherent spin state after its destruction by the optical readout.

The first terms in Equation (5.3) can be understood in terms of the frequency

noise added by the controller in each clock cycle, which is given by the product of

the frequency equivalent of the interrogation time fT = 1
T
and the measurement

uncertainty of the phase ∆ϕ = 1
SNR

. The introduced noise is then averaged down

with the square root of the number of clock cycles 1/
√
NC =

√
TC/τ . The detec-

tion noise limit is the dominating noise limit in ion clocks [Rosenband 08] and can

be as well reached in atomic fountain clocks [Santarelli 99] and in optical lattice

clocks [Takamoto 11].

5.2.3. Dick Limit

The periodic interrogation of the atomic reference can lead to a degradation of

the clock stability by frequency drifts which were undetected (for example during

a dead time) or only detected with a low sensitivity (for example during Rabi

pulses). High frequency components in the free running LO with spectral density

SLO
y are then sampled down over the action of the feedback controller as in an

aliasing effect. This effect was first theoretically described by G. J. Dick in 1987

[Dick 87] and summarized in the expression

σy,Dick =

√√√√1

τ

∞∑
n=1

g2n,1 + g2n,2
g20

SLO
y (nfc) , (5.4)
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where fc = 1/Tc and the coefficients g0,gn,1 and gn,2 are the Fourier components of

the sensitivity function g(t), with

g(t) = 2 lim
δϕ→0

δP (δϕ, t)

δϕ
, (5.5)

g0 =
2

TC

∫ TC

0

g(t)dt , (5.6)

gn,1 =
2

TC

∫ TC

0

g(t) cos (2πntfc)dt , (5.7)

gn,2 =
2

TC

∫ TC

0

g(t) sin (2πntfc)dt . (5.8)

The sensitivity function g(t) describes the sensitivity of the interferometer to an

infinitesimal phase change of the LO. It is maximal during the interrogation time

T and zero during the dead time. The sensitivity function under Ramsey interro-

gation with two π/2-pulses of time τπ/2 takes the form

g(t) =


sin

(
π
2

t
τπ/2

)
0 ≤ t ≤ τπ/2

1 τπ/2 ≤ t ≤ T + τπ/2

sin
(

π
2
(t−T )
τπ/2

)
T + τπ/2 ≤ t ≤ T + 2τπ/2

0 T + 2τπ/2 ≤ t ≤ TC

. (5.9)

It is illustrated in Figure 5.3. In the case that the LO only has white frequency

noise and τπ/2 ≪ TC , there is an analytical solution of the Dick limit [Santarelli 96,

Quessada 03],

σ2
y,Dick =

h0
τ

(
TC
T

− 1

)
=
h0
τ

TD
T

, (5.10)

where h0 is the constant (fractional) spectral density of the white noise. From

Equation (5.10), one sees that the Dick limit is decreasing with a longer interroga-

tion time. The same holds for a more realistic noise model, 1/f frequency noise,

as it is treated in Appendix F.
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Figure 5.3.: Sensitivity function for a Ramsey interferometer.

5.3. Concept of Atomic Phase Lock

5.3.1. The Proposal by N. Shiga and M. Takeuchi

The proposal to lock a LO on the phase of a collective atomic quantum state was

published in 2012 by N. Shiga and M. Takeuchi [Shiga 12]. In their paper, they

noted that although some of the most stable locks are phase locks, that an atomic

clock is a frequency lock. The question therefore arises if an atomic clock could

be improved if it would be operated as a phase lock instead.

In a phase lock, the phase of an oscillator is locked on the one of another

oscillator. The crucial point here is the stabilization on a phase reference. In

an atomic clock, one reads out the phase difference of the LO and a reference,

which is the oscillating phase of a superposition state. Nevertheless, after the

interrogation the atomic phase reference is destroyed in the read-out (usually a

fluorescence measurement). The only common property of the atomic reference

between experimental runs is therefore the atomic transition frequency. This is

the reason why an atomic clock is a frequency lock, and not a phase lock.

To operate an atomic clock as a phase lock, it would be necessary to read out the

phase between the LO and the atoms without destroying the atomic phase. Weak

measurements as described in this manuscript provide just the right tool to do so,

where the state after the measurement is practically the same as the one before.

The proposed scheme of N. Shiga and M. Takeuchi to use weak measurements in
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an atomic clock is shown in Figure 5.4.

(a) (b) (c)

(d) (e) (f)

Figure 5.4.: Atomic phase lock scheme: (a) Initial state. (b) Preparation of superpo-
sition state. (c) Free evolution. (d) Mapping on z-axis and read out with
a weak measurement. (e) Reinsertion of atomic state into interferometer.
(f) Feedback to reduce phase difference between atoms and LO.

The first four steps (a) - (d) are the same as in the standard Ramsey protocol,

with the difference that the state is read out with a weak measurement. After the

phase read out, the state is reinserted into the interferometer (e). The information

from the weak measurement is then used to perform feedback on the frequency

of the LO (f) such that after the next free evolution, the phase error is reduced.

Steps (c) to (f) are repeated. The feedback law is [Shiga 12]

ω
(N)
LO = ω

(N−1)
LO − gf

ϕ(N) − ϕ(N−1)

TFE
, (5.11)

where ω
(N)
LO is the angular frequency of the LO after feedback, and TFE is the free

evolution time. The phases ϕ(N) include the uncertainty of the weak measurement
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and ϕ(0) = 0 is set by the initialization of the state. The gain factor gf is typically

chosen to be one or slightly less.

The essential point of the atomic phase lock is that errors from the uncertainty

of the weak measurement propagate to the next cycle where they can be cor-

rected again. This can be reflected in the Allan deviation, which according to

Equation (5.1), can be written as

σy(τ) =
δϕ(τ)

ωLO τ
, (5.12)

with

δϕ(τ) =
√⟨

[ϕ(t+ τ)− ϕ(τ)]2
⟩
. (5.13)

It was assumed here that the clock is not limited by the Dick effect but by the

detection noise. Since errors from the uncertainty of the weak measurements always

propagate to the next measurements, the only overall phase error δϕ(τ) comes from

the SNRw of a single weak measurement,

δϕ(τ) =
1

SNRw

. (5.14)

The scaling of the Allan deviation is therefore

σy(τ) =
1

SNRw ωLO τ
. (5.15)

From a first view, because of the 1
τ
-scaling of the Allan deviation, the phase

lock scheme appears to be strongly superior than a conventional atomic clock for

large τ . However, the CSS can only be maintained for a restricted number of

repetitions, for practical reasons such as the destructivity or projectivity2 from

the weak measurements, dephasing of the trapped atoms, vacuum lifetime or even

the lifetime of the excited states.

When the coherence of the probed quantum state is lost, a new state has to be

prepared for which the phase is uncorrelated with the one of the previous state.

For τ > TC , the system is then equivalent again to a conventional atomic clock.

The phase lock operation corresponds then to a normal interrogation with a time

2Many weak measurements on the same state correspond to a strong projective measurement. In
our case, this can be understood from a multiplication of all Gaussian measurement functions.
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T = N TFE and the clock instability for τ > TC is

σy,det =
1

ωLO

1

SNRw

1

NTFE

√
TD +NTFE

τ
. (5.16)

The effect of the phase lock is therefore to increase the interrogation time from

T = TFE to T = N TFE.

An obvious question to raise is why one could not simply increase directly the

interrogation time instead of applying the phase lock. A problem often encountered

in trapped atomic clocks is that the LO itself limits the interrogation time as

depicted in Figure 5.5.

In a Ramsey interferometer, the phase drift during an interrogation time T can

only be determined without any ambiguity if the phase difference stays within the[
−π

2
, π
2

]
interval. If this condition is not given, any read-out result could correspond

to a minimum of two different phase drifts and the feedback controller would

introduce errors. In practice, one therefore chooses a short enough interrogation

time such that the probability that the phase drift leaves the inversion region is

negligible. If one chooses the standard deviation of the phase drift to be σϕ ≤ π
12
,

then the probability to leave the inversion region is a 6-sigma event. Because of

this constraint, we can set T = TFE in the comparison of the phase lock and a

conventional atomic clock. The atomic phase lock changes then the instability of

Figure 5.5.: Inversion problem on the Bloch sphere. When the phase drift leaves the[
−π

2 ,
π
2

]
interval it cannot be unambiguously determined anymore. The

inversion problem is the main motivation for the atomic phase lock from
a metrological perspective.
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an atomic clock by a factor

ξST =
SNR0

SNRw

1

N

√
TD +NT

TD + T
, (5.17)

where the subscript “ST” stands for Shiga-Takeuchi. From Equation (5.17), one

sees that there is a metrological gain due to a longer interrogation time, but there

is also a loss because instead of the SNR0 of the strong measurement the SNRw

of the weak measurement is used. The low SNR from the weak measurements

therefore constitutes a significant drawback in the original proposal of N. Shiga

and M. Takeuchi. If SNR0 ≫ SNRw, an atomic clock operated with atomic phase

lock might perform with this protocol even worse than an atomic clock operated

with the standard Ramsey scheme.

5.3.2. Our Feedback Protocol

We developed a different protocol for the atomic phase lock with the intention to

prolong the effective interrogation time while suffering from any disadvantage of

the lower SNRw of the weak measurement. The state rotations are the same as in

Figure 5.4. The steps in the feedback controller are:

1. Feedback on the LO phase. During the interrogation time, feedback on

the phase of the LO is applied. The control law is

ϕ
(N)
LO = ϕ

(N−1)
LO + ϕ

(N)
FB (5.18)

= ϕ
(N−1)
LO + gϕϕ

(N) , (5.19)

where we recall that ϕ(N) is the estimated phase difference between the LO

and the atoms at a cycle N and ϕ
(N)
LO is the phase of the LO only. The values

of ϕ
(N)
FB = gϕϕ

(N) are saved in the feedback controller and typically a gain

gϕ = −1 is chosen.

2. Precise final readout. At a number of phase lock cycles Nmax, no weak

measurement but a strong (possibly destructive) measurement of the phase

is performed. The phase ϕ(Nmax) of the atomic state is then determined with

the highest possible precision.

3. Feedback on the LO frequency. The result of the final precise measure-

ment and of the saved phase shifts on the LO are taken to reconstruct the
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full phase drift between the LO and the atoms in the interrogation time T .

One then performs feedback on the frequency as in a conventional atomic

clock,

ω
(NC)
LO = ω

(NC−1)
LO + ω

(NC)
FB (5.20)

= ω
(NC−1)
LO + gf

ϕ
(NC)
tot

T
, (5.21)

where

ϕ
(NC)
tot = ϕ(Nmax) −

∑
N

ϕ
(N)
FB (5.22)

= ϕ(Nmax) −
∑
N

gϕϕ
(N) . (5.23)

In addition, all phase shifts by the feedback controller are reset to zero at the

end, so that after one cycle there is no effective feedback on the LO phase

ϕ
(NC)
LO = ϕ

(0)
LO . (5.24)

A schematic representation of the feedback control scheme is given in Figure 5.6.

The important feature of the feedback controller is that the feedback actions on

the LO oscillator phase during the interrogation time are saved. They are then

Figure 5.6.: Schematic representation of the feedback protocol. The feedback con-
troller consists of two stages, one for the phase lock (N repetitions) and
one for the frequency lock (NC repetitions). The reset of the feedback on
the phase of the LO after the final measurement is not indicated.
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used with the output of the precise measurement to determine the total phase

drift. There is no drawback from the uncertainty of the weak measurements, since

any feedback errors are detected with the precise final measurement at the end.

The presented feedback control scheme therefore resolves the inversion problem

while keeping a high SNR of the final precise measurement. It is therefore equiv-

alent to a normal atomic clock where the interrogation time is prolonged. The

problem can be also seen from a perspective that the feedback controller removes

the decoherence from the LO and therefore allows a longer interrogation time.

However, since the phase drift is the signal itself, it has to be saved in the feedback

controller. The metrological gain from the feedback controller is

ξPL =
SNR0

SNRPL

1

N

√
TD +NT

TD + T
, (5.25)

where SNRPL is the SNR from the final precise measurement at the end of the

phase lock. For the potential metrological gain of the feedback controller, consider

the example of the real time observation of Rabi oscillations in Section 3.5.2.

We have seen there that as result of the decoherence induced by the probe, the

contrast is still 45% after 200 measurements. If we assume no other decoherence

sources and a ratio of initial dead time to interrogation time TD

T
= 1, we have

then from Equation (5.25) a gain of ξ−1
PL ≈ 13.4. In practice, a limitation to

reach such gains will be the vacuum lifetime of the trapped atoms. If we assume

an initial interrogation time of T = 0.5 s limited by the inversion problem, the

total interrogation time would be 100 s. Such vacuum lifetimes are typically not

reached in current setups. Nevertheless, with improved trap lifetimes, a gain of

about one magnitude with phase lock appears to be well within reach.

Our feedback scheme can be combined with squeezed input states, which

improve the SNRPL of the final measurement. This is an additional advantage

over the Shiga-Takeuchi scheme, in which squeezed input states would bring no

metrological gain. An atomic clock equipped with a nondestructive detection

system could therefore win twice, on one hand by improving the SNR, and on

the other hand by a longer interrogation time. We remark that the technical

requirements for the nondestructive measurement system for the atomic phase

lock are much lower than those for spin squeezing, which could facilitate its

implementation in existing systems.
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The above discussion about metrological gains only concerns the detection noise

limit but not the Dick limit. Intuitively, one could argue that by an improved ratio

of interrogation time to dead time, less information on the phase drift of the LO is

lost, so that the Dick limit is reduced. However, the validity of Equation (5.4) has

so far only been proved for phase drifts σϕ < 10°. This condition is not fulfilled in

the atomic phase lock, where the total phase drift could even turn several times

around the equator of the Bloch sphere. The dependence of the Dick effect as

a function of the prolongation of the effective interrogation time therefore needs

further study.

5.4. Experimental Results

5.4.1. Real Time Observation of the Phase in a Ramsey Interferometer

We work as before with the |0⟩ ≡ |F = 1,mF = 0⟩ and |1⟩ ≡ |F = 2,mF = 0⟩
clock states in 87Rb. The LO is derived from a frequency chain at 7 GHz mixed

with a RF generator at 165 MHz, which is phase controlled with a QPSK phase

shifter for the state rotations. An additional digital phase shifter, which can

introduce a 2π phase shift using a 6 bit control, is added to the setup for the

feedback on the LO phase. The length of a π/2-pulse is τπ/2 = 47 µs.

We use the probe configuration introduced in Section 3.4.3, with the carrier

locked at 3.377 GHz from the F = 1 → F ′ = 2 transition and frequency sidebands

at a modulation frequency of 3.853 GHz. The modulation depth is 14.8% and the

probe power 480 µW. The pulse length is 60 ns and the beam is matched to the

50 µm size of the atomic cloud. Only after completion of taking the experimental

data, we realized that the nondestructive measurements suffered from a loss in

SNR due to a 30 ns rise time in the response of the PD, which we cannot explain

at the moment. However, since our feedback protocol is largely independent of

the SNRw of the weak measurements, this only minimally affects the results below.

At the beginning, we do not apply feedback on the LO but only perform

steps (a) - (e) in Figure 5.4, where the steps (c)-(e) are repeated. We apply

a frequency offset of 100 Hz on the LO such that the phase between the LO

and the atoms drifts at a constant rate. The phase difference is read out after

an interrogation time of T = 1 ms by applying a π/2-pulse around the x-axis

of the Bloch sphere. To obtain a Jy measurement, the results of the weak
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Figure 5.7.: Real time observation of the relative phase between the atoms and the
LO for a frequency offset on the LO of 100 Hz.

measurements are normalized to the full scale signal when all atoms are repumped

to F = 2. The measured points for a single experimental run are shown in black

circles in Figure 5.7, and the error bars are from the SNR of the weak measurement.

At full coherence, the SNR of the weak measurements is 20. The state rotates

several times around the z-axis of the Bloch sphere resulting in a sinusoidal Jy
signal, which is fitted with a red solid line. The decay of the atomic state is due

to dephasing in the dipole trap and the destructivity of each measurement pulse,

which destroys the atomic state by 2% each time. The signal is less favorable

than the Rabi oscillations from Section 3.5.2 because of the state decay induced

by the dipole trap.

The dephasing from the dipole trap is a far stronger decoherence source than

the bare frequency noise of the LO in our experiment. The initial condition for

a metrological gain from the atomic phase lock is therefore not given, because

the interrogation time in an atomic clock would be not limited by the LO.

Dephasing is not a limitation in optical lattice clocks, because of the choice of

a “magic wavelength” of the dipole trap, where there is no differential light shift

between the clock states [Takamoto 05]. For rubidium atoms, the effect of trap

inhomogeneities can be also removed by the so called “spin-self rephasing” effect

[Deutsch 10]. In those systems, the atomic phase lock is a realistic solution to

overcome the LO noise. The purpose of our experimental work is to demonstrate
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basic operation principles, and to indicate directions which could be taken in

state-of-the-art atomic clocks. In our own experiment, we might later apply the

atomic phase lock to inertial sensors (see Section 5.7.1), where the atoms are not

trapped and dephasing is not a limitation.

5.4.2. Stabilization of LO Phase on Atomic Phase

From the measurement of Jy and the known decay factors, the phase difference

can be deduced by simply taking the arcsin. If we have more information on

the noise, for example that it is only a frequency offset, the phase can also be

reconstructed even if it leaves the
[
−π

2
, π
2

]
region. This was used in the red line in

Figure 5.8 to reconstruct the phase drift from the data in Figure 5.7. The black

circles are the deduced phase values and the error bars are obtained from the

error propagation of the uncertainty from the weak measurements.

In general, such a priori information is not available, and the phase drift cannot
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Figure 5.8.: Phase drift between LO for frequency offset of ∆f=100 Hz without (red)
and with (blue) feedback. Without feedback, the phase drift leaves the
inversion region in which without additional information the phase cannot
be unambiguously determined.
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Figure 5.9.: Phase jumps without (red) and with (blue) feedback

be reconstructed. This is the reason why the phase lock has to keep the phase

drift in the inversion region. We insert therefore the integrated signal from the

weak nondestructive measurement into the feedback controller which changes the

phase of the LO via a phase shifter. For the normalization of the nondestructive

signal with respect to the atom number, always the background and the full scale

value are taken from the previous experimental run. The feedback is proportional

to Jy, similar to that for the analog noise in the previous chapter (Section 4.3.3).

The gain value this time is set such that at 22.5° the gain is equal to one.

The results with the same noise but with feedback are shown in the blue line

in Figure 5.8. After each interrogation, feedback is performed after the state is

rotated back into the atomic interferometer. The total delay for the feedback is

approximately 150 µs depending on the calculation time of the microcontroller.

With feedback, the phase drift does not exceed the π/2 limit. The saw-tooth

form is drawn considering the delay time for the feedback and taking the slope of

the phase drift without feedback. Figure 5.8 shows that it is possible to lock the

phase of classical oscillator on the phase of a collective quantum superposition

state. It is the first demonstration that a classical object can be stabilized on a
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quantum system in a superposition state.

In Figure 5.9, we studied another noise action, where phase jumps on the LO

were applied with an additional phase shifter. Starting at 1.2 ms, the phase

jumps back and forth 1 rad every 5 ms. Figure 5.9 (top) shows the phase without

feedback and Figure 5.9 (bottom) with feedback. The experimental points (dark

circles) are reconstructed from the result of the weak measurements. The solid

lines without (red) and with (blue) feedback are drawn from the known timings

for the applied noise and the feedback on the phase. For the blue line, the value

for the phases is taken from the results of the weak measurements.

When the feedback controller is activated, the phase difference is set close to

zero after the feedback delay. The correction is not perfect because of the minimal

step size of 5.625° of the phase shifter, the uncertainty in the weak measurements

and the feedback delay. In addition to the phase reconstruction process itself,

this causes the deviation of the phase from zero after the feedback. The phase

excursions are corrected after varying delays, because the feedback controller only

acts at fixed times. The delays range here from 0.4 ms to 1 ms.

5.4.3. Full Feedback Scheme

As mentioned above, the atomic phase lock would not lead to metrological

gain for an atomic clock in our setup, because of the dephasing in the optical
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Figure 5.10.: LO overwhelmed with white frequency noise. (a) Power-spectral density
(PSD) of LO noise. (b) Phase drift in an atomic clock with interrogation
time T from LO noise.
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dipole trap. Nevertheless, we can operate an atomic clock with the atomic phase

lock in order to demonstrate its operation principle. For a proof-of-principle

demonstration, we overwhelm the frequency of our LO with white frequency noise

with a power spectral density of h = 0.0262 Hz2/Hz low pass filtered at 1.6 kHz

with 20 dB/decade (Figure 5.10(a)). The normalized power spectral density is

SLO
y = h0 = h

f2
LO

= 5.6 × 10−22 Hz−1. The filter at 1.6 kHz was applied for a

simpler analysis of the noise, it is still white and uncorrelated for our purposes

because the relevant time scale is the cycle time of the experiment of 2 s.

The white noise was generated with a signal generator. It was added to the

LO using the modulation input of the RF generator of the LO with a conversion

factor of 200 Hz/Vrms. In Figure 5.10(b), the expected phase drift from the LO

noise versus the interrogation time is shown. It was obtained from a 2 s sample

of LO noise, cut in equally spaced pieces to take the standard deviation. The

standard deviation was then multiplied by
√
2 because events for white noise

are uncorrelated, and so the total phase drift will be increased by the feedback

controller. The phase drift in Figure 5.10(b) grows with the square root of time

as expected for white noise. As an example, at 4 ms the average phase drift is 5°.

At the beginning, we run a conventional atomic clock with T = 1 ms and

TD = 1.9 s as shown in Figure 5.11 in red. To simplify the experimental

implementation, we use for the final measurement the same pulse as for the

weak measurement with 60 ns duration and a probe power of 480 µW. The

correction signal is added to the noise applied on the LO an then connected to

the modulation input of the LO. The two-sample Allan deviation was calculated

from this combined signal. The clock instability reaches a τ−1/2-scaling after a

few clock cycles consistent with the level expected from Equation (5.3) for the

detection noise limit of an atomic clock. The error bars are given by the limited

number of experimental points (we used 1000 clock cycles).

The instability of the clock3 (1.6 × 10−9 τ−1/2) is several magnitudes higher

than with state-of-the art atomic clocks, largely because of the small inter-

rogation time and the low SNR of the read-out. After the operation of a

conventional atomic clock, we activate the atomic phase lock for N = 10 cycles

(Figure 5.11, blue). The clock instability has an approximate τ−1/2-scaling as

3We follow the convention that the unit
√
s is omitted for describing the scaling of the Allan

deviation

139



Chapter 5. Atomic Phase Lock

10
-10

10
-9

1 10 100

A
lla

n
 d

e
v
ia

ti
o

n
 σ

(τ
)

averaging time τ[s]

Figure 5.11.: Allan deviation without (red squares) and with (blue circles) atomic
phase lock for N=10.

a clock operated with a normal Ramsey interferometer but at a lower level.

Overall, the instability is decreased by a value of 4.7 dB. Nevertheless, without

any additional decoherence sources, the clock instability should decrease from

Equation (5.3) for N = 10 by approximately one order of magnitude since T ≪ Tc.

To test quantitatively the behavior of the clock instability, we scan the Allan

deviation for different repetition numbers N of the phase lock cycle. In Figure 5.12,

the experimental results are shown in black circles. The points are obtained from

a fit of the Allan deviation data with σy = Aτ−1/2 for each run of the clock

with a different number of phase lock cycles. The error bars are dominated by

the fluctuations of the atom number over the time of the data acquisition. They

are underestimated since we still had residual correlations in the LO signal but

imposed σy = Aτ−1/2 for the fit. The red line is an analytical prediction for the

expected clock instability. It is calculated from the contribution of the Dick effect

and the detection noise limit via

σy =
√
σ2
y,Dick + σ2

y,det . (5.26)
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Figure 5.12.: Scaling of clock instability with number of phase lock cycles. The ex-
perimental results are shown in black circles. The dashed blue line is
the Dick limit calculated from the known LO frequency noise, and the
red line is the predicted instability from the known experimental pa-
rameters.

The contribution of the Dick effect is calculated using Equation (5.10) and

shown as a blue dashed line. The contribution from detection noise then accounts

for the remaining difference from the red curve. To calculate the SNR for the

detection noise limit in Equation (5.3), we take the initial SNR of the measurement

for a fully coherent state and correct it for the decoherence of the state. In

addition, the phase shifter for the feedback was not precisely calibrated and had

an accuracy of ±2° for each angular position, as reported in the datasheet and

confirmed experimentally. In our feedback control scheme with the reconstruction

of the phase, this has a similar effect as the uncertainty in the final phase read

out. The uncertainty from the phase shifter is therefore added in variance to the

uncertainty from the final measurement. The phase shifter for the feedback can be

a bottleneck in the implementation of the phase lock scheme in other experiments

and much attention should be dedicated to its choice and calibration.
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Without decoherence and Dick effect, the clock uncertainty would decrease as

1/N because of the long dead time. In general, depending on the initial ratio

between interrogation time and dead time, the detection noise limit scales between

1/N and 1/
√
N in this ideal case. The decoherence from the probe and the trap

damps this evolution and leads to a lower gain. With no or low decoherence,

the Dick limit would be the dominating limit in our experiment. Starting from

N = 18, the clock instability increases again because of the decay of the mean

spin vector. In other experiments, it is likely that this limit will be the vacuum

lifetime of the atoms instead of the dephasing in the trap.

Figure 5.12 shows the general potential of the atomic phase lock to improve an

atomic clock. In state-of-the art atomic clocks, the LO is usually not dominated

by white frequency noise (chosen here because it is easier to generate), but by

1/f noise. In the next step, the atomic phase lock should be implemented in an

existing clock with a long interrogation time limited by 1/f noise.

5.5. Variations of the Feedback Protocol

5.5.1. Feedback on the Atomic Phase

The feedback protocol can be also applied if the feedback is not performed on

the LO but on the atoms itself. The feedback on the atoms is similar to that

presented in Chapter 4, and the pulse sequence is shown in Figure 5.13. The

difference to the previous feedback scheme is that the spin state is not brought

close to the x-axis by feedback on the phase of the LO but by a microwave pulse

on the atoms. After the feedback, the relative phase between the LO and the

atoms is the same as in the previous scheme. Since there is no feedback on the

LO, it is the atomic phase which is changed.

The practical advantage of the protocol is that in principle no phase shifter for

the LO is needed4. Otherwise, the feedback protocol is the same as described in

the preceding section.

4The rotations around the different axis around the Bloch sphere could be also implemented by
setting a large offset on the LO for a short duration.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13.: Scheme for locking the atomic phase on the LO phase. Steps (a) to (d)
are the same as for the protocol in Section 5.3. A microwave pulse in (e)
turns the state back on the equatorial plane of the Bloch sphere. The
last rotation in (f) is used to account for errors from the uncertainty of
the weak measurement.

5.5.2. Auxiliary Atomic Ensemble

The atomic phase lock faces the same problem as in spin squeezing, the possibility

that it could introduce systematic errors (for example by the spontaneous emission

induced by the measurements). Such errors can be estimated and corrected,

but should be better avoided. A scheme which would strongly suppress possible

systematic errors is shown in Figure 5.14, and uses two atomic ensembles.

The idea is that the weak intermediate measurements are only applied on one

atomic auxiliary ensemble (Atoms 1), and the main atomic ensemble (Atoms

2) is operated as a conventional atomic clock. The main clock ensemble is not

manipulated during the phase lock stage, but its interrogation time is nevertheless

significantly increased. As before, the phase shifter should be better characterized

than the limit given by the atomic projection noise.
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Figure 5.14.: Atomic phase lock with auxiliary clock ensemble. The weak measure-
ments and intermediate state rotations are only applied on ensemble
“Atoms 1”. The main ensemble “Atoms 2” is operated with the stan-
dard Ramsey protocol, with the difference that the total phase drift
is reconstructed from the intermediate phase shifts and the final phase
measurement.

The scheme from Figure 5.14 is a possible solution for optical lattice clocks,

which are often already operated with two clock ensembles [Hinkley 13, Bloom 13].

In addition, it could also be used if the main clock (atoms 2) is not an atomic

ensemble but only a single ion, which might be advantageous to reach a better

accuracy in the clock. One could, for example, combine a mercury lattice clock

(auxiliary) with a single mercury ion (main).

5.6. Other Proposals to Increase Interrogation Time in Atomic

Clocks

In competition with the atomic phase lock, two other proposals to increase

the interrogation time in atomic clocks recently appeared. They are shortly

summarized below with a discussion of their advantages and disadvantages.

Cascaded frequency stabilization In [Borregaard 13a], it was proposed to

stabilize the LO frequency on one atomic ensemble with a maximal interrogation

time T1, and to use the stabilized LO for the interrogation of another ensemble

with a longer interrogation time T2. The procedure can be repeated with more

144



5.7 Application of Atomic Phase Lock to Other Sensors

atomic ensembles, so that the interrogation time T for the last ensemble is not

limited by the LO noise.

The advantage of the scheme is that it already works with a low number of

atoms per ensemble, down to seven atoms. The phase lock scheme requires a

higher atom number because of the condition that the mean spin direction is

preserved after the intermediate measurements. The disadvantage of the proposed

scheme is that it requires very high experimental resources. The protocol in

[Borregaard 13a] was devised for zero dead time operation, and realistically

always two ensembles are at least required then for each stabilization step. The

scheme for the cascaded frequency stabilization would need the development of

new experimental setups in which a large number of atomic ensembles can be

operated simultaneously.

Phase reconstruction with several atomic ensembles In [Rosenband 13], a

strategy very similar to the one above was proposed, in which the total phase

drift in an interrogation time T is reconstructed from the phase drifts from clocks

operating either at different frequencies or interrogation times. For the example

of different interrogation times, the idea is that the measurements on atomic

ensembles operated with an interrogation time T1 can be used to reconstruct the

number of phase wraps in an interrogation time T2 = DT1, where D is an integer

number. Again, several of those reconstruction steps can be cascaded with the

addition of more atomic ensembles.

In [Kessler 13], it has been shown that the strategy can be extended so that

also for GHZ-states a longer interrogation time can be reached. For the proposed

phase reconstruction method, the same advantages and disadvantages as in the

scheme with the cascaded frequency stabilization apply.

5.7. Application of Atomic Phase Lock to Other Sensors

The atomic phase lock scheme can be applied to any type of atomic interferometer.

In matter-wave interferometers, the atoms travel in a superposition of different

paths in real space and interfere. The requirement to apply the atomic phase

lock is that the matter-waves are periodically overlapped, such that a weak
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measurement of the phase can be performed. In the following, examples for such

schemes combined with the atomic phase lock are given.

5.7.1. Gravimeter

An atomic gravimeter is an interferometer especially designed for measuring

the gravitational acceleration g. In an atomic gravimeter, the equivalent of the

LO is the reference frame used to make the acceleration measurement. As an

example, in a Ramsey-Bordé interferometer, the mirrors for the reflection of the

Raman beams can vibrate. This leads to a loss of phase information. Similar to

the inversion problem in an atomic clock, if the phase noise becomes too large,

the output signal becomes ambiguous and the sensitivity is reduced (see e.g.

[Sorrentino 12]). This gives an effective limit for the interrogation time as in an

atomic clock.

Figure 5.15.: Raman-Bordé interferometer in bouncing configuration with atomic
phase lock. In the overlap regions weak measurements on the atomic
phase and feedback on the Raman beams is performed.

The atomic phase lock can be combined with a Ramsey-Bordé interferometer

in a bouncing configuration as shown in Figure 5.15. In this interferometer,

after the splitting of the matter-waves with a π/2-pulse, the trajectories cross

repeatedly thanks to π-pulses [Impens 06]. The beam-splitter and mirror pulses

are performed with counter-propagating beams for a stimulated Raman transitions

[Kasevich 91]. In the overlap regions, the phase could be read out with a fast

sequence of a π/2-pulse, a weak measurement (WM), and a −π/2-pulse. Feedback
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can then be applied either on the mirror for the Raman beams or preferentially on

the phase of the Raman beams. As before, a final precise measurement (PM) is

performed at the end, to precisely evaluate the phase evolution after the extended

interrogation time.

The scheme is not limited to interferometers in a levitated configuration, but

can also be used with free falling clouds as shown in Figure 5.16. The application

of the atomic phase lock requires the insertion of intermediate π-pulses to cross

the matter waves.

Figure 5.16.: Ramsey-Bordé interferometer with free falling atomic ensemble and
atomic phase lock.

5.7.2. Gyroscopes

As a final example, the atomic phase lock could be applied to a gyroscope on an

atom chip as it is currently under development [Alzar 12]. The basis of such a

gyroscope is the Sagnac effect with which rotations can be measured. As shown

in Figure 5.17, the atoms are confined in a ring potential in which they can travel

in a superposition of two paths. In the overlap region (every half-turn) a weak

measurement of the phase can be performed, and feedback on the Raman beam

splitters applied. The same rules for the reconstruction of the total phase apply

as discussed in the previous examples.
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Figure 5.17.: Gyroscope with atoms trapped in a ring potential. (a) Splitting of the
wavefunction with a beams splitter (BS). (b) Free interrogation. (c)
Weak measurement (WM). (d) Free interrogation. (e) Final precise
measurement (PM). Steps (a)-(d) can be repeated several times until
the precise final measurement (PM) is performed.

The prospective gain of the atomic phase lock for inertial sensors is even higher

than for atomic clocks, because their sensitivity scales as the square of the interro-

gation time T . A particular interest of the phase lock could be for inertial sensors

which are operated in harsh environments such as on an airplane [Geiger 11]. The

list of possible configurations in which our feedback scheme could improve atomic

interferometers is not exhaustive. The feedback protocol can be in principle ap-

plied to any type of interferometer in which the two halves of the split wavefunction

can be periodically overlapped.
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6. Conclusion

The objective of this thesis was to explore new paths for the operation of atomic

interferometers. The main result has been to stabilize atoms in a superposition

state against perturbations from the environment, and to develop strategies to

convert this to metrological gain in atomic interferometers.

During the course of this PhD work, we have introduced several new tech-

niques and ideas. One of the first results was the all-optical evaporation to

Bose-Einstein condensation in an optical cavity in a butterfly configuration.

This is an interesting solution for the all-optical condensation to quantum

degeneracy with a low optical power consumption. In further work with the

optical cavity, we adopted a new technology for the serrodyne frequency shifting

of light, and implemented it in a novel laser stabilization scheme. We showed

that our scheme performs better than a conventional scheme relying on an

AOM for several parameters like the correction bandwidth, correction range and

optical losses. Nevertheless, because of spurious frequency components in the

serrodyne frequency shifting, the laser stabilization scheme is at the moment not

suited for the absolute frequency stabilization of lasers. It is recommended for ex-

perimental situations such as ours, where mainly the intra-cavity field is of interest.

We worked in our experiment with the atomic species 87Rb and an optical

dipole trap at a telecom wavelength of 1560 nm. The strong light shift on the

D2 line was used for the trap loading with a light-shift induced dark MOT, but

it posed problems for the manipulation and measurement of the trapped atomic

ensembles. We therefore introduced a method to compensate the light shift from

the trap with a laser at a wavelength of 1529 nm, such that the differential light

shift on the D2 line is highly suppressed. We are planning to investigate if the

light-shift engineering with the 1529 nm laser could be used for more efficient

loading schemes of the dipole trap. The high density of atoms in the optical dipole

trap led to the problem of multiple scattering events in the state preparation with

optical pumping. We have shown a method to nevertheless prepare an ensemble
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with pure internal states, but with the cost that only one third of the atoms are

kept.

The experimental setup included a nondestructive detection system based on

FM spectroscopy, and we showed how to push the probe in free space close to its

performance limits. We introduced a scheme to avoid light shifts and asymmetrical

spontaneous emission, and optimized the SNR for a given destructivity. It was

demonstrated that the detection system can be used to follow Rabi-oscillations

in real time with a high precision, and that the atomic projection noise can be

resolved. The detection system cannot produce spin squeezed states because of

the mixing of the internal states by spontaneous emission and because no optical

cavity was used to increase the matter-light coupling. This is planned to be

addressed in a new generation of the detection system. Nevertheless, the detection

system with a single free space optical beam is a good option in environments

with strong vibrations where an optical cavity cannot be used.

Atomic ensembles are usually preferred to single atoms in atomic interferom-

eters because of a higher SNR in the final state read-out. There is a second,

much less explored advantage in using atomic ensembles, which is that the phase

and population difference of a collective spin state can be measured to a high

precision while only causing a small measurement back-action. We presented in

this manuscript the first steps to benefit from this property in atom interferometry.

In a first series of experiments, we prepared the atoms in a superposition

state and applied artificial noise on the ensemble. We demonstrated that

a feedback control system based on weak nondestructive measurements and

coherent microwave pulses can at least partially stabilize an atomic coherent spin

state. Different parameters to evaluate the feedback system were introduced, and

we found that the coherence of the output state is the easiest to be addressed

experimentally. We demonstrated then the protection of the coherence of an

atomic superposition state against different models of decoherence. The interest

of the introduced methods could be to evaluate the performance of a feedback

system without having a specific protocol for atom interferometry in mind, and

so as a benchmark to compare different feedback systems.

The application of active feedback control to the states in atomic inter-

ferometers is a new field, with until now only two theoretical proposals
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[Shiga 12, Borregaard 13b] and the experimental results presented in this

manuscript. The proposal in [Shiga 12] contains a protocol for the stabilization

of the phase of the LO in an atomic clock on the phase of the superposition state

in an atomic ensemble. We performed a careful analysis of the scheme, and came

to the conclusion that there is room for improvements for the long term clock

instability. This motivated us to develop a new feedback protocol, which could be

also applied to others kinds of atomic interferometers.

We experimentally read out periodically the phase difference between the LO

and the atoms in a superposition state, and applied feedback on the phase of

the LO. This showed that a classical oscillator can be stabilized on an atomic

ensemble in a superposition state. It was demonstrated that feedback on the LO

can avoid phase drifts outside the region where the phase can be unambiguously

determined. This enables a longer interrogation time in an atomic clock, which

reduces effectively the white frequency noise limit from uncorrelated phase

measurements and feedback on the LO frequency.

The main application area for the atomic phase lock is for systems where the

LO noise is the dominating decoherence source. This condition was not fulfilled in

our experiment for atomic clock operation because of the dephasing in the dipole

trap. We nevertheless implemented the full feedback protocol for demonstration

purposes, and added for this a high level of white frequency noise to the LO.

We showed that the basic principle of the full feedback scheme worked, which

is the reconstruction of the total phase drift in an interrogation time T from

the applied and measured phase shifts. The scaling of the clock instability with

the number of phase lock cycles indicates the possible gain in other interferometers.

The atomic phase lock has a similar status as spin squeezing, the basic oper-

ation principles have been demonstrated, but the application to state-of-the-art

interferometers such as clocks, gravimeters or gyroscopes remains to be shown.

The key difficulty will be to avoid systematic errors from the nondestructive

measurements and the intermediate state rotations. In our experiment, it could

be interesting to return to the initial orientation of the experiment and to

implement the cavity-aided nondestructive detection. Spin squeezing itself has

been demonstrated by several different groups, but applying it to a gravimeter

remains an interesting goal. Along the same lines, the presented feedback proto-

cols for the atomic phase lock for inertial sensors could be tested in our experiment.
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The work in this thesis has raised a new set of questions. The formulations

for general state operations and quantum measurements are contained in this

manuscript, but we addressed only a limited class of feedback scenarios. In atomic

interferometers with low particle numbers, the intermediate state measurements

will be necessarily partially projective, and more sophisticated feedback protocols

have to be designed. Another question is how an atomic interferometer with the

new feedback control methods can be optimized with respect to all available ex-

perimental resources. Also, a detailed treatment of the Dick effect in the new atom

interferometer operation schemes should be performed, in order to make reliable

predictions. The findings in this manuscript will hopefully serve as a good starting

point for studies in these directions.
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A. Weak Measurements of CSSs with Postselection

This appendix shall clarify the difference between weak measurements with

and without postselection. It should further indicate a limitation on weak

value amplification in atom interferometry. Another point is the introduction

to the interesting concept of the two-state vector formalism in quantum mechanics.

A.1. Presentation of a Simple Example

We take the simple example in Figure A.1, where a CSS is prepared along the

the x-axis on the equator of the Bloch sphere at time t1. At a time t > t1 we

perform a very weak Gaussian measurement (with an uncertainty much larger

than the wavefunction) along the z-axis. At a later time t2 > t > t1, a projective

measurement along the z-axis is performed. The experiment is repeated several

times, and binned according to the measurement results of the last projective

measurement. We assume that we only take the very rare case that the last

projective measurement found all particles projected up (this is the postselection).

t1 t t2

(a)

preselection

(b)

weak measurement

(c)

postselection

x

z

Figure A.1.: Example considered in the following calculations. (a) A CSS prepared
at time t1 along the x-axis of the Bloch sphere. (b) Weak measurement
along the z-axis of the Bloch sphere. (c) A final projective measurement
finds all spins projected up.
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Chapter A. Weak Measurements of CSSs with Postselection

What would one intuitively predict for the result of the intermediate weak

measurement? We know that the projectivity from the weak measurement is

very small and cannot project all the spins up. If we obtain the result from the

weak measurement that all spins are up, one could nevertheless even find all spins

projected down in the final projective measurement. Because the intermediate

measurements have almost no impact on the result of the final measurement, and

the state was prepared on the equator, one could therefore argue that the results

for the weak measurements will be distributed around the equator of the Bloch

sphere, independently of the result of the later projective measurement. It will

be shown below that the opposite is true. The results of the weak measurements

on the z-axis will be always distributed around the result of the later projective

measurement on the z-axis.

Predictions of the above form were at first made in the context of a time

symmetric formulation of quantum mechanics, the two-state vector formalism

(TSVF) [Aharonov 90, Aharonov 07]. In the TSVF it is postulated that there

are quantum states both travelling forward in time (the preselected states) and

backwards in time (the postselected states). The constraints both from the future

and the past quantum states decide the results of intermediate measurements.

This gives an intermediate explanation for the results of the above experiment:

because the postselected quantum state travels back in time, it imposes the

constraint that all spins are actually prepared up at time t. The expectation value

of the weak measurement along the the z-axis is therefore to find all particles up.

If at time t we would instead perform a weak measurement along the diagonal

between the x- and z-axis, we would measure a spin with a factor
√
2 longer than

the original spin. This is because the preselected state imposes a full spin along

the x-axis and the postselection a full spin along the z-axis. Weak measurements

of this kind combined with postselection are the basis of weak value amplification

schemes where systematically larger values are found for properties than they

should be allowed. The predictions of the TSVF have been experimentally verified

in a series of experiments [Ritchie 91, Hosten 08, Dixon 09]. However, the question

should be raised if the same predictions cannot be made as well with standard

quantum mechanics. It is shown below that at least for the above example with

a weak measurement on a CSS standard quantum mechanics makes the same

predictions, which requires only the right use of generalized measurement operators

and Bayesian inference. After this the calculation for the same example in the
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A.2 Calculation with Standard Quantum Mechanics

TSVF is shown.

A.2. Calculation with Standard Quantum Mechanics

We take the Equations (1.83) and (1.84) for generalized quantum measurements

from Chapter 2. The initial preselected state is |Ψin⟩ =
∣∣θ = π

2
, φ = 0

⟩
. The

probability to measure a result mw with the weak measurement is given by

p (mw) = ⟨θ, φ|M †
mw
Mmw |θ, φ⟩ (A.1)

=
1√
2π

ξ

σdet
exp

[
−ξ

2
θm

2
w

2σ2
det

]
, (A.2)

and the state after the weak measurement is

|Ψw⟩ =
(
2π

1

1 + κ2
J

)−1/4 J∑
m=−J

e
−

(
m− κ2

1+κ2
mw

)2
2 1
1+κ2

J
e−i(J+m)ϕ |J,m⟩ . (A.3)

The postselected state after the final projective measurement is |Ψf⟩ = |J,m = J⟩.
We ask at first the question about the probability to obtain the postselected state

which is directly given with

p(Ψf |mw) = |⟨J,m = J |Ψw⟩|2 . (A.4)

The multiplication of p(Ψf |mw) with p(m) gives from Bayesian inference the prob-

ability weight to have had the measurement result mw which influenced to have

the final state Ψf . After normalization of the probability distribution of the weak

measurement results from standard quantum mechanics (SQM) is

pSQM(mw|Ψf ) =
(
2πσ2

det

)−1/2
e
− 1

2σ2
det

(mw−J)2

. (A.5)

A.3. Calculation with Time Symmetric Quantum Mechanics

In the TSVF, there is a preselected state ⟨Ψin| travelling forward in time and

postselected state |Ψf⟩ travelling backwards in time. The probability to have a

result mw for the weak measurement at an intermediate time t is inferred from

the form of the measurement operator and the constraints from the past and the

future. In the case that all three are written in the same basis, this corresponds
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Chapter A. Weak Measurements of CSSs with Postselection

to multiplying the wavefunction from the past and the future, and to convolve it

with Ew = M †
mw
Mmw . In general, the probability distribution is obtained from

[Aharonov 90]

p(mw|Ψf ) =
⟨Ψin|M †

mw
Mmw |Ψf⟩

⟨Ψin|Ψf⟩
, (A.6)

which gives for our case

pTSV F (mw|Ψf ) =
(
2πσ2

det

)−1/2
e
− 1

2σ2
det

(mw−J)2

. (A.7)

We see from Equations (A.5) and (A.7) that the predictions from SQM and the

TSVF for weak measurement results are the same. Nevertheless, the calculation

for the TSVF was easier and could be done in a single line. There is no known

proof that SQM and the TSVF give in general the same predictions, but the

above results strongly suggest that this is the case for the collective spin systems

treated in this thesis.

The major drawback of weak measurements with postselection is in general the

low probability to obtain desired results for the postselection. If one would for

example like to perform a weak value amplification by a factor
√
2 on a CSS, this

would require 2Nat experimental repetitions to find the final state in which all spins

are projected up. Even if there would be a proof that weak value amplification

could lead to metrological gain for atom interferometry, the number of required

experimental cycles might be just too high for systems with high atom numbers.
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B. Level Structure of Rubidium-87
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Figure B.1.: Atomic levels on the D2-line of 87Rb, taken from [Steck 01]. Each of
the the hyperfine states splits under a magnetic field in 2F +1 magnetic
sublevels mF , which are not shown.
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C. Atomic Polarizabilities and Branching

C.1. Polarizability

The polarizability of an atomic level µ is given by [Grimm 00]

αµ =
1

~
∑
k

|⟨k |d|µ⟩|2 ωk,µ

ω2
k,µ − ω2

, (C.1)

where ω is the frequency of the light and ωk,µ are the transition frequencies. In

general, the states k, µ are each designated with atom numbers L, I, J, F , and mF

where L is the angular momentum of the outer electron, I is the nuclear atomic

momentum, J = L + S is the total electron angular momentum with S = 1/2,

and F = I + J .

We used the approach presented in [Safronova 04] for the calculation of the

polarizabilities of the 5P3/2 and 5S1/2 states from the radiation at 1550 nm and

1529 nm in Section 2.6.1. From the Wigner-Eckart theorem, the polarizability of a

state with total angular momentum Jµ from linearly polarized light can be written

as [Budker 04]

αµ = α0 + α2

3mJµ − Jµ(Jµ + 1)

Jµ(2Jµ − 1)
, (C.2)

where α0 is called the scalar polarizability and α2 is the tensor polarizability.

We assumed that the scalar polarizability is dominating, which can be written as

[Safronova 04]

α0 =
2

3(2Jµ + 1)

∑
k

d2kµωk,µ

ω2
k,µ − ω2

, (C.3)

where dkµ is a reduced dipole element and the sum is only performed over different

total angular momentum states. The relevant reduced dipole elements for our

experiment are summarized in Table C.1.

The above calculations require that the laser is far detuned from the hyperfine
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Transition dkµ (in ea0) λ (in nm)

5P3/2 → 6S1/2 6.047 1366.875
5P3/2 → 4D3/2 3.633 1529.261
5P3/2 → 4D5/2 10.899 1529.366
5S1/2 → 5P1/2 4.221 794.979
5S1/2 → 5P3/2 5.956 780.241

Table C.1.: Dipole elements of 87Rb (from [Arora 07]).

splitting of the considered states. For the calculations of the couplings and light-

shifts on the D2 line in 87Rb in Chapter 3 this condition is not given. As described

in the main text, we took here the dipole moment and relative transition strengths

S as already calculated in [Steck 01].

C.2. Branching Ratios from Spontaneous Emission

The calculation in Section 3.4.3 required the knowledge of the probability to fall

from one excited state to the different ground state levels. To calculate the branch-

ing ratio for each set of transitions (F ′,m′
F = 0) → (F = 1, 2,mf = −1, 0,+1), we

normalize the probability for each transition (the squared transition coefficients S)

by the sum of all probabilities (which is here always 1/2). The probabilities to fall

from (F ′,m′
F = 0) to the different ground state levels is listed in Table C.2.

F = 2 F = 1

mF ± 1 mF = 0 mF ± 1 mF = 0

F ′ = 3 1/5 3/5 0 0
F ′ = 2 1/4 0 1/12 1/3
F ′ = 1 1/20 1/15 5/12 0
F ′ = 0 0 0 1/3 1/3

Table C.2.: Branching ratios from (F ′,m′
F = 0) to the magnetic ground state levels

in F = 1 and F = 2

160



D. Dephasing in Dipole Trap

The dipole trap at 1560 nm causes a differential light-shift between the hyperfine

ground states of 87Rb. Atoms at different positions in the dipole trap have then

a different energy difference between the hyperfine states. This implies that after

a CSS is prepared on the equator of the Bloch sphere, the single spins dephase

with time. In an atomic clock, this dephasing can not be removed with spin echos

because this would result in the loss of phase information. The dephasing between

the spins is then an effective decoherence source.
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Figure D.1.: Measurement of the dephasing of the atomic states in the optical trap.
The measured points (black circles) are the contrast of a Ramsey inter-
ferometer as a function of the interrogation time. The data are fitted
with a Gaussian decay.

The dephasing in the dipole trap is measured with a Ramsey interferometer

sequence. We prepare a superposition state with a π/2-pulse, let the state
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Chapter D. Dephasing in Dipole Trap

evolve freely for a varying interval, and close the interferometer with another

π/2-pulse. The interferometer is read-out with our nondestructive detection

system and the result is shown in Figure D.1. The solid line is a fit with a

Gaussian decay C(τ) = exp[−1
2
( τ
τ̄
)2]. The decay was assumed to be Gaussian

because of the Gaussian thermal distribution and the Gaussian potential shape.

For a temperature of the atoms of 10 µK and 10 W of optical power at 1550 nm

in each cavity arm we obtain a decay time of τ̄ = 15 ms.

The state decay from inhomogeneous dephasing is the main decoherence source

for our experiment in clock operation. The differential light shift from the dipole

trap on the hyperfine levels could be in principle partially compensated with a

beam at 780 nm between the two hyperfine ground states [Kaplan 02] or with the

vectorial light shift from a beam with an elliptical polarization [Dudin 10]. Another

possibility would be to enter the regime of spin-self rephasing in the dipole trap

[Büning 11].
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E. State Parameters Before and After Feedback

We give here the derivation of the formulas for the coherence, von Neumann en-

tropy and fidelity as used in Table 4.1.

E.1. Coherence

We consider a CSS |θ, φ⟩ with J = Nat/2, pointing in the (θ, φ) direction. Its

expectation value is

⟨J⟩θ,φ =

 ⟨Jx⟩θ,φ
⟨Jy⟩θ,φ
⟨Jz⟩θ,φ

 = J

 − sin θ cosφ

sin θ sinφ

− cos θ

 . (E.1)

The coherence of the CSS is ∥⟨J⟩θ∥ /J = 1. An arbitrary statistical mixture of

CSSs {|θk, φk⟩} can be described by the density matrix

ρ =
∑
k

pk |θk, φk⟩ ⟨θk, φk| , (E.2)

where
∑

k pk = 1. From the linearity of the trace, we have for l = x, y, z:

⟨Jl⟩ (ρ) = Tr (Jlρ) (E.3)

=
∑
k

pkTr (Jl |θk, φk⟩ ⟨θk, φk|) (E.4)

=
∑
k

pk ⟨Jl⟩θk,φk
, (E.5)

therefore, the mean Bloch vector related to the density operator ρ is

⟨J⟩ (ρ) =
∑
k

pk ⟨J⟩θk,φk
. (E.6)
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The coherence of the mixture ρ, η(ρ) = ∥⟨J⟩ (ρ)∥ /J is then

η(ρ) =
[
(
∑

k pk sin θk cosφk)
2 + (

∑
k pk sin θk sinφk)

2

+(
∑

k pk cos θk)
2]1/2 . (E.7)

Using this relation and the expressions for the noise Eα (ρ0) (eq. (4.6)) and the

feedback controller Cα (ρ0) (eq. (4.13)), one obtains the values of the coherence

given in Table 4.1. Note that in the case φk = 0, we have the simple relation:

η(ρ) =

∣∣∣∣∣∑
k

pke
iθk

∣∣∣∣∣ . (E.8)

All these results obtained for a discrete probability distribution pk can be gen-

eralized to a continuous distribution p(θ) (−π ≤ θ ≤ π) by the replacement∑
k →

∫
dθ.

E.2. Fidelity

The fidelity with respect to an initial state |ψ0⟩ = |θ0, φ0⟩ is

F (ρ, |ψ0⟩) = ⟨ψ0| ρ |ψ0⟩ (E.9)

=
∑
k

pk |⟨θ0, φ0| θk, φk⟩|2 . (E.10)

We expand the CSS |θ, φ⟩ in the Dicke basis |J,m⟩,

|θ, φ⟩ =
J∑

m=−J

(
2J

J +m

)1/2

sinJ+m θ

2
cosJ−m θ

2
e−iφ(J+m) |J,m⟩ , (E.11)

which gives then the overlap between two CSSs

⟨θ, φ| θ′, φ′⟩ = e−iJ(φ−φ′)

[
cos

θ

2
cos

θ′

2
+ ei(φ−φ′) sin

θ

2
sin

θ′

2

]2J
. (E.12)

This can be approximated with a Gaussian distribution for a large number of atoms

(J ≫ 1) to

|⟨θ, φ| θ′, φ′⟩|2 ∼ e−
J
2 [(θ−θ′)2+ 1

2
(1−cos 2θ′)(φ−φ′)2]. (E.13)
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E.3 Von Neumann Entropy

Finally, using Equations (E.10) and (E.13), one can evaluate the fidelity of the

mixture ρ.

E.3. Von Neumann Entropy

Equation (E.13) implies that whenever the RCR angle is large enough so that the

angles between the CSSs in the statistical mixture ρ are large compared to the

atomic shot-noise,

∀k ̸= k′,


θk − θk′ ≫ 1/

√
Nat

or

φk − φk′ ≫ 1/
√
Nat

(E.14)

then the CSSs that compose the mixed state ρ =
∑

k pk |θk, φk⟩ ⟨θk, φk| are almost

orthogonal,

⟨θk, φk| θk′ , φk′⟩ ∼ δk,k′ . (E.15)

In this case, the von Neumann entropy of ρ satisfies

S(ρ) ∼ −
∑
k

pk log2 pk . (E.16)

Combining this relation and the expressions Eα (ρ0) (Equation (4.6)) and Cα (ρ0)
(Equation (4.13)), provides the values of the von Neumann entropy in Table 4.1.
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F. Dick Effect under 1/f-Noise

We discuss here the scaling of the Dick effect under 1/f -noise, as it is mentioned in

the main text. An analytical solution for the Fourier components of the sensitivity

function under Ramsey operation is given by [Santarelli 96]:

g0 =
4

TC

(
T

2
+

2τπ/2
π

)
, (F.1)

gn =

2Tc

(
4nτπ/2 cos

(
π(nT+2nτπ/2)

TC

)
+ TC sin

(
nπT
TC

))
nπ

(
T 2
C −

(
4nτπ/2

)2) . (F.2)

Furthermore, in the case of 1/f noise with a flat Allan deviation σ1/f , the spectral

noise density of the free running LO is described by

SLO
y (fc)) =

1

2 ln (2)

σ2
1/f

f
. (F.3)

Equation (5.4) becomes in this case [Dick 87]

σy,Dick =
∆f

f
=

√√√√1

τ

TC
2 ln (2)

σ2
1/f

g20

∞∑
n=1

g2n
n
. (F.4)

Equations (F.1), (F.2) and (F.4) can be used to estimate the expected Dick limit

in the clock operation with 1/f noise. In Figure F.1, the characteristic scaling

of the Dick limit as a function of the dead time is shown in blue. We assume

σ1/f = 2× 10−9, T = 1 ms and τπ/2 = 47 µs. The length of the dead time defines

the duty cycle d = TC−TD

TC
. For a comparison, the detection noise limit with

SNR = 100 and f = 6.835 GHz for the same parameters is given (red).

The Dick limit is rapidly decreasing with the duty cycle since nearly all

phase drifts are detected. The detection noise limit follows the scaling from

Equation (5.3) and reaches σy,det = 4.8 × 10−11s−1 1√
τ
at d = 1. Figure F.1
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Figure F.1.: Characteristic evolution of the Allan deviation under 1/f noise as a func-
tion of the duty cycle. In blue the Dick limit and in red the detection
noise limit. The parameters of the calculation are defined in the main
text.

demonstrates the importance of working with a low dead time in an atomic

clock. In practice, a dead time approaching zero can be achieved by alternately

interrogating two separate atomic ensembles while feedback on the same LO is

performed. With this interleaving technique the state of one atomic ensemble

is prepared, while the other is interrogated, and the contribution from the Dick

effect is highly suppressed and even removed [Biedermann 13]. Another strategy

to reduce the Dick limit, called synchronous detection, consists in the splitting of

the LO signal and the separate stabilization of the signals on one atomic ensemble

each. The frequency correction signals from each path are then subtracted and

the original frequency fluctuations of the LO are rejected [Bize 00, Takamoto 11].

The interleaving or synchronous detection techniques cannot reduce the white

noise limit from detection noise. For this reason, we focused in the analysis of the

atomic phase lock technique in Chapter 5 on the detection noise limit.
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2012.

[Vanderbruggen 13] T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, S. Bernon, A. As-

pect, A. Landragin & P. Bouyer. Feedback control of trapped co-

herent atomic ensembles. Phys. Rev. Lett., vol. 110, page 210503,

2013.

[Vijay 12] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch,

R. Naik, A. N. Korotkov & I. Siddiqi. Stabilizing Rabi oscilla-

tions in a superconducting qubit using quantum feedback. Nature,

vol. 490, no. 7418, pages 77–80, 2012.

[von Neumann 96] J. von Neumann. Mathematical foundations of quantum mechan-

ics, volume 2. Princeton university press, 1996.

[Wang 03] X. Wang & B. C. Sanders. Spin squeezing and pairwise entan-

glement for symmetric multiqubit states. Phys. Rev. A, vol. 68,

no. 1, page 012101, 2003.

[Weber 03] T. Weber, J. Herbig, M. Mark, H.-C. Naegerl & R. Grimm. Bose-

Einstein condensation of cesium. Science, vol. 299, page 232,

2003.

185



[Weihs 98] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter & A. Zeilinger.

Violation of Bell’s inequality under strict Einstein locality condi-

tions. Phys. Rev. Lett., vol. 81, no. 23, page 5039, 1998.

[Wigner 59] E. Wigner. Group theory: and its application to the quantum

mechanics of atomic spectra, volume 5. Academic Press, 1959.

[Windpassinger 08] P. J. Windpassinger, D. Oblak, P. G. Petrov, M. Kubasik,

M. Saffman, C. L. Garrido Alzar, J. Appel, J. H. Müller, N. Kjær-

gaard & E. S. Polzik. Nondestructive probing of Rabi oscillations

on the cesium clock transition near the standard quantum limit.

Phys. Rev. Lett., vol. 100, page 103601, 2008.

[Wineland 75] D. J. Wineland & H. G. Dehmelt. Proposed 1014 ∆/ laser fluores-

cence spectroscopy on Tl+ mono-ion oscillator. Bull. Am. Phys.

Soc., vol. 20, page 637, 1975.

[Wineland 78] D. J. Wineland, R. E. Drullinger & F. L. Walls. Radiation-

pressure cooling of bound resonant absorbers. Phys. Rev. Lett.,

vol. 40, pages 1639–1642, 1978.

[Wineland 92] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore &

D. J. Heinzen. Spin squeezing and reduced quantum noise in spec-

troscopy. Phys. Rev. A, vol. 46, no. 11, page R6797, 1992.

[Wineland 98] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King

& D. M. Meekhof. Experimental issues in coherent quantum-state

manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand.

Technol., vol. 103, page 259, 1998.

[Zhang 90] W.-M. Zhang, D. H. Feng & R. Gilmore. Coherent states: theory

and some applications. Rev. Mod. Phys., vol. 62, pages 867–927,

1990.

186





Abstract

In this thesis, we describe an until now unexplored approach in the operation of atomic

interferometers; the feedback control of the atomic states during their evolution.

Towards this goal, we present several novel experimental techniques, such as the

all-optical Bose-Einstein condensation of 87Rb in a cavity enhanced dipole trap,

a new laser stabilization technique based on serrodyne frequency shifting and the

development of frequency modulation spectroscopy as a minimal destructive tool for

the measurement of atomic population differences. This nondestructive detection is

combined with feedback, either directly on the atoms with microwave radiation or on

the microwave oscillator. In this way, we show that atomic quantum states can be

protected against decoherence from collective noise.

We develop dedicated feedback protocols to use this method to improve atomic

interferometers, and experimentally demonstrate one such protocol in an atomic clock.

We show that the interrogation time in atomic interferometers can be prolonged, which

holds promise for increasing the sensitivity of atomic sensors.

KEYWORDS: Atom Interferometry - Cold Atoms - Nondestructive Measurements -

Feedback Control - Optical Cavity - Laser Stabilization

Résumé

Dans cette thèse, nous décrivons une approche jusqu’à maintenant inexploré dans le

développement des interféromètres atomiques ; la rétroaction des états atomiques au

cours de leur évolution.

Le long de cet objectif, nous présentons des nouvelles techniques expérimentales, comme

la condensation de Bose-Einstein tout-optique d’atomes de 87Rb à l’aide d’une cavité

optique, une nouvelle technique de stabilisation de laser décalage de fréquence serrodyne

et le développement de la’ spectroscopie par modulation de fréquence comme un outil

non-destructif pour mesurer des différences de population atomique. Cette détection

non destructive est combinée à la rétroaction, soit directement sur les atomes avec

un rayonnement micro-onde soit sur l’oscillateur à micro-ondes. De cette manière,

nous montrons que les états quantiques atomiques peuvent être protégés contre la

décohérence d’un bruit collectif.

Grâce à cette méthode, nous développons des protocoles de rétroaction dédiés pour

améliorer les interféromètres atomiques, et démontrons expérimentalement l’un d’entre

eux dans le cas d’une horloge atomique. Nous montrons que le temps d’interrogation

dans les interféromètres atomiques peut être prolongé, ce qui est prometteur pour

augmenter la sensibilité des senseurs atomiques.

MOTS-CLÉS : Interférométrie Atomique - Atomes Froids - Mesures Non Destructifs -

Contrôle à Rétroaction - Cavité Optique - Stabilisation des Lasers


	Introduction
	Collective Spin States and Generalized Quantum Measurements
	Introduction
	Collective Spin States
	Bloch Sphere
	Coherent Spin States
	Spin Squeezed States
	Evolution under Unitary Operations

	Generalized Quantum Measurements
	Motivation
	Ideal Projective Measurement
	Generalized Measurement Operators


	Preparation of Cold Atomic Samples
	Introduction
	Vacuum System and Magneto-Optical Trap
	Cavity Enhanced Optical Dipole Trap
	Motivation for Optical Cavity
	Geometrical Description
	Optical Properties
	Laser Stabilization by Serrodyne Modulation

	Dipole Trap Loading
	AC Stark Shift
	Loading Scheme
	Atom Number and Trap Lifetime

	Evaporation and Bose-Einstein Condensation
	Motivation
	Evaporation and Condensation
	Properties of BEC
	Outlook with BEC

	Preparation of Internal States
	Cancellation of Differential Light Shift
	State Purification


	Nondestructive Detection System
	Introduction
	FM Spectroscopy
	Operation Principle
	Detection Noise
	Dispersive Probing
	Stability Against Path Length Fluctuations

	Experimental Setup
	Optical Bench
	Photodiode Characteristics

	Direct Population Measurement
	Probe Scheme
	Suppression of Probe Light Shift
	Balancing of Decoherence
	Maximization of SNR for a Given Decoherence

	FM Spectroscopy as a Calibration Tool
	Characterization of Microwave Source
	Real Time Observation of Rabi Oscillations
	Observation of Atomic Projection Noise


	Feedback Control of Collective Spin States
	Introduction
	General Description of the Control Problem
	Decoherence by Collective Noise
	Feedback Control
	Feedback Efficiency

	Experimental Implementation
	Experimental Setup
	Study of Binary Collective Noise
	Study of Analog Collective Noise


	Atomic Phase Lock
	Introduction
	Atomic Clock Operated with the Standard Ramsey Protocol
	Operation Principle
	Stability Limits
	Dick Limit

	Concept of Atomic Phase Lock
	The Proposal by N. Shiga and M. Takeuchi
	Our Feedback Protocol

	Experimental Results
	Real Time Observation of the Phase in a Ramsey Interferometer
	Stabilization of LO Phase on Atomic Phase
	Full Feedback Scheme

	Variations of the Feedback Protocol
	Feedback on the Atomic Phase
	Auxiliary Atomic Ensemble

	Other Proposals to Increase Interrogation Time in Atomic Clocks
	Application of Atomic Phase Lock to Other Sensors
	Gravimeter
	Gyroscopes


	Conclusion
	Appendix Weak Measurements of CSSs with Postselection
	Presentation of a Simple Example
	Calculation with Standard Quantum Mechanics
	Calculation with Time Symmetric Quantum Mechanics

	Appendix Level Structure of Rubidium-87
	Appendix Atomic Polarizabilities and Branching
	Polarizability
	Branching Ratios from Spontaneous Emission

	Appendix Dephasing in Dipole Trap
	Appendix State Parameters Before and After Feedback
	Coherence
	Fidelity
	Von Neumann Entropy

	Appendix Dick Effect under 1/f-Noise
	Bibliography

