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6 RESUME

Résumé. Ce travail porte sur la résolution de problémes faisant intervenir
des mouvements d’interfaces. Dans les différentes parties de cette thése, on cherche
a déterminer ces mouvements d’interfaces en résolvant des modéles approchés con-
sistant en des équations ou des systémes d’équations sur des champs. Les problémes
obtenus sont des équations paraboliques et des systémes hyperboliques.

Dans la premiére partie (chapitre 2), on étudie un modéle simplifié pour la prop-
agation d’une onde de souffle en dynamique des fluides compressibles. Ce modéle
peut s’écrire sous la forme d’un systéme hyperbolique, et on construit un algorithme
résolvant numériquement ce systéme par une méthode de type Fast-Marching. On
meéne également une étude théorique de ce systéme pour déterminer des solutions de
référence et tester la validité de I’algorithme. Dans la deuxiéme partie (chapitres 3
a 5), les équations approchées sont de type parabolique, et on cherche & mon-
trer l'existence de solutions de type régime permanent & ces équations. Dans les
chapitres 3 et 4, on étudie une équation générique en une dimension associée & des
phénomeénes de réaction-diffusion. Dans le chapitre 3, on montre ’existence de so-
lutions quasi-planes pour un terme de réaction (terme non-linéaire) assez général,
et dans le chapitre 4 on utilise ces résultats pour montrer ’existence d’ondes pul-
satoires progressives dans le cas spécifique d’une non-linéarité bistable. Le modéle
étudié dans le chapitre 5 est un modele de champ de phase approchant un mod-
éle de dynamique des dislocations dans un cristal, dans un domaine correspondant
physiquement & une source de Frank-Read.

Mots-clés : Systéme de lois de conservation, modéle GSD, méthode Fast-
Marching, probléme de Riemann, équation parabolique, équation semi-linéaire, mi-
lieu périodique, bistable, onde progressive pulsatoire.

Abstract. This work is about the resolution of problems associated with the
motion of interfaces. In each part of this thesis, the goal is to determine the motion
of interfaces by the use of approached models consisting of equations or systems
of equation on fields. The problems we get are parabolic equations and hyperbolic
systems.

In the first part (Chapter 2), we study a simplified model for the propaga-
tion of a shock wave in compressible fluid dynamics. This model can be written
as a hyperbolic system, and we construct an algorithm to solve it numerically by
a Fast-Marching like method. We also conduct a theoretical study of this system
to determine reference solutions and test the algorithm. In the second part (Chap-
ters 3 to 5), the approached models yield parabolic equations, and our goal is to
show the existence of permanent regime solutions for these equations. Chapter 3
and 4 are dedicated to the study of a generic one-dimensional equation modelling
reaction-diffusion phenomena. In Chapter 3, we show the existence of plane-like so-
lutions for a general reaction term, and in Chapter 4 we use this result to show the
existence of pulsating travelling waves in the specific case of a bistable nonlinearity.
In Chapter 5, we study a phase-field model approaching a model for the dynamics
of dislocations in a crystal, in a domain corresponding to a Frank-Read source.

Keywords : System of conservation laws, GSD model, Fast-Marching method,
Riemann problem, parabolic equation, semilinear equation, periodic medium, bistable,
pulsating travelling wave.
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Chapitre 1

Introduction

1.1 Meéthodes de propagation de front

Beaucoup de phénoménes physiques sont modélisés par des équations aux
dérivées partielles (EDP) ou des systémes d'EDP portant sur des champs
qui représentent des grandeurs physiques (on peut citer comme exemples
I’équation de la chaleur modélisant la conduction thermique dans un solide,
ou les modeéles de dynamique des fluides). Dans un certain nombre de cas,
ces champs sont définis sur des domaines qui restent inchangés au cours du
temps. D’autres classes de problémes modélisent des évolutions géométriques,
c’est le cas par exemple des problémes de mouvements d’interfaces et des
problémes a frontiére libre. Dans le premier cas, on cherche a calculer I'évo-
lution au cours du temps d’une interface pour laquelle la vitesse de déplace-
ment de chaque point peut étre une fonction de la position de l'interface,
ou encore étre la solution d’'une EDP. Dans un probléme & frontiére libre,
le domaine d’étude lui-méme dépend du temps et son bord évolue avec une
vitesse dépendant des valeurs du champ solution de I’équation & l’intérieur
du domaine. Les travaux sur ces problémes sont abondants mais leur étude
est souvent compliquée par le fait qu'un grand nombre de méthodes et de
résultats connus pour les équations portant sur des champs ne peuvent étre
utilisés pour les mouvements d’interfaces. C’est pour cette raison qu’il est
courant de chercher & transformer des équations de mouvements d’inter-
faces en équations sur des champs, souvent en considérant l'interface dont
on souhaite déterminer la dynamique comme une ligne de niveau d’un champ
pour lequel on peut écrire une EDP d’évolution. Selon les problémes étudiés,
plusieurs approches sont possibles. Dans le chapitre 2 de ma thése, consacré
a I’étude théorique et numérique d’'un modele approché pour la propagation
d’une onde de souffle, le temps d’arrivée du front en chaque point est donné
par un systéme d’EDP couplant ce temps d’arrivée et la vitesse normale du
front. Le systéme d’EDP qu’on étudie est alors stationnaire, et on utilise
la structure eikonale de 1’équation reliant les variations spatiales du temps
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d’arrivée et la vitesse pour construire un schéma numeérique nouveau. Le
systéme obtenu peut également étre réécrit sous la forme d’un systéme de
lois de conservation. De tels systémes ont été ’objet de nombreux travaux
théoriques et numériques, et cette forme suggeére en particulier de rechercher
des solutions simples du systéme en étudiant le probléme de Riemann. Les
chapitres 3, 4 et 5 font intervenir des approches similaires. Dans les deux cas
(les chapitres 3 et 4 sont consacrés a ’étude de la méme équation, le raison-
nement du chapitre 4 s’appuyant fortement sur les résultats du chapitre 3),
les mouvements d’interfaces sont modélisés par des équations paraboliques.
La premiére équation étudiée est une équation classique de type diffusion-
réaction, utilisée pour modéliser par exemple des phénomeénes de combus-
tion et de propagation de flammes. La deuxiéme équation, étudiée dans le
chapitre 5, est plus spécifique; c¢’est I’équation d’'un modele de type champ
de phases approximant un modele de dynamique des dislocations dans un
cristal. Dans ce chapitre on étudie ce modéle sur la configuration géométrique
d’une source de Frank-Read, un des principaux phénomeénes de création de
dislocations.

1.2 Calcul rapide de I’évolution d’une onde de souf-
fle avec le modéle de Whitham

Dans le chapitre 2, on s’intéresse a la propagation d’une onde de souffle
dans I'air. Ce type de phénoméne est généralement modélisé par les équa-
tions d’Euler avec fluide compressible. La résolution numérique du systéme
d’Euler est trés cotteuse en temps de calcul. L’objectif de cette partie est
d’obtenir par des calculs rapides de bonnes approximations des caractéris-
tiques importantes de 'onde de souflle, & savoir principalement en chaque
point le premier temps d’arrivée de l’onde, la valeur de la pression et le
temps de phase positive (temps pendant lequel la surpression est positive en
un point).

Le modele GSD (Geometrical shock dynamics) de Whitham ([37],[36])
est une approximation du modéle d’Euler pour les fluides compressibles qui
permet des calculs plus rapides. Les équations du modeéle GSD modélisent
uniquement la propagation du front de 'onde de souffle et permettent de
déterminer le temps d’arrivée du front de 'onde et la vitesse de ce front en
chaque point. Les équations du modéle GSD de Whitham s’écrivent

M|Va| =1
. n
div <A(M)> =0 (1.1)
n %
~ |Val

Va .
ou le vecteur n = m est le vecteur unitaire normal au front.
o
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La quantité physique A qui intervient dans I’équation sur la vitesse M
permet de prendre en compte les effets des phénomeénes physiques ayant lieu
derriére le front tout en limitant les calculs & la seule propagation de ce
front. La pression en arriére du front est obtenue a partir de la solution des
équations du modele GSD en utilisant les équations de Friedlander. Ce post-
traitement permet d’approcher correctement les caractéristiques de I’onde de
souffle (pression derriére le front, durée de pression positive) qui ne sont pas
directement données par les équations du modéle GSD.

Notre algorithme résout numériquement les équations du modele GSD
en calculant les temps d’arrivée o par une méthode de type Fast-Marching.
La méthode Fast-Marching permet de calculer en un seul passage les temps
d’arrivée d’un front en tous les points d’un domaine en partant de la position
initiale du front et en progressant dans le domaine dans l’ordre croissant des
temps d’arrivée. Plus précisément, les points sont répartis dans trois ensem-
bles. Dans le premier ensemble, 'ensemble des points acceptés, la valeur du
temps d’arrivée « est calculée définitivement. Dans le deuxiéme ensemble,
qu’on appelle traditionnellement la “narrow-band” et qui est constitué des
points voisins des points acceptés, on dispose de valeurs d’essai de «. Enfin,
dans le dernier ensemble, aucune valeur de o n’a été calculée. A chaque itéra-
tion de l'algorithme, on met & jour les valeurs d’essai de a dans le deuxiéme
ensemble en utilisant la discrétisation traditionnelle de 1’équation eikonale
(voir 29]), le point pour lequel la valeur de « est la plus petite est accepté
et on remet a jour les trois ensembles.

A la différence des méthodes Fast-Marching habituelles, dans notre al-
gorithme, la vitesse n’est pas donnée a priori mais elle dépend localement
des valeurs de « et de ses dérivées, et doit donc étre calculée simultané-
ment. Plus précisément, a un temps donné, on calcule en chaque point de
la narrow-band un couple candidat “temps d’arrivée-vitesse” par la résolu-
tion d’un systéme donné par le schéma discret. On fige ensuite ces valeurs
au point pour lequel le temps d’arrivée est minimal. Ce point est ajouté au
front, on actualise la narrow-band et on réitére le calcul & partir du nouveau
front. Cette approche consistant & utiliser une méthode de Fast Marching
pour résoudre un systéme comportant une équation de type eikonale et une
équation donnant I’évolution de la vitesse en fonction de la forme du front
est nouvelle & notre connaissance. Si la méthode Fast Marching fournit un
schéma naturel pour I’équation eikonale, la construction du schéma en dif-
férences finies pour ’équation sur la vitesse est plus délicate. En effet, il est
difficile d’utiliser la forme conservative de cette équation en différences finies,
et la forme non conservative (1.2) fait intervenir la normale au front n et la
courbure du front x qui sont compliquées & évaluer et peuvent étre généra-
trices d'importantes erreurs numeériques (tout particuliérement la courbure
du front).
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M? -1
nVM=————= 1.2
Nous avons donc réécrit la deuxieme équation de sorte que n’intervien-
nent que des fonctions de o dont la discrétisation serait naturelle, plutot que
la normale et la courbure :

VM.Va =8(M)Aa (1.3)

Pour vérifier 'intérét et la correction de notre algorithme, il faut pouvoir
vérifier que les solutions calculées sont assez proches des solutions exactes.
Quand il n’est pas possible de connaitre analytiquement les solutions exactes
du systéme GSD, on peut aussi confronter les solutions obtenues a des so-
lutions de référence calculées avec des algorithmes beaucoup plus cotteux
en temps mais dont la fiabilité est connue. Dans le cas des équations du
modeéle GSD, les solutions numériques pourraient aussi étre confrontées aux
solutions de référence obtenues avec un algorithme discrétisant les équations
d’Euler avec des pas d’espace et de temps trés faibles ; une telle comparaison
testerait a la fois la correction de notre algorithme et la validité de ’approx-
imation par le modele GSD pour le cas étudié. Une partie importante de
ma contribution & ce travail a été la détermination de solutions de référence
pouvant étre calculées, soit analytiquement, soit trés rapidement au moyen
de la résolution d’une simple équation différentielle ordinaire (EDO). Parmi
les configurations géométriques simples se prétant au calcul de ces solutions
de référence, on trouve par exemple les fronts plans de vitesse uniforme, ou
encore le cas d’une source a symétrie sphérique (en dimension 2 ou 3) ou a
symétrie cylindrique en dimension 3.

11 est possible d’exhiber des solutions analytiques pour un autre ensemble,
plus important et plus riche, de configurations géométriques : le probléme de
Riemann. Le probléme de Riemann est une configuration géométrique pour
laquelle la condition initiale est constituée de deux fronts plans, de vitesses
my et m, et de directions 6y et 6, se joignant a 'origine (figure 1.1).

Les solutions du probléme de Riemann font en général apparaitre des
états intermédiaires, les états étant séparés entre eux par des transitions ne
pouvant prendre que des formes bien précises. Dans le cadre général des
systémes hyperboliques, on sait résoudre le probléeme de Riemann quand
les états de gauche et de droite (ici caractérisés par les couples (myg,0y) et
(my,0,)) sont suffisamment proches, mais dans un cas particulier appelé p-
systéme, le probléme de Riemann peut étre résolu pour des états initiaux
quelconques, et les solutions sont alors constituées de deux transitions au
plus, les transitions étant alors soit des raréfactions, soit des chocs (sauf pour
certains p-systémes pour lesquels certaines conditions initiales n’admettent
pas de solution dans cet ensemble, ces résultats sont étudiés notamment
dans [24]). Méme si I’écriture standard du p-systéme fait intervenir un espace
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a une dimension et une variable de temps, les équations du systéme GSD de
Whitham (qui sont stationnaires dans un espace & deux dimensions) peuvent
s’écrire sous une forme se rapprochant de celle du p-systéme. On montre alors
le théoréme suivant :

Theoréme 1.1. Existence de solutions au probléme de Riemann
On considére le systeme (1.1) et des états (my,0y) et (m,,0,.), avec mgy, m, >
1. Le probléme de Riemann de conditions initiales
T
(m,0) = (myg,0;) pour x =0, — 5
, (1.4)

m
(mve) = (mTa 91”) pour X = 91“ + 5
x désignant [’angle en coordonnées polaires, admet alors une solution au-
tosimilaire comportant au plus deux transitions (chocs ou raréfactions) dés

que la condition
0, — 0 < 0" (myg) + 0" (m,)

est vérifiee, 0 étant une fontion croissante explicite de m pour laquelle
0*(1) = 0.

FiGURE 1.1 — Conditions initiales du probléme de Riemann

Le systéeme de Riemann peut donc étre complétement résolu en dehors
d’une zone critique dans l'espace (m,8) pour les équations de Whitham. Si
Schwendeman [28] mentionne que l'obtention des solutions du probléme de
Riemann est simple pour ce modéle, aucune description compléte n’existait
jusqu’alors.

Pour comprendre les solutions du probléme de Riemann pour le systéme
GSD, il faut connaitre la forme des transitions possibles, qui peuvent étre ou
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des chocs, ou des raréfactions. Ces chocs et ces raréfactions ont été décrits
par Whitham dans son livre [37] et son article [36], mais les solutions de type
raréfaction sont exprimées dans le systéme des coordonnées («, §) données
par la normale et la tangente au front, ce qui rend difficile leur représenta-
tion géométrique. J’ai donc choisi de reprendre complétement la description
géométrique de ces solutions en donnant les résultats en coordonnées cartési-
ennes ou polaires. Avec ces résultats, la géométrie d’un choc est donnée de
maniére analytique, et la gémoétrie d’une raréfaction peut étre trouvée en
résolvant une EDO. On peut donc confronter directement les résultats issus
des simulations & ces solutions.

Une application directe de ces résultats est le cas d’un front plan com-
primé par une rampe, qui est un cas-test simple pour évaluer les performances
de l’algorithme et surtout évaluer le traitement des chocs. En effet, le schéma
de différences finies n’étant pas a priori conservatif, il n’y a pas de garantie
que les solutions numeériques ne comporteront que des chocs corrects (i.e.
satisfaisant la forme conservative de I’équation sur la vitesse au sens des
distributions) et donc que ’algorithme donnera des résultats corrects.

Le cas de la rampe et de maniére plus générale le cas des solutions au
probléme de Riemann sont des tests intéressants pour l'algorithme car ils
permettent de vérifier a la fois que les résultats sont bons en 'absence de
discontinuités (pour les raréfactions) et que ’algorithme calcule correctement
les solutions comportant des discontinuités.

1.3 Existence de solutions quasi-planes pour une
équation parabolique semilinéaire

L’objet du chapitre 3 est de montrer ’existence de solutions quasi-planes
a I’équation parabolique semi-linéaire

ug(x,t) = ugge(x,t) + fz,u(z,t)). (1.5)

pour (z,t) € R x R avec une non-linéarité f satisfaisant les propriétés de
régularité et de (Z x Z)-périodicité suivantes :

| € Lip(R% R)
{ f(x+kv+1)= f(x,v) pourtout (k,1)€Z? (x,0)ERxR
(1.6)
ou Lip(-,-) désigne 'ensemble des fonctions Lipschitz.

On parle de solutions quasi-planes dans le sens ot on recherche des solu-
tions pour lesquelles les lignes de niveau {u = a} pour a € R évoluent comme
le front d’une onde plane progressive. De telles solutions peuvent donc étre
des modéles pour des phénomeénes physiques impliquant des propagations de
fronts.
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Plus précisément, pour un scalaire p donné, satisfaisant p # 0, les solu-
tions quasi-planes que ’on recherche doivent vérifier, pour un certain scalaire
A € R, "'encadrement

|lu—pr —Xt| < C (1.7)

pour une certaine constante C' > 0 et, quand A # 0, les relations de périod-
icité suivantes

u(x—i—%,t) =u(x,t)+1 (1.8)
Mx+1j):u<at+§>. (1.9)

Ces deux relations permettent de réduire I’étude & un domaine borné car
des telles solutions sont entiérement déterminées par leur comportement sur
1 1
le rectangle [0, —} X [0,— .
D A
Plus précisément, on démontre le théoréme suivant :
Theoréme 1.2. (Existence de solutions quasi-planes et périodicité)
On suppose que f vérifie ’hypothése (1.6) et on fivze p > 0 avec p~! € N,
Alors il existe un unique réel A € R tel qu’il existe une constante C > 0
indépendante de p et une solution u de (1.5) sur R x R satisfaisant

|u(z,t) —pr — M| < C i)

(
1 g
u (:n - 5,t> =1+u(z,t) (i) (1.10)
Aug >0 (i71)
u(e +1,t) > u(w,t) (iv).
De plus,
{ u<x+1,t—§) =u(z,t) si AF0 (v) (1.11)
u =0 si A=0 (v).

Enfin, les constantes \(p) sont bornées indépendamment de p.
On montre également dans ce chapitre un résultat un peu plus spécifique :

Theoréme 1.3. Soit Z I’ensemble des zeros de f indépendemment de x (i.e.
pour a € Z, f(x,a) = 0 pour tout x € [0,1]). Il existe une solution u de (1.5)
satisfaisant (1.10),(1.11) telle que

Vae Z, (u(z,t)<a<u(yt)=(r<y). (1.12)

Cette propriété est cruciale dans le chapitre 4, o1 'on montre 1’existence
de solutions de type ondes progressives pulsatoires dans le cas d’'une non-
linéarité f bistable en dimension 1 (voir la section 1.4 et le chapitre 4).

Les travaux sur ces solutions quasi-planes sont relativement peu nom-
breux. Les principaux résultats sont des propriétés d’existence et de régu-
larité de minimiseurs quasi-plans pour un certain nombre de fonctionnelles
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d’énergie (voir [4],[11],[8],[7]). Ces travaux ne font pas intervenir d’évolution
temporelle, on peut donc les comparer & nos résultats dans le cas ou A = 0
et ou les solutions que nous construisons sont stationnaires. Dans ce cas, la
solution stationnaire u est un minimiseur pour la fonctionnelle

Z(u) = /|ugg|2 — F(z,u)

avec Fy(z,u) = 2f(x,u) (F, désignant la dérivée de F' par rapport a la
variable u). Puisque nous montrons I'existence de solutions stationnaires en
particulier quand f est & moyenne nulle, notre résultat implique I’existence
de minimiseurs pour Z lorsque F), est & moyenne nulle. L’article se rap-
prochant le plus de notre équation parabolique est celui de Blass, De La
Llave et Valdinoci [3]. En effet, cet article étudie des probléemes de flot de
gradient, introduisant ainsi effectivement une variable de temps dans le prob-
leme. L’équation (1.5) peut d’ailleurs étre vue comme un cas particulier de
Iéquation (10) de [3]. Cependant, cet article ne s’intéresse pas aux mémes
résultats que nous, il montre un principe de comparaison pour des flots plus
généraux et pour des données moins réguliéres.
Pour montrer le théoréme 1.2, on construit d’abord les solutions du prob-
léeme de Cauchy
{ Up = Uy + fx,u) (1.13)
u(0,x) = pz

et on montre qu’elles vérifient I’encadrement (1.7) et la propriété de péri-
odicité (1.8). On considére ensuite le comportement en temps long de ces
solutions et on montre ainsi que ’on peut obtenir une solution de (1.5) sat-
isfaisant les conditions du théoréme 1.2.

L’étude des solutions du probléme de Cauchy et surtout ’obtention de
Pencadrement (1.7) nécessitent 1'étude préalable d’une équation non locale
approchant ’équation (1.5). Le terme non local permet de borner les oscil-
lations spatiales de la solution du probléme de Cauchy mais engendre un
certain nombre de complications qui rendent ce chapitre assez technique.

Une fois que I'on a montré que les solutions du probléme de Cauchy
(1.13) vérifiaient (1.7),(1.8), on démontre le théoréme 1.2 en étudiant leur
comportement en temps long. La régularité de la solution du probléme de
Cauchy et 'uniformité de ses bornes permettent de placer cette solution dans
un espace compact et ainsi de donner un sens précis a ce comportement en
temps long sous la forme d’une limite.

Dans le cas ou A # 0, on montre ensuite que la solution limite uq, satisfait
le théoréeme 1.2. Quand A = 0, on souhaite de plus construire une solution
stationnaire. Pour cela, on construit d’abord, & partir de la limite en temps
long, une sous-solution et une sur-solution stationnaires, et on déduit l'ex-
istence d’une solution stationnaire par la méthode de Perron. On montre
ensuite que cette solution vérifie (1.7).
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Pour montrer le théoréme 1.3, on montre d’abord que la propriété (1.12)
est vérifiée pour la solution du probléme de Cauchy en montrant que les
ensembles {(z,t) € R x [0,T] | u(z,t) < a} et {(z,t) € R x [0,T] | u(z,t) >
a} sont nécessairement connexes. Une fois la propriété démontrée pour la
solution du probléme de Cauchy, un passage a la limite permet de montrer
le théoréme 1.3 dans le cas A # 0. Quand A = 0, on montre que la sous-
solution et la sur-solution stationnaires construites vérifient (1.12), puis que
cette propriété est conservée par la méthode de Perron.

1.4 Existence et unicité d’ondes progressives pul-
satoires dans le cas bistable

L’objet du chapitre 4 est de montrer ’existence de solutions de type
onde progressive pulsatoire (en anglais Pulsating Travelling Waves) a I’équa-
tion (1.5)

ug(x,t) = ugg(z,t) + fx,u(z,t))

pour une non-linéarité f bistable (en plus des propriétés de régularité et de
périodicité). On suppose que la fonction f satisfait I'hypothese

{ feC R x[0,1;R) (1.14)

f(z+k,v) = f(z,v) pourtout keZ, (z,v)eRx]|0,1]

et vérifie également des hypothéses de bistabilité : Il existe 6 € (0,1) tel que

( f(x,0) = f(z,0) = f(x,1) =0 pour tout x € R
f(z,v) <0 pour tout v e (0,0), zeR
f(xz,v) >0 pour tout wv € (0,1), ze€R
fl(xz,0) >0 pour tout =z € R
Ino >0 tel que
Vx € R, la fonction v — f(x,v)  est strictement décroissante sur
[0, 0] U [L = 10, 1]

(1.15)

Sous ces hypothéses, on peut montrer I'existence de solutions de type

ondes progressives pulsatoires (dans les cas ou il n’y a pas de solution sta-
tionnaire) :

Theoréme 1.4. (Existence et unicité d’ondes progressives pulsatoires)
On suppose (1.6),(1.15). Alors il existe cg € R et u solution de (1.5) sur RxR
tels que

cour > 0

0<u<l1

liminf w(x,t) =
xr+cot—+00
limsup wu(x,t)
T+cot——00

1 (1.16)
0
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u(x—f—l,t—l) =u(z,t), sico#0 (1.17)

Co
u(z,t) ne dépend pas de t, sico=0.
De plus, sico # 0, la solution u satisfaisant (1.16)-(1.17) est unique a trans-
lation en temps preés.

Sous une hypothése un peu plus contraignante, on peut montrer 'unicité
de la vélocité c :

{ fi(x,0) = —=6p <0 pour tout xe€R

fi(xz,1) =—01 <0 pourtout zeR (1.18)

On montre alors le théoréme suivant :

Theoréme 1.5. (Unicité de la vélocité)
On suppose vérifiées les hypotheéses (1.6),(1.15),(1.18). Alors la vélocité cy €
R donnée dans le théoréeme 1.} est unique.

L’étude d’équations paraboliques semi-linéaires telles que (1.5) est 'objet
de nombreux travaux, avec en particulier la recherche de solutions de type
ondes progressives (travelling waves).

Les premiéres études ont été menées sur I’équation de réaction-diffusion
homogéne

Up = Ugy +u(l —u)

par Kolmogorov, Petrovsky et Piskunov [11] et Fisher [10]. Cette équation
trouve alors des applications en écologie dans ’étude des modeles proie-
prédateur. Des recherches ont ensuite été consacrées a des cas plus généraux,
avec l'ajout d’un terme d’advection, ou la non-homogénéité du terme de
réaction. Dans ce contexte général, I’existence de solutions de type fronts
progressifs pulsatoires a été démontrée par Berestycki et Hamel dans [2]
dans le cas d’une non-linéarité f positive.

Il y a moins de résultats dans le cas d’une non-linéarité bistable comme
celle que nous étudions. Un résultat de Xin [17] montre I’existence d’ondes
progressives pulsatoires quand la dépendance en espace de la non-linéarité
est petite. Un autre résultat plus général est celui de Giletti, Ducrot et
Matano [9]. Ces trois auteurs montrent ’existence de fronts progressifs pul-
satoires pour des non-linéarités tres générales, qui doivent seulement véri-
fier des conditions implicites assez raisonnables. Par certains points, les
chapitres 3 et 4 font appel & des arguments un peu similaires. Néanmoins,
I'utilisation cruciale du théoréme 1.3 nous permet de nous affranchir de telles
conditions implicites, et notre étude pourrait couvrir des cas non traités dans
cet article.

Pour démontrer le résultat d’existence du théoréme 1.4, on utilise forte-
ment les résultats démontrés dans le chapitre 3. En effet, on considére les
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solutions u®) construites dans le théoréme 1.2 pour p € N~1 et on considere
leur limite pour construire la fonction u satisfaisant le théoréme 1.4.

Les propriétés de monotonie et de périodicité de la limite u se déduisent
des propriétés des solutions u® pour p = 0. Pour poursuivre ’analyse, on
définit les fonctions

u(x) = tiigloou(x, t)

ww) = lim ()

ut(z,t) = ngrfoou(x +n,t) (1.19)
u (z,t) = ngrfloou(x +n,t)

et on montre les encadrements 0 < ut —u~ <1let 0 < |t — u| < 1. Par des
translations en temps appropriées on peut s’assurer que u prend la valeur
6, puis, en utilisant les fonctions auxiliaires définies en (1.19), montrer que
0 < u < 1. 1l faut ensuite distinguer les cas selon que la vélocité est nulle
ou non nulle. Dans le cas ¢ # 0 on montre que si u est solution de (1.5),
alors soit u est une pulsating travelling wave joignant les états 0 et 1, soit
u est constante et égale & #. On utilise ensuite le fait que f/(z,6) > 0
pour tout z, et donc que I’état 6 est un équilibre instable pour montrer
que les solutions que ’on construit ne peuvent étre constantes et égales & 6.
De maniére similaire, dans le cas ¢ = 0, on peut montrer que soit on peut
exhiber une solution stationnaire satisfaisant u™ = 1, u~ = 0, soit la solution
u construite est constante et égale a 6. On exclut finalement ce cas u = 0
pour achever la démonstration du théoréme 1.4.

A vélocité ¢ fixée, on démontre I'unicité de la solution u en considérant
deux solutions de (1.5) uy et ug satisfaisant (1.16),(1.17) pour la méme véloc-
ité c. On peut alors montrer que par une translation en temps appropriée on
a ug(+,-+ 7) > uq, et on conclut que uy et ug sont égales & une translation
en temps prés en utilisant un principe du maximum fort.

On montre l'unicité de ¢ sous la condition plus restrictive (1.18) en con-
sidérant deux solutions uq et us de vélocités c1 et co avec ¢; > co. On peut
alors montrer qu’a une translation en temps pres, ui(z,0) < us(z,0) et
aboutir & une contradiction en utilisant le principe de comparaison et la pro-
priété (1.17). Cependant, comme u; et ug ont des vélocités différentes, leurs
périodicités sont différentes et il est plus difficile de les ordonner que dans
la preuve de l'unicité du profil. Pour contourner cette difficulté, on utilise
la condition (1.18) pour construire pour chaque vélocité ¢ des sous-solutions
et des sur-solutions explicites de (1.5) dans les demi-espaces {x + ¢t > A}
et {x + ct < —A} et on compare d’abord wu; et us a ces sous-solutions et
sur-solutions explicites avant de les ordonner au temps 0. Un autre moyen
de résoudre cette difficultés et d’affaiblir la condition (1.18) serait d’utiliser
le changement de variable proposé par Berestycki et Hamel dans [2]. Un tel
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traitement pourrait pourrait permettre de montrer simultanément 'unicité
de la vitesse et 'unicité du profil.

1.5 Modéle approché pour la dynamique de dislo-
cations autour d’une source de Frank-Read

L’objet de ce chapitre est ’étude d'un modéle approché de type champ de
phase pour le mouvement de dislocations autour d’une source de Frank-Read.
Une dislocation est un défaut dans la structure d’un cristal. Ainsi, autour
d’une dislocation, les atomes d’un cristal ne forment pas un réseau parfait.
Une dislocation est de codimension 2 (c’est donc un défaut linéique dans un
cristal de dimension 3) et elle est caractérisée par son vecteur de Burgers b. Si
on considére un chemin formant une boucle sur un réseau cristallin parfait,
alors ce méme chemin n’est plus une boucle sur le réseau cristallin autour de
la dislocation, et le vecteur de Burgers b est le déplacement nécessaire pour
fermer ce chemin autour de la dislocation (le chemin étant orienté dans le
sens direct par rapport a la direction de la dislocation).

Une source de Frank-Read est une configuration qui permet la création
de dislocations. Dans cette configuration, une dislocation est attachée a deux
points fixes et évolue dans un plan, le plan de la dislocation (on peut déduire
de la définition d’une dislocation qu’une dislocation est nécessairement une
boucle fermée, dans le cas d’une source de Frank-Read cette boucle se referme
en dehors du plan de la dislocation et les deux points d’attache restent fixes
quand celle-ci évolue). Le mouvement de la dislocation, induit par le potentiel
interne et les contraintes externes peut amener cette dislocation d’origine
a se recouper elle-méme, occasionnant des changements de topologie et la
création d’une dislocation indépendante formant une boucle autour de la
source. Quand ce phénomeéne se répéte, la source de Frank-Read devient une
source réguliére de dislocations concentriques qui s’en éloignent.

Physiquement, une dislocation et les contraintes induites se concentrent
sur quelques mailles du réseau, et quand on cherche a étudier son comporte-
ment & plus grande échelle on la considére comme un objet linéique. Seule-
ment, I’étude directe du mouvement des dislocations présente des difficultés
et, pour faciliter cette étude, on peut tenter d’etudier leur comportement
a 'aide d’un modéle approché de type champ de phase. Dans un tel mod-
éle, les dislocations sont considérées comme les variations d’un champ v, qui
modélise le décalage entre le réseau cristallin réel et le réseau idéal. Au lieu
d’étre concentrées sur des lignes, les dislocations sont alors plus étalées. Dans
le cas limite o1 'on autorise seulement des valeurs entiéres pour v, les dis-
locations sont concentrées sur des lignes. Dans un tel modéle, I’évolution de
ce champ de phase est donnée par une EDP et est plus facile & étudier que
le mouvement des lignes de dislocation.

Dans notre étude, le domaine spatial €2 doit correspondre a la géométrie
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d’une source de Frank-Read. Pour cela, le domaine le plus naturel serait
I’espace R? privé de deux points, mais pour faciliter I’étude des solutions, et
en particulier pour obtenir des estimations uniformes et avoir des propriétés
de compacité, nous avons choisi un domaine borné et & frontiére réguliere
(figure 1.2) :

Q=B(0,R)\ (B(Pt,e)UB(P,¢))

avec B(a,r) (respectivement B(a,r)) la boule ouverte (respectivement fer-
meée) de centre a et de rayon r. Les deux points constituant la source de
Frank-Read sont les points Pt = (1,0) et P~ = (—1,0). Pour que ce do-
maine soit bien défini et connexe, on impose aux parameétres R et € les bornes
R > 2 et 0 < e < 1. Pour obtenir le domaine d’étude idéal pour la source de
Frank-Read, a savoir le domaine R?\ {P~, P*}, il faut considérer les limites
R — oo et ¢ = 0. S’il est envisageable que les résultats démontrés dans
ce chapitre restent valables pour ce domaine limite, les estimations utilisées
dans les preuves sont fortement dépendantes du domaine, c’est pourquoi
'extension de nos résultats & R? \ {P~, P} n’est pas simple a priori.

FIGURE 1.2 — Domaine €2 pour I'é¢tude de la source de Frank-Read

L’équation du modéle approché est la suivante :

, 0t — 0~
uy = Au—-W' |(u+——)+0 pourze
2 (1.20)
ou '
— =0 pour x € 0f2
on
et la fonction W vérifie les hypothéses
2
W e C*(R) . (1.21)
W(v+k)=W(w) pourkelZ
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L’équation (1.20) est une équation parabolique de type équation de champ de
T
phase ou la fonction v = u—i—u représente la distance (dans la direction
du vecteur de Burgers de la diglocation) entre la position des atomes du
réseau cristallin et leur position dans la configuration de base. La fonction W
représente un potentiel électronique, et la périodicité de W’ correspond a celle
du réseau cristallin : la contrainte supplémentaire causée par le déplacement
du réseau ne dépend que de la valeur de v modulo 1. Le scalaire o > 0
représente une sollicitation extérieure. Dans la limite ol le potentiel W est
de plus en plus piqué, cette équation donne I’évolution des dislocations autour
de la source de Frank-Read. Plus précisément, avec un potentiel pour lequel
W' devient trés grand en dehors des valeurs entiéres, les lignes de niveau

1
{u =n+ 5} (avec n € Z) donnent ’évolution des positions des dislocations

au cours de temps.

L’objet de ce chapitre est la recherche de solutions ayant un régime per-
manent. Le domaine temporel naturel de ces solutions est R. Pour obtenir ces
solutions, nous étudierons le probléme de Cauchy pour I’équation (1.20). On
considérera donc dans ce cas le domaine temporel [0, +00), avec la condition
initiale

u(z,0) = up(zr) pour x € Q. (1.22)

On cherche donc & montrer I'existence de solutions ayant un régime per-
manent, c’est-a-dire plus précisément des solutions satisfaisant, pour un cer-
tain T > 0,

u(z,t+7T)=wu(x,t)+1 pourtout x € Q, teR. (1.23)

On qualifie cette propriété de propriété de régime permanent car entre des
temps t et t + T, la solution n’est modifiée que par une translation entiére.
Or, pour ce modéle de champ de phase la contrainte W' ne dépend que de la
partie fractionnaire de u, et dans la limite d’un potentiel W piqué donnant le
comportement des dislocations autour de la source de Frank-Read, la position
des dislocations ne dépend elle aussi que de la partie fractionnaire de wu.
En conséquence, pour ce type de solution, une translation temporelle d’'une
période ne modifie pas les propriétés de la solution et préserve en particulier
I'interprétation physique.

Pour construire ces solutions possédant un régime permanent, on consid-
ére le comportement en temps long des solutions du probléme de Cauchy (1.20),(1.22).
Pour cela, on montre 'existence de bornes pour ces solutions dans le théoréme 1.6.

Theoréme 1.6. Controle de la solution de probléme de Cauchy Soit
u la solution du probléme de Cauchy (1.20),(1.22) avec condition initiale
ug = 0. Pour tout 0 € R, il existe un unique scalaire w € R tel qu’il existe
C € R tel que

lu(z,t) —wt| < C. (1.24)
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Cet encadrement permet de montrer I’existence d’un régime permanent :

Theoréme 1.7. Existence d’un régime permanent
Dans le cas ot w # 0, il existe une solution u de (1.20) satisfaisant

u(z,t +T) =u(z, t)+1 pour tout x € Q, t€R (1.25)

avec une période temporelle T = %

De plus, cette solution u est strictement croissante et unique a translation
en temps pres.

Dans le cas ot w = 0, il existe une solution stationnaire u de (1.20) sur
Q x R.

Il est également possible de montrer que la pente w (qui correspond
physiquement a la fréquence de création de dislocations par la source) est
une fonction croissante de la contrainte extérieure o.

Theoréme 1.8. Monotonicité de w
La fréquence w est une fonction croissante de o.

L’idée de I'existence de défauts ayant cette structure de dislocation dans
les solides cristallins fut présentée en 1905 par Volterra (voir [34] pour une
référence en francais, la construction de dislocations par la méthode dite de
Volterra est décrite dans le chapitre 2). En 1934, Orowan ([23]), Polanyi ([24])
et Taylor ([32]) expliquent presque simultanément, et indépendamment, le
mécanisme des déformations plastiques dans les cristaux par le déplacement
de dislocations. Les premiéres observations de dislocations ont été réalisées en
1956 par Hirsch, Horne, Whelan (|18]) et Bollmann ([4]|). Le mécanisme de la
source de Frank-Read a été présenté en 1950 par Frank et Read ([12],[13]). La
source de Frank-Read est le principal mécanisme de création de dislocations
et a fait I'objet d’études sur le plan expérimental (voir par exemple [20],[21])
et sur le plan théorique.

Les études théoriques de la source de Frank-Read se sont beaucoup at-
tachées au calcul des forces s’exercant sur une dislocation possédant un point
d’attache ([6]) et a la détermination de la contrainte critique déclenchant la
création de dislocations ([31],[10]). Dans le chapitre 5, notre ambition est
différente car nous cherchons & déterminer les caractéristiques d’un régime
permanent de création de dislocations, ce qui n’a pas été fait & notre connais-
sance, dans le cadre d’une approche de type champ de phase avec un domaine
régulier qui réduit les difficultés techniques. Les difficultés qui apparaissent
dans I’étude de dislocations attachées en un point dans un domaine non
borné sont par exemple traitées par Forcadel, Imbert et Monneau dans [2]
pour le cas de I’évolution d’une spirale. Dans le cas de domaines bornés,
Sato et Giga dans [3], [27] et [4] étudient I’évolution de dislocations avec des
conditions aux limites de type Neumann. Ces études suggérent des voies de
prolongement possibles de notre recherche.
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Des approches de type champ de phases pour les dislocations ont été
proposées dans [13], [8], [16] et [15]. On peut se référer a [26] ou a [22]
pour des analyses de comportements limites de ces modéles de champ de
phase, le comportement limite étant un front se déplacant avec une vitesse
proportionnelle & sa courbure moyenne plus une constante.

Pour prouver les théorémes 1.6, 1.7 et 1.8, on peut d’abord affirmer que
le probléme de Cauchy (1.20),(1.21) admet une unique solution et que celle-
ci est suffisamment réguliere. La principale difficulté de la démonstration
du théoréme 1.6 est I’encadrement des oscillations spatiales de la solution.
Pour cela, on étudie seulement les oscillations de la solution, c’est-a-dire la
différence entre la solution et sa valeur moyenne. On écrit I’équation vérifiée
par cette différence, et on exprime la solution de cette équation par la for-
mule de Duhamel. On encadre ensuite I'intégrande en utilisant des éléments
d’analyse spectrale et un résultat d’estimation intérieure, pour finalement
borner les oscillations de la solution indépendamment du temps. On obtient
ensuite 'encadrement (1.24) en construisant des pentes candidates w™(7) et
w™(7) pour 7 > 0 telles que pour tout ¢ > 0,

w ()7 <u(0,t +7) — u(0,t) < wh(7)7.

On montre ensuite que ces deux fonction w™ et w™ ont la méme limite w
dans la limite 7 — 400, puis que cette limite w vérifie la propriété (1.24).

Pour démontrer le théoréme 1.7, on distingue les cas w = 0 et w # 0.
Quand w # 0, la solution u est obtenue en considérant le comportement en
temps long des solutions du probléme de Cauchy. Le théoréme 1.6 permet
de donner un sens a ce comportement en temps long comme limite de trans-
latées de la solution du probléme de Cauchy en placant ces translatées dans
un espace compact. On montre ensuite que la limite u satisfait la propriété
de régime permanent en considérant les translatées u® = u(-+b) —1 et en les
comparant & u par le principe de maximum fort. Cette méthode de démon-
stration, appelée “sliding method”, a été décrite par Berestycki et Nirenberg
dans [1]. La monotonie de u et son unicité sont également obtenues par la
sliding method.

Quand w = 0, on peut montrer l'existence d’une solution stationnaire
par un argument d’énergie. En effet, on peut exhiber une énergie E(u) telle
que E > 0 et telle que E(u(-,t)) est une fonction décroissante de ¢ si u
est solution de (1.20). On en déduit ensuite qu'une valeur d’adhérence en
temps long de la solution du probléme de Cauchy us = nh_)ngo u(-,tn) (avec

t, — +00) est une solution stationnaire de (1.20).
Pour finir, le théoréme 1.8 découle directement du principe de compara-
ison.
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Chapitre 2

A fast-marching like algorithm
for Geometrical Shock
Dynamics

The content of this chapter has been submitted to the Journal of Com-
putational Physics. It has been written in collaboration with Nicolas Lard-
jane (CEA, DAM, DIF), Régis Monneau (CERMICS, ENPC) and Youness
Noumir (LRC-MESO, CMLA, ENS Cachan).

Abstract

We develop a new algorithm for the computation of the geometrical shock dy-
namics model (GSD). The method relies on the fast-marching paradigm and enables
the discrete evaluation of the first arrival time of a shock wave and its local velocity
on a Cartesian grid. The proposed algorithm is based on a second order upwind
finite difference scheme and reduces to a local nonlinear system of two equations
solved by an iterative procedure. Reference solutions are built for a smooth radial
configuration and for the 2D Riemann problem. The link between the GSD model
and p-systems is given. Numerical experiments demonstrate the accuracy and the
ability of the scheme to handle singularities.

Keywords : geometrical shock dynamics fast-marching method level-set method
Riemann problem finite difference method shock wave p-system

2.1 Introduction

In 1957, when G.B. Whitham published the Geometrical Shock Dynam-
ics (GSD) model 28|, he qualified it as &a relatively simple approximate
method developed for treating problems of the diffraction and stability of
shock wavesd. The simplicity comes from the fact that the shock front is
seen as a surface evolving under its own local speed and curvature, inde-

29



30 CHAPITRE 2. THE GSD MODEL

pendently of the post-shock flow. The shock adjusts itself to changes in the
geometry only [29]. As explained by Best [8], Whitham considered the mo-
tion of a shock into a uniform gas at rest, down a tube of slowly varying
cross sectional area, A, and under some physically grounded hypothesis, he
obtained an expression relating the local shock Mach number, M, to A, now
known as the A-M relation [31] (see also (2.9) and (2.4)). The GSD model
reads

M(x)|Va(z)| =1, Div (%) =0 (2.1)

where « gives the shock position [29] and n = % is the local normal to

the front. This model is hyperbolic provided that A’(M) < 0, and can thus
develop disturbances on the front which are the trace of waves, not mod-
eled, behind the shock. In practice, GSD has proven to be fairly accurate for
diffraction around a corner, non-regular Mach reflection [29], or accelerat-
ing shocks and shown only little deviation for expanding decelerating flows
[5]. Whitham’s model has been extended to take into account unsteady flow
behind the shock [8, 9, 10], non-uniform gases properties [20], and has been
applied, among others, to imploding shock waves [11, 1], atmospheric prop-
agation [7], detonation in explosives [2, 3, 6], supersonic engine unstart [27]
and astrophysics [14].

This success, linked to the compact model formulation and the dimen-
sional reduction, was supported by the development of three kinds of algo-
rithms. (i) Lagrangian, or front-tracking, methods have first been experi-
mented |15, 18]. In such an approach, the shock front is explicitly discretized
by markers evolved in time and regularly resampled. This method is natural
and quite accurate but difficult to implement in three dimensions, mainly
when surface merging or breaking is expected. (ii) Eulerian conservative al-
gorithms [19, 20] reduce this difficulty but do not take any advantage of
the front locality. Furthermore, they rely on the definition of an a priori
propagation direction, not always easy to determine. (iii) Localized level-set
methods are a good compromise since they handle any kind of surface defor-
mation but in an implicit way. The front shock is obtained from a table of
arrival time, also called burn table. A 3D unsteady algorithm, based on the
Hamilton-Jacobi form of the GSD system (2.1) [17], is described in [2, 3, 4]
for Detonation Shock Dynamics. It compares well with reactive Eulerian
model results at a much lower CPU time. Nevertheless, due to the nonlinear
nature of GSD equations, unphysical shocks can form away from the front
position and a frequent resampling of the signed distance is mandatory [23].

In this article we propose an alternative approach based on the level-
set fast-marching paradigm [22], which combines the flexibility of (iii) and
the locality of (i) while remaining easy to implement. The first and second
ordrer specific algorithms are decribed in section 2.2. Reference solutions
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for a smooth radial problem and the GSD Riemann problem are derived
in section 2.3. In section 2.4, the comparison to numerical results indicates
that a second order scheme is mandatory for non smooth problems. At last,
conclusions are summarized in section 2.5.

2.2 A fast-marching like GSD scheme

In 1988 Osher and Sethian [17] introduced the Eulerian level-set method
to solve Hamilton-Jacobi equations and the eikonal equation in particular.
Unlike the Lagrangian approach, the level-set method is simple to implement
in 3D, high-order extensions are readily derived and topological properties
of the front, as the curvature, are easily calculated. However, the level-set
mehod, of complexity O(N?), can be quite time consuming when the number
of grid point, N, is large. In the past two decades, several improvements
have been proposed in order to reduce this complexity and at same time
to enhance the accuracy. Among them, the most popular approach is the
Fast-Marching Method (FMM) developed by Sethian [22] and used with
success in a large variety of applications. Assuming a single pass front, the
complexity of the algorithm reduces to O(N log N) and even to O(NN) under
some further assumptions |30].

In this section, we introduce a second-order method to solve the GSD
model (2.1), on a Cartesian grid, based on the fast-marching paradigm. We
first reformulate the model as a coupled eikonal-transport system to facili-
tate its discretization. The numerical method, boundary treatment and im-
plementation details are then given.

2.2.1 A modified transport equation

As in the work of Besset |7] or Aslam [2], the GSD model (2.1) is rewritten
under the local form

M|Val =1 (2.2a)

Va .
M—— VM =MM 2.2b
- (M, ) (2.20)

with the initial boundary conditions

o, = Qo (2.3a)

M, = Mo, (2.3b)

where ag and M are given functions on the hypersurface I'g, the shock initial
position. The GSD closure, linking the local Mach number, M, and the mean
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curvature of the front, k = Div(n), reads

. 2 _
M(M, k) = _]\f(M)l

Ry

where M > 1 and

21— 1
AM) =1+ —"— 1420+ —
0= A <+7+1 i )<+“+M2>’

LS (y —1)M?2 +2
=T\ a1y

~v > 1 being the gas polytropic coefficient, see [29] for details.

In practice, the discretization of the mean curvature is difficult, due to
the mixed derivatives of «, especially in the context of the fast-marching
method when neighboring points are not yet assigned a value. For this reason
we choose to reformulate the transport equation on the Mach number as a
convection—diffusion one.

By combining the eikonal equation, M|Va| = 1, and the normal defini-
tion, n = Va/|Va/|, one checks that the mean curvature of the front reads
k=VM - -Va+ MAa«a. Transport equation (2.2b) is then reformulated as

VM- Va =S8(M)Aa,

_ M(M?-1) . i
where S(M) = — 3 EOGnTD—T is nonpositive and smooth and for M > 1.

The reformulated boundary value problem to be solved is then

M|Va| =1 (2.52)

VM -Va=S8(M)Ax (2.5b)

where the source term is now easier to discretize.

Note that this system is not in a conservative form, which could raise
difficulties to handle front discontinuities, but as we shall see in section 2.4.3
the numerical scheme performs well in practice.

2.2.2 Level-set method for the eikonal equation

The level-set function « is solution of the eikonal equation (2.5a) on
together with the initial condition (2.3a) on I'y. We solve it on a uniform
Cartesian mesh of the domain Q = [0, L] x [0, Ly] x [0, Lz] C R? with grid
spacings Az, Ay and Az. Let o j;, and M; ;; be the approximate solution
at a grid point, i.e. ;5 = a(®i,yj, 2;) and M = M(x;,y;, z;) where
x; = iz, y; = jAy and 2z, = kAz. We denote by u;, vy et w; (resp. u,, v,
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et w,) the backward (resp. forward) approximation of the derivatives of « at
(xi,yj,21) along z, y and z respectively.
The discrete form of (2.5a) reads

Mi,j,kﬁ(uhu?"vUlavrawlawr) =1, (2.6)

where H is chosen as the numerical Hamiltonian of Godunov [23] :

H (up, e, vp, vy, wy, wy) = \/maXQ(u?',ur_) + max?(v;", vy ) + max?(w;", wy ),

with the notations : 7 = max(z,0) and = = max(—z,0) for € R. This
upwind scheme has been successfully used in several applications (cf. [16],
[22]). It has the ability to capture viscosity solutions of the eikonal equation
[12] and do not smear out sharp discontinuities excessively [25], which are
desirable features in the case of GSD where front singularities may appear.

At first order, the discrete derivatives of a are written :

ai7j7k — OéZ*l,],k

- Qit1,5,k — Yk
u; = (DI Od)i’ng = —Al‘ Uy — (D;ra)i,j,k = —AZC
— aZ?J7k - Oé17.7717k a27j+17k B alvjzk
w = Dyadigr = =SB o = (Dyedige = =m0
_ Qi ik — OG5 k—1 Q5 k+1 — Q4 4k
w; = (Dya) i = ———"— o w, = (Dfa)jj = ——F—0 N

The extension to arbitrary higher orders is possible, we restrict ourselves
to second-order in this work.

At second order, the discrete derivatives of « are written :

_ Ne Az

u = (Dz @)ij + == (Dy (Dg @))ij e |ur = (Dy )i gk — T(Di (DF )i jik
_ ANy, Ay

u = (Dy )i + =~ (Dy (Dy a))ijp |vr = (Dy )i jik — 7(DI(DJQ))i,j,k
_ Nz Nz

wr = (D7 a)ijn + == (D2 (D7 )i |wr = (D )ik — T(DJ(DJQ))LM

We point out that there is no limiting function. In the context of the FMM,
a switching mechanism is rather used as we shall see later.
2.2.3 The standard fast-marching method

Following Sethian |22], the classical FMM is now outlined. In this method,
the velocity of propagation is assumed to be known and of constant sign. The
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front is thus “single pass’ and one needs to calculate the value of « only in the
vicinity of it. The CPU time is then dramatically reduced and, interrelated,
the monotonicity of the scheme is guaranteed by following the direction in
which the information flows. This is done by propagating the solution from
lower to higher values of the level-set function «. To this end, the grid points
are partitioned into three groups, namely :

® Known is the set of vertices where the values of a are known, i7.e. the
vertices already intercepted by the front ;

® NarrowBand is the set of all neighboring vertices of Known, i.e. the
vertices that are about to be intercepted by the front;

® Far is the set of vertices that are neither in Known nor in Narrow-
Band. In the Far set, « is assigned a huge initial value INF.

Think of the NarrowBand set as a buffer zone that serves to start the
calculation from the vertices of Known and to spread the information to
the vertices of the Far set. For every element of the NarrowBand, test val-
ues of a are calculated from the points of the Known set only, and
then the point of the NarrowBand corresponding to the minimal test value
is validated. This means that the value of o at this point is now defined
as the minimal test value. A second step consists in including this point
in the Known set and adding its close Far neighbors as new points of the
NarrowBand. By repeating the previous steps, as long as the NarrowBand
is not-empty, the level-set function is calculated in the whole computational
domain. The starting values of this process are set by the initial conditions
on I'g. It is worth mentioning that the most time consuming step in this
algorithm is the search of the point with the minimal test value and thus the
performance of the FMM depends on it.

At a point (7,7, k) of interest of the NarrowBand, we can deduce from
(2.6) that the test value ¥ of « is calculated by solving the following quadratic
equation :

3 - +
0 — 1V 0tV 1

Z 2 1,5,k 1,5,k _

Vzlmax < Ay TN ’0> M, 27

with the notations

Sifl ik Sz'ty:l:l k s'i'zk:l:l
:t 7 1J :l: 1, ) :l: 1,7,
e (12 o) g o ) g s (1 ),
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and with the following generic switches

s?tx _ 1 if aii17j,k<ai,j7k
i3,k 0 otherwise

+ 1ot oy e < gk
SA y f— 7] b 7]7
.3,k 0 otherwise

+: _ J 1A ok <ok
Sigk =) 0

otherwise
. Lt .
where the coefficients (2., are given by :
2T 1SVS3
S:I::B
1+ i+1,5,k
tijk = Qit1gh + 3 (i1 — Qiz,jin)
Siy
o+t - 1,1,k
L = Qg+ =57 (Qje1k — Qigaak)
S:I:z
RE 1,7,k+1
tija = Ot + =7 (Qijikt1 = i er2)

The switches take into account the local direction of propagation. They
ensure the causality condition by setting a zero value when the information
at the second order is not available in that direction.

Remark 2.1. At first-order of accuracy, one can take all swiiches equal to
zero and one has Aiﬁ = Az, A;ﬁ = Ay, Agﬁ = Az, and til,jyk = Q1 k>

2% 3+
Uijk = Qg1 ks U = Qg1

2.2.4 Full discretisation of the GSD system

Following the fast-marching paradigm, a method for solving the coupled
system of equations (2.5) is now explained. Since M is an unknown of the
problem, one has to calculate test values of « (i.e. ¥) and of M (i.e. m),
at the same time, for each point of the NarrowBand, leading to a local
nonlinear system in ¥ and m. The discrete velocity M; ;. is now replaced
by m in the equation (2.7) and the discretization of the transport equation
(2.5b) is done as follows.

The advection part of equation (2.5b) reads VM - Va. Following the
upwind direction of discretization for Va ensures that only receivable points
are used in the computation of VM. More precisely, we have :

3 - + — + — +
U=tk m— tik— U b g —m
v =3 () T (M) M

v=1
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where the coefficients ( Z”Ji k) take the form :

1<v<3

:I:a;
zil,J k

3

1+
Cije = Miz1jk + (Miz1,jk — Miz2,j1)
+y
Sij+1k
3

+z
§7-7
3+ i,5,k%1
ik =Mkt + 5 (M j k1 — M j g+2)

5 ik =Mijt1k+ (M; j1k — M jio k)

Concerning the source term of equation (2.5b), S(M)Aq, we evaluate S
implicitly and discretize the Laplacian operator at second order. From our
experience, it is crucial to use a centered scheme as much as possible. This is
done in practice by taking into account all finite value neighbours of a
point of interest, including those of the NarrowBand, in the calculation of
the test value. This feature also affects the switches evaluation in (2.7). In one
space direction, if a left and right values are available, the second derivative
is chosen centered, no matter the causality condition in the NarrowBand
(i.e. we also use points which are not in the Known set). For this reason, the
algorithm is not a fast-marching method in the strictest sense, and we say it
has fast-marching like properties.

3
More precisely, (S(M)A«) |;jr = S(m)ZAy, where we express only

the first term for the sake of simplicity
if (ai—l,j,k < INF and i1,k < INF) then
A=A,
else
0>t k0r19>t1 ,) then
-

v —t;
( ’]k O) > max <7ijk,0)> then
Aq

= A
else
Ay = A,
end if
end if
end if

with
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A Qi1 4k — 20 + 1k
o Ay = 5
Ax

U — 2041 5k + Qg2 ik

A~

[ ] AI :S+I Fx |:

r T ik Sk N
gt U= 206415k + Qigajk  Mig35k — 20it2jk + Qg1 5k
42,5,k A2 Ax?
o A v |V 201kt Qg
e = 20 5,k%i—1,4,k N

Lor (VT 20k T Qicagk | Qicsgk = 2025kt Qi1
=2,k Ax? Ax?

where we recall that INF denotes the huge initial positive value given to
points in the Far set.

The final form of the nonlinear system on ¥ and m is then

( 3 - +
9 —tY . 90—t 1
Zmax2 ( bk Z’j’k,0> = (2.8a)
v=1

N, AF T m2

S (-t \ Tm—rr, [t -9\ e, —m 3
Z zdvk _"/7]7]C _ 7/7]7k+ ’Lv]vk - — S(m)ZAy (2'8b)
- Ay Ay A A -
v=1 v=1
Remark 2.2. As in remark 2.1, the first-order accurate version of the equa-
tion (2.8b) uses the following identities : for the advection part, we simply
e + o
take K%’j’k = M;+1k, E?’jﬁk = M; j+1k, f?,j,k; = M; j k+1, and the Laplacien is
dz’scAretz'erd taking sliflj’k =0, sij’ﬂ’k =0 and sfﬁki2 = 0 in the expressions
of A1, Ao and As respectively.

Two strategies have been tested for the numerical resolution of the lo-
cal nonlinear system (2.8) on ¥ and m. Given the current approximation
(ﬁ(p),m(p)), the first approach is a fixed point method which consists in
solving the quadratic equation (2.8a) on ¥ with m = m® to get 9@+
which is injected in the equation (2.8b). This gives us a new value m®+1
by resolution with either a new fixed-point iteration or Newton’s method.
This procedure is repeated until a desired tolerance is met (107% in prac-
tice). The second approach is to solve the full coupled system of equations
(2.8) by Newton’s procedure. Indeed, the system (2.8) can be written in the
generic form G(W) = 0, where G is a nonlinear function in W = (m,9)?
which depends on the values of o and M around the point (4,7, k) of the
NarrowBand. The resolution of (2.8) is then done by the following iterative
algorithm, for p > 0,

we+) — ) (Dwg (W(p)))_l G <W(p)) 7
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when the computation of the gradient D,, G is allowed, and where the starting
point W is determined from the values of M and o on neighboring points.
Both approaches have been successfully employed, we did not observe any
robustness problem.

2.2.5 Boundary conditions

Two kinds of boundary conditions are commonly required : outgoing and
rigid walls. In practice, fictious points are added outside of the computational
domain, on which the phase and the Mach number are set. The number of
fictious cells depends on the order of the interior numerical scheme.

The outgoing conditions are used on the artificial limits of a free bound-
ary. We impose a huge positive value of « on the fictious points to make the
scheme upwind.

When a boundary of the computational domain is bounded by a rigid
body I'r, a wall condition is used. In this case, a Neumann condition applies :
(n - Va). = 0. The numerical implementation is done by reflecting the
values of @ and M, by symmetry, on the fictious points. Let us recall here
that Whitham’s model is able to predict only the irregular shock reflection,
namely the Mach reflection or shock-shock singularity in the terminology of
Whitham.

2.2.6 Summary of the algorithm

The numerical scheme we designed to solve the GSD model (2.1) is now
summarized. Whitham’s model is first rewritten to avoid the direct discreti-
sation of the curvature. The proposed algorithm is an Eulerian approach
similar to the fast-marching method performed on a Cartesian grid. This
algorithm is based on a second order finite difference method and more pre-
cisely on an upwind scheme in the direction of the shock propagation with
a priority queue acceptance of the local solution. The arrival time and the
Mach number are obtained by solving a local non-linear system.

The overall structure of our algorithm is close to the FMM one but has
two main differences : utilization of points not yet accepted and resolution
of the eikonal equation together with the transport equation on the propa-
gation velocity. The fast-marching like algorithm contains two main steps,
namely initialisation and iteration, and is organized as follows :

= Initialization step
m Set all points of the computational domain in the Far set by assigning a
huge INF value to a.
m Add each point of the user initial condition in the Known set.
m Create the NarrowBand from first neighbours of the Known set.
= Jterative step until the NarrowBand is empty
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m Apply boundary conditions.

m For each point in the NarrowBand, compute the test values ¥ and m by
solving the local non-linear system (2.8), by a Newton or fixed point method.

m Pick Poin = (imin, Jmin, kmin) € NarrowBand such that

a(iminajminakmin) = . min Oé(i,j, k)
(i,j,k)eNarrowBand

Add P, in the Known set/Delete it in NarrowBand.
m Add the close neighbors of P, in NarrowBand if they were in the Far
set.

2.3 Reference solutions to GSD

In this section, we provide reference solutions to the GSD equations, that
is geometrical configurations where the exact solution can be either calcu-
lated analytically or approximated with a quick by-calculation (typically the
resolution of a one-dimensional ODE). The numerical solutions of our fast-
marching algorithm can then be compared to these reference solutions to
evaluate its precision. Ideally, they should cover a wide array of cases, to test
the algorithm in the most diverse configurations. Conversely, such reference
solutions are often hard to provide, and we only expect to determine them
in very simple geometrical configurations.

In the case of the GSD equations, it can be noted that infinitely large
plane fronts of any normalized velocity M > 1 are exact solutions of the sys-
tem in the whole space. Reference solutions can also be found in the radial
case, when the configuration is invariant under rotations, and more inter-
estingly, for the Riemann problem in R?. Such solutions enable to test the
behaviour of the algorithm on smooth solutions as well as in cases where the
velocity has discontinuities. The simplest test case for discontinuous solutions
is the compression wedge (see Subsections 2.3.2 and 2.4.2).

In the remainder of this section we will use the conservative form (2.1)
of the GSD system, with the integral A-M relation

MmA(m
A(M) = Apexp <— . m;\(— Edm) , (2.9)

where My > 1 is the initial condition and Ag the corresponding section area.
We also introduce the notation

The quantity 8 allows to write the results of this section in a simpler manner.
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2.3.1 Radial solutions

The simplest configuration in which a solution of the GSD equations
can be computed is the radial case where the solution depends only on the
radial coordinate r. More precisely, in dimension d = 2, 3, the velocity M is
a solution of a one-dimensional ODE in the r variable :

M(r)ora(r) =1 (2.10a)

d—1

M(r)orM(r) = =B(M(r))—

(2.10Db)

For a given initial condition, this equation can be solved by a high order
algorithm to provide a solution of reference, which is helpful for convergence
studies. Analytical solutions are easily obtained in the strong shock limit,
M >>1.

2.3.2 Solutions of the Riemann problem in dimension 2

The solutions of the Riemann problem for the GSD equations are of prime
importance since they can exhibit discontinuous velocities and develop new
intermediate states. The behaviour of the algorithm can then be evaluated
on this difficult problem. The simplest test case for discontinuities is the
compression wedge, which will be developed in more details later.

For general hyperbolic systems, the theory for the resolution of the Rie-
mann problem only covers the case where the two initial states are not far
from each other. Solutions of the Riemann problem for far away initial states
are known only for very particular cases, such as the p-system. While the
GSD equations are in a setting that differs from the usual p-system, they
can be linked to the p-system and indeed the full resolution of the Riemann
problem is available.

In his works [28]| and [29], Whitham described the form of simple shocks
and simple rarefactions. They are studied respectively as the results of the
compression of a plane front by a wedge and the diffraction of a plane front
by a corner. While these works fully describe the structure of shocks and rar-
efactions, the rarefaction solution is only given with implicit coordinates. In
this part, we describe more explicitly the geometry of the solution. From our
knowledge, this is the first time that a comprehensive solution of the GSD
Riemann problem is given, together with a link to the p-system. Nevertheless,
one can mention the works of Henshaw, Smyth and Schwendeman [15] and
Schwendeman [20]| where the Whitham GSD equations are rewritten in con-
servative form. Schwendeman [20] also mentions the fact that the Riemann
problem admits simple solutions, but does not give full details.

In this section the GSD equations are recasted as a system of M and 6
where 6 parametrizes the front normal as n = (cosf)e, + (sinf)e,, with e,
and e, the unit vectors along the x and y axes respectively. For the Riemann
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problem, the initial condition is made of two planar fronts as sketched in
figure 2.1 : a shock of velocity M, and angle 8, interacts with another one of
velocity M, and angle 6,.. We work in polar coordinates (p, x), taking x = 0
for the horizontal axis (Ox). Note that the initial position of the first front

is then the half-line {x — =0 — g} Similarly, the initial position of the

second front is the half-line {X =xr =0+ g} With these notations, the
left front comes before the right one when the angle x increases. This is
coherent with the standard notations for the theory of the Riemann problem
and explains why the left front is on the bottom of the picture.

FIGURE 2.1 — Sketch of the initial condition of the GSD Riemann problem.

The p-system

The full resolution of the Riemann problem is known for the p-system

(see [24], [21]), which can be written in the form
8,5’1) — 83;U =0

2.11

{ Ou+ Ozp(v) =07 (2.11)

with t > 0, z € R, along with the properties p’ < 0 (and p” > 0, but the
sign of p” plays no role in the resolution of the Riemann problem and is
only a result of the usual physical interpretation in terms of isentropic gas
dynamics).

As one can note, the p-system is one-dimensional in space, and we want to
solve the stationary GSD equations in a two-dimensional space. Nevertheless,

it can be argued that the level-set function «, is a disguised time variable.
Va

Vol
is the unit vector normal to the front and e, the unit vector tangent to the

We then introduce the (o, 7) system of coordinates where e, = n =
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front such that (es,er) is direct. One can note that Whitham [29] already
introduced a similar system of coordinates, a and 3, proportional to our o
and 7, but with a non normalized gradient, leading to a slightly different
system.

Using the fact that (2.1) implies

curl <%> =0,

Div <ﬁ) — 0,

one can rewrite the GSD system in our system of coordinates as

050 + 0- log(M) =0
0-0 — 0y log(A(M)) =0~

(2.12)

which bears a strong similarity with the p-system. Keeping in mind that the
setting is different, to write it as a p-system we can take

{u =0
v =log(A(M))

Given that A is a smooth function in M with A'(M) < 0, it is invertible.
Noting its inverse by A™!, the expression for the function p is

p(v) = log (A_1 (e”)) .

We can then check that

e'U

PO = Ty A o)

<0,

because A’ < 0, which guarantees that the results obtained in the case of
the p-system still hold.

Geometrical structure of simple rarefactions

A rarefaction is a smooth transition between two constant states (My, 0y)
and (M., 0,) (see for instance figure 2.2). As a consequence of our analysis,
we will show that admissible solutions have to satisfy 0,60 > 0 and 0, > 0,
even if we do not assume it at the beginning of our analysis.

Writing (2.12) in polar coordinates (p, x), we get

(2.13)
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Keeping in mind that we are looking for solutions that only depend on
the angular variable x, we see that equations (2.13) can be rewritten as

(0y0)sin(0 — x) = —%—M) cos(f — x)
_ A'(M) 3 M
(0y0) cos(@ — x) = (8XM)W sin(f — x) = _(8XM)W sin(6 — x)

(2.14)
Combining the equations of system (2.14), we get the following funda-
mental relation

M
(0x0) <M sin?(6 — x) — B(]\J ) cos? (0 — X)> = 0.
From this equation we deduce that either 6 is constant (and then M is
also constant), which corresponds to the case where the front is planar, or

M and 6 satisfy the relation

tan(d — x) = o with o= +1. (2.15)

VB(M)
M
This relation is satisfied for any rarefaction, as soon as ¢ is not constant.
In particular, we have § > o(6 — x) > 0 with o = 1 for I-rarefactions, and
with 0 = —1 for 2-rarefactions.
The combination of the equations of system (2.14) also leads to the re-

lation )
) (0,M)

(0,0) 500) (2.16)
which gives
BUNCR' RN
axe_sm with &= +1. (2.17)

Plugging equations (2.17) and (2.15) in system (2.14) leads to oe = —1.
We then have

ow(M) + 0 = const (2.18)
with
B M —Al(m) . M 1 -
w(M) = /Mo A(m)md = /Mo \/md (2.19)

It can then be shown with other lengthy calculations involving derivations
of (2.15) and (2.18) with respect to x, that M satisfies the ODE

dM(x) _
o = oFM00) (2.20)
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_2y/BM)(M? + B(M
B 2M2 + Mp (M )
well defined). It can be checked that the denominator of F(M) is positive
when A”(M) > 0 and this last condition can be checked at least numerically
on some values of ~, or in general for large M.
In particular for M(x) and 6(x) solutions of (2.20) and (2.15), the quantity

ow(M(x)) + 0(x) = const (2.21)

along the rarefaction, with F(M

> 0 (when it is

is independent on x (it is indeed a Riemann invariant here). This shows in
particular that in any case we have 0,6 > 0 and then 6, > 6;. We also deduce
from (2.21) that

w(My) —w(M,) = o0, —6). (2.22)

We can then give the geometrical structure of 1-rarefactions and 2-
rarefactions in detail.

Proposition 2.3. (Structure of simple rarefactions)
Assume that 2M + B'(M) > 0. Let m > 6, — 0; > 0. We set x, =0, — 5 and
Xr = er + %
i) 1-rarefaction
Let My > M > 1 satisfying (2.23) for o = 1. Then there exist two angles
X1~ and X\, cf. figure 2.3.2, satisfying x¢e < X717 < X177 < Xr — 5 and such

that

O In the sector {x¢; < x < x|}, we have M = M, and 6 = 6,.

® In the sector {x]~ < x < X|"}, M satisfies (2.20) and 0 is given by

(2.15) for o = 1.
® In the sector {x77 < x < xr}, we have M = M, and 0 = 0,.
The angles X~ and x| are given by (2.15) for o =1, so
tan(6, — x] ) = % and tan(f, — x|7) = %
Moreover (2.21) holds true for o =1 for all x € [x¢, Xr]-
ii) 2-rarefaction
Let M, > Mg > 1 satisfying (2.23) for 0 = —1. Then there exist two angles
xbo~ and X5, cf. figure 2.8.2, satisfying xu +5<xy < o < xr and such

that

® In the sector {x¢ < x < x4 }, we have M = M, and 0 = 0.

® In the sector {x5~ < x < x5}, M satisfies (2.20) and 0 is given by

(2.15) for o = —1.
® In the sector {4 < X < xr}, we have M = M, and 6 = 0,.
The angles x5~ and x5 are given by (2.15) for o = —1, so
B(My) VB(M;)

tan(ﬁg—xg_):—Té and tan(f, — x5") = — i

Moreover (2.21) holds true for o = —1 for all x € [x¢, x+]-
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(a) l-rarefaction (b) 2-rarefaction

FIGURE 2.2 — Geometry of simple rarefaction waves.

Because M satisfies the ODE (2.20) for o = 1 along a 1-rarefaction and
for 0 = —1 along a 2-rarefaction, independently of 6, the shape of the front
along a rarefaction is universal. More precisely if we fix a level-set value
a = tp, associated with a time ¢ty > 0, there exists a spiral S, of polar
equation p = top1(x) such that the level set {a = ¢y} on a rarefaction
fan is the image of a portion of S, by an isometry (a direct isometry for 1-
rarefaction, and an indirect isometry for a 2-rarefaction). Moreover, when the
time goes on, the shape of the spiral is simply changed by dilation. Finally
this spiral is locally a convex curve, because we have shown that 9,0 > 0.

Geometrical structure of simple shocks

A shock is a discontinuity between two constant states (Mpy,6y) and
(M, 0,). Physically, we expect to have 0, < 8, for a simple shock and indeed,
while it is possible to construct functions with a simple shock that are formal
solutions of (2.12) with 6, < 6, such solutions do not satisfy the entropy
condition and are thus not physical (see Remark 2.4). Both quantities M
and 6 are discontinuous through the shock, but the level-set « is continuous,
albeit not smooth (see figure 2.3).

The trajectory of the (punctual) shock is the half-line x = x* with y, <
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X° < Xr. In order to satisfy the divergence equation in (2.1), we need to
have x* — x¢ < m and x, — x* < 7 and to have either y, < x* < x» — g

or x¢ + g < x* < Xr- Otherwise, the flux of % would be entering the shock
from both sides, which would contradict the fact that % is divergence free.
When x, < x° < x» — g, we have a 1-shock and the continuity of «

forces M, > M,. Using system (2.12),
we can get the relations between My, M,, 0,, 0, and x* = x7 with 6,,0, >
Xi- The first equation and the continuity of « lead to

MZ Mr

= ) 2.23
cos(fy — x*)  cos(f, — x*) (223)
The second equation gives that the flux of ﬁ through the boundary

of a closed domain is zero. If we consider the flux for a tube going through
the interface between the two states, we get

AWM AWMy (2.24)
sin(@y — x*)  sin(6, — x®)
From (2.23) and (2.24) we deduce
A(M,)sin(0; — 0,) My — M, cos(6; — 60,)
t Qr - § = = — ,
an(0r = X°) = T00) = A(M, ) cos(Br — 01) M, sin(6; — 6,)
(2.25)
and then by symmetry r/¢, we get
A(My)sin(0, — 6,) M, — Mycos(6; — 6,)
—3S — ==
tan(be = X") = = T = A cos(Oy — 6] Mysin(fr — 0,)
(2.26)
Notice that this implies
A(My)My + A(M,. )M,
cos(0y — 0,) = (M) M, + A(M;) (2.27)

A(MT)Mg + A(Mg)Mr '

We notice in particular that the general reordering inequality holds :
atb™ +a b= > atb” +a bt for all a¥ > a= > 0 and b7 > b= > 0.
Therefore, the fact that A(M) is decreasing in M implies in particular that

A(My) M,y + A(M, )M,

0<
A(M, )M + A(M) M,

<1

which makes sense for equality (2.27).
When x, + g < x® < Xr, we have a 2-shock and the continuity of «

forces M, < M,. Moreover, we have 0;,0, < x° = x3. The same reasoning
leads to (2.23) and (2.24) which gives the same relations as the ones above.
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Remark 2.4. Recall that admissible shocks have to satisfy an entropy condi-
tion in order to be stable : this is the Liu E-condition (which implies the Lax
E-condition), see paragraph 8.4 in [13]. It is also known that Lax E-condition
selects only half of the shock curve (see page 244, paragraph 8.3 in [13]). We
can see it on figure 2.4. This shows that only the case 0, < 0y is selected for
shocks.

With these informations in mind, we can give the structure of simple
shocks :

Proposition 2.5. (Structure of simple shocks)
Let 0 < 0y — 0, < 5 and M,, M, > 1 satysfying (2.27).
i) 1-shock

If M, > My > 1, then there exists x* = x5 < 04,0, given by (2.25) (or
equivalently by (2.26)), such that the situation is pictured on figure 2.3.2.
ii) 2-shock

If My > M, > 1, then there exists x° = x5 > 0y, 0, given by by (2.25) (or
equivalently by (2.26)), such that the situation is pictured on figure 2.3.2.

(a) 1-shock (b) 2-shock

FIGURE 2.3 — Geometry of simple shock waves.

Remark 2.6. We note that by replacing cos(6y — 0,.) by its expression (2.27)
in (2.26), one checks that (2.26) is equivalent to the relation given in [29]
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for a compression wedge.
Ap (M2 -2\
tan |6, — x°| = ﬁz (H) with Ay, = A(My) for b=4{,r.
J4 A - r

(2.28)

Remark 2.7. Here, we have privileged the geometric interpretation of the
Riemann problem. However, one can use the conservative form (2.13) of the
GSD model in polar coordinates to obtain in similar manner as in [29] the

equations (2.26)-(2.27) and (2.25)-(2.27).

Complete solutions of the Riemann problem

The relations satisfied by the velocities My and M,. and the angles 6, and
0, for rarefactions and for shocks lead us to conclude that, as in the case of
the p-system, there always exists a unique solution of the Riemann problem
constituted of at most two transitions (a transition being a rarefaction or a
shock). This happens to be true in a whole domain except in a region where
the model ceases to be physical (see figure 2.4).

Supposing the left state (My,0y) is fixed, we can define the 1-shock and
2-shock curves functions, S(IMZ,GZ)(M ) and S(2MZ,(9@)(M ), by stipulating that
for M > My, 6 = S(lMMZ)(M) is the only angle such that (Mp, 8y) and (M, 6)
satisfy the shock relation (2.27) (which implies that there is an acceptable
1-shock between the states (My,60;) and (M,60)) and for M < My, 6 =
S%Me,eg)(M) is the only angle such that (Mp, 8,) and (M, #) satisfy the shock
relation (2.27) (which implies that there is an acceptable 2-shock between
the states (Mg, 6,) and (M,6)). We define R%Mzﬂz)(M) and R%Mzﬁz)(M) in
a similar manner. For M < M;, 6 = R%Mzﬂz)(M) is the only angle such
that (My,0y) and (M, 0) satisfy the l-rarefaction relation (2.23) for o = 1,
and for M > M, 6 = R%Me’el)(M) is the only angle such that (My,6,) and
(M, 0) satisfy the 2-rarefaction relation (2.23) for o = —1. These functions
are drawn in a phase diagram on figure 2.4.

Nine cases, depending on the position of (M,,0,) relatively to (Mg, 6y)
in this diagram, are then defined. The first four ones are the general cases,
containing two transitions and an intermediate state, as in the study of the
p-system (see [24], pp. 306-320). The other five cases are limit cases with at
most one transition.

Case 1 : (M,,6,) is in zone I
The solution contains a 1-rarefaction between states (Mjy,0y) and (M*,0%),
and a 2-shock between states (M*,0*) and (M,,¥6,).
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Case 2 : (M,,6,) is in zone II
The solution contains a 1-shock between states (My, 0y) and (M*,0*), and a
2-shock between states (M*,0%) and (M, 0,).

Case 3 : (M,,0,) is in zone Il
The solution contains a 1-shock between states (Mpy, ;) and (M*,0*), and a
2-rarefaction between states (M*,0%) and (M,,0,).

Relations (2.23) and (2.27) ensure that solutions of this form always exist
when (M, 6,) is in zone I, I or TI.

excluded region

2
S (Me.00)

FIGURE 2.4 — Example of a phase diagram for (My,6,) = (10,0) (curves
R%Meﬁe)’ R%Meﬁz)’ S(lMe’el) and S(QMMz))’ for (My,0,) = (1.5,0) (curve

R%1.5,0)) and for (My,6;) = (1,60) (curve R%lﬂo))'

Case 4 : (M,,6,) is in zone IV

Except when (M, 0,) is in a particular, excluded region, there exists a so-
lution containing a l-rarefaction between states (My,0y) and (M*,6*), and
a 2-rarefaction between states (M*,0*) and (M,,6,). The curve R%Mz’ez) in-
tersects the vertical axis at the point (1,6y). The boundary of the excluded
region is then given by the curve 6 = R?lﬂo)(M).
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In zone IV, as the shape of the front along a rarefaction is universal, it is
possible to find the shape of the front (for example the level set {a = ty})
by noticing that the intermediate plane front must be both tangent to the
(sole) image by a direct isometry of S;, tangent to the front of the state
(My,0¢) and tangent to the sole image by an indirect isometry of Sy, tangent
to the front of the state (M,,6,), where we recall that S;, was defined at
the end of subsection 2.3.2. In particular the front is constructed by a simple
geometrical procedure (see figure 2.5).

FIGURE 2.5 — Geometrical determination of the intermediate state for a
double rarefaction.

We also remark that as in the analysis of [24], some states in the ex-
cluded region (as illustrated in figure 2.4) can not be joined with (My, ;) by
the means of two rarefactions. The reason is that Al/fimlw(M ) < 400, which

—

means that all curves R' intersect the line M = 1 at a finite point (1,6p)
depending on (Mpy,80;). When M, is high enough, 6y > 6, + 7 and there
is a solution for every physically possible initial data (M,,6,) (that is with
0, < 0p+7). But when M, is small, y < 0y+m and in this case, when (M, 6,)
is above the curve R%l’eo), the Riemann problem does not admit a solution
with two rarefactions. The physical interpretation of this is less clear than
in the usual interpretation of the p-system in terms of isentropic gas dynam-
ics, because the GSD approximation does not work as well when M is near 1.

Case 5 : M, > M, and 6, = S(IMZ,GZ)(MT)

The solution only contains a 1-shock between states (My, 6;) and (M,,0,).
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Case 6 : M, < My and 6, = S(QM(Z 9[)(Mr)
The solution only contains a 2-shock between states (My,0;) and (M, 0,.).

Case 7 : M, < M, and 0, = R%M[,ee)(MT)

The solution only contains a 1-rarefaction between states (My, 0,) and (M, 0,.).

Case 8 : M, > My and 6, = R?Meﬂz)(MT)

The solution only contains a 2-rarefaction between states (My, 6;) and (M, 0,).

Case 9 : M, = M, and 0, =6,
The solution is a uniform planar front of characteristics (M, 0y).

Geometrical interpretation

In the preceding subsection we have constructed the complete solutions
of the Riemann problem in the phase space before describing their geometry.
There is a more geometrical way to view this reconstruction. Indeed, as it is
described by Whitham in [29], a simple shock is the result of the compression
of a plane front by a wedge, and a rarefaction the result of the diffraction
of a plane front by a corner. Such solutions involve a wall boundary, and
in both cases the solution is a plane front near the wall, with a normal
vector n parallel to the wall. As a consequence, two such solutions can be
glued together along the wall boundary to form a complete solution of (2.1),
provided they have the same velocity M* at the wall. The solution thus
constructed is naturally the solution of a Riemann problem.

Conversely, the solution of any Riemann problem can be seen as the re-
union of two such half-solutions involving a wedge or a corner. For a typical
solution constituted of two transitions with an intermediary state, we can
split the solution by a virtual boundary at the angle x,, for which 6 = x.
Then the restrictions of the solution on both sectors {x < xu} and {x > xw}
are solutions which arise from the interaction of a plane front with a wedge
or with a corner. Figures 2.6 and 2.7 illustrate this construction.
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(a) 2-rarefaction (b) 2-shock (c) 1-rarefaction (d) 2-shock

FIGURE 2.6 — Half-solutions (with a horizontal wall).

(a) (b) (c) (d)

FiGuRrE 2.7 — Complete solutions of the Riemann problem.

2.4 Algorithm Validation

The algorithm summarized in section 2.2.6 is now evaluated on a set of
test cases of increasing complexity. For each of them a reference solution
is known or has been introduced previously in section 2.3. We begin by
checking the numerical convergence order of the scheme by comparison with
the smooth radial solution, before looking for discontinuous solutions in the
case of a compression wedge (shock-shock). The analysis of the Riemann
problem completes this experimental study of the numerical scheme. For
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these reference solutions in the discontinuous case, explicit expressions are
developed in the strong shock limit (i.e. M >> 1) using the simplified A-M
relation

A (Mo

Aco
A, M> ,  with Ao =5.0743 for v =1.4. (2.29)

All numerical experiments are performed with the full A-M relation (2.9)
but for a large enough Mach number value such that the infinite limit is
asymptotically reached.

2.4.1 Order of the scheme

The reference solution is obtained by numerically integrating the radial
system (2.10) with a fourth-order Runge-Kutta scheme in cylindrical and
spherical coordinates. The convergence study is made on the discrete L™
norm.

e Cylindrical shock For this two dimensional case, the computational
domain is reduced to the square [0, 50] x [0,50] due to the symmetry of the
problem. The initial conditions on o« and M are given by the radial solution
(2.10) on the quarter-circle of radius 4.9 centered at (0.0). We impose M = 10
for r < 1 to avoid the singularity at the origin. The boundary conditions are
of outgoing type on the edges {z = 50} and {y = 50}, and of rigid wall type
on the edges {x = 0} and {y = 0}. For this test case, the determination of
test values ¥ and m is made by the fixed-point algorithm.

The tables (2.1) give the norm of the error versus the grid spacing for
both the first-order and second-order schemes respectively. Note that N is
the number of nodes in each direction and that Az = Ay. The discrete order
is defined by :

where E; and Fs are respectively the errors associated to the meshes with
N1x Ny and No x Ns elements. A logarithmic representation is given in figures
2.4.1-2.4.1. One can note that the expected order of convergence is recovered
and as expected, the second-order scheme provides a better accuracy level.
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Mesh Error M Order M Error « Order «
100 x 100 9.2577e-02 1.5226e-01
200 x 200 4.2359e-02 1.1280 6.7709e-02 1.1691
300 x 300 2.7900e-02 1.0298 4.4638e-02 1.0276
400 x 400 2.0718e-02 1.0346 3.3047e-02 1.0451
500 x 500 1.6447e-02 1.0346 2.6159e-02 1.0475
600 x 600 1.3723e-02 0.9930 2.1880e-02 || 0.9797
800 x 800 1.0302e-02 0.9968 1.6198e-02 1.0452
900 x 900 9.1333e-03 1.0222 1.4450e-02 | 0.9692
1000 x 1000 || 8.1830e-03 1.0427 1.2935e-02 1.0514
E.C.0."T 1.0445 1.0597
Mesh Error M Order M Error « Order «
100 x 100 1.2571e-02 1.6974e-02
200 x 200 2.8049e-03 2.1641 3.7407e-03 || 2.1819
300 x 300 1.2828e-03 1.9295 1.6097e-03 || 2.0797
400 x 400 7.1314e-04 2.0409 8.8050e-04 || 2.0971
500 x 500 4.6273e-04 1.9383 5.5824e-04 || 2.0422
600 x 600 3.0824e-04 2.2284 3.8439e-04 || 2.0466
800 x 800 1.5767e-04 2.3303 2.0961e-04 || 2.1080
900 x 900 1.2552e-04 1.9358 1.6077e-04 | 2.2522
1000 x 1000 || 1.0399e-04 1.7857 1.3119e-04 1.9299
E.C.O. 2.0819 2.1047

TABLE 2.1 — Mesh convergence in the L* norm for the cylindrical case.

1. E.C.O. denotes the Experimental Convergence Order given by the linear fit of the
error in the logarithmic scale.
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FIGURE 2.8 — Mesh convergence in the L norm for the cylindrical case in
the logarithmic scale.

e Spherical shock The analysis of the numerical order of the scheme is
also carried on in 3D. Using symmetry conditions, the computational domain
reduces to the cube [0,10] x [0, 10] x [0, 10]. The initial front is given by the
radial solution on the sphere of radius 2 centered at the origin. As in the 2D
case, we impose M = 10 for r < 1 to avoid the singularity at the origin. The
boundary conditions are of outgoing type on the edges {z = 10}, {y = 10},
{z = 10}, and of rigid wall type on the edges {x = 0}, {y = 0}, {z = 0}. Here,
the resolution of the nonlinear system (2.8) is made by Newton’s method.
The results of the second-order numerical scheme are compared with the
semi-analytical radial solution considered previously. The table 2.2 gives the
error in the discrete L* norm between the two solutions, the logarithms of
these values are displayed in figure 2.9. The second-order of convergence is
also obtained in 3D.

Log of number of points
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Mesh Error M || Order M || Error o« || Order «
40 x 40 x 40 0.00557 0.00521
60 x 60 x 60 0.00234 2.1389 0.00232 1.9953
80 x 80 x 80 0.00129 2.0700 0.00126 2.1220
100 x 100 x 100 || 0.000791 2.1919 0.000808 1.9911
160 x 160 x 160 || 0.000309 1.9999 0.000308 || 2.0520
E.C.O. 2.0895 2.2873

TABLE 2.2 — Mesh convergence in the L* norm for the spherical case.
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FIGURE 2.9 — Mesh convergence in the L™ norm in the logarithmic scale.

These smooth test cases have proven that our fast-marching like algo-
rithm doesn’t suffer from using points in the NarrowBand and that the ex-
pected theoretical order of convergence is reached.



o8 CHAPITRE 2. THE GSD MODEL

2.4.2 Compression wedge test case

Attention is now paid to discontinuous solutions. We deal here with a
well-know test case, studied by many authors |29, 2|, consisting in the diffrac-
tion of an oblique shock by a wedge. It can be seen as an application of the
study of simple shocks. For an incoming front of velocity My and angle 6y =
interacting with a wedge of angle 6,, = 0, we are looking for a 2-shock join-
ing the states (My,0y) = (M, 0) and (M,,0,) = (Mo, 3), the velocity M, of
the Mach front and the angle x5 of the trajectory of the triple point being
unknown. The analysis of the structure of 2-shocks then gives us that M, is
governed by the relation (2.27), and x§ by (2.25).

In the strong shock limit, the equations (2.28) and (2.27) can be simplified
in the following implicit relationship between 5 and x3

1 m2 1/2
tanxs = m' <m)
, (2.30)
o om+ mAee
cosfB = T i
My ) ) .
where m = —— < 1 denotes the Mach number ratio on either side of the

shock-shock and Ao = 5.0743. The subscripts w and 0 characterize the
quantities on the wall and those of the incident (or initial) shock respectively,
X5 is the angle of the shock-shock line with the horizontal axis (Oz). This
analytical solution is displayed as a solid curve in the figure 2.10.

Here, the wedge is chosen aligned with the (Ox) axis to avoid a difficult
boundary treatment. The rigid wall condition is then imposed on the edge
{y = 0}. The computation was performed on the domain [0, 3] x [0, 3] with
a 300 x 300 mesh. The initial shock position is given by

(x —0.5)cos B — ysin 8

where § € [0,7/2] is the angle between the front normal and the wedge, and
My = 10. The values of M and « for all points inside the half space on the
left of the initial shock position (i.e. ap(z,y) < 0) are already intercepted
by the front and easily known since the shock is plane. An outflow condition
is imposed on the {z = 3} edge. Special care must be taken for the {y = 3}
edge since it corresponds to an inflow condition, so we set the exact solution
on it.
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251
— Whitham
.- X=—0.5*B+atan(k;1/2)
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angle of incidence:

FI1GURE 2.10 — Shock-shock angle versus angle of incidence for the first and
second order algorithm in comparison to Whitham’s analytical solution.

For a range of incident shock angle, a comparison between this theoretical
shock-shock locus and the numerical ones obtained by the first and second
order schemes is shown in figure 2.10. It is worth noting the very good
agreement between the theoretical position and the results of the second-
order version. This result is in agreement with [2] where a classical level-
set algorithm was used. One can also notice that the first-order numerical
scheme underestimates the value of x5 by several degrees, and follows a
nearly linear behaviour, lying on the tangent (dashed line) to the theoretical
curve at M = 1. A mesh refinement does not improve these results, which
demonstrates the necessity to use the second-order scheme when a shock
singularity is expected. Above nearly 45 degrees, the second order algorithm
is also in default and doesn’t show any shock-shock angle. This may be due
to the switching procedure, applied as it on the wall, which reduces locally
the order of the scheme. A better boundary treatment could help improve
this behaviour. Nevertheless, this is not a severe limitation in practice since
the GSD model is not expected to give accurate results in such an extreme
case [29].
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2.4.3 Test cases for the Riemann problem

A series of numerical experiments is now conducted to assess in more de-
tails the ability of the numerical scheme to solve the two dimensional GSD
Riemann problem. In section 2.3 we have given the mathematical solutions
and we refer the reader to 2.6 for the detail of their explicit construction in
the strong shock limit. We compare these reference solutions to the numer-
ical ones, by taking varying values of the initial constant states to cover all
configurations of paragraph 2.3.2. The first tests use the left state (My, 6y)
connected directly to the right state (M, 0,) by an elementary wave (either
a shock or a rarefaction), i.e. (M,,0,) lies on one of the curves R}, R?, S!,
S? issued from (My, ;) (see figure 2.4). More general initial datas are then
considered to cover the different zones of the figure 2.4 : zone I, zone II, zone
IT and zone IV, i.e. solutions with an intermediate state.

The numerical solution is obtained on the domain [0,5] x [0, 5] with a
500 x 500 grid. In all cases, the left state (M, 6;) = (10,0) is given and
we make the right state (M,,6,) vary in the plane (M, 6). We display a
comparison between the isolines of «, obtained by the first and second order
schemes, and the exact solution in each configuration. In these figures, the
red curve represents the numerical solution, the blue one represents the exact
solution and the green lines correspond to the characteristic curves. The
following figures gather all the results obtained for the different solutions of
the Riemann problems.

Simple waves

Simple waves correspond to cases 5 (1-shock), 6 (2-shock), 7 (1-rarefaction)
and 8 (2-rarefraction) of paragraph 2.3.2. They are difficult to compute in
practice since numerical roundoff on the initial condition may lead to the
emergence of an intermediate state.

The initial right state for the 1-shock and the 2-shock cases are (M., 0,.) =
(12, —-22.45) and (M,,6,) = (8.5,—20.24) respectively. Results are drawn in
figures 2.11 and 2.12. As expected from the compression wedge study, one
can note the excellent behaviour of the second order scheme for the 2-shock
case, but also for the 1-shock case. A severe deviation is present for the first
order algorithm applied on the 1-shock case.
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FIGURE 2.11 — 1-shock case : (My, 0;) = (10,0) and (M,,0,) = (12, —22.45).
Comparison of the numerical solution — and the exact solution —. The
characteristic curves — are displayed for convenience.
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FIGURE 2.12 - 2-shock case : (M6, = (10,0) and (MM,,0,) =

(8.5,—20.24). Same drawing convention.

The initial right state for the 1-rarefaction and the 2-rarefaction cases
are (M,,0,) = (8.5,20.97) and (M,,0,) = (12,23.53) respectively. Figures
2.13 and 2.14 exhibit a different behaviour for the first order version : the
1-rarefaction wave is well captured while the 2-rarefaction one shows large
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deviation. The second order scheme is excellent in both cases, nearly super-
imposed with the reference solution.

AN A,

(a) 1st order (b) 2nd order

FIGURE 2.13 — 1-rarefaction case : (My,0;) = (10,0) and (M,,0,) =
(8.5,20.97). Same drawing convention.

(a) 1st order (b) 2nd order

FIGURE 2.14 — 2-rarefaction case : (My,0,) = (10,0) and (M,,0,) =
(12,23.53). Same drawing convention.

1-rarefaction, 2-shock

This problem corresponds to case 1 of paragraph 2.3.2. The solution con-
sists of a 1-rarefaction connecting the left state (My,60;) = (10,0) to a con-
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stant intermediate state (M*,0*) followed by a 2-shock connecting (M*, 6%)
to the right state (M,,0,) = (5,30), i.e. (M,,0,) is within zone I on figure
2.4. Numerical results are shown on figure 2.15. One can note that the higher
order scheme allows a much better capture of the intermediate state, retriev-
ing a nearly plane front, while the first order scheme exhibit an unexpected
wave pattern.

1-shock, 2-shock configuration

This problem corresponds to case 2 of paragraph 2.3.2. The solution
consists of a 1-shock connecting the left state (My,0y) = (10,0) to a constant
intermediate state (M*, 6*) followed by a 2-shock connecting (M*,0*) to the
right state (M, 6,) = (10, —50), i.e. (M,,6,) is within zone I on figure 2.4.
Numerical results are shown on figure 2.16. As previously noticed, the higher
order scheme allows a better capture of the intermediate state. Here, the first
order scheme leads to an underestimation of the intermediate state’s Mach
number.

1-shock, 2-rarefaction configuration

This problem corresponds to case 3 of paragraph 2.3.2. The solution
consists of a 1-shock connecting the left state (My, 0y) = (10,0) to a constant
intermediate state (M*,0*) followed by a 2-rarefaction connecting (M*, 6*)
to the right state (M., 6,) = (20,10), i.e. (M,,0,) is within zone I on figure
2.4. Numerical results are shown on figure 2.17. As expected from the simple
wave results, the 1-shock is badly captured by the first order scheme and the
overall solution behaviour is dramatically affected. Here again, the second
order scheme performs well.

1-rarefaction, 2-rarefaction configuration

This problem corresponds to case 4 of paragraph 2.3.2. The solution
consists of a l-rarefaction connecting the left state (My,60,) = (10,0) to a
constant intermediate state (M*,0*) followed by a 2-rarefaction connecting
(M*,0%) to the right state (M,,6,) = (10,50), i.e. (M,,0,) is within zone
IV on figure 2.4. Numerical results are shown on figure 2.18. The superiority
and the necessity of a higher order scheme is clearly stated on this case.
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FIGURE 2.15 — 1-rarefaction + 2-shock : (M, 6,) = (10,0) and (M,,0,) =
(5,30). Same drawing convention.

(a) 1st order (b) 2nd order

FIGURE 2.16 — 1-shock + 2-shock : (My,0,) = (10,0) and (M,,0,) =
(10, —50). Same drawing convention.
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(a) 1st order

65

(b) 2nd order

FIGURE 2.17 — 1-shock + 2-rarefaction : (M, ;) = (10,0) and (M, 60,) =

(20, 10). Same drawing convention.

(a) 1st order

IS

w

(b) 2nd order

FIGURE 2.18 — 1-rarefaction + 2-rarefaction : (M,,0,) = (10,0) and
(M., 6,) = (10,50). Same drawing convention.

Synthesis

In view of the results obtained in this series of test cases, we note that
both first-order and second-order numerical schemes give, qualitatively, the
expected behaviour of the exact solution to the Riemann problem. However,
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there are substantial differences between the results obtained by each or-
der. It is observed that the first-order scheme is not accurate enough, which
leads to a significant discrepancy on the position of the shock, while the
second-order scheme provides a much better approximation and coincides
quite strictly with the exact solution for all cases.

2.5 Conclusion

In this paper, we described a new algorithm for solving the Geometrical
Shock Dynamics model. In this hyperbolic two equations model, the arrival
time, a(x), of a shock wave is given by a nonlinear eikonal equation whose
local speed, or Mach number M (x), is governed by a differential equation
depending on flow parameters and the front curvature. By reformulating the
transport equation on M as a convection—diffusion one, its approximation is
made easier and the lengthy discretization of the mean curvature is avoided.
The new algorithm follows the fast-marching method on a Cartesian grid but
uses trial values when updating the current node. First derivatives, appearing
in the eikonal and transport equations, are upwind sided up to second order
depending on the causality condition on a.. A key feature of the method is to
use a centered discrete Laplacian for the diffusion part, as much as possible,
without taking into account the causality condition (i.e. using points which
are not in the Known set). For this reason, the algorithm is not a fast-
marching method in the strictest sense, and we say it has fast-marching like
properties. The resulting algebraic nonlinear system is solved by an iterative
procedure, fixed point or Newton’s method, at each node.

For validation purpose, reference solutions are built for a smooth radial
expansion wave and the interaction of two shocks. This latter case is a Rie-
mann problem for which a link is made with the p-system in two dimensions.
A detailed analysis of this problem is provided and simple front character-
ization is given in the strong shock limit for any left and right states. In
general, those states are connected by shock or rarefaction waves developing
on the front.

Numerical experiments have shown that, as expected, the algorithm is
second order for smooth fronts and performs remarkably well on discontin-
uous solutions, although the non conservative model equations are solved.
Differences are however observed between the first and second order algo-
rithm on the Riemann problems. The second order scheme is much better
and very close to the reference solution, except when it locally switches to
first order. This is particularly noticeable on the compression wedge case
where the second order scheme fails above a wedge angle of nearly 45 de-
grees. This is not a severe limitation in practice since the GSD model is not
expected to give accurate results in such a case.

In the future we plan to extend our algorithm to deal with immersed
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rigid bodies and optimize the solver to achieve very fast computations. At
last, we infer that this new algorithm could also be valuable to the detonic
community, mainly for Detonation Shock Dynamics [26].

2.6 Appendix : Reference solutions of the Riemann
problem in the strong shock limit

Based on the geometric description of section 2.3, we outline the con-
struction of explicit solutions, in the strong shock limit (M >> 1), for the
2D Riemann problem. For the sake of simplicity, we give the explicit solu-
tion for specific configurations only : simple waves and a particular case with
an intermediate state. The key tool is to use the simplified relation (2.29)
between the area section and the Mach number.

We consider initial constant left and right states joined at the origin
O = (0,0) and use the polar coordinates x = pcos x and y = psin x.

2.6.1 Simple shock wave

From the limit form (2.29) of the A-M relation in the strong shock limit,
the equations (2.25)-(2.27) become (see also (2.30))

A
m” e +m
cos(Pe =0r) = T
A\ 1—m2 \V/% >
tan (x;, —6¢) = [-1+v(v—1)]m" (m)

where m = % and v = 1,2 for the 1-shock or 2-shock cases. Given 0 <

Op—0, < 3, fr(fm the first equation of this algebraic system, one deduces, by
an iterative procedure, the Mach number ratio m on each side of the shock-
shock singularity. This singularity is characterized by the angle x? which is
obtained by injecting m in the second equation.

For this case, the geometric construction is straightforward and proceeds
as follows. As shown in figure 2.19, we consider the two angular sectors sep-
arated by the shock line extending from the origin O and having the slope
tan x9. At a given time, one starts from a current position P = (x1,y1)
on the left state and draws the line segment whose normal makes the angle
0y with the (Oz) axis. The other endpoint of this segment, Py = (x2,y2),
lies on the shock line and so has the polar angle x;. This process is repeated
to draw the front shape at different times to cover the computational domain.

The scalar function «, that characterizes the successive front positions,
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0]

Py = (z1.91)

FI1GURE 2.19 — Example of geometric construction of 1-shock.

is then (see also figure 2.3)

xcos Oy + ysin by
M, ’

X< X5

a(z,y) =
x cos 6, + ysind,

M, ’

2.6.2 Simple rarefaction wave

As mentioned in section 2.3.2, the rarefaction locus is a spiral
p =top1(x) where tg > 0,

connecting the two constant states. In the strong shock limit (M >> 1), this
spiral is of logarithmic type, and the angle between its normal and the radial
direction is constant (see (2.15)) and is given by

1
0o = arctan 4/ — .

Aoo
In other words, the angles in Proposition 2.3 are written
X;,_z =0y Fdoo and X;E =0,F 5007

where the signs F refer to the 1-rarefaction and the 2-rarefaction respectively.
Moreover equation (2.23) simplifies to give

0, — 0y = F/ Ao log <MT>

M,
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with © > 6, — 0, > 0 (see Proposition 2.3).
The scalar function «, that characterizes the successive positions of the
shock front, is then written (see figure 2.2)

xcos by + ysinb,

<0,F0
MZ y X S U+ 00
+ X
a(r,y) = Kpe Vs , 0 F oo <X <0, F oo -
x cosf, + ysin b,

, X >0.F0

L MT X_ Tq: o
X1 o
with K = 250 F 3%

14

2.6.3 Complete solutions of the Riemann problem

Whatever the left and right initial conditions, the intermediate state
g
(0*, M*) can be written in the generic form :

M*
0" —0, = QR,S( )

M,
, (2.31)
M*
0, —0* =
ORr.s < Mr)
where, in the strong shock limit, the function Gr g is given by
Gr(m) = —v/Axlogm for a rarefaction
Gr,s(m) = B m + mie f hock
Gs(m) = —arccos T i or a shoc

For illustration purpose, we consider only the 1-rarefaction followed by
2-rarefaction case, for which system (2.31) can be solved explicitly. One then

checks that
0r +0r — VA log <%Z>

9*
2
0)—0r
M* = \ M, My Vi~

Remark 2.8. For any other configuration, an iterative procedure is required
to determine the intermediate state.
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For the example under consideration, the front is compound of five an-
gular sectors, according to the values of the polar angle x (see figure 2.5).
The Riemann solution consists in two spiral arcs, characterized respectively
by the angles +d+,, connecting the intermediate state to the plane shocks on
the left and on the right respectively. Note that in the region between the
two spiral arcs, the shock is plane (i.e. M = M* and 6 = 6*) and tangent to
both curves. More precisely, the function « is written

xcos by + ysin by
Mg ) XSHZ_(SOO
KipePs O —0s < x<0°—bx
0* in 0*
az,y) = T2 ]\;ysm 0 e SN SO+
KQPG_ﬁ ) 9*+500§X§9r+500
xcos B, + ysin b,
; >0, 4 0.
| M, X r 00
with 5 )50 5 (Optse)
COS O Pr—0) COS 0 (Petdc0)
K = Vico Ko = Voves
1 Mg € 5 2 Mr €

such that the function « is obviously continuous globally.
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Chapitre 3

Existence of plane wave like
solutions

for a nonlinear parabolic
equation in dimension one

This work has been written in collaboration with Régis Monneau (CER-
MICS, ENPC).
Abstract
In this paper we consider a reaction-diffusion equation in a periodic medium.
This is a parabolic semilinear equation in dimension one. The nonlinearity is sup-
posed to be periodic in space and in the state variable. Under certain assumptions,
we construct plane wave like solutions of this problem, and show that these solu-
tions satisfy a constraining structure property.

AMS Classification : 35K55
Keywords : periodic medium, semilinear equations, plane-like solutions.

3.1 Introduction

3.1.1 Setting of the problem

We consider solutions u(z,t) of the following parabolic semilinear equa-
tion forx e R, £ >0

up = Ugy + fx,u), (3.1)

for some function f which is 1-periodic in « and wu.
Our goal is to construct plane-like solutions satisfying a pseudo-periodicity

(6]
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property, that is
u (x—i— 1,t — g) = u(x,t)

for a couple (p,\) € R2. To this end, we assume that the function f satisfies
the following conditions :
Lipschitz regularity and Z-periodicity properties :

f € Lip(R*R) (32)
flx+kv+1)= f(x,v) forall (k1) €Z? (x,v)cR? '

3.1.2 Main results

Theorem 3.1. (Existence of plane-like solutions with periodicity
property)

Under assumption (3.2), for a given p > 0 with p~ € N, there exists a
unique A € R such that there exists a constant C > 0 independent of p and
a solution u of (3.1) on R x R which satisfy the following properties

1

lu(zx,t) Ip.’L‘ — M| <C (4)
u <:c o t> =1+u(zt) (i) (3.3)
Az >0 (ii1)
(e +1,t) > u(z,t) ().
Moreover
u(e+1t=3) =ul@t) i A£0 () (3.4)

up =0 if A=0 (v).
Finally, the constants A(p) are bounded independently of p.

Proposition 3.2. We fizx p > 0 and consider a solution u of (3.1) as in
Theorem 3.1. Then X is such that if A # 0, then

/[07”2 40

A f>0.
[0,1]2

and

Remark 3.3.

The hypothesis p~* € N is a working hypothesis which is useful to show
(17). It sould be possible to show the same results for p € Q* with the same
arguments

Proposition 3.4. (A relaxed monotonicity property for plane-like
solutions)
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We define Z the set of values of u which are zeros of f independently of x,
that 1s
Z={ueR|VzeR, f(z,u)=0}

Then for a given p > 0, there exists a solution u of (3.1) and A€ R, C' >0
satisfying (3.3),(3.4) such that the following property holds :

Vae Z, (u(z,t) <a<u(yt)=(r<y). (3.5)

3.1.3 Review of the literature

The homogeneous reaction-diffusion equation
Up = Ugy + u(l — u)

was first studied in the pioneering papers of Kolmogorov, Petrovsky and
Piskunov [11] and Fisher [10]. Many works have been dedicated to the ex-
istence of travelling front solutions of this kind of equations of the form
u(z,t) = U(x + ct) with ¢ the velocity of the wave. In the case of a periodic
medium, when the nonlinearity depends on the space variable, we have the
existence of pulsating travelling fronts for particular forms of the nonlinearity
I

Here we prove the existence of plane wave like solutions of this equa-
tion, that is solutions that are at a bounded distance of a plane wave. The
existence and regularity of plane-like minimizers of functionals in periodic
media has been shown for functionals of specific forms in a stationary (that
is, time independent) setting (see Caffarelli and De La Llave [4], and then
Valdinoci [11], De La Llave and Valdinoci [8], and Davila [7]). When the so-
lutions we construct are time independent, which is the case when the mean
of f is zero, this paper gives another proof for the existence of a stationary
minimizer in some of the cases they study. It must be noted that contrary
to these articles, our study remains limited to smooth solutions.

A paper of Blass, De La Llave and Valdinoci [3] studies the same problem
of plane-like minimizers, but it does so by studying a gradient semi-flow on
an instationary equation, introducing a parameter that could be viewed as
a time variable. As such, our parabolic equation (3.1) could be seen as a
particular case of the general equations studied there. However, the article
does not try to build plane-like solutions of the instationary equation and
focuses on the proof of comparison principles for solutions of relatively low
regularity.

3.1.4 Organization of the paper

Section 3.2 gives known results for viscosity solutions and smooth solu-
tions of the parabolic equation (3.1) with the possible addition of a nonlocal
term (given by an integral with a smooth kernel). In Section 3.3, we show
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regularity properties for the viscosity solutions of such equations. In Sec-
tion 3.4, we introduce the approached equation (3.11) with a nonlocal term,
and we show that with suitable initial conditions the solution of the Cauchy
problem is periodic in space and satisfies (3.3) (7). This approach is a way
to bound the space oscillations of the solutions and obtain the bound (3.3)
(7). We then show the existence of plane-like solutions for the approached
equation (3.11) in Section 3.5. With the help of this construction, we then
show in Section 3.6 the existence of plane-like solutions for equation (3.1).
Section 3.7 is devoted to the demonstration of the structure property Propo-
sition 3.4. The short Section 3.8 proves the link between the sign of A and
the mean of f expressed in Proposition 3.2.

3.2 Toolbox

In Section 3.4 and Section 3.5, we will use nonlocal operators defined for
v € Lf° (R) by

loc

Mo](z) = /R Jw)(o(z +y) — v(@))dy

with J a smooth, symmetric, nonnegative function with a compact support
[—A, A]. To simplify notations in the remainder of the paper, we define the
operator A, for € > 0 by

(Acu)(x,t) = f(z,u(x,t)) + eMlu(-,t)](z)
where we always assume that f satisfies
f e WhH(R?) and f is Z*-periodic. (3.6)
In particular, when € = 0, we have

(AOU)(x7t) = f(‘T?u(ajvt))'

In this toolbox, we will write I a general time interval, which we will suppose
open. We will consider general equations

Up = Ugy + A (3.7)

3.2.1 Viscosity solutions

We refer to [8, 1] for usual definitions of viscosity solutions. Here because
our nonlocal operator is very regular, we do not need to use the test function
in it. (More precisely, we can show that in the case of this nonlocal operator,
our definition of viscosity solutions is equivalent to the usual definition with
nonlocal operators.)
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Therefore, we will say that u is a subsolution to equation (3.7) on R x I if
for any (xg,t9) € R x I and any C? test function ¢ satisfying for some
arbitrary » > 0

u* <¢ on Rx(tg—rto+r), withequality at Py = (xo,tp),

then
ot < Paz + Acu at F.

We define supersolutions similarly (with u* replaced by u.).

Proposition 3.5. (Existence by Perron’s method)

Let u™ (resp. u™) be a viscosity supersolution (resp. subsolution) of (3.7) on
R x I, for e > 0, satisfying u~ < u™. Then there exists a viscosity solution
w of (3.7) on R x I such that

u_§u§u+.

Proposition 3.6. (Global comparison principle for viscosity solu-
tions)

Let T > 0. Let uy be a viscosity subsolution and us a viscosity supersolution
of (3.7) on Q@ =R x(0,T), fore > 0. Ifu; < wug att =0, then u; < uz on Q.

Proposition 3.7. (Additivity of viscosity solutions)
Here I =R or (0,+00). We consider g' fori = 1,2, two functions in CO(R x
I). Let u' for i = 1,2 be viscosity solutions of the following equations :

up —uL, =g° on RxI.

We define u = u* +u? and g = g' + g*. Then u is a viscosity solution of

U — Uge =¢g on RxI.

3.2.2 Classical solutions

Definition 3.8. (Parabolic boundary)

Let Q be a connected subset of R, x R,. We define its parabolic boundary
OPQ (see [10], chapter 2, p. 7) as follows :

OPQ is the set of all points (xo,tg) € OQ such that for any e > 0, the cylinder
(xo —e,20 +€) X (tg — &,tg) contains points not in Q.

Proposition 3.9. (Local comparison principle)

Let QQ be a connected open subset of Rx I with I a time interval. Let us denote
by OPQ) its parabolic boundary. For e = 0, let uy be a subsolution and us a
supersolution of (3.7) on Q which are assumed to belong to C**(Q)NC(Q).
If uy <wg on IPQ), then u; < ug on Q.
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This proposition is proved in [10], chapter 2, Corollary 2.5 p. 9.

In the next propositions, we will state regularity properties for solutions
of (3.7) based on interior estimates. To that effect, we define the parbolic
closed cylinders

Qr(z,t) =[xz —rx+7r] x [t —7r%t] C R?
for (z,t) € R2.

Proposition 3.10. (Interior estimates in WP spaces)

Let u be a solution (in the distribution sense) of (3.7) in R x I.

We fixr >0 and 1 < p < +00. Then there exists a constant C' > 0 such that
for all (z,t) e R x I,

lullwze@,z.0) < C (1Actll Lo @zt + 10l Lr(Qar (2:)))
as soon as Qo (z,t) CR x I.
Proposition 3.11. (Interior estimates in Hélder spaces)
Let u be a solution (in the distribution sense) of (3.7) in R x I. We fix

r>0and 0 < a < 1. Then there exists a constant C' > 0 such that for all
(x,t) e Rx 1,

)+ lul

C* % (Qar(at

il g2ranss (g, (py < C (I14cul

CQ,%(Q?r(:B?t)))
as soon as Qo (z,t) CR x I.
This proposition derives from [9], Theorem 5.4 p. 448.

Proposition 3.12. (Sobolev injection in a parabolic setting)

Consider 3 <p < +oo and o < 1 — % and fiz r > 0. Then for all (z,t) € R?
(Qr(z,t)) and

14+
2

and for all w € W>LP(Q,.(x,t)), we have that u € C*T
there ezists a constant C, independent on (z,t), such that

HUHCHQ,HTQ(QT(M)) < Cllullwz1r(Q, (2,1))-

This proposition is shown in [9], Lemma 3.3 p. 80.

Proposition 3.13. (Strong maximum principle for strong solutions)
Let Q@ C R x I be a space-time cylinder, subset of R x I. Let uy and us be
two strong solutions of

up = Au+ Aqu

on Q, satisfying
{ ul < u9 on Q

u (o, to) = uz(wo,to) for some (zo,tp) € Q.

Then u1 = ug on Q.
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Such a strong version of the strong maximum principle, enabling general
nonlinearities, is stated in [1]. Actually, the usual formulation of the strong
maximum principle (as given in [1]) only gives that u(x,t) = wua(x,t) for
t < to. Here, as we consider regular solutions and the domain is a cylinder,
the comparison principle gives uy(z,t) = ug(z,t) also when t > tg.

Proposition 3.14. (Existence of a viscosity solution for the Cauchy
problem and bounds)
Here I = [0,+00). We write ug(x) = px with p € R. Then the problem

Up = Uge + Act on R x I
u(z,0) =ug(x) onR

admits a unique solution u in the viscosity sense.
Moreover, there exists C' > 0 such that ug — Ct < u < wug + Ct.

Proof of Proposition 3.14

This proposition follows from the fact that ug + || f|lcot and ug — || f]|cot
are respectively a supersolution and a subsolution of (3.7) on R x (0, +00)
with the initial condition wug.

3.3 Preliminary results

Proposition 3.15. (H6lder regularity of viscosity solutions)
Here I = (0,+00) or I = R. Let p € R and consider a continuous viscosity
solution u of the problem

ur = Au+ Azu on Rx1 (3.9)
u(z,0) = up(z) =pxr on R. '
when I = (0,400), or a viscosity solution u of
up=Au+ A.uon RxI (3.9)

when I = R.

Thenu € C*Fol+s (K)ﬂCfo’cl (RxI) for all compact cylinders K = Q,(xq,to)
(with to large enough in the case I = (0,+00)) and for some a > 0. Moreover,
u has the following Holder bounds :

HUHCHWH%(K) < Cayr (||A€UHL°°(K’) + HUHLOO(K’))
with
K' =lxg—2r — 1,20+ 2r' + 1] x [tg — 4r'* — 1,19 + 1]

and

, 2r+ A whene >0
1 2r when € =0
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Proof of Proposition 3.15

The proof is based on a bootstrap technique and the use of interior es-
timates in which we derive strong estimates on a solution u in a small box
from weaker estimates in a larger box. In addition to the notation

QT(antO) = [‘IEO — 7,20 + T] X [to - TQatO]a
we will use another notation for cylinders
Q. (xo,t0) = [wo — 7 — Lzg + 7+ 1] X [tg — 7% — 1,0 + 1].

The second notation allows us to take into account the smearing created by
a convolution with a smooth kernel.

Step 1 : Setting of the proof

We consider u a viscosity solution of (3.8) or (3.9).

Now we define g = f(x,u) + eM[u](z), where the small quantity ¢ is
set to be zero when Au = f(x,u). The function ¢ is continuous, and if there
exists A € R such that u—pxr— At is bounded, then g is also bounded. Indeed,
in that case g = f(x,u) +eM[u — pr — At] and

19lloe < M flloe + 2011 L2 ) 1w — P2 — Al oo (mx 1) -
By our definition u is a viscosity solution of
Up — Uy = ¢ in R X 1.

Step 2 : Regularization of u
We consider a function p € C*°(R x R) such that

p>0, plx)=p(-z), /Rp =1, supp(p) € B1(0,0).

1 T t
With these properties, the sequence (p,)y>0, With p,(z,t) = —p (—, —), is

an approximate identity for the convolution.

We define u, = p, xu and g, = p, x g. We have u,, g, € C°(R x L)),
where I, = R when I = R and I,, = [, 4+00) when I = [0,4+00). Viewing
gy and u,, as limits of weighted sums of translations of g and u, we can use
the additivity of viscosity solutions (Proposition 3.7) to show that u, is a
viscosity solution of

(uﬂ)t - (un)mm = 0n in R x 177‘

Step 3 : Estimates on regular solutions u,
As the functions u, and g, are regular, we can use regularity theories
to estimate the derivatives of w,. For a point Py = (zo,t), we have that
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Q,(Py) C R x I unconditionally when I = R and as soon as ¢ty > r? when
I = [0,+00). We consider Py € R x I such that Q,(F) C R x I and
Q2-(Py) C R x I. Then the interior estimates theorem in W2LP classes
(Proposition 3.10) gives us that

max{ ||uy || Lr (@, (Po))s 1 (Un)ell Lr @, (Po))» | (Un)z L r(@n (o)) 1)z | Lo (@, (Po)) }
< Cpr (9]l Lo (@ar(po)) + 1l Lo (@ar(Pn))) »

the constant C), , being independent of Fy. As g, and u, are continuous, we
may also write

max{ ||u, || Lo (@, (Po))s 1 (Un)ell e @, (Po))» | (Un) el r(@n (Po)) s 1)z | Lo (@, (Po)) }
< Chr (lgnll oo (@ar(po)) + lnll oo (@ar (o)) -

When 7 < 1, for a any continuous function h € C%(R x I), we have

1Rl Lo (Qar(Po)) < Il oo (@, (Po))

as soon as Q% (Py) = [0 —2r — 1m0 +2r + 1] x [to —4r? —1,tp+1] C R x I.
Using the Sobolev embedding W2P(Q,) — e g (Qr) with a =

1 — —, we have that
p

el e 52 g, < Cr (lgllzoe s o) + Nl e, coun) -

To have the Holder continuity of u,, it is then sufficient to take p > 4.

Step 4 : Analysis of the limit n» — 0 and regularity of «

The remaining estimations are derived directly on u (the usual bootstrap
technique does not work directly on u, because of the convolution). We take
the limit as n — 0 of the equation

(un)e = (up)zz = gy

in the distribution sense. Then we recall that from the construction of w,,
u, converges to v uniformly, so the derivatives converge in the distribution
sense. As g is continuous, g is also the limit of the functions g;, for the uniform
convergence on every compact subset.

The functions u, are uniformly bounded in Cl+°"I+TQ(QT(P0)), the bounds
depending only on [lul[ze(qy (py))s 19llz(qQy, (P)), 7 and a (in particular

they are independent of Fy). As a consequence, for any o < a, u,;, — u in
/ 1+o¢/

CH 73 (Qr(Py)) as soon as Qb (Py) € R x I,y for some 7/ > 0 and u has

similar bounds in Cl+a/’1+Ta(QT(P0)).
As M[u] has the same regularity on [x1, x| X [t1,t2] as u on [z1 — A, x9 +
A] X [t1,t2] and f is Lipschitz continuous, the function g = f(u,z) +eM]|u]
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is bounded in CLHTQ(QT(PO)) C C’B’g(QT(PO)) for some 8 < 1, the bounds

depending only on the quantities ||u L 1dal
P & ony q | Hc“ra A (lwo—r—A,zo+r+A]x[to—12,t0])
gl / 1ta , 7 and f.

e T (lwo—r—A,mo+r+A] x [to—412 to])
For ' = r+ A, we have [xg —r — A, zg + 7+ A] x [tog — 412, t9] C Qu(Py),
so using the previous Holder bounds on u and g we get that the bound of ¢

. B

in CP3 (Qr(Pp)) depends only on ||’U/HLOO(Q/2T,(PO)), Hg||Loo(Q/2T,(PO)), r and S.
We can then use the Hélder interior estimates (Proposition 3.11) to derive

stronger bounds on u :

max{ |[ull

7 e Nuzall s g ¥

s || U
4 @y 1%ellos.g g,y 2(Qu(P))

_|_
-+l

Cﬁ,g (Q’I’(PO

<ot (ngu

%% (Qar(Po) B3 Qo))

We conclude that, for v’ = 2r + A,

||“HC2+5,1+§(QT(PO)) < Cg,r <H9”L°°(Q’2r,(P0)) + [Jull oo ;T,(Po))) -

The value of r can be as small as one want (even if the constants become
high), so this means that v € C21(R x ).

When e = 0, there is no need to take into account the regularity of Mu],
and g = Au is bounded in R x I by || f||co s0 we have the estimate

HU||CQ+B’1+§(QT(PO)) < C;J),T <||f||00 + HuHLOO(Q/QT,(Po))) )

now with ' = 2r.

Proposition 3.16. (Ho6lder bounds for solutions of the form “lin-
ear+bounded”)

We consider a solution u of the problem (3.8) or (3.9) as above. Moreover,
we suppose that for some X\ € R, there exists a constant C' > 0 such that

|lu—pz — Xt| < C.

Then w has the following (stricter) bounds in CEIQ’H%(QT(PO)) for some

a>0:
lellgararss g, py) < lulloo@rroy + Ci

uniformly for Py € R x I with ty large enough.

Proof of Proposition 3.16

If lu — px — M| < C, then A.u = f(z,u) + eM]u] is uniformly bounded
on R x I, because M is zero for constants and linear functions. Moreover, if
u is a solution of (3.8) (without the initial condition) or (3.9), then u + n is
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also a solution of (3.8) or (3.9) for n € Z. As a consequence, for all n € Z,
and taking ' = 2r + A, we get
/
b=l gansies g, imy = CorlOrt
Ju— nHLoo([a;o—Qr'—l,zo+2r/+1]x[t0—4r'2—1,t0+1}))-
We note K1 = [xg — 2r' — 1,29 + 2r' + 1] x [to — 47" — 1,49 + 1] and take
1
n = Lm u] where [-] is the floor function. The bound on u — pz — A\t
1 JK
implies that '

lu—n| <1+ p(dr' +2) + |A|(4r2 +2) = Cy

on [zg—2r" — 1,20+ 2r" + 1] x [to — 4% — 1,¢9 + 1].

Then for a fixed r, there exists a constant C5 (possibly depending on C, r,
f and A) such that for all Py with ¢y large enough, there exists n € Z such
that :

|lu —nl| < (4.

CHIIE Q. (Py)
But we can remark that

lu — nHC2+5’1+§(Qr(Po)) = [lu = nllco@.poy)

(1l e g iy ~ 1l

because the C!, C? seminorms or the Holder brackets of (u — n) do not
depend on n. As a result, we have that

HU||02+B’1+§(QT(PO)) < HUHCO(QT(PO)) + 04

uniformly for Py € R x I with ¢y large enough (and with Cy = 2C3).
When € = 0, we can take ' = 2r + 1 and Cy4 does not depend on A any
more.

Corollary 3.17. Regularity of the time derivative of u

In the case e = 0, consider u a solution of (3.9) and suppose f is of class
C' on the range of u. Then u; is bounded in C2+a’1+%(K) for all compacts
K and for some o > 0, and it is a solution of the equation

(ut)t = (ut)xx + fqi(xau)ut (310)

Proof of Corollary 3.17

Taking the derivative of equation (3.9) gives that w; satisfies (3.10) in
the distibution sense.
Proposition 3.15 gives us that u; is bounded in €2 (K) for all compacts K
and as u is regular enough, f!(z,u) is Lipschitz in (z,t¢). Then by Propo-
sition 3.11, u; is bounded in C’2+O"1+%(K) for all compacts K, and as a
consequence it is a strong solution of (3.10).
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3.4 Analysis of the Cauchy problem with a nonlocal
term

Our strategy to prove Theorem 3.1 is to solve the Cauchy problem and
pass to the limit as the time variable goes to infinity. We do not know how
to do it directly. In order to get enough control on the solution, we introduce
the following approached problem for some € > 0 :

up = Au+ f(u,x) + eMu(-,t)] (3.11)

where for any given p > 0 with p~! € N, the nonlocal operator M = M,
depends on p and is defined by

Mpl(a) = Mylel(@) = [ L)t +9) — (@),
with J, a smooth nonnegative symmetric function satisfying

1
Jp(x) =0 for |z| > —
P (3.12)

1 1
Jp($) > 5 fOI‘ |x\ < %

Proposition 3.18. (Control of the solution of the Cauchy problem)
Let u be the solution of (3.11) for € > 0, with initial condition

u(x,0) = px (3.13)

where p > 0 with p~1 € N. Then u satisfies (3.3) parts (i) and (ii) on Rx R
for some constants C. and ..

Proof of Proposition 3.18

Step 0 : Construction of barriers
Let us consider the functions

ut(z,t) = pr+Ct with C = ||f]|co-

Because the operator M vanishes on affine functions, we deduce that u™
(resp. u™) is a viscosity supersolution (resp. subsolution) of (3.11) with initial
condition (3.13). From Proposition 3.5, we deduce that there exists a viscosity
solution u of (3.11), (3.13) satisfying

u <u<u’. (3.14)

This means that (u)* is a subsolution and (u), is a supersolution. The com-
parison principle (Proposition 3.6) implies that (u)* < (u). which shows that
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the solution u is continuous (and is unique).

Step 1 : Proof of (ii) for the solution of (3.11), (3.13)
Let

- 1
u(x,t) :u<x+—,t> -1
p

As p7! € N, @ is a solution of (3.11), because this equation is invari-
ant by addition of integers and by integer translations in space. Moreover,
t(x,0) = pr = u(zx,0). By the comparison principle (Proposition 3.6), @ = u
and then wu satisfies (i7).

Asug(x+1) > up(z) and v and u(-+1, -) are solutions of the same equation,
by the comparison principle u(z + 1,t) > u(x,t).

Step 2 : Control of the space oscillations for the solution of (3.11),

(3.13)
The goal of this step is to show that there exists C. > 0 such that for all
t >0, forall z € R, y € R, we have

lu(x +y,t) —u(z,t) — py| < CL. (3.15)

Substep 2.1 : Inequations on the extrema of v
We define v(z,t) = u(z,t) — pr. So v satisfies

{ vy = Av + f(z,v+ px) +eMv(-,t)]
v(z,0) = 0.

As w is a continuous viscosity solution of (3.11), by Proposition 3.15, u is a
regular solution of (3.11), this equation on v is satified in the sense of strong
solutions. Notice that (3.14) implies |v| < Ct. We then define

The Lipschitz regularity of v also guarantee that m and m are at least locally
Lipschitz continuous. Using (3.3),(4i), we can remark that

1 1
v<:c+—,t) :u<x+—,t>—px—lzu(x,t)+1—px—1:v(x,t)
p p

so v is —-periodic in x 80 at a given time ¢t both extrema are reached for

p
finite values of x, and we can suppose
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1
with |Yi], |ye| < 2 We do not know if 7 and m are differentiable, but we
p

will write

m(t + h) —m(t)

m’ = limsup

h—0, h£0 h
and h
h—0, h#£0 h

We will particularly study 7/, the reasoning is the same for m/.

At a given time ¢, we note ) the set of maximizers of v at time ¢ in the

1 1
interval [— —] Now for all h # 0, we consider a point Y15 € Vipp. A

2p’ 2
compactnessgrufnent shows that any subsequence of (Y;45,) with h — 0 has
a converging subsequence. We consider a sequence h,, — 0 such that Y; j,
converges and we call Y the limit. As v is continuous, Y is a maximizer of v
at time ¢, i.e. Y € ).
Then for all n, as Y is a maximizer at time ¢,

v(Yein,  t+ hyn) —0(Yit) <oYign, , t + hy) — 0(Yegn,, t). (3.16)

But we have

/U(}/t-f-ha t+ h) B /U(}/t-f-hn t)
h

lim sup
he(hy)

We note that because Y is a maximizer and v € C*1(Rx (0, +00)), Av(Y,
0. Combining (3.16) and (3.17), we get

lim Supm(t + h) —m(t)

he(hn) h < f(Yit) = pY) +eMu( )](Y).

As this is true for all converging subsequence (h,,) and for all accumulation
value Y, we get that

. it + h) — ()
timsup T < max (f(0(Y,1) = pY) + =M D)(V)

In particular there exists Y; € )} such that
m'(t) < f(v(Ye,t) — pYe) + eMu (-, 1)](Y3). (3.18)

Similarly, we can show that there exists y; € ), (where )y is the set of
minimizers of v) such that

m'(t) = f((ye,t) — pye) +eMo(,1)](ye)- (3.19)

Substep 2.2 : Construction of an inequation on the oscillation and
conclusion
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We can take the difference of the inequalities (3.18) and (3.19), and if we
note
o = lim Supw
h—0 h

)

we get

o' < fo(Ye,t) +pYe, Vi) — f(o(ye,t) + Py, vt

—i—s/J(z) (v(Yy + z,t) —v(Yi,t) —o(yr + 2,t) + v(ye, t)) dz.
R

Y,
We define ¢; = t;_yt, 0y , 2 =2+ 6 and 2’ = z — §;. We note

that Y+ 2=+ 6 +z=c+7Z andyy +2=c¢; — 0 + 2 = ¢ + 2”. Then
we have

_ Yi—w

o < 2|lfl +5/ I = 8) (vler + 2 8) — o(Ye, 1)) d2’

te [ J(Z" +6) (v(ys, t) — vler + 2", ¢8)) d2".
R

By the construction of Y; and y;, we have
’U(Ct + Zlu t) - /U(}/ty t) < 0

and
U(yt>t) - U(Ct + Zﬂvt) < 0.

If we replace the silent variables 2’ and z” by the same z, we have
o' < 2| fllo
+€/ inf(J(z —0r), J (2 4+ &) (v(ye, t) — v(cr + 2,t) + vl + 2,t) —v(Ye, 1)) dz
R
<2 fll + e/ nf(J(z — 8), I (= + 60))(—o(t))dz
R
< 2||fll — 0K,

where K = / inf(J(z + &), J(z — &;))dz. Note that with the periodicity of
R

-1 1

v we can ensure that D <& < 3 so K is positive for J = J, as defined
P P

in (3.12) (using the continuity of J,).

So finally

9

21|/
< Al 7oo
7=k
which implies (3.15) and then concludes the proof of this second step.

Step 3 : Control of the space-time oscillations (i)
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The goal of this step is to show that w satisfies part (i) of (3.3) with
constants C. and A possibly dependent of e.
For T' > 0,we define

w(0,t +T) —u(0,t)

AT(T) = su
(T) Sup T
and (0, +T) — u(0, )
_ . u(0,t+ —u(0,
D= T

In the following, we still use the notation v(x,t) = u(z,t) — pz.M
Substep 3.1 : Bounds on A\ (7T) and A\~ (T)
We first prove that there exists a constant C independent on 7" > 1 such
that
—C1 <A (T) < AH(T) < . (3.20)

It is clear that for all T, A\ (T") > A\~ (T).

Fix a time ¢ty > 0. We know that v(-,tg) € C°(R) N L(R) and v(, o)
is periodic. Then there exists k € Z such that minv(-,t) € [k, k + 1[. By
the oscillation estimate (3.15), it follows that maxv(-,tg) < (k+ 1) + CL.
Equivalently, 0 < v(-,t9) — k < CL + 1.

Now define the functions

Vi CL+ 1+ 7] flso

and
u'(1) = ' (z,7) + pa.

We then have

up > Au' + f(z,u') + eM[u].

This implies that u' is a supersolution of (3.11). We also have that
(x,7) — u(x, to+7)—2k is a solution of (3.11), since the equation is invariant
by time translation and addition of integers. At time 7 = 0, we have

W' (2,0) = CL+ 1+ px > u(z, to) — k.
From the comparison principle (Proposition 3.6), it follows that for all 7 > 0,
' (z,7) > u(z,to +7) — k.
In particular, for 7 = T, we have
CL4+14+T|flloo +pr > u(z,to +T) — k.
Combined with the fact that u(0,%y) — k > 0, this implies that

u(0,t0 +7T) — u(0,tg) - Cl+1
T - T

+ 1 lloe-
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This inequality remains valid for all o > 0, so, for T' > 1,
ANT) < CLA 1+ [ fllee = Ch, (321)

Similarly, we can derive the lower bound (3.20) for A™(7") when T > 1.

Substep 3.2 : Upper bound on A\ (T) — A\~ (T)

Consider a positive real number T > 0.

We will first study the case where both the infimum A7(7") and the
supremum A" (T) are reached in [0,+oo[, which means that there exists
t1 > 0 and t9 > 0 such that

~u(0,ty +T) —u(0,ty)
e (0t +T) —u(0,t)
A(T) = 2 - 2

Consider the function
u(z,t) =u(z,t+ta—t1) + K

with K = |u(0,t1) — u(0,t2) + 2CL] + 1, where the function |-] is the floor
function. Then u and u’ are both solutions of (3.11). Now for t = t1,

' (z,t1) = u(z, ta) + ([w(0,t1) — uw(0,t2) + 2CL] + 1) > u(z, ty)

where we have used the estimate on space oscillations (3.15).
Then, by the comparison principle, for all t > ¢q,

o (z,t) > u(z,t).
In particular, for t =t; + 7T, we have
w(w,ty +T) —u(0,t2) + 1+ 2CL > u(z,t; +T) — u(0,t1),

so, taking x = 0, we get

1+ 2C"
A(T) + —22 > (),
which we can rewrite
14 2C"
0 < XF(T) = A~(T) < 122 (3.22)

- T
Even if the infimum or the supremum is not reached, we have that, for
1 > 0, there exists ¢t > 0 and to > 0 such that

’LL(O, t1 + T) B U(O, tl) +

AT(T) < 7
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A (T) > u(0,to + Tzz —u(0,t2) .

The same line of reasoning then leads to

w(x,ty +T) —u(0,t3) + 1+ 20 > u(w,t; +T) — u(0,t;)

SO

> AH(T) —n.

_ 1+ 2C!
A (T)-f-??‘f‘Te

As this is true for all n > 0, (3.22) still holds in that case.

Substep 3.3 : Evaluation of the variations of \™ and A\~
Now, let s € N\ {0} an integer.
We first assume that there exists ¢t; > 0 such that
0,1 +pT) —u(0,t1)

A pr) = A 7 .

It is clear that
STAT(sT) = u(0,t; + sT) — u(0,t1) < sTAT(T),
SO
AT (sT) < AT(T).

If the supremum AT (sT') is not reached, then for all > 0 there exists a
time ¢, such that

STAY(sT) —n < u(0,t, + sT) — u(0,t,).
As above,
u(0,t, + sT) — u(0,t,) < sTAT(T),

so we have, for all n > 0,
STAT(sT) —n < sTAT(T),

which implies again that AT (s7) < AT(T'). Similarly, it can be proved that
A7 (sT) > A= (1).

Now take T} > 0 and T > 0 and assume that sT) = rT5, with s € N\ {0}
and r € N\ {0}. Using the preceding conclusions, we have the following
inequalities :

1+2C!
15

)\+(T1) > /\+(ST1) = )\+(7’T2) > )\_(TTQ) > )\_(Tg) > )\+(T2) —

SO
1+ 20!

AT(Ty) — AT (Th) < T
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Exchanging the indices 1 and 2, we see that this implies

) 11
AT (Ty) = AT (Ty)| < (14 2CL) max <?1 E) (3.23)

T
for all Ty, T5 > 0 such that Tl €Q.
2

The solution u being in C%}(R x (0,+0o0)), the function «(0,-) is uni-
formly continuous; as a consequence the function AT is continuous in 7T,
which implies that the inequalities above remain true for any 77,75 > 0.

Using the same method we derive the same property for A~ : for all
Ty, T > 0,

_ _ 1 1
1 12
Substep 3.4 : Limit of AT and A\~ and end of the proof

Then, if (T}, )nen is an increasing sequence with limit 400, both sequences
AT(T,) and A~ (T},) are Cauchy sequences and then converge. As this is true
for any sequence (7T},) with limit +o00, both AT(T') and A~ (T") have a limit
for T — oo. Furthermore, the inequality (3.22) shows these two limits are
equal. Define

A= lim AY(T) = lim A\ (7).
T—00 T—o0
We consider inequalities (3.23) and (3.24) and take the limit 75 — oo to
deduce the following inequalities, for 7" > 0

" B 1+2C!
‘)\ (T) )\| < T
and L ocr
_ + 207
‘)\ (T) — )\‘ < —7

Now, for all T' > 0, we deduce

AT — (14 2CL) < u(0,T) —u(0,0) < AT + (1 + 2C%).
Combining this with (3.15), we can write

AT — (1 +3CL) < u(z,T) —u(0,0) < AT + (1 + 3C%).

As we have taken u(0,0) = 0, noting C" = 1 + 3C., we have then proved
that, for all t > 0
lu(z,t) — pr — M| < C". (3.25)

This proves this third step and finishes the proof of Proposition 3.18.
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3.5 Construction of global solutions of the approached
problem

We can show that when there exists a solution of the Cauchy problem
(3.11),(3.13) with these properties, we can construct a global solution satis-
fying (3.3) and (3.4) if A. # 0. This implication remains true when ¢ = 0,
i.e. for the equation (3.1).

Proposition 3.19 (Existence of a global solution and uniform bounds).
We consider a given p > 0 with p~' € N and ¢ > 0. We suppose that there

exists a solution u of the Cauchy problem (3.11),(3.13) (or (3.1),(3.13) in

the case € = 0) satisfying (3.3), (i), (i7), (iv).

Then there exists a unique A- € R such that there exists a global solution for

equation (3.11) on R x R satisfying (3.3) and (3.4).

Moreover, the constants A. remain bounded uniformly in € > 0 and p, and

there exists C' independent on ¢ such that the estimate (3.3) (i) holds for

all € > 0. This result remain true when € = 0 (in which case u is a global

solution of (3.1)) and in this case the constant C' is also independent on p.

Proof of Proposition 3.19

The following proof stands for the solutions of both (3.1) and (3.11).
Therefore, when we use the notations A. or u., the results stated remain
true when € = 0.

Step 1 : Construction of a global solution of (3.11) satifying (3.3),
(), (i7) and (iv)

By the (rlegularity result from Proposition 3.16, we have that u is bounded
n C’j:a’HE(QT(P)) for a compact cylinder Q,(P), and for some a > 0, and
the bound only depends on the C” norm of u and on 7. Moreover, u can be
extended to a function on R x R which still satisfies the control property

|u(33’t) —pr — Aat| < C;

and the same property of bounds on the Hdélder norms on compacts, the
bounds being uniform with respect to the shape of the compact (the exten-
sion can be arbitrary except for the preservation of these two properties).
We define

up(z,t) = u(z,t +n) — | Aen.
We note that for all n > 0,
||UnHCO(BR(0,0)) = HUHCO(BR(o,n)) = [Aen]

< llullco(po,0)) + Aen + 2C: — [Aen]
< HuH(JO(BR(op)) +20: + 1.
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Then for all R > 0, the u,, have a uniform bound in Cj:a’H%

(Bg(0,0)) for

8
some a > 0, so they can be included in a compact subset of Cf:B’H 2(Br(0,0))

for some B < «, and by a method of diagonal extraction we can construct a

function u and an increasing function ¢: N — N such that, for all R > 0,

a 8
Uso € Ci:a’prz (Br(0,0)) and ug,) — s in Ci—:ﬁ’pr? (Br(0,0)). As the

s
convergence is in CEIB’HQ (Br(0,0)) for all R > 0, u satisfies (3.11) (or

(3.1) when € = 0), and also (7), (#4) and (iv), which conludes the proof of
this first step. In the following, we will note this global solution wu.

Step 2 : Proof of (3.4), (v) for the global solution when \. # 0.
Casel: \.>0

This proof uses the sliding method described in [6]. Figure 3.1 illustrates
the principle of the sliding method, which is to compare u 4+ 1 and time
translations of w.

S

FIGURE 3.1 — Tllustration of the sliding method : graphs of wu(x,t) and
u(z,t) + 1 for a fixed value of z.

As A > 0, by (i) we know that there exists oy > 0 such that for all
a > ap, u(z,t+ a) > u(z+1,t). In the following we will note u(x,t) =
u(z,t + «). We define

o =inf{ag >0 |Va > ap, u*(z,t)>ulx+1,t)}.

In particular u® (z,t) > u(z + 1,t) and for all § > 0, there exists P5; =
(zs5,ts) € R? such that u® (zs,ts) < u(xs + 1,t5) + 0 (if it was not the case,
because u is Lipschitz continuous, we could build o*’ < o* such that for all
a>ao* u¥(z,t) > u(z + 1,t)). Here we will distinguish two subcases :
Subcase 1 : There exists Py € R? such that P; — P, up to a subse-
quence.
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In this case we have

u® >wu(-+1,-) on R?
u =u(-+1,-) at Pp.

We write w = u® — u(- + 1,-). The function w satisfies
we = Aw+ f(z,u®) = f(z+ 1Lu(z + 1,t))
+M[u (@, t) = Mlu(- +1,)](,t)
= Aw+ R(z, t)w
where

R(z,t) =

u(z,t +a*) —u(z + 1,t) )
The function 0 is a solution of this equation, and we know that w is non
negative and reaches the value 0, so by the strong maximum principle w = 0
and u(x + 1,t — a*) = u(z,1).
Subcase 2 : |Ps| — 400 up to a subsequence.
We define v, (x,t) = u((x — |zs5],t — t5) — P1). Then for all n € N, there

* 1
exists x,, € [0, 1) such that v$ (z,,0) < vp(z,+1,0)+—, and vy, is a solution
n

of (3.1). As the v, are uniformly bounded in C**7'*3(Bg(0,0)) for all
R > 0, for some v > 0, so by a process of diagonal extraction, one shows that
they converge up to a subsequence to a function v € C*1+3 (B (0,0)) for

all R, the convergence being in C2t7"14% (Bg(0,0)) for some 4/ < . Then
v is also a solution of (3.1), and if we write w = v® — v(- 4+ 1,-), the same
line of reasoning as in subcase 1 applies, w = 0 and v(z +1,t —a*) = v(z,t).

In both cases there exists a global solution u such that u(z+1,t —a*) =

u(x,t), so it only remains to show that o* = L For that, we observe that if

we inject u(x + 1,t — a*) = u(z,t) in the bounds (7), we have for all k € Z,
lu(z + k,t — ka™) —p(z+ k) — A\(t — ka™)| < C.
Adding (7) and using the inequality |a — b| < ||a| + |b|| we get, for all k € Z,
Ipk — Aea™k| = [k] |p — Aea™| < 2C.

ﬁ, which concludes the proof of this step.

which is only possible if a* = 3
3

Case 2: \. <0
The same line of reasoning applies when A. > 0, the difference being that
the quantity o* is negative.
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Step 3 : Monotonicity of the global solution when \. # 0 : proof of
0

Having used the sliding method to show the space-time periodicity prop-
erty, we can use it as well to show monotonicity. We suppose A, > 0. As
above, we note u(z,t) = u(x,t + «) and this time we define

o =inf{ag > 0| Va>ay, u(z,t)>u(z,t)}.

This definition is valid because the set we consider is non empty (due to
property (i) and A\. > 0). We remark that u is nondecreasing if and only
if * = 0. As above, u® (x,t) > wu(z,t) and for all § > 0, there exists
Ps = (z5,ts) € R? such that u® (z5,ts) < u(zs + 1,ts) 4+ 6 (if it was not the
case, because v is Lipschitz continuous, we could build o' < a* such that
for all @ > o*', u(z,t) > u(z,t)). Again we have two cases :

Case 1 : There exists P € R? such that P; — P, up to a subsequence

In this case we have

u® >u on R2
u =u at P.

As u is a solution of (3.1), by the strong maximum principle u® = u. As u
can not be periodic in time (due to (i) and A\ > 0), this means that a* =0
and wu is nondecreasing.

Case 2 : |Ps| — +00 up to a subsequence

e define vy (z,t) = u | (x — |xs5|, t —1s) — P1 ). en for all n € N,
We defi P Then f 11 N

« 1
there exists x,, € [0,1) such that v$ (x,,0) < vy(z, + 1,0) + —, and v, is
n

a solution of (3.1). As the v, are uniformly bounded in C?+71+2 (K) for all
compact K C R2, for some v > 0, by a diagonal extraction they converge
up to a subsequence to a function v € C’2+V’1+%(K) for all compact K,

the convergence being in C?*7"1*% (K) for some 7' < ~. Then v is also a
solution of (3.1), so the same reasoning as in case 1 applies to v, so v® = v,
which implies that o = 0 and u is nondecreasing.

In both cases w is nondecreasing, which concludes this step.

Step 4 : Existence of a constant C independent of ¢

In this step we show the following results :
The constant A; remains bounded when € — 0. Moreover, there exists a
constant C' > 0 independent of € such that the estimate (3.3), (7), holds for
all e.

Asin Step 2 of the proof of Proposition 3.18 we write v(z, t) = u(x,t)—pz,
and use the same notation o for the oscillation. Then we kwow that A is
such that for the solution u. of the Cauchy problem,

lue — pr — Act|| < C-.



98 CHAPITRE 3. PLANE-WAVE LIKE SOLUTIONS

As px + || flloot and pz — || f|loot are respectively a super- and subsolution
of the Cauchy problem, we have that \. is necessarily lesser than || f|/~
independently of € and p.

For the existence of a bound C’ independent on &, we define

w(z) = sup(u(z,t) — A\:t).
teR

1
The relations u (x,t + )\£> =u(z+1,t) and u (x + —,t) = u(x,t)+1 with
€ p

p~! € N imply that

1
U <:c,t—|— —> =u(z,t) + 1,
Ae

so, for a fixed value of x, u(x,t) — A\.t is a periodic function in ¢ and its
supremum is reached for some t(z) € [O, i] .
Moreover, for all x € R, at the point (z,t(x)), uy — Ae =0, so
Ae = Au+ f(z,u) + eMlu).
As w(x) is the maximum of u(z,t) — At, we have
w(z) = u(z, t(x)) — Aet(z)
and

w(y) = u(y, t(z)) — Act(x)

for y in a neighbourhood of z, so
Aw(z) = Au(:,t(x)) — Act(x))(2) = Au(-, t(x))(z),

and
Ae < Aw+ f(x,u) +eMul.

We also note that
w(z+1) =sup(u(z+ 1,t) — \:t)

teR
= sup u(m,t+£>—)\g<t+£>>+p:w(a:)+p,
teR >\5 )\5

so w = w — px is 1-periodic and

AW = Aw > A, + f(z,u) +eM]ul.

2
We know that [X.| < C, f € L*(RxR) and |eM[u]] < </ J(z)dz> 2l
R

so there exists C’ > 0 such that Aw = w,, > —C’. When € = 0, the constant
C’ does not depend on p.
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But w is 1-periodic, so w(0) = w(1); by Rolle’s theorem, there exists
xo € [0,1] such that @'(zp) = 0. But then, for all y € R we can write

y=k+xzo+rwithkeZand 0<r <1.

As a consequence, w'(y) > w'(xo+ k) — C" = —C' and thus for all z, 2’ € R,
we can write 2/ =z +k+r, k€ Z, 0<r<1,so

w(2) > w(z+k) -,
and
w(z) =w(z+k+1)>w() - C".
Finally, we can conclude that |w(z) — w(2")] < C’. Up to the addition of

1
integers, we can suppose |u(0,0)] < 1. For t € [0, ol
€

1

u(z,0) < ul, 1) < u <x L
Ae

) =u(z+p,0) = u(z,0) + 1,

S0
u(z,0) — 1 <wu(x,t) — At < u(z,0) + 1.

In particular, for ¢ = t(z),

u(z,0) — 1 <w(x) <wu(z,0)+1,

1
which implies that, for all ¢t € [0, )\—} ,
3

w(z) — 2 <wu(x,t) — At < w(x),

and
w(zr) — 2 <wu(w,t) — A\t — pr < w(x).

By the pseudo-periodicity property of u, this relation holds for all ¢ € R.
Now we observe that w(0) — 2 < u(0,0) < w(0) so —1 < w(0) < 3, and for
all (z,t) € R?,
w(w,t) — At —pr > w(z) —2>w(0) - C' —2>-C" -3,
and
u(z,t) — At — pr < w(z) < w(0) +C' < C' +3,
so there exists a constant C” independent of € such that

lu(x,t) — At — pz| < C”.

Given its construction, this constant C” may depend on p, via the function
Jp and the constant K. However, in the case e = 0, C” does not depend on

p-
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This fourth step concludes the proof of Proposition 3.19 in the case
Ae # 0.

Step 5 : Existence of a stationary solution when A\, =0
In the case \. = 0, the function u — px is uniformly bounded in time, so
we can define

v = sup(u(z,t) — pz)

As u — px is Lipschitz continuous, both ¥ and v are Lipschitz continuous.
1
Using the fact that u satisfies (i7), we deduce that v and v are | — |-periodic.

We also remark that because u satisfies (3.3) (iv), v is such that v(x+1)+p >
v(z), and so is v. Finally, 7 is a subsolution (both in the weak sense and in
the viscosity sense) of

0=Av+ f(z,v+ pz) + eM][v] (3.26)

on R and v is a supersolution of the same equation.
Using the fact that |u — px| < C, we also have that

7 <wv+2[C],

and v + 2[C'] is still a supersolution of the equation (3.26) (here [-] is the
ceiling function). Then by Perron’s method there exists a viscosity solution
0 of (3.26), and a stationary viscosity solution @ of (3.11). By construction,
@ still satisfies (i), and as T and v are both periodic, we can apply Perron’s
method in a way that ensures that @ still satisfies (47).

Finally, we can show by contradiction that @(x+1) > a(x). Suppose there
exists xg € R such that @(xo+1) < @(zp), which can be written equivalently
O(xg+ 1) +p < 0(xp). Then 0(- — 1) — p is also a subsolution of (3.26), and
for all z € R, we have that

O(x—1)—p<wv(x—-1)+2[C] —p<v(z)+2[C].

As a consequence, max(0,0(- — 1) — p) is a subsolution of (3.26) and is
bounded between ¥ and v + 2[C'|. But this contradicts the maximality of ©
since v(xzg) — p > 0(zg + 1).

This concludes the proof of Proposition 3.19.

We can use the uniform bound C' on the global solution to show that
there also exists uniform bounds (that is, independent on €) on the solution
of the Cauchy problem (3.11),(3.13) :
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Proposition 3.20 (Uniform bounds on the solution of the Cauchy
problem).
We note u. the solution of the Cauchy problem (3.11),(3.13). Then there
exists C' > 0 such that for all € > 0, there exists \c € R such that for all
(x,t) € R x (0,400),

|ue —pr — At| < C.

Remark 3.21 (Identification of \.).
The real number A\. is the same for the solution of the Cauchy problem and
for the global solution.

Proof of Proposition 3.20
We note U, and wu. the solutions of the global problem and the Cauchy
problem respectively, and we know that for all x,t,

|Us — pr — Xt| < C,
where C' is independent of . Then, in particular, for all x € R,
—C +pr < U.(x,0) < C + pz.
As a consequence, we have that
Ue(2,0)(2,0) — C < pr = u.(x,0)(x,0) < U(x,0) + C.

But we also know that U. — [C'] and U 4+ [C'] are solutions of (3.11) on
R x (0, +00), so we have that

Us—[C] <u. <U: + [C]
on R x (0,+00). Using the bounds on U, we have that
—C+pr+M—[C] <u. <C+Hpx+ MC[C],

SO
‘us —pr _)\st| <C+ [C—|7

which is what we wanted to show and concludes the proof of Proposition 3.20.

3.6 Construction of plane-like solutions of the ini-
tial problem

Having proved Proposition 3.19 and Proposition 3.20, we can now con-
clude the proof of Theorem 3.1.

Proof of Theorem 3.1
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Step 1 : Construction of the limit solution of the Cauchy problem
The constants A, converge to a constant A up to an extraction. The
solutions w. of (3.11) with initial condition (3.13) among the extracted
subsequence converge to a solution w of (3.1),(3.13) up to another extrac-
tion. Indeed, as the convergence is in CQ+5’1+§(K ) for all compact ball
K C R x [0,4+00), we have that (uc)i(z,t) — u(z,t) and Auc(z,t) —
Au(z,t) uniformly on R x [0,400). By the continuity of f, we also have
f(zyus(z,t)) = f(x,u(x,t)) uniformly on R x [0, +00). Finally,

Muf] = /ez(us(x—i—z) —u(z))dz
= ];ez(us(x +z) —u(x) — pr)dz
< 20/6|Z|d2
R

Thus eM[uf] — 0, so u is a solution of (3.1),(3.13).

Furthermore, u satisfies (3.3), (i) and (i), with the constant A and the
constant C' = C'(p) = supCs.

e>0

Step 2 : Conclusion

As the Cauchy problem (3.1),(3.13) admits a solution u satisfying (3.3),
(1) and (i7), using Proposition 3.19 in the case ¢ = 0, we have that there
exists a global solution of (3.1), which we will still write u for convenience,
which satisfies (3.3) and (3.4).

Moreover, Proposition 3.19 also shows that (3.3) () holds with a constant
C’ > 0 independent of p, and that the constants A(p) are uniformly bounded
in p.

This last step concludes the proof of Theorem 3.1.

3.7 A structural property for the plane-like solu-
tions

In this section we show that the plane-like solutions constructed in Sec-
tion 3.6 satisfy the structure property (3.5), thereby showing Proposition 3.4.

Proposition 3.22. (A relaxed monotonicity property for the global
solution)

Let u be the solution of (3.1) on R x R satisfying (3.3), (3.4) constructed in
the proof of Theorem 3.1. Then u satisfies (3.5).

Proof of Lemma 3.22
To prove this result, we introduce the sets

QF = {(z,t) | u(x,t) > a}



3.7. STRUCTURAL PROPERTY 103

and
Q. = A{(z,t) | u(z,t) < a}.

We first prove the property for the solution of the Cauchy problem (3.1),(3.13),
that we still write u for commodity.

Step 1 : A connexity property
For the Cauchy problem, we first prove that for all 7" > 0, the set

Q= Q5 N (R x [0,T])

is connected. As u(z,0) = pz, we know that Qf U(Rx{0}) = } 5,00 [ x{0}.

Moreover, as |u(z,t) — pxr — M| < C, we have the following inclusions :
{(z,t) | pr+ Xt > C+a} CQf Cc{(z,t) |pr+ Xt >—-C+a}. (3.27)

Now suppose by contradiction that QIT is not connected, and consider €2y
a connected component of QIT that does not contain (and hence is not

connected with) the half-line ] 5s 00 [x {0}. Because of (3.27), Q; is included
in the bounded band

{(z,t) | -C+a<pr+IM<C+a}U(Rx[0,T]),

so it is a bounded subset of R x [0, 7] that is open in R x [0,T"]. Now consider
its parabolic boundary 9Py (see Definition 3.8), and a point (x,t) € 9.
Now we have several cases :

if 0 <t < T, then by continuity u(z,t) = a (see Figure 3.2).

it t = 0, we recall that ; is not connected to the half-line ] b +oo[ x {0},

so u(z,t) < a, and we also get u(z,t) = a by continuity.

x+ct=C1

0 a

FI1GURE 3.2 - Illustration of QF and Q1 : u = a on the parabolic boundary
of Ql.
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So €2 is a bounded set for which © = a on the parabolic boundary, and
u is a solution of (3.1) on 4, with Dirichlet boundary condition a on 9”€;.
On the other hand, the constant a is also a solution of this problem. By
the local comparison principle (Proposition 3.9), v = a on €, which is a
contradiction. Therefore, Q;T is connected.

In the same way, we can show that € . is connected.

Step 2 : Proof of the structure property for the Cauchy problem
(3.1),(3.13)

Now suppose that property (3.5) is false for the solution of the Cauchy
problem (3.1) with initial condition (3.13). Then there exists a time tg > 0
and two points (z1,%y) and (ze,tg) with z1 < x9 such that

u(za, tg) < a < u(xy,tp).
As Q;ﬁto is connected, there is a path in Qito between (z1,tg) and (% +1, 0).
Similarly, 2, is connected, so there is a path in €2, , between (x2,?) and

(% -1, 0) . But these two paths must cross each other (see Figure 3.3), which

brings a contradiction, so the structure property holds for the solution of the
Cauchy problem.

u(x,T)>a u(y,T)<a

u<a
u>a

0 a

FI1GURE 3.3 — [llustration of the proof of Lemma 3.22 for the solution of the
Cauchy problem.
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Step 3 : Conclusion
We still write u the solution of the Cauchy problem (3.1),(3.13), and
define
up = u(z, t+n) — | In]

as in Step 1 of the proof of Proposition 3.19. The functions wu, converge
strongly to a solution ue, of (3.1), and it is easy to see that u still satisfies
(3.5).
In the case when A # 0, this solution us is the solution we construct to
prove Theorem 3.1, and as u satisfies (3.5), Lemma 3.22 holds in this case.
Remains the case where A\ = 0, where we use the solution us, to con-
struct another solution w which, in addition to the properties of ux, is also
stationary.
In that case, the solution u is constructed in Step 5 of the proof of Proposi-
tion 3.19 with € = 0. So we define

and we know that u is a stationary supersolution of (3.1) in the viscosity
sense, and Ty, is a stationary subsolution of (3.1) in the viscosity sense. As
U 1s globally Lipschitz continuous, both u., and Uy are Lipschitz continu-
ous. Moreover 0 < Uy, —u,, < 2C'+1 and both u, and %, satisfy (3.3). We
can also show they satisfy the structure property (3.5). We do the demonstra-
tion for Uy, it is similar for u. Take xy € R such that U (z9) > a; then, by
the property of the supremum, there exists ¢y € R such that ue(xg,t) > a.
As u satisfies (3.5), for all z > g, us(z,t9) > a and thus U (z) > a,
which shows that U, satisfy (3.5).

By Perron’s method (Proposition 3.5), there exist a stationary solution u
of (3.1) in the viscosity sense and T < u < u,+[2C]+1. By the regularity
result of Proposition 3.16, u € 012061 (R?) and in particular u is Lipschitz. We
show by contradiction that this solution u constructed by Perron’s method
satisfies the structure property.

We suppose there exists a € R with f(z,a) = 0 and a couple (x1,z3) € R?
such that z1 < z2 and u(z2) < a < u(z;). Using (3.3) (ii), up to redefining
x1 and zo, we can suppose g — 1 < p_ L. We then consider x5 =z, +p !,
and we have u(z3) = u(z1) +1 > a. As u(x1) + [2C] +1 > u(z1) > a and
U, + [2C] + 1 satisfies the structure property (3.5), we know that

u+[2CT+1>aon [x1,4+00) D [x1,x3).
Now we observe that the constant a is a subsolution of (3.1) on [z1,x3], so

if we note
- u(x) when x ¢ [z, z3]
max(u(x),a) when z € [z1,x3]
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then @ is also a subsolution of (3.1) on R. Indeed, @ is a supremum of
subsolutions on (—o0, 1), (21, x3) and (x3,+00). As u is Lipschitz, & = u in
a neighbourhood of 1 and x3 so @ is a subsolution of (3.1) on R.

Moreover, © < @ < u + [2C| + 1, and a(z2) = a > u(w2), so this
contradicts the maximality of the subsolution u constructed by Perron’s
method. This contradiction concludes the proof of Lemma 3.22.

3.8 Analysis of the sign of A

Proof of Proposition 3.2

In this proof we consider p > 0, and we suppose, for simplicity, that A > 0
(the proof is completely similar when A < 0).

Using (3.3), (i7) and (3.4), we have the relation

1
u(x,t—i—X) = u(z,t) + 1.

The process of this proof is then to multiply (3.1) by the quantity u; and
1 1

integrate on the box [0, —} X [0, X} , which gives the following equality
p

[ L= [ v [ s

We analyse each term separately :

1 1
P A
/ / u?>0.
0 0

This term is clearly non-negative, and as A > 0, it can not be zero because
of (3.3). An integration by parts shows that the second term is zero :

1 1
» [
/ / Uz Ut
0 0 ) 1
X v 1 1
= / <—/ UgpUgt + Uy <_>t> Ut <_>t> — Ug (O,t) Uy (O’t)> dt
0 0 p p
1
= _/P <’U,§ <.’E,1> —ui(az,O)) dx = 0.
0 A

Finally, we compute the last term using the change of variable v = u(x,t) :

u(z,0)+
//fa:u:nt ))ug(x, t)dtdz // f(z,v)dvdx
(wO
Z—//fx,vdvdx.
PJo Jo
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As a consequence, we have

f(z,v)dvdx > 0,
[0,1]2

which proves Proposition 3.2 in the case A > 0.
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Chapitre 4

Pulsating travelling waves
for the bistable case in
dimension one

This work has been written in collaboration with Régis Monneau (CER-

MICS, ENPC).
Abstract

In this paper we consider a reaction-diffusion equation in a periodic medium.
This is a parabolic semilinear equation in dimension one. The nonlinearity is bistable
and periodic in space with fixed zeros (with respect to space variable). Under cer-
tain assumptions, we construct pulsating travelling waves which are unique (up to
translations) when their velocity is non zero. We also show the uniqueness of the
velocity. Our method of proof is new and is related to the construction of correctors
in homogenization problems.

AMS Classification : 35K55
Keywords : bistable, pulsating travelling wave, periodic medium, semilinear equa-
tions, homogenization.

4.1 Introduction

4.1.1 Setting of the problem

We consider solutions u(z,t) of the following parabolic semilinear equa-
tion forx e R, £ >0

Up = Ugy + fx,u), (4.1)

for some function f which is 1-periodic in = and is of bistable type in wu.
Our goal is to construct pulsating travelling waves moving with a suitable

111
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velocity ¢, i.e. satisfying (when ¢y # 0) :

u(x+1,t— i) — u(z, 1),

€o

To this end, we assume that the function f satisfies the following conditions :

Regularity and Z-periodicity properties :

feCYR x [0,1];R) (1.2)
flz+Ek,v) = f(x,v) forall keZ, (z,v)eRx]0,1] '
Bistability : There exists 6 € (0,1) such that
( f(z,0) = f(x,0) = f(z,1) =0 forall zeR
f(z,v) <0 forall ve(0,0), ze€R
f(z,v) >0 forall ve(6,1), ze€R
fl(x,0) >0 forall zeR
Ino > 0 such that ,Vz € R
[ the map v — f(z,v) is decreasing on [0, 7] U [1 — 1o, 1]
(4.3)

aof

We refer to Figure 4.1 for an illustration of the function f with three
zeros which are independent on x : two stable zeros at 0 and 1 and one
unstable zero at 6.

f(x,u)

where f], =

FIGURE 4.1 — The bistable nonlinearity f.

In order to prove the uniqueness of the velocity of propagation of the
pulsating travelling wave (which we will then sometimes write PTW), we
will need the following additional assumption :
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Strong stability of 0 and 1 :

/ —
{fu(x,O)— Jp<0 forall zeR (4.4)

fl(z,1)=—6; <0 forall x€R

where §g, 41 are some positive constants.

4.1.2 Main results

Theorem 4.1. (Existence and uniqueness of pulsating travelling
waves)

Assume (4.2),(4.3). Then there exists co € R and there exists u solution of
(4.1) on R x R such that

cous > 0
0<u<l1
liminf w(z,t) =1 (4.5)

x+cot——+o0
limsup wu(x,t) =0

T+cot——o0

and
U (m—l— 1,t — %) =u(z,t), ifco#0
u(x,t) does no(lz depend on t, if cg = 0.

Moreover, if (co,u) is a solution of (4.1) satisfying (4.5),(4.6) and if co # 0,
then the profile u is unique up to a time translation.

(4.6)

Remark 4.2. Up to our knowledge, the uniqueness or non-uniqueness of the
profile w is unknown for ¢y = 0.

Theorem 4.3. (Uniqueness of the velocity cy)
Under assumptions (4.2),(4.3),(4.4), the velocity ¢y € R given in Theorem 4.1
1S unique.

Remark 4.4. Condition (4.4) is a technical assumption, and it seems rea-
sonable to think that the uniqueness of cg could hold under weaker conditions.
In particular, it should be possible to adapt the uniqueness proof devised by
Berestycki and Hamel in [2] to our case, which would enable us to lift as-
sumption (4.4) completely.

4.1.3 Review of the literature

The homogeneous reaction-diffusion equation

Up = Ugy +u(l — u)
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was first studied in the pioneering papers of Kolmogorov, Petrovsky and
Piskunov [11], and Fisher [10]. This homogeneous equation admits solutions
that have the form of planar fronts (travelling fronts) u(z,t) = U(z + ct)
with ¢ the velocity of the wave. If we add a heterogeneous advection term and
work in higher dimension, the existence of travelling fronts has been proved
by Berestycki and Nirenberg [6] and Berestycki, Larrouturou and Lions [5]
when the advection term does not depend on the variable of the direction
of propagation. In [15], Shigesada, Kawasaki and Teramoto introduced the
notion of pulsating travelling fronts, which generalizes the notion of travelling
fronts when the functional operator or the nonlinearity f depend on x and
are periodic.

Existence of pulsating travelling fronts has been proved in the case of
space-periodic advection and nonnegative nonlinearity f by J. Xin in [16]
and the result has been extended to a fully space periodic environment,
when the equation has the form

up = div(a(z)Vu) + b(z).Vu + f(u,x),

with a positive nonlinearity f, by Berestycki and Hamel in [2]|, among other
more general results. More recently, existence of pulsating travelling fronts
has been proved in a more general context, where a, b and f also depend on
time, see Nadin [14].

Until recently there were few results for the existence of pulsating travel-
ling waves in the case of more general nonlinearities f. Continuing the results
mentioned above, Berestycki, Hamel and Roques 7?7 addressed the case of
a monostable nonlinearity taking negative values. In the bistable case, X.
Xin |17] showed in 1991 the existence of pulsating travelling waves in a peri-
odic medium for a bistable nonlinearity f, when the dependence in the space
variable is a small perturbation of the homogeneous case, and f only depends
on w. In [7], Chen, Guo and Wu showed the existence of travelling waves in
a discrete periodic setting with bistable nonlinearity, as well as uniqueness
and stability results.

In 9] Giletti, Ducrot and Matano show the existence of pulsating trav-
elling waves under mild assumptions in a very general context, where the
nonlinearity can be monostable, bistable, or even more complex. In the par-
ticular case of a bistable nonlinearity, they show the existence of pulsating
travelling waves between the stable state 0 and a positive stable state p(z)
under two implicit conditions :

— Convergence of a solution with compactly supported initial

condition

There exists a solution u of the Cauchy problem with compactly sup-
ported initial data 0 < ug(z) < p(z) converging locally uniformly to p
as t — +oo.

— Nonexistence of intermediate stable from below solutions

There exists no 1-periodic stationary solution ¢ satisfying 0 < ¢(z) <
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p(x) and such that it is isolated and stable from below with respect to
the equation.
The demonstration of Giletti, Matano and Ducrot is based on the study in
large time of solutions of the Cauchy problem

{ Ut = Ugz + f (2, ) (4.7)

u(z,0) = up(x)

with an initial data of Heaviside type. A strong maximum principle is used
to show the pulsating travelling wave property.

Our conditions on the function f are more specific, but they could pos-
sibly allow cases where there exists an intermediate periodic stationary so-
lution between 0 and 1 that is stable; if such intermediate stable solutions
were to exist, this result would not be contained in [9]. The result of Propo-
sition 4.10 enables us to exclude the possibility that our solution u pins on a
possible intermediate stable solution, a process that is new up to our knowl-
edge. In contrast to [9], our proof relies on the construction of plane like
solutions, described in Chapter 3, before constructing pulsating travelling
waves bounded between 0 and 1 as limits of these plane-like solutions when
the slope of the plane goes to zero. Like in [9], we use a strong maximum prin-
ciple to show the pulsating travelling wave property. We hope this method
could be a guideline to study the case of time-dependent nonlinearities and
more general nonlinear problems.

4.1.4 Organization of the paper

This chapter will be organized as follows. Section 4.2 is a Toolbox in
which we recall classical results (regularity properties, comparison principle
and strong maximum principle) and two propositions proved in Chapter 3 :
existence of plane-like solutions for (4.1) and a structure property on these
solutions (akin to a weak monotonicity property in space). The first proposi-
tion is the starting point to prove the results of this paper, and the structure
property is crucial to characterize the bounded solutions we obtain. The exis-
tence of pulsating travelling waves solutions of (4.1) is shown in Section 4.3.
They are obtained as limits of the plane-like solutions whose existence is
recalled in Section 4.2. Most of the properties of the limit follow from the
properties of the plane-like solutions. Particular care must be taken to show
that the limit cannot be the constant solution #. Uniqueness results (unique-
ness of the profile for non zero velocities and uniqueness of the velocity) are
shown in Section 4.4.

4.1.5 Notation

The function f can be extended to a Z2-periodic function f by the fol-
lowing definition

fz,0) = fla,v = [v])
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where || is the floor integer function. The function f is then ZZperiodic
and Lipschitz continuous on R?, and thus satisfies property (3.2) given in
Chapter 3. In the remainder of the paper, f will be simply denoted by f.

4.2 Toolbox

4.2.1 Classical properties

In this subsection we recall, without proof, results on classical solutions
of parabolic equations that were shown in Chapter 3.

Proposition 4.5. (Local comparison principle)

We assume f satisfies (4.2),(4.3). Let Q be a connected open subset of R x I
with I a time interval. Let us denote by OPQ its parabolic boundary. For
e =0, let uy be a subsolution and uy a supersolution of (4.1) on Q which are
assumed to belong to C*H(Q) N C(Q). If ug < ug on PQ, then uy < up on
Q.

Proposition 4.6. (Strong maximum principle for strong solutions)
We assume f satisfies (4.2),(4.3). Let Q C R x I be a connected open subset
of R x I. Let uy and ug be two solutions of

up = Au+ f(x,u)
on @, satisfying
{ uy < Us on Q
u1(zo,t0) = ua(wo,to) for some (xo,t0) € Q.
Then u; = ug on Q.
Proposition 4.7. (Holder bounds for solutions of the form “linear-+
bounded”)
We assume f satisfies (4.2),(4.3). We consider a solution u of the problem

u = Au+ f(x,u) on RxI. (4.8)

We also suppose that for some A € R, there exists a constant C > 0 such
that
lu —pxr — At| < C.

Then u has the following bounds in C2+a’1+%(QT(P0)) for some o >0 :

x,t
lllgzanss g, ryy < Itlleo@e iy + Ca
uniformly for Pp € R x I.

Corollary 4.8. (Regularity of the time derivative of u) We assume
[ satisfies (4.2),(4.3). Consider u a solution of (4.8). Then u; is bounded
in C’2+°"1+%(K) for all compacts K C R? and for some o > 0, and it is a
solution of the equation

(ut)t = (ut)xx + fq;(xa u)ut- (49)
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4.2.2 Existence of plane-like solution and structural proper-
ties

In this subsection we recall the results shown in Chapter 3 in the case
of our bistable nonlinearity f satisfying (4.2),(4.3). The first result is the
existence of plane-like solutions of (4.1) :

Theorem 4.9. (Existence of a global solution with plane like prop-
erties)

Under assumption (4.2), for a given p > 0 with p~' € N, there exists a
unique X € R such that there exists a constant C' > 0 independent of p and
a solution u of (4.1) on R x R which satisfy the following properties

Ju(a, t) P M| < C (4)
u <I + 5, t) =1+ u(m, t) (”) (4.10)
(e +1,) > u(z,t) ().
Moreover
w(e+Lt=2)=u(@t) i A£0 () (4.11)
up =0 if A=0 (v).

Finally, the constants \(p) are bounded independently of p.

Figure 4.2 illustrates the periodicity and the limit properties of a function
u(®). Because of the periodicty, all the information s contained in the yellow
band, and u?) has the limit 400 (respectively —oc) when z + ¢yt — +00
(respectively z + c,t — —00).

x+ct=C2

x+ct=C1

FIGURE 4.2 — Illustration of the periodicity and limits of u(P).
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The second proposition is a direct application of Proposition 3.4 in Chap-
ter 3. This property is important in the remainder of the paper to prevent
the solution we construct to be equal to an intermediate stationary solution
between 0 and 1 (this stationary solution being either stable or unstable).

Proposition 4.10. (A relaxed monotonicity property for the global
solution)

There exists a solution u of (4.1) on R x R satisfying (4.10), (4.11) as in
Theorem 4.9, such that

Va € Z+{0,0}, (u(z,t) <a<u(yt)) = (x<y). (4.12)

4.3 Construction of Pulsating Travelling Waves as
lp| =0

The goal of this section is to prove the existence part of Theorem 4.1.
The idea is to consider the solutions u®) constructed in Theorem 4.9 and
pass to the limit p — 0.

4.3.1 Construction of limit objects as p — 0

Proposition 4.11 (Existence of limit objects). For p~! € N\ {0},
let u®) be a function given by Theorem 4.9, solution of (4.1) on R x R
satisfying (4.10),(4.11) and X = X(p) the constant associated in the space-
time oscillation estimate (4.10) (). Then we have the following results

(1) Xp) —3 0.

(2) There exists co € R = RU {—o00,+00} such that

A
Cp = —(p) — Co
p p—=0
up to a subsequence.

(8) There exists a bounded solution u of (4.1) such that

u® —
p—0

in Ci;cl(RQ) up to a subsequence.

Finally u satisfies the conclusion of Proposition 4.10, (4.12), that is
for all a € Z+{0,0}, we have that

u(z,t) < a <u(y,t) implies x < y.

Proof of Proposition 4.11
By Theorem 4.9, we have that

) — pz — Mp)t| < C
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with a bound independent on p. Using the regularity result Proposition 4.7,
we have that the solutions u(?) are uniformly bounded in C?*®'*% (Bg(0,0))
for all R > 0 and for some « € (0, 1).

Therefore, they are in a compact subset of C”ﬁ’Hg(BR(O, 0)) for some
B < a, and so there exists ¢y € R and u € C?T*1+2(Bg(0,0)) for all R > 0
such that (cp,uP)) converges to (co,u) in R x CQ+B’1+§(BR(O,O)) for all
R > 0, up to a subsequence.

As the convergence is in CQJFB’Hg(BR(O, 0)) for all R > 0, u is a strong
solution of (4.1).

Now let A\¢g be an accumulation value of A(p). Passing to the limit in
(4.10)(i), we get |u(x,t) — Aot| < C. Moreover, we know that the integers
are global solutions of (4.1). Now there exists k& € N such that

—k<—-C <u(z,0) <C<k.

Then, by the comparison principle on the evolutionary problem, we get that
for all ¢t > 0,
—k <wu(z,t) <k.

This is only possible if Ay = 0.
Finally, as all u(®) satisfy Proposition 4.10, this result also holds for u.
This concludes the proof of Proposition 4.11.

Proposition 4.12 (Qualitative properties of u).
With the notations of Proposition 4.11, the limit (co,u) of (cp, ulP)) satisfies :

u(x) = tlirn u(x,t) is a stationary solution
—00
u(x) = lim u(z,t) is a stationary solution
t——o0
N . . o . (4.13)
ut(x,t) = lim u(z +n,t) is a periodic solution
n—oo
u” (z,t) = lim u(x — n,t) is a periodic solution
n—,oo

and U, w, u* and u~ all satisfy the conclusion of Proposition 4.10, (4.12).
Moreover, we have the following additional properties which depend on
the sign of the velocity in three cases.
Positive case
In the case where co > 0 or cog = 0 with ¢, > 0 for a subsequence p — 0,

'LLtZO
0<T-u<l (4.14)
ut —u= < 1.

As uy itself is the solution of a parabolic equation (see Proposition 4.8) that
satisfies the strong mazimum principle (Proposition 4.6) and u; = 0 is a
solution, we then have the following alternative :
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either u; > 0 on R?
or uy =0 on R?.
Negative case
In the case where co < 0 or co = 0 with ¢, <0 for a subsequence p — 0,

utSO
O<u-u<l (4.15)
ut—u= <1

As in the preceding case, we have the alternative : either u; < 0 on R?
or uy =0 on R?.

Constant case
In the case where co = 0 with ¢, = 0 in a neighbourhood of 0, then

U = 0
U=u=mu (4.16)
ut —u= <1
The limit also has the following travelling wave property
Lemma 4.13. (Travelling wave property of the limit)
Let u, w and u the functions defined in Proposition 4.12. Then
if co =0, then u(x) <u(xr+1) and u(z) <u(x + 1),
1 .
if cg # 0, then u (x +1,t— —> = u(x,t), (4.17)
Co

with the convention that ci =0 1f cg = +o0.

0
Remark 4.14. (Note on the negative case)
We can remark that the positive case and the negative case above are very
simalar to each other.
Indeed, if we consider a function fi such that the solutions ugp) are in the
negative case, we can build the function

fo(z,u) = = fi(z,1 —u)

The function fo satisfies the conditions (4.2),(4.3),(4.4), with 8/ = 1 — 6.

(p)
2

Then the corresponding solutions us ' are

ugp)(x,t) =1—u(z,t)

and they are in the positive case, because \o(p) = —A1(p).
In the remainder of the paper, we will only work on the positive case and the
constant case.
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Proof of proposition 4.12

Step 1 : Preliminaries

Since A = A(p) — 0 as |p| — 0, then passing to the limit in the inequality
’u(p) —pxr — /\t’ < C, we get that u is bounded.
As signalled above, in this proof we only treat the positive case in addition
to the constant case. As the arguments are simpler in the constant case, we
will treat it as a first step of the proof and will focus on arguments specific
to the positive case in the remainder.

Step 2 : Proof for the constant case and properties of v and u~

In the constant case, for all p > 0 small enough, ¢, = 0, which means
that A(p) = 0 and thus that the solution u() is stationary for all p. As a
strong limit of these solutions, u is also stationary, and we have u = u = w.
Besides, for all p, u®) satisfies

u® (x4 1,t) — uP(z,t) >0, (4.18)

so this inequality remains true for u. As a consequence, as u is bounded, u™
and u~ are well defined and bounded, and as u is bounded in C?**!*% (K)
for all compacts K, u™ and u~ have the same regularity and are strong
solutions of (4.1). We also note that property (4.12) is preserved when we
pass to the limit, so «™ and v~ satisfy (4.12). By construction, u* and u~
are also periodic in space. For all p € N™!, we have

W) (2) 41 = u® <x + l,t> ,
p

1 1
(p) it () - 1.
U <x + 2p’t> U <x 2p,t>

1
Then if we note N = o when the fraction is an integer, for all n < N, we
P

SO

have that
u® (z+n,t) —u® (z —n,t) <1

because of the relation (4.18). If we take the limit p — 0 (which is equivalent
to N — 00), we get for all n € N,

u(z +n,t) —u(x —n,t) <1,
hence, passing to the limit n — oo, we get
ut(x,t) —u (x,t) < 1.

This finishes the proof in the constant case, but one can note that these ar-
guments on vt and v~ do not depend on the sign of cg, so they are also valid
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in the positive case. The remaining steps finish the proof for the positive case.

Step 3 : Monotonicity of u, existence of w and u

First, u®) is nondecreasing when \(p) > 0, so it is clear that v is nonde-
creasing.

As a consequence, 1, u are also well defined and bounded in C?+®1+3 (K)
for all compacts K, and they are strong solutions of (4.1). They also satisfy
(4.12) because this property is preserved when we pass to the limit. By con-
struction, w and u are stationary.

Step 4 : Properties of w and u

Using the relation

we have

o (x,t + ﬁm) _ ) (x,t _ f@) -

1
As wu is nondecreasing, we deduce that for all 7 < ——,
2A(p)
u® (z,t+7) —uP (2t —7) < 1.
Taking the limit p — 0, we have A\(p) — 0 so for all 7 > 0,
u(z,t+7)—u(z,t—7) <1

As a consequence,

IN
—_

uU—u

We also have
0<u—u

because u is nondecreasing in .
This concludes the proof of Proposition 4.12.

Proof of Lemma 4.13
Lemma 4.13 is obtained by considering what (4.11) (v), namely

ul®) <x +1,t— g) = u®(z,1)
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implies in the limit p — 0.
In the case ¢, — 00, it is clear that A(p) # 0 for |p| small enough and
passing to the limit p — 0 in (4.11) (v), we get

u(z + 1,t) = u(x, t).

In the case ¢, — co € (0,400), it is also clear that A(p) > 0 for |p| small
enough (even if 0 is an accumulation point of A(p)), and in the limit we get

1
u <x+ 1,t— —) = u(z,t).
o

In the case ¢, — 0, in the positive case we have that ¢, > 0 for a subsequence
p — 0, and for these values of p we have :

u® (z,t) = u® <5L‘+ 1,t— i) .

Cp

1

As ¢, =0, if we fix A > 0 and t € R we have — > A for |p| small enough,
Cp

so as uP is a monotonous function of ¢, we have

u® (z,t) <uP(z + 1,1 — A),

S0, in the limit,
u(z,t) <wu(z+1,t— A).
As this is true for all A > 0 and for all (z,t) € Rx R, and as u is monotonous

in ¢ with . lim u(z,t) = u(x), we have that for all (z,t) € R x R;
——00

u(z,t) <wu(z+1)

Now as u(x,t) converges to u(x) when t — +oo and the above relation holds
for all £, we can conclude

u(zr) <wu(x+1).

In the case ¢, — 0 in the constant case, we have © = v = v and Lemma 4.13
holds because u(x + 1) > u(x).
This concludes the proof of Lemma 4.13.

The following property will also be useful, as stationary periodic solutions
appear everywhere as limits of solutions.

Lemma 4.15 (Identification of the stationary periodic solutions).
If w is a stationary 1-periodic solution of (4.1) satisfying the property (4.12)
of Proposition /.10, then u is constant and u € {0,0} + Z.
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Proof of Lemma 4.15

The fact that u satisfies (4.12) means that if a € {0,0} + Z, for any
t € R, u(zp,t) > a implies u(x,t) > a for any = > xg, and u(zg,t) < a
implies u(z,t) < a for any x < xy. Because of the periodicity of w, it is only
possible if either u is constant (and its value is a zero of f), or u is bounded
from above and from below by two consecutive zeros of f, which means there
exists k € Z such as either k <u<k+60ork+0<u<k+1.

Stationary solutions satisfy

0=Au+ f(z,u)

Integrating this equation over a period ([0, 1] for example) yields

f(z,u(z))dz = 0.
[0,1]
Butif k <u<k+80, f(x,u) <0, and f(x,u) is identically equal to 0 only
if u itself is constant and equal to k or k 4 6. Then if « is not constant we
have

f (@, u(z))dz <0,
[0,1]
which brings a contradiction. By the same argument, K4+ 60 < u < k4 1 is
also only possible if u is constant, so the only possibility is that « is constant
and its value is a zero of f.

4.3.2 Analysis of the case ¢, — ¢y € (0, +00)

Proposition 4.16 (Properties of the solution when ¢ € (0, +00)).
If co € (0,400), then any u limit of the u®) given in Proposition J.11 satisfies
u=0 andw =1, with u and @ defined in (4.13).

Proof of Proposition 4.16
We can suppose ¢, > 0 for |p| small enough.

Step 1 : Identification of v and w

We know that u is a solution of (4.1) which satisfies Proposition 4.10. By
appropriate time translations we can ensure that () (0,0) = 6 for all p, and
thus u(0,0) = 6.

Taking the limit of

1
u(z,t) :u<x—|—1,t— E)

as |t| — oo, we get that @ and u are 1-periodic. By Lemma 4.15, @ and u are
constant and their values are in {0,6} + Z.
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We recall that «(0,0) = 0, which implies @ > 6 because u is nondecreas-
ing in time. Now we have two cases (u = 6 and u > ).

Casel:u=9¢

Ifu =0, as u(0,0) = 0 and wu is nondecreasing in ¢, then we have u;(0,¢) = 0
for t > 0, and by the strong maximum principle (Proposition 4.6), u; = 0,
which implies that u is stationary and v =u = 6.

Case 2 :u >0

If w> 0, (4.14) implies that u > 6 — 1.

By the same line of reasoning on wu, if u is non stationary, then u < 6 and
uw<6+1.
To summarize, we have the inequalities

f—l<u<f<u<i+1

and we can conclude that when « is non stationary we have w = 1 and u = 0.

Step 2 : Exclusion of the case u =6
By (4.3), we know that there exists 01, 03 with 0 < ) < 6 < 03 < 1 such
that for all x € R, for u € [0y, 6],

fi(z,u) >n>0. (4.19)

Substep 2.1 : Minoration of u; in the set {u = 60,}
We define

A={ aeR|3I(p,) € (N"HY with p, — 0,
3((aPn, 7))y, u®) (Pr P0) = Oy, uP) (2Pn 7)) 5 a )}

the set of accumulation values of u; at points where u = 67. To make the
proof more readable, we will use the general notations (p) and (zP,P) for
the sequences associated to elements of A.

We note that if a € R is an accumulation point of A, we can show by a
process of diagonal extraction that a € A, so A is closed in R.

We consider a € A and ((2?,t?)), a corresponding subsequence. Using
the relation

u® (z,t) = uP <x +1,t— i)
&7

we can suppose 0 < zP < 1, and we define u®) = u®) (., + t?). With
that definition, we have u(p)/(:r:p,()) = #,. The sequence u®’ converges to a
solution u’ of (4.1) up to a subsequence. If we take z( € [0, 1] an accumulation
value of the zP for this subsequence, we have that u'(zq,0) = 6;.

Now we can remark that if u} reaches the value 0, by the strong maximum
principle (Proposition 4.6), u} = 0 and «’ is stationary. But as «/ and v’ are
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constant (as in Step 1), this would imply that u is constant, and thus takes
the value 01 everywhere, which brings a contradiction with the fact that it
is a solution of (4.1).

As the convergence of u® to ' is in O+l 3 (K) for all K compact,

in particular u(p); converges uniformly to u}, and so u}(zg,0) = a and a > 0.
As A is closed, AN (—00,0] = 0 implies min {A} = §4 > 0.

Substep 2.2 : Minoration of u; in the set {u = 605}

If we define in similar fashion the set B of accumulation values of u; at
points where u = 63, we can use the same method to show that min{B} =
(53 > 0.

Substep 2.3 : Conclusion
We note 6 = min(d4, dp). The preceding results indicate that there exists
po > 0 such that for all p such that 0 < p < pg, u®(z,t) € {01,602} implies
uip)(x,t) > g
Now we suppose that a subsequence of u®) converges to a constant so-

lution © = 0. We then have u; = 0, so there exists pe,; > 0 such that for
all p < peut, we have ugp) (0,0) < g (with u()(0,0) = ). We consider the
subset QP C R? defined by

0 = {(,1) B2 [ 01 < uP(2,1) < 0}

It is a closed subset and by continuity of u(®) its boundary QP is included
in the subset

{(@.t) e R? | ul(,1) € {61, 6}}
0
Hence, ugp) > 5 on 0. We remark that by (4.10) (i), we have
0P C {lz+ cpt| < Kp}
for some constant K, > 0, and by (4.11) (v), we also have (see Figure 4.3) :
! ®) ®) !
(x,t) e ¥ = (z,t)+ | 1,—— ) € Q and uP(x,t) =uP (z+1,t — — .
p p
With these properties we can conclude that
uP/(@QP) = u®) (@ N {x € 0,1]})

the set P N {z € [0,1]} being bounded in R
5
As (0,0) € QP and ugp) (0,0) < 3 for p small enough, we can deduce that

u; reaches a minimum for a point (zf . V.)€ QP (Figure 4.3) and we can

man
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x+ct=C2

(x,t)

x+ct=C1

F1GURE 4.3 — Tllustration of the periodicity of Q2P.

suppose zb . € [0,1). If we write P = ugp), by Proposition 4.8 we know

that v is in C2t*13(Q,) for all parabolic cylinder Q,and satisfies the
following equation in the strong sense :

vt(P) = Ao® 4 f! (2, u®) ) (4.20)

With this equation we can first show that v® > 0. Indeed, if v®) reaches
the value 0, by the strong maximum principle (Proposition 4.6), v?) = 0
everywhere, but the inequality ‘u(p) —px — )\t‘ < C forbids that u(® is sta-
tionary.

As v®) reaches a minimum on (2P, ¥ . ), at that point vt(p ) = 0 and
Av > 0, and at that point u®) € [1,65] so ffl(xﬁlm,u(p)) > 0, but we also
have v(?) > 0, so we have a contradiction with (4.20).

As a consequence, u can not be stationary with value 6.

4.3.3 Analysis of the case ¢, = +00

Proposition 4.17 (Exclusion of the case ¢, — c0).
The sequence c, can not diverge to +00.

Proof of Proposition 4.17

Step 1 : Reduction to the case u =46
The same reasoning as the one in the Step 1 of the proof of Propo-
sition 4.16 (where ¢ € (0,400)) guarantees that @ and u are constant, and
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that either u = 0 (the constant case), or w = 1 and u = 0 (the non stationary
case).

From (4.17) with ¢y = 400, we have that for all ¢, u(-,¢) is 1-periodic.
We know that u(0,0) = 6, so if u < 6, or u > 0, by the strong maximum
principle (Proposition 4.6), u = 6 in both cases, and we are in the constant
case.

But if u(-,0) < 6, the comparison principle (Proposition 4.5) guarantees
u(-,t) < 6 for t > 0 and the monotonicity of w implies u(-,t) < 6 for t < 0.
So we have u < 6 on R?, which we have already reduced to the constant
case. Similarly, we can’t have u(-,0) > # in the non stationary case.

So there exist 1 € R and 22 € R such that u(z1,0) > 6 and u(z2,0) < 6.
Because of the 1-periodicity of v in x, we can suppose —1 < x1 < 0 < z9 < 1.
But this contradicts the fact that u satisfies (4.12).

Step 2 : Exclusion of the case u =6
The line of reasoning given in Step 2 of the proof of Proposition 4.16
(where ¢ € (0,+00)) is also valid when ¢y = 400, using the convention

1
- =0.
c

4.3.4 Analysis of the case ¢, — 0, with a stationary ¢, = 0 for
|p| small enough

Proposition 4.18. (Properties of the solution when ¢y =0 and ¢, =0
for a subsequence (the constant case))

If ¢, = 0 for |p| small enough, then u is stationary and is a transition between
u” =0 and ut = 1.

Proof of Proposition 4.18

In this case, for the subsequence mentioned above, the solutions u(P) are
all stationary, and as a consequence u is stationary. In the following of this
proof we will use the auxiliary function w® (z) = u® (z + 1) — v () and
w(z) = u(z + 1) — u(x). As we know that u® (z + 1) > u®)(z), these func-
tions w® and w are non-negative. We begin this proof by showing that they
satisfy a strong maximum principle, that is if w (or w®)) reaches the value
0, then w (or w®)) is constant with value 0.

Step 1 : A strong maximum principle for w

Suppose that there exists xp € R such that w(zg) = 0, that is u(zg) =
u(zo+1) = dp. As u(x+1) > u(z) everywhere, this implies that there exists
dy € R such that u;(z9) = uy(zo + 1) = di. As f is 1-periodic in space, the
functions u and @ = u(- 4+ 1) are both solutions of the Cauchy problem

0 =ugs + f(x,u) on (xg,+00)
u(azo) = do
u’(a:o) = d1
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As f is Lipschitz-continuous, we have that u and @ coincide on (zg, +00). In
the same manner, we can show they coincide on (—o0, ), so u and @ are
equal. To sum up, we have that if w reaches the value 0, then it is necessarily
constant.

Step 2 : Identification of v~ and u™

The solution u is stationary, so both ™ and u~ are stationary 1-periodic
solutions of (4.1). As a consequence, they are constant and their value is a
zero of f.

By suitable space translations we can ensure that for all p > 0 there exists
2P € [0,1) such that u®(2P) = 6. If we note x an accumulation values of
the sequence zP as p — 0, we have u(zg) = 6.

Asu™ <u<wu" and u™ —u~ <1, u iseither # —1, 0 or §, and u* is
either 6, 1 or 6 + 1. If u™ or u™ is equal to 6, then u is constant (and equal
to 6). Indeed, u(0) = v* = 0 and u(z + 1) > u(z) imply that u(n) = 6 for
n € N, because u™ = limu(x +n). It means that w = u(x +1) — u(z), which
is non-negative, reaches the value 0 and by the strong maximum principle
(see Step 1 of this proof) it is constant and equal to 0, which in turn implies
that u is constant. The only other case is u~ = 0 and u™ = 1.

Step 3 : Exclusion of the case u =6

In a similar way as for the above cases, we know that for all x € R,
f(z,u) is increasing in u for u € [A1,62], where 0 < ;) < 6 < 03 < 1. We
consider 63 € (#,62) and remark that for any p > 0, if #; < u® (x) < 63 and
w?P)(z) < Oy — 03 := &y, then ;) < u®) (x +1) < 5.

Substep 3.1 : Minoration of w on the set {u =0}
We define

A'={ acR|3(p,) € N HY with p, — 0,
3(2Pn ), u®) (aP7) = 01, ulP (@) 50}

the set of accumulation values of w at points where u = 61. As before, we
will use the simplified notations (p) and (zP) for subsequences associated to
elements of A’”. We note that if ¢ € R is an accumulation point of A’, we can
show by a process of diagonal extraction that a € A’, so A’ is closed in R.
We consider a € A’ and (z,), a corresponding subsequence, and we define

u®' = @ (. 4 ES))

Then u®’ is a solution of (4.1) with u(p)/(xp — |zp]) = 61. The sequence
u®’ converges to a solution u’ of (4.1) up to a subsequence, and if we take
zo € [0,1] an accumulation value of =, — |x,], we have that u'(x¢) = 0;.
Now we remark that if w'(z) = u/(x + 1) — ¥/(x) reaches the value 0,
by the strong maximum principle, it is constant with value 0, which implies
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u’ is 1-periodic, v’ = w/* = v/, and o/ is a constant and its value is a

zero of f, which contradicts u/(zo) = 6;. But w®’ converges uniformly to

w’, so

w/(0) = lim (0’ (x, ~ [2,))) = a,

so a > 0, and as A’ is closed, min A" = d4 > 0.

Substep 3.2 : Minoration of w on the set {u = 63}

If we define in similar fashion the set B’ of accumulation values of
w at points where u = f3, we can use the same method to show that
min {B’} = dp > 0.

Substep 3.3 : Conclusion
We note & = min(das,0dp,d9). The preceding results indicate that there
exists pfy > 0 such that for all p > 0 such that p < pj, u)(z,t) € {01,605}
/

implies w® (z,t) > %

Now we suppose that a subsequence of 1) converges to a constant so-
lution u = @ (this implies w = 0). For all p > 0, the bounds

[l (z) = pz| < ©

mean that there exists 27 € R such that u® (zP) = 0. Up to a transla-

tion '@ (x) = uP) (z 4 |2P]), which preserves the solution, we can suppose

aP € [0,1). As a consequence, there exists a sequence p, — 0, a sequence
!

)
(zn) € [0,1)N and pl,, > 0 such that for [p,| < ply, w®)(z,) < 5 (with

u®) (z,) = 6). Now for p € (pp)n, p < min(pj, pl,:), we consider the subset
QP C R defined as above :

ar = {x R |0, <uP(z) < 93}.
It is a closed subset and its boundary 0€® is included in the subset

{x eR|uP(z) € {91,93}}.

5 &
Hence, w(p) > 5 on ONP. As (zP) € QP and w? (2P) < 5> We can deduce

that w reaches a minimum for a point (2? . ) € QP Now w® satisfies the
following equation

0= Aw® () + (f(z,u® (2 + 1)) — f(z,u?(z)). (4.21)

As w(®) reaches a minimum on (z” at that point

min):

Aw® (2P ) > 0. (4.22)
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Moreover, w® > 0 because if it reaches the value 0, by the strong maximum
principle (see Step 1 of this proof), w®) = 0 everywhere, but the inequality
’u(p) —px’ < C forbids that. As a consequence, we have u(P) (aF . +1) >

). By construction, 6; < u(® (2 ..) < 03, and we have specified
/

man

1)
wP) (2P ) < 3 < 8p, 80 01 < u® (zl . ) < 03. As for every value of z, f is

an increasing function of v when w is in the interval [01, 63], we have

flab u® (P 1)) = f(aP, uP) (P ) > 0. (4.23)

man’ min man’? man

Combining (4.21),(4.22) and (4.23), we get a contradiction.
As a consequence, u can not be stationary with value 6.

4.3.5 Analysis of the case ¢, — 0, with ¢, >0

Proposition 4.19 (Properties of the solution when ¢y = 0 in the
positive case). If ¢, — 0 and the sequence is not stationary, with ¢, > 0,
then there exists a stationary solution u of (4.1) which satisfies (4.5),(4.6),
and is a transition between u~ = 0 and uT = 1.

Proof of Proposition 4.19
Step 1 : Behaviour of @ and u for the limit u of u(®

As ¢, > 0 for p > 0, we can suppose that uP)(0,0) = 6, and so u(0,0) = 6.
We know that u and u are two stationary solutions and we recall that

u(r +1) > u(x).

We note that as n — oo, both @(z + n) and u(z + n) converge to periodic
stationary solutions, that is constants in {0,0} + Z. But as u(z) < u(z) <
u(x + 1), these limits are necessary the same, and u™ = wt = u™. In the
same way, ¥4 =u =u .

As u(0,0) = 60, we have v~ = u~ < 6 < u" = u", and we know that
ut —u= <1.

Now suppose u™ = 6. As u(0,0) = 6, u(0) > 6 because u is increasing
in time. Combining this with u™ = 0, it implies w(0) = 6 and as u(n) is
nondecreasing, u(n) = 6 for all n € N. But in this case, w(x) = u(x+1)—u(x)
reaches the value 0, and by the strong maximum principle (see Step 1 of the
proof of Proposition 4.18), it is necessary constant and equal to 0. This
implies that @ is constant and equal to 8, and as

0=u" —ut =limu(xr +n) — ulx +n)

and
0=u —u =limu(r —n)—u(r—n),

u is also constant with value 6, which in turn implies that u is constant with
value 0, a case which we will exclude below.
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The same happens if u= = 6.

The only remaining case is 4~ = 0, and u™ = 1. In that case, both u and
u are stationary solutions of (4.1), with u~ =4~ = 0 and u™ = ut = 1,
which is what we wanted to prove. Note that these two stationary solutions
may be equal, in which case u itself is stationary.

Step 2 : Exclusion of the case u =6

This proof given in the case ¢, — ¢ > 0 still holds here. Actually, in the
proof in the case ¢ > 0, we never use the fact that the limit ¢ is positive,
only the fact that for p > 0, ¢, > 0. So in our case u can not be stationary
with value 6 either.

4.3.6 Proof of the main existence result

In this subsection we use the preceding results to prove the existence part
of Theorem 4.1

Proof of Theorem 4.1

Keeping in mind that the negative case is similar to the positive case,
Proposition 4.17 indicates that ¢y € R. Proposition 4.12 guarantees that
the solution u we have constructed satisfies (4.6) and couy > 0. Finally,
Proposition 4.16 shows that the remainder of (4.5) holds when ¢y # 0, and
Proposition 4.18 and Proposition 4.19 show that (4.5) also holds when ¢y = 0,
which concludes the proof of the existence part of Theorem 4.1.

4.4 Uniqueness of the profile and of the velocity

In this section we show the uniqueness part of Theorem 4.1 (uniqueness
of the profile u) and the result of Theorem 4.3 (uniqueness of the velocity

Co).

4.4.1 Uniqueness of the profile

In this first subsection we prove the uniqueness of the solution for a given
speed ¢y :

Proposition 4.20.
For a given ¢y > 0, there exists a unique (up to time translations) solution
u of (4.1) in R? satisfying the properties (4.5) with w = 0 and @ = 1 and

1
u<x+1,t—c—> = u(x,t) (with 0 < ¢y < +00).
0

Proof of proposition 4.20
Step 1 : Setting of the proof
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Assumption (4.3) guarantees that there exist 61,602 €]0,1[ such that for
all x € R, f(x,-) is decreasing on [0,6;] and on [f3,1]. We consider two
solutions u and v satisfying the properties above. We use the relation

1
u <x+ 1,t — —> = u(x,t)
co
and deduce that there exists a band ¥ = {—M < x4 ¢t < M} of width R
such that for all (z,t) €e ¥~ ={z+ct < =M}, u(z,t) < 0; and v(z,t) < 0y,
and for all (z,t) € X" = {x +ct > M}, u(z,t) > 02 and v(x,t) > bs.

Step 2 : Comparison of u and v
First, we can show that there exists 7 > 0 such that

v(,-+7)>u  onX
v(-+7) >0 onXT (4.24)
u < 0y on X~

We already know that v < 6; on X~.
Moreover, we know that for all z € R, tliin v(x,t) = 1. The solution u
— 100

is continuous on the compact set 3, = XN ([0, 1] x R), so it has a maximum
Umaz, and as 0 < u < 1, Umqer < 1. Note that by construction of X, mzax > 6,

and by periodicity Umqz > 02. Now the limit v(z,t) — 1 as t — oo is uniform

on x € [0,1] (by compactness), so there exists ¢, > 0 such that for all

M+1
t > ty, x €[0,1], v(z,t) > Umas- So for 7 high enough (7 =ty + i

is sufficient), v(-,- + 7) > Umae on Xy, s0 v(-,- +7) > u on X, Bycthe
periodicity property of u and v, this holds on all X.

Finally, v(-,- + 7) > Umaz on X U X1, so in particular v > 63 on BT,
which proves (4.24).

We note w = v(-,- + 7). With the properties above, we can show that
w > u on R%2. We already have that w > u on X.

In the following part of the proof we use the vectors

e1 (1,¢) and e =

%(—c, 1).

1y 1+c¢

We define m = sup(u — w). We want to show by contradiction m <
>+
0, so we suppose m > 0. As (w — u)((x,t) + se1) — 0 as s — +oo0 and
1
(w—u) <(ac, t) + <——€2>> = (w—u)(x,t), this supremum m is reached for
c

a finite point Py = (z9,t9) (and we can for example suppose 0 < zg < 1).
We have the equation

(u—w) = Alu —w) + f(z,u) - f(z,w)
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and at the point Py, (u — w) reaches a maximum, so (v — w); = 0, and
Au —w) < 0. As m > 0, we also have u(Fy) > w(Fy) > 62 and for all
x € R, f(x,-) is decreasing on [03,1], so f(zo,u(Py)) < f(zo,w(Fp)), which
brings a contradiction. This proves that m < 0.

In the same way we prove that m’ = sup(u—w) < 0, and we can conclude
S-
that w > wu.

Step 3 : Conclusion by the sliding method

The functions w and w are two solutions of (4.1) satisfying (4.5) with
w=w=1,u=w=0, and w > u. We can conclude the proof by the sliding
method.

We define o = sup{a > 0 | V7 < o, u(z,t + 7) < w(z,t)}. We then
have that u(z,t + a*) < w(z,t) and iﬂ%f(w(x,t —a¥) —u(z,t)) =0 (if it was
positive, as u and w are Lipschitz, we could construct o/ > o* such that for

all 7 < o, u(z,t+7) < w(x,t), which would contradict the definition of a*).
More precisely, if we define the widened band

Y ={(z,t) | —A<x+ct< A}

such that for some € > 0, for all « € [0,a* + ¢], w(-,- — ) > 03 on P

{(z,t) | z+ ¢t > A} (in fact by the monotonicity of w it is sufficient to have

this property for & = a* 4 ¢), we even have inf(w(z,t — a*) — u(z,t)) = 0.
)

Indeed, if it was positive, there would exist 6 > 0 such that w(-, - —a*) —
u > 6 > 0on X. As u and w are both Lipschitz, there would then exist

)
¢’ € [0,¢] such that for all & € [a*,a* + €], w(-,- —a) —u > 7 But as for

a € [0,a* + €] we also have w(-,- — a) > 6y on &, we deduce as in Step 2
that w(-,-—a) > uin R? for a € [0, a* +¢’], which contradicts the definition
of a*.

Now we know that i%f(w(m, t—a")—wu(x,t)) =0, and by the periodicity
property of w(-,- — «*) — u, the infimum is reached at a finite point Py =
(w0,t0) € X. In that case we have w(z,t) > u(z,t +a*) and w(wg, tg — *) =
u(zg, to). By the strong maximum principle (Proposition 4.6) w = u(-, -4a*),
and u and v are equal up to a time translation.

4.4.2 Uniqueness of the velocity

Proof of Theorem 4.3
We recall that we have supposed

fi(x,0)=—6y <0 forall zeR
fi(x,1)=—=0, <0 forall zeR"

We show the uniqueness of ¢ by contradiction. We suppose there exist
c1,c2 > 0 with ¢; > o and solutions u; and wus of (4.1) satisfying (4.5)
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and (4.6) with respective velocities ¢; and ca. The objective is to show that
uby, > ) for time translations u} of u; and u), of ug and deduce that there is
a contradiction. The change of variable

o(z,t) = u(x — ct,t)

described by Berestycki and Hamel in [2] could be adapted to build a more
generic proof than the present one and lift the restricting assuption (4.4).

In the remainder of this subsection the generic velocity ¢ and the veloci-
ties c¢; and ¢y are always the velocities as p — 0.

Step 1 : Setting

As above, for i = 1,2, we have bands ¥y, = {—M < x +¢;it < M} of
width R; such that for all (z,t) € ¥y, . = {2+ ¢t < —M}, ui(z,t) < b1,
and for all (z,t) € EK/LQ’ ={z+ ¢t > M}, ui(x,t) > 0.

Step 2 : Construction of subsolutions and supersolutions in the
limits x + ¢t — 400 and x + ¢t — —o0.
We define
u*(x,t) = ehlatet)

and look for a condition on g for u* to be a subsolution or a supersolution
of (4.1) on ¥ . = {(=,t),x + ¢t < —A} (the same work can be done on

EZC ={(z,t),x + ct > A}). We calculate

e—ﬁ(:c+ct)f(x7 ut) = e—ﬁ(a:+ct)f(x, eﬁ(w+ct)) = —0y + Oo(eﬁ(w+cf:))

and because of the periodicity of f in z, e @+ (2, u*) + 5y = O (eF@+eh))
uniformly in z, which means that there exists C'y > 0 and € > 0 such that
eflatet) < ¢ implies

’e_ﬂ(”d)f(x, u) + 0| < Cfeﬂ(x“t).
So u* is a supersolution on i;c if fic > f? — dg + C' where

O = sup ‘e_ﬂ(x+0t)f(l‘, eﬂ(:c—i—ct)) + 8ol -

EA,c

For A large enough, this constant C’ can be as small as one wants. If we

¢+ /% + 40
2

define p = then pc — p? = —6p, and if fi < p, then

fic — ji* + 0 = jic — ji* — (pe — p?) =n > 0.
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Then for A large enough,
efﬁ(erct)f(x’eﬂ(erct)) + 6 < n,

and u* is a supersolution of (4.1) on X, .

*

Conversely, u* is a subsolution on i;yc if ic— g% < —6—C". As a
consequence, if i > p, for A large enough, u* is a subsolution of (4.1) on
Y

We now do the same work on izc. We define u* = 1 — e A=+ and we
calculate

D f (i, ") = HEHD g1 — D) = 5y 4 Op(e )

and e +el) f (g u*) — §; = Op(e *@+e)) uniformly in 2. Then the function
u* is a supersolution of (4.1) in X7 _if ic+ g > &, + C”, where

o — Sup(eﬁ($+6t)f(x, 1 e—ﬁ(:v-i—ct)) —&).
T

We define y/ = . In the same manner as above, if 7 > y/,

—c+ Ve + 46
2

there exists A > 0 such that u* is a supersolution of (4.1) on ij,c-
Conversely, u* is a subsolution on EX’C if —ic—p%2 < -5—-C" Asa

consequence, if i < p/, for A large enough, u* is a subsolution of (4.1) on

=+

st

Step 3 : Comparison of u; and us

We want to compare time translations of u; and ug on | — oo, —A] x {0},
and on [A, co[x{0} for some A. For that we will compare them to ansatz for
solutions on E;ch' and Ej’q fori=1,2.

As ¢ > ¢y, we have

c1+ /& + 40y e + /3 + 40y o
2 2

H1 =

and

H1 =

, =t /] + 46 et V346 .
2 2 o

(because x — —z + /22 + 401 is decreasing for x > 0).
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Then we note

_ 2+
Moy = ————
_ pet2m

P = ——F—
/ 3 /

N
o=t
/3 /
;203 + o
M1+_ 3 ’

and we have the following inequalities
po < po4 < pi— < 1
py < iy < py < .
We consider a real number Ay > 0 such that
et~ (ztert) is a supersolution of (4.1) on ¥, .,
e+ (ztezt) is a subsolution of (4.1) on ¥, .,
1 — e~mr(@tat) g a supersolution of (4.1) on EXOM .

1 — e#2-(@te2t) g 5 subsolution of (4.1) on EZO,CQ

The preceding step assures that such a Ag exists. Then there exists 79 > 0
such that

UQ(.CC,TQ) > ul(:v, —7‘0) for [—Ao,Ao]

ug(x,t + 10) > et (@teat) in {(z,t) | x + ot = —Ap}
up(x,t 4+ 19) > 1 — e H2-(te2) in {(z,t) | z + cot = Ag}
uy(x,t — 79) < etr-(@terd) in {(z,t) | x4+t =—Ao}

uy(z,t —10) < 1 —et@tal) in Lz t) |z + et = Ag}
There exists 7y such that the last four lines hold because

lim w(x,t)=0and lim wus(z,t) =1
r+cit——o0 xr+cot—+00

Moreover, the first line also holds because
lim w;(x,t) = 0 uniformly in = € [— Ay, Ag],
t——o00

and

lim wg(z,t) = 1 uniformly in x € [—Ay, Ao].
t—+o00

Using a comparison principle in the half-planes (this comparison principle
will be justified at the end of the proof (Step 5) in order not to disrupt the
reasoning) ¥4, i B Aq e izo,cw i;om, we have that

uy(z,t — 1) < et1-(@ted) in Yy .
ug(z,t 4 1) > er2+(@teat) in X4,
uy(x,t —19) < 1— e tsl@tal) iy izwl
ug(z,t +10) > 1 — e H2-(wheat) _XO’Q
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We use these inequalities at time t = 0 to obtain

up(x, —19) < ef1=7 < el2HT < wug(x, 7o) for = <-4
u(z, 7'0) <1—e Mt <1 — e H2-% <wg(w,19) for x> Ap.

We define u)(x,t) = ui(z,t — 79) and uh(z,t) = ua(x,t + 79). As we already
knew that v} < u} on [—Ap, Ag] x {0}, we can conclude that u}(z,0) <
ub(z,0) for all z € R.

Step 4 : Conclusion

As uf < at time ¢ = 0, by the comparison principle (Proposition 4.5)
we have u] < uf for all t > 0. But we also have |u; — ¢;t|] < C for i = 1,2,
and ¢; > c2, which implies that for ¢ high enough, u} > w)}, which is a con-
tradiction. We have thus proved the uniqueness of c.

Step 5 : Justification of the comparison principle in half-planes
There only remains to Justlfy the use of a comparison principle in the
half-planes EA o EAO o9 EAO o EAO ¢y» Which is done in this step. We do

it only in the first case, for the half-plane EAo,q (which we will note ¥
in the remainder of this step). We also note hj(x,t) = ui(z,t — 709) and
ho(z,t) = et1-(@+e1) We know that

0<h <1
0<hy <1
xr+cit——o0 xr+cit——o0

and
hi1 < hy on 0¥ = {(z,t) |z + 1t = —Ap}.

Because of the bounds on A1 and ho, we know that hy —1 < hy. We note
o =sup{a € [0,1] |[Vy<a h;—1++vy<hyonX}

Suppose by contradiction a® < 1. Then by continuity of h; and hs, we have
hi — 1+ a* < hg, and i%f(hg —h; +1—a") =0, otherwise we could show

that o* is not maximal.

We consider P, = (x,,t,) a minimizing sequence such that z,, € [0, 1] for
all n. As hy and ho have the same limit 0 as z—c1t — —o0, ,, can not diverge
to —oo because it would imply a* = 1, therefore it remains bounded and by
compactness the minimizing sequence has an accumulation point (oo, tso).
As hy < hg on 0%, (oo, too) & 0%, S0 (Too, teo) € .

Then hy — 14 a* < hg in ¥ and hy — 1+ a* = hy at point (Zoo,teo) € 3.
By the strong comparison principle (Proposition 4.6), then hy —1+a* = ha.
But then o* < 1 is in contradiction with the fact that Ay and hy have the
same limit as x — ¢t — —oo. Therefore we have a contradiction and o* = 1.

So we have proved that hq < ho in X.
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Chapitre 5

Existence of a permanent
regime for an Allen-Cahn type
equation approaching a
Frank-Read source model

Abstract

In this chapter we study a phase-field model approximating a model for the
dynamics of dislocations around a Frank-Read source on a bounded domain. The
equation we study is of parabolic type, its solutions admits uniform bounds in
space and its time evolution can also be controlled. We can then construct perma-
nent regime solutions, extending to the Frank-Read source the notion of pulsating
travelling spirals on annuli. Finally, we show that the time frequency of this per-
manent regime has a monotonous dependence on the exterior constraint.

AMS Classification : 35R35.
Keywords : Parabolic equation, semilinear equation.

5.1 Introduction
5.1.1 Setting of the problem and main results
We consider the following domain Q C R? :
Q=B(0,R)\ (B(P*,e)UB(P,¢))

where we note B(a,r) (respectively B(a,r)) the open (respectively closed)
ball of center a and radius r. The points Pt and P~ are defined as PT =
(1,0) and P~ = (—1,0), and the quantities R and ¢ are such that R > 2
and 0 <e <1,
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FIGURE 5.1 — The domain €

In this chapter we study the dynamics of dislocations in a Frank-Read
source. A Frank-Read source is a dislocation pinned to two fixed points. The
evolution of this dislocation can generate changes in its topology, creating
free dislocation loops while a dislocation line always remains pinned to the
two fixed points which constitute the source. The ideal domain for the study
of the Frank-Read source would be R?\ {P~, PT}. The domain €2 approaches
this ideal domain and has the advantages of being bounded and having no
singularity at points P~ and P, which makes the mathematical analysis
considerably easier.

In the following we will study a phase-field model approximating the
dynamics of dislocations (in an appropriate limit, this model enables to re-
cover the movement of dislocations moving with a normal speed equal to the
curvature of the front plus a constant).

We consider the following equation, for ¢t € R :

+ _ —
uy = Au—W' u+49 4+ o0 forx e
27 (5.1)
ou '
— =0 for x € 00
on
where o is a real number, and W satisfies the following conditions :
W e C*(R) (52)
W(w+k)=W(w) forkeZ. '

For x = (z1,22) € Q, the angles 07 (z) and 0~ (x) are defined as follows : if

we note @ = (R,0), 07 (z) is the angle between PTQ and P*x, and 0~ (z)
— —

the angle between P~@Q and P~x. Both angles are defined modulo 27, but
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as W is 1-periodic, the right hand side of the equation is well-defined. The
multi-valued function
0t — 0~

27
can be considered as a phase transition associated to the potential W. The
Neumann boundary conditions are chosen because the Neumann problem is
a simple formulation for which we don’t have to prescribe boundary values.
This choice enables the formation of dislocation loops and the apparition of
a permanent regime. In the mathematical analysis, this enable an easy use
of the Hopf lemma in combination with the strong maximum principle. Neu-
mann boudary conditions are a frequent choice for the study of dislocation
dynamics in a bounded domain, see for example Giga and Sato ([3] and [4]).

The goal of this chapter is to establish the existence of a permanent
regime for this equation. The description of such a permanent regime would
enable to make a direct link between the constraints applied to the Frank-
Read source and the frequency of the creation of dislocations by the source,
and ultimately the plastic deformations around it. This permanent regime
will be obtained by considering the long time behaviour of solutions of a
Cauchy problem, so we will initially be interested in the solution of this
model for ¢ > 0, with the initial condition

u(z,0) = up(z) for x € Q. (5.3)

v =u-+

with 1o € C2() with % =0 on 9.
n

In this chapter, we show the following results :

Theorem 5.1. (Control of the solution)
Consider u the solution of (5.1) with initial condition u(x,0) = 0. Then, for
any o € R, there exists a unique w € R such that there exists C' € R such
that

lu(z,t) —wt| < C. (5.4)
Theorem 5.2. (Monotonicity of the frequency w)
The frequency w is a non-decreasing function of .

Theorem 5.3. (Existence of a permanent regime)
If w # 0, there exists a solution u for equation (5.1) of the form

u(z,t +T) =u(z,t)+1 forallz € Q, teR (5.5)

with T = %

Furthermore, this solution w is such that wu is nondecreasing in time,
and it is unique up to time translations.

If w =0, there exists a stationary solution u of equation (5.1) on Q x R.

Remark 5.4. From a physical point of view, the existence of a stationary
solution corresponds to a situation where the external constraint o is not
high enough to overcome the effects of the curvature and put the dislocation
m motion.
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5.1.2 Existing results

We are not aware of works studying the dynamics of dislocations for the
specific geometry of the Frank-Read source, but there exist prominent arti-
cles studying dislocation dynamics on simpler configurations. In this respect,
the study of spirals is particularly interesting in the sense that with appropri-
ate gluing conditions, the movement of a Frank-Read source could possibly
be obtained by the study of the movement of two spirals attached to the
points PT and P~. The motion of spiral dislocations has been studied with
the help of a level-set formulation by Ohtsuka [12] and by Goto, Nakagawa
and Ohtsuka [6], who obtained the existence of solutions of the level-set ap-
proach, and the uniqueness of the evolution of an initial curve. Smereka [14]
introduced another original level-set formulation to simulate the evolution
of dislocations on a wider array of geometrical configurations, including the
Frank-Read source. Giga, Ishimura and Koshaka [5] showed the existence of
spiral-shaped solutions for the motion of dislocations on a compact annulus
using a parametrization of the spiral dislocation curves. Forcadel, Imbert
and Monneau [2] also used a parametrization of spirals to prove existence
and uniqueness results, this time in an unbounded domain with a singularity
at the origin. This article describes well the problems encountered with the
singularity of the attachment point and with the unbounded character of the
domain. Karma and Plapp [7] introduced a phase-field formulation to study
and simulate the formation of spiral dislocations. Phase-field approaches were
then also treated by Rodney, Le Bouar and Finel [13], Koslowski, Cuitino and
Ortiz [8], Wan, Jin, Cuitino and Khachaturyan [16], Xiang, Cheng, Srolovitz
and E [15]. In [11], Ogiwara and Nakamura used such a phase-field approach
for a theoretical study of the motion of spiral dislocations, in the case of
a bounded domain with no singularity, and proved the existence of spiral
travelling wave solutions, which exhibit a permanent regime behaviour. The
setting of our paper is similar to [11], and some of their considerations can
be successfully used in the context of the Frank-Read source, even if the
solutions we sonstruct are less constrained than spirals. The use of Neu-
mann boundary conditions is consistent with this approach. We also refer to
Giga and Sato ([3| and [4]) for other studies of dislocation dynamics with
Neumann boundary conditions.

5.1.3 Organization of the paper

Section 5.2 is devoted to the recalling of classical results for parabolic
equations in bounded regular domains. Apart from the necessary existence
results, the comparison principle and the strong maximum principle are par-
ticularly useful in the remainder of the chapter. The proof of Theorem 5.1 is
given in Sections 5.3 and 5.4. In Section 5.3 we show that the space oscilla-
tions of the solution of the Cauchy problem are bounded, and in Section 5.4
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we control the time oscillations and show the bound (5.4). The existence of
a permanent regime (Theorem 5.3) is shown in Section 5.5. It is given by
the long-time behaviour of the solutions of the Cauchy problem. Finally, we
establish the monotonicity relation of Theorem 5.2 in Section 5.6.

5.2 General results

5.2.1 TUseful tools

Proposition 5.5. (Comparison principle for strong solutions)
Consider P a semi-linear operator defined by

Pu=—u; + Au+ B(X,u) (5.6)
with X = (z,t) € @ =Q x (0,T).
Constider also the boundary operator M defined by

Mu=——, (z,t) €00 x(0,T)
n

Suppose B : (X, z) — B(X, z) is continuously differentiable with respect
to z.

If w and v are in C>1(Q) N C%Q), if Pu > Pv in Q, Mu > Mv on
(09 x (0,T)) and u < v on (2 x {0}), then u < v in Q.

This result can be inferred from [10], combining the arguments of the
proofs of Theorem 2.10 p. 13 and Theorem 9.1 p. 213.

We also have a strong maximum principle :

Proposition 5.6. (Strong maximum principle)
Let uy and ug be two solutions of

uy = Au+ f(u,z) (x,t) € Qx1T
Up =0 (x,t) € 02 x I

with f twice differentiable with respect to u and x, with continuous second
derivatives.
If we have

{ uy(z,t) < wus(z,t) (x,t) e xTI

1(zo, o) = ua(wo,to) for a couple (zo,t0) € Q x I
then uy(z,t) = ua(x,t) for all (x,t) € Q x I.

This proposition results a the combination of the strong maximum prin-
ciple (as it is stated in [1] for example) and the Hopf lemma. The Hopf
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lemma covers the cases where the point xg is on the boundary 9€). Actu-
ally, the usual formulation of the strong maximum principle (as in [1]) only
gives that wuj(x,t) = ug(z,t) for t < ty. Here, as our solutions are regu-
lar and the space-time domain is a cylinder, the comparison principle gives
uy(x,t) = ug(z,t) also when ¢ > t.

Proposition 5.7. (Sobolev injections in a parabolic setting)

Let Q C R? a bounded, regular open domain.

(i) Consider p < 2. Then for all u € Wy (Q x (T1,T»)), we have that
u € LQ(Q X (Tl,Tz)) with

D=
N | —

1 .
qg<p* EZ ifp <2

and there exists a constant C', independent on u, such that
[ull Lax i mny) < Cllully21 o i -

(ii) Consider p > 2. Then for all u € Wy (Q x (T1,Ty)), we have that
uwe C%2(Q x (T1,Ty)) with

4
a<a’ a*:max<2——,1)
p
and there exists a constant C', independent on u, such that

llco s (@ur mmy) < Cllullzr @ 1))

This result is shown in |9], Lemma 3.3 p. 80.

5.2.2 Existence of strong solutions

Proposition 5.8. (Existence of strong solutions for the Cauchy prob-
lem)
Suppose W stisfies 5.2. The Cauchy problem

, 0t — 06—
w = Au-—-W u+T +o forxe)
u =0 for x € 90 (57)
on
u =0 when t =0

admits a unique strong solution u € C*(Q x (0, 4+00) N C(Q x [0, +0c0))

This is a straightforward application of [10], Theorem 14.23 p. 378.
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5.2.3 Interior estimates for the solution of the heat equation

In this section we state an interior estimate property for the solution of
the heat equation that will be crucial in the rest of the paper

Proposition 5.9. (Interior estimates for the heat equation)

Consider the heat equation with neumann boundary conditions

up = Au+ f(z,t) (z,t) € Qx (Th,Ts)
u(z,0) = up(x) xz €} .
gu = (z,t) € O x (Ty, T»)

Then, for any € > 0 (with e < Ty, — T1),

(1) if w e LP(Q2 x (T1,T2)) is a solution of (5.9), and f € LP(Q x (1T1,T%)),
then u 1is also in

Wl (Q x (Ty + ¢,T»)) and there exists C > 0 independent of ug such that

||u||Wp2’1(Q><(Tl+E7T2)) <C <||UHLP(Qx(T1,T2)) + HfHLP(QX(Tl,Tg))) :

(i) if u e C¥2(Q x (T, Ts)) is a solution of (5.9), and f € C*2(Q x
(T1,Ty)), then u is also in C*T1H2(Q x (Ty + &, Ts)) and there exists C’
independent of ug such that

!
HUHCQ+“’H%(Q><(T1+5,T2)) <C (HUHC"’%(QX(TLTQ)) + HfHCa’%(QX(Tl,TQ))) :

This result is a consequence of [10], Theorem 7.20 p. 179, using also [9],
Theorem 3.3 p. 80 to control the first order space derivatives.

5.3 A bound on the space oscillation of the solution

The goal of this part is to prove that for a solution u of (5.1) with initial
data u(-,0) = 0, the space oscillation of u remains bounded for all time.

Proposition 5.10. Bound on the space oscillation of the solution
Suppose W satisfies (5.2). Let u be the solution of (5.1) with initial data
u(-,0) = 0. Then there exists a positive constant C' independent of t such
that

max u(z,t) — minu(x,t) < C, for all t > 0. (5.8)
xS TS

To control the space oscillations of a solution u of (5.1) and prove Propo-
sition 5.10, we will use a result controlling the solution of the homogeneous
heat equation, stated in the following lemma :
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Lemma 5.11. (A decreasing bound for the solution of the homoge-
nous equation)
Consider the equation

u—Au = 0  onQx(0,+00)
Opu 0 ondQx(0,+00) (5.9)
u(-,0) = hg on€

with hg € L*(Q).
Then there exists a time Ty > 0 and a real number p € ]0,1[, both
independent of hg and wu, such that for all t > Ty,

[ D) Loy < 1 llholl oo () -

Proof of Lemma 5.11

To prove this lemma we use the fact that the operator (—A) on  with
homogeneous Neumann boundary conditions is a self-adjoint compact oper-
ator on the Hilbert space L?(Q), and that its minimum eigenvalue is strictly
positive. We write (\;);>1 the sequence of its eigenvalues in non-decreasing
order, and (?;);>1 a corresponding sequence of unitary eigenvectors. We then
have Ay > 0.

We observe that as {2 is bounded, there is a continuous injection L>°(£2) —
L?(€2), so there exists C' > 0 such that for all h € L®()), we have h € L*(Q)
and

17l 20y < C N7l oo @) -

Now for a given h € L®(Q) C L?*(Q), we can write its decomposition on
the basis of the eigenvectors (1);) of the operator (—A) with homogeneous
Neumann boundary conditions :

+oo
h=> cab in L*(Q)

i=1

with 30,0 [es|? < C2 |77 oo -
Then we have
+00
u= Z cie Mty in L2(Q).

i=1

For the following, we use interior estimates (Proposition 5.9) and Sobolev
embeddings to transpose the estimates in L? to estimates in L.

We remark that the estimate of Proposition 5.9 can be rewritten, con-
sidering a shifted domain,

||U||W3’1(QX(257TnLaw)) S O/ ||u||Lp(QX(£7Tmll1'))
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for some € > 0. We consider this inequality for the particular value p = 2,
and use the embedding L>((e, Trnaz ), L2(Q)) C L*(Q x (¢, Tynaz)) to obtain

Huuwjl(ﬂx(%,Tmax)) <c” ”“HL""((E,T),L?(Q)) :

The second quantity is clearly finite because the maximum principle implies
that u € L*°(2 x (0,400)). With the spectral decomposition we also have a
bound for the right hand side of this estimate : for all ¢ > 0,

+oo
[u(, D)7z < D leil?e™ < C%e™ M ||| g
=0

which implies

ull Lo (e t00) 22(0) < C2€ % 1] ooy -

We then have the inequality

-\
||“||W§’1(Qx(2s,Tmax)) < Csem Al ooy
To conclude the proof of this lemma, we need to have the same estima-

tion for Hu||W3,1(QX(287TmM)) for some p > 2, which would enable us to use

a Sobolev embedding to derive an estimation in C°(Q x (2¢, Taz)). The
calculations above show that Hu||W22,1((267TmM)’Q) is finite, so by the Sobolev
embedding

Wy (2 x (26, Tiaz)) € LP(Q % (22, Tnaz))  for p < 400,

we have that ||ul| s (o (2¢,74,)) 18 also finite for some p > 2. Using again the
interior estimates theorem, we get

Hu”Wf’l(QX(Z’)a,Tmal)) <Cy HuHW;’l(QX(Qa,TmM)) )

SO
Y 2
||u||W3’1(Q><(35,TmM)) < Cse™° Hh||L°°(Q)‘

Then we use another Sobolev embedding : for all T},4, > 0, we have the

continuous inclusion Cﬁ’g(Q X (3¢, Tinaz)) C W (2 x (3¢, Tnaz ) for some

B > 0 (more precisely this is true for § < 2— %). Then we have the inequality

[ll oo (2 (36, Tma)) < C HuHCﬂ’g(Qx(&s,Tmaz))

<Cy ||UHW3’1(%X(3E,TmaI))
< Cge ™ [|hf| o0

which concludes the proof of Lemma 5.11.
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With this result we can prove Proposition 5.10.

Proof of Proposition 5.10
Step 1 : Elimination of the mean of u on 2

To study the oscillation of wu, it is useful to consider the difference between
u and its mean value on 2. We rrite

ﬂ(x,t) = U(I,t) - <U(,t)>
with )

u(-,t :—/uy,tdy.

(Wt = g7 [ ot
We know that u is a solution of (5.1), so
0t — 60~

ut:ﬂt+6t<u>:Aﬂ—W/ <U+T

) +0o on Qx(0,+00) (5.10)

We also have
Opti =0 on 0 x (0, +00)

and
u(x,0) =0 for z € Q

because u(x,0) = 0. Then, we integrate (5.10) on 2. Note that

/Aa: Ot =0
Q o0

/ i = b, / =0,
Q Q
Therefore, we have

Dy (u) = —ﬁ </Q W <u—i— %(eﬁ _ 9—)>> +o.

So, rewriting (5.10), we find that @ is a solution of the following equation :

and

u—Au = h on x (0,400)
Ont = 0 on JdQ x (0,400) (5.11)
w(x,0) = 0 on{

with initial condition @(0,z) = 0, and

™

h(z,t) =W’ <u(;z:,t) + 2L(¢9+ - 9‘)) + 0 — O {u(-, t)).

The preceding calculations indicate that for all ¢ > 0,

/Qh(a:,t)dx =0.
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We also note that, as W' is bounded, h is bounded, i.e. h € L>°(2x (0, +0)).

Step 2 : Bounds for
As the article of Ogiwara and Nakamura [11], we define the set

Xo = {v €@ /Qv(x)dx _ 0} .

The restriction of A on X defines an analytic semigroup {em} 1e(0,00] OB
Xo and the Duhamel formula gives

¢
() = / eI 5)ds. (5.12)
0
The bound given in Lemma 5.11 can be written equivalently as
HetAhOHLOO(Q) < pllhollpoc(qy for all ¢t > Tp.

As a consequence, there exists C' > 0 and A € (0,+00) such that, for all
t>1Ty
A —
€2 0| oo () < Ce N0l oo ) -

With this, we can derive a bound on @ for all ¢ € (0, +00)

t
(Dl ey < /

0

eU=98p (., s) ds

Lo (9)
t

< C/o (Lgt—s<mpy + 1{t—s>To}€_>\(t_s)) 1A (-, 8)|| oo () ds

t C
C/o (Li—s<pyds + X) Hh||LOO(Qx(0,+oo))

C
CTy+ X) HhHLOO(QX(O,-i-OO)) )

IN

IN

which is indeed a uniform bound.
Finally,

max u(z, ¢) — min u(@,t) < 2[a( () »

which shows that the oscillation of u is indeed bounded.

5.4 Linear growth of the solution in time

Proposition 5.12 (Linear growth of the solution).
Let u be the solution of (5.1) with initial data u(-,0) = 0. Then there exists
a constant w € R and a positive constant C' such that, for all x € Q, t > 0,

lu(z,t) — wt| < C’ forallz e Q, t>0 (5.13)
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Proof of Proposition 5.12

This proof is very similar to the one given in Step 3 of the proof of Propo-
sition 3.18 in Chapter 3. It is given here to maintain the internal consistency
of the chapter.

We recall that the potential W is a 1-periodic function. Then as w is the
solution of (5.1) with initial condition u = 0, u+ k is also a solution of (5.1)
(for another initial condition) for all k € Z.

Now, for 7" > 0, define

0,t +T) — u(0,t)

AT(T) = sup u(

£>0 T
and (0, +T) — u(0, )
_ . u(0,t+ —u(0,
M= T

With this construction, AT (T") and A~ (T") are estimates of the mean slope
of the solution w in time. Heuristically, these estimates should become more
accurate as T' — +o0. In the remainder of the proof we show that both func-
tion AT and A~ converge to a quantity w which is such that (5.13) is satisfied.

Step 1 : Bounds on A" (T) and A~ (T') when T > 1.
We will prove that there exists a constant C independent on 7" > 1 such
that
—Cy <A (T) < AH(T) < Ch.

It is clear that for all T, A\ (T) > A~ (T).

Fix a time ¢ty > 0. We know that u(-,t) € L°°(Q). Then there exists
k € Z such that minu(-,t9) € [k, k + 1[. By the oscillation estimate (5.8), it
follows that maxu(-,t) < (k+ 1)+ C. Equivalently, 0 < u(-,t9) —k < C +1.

Now define the function v : 7+ C' + 1 + (|W'| + o)7. We then have

v > Av— W' (v) + o.

This inequality and the boundary conditions imply that v is a supersolution
of (5.1). We also have that (z,7) — wu(z,t + 7) — 2k is a solution of (5.1),
since the equation is invariant by time translation and addition of integers.
At time 7 = 0, we have

v(z,0) =C+1>u(z,ty) — k.
From the comparison principle (Proposition 5.5), it follows that for all 7 > 0,
v(x,7) > u(x,to+71) — k.
In particular, for 7 = T, we have

CH+1+ (W +0)T = ulw to+T) k. (5.14)
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Combined with the fact that «(0,¢9) — k > 0 this implies that

0,to +7T) —u(0,t C+1
u( yto + ,12 u( ) 0) < ;— +‘W/‘oo+o- (515)

This inequality remains valid for all g > 0, so, for T' > 1,
AHT) < C+ 14 |W| + o] = Ch. (5.16)
Similarly, we can derive a lower bound for A™(T').

Step 2 : Upper bound on A" (T') — A\~ (T)

Consider a real number 7" > 0.

We will first study the case where both the infimum A7 (7") and the
supremum A" (7T') are reached in [0, +00[, which means that there exist t; > 0
and to > 0 such that

~u(0,ty +T) —u(0,ty)
AT(T) = ! = !
o u(0,t0 +T) — u(0,t2)
A (T) = 2 - 2

Consider the function
v(z,t) =u(x,t +to —t1) + K,

with K = |u(0,t1) — u(0,t2) +2C| + 1, where the function |-] is the floor
function. Then u and v are both solutions of (5.1), and for ¢t = ¢4,

v(x,t1) = u(z, t2) + ([u(0,t1) — u(0,t2) + 2C] + 1) > u(x, t1),

where we have used the estimate on space oscillations (5.8). Then, by the
comparison principle, for all ¢t > ¢1,

v(x,t) > u(x,t).
In particular, for t =t + 7T, we have
u(z,to + 1) —u(0,t2) + 1 +2C > u(x,t; +T) — u(0,t1), (5.17)

so, taking x = 0, we get

> \H(T), (5.18)
which we can rewrite

0< AT (T) -\ (T) < 7

(5.19)
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Even if the infimum or the extremum is not reached, we have, for ¢ > 0,
there exists t; > 0 and t9 > 0 such that

AJr(T) < U(O,tl +T) — U(O,tl) +e
T
- (T) < u(O, to + sz — U(O, tg) .

The same line of reasoning then leads to
u(z,to +T) —u(0,t2) + 1+ 2C > u(x,t; + T) — u(0,t1),

S0
1+2C

A (T) +¢e+ > AN(T) —e. (5.20)

As this is true for all € > 0, (5.19) still holds in that case.
Step 3 : Evaluation of the variations of A\* and \~

Now, let p € N\ {0} be an integer.
We first assume that there exists ¢t; > 0 such that

0,t1 +pT') — u(0,t1)
pT

ANT) = ul

It is clear that
pTAY (pT) = w(0,t1 + pT) — u(0,t1) < pTAT(T),
S0
AT (pT) < AT(T).
If the supremum A" (pT') is not reached, then for all € > 0 there exists a
time ¢, such that
pTAT (pT) — e < u(0,t. + pT) — u(0, te). (5.21)
As above,
u(0,te + pT) — u(0,t.) < pTAT(T), (5.22)

so we have, for all € > 0
pTAT(pT) — e < pTAT(T), (5.23)

which implies again that A™(PT) < A*(T). Similarly, it can be proved that
A~ (pT) > A (T).

Now take T} > 0 and T, > 0 and assume that pT) = ¢T5, with p € N\ {0}
and ¢ € N\ {0}. Using the preceding conclusions, we have the following
inequalities :

1+2C

A(Ty) > X (pT) = M (gTR) > A (¢12) > A (T2) > AT (Ty) — T,
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SO

1+2C
NF(To) — AF(T) < ; . (5.24)
2
Exchanging the indices 1 and 2, we see that this implies
1 1
IAT(Ty) = AT (T3)] < (1 +2C) max | —, — (5.25)
T Ty

for all 71,75 > 0 such that % € Q. The solution u being in C%1(Qx (0, +00),
the function (0, -) is uniformly continuous; as a consequence the function
AT is continuous in 7', which implies that the inequalities above remain true
for any 17,75 > 0.
Using the same method we derive the same property for A~ : for all
Ty, T > 0,
_ _ 1 1
IAT(T1) = A (T»)| < (1+2C) max (—, —) : (5.26)
T
Step 4 : Limit of A and A\~ and end of the proof
Now, if (T},)neN is an increasing sequence with limit 400, both sequences
A (T},) and A\~ (T},) are Cauchy sequences and then converge. As this is true
for any sequence with limit +oo, both A*(T") and A~ (T) have a limit for
T — oo. Furthermore, the inequality (5.19) shows that these two limits are
equal. Define
A= lim AY(T) = lim A\ (7).
T— o0 T—ro0

We consider inequalities (5.25) and (5.26) and take the limit 75 — oo to
deduce the following inequalities, for 7" > 0

e 14+ 2C

M)~ A < —2
and 420
IAT(T) = A < T

Now, for all T' > 0, we deduce

AT — (142C) <u(0,T) —u(0,0) < XT + (14 2C).
Combining this with (5.8), we can write

AT — (143C) <wu(z,T) —u(0,0) < AT+ (1+3C),

and we recall that «(0,0) = 0.
Taking w = A and C’" =1 + 3C, we have then proved that, for all ¢ > 0,

lu(z,t) — wt| < C". (5.27)

This concludes the proof of Proposition 5.12, which in turn proves The-
orem 5.1.
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5.5 Permanent regime solution

Proof of Theorem 5.3 in the case w > 0
Step 1 : Definition of the auxiliary function w and a priori bounds
In this step we want to prove that there exists a solution u of (5.1) on
Q x R satisfying estimates (5.8) and (5.13).
Let u be the solution of (5.1) with u(-,0) = 0. We define

w(z,t) = u(z,t) — wt.
From Proposition 5.12, we know that
|u(z,t) — wt| < C' for all t > 0.
As a consequence, w € L> (€ x (0,400)) and

HwHLOO(QX(O,Jroo)) <.

The function w satisfies the following equation :
wy = Aw + f,

with
, ot —o0-
f=-w-W lw+wt+—7—|+o0.
2m

By the interior estimate theorem (Proposition 5.9), we have, for all £ € N,

s 2 239 < € (10008 e 523y + 1N gt )

the constant C] being independent on k. A Sobolev embedding and again
the interior estimate theorem give

llont (qx (a2 a2y < oMol o, 25

S%@me@%»”wmm%%%)
< O [[wll poo (e (k 13)) +

w

4
for some p > o The constants C4 and C4 are still independent on k.
a

For the other term,

HfHCa,%(QX(w,m)) < Wl +H W | poomy + o] + [fly, @ o Qx (kL kt3)

< | + V[ gy + o]

1 -3
e R 1| N

S Wl H Wl ooy + 0+ (Ca + Cy W] oo (e (& 12 ))) Wl oo )

w
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As a consequence
"w"02+a71+%(gx(%7+m)) <05+ Cp HwHLOO(QX(O,+oo)) <Cr

for some 0 < a < 1, where the constant C'; may depend only on w.

Step 2 : Definition of the sequences u, and w, and construction of
a global solution

Our goal will be to exhibit a permanent regime, which is expected to be
reached for large values of t. As w is bounded in a Holder space, we define

wyp(x,t) = w (w,t—i— g) for (z,y) € Q x (—g,—i—oo)

and
Un(x,t) = wp(x,t) + wt.

As
n n n
Up(x,t) = w (x,t—l— —) +w (t—l— —) = (:C,t—i— —) +n,
w w w
uy, is a solution of (5.1) and satisfies the time estimation (5.13).
As wy, is just a time-translation of wy, it is also in L™ (Q X (——, —|—oo)>

2+a,1+2 n—1

and in C Qx| ———mr, —|—oo>>, with the same bounds C’ and C5.
w

loc
Eventually allowing for time domain extensions to R with arbitrary values
that do not change the Hdélder bounds and using a compact injection, we
have that all w,, belong to a compact subset of C2+6’1+§(Q X (=M, M)) for
any M >0 and 8 < «, with 5 > 0.

As a consequence of that, for any M > 0, we can extract a subsequence
wfp (n) which converges to a limit w/ in this compact set. Using a diagonal
extraction procedure for a sequence M, — oo, we have that there exists
a function wee in C*T4143(Q x (=M, M)) for all M > 0 and such that

wy, converges to w in C’2+’8’1+§(Q X (=M,M)) for all M > 0, up to a
subsequence.

Now that we have built weo, we define us, by Uso (2, 1) = Weo(x, 1) + wit.
Then w,, converges to s in C’2+’8’1+§(Q X (=M, M)) for all M > 0. As a
consequence, for all M > 0,

(un)t = (Uoo )t in L>®(Q x (=M, M))
Ay — At in L>®(Q x (=M, M))
, ot — o~ , ot — o~ _
Wilup+ ——— ) =2 W [ Uoo + —— in L®(Q x (=M, M)).
2m 2m

The last convergence occurs because W' is regular enough (it is sufficient for
the convergence that W’ is Lipschitz). We also have a convergence for the
limit conditions :

ou,, Ol

8—71% on

in Lo(Q x (—M, M).
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As a result us is a strong solution of (5.1) on £ x (—o0, +00).

Step 3 : Existence of the permanent regime solution

The next step is to prove that this function us has the form (5.5) with
T = %’r For commodity we will write it w in the following.

Define

b:max{T >0, Vr'<7, u(z,t)+1> u(:c,t+7')}.

This set is nonempty because for 7/ small enough, u(z,t) +1 > wu(z,t +
7') because u is Lipschitz. Moreover, b is finite because for ¢ large enough,
u(0,t) > u(0,0) + 1 (because of (5.13) and w > 0).

In addition, if we fix € > 0, there exists x. € €1, . € R such that

u(ze,te) + 1 <ulxe,t- +b)+¢

because u is Lipschitz (if such a x. did not exist, there would exist 7 > b

1
such that for all 7/ < 7, u(x,t) + 1 > u(x,t + 7’)). Taking ¢ = —, we can
n

consider sequences x,, and t,, such that

w(xn, tn) + 1 < u(xn, t, +0) + %

Case 1 :(z,,t,) have a finite limit when n — oo

In this case there exists 2o € Q and to € R such that U(Too, too) + 1 =
U(Too, too + b) and we still have for all x € Q, ¢t € R, u(x,t) + 1 > u(z,t +
b). By the strong maximum principle (Proposition 5.6) we then have that
u(z,t) + 1 =wu(x,t+b) on Q x R.
Case 2 : |t,| — o©

In this case we try to drag the contact point to 0 by defining v, (x,t) =
u(z,t +t,) + 1 — |wtp] and v}, = u(z,t + t, + b) — |wt,|. We note that v,
is still a supersolution of (5.1) and v/, is a subsolution of (5.1).

If we define z, = v, — wt and z/, = v], — wt, both sequences are uni-

formly bounded in C2HBI+5 (Q x (=M, M)), with the same bounds as those
of w (with a minor exception for the C° bound, which can be higher due
to the use of the floor function, but the difference can not be higher than
1). As a consequence, all those functions belong to a compact subspace of
C?H11+3(Q x (=M, M)). By the same process of diagonal extraction, there
exist functions zo, and z._ such that z, and 2] converge to 2z, and 2. re-
spectively, in C“'Y’H%(Q X (=M, M)) for all M > 0. As a consequence,
defining, veo = 200 + wt, v, = 2., + wt, we have that v, and v}, converge to
oo and v/ respectively, in C2T11H2(Q x (—M, M)) for all M > 0.

As the convergence is in C*T1H3 (Q x (=M, M)) for all M > 0, v and
vl are still solutions of (5.1).
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Now we note that for all n, we have v, (z,t) > v](z,t) forallz € Q,t € R
1 ~ _
and v, (xy,,0) < 0], (2,,0) + —. As Q is compact, there exists zo, €  such
n
that x,, converges to z., up to a subsequence. Taking the limit as n — oo,
and owing to the fact that all vy, v}, voo and v/, are bounded in CZQO’CI(Q xR),

we have that
Voo (T, t) > ) (,t)

forall z € Q, t € R, and
Voo (Too, 0) = v (T, 0).

There again, by the strong maximum principle (Proposition 5.6), we have
Voo = Vb, on Q x R. Moreover, for all n € N, we have for all x € Q, t € R,
vp(z,t) — 1 = v} (x,t — b), so this relation is still true for the limits and
Voo(,t) — 1 = vl (z,t — b). Combining this with v, = v, we get that, for
allz€Q, tER,

Voo (2, t +b) = Voo (2, 1) + 1

and v s also a solution of (5.1). As u satisfies |u(x,t) —wt| < C’, each v,
satisfies |vy,(z,t) — wt] < C" + 2, so we also have |v(2,t) — wt| < C' + 2.

As a consequence, in both cases we have proved that there exists a solu-
tion u of (5.1) such that

u(z,t +b) =u(z,t) + 1,

and in both cases the relation |u(z,t) — wt| < C’ 4 2 holds.

1 1
Now it can be shown that b = —. Indeed, suppose b # — and note
w w
e = |1 — wb|. Take N € N such that Ne > |u(0,0)| + C" + 2. Then we have

|u(0,bN) — wbN| = |u(0,0) + N —wbN| > ||[N —wbN| — |u(0,0)||
But |N —wbN| =eN, so
|u(0,bN) — wbN| > |[eNe — |u(0,0)|| > C" + 2,

which brings a contradiction with the earlier result on time oscillations.

1
Finally, we can conclude that u(x,t +7T') = u(z,t) + 1 with T'= —.
w

Step 4 : Monotonicity of the permanent regime solution
We recall that we suppose w > 0. We consider u the solution of (5.1)
built in the preceding steps, and as above, we define

b=max{r >0, Vr'<7, w(z,t)+1>u(z,t+7)}.

Asu(x,t)+1—wu(z,t+7) is a T-peridodic function for all 7 > 0, its minimum
is reached for a finite ¢ € R. For 7 = b, this minimum is 0 (if it were positive,
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as v is Lipschitz, there would exist 7 > b such that u(z,t) +1 > u(z, t +77)
forall z € Q,t € R, b < 7/ <7, which would contradict the definition of b).

As a consequence, there exists tg € R and xg € {2 such that u(zg,t1)+1 =
u(xg,t1 + b) and u(z,t) +1 > u(x,t + b) for all x € Q, t € R. Again, by
the strong maximum principle (Proposition 5.6), we have that u(x,t) + 1 =
u(x,t+b) is true for all x € Q, t € R.

Now we show by contradiction that u is nondecreasing in time. Suppose
that there exists xg € Q, t1,t2 € R, t; < tg such that u(zg,t1) > u(zo, ta).
As for all N € N, u(zg,t; + Nb) = u(zo,t1) + N > u(xo,t1) > u(zo,t2), we
can suppose that t; < to < t1 + b. But then, if we note 7/ = t1 + b —ty < b,
we have that u(zo,t2) +1 < u(zo,t1) + 1 = u(xo, t1 + b) = u(xo, ta + 7).
This contradicts the definition of b.

We have thus proved that u is nondecreasing.

Step 5 : Uniqueness of the permanent regime solution for a given
w

By the same kind of method, we want to show that the permanent regime
solution u is unique up to time translations. So we consider u; and wuy two
strong solutions of (5.1) satisfying u,;(x,t) + 1 = ui(x,t +71), ¢ = 1,2. If
we note wy; = up — wt and we = uy — wt, both wy; and wy are bounded in
C* 113 (Q x (=M, M) for some y > 0, for all M > 0. As a consequence,
there exists N € N such that w; + N > wo, which implies u1 + N > us.

As above, we define

V=max{r >0, V7' <7, w(z,t)+N>us(z,t+7)}.

ui(z,t) + N — ug(z,t + V') is T-periodic, so its minimum is reached for a
finite ¢ty € R, and xy € Q. As before, this minimum is 0, because if it were
not the case, as u; and us are Lipschitz, there would exist 7 > b’ such that
for all 7/ < 7, uy(z,t) + N > ug(z,t + 7') for all z € Q, t € R, which would
contradict the definition of &’. So we have

ur(z,t) + N > ug(z, t + 1) refN, teR
ul(l’o,to) + N = u2($0,t0 + b,)

By the strong maximum principle (Proposition 5.6), we have that u;(x,t) +
N =ug(z,t +b) forallz € Q, t € R, so uy = us(-,- +b — NT) and u; and
ug are equal up to a time translation, which is what we wanted to prove.

Proof of Theorem 5.3 in the case w < 0

In the case where w < 0, it is clear that if we consider u the solution of
(5.1) with u(-,0) = 0, then —u is solution of (5.1) with —u(-,0) = 0 up to
the replacement of W and o by their opposites. Then —u satisfies (5.4), this
time with w > 0, so the demonstration given in the case w > 0 also proves
Theorem 5.3 when w < 0.
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Proof of Theorem 5.3 in the case w =0

We now cover the case where w = 0. Let u be the solution of (5.1)
with initial condition u(z,0) = 0. As w = 0, the bound 5.4 implies that
u is bounded. We prove the existence of a stationary solution to (5.1) by
showing that uw admits a limit as ¢ — +oo (possibly up to the extraction
of a subsequence of times (¢,)), and that this limit is indeed a stationnary
solution of (5.1).

Multiplying equation (5.1) on © x R by u; and integrating on €2, we get

Kﬁm2+%<lfi??ﬁé<w(u+€%;t)—m&)_0

This expression is licit because of the regularity of v and W, which implies
that the expression for which we take a time derivative is indeed differen-
tiable. We can define the analog of an energy for u by

B(u(-1)) = /Q (VQW +/ﬂ <W (u—l— %) _ Uu) .

['hen we get
dE(u) / 9
= — <0.
dt Q(Ut) -

As a consequence, E: t — E(u(-,t)) is a nonincreasing function, and as u
is bounded, it is also bounded. So there exists a constant F., such that

limy_, o E(t) = Es. Writing the equality

Es — E(ty) = / /\ut(x,t)|2dxdt,
to Q
we deduce that u; € L?(Q x (tg, +00)), and that
toli_I}lOOHUt||L2(Qx(t0,+oo)) = 0. (5.28)

In addition, the line of reasoning of Step 1 of the proof in the case w > 0
remain valid, except for the fact that because w = 0, there is no natural time
period. In particular, u(-,t) is bounded in C2*%(Q) for ¢ high enough. As a
consequence, any sequence (u(-,t,)), with t, — 400 is relatively compact
in C%(Q) and thus converges to a limit 1y, in C?(£2) up to the extraction of
a subsequence.

We consider n > 0. From (5.28), there exists 7' > 0 such that for all
t>T,

luell L2 (@ (t400)) < M-

As a consequence, the set

S={t>T|luC 1)L > n}
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has a measure m = |S| < 1. We can consider a sequence (), such that
t, — +oo and t, € (T,400) \ S for all n € N. As we have shown, the
sequence u, = u(-,t,) admits an accumulation value us, in C?(Q). If we
define, for v € C2(12), the quantity

+_ —
F(v) =Av—W (v—i—u) + o,
2m

then F(u,) converges to F(us) in CY(2) (and thus also in L?(2)), and there
exists N € N such that for all n > N,

[ F(too) — ]:(un)”L?(Q) <.
As t, € (T, 400) \ S, we also have that

IF (un)ll£2(0) = e (s tn)llL2(0) < -

As a consequence,
| F (voo) | L2() < 2

As this is true for all > 0, we can conclude that || F(us)|[z2(q) = 0, which
implies that ue, is a stationary solution of (5.1). This completes the proof
of Theorem 5.3.

5.6 Growth of w in o

Proof of Theorem 5.2
From what we have seen before, w can depend on ¢ and on the initial con-
dition u(-,0).

First, it is possible to show that w does not depend on the initial condi-
tion. We consider u; and uy two solutions of (5.1) with the same value of o,
and with initial conditions u1(-,0) = u1 9 € C?T¥(Q) and us(-,0) = ugg €

0 0
C?*%(Q), satisfying the compatibility conditions U0 _ 9920 _ ) on 90

n on
Theorem 5.1 indicates that there exist w; € R and wg € R such that

lur(z,t) —wit] < Oy, (5.29)
and
‘UQ(.T,t) - w2t| < 02. (530)

As uy and ug are both bounded on €, there exists M € Z and N € Z
such that
Uu1,0 + M < u2,0 < u1,0 + N.

As M and N are integers, u; + M and u; + N are both solutions of (5.1).
Then, by the comparison principle (Proposition 5.5), we have

wup + M <uy <wup + N. (5.31)
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The relations (5.29),(5.30) and (5.31) imply that w; = wa.
Now we consider u; a solution of (5.1) with o = oy, with the initial
0
condition u;(+,0) = uy o € C?*T*(Q) satisfying % = 0, and usg a solution
n
of (5.1) with o0 = o9, with the initial condition us(-,0) = ugg € C*T*(Q)

satisfying % = 0. We suppose that o1 < 02, and our goal is to show that
w1 S w9. "

We will show this inequality by contradiction, so we suppose that w; >
we. As wy and wy do not depend on w;g and ugo, we can suppose that
uz,0 > u1,0. Furthermore, we know that there exists C > 0, such that

]ul — wlt\ S C,
and
lug — wat| < C,
2C
so, for some tg > ———, we have that, for x € ),
w1 — w2

ul(to,l‘) > wity — C > waty + C > ’LLQ(tQ,CC)

This contradicts the comparison principle (Proposition 5.5), and this con-
tradiction concludes the proof of Theorem 5.2.
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