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Abstract

One-dimensional quantum many-body systems exhibit peculiar and intriguing

behaviors as a consequence of the reduced dimensionality, which enhances the

effect of fluctuations and correlations. The high degree of isolation and con-

trollability of experiments manipulating ultra-cold atomic gases allows for the

experimental simulation of text-book models, for which many theory tools are

available for quantitative comparison. In this thesis, I present instances of such

efforts carried out during my PhD thesis, namely, the studies performed to inves-

tigate the behavior of 1D Bose gas (Lieb-Liniger gas) at equilibrium and beyond.

An overview of the experimental setup and of the toolbox available to date to

characterize the equilibrium thermodynamics of a Lieb-Liniger gas is shown, fol-

lowed by detailed studies of the breathing mode of such a system, the long-lived

nonequilibrium state often observed, and the system’s response to strong exci-

tations via interaction tuning. I also report the technical advances of the experi-

ment, i.e. the new imaging objective with an improved spatial resolution, and the

current state of affairs of the atom chip and the laser system.
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Physics in reduced dimensions can be very different from that in the common

three dimensional (3D) world. In particular, a one-dimensional (1D) system ex-

hibits strong intrinsic fluctuations and dynamics, and promises the possibility to

realize integrable models. The theoretical understanding of 1D systems at ther-

mal equilibrium has been fairly well established [31], enabling quantitative char-

acterization of the experimental realization.

On the other hand, the understanding of the dynamics of an isolated quantum

many-body system is of interest in both statistical physics and quantum physics.

For a system brought far away from its equilibrium state, no generic frame work

exists to describe when and how does the system relax, or the complex transient

states exhibited. Despite significant efforts in theory [119], experimental quantum

simulations [149] appear to be useful.

Ultracold atomic gases constitute a prime candidate for such investigations. The

high degree of isolation and control available enables the engineering of textbook

models. Also, collisions take place on a time scale accessible by the experiment,

giving hopes for probing the relaxation dynamics. As a result, there have been a

myriad of activities in the community of ultracold atomic gases to study nonequi-

librium dynamics [34, 66, 75, 94, 100, 101, 125, 133, 149, 154].

The experiments I performed during the course of my doctoral work make use

of an atom-chip setup to manipulate ultracold gases of rubidium - 87 (87Rb), and

are precisely centered around the theme of the equilibrium and nonequilibrium

behavior of 1D systems. For the equilibrium behavior, new tools such as the mo-

mentum distribution and momentum correlations have been and are still being

developed in order to quantitatively characterize the experimental system. For

the nonequilibrium dynamics, various means have been used to bring the system

away from equilibrium and the subsequent evolution investigated. In addition,

technical improvements are made in order to ensure the relevance and versatility

of the experimental set up in the long run.

This thesis is a documentation of my scientific activities from September 2011 to

September 2014. It is divided into three parts. Part I introduces the toolbox de-

veloped for the quantitative characterization of our experimental system, a single

tube of 1D Bose gases with repulsive contact interaction in a harmonic trap. In

Part II, I present the experimental investigations aimed at probing the nonequi-
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librium behavior of harmonically confined 1D Bose gases. Part III details the

technical improvements of the experimental setup. A general conclusion is given

at the end.



Part I.

1D Tool Box
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This part aims to introduce the toolbox developed in the past years to quantita-

tively characterize the experimental realizations of 1D Bose gases. Such efforts

have not only enhanced our understanding of the equilibrium characteristics of

the system of interest, but also laid down the foundation for the study of nonequi-

librium phenomena.

I organize this par as follows. Chapter 1 introduces the atom-chip setup used

on our experiment to realize single samples of 1D Bose gases. The underlying

Lieb-Liniger model as well as its extensions and modifications relevant to its ex-

perimental realizations are discussed in Ch. 2. I then give an overview of various

tools that can be used to characterize the equilibrium behavior of single samples

of 1D Bose gases in Ch. 3.
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An atom chip is a surface mounted device that miniaturizes and integrates the

experimental setup for matter-wave optics, in a manner not unlike photonics

to optics, or integrated circuits to conventional electrical circuits. The early

activities leading to the conception of atom chips started in 1990s, when at-

tempts were made to guide atoms along free-standing wires and trap them in

simple geometries [40]. After two decades of intense development, this device

not only routinely produces Bose Einstein condensate (BEC) [74], a crucial in-

gredient in studying macroscopic quantum phenomena, but also realizes many

aspects of the early visions [51, 52]. For instance, it can investigate matter-

wave optics in versatile potentials [43, 72, 122], perform interferometric measure-

ments [37] (and reference therein), and study physics of low-dimensional systems

[5, 9, 10, 19, 39, 44, 76, 83, 84, 98, 105, 141, 147, 150]. It can also integrate other de-

vices, such as fiber optics [36], nanostructures [55, 62, 71], permanent magnetic

materials [89, 136], and superconductors [16, 32, 80, 130].

The experiments performed during the course of my doctoral work make use of

an atom-chip setup to manipulate ultracold gases of 87Rb in highly anisotropic

potentials. This ‘BEC machine’ was first constructed in the early 2000s, and un-

derwent various stages of upgrade meanwhile. Details can be found in previous

theses [11, 12, 45, 82, 137, 148]. In particular, all experiments described in this the-

sis are carried out using this fully functional machine, whose most recent status

of affairs up to 2012 is recorded in [82].
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For completeness, however, I will first discuss about the realization of 1D systems

with ultracold atoms in Sec. 1.1, then give a brief description of the experimental

setup in Sec. 1.2 and the typical sequence used to prepare a 1D cloud of ultracold

Rb on our experiment in Sec. 1.3. A conclusion is given at the end.

1.1. Reaching 1D regime

Achieving a 1D geometry requires that the energy scales associated with both

thermal excitation and change of particle number to be small compared to the

transverse energy spacing, i.e.,

kBT, µ� h f⊥, (1.1)

so that strongly prolate trapping configurations are necessary. Here, kB is the

Boltzmann constant, T is the absolute temperature, µ is the chemical potential, h

is the Planck’s constant, and f⊥ is the transverse trapping frequency1, assuming

a harmonic confinement that is isotropic in the transverse direction. This is illus-

trated in Fig. 1.1. Typical realizations also satisfy kBT, µ � h fz, where fz is the

longitudinal trapping frequency, so that many longitudinal states are occupied.

1

Figure 1.1.: An illustration of the 1D criterion, Eq. (1.1).

There are in general two strategies to achieve such a geometry:

1Note that f and ω will be used interchangeably in this manuscript. Symbols with the same
subscript ‘?’ are always related by ω? = 2π f?.



1.2 Experimental setup 11

1. by loading a precooled gas into an array of tubes [73, 95, 110, 153], corre-

sponding to attaining low T, µ and increasing f⊥;

2. by starting with a relatively hot gas in a single tube and evaporating down

into the 1D regime, corresponding to fixing2 a high f⊥ and decreasing T, µ

[44, 76, 150].

Both strategies have been demonstrated to be viable, though methods used for

characterization depends on the choice, for each has its own advantages and dis-

advantages. The first method allows for the characterization of the system prior

to loading the tubes using standard techniques developed earlier for 3D BEC ex-

periments, and certain thermodynamic properties such as temperature, entropy

per particle, etc. are carried over to the subsequent 1D systems by adiabaticity

arguments, for which the applicability becomes unclear sometimes. This strategy

also ensures ensemble averaging (over the tubes) automatically, allowing for an

acceptable integrated signal in measurements even if the signal from individual

tubes is low. For the latter, newer and more precise calibration schemes had to

be developed, and the absence of ensemble averaging allows for novel probes

such as fluctuation measurements that give direct access to a whole new range of

characteristics of the system (see Ch. 3 for further discussions).

We use the second strategy on our experiment. The next section gives an

overview of the setup that enables this implementation.

1.2. Experimental setup

Atom chip

The atom chip itself is the central component of the setup. The current generation

is a single-layer3 chip that makes use of alumimium nitride (AlN) substrate for

its excellent thermal properties [8, 53, 121]. Gold microwires are fabricated using

optical lithography and physical vapor deposition. A planarization process is

then employed to cover the wires with an insulating resist, forming a surface that

2with the possibility of increasing it further at a later stage.
3that is to say all wires rest on the same plane, not to be confused with various layers of material

that is added to the chip during the fabrication process.
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is sufficiently smooth4 for light at 780 nm. This surface is then coated with a

thin layer of gold for high reflectivity. Details of this process are available in Ref.

[11].

2

Figure 1.2.: An illustration of the mounted chip.

The chip on our setup is mounted on a copper piece that acts as a heat sink and

adapter to a vacuum flange (see Fig. 1.2). In order to achieve strong magnetic

confinement, high current densities in small wire structures are favorable [57],

implying significant heating, which in turn results in deformation or damage of

the chip structure. For a given current density, heating of the chip can be reduced

by improving thermal dissipation, mostly via conduction through the substrate

to the chip mount and eventually the environment. It is achieved on this ex-

periment by soldering the AlN substrate onto the mount. Indium is used as the

soldering agent for its low melting point, so that the delicate structure on the chip

can be preserved. It is also compatible with an ultrahigh vacuum (UHV). Since

the implementation of the soldering process in January 2012, we have qualita-

4Trenches due to underlying wires are below 500 nm deep.
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tively observed significantly less thermal deformation of the chip5. We plan to

perform a quantitative study of the thermal characteristics.

Using a bulk AlN wafer, as is done presently on our experiment, is however not

ideal due to its grainy structure, which translates into the shape irregularities of

the surface-mounted wires. The grain size depends on the manufacturing process

and varies from one batch to another. Considerations of substitute materials and

processes will be discussed in Ch. 8, where a vision of an improved experiment

is given.

Magnetic fields

The wires on the atom chip are powered by stabilized direct current (DC) sources,

which are in turn powered by batteries to minimize technical noise induced by

ground loops. Surface magnetic fields produced by the wires are supplemented

by those produced by external coils. Most of the power supplies in use now have

been designed and constructed by an in-house electronic engineer, Mr. Frederic

Moron.

Vacuum system

The vacuum system of this experiment is fairly simple and monolithic (see Fig.

1.3). It consists of a small stainless steel chamber that houses the atom chip, con-

nected to a Titanium sublimation pump and an ion getter pump. The small total

volume (∼ 1 L) ensures efficient pumping and bake-out. The cold cathode vac-

uum gauge typically measures 4 × 10-11 mbar without the Rb dispenser in op-

eration. Little functional changes have been made since 2004. I refer interested

readers to Ref. [12, 45, 137] for details.

Laser system

The laser system used for cooling and probing the atoms is entirely home made.

Two external cavity diode lasers (the Master and Repumper) at 780 nm are fre-

quency locked 6.8 GHz apart. The Master is spectroscopically locked on the level

crossing between the |F = 2〉 → |F′ = 2〉 and |F = 2〉 → |F′ = 3〉 transitions

of the 87Rb D2 line6, and injection locks another laser diode (the Slave). The Re-

5compared to previous generations where the chip was glued using an epoxy with high thermal
conductivity, Epotek H77.

6This terminology originates from the sodium doublet (D1 and D2) in the Fraunhofer lines in
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3

Figure 1.3.: A drawing of the essential components of the vacuum system.

pumper injects a tapered amplifier7 (TA) . A schematic is shown in Fig. 1.4. Com-

pared to the system presented in [82], the only addition is the TA, which amplifies

the Repumper since the diode itself does not give out sufficient power8. This so-

lution is certainly an overkill and temporary. A new scheme will be implemented

for the next generation of experiments, in conjunction with a new chip design

and more powerful imaging optics. This will be discussed again in Ch. 8.

Experimental control

Experiments manipulating ultracold atoms require precise synchronization in

their control. This is achieved on our experiment by a homemade sequencer,

designed and constructed by an in-house electronic engineer, Mr. André Villing,

together with a control software running on Matlab 6, developed by Dr. Jérôme

Estève and Dr. David Stevens. Details of the architecture can be found in [45].

the solar absorption spectrum. Both terms meanwhile are used for all alkali transitions from
the ground state to the first excited state [2].

7Eagleyard EYP-TPA-0780-00500-3006-CMT03-0000.
8Eagleyard EYP-RWE-0790-04000-0750-SOT01-0000, giving barely above 10 mW before a fiber

injection, compared to easily 50 mW at the same point using the TA.
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4

Figure 1.4.: A schematic of the current laser system.

For the purpose of book keeping, I mention below the upgrades that have taken

place up to this point:

• Digital cards with 16 (instead of 8) output channels are in use, while the

number of points per channel per sequence remains at 32;

• A homemade direct digital synthesis (DDS) card has been integrated. It

generates a smooth oscillatory signal according to an externally specified

amplitude (amplitude input) and an internally specified (programmed) fre-

quency. The frequency reference may be external (local oscillator input) or

internal (using the sequencer clock). The output signal is triggered by a dig-

ital input, and it is possible to suspend (gate input) the rest of the sequencer

during its operation. This card is responsible for generating the radio fre-

quency (RF) signal needed for evaporative cooling, and a photo is included

in Fig. 1.5 as an illustration.

• The prototype of analog cards with 256 (instead of 32) points per channel

per sequence is now available. The number of output channels remains 4

for the time being, but instances with 8 channels should arrive the a near

future.



16 1. Atom Chip at Palaiseau

5

Figure 1.5.: An illustration of the front view of the DDS card with its various
input/output ports.

Imaging system

The atoms are imaged on a charge-coupled-device (CCD) camera9. We perform

a standard (destructive) absorption imaging of the atoms. A treatment according

to and beyond the Beer-Lambert law can be found in [11, 45, 82, 137, 148]. The

imaging system is illustrated in Fig. 1.6. It consists of a laser collimator10 (objec-

tive) in focus to infinity conjugation, and a doublet11 that projects the image on

the CCD chip.

Such a setup is diffraction limited with a point spread function (PSF) for which

the radius of the central Airy disc rPSF = 2.4 µm. A magnification of ∼ 5 gives a

pixel size ∆z = 2.7 µm. The resolution in practice limited by the atomic diffusion

during the imaging pulse, and the root-mean-square (RMS) radius for typical in

situ imaging parameters (probe pulse duration and saturation) is δz ' 3 µm in the

object plane. Given that the signal-to-noise ratio (SNR) for detecting small num-

9Princeton Instruments PIXIS 1024, operating in frame-transfer mode. The quantum efficiency
is ∼ 80% at 780 nm.

10Melles Griot GLC-50.0-20.0-830.
11Melles Griot LAO-250.0-30.0.
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6

Figure 1.6.: An illustration of the current imaging system.

ber of atoms improves with better resolution (see Sec. 7.1.1), there is an interest

in installing an imaging objective with a larger numerical aperture (NA). To take

advantage of the expertise in optics available at Institut d’Optique, I carried out

the design, assembly, and preliminary characterization in house12, with the help

of various people from the institute, including but not limited to Dr. Yvan Sor-

tais, Mr. André Guilbaud, the staff at the mechanical workshop, and Mr. Lionel

Jacubowiez. Ch. 7 acts as a documentation of the new objective.

1.3. Typical preparation sequence

Since the first realization of BEC in 1995 [6, 20, 38], the field of ultracold atomic

gases has been growing rapidly, with an abundance of collaborative efforts and

synergy. As a result, procedures to cool and trap 87Rb, by far the most common

candidate in such experiments, have become a fairly standard operation proce-

dure, with small variations13 from one experiment to another. Even the com-

plication of limited optical access due to the atom chip has been satisfactorily

overcome [57, 77].

12Only the production of the optics were out-sourced to Lens Optics (URL: http://www.lens-
optics.de/).

13in terms of the implementation of the same strategy. Of course, different strategies may be
available to achieve the same purpose, and would require corresponding implementations.
For instance, the loading of a magneto-optical trap (MOT) can be carried out via constant
background pressure, modulated background pressure, a two-dimensional (2D) MOT, or a
Zeeman slower, with increasing efficiency. Implementation of each of these strategies is well
established.
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This experiment takes advantage of the experience gathered in the community,

and implements the following steps in order to produce cold samples of 1D quan-

tum gases:

• An external14 mirror15 magneto-optical trap (mirror MOT) loads ∼
108 atoms and cools them down to ∼ 200 µK at a few mm from the chip

surface [see Fig. 1.7(a)];

• The atoms are then transferred to a surface16 MOT ∼ 200 µm from the chip

and compressed [see Fig. 1.7(b)];

• The optical molasses cool ∼ 107 atoms down to ∼ 10 µK [see Fig. 1.7(c) for

a mock-up of the image registered on the camera];

• The atoms are optically pumped into the |F = 2, mF = 2〉 state [see Fig.

1.7(d) for an illustration];

• A magnetic trap provided by H-shaped wires and an external bias field is

loaded with ∼ 5 × 106 atoms at several hundred µm from the chip. The

atomic cloud is then compressed transversely into a prolate trap provided

by a Z-shaped wire and an external bias field [see Fig. 1.7(e)];

• Radio-frequency evaporation is carried out for 2.4 s to yield∼ 3× 105 atoms

at ∼ 1 µK [see Fig. 1.7(f)];

• ∼ 8× 104 atoms are then transferred to the alternating-current (AC) mag-

netic trap ∼ 4 µm from the chip, and a second RF evaporation produces the

final sample of 500-104 atoms at 20-200 nK [see Fig. 1.7(g) and (h)].

Only the final step above is particular to our setup due to the finite depth of the

AC magnetic trap. Details can be found in Ref. [82]. By tuning the parameters of

this final cooling stage, we can achieve a range of values for the temperature as

well as the total number of atoms. In addition, the transverse trapping frequency

can be tuned in order to change the strength of the repulsive interaction17, so that

14The magnetic field is provided by the coils outside the vacuum chamber, as opposed to the
on-chip wires.

15The chip surface.
16The magnetic field is generated by on-chip wires.
17See Sec. 2.2.1 and references therein for further discussions.
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different thermodynamic regimes18 can be probed.

The atomic ensemble obtained at the end of the steps outlined above is then the

starting point of all experiments performed in this thesis. Unless specified oth-

erwise, this preparation stage will not be repeated in the experimental sequences

discussed later.

Conclusions

In this chapter, we have seen that different strategies can be used to experi-

mentally achieve a 1D scenario. Our atom-chip setup works with 87Rb atoms

that are loaded and cooled in a highly anisotropic magnetic trap, so that a

single sample of 1D Bose gas can be obtained at the end of the preparation

sequence.

18discussed in Sec. 2.1.3.
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Figure 1.7.: Various stages of the preparation sequence. a) and b) are illustrations
of the view from the spy camera, allowing visual inspections of MOT
loading. d) is an illustration of the optical pumping scheme. c) and
e) to f) are mock-ups of the images captured by the camera at vari-
ous stages: optical molasses, static magnetic trap before and after the
evaporation, and modulated guide before and after the evaporation.
These images display both the atomic ensemble and its reflection in
the chip-mirror.
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This chapter will give an overview of the theoretical foundation necessary for the

characterization of 1D Bose gases at thermal equilibrium. Its purpose is to set

the stage for Ch. 3, which will demonstrate direct comparisons between theory

results and experimental data that yield important information about the experi-

mental systems.

Since the main focus of our discussion will be single tubes of 1D (or nearly 1D)

Bose gas in harmonic confinement, I will restrict the discussion to exclude Bose

gases in dimensions higher than one, for which a vast literature is available else-

where, see e.g. [15] and references therein. Also, I will not discuss about lattice

models, nor provide an exhaustive list of all theory tools available to describe the

continuum case. Interested readers should look into a recent review by Cazalilla

et al [29] and references therein in order to gain better insights of the matter.

Therefore, I organize this chapter as follows. In Sec. 2.1, I will introduce the Lieb-

Liniger model and its finite temperature equation of state with a few notes con-

cerning the computation. Different regions of the interaction-temperature phase
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diagram are briefly discussed. In Sec. 2.2, a connection between the 1D homoge-

neous model and its experimental realization is established, accounting for both

the transverse and longitudinal confinement typical of ultracold atomic experi-

ments.

2.1. 1D Bose gas in a continuum

2.1.1. Lieb-Liniger model

Bosonic particles interacting via a Dirac-delta potential of finite strength in 1D

can be described by the Lieb-Liniger (LL) model [102, 103]. It was in fact in-

spired by Girardeau’s impenetrable boson model [64], also known as the Tonks-

Girardeau (TG) gas or hard-core bosons so to speak, which takes the limit of in-

finite interaction strength, and is therefore essentially a zero-parameter model1.

By the introduction of a finite interaction strength g1D, the LL model acquires an

intrinsic length scale, corresponding to, very loosely speaking, the interparticle

distance for which the interaction and kinetic energy per particle become compa-

rable. More precisely, given the Hamilton operator

HLL = ∑
j

p2
j

2m
+ g1D ∑

j<k
δ(zj − zk), (2.1)

where m is the particle mass, zj and pj are the position and momentum of the jth

particle, the relevant length scale is given by

lg =
h̄2

mg1D
, (2.2)

and the corresponding energy scale is

Eg =
mg2

1D

2h̄2 , (2.3)

where h̄ = h/(2π).

1Despite its peculiarity, the TG model serves as an instructive example of a strongly interacting
system. More on this matter in Ch. 4.
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With these scales in mind, we need two dimensionless intensive variables in order

to describe a LL gas at thermal equilibrium: the interaction parameter,

γ =
1

ρlg
=

mg1D

h̄2ρ
, (2.4)

where ρ is the linear (number) density, and the reduced temperature,

t =
kBT
Eg

=
2h̄2kBT
mg2

1D
. (2.5)

The former was already introduced in the original paper by Lieb and Liniger

[103], where the authors focused on the ground state of the model. In particular,

it was shown that the Bethe Ansatz2 can be applied to construct the ground-state

many-body wave function, from which properties of the system can be computed

numerically. Although the knowledge of the wave function in principle warrants

the computation of arbitrary observables, their practical implementation differ in

complexity and efficiency [59, 96, 97]. In the thermodynamic limit, where both the

particle number N and the size of the system L approach infinity, while preserv-

ing the linear density ρ (≡ N/L), the ground-state properties such as the energy

per particle, chemical potential, etc. can be computed via the quasimomentum

distribution, which is a solution of an integral equation of the Fredholm type [3].

For the exact procedures of such computation, I refer the interested reader to the

original manuscript by Lieb and Liniger [103], where the authors meticulously

detailed the solution.

2.1.2. Exact thermodynamics

The finite-temperature case was fully worked out a few years later, when Yang

and Yang (YY) established the fact that all states of the LL model can be given

by the Bethe Ansatz [155]. In the thermodynamic limit, the minimization of the

free energy and the continuity of the many-body wave function at particle contact

yield two integral equations for the quasimomentum distribution of the particles

and holes, from which the equation of state can be evaluated.

2which is a prescription to construct the eigenstates (with their respective wave function and
energy) of a certain class of quantum many-body problems. See e.g. Refs. [90–92] for an intro-
duction.
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As I will show in Ch. 3, the finite-temperature equation of state is a powerful tool

to characterize experimental realizations of the LL model. However, direct ap-

plication has only been reported in a few experimental setups [9, 150, 153], and

neither the equation of state as numerical database nor a routine to perform such

calculations has been openly accessible. I have so far constructed a set of func-

tional programmes, and it is my intention to make it available to the public once

the documentation is complete3. Meanwhile, I outline the key equations neces-

sary for the computation, and list a few tips about its numerical implementation.

It is mostly summarized from my own experience as well as many stimulating

discussions with Dr. Giuseppe Carleo4, who has supplied some of the numerical

data for the computation used in Ch. 4.

Key equations

Consider the quasimomentum5 distribution for the particles fp(k) and the holes

fh(k), which are related via the excitation spectrum ε(k), defined by

fh(k)
fp(k)

= e
ε(k)
kBT . (2.6)

Minimization of the free energy6 gives

ε(k) = −µ +
h̄2k2

2m
− kBT

2π

∫ ∞

−∞
dk′

2c̃
c̃2 + (k− k′)2 ln

(
1 + e

ε(k′)
kBT
)

, (2.7)

where c̃ = 1/lg = mg1D/h̄2 is the interaction strength in the same dimension as

the quasimomentum7 k, µ is the Lagrange multiplier of the constraint that pre-

serves the linear density, and has the physical meaning of the chemical potential,

3Such a task however does not take precedence over the writing of the current manuscript, and
would most likely make a nice summer project once the thesis is submitted.

4Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris Sud 11, 2 Avenue Au-
gustin Fresnel, F-91127 Palaiseau Cedex, France.

5The k’s are quasimomenta since they are used to construct a many-body wave function in a
restricted coordinate space, and have multiplicity with period 2π/L, where L is the system
size, so that their physical meaning differs from the true momenta p’s. A more detailed dis-
cussion can be found in [103]. In the literatures dealing with Bethe Ansatz, the k’s are known
as rapidities.

6The derivation of this result can be found in the original paper of Yang and Yang [155].
7The notation of c appeared in the early papers [102, 103, 155] where the authors implicitly

worked with dimensionless variables. The use of c remains convenient in the context of the
integral equations discussed here, and its relation with g1D establishes the connection with
physical units [93].
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while the particle quasimomentum distribution is given by

2π fp(k)
(

1 + e
ε(k)
kBT
)
= 1 +

∫ ∞

−∞
dk′

2c̃
c̃2 + (k− k′)2 fp(k′). (2.8)

For the ease of numerical routines, it is convenient to work with dimensionless

intensive quantities. Let us introduce

y ≡ k
c̃

, µ̃ ≡ µ

kBT
, ε̃(y) ≡ ε(k)

kBT
, f̃p(y) ≡ fp(k), (2.9)

and re-write Eqs. (2.7) and (2.8) as

ε̃(y) = −µ̃ +
y2

t
− 1

π

∫ ∞

−∞

dy′

1 + (y− y′)2 ln
(
1 + eε̃(y′)), (2.10)

f̃p(y) =
1

2π
(
1 + eε̃(y)

)
(

1 + 2
∫ ∞

−∞

dy′

1 + (y− y′)2 f̃p(y′)
)

, (2.11)

where t is defined in Eq. (2.5). These equations can be solved iteratively as proven

in [155], so that the linear density ρ, total energy E, entropy S, and pressure P can

be computed using

(ρlg =)
1
γ

=
∫ ∞

−∞
dy f̃p(y), (2.12)

E
NkBT

=
γ

t

∫ ∞

−∞
dy y2 f̃p(y), (2.13)

S
N

= γ
∫ ∞

−∞
dy f̃p(y)

(
eε̃(y) ln

(
1 + e−ε̃(y))+ ε̃(y)

)
, (2.14)

P
ρkBT

=
γ

2π

∫ ∞

−∞
dy ln

(
1 + e−ε̃(y)). (2.15)

Programme

Therefore, the programme that computes the YY equation of state consists of the

following steps:

1. For each given pair of (t, µ̃), solve iteratively Eq. (2.10) to obtain ε̃(y);

2. Substitute ε̃(y) into Eq. (2.11) and solve iteratively for f̃p(y);
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3. Compute the thermodynamic quantities using Eqs. (2.12) - (2.15).

Given the iterative nature of the solutions, it is computationally economical to ob-

tain them as numerical lists covering a substantial region in the parameter space

of (γ, t) once, and use these lists as the basis of interpolation later. Since the ana-

lyticity is proven by Yang and Yang [155], the derivative of the equation of state

can be evaluated to yield further information about the system, e.g. the isother-

mal compressibility βT can be evaluated via βT = 1
ρ

∂ρ
∂P

∣∣∣
T

, etc.

Tips for computation

Before concluding on this subsection, however, a few remarks regarding the prac-

tical implementation of the above is in order.

First, the logarithmic term in the integral of Eq. (2.10) gives a relatively large con-

tribution for ε̃(y) > 0, which happens for µ̃ & 0. This prevents fast convergence

of the iteration if one starts from the 0th order approximation ε̃0(y) = −µ̃ + y2/t.

To circumvent this problem, one may use an adaptive approach to choose the

starting point of the iteration. Namely, for a given t, sort the list of {µ̃j} of inter-

est in increasing order, such that

µ̃1 < µ̃2 < . . . < µ̃j < µ̃j+1 < . . . . (2.16)

Starting from the most negative8 µ̃ = µ̃1 < 0, where the 0th order approximation

warrants a fairly fast convergence, the solution ε̃(y) for µ̃ = µ̃j can then be used

as the starting point of the iteration for µ̃ = µ̃j+1.

Second, to approximate the integrals in Eqs. (2.10) and (2.11), an appropriate grid

of y should be chosen. Two cases exist:

Case 1: µ̃ < 0. Here, the step size should be chosen such that there are enough

points to sample both the Lorentzian 1/
(
1 + (y− y′)2) of unity half width at half

maximum (HWHM), and the Gaussian exp(−y2/t) of width ∝
√

t (from the 0th

order approximation), while the range of relevant y is essentially cut off by the

Gaussian-like tail of exp
(
ε̃(y)

)
that is present in both Eqs. (2.10) and (2.11), so

that sampling up to ∼ 3
√

t suffices.

8µ̃ < 0 is necessary in order to probe the regime where γ is large.
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Case 2: µ̃ & 0. ε̃(y) is negative for small |y| up to ∼ √tµ̃ , and it is essential to

sample up to values of |y| such that ε̃(y) is sufficiently positive. The step size,

on the other hand, is imposed by the condition that there are enough samples in

both the negative region of ε̃(y) and the Lorentzian kernel.

Hence, as one adapts the starting ε̃(y), the grid should be updated (expanded

assuming increasing values of µ̃) accordingly in order to ensure that the correct

result is obtained.

2.1.3. 1D phase diagram

Now we are in the position to discuss different regions in the parameter space of

(γ, t) for homogeneous systems, as illustrated in Fig. 2.1.

t

γ

10-3

100

103

106

10-4 10-2 100 102

qBEC TG

IBG

tγ = 1

tγ 3/2
 = 1

tγ 2
 = 1

Figure 2.1.: Phase diagram of the Lieb-Liniger gas, spanned by the dimensionless
interaction parameter γ and the reduced temperature t. All lines are
to be understood as smooth crossover from one asymptotic regime to
another.

Three asymptotic regions exist. The strongly interacting regime (dark grey area,

bottom right in Fig. 2.1), marked by TG à la Tonks-Girardeau, is the region in the

phase diagram where the typical energy of the particles is smaller than Eg. This

takes place when t� 1 and γ� 1.

The rest of the phase diagram is subdivided into the quasicondensate (qBEC)

regime (light grey area, bottom left in Fig. 2.1) and the ideal Bose gas (IBG) regime

(white area, top right in Fig. 2.1).
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The qBEC regime is characterized by weak and yet significant interparticle in-

teractions such that the system is coherent with respect to two-body correlations

(suppressed density fluctuations) and incoherent with respect to one-body cor-

relations (surviving phase fluctuations). Two subregimes can be identified: the

quantum coherent qBEC (tγ � 1) for which quantum fluctuations dominates,

and the thermal qBEC (tγ & 1) where thermal fluctuation dominates. The bound-

ary in between takes place around tγ ' 1 (grey dotted line on the left).

The IBG regime can be described by the ideal gas law with Bose-Einstein statis-

tics, and approximated by the Maxwell-Boltzmann equation of state for suffi-

ciently high temperature and low density. Quantum degeneracy is reached when

the de Broglie wavelength of the particles becomes comparable to the interpar-

ticle distance, corresponding to tγ2 ' 1 (grey dotted line on the right). This

degeneracy crossover, relevant for large t, separates the degenerate (tγ2 . 1) and

nondegenerate (tγ2 � 1) IBG.

The transition between the qBEC and IBG regimes, known as the quasicondensa-

tion crossover, takes place when the interaction starts to play an important role

in two-body correlation, while the system remains dominated by thermal exci-

tations and fluctuations. In terms of the dimensionless parameters, this corre-

sponds to tγ3/2 ' 1, shown as the blue dashed line in Fig. 2.1.

Note that these boundaries are smooth crossovers and one does not find order

parameters that undergo abrupt changes that are characteristic of a phase transi-

tion. Further details of the discussion above can be found in [19].

Given that our experimental setup is capable of producing samples of nearly 1D

Bose gases, the thermodynamic regimes probed by the samples used for the ex-

periments will be illustrated in such a phase diagram whenever possible.

2.1.4. Beyond equation of state

Finally, we remark that despite the elegance and universal applicability in the en-

tire phase diagram of the YY thermodynamics, not all quantities of interest can

be computed in a straight forward manner by this method. Instead, special tech-



2.2 1D Bose gases in real life 29

niques valid in one or another asymptotic limit become handy depending on the

regime of interest. For instance, bosonization is a powerful method to describe

low-energy excitations; computational methods such as the density matrix renor-

malization group and quantum Monte-Carlo (QMC) techniques can be used to

numerically simulate the system, albeit at a substantial computational cost. As it

is not the purpose of this section to review all available theory tools to treat 1D

Bose gas, I refer interested readers to a recent review [30] which discusses the

subject matter in great eloquence and detail.

2.2. 1D Bose gases in real life

As mentioned in Sec. 1.1, a 1D system is realized in ultracold-atom experiments

by trapping gaseous atoms in an elongated confinement, so that the effects of

both transverse and longitudinal trapping need to be understood and taken into

account.

2.2.1. Transverse trapping

The transverse confinement has essentially two effects on the system: the modi-

fication of the effective interaction strength, and the population of the transverse

excited states.

Olshanii treated the problem of atomic scattering in a wave guide in his seminal

work [113], which concludes that in the low-energy scattering regime, relevant to

experiments using ultracold atomic gases, the presence of a confining wave guide

essentially modifies the strength of the zero-range (pseudo) interaction potential

that can be written as

Uint(z) = g1Dδ(z), (2.17)

where the 1D interaction strength g1D is related to the 3D s-wave scattering length

a by

g1D =
2h̄2a
ma2
⊥

(
1− C a

a⊥

)−1
. (2.18)
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Here, C ' 1.4603 . . ., and a⊥ =
√

h̄
mω⊥

is the harmonic length scale associated

with the transverse confinement ω⊥ = 2π f⊥.

Since we work with 87Rb in the |F = 2, mF = 2〉 hyperfine ground state, we have

a = 5.238(1) nm [140], and we realize a typical transverse trapping frequency in

the range of several to tens of kHz, so that a⊥ ∼ 102 nm, and a � a⊥. Eq. (2.18)

can then be approximated by

g1D ' 2h̄ω⊥a. (2.19)

This formula will be used throughout the data treatment in this thesis.

Transverse excited states are relevant in most experiments that realize a single

sample of 1D Bose gas. In the qBEC regime at low temperature, i.e. kBT � h̄ω⊥,

this amounts to the so called ‘transverse swelling’, in the sense that when the 3D

density is integrated over the transverse directions, the resulting linear density ρ

obeys a modified equation of state [58, 60],

µ

h̄ω⊥
=
√

1 + 4ρa − 1, (2.20)

instead of the usual µ = ρg1D, which is the low density limit of Eq. (2.20) with

g1D given by Eq. (2.19), and is in good agreement with the YY equation of state

in this regime. For the purpose of disambiguation, I mention in passing that

µ consistently denotes the 1D chemical potential in this thesis, hence the shift by

h̄ω⊥ in Eq. (2.20), corresponding to the ground-state harmonic oscillator energy in

the transverse directions. Literature such as [60] often deals with the 3D chemical

potential, for which the qBEC equation of state reads µ3D = h̄ω⊥
√

1 + 4ρa .

For temperatures on the order of transverse trapping frequency, i.e. kBT ' h̄ω⊥,

the system is in the 1D-3D dimension crossover. One may then treat the trans-

verse ground state using the YY equation of state ρYY(µ, T), and the excited states

as an ideal Bose gas with shifted chemical potential, i.e. for the jth excited state,

the chemical potential is given by

µ(j) = µ− jh̄ω⊥, (2.21)
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and the corresponding equation of state is

ρTE

(
µ(j), T

)
=

1
λdB

g 1
2

(
e

µ(j)
kBT
)

, (2.22)

where λdB =
√

2πh̄2

mkBT is the de Broglie wave length, g 1
2
(x) = ∑∞

j=1 xj/j1/2 is the

Bose-Einstein function [150], so that the total linear density is given by

ρ(µ, T) = ρYY(µ, T) +
∞

∑
j=1

(j + 1) ρTE

(
µ(j), T

)
. (2.23)

This is the so called modified Yang-Yang (MYY) equation of state, pioneered by van

Amerongen et al [150], and has been instrumental in characterizing cold atomic

samples in the relevant parameter regime [9, 39].

2.2.2. Longitudinal trapping

In a spirit not unlike the modified Yang-Yang formalism above, the longitudinal

inhomogeneity may also be accounted for by appropriately shifting the chemical

potential. Typically, the confinement in the longitudinal direction is considered

harmonic, i.e. V(z) = 1
2 mω2

z z2. Depending on the value of the frequency ωz and

the total atom number N, the quantization of the energy levels may or may not

need to be taken into account [118].

However, in order to make use of results obtained for homogeneous systems such

as the YY equation of state, it is crucial to stay within the framework of quasiuni-

form approximation [93], so that the entire system can be seen as a composition of

subsystems that are locally homogeneous, and in thermal equilibrium with each

other, and there is a single value of the chemical potential for the entire system.

This loosely translates into the condition that the characteristic short-range corre-

lation length lc should be small compared to the size of the subsystem δz, which

is in turn smaller than the size of the entire system L, i.e.

lc � δz� L. (2.24)

The choice of lc (density correlation length or phase correlation length) depends

on the observable of interest, while ωz determines the typical length scale over
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18

Figure 2.2.: Illustration of LDA. Each realization of a trapped 1D Bose gas can be
approximated as a composition of locally homogeneous subsystems
at a shifted chemical potential µ(z) = µ0−V(z), and in thermal equi-
librium with each other at temperature T. Such an approximation is
valid if the relevant correlation length lc, the subsystem size δz, and
the total system size L satisfies lc� δz� L.

which the density varies, and thus controls δz and L. Depending on the thermo-

dynamic regime, one may derive explicit expressions that bound ωz [18, 93, 118],

all with the common message that the longitudinal trap has to be sufficiently

weak in order for the sample to be quasiuniform, as one would intuitively expect,

so that the local density approximation (LDA),

µ(z) = µ0 −V(z) = µ0 − 1
2 mω2

z z2, (2.25)

correctly yields the local chemical potential at position z. Note that µ0 ≡ µ(z = 0)

denotes the central (unshifted) chemical potential.

Consequently, each experimental realization of a trapped 1D Bose gas in fact

probes different values of densities, allowing the verification of a finite range of

the equation of state with a single sample.
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Conclusions

In this chapter, we have seen that 1D Bose gases with repulsive contact in-

teractions is a prototypical example of the Lieb-Liniger model, which con-

stitutes perhaps the only known example where a unified description from

weak to strong interaction is available. Plenty of theoretical tools are avail-

able, enabling quantitative characterizations.

On the other hand, the experimental realization of such a model with ul-

tracold atomic gases requires a proper treatment of the confining potentials.

The transverse confinement induces an effective interaction strength, and the

population in the transverse excited states can be taken into account to a cer-

tain extent. The longitudinal confinement calls for the local density approxi-

mation, and therefore gives access to the homogeneous equation of state for

various values of the local linear density simultaneously.
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This chapter surveys a number of tools intended for quantitative characteriza-

tion of 1D Bose gases developed over the past few years. It is by no means an

exhaustive list, and the selection is simply based on its direct applicability to our

experimental setup. Each ‘tool’ constitutes a particular kind of experimental mea-

surement and its corresponding analysis, and independently characterizes the

experimental system to yield information about the thermodynamics of the sys-

tem, such as the temperature T and central chemical potential µ0. In our studies

of nonequilibrium dynamics of 1D Bose gases discussed in the later part of this

thesis, this tool box has been the workhorse to characterize the system before it is

perturbed.

In experiments dealing with ultracold atomic gases, it is common to derive the

information of the system from images of the atomic density distribution1, which

is related to the spatial density distribution at the time when the image is taken.

Integration along the line of sight of the camera is inevitable in this case, and

1Imaging methods may differ, but the resulting density distribution can be analyzed in a similar
manner.
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should be properly accounted for during data treatment. For an ideal 1D system

which does not possess transverse degrees of freedom, fortunately, the line of

sight can be placed perpendicular to the system, so that the integration due to

imaging does not alter the density distribution along the (longitudinal) direction

of interest, denoted by z in this thesis. In fact, the resulting 2D image (see Fig.

3.1 top) should be further integrated along the remaining transverse direction

to yield a linear density distribution (see Fig. 3.1 bottom) that can be compared

directly with theory, i.e.,

Nat(z) = ∑
x

Nat(x, z), (3.1)

where Nat(z) denotes the atom number in a pixel at position z, and Nat(x, z) de-

notes that at position (x, z) in a 2D image. Note that the density distributions

in this thesis will always be those after transverse integration unless specified

otherwise, so that only one spatial variable (denoted by z) is relevant.
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Figure 3.1.: Illustration of transverse integration. The top panel shows a single
shot of raw atomic distribution recorded on the camera. The color
scale are in units of atoms/pixel. After transverse integration accord-
ing Eq. (3.1), the resultant linear atomic density is displayed in the
bottom panel. The pixel size is ∆z = 2.7 µm.

A side remark: it goes without saying that one may also image a 2D system with-

out integrating along the line of sight if it is perpendicular to the plane of the
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system. However, no further discussion is given along this line, simply for the

lack of relevance to our current setup. Interested readers may find information in

e.g. Refs. [41, 79].

Still, depending on the exact sequence used to obtain the images, paired with

appropriate analysis procedures, different pieces of information can be obtained.

Since our experimental setup, together with others mentioned before [105, 150],

deals with the motional degrees of freedom of 1D quantum gases, it is interest-

ing to collect information in both real space and momentum space, and to treat the

resulting collection of data to obtain the statistical mean and fluctuations. Tab. 3.1

summarizes the 2× 2 array of independent probes2 that can be used to character-

ize the system. All but the momentum correlations, for which the development is

ongoing, have been shown to yield quantitative information about the system.

real space momentum space

mean density profile momentum
distribution

fluctuations atom-number momentum
fluctuations, correlations

density ripples

Table 3.1.: 2 × 2 array of probed quantities, classified according to real- or
momentum-space imaging, and the information yielded by the mean
or fluctuations of the measurements.

I organize this chapter as follows. I first recall a few key points about absorption

imaging, common to all probes, in Sec. 3.1. Sec. 3.2 is dedicated to the three probes

in real space, whereas Sec. 3.3 is dedicated to the two probes in momentum space.

The discussion of each probe is further divided into experimental procedures,

analysis, and remarks. Since the extent of development for each probe differs, I

only include quantitative analysis when possible. A conclusion will be given at

the end of the chapter.

2I prefer to include the density ripples [105] as a probe in real space even though a finite time-of-
flight is needed. Such a choice is motivated by the fact that the time-of-flight is not sufficiently
long to reach the far field regime, and the information obtained but such measurements yields
directly the two-body correlations in real space (see Sec. 3.2.3 for more details).
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3.1. Absorption imaging

Only simple absorption imaging is carried out on our current setup. Since it is

common to the measurements in both real and momentum space, I list a few key

points to set the stage.

At the time when the desired atomic distribution is to be recorded, a nearly res-

onant probe beam is shone on the atoms and the first image is taken. A second

image is taken 60 ms later in the absence of the atoms. The electronic signal reg-

istered in a pixel is converted to the photon number N(j)
ph , with j = 1, 2 labelling

the pictures, so that the atom number in the corresponding pixel can be obtained

by

Nat =
∆2

z
σe

ln

(
N(2)

ph

N(1)
ph

)
, (3.2)

where ∆z = 2.7 µm is the pixel size in the object plane, and σe denotes the effec-

tive scattering cross section, taking into account the saturation, the atomic level

structure, and the Zeeman shift in the presence of a magnetic field [123]. More

details will be presented in the discussions below.

Note that the subscript ‘at’ will be omitted from now on. N without specifica-

tion will unambiguously denote the atom number, while the photon number will

carry the subscript ‘ph’.

3.2. In real space

In order for the imaged density distribution to truthfully reflect the single-particle

spatial distribution (density profile) of the system, one ideally needs to perform

in situ imaging, so that no free evolution of the many-body wave function is al-

lowed. This can be achieved by imaging the atoms while they are still trapped, or

after a short3 time of flight (TOF). We implement the latter, as the rapid transverse

expansion reduces the optical thickness of the sample and thus the resultant un-

derestimation of atomic density due to both the effects of saturation and multiple

3compared to the typical longitudinal velocity.
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scattering and the concavity of the logarithm in Eq. (3.2).

3.2.1. Mean density profile

Experimental procedures

Density profiles. At the end of the preparation, all traps are turned off abruptly.

The atoms fall under gravity, and the cloud expands in the transverse direction

for a duration of τTOF. The absorption imaging procedure described in Sec. 3.1

is then carried out with a low-intensity (Ipr ∼ 5%Isat) probe beam so that satu-

ration effects are negligible. A fairly long probe pulse τpr ' 150 µs is used here.

Typically, τTOF ' 1 ms, allowing for sufficient transverse expansion.

Since the purpose of such images is to record the shape of the sample, in the event

of high atomic density (and high optical thickness), the probe beam is detuned

by a few MHz in order to reduce σe and therefore the absorption signal.

The resulting density distribution is however insufficient to yield the total num-

ber of atoms independently. First, the fact that the probe beam on our setup has

a much larger spatial extent than the chip-to-atoms separation (∼ 4 µm) prevents

an ab initio evaluation of σe. This is due to the change of probe polarization upon

reflection on the (gold) chip surface. Second, a multiplicity occurs due to the dou-

ble image of the atomic cloud and its reflection in the chip-mirror. Therefore, a

different type of image is necessary to calibrate the total atom number.

Atom-number calibrations. This can be achieved by performing resonant ab-

sorption imaging at a longer τTOF ' 13 ms, by which time the transverse ex-

pansion ensures sufficiently low optical thickness at typical parameters explored,

and the reflected probe beam does not pass through the atomic cloud again. A

magnetic field is used to polarize the atoms, and a resonant probe beam of σ+ po-

larization is used, so that σe → σ0 = 3λ2

2π . By integrating the resulting linear den-

sity distribution Ncalib(z), we obtain the total atom number Ntot = ∑z Ncalib(z),

which is then used to normalize the measured density profile to yield Nprof(z)

before further analysis is carried out. This method also allows to determine that

σe ' 0.8σ0 in the density profile measurements, provided the probe light is on

resonance.
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Typically, 30 shots of each kind of images are taken and their average is obtained.

We verified experimentally that such a statistics gives sufficient signal to noise

ratio for the minimization routine described below to be functional.

Analysis

Assuming thermal equilibrium and LDA, the density profile of the system is

determined by the control parameters ( fz, f⊥), which are independently cali-

brated, and the thermodynamic parameters (µ0, T). Therefore, with the knowl-

edge of (µ0, T), one can construct (µ(z), T), and obtain the corresponding ρ(z)

according to the MYY equation of state (see Sec. 2.2.1), so that a density pro-

file NMYY(z) = ρMYY(z) × ∆z can be found and compared with measurements

Nprof(z). See Fig. 3.2 as an illustration of such a computation routine.

Trial
(µ0, T) (µ(z), T) ρ(z) NMYY(z)

LDA,
V(z)

MYY
EoS ×∆z

Figure 3.2.: Flow chart illustrating the routine to compute the density profile
from the trial value of (µ0, T). EoS: equation of state.

A search for the (µ0, T) that minimizes the Euclidean distance between NMYY(z)

and Nprof(z) then yields the central chemical potential and the temperature of the

system.

As an example, I partially reproduce Fig. 3 of [83] in 3.3, where the measured

density profile (points) and YY prediction4 (solid lines) in (b). The same figure

also illustrates the agreement between the temperature obtained from the density

profile and that from the atom-number fluctuations.

Remarks

This procedure has been reported applicable in different experiments [9, 83, 150,

153], and works as a method of thermometry particularly well for systems that

are not too far into the qBEC regime. Indeed, since a 1D qBEC has a temperature-

independent equation of state,

µ = ρg1D, (3.3)
4The low temperature of the sample renders the treatment of the transverse excited states un-

necessary here.
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being the healing

length. The first term in the right-hand side of Eq. (4)
which accounts for thermal fluctuations is positive,
whereas the second term which is the contribution of
quantum (i.e., zero-temperature) fluctuations is negative

[23]. Therefore, the negativity of gð2Þðz� z0Þ � 1 implies
that the quantum fluctuations give a larger contribution to

gð2Þðz� z0Þ � 1 than the thermal ones.
It should be emphasized, however, that the quantity we

measure is h�N2i, and as we show below, for our large
values of � and d it is still dominated by thermal (rather
than quantum) fluctuations. This is because the contribu-
tion to h�N2i of the one-body term almost cancels out
the contribution of the zero-temperature two-body term.
Indeed, the contribution of quantum fluctuations to h�N2i,
calculated using Eqs. (2)–(4), is

h�N2iT¼0 ¼ hNi
��

Z 1

�1
dkfk

1� cosðk�Þ
k2

e�k2d2 : (5)

Since fk / kl� when kl� � 1, we find that for � � l�, d,
h�N2iT¼0 scales as nl� lnð�=l�Þ. On the other hand, the

thermal contribution given by Eq. (1), scales as �T=g.
Therefore, the quantum contribution becomes negligible
as � ! 1, and the thermodynamic prediction of Eq. (1) is
recovered [25]. For our parameters, the contribution of
Eq. (5) to h�N2i is shown as a dotted line in Fig. 2.

In weakly interacting gases, the atom number fluctua-
tions take super-Poissonian values in the degenerate ideal
gas and thermal quasicondensate regimes, h�N2i=hNi
reaching its maximum at the quasicondensate transition

where it scales as t1=3 [3]. When t is decreased, the super-
Poissonian zone is expected to merge towards the
Poissonian limit and it vanishes when the gas enters the
strongly interacting regime. This trend is exactly what
we observe in Fig. 3(a), for t ¼ 5:4: at large densities, we
see suppression of h�N2i below the Poissonian level, but
most importantly, we no longer observe super-Poissonian
fluctuations at lower densities (h�N2i=�hNi< 1:3 within
the experimental resolution) [26]. Interestingly, no simple
analytic theory is applicable to this crossover region, and
the only reliable prediction here is the exact Yang-Yang
thermodynamic solution [solid line in Fig. 3(a)].

We now describe the experimental techniques that
allowed us to increase significantly !? in order to reach
t ¼ 5:4. Keeping a reasonable heat dissipation in the wires,
increasing !? requires bringing the atomic cloud closer
to the chip. However, using dc microwire currents, one
would observe fragmentation of the cloud due to wire
imperfections and hence longitudinal roughness of
the potential [27]. To circumvent this problem, we use

the modulation techniques developed in [28,29]. The
atom chip schematic is shown in Fig. 4. The transverse
confinement is realized by three wires, carrying the same
ac current modulated at 200 kHz, and a longitudinal ho-
mogeneous dc magnetic field of �1:8 G realized by exter-
nal coils. The modulation is fast enough so that the atoms
experience the time-averaged potential, transversely har-
monic. Monitoring dipole oscillations we measure !?=2�
varying from 2 to 25 kHz, for ac current amplitude varying
from 40 to 200 mA. The longitudinal confinement, with
!z=2� varying from 5 to 12 Hz, is realized by wires
perpendicular to the z direction, carrying dc currents of
a few tens of mA. After a first rf evaporation stage in a
dc trap we load 6� 104 atoms at a few �K in the ac trap
where we perform further rf evaporation at !?=2� ’
2 kHz and !k=2� ’ 12 Hz. Next we lower the longitudi-

nal trapping frequency to about 7 Hz and then ramp up the
transverse frequency to 18.8 kHz in 600 ms keeping the rf
evaporation on during this compression. After ramping the

FIG. 3. (a) Variance h�N2i close to the strongly interacting
regime, for t ¼ 5:4. Different curves are as in Fig. 2, but
for !?=2� ¼ 18:8 kHz, !k ¼ 7:5 Hz, T ¼ 40 nK (kBT ¼
0:044@!?), and � ¼ 0:47. (b) Average density profile (solid
line) together with the Yang-Yang prediction (dashes). (c) The
value of t obtained from fits to the density profile (dotted line)
and atom number fluctuations (solid line) for different �
(see text).

FIG. 4 (color online). (a) Wire schematic of the atom chip:
three gold wires along Z carry an ac current and produce a tight
transverse confining potential. The longitudinal confinement is
realized with dc currents I1 and I2. (b) The wires are buried
under a layer of resist, which ensures electrical insulation and
surface planarization. The resist is covered with a 200 nm thick
gold mirror that reflects the probe beam. The atoms are 15 �m
away from the wires and see the interference pattern produced by
the probe and the reflected beam. (c) Typical optical-density
image of a gas of 103 atoms.
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we observe in Fig. 3(a), for t ¼ 5:4: at large densities, we
see suppression of h�N2i below the Poissonian level, but
most importantly, we no longer observe super-Poissonian
fluctuations at lower densities (h�N2i=�hNi< 1:3 within
the experimental resolution) [26]. Interestingly, no simple
analytic theory is applicable to this crossover region, and
the only reliable prediction here is the exact Yang-Yang
thermodynamic solution [solid line in Fig. 3(a)].

We now describe the experimental techniques that
allowed us to increase significantly !? in order to reach
t ¼ 5:4. Keeping a reasonable heat dissipation in the wires,
increasing !? requires bringing the atomic cloud closer
to the chip. However, using dc microwire currents, one
would observe fragmentation of the cloud due to wire
imperfections and hence longitudinal roughness of
the potential [27]. To circumvent this problem, we use

the modulation techniques developed in [28,29]. The
atom chip schematic is shown in Fig. 4. The transverse
confinement is realized by three wires, carrying the same
ac current modulated at 200 kHz, and a longitudinal ho-
mogeneous dc magnetic field of �1:8 G realized by exter-
nal coils. The modulation is fast enough so that the atoms
experience the time-averaged potential, transversely har-
monic. Monitoring dipole oscillations we measure !?=2�
varying from 2 to 25 kHz, for ac current amplitude varying
from 40 to 200 mA. The longitudinal confinement, with
!z=2� varying from 5 to 12 Hz, is realized by wires
perpendicular to the z direction, carrying dc currents of
a few tens of mA. After a first rf evaporation stage in a
dc trap we load 6� 104 atoms at a few �K in the ac trap
where we perform further rf evaporation at !?=2� ’
2 kHz and !k=2� ’ 12 Hz. Next we lower the longitudi-

nal trapping frequency to about 7 Hz and then ramp up the
transverse frequency to 18.8 kHz in 600 ms keeping the rf
evaporation on during this compression. After ramping the

FIG. 3. (a) Variance h�N2i close to the strongly interacting
regime, for t ¼ 5:4. Different curves are as in Fig. 2, but
for !?=2� ¼ 18:8 kHz, !k ¼ 7:5 Hz, T ¼ 40 nK (kBT ¼
0:044@!?), and � ¼ 0:47. (b) Average density profile (solid
line) together with the Yang-Yang prediction (dashes). (c) The
value of t obtained from fits to the density profile (dotted line)
and atom number fluctuations (solid line) for different �
(see text).

FIG. 4 (color online). (a) Wire schematic of the atom chip:
three gold wires along Z carry an ac current and produce a tight
transverse confining potential. The longitudinal confinement is
realized with dc currents I1 and I2. (b) The wires are buried
under a layer of resist, which ensures electrical insulation and
surface planarization. The resist is covered with a 200 nm thick
gold mirror that reflects the probe beam. The atoms are 15 �m
away from the wires and see the interference pattern produced by
the probe and the reflected beam. (c) Typical optical-density
image of a gas of 103 atoms.
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Figure 3.3.: Partial reproduction of Fig. 3 of [83]. For a sample with reduced
temperature t = 5.4 (see Sec. 2.1.1), (a) compares the measured atom-
number fluctuations (points) with YY prediction (solid line). Poisso-
nian fluctuations (dashed line) are included as a reference. The top
scale shows the values of the interaction parameter γ for the corre-
sponding linear density (mean atom number/pixel), so that the cen-
tral interaction parameter γ0 ' 0.15. (b) compares the measured in
situ density profile (solid line) with YY prediction (dashed line). Note
that this data set was taken with an older imaging system, where the
pixel size ∆ = 4.5 µm. Also, the low temperature renders transverse
excited states irrelevant, and hence the use of the YY model.

the information about the temperature of a confined 1D gas is concealed in the

outer regions of the trap, where the atomic density is sufficiently low for the

equation of state to depart from Eq. (3.3) and to become temperature-dependent.

However, the associated low signal makes it tedious and prone to inaccuracy to

use such a thermometry for a sample deep inside the qBEC regime. In addition,

MYY model does not take transverse smelling [recall Eq. (2.20)] into account, so

that for samples in the 1D-3D crossover a with high linear density, the profile

thermometry using MYY model is inaccurate [9]. Therefore, alternative methods

such as the atom-number fluctuations are preferred.

3.2.2. Atom-number fluctuations

In analogy with the thermometry based on the measurements of Johnson noise

across a resistor, it is also possible to measure the temperature of a cold atomic

sample by probing the atom-number fluctuations.
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Experimental procedures

Fluctuation profiles. The procedures used to obtain the density profiles for the

fluctuation analysis, Nfluct(z), is in fact similar to that discussed in Sec. 3.2.1. Only

the differences are highlighted below:

1. τTOF is reduced to 50 µs in order to minimize the effect of longitudinal mo-

tion of the atoms;

2. A short and intensive probe pulse maximizes the signal: so that these pro-

files are taken with the probe intensity Ipr ' 0.15Isat and pulse duration

τpr = 80 µs. Such parameters fall within the validity5 of an effective scatter-

ing cross section model used in [123],

σe =
αeσ0

1 + αe
Ipr
Isat

, (3.4)

where the parameter αe ' 0.8 is found experimentally.

3. By contrast to the density-profile measurements, the probe detuning for the

fluctuation profiles is often set to null despite a large optical thickness in

order to maintain a high SNR [82]. Instead, a correction procedure is used

in the analysis.

For sufficient statistics, 200 to 300 of such images are recorded.

Analysis

The fluctuation profiles are first corrected for the underestimation of the atom

number due to large optical thickness. This is achieved by fitting a second order

polynomial to map the average fluctuation profile onto the mean density profile

as explained in [11, 82]. This map is then applied to all fluctuation profiles.

Next, we obtain the atom-number fluctuations6 δN(z)2 =
(

N(z)− 〈N(z)〉
)2 by

5Ref. [82] verifies the validity by a comparison with the optical Bloch equations.
6the variance in this case. Off-diagonal terms of the fluctuation matrix 〈δN(z) δN(z′ 6= z)〉 is

not easily accessible, since it is difficult to optically resolve the typical values of correlation
length (submicron for typical linear density and interaction strength on our experiment). It is
however possible to measure higher moments of the fluctuations. For instance, the measure-
ment of the third moment 〈δN3〉, which yields information about three-body correlations, is
reported in [10].
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comparing the individual profile N(z) with a running average 〈N(z)〉. Note that

the ‘fluct’ subscript is omitted in this section for brevity. About 30 profiles brack-

eting the current profile are used in the running average to reduce the sensitivity

towards slow experimental drifts. Photon shot noise (∆2
z/σe)2 ∑x

(
1/N(1)

ph (x, z) +

1/N(2)
ph (x, z)

)
is irrelevant and subtracted for each integrated pixel at position z.

The resulting values of δN(z)2 is binned according to its associated 〈N(z)〉 and

the unbiased estimate of the variance 〈δN2〉 is obtained. Note that binning re-

moves the initial position dependence, which is irrelevant under LDA.

The finite resolution amounts to a reduction of the measured fluctuations com-

pared to theory by a factor κ. We determine κ by computing the correlations be-

tween the atom-number fluctuations in neighboring pixels. Details can be found

in [82].

According to the fluctuation dissipation theorem, the fluctuations of the atomic

density obeys,

〈δρ2〉 = kBT
∆z

∂〈ρ〉
∂µ

∣∣∣∣
T

, (3.5)

so that a single pair of (µ0, T) can be obtained by minimizing the Euclidean dis-

tance between the measured 〈δN2〉 and κkBT∆z
∂〈ρ〉
∂µ

∣∣∣
T

predicted by equation of

state for each bin of 〈N〉.

The example in Fig. 3.3 illustrates the measurement with a sample that ap-

proaches the strongly interacting regime (t = 5.4). The repulsive interactions re-

sult in the suppression of atom-number fluctuations below the shot-noise level.

Such a measurement can also be done for hotter samples in the dimensional

crossover. I reproduce Fig. 1 of [9] in Fig. 3.4 as a demonstration. Here, satu-

ration of the atom-number fluctuations (above shot-noise level) is absent in (a)

the (3D) sample of IBG with t = 2500, but clearly visible for the qBEC samples

shown in (b) t = 790 (nearly 1D) and (c) t = 52 (1D).

Several options exist to use the atom-number fluctuation measurement as a ther-

mometry. Either the entire curve of 〈δN2〉 vs 〈N〉 can be fit to the numerical

prediction of MYY equation of state, or the saturated level of 〈δN2〉 at high den-

sity can be compared with the asymptotic equation of state of qBEC. The choice

of strategy eventually depends on the thermodynamic regime of the gas.
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FIG. 1. (Color online) Density fluctuations across the quasicondensate transition, for kBT /h̄ω⊥ values of (a) 3.6, (b) 1.0, and (c) 0.09.
The measured atom-number variances in individual pixels, 〈δN2〉, as a function of the mean atom number 〈N〉 are shown as circles, with the
error bars representing the statistical uncertainty. Different curves denote the predictions from theoretical models, rescaled by the resolution
factor κ = 0.53, 0.55, and 0.4 for (a), (b), and (c), respectively (see text): modified Yang-Yang model (solid), ideal Bose-gas (dashed-dotted),
quasicondensate (dashed), and the Poissonian shot-noise level (dotted). The two vertical gray lines give the atom numbers N1 = �n1 and
N2 = �n2 (see text). The insets show the average density profiles, together with the predictions from the same models (with different curves
as in the main graphs). The chemical potential µ0 in the trap center is deduced from the fit of the wings of the density profile to the ideal
Bose-gas EoS for (a), and from the peak density and the quasicondensate EoS for (b) and (c). The trap oscillation frequencies are ω⊥/2π = 3.0
kHz, ω‖/2π = 8.0(5) Hz for (a) and (b) and ω⊥/2π = 3.9 kHz, ω‖/2π = 4.0(5) Hz for (c). The absolute temperatures T are (a) 510 nK ,
(b) 160 nK , and (c) 18 nK.

the camera pixel size is � = 4.5 µm. By summing over the
transverse pixels, we derive from the images the longitudinal
atomic density profile, thus reducing the notion of a pixel to a
segment of length �. The absolute calibration of the density
profiles is described in [17]. We perform a statistical analysis
of hundreds of images, taken under the same experimental
conditions: For each density profile and pixel, we extract
the atom number fluctuation δN = N − 〈N〉, where N is the
measured number of atoms in the pixel and 〈N〉 its mean
value. The fluctuations are binned according to 〈N〉 and the
variance 〈δN2〉 is computed for each bin. Finally, we subtract
the contribution of the optical shot noise, which is typically less
than 20% of the atomic fluctuations. Figure 1 shows typical
results for 〈δN2〉 for three different temperatures, together
with the respective average density profiles. As the images
are blurred due to finite imaging resolution, the measured
fluctuations are reduced by a factor κ compared to their true
values. We deduce κ from the measurement of atom number
correlations between the adjacent pixels, as explained in [17].

For our experimental parameters, we can use the local
density approximation along the longitudinal dimension z [18],
since the correlation length lc of density fluctuations, the pixel
length �, and the cloud length L satisfy lc � � � L. Thus
the gas contained in a pixel [z,z + �] is well described by
a longitudinally homogeneous system in the thermodynamic
limit, whose local chemical potential is µ(z) = µ0 − V (z),
where V (z) is the longitudinal trapping potential. The ther-
modynamic quantities can be derived from the equation of
state (EoS) n = n(µ,T ) for a longitudinally homogeneous, but
transversely trapped gas, where n is the linear (1D) density. In
particular, 〈N〉 = n� and the atom-number fluctuations can
be calculated using the thermodynamic relation

〈δN2〉 = kBT �(∂n/∂µ)T . (1)

Thermometry is done in two alternative ways. For hot gases
[as in Fig. 1(a)], assuming a perfectly harmonic longitudinal
potential, we deduce T by fitting the wings of the density

profile to the EoS of an ideal Bose gas,

n = 1

λT

∞∑

α=1

eαµ/kBT

√
α

1

(1 − e−αh̄ω⊥/kBT )2
. (2)

Here, λT =
√

2πh̄2/mkBT is the thermal de Broglie wave-
length, and the EoS is obtained by summing the contributions
of the transverse harmonic oscillator modes.

For the coldest samples, because of the lack of pixels in the
ideal-gas part of the cloud, we deduce the temperature from
the measured fluctuations in the quasicondensate (central) part,
using Eq. (1) and the quasicondensate EoS [19],

µ = h̄ω⊥(
√

1 + 4na − 1), (3)

valid in the entire 1D–3D crossover region with respect
to µ, where a = 5.7 nm is the 3D scattering length. This
fluctuation-based thermometry has an accuracy of about 20%,
representing a viable alternative to thermometry based on the
analysis of density ripples appearing after time of flight [20].
A related fluctuation-based thermometry [21,22] uses the
knowledge of the longitudinal confining potential to deduce the
gas compressibility ∂n/∂µ from the density profiles. Although
less general because of the assumption of validity of Eq. (3),
our method has the advantage of working in not perfectly
characterized longitudinal potentials, as is often the case in
atom-chip experiments [9,23].

Once κ and T are determined, the measured atom number
fluctuations are compared with different theoretical models
without any further adjustable parameters. As we see from
Fig. 1, the two main regimes of a weakly interacting
Bose gas [18,24] are clearly identified. First, at low 〈N〉
the fluctuations follow the prediction from the ideal-gas
EoS (2) (dashed-dotted curve). Within this regime, but for
nondegenerate samples, the fluctuations are Poissonian and
follow the shot-noise (dotted) line, as in Fig. 1(a) for
〈N〉 < 200. For degenerate samples (in the quantum deco-
herent subregime [18,24]), atomic bunching due to Bose
statistics raises the fluctuations well above the shot-noise level

021605-2

Figure 3.4.: Reproduction of Fig. 1 of [9]. Atom-number fluctuations (main
graphs) and in situ density profile (insets) are shown for three data
sets. Samples differ in their dimensionality: kBT/(h̄ω⊥) = (a) 3.6,
(b) 1.0, and (c) 0.09. Data (points) are compared with MYY predic-
tion (solid lines), IBG prediction (dash-dotted lines), and qBEC pre-
diction (dashed lines). Shot-noise level (dotted lines) are shown as
a reference. The insets show the corresponding in situ density pro-
files with the same convention as the main graphs. Here, the pixel
size ∆ = 4.5 µm, and the labels N1 and N2 are related to the discus-
sion about the dimensional crossover (see [9] for more details). For a
reference, I also include the values of the dimensionless parameters:
(t, γ0) = (2500, 0.0015), (790, 0.0039), and (52, 0.0395) respectively.

Remarks

As discussed in [9], this method is complementary to the thermometry based on

the measurements of in situ density profile, and their agreement in the quasicon-

densation crossover has been demonstrated.

The atom-number fluctuation thermometry is also applicable to the experiment

of (quasi-) 1D Bose gas in Oberthaler’s group in Heidelberg [88], although the

analysis procedures differ. Namely, it does not explicitly use an equation of state,

but relies on the LDA and profile smoothening, i.e.

〈δN2〉 = κkBT∆z
∂z
∂µ

∂N
∂z

, (3.6)

where ∂z
∂µ = − ∂z

∂V(z) is determined by the longitudinal potential V(z), and ∂N
∂z can

be obtained from smoothened profiles N(z), so that the atom-number fluctua-

tions remain as a function of position, and the temperature can be obtained from

the flat regions (in white) of 〈δN2〉 ∂N
∂z (see Fig. 3.5). Such an analysis procedure is

more applicable on the Heidelberg experiment for the following reasons:

1. There, the atoms are trapped in an optical dipole trap, which gives a better
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characterized potential compared to our surface magnetic trap that is prone

to imperfections caused by fabrication and surface adsorption;

2. The better resolution (∆z/L � 1/250) makes it possible to identify sub-

stantial regions where the temperature signal is constant and is not over-

whelmed by noise. The contrary is true when attempts were made to apply

the same procedure on our setup where ∆z/L � 1/100.

(a) Gaussian-like mean density profiles, af-
ter averaging over ∼ 100 images for each
density.

(b) Density fluctuations in each pixel. The green region
is the estimated imaging noise.

Figure 7: Mean density in each total atom number interval and density fluctuations for the
corresponding bins. The shaded blue line on the mean density profiles gives the approximate
crossover density, giving the position of the change to a quasi-condensate in the trap for each
group of data.

These fluctuation profiles
〈
δN2

〉
multiplied by ∂N/∂z give a measurement of the temperature

as a function of position in the cloud, according to equation 5. Results of such spatially resolved
measurements show that the gas is thermalised, since the computed temperature is relatively con-
stant on the whole extension of the cloud (figure 8).

Figure 8: Temperature ”profile” in the cloud. The shaded regions are deviations from the physical
temperature. The divergence on the edges comes from the wings on the mean density profiles (see
Appendix A), and in the centre from ∂N/∂z = 0.

The final value of T was deduced taking the average of these profiles in the non-shaded re-
gions. The error on the measurement is then simply the standard deviation of the temperature

12

Figure 3.5.: Reproduction of Fig. 8 of [88], courtesy of Ms. Aisling Johnson. The
temperature is evaluated from the atom-number fluctuations in a
pixel at position z. Due to the finer grid (∆z/L � 1/250), substan-
tial regions (in white) with nearly constant temperature signal can be
identified. The measured temperature is T = (1.1 ± 0.4) nK.

3.2.3. Density ripples

Density fluctuations develop during the near-field free expansion of a trapped

low-dimensional system as a signature of the thermal and quantum phase fluctu-

ations initially present. Such variations, poetically nicknamed ‘density ripples’,

have a spectrum that is directly related to the two-body correlation functions of

the trapped system. 1D qBECs constitute an ideal system to observe these ripples,

since the near absence of the radial dynamics permits an elegant analytic theory

description [81]. The amplitude of the observed density variations is shown to be
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a thermometry [105].

Experimental procedures

An intermediate value of τTOF is necessary for density ripples to manifest. On

our experiment, coincidentally, the imaging procedures described under ‘Atom-

number Calibration’ (recall τTOF ' 13 ms and is kept as a controlled parameter)

is ideal for this purpose, though significantly larger statistics (about 400 images)

are necessary for an acceptable thermometry.

Analysis

We follow the procedures described in [105]. Only key points are listed below.

Starting from the integrated profiles Ncalib(z), we obtain the normalized two-

body correlation function

g̃2(z, τTOF) =
〈∑u Ncalib(u)Ncalib(u + z)〉

∑u〈Ncalib(u)〉〈Ncalib(u + z)〉 , (3.7)

where 〈 〉 denotes ensemble averaging. Note that the technical noise is uncorre-

lated and contributes only to the autocorrelation g̃2(0, τTOF). This can be eval-

uated independently and removed before the ensemble averaging and normal-

ization [105]. Also, the g̃2(z, τTOF) obtained from experimental measurements is

necessarily broadened by the finite imaging resolution. The unbroadened two-

body correlation function, denoted as g2(z, τTOF), can be obtained from theory.

Depending on the thermodynamic regime of the system, different options exist

for quantitative comparison with theory:

• In the qBEC regime, both density and phase fluctuations behave like Gaus-

sian random variables, so that the spectrum of the density ripples and

the two-body correlation function after expansion can be worked out an-

alytically [81]. Alternatively, numerical methods such as the Ornstein-

Uhlenbeck process [63] can be used to simulate the initial phase profile. The

expanded density profile and g2(z, τTOF) can then be computed;

• In the qBEC to IBG crossover, since thermal fluctuations are expected to

dominate, a classical field approximation [26, 28] can be used to simplify
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Figure 3.6.: Demonstration of the g̃2(z, τTOF) measurement on our experiment.
Data (points) deduced from about 400 shots of atom-number calibra-
tion scans (see Sec. 3.2.1) are compared with trial SGPE calculations
(solid line, courtesy of Mr. Wolfgang Rohringer) carried out for our
experimental parameters. The error bars account for statistical errors
only.

the full quantum-many-body problem. Numerical methods such as the

stochastic Gross-Pitaevskii equation (SGPE) or QMC simulation can be used

to compute the expanded profile and thus the two-body correlation.

The temperature T is kept as a variable and the above options are to be evaluated

over a range of T values. The computed g2(z, τTOF) should be convolved with the

imaging resolution in order to yield a fair comparison with the experimental data

[127]. Here, we demonstrate the second option in Fig. 3.6, where data (points)

are compared with the SGPE calculations (solid line, courtesy of Mr. Wolfgang

Rohringer7) carried out for our experimental parameters. As a first trial, the com-

parison is rather satisfactory, although the quantitative difference of the position

of the minimum calls for finer adjustments.

Finally, since for any given τTOF, g2(0) varies monotonously with T, the measure-

ment of g̃2(0) constitutes yet another a thermometry. Figure 3.7 places our trial

measurement (point) on the SGPE calculations (solid line, again, courtesy of Mr.

Wolfgang Rohringer). Note that the temperature is an input for the ab initio cal-

7Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Aus-
tria.
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culation, while the data are placed according to the density-profile thermometry

[Tprof = (110± 10) nK] discussed in Sec. 3.2.1. Again, the fair agreement in this

trial prompts further verification.
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Figure 3.7.: Demonstration of the density-ripple thermometry on our experi-
ment. Data (point, with temperature obtained by density-profile ther-
mometry explained in Sec. 3.2.1) and SGPE calculation (solid line,
courtesy of Mr. Wolfgang Rohringer) show fair agreement. Fine ad-
justments and further verifications are needed for confirmation.

Remarks

This method was pioneered by the Vienna group [105], and has been only recently

implemented on our setup as a demonstration. Its accuracy depends strongly

on sufficient statistics, more than that required by the atom-number fluctuation

thermometry.

Within this exercise, there seems to be fair agreement between the profile ther-

mometry and density ripple measurements. Fine adjustments in the calculation

and further verification with more data sets are necessary for confirmation.

3.3. In momentum space

Imaging a 1D ultracold atomic gas in momentum space is a feat. The conven-

tional TOF technique employed in higher dimensions becomes problematic due
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to the elongated geometry of the 1D sample, in the sense that too long a τTOF

is necessary to reach far field, where the imaged density distribution is homoth-

etic to the momentum distribution if interaction energy is properly removed at

the start of the flight. This however requires an imaging setup and parameters

vastly different from a usual in situ imaging system, unless special schemes such

as magnetic levitation [99] is employed to prevent the atoms from falling under

gravity.

Two alternative solutions have been realized in the community: Bragg spec-

troscopy [46, 47, 61, 78, 124] and the focusing technique [39, 84, 150], each with its

own merits. The former probes the population of individual momentum compo-

nent, while the latter gives access to the entire distribution at the same time, and

is implemented on our experiment. Technical details can be found in [82]. I only

list a few key points below.

17

Figure 3.8.: An illustration of the focusing technique. The atoms are focused
by a parabolic magnetic field. After a focusing time τTOF, the spa-
tial distribution corresponds to the initial momentum distribution of
the atoms.

• The process is analogous to focusing light with a lens (see Fig. 3.8). We fo-

cus the atoms using a parabolic magnetic field generated by four (instead

of two) current-carrying wires in order to minimize aberration, as the an-

harmonic terms in the focusing potential up to the fifth order are cancelled

over a spatial region much larger than that of the 1D cloud.

• A short (τkick ' 0.7 ms) pulse of the focusing potential (ωkick ' 2π× 40 Hz)
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is applied in the longitudinal direction, followed by a two-step transverse

deconfinement, removing the interaction energy (∝ g1D ∝ ω⊥).

• The focusing time ' 1/(ω2
kickτkick) ' 25 ms corresponds to the time of

flight τTOF, before an absorption image is taken. This corresponds to a pixel

size in momentum space ∆p = ∆zm/τTOF ' 0.14h̄ µm−1, and is true for all

measurements described in Part II.

• A guiding technique [82] consisting of holding the atoms in a weak trans-

verse wave guide, between the two stages of deconfinement, allows to pro-

long the focusing time (now the sum of τTOF and the holding duration),

and thus to improve the momentum-space resolution. This is however not

used in experiments described in Part II, and will not be elaborated further.

Technical details concerning this technique can be found in [82].

3.3.1. Momentum distribution

Experimental procedures

Approximately 30 pictures are taken using the focusing technique outlined above

and their mean is computed.

Analysis

Assuming LDA, the measured momentum distribution can be seen as a weighted

sum of momentum distributions, each of them being associated to an homoge-

neous system with different linear density (in real space). Since the computation

of the momentum distribution requires the full knowledge of the one-body cor-

relation function in real space, it is beyond the capability of the YY (or MYY)

equation of state. Instead, we compare our measurement with QMC calculations,

obtained by using the Stochastic Series Expansion (SSE) algorithms [145], and tak-

ing the continuous limit of the lattice Boson model [134, 135]. Note that the lon-

gitudinal confinement can be accounted for in the calculation directly, although

for practical purposes8 we use the numerical data for homogeneous systems at

different (µ, T) in conjunction with LDA and interpolate to obtain T.
8In particular, the asymptotic momentum distribution is known for homogeneous qBEC and IBG,

so that having QMC data on the same footing simplifies interpolation and fit routines.



3.3 In momentum space 51

The finite imaging resolution due to the optical response and the atomic diffusion

broadens the observed momentum distribution. Assuming a Gaussian PSF, we

have the RMS width in momentum space δp ' 2∆p typically. This is determined

by fitting the momentum distribution of a sample that is clearly below resolu-

tion to a Gaussian distribution. Such a PSF is then used to broaden the QMC

calculations in the fit routine.
JACQMIN, FANG, BERRADA, ROSCILDE, AND BOUCHOULE PHYSICAL REVIEW A 86, 043626 (2012)

(a) (b)

FIG. 5. Data for atoms confined in a harmonic trap of transverse
oscillation frequency of (a) 6.4 kHz and (b) 2.1 kHz, and a longitudinal
oscillation frequency of (a) 8.3 Hz and (b) 7.6 Hz. The pixel size, in
the object plane, for in situ data is � = 2.7 μm. (1),(2) Momentum
distribution in linear and log scales. QMC fits are shown in solid
lines, yielding (a) T = 72 nK and (b) T = 84 nK. The dashed line in
(a,1) is the prediction using the LDA and the Lorentzian momentum
distribution in the quasicondensate limit. In (2), the dashed-dotted
lines give the 1/p2 behavior, while the momentum associated with the
healing length ξ = h̄/

√
mρg indicates that sample (a) is more in the

quasicondensate, with �p � h̄/ξ , and sample (b) is more in the ideal
Bose gas, with �p � h̄/ξ . In addition, the dotted lines indicate the
contribution from the transverse excited states, which is insignificant
for data (a) and hence neglected in our analysis. (3) In situ density
fluctuations, with Yang-Yang prediction in solid lines, evaluated at
the above-mentioned temperatures. The gray dashed and dotted lines
show Yang-Yang predictions with 30% temperature deviations. The
dash-dotted lines indicate the Poissonian fluctuation level. (4) In situ
profile, with the QMC profile in dashed lines. The dotted lines again
show the contribution from transverse excited states. We also plot
in solid lines the density profile fitted with Yang-Yang calculation,
which yields (a) T = 111 nK and (b) T = 76 nK.

density fluctuations are shown in Fig. 5(a,3). For linear
densities larger than 25 atoms per pixel, fluctuations are almost
independent of the density, which confirms that the center part

of the gas lies within the quasicondensate regime. Indeed,
in this regime μ � gρ, so that the thermodynamic relation
reduces to 〈δN2〉 = �kBT/g, which does not depend on 〈N〉.
The fluctuations computed using the thermodynamic relation
and the Yang-Yang equation of state, for the temperature
T = 72 nK (obtained by fitting the momentum distribution
with the QMC results) are shown as solid line. The data
are in agreement with this prediction. With our SNR, the
density fluctuations based thermometry has a precision of
about 20% [see gray curves in Fig. 5(a,3)], less precise than
the thermometry obtained by fitting QMC calculations to the
momentum distribution.

Finally, we compare in Fig. 5(a,4) the measured in situ
density profile to the QMC density profile (within LDA)
for T = 72 nK (dashed line). We find a good agreement
for most of the profile, although the measured data show
higher wings. Since the central part of the cloud lies deep
in the quasicondensate regime, a large part of the cloud
follows the Thomas-Fermi profile, and all the information
on the temperature lies in the small wings. This renders
Yang-Yang thermometry based on density profile less precise
and extremely sensitive to the shape of the wings. Here,
a Yang-Yang fit to the density profile gives T = 110 nK,
a value 40% higher than that extracted from the QMC fit,
incompatible with the measured momentum distribution or
the density fluctuation measurements. This discrepancy, and
thus the presence of the inflated wings, may come from the
anharmonicity of the potential due to its residual roughness
[38]. Alternatively, it may also indicate a lack of perfect
thermal equilibrium.

B. On the ideal Bose gas side of the crossover

While the previous results probe mainly the quasiconden-
sate regime, we also probe the ideal Bose gas side of the
quasicondensation crossover, i.e., data with γm > γco = t−2/3.
The ideal Bose gas regime shows a very different behavior
from the trivial Maxwell-Boltzmann prediction only for a
large t parameter, for which the quasicondensation crossover
occurs for an already highly degenerate gas. If one wishes
to preserve the 1D condition kBT � h̄ω⊥, large t parameters
can be accessed only by decreasing the transverse confinement
[25]. We thus reduced the transverse confinement to 2.1 kHz.
Data are shown in Fig. 5(b). No saturation of the density
fluctuations is seen on the in situ fluctuation measurements,
which indicates that the gas does not lie in the quasicondensate
regime. Fluctuations however rise well above the Poissonian
level [shown as dashed-dotted line on Fig. 5(b,3)] so that the
gas is highly degenerate. Contrary to the data of Fig. 5(a), we
now have kBT /(h̄ω⊥) = 0.8 which is of the order of unity, so
that the transverse excited states contribute to the measured
fluctuations and momentum distribution. We take into account
the population of transverse excited states, assuming that
they behave as independent ideal 1D Bose gases, while the
transverse ground state is treated as a Lieb-Liniger gas. This
modified Lieb-Liniger model has been used with success to
describe density profiles [4] and density fluctuations [6], and
has been applied to predict the rms width of momentum
distribution [11]. Here we use our QMC calculations to
describe the transverse ground state. A fit using the above

043626-6

Figure 3.9.: Reproduction of Fig. 5 (partial) of [84]. The normalized momentum
distribution n(p)/n(0) is shown for two sets of data in both (1) linear
and (2) log scale. Samples differ in their thermodynamic regime: (a)
the sample is further in the qBEC regime, with f⊥ = 6.4 kHz and
T = 72 nK determined from the QMC fit; (b) this sample is further
in the degenerate IBG regime, with f⊥ = 2.1 kHz and T = 84 nK.
Data (points) are compared to a QMC fit (solid lines) and a qBEC
Lorentzian prediction [dashed line in (a,1)]. The contribution from
transverse excited states (dotted lines) and the 1/p2 behavior (dash-
dotted lines) are included as reference. The inverse healing length
1/ξ is also indicated for both samples.

As a demonstration, I reproduce Fig. 5 (partial) of [84]. (a) shows a sample further

in the qBEC regime, for which the momentum distribution is narrow compared

to 1/ξ (the inverse healing length), (b) shows a sample further in the degenerate

IBG regime, for which the momentum distribution is broad compared to 1/ξ.

Data (points) are compared to QMC fit (solid lines), yielding T = (a) 72 nK, and

(b) 84 nK.
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Remarks

Momentum profile as a thermometry has been demonstrated on our experiment

in [84], where the agreement with the atom-number fluctuation thermometry is

shown. In the earlier implementation of the focusing technique in Amsterdam

[39, 150], on the other hand, the authors obtained the total kinetic energy from the

momentum distribution, and showed agreement with MYY equation of state. We

remark that this strategy is applicable to hotter samples with significant popula-

tions in the transverse excited states, so that the momentum distribution displays

fast decaying tails at high momenta (see Fig. 3.10), enabling a double Gaussian fit

(dashed lines). The stochastic projected GPE calculations (solid lines in Fig. 3.10)

also confirms this feature. On the contrary, our measurement for colder samples

and the corresponding QMC calculations give n(p) ∝ p−2 (see Fig. 3.9), render-

ing the direct measurement of kinetic energy (∝ p2) problematic9. Note that a

finite kinetic energy is ensured by n(p) ∝ p−4 for large p in this case, but it is

not observed for the signal-to-noise ratio10 of about 50 of our experiment, nor is

it visible on the calculation.

3.3.2. Momentum correlations

Experimental procedures

Similar to the case in real space, more statistics are necessary for fluctuation mea-

surements in momentum space. A typical set of data for this purpose contains

about 150 images taken with the focusing technique described at the beginning

of this Sec. 3.3.

Analysis

The raw data are analyzed using a similar post selection procedure as detailed

in [82] to reject bad shots due to technical issues. Next, the momentum fluctu-

ations δN(p) ≡ N(p) − 〈N(p)〉 is obtained by a comparison with the running

average 〈N(p)〉, similar to the procedure used to analyze the fluctuation data

in situ (see Sec. 3.2.2). We also observe a technical fluctuation of the total atom

9Direct evaluation of 〈p2〉 = ∆p ∑p p2n(p) is sensitive to the noise present in the region where
there is little atomic signal.

10simply defined as the maximal atomic signal divided by the RMS noise signal.
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(a) (b)

(c) (d)

FIG. 2. (Color online) Examples of the experimental momentum
distributions (black dots), bimodal Gaussian fits (red dashed lines),
and theoretical SPGPE best fits (blue solid lines) yielding the
temperature T and kinetic energy Ekin,t. The bimodal Gaussian fits are
difficult to distinguish from the SPGPE fits, but give slightly different
values for the total kinetic energy (see the inset of Fig. 3). The magenta
dotted-dashed lines indicate the density of atoms in transversely
excited modes ne(kz). The finite experimental imaging resolution was
modeled as a Gaussian with a rms width of 2.83 μm [10,24]. The
uncertainty in the stated values of T and μ/kB is typically ±5 nK
(95% confidence interval). The values of νrf correspnd to final rf
frequency for evaporative cooling.

SPGPE [17],

dψC = P
{(

γd

kBT
− i

h̄

)
(μ − L)ψCdt +

√
2γddW

}
, (5)

where L = − h̄2

2m
∂2
z + V (z) + g|ψC(z)|2 is the Gross-

Pitaevskii operator, the parameters γd , μ, and T are the
damping rate, chemical potential, and temperature of the
reservoir, respectively, and dW is a complex Gaussian noise
that is delta correlated in time and space. This equation
explicitly includes a projection (P) onto the coherent-region
modes [25], and can be derived from a microscopic
theory by tracing out the high-energy modes that act as a
thermal reservoir [17]. In steady-state evolution the SPGPE
samples ψC from a grand canonical density independent
of the value of γd . Thus the equilibrium density can be
sampled in both position [ρC(z) = |ψC(z)|2] and momentum
[nC(kz) = |φC(kz)|2] space, where the overline indicates time
averaging, and φC(kz) is the spatial Fourier transform of
ψC(z).

The incoherent region (i.e., the longitudinal states of the
ground transverse mode with low occupation) is well described
using the Hartree-Fock approximation [26], and has a position

density

ρI(z) =
∫

ε0
kz

>εcut

dkz

2π

1

eβ[ε0
kz

+2gρC(z)−μ] − 1
, (6)

where ε0
kz

= h̄2k2
z /2m + V (z) [23]. The incoherent region mo-

mentum density nI(kz) is obtained by a similar procedure, and
the transverse ground mode distribution is n0(kz) = nC(kz) +
nI(kz). Atoms in the excited transverse modes are treated as for
the YY formalism, thus giving the full momentum distribution
and total kinetic energy.

Examples of best-fit momentum distributions obtained
using the SPGPE approach [27] are compared to the exper-
imental data [28] in Fig. 2. We find quantitative agreement
throughout the crossover from the nearly ideal Bose gas to the
weakly interacting quasicondensate regime. From these fits
we can determine both the kinetic energy per particle and the
temperature for the data.

In Ref. [10] the experimental momentum distributions were
fitted with the sum of two Gaussians (see Fig. 2), giving the
total number of atoms N , and the total kinetic energy Ekin,t.
The temperature T was obtained from the width of the broadest
Gaussian component using a classical ideal-gas model. We
note that there is very little quantitative difference between the
heuristic bimodal Gaussian momentum fits and those based
on the microscopic SPGPE formalism. However, there is a
distinct difference in the temperatures extracted using the two
methods (see Fig. 3).

We can also use the YY formalism for thermometry in this
system, as there is a one-to-one correspondence between the
temperature T and the kinetic energy per particle Ekin,t/N for a
given atom number N . We compare the temperature estimates
of YY thermometry, the SPGPE momentum fits [29], and the
broad Gaussian fits as a function of Ekin,t/N in the main panel

FIG. 3. (Color online) Temperature of a quasi-1D Bose gas in
a harmonic trap (with ωz/2π = 8.5 Hz and ω⊥/2π = 3280 Hz
[23]) as a function of the total kinetic energy Ekin,t determined
by bimodal Gaussian fits (circles) [10], SPGPE fits (triangles)
[29], YY thermometry (crosses), and the classical ideal gas model
(gray line). The inset shows the atom number (open circles, left-
hand axis) and Ekin,t (right-hand axis) as determined by bimodal
Gaussian fits (open circles) [10] and SPGPE fits (triangles) to the
momentum distributions as a function of the final rf evaporation
frequency νrf .

031604-3

Figure 3.10.: Reproduction of Fig. 2 of [39]. The momentum distribution is shown
for samples of different temperatures controlled by the final trap
depth, which is fixed by the RF assisted evaporation (νrf in the la-
bels). Data (points) are compared with double Gaussian fit (dashed
lines) and stochastic projected GPE calculation (solid lines). Both
theories are hardly distinguishable. Contributions from the trans-
verse excited states (dash-dotted lines) are also shown.

number on the order of 15% to 20%, which is beyond the expected fluctuations

based on the grand canonical ensemble. Data are thus renormalized according

to the atom-number calibration scans and treated as a system in the canonical

ensemble for consistency11. Finally, the ensemble average of the correlation map

〈δN(p)δN(p′)〉 is computed, and the photon shot noise, which is uncorrelated

and therefore only contributes to the diagonal p = p′, is subtracted.

The computation of the correlation map depends on the thermodynamic regime

of the system. To start with, we consider homogeneous systems. In qBEC, the

11We verify that the renormalization procedure does not change the qualitative behavior of the
momentum correlations obtained. Such a choice places the data and analysis (canonical en-
semble treatment) at equal footing, and would hopefully facilitate quantitative comparisons.
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(a) Data MC1 (Experiment)
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(b) Data MC1 (Theory, qBEC)
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(c) Data MC2 (Experiment)
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(d) Data MC2 (Theory, QMC)
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(e) Data MC3 (Experiment)
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(f) Data MC3 (Theory, IBG)
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Figure 3.11.: The momentum correlations of three samples in the qBEC to IBG
crossover. Data (left) are compared with ab initio theory (right). The
zero crossing of the color map is kept the same throughout.
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Luttinger liquid theory yields an analytic expression [17], predicting strong cor-

relations due to bunching along the p = p′ diagonal, and strong anticorrelations

along the p = −p′ diagonal. This is in stark contrast with an elongated BEC in

3D, where positive correlations are expected in both diagonals. In the IBG limit,

since interactions are absent, the single-particle eigenstates have well-defined

momenta, giving rise to the shot noise. A system approaching degeneracy also

exhibits bunching in momentum space. The overall correlation is therefore only

present in the p = p′ diagonal. Numerical methods such as the QMC can be

used for systems in the qBEC to IBG crossover, and a smooth variation from one

limiting behavior to the other is expected.

Figure 3.11 shows a comparison of the measured and computed momentum cor-

relations for sample sets of data of a qBEC (MC1), a system in the qBEC to IBG

crossover (MC2), and a degenerate IBG (MC3). The zero crossing of the color

map is kept the same throughout in order to give a fair visual comparison. Tprof

of the data sets are around 100 nK, and further consistency checks across differ-

ent thermometries are ongoing. There seems to be a good agreement between the

measurements and theory. The slight difference in the absolute magnitude of the

correlation is currently under investigation.

Remarks

The measurement of momentum correlations has been realized recently on our

experiment. In order to apply such a probe as a quantitative characterization of

1D Bose gases, a single meaningful quantity should be established. This is not a

trivial task as the experimental resolution (effective PSF modeled as a Gaussian

with RMS width ' 2∆p) has a strong impact on the extreme values of the cor-

relation map. Also, given that f⊥ and the focusing parameters have been held

constant so far, the thermodynamic regimes are probed by tuning the linear den-

sity.

Conclusions

In this chapter, we have first seen how simple absorption imaging can be

carried out in both real and momentum space on our setup. Next, five ex-

perimental probes have been presented, each allowing an independent char-
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acterization of the 1D system. The mean density profile, the atom-number

fluctuations, the density ripples, and the momentum distribution can all be

used as thermometry methods, and their equivalence is demonstrated to a

certain extent, although further verification would be helpful. The applica-

tion of the momentum correlations as a quantitative characterization tool is

currently under development.



Part II.

Probing Nonequilibrium Systems
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Having established a comprehensive understanding of the equilibrium behav-

ior of harmonically confined 1D Bose gases and their experimental realizations, I

document in the following part the experiments I performed in order to investi-

gate the nonequilibrium behavior of 1D Bose gases. Various means of excitation

have been attempted, and the subsequent evolution is studied.

I organize this part as follows. Chapter 4 details the study of the breathing

mode of 1D Bose gases, for which both frequency and lifetime are probed exper-

imentally and theoretically. In Ch. 5, an experimental study about a long-lived

nonequilibrium state is presented. Such a state has been obtained repeatedly

on our experiment, and a detailed characterization helps to understand the ini-

tial conditions before the system is brought out of equilibrium by other means.

Chapter 6 then details a few attempts made to deliberately bring the system far

from equilibrium by means of modifying the interaction strength. Such a study

is however on going, and only the efforts up to March 2014 are recorded here.
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We study here the breathing modes of a harmonically confined 1D Bose gas. This

subject has been investigated on various occasions in both theory [58, 107, 144]

and experiments [73, 94, 110], mostly focusing on the frequency shift as the sys-

tem traverses different thermodynamic regimes. With the capability of imaging

in momentum space, however, we experimentally demonstrate for the first time a

phenomenon of momentum-space frequency doubling [48]. We discuss its phys-

ical origin and explore the regimes of occurrence in the 1D phase diagram. The

lifetime of the breathing mode is also probed experimentally.

I organize this chapter as follows. I discuss the motivation behind such a study

in Sec. 4.1. Sec. 4.2 outlines the considerations, the procedures as well as the

quantities of interest. The study of the frequency signature is presented in Sec.

4.3, where both the limiting cases and the crossovers are explored. The study of

the lifetime is presented in Sec. 4.4, and is limited to some preliminary data. A

conclusion is given at the end.
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4.1. Motivation

Collective excitations are a valuable source of information for the understanding

of the physics that governs interacting many-body systems, e.g. the nucleus of

an atom [131], or an ultracold atomic gas in external confinement [21, 35, 56, 69,

70, 86, 106, 108, 114, 115, 142, 143]. The breathing mode, which is an oscillatory

motion where the system varies in size and sometimes in density, is among the

simplest form of such excitations. These modes lie directly above the center-of-

mass oscillations, and are the lowest-lying nontrivial collective oscillations of the

system. In higher dimensions, there exist both the monopole oscillations [35]

for a spherically symmetric trap, where both the size and the density oscillate in

time, and the quadrupole oscillations [21], where the atomic density is preserved

during the size oscillations of the ensemble. The latter however relies on the

availability of more than one translational degree of freedom, and is therefore

impossible in 1D.

Existing studies of the breathing mode in 1D have demonstrated that the oscil-

lation frequency of the size and of the density in real space is directly related

to the thermodynamic regime of the systems [58, 107, 144], but a quantitative

comparison taking finite-temperature effects into account has yet to be estab-

lished [73, 110]. Moreover, momentum-space imaging has only been carried out

in the strongly interacting regime [94], with an initialization that depletes the

low-momenta states and hence the investigation of breathing mode per se is ques-

tionable. What is interesting in that work is perhaps the very first demonstration

of the connection between the degree of integrability (‘1D-ness’ in this context)

and the lack of thermalization of the system.

With the possibility to image in both real and momentum space, as well as the

thermometries available on our set up, we wish to investigate the breathing mode

as a first step towards the experimental studies of the evolution dynamics of

nonequilibrium systems in 1D.
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4.2. Experimental procedures

4.2.1. Considerations

The breathing mode is in fact rather accessible experimentally. On one hand, the

sum rules [107] tell us that a system in a harmonic confinement would respond

to a sudden jump in the trapping frequency with oscillatory mean-square width.

On the other hand, the notion of a well defined ‘mode’ suggests parametric exci-

tation.

For the experiments that I performed, the first option was chosen for two rea-

sons:

1. The implementation is simple: the longitudinal harmonic confinement is

provided by running stabilized currents through the wires on the atom chip,

so that a jump in the trapping frequency can be achieved by a fast1 ramp of

the current values;

2. Assuming the ramp is infinitesimally short, modelling the change of the

trapping frequency as a step function in time becomes rather realistic, and

is used in our analysis.

In addition, the following technical constraints are taken into account:

1. The typical longitudinal trap has a frequency fz ' 7 Hz, for which the

preparation procedure outlined in Sec. 1.3 is optimized, so that all samples

start in such a trap.

2. The final trapping frequency should not be too low to avoid possible anhar-

monicity of the trap and to ensure sufficiently many oscillation periods are

observed within a given period of time. This suggests that a direct down-

ward quench in fz is not desirable.

1compared to the oscillation period 1/ fz associated with the trap.
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4.2.2. Procedures

With these considerations in mind, we carry out the experiment as follows. We

first use the preparation sequence (see Sec. 1.3) to produce 1D samples of 87Rb of

desired temperature and density. Next, we excite the breathing mode by means

of a quench in the longitudinal potential: we slowly compress the samples from

fz = fD ' 7 Hz to fz = f0 ' 9 Hz in 50 ms, and then release them back into

the final trap fz = fD in 1 ms. The samples are allowed to evolve for a variable

duration τ before an image is taken, either in real space2 or in momentum space3.

Figure 4.1 gives an illustration of fz as a function of time.

f
D

f0

0 τ

f
z

time

end of
preparation imaging

compression ramp (50 ms) evolution

quench
(1 ms)

Figure 4.1.: Sequence of fz quench.

Since 1/ fD ' 140 ms, the 1 ms quench is nearly instantaneous. The slowness of

the 50 ms compression is justified experimentally. Assuming a simple trap open-

ing, the subsequent evolution of the breathing mode has a well defined phase,

which is what we observe on the experiment. We also compare the ρ(z) and

n(p) measured at τ = 1 ms (see Fig. 4.2), when there is little time for signifi-

cant changes to take place, to the computed equilibrium profiles for fz = f0, and

for the temperature Tprof given by an independent calibration4 using the density-

profile thermometry (see Sec. 3.2.1) in the absence of the quench sequence. The

good agreement between the measured and computed profiles provides grounds

2using the imaging parameters of ‘Density profile’ described in Sec. 3.2.1, and detuned when
necessary, so that the atomic density is always proportional to the registered absorption signal,
up to a numerical factor. This way, profile distortion is avoided and the width can be obtained
by a simple fit routine.

3using the focusing technique (see Sec. 3.3). Only one set of imaging parameters is developed
here.

4We emphasize that the profile temperature is used for this comparison. A discrepancy between
the density-profile thermometry and the atom-number fluctuation thermometry has been ob-
served here. This will be discussed later in further details in Sec. 4.3.2.1.
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for neglecting the effect of the compression.
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Figure 4.2.: Profiles in situ N(z) = ρ(z)∆z and at focus N(p) = n(p)∆p at
τ = 1 ms. Data (points) are compared with calculations (dotted lines)
using the MYY model for ρ(z) and QMC simulations for n(p), both
evaluated at fz = f0 and a temperature Tprof obtained from an inde-
pendent calibration using the density-profile thermometry (see Sec.
3.2.1) in the absence of the quench sequence. The computed momen-
tum distribution is convolved with a Gaussian PSF of RMS width
∼ 2∆p to account for the imaging resolution at focus. The numeri-
cal QMC data are a courtesy of Dr. Tommaso Roscildea.

aLaboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Université de
Lyon, 46 Allée d’Italie, Lyon, F-69364, France.

4.2.3. Quantities of interest

As for any oscillations, we are interested in both the frequency and the amplitude

of the motion. The frequency signal allows to identify the mode itself, and the

thermodynamic properties of the quantum many-body system. It has received

more attention in the literature so far, both in theory [58, 107, 144] and in exper-

iments [73, 110]. The amplitude could yield the response of the system to the

excitation, and its evolution gives the lifetime of the mode [35, 70].

We have performed experiments to investigate both quantities. In addition to

the usual trap geometry ( f⊥, fz) ' (2000, 7) Hz, the following parameters are

controlled:

• The quench strength α ≡ f0/ fD ' 1.3 is fixed. This value is chosen so that
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there is sufficient oscillation signal in the widths of the profiles measured.

We verify experimentally that the measured breathing frequency hardly de-

pends on α for up to α ∼ 3. Large values of α are less favorable due to strong

expansion and weak absorption signal.

• The longest evolution time τmax is kept at 500 ms for the frequency study

and up to 900 ms for the lifetime study. This is motivated by the accuracy

of the fit which yields both quantities. Ideally, the longer τmax (or the more

oscillations, whichever is the limiting factor), the more accurate the fit be-

comes. However, compromises have to be made since the isolation of the

system is imperfect and a residual (small) loss in the total atom number

would eventually render measurements impossible at long times.

We vary the thermodynamic regime of the 1D atomic samples by tuning the fi-

nal evaporation step so that samples of desired temperature and density are ob-

tained.

ρ(z, τ)

〈z2〉(τ) z0(τ)

τBz

QBz

fBz

fBz
fD

n(p, τ)

p0(τ) wp(τ)

fBp

fBp
fBz

K

fD

Figure 4.3.: Chart illustrating the relationship of various quantities in the study
of the breathing mode. The bold boxes highlight the final quantities
of interest.

The frequency (the f ’s, with various subscripts), the amplitude [K, see Eq. (4.27)

and related discussion], and the lifetime (τBz, and thus the quality factor QBz) are
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obtained from the width and the center of the observed atomic distributions. One

could in principle obtain the breathing frequency by analyzing the density varia-

tion over time, as done in [146]. However, since the width and density are neces-

sarily coupled in 1D, we prefer to analyze the widths as they are less susceptible

to noise registered in the image, be it technical or due to density fluctuations. The

mean square width in real space 〈z2〉 is obtained by fitting the averaged density

profile by an inverted parabola or a Gaussian, depending on the thermodynamic

regime of the sample (see discussion in Sec. 4.3.2.1). The square is kept for the

convenience of modeling (see also Sec. 4.3.2.1). In momentum space, however,

the equivalent 〈p2〉 cannot be obtained experimentally for the reasons discussed

in Sec. 3.3.1. Instead, a fit to a Lorentzian distribution yields the half width at half

maximum (HWHM) wp, which carries the information of a similar kind. Distinc-

tion between 〈p2〉 and wp is made for the case of a Tonks gas, where the exact

solution allows the computation of both quantities. The evolution of the centers

z0(τ) and p0(τ) yields the dipole oscillation frequency fD. Figure 4.3 illustrates

the relations of the various quantities explained in this paragraph.

4.3. Frequency study

Here, we focus on the frequency signature of the breathing mode. A combination

of theoretical and experimental approaches are used in order to explore various

regions of the 1D phase diagram (recall Fig. 2.1). I will first present the limiting

cases, and then the crossovers between them.

4.3.1. Limiting cases

Let us look at the breathing dynamics of the limiting cases. Four of these will be

covered: the qBEC, IBG, TG gas, and exceptionally, two classical hard spheres.

The first two cases are studied experimentally whereas the last two theoreti-

cally.
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4.3.1.1. Quasicondensate (qBEC)

Sample characteristics

The first sample presented here lies in the qBEC regime, characterized by an equi-

librium density profile of an inverted parabolic shape, with little wings in the

outer region. Quantitatively, we have

Ntot ' 7000, (4.1)

Tprof = 102 nK, (4.2)

where Tprof denotes the temperature obtained from fitting the density profile (see

Sec. 3.2.1). Note that the statistical uncertainty on Ntot is about 15%, and the

convergence of Tprof due to the fit routine is typically 10%, although interpolation

of numerical MYY equation of state may result in a larger error. The peak density

is around 66 atoms/µm. Therefore, in terms of the dimensionless parameters, we

have

(t, γ0) = (1220, 0.00309). (4.3)

Breathing behavior

We show the measured real- and momentum-space profile evolution in Fig. 4.4

(a) and (c). The color scale corresponds to the measured (relative) number of

atoms in a pixel, consecutive snapshots are taken 10 ms apart, and we recall that

the real (momentum) pixel size is ∆z = 2.7 µm (∆p = 0.14 h̄.µm-1).

The apparent mismatch in periodicity prompts further investigation. We plot

in Fig. 4.5, as a function of time τ, 〈z2〉 obtained from an inverted-parabola fit

of the density profile, and wp obtained from a Lorentzian fit of the momentum

distribution. The statistical error is shown for the first 100 ms.

Fitting each width with a damped sinusoid (see Fig. 4.5, the solid line in the top

panel) yields fBz = 12.0 Hz and fBp = 24.1 Hz. Together with the dipole fre-

quency fD = 6.95 Hz, independently obtained by fitting the center-of-mass oscil-
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Figure 4.4.: Breathing dynamics in real (top) and momentum (bottom) space.
Data (left) and the scaling solution (right) are shown. The momen-
tum distribution according to the scaling solution in (d) is broadened
by the experimental imaging resolution. Each picture is normalized
to the corresponding maximal signal per pixel.

lations, we obtain

fBz

fD
= 1.73± 0.03, (4.4)

fBp

fBz
= 2.00± 0.02. (4.5)

Note that the uncertainly only accounts for the fitting error.

Model

A hydrodynamic analysis predicts the frequency of the breathing mode of a 1D

qBEC to be fBz =
√

3 fD ' 1.732 fD [107]. It was soon verified experimentally

[73, 110], and our measurement again confirms this prediction. We note that the

authors of [73] in fact used such a measurement to identify the qBEC regime.

On the other hand, the frequency expected in momentum space has barely been

discussed in literature, possibly as a consequence of a naïve intuition that the col-



70 4. Breathing Modes

 150

 220

 290

 0  200  400

<
z

2 >
 (

∆2 z
)

Data BrA

 2

 4

 6

 0  200  400

w
p
 (

∆ p
)

τ (ms)

Figure 4.5.: Width variations of a qBEC. Data (points) are compared with fits
(lines): 〈z2〉 is fitted with a damped sinusoid, whereas wp is fitted
with a two-frequency model [see Eq. (4.27) and related discussion].
The statistical error is shown for the first 100 ms.

lective behavior should manifest itself in the same way regardless of whether the

observation takes place in real or momentum space. Indeed, the seminal work

of Haller et al [73] simultaneously claims the measurement of momentum distri-

bution and fB =
√

3 fD. As it turns out, given the published experimental pa-

rameters, the finite TOF used in their work indicates a near-field expansion, with

the atomic cloud expanding in the longitudinal direction by approximately a fac-

tor of 3. Therefore, the measured breathing frequency reflects the value in real

space.

Yet, it is possible to show that fBp/ fBz = 2 from the much celebrated scaling

solution [27]. Namely, starting from the steady-state inverted parabolic density

profile, a sudden stepwise change in external potential results in an oscillatory

behavior of the density profile that is completely summarized in a single scaling
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parameter b(τ), i.e.

ρ(z, τ) =
1

b(τ)
ρ
(

z
b(τ) , τ = 0

)
, with b̈ + ω2

Db =
ω2

0
b2 , and b(0) = 1, ḃ(0) = 0.

(4.6)

Linearizing b around its initial value of unity, one recovers the hydrodynamic pre-

diction that b oscillates at a frequency
√

3 fD, and so does the width of the density

profile that is linear in b. What is more interesting is that the authors of [27] ob-

served that the scaling solution is equivalent to assuming that each particle has a

well defined classical trajectory v(τ) = ḃ(τ)
b(τ)z(τ = 0), so that the (hydrodynamic)

velocity field is linear in position, and its width follows the time dependence of∣∣∣ ḃ(τ)
b(τ)

∣∣∣. The linearization of b implies ḃ is sinusoidal, and
∣∣∣ ḃ(τ)

b(τ)

∣∣∣ has a periodicity

half that of b, and thus fBp/ fBz = 2 exactly. I include the evolution of the density

profile and momentum distribution according to the scaling solution in Fig. 4.4

(b) and (d).

Note that the model above remains imperfect. The assumption that only the hy-

drodynamic velocity field contribute to n(p), corresponding to neglecting ther-

mal fluctuations in our case, leads to a vanishing momentum width whenever ḃ

crosses 0. This is certainly not the case in a quantum many-body system. The

samples that we prepare are dominated by thermal fluctuations. Our measure-

ment of the momentum width is in addition affected by the finite resolution of

the imaging. The calculation shown in Fig. 4.4 (d) only shows the scaling solution

broadened by the finite resolution. The agreement with the measured distribu-

tions is remarkable.

Also, one could in principle take thermal fluctuations into account using numer-

ical methods (see the discussion in Sec. 3.2.3). Assuming a qBEC behavior, a trial

simulation is carried out using an Ornstein-Uhlenbeck process [63] for α = 1.3,

tγ3/2
0 = 0.06, and µ0

h̄ω⊥
= 1670 (see Fig. 4.6). The computed momentum distri-

bution is then fitted with a Lorentzian, from which we obtain
∣∣∣ ḃ(τ)

b(τ)

∣∣∣. Here the

thermal fluctuations indeed prevent the momentum width from vanishing as ex-

pected, and the agreement with the scaling solution is otherwise good.

Discussions

Comparing our experiment with theory, the origin of the momentum-space fre-

quency doubling becomes clear. In each breathing cycle, the momentum distribu-
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Figure 4.6.: Comparison of the scaling solution (line) with GPE simulations
(points). The thermal fluctuations indeed prevent the momentum
width from vanishing at every half a breathing period ω−1

Bz , and the
agreement between the two models is otherwise good. Note that the
oscillations are shown for one dipole period, ending at τ =

√
3 /ωBz,

so that fBz/ fD =
√

3 is implicit.

tion narrows twice: at the classical turning point when the in situ density profile

is the broadest, and at the compression point when the density profile is the nar-

rowest. The former is expected in any system, as the atoms climb the (external)

potential hill and the population in low momenta becomes high. The latter corre-

sponds to a self-reflection of the atomic ensemble, and the interaction potential is

responsible for slowing down the atoms. In addition, the timescales over which

the momentum distribution narrows in both scenarii are comparable, leading to

the observation that the oscillation of the momentum width takes place twice as

fast as that of the in situ width.

The scaling solution is also valid in higher dimensions [27, 116], so that in princi-

ple, the momentum-space frequency doubling is expected in these systems. There

is however no experimental proof to our knowledge, possibly because the early

experiments using simple TOF techniques did not measure the true momentum

distribution due to the contribution of interaction energy.

In addition, the understanding of the origin of such a momentum-space fre-

quency doubling allows us to improve further the experimental control. Namely,

due to energy considerations, the maximal value of wp should remain constant as

a function of time in case of undamped breathing oscillations, or decreases mono-
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tonically with time otherwise. We observed irregularities that can be attributed to

the imperfect implementation of the focusing technique, i.e., the focusing pulse

and τTOF are mismatched, analogous to making an observation slightly away

from the focal point in optics. By monitoring the maximal value of wp while fine

tuning the duration of the focusing pulse, we are able to determine the duration

of the focusing pulse within ±20 µs.

4.3.1.2. Ideal Bose gas (IBG)

Sample characteristics

Next, we present a sample in the (degenerate) IBG regime, characterized by an

equilibrium density profile with a significant population in the outer region of

the longitudinal potential, and the shape can be well described by a Gaussian.

Quantitatively, we have

Ntot ' 2000, (4.7)

Tprof = 105 nK. (4.8)

The notation and uncertainty are similar to before. The peak density is around 18

atoms/µm. Therefore, in terms of the dimensionless parameters, we have

(t, γ0) = (1130, 0.0099). (4.9)

Breathing behavior

Again, we plot 〈z2〉 and wp as a function of time τ. The shape of the density profile

prompts a Gaussian fit to obtain 〈z2〉 instead. The statistical error is significantly

larger than before due to the reduced density signal, despite the fact that more

shots are used for averaging.

Fitting each width with a damped sinusoid (see Fig. 4.14, the solid line in the

top panel) yields fBz = 13.5 Hz and fBp = 13.9 Hz. Together with the dipole
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Figure 4.7.: Width variations of an IBG. Data (points) are compared with fits
(lines): 〈z2〉 is fitted with a damped sinusoid, whereas wp is fitted
with a two-frequency model [see Eq. (4.27) and related discussion].
The statistical error is shown for the first 100 ms.

frequency fD = 7.35 Hz, we obtain

fBz

fD
= 1.84± 0.04, (4.10)

fBp

fBz
= 1.03± 0.04. (4.11)

Again, the uncertainty only accounts for the fitting error.

Model

The ideal Bose gas consists of noninteracting particles, so that a single-particle

description is sufficient. Consider the Schrödinger equation of a simple harmonic

oscillator. Again, for a sudden change in trapping potential, a scaling solution

exists (for all eigenstates), with the scale b(τ) now obeying

b̈ + ω2
Db =

ω2
0

b3 , and b(0) = 1, ḃ(0) = 0. (4.12)
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The solution is analytic, namely,

b(τ) =
√

1 + (α2 − 1) sin2(ωDτ) , such that (4.13)

b2(τ) =
α2 + 1

2
− α2 − 1

2
cos

(
2ωDτ

)
. (4.14)

Therefore, 〈z2〉, being quadratic in b, would also oscillate at fBz = 2 fD exactly.

Note that Eq. (4.12) also applies to a TG gas, as discussed in the next subsection.

It also follows that the width of the momentum distribution would scale as

1/b(τ), so that the same frequency fBp = fBz = 2 fD applies in both real and mo-

mentum space, even though the evolution of the momentum width is no longer

purely sinusoidal. On the other hand, by energy conservation arguments, 〈p2〉
oscillates sinusoidally at 2 fD.

A side remark. Pictorially, the breathing motion can be described by a rotation

of the phase-space density, so that the widths in real and momentum space, ob-

tained by projecting the phase-space density onto the real and the momentum

axis, oscillate out of phase at the same frequency.

Discussions

Although the measured ratio fBz/ fD has yet to reach the IBG limit, a single fre-

quency is seen in both real and momentum space. The antiphase between the

oscillations in the in situ and momentum width is also clearly observed.

4.3.1.3. Tonks-Girardeau gas (TG gas)

The Tonks-Girardeau (TG) gas is a system of impenetrable (hard-core) bosons

[64], i.e. a system that can be described by the LL model in the limit of g1D → ∞,

so that it is a prototypical system with strong interaction.

Even though it has not been possible to reach this regime on our experiment,

some theoretical analysis appears instructive to the understanding of the subject

at hand.
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Model

Using the celebrated Bose-Fermi mapping, which treats the infinitely strong in-

teraction as a boundary condition, one can construct the many-body ground-state

wave function of N harmonically trapped impenetrable bosons as

ΨTG(z1, . . . , zN) =
1√
N!

∣∣det φj(zk)
∣∣, (4.15)

where φj denotes the jth harmonic orbital. The Slater determinant gives the anti-

symmetric wave function of N fermions, and the absolute value arises from a unit

antisymmetrizer that repairs the boson symmetry. Such prescription is proven to

be accurate on many occasions, see e.g. [30] and references therein, and can be

extended to treat other systems with the same boundary conditions [65].

Since the Hamilton operator now contains no interaction terms, the scaling law

is the same as that of a single particle in a harmonic trap, see Eq. (4.12). We

then have all the ingredients needed to compute the density evolution in real and

momentum space after a quench of the longitudinal potential:

ρTG(z, τ) =
1

b(τ)

∫
dz2 . . . dzN

∣∣∣∣ΨTG

( z
b(τ)

, . . . , zN; τ = 0
)∣∣∣∣

2

, (4.16)

nTG(p, τ) =
1

b(τ)

∫
dz2 . . . dzN

∣∣∣∣
∫

dz e
ipz√
2πh̄ ΨTG

( z
b(τ)

, . . . , zN; τ = 0
)∣∣∣∣

2

.

Given the special structure of harmonic orbitals and determinants, mathematical

simplifications exist so that the multivariable integral of the determinant reduces

to a determinant of special functions [54], and the computation for up to at least

N = 11 can be performed efficiently using Matlab.

Breathing behavior

We show ρTG(z, τ) and nTG(p, τ) for one dipole period in Fig. 4.8 (a) and (c). Here,

we recover a momentum-space frequency doubling5, which has been implicit in

[109]. More quantitatively, we plot b2(∝ 〈z2〉) in Fig. 4.8 (b) and wp in Fig. 4.8 (d)

as a function of time τ, with wp obtained by directly computing the exact HWHM

of the instantaneous momentum distribution. b2 oscillates at fBz = 2 fD exactly,

5The argument used to show that the momentum width of IBG scales as 1/b(τ) does not hold
because of the absolute value in Eq. (4.15).



4.3 Frequency study 77

whereas fBp = 4 fD dominates in the oscillations of wp.
∣∣ ḃ

b

∣∣ (normalized to the

maximal value of wp) is included in Fig. 4.8 as a reference. We see that similarly

to the case of a qBEC (see Fig. 4.6), the assumption of classical trajectory again

fails at small wp.
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Figure 4.8.: Breathing dynamics in real (top) and momentum (bottom) space. Full
profiles (left) and widths (right) are shown. The momentum width
predicted by the classical-trajectory assumption (∝ |ḃ/b|) is included
in (d) as a reference. Each picture is normalized to the corresponding
maximal signal per pixel. z and p are given in units of their corre-
sponding harmonic length scale lD =

√
h̄/(mωD) and h̄/lD respec-

tively. τ is given in units of ω−1
Bz . Since the calculation has been per-

formed for one dipole period only, corresponding to a total time of
2/ fBz, fBz = 2 fD is implied.

Note however that the spectrum of wp(τ) also has a finite contribution at the

fundamental harmonic ωBz, supported by the fact that the local minimal value of

wp is larger at compression points ( fBzτ = integers) than that at classical turning

points ( fBzτ = half-integers), see Fig. 4.8 (c) and (d). We compute the relative

power of the fundamental mode [K in Eq. (4.27), see discussion later] and obtain

0.004 for α = 1.3.

One more comment. The time evolution of the kinetic energy (∝ 〈p2〉) in fact
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oscillates sinusoidally at 2 fD. This comes naturally from energy conservation ar-

guments, since the interaction energy of a TG gas is identically zero. In this sense,

the existence of the momentum-space frequency doubling depends on the choice

of the oscillatory quantity.

Discussions

A similar collective excitation of a strongly interacting gas has been studied ex-

perimentally in [73, 94]. However, neither reports the expected momentum-space

frequency doubling. In [94], a different excitation scheme is used, strongly deplet-

ing the low-momenta population at the beginning of the oscillations, possibly

diminishing the frequency doubling phenomenon. Also, the finite resolution in

time may have played a role in this case. In [73], as explained earlier, the measure-

ment is simply not in the far field to access the signature in momentum space.

4.3.1.4. Classical hard spheres: two colliding pendulums

“All models are wrong, but some are useful.” – George Box

At first glance, it may appear difficult to justify the discussion of two colliding

pendulums in the context of quantum many-body physics. Yet, learning by anal-

ogy has been arguably the most intuitive way for one to grasp a larger, more

complex idea. Also, the popular work of [94] precisely makes the analogy be-

tween the breathing-like oscillations of cold atomic gases and Newton’s cradle.

Thus, a quick look at the motion of two pendulums bouncing off each other may

help in our understanding of the breathing motion of a 1D Bose gas.

Physical picture

The crudest analogy of the breathing motion of a 1D Bose gas in the classical

world is perhaps the motion of two pendulums in the Newton’s cradle configura-

tion, repeatedly colliding at the lowest point and swinging free when separated.

See Fig. 4.9 for an illustration.

A Newton’s cradle usually comes with two strings of equal length per pendulum

for suspension, ensuring the motion of the pendulum is confined in a vertical

plane. Superposing such planes for each pendulum ensures that the collisions
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20

Figure 4.9.: An illustration of the breathing-like motion of two colliding
pendulums.

are head on and the trajectories of the pendulums are indeed one dimensional.

Model

To describe such motions, it is crucial to assume the contact takes place over a

finite duration of time, otherwise the collision becomes simply a boundary con-

dition in displacement and there is little to learn.

A small amplitude of swing is assumed to recover the motion of a simple har-

monic oscillator, whose (Newtonian) equation of motion is well known. Moti-

vated by the fact that the experimentally observed breathing motion does not

damp easily, I further assume a conservative interaction potential, e.g. Hertzian

elastic contact [1], between the pendulums during the collisions. Such a contact,

with the pendulums approximated by solid spheres of uniform material, gives

rise to the equation of motion

d̈ = −Ad3/2, (4.17)

where d (> 0) denotes the linear displacement, while the ‘effective spring con-

stant’6 A depends on the dimensions as well as the material7 of the pendulum.

6figuratively speaking, since the contact force resembles the restoring force of a displaced spring
but obeys a (not too) different power law.

7A = 4
3

E∗
√

R
mpend

, where mpend is the mass of a pendulum, R is the effective radius obeying 1
R =
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For a steel pendulum of 1 cm radius, A ' 3.13 × 1011 m−1/2s−2, clearly of a

drastically different order of magnitude compared to the gravitation-equivalent

spring constant g/l ' 196 s−2, where gravitational acceleration is g ' 9.81 m.s−2,

and the length l of the pendulums is (arbitrarily) set to 5 cm. Of course, it is for-

bidden to even compare quantities of different dimensions, strictly speaking8. On

the other hand, the disparity in the order of magnitude is essentially the reason

why there is no classical analogue of the frequency doubling seen for qBEC and

TG gas.

The full trajectories can be computed by stitching up the solution of Eq. (4.17)

during the contact and that of a simple harmonic oscillator during the free swing,

so that both displacement and velocity of each pendulum are accessible.

Breathing behavior

I plot the trajectories of the two pendulums in real and momentum space in Fig.

4.10 (a) and (c). In order to complete the analogy, I need to define quantities

that are equivalent to 〈z2〉 and wp. This is fortunately easy. Since there are only

two pendulums, their trajectories are identical except for the direction, so that d2

would be equivalent to 〈z2〉 up to an irrelevant constant, and |ḋ| would be equiv-

alent to wp. I also plot their time evolution in Fig. 4.10 (b) and (d) respectively.

Applying Fourier analysis on d2 and |ḋ|, we measure the equivalent frequencies,

fBz = 4.47 Hz, fBp = 4.47 Hz (of the most dominant frequency component),

together with fD =
√

g/l /(2π) = 2.23 Hz, we have

fBz

fD
= 2.00, (4.18)

fBp

fBz
= 1.00, (4.19)

i.e. the momentum-space frequency doubling is absent here. Note that although

1
R1

+ 1
R2

, and E∗ is the effective elastic modulus satisfying 1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2
. Here, Rj, Ej and

νj denote the radius, elastic modulus, and Poisson ratio of each pendulum, with j = 1, 2. Both
Ej and νj are properties of the bulk material, and can be found in standard database. Taking
Rj = 1 cm, νj = 0.3, and Ej ' 200 GPa, we obtain A ' 3.13× 1011 m−1/2s−2.

8Alternatively, one could preserve the dimension of g/l and consider the combination of Ad1/2.
Since d is on the order of a few mm, Ad1/2 will remain on the order of 1010 s-2, and the same
arguments follow.
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Figure 4.10.: Breathing dynamics of two colliding pendulums. The trajectories in
(a) real and (c) momentum space. Both trajectories are normalized to
their respective maximal values. I also plot (b) d2 (equivalent to 〈z2〉)
and (d) |ḋ| (equivalent to wp). Again, one ‘dipole’ period is shown,
while the time is shown in units of 1/ fBz, so that fBz = fBp = 2 fD.

the properties of materials may differ from one to another, the outcome of the

computation does not change much for commonly available materials of decent

dimensions.

Discussions

This is a case when despite |ḋ| hits zero twice per ‘breathing’ cycle, the dominant

frequency component gives fBp/ fBz = 1, since the ‘self-reflection’ takes place

much faster than the gravity-driven classical turning point. There is no reason-

able material that would give a bulk contact force that can have a comparable

effect as gravity. In other words, the observed self-reflection of ultra-cold atomic

gases is a true interaction effect of a microscopic quantum many-body system.
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4.3.2. Crossovers

Back in the world of quantum many-body physics, the three limiting cases,

namely, qBEC, IBG, and TG gas, are connected by three crossovers. Since no

abrupt behavior is expected to occur, it is interesting to investigate quantitatively

how variations take place. More precisely, we would like to know,

• How the real-space frequency shift takes place, and

• How the self-reflection mechanism that gives rise to the momentum-space

frequency doubling disappears.

Due to the technical limitations on our experiment, only the qBEC to IBG

crossover has been accessible, so that the discussions on the other two crossovers

are limited to key results summarized from existing studies, as well as possible

future developments.

4.3.2.1. Quasicondensate to ideal Bose gas crossover

We probe the qBEC to IBG crossover experimentally by varying the total atom

number. The final samples contain about 800 to 8000 atoms typically. For each

set of data, an interleaved calibration scan measuring the atom number Ntot, the

density profile, the fluctuation profile, as well as the momentum distribution are

carried out without perturbing the system. The in situ density profile thermome-

try9 indicates a temperature of about 100 nK, corresponding to a central chemical

potential µ0 ∈ [0.04, 0.5]× kBT in a trap of ( f⊥, fz) ' (2000, 7) Hz. According

to Eq. (1.1), the samples are nearly 1D, while the difference in atom number en-

sures a range of central interaction parameter γ0. γ0 = 0.004 is used as a heuristic

bound10 to determine whether 〈z2〉 is obtained by a fit to an inverted parabola

(γ0 < 0.004) or to a Gaussian (γ0 > 0.004). Figure 4.11 shows the region of the

(γ, t) phase space explored. Note that the range of t values based on the density

profile thermometry is indistinguishable at this point, so that the horizontal line

segment encompasses all sets of data used for this study.

9We remark that other thermometries as detailed in Ch. 3 are possible, and seem to indicate a
lack of true equilibrium. See the discussions later in this section for more details.

10solely justified by the increasingly significant wings for greater values of γ0.
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Figure 4.11.: Phase diagram illustrating the region explored by the data sets.

The total duration of the evolution τmax = 500 ms is kept constant here. The

damping does not vary much throughout the entire set of data, and is generally

small so that the lifetime cannot be determined precisely. In addition, a small

loss11 makes it difficult to ascertain if the damping is due to the intrinsic physical

behavior of the system. Therefore, the data here will not be used in the lifetime

studies presented in the next section.

The theory treatment consists of two independent and complementary ap-

proaches: an exact short-time expansion of the dynamics and a long-wavelength

hydrodynamic analysis. The former is microscopic, starting from the equation of

motion governing individual constituent atoms. The latter is macroscopic, treat-

ing the entire system as a bulk entity. Both take the finite temperature into ac-

count, a first to our knowledge. The agreement between these two approaches

sheds light on the validity of hydrodynamics as well as on the nature of mass

transport in 1D.

Real-space frequency shift

Since the values of t for the data fall within ±10% of their mean, we plot the

measured ratio of fBz/ fD as a function of γ0 in Fig. 4.12 (top panel). Asymptotic

values of
√

3 for qBEC and 2 for IBG are shown as dotted lines as a reference.

Models. Our microscopic model assumes that the system at τ = 0 is at thermal

11of about 15% of the atoms over the course of 500 ms.
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Figure 4.12.: Breathing mode in the qBEC to IBG crossover. Top panel: shift of the
breathing frequency in real space. Data (points) are compared with
theory predictions at t = 1100 (dashed line) and at t = 400 (dash-
dotted line). Asymptotic values of

√
3 for qBEC and 2 for IBG are

shown. Bottom panel: disappearance of the momentum-space fre-
quency doubling. The crossover interaction parameter γco ≡ t−2/3

is shown as the shaded region for t = 1100, accounting for a 10%
statistical uncertainty on t. Data labels A-C corresponds to the data
sets shown in Figs. 4.5, 4.14 and 4.7.

equilibrium with a Hamilton operator

H = HLL + Hpot, (4.20)

where Hpot = ∑j
1
2 mω2

0z2
j is the potential energy in the trap ω0. An instantaneous

change of trapping frequency from ω0 to ωD can be written as

∆H = (α2 − 1)Hpot, (4.21)

where α ≡ ω0/ωD gives the quench strength. The short-time expansion of
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Heisenberg equation of motion of such an operator can be written as

〈∆H〉(τ) = 〈∆H〉T −
τ2

2!
〈C2〉T +

τ4

4!
〈C4〉T + . . . , (4.22)

where C2 and C4 are the second and fourth order nested commutators with the

final Hamilton operator H f = H + ∆H, and the thermal average 〈. . . 〉T is taken

over the thermal state of H. Assuming 〈z2〉(∝ 〈∆H〉) evolves sinusoidally12 with

time at a frequency fBz, we have

f 2
Bz
f 2
D

=
〈C4〉T
〈C2〉T

= 4− 1
2
〈Hint〉T
〈Hpot〉T

, (4.23)

where Hint = g1D ∑j<k δ(zj − zk) is the interaction part of HLL. The final equality

in Eq. (4.23) comes from explicitly working out 〈C2〉T and 〈C4〉T [24], and tak-

ing the limit of an infinitesimal quench amplitude α → 1, where the sinusoidal

approximation is valid. This expression can be evaluated as soon as the energy

terms 〈Hint〉T and 〈Hpot〉T are known. In our case, the YY equation of state pro-

vides means for numerical computation.

Our macroscopic model starts from the hydrodynamic equations (HDE) [107],

∂τρ + ∂z(ρv) = 0, (4.24)

m∂τv + ∂z

(
1
2 mv2

)
+ ∂z

(
1
2 mω2

Dz2
)
− 1

ρ
∂zP = 0, (4.25)

where ρ = ρ(z, τ) and v = v(z, τ) are the density and velocity fields, and P is

the pressure. Since long-wavelength density waves in a fluid are adiabatic13, we

make the same assumption here. Linearization is justified by the experimental

observation that the breathing frequency varies little for α up to 3, so that for a

slice of gas at position z, its (small) displacement field u(z, τ) obeys

∂2
τu = −ω2

Du +
1

mρ
∂z

(
∂P
∂ρ

∣∣∣∣
S
ρ(τ = 0)

)
∂zu +

∂P
∂ρ

∣∣∣∣
S
∂2

zu, (4.26)

where S denotes the entropy per particle, and the isentropic pressure curve used

in ∂P
∂ρ

∣∣∣
S

can be obtained numerically from the YY equation of state. For the com-

12which is exact in the IBG and TG limit [recall Eq. (4.14)], but only true for α → 1 in the qBEC
limit.

13in the sense that there is no heat flow and therefore no entropy exchange.
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pression mode, one expects u(z, τ) ∝ ze−iωBzτ, so that the breathing frequency

fBz can be obtained numerically through the crossover. This method extends the

analytic work of [107], but now the finite temperature and the crossover are taken

into account by means of the numerical equation of state instead of the power-law

limits used in the original work.

Discussions. We first verify a posteriori that both methods mentioned above yield

identical results, plotted in Fig. 4.12 (top panel, dashed line) for t = 1100. Such

an agreement strengthens the applicability of HDE to 1D system, for which the

concept of collision time is not well defined14. Also, it provides an assessment of

the nature of the mass transport at finite temperature, which appears to happen

in an isentropic way. Moreover, Eq. (4.23) extends the regime of validity of the

existing sum-rule approaches, which predicts fBz/ fD =
√

2 , whereas the correct

asymptotic limit is fBz/ fD = 2.
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Figure 4.13.: Sample analysis demonstrating a ‘two-temperature’ phenomenon.
Both the in situ density profile (left) and the atom-number fluc-
tuations (right) are shown. The data (points) are compared with
the calculation using Tprof ' 103 nK (solid lines) and those using
Tfluct ' 40 nK (dashed lines). The Poissonian limit of the atom-
number fluctuations is included (right, dotted line) as a reference.
The central interaction parameter is γ0 = 0.008 for this data set.

On the other hand, the lack of quantitative agreement between the experimental

data and our models prompts further investigation. We analyze the calibration

scans using the atom-number fluctuation thermometry introduced in Sec. 3.2.2,

and find temperatures Tfluct about a factor 3 smaller than the corresponding Tprof.

A sample analysis is shown in Fig. 4.13. Comparing the data points with the
14The usual validity statement for HDE reads ωDτcoll � 1, where τcoll denotes the collision time.
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solid line in the right panel, it is clear that Tprof overestimates the atom-number

fluctuations. On the other hand, the left panel indicates the failure of computing

a density profile at Tfluct (preserving Ntot or µ0 ' g1Dρ0) that agrees with the

measurement. Such a discrepancy seems to suggest that the initial state may not

be described by the usual Gibbs ensemble with a single temperature, and is the

basis of our investigations that will be documented in Ch. 5. For the moment, we

may treat both thermometries as bounds of an estimated temperature. By plotting

Eq. (4.23) at t = 400 (computed from the mean of Tfluct) in Fig. 4.12 (top panel,

dash-dotted line), we see that indeed the agreement between the experiment and

the theory improves.

Disappearance of self-reflection

To address the behavior of the breathing mode in momentum space, we inves-

tigate the time evolution of wp. Since wp shows a periodic behavior at the fre-

quency ωBz, it can be expanded in a discrete Fourier spectrum. The relative

weights of the Fourier components vary through the crossover, and we obtain

quantitative information by fitting wp with a two-frequency model,

wp = Ae−
τ
τ1 + Be−

τ
τ2

[√
1− K cos(ωBzτ)−

√
K cos(2ωBzτ)

]
. (4.27)

Here, A is fixed at the average width during the initial cycle, the phase corre-

sponds to a minimal in situ width at the beginning of the oscillations. Four fit

parameters remain: B gives the initial amplitude of the oscillation, τ1 and τ2 give

the lifetime of the mean and oscillation, and K gives the (relative) power of the

second harmonic.

This model is included as the solid line in the bottom panel of Fig. 4.5, where

the second harmonic clearly dominates, and in that of Fig. 4.7, where the first

harmonic dominates. It is also possible to find the coexistence of the two modes.

Fig. 4.14 shows a data set in the crossover that exhibits such a feature.

Discussions. The relative power of the second harmonic K (points) is shown in

Fig. 4.12 (bottom panel) as a function of γ0. In qBEC, the second harmonic dom-

inates, as predicted by the scaling solution, and heralds the self-reflection mech-

anism. In IBG, the first harmonic dominates, as expected for a noninteracting

gas where the self-reflection is absent. Both weights vary gradually through the
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Figure 4.14.: Width variations of a sample in the qBEC to IBG crossover. Data
(points) are compared with fits (lines): 〈z2〉 is fitted with a damped
sinusoid, whereas wp is fitted with a two-frequency model [see Eq.
(4.27) and related discussion]. The statistical error is shown for the
first 100 ms.

crossover, indicating a smooth disappearance of the self-reflection mechanism.

This can be seen as the effect of the breathing mode on the thermally excited

Bogoliubov modes of high energy. Their frequency and wave function15 would

be modulated in time, such that wp is larger at minimal 〈z2〉 (higher density and

more thermal fluctuations) than that at maximal 〈z2〉 (lower density and less ther-

mal fluctuations), see Fig. 4.14. The periodicity at 2ωBz is then broken and the first

harmonic at ωBz emerges.

Figure 4.12 shows that the first harmonic starts to gain weight at a value of γ0

significantly smaller than that where the frequency shift takes place in real space,

so that the disappearance of the second harmonic happens within the qBEC

regime.

15both depend on the instantaneous density profile.
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Future work. Quantitative investigation of such a variation in theory is still un-

derway. The main ideas are outlined here.

Given the linearization and weak quench limit used in the modeling above, it

appears that we are not far from being quasistatic, in the sense that the system

is not too far from equilibrium. Indeed, fitting the instantaneous in situ density

profile to the equilibrium equation of state, we obtain a temperature variation of

about 5 nK peak to peak. This, together with LDA, allows the assumption that

the overall momentum distribution remains as a weighted sum of the local equi-

librium momentum distribution with the local density ρ(z, τ) and at the overall

temperature T(τ). For the width of the instantaneous momentum distribution

during the breathing mode, two relevant scales are in play: the local momen-

tum width per slice and the hydrodynamic velocity field. The former undergoes

adiabatic compression and rarefaction due to density modulation, and therefore

oscillates at ωBz, while the latter oscillates at 2ωBz, as described in Sec. 4.3.1.1.

Numerically working out the instantaneous momentum distribution for a given

initial condition allows for the determination of the relative power.

Alternatively, thermal fluctuations in the system can be treated with a classical

field approximation, so that numerical methods such as SGPE could be used to

simulate the evolution of the momentum distribution. This is currently being dis-

cussed with the atom-chip team in Vienna, who has developed the numerics for

different purposes but may have an interest in understanding such problems.

4.3.2.2. Quasicondensate to Tonks-Girardeau gas

Real-space frequency shift

This is investigated in the work of [73], where a BEC of cesium-133 atoms are

loaded into a 2D optical lattice to create an ensemble of 1D systems. The interac-

tion is adjusted by a Feshbach resonance that changes the 3D s-wave scattering

length of the atoms. The real-space breathing frequency is measured and used

to identify the thermodynamic regime of the system from IBG to qBEC and then

to TG. As an illustration, Fig. 4.15 reproduces two of the key figures from their

publication [73].
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which one would expect in a cold-atom system to
decay quickly via molecular channels. However,
by crossing the CIR from the TG side (switching
interactions from g1D = +∞ to g1D = −∞), an
excited gaslike phase (the sTG gas) should be
accessible (13). Is this excited phase stable; does
it exist at all? The expectation is that the large ki-
netic energy inherited from the TG gas, in a Fermi
pressure–like manner, prevents the gas from col-
lapsing (20). This stability can most simply be
inferred from a Bethe-ansatz solution to the Lieb-
Liniger model with attractive interactions (20, 21).
This ansatz yields for the energy per particleE/N ≈
ħ2 p2 n1D2/[6 m (1 − n1D a1D)

2], corresponding to
the energy of a gas of hard rods (1), for which a1D
represents the excluded volume. This results in a
positive inverse compressibility and also in an in-
creased stiffness of the system as long as n1D a1D
is sufficiently small. In this phase, the density cor-

relations are even stronger than in the TG gas be-
cause they show a power-law decay that is slower
than for a TG gas (13), indicating an effective
long-range interaction.

We realized the crossover all the way from a
noninteracting gas via the 1Dmean-field Thomas-
Fermi (TF) regime to a TG gas and then to a sTG
gas. We exploited the fact that our 1D systems
possess weak harmonic confinement along the
axial direction characterized by the confinement
length a||. Whereas the frequency wD of the lowest
dipole mode depends only on the confinement,
the frequency wC of the lowest axial compres-
sional mode is sensitive to the various regimes of
interaction (16). For the noninteracting system, one
expects R ≡ wC

2/wD
2 = 4. This value then changes

to R = 3 for weakly repulsive interactions in a 1D
TF regime (7). For increasing positive interaction
strength,R is expected to change smoothly to 4when

entering the TG regime as the system becomes
fermionized, hence effectively noninteracting. A
rise beyond the value of 4, after crossing the CIR,
would then constitute clear evidence for the sTG
regime (13). As a1D is further increased, the sys-
temwill finally become unstable andR is expected
to turn over and drop toward 0. For a harmonically
confined system, the point of instability is reached
when the overall length of the system of hard rods,
Na1D, becomes of the order of the size

ffiffiffiffiffiffiffiffiffiffi
N a∥

p
for

the wave function of N noninteracting fermions:
A ≡ Na1D=ð

ffiffiffiffiffiffiffiffi
Na∥

p Þ ≈ 1. We use A2 as an alter-
native parameter to g so as to characterize the
strength of the interaction because it accounts for
the harmonic confinement.

We started from a 3D BECwith up to 2 × 105

cesium (Cs) atoms with no detectable thermal
fraction in a crossed-beam dipole trap with mag-
netic levitation (22). Depending on the interac-
tion regime to be studied, we then set the number
of atoms in the BEC to values in the range of 1 ×
104 to 4 × 104 bymeans of forced radio-frequency
evaporation. To confine the atoms in 1D (that is,
to freeze out transversal motion), we used a 2D
optical lattice (12), which forms an array of ver-
tically oriented elongated tubes with an aspect
ratio that we set to values between 100 and 1000
(Fig. 1A). We occupied between 3000 and 6000
independent tubes with 8 to 25 atoms in the cen-
ter tube. The interaction strength g1Dwas controlled
by magnetic tuning of a3D by means of a com-
bination of a broad and a narrow FR (Fig. 1C)
with poles at B = −11.1(6) G and B = 47.78(1) G
and widths of about 29.2 G and 164 mG, re-
spectively (23). The broad resonance provides a
slow variation of a3D, allowing us to gently tune
a3D from 0 a0 near 17.119 G to about 1240 a0
near 76 G, whereas the narrow resonance allows
us to tune a3D to absolute values beyond 4000 a0

Fig. 2. Transition from
the noninteracting regime
via the mean-field TF re-
gime into the TG regime.
The squared frequency ratio
R = wC

2/wD
2 of the lowest

compressional mode with
frequency wC and the di-
pole mode with frequency
wD serves as an indicator
for the different regimes
of interaction. For in-
creasing interactions from
g = 0 to g ≈ 500, the sys-
tem passes from the ideal
gas regime (R = 4) to the
1D TF regime (R ≈ 3) and then deeply into the TG regime (R = 4). The inset shows the transition from the
noninteracting regime to themean-field regime inmore detail. The vertical error bars refer to SE and thehorizontal
error bars reflect the uncertainty in determining a1D and n1D (24). The horizontal error bar on the data point at
g = 0 (not shown in the inset) is T0.03.
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Fig. 3. (A) The ratio R = wC
2/wD

2 is plotted as a function of the interaction
parameter A2 = N a1D

2/a||
2. The squares show the measurements in the

attractive regime (g1D < 0), providing evidence for the sTG gas. The circles
show the transition from the TF to the TG regime (g1D > 0; same data as in Fig.
2 for g > 1). The solid line presents the theoretical data for g1D > 0, and the
dashed line presents the theoretical data for g1D < 0, by Astrakharchik et al.
(13). The dotted line corresponds to the model of hard rods. For reference, the
measurements for g1D < 0 are numbered. Data points 1c to 6 are taken at

wD = 2p × 115.6(3) Hz. For data points 1a and 1b, the trap frequency is wD =
2p × 22.4(1) Hz andwD = 2p × 52.3(1) Hz, respectively. For all measurements
in the sTG regime, a⊥ = 1346(5) a0. (B) The parameters a3D (dashed-dotted),
a1D (solid), and g1D (dashed) are plotted in the vicinity of the FR at 47.78(1) G.
The horizontal dotted line indicates the value of a⊥/C. The pole of the CIR is at
47.36(2) G. a1D has a pole (P) at 47.96(2) G. The bell-shaped curve at the
bottom left indicates the atomic distribution as a function of themagnetic field
determined from high-resolution microwave spectroscopy.
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which one would expect in a cold-atom system to
decay quickly via molecular channels. However,
by crossing the CIR from the TG side (switching
interactions from g1D = +∞ to g1D = −∞), an
excited gaslike phase (the sTG gas) should be
accessible (13). Is this excited phase stable; does
it exist at all? The expectation is that the large ki-
netic energy inherited from the TG gas, in a Fermi
pressure–like manner, prevents the gas from col-
lapsing (20). This stability can most simply be
inferred from a Bethe-ansatz solution to the Lieb-
Liniger model with attractive interactions (20, 21).
This ansatz yields for the energy per particleE/N ≈
ħ2 p2 n1D2/[6 m (1 − n1D a1D)

2], corresponding to
the energy of a gas of hard rods (1), for which a1D
represents the excluded volume. This results in a
positive inverse compressibility and also in an in-
creased stiffness of the system as long as n1D a1D
is sufficiently small. In this phase, the density cor-

relations are even stronger than in the TG gas be-
cause they show a power-law decay that is slower
than for a TG gas (13), indicating an effective
long-range interaction.

We realized the crossover all the way from a
noninteracting gas via the 1Dmean-field Thomas-
Fermi (TF) regime to a TG gas and then to a sTG
gas. We exploited the fact that our 1D systems
possess weak harmonic confinement along the
axial direction characterized by the confinement
length a||. Whereas the frequency wD of the lowest
dipole mode depends only on the confinement,
the frequency wC of the lowest axial compres-
sional mode is sensitive to the various regimes of
interaction (16). For the noninteracting system, one
expects R ≡ wC

2/wD
2 = 4. This value then changes

to R = 3 for weakly repulsive interactions in a 1D
TF regime (7). For increasing positive interaction
strength,R is expected to change smoothly to 4when

entering the TG regime as the system becomes
fermionized, hence effectively noninteracting. A
rise beyond the value of 4, after crossing the CIR,
would then constitute clear evidence for the sTG
regime (13). As a1D is further increased, the sys-
temwill finally become unstable andR is expected
to turn over and drop toward 0. For a harmonically
confined system, the point of instability is reached
when the overall length of the system of hard rods,
Na1D, becomes of the order of the size

ffiffiffiffiffiffiffiffiffiffi
N a∥

p
for

the wave function of N noninteracting fermions:
A ≡ Na1D=ð

ffiffiffiffiffiffiffiffi
Na∥

p Þ ≈ 1. We use A2 as an alter-
native parameter to g so as to characterize the
strength of the interaction because it accounts for
the harmonic confinement.

We started from a 3D BECwith up to 2 × 105

cesium (Cs) atoms with no detectable thermal
fraction in a crossed-beam dipole trap with mag-
netic levitation (22). Depending on the interac-
tion regime to be studied, we then set the number
of atoms in the BEC to values in the range of 1 ×
104 to 4 × 104 bymeans of forced radio-frequency
evaporation. To confine the atoms in 1D (that is,
to freeze out transversal motion), we used a 2D
optical lattice (12), which forms an array of ver-
tically oriented elongated tubes with an aspect
ratio that we set to values between 100 and 1000
(Fig. 1A). We occupied between 3000 and 6000
independent tubes with 8 to 25 atoms in the cen-
ter tube. The interaction strength g1Dwas controlled
by magnetic tuning of a3D by means of a com-
bination of a broad and a narrow FR (Fig. 1C)
with poles at B = −11.1(6) G and B = 47.78(1) G
and widths of about 29.2 G and 164 mG, re-
spectively (23). The broad resonance provides a
slow variation of a3D, allowing us to gently tune
a3D from 0 a0 near 17.119 G to about 1240 a0
near 76 G, whereas the narrow resonance allows
us to tune a3D to absolute values beyond 4000 a0

Fig. 2. Transition from
the noninteracting regime
via the mean-field TF re-
gime into the TG regime.
The squared frequency ratio
R = wC

2/wD
2 of the lowest

compressional mode with
frequency wC and the di-
pole mode with frequency
wD serves as an indicator
for the different regimes
of interaction. For in-
creasing interactions from
g = 0 to g ≈ 500, the sys-
tem passes from the ideal
gas regime (R = 4) to the
1D TF regime (R ≈ 3) and then deeply into the TG regime (R = 4). The inset shows the transition from the
noninteracting regime to themean-field regime inmore detail. The vertical error bars refer to SE and thehorizontal
error bars reflect the uncertainty in determining a1D and n1D (24). The horizontal error bar on the data point at
g = 0 (not shown in the inset) is T0.03.

0 50 100 150
3.0

3.2

3.4

3.6

3.8

4.0

Interaction parameter  γ
400 600

0
3.0

3.5

4.0

0.01 0.1 1

R
 =

 ω
C2
/ω

D2
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2 is plotted as a function of the interaction
parameter A2 = N a1D

2/a||
2. The squares show the measurements in the

attractive regime (g1D < 0), providing evidence for the sTG gas. The circles
show the transition from the TF to the TG regime (g1D > 0; same data as in Fig.
2 for g > 1). The solid line presents the theoretical data for g1D > 0, and the
dashed line presents the theoretical data for g1D < 0, by Astrakharchik et al.
(13). The dotted line corresponds to the model of hard rods. For reference, the
measurements for g1D < 0 are numbered. Data points 1c to 6 are taken at

wD = 2p × 115.6(3) Hz. For data points 1a and 1b, the trap frequency is wD =
2p × 22.4(1) Hz andwD = 2p × 52.3(1) Hz, respectively. For all measurements
in the sTG regime, a⊥ = 1346(5) a0. (B) The parameters a3D (dashed-dotted),
a1D (solid), and g1D (dashed) are plotted in the vicinity of the FR at 47.78(1) G.
The horizontal dotted line indicates the value of a⊥/C. The pole of the CIR is at
47.36(2) G. a1D has a pole (P) at 47.96(2) G. The bell-shaped curve at the
bottom left indicates the atomic distribution as a function of themagnetic field
determined from high-resolution microwave spectroscopy.
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Figure 4.15.: Reproduction of Fig. 2 (left) and Fig. 3A (right) of [73]. The au-
thors measured the squared frequency ratio between the compres-
sion (breathing) mode and the dipole mode R as a function of the in-
teraction parameter γ (left), and demonstrated excellent agreement
with the zero-temperature theory (right: circles vs solid line) accord-
ing to [107].

Since the thermal fraction of the system is small, the authors essentially probe a

zero-temperature system, which demonstrates excellent agreement with the the-

ory based on sum rules [107].

Disappearance of self-reflection

Such a phenomenon is not expected here, since both limiting cases exhibit the

momentum-space frequency doubling. An experimental verification requires the

capability to tune the interaction strength, to reach the strongly interacting TG

regime, and to image in momentum space. Reported experiments often meet

some of these conditions but never all to my knowledge, so that such a study has

yet been performed.

Theoretically, the methods outlined in the previous section under the heading

of ’Future work’ could in principle be applied here. Such a numerical task is

unfortunately out of the scope of the current manuscript and will not be discussed

further.

4.3.2.3. Tonks-Girardeau to ideal Bose gas: a toy model and a perspective

The crossover from TG to IBG regimes has yet to receive much attention in the

context of the breathing mode, and understandably so, since one expects the same
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asymptotics fBz/ fD = 2 for both cases. Our understanding of the self-reflection

mechanism would hopefully renew some interest in this topic, since the exact

solution of a TG gas (see Sec. 4.3.1.3) predicts a momentum-space frequency dou-

bling that is absent in the IBG limit. I outline some theory tools that could be

useful for such an investigation.

Two atoms in a harmonic trap: a toy model. This is in fact an exactly solvable

model with any interaction strength. The seminal work of Busch et al [23] has

given the recipe to construct all eigenstates for the relative wave function, so that

the full spectrum of the system is known. The finite temperature can be taken into

account by considering the statistical operator of a thermal state. The evolution

dynamics after a quench of the trapping potential can then be computed, up to a

cutoff that determines how many states are taken into account.

Exact diagonalization. This method aims at diagonalizing the many-body

Hamilton operator, and therefore is able to tackle the problem with more than two

atoms. A typical implementation uses the harmonic oscillator basis, so that the

interaction part contains the off-diagonal elements. Depending on the strength of

the interaction, an appropriate energy cut-off can be placed and the diagonaliza-

tion is then performed numerically. Similar to the case of two atoms, one again

obtains the full eigenstates and the evolution dynamics can be computed. This

method has been used to compute properties of a handful of spinor bosons in [42]

up to the strongly interacting limit, and the convergence at large values of g1D is

tested.

High-temperature TG gas. A recent article has demonstrated the possibility to

compute the exact momentum distribution of a thermal TG gas [152]. Together

with the scaling solutions, this constitutes a promising way of investigating the

disappearance of the self-reflection mechanism within the TG regime.

4.4. Lifetime studies

The experiments performed to investigate the frequency behavior in the qBEC

to IBG crossover (see Sec. 4.3.2.1) have also revealed remarkably large values of
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lifetime16 of the breathing mode. We believe that it is related to the 1D nature of

the system, in particular, the integrability of the underlying LL model, despite a

small population in the transverse excited states. Indeed, the decay of collective

oscillations in 3D systems is associated with the Landau damping mechanism

[50, 87]. A blind application of a similar calculation would yield lifetime val-

ues significantly below those observed. The microscopic theory model based on

the Heisenberg equation of motion can take into account higher order terms in

the short-time expansion, and appears promising to describe the system. This

is currently under development. I summarize the key results on the experiment

below.

For the data presented below, the experimental procedure is the same as those de-

scribed in Sec. 4.2.2, except that the total duration τmax is now extended to a range

between 700 ms to 900 ms, eventually limited by a typical cycle duration with-

out affecting the loading condition17. Calibration scans were carried out as before

and the lifetime is obtained by fitting 〈z2〉with a damped sinusoid. The fitted val-

ues of the lifetime τBz and of the breathing frequency fBz then yield the quality

factor QBz ≡ 2π fBzτBz. Another parameter of interest is the fractional popula-

tion in the transverse excited states NTE/Ntot. This can be obtained directly by

computing the transverse ground-state population at the profile temperature, i.e.

NYY = ∑z ∆zρYY(z, Tprof), and then use the identity Ntot ≡ NYY + NTE according

to Eq. (2.23).

These samples have a temperature t ∈ (1170, 2650), and a central interaction

parameter γ0 ∈ (0.0019, 0.0034). There is no obvious disagreement between

the profile thermometry and the atom-number fluctuation thermometry. How-

ever, the very notion of the 1D interaction parameter becomes questionable, since

NTE/Ntot ∈ (15%, 71%) is no longer negligible. Therefore, we use NTE/Ntot as the

independent parameter in Fig. 4.16. In the top panel, we see that the mapping be-

tween t and NTE/Ntot is nearly linear. The values of fBz/ fD are shown in the

middle panel, with the 1D qBEC limit at
√

3 plotted in dotted line as a reference.

Most data points fall just below this limit, indicating that the 3D effects start to

16The exponential fit over 500 ms of oscillation gives lifetime values on the order of a second.
More precise determination of the (large) values of lifetime therefore requires measurements
at longer evolution time.

17Longer cycle time affects the loading rate, which in turn affects the efficiency of the cooling
sequence. For practical purposes, therefore, the total duration (∼ 20 s) of the sequence is
chosen and all preparation steps are optimized at this value.
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play a role in the dynamics of the system. However, the true 3D qBEC limit is at√
5/2 ' 1.581, so that our samples are far from behaving like a true 3D system.

Finally, QBz is shown in the bottom panel. The data span more than one order

of magnitude of QBz, showing a clear monotonous correlation with the fractional

population in the transverse excited states (and thus with the temperature).
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Figure 4.16.: Lifetime studies of the breathing mode of a nearly 1D gas. The top
panel indicates a nearly linear dependence between t and NTE/Ntot.
The middle panel plots fBz/ fD, with the 1D qBEC limit shown as the
dotted line. QBz is plotted in semilog scale in the bottom panel.
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Conclusions

In this chapter, we have seen a joint theoretical and experimental investiga-

tion of the breathing mode of 1D Bose gases.

The study of the breathing frequency attempts to cover various regimes of

the 1D phase diagram spanned by the interaction parameter and the reduced

temperature.

• Breathing frequency in real space. We reproduce the breathing fre-

quency expected in the three limiting cases, the IBG, qBEC and TG

gas, as well as in the qBEC to IBG crossover, and we propose finite-

temperature models to compare with our experimental data. The qBEC

to TG gas crossover is reviewed, and we propose a few theoretical tools

that will allow the investigation in the TG gas to IBG crossover.

• Self-reflection mechanism. The experimental investigation of the

breathing frequency in momentum space in the qBEC to IBG crossover

has lead to the very first demonstration of an interaction-induced self

reflection mechanism, which is observed as a momentum-space fre-

quency doubling. This mechanism is also to be expected in the TG

regime according to the exact solutions of the TG gas at zero temper-

ature. There is no known theoretical frame work that describes the

disappearance of the self reflection. Potential candidates are discussed

as future works.

The study of the breathing lifetime is purely experimental at this stage. The

data lie mainly in the 1D-3D dimensional crossover. For qBEC whose breath-

ing frequency in real space remains more or less constant ( fBz ' 1.7 fD), the

quality factor varies by one order of magnitude when the population in the

transverse excited states are increased from about 15% to 60%. Theoretical

investigations in collaboration with Dr. Giuseppe Carleo are ongoing.

A two-temperature phenomenon is observed as a by-product, and its inves-

tigation is detailed in the next chapter.
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In this chapter, I present some experimental studies aimed at investigating long-

lived states produced at the end of the evaporative cooling that cannot be de-

scribed by a Gibbs ensemble. Such states have been repeatedly observed on our

experimental setup. Although the cause is unclear, we believe that these states are

produced as a consequence of crossing from a 3D regime where thermalization

processes are fast and well understood [104], to a 1D regime where the underlying

LL model is integrable and its thermalization is currently under investigation by

various groups and means [66, 94, 100]. I will document the measurements car-

ried out and discuss about the empirical observations. Theoretical understanding

from first principles is yet to be developed.

I organize this chapter as follows. In Sec. 5.1, I discuss the motivation of this

study. Section 5.2 presents the two experiments carried out and their respective

outcome. I then discuss the implications of our finding in Sec. 5.3, followed by an

outlook of potential future developments along this direction in Sec. 5.4. Some

concluding remarks are presented at the end.
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5.1. Motivation

The motivation of such a study is three fold.

First, the persistence of such non-Gibbs states directly impacts the outcome of ex-

periments performed on our setup. For example, in the studies of the breathing

mode presented in Ch. 4, the apparent ‘two-temperature’ phenomenon makes

precise and quantitative comparisons between our measurements and theory

models difficult. The appearance of such states is empirically related to the fail-

ure1 of momentum profile thermometry, and occasionally that of the density pro-

file thermometry. A characterization and hopefully a full understanding of such

states are therefore desirable.

Second, the thermalization of 1D gases is a long standing and interesting problem

by itself, and requires further investigation in order to clarify the relevant physics

behind. Some of the recent publications (e.g. [66, 100]) present significant efforts

made in this direction, although the subject is far from being well understood.

By investigating the production and evolution of the non-Gibbs states that we

observe, we hope to understand if thermalization processes would eventually

lead to the disappearance of such states.

Third, quantum many-body systems in 1D have been studied experimentally by

many teams in the community of ultracold atomic gases. Discussions with vari-

ous colleagues in the field have lead to us realizing that our experimental setup is

not alone in producing states which are not well described by Gibbs ensemble at

equilibrium, despite the acclaimed isolation and degree of control possible. It is

therefore interesting to document our observations in order to facilitate possible

comparisons across different experiments.

5.2. Experiments

Two experiments will be documented below. The first is a simple ‘wait and

see’ protocol, verifying that the resultant nonequilibrium state survives time and

1in the sense that the fit routine tend to yield a profile that agree poorly with data.
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losses. In the second experiment, we vary the evaporation parameters in the hope

to associate the rate of evaporation to the extent of lack of equilibrium in the sys-

tem.

Two of the probes described in Ch. 3 are used: the in situ density profile ther-

mometry, which gives a profile temperature Tprof, and the atom-number fluctua-

tion thermometry, which gives a fluctuation temperature Tfluct. The justification

of such a choice is purely pragmatic. Both methods have been developed some

time ago on our experimental setup and their reliability is time tested. On the

contrary, the thermometry based on the measurement of momentum distribution

is sensitive to the imaging setup2, and often yields a poor fit when the two above

mentioned thermometry methods do not agree with each other3. The quantitative

understanding of the momentum correlation measurements is being developed

right now. The density-ripple measurement has been only recently implemented.

Fine adjustments and further consistency checks are needed before it can yield

trustworthy results on our setup. Last but not least, to gather information us-

ing all the probes available would require about 5 hours of data acquisition time

for each experimental condition. Slow drifts render such a brute-force approach

tedious if not impossible altogether.

I remark that the evaporation is carried out in such a way that there is minimal

residual breathing mode induced. Indeed, it is possible to induce a breathing os-

cillation if the final trap depth becomes comparable to or smaller than the chem-

ical potential or the evaporation takes place too fast for a simultaneous density

redistribution. Given the usually long lifetime of such collective oscillations of a

(nearly) 1D system, as seen in the previous chapter, there would be little hope to

reach an equilibrium state. Therefore, we made sure for the experiments docu-

mented below that the residual breathing motion is barely visible if any, in both

real and momentum space. This way, we rule out the breathing mode as the

obvious cause of the nonequilibrium state produced.

2Factors such as the imaging resolution, a slight misalignment between the probe beam and the
transverse direction of the cloud, imperfections in implementing the focusing technique, all
contribute to degrading the imaging quality. Although our understanding and control have
improved over time, existing data are of varying quality and a fair comparison is not possible
at the time being.

3Note that Ref. [84] indeed presents data sets where a fair agreement is seen between the ther-
mometries based on the measurement of the atom-number fluctuations and that of the mo-
mentum distribution. However, this does not occur deterministically and post selection is
necessary in order to find such an agreement.
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5.2.1. Experiment 1: let’s wait and see

Experimental procedures

Such a naïve approach is of course motivated by the hope that should the sys-

tem thermalize within time scales allowed by the experiment, any discrepancy

in temperatures obtained by different probes would eventually diminish or even

disappear4. Experimentally, we then perform an interleaved calibration scan that

measures both the in situ density profile and atom-number fluctuations at dif-

ferent values of the waiting time up to ∼ 1 s after the end of the evaporation.

Note that here the preparation sequence is kept unchanged, and the data sets are

acquired within a few days so that the variation in the initial loading condition,

empirically observed as a sensitive factor, is minimal.

ffin

fini

0

fRF

τ

τc

τevap

measurement

ramp
(20 ms)

30 kHz

Figure 5.1.: Sequence of RF frequency through and after the final evaporation
stage. The evaporation consists of six linear ramps that approximate
an exponential decrease. After the evaporation is complete, the RF
frequency is raised by ∼ 30 kHz in ∼ 20 ms in order to terminate the
evaporation while allowing the energetic atoms produced by three-
body collisions to escape. The end points of the ramps are represented
by empty circles.

The final cooling phase that employs radio-frequency (RF) assisted evaporation

(in the modulated guide) is carried out via a six-piece frequency ramp at con-

stant power, see Fig. 5.1 for an illustration. The frequency ramps are piece-wise

linear, and the values approximate an exponential decrease, with a total dura-

tion τevap = 900 ms and a time constant of τc = 300 ms. The Rabi frequency is

not measured on this experiment, and the amplitude is historically adjusted so

that one may efficiently evaporate from a thermal gas into a Thomas-Fermi den-

sity profile. We further verify experimentally that up to ±20% change in the RF
4After all, there are occasions when both thermometries yield comparable results.
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power does not result in any apparent change of measured results. During the

waiting time, a shielding RF field is kept at the same power ∼ 30 kHz above the

final value of the cooling sequence, so that energetic atoms produced by three-

body collisions may escape without heating the system [128].

Results

The observed temperatures as a function of the waiting time are shown in Fig.

5.2 (top). The uncertainty of Tprof is estimated by the standard deviation of the

fit temperature using ∼ 25 single-shot density profiles. The uncertainty of Tfluct

could in principle be estimated using the correlation between neighboring pixels5

[82]. However, this method appears to fail for the data presented here, possibly

due to the fact that the system is not at equilibrium to begin with. We set by hand

the RMS diffusion length6 δz = 3 µm, corresponding to an imaging reduction

factor κ = 0.246 [83]. The two temperatures do not converge on the time scale of

the experiment.

We show samples of the density profile and of the atom-number fluctuations for

two sets of data in Fig. 5.3. We see that the fit procedure yields density profiles

that agree fairly well with the data, despite the apparent disagreement between

the two thermometry methods. Also, there is little qualitative difference in the

performance of both thermometries.

The atom loss during the waiting time is small (∼ 30% over the course of 1 s) and

does not appear to induce dramatic changes in observed temperature values. We

show both the measured total number of atoms Ntot and the number of atoms in

the transverse excited states NTE predicted by the MYY model at Tprof in Fig. 5.2

(bottom). The uncertainty of Ntot is given by the statistical fluctuation over ∼ 25

shots of atom-number calibration scans, while that of NTE is estimated using the

uncertainty of Tprof.

Thus, it appears that we obtain a long-lived state that cannot be described by the

usual Gibbs-ensemble equilibrium with a uniquely defined temperature.

5We use the first and second neighbor for this purpose, since we do not resolve the typical
correlation lengths in our system. Recall that the pixel size ∆z = 2.7 µm, and the healing
length ξ ' 0.4µm for a linear density of ρ = 200 atoms/∆z.

6based on previous data with similar imaging parameters and statistics.
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Figure 5.2.: Evolution of the ‘two-temperature’ phenomenon vs the waiting time.
Top: Profile temperature Tprof and fluctuation temperature Tfluct as a
function of the waiting time. Bottom: the corresponding atom num-
bers Ntot and NTE. The data labels correspond to the samples pre-
sented in Fig. 5.3.

5.2.2. Experiment 2: adjusting the evaporation parameters

Experimental procedures

Since the observed temperatures do not appear to converge upon waiting in the

previous experiment, more dramatic measures may be necessary to induce some

variation in their behaviors. As a first attempt, we vary the time parameters of the

evaporation in order to do so. In particular, we change the evaporation duration

τevap and exponential time constant τc, while keeping τevap/τc = 3, and perform

interleaved calibration scans about 15 ms after the evaporation.

The initial RF frequency fini is kept constant. Ideally, one would prefer to keep

the final frequency value constant as well, so as to study the impact of the time

parameters only. However, this is problematic for practical reasons. Indeed, the

rate and the efficiency of evaporation are so dramatically different for the regimes
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(c) Data 2: Density Profile

Figure 5.3.: Both the density profile (left) and the atom-number fluctuations
(right) are shown for two data sets. Data (points) are compared with
theory predictions at Tprof (solid lines) and those at Tfluct (dashed
lines). All theory curves are computed from MYY equation of state.
The straight lines are the linearization of Eq. (2.20), the equation of
state for qBEC. The samples correspond to those labeled in Fig. 5.2.

explored that one would end up with a final dynamic range of linear density that

is beyond the capability of the current imaging set up7. Thus, the final RF fre-

quency value ffin is decreased so that Ntot is approximately preserved instead.

Results

The observed temperatures as a function of the evaporation time constant τc are

shown in Fig. 5.4 (top). We see that the disagreement between Tprof and Tfluct

does not improve as the rate of evaporation is varied. On different occasions,

longer τc up to 600 ms is attempted, and the ‘two-temperature’ phenomenon per-

7recall that too high an optical thickness would eventually render the calibration of Ntot inaccu-
rate.
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sists. However, these data set start from a different initial condition8 before the

evaporation, making direct and quantitative comparisons difficult.
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Figure 5.4.: Variation of the ‘two-temperature’ phenomenon as a function of the
evaporation time constant τc. Top: Profile temperature Tprof and fluc-
tuation temperature Tfluct as a function of τc. The total duration of
evaporation is always kept at τevap = 3τc. The final RF frequency
ffin is gradually decreased for longer durations of the evaporation in
order to stay within parameters allowed by imaging. Bottom: The
corresponding atom numbers Ntot and NTE for the data sets.

The variation of both Ntot and NTE are included in Fig. 5.4 (bottom). As intended,

Ntot remain almost constant, while NTE is seen to decrease as the evaporation is

made slower. Since the final frequency of the RF field is constant, it is difficult to

conclude if there is a causal relation between the decrease of NTE and the increase

of τc.

Thus, it appears that the ‘two-temperature’ phenomenon is robust under the vari-

ation of the evaporation rate.

8due to drifts of the experiment over the time scale of a few days
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5.3. Discussions

Technical artefacts. When the cause of such non-Gibbs states is unclear and un-

controlled, it is never too prudent to rule out possible technical artefacts.

Potential rugosity, a common issue in atom-chip experiments, is ruled out in the

measurement of Tfluct via the sorting and binning of the atom-number fluctua-

tions in data analysis (see Sec. 3.2.2). The measurement of in situ density profile

may still suffer from such an artefact. However, since the modulated guide re-

moves any rugosity caused by imperfect current-carrying wires, the only remain-

ing factor is the bump in potential created by Rb atoms that are adsorbed on the

gold mirror near the usual trap position9. Fortunately, the profile fit routine may

exclude the affected region and the Tprof obtained differs no more than ∼ 2%, so

that it is insufficient to explain the discrepancy between Tprof and Tfluct.

For experimental conditions that are more 3D, i.e. when there is a significant pop-

ulation in the transverse excited states, the MYY model may fail, rendering the

profile fit problematic. The MYY model assumes a purely 1D transverse ground

state with an equation of state µ = g1Dρ, and the transverse excited states obey

the IBG equation of states. At high linear densities, such an assumption is in dis-

agreement with the heuristic qBEC equation of state µ = h̄ω⊥
(√

1 + 4ρa − 1
)
,

which is known to work well for a qBEC in the 1D-3D crossover. However, the

two-temperature phenomenon that we observe is not limited to samples with

high linear densities, so that such a conjecture is again insufficient to explain our

observations.

Therefore, the prime suspect in our case is the RF side bands that are present as a

consequence of the current modulation in the transverse confinement. Since this

is specific to our setup, we cannot rely on the experience of others for compari-

son.

As explained in [82], the joint effect of an AC current in the modulated guide at

a frequency fMG (currently at 200 kHz) and of a weak monochromatic RF field

at fRF can be seen as an effective carrier RF field with (weaker) side bands at

9Note that the atoms are approximately 4 µm above the chip surface. Compared to & 100 µm as
typically realized on other experiments, our setup is far more sensitive to the adverse effects
of Rb deposition.
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fRF ± fMG. As a result, it is possible to evaporate in several windows of the car-

rier frequency, with expectedly different efficiencies. Historically, both the power

and carrier frequency are experimentally determined so that the evaporation is

efficient. However, the extent of the ‘two-temperature’ phenomenon (quantified

by, e.g., the ratio Tprof/Tfluct) differs depending on the choice of the window. For

experiments recorded in this chapter, the window of fRF ∈ (1 MHz, 1.2 MHz) is

chosen for evaporation so that the ‘two-temperature’ phenomenon is minimal if

not absent. Nevertheless, in order to completely rule out current modulation as

a possible cause of the non-Gibbs state observed, it may be necessary to perform

tests in a modulated guide with a higher fMG or in a static trap. This presents a

possible extension of the current study.

A possible physical cause. Suppose the presence of two apparent temperatures

is indeed physical, we propose a possible cause of such a phenomenon. Since

the nearly 1D samples are obtained by forced evaporation starting from a hot

and elongated 3D cloud of atoms, the reduction of dimensionality may have pre-

vented some of the loss-induced excitations from thermalizing completely once

the nearly 1D (and integrable) regime is reached.

In order to verify this hypothesis, one would ideally wish to know the initial con-

ditions before the final evaporation stage. This is not yet implemented for tech-

nical reasons10. We could however look at the final conditions, e.g. the dimen-

sionless parameters of the samples obtained. The two-temperature phenomenon

investigated here seems to occur, although not deterministically nor controllably,

for tγ0 on the order of 1 to 10, as the case of the data discussed in Refs. [9, 84],

as well as those presented in this thesis (in the last and the present chapters).

Systematics are yet to be found in this parameter range. For larger values of tγ0

(say around 15 or above), the samples are generally hot and ideal Bose gas like,

so that no saturation is expected in the atom-number fluctuations, and little dis-

crepancy is observed between the two thermometries. For tγ0 . 1, as in the data

presented in Ref. [83], the atom-number fluctuations strongly saturate, and the

two thermometries also tend to agree.

Further investigation and verification of such a hypothesis is of course necessary,

and would be particularly interesting in the parameter range where the system-

10Since the samples are much hotter and denser, the usual imaging methods fail to determine the
absolute atom number accurately, rendering it difficult to perform thermometry
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atics are unclear.

5.4. Future developments

Going forward, we envision several developments in this direction.

• Technical artefacts such as the effect of current modulation should be quan-

tified, although the current consensus within the team is that this may not

explain the observed two temperatures.

• Continuing to use the existing probes, one may wish to perform tests that

vary other parameters during evaporation, in the hope of finding a ‘control

knob’ that tunes the extent of the ‘two-temperature’ phenomenon. Along

the way, it may be necessary to expand the dynamic range of the current

imaging system in order to perform tests in a more controlled manner.

• The consolidation of new probes such as the measurement of density ripples

and momentum correlation could potentially reveal further information of

the non-Gibbs state observed. After all, different probes can be seen as tests

of thermal equilibrium with different stringency. A system that ‘passes’

some of these tests but ‘fails’ the others could potentially shed some light

on the nature and severity of the tests.

• Theoretical investigation of the cooling process through the 3D to 1D

crossover may also shed light on the understanding of our observations.

Conclusions

In this chapter, we have seen that a long-lived state that is not described by

a Gibbs ensemble with a unique temperature is regularly obtained on our

experimental setup. Two drastically different temperature values can be ob-
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tained from the profile thermometry and the atom-number fluctuation ther-

mometry. Such a ‘two-temperature’ phenomenon is robust against waiting

and against the variation of the evaporation rate. It is not likely caused by

technical artefacts, but could be a consequence of evaporating through the

3D-1D dimensional crossover. Further theoretical and experimental investi-

gations are needed in order to fully understand the mechanism behind.
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By now, we have gathered some ideas about the non-Gibbs initial states that we

often produce, as well as the evolution dynamics of the system excited into a

breathing mode, the lowest lying nontrivial collective excitation. We are now

ready to embark on the investigation of the dynamics of a system when we bring

it even further away from equilibrium.

In this chapter, I document three kinds of experiments performed in this spirit by

means of controlling the interaction parameter g1D. This is achieved by control-

ling the amplitude of the current in the modulated guide, which in turn controls

the transverse trapping frequency and thus the scattering processes that it medi-

ates [113].

Similar to the previous chapter, the results presented here are again of prelim-

inary character, as the investigation is mostly experimental, and the theoretical

understanding of the subject matter is still on-going.

I organize this chapter as follows. I will first discuss about the motivation in

Sec. 6.1. Details of three experiments are then presented in Sec. 6.2 including
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the experimental procedures, the preliminary results and an outlook for each of

them. A conclusion is given at the end.

6.1. Motivation

Ultracold atomic gases constitute one of the prime systems for the study of quan-

tum field theory, which predicts the generation of pairs of elementary excitations

due to the parametric amplification of the zero-point noise whenever there is a

change of boundary conditions (see [25] and references therein). This is known as

the dynamic Casimir effect, and the observation of its acoustic analog has recently

been reported in [85]. The change of boundary conditions can be implemented

by the change of interaction strength (via the change of the confinement and/or

scattering length), and the propagation of the excitations in spatially and tempo-

rally inhomogeneous systems can be used to simulate quantum field physics on

a generic curved space-time.

In a 1D bulk system, the evolution is further complicated by the underlying inte-

grable model (the Lieb-Liniger model), and the lifetime of elementary excitations

may provide information about if and how a 1D system relaxes and thermalizes.

This problem lies in the intersection of quantum physics and statistical physics,

and has received much attention in recent years when quantum simulation of this

problem with ultracold 1D Bose gases becomes possible.

On our experiment, the change of the interaction strength can be achieved by

modifying the transverse confinement. The independence between the transverse

and longitudinal confinement enables a clean realization of interaction modula-

tion, quench and ramp. Although the initial state may not be at thermal equilib-

rium, the resultant highly nonequilibrium state will likely dominate the subse-

quent evolution. The ability to make observations in both real and momentum

space allows complementary information to be recorded, hopefully revealing in-

teresting physics as it did in the study of the breathing mode (see Ch. 4).
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6.2. Experiments

Similar to the experiments presented in Ch. 4, the usual preparation procedures

are taken for granted, and the final evaporative cooling stage is adjusted such that

the resulting system lies within the qBEC regime. The modification of the inter-

action parameter then takes place, followed by a variable duration of evolution,

before the system is imaged in either real or momentum space.

Three kinds of experiments are performed in order to tune the value of g1D: mod-

ulation, abrupt changes, and ramps. Modulating g1D is inspired by similar ex-

periments performed by the team of metastable helium (He∗) in our group [85],

where correlated pairs of excitations with equal but opposite momenta were ob-

served for a nearly 1D qBEC. Changing g1D abruptly falls in the category of quan-

tum quench experiments, where the system is suddenly brought far away from

its (nearly) equilibrium state and the relaxation dynamics often reveal interesting

phenomena that may shed some light on our understanding of quantum ergod-

icity. Linear ramps in g1D can be seen as a more modest version of the previous

experiment, and the time scale defined by the ramp is expected to modify the

final state of the system immediately after the ramp, so that one may hope to

investigate the breaking down of adiabaticity during such an interaction ramp.

In the following sections, I will discuss the procedures as well as the results ob-

tained from each experiment up to March 2014. They are by no means sufficient

nor conclusive at this point, but should hopefully serve as a first demonstration

that would be complemented by further experimental investigations as well as

theoretical understanding.

6.2.1. Modulation

Experimental procedures

The modulation of the interaction strength g1D is achieved by sinusoidally modu-

lating the amplitude of the current in the modulated guide IMG (∝ ω⊥ ∝ g1D), so

that the interaction strength follows the following profile during the modulation,
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g1D = g0
(
1 + α sin(2π fmodτ)

)
, (6.1)

where g0 denotes the initial interaction strength, α gives the strength of the mod-

ulation, fmod is the modulation frequency. The modulation is carried out for a

duration τmod, after which an image is taken with the focusing technique. Fig. 6.1

illustrates such a modulation sequence. For h fmod < µ, we expect the excitation

of phonons, which are mainly visible in momentum space, so that the momentum

distribution is recorded.

0

g0

g1D

τ (ms)

end of
preparation measurement

τmod

Figure 6.1.: Sequence of g1D modulation.

Choice of parameters. An ideal parametric amplification calls for small ampli-

tude and long modulation time [108]. We have implemented α values ranging

from about 0.01 to 0.2, and up to 100 excitation periods1. We observe that too

large a value of α or too long a modulation time τmod simply leads to the redis-

tribution of the injected energy (heating), as manifested by the broadening of the

entire momentum distribution. Allowing the system to evolve after the end of

the modulation tends to lead to the same observation, so that the measurements

below are done immediately after the modulation is complete.

The values of τmod and α are experimentally adjusted, so that there is no sig-

nificant broadening of the momentum distribution, whilst the population in the

phonon ‘side bands’ are visible. There is also no apparent difference between

keeping either the number of excitation periods or τmod constant for the values of

fmod attempted.

Thus, we have the following parameters held constant for the data presented

11 excitation period is given by 1/ fmod.
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below:

α ' 0.1, and (6.2)

τmod fmod = 30 cycles. (6.3)

Results

Here we present the observations made with a nearly 1D qBEC sample in a con-

finement of ( f⊥, fz) ' (1900, 6.2) Hz. The characteristics of the sample can be

summarized as follows,

Ntot ' 9300, (6.4)

Tprof ' 110 nK, (6.5)

corresponding to (t, γ0) = (1400, 0.0025). The atom-number fluctuations are not

measured here.

We plot in Fig. 6.2 the measured momentum distribution before and after the g1D

modulation. Three values of fmod = 2.5 kHz, 3.2 kHz, and 4.4 kHz are shown

(see legend). The panel on the left shows the raw profiles measured, while the

panel on the right shows the difference between the profiles before and after the

modulation.

As a first study, we analyze the data in a similar manner as [85]. From the calibra-

tion scan obtained without the modulation, we have µ̄ ≡ µ3D
h̄ω⊥
' 1.63, from which

the speed of sound c can be obtained via

mc2 = (µ̄− 1/µ̄)h̄ω⊥/2, (6.6)

shown as the dashed lines in Fig. 6.2. The energy and momentum conservation

dictates that h̄ωmod = 2h̄ωk, where ±h̄k is the momentum of the excited phonon

modes, and h̄ωk is their energy. Using the Bogoliubov-de Gennes spectrum,

h̄ωk =

√
c2(h̄k)2 +

(
(h̄k)2

2m

)2

, (6.7)

we obtain the value of h̄k for each modulation frequency fmod, shown as the solid
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lines with colors corresponding to those of the data in Fig. 6.2. Note that the

broadening of the central low-momenta peak is minimal here but appears en-

hanced in the log scale used.
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Figure 6.2.: The momentum distribution measured before (reference) and after
the modulation of g1D for three values of fmod. Both the raw profiles
(left) and the difference from the reference (right) are shown. The
dashed lines mark the momenta corresponding to the speed of sound,
while the solid lines mark the momenta of the excited phonon modes
for each fmod.

Contrary to what has been observed in [85], the data shown here do not exhibit

the excitation of a well-defined phonon mode. This is not unique to the data set

presented, but is true for all parameter regimes explored (t between 1000 and 1500

based on the density-profile thermometry, and γ0 & 0.001) on our experiment.

However, there is a general trend of an enhanced population of the low momenta

states up to ±h̄k, seen as the fact that the wings of the measured momentum dis-

tribution fall off approximately at the position of the expected phonon momenta.

The slight quantitative disagreement can be attributed to the uncertainty of µ̄.

Such an enhanced population resembles the so-called ‘damping products’ in

[132]. A more detailed comparison with the experiment detailed in [85] reveals
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the following. While the extensive parameters such as T, Ntot and the (1D) in-

teraction strength2 g1D are comparable, the intensive parameter γ0(∝ m) differs

substantially due to a factor 21.75 in the atomic mass between 4He and 87Rb. As

a consequence, the He∗ experiment in our group is able to explore samples that

are much further in the qBEC regime (γ0 . 10−5 for t ' 1500) than those acces-

sible on our experiment (γ0 & 10−3 for similar t values). A GPE simulation as-

suming qBEC behavior confirms that further into the qBEC regime, well-defined

phonon modes can be more easily excited and survive sufficiently long to be ob-

served, while the contrary is true for samples that are closer to the qBEC to IBG

crossover.

Outlook

Going forward, now that we have seen the extreme cases where the observation

of the parametrically amplified phonon modes is either possible or not, it would

be interesting to study the intermediate behavior of both the susceptibility to such

excitations and the lifetime of the excited modes. This would be within the reach

of a joint effort between both the He∗ experiment and ours, provided a common

point of the intensive parameters in the 1D phase diagram (γ0 in particular, since

the matching of t is possible as it is) can be found. It would require some changes

in the current setup, and therefore falls under the category of future develop-

ments.

6.2.2. Abrupt changes

Experimental procedures

Here, we vary the interaction parameter g1D in time according to the profile de-

picted in Fig. 6.3 at the end of the evaporation (i.e. the preparation).

Although the intention is to abruptly displace the system into a highly nonequi-

librium state, care has to be taken not to send a significant population into the

transverse excited states so that the (nearly) 1D nature is not broken immediately.

Since f⊥ ' 2 kHz defines a time scale 1/ f⊥ ' 0.5 ms, the ramp is executed for

2Recall that g1D = 2h̄ω⊥a, and the choice of ω⊥ coincidentally compensates the difference in a
for the experiment in [85] and ours, such that the values of g1D in these two cases differ by
about 10% only.
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0

g0

3g0

0

g1D

τ (ms)

end of
preparation measurement

τquench

0.5 0.5 evolution

Figure 6.3.: Sequence of g1D double quench.

this duration. In addition, a relatively low RF field is kept in order to allow the

atoms excited into the transverse excited states to escape.

A single ramp in g1D would have been conceptually simpler. However, this is

expected to generate a strong breathing oscillation since the excess interaction

energy would drive the density and size oscillations, which may mask other in-

teresting features of the subsequent evolution. Therefore, a trapezium profile of

g1D (double quench) is used to minimize the excitation of the breathing mode.

The excitation strength α = g′1D/g1D ' 3 is held constant here and in the next

experiment. The effect of this parameter is not yet investigated.

Preliminary results

Here we present the observations made at long evolution times with a nearly

1D qBEC sample in a confinement of ( f⊥, fz) ' (1900, 6.2) Hz. The sample

characteristics can be summarized as follows,

Ntot ' 12000, (6.8)

Tprof ' 130 nK, (6.9)

corresponding to (t, γ0) = (1600, 0.0019). The atom-number fluctuation gives

Tfluct ' 100 nK for δz = 3 µm.

We plot the evolution of the width in real and momentum space after the double

quench in Fig. 6.4. The widths are obtained and analyzed in the same way as

those detailed in Ch. 4.
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Figure 6.4.: The widths evolution in real and momentum space measured after a
g1D double quench. The error bars only accounts for the statistics.

In real space, a slight breathing oscillation remains. We measure

fBz/ fD = 1.67± 0.01, (6.10)

QBz = 42± 9. (6.11)

Given that Ntot/NTE ' 28% here, the breathing behavior (in terms of both the

frequency and the lifetime) induced by the g1D quench is similar to that induced

by a quench of fz, as recorded in Sec. 4.4.

In momentum space, the evolution in the initial 400 ms exhibits a frequency dou-

blingwith the relative power of the second harmonic K = 0.93± 0.16. The sub-

sequent evolution is however more complex. A quick and dirty Fourier analysis

reveals more frequency components besides the fundamental and second har-

monic, vaguely resembling what has been observed in [115], except that I do

not find candidates among other collective modes that could immediately ex-

plain these frequencies. Given that each frame is imaged about 20 times, these
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frequency signals are likely above the noise. However, further theoretical under-

standing is necessary before any assertion can be made.

Outlook

The short-time evolution is not yet investigated in detail. Although one would

expect interesting phenomena such as the light-cone effect in the spreading of

correlations [34, 100], the early attempts made in this direction at the end of 2012

were fruitless, most likely as a result of poorer loading condition at the early stage

of the dispenser life cycle. More attempts will probably be made in the future.

6.2.3. Ramp

Experimental procedures

This experiment aims to investigate how the time scale defined by a linear ramp

in g1D modifies the subsequent behavior of the system. In this case, the value

of g1D follow the profile depicted in Fig. 6.5. As in the previous experiment, the

excitation strength α ' 3 is a controlled parameter. Different durations of the

ramp τramp between 1 ms and 20 ms are implemented. Also, the only observation

made so far is in momentum space, where yet another attempt of searching for

correlated excitation pairs of equal and opposite momenta is made.

0

g0

3g0

g1D

τ (ms)

end of
preparation measurement

τramp

Figure 6.5.: Sequence of g1D ramp.

Preliminary results

Here we present the observations made with a nearly 1D qBEC sample in a con-

finement of ( f⊥, fz) ' (1900, 6.2) Hz. The sample characteristics can be summa-
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rized as the following,

Ntot ' 7600, (6.12)

Tprof ' 140 nK, (6.13)

corresponding to (t, γ0) = (1700, 0.0032). The atom-number fluctuation gives

Tfluct ' 63 nK for δz = 3 µm.

Figure 6.6 shows the momentum correlations measured before and after the ramp

with τramp = 5 ms. Each data set is obtained with about 150 shots of images

using the focusing technique, and analyzed following the procedures outlined in

Sec. 3.3.2. The speed of sound according to Eq. (6.6) is at the edge3 of the plots

shown.
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Figure 6.6.: The momentum correlations 〈δN(p)δN(p′)〉 measured before (left)
and after (right) a ramp in g1D with τramp = 5 ms. Note the different
color scales used.

We see that without the ramp in g1D, the features of the momentum correlations

spreads over about 10 pixels, and strong anticorrelations (negative regions) along

the p = −p antidiagonal are seen, as expected of a system in the qBEC regime.

After the g1D ramp, the correlations along the antidiagonal become slightly posi-

tive, while the anticorrelations are displaced away from the antidiagonal.

3 pc = 18.2∆p before the ramp and 19.2∆p after the ramp.
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Comparing both plots4, one may be tempted to conclude the creation of cor-

related excitation pairs from the emergence of positive correlations along the

p = −p antidiagonal. However, more samples are necessary for a confirmation.

Also, the effect of τramp has not been analyzed yet, pending the development of

a single meaningful quantity from the momentum correlation matrix (see Sec.

3.3.2).

Outlook

The investigation thus far deals with the two-body correlations in momentum

space. A recent theory paper by Bernier et al [14] shows that signatures of slow

quench also exist in the one-body correlations, which decays in a different man-

ner at short and long distance, and the propagation of the boundary separating

these regimes resembles the Lieb Robinson dynamics of entangled quasi-particle

pairs. One-body correlations can be probed by the measurement of the momen-

tum distribution on our experiment. This will likely be investigated in the fu-

ture.

Conclusions

In this chapter, we have seen a few experimental studies that aim to inves-

tigate the highly nonequilibrium behavior of (nearly) 1D Bose gases. The

preliminary results indicate that:

• By modulating the interaction strength, we find that it is nearly im-

possible to observe well defined phonon modes for the experimental

parameters (temperature and density) explored. It seems to be a conse-

quence of a low response (‘susceptibility’) of the system to parametric

amplification, and the short lifetime of the initial excitations possibly

due to the presence of strong thermal fluctuations.

• An interaction double quench appears to reduce to a small-amplitude

4Owing to the difference in the absolute value of the correlations (see the color scale in Fig. 6.6),
subtraction of the reference is not helpful in data visualization here.
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breathing mode, for which the behavior in real space (frequency, life-

time) is governed by what we know from the study presented in Ch. 4.

Interesting frequency signals appear in the long-time evolution in mo-

mentum space, in addition to the interaction induced frequency dou-

bling expected of a qBEC. This may have some connection with non-

linear coupling between different collective modes. The short-time be-

havior has not been fully investigated.

• A sample data after a slow interaction ramp displays suppressed mo-

mentum anticorrelations between equal but opposite momenta (p =

−p′), suggesting the possibility that correlated excitation pairs are gen-

erated. The dependence on the ramp rate has not been analyzed,

pending the development of a single meaningful quantity from the

momentum-correlation matrix.
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The development of experiments manipulating ultracold atomic gases have con-

tinuously benefited from technological advances. Fast electronics allow accurate

experimental control, in turn improving the experimental precision. The devel-

opment of semiconductor CCD chips enables the optical imaging of a wider and

wider range of atomic species. Advanced laser technologies and fiber optics have

tremendously improved the experimental stability and reproducibility in the past

years. Technological improvements on an existing experimental setup is therefore

crucial for its future capability and operability.

During my doctoral studies, I participated in the design and construction of some

of the technological upgrades on our experiments. This part is devoted to the

documentation of such efforts. The applied nature of the work presented here

differs dramatically from the quantum schmantum recorded in the previous parts

of the manuscript. The physical effects are better understood here, and it is the

details of the implementation that would serve as a guide to the future users of

our setup.

I organize this part as follows. Chapter 7 documents the design, assembly and

preliminary tests of a new diffraction-limited imaging objective that will tremen-

dously improve the imaging resolution. The final Ch. 8 records other technologi-

cal upgrades that have taken place or will happen in the near future.





7. A New Imaging Objective

Contents
7.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1.1. Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.2. Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.3. Practical considerations . . . . . . . . . . . . . . . . . . . . 130

7.2. Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1. Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.2. Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3.2. Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.3. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

The ability of efficiently detecting phenomena of interest has always been at the

heart of experimental research. Qualitative changes of detection techniques are

often associated with new discoveries. Yet, quantitative improvement of existing

techniques could also enable new methods of detection and analysis. Within the

field of ultracold atomic gases, for instance, the ability to resolve single atoms in

a Mott insulator [138] directly enabled the experimental simulation of the corre-

lation propagation dynamics in a solid-state like system and the measurement of

Lieb-Robinson bound [34]. In this chapter, I document my efforts to improve

the imaging resolution of our current experimental setup through the design

and construction of a diffraction limited objective with a medium-high numer-

ical aperture (NA). Theory of optics and optical components are well established

and therefore will not be the focus of this chapter. Rather, it is intended to be a
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text documenting the thoughts and process that took place in completing such a

task, so that future users of the experiment may understand the rationale behind

various decisions.

I organize this chapter as follows. I discuss the physical, technological as well as

practical consideration that motivated the project in Sec. 7.1. The problem is then

formulated in Sec. 7.2, dictating the requirements in both optical performance and

mechanical constraints. Sec. 7.3 then presents the solution in terms of its design,

construction, as well as results of the performance tests. Concluding remarks are

included at the end of the chapter.

7.1. Motivation

As mentioned in Ch. 1, our current imaging system (see Fig. 7.1) consists of a

pair of off-the-counter optics that image the atoms on a CCD camera. I recall the

imaging characteristics below:

pixel size (linear dimension) ∆z = 2.7 µm, (7.1)

PSF radius rPSF = 2.4 µm, (7.2)

RMS width of atomic diffusion spot δz ' 3 µm. (7.3)

The pixel size in the object plane is obtained by measuring on the camera the

size of a known structure. For instance, the three parallel wires that produce the

modulated guide are about 1411 µm long.

The PSF radius refers to the radius of the first dark ring of the Airy pattern, know-

ing the object NA (= 0.2) of the objective, and is given by rPSF = 0.61λ
NA evaluated

at the imaging wavelength λ = 780 nm.

Finally, the RMS width of the atomic diffusion spot during the imaging pulse is

measured experimentally for typical in situ imaging parameters (pulse duration,

saturation, and detuning). Details can be found in [82].

Besides the ever thrilling satisfaction of building better optics, motivations in
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Figure 7.1.: An illustration of the spatial constraints of the new imaging objective.
All dimensions are given in mm. The longitudinal axis of the atomic
cloud is perpendicular to the plane of the paper. For clarity, the pro-
jecting doublet and the camera are not included here (see Fig. 1.6 for
the entire imaging system). Instead, the spatial constraints for the
new imaging objective is shown. An additional lens (to be mounted
on an motorized translation stage) is needed during the MOT load-
ing, and retracts away from the imaging path afterwards.

both physics and technology exist. I briefly outline both below, followed by a

discussion of practical considerations.

7.1.1. Physics

The physical motivation to improve the spatial resolution lies in the consideration

of signal to noise ratio (SNR) in the presence of atomic diffusion. Here, we assume

the objective is diffraction limited, and there is a fixed relation between ∆z and

rPSF as both are determined by the imaging optics and the resolution is always

limited by the worse factor between the two. Hence, the dependence on NA of



128 7. A New Imaging Objective

rPSF is carried over to ∆z, up to a numerical factor that depends on the choice of

the magnification.

We now consider the signal of a single atom registered in a single pixel on the

CCD camera via absorption imaging. The photon count for a probe beam of

intensity1 Ipr for a duration τpr is given by Nph = Iprτpr∆2
zλ/(hc). The absorption

signal (in units of photon number) is then σ
∆2

z
Nph if all is collected within the

same pixel, where σ = σ0
1+s is the scattering cross section, and s ≡ Ipr/Isat is the

saturation parameter of the probe beam. Since the technical noise of the camera

is negligible in our case, the main source of noise is the photon shot noise (PSN)

given by
√

Nph . Thus, we have an expression of SNR given by

SNR =

√
3λ2Γ
4π

1
∆z

√
s

1 + s
√

τpr , (7.4)

where the saturation intensity Isat for the σ+ transition on resonance is expanded

in terms of the natural line width Γ and the transition wavelength λ. Therefore, a

better SNR is obtained at small ∆z or long probe pulse τpr.

However, the statement above is no longer true in the presence of atomic diffu-

sion. During the probe pulse, the diffusion of the atoms can be modelled by a

random walk in momentum space [82]. The resultant mean-square displacement

is given by

〈δz2〉 =
Nph

3

(
hτpr

mλ

)2

(7.5)

=
h2Γ

6m2λ2
s

1 + s
τ3

pr, (7.6)

so that the condition of keeping the atom in question within the pixel, i.e.√
〈δz2〉 < ∆z gives a lower bound of the pixel size for a given τpr.

For experimental values of s ranging from a few per cent to on the order of unity2,

there is little qualitative change in the behavior of the conditions above. We thus

plot in Fig. 7.2, for s = 0.15, the SNR as a function of τpr and ∆z in a color map,

and shade the inaccessible region due to atomic diffusion. We see that within the

limit of resolution, a smaller pixel size and a shorter probe pulse are favorable
1also known as irradiance in optics.
2which is relevant for experimental realizations.
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to achieve a larger SNR. The need for smaller (and resolved) pixel size translates

into the requirement of a larger object NA.
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Figure 7.2.: SNR as a function of probe duration τpr and pixel size ∆z at constant
saturation parameter s = 0.15. The color scale of the SNR is clipped
at 10 in order to demonstrate the variation at small SNR.

A side remark. The above analysis also provides evidence that it would be dis-

advantageous to image using the 5S → 6P transition despite the apparent gain

in the diffraction limit. Indeed, this transition has a wavelength λ = 420 nm and

a natural line width Γ = 2π × 1.3 MHz for 87Rb, so that for the same s and τpr,

the SNR degrades by about a factor 4 according to Eq. (7.4) whereas the diffusion

remains approximately the same according to Eq. (7.6), rendering it more difficult

to achieve a high SNR.

7.1.2. Technology

Science and technology have always been entangled in their development. De-

spite the fact that experiments of ultracold atomic gases have been used predom-

inantly for fundamental research thus far, the sheer complexity of such experi-

ments calls for exceptional technological expertise in order to achieve acceptable

precision in control, manipulation, and detection of such systems.

Among various detection schemes, imaging using a camera has been proven ro-

bust and is widely used. The improvement of the spatial resolution received ded-
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icated attention on various occasions [4, 13, 117]. A quick survey of a few recent

experimental works [138, 156] enabled by improved imaging resolution demon-

strates precisely the importance of such technological developments. Figure 7.3

places a few notable examples in this spirit on a time line. They are categorized

according to if the imaging objective is commissioned from an external company,

home-made, or bought off-the-counter. The information is obtained mainly from

[13] and the references therein, so that it is by no means exhaustive. However,

the general tendency in the technological development is indisputable. In partic-

ular, the group of experiments with home-made objective exhibits a clear trend of

improving the resolution (as a result of increasing the NA), shown as the shaded

band in Fig. 7.3.

On our experiment, the last upgrade of the imaging setup took place around year

2012 (square labelled ’PUCEex’ in Fig. 7.3), achieving a NA of 0.2 and a pixel size

2.7 µm. In order to improve the resolution, an objective with NA comparable to

the above mentioned experiments is needed.

7.1.3. Practical considerations

A test quotation from J. Fichou3 estimates the cost of a single piece of customized

objective (design and production) to be around e8000, which is a costly invest-

ment on an ultracold atom experiment. A search through the catalogues (see

table) of renown microscope objective manufacturers indicates that it is unlikely

to find mass-produced objectives4 that fulfill all performance requirements (see

next section).

On the other hand, the various technical expertise available at Institut d’Optique

are not to be underestimated. Optical design is a course taught to the second-

year students in optical engineering on a regular basis, so that both experienced

staff and dedicated softwares are readily available. The optical workshop has

been polishing optics that would produce wavefront distortions of “λ over what

you want”5, while the mechanical workshop can easily produce pieces of lin-

3URL: http://www.optique-fichou.com/en/.
4which tend to cost about e3000 per piece on average.
5Direct translation from a verbatim quote by Gilles Cola, former optician at the institute, now

retired.
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Figure 7.3.: Imaging NA of a few recent experiments with ex vacuo optics. The
information is obtained mainly from [13] and the references therein,
and is therefore by no means exhaustive. The corresponding radius
of the central Airy disc evaluated at 780 nm is shown on the right as
a referencea. The data labels are given hereb.

aOnly two experiments operate at different wavelengths: ETHZ at 671 nm and UB at 852 nm.
The resulting difference in rPSF is about 10% and does not introduce qualitative change in the
graph above.

bUB: University of Bonn [4], UH: University of Heidelberg [117], MPQM: Max-Planck Insti-
tute Münich [138], TUV: Technical University of Vienna [22], ETHZ: Swiss Federal Institute of
Technology in Zurich [156], PUCE and PUCEex: atom-chip experiment at Institut d’Optique
Palaiseau (’ex’ for the existing set up [82, 84]), PINCE: optical-tweezer experiment at Institut
d’Optique Palaiseau [111], MU: Monash University [13].

ear dimensions up to ±10 µm within the specification. The synergy between the

workshops has already lead to the successful construction of another imaging ob-

jective currently used on the ‘PINCE’6 experiment [111]. Equipments measuring

the performance of optical elements are available from the teaching department7,

where practical tasks are taught via lab courses.

Hence, the production of the current microscope imaging objective presents the

perfect opportunity for me to collaborate with various experts in their respective

6French for tweezer. The namesake is an optical tweezer that transports an ultracold cloud of
atoms over about 30 cm.

7known as Laboratoire d’Enseignenment Expérimental (LEnsE).
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Model Working Glass Numerical Outer IR
distance thickness aperture diameter transmission

Mitutoyo 29.42 mm 3.5 mm 0.28 34 mm unknown
G Plan Apo

Zeiss 18.5 mm 0.17 mm 0.16 30 mm ∼ 88%
EC Plan
Neofluar

Olympus 20 mm unknown 0.42 34 mm unknown
EO M

Plan Apo

Leica 6.7 mm ≤ 2 mm variable 31.5 mm ∼ 80%
Pl Fluotar

Nikon ≤ 8.2 mm ≤ 2 mm 0.45 unknown unknown
CFI S

Pl Fluo

Table 7.1.: List of available commercial microscope objectives and their key char-
acteristics. Information are obtained from the online sales catalogue.
The best option (Mitutoyo) suffers from too large an outer diameter
and less-than-ideal NA. Other options are generally incompatible with
the desired long working distance and insufficient correction power, as
a 2 mm window thickness may be detrimental to the UHV desired.

fields and have a first-hand experience in simple instrumentation.

7.2. Problem

The requirement of the final objective covers two areas: the optical performance

and the mechanical constraints. Both aspects are crucial in order for the objective

to be integrated onto the existing experiments. I describe them below.

7.2.1. Optics

Using the design principles outlined in [4], the desired optical performance can

be summarized as follows. The objective should
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1. conjugate focus to infinity, thus collimating the light that is emitted and/or

scattered by the atoms;

2. have an NA of at least 0.3, and the larger the merrier;

3. have a working distance > 23.5 mm, due to a 20.5 mm atom-window sepa-

ration and a 3 mm window thickness;

4. be nearly diffraction limited at 780 nm, correcting the aberration introduced

by the window, which is made of standard BK7 glass;

5. have a diffraction limited field of view of at least ±100 µm, which is the

typical longitudinal size of the atomic cloud.

7.2.2. Mechanics

Given that the objective is to be integrated onto a working experiment, mechani-

cal constraints due to the existing setup need to be carefully accounted for.

The current setup has a limited optical access due to the size of the vacuum cham-

ber, which is a cube of 7 cm on each side. The atoms are situated nearly at the

center of the cube, whereas the objective is mounted outside a standard CF40

window. The required long working distance (> 35 mm) usually implies a larger

focal length and therefore a smaller NA.

One way to improve the NA of the system would be to mount the objective in

vacuum. This strategy completely avoids the task of aberration correction, since

the light would only encounter the window after being collimated, so that ideally

no aberration would be introduced. However, the simplicity of optics8 has to

be traded off by the complexity of the mounting mechanics in order to retain

certain degrees of freedom in positioning the lens(es) with respect to the atoms. A

notable example in this spirit is the HALO lenses developed for ion trapping [126,

129]. The accompanying piezo translation system is however too bulky for our

setup. Also, given the combination of NA and long working distance, monolithic

8provided the NA remains medium-high. A high-NA in vacuo objective would still require a
complex optical design [151].
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mounting mechanics such as those used in [139] are impractical. The prospective

of breaking the vacuum in order to access the objective9 is also unattractive.

Since customization appears inevitable, a reentrant flange has been designed in

order to reduce the working distance. The resultant spatial dimensions are illus-

trated in Fig. 7.1. Correspondingly, the following spatial constraints apply:

1. The reentrant tube limits the aperture at a diameter of 27 mm at the position

of the window.

2. Since the (assembled) objective will be mounted inside the reentrant tube,

its outer diameter is limited by a few factors. The inner diameter of the reen-

trant tube is 32.1 mm. The position of the atoms have ±500 µm uncertainty

due to the mechanical uncertainty in mounting the atom chip. A certain

space should be left for the wall of the lens tube that contains the objective.

The minimal wall thickness depends on the material.

3. The overall length of the objective assembly is limited by the magnetic

shielding, which has an inner diameter of 300 mm. Mounting mechanics

should also be accounted for. This essentially means a small overall length

is favored.

4. The construction should be tolerant to potential imperfections during the

assembly, given that the mechanical parts can be accurate up to ±10 µm

within specification.

7.3. Solution

This section is intended to be the documentation of the objective. It records the

optical design, assembly, as well as the tests I carried out. For each section, I will

discuss about the considerations, followed by the procedures for the actual task,

and then show the results obtained.

Note that the design principles and optimization methods mentioned here are

9e.g. in the event of unintended Rb deposition on the lens surface.
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also applicable to more general tasks of optical design.

7.3.1. Design

Considerations

Designing a medium-high-NA microscope objective from scratch seems to be a

formidable task. Although the final goal is clearly spelt out, namely to correct the

aberration introduced by a specific window while achieving a specific NA at a

specific wavelength, a myriad of strategies exist [67], and one with little experi-

ence such as myself could easily lose the way.

Fortunately, similar tasks have been pursued before, notably in [4, 117]. Both

could be used as a starting test design, so that the task simplifies slightly into

a multivariable optimization in order to adapt the lens parameters (number of

surfaces, glass material, radii of curvature, lens thickness and air spaces) to suit

the new performance objective. For practical purposes, the work of [13] presents

a step further in reducing the production complexity and the construction cost of

the objective by adapting the design to catalogue lenses.

Commercial softwares performing classical ray tracing can be used for such an

optimization. Among the three options available at Institut d’Optique, namely,

OSLO, Zemax, and Code 5, the choice of using OSLO is arbitrary and out of

convenience, since a free educational version is available for preliminary studies.

It is also known that the performance of the optimization algorithms embedded

in these softwares are comparable barring exceptional cases.

Procedures

The procedure used to carry out the optimization is listed below. Note that this is

not intended to be a manual of OSLO, so that details such which function is used

are omitted unless it is particularly relevant. Interested readers should refer to

the official manual (available online) in order to familiarize themselves with the

usage of the software.

Initialization. I start by adapting the design in [117] (the pentagon labelled ‘UH’
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in Fig. 7.3) to meet some of the desired specification10. Namely,

1. the entire system is scaled up so that the working distance is about 20.5 mm

as needed, while the NA is preserved (at 0.45);

2. the entrance beam diameter is then reduced to 27 mm so that sufficient

space is left for the lens tube and spacers. This reduces the NA to about

0.38;

3. the field is set to±250 µm so that a typical size of the atomic cloud of 200 µm

can be easily accommodated.

Note that all lenses are set to the same diameter of 29.7 mm in order to simplify

the design of the mechanical mount. The glass for the lenses are set to SF11 in

order to take advantage of the high refractive index and thus stronger bending

power per surface. The associated strong dispersion is irrelevant for a monochro-

matic system.

The scaling gives a resulting window thickness ∼ 4.5 mm, too large compared

to the desired 3 mm. This is left as a controlled parameter during the optimiza-

tion.

Variables and error function. As with any optimization task, one needs to set the

variables and the error function. The variables, to begin with, include all radii of

curvature, the thickness of the three lenses, as well as all air spaces. Only the

distance from the window (final flat surface in vacuum) to the atoms (focal point)

is fixed to 20.5 mm as required.

The construction of the error function is a more complicated task. It is generally

a weighted sum of all aberration coefficients at various position of the field, and

the Euclidean distance from the desired NA. The careful choice of such weights

determines the efficiency of convergence of the algorithm as well as the ability

to find a global minimum of the error function. It takes rigorous studies (see

e.g. [67] as a comprehensive textbook) and decades of experience to be able to

choose them at will. This is also partly why commercial softwares are valuable,

10Note that the same procedure has been used starting from the Alt design [4]. However, the end
product is ruled out due to poorer tolerance towards uncertainty in assembly. This will be
explained later.
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as they often come with ready-to-use routines that can construct error functions

for various purposes. For OSLO, two of such routines exist for free, the OPIC

and the GENII routines. Details of the algorithm behind is again beyond the

scope of this manuscript. Documentation can be found online easily. For the

construction of this objective, the GENII routine is used11 and has demonstrated

excellent convergence properties.

Optimization. Since the optimization boils down to a multivariable minimiza-

tion problem, one needs to be aware of the pitfall of being trapped in a local

minimum. This can be circumvented by carrying out the optimization incremen-

tally, i.e., instead of immediately reducing the window thickness to the desired

value of 3 mm, it is decreased in steps of 0.1 mm while the minimization routine

is called multiple times until a convergence is reached for each reduction step.

Also, the weight associated to the enforcement of NA is deliberately reduced by

a factor 10 at this stage in order to allow for a more liberal combination of the

radii.

The procedure up to this stage in fact depends on the choice of the software.

Once a convergence is found for the final value of window thickness (3 mm),

however, it is important to make fine adjustments manually in order to improve

the practicality of the design. This calls for an ambiguity avoidance check, a radii

matching exercise as carried out in [13], and a precision restriction of the lens

thickness and air spaces. The weight to enforce the NA is returned to the initial

values at this stage in order to strictly maintain the desired NA.

Usually, it is crucial to carry out an ambiguity avoidance check in order to reduce

the possibility of human error at the assembly phase12. This means that without

any significant compromise on the performance, lenses of similar shape should

be made either identical or visibly different (in physical size or radius of curva-

ture), and biconcave (or biconvex) lenses should be made either symmetric or

visibly asymmetric. This is automatically fulfilled in our case due to our starting

design as the two meniscus lenses are indeed dramatically different in their radii

of curvature, so that no further adjustment is necessary for this purpose.

11Minor changes to the weights were made to remove chromatic aberration coefficients since they
are irrelevant.

12It would be an extremely unpleasant surprise if one finds out during performance test that one
(or possibly more) of the lenses is flipped and is responsible for a poor optical performance.
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Since Lens-Optics13 has satisfactorily provided custom and catalogue lenses to

our group on several occasions, we decided to work with them again in the hope

to foster synergy. A published list of radii of curvature is available on their web-

site14. As the production process has been optimized at these values of radii,

matching the required radii to the published values minimizes production un-

certainty15 and reduces the cost. This is achieved iteratively. For each step, one

of the remaining radii is selected based on the minimal relative difference from

a published value. This radius is then taken off the list of variables and set by

hand to the closest published value, while all remaining variables participate in

the reoptimization until a convergence is found. In the event that it is difficult to

match the final radius, one could in principle request for a single custom radius

of curvature. Alternatively, tracing a few steps back and changing the order of

radii matching may lead to a fully matched solution. Trial and error is needed.

Fortunately enough, the current design could be matched without much difficul-

ties.

Now, the thickness of the lenses and air spaces remain as variables. Since air

spaces are known to have a stronger effect on the aberrations, we will first re-

strict the lens thickness. The preference of a short objective calls for the use of

thin lenses. This is already the case with the outcome of optimization, although

the thickness is specified up to machine precision. Starting from the lens that is

the closest to the window, each thickness (at the center of the lens) is iteratively

rounded to the nearest 0.05 mm and reduced to (4± 0.5) mm, while all remaining

variables participate in reoptimization until a convergence is found.

Finally, the two air spaces within the lens triplet are rounded to the nearest

0.1 mm to allow ample room for the uncertainty of air spaces (up to the spacer

construction).

Tolerancing. Testing the tolerance of the system is necessary in order to ensure

a reasonable success rate in the construction. Indeed, linear dimensions of the

mechanical parts are accurate up to ±10 µm. This would result in displacement

of the lenses on axis and/or in the transverse plane, and possibly tilting the lenses

13URL: http://www.lens-optics.de/.
14URL: http://www.lens-optics.de/radien-tabelle.html
15We measured the radii of curvature of lenses delivered and found agreement with specification

within ∼ 0.1%.
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so that their optical axes are no longer collinear. All effects may have a dramatic

impact on the optical performance given the large NA.

To carry out the tolerance test, we assume that the uncertainty of each dimension

can be modelled by a Gaussian random variable with zero mean (no systematic

error) and a standard deviation of 10 µm. With some algebra, these uncertainties

also translate into possible tilts of the elements. A Monte Carlo sampling of the

uncertainties can then be carried out using the built-in function of OSLO (pre-

mium version). I show the result of 1000 run of samples in Fig. 7.4. This suggests

that the planned in-house assembly would in principle not impact the optical

performance of the design.
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Figure 7.4.: Result of the tolerance tests using Monte Carlo simulation of mechan-
ical uncertainties. Such a function is only available in the full version
of OSLO. Note that the initial RMS spot size is ∼ 1.2 µm, so that we
may safely conclude from the above result that the construction is tol-
erant to potential mechanical uncertainties.

Note that it is through such tolerance test that we discarded the alternative design

starting from the one by Alt [4], as the simulated success rate is much lower. A

closer look at the aberration coefficients associated with each surface reveals the

crux of the problem. For our three-element design, the aberrations are evenly

distributed over several surfaces, so that a local perturbance of the alignment has
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a small effect on the overall optical performance. On the contrary, the adapted

four-element design has strong aberrations associated to the final lens, so that a

small misalignment of this element introduces an appreciable aberration to the

entire system.

Outcome

I show the final design in Tab. 7.2 and Fig. 7.5, and its simulated performance in

Fig. 7.6.

1 2 3 4 5 6 7 8 

Figure 7.5.: Layout of the objective-window system. Surfaces 1 to 6 represent the
objective triplet, and surfaces 7 to 8 represent the vacuum window.
The atoms to be imaged will be located at the focal point of the system
on the right.

The performance can be summarized in terms of the PSF, the encircled energy

and the Modulation Transfer Function (MTF). The PSF is a measure of the resolv-

ing power of the system. The encircled energy is the radial integral of the PSF,

and its comparison with the pixel size in the object plane also yields informa-

tion about the resolution. The MTF gives the contrast in the incoherent imaging

of a sinusoidal intensity modulation. The report graphics (generated directly by

OSLO) are included in Fig. 7.6.

Finally, the simulated RMS optical path difference (OPD) over the entire wave-

front is 0.013λ. At the best focus on axis, the Strehl ratio is RS = 0.993 on axis and

RS = 0.8 at ±245 µm off axis (in the object plane)16.
16For an optical system to be considered ‘diffraction limited’, we may apply the Maréchal cri-
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Surface Radius of Distance to Material
No. curvature (mm) next surface (mm)

1 104.47 4.25 SF11
2 ∞ 0.3 air

3 39.446 4.5 SF11
4 66.98 0.3 air

5 20.61 3.7 SF11
6 29.161 5.66 air

7 ∞ 3.0 BK7
8 ∞ 20.5 vacuum

Table 7.2.: Surface data of the lens system.

Three sets of the lens triplets and two custom windows are ordered from Lens-

Optics. Each surface will be antireflection coated with reflectance R < 0.2% at

780 nm and R < 5% at 1530 nm17.

7.3.2. Assembly

The assembly is carried out in-house with the assistance of both the mechanical

workshop and optics workshops. The mount was designed in collaboration with

the chief machinist Mr. André Guilbaud, while the chief optician Mr. Christian

Beurthe provided means for the measurements of the dimensions.

I briefly record below the considerations that led to the design of the final mount,

the procedures for mounting, as well as the outcome.

Considerations

The custom lenses were to have an diameter of (29.7+0.5/−0.2) mm. A measure-

ment of the diameters of the actual lenses helps to fine tune the inner diameter of

the mount.

terion, which sets a (somewhat arbitrary) limit on the RMS OPD (≤ λ/14), or equivalently
RS ≥ 0.8.

17Light at this wavelength is available and may be used for optical potential engineering. See Ch.
8 for a brief discussion.
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Figure 7.6.: Simulated optical performance of the objective-window system. The
PSF (top), fractional encircled energy (middle), and MTF (bottom) are
shown both on axis (solid lines) and at ±245 µm off axis (dotted and
dashed lines, corresponding to in and perpendicular to the plane con-
taining the optical axis and field ray). The ideal performance (dash-
dotted lines) is included as a reference, but it mostly overlaps with
the on axis performance and is only visible in the MTF plot.

Given the restricted mechanical access in the reentrant tube and the uncertainty

in chip mounting specified in Sec. 7.2.2, the outer diameter of the lens tube is

made at 31.5 mm, so that the wall thickness is 0.9 mm. Mechanical stability re-
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quires a choice of material that is sufficiently hard. Based on the experience of the

mechanical workshop, we chose to use brass for this purpose. In addition, the

possibility of carrying out anodization18 in house is an added advantage.

The position of the lenses in the triplet will be eventually secured by spacers

and retaining rings, whose dimensions should well match those of the lens tube.

Repetitions of mounting and dismantling are to be expected19. As a result, great

care should be taken to avoid galling, which is a form of wear caused by the

adhesion between sliding surfaces. This can be achieved by lubrication or appro-

priate choice of materials. Lubrication comes with the risk of staining the lenses

and efficient means of cleaning without further damage is lacking. Instead, the

spacers and retaining rings are also made of anodized brass so that no galling is

expected.

As on the current setup, the new objective will be permanently fixed on the ex-

periment. It would give a dramatic boost to the imaging resolution, but requires

pairing optics during the MOT loading phase in order to retain a large loading

volume. Since aberration is less crucial during the MOT loading, one simply

needs a lens20 to form an afocal telescope with the objective, and then adapt the

beam waist with optics outside the magnetic shielding. The lens will be mounted

on a mechanical translation stage which inserts the lens only during the MOT

loading (see Fig. 7.1). Therefore, I need to ensure sufficient clearance at the ex-

pected position of the lens.

Procedures and outcome

The design and construction of the mounting mechanics were carried out at

the mechanical workshop. The technical drawings are included in App. ?? as

a record.

18so as to blacken the surface and avoid stray reflection.
19It is better to start pessimistic than to end unlucky.
20E.g. Thorlabs C240TME-B with NA 0.5 and focal length 8 mm at 780 nm would suffice. The

clear aperture is 8 mm, sufficiently larger than the beam size 6.6 mm at about ∼ 26 mm in
front of surface 1 (see Fig. 7.5 for the surface labels).
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7.3.3. Testing

The ultimate performance test would of course be to image the Rb atoms on the

actual experiment. However, as a control measure, it is also important to perform

external tests for verification. Here I document the consideration, procedure, and

the outcome of the tests performed on this objective before it is integrated onto

the main experiment.

7.3.3.1. Test 1: measuring the wavefront deformation

Considerations

The performance of such a microscope objective can be characterized by measur-

ing the optical path difference between the real and ideal wave front. This can

be achieved using commercialized instruments such as a laser interferometer. We

use ZYGO21 for this purpose, as it is readily available at LEnsE.

Figure 7.7.: Schematics of ZYGO. Courtesy of LEnsE.

21Model: GPI ST; URL: http://www.zygo.com/?/met/interferometers/gpi/.
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A schematic of the interferometer is shown in Fig. 7.7. The ZYGO interferometer

is a Fizeau type interferometer with a phase-shifting piezo actuator. The reference

flat wave front is a well collimated beam reflected by the almost perfect plane

diopter (RMS OPD of a few percent λ) of a reference plane mirror. The measured

wave front is sent through the objective-window system under test to a concave

mirror, for which the center of curvature is adjusted exactly on the focus of the

system on test. The interference pattern between the reference wave front and

the measured wave front allows the measurement of the OPD introduced by the

optical system. The OPD is very accurately measured with such a phase shift

method (RMS OPD around λ/20).

The interferometer has a built-in laser system at 633 nm (He-Ne laser). The ob-

jective optimized for 780 nm is expected to exhibit a chromatic focal shift as well

as spherical aberrations. We also take into account that the window delivered is

slightly thicker than expected22. This can be easily simulated with OSLO, which

gives the RMS OPD as 0.13λ and the Strehl ratio RS = 0.50 on axis at 633 nm. We

keep these values in mind throughout the measurement.

Procedures

We align in successive order the window, the objective, and the concave mirror

at the output of the interferometer. Using the accompanying processing system,

we measure the phase shift and obtain the OPD over the entire wave front. PSF,

RMS OPD and Strehl ratio can then be computed.

Outcome

I present the test results here: the PSF in Fig. 7.8, the encircled energy in Fig. 7.9,

and the MTF in Fig. 7.10. The 3.15 mm thick window is used here, giving the

worse-case scenario.

The measured RMS OPD = 0.14λ and Strehl ratio S = 0.49 at λ = 633 nm. The

residual aberration is mainly spherical (see Fig. 7.8), coming from the slightly

thicker window as mentioned earlier. This is sufficient to explain the difference

between the measurements and the expected performance at 780 nm (see Fig.

7.6).

22The window thickness is 3 mm in design, and 3.15 mm and 3.11 mm in reality (two copies
ordered).
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Figure 7.8.: Test 1: the measured PSF and its cuts along x = 0 and y = 0 on
axis. Here, x and y (in this context) refer to the two transverse di-
rections orthogonal to the optical axis. The rather good symmetry
of revolution of the PSF suggests a residual spherical aberration and
a slight decenter aberration, indicating that the mechanical parts are
well within the tolerance. The spherical aberration can be explained
by a slightly thicker window and the fact that the test is not carried
out at the design wavelength.
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Figure 7.9.: Test 1: the measured normalized encircled energy. The measurement
(solid line) on axis is compared with ideal performance (dash-dotted
line). The difference can be explained by a slightly thicker window
and the fact that the test is not carried out at the design wavelength.
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Figure 7.10.: Test 1: the measured modulation transfer function on axis along the
two transverse directions x and y orthogonal to the optical axis. The
measurements (solid and dashed lines) are compared with the ideal
performance (dash-dotted line). The difference can be explained by
a slightly thicker window and the fact that the test is not carried out
at the design wavelength.
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7.3.3.2. Test 2: measuring the point spread function

Considerations

On the other hand, the larger window thickness is not expected to cause such

a dramatic change at the design wavelength, according to the simulations per-

formed in OSLO. In order to verify this experimentally, I performed additional

tests directly at λ = 780 nm.

Submicron defects can be found in a thin layer of metal deposition (e.g. alu-

minium deposited on a glass slide). Since our new objective has rPSF = 1.2 µm

in the object plane, finer structures will not be resolved and their images give

the PSF of the objective directly. The schematic depicted in Fig. 7.11 allows the

imaging of such pin holes on the CCD camera at 780 nm.

22

Figure 7.11.: Schematic of the PSF measurement. A microscope slidea with sub-
micron pin holes is mounted on a three-axis translation stage, and is
illuminated by laser light at 780 nm focused using an asphereb. The
slide is positioned in the vicinity of the focal point of the window-
objective system. A doubletc is then used to image the PSF on the
camerad.

aproduced in the clean-room facility at the institute.
bAsphericon SPA 30-26 HPX, NA = 0.51.
c f = 500 mm, giving an expected magnification of M = -14.3 for infinity conjugation. The

negative sign arises from the fact that the system is converging.
dPixelfly QE 12 bit.

This test also permits the experimental determination of the diffraction limited

field of view. Assuming the on-axis performance is ideal, the field is given by

maximal transverse displacement of the pin hole that yields a ≤ 20% reduction

of the PSF peak intensity.
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Procedures

Using the three-axis translation stage, we scan and record the PSF along three

orthogonal directions in the vicinity of the focal point23 of the objective. The

camera is refocused for each image in order to account for a slight misalignment

between the translation stage and the optical axis of the objective,

For each image of the PSF, we subtract the background, and normalize the peak

intensity by the total intensity24 in order to reduce the effect of the nonuniform

illumination25. The transverse scans then yield both the magnification and the

field of view, while the longitudinal scan gives the tolerance of the working dis-

tance.

Outcome

I present the test results here: the PSF on axis in Fig. 7.12, the scans of the normal-

ized peak intensity are shown in Fig. 7.13, and the PSF at the maximal transverse

and longitudinal displacement while retaining a diffraction limited performance

in Fig. 7.14. Again, the 3.15 mm thick window is used here, giving the worse-case

scenario.

Comparing Fig. 7.12 with Fig. 7.8, we see that the spherical aberration is much

reduced at 780 nm as expected. Instead, a slight decentering coma remains, most

likely as a consequence of a slight misalignment of the three lens elements within

the mounting tube.

Figure 7.13 shows the scans of the normalized PSF peak intensity along three or-

thogonal directions near the focal point of the objective. The transverse scans

(circles and squares) show that the normalized PSF peak intensity decreases

smoothly26 away from the center of the field, and remain above 0.8 for about

23which is the ideal location of the atoms.
24The total intensity is obtained by integrating a sufficiently large area of the image that con-

tains the PSF after the background subtraction. The convergence of the integral regardless of
the size of the integration area is used as a criterion to precisely determine the value of the
background.

25likely as a result of unintentional diaphraming of the beam. We measure intensity fringes of
∼ 200 µm spatial period and ∼ 60% visibility. Without normalization, these fringes would
have masked the degradation of the PSF peak intensity due to the optical response of the
objective (typically up to ∼ 40%).

26The residual noise corresponds to an incomplete removal of the effects due to the nonuniform
illumination, as the position of the sudden dips of the normalized PSF peak intensity coincides
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Figure 7.12.: Test 2: the measured PSF on axis and its cuts along x = 0 and y = 0
on axis. The notation is the same as Fig. 7.8. In comparison, the
spherical aberration is much reduced at 780 nm. Instead, a slight
decentering coma remains, but is uniform throughout the field (see
Figs. 7.14).

±350 µm. In terms of the homogeneity of the response, it is comparable to the

simulated ±245 µm at the best focus (see Sec. 7.3.3.1). The longitudinal scan (tri-

angles) indicates that it is possible to defocus27 about ±250 µm while retaining

with that of the weaker illumination.
27provided the CCD camera is refocused.
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a diffraction limited imaging. This gives the tolerance on the working (atom-

objective) distance.

These scans also confirm that the residual decentering coma is a minor effect,

and is uniform throughout the region of space where the imaging is diffraction

limited. Figure 7.14 shows two sample images of the PSF, taken at the maximal

transverse and longitudinal displacement where the reduction of the PSF peak in-

tensity is just about 20% (worst cases acceptable). Apart from the peak intensity

reduction, these samples of PSF appear nearly identical to the PSF on axis, indi-

cating a homogeneous spatial resolution of the objective. This also permits the

possibility to deconvolve the experimental images with the measured PSF in or-

der to reduce the effects of the residual decentering coma whenever necessary.

 0.4

 0.6

 0.8

 1

-600 -400 -200  0  200  400  600

no
rm

al
iz

ed
 p

ea
k 

in
te

ns
ity

position (µm)

x scan
y scan

longitudinal scan

Figure 7.13.: Test 2: scan of the normalized PSF peak intensity in the vicinity of
the focal point. Assuming an ideal performance in the center, a 20%
reduction in the PSF peak intensity (dashed line) can be used as a
criterion to identify the region of space where the imaging remains
diffraction limited. The transverse scans indicate a diffraction lim-
ited field of view of ∼ ±350 µm. The longitudinal scan indicates a
tolerance of the working distance.
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Figure 7.14.: Test 2: the measured PSF at the maximal transverse (off axis) and
longitudinal displacement. Apart from the peak intensity reduction,
these samples of PSF appear nearly identical to the PSF on axis, in-
dicating a homogeneous performance of the objective over the field
of view.

Conclusions

In this chapter, I have reported the optical design, mechanical assembly, and

optical characterization of our new imaging objective. It is designed and op-

timized at 780 nm, and has an object NA= 0.385, now comparable to other

ultracold atom experiments using home-made imaging systems. It operates

ex vacuo, and enables diffraction limited imaging with an improved resolu-

tion of rPSF = 1.2 µm homogeneously over a field of view of ±350 µm. I

have experimentally characterized its performance using two independent

methods, confirming the simulated behavior.
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In addition to the new imaging system, our experiment is also going through

other technical upgrades aimed at improving the stability as well as the versatility

of the experimental control. In this chapter, I record some of the changes that have

taken place or are in the process of being implemented. They concern two aspects

of the setup: the atom chip itself in Sec. 8.1 and the expanded laser system in Sec.

8.2.

8.1. About the atom chip

The new generation of the atom chip is modified in two aspects: its layout as well

as the processes involved in the fabrication.
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8.1.1. New layout

The new imaging objective has a diffraction limited field of view of at least1

±350 µm. Still, 350 µm is a small distance compared to the displacement

(' 700 µm) of the current trap position from the optical axis. This calls for a

change in the chip design. I show in Fig. 8.1 both the existing (top) and the new

(bottom) designs. The white area will be deposited with gold whereas the dark

area indicates electrical insulation. Both the full view (left) and a zoom on the

final trap position (right) are shown. In the new design, the final trap is centered

on the chip, which will in turn be centered with respect to the vacuum cham-

ber up to a few hundred microns. The objective will be mounted on a three-axis

translation stage for the final alignment. The fabrication process of the new chips

is ongoing.

In addition, the new design has implicitly centered the final modulated guide

with the static magnetic trap, which is centered on the chip. This will hopefully

reduce the loss during the transfer between the two traps and allow for a larger

dynamical range of the total atom number in the final trap.

8.1.2. Exploring alternative fabrication processes

The successful fabrication of the atom chips depends heavily on the maturity of

the processes involved. One could in principle rely on standard material and

processes in order to ensure the fabrication yield. On the other hand, less stan-

dard processes may sometimes lead to unprecedented performance. As the very

conception of the atom chip hopes to integrate more than just microelectronics

[51, 53], it is important to continue refining the procedures and techniques in-

volved in fabrication.

In our case, the change of the chip design presents the perfect opportunity to

explore new processes. I list a few aspects that are being pursued right now.

1A trade off can be made to increase the field of view at a slight cost of the on-axis performance.
Depending on the magnification, the degradation on axis may not impact the actual imaging
system.
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Figure 8.1.: The existing (top) and new (bottom) chip designs. Both the full layout
(left) and a zoom (right) showing the atom-trapping wires are shown.
The entire chip spans 2.5× 3.5 cm2.

Change of substrate

As mentioned in Sec. 1.2, the AlN substrates that we purchase come with a vari-

able grain size that is beyond our control. Despite its excellent thermal properties

[8], our experience indicates that samples with a grain-size beyond ∼ 100 nm

would result in too much potential corrugation, since the shape of the surface

mounted wire structures will be irregular. Silicon substrate has been a common



156 8. Other Technical Upgrades

choice among the atom-chip experiments precisely for its flatness. Being a semi-

conductor, however, it requires a thin electrical insulation layer to reduce current

leakage. This is often achieved with ∼ 200 nm of silicon oxide, which prevents

efficient heat dissipation [68] and in turn restricts the maximal current density

that is non-destructive.

Silicon carbide (SiC) is a semiconductor that is now routinely manufactured into

wafers for its application in electronic devices and circuits [112]. Such wafers

have excellent surface flatness. Since SiC has a larger band gap than Si (see Tab.

8.1), there is a possibility to use SiC as a substrate without an electrical insulation

layer. This would require wafers of high purity that are costly. Alternatively, a

thin layer (∼ 100 nm) of AlN can be deposited to provide the necessary electrical

insulation without creating a thermal bottle neck2. Both options are being tested

right now during the fabrication of the new chip. Note that SiC is also used in

the atom-chip experiment at Thales [77], where a conventional six-beam MOT is

implemented given the transparency of SiC.

Material Thermal conductivity Band gap
at 20◦C

(W m−1 K−1) (eV)

AlN 170-180 6.2

Si 80-150 1.12

SiC 360-490 2.4-3.2

SiO2 1.46 large

Table 8.1.: Thermal and electrical properties of some materials as potential sub-
strates. Data are harvested from Refs. [112, 121]. The entry for SiC only
accounts for three common crystalline structures. It is to be understood
as an estimate rather than a precise value.

Protecting the gold mirror

The surface of our chip is coated with a thin layer of gold for its excellent re-

flectance. Unfortunately, gold is known to be a getter of Rb. Over time, we see

the gradual development of a potential bump associated with the usual trap po-

sition, most likely due to Rb adsorption3.

2Thin-film AlN has a grain size much smaller than the layer thickness.
3Recall that our usual trap position is merely a few µm away from the chip, so that a small
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Given that our chip is operated at room temperature, the mechanism governing

the Rb adsorption is most likely chemisorption [32], where chemical bonds are

formed between the surface and adsorbate due to their comparable work function

(∼ 5 eV for gold and 2.26 eV for Rb). Prevention then calls for coating the gold

surface with a material of dramatically different work function, while preserving

the reflectance of the surface at 780 nm.

A few candidates are possible. SiO2 deposition is available at Laboratoire de Pho-

tonique et de Nanostructure4. Since SiO2 is transparent at 780 nm, it is expected

not to modify the reflectance. One attempt was made during the previous fab-

rication exercise in 2012. The resultant chip was however damaged soon after

its installation, possibly caused by the incompatibility of the rigidity of SiO2 and

a strong thermal deformation of the underlying resist5 when electrical currents

were sent through the on-chip wires. More attempts will be made now with the

new chips, paying special attention to fully bake the PMMA, and/or to use a

more rigid resist, e.g. benzocyclobutene (BCB). Looking forward, there may also

be the possibility to deposit amorphous carbon or sapphire of ∼ 10 nm thick-

ness6, which should limit the absorption at 780 nm while keeping the gold mirror

intact. As the process is more experimental, an old chip would be used for testing

at this stage.

8.2. There is more light!

8.2.1. Hybrid magneto-optical potential

A telecomm laser at 1530 nm is being added on the setup to form a 1D optical

lattice in the longitudinal direction of the magnetic confinement. The availability

of a periodic potential allows for the realization of the lattice Boson models, hence

expanding the versatility of the current setup. Technically, such a lattice may

amount of adsorbed Rb is sufficient to cause potential irregularities.
4Route de Nozay, 91460 Marcoussis, France
5Poly(methyl methacrylate) (PMMA) was used. There is evidence that it was underbaked and

therefore softer than usual.
6under discussion with Dr. Joakim Andersson and Dr. Björn Hessmo, Centre for Quantum Tech-

nologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore.
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also act as a pinning device that prevents the longitudinal motion of the atoms

during a transverse compression, which is a crucial step in order to achieve large

interaction strength on our current setup.

Other forms of optical potential engineering are possible. For instance, taking ad-

vantage of the transverse magnetic guide available on our set up, a homogeneous

1D trap can be formed by superposing optical ‘end-plugs’ on to the wave guide.

This can be achieved by means of a phase plate [33, 120] or simply imaging a dark

area onto the atoms. The advantage of such a hybrid box trap is that the sepa-

ration of the end-plugs and thus the size of the 1D box can be easily adjusted7.

There is also the possibility of spatial selection using a (resonant) cleaning beam,

so that Mott insulator states with lower (the outer regions of the atomic cloud) or

higher (near the center of the atomic cloud) occupancy can be blasted away be-

fore imaging (see Fig. 8.2). The first step of a feasibility study has been developed

during the internship of Ms. Laëtitia Farinacci [49].

21

Figure 8.2.: An illustration of optical potentials for spatial selection. I denotes the
intensity of the selection beam, and thus the optical potential depth.

7In a similar spirit, a magnetic quartic potential has been realized on our setup [82]. However,
its applicability to actual measurements is limited as acceptable current values tend to yield a
box too large for the typical number of atoms accessible.
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8.2.2. Updating the existing laser system

The stability and maximal continuous run time of our current setup are mostly

limited by the laser system. On a short time scale, the spectroscopically locked

master laser is susceptible to acoustic vibrations. On a long time scale, the align-

ment of the cooling light which propagates in free space becomes sensitive to

changes of the temperature and the humidity. It is certainly up to the operator of

the experiment to keep various components at optimal working condition. Yet,

improving the hardware is always welcome. Here, I mention two such improve-

ments on the laser system that are carried out in the lab right now.

16

Figure 8.3.: A schematic of the new laser system that is currently being installed.

• A fibered beam splitter will be installed to replace the existing splitter clus-

ter in free space, with outcouplers to be installed directly outside the exper-

imental chamber, thereby eliminating most of the free optics in the cooling

path.

• Taking into account potential losses due to fiber injection, the laser system

will be slightly modified according to Fig. 8.3. The additional Master 2

laser (M2) will act as the seed for the TA, which will provide light neces-

sary for cooling, optical pumping and imaging. The implementation of the
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phase lock between Master and M2 allows an arbitrary frequency offset and

sweeps of M2 up to a few GHz [7] with a constant intensity, an essential re-

quirement for constant output power of the TA. The repumper laser will

soon be replaced by a DFB laser to supply sufficient power (& 20 mW be-

fore the fiber injection).

Conclusions

In this chapter, we have seen the ongoing technological progress to improve

both the atom chip and the laser system of our experiment. Once imple-

mented, these changes will likely improve both the stability and versatility

of the experimental setup.



Concluding Remarks





163

In this thesis, I have presented a study of equilibrium and nonequilibrium be-

haviors of 1D Bose gases. The experiments performed in this study were carried

out on an atom-chip setup at Institut d’Optique, Palaiseau. The setup is able to

produce single samples of harmonically trapped, (nearly) 1D Bose gas of 87Rb at

tens to hundreds of nK, allowing a prototypical realization of the Lieb-Liniger

model.

The equilibrium behavior of 1D Bose gases are fairly well understood theoreti-

cally. Its thermodynamic properties are described by the celebrated Yang-Yang

equation of state, which is analytic and exact. Powerful numerical tools such

as the Quantum Monte Carlo calculations can be used to compute quantities

of interest that go beyond the equation of state. In addition, various approxi-

mate theory tools exist in their respective domains of validity in the interaction-

temperature phase diagram. Such impressive developments have set the stage

for quantitative characterizations of experimental realizations of the Lieb-Liniger

gas.

In Chapter 3, I have given an overview of the various probes that can be used

to quantitatively characterize a single realization of harmonically confined 1D

Bose gases at thermal equilibrium. The development of these tools is a joint ef-

fort among several experiments with similar setups (making use of atom chips),

and spans from around 2006 to date. My discussions focused on the direct ap-

plication of these tools and methods for thermometry. I also demonstrated the

very first momentum correlation measurements performed on such a system. We

are currently working on its application as a quantitative characterization tool, a

thermometry method in particular.

The ability to quantitatively characterize the 1D Bose gases at (near) equilibrium

allows for further investigation of their nonequilibrium behavior. Indeed, the

realization of a Lieb-Liniger gas with ultracold atoms constitutes a prime candi-

date for quantum simulation given the degree of isolation and controllability. It

promises the potential to address interesting questions, such as the propagation

of elementary excitations in a inhomogeneous medium (dynamic Casimir effect),

and the relaxation and thermalization processes (or their absence) in an integrable

quantum many-body system.

I performed the following experiments in this direction:
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1. A joint theoretical and experimental study of the breathing mode, focusing

on quantitative characterization of such a collective excitation in terms of

its frequency and lifetime signatures.

• The frequency signature was probed in various asymptotic regimes

and crossovers in the interaction-temperature phase diagram.

• The measured frequency in real space agrees with existing theoretical

predictions in the asymptotic limits.

• Two finite-temperature models are proposed for the real-space breath-

ing frequency in the quasicondensate to Ideal Bose gas crossover, and

I show their qualitative agreement with experimental data.

• A momentum-space frequency doubling is demonstrated experimen-

tally for the first time.

• We understand that a self-reflection mechanism induced by the repul-

sive interaction is responsible for such a signature.

• I presented an experimental investigation of the disappearance of the

self-reflection through the quasicondensate to ideal Bose gas crossover.

A possible theoretical description and extensions are proposed.

• I also investigated the variation of the lifetime through the 1D-3D di-

mensional crossover. Theory models are currently under development.

2. I probed and characterized a ‘two-temperature’ phenomenon often seen on

our experiment.

• I described its usual characteristics in terms of the apparent profile

temperature and fluctuation temperature using the respective ther-

mometries introduced in Ch. 3.

• I attempted to vary its characteristics by controlling the waiting time

and the evaporation parameters. I have shown that the disagreement

between the two apparent temperatures is robust and long-lived.
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• I discussed possible technical and physical causes, and proposed an

extension of this work.

3. I attempted experiments that investigate the evolution of a system deliber-

ately brought far away from equilibrium.

• An analog of parametric amplification in nonlinear optics indicates

that the excitation of well-defined phonon modes for a quasiconden-

sate near the quasicondensate to ideal Bose gas crossover is nearly im-

possible.

• An interaction double quench leads to a small-amplitude breathing

mode in the long run. Its real-space behavior agrees with our character-

ization in Ch. 4. There are interesting signals in the momentum-space

behavior that deserve further exploration. The short-time evolution

has not been accessible up to March 2014 due to technical constraints.

• Slow interaction ramps result in the destruction of the anticorrelations

between equal but opposite momenta. The analysis of the effect of

the ramp duration is pending the construction of a single meaningful

quantity of the momentum correlation matrix.

The study of nonequilibrium physics on our experimental setup is still in its in-

fancy. With the information we have gathered thus far and the on-going techni-

cal improvements on the setup detailed in Part III, the following perspectives are

within reach:

• The modeling of the breathing lifetime, together with possible future experi-

ments, could give access to the physical mechanisms that cause the lifetime

variations observed in Sec. 4.4. Its potential connection with integrability

and thermalization [94] is worth pursuing.

• The impossibility to excite well-defined phonon modes (of energy much

above the collective breathing mode but comparable to the speed of sound)

may be related to both the response (susceptibility) of the system (medium)

and the lifetime of such excitations. This is in stark contrast with the ob-

servation of correlated excitation pairs reported in [85] by the metastable
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helium experiment in our group. These two experimental setups differ in

the effective interaction parameter due to the different mass of the atomic

species. A joint effort may give experimental access to the intermediate be-

havior (matching the interacting parameter by tuning the linear density),

thus probing the phonon lifetime in a 1D system that has been hard to ac-

cess otherwise.

• The short-time evolution after an interaction double quench may reveal

propagation of excitations similar to those reported in [34, 100]. The im-

proved imaging resolution promised by the new objective will give access

to finer details in the measured correlations.

• Once a quantitative probe can be formulated from the momentum correla-

tion measurements, we will be in a position to find out the effect of the time

scale defined by the interaction ramp. This may in turn address questions

such as the breaking of adiabaticity.
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