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1 Introduction

The phenomenon of wave propagation is ubiquitous in nature: Light, sound,
and quantum particles all are waves, and can therefore spread out and inter-
fere. The expansion of a wave can be disturbed by changing the uniformity
of the supporting medium. In the case of light for example, fluctuations
of the refractive index of the medium or placing an object in its path will
scatter the wave. Scattering from an ordered array of obstacles, as shown
qualitatively in panel a of figure 1 can lead to discernible interference ef-
fects. The example given here is reminiscent of Bragg scattering, where the
constructive interference can be intuitively understood by employing Huy-
gens principle and by considering the regular positioning of the scatterers.
If on the other hand the scatterers are located at random positions as in
panel b one expects no easily predictable regular interference pattern, but
rather an irregular intensity distribution.1 Such a disordered potential is
characterised by statistical quantities, like the average distance between two
neighbouring scatterers, and the resulting irregular wave pattern depends
on the specific realisation of the disorder. Averaging over many potential
configurations with the same defining statistical properties will show how a
wave propagates “on average” in such a medium, and one naively expects
that interference effects cancel out. In other words, this train of thought
suggests that when modelling the average propagation of waves through a
disordered medium one can neglect the wave nature and treat the problem
as a random walk of classical particles.

The propagation of waves through a medium with a random assortment
of scatterers is encountered in many instances in nature (sunlight shining
through a cloud, seismic waves propagating through the earth, surface water
waves in a pond with reeds, ...) and in artificial technical situations (ultra-
sound imaging, electron transport through a metal with impurities, ...). It
is therefore desirable to have a good understanding of wave propagation in
complex disordered media. Quite successful first descriptions were based
on the assumption given above that any interference effects would be com-
pletely washed out: The Drude-Boltzmann theory in the case of conducting
electrons in metals, and later the radiative transport theory in the case of
electromagnetic waves (see [81] and references therein). In both cases the
resulting propagation is of diffusive nature.

Perhaps the first hint that interference effects must in fact not be ne-

1This kind of interference pattern, known as “speckle”, is employed in our experiment
and will be described in section 4.
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Figure 1: Scattering of a wave from an orderered and a disordered
array of obstacles. An incoming plane wave (from the upper right hand
corner) is scattered by a regular (panel a), or a random (panel b) assortment
of scatterers (red). In the former case the resulting wave pattern exhibits
a pattern that reflects the scatterers’ order, whereas in the latter case the
interference is irregular.

glected came from P. W. Anderson in his seminal paper “Absence of Diffu-
sion in Certain Random Lattices”, published in 1958 [11]. Loosely speaking,
in certain strongly scattering cases where a classical particle could propa-
gate further and further away from its original position as time increases,
Anderson Localization predicts bound states of a wave, trapped in self-
interference.2 Famously, it went initially largely unnoticed before becoming
a topic of thriving theoretical and experimental research.3

Anderson localization may be the most striking, but it is not the only ef-
fect due to coherent propagation in disorder. The theory of weak localization
was conceived in order to explain the anomalous resistivity of a thin metal
film subject to an external magnetic field (see [18] and references therein).
Weak localization results in a correction of the diffusion constant, or equiv-
avently a correction of the resistivity, and relies on the time-reversal sym-
metry of wave propagation in the disordered medium. An external magnetic
field breaks this symmetry, therefore changing the resistivity as a funciton
of the applied magnetic field [7, 105]. Weak localization is nowadays seen as
a precursor of Anderson localization.

Many experiments were carried out on the observation of Anderson lo-
calization and weak localization with electrons and classical waves (most

2The terminology of strong and weak scattering media will be explained in section 2.2.1.
3Anderson was jointly awarded the 1977 Nobel prize for this and related works [12].
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Figure 2: 1D Anderson localization of ultracold atoms. A cloud of
atoms confined in a 1D waveguide is released from a trap and expands until
it reaches its exponentially localized state. Graphic reproduced from [20].

notably light and ultrasound), and an overview of previous works will be
presented in the introductions of chapters 6 and 7. Our group is one of the
first to add altracold atoms to the mix, which resulted in the observation
of 1D Anderson localization in 2008 in parallel to a group at LENS in Flo-
rence, Italy [20, 97, 14]. The appeal of ultracold atoms lies in the control
the experimenter can exercise over many important parameters: The system
is very well isolated from the environment and is therefore highly coherent,
its dimensionality can be controlled, properties of the disordered potential
can be changed easily, the interaction between the atoms and the poten-
tial can be made completely conservative (no absorption), the interactions
between the atoms can be controlled, and the density of the atomic cloud
can be imaged directly. Since the propagation of waves in disordered media
is theoretically and computationally hard to solve, especially in the case of
Anderson localization, ultracold atoms therefore provide a nice test bed to
explore still unsolved questions [119, 14, 66, 101].

Despite there having been theoretical and experimental explorations on
coherent transport in disordered media for over half a century now the
field is still very active: Only during the duration of this thesis several
new ideas were developed theoretically, and a small and subjective list in-
cludes for example a novel mechanism explainig weak and Anderson lo-
calization [42], a novel feature in the momentum distribution of an An-
derson localized sample of ultracold atoms (“Coherent Forward Scattering”,
CFS) [59, 79, 69, 46], and a novel signal appearing when breaking and restor-
ing the time-reversal symmetry in a weak localization experiment (“Coher-

3



1.1 Course of this thesis

Figure 3: 3D Anderson localization of ultracold atoms. A fraction of
the atoms were localized and detected as a peak emerging from the diffusive
atoms after long propagation times in the disorder.

ent Backscattering Echo” or “Coherent Backscattering Revival”, CBSE /
CBSR) [80]. These were accompanied by experimental successes like a test
of the universality of the metal-insulator phase transition in 3D [75], the
observation of 3D Anderson localization with ultracold atoms [56, 103], and
the measurement of the mobility edge [103, 62].

1.1 Course of this thesis

After the initial success of observing 1D Anderson localization in 2008 it
was decided to mount an experiment specifically to study the propagation
of ultracold atoms in a 3D configuration. It was constructed in the atom
optics group led by Alain Aspect at the Institut d’Optique at Palaiseau,
France, with Vincent Josse as team leader, Alain Bernard and Fred Jen-
drzejewski as the PhD students, and Patrick Cheinet as PostDoc. When I
arrived in 2011 the setup was about finished and the studies on 3D Ander-
son Localisation went underway. With Jérémie Richard as a new arrival we
then undertook a study on a phenomenon akin to weak localisation, called
Coherent Backscattering. Here, we monitored the momentum space evolu-
tion of the waves propagating in the disorder, a fact that enabled us to also
characterize two important transport parameters, the mean free time and
the transport time. At this point the experiment had proven to be able to
produce competitive results. In order to ensure more flexibility for future
experiments several major modifications were carried out during the middle
of this thesis. After their completion Valentin Volchkov joined us as Post-
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1.2 Outline of this manuscript

Figure 4: Coherent Backscattering. The appearance of the Coherent
Backscattering peak, indicated with the red arrows, was observed in mo-
mentum space as a function of the propagation time. It is a telltale sign of
coherent and time-reversal invariant transport in disorder.

Doc and Vincent Denechaud for his master thesis. Another experiment on
a novel effect, the Coherent Backscattering Revival was carried out during
the last year of this thesis.

The combined works presented here would not have been possible with-
out the dedicated work by all members of our team. Besides the PhD stu-
dents and PostDocs mentioned above we were very lucky to benefit from
the visits of Aditya Date and Raymond Santoso who joined us for several
months as master students.

1.2 Outline of this manuscript

An introduction to the topic of wave propagation in complex disordered
media is given in Chapter 2. The key concept of disorder averaging is
introduced before qualitatively motivating basic effects like scattering, the
mean free path, and the transport path. Weak localization and Anderson
localization are introduced at the end of this chapter.
In chapter 3 an overview over our experimental cycle is given, with which
we produce a sample of ultracold atoms in the nano-Kelvin regime. Some
standard experimental techniques used in cold atom experiments that we
employ are briefly introduced. This includes a special feature of our experi-
ment, the magnetic levitation, which cancels gravity for the atomic sample.
These experimental steps are equal, bar some minor modifications and im-
provements, to all experiments presented in this thesis. The last leg of the
experimental cycle that is specific to the experiment in question will be de-
tailed in the chapters on Anderson Localization, Coherent Backscattering,
and Coherent Backscattering Revival.
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1.2 Outline of this manuscript
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2.6 ms

with
dephasing pulse

without
dephasing pulse

Figure 5: Coherent Backscattering Revival. With a controlled surgical
dephasing the time-reversal symmetry of counter-propagating loops the co-
herent backscattering peak was destroyed, except for a specific time when
quantum interferences aligned again, leading to a revival of the peak. In the
left column the always visible CBS peak is shown for increasing propagation
times in the disorder, whereas in the right column it appears only around
the revival time, when time-reversal symmetry is briefly re-established.

Chapter 4 introduces another speciality of our experiment, the optical
speckle, which provides us with a well controlled disordered potential.
The modifications of the experiment that were executed during this thesis
are shown in Chapter 5. The imaging system, a beam path for a dipole
trap beam, and the speckle setup were all completely redone. In each case
the new setup is detailed and its performance characterised.
Briefly shown in Chapter 6 are our results on 3D Anderson localization
with ultracold atoms. The results we obtained were already described in
depth in the thesis of F. Jendrzejewski [55], and only a short account is
given here.
Chapter 7 presents the results obtained on Coherent Backscattering (CBS).
After an introduction to the mechanism of CBS with an emphasis on the
importance of the time-reversal symmetry of the wave propagation, a de-
tailed analysis of the experimentally observed dynamics of the CBS peak is
given.
The chapter on CBS forms the basis for our experiments on Coherent Backscat-
tering Revival given in Chapter 8, where we manipulate the time-reversal
symmetry of the wave propagation in the medium and study the effects on
the CBS peak. An introduction to the relationship between time-reversal

6



1.2 Outline of this manuscript

symmetry and reciprocity is given, followed by an overview of related previ-
ous experimental works. The methodology of how we achieve time-reversal
symmetry breaking is detailed, and the experimental results are presented.
Finally, Chapter 9 gives an overview over possible future projects that can
be tackled with our experimental setup.
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Figure 6: Disorder average. Shown on the left hand side are four ex-
amples of a numerically simulated speckle with a gaussian envelope. Each
of the images is a distinctly different configuration, but all were generated
according to the same statistical parameters. On the right hand side an
average over 1000 such different configurations is shown. Gradually the fea-
tures corresponding to a specific realisation disappear, leaving in this case
only the gaussian envelope.

2 Wave propagation in disorder

In this section a qualitative overview over wave propagation in a disordered
medium is given. We will motivate several key concepts, like relevant energy
scales and disorder averaging, which will be revisited and explored more in
depth when necessary in later sections. This discussion is based on several
works on this topic [3, 64, 81, 104]. The qualitative results shown here are
mostly general, but an emphasis is put on our specific situation, that is,
matter waves propagating in a speckle potential.

2.1 Disorder, interference, and disorder averaging

The general ingredients in the system we are considering are a wave that
is exposed to a disordered medium. This disordered medium can in a first
approximation be viewed as a number of scatterers located at random po-
sitions: In solid state physics for example these are the impurities in a
conductor, or for electromagnetic waves they are random changes of the re-
fractive index. An incident wave will then scatter on these impurities and
interfere with itself, leading to a complicated interference pattern that is
unique to the specific details of the system under consideration. We want to

9



2.2 Energy scales

make general statements on how a wave will propagate, which necessitates
to derive results that are true “on average”.

In order to motivate this idea further we consider the case of an optical
speckle:4 A speckle can be produced by shining a monochromatic laser beam
(the wave) through a rough glass plate (the disordered medium), whereby
the light acquires spatially random phases. The interference pattern be-
hind the glass plate then produces a random distribution of bright and dark
spots. Let us assume that we have many different rough plates, each with a
distinct surface structure, but all of them are produced to comply with the
same statistical properties. In this scenario then, the refractive index of the
glass, and the average size of the surface structures will be the same for all
plates. Changing the plate while leaving all other parameters of the setup
equal will produce a different speckle pattern. Figure 6 shows four examples
of numerically computed speckle patterns, each of them corresponding to
a different realisation of the disorder. In order to find out what the aver-
age intensity distribution looks like we take the mean over many different
disorder realisations. This will suppress all random fluctuations, smoothing
out the intensity distribution, and revealing the overall structure. In this
particular example we find that the intensity distribution is, on average, a
symmetric gaussian.5

In this thesis we are interested exclusively in effects of wave propagation
in disorder that survive such a disorder averaging. To imply that a quantity
is disorder averaged we will use angled brackets 〈· · · 〉: Using the example of
the speckle given above, the individual intensity patterns Ik that are pro-
duced by specific disorder configurations enumerated by the index k result
in the average intensity distribution 〈I〉,

〈I〉 =
1

N

∑
k

Ik, (1)

where N is the total number of different realisations.

2.2 Energy scales

The average height and width of a scatterer in the disordered potential define
certain energies. Together with the kinetic energy of the quantum particle

4Optical speckles are a fundamental part of our experimental setup, and will be treated
in detail in section 4.

5This example, the overall gaussian intensity distribution, is somewhat arbitrary. One
could imagine different setups with different outcomes, but in each case the random fluc-
tuations would disappear through the disorder averaging, revealing the general structure.
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2.2 Energy scales
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Figure 7: Example of a 1-D speckle potential. The average value of the
potential VR, as well as the typical size of a speckle grain σR is indicated.

propagating in it they determine the qualitative behavior of the system. We
will use the optical speckle potential in this discussion, as it is used in all our
experiments as the disorder, and loosely follow the arguments given in [104].
As an example, figure 7 shows a 1-dimensional speckle.

First we introduce the average value of a disordered potential V (~r), which
will be referred to as the amplitude of the disorder VR = 〈V (~r)〉. For speck-
les the square of this quantity is equal to the variance of the potential,
V 2
R = 〈(V − VR)2〉, a result that will be derived in section 4. In theoreti-

cal calculations the disordered potential is commonly shifted by VR to have
zero mean value, V (~r)→ V (~r)− VR, and we will use this convention unless
otherwise noted.
Second, the speckle is a correlated disorder. This means that the potential
fluctuates over a certain characteristic distance σR.6 This length defines an
energy called the correlation energy ER = h̄2/(mσ2

R), with m the mass of
the particle.7 The correlation energy has the interpretation of the ground
state energy of a particle with mass m trapped in a potential well of width
σR.
Third is the total energy of the particle. If the potential fluctuations con-
tribute just a small perturbation to the total energy, the total energy can
be approximately given as the kinetic energy in free space Ek = h̄2k2/(2m),
with mass m and with wavevector k. For increasing disorder strength this

6Note that for a given disordered potential the length σR can be defined differently, up
to a numerical factor. For this qualitative section it is to be understood just as an order
of magnitude.

7We will follow this notation given for example in [64]. Another convention used for
example in [104] is ER = h̄2/(2mσ2

R).
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2.2 Energy scales

is no longer the case, and the relationship between the wavevector and the
energy is given in a more general form by the spectral function

A(k,E) = |〈~k|E〉|. (2)

Having the spectral function in mind the total energy can still be designated
by Ek, where the wavevector is to be understood just as a parameter.

One can characterise the behavior of the system using the two ratios of
these three energies:

• η = VR/ER, the ratio between the potential fluctuations and the cor-
relation energy.

• Ek/ER = 1/2(kσR)2, the ratio between the particle’s energy and the
correlation energy.

The value η is important for the considerations of Anderson localization,
which will be briefly discussed in section 2.6. In short, Anderson Localisation
is the localisation of a wave in a disordered medium due to self-interference.
It has to be distinguished from localisation due to bound states in suffi-
ciently deep potential wells. If η � 1 a typical valley in the potential will
not be deep enough to support a bound state. Therefore, if localisation is
observed under this condition it is a strong hint that it is Anderson local-
ization, and not due to trivial localisation of bound states in potential wells.
In this localized case the potential fluctuations are smoothed out by the
large de-Broglie wavelength and may be described by an effective disorder
amplitude V eff

R = V 2
R/ER [104, 106]. This regime is referred to as “quantum

disorder”.8

If η � 1 trivial trapping in potential wells is a possibility. Anderson
Localisation will still take place at energies above the classical percolation
threshold,9 but it might be difficult to experimentally separate these two
effects.

The ratio between the kinetic energy and the correlation energy is es-
sentially a ratio between the typical size of a scatterer σR and the deBroglie
wavelength of the particle λdB ∼ k−1. For kσR � 1 the deBroglie wave-
length is much larger than the structures of the disordered potential, details

8Our experiments on Anderson localization, described in chapter 6, fall into this regime
with η on the order of 0.01 to 0.1.

9When decreasing the energy of a classical particle in a given disorded potential the
medium will eventually become an isolator, since energetically allowed regions become
disconnected. The classical percolation threshold is the critical energy at which this tran-
sition from conductor to isolator happens.
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2.3 The elastic mean free path and the transport path

of the potential therefore cannot be resolved: This already motivates that a
single scattering event completely randomizes the direction of the wave, an
effect that will be treated more in detail in section 7.4.1. Also this condition
implies that the wave experiences an effective potential, which is smoothed
out over a sphere with a radius on the order of λdB. For kσR � 1 on
the other hand the deBroglie wavelength is much smaller than the smallest
structures of the potential, quantum effects like tunneling are suppressed,
and semiclassical considerations may be applied. The structure of a potential
peak can be resolved by the wave and scattering may be very anisotropic.

2.2.1 Weak and strong disorder

If the disordered potential is sufficiently weak the trajectory of the particle
is only slightly perturbed with respect to its free space counterpart, that
is, one can assume that it moves in a straight line. In this approximation,
called the thin phase grating approximation [52], the additional accumulated
phase due to the disordered potential V is simply

∫
V [~r(t)]dt/h̄, where ~r(t)

is the trajectory. One speaks of weak disorder if this phase accumulated
over a distance σR is small. If the particle’s velocity is v the time it takes to
cover this distance is τ = σR/v, and the phase can be estimated as VRτ/h̄ =
η/(kσR) =

√
∆/2. We have introduced here the important parameter ∆ =

V 2
R/(EkER), which serves as the quantity that distinguishes weak (∆ � 1)

from strong disorder (∆ � 1). The parameter ∆ is also used to gauge
whether the Born approximation is applicable: In weak disorder ∆� 1 the
first term of the diagrammatic series is sufficient to describe the scattering
behavior [64].
Finally the weak disorder condition ∆� 1 can be rewritten as Ek � E∆ =
V 2
R/ER, that is, the wave is only weakly scattered in a given disorder if its

energy is larger than the characteristic energy E∆. This energy is important
in the context of localisation in three dimensions, since it gives an estimate
of the mobility edge, below which the states are localised.

2.3 The elastic mean free path and the transport path

A wave in a disordered medium can propagate for a certain distance before
it is being scattered. This distance is called the mean free path, and we
will motivate it and a related quantity, the transport path, following general
and intuitive arguments given in [104]. This brief discussion is limited to 2D
systems, which is the situation encountered in our experiments on Coherent
Backscattering and Coherent Backscattering Revival treated in sections 7
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2.3 The elastic mean free path and the transport path

Figure 8: Mean free path and transport path. Shown here are two dis-
tinct cases of wave propagation in disordered media: In panel a the deBroglie
wavelength is larger than the average structure of the potential (kσR � 1),
leading to isotropic scattering. The propagation direction is therefore com-
pletely randomised after one scattering event, and the transport path l�

approaches the mean free path lS . Panel b shows the case of fast particles
(kσR � 1), where the waves are scattered in the forward direction. It then
takes several scattering events to completely scramble the direction of prop-
agation, leading to a transport path larger than the mean free path. It must
be noted that in both cases only one out of a multitude of different possible
trajectories is shown.

and 8.
Assuming weak disorder as defined in the previous section, the scattering

cross section of a barrier can be calculated in the Born approximation: An
average scatterer in the disorder has the amplitude VR and the width σR,
which then leads to a cross section of σx ∼ η2/k for slow particles kσR � 1.
Assuming that the density of scatterers nscat is on the order of σ−2R the mean
free path then is

lS =
1

σxnscat
∼ kσ2

R

η2
. (3)

We assumed for the calculation of the scattering cross section that kσR �
1, that is, we assumed that the deBroglie wavelength is larger than the
average structure of the disorder. An incoming wave in this case is scattered
isotropically in all directions as shown in figure 8 a. A single scattering event
then is sufficient to scramble the information about the initial direction. This
happens on a time scale τS = lS/v with v the velocity of the particle, which
is called the mean (elastic) scattering time.

In weak disorder the mean scattering time is linked with the spectral
function, introduced in equation (2). It takes the form of a lorentzian in
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2.4 Diffusion constants

the energy of the particle, centered around the kinetic energ Ek and with a
width ∆E = h̄/τS :

A(k,E) =
h̄

2πτS

1

(E − Ek)2 + (h̄/(2τS))2
(4)

For kσR � 1 the scattering is anisotropic, with a higher probability
to scatter in the forward direction. This situation is shown in figure 8 b.
In this case it takes several scattering events to completely scramble the
information about the initial direction, which happens after a total path
length l? called the transport path. Again one can define the time it takes
to loose the information about the initial direction, the transport time, as
τ? = l?/v. The opening angle of the scattering is ∼ (kσR)−1, which implies
that it takes on average (kσR)−2 scattering events to completely scramble
the propagation direction. Furthermore in this limit of fast particles the
scattering cross section is reduced by a factor (kσR)−1. Comparing with
equation (3) we can therefore write the order of magnitude of the transport
path as

l? ∼
k4σ5

R

η2
. (5)

2.4 Diffusion constants

The propagation of waves in disordered potentials that we have considered
so far in this section is diffusive in nature: In analogy to a classical particle
in a disordered medium the path can be modelled as a random walk with
an average step size equal to the transport path l? introduced in the previ-
ous section. After many steps the probability distribution of the particle’s
position is gaussian with a width

√
2Dt:

P (t) =
1

(4πDt)d/2
exp

(
− |~r|

2

4Dt

)
(6)

The dimension of the system is denoted by d, and we have assumed here
that the starting position at t = 0 is ~r0 = 0. The diffusion constant is
denoted as D, and can be expressed in terms of the number of dimensions
of the system, the velocity of the particle v, and the transport path l? [64]:

D = DB =
1

d
vl? (7)

Other notations exist, where the dimensionality d is not integrated into
the diffusion constant. The subscript . . .B indicates that in this form the
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2.5 Weak Localization

Figure 9: Weak Localisation. At the basis of weak localisation is the con-
structive interference of counter-propagating loops, shown schematically in
panel a. Since the phase acquired while traversing the loop is the same for
the red and the blue path both interfere constructively in an area around the
origin of the loop (shaded gray). The interference increases the probability
of return, and therefore slows down the propagation. The Weak localization
effect in thin metallic films can be made evident by dephasing the elec-
tron counter-propagating paths using a magnetic field. Shown exemplory in
panel b are resistance measurements in such a configuration as a function
of the magnetic field (reproduced from [18]).

diffusion constant is also called the Boltzmann diffusion constant. As shown
in section 7.4.1 we are able to experimentally extract the transport time τ�,
and therefore also the transport path, for a given initial velocity, allowing
us to directly estimate the Boltzmann diffusion constant.

Formula (7) relies on the analogy to the random walk of a classical
particle. Extending its validity to the propagation of waves in disorder
assumes that there are no corrections due to interference. This assumption
seems to be reasonable, since the interference corrections would have to
survive the disorder averaging. In the next section though we will see that
there are indeed corrections to the classical transport picture.
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2.5 Weak Localization

2.5 Weak Localization

The first order corrections to transport in disordered media due to inter-
ferences are weak localisation and coherent backscattering. The two are
very similar in their origin, since both rely on the constructive interference
of counter propagating loops. In order to motivate that interference can
lead to corrections of transport we will give a very brief introduction into
weak localisation here. A more formal description with a focus on coherent
backscattering will be presented in section 7.

As of now when talking about the propagation of waves in disorder we
have pictured only one specific path, for example in figure 8. In reality a
wave explores a multitude of trajectories at once, leading to interferences.
Since we are interested in phenomena that survive disorder averaging (see
section 2.1) we are looking for a class of distinct paths common to all dis-
order configurations, and which produces interference effects that are also
independent of the specific disorder configuration.
Such a class is the one of counter-propagating loops, an schematic example
of which is shown in panel a of figure 9. In such a loop the phase acquired
by the clockwise and the counter-clockwise path is exactly equal, leading to
constructive interference in an area around the origin of the loop. This inter-
ference increases the probability of return, and consequently the propagation
of a wave is therefore slowed down. Such loops exist for all disorder config-
urations, and the effect of slower propagation due to interferences therefore
survives the disorder averaging. This effect is called weak localisation.

The importance of these interference effects on the propagation depends
on the average number of times a given trajectory crosses with itself to
form a loop. This number can be easily estimated: Since the propagation
is diffusive we can assign a diffusion constant D, which contains all possible
corrections due to interferences. In d dimensions the wave then explores a
volume ∼ Ld = (2Dt)d/2 within a time t. Assuming that the wavepacket
has a size comparable to the deBroglie wavelength the volume traced out by
the trajectory within a time dt is λd−1

dB vdt with v the velocity of the particle.
The increase of probability for a crossing after the propagation time t then
is the ratio of these two volumes, dpx(t) ∼ λd−1

dB vdt/(2Dt)d/2. The total
probability then is [3]

px(t) ∼
∫ t

t0

λd−1
dB vdt̃

(2Dt̃)d/2
. (8)

The time t0 serves as a cut off to make the integral finite. Its physical
interpretation is that diffusive propagation sets in for times t > t0.
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2.6 Strong / Anderson localisation

Figure 10: 1D Anderson Localization. Shown here are images from
the realisation of 1D Anderson localized ultracold atoms [20]. An initially
trapped cloud (a) is released and can propagate along a waveguide (the pink
tube). After an initial expansion a final stationary profile is reached (b).

The kind of correction we showed in figure 9 is only the first in a whole
series of corrections. As the disorder strength increases the probability for
crossings in equation (8) increases and loops of higher order become more
important.

2.6 Strong / Anderson localisation

In sufficiently strongly scattering media transport can be suppressed com-
pletely, rendering the medium an isolator as opposed to a conductor. In this
case the wave function is localized within a region of a certain size charac-
terised by the localization length lloc, and does not extend over the whole
medium as the propagation time tends towards infinity. This localization
is qualitatively different from the way one usually thinks about confining a
particle or wave: Instead of surrounding it with sufficiently high potential
barriers or mirrors, here the localization is solely due to self-interference. In
a thought experiment, an initially Anderson localized system would start to
diffuse indefinitely if one switched off only the interference effects. In other
words, a quantum mechanical particle might be trapped due to interference,
whereas a particle propagating in a purely classical manner would diffuse
away.
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2.6 Strong / Anderson localisation

This behaviour was first postulated by Anderson in 1958 [11], and went
from being initially largely unrecognised to becoming a cornerstone in con-
densed matter, as well as other branches of physics.10 Anderson localization
is a difficult topic, both in its theoretical description and in the experimental
realisation. This is exemplified by there existing several different definitions
of the phenomenon [114]. A simple working criterion follows from the ti-
tle of Anderson’s original work and defines localization as the “absence of
diffusion”:

D(E) = 0 (9)

In this picture a particle of energy E in a given disordered potential is
confined to some finite region due to self interference, giving the diffusion
constant D a vanishing value.

Localization depends strongly on the dimensionality of the system, as
shown by the scaling theory developed by Abrahams, Anderson, Licciardello,
and Ramakrishnan [1]. This can be motivated qualitatively by considering
the classical probability of return in a random walk as an indicator of the
influence of interference effects: In a 1-dimensional system each scattering
event reflects the wave towards its previous position, and interference effects
are strong. Indeed, it turns out that in infinite 1D systems all states in a
given disorder are localized, independent of their energy. Increasing the di-
mensionality decreases the impact of the interference effects: 2D systems are
considered to be the marginal case, where states of all energies are still local-
ized, but the region occupied by the localized states increases exponentially
with the energy of the particle.

3D systems are qualitatively different, as there exists a critical threshold
energy Ec called the mobility edge that separates diffusive from localized
states. An estimation for the value of the mobility edge is given by the
Ioffe-Regel criterion [54], relating the two fundamental length-scales of the
system with each other:

kl ≈ 1 (10)

Here, k = 2π/λ is the wave vector, and l is the mean free path. Localiza-
tion therefore sets in when the wavelength becomes comparable to the mean
distance between two subsequent scattering events. Crossing the mobility
edge the medium experiences a phase transition from conductor to insula-
tor. For energies around the mobility edge the diffusion constants and the

10For a historic overview of the development of the research concerning Anderson local-
ization see [13].
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2.6 Strong / Anderson localisation

localization lengths are predicted to vary according to critical exponents s
and ν:

D ∝ |E − Ec|s for E > Ec

lloc ∝ |E − Ec|−ν for E < Ec
(11)

Anderson Localization is still a field of active research, with open ques-
tions remaining especially in higher dimensional systems. The precise posi-
tion of the mobility edge and the values of the critical exponents for example
can be calculated numerically, but so far no satisfying analytical treatment
exists. Precise experiments tackling these open questions therefore provide
valuable input for the comparison with theoretical models.

Our experiment was custom built to investigate 3D Anderson localization
with ultracold atoms. The first result was obtained at the beginning of this
thesis, and is briefly described in section 6. A more in-depth discussion can
be found in the thesis of F. Jendrzejewski [55].
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3 Introduction to our experimental apparatus

As outlined in the first two introductory chapters, the purpose of our ex-
periment is to study the coherence effects of wave propagation in disordered
potentials. The waves in our experiment are the quantum mechanical matter
waves associated with ultracold Rubidium 87 atoms.11 In this chapter the
experimental steps necessary to cool a gaseous ensemble of these atoms down
to the temperatures necessary to perform our experiments are outlined.12

The need for low temperatures lies in the fact that the de Broglie wave-
length λdB of a particle increases as its momentum p decreases (h is the
Planck constant):

λdB =
h

p
(12)

The wave nature of the atoms in an ensemble therefore becomes more and
more apparent as the temperature decreases. In particular we have seen
in section 2.6 that in order to enter the regime of Anderson Localization
the de Broglie wavelength has to reach the same order of magnitude as the
mean free path in the disorder (see equation 10). If, in a back of the envelope
estimation, we assume the mean free path to be on the order of 1 µm, the
necessary temperature

T =
2πh̄2

mRbkBλ2
dB

(13)

is on the order of 10 nK (h̄ is the reduced Planck constant, mRb the mass
of an 87Rb atom, and kB the Boltzmann constant).13

We cool the atoms down to these temperatures in several stages, using
optical cooling and evaporation techniques, in an ultra-high vacuum envi-
ronment. These techniques will be introduced in the following sections in
the chronological order of a typical experimental sequence, preceded by a
brief introduction to the imaging methods that are employed to gather in-
formation about the atomic cloud. For a more technical description of the

11An overview over some relevant physical properties of 87Rb can be found in ap-
pendix C.

12The second ingredient to our experiments, the disorder, is treated separately in chap-
ter 4.

13The order of magnitude for the mean free path is justified by the fact that the disor-
dered potential we are using is created optically. The typical structure size of said disorder
is then on the order of the wavelength used, in our case 532 nm.
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Figure 11: Overview of the experiment. The atoms originate from an
oven containing a sample of rubidium, which is heated to 120◦ C. Rubidium
at this temperature has a vapor pressure of about 10−3 mbar [109], which is
the starting point of our experiment. Through several cooling and trapping
steps (see text) a thermal sample of ≈ 107 atoms with a temperature of ≈
4 µK is obtained in the first, or cooling chamber. They are then transported
into the second, or science chamber, where with a final cooling sequence
temperatures in the nano-Kelvin regime are achieved and all experiments
take place.
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3.1 Imaging

Figure 12: Schematic of absorption and fluorescence imaging.
Panel a shows the scheme for absorption imaging, where the atomic cloud
casts a shadow in the probe beam that is imaged onto the camera. In the
case of fluorescence imaging shown in panel b the resonant laser beam is
not directed towards the camera. Instead the light emitted by the excited
atoms is collected and imaged onto the chip.

parts of the experiment mentioned in this section the reader is referred to
the theses of A. Bernard and M. Fauquembergue [19, 41].

Figure 11 shows an overview of our experimental apparatus, which can
be roughly separated into two major parts: The first part (pre-cooling)
contains all elements from the oven (the source of the Rubidium atoms) to
the first, or cooling chamber, where a cloud of atoms with a micro-Kelvin
temperature is produced. This cloud is then transported to the second
part, the second or science chamber, where the nano-Kelvin temperatures
are achieved and all experiments carried out during this thesis take place.
The experimental sequence laid out in this chapter qualitatively remains
the same for all experiments described in this manuscript, except for minor
changes or improvements.

In appendix A an ensemble view of the experiment is shown.

3.1 Imaging

The primary way information about the atomic ensemble is gathered in our
experiment is by taking an image of the cloud’s spatial density at the end of
an experimental cycle. To this end three highly sensitive cameras (EMCCD
Hamamatsu C9102 ) are installed: one for the first, and two for the second
chamber. Two different imaging methods are employed in this experiment,
absorption and fluorescence imaging. In both cases a laser beam resonant
to the F = 2 → F ′ = 3 (F being the total angular momentum quantum
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3.1 Imaging

number) transition is shone onto the atoms.14 The source of this laser light
is prepared on a separate optics table, and an overview of the process is given
in appendix D. This light is then transported to the appropriate locations
of the experiment via optical fibers.

Below is a brief outline of the most relevant aspects of absorption and
fluorescence imaging. Their different setups are shown schematically in fig-
ure 12. A more detailed account on imaging cold atoms can for example be
found in [60].

• Absorption Imaging: In the case of absorption imaging the laser
beam illuminating the cloud is directed towards the camera. The
image therefore shows the shadow produced by the cloud, which is
darkest where the integrated density of the atoms is highest. The
intensity that is recorded is linked to the density of the cloud by the
Beer-Lambert law:

I(y, z) = I0(y, z)e−σ
∫
n(x,y,z)dx (14)

Here, σ is the cross section that the atoms show towards the resonant
light, and n(x, y, z) is the density of the cloud. It is assumed that x
is the optical axis of the imaging. If the light is exactly on resonance,
and if the intensity is small compared to the so-called saturation in-
tensity Isat = 1.67 mW/cm2, the cross section is constant to a good
approximation [109]:

σ =
3λ2

2π2
≈ 92× 103 nm2, with λ = 780 nm (15)

Comparing the intensity I(y, z) with an image taken under the same
conditions but without atoms Iref(y, z) one can then simply deduce
the integrated density:∫

n(x, y, z)dx =
1

σ
ln

(
Iref(y, z)

I(y, z)

)
(16)

Since the resonant cross section σ is well known there is no further
calibration necessary to deduce the number of atoms.

14Since during the imaging process there are many absorption and re-emission processes
there is a significant heating of the cloud, and both of these types of imaging are destruc-
tive. Therefore a new sample has to be created after each time an image was taken.
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3.2 From the oven to the first chamber: First stage preparation of the
atoms

• Fluorescence Imaging: In fluorescence imaging the resonant laser
beam is not shining towards the camera. It just serves to bring the
atoms into the excited state, from where they subsequently decay and
emit a photon. During a single exposure each atom absorbs and emits
many photons, which are emitted in all directions. A part of these
fluorescence photons are then captured by a system of lenses, which
transports the light towards the camera.

Since the photons are emitted in all directions only a part of them
are collected by the imaging objective. The intensity reaching the
camera is proportional to NA2, where NA is the numerical aperture
of the objective. In order to be able to detect small atom numbers it is
therefore imperative for the imaging system to have a large numerical
aperture.

Contrary to absorption imaging, where the laser beam has a low inten-
sity I � Isat, for fluorescence imaging it is advantageous to operate at
intensities I � Isat. This prevents a translation of intensity fluctua-
tions of the incident laser beam to fluctuations of the emitted intensity.

3.2 From the oven to the first chamber: First stage prepa-
ration of the atoms

In the following steps of the experimental sequence the interactions of atoms
with resonant light and magnetic fields are used to collimate, cool and trap
the atoms. Before commencing the description of the experiment a brief
introduction to the underlying principles of how atoms react to an exposure
to magnetic fields and resonant light are given in the following two sections.

3.2.1 Manipulating atoms with magnetic fields

The potential energy of a magnetic moment ~µ placed in an external magnetic
field ~B(~r) is given by

EB(~r) = −~µ · ~B(~r). (17)

Rubidium atoms are paramagnetic and therefore possess a magnetic mo-
ment, which stems from the spin ~S and the orbital angular momentum ~L
of their valence electrons, and the total angular momentum of their nuclei
~I. Using the normal convention to express the interaction energy between
the magnetic moments and the external magnetic field using the Bohr mag-
neton µB and appropriate g-factors one can write the hamiltonian as [109]
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3.2 From the oven to the first chamber: First stage preparation of the
atoms

HB =
µB
h̄

(
gS ~S + gL~L+ gI~I

)
· ~B(~r)

=
µB
h̄

(gSSz + gLLz + gIIz)B(~r),
(18)

where in the second line it was assumed that the magnetic field points in
z direction. If this energy contribution due to the external magnetic field
is smaller than the fine structure splitting, the electron spin and orbital
angular momentum couple to form the total electron angular momentum
~J = ~L+ ~S, and the hamiltonian simplifies to

HB =
µB
h̄

(gJJz + gIIz)B(~r). (19)

Similarly, if this energy is small compared to the hyperfine structure splitting
then ~J and ~I couple to form the total atomic angular momentum ~F = ~J+ ~I,
and the hamiltonian becomes:

HB =
µB
h̄
gFFzB(~r) (20)

The addition of angular momenta follows the known rules (see for exam-
ple [100]): In the combination of ~S and ~L for example the total angular
momentum of the electron J can take on values mJ from |L− S| to L + S
in integer steps. The same reasoning applies for the total atomic angular
momentum F with quantum number mF .

In the special case of the two hyperfine ground states F = 1 and F = 2
the energy shifts ranging both aforementioned regimes can be expressed in
analytical form using the Breit-Rabi formula [23]:

E± = ±h∆ν

2

√
1 +mF ξ + ξ2 (21)

Here, ξ = 2µB |
~B|(~r)

h∆ν , and ∆ν = 6.835 GHz is the splitting between the
hyperfine levels F = 1 and F = 2 in the absence of an external magnetic
field. This formula is plotted in figure 13.

3.2.2 Radiative force

Here the interaction between an atom with a light field resonant to a cycling
transition is considered. The description given here is based on [31, 50, 77],
to which the interested reader is referred for a more detailed discussion. In
such a cycling transition the atom is excited from its ground state |g〉 to
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Figure 13: Breit-Rabi diagram of the 87Rb 52S1/2 ground states.
The F = 1 (red) and F = 2 (black) ground state energy levels are shown as
a function of a static external magnetic field B. These energy levels were
calculated using the Breit-Rabi formula (21).

an excited state |e〉 by the absorption of a photon, after which it falls back
again to the ground state |g〉 while emitting a photon. For Rubidium 87
this condition is met for the F = 2↔ F ′ = 3 transition.15

In good approximation the atom can considered to only have the afore-
mentioned ground and excited state, which are separated by the energy
∆E = h̄ωa. Once in the excited state the atom falls back to the ground
state after an average time τ , which defines the decay rate Γ = τ−1. The
light field is assumed to be characterised by a single frequency νl = ωl/2π.
The difference between the laser and the atomic transition frequency is called
the detuning δ = ωl − ωa.

If the laser frequency is on, or close to resonance with the atomic tran-
sition (|δ| � Γ) photons are absorbed, and subsequently spontaneously re-
emitted. Both processes impart a momentum h̄kl = h̄ωl/c onto the atom,
where c is the speed of light. The absorbed photons all have the same
direction, the propagation direction of the laser light. The spontaneously

15Since the excited states F ′ = 3 and F ′ = 2 are close to each other there is a small
probability for the atom to be excited to F ′ = 2, and subsequently to fall into the F = 1
state. To compensate for this we are always adding laser light resonant with the F = 1→
F ′ = 2 in order to pump the atoms back to the F = 2 state.
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3.2 From the oven to the first chamber: First stage preparation of the
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emitted photons on the other hand fly off randomly, and their effect on
the atom’s momentum averages out to zero. Therefore a net force remains,
which points in the same direction as the propagation of the laser. This net
force is proportional to the momentum of a single photon h̄kl and the rate
of scattering γ:

~F = h̄~klγ (22)

This scattering rate depends on the intensity of the laser light with respect
to the saturation intensity s = I/Isat,

16 the decay rate of the excited state Γ,
and on the detuning δ. It also has to be taken into account that the atom can
move with a velocity ~v, and therefore experience the frequency of the light
field Doppler shifted by the amount ωd = −~kl · ~v. This velocity dependence
of the scattering rate, and consequently of the resulting radiative force, can
be exploited experimentally to manipulate the atoms. The scattering rate
is given by [77]:

γ =
sΓ/2

1 + s+ (2(δ + ωd)/Γ)2
(23)

The acceleration rates that can be achieved by this radiative force are rather
impressive: Under optimal conditions they are on the order of 104 m/s2 for
87Rb.

3.2.3 Collimating and slowing the atomic beam

A schematic drawing of the first part of the experiment is shown in panel a of
figure 14 (to be compared with figure 11). The source of the Rubidium atoms
is a sample placed inside an oven that is heated up to 120◦ C. Rubidium at
this temperature has a vapor pressure of about 10−3 mbar [109], and it is this
vapor that is the starting point of our experiment. The oven is connected
to the rest of the experiment by a long and narrow tube, which limits the
angle under which the gaseous atoms can exit the oven into the vacuum
chamber, and therefore collimates the beam [41].17 For further collimation
we use the radiative force in a transverse molasses configuration [78], as
shown in panel b of figure 14: Two pairs of counter-propagating laser beams
are shone perpendicularly onto the atomic beam. They are tuned slightly

16For 87Rb one has Isat = 1.67 mW/cm2.
17In order to separate the relatively high pressure in the region of the oven from the

rest of the experiment we use a mechanical shutter, which is only briefly opened to allow
the atomic beam to enter the experiment.
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Figure 14: Schematic view of the first part of the experiment and
the transverse molasses configuration.

below the atomic resonance (by ≈ −4.5 MHz) such that atoms with a non-
vanishing transverse velocity component see the light Doppler-shifted closer
to resonance, and consequently have this velocity component damped. This
collimation greatly increases the flux of the atoms reaching the first atom
trap (the magneto-optical trap, MOT) further downstream, as shown in
figure 15, and therefore shortens the overall length of the experimental cycle.

In order to slow down the longitudinal velocity component (along z) this
collimated beam of atoms is lead through a Zeeman slower [89]. Here, a res-
onant laser beam (the Zeeman beam in figure 14 a) propagating in opposite
direction to the atoms is used to decelerate them. Since the atoms’ velocity
is changing they experience a varying Doppler shift of the Zeeman beam,
which is compensated by shifting the atomic energy levels by a magnetic
field that changes accordingly along z. At the end of this deceleration the
atoms have a velocity of about 20 m/s, which is slow enough for them to be
captured by a Magneto-Optical Trap.

3.2.4 Magneto-optical trap and optical melasses

The MOT is the first atom trap in our experiment. In it the decelerated
atoms from the Zeeman slower are captured until its maximum capacity is
reached (see figure 15). As shown schematically in figure 16 it uses three
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Figure 15: MOT loading with and without transverse molasses.
The divergence of the atomic beam can be decreased by applying transverse
molasses beams (see text). In doing so the flux directed towards the MOT
is increased, leading to a much shorter loading time.

Figure 16: Schematic drawing of the Magneto-Optical Trap.
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Figure 17: Magnetic field in the Ioffe-Pritchard trap. In the Ioffe-
Pritchard configuration the magnetic field is cylindrically symmetric (with
respect to the x-axis in our case). Note that the confinement is much steeper
in the radial direction (y2+z2) than along x; the corresponding trap frequen-
cies ωx and ωy,z are indicated. Due to a magnetic bias field the minimum
field strength is non-zero (about 7.1 G).

pairs of counter-propagating laser beams, oriented along three orthogonal
spatial directions, in conjunction with a magnetic quadrupole field [96, 78].
The magnetic field strength and the polarisation of the optical beams is
chosen such that atoms deviating from the center of the trap experience
radiation pressure forcing them back to the center.
Once the atom number in the MOT has saturated the mechanical shutter
separating the oven from the rest of the vacuum system is closed, and the
incoming flux of atoms is stopped.

At this point the temperature of the atomic cloud is ≈ 500 µK. In a
subsequent optical molasses phase [74, 34] the atoms are further cooled down
to ≈ 50 µK. Since the optical molasses also uses the cycling transition F =
2 ↔ F ′ = 3 the atoms are in the F = 2 state after the completion of this
step.

3.2.5 Trapping and evaporation in the magnetic trap

In order to cool the atoms further they are transferred to a second, con-
servative trap. It uses the potential created by a static magnetic field as
described in section 3.2.1, and is of the Ioffe-Pritchard type [94]. In this
configuration the center of the trap is the point of minimal magnetic field
strength (see figure 17), and the atoms therefore have to be brought into a
low field seeking state where gFmF > 0 (see equation 20) before the mag-
netic trap is switched on. We choose the state |F = 1,mF = −1〉, and
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therefore pump the atoms optically from |F = 2〉 to |F = 1〉 by applying the
trap beams tuned to the F = 2→ F ′ = 2 transition without the repumping
beams.18 From this excited state the atoms de-excite to the F = 1 ground
state, with roughly equal populations in the mF = {0,±1} substates. In a
last step before switching on the trap we optically drive transitions towards
the |F = 1,mF = −1〉 state in order to be able to capture most of the
atoms.19

By switching on the magnetic fields of the trap we capture the atoms, and
obtain a sample with a total number of about 109 at a temperature of 250−
300 µK.20 To decrease the temperature the technique of forced evaporative
cooling is employed: By lowering the trap depth the most energetic atoms
are able to escape, which leaves a continuously colder sample in the trap. In
magnetic traps this can be accomplished by the RF-knife method [36, 88]:
Shining a radio frequency field onto the atoms in the trap can induce spin
flips between different mF states while leaving F unchanged, provided the
RF field is resonant with the transition. Since the mF = −1 is the only
trapped state for F = 1 the atoms with a flipped spin are no longer caught
and leave the cloud. The resonance frequency depends on the magnetic field
via the Zeeman shift, and flips only happen at a certain field strength B for
a given RF frequency. It is therefore possible to selectively let only atoms
with a total energy greater than the potential associated with B evaporate.
Reducing the RF frequency decreases the effective depth of the magnetic
trap, leading to continuously lower temperatures.

In our experiment the evaporation sequence takes 10.5 seconds, after
which we obtain a thermal sample of about 107 atoms at a temperature
of 4 µK is obtained.

18The |F = 2,mF = 1〉 and |F = 2,mF = 1〉 states are also low field seeking, but
experience higher loss rates [108].

19This optical pumping increases the number of atoms in the magnetic trap by about a
factor 2. If the different mF states prior to the pumping were populated equally one would
expect a theoretical maximum increase of 3 of the atom number in the mF = 1 state. Next
to the possibility that our pumping is not perfectly efficient it is also possible that due
to the optical molasses in conjunction with a remnant magnetic field there already is a
higher population in the |F = 1,mF = 1〉 state prior to the optical pumping.

20The atomic cloud heats up during the transfer due to a center of mass movement
induced by the optical molasses.
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3.3 From the first to the second chamber: Cooling to nano-
kelvin temperatures

The optical and mechanical access to the first chamber is limited due to
the coils and laser beams of the MOT and the magnetic trap, described in
the previous section. The second, or science chamber, is about 35 cm away
from the first chamber, which gives us free optical and mechanical access
around it to engineer the environment of the atoms for our experiments
(compare with figure 11). This section details the transport from the first
to the second chamber, and the subsequent final preparation of the atoms
for our experiments.

During this thesis several key components around the second chamber,
namely the imaging system, the dimple setup, and the optical speckle were
completely rebuilt. The technical description of these modifications can be
found in chapter 5.

In these final stages of the experimental cycle we make use of so-called
optical dipole traps for the transport and cooling of the atomic cloud, which
are created by far detuned gaussian laser beams. The underlying princi-
ples are introduced in the next two sections before the continuation of the
description of the experimental cycle.

3.3.1 Dipole force

The dipole force results from the interaction between an atom and light with
a frequency far off resonance of any transition. The description given here
is based on [31, 50, 77], to which the interested reader is referred to for a
more detailed discussion. As in section 3.2.2 we consider a simplified atom
with only a ground state |g〉 and one excited state |e〉, which are separated
by the energy h̄ωa. The laser frequency is denoted by νl = ωl/2π, and the
decay rate of the excited atomic state by Γ.

If the detuning between the laser frequency and the atomic transition
frequency δ = ωl − ωa is much larger than the line width (|δ| � Γ), then in
a fully quantum mechanical picture the ground state is perturbed by virtual
absorption and stimulated emission of photons. This leads to a displacement
of the ground state energy, called the AC Stark shift or light shift [31].
Equivavently a semiclassical picture can be adopted to understand this shift,
where the light is viewed as a classical field: In this picture the external
oscillating electric field induces an electric dipole moment in the atom. The
dipole force then comes from the interaction between the external electric
field and this induced dipole. In analogy with any other driven oscillator,
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the induced dipole can either oscillate in phase with the electric field if
ωl � ωa ⇔ δ < 0, or it can oscillate in phase opposition if ωl � ωa ⇔ δ > 0.
In the first case one speaks of a red-detuned laser, and the atom is attracted
towards higher intensities. In the second case the laser is said to be blue-
detuned, and the atom is repelled from higher intensities.

The potential associated with this interaction is given by

Vdip(~r) = −3πc2

2ω3
a

Γ

δ̃
I(~r). (24)

In the rotating wave approximation one can set the generalised detuning
δ̃ = δ = ωl − ωa. More precisely though one has to use

δ̃ =

(
1

ωa − ωl
+

1

ωa + ωl

)−1

, (25)

which contains the counter-rotating term.21 Note that the sign of the poten-
tial changes with the sign of the detuning δ̃, which means that the creation
of attractive and repulsive potentials is possible by choosing the appropriate
light frequency.

3.3.2 Gaussian beams

The most commonly used transverse shape of a laser beam is a gaussian, the
TEM00 (Transverse Electro Magnetic). In this section some basic formula
and technical terms are introduced. For a more in-depth treatment of gaus-
sian beams used to trap atoms see [50]. For the propagation of a gaussian
beam including lenses see for example [86].

The intensity of a gaussian beam propagating along the z direction with
radial coordinate r is given as:

I(r, z) =
2P

πω(z)2
e
−2 r2

ω(z)2 (26)

Integrating over the whole transverse profile recovers the total power of the
beam P . The dependence of the waist ω on the longitudinal coordinate z is

ω(z) = ω0

√
1 +

z2

z2
R

, (27)

21In our case, using lasers with wavelengths 1070 nm and 532 nm, omitting the counter-
rotating term induces an error of more than 10% and 20% respectively.
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Figure 18: Gaussian beam around its focal point. As a concrete exam-
ple the parameters chosen here are those of the tweezer (introduced in the
following section): ω0 = 0.28 µm and λ = 1070 nm. The Rayleigh length in
this case is zR = 2.3 mm.

where ω0 is the minimal beam waist and zR = πω2
0/λ is the Rayleigh length.

Figure 18 shows a schematic drawing pointing out these parameters. The
intensity distribution is directly linked to the potential felt by the atoms via
relation (24), giving a maximum amplitude of the potential [50]

U0 = − 3c2

ω3
a ω

2
0

Γ

δ̃
P. (28)

As discussed in the previous section, this potential is attractive for a red-
detuned laser frequencies and forms a well. Around the center of this trap the
potential can be approximated by a harmonic potential with trap frequencies

ωr =

√
− 4U0

mω2
0

and ωz =

√
− 2U0

mz2
R

, (29)

with m the mass of the atom.

3.3.3 Transport to the second chamber

The ensemble of atoms obtained at the end of the evaporation sequence in
the magnetic trap is cold enough to be loaded into an optical dipole trap (see
section 3.3.1), which we call the tweezer. This tweezer is characterised by its
waist of 28 µm, its Rayleigh length of 2.3 mm, and a maximum optical power
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Figure 19: Schematic drawing of the tweezer setup.

of 2 − 3 W. This power can be switched off or regulated seamlessly with
a controllable servo-loop containing an Acousto-Optical Modulator (AOM)
and a photodiode (PD). Its wavelength of 1070 nm is far red-detuned with
respect to the atomic transition. A schematic drawing of the tweezer setup
is shown in figure 19. The loading is accomplished by ramping down the
magnetic trap, while at the same time ramping up the power of the tweezer.
Both the magnetic trap and the tweezer form cigar-shaped traps, and their
long axes are oriented perpendicularly with respect to each other. Due to
this non-ideal overlap, but also due to 3-body losses only about 50% of the
atoms can be loaded into the tweezer. During the transfer from the magnetic
trap to the tweezer there is no discernible heating.

Initially the position of the focal point of the tweezer overlaps with the
center of the magnetic trap. The focalising lenses are mounted on a pro-
grammable linear translation stage (Aerotech ABL80040 ), and the focal
point therefore follows the movement of the translation stage. With this
setup we are able to transport the atoms, trapped in the focus of the tweezer,
into the second chamber within about 2 seconds.

During the transport the cloud is heated from about 4 μK to 10 μK, and
we loose a certain fraction of the atoms. This heating and atom loss can
be attributed to vibrations of the trap during the transport. To calibrate
how many atoms are lost during the transport the number initially loaded
into the tweezer is compared to the number still left after a transport to the
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Figure 20: Schematic drawing of tweezer and dimple in the second
chamber. Panel a shows the atoms (shaded gray) in the focal point of
the tweezer. In panel b the atoms are located in the combined potential
of tweezer and dimple. The dimple provides confinement in z-direction,
whereas the tweezer is mainly responsible for the confinement in x and y
direction.

second chamber, and back to the first one. That way in both cases the same
imaging system is used, eliminating systematic errors in the estimation of
the atom number. It is found that during such a transport about 25% of
the atoms leave the tweezer, and we therefore estimate that during a single
transport roughly 10-15% of the atoms are lost. This is confirmed by the
imaging systems installed around the second chamber. At this stage the
cloud contains approximately 5× 106 atoms at a temperature of 10 μK.

Coming from the magnetic trap the atoms are polarised in the state
F = 1,mF = −1. We noticed that after the transport the atomic ensemble
was partially depolarised, indicating that they pass a region of zero (or
very small) magnetic field where the atoms’ spin cannot follow the field
adiabatically. A magnetic coil was therefore installed between the first and
the second chamber to ensure adiabatic transport. With this additional
magnetic field all atoms arrive in the second chamber in the F = 1,mF = −1
state.

Once the transport is complete we apply a second laser beam, called the
dimple, to increase the longitudinal confinement as shown in figure 20. The
dimple beam originates from the same laser as the tweezer and therefore
also has a wavelength of 1070 nm. It has an elongated beam profile, with
waists ωx = 203 μm and ωz = 91 μm, and its maximum optical power is
about 8 W.22 Like the tweezer, the dimple beam power is regulated over a
servo-loop using an AOM. The atoms assemble at the crossing point between

22This elongated profile simplifies the crossing with the tweezer and makes the setup
less prone to variations of the positioning of the dimple. See section 5.2 for further details
about the dimple beam setup.
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Figure 21: Simplified model of the levitation coils. In this simplified
model the gradient and bias fields are each produced by a pair of coils with
radius R. The distance between the coils is 2LG and 2LB respectively. To
describe the field the cylindrical coordinates ρ and y are used. The total
field is the sum of the gradient and the bias field.

the two laser beams, which increases the density of the cloud. Due to density
related 3-body collisions the number of atoms decreases to ≈ 3 − 4 × 106.
The temperature decreases slightly to 8 µK since we lower the intensity of
the tweezer to counteract the above-mentioned atom loss.

In this combined potential of dimple and tweezer a final evaporation
sequence takes place, which leads to the creation of a Bose-Einstein Con-
densate. As explained in the next section, gravity can be neglected from
this point on due to our magnetic levitation.

3.3.4 Magnetic levitation

Our experiment was constructed to study the propagation of atomic matter
waves in three dimensions in a disordered potential without any influence of
outside forces. This means in particular that the effect of gravity has to be
compensated. In order to achieve this goal a magnetic potential is applied to
the atoms that cancels the gravitational potential. This magnetic levitation
was built during the PhD of A. Bernard, and details to its construction and
performance can be found in his thesis [19].

The total potential felt by the atoms is the sum of the gravitational
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potential and the magnetic potential (compare with section 3.2.1):23

U(~x) = mgy +mF gFµB| ~B(~x)|
= mgy + µ| ~B(~x)|

(30)

It is assumed here that the vertical axis is y, g is the gravitational acceler-
ation, m is the mass of an atom, mF is the magnetic quantum number, gF
is the Landé factor of the atomic state, µB is the Bohr magneton, and ~B(~x)
is the magnetic field. For convenience, the mass, Landé factor, and Bohr
magneton are combined into the single factor µ. Ideally the total potential
would be constant in a sufficiently large region, but this is not possible using
static magnetic fields since ~∇ · ~B(~x) = 0. The potential U(~x) will therefore
have trapping or anti-trapping curvatures. It was shown in [99] that under
the constraint that the magnetic potential should support the atoms against
gravity there is a lower limit for the trap frequencies ωk,

∑
k

ω2
k ≥

mg2

2µ| ~B|
, (31)

where k ∈ {x, y, z} is the index for the spatial direction. In order to achieve
low curvatures it is therefore necessary to work at high magnetic fields.

The general principle of our levitation therefore is to produce a magnetic
gradient field that acts against gravity, superposed by a large bias field
to lower the curvature. The simplest method to achieve this is a pair of
coils with current flowing in opposite directions to create the gradient field,
and a pair of coils with current flowing in the same direction to produce
the bias field as indicated in figure 21. Since the geometry of the coils is
cylindrically symmetric with respect to the y-axis, the magnetic field will
also be cylindrically symmetric and we will use the radial coordinate ρ and
the vertical coordinate y to describe the field. In this configuration the
absolute value of the magnetic field B = | ~B| approximated to second order

23In this instance we neglect the possible potential due to the optical dipole trap and
the interaction energy between the atoms.
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in ρ and y is [55, 41]:

B ≈ B0 + b′y + b′′y2 + ρ2

(
b′2

8B0
− b′′

2

)
B0 = µ0IB

R2

(R2 + L2
B)5/2

b′ = 3µ0IG
R2LG

(R2 + L2
G)5/2

b′′ =
3

2
µ0IB

R2(4L2
B −R2)

(R2 + L2
B)7/2

(32)

B0 is the bias field, b′y is the gradient cancelling gravity, and b′′ is the
curvature introduced by the bias coils. The vacuum permeability is denoted
by µ0, the current through the gradient coils is IG, and the current through
the bias coils is IB. All coils are supposed to have the same radius R, and the
distances between the gradient and bias coils are 2LG and 2LB respectively
(see figure 21). The center of the configuration is at ρ = y = 0.
The associated (anti-)trap frequencies of this configuration are:

ω2
y = 2b′′

µ

m
and ω2

ρ =

(
b′2

4B0
− b′′

)
µ

m
(33)

Taking into account that b′ must be equal to −mg/µ to compensate for
gravity (see equation (30)) the frequencies are therefore at the low limit
imposed by equation (31).
The parameter b′′ can be fixed by demanding isotropic frequencies ωy = ωρ,
which yields

b′′ =
b′2

12B0
=

m2g2

12µ2B0
. (34)

With a given geometric configuration of bias and gradient coils all pa-
rameters are therefore fixed by the requirements that the gradient should
cancel gravity, and that the curvatures are isotropic. In order to loosen these
constrictions the actual design of the levitation coils consists of two sets of
bias coils close to the Helmholtz configuration as shown in figure 22. The
currents in these two sets of coils Iext and Iint can be adjusted independently.
The combined bias field can be regarded as coming from a single pair of coils
with an effective distance Leff, which depends on the ration between Iext and
Iint.
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Figure 22: Design of the magnetic levitation. Panel a shows the scheme
of the magnetic levitation, which consists of a pair of coils producing the
gradient, and two pairs to produce the bias field. The bias field can be
thought of as originating from a single pair of coils with an adjustable dis-
tance Leff between them, which depends on the ratio between the currents
of the external and the internal bias coil Iext and Iint. Panel b shows the
different parts that make up the assembly of the levitation.

The gradient and the bias coils each are fed by a dedicated highly stable
power supply (∆I/I = 10 ppm). Their precision directly translates to a
cancellation of the gravitational potential to the same accuracy. The power
supplies of the bias coils can each generate a maximum current of 200 A,
leading to a maximum bias field at the position of the atoms of B0 = 2000 G.
For atoms in the F = 2,mF = −2 state, which we usually use for our exper-
iments under levitation, the minimal frequencies are ω/2π ≈ 0.18 Hz [19].
In the experiments described later we chose lower bias currents between 40
and 50 A to make sure not to damage the levitation setup, which typically
leads to frequencies of ω/2π ≈ 0.5− 0.8 Hz.24 The power supply of the gra-
dient coils produces a maximum of 50 A, which is roughly twice the current
necessary to achieve levitation in the F = 2,mF = −2 state.

Depending on the sign of the Landé factor gF and the sign of the mag-
netic quantum number mF the curvature of the magnetic potential can
either lead to trapping (µ > 0), or to anti-trapping (µ < 0). The associ-

24The levitation coils were tested to withstand the maximum currents [19]. But the
remaining curvatures at lower currents are sufficiently small for our experiments, so that
taking the risk coming with applying the maximum currents was deemed unnecessary.
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Figure 23: Adiabatic opening of the tweezer confinement. Initially
the dimple crosses the tweezer at its focal point (a), providing a relatively
tight confinement. By moving the focal point the trapping region, shown in
red, can be adiabatically opened (b).

ated (anti-)trapping frequencies can be determined experimentally by time
of flight experiments as described in [19, 55].

3.3.5 Evaporation in the crossed optical dipole trap

Coming from the magnetic trap in the first chamber the atoms are in
the |F = 1,mF = −1〉 state upon arriving in the second chamber. Since
the magnetic levitation described in the previous section is configured to
work with atoms in the |F = 2,mF = −2〉 state we perform an RF induced
transition from the former to the latter after the atoms are loaded in the
crossed optical dipole trap and before the levitation is switched on.25 For
the remainder of the experimental sequence the levitation remains switched
on.

The cooling in the crossed dipole trap can be separated into two parts:
First, we force evaporation in the crossed dipole trap by ramping down the
power in the tweezer and the dimple, which lowers the depth of the trap and
its confinement (see equations 28 and 29).26 Since the number of atoms and
the confinement of the trap are decreasing, the collision rate between the
atoms becomes lower until evaporation becomes ineffective. Additionally it
would be necessary to lower the power in the tweezer and the dimple beam

25Using the Stern-Gerlach like separation of the different mF states in the magnetic
levitation when the trap is switched off the efficiency of the RF transfer can be measured,
and we find it to be practically 100%.

26A detailed account of the evaporation can be found in the thesis of F. Jendrzejew-
ski [55].
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to some µW, which is technically hard to achieve.
In the second part of the cooling process we therefore open the confinement
of the tweezer by moving its focal point away from the dimple as shown in
figure 23. This is accomplished by changing the position of the translation
stage by 4.5 mm, which changes the waist of the tweezer at the crossing
point from 28 µm to 60 µm. The power in the tweezer and dimple beams is
then lowered again until a quasi isotropic confinement is achieved.
In its final state after evaporation and adiabatic opening the crossed dipole
trap is then characterised by the following frequencies and depth:

ωtweezer/2π = 3.9 Hz

ωdimple/2π = 5.3 Hz

U0/kB = 15 nK

(35)

Such a shallow trap depth is only possible since we are cancelling gravity with
the magnetic levitation: The combined potential of the tweezer and gravity
would not have a minimum anymore if the tweezer trap depth decreases
below Utweezer/kB ≈ 1.5 µK.

During the evaporation process a fraction of the atoms form a Bose-
Einstein Condensate, described in the following section.

3.3.6 Bose-Einstein condensation

Bose-Einstein condensation of dilute atomic vapours was first achieved in
1995 [10, 35, 21], a remarkable experimental breakthrough made possible by
the precise control over position and movement of atoms. A Bose-Einstein
Condensate (BEC) is a mesoscopic quantum object, where all participating
particles are bosons and occupy the collective ground state of the system. In
the following some key formula for the description of a BEC in a harmonic
trap are given, without stressing their derivation. For a more complete
introduction the interested reader is referred to the extensive literature that
exists on this topic, for example [33, 70, 25].

The Onset of Bose-Einstein Condensation Bose-Einstein condensa-
tion is achieved in a trap that is, in most experiments, well approximated
by a harmonic potential. The confined gas has a temperture T that defines
the de-Broglie wavelength λdB and a density n. Qualitatively the onset of
condensation is reached when the wavepackets of the atoms, which occupy
a volume ∼ λ3

dB, start to overlap. In other words, the phase space density
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D must reach a value on the order of one:

D = nλ3
dB ∼ 1 (36)

The phase-space density in a harmonic trap with trapping frequencies ωx, ωy, ωz
is given by

D =

(
h̄ω̄

kB

)3 N

T 3
, (37)

where ω̄ = (ωxωyωz)
1/3, h̄ = h/2π is the reduced Planck constant, N is the

total number of atoms, and T is the temperature.
Condensation occurs at a critical temperature Tc, where the occupation of
the ground state of the trap becomes macroscopic [33]:

kBTc = 0.94h̄ω̄N1/3 (38)

This macroscopic occupation of the ground state manifests itself in a promi-
nent peak in the density and momentum space distribution, that is sur-
rounded by the more dilute thermal distribution of the remaining atoms.

The Gross-Pitaevskii Equation and the Thomas-Fermi Regime
Below Tc the density at the center of the trap is high enough for the in-
teractions between the atoms to make an appreciable contribution to the
total energy. This addiditional potential is proportional to the density,
Vint(~r) = g n(~r), where g is the coupling constant. This coupling con-
stant is proportional to the scattering length a, which gives the cross sec-
tion of an atom in a collision process, g = a4πh̄2/m. These interactions
can be treated in a mean field approach described by the Gross-Pitaevskii
equation. In the stationary regime the wave function can be written as
ψ(~r, t) = φ(~r) exp[−i(µ/h̄)t], where µ is the chemical potential. The density
is simply n(~r) = |φ(~r)|2. This wavefunction obeys the stationary Gross-
Pitaevskii equation:[

− h̄2

2m
∆ + V (~r) + g|φ(~r)|2

]
φ(~r) = µφ(~r) (39)

The first term on the left hand side is the kinetic energy, the second term the
potential energy due to the trapping potential, and the third term describes
the interaction energy.

When the interaction energy is much larger than the kinetic energy the
condensate is said to be in the Thomas-Fermi regime, a condition which is
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fullfilled in our experiment. One can then neglect the kinetic energy term
in the Gross-Pitaevskii equation (39), leading to a simple spatial profile of
the density [17]:

n(~r) = max

(
µ− V (~r)

g
, 0

)
(40)

In the case of a harmonic confinement with trap frequencies ωx, ωy, ωz the
trapping potential is given by V (~r) = m/2(ω2

xx
2 +ω2

yy
2 +ω2

zz
2). The density

profile of the condensate then is an inverted parabola. Its maximal extension
in x-direction, the Thomas-Fermi radius rTF,x is given by

rTF,x =

(
2µ

mω2
x

)
, (41)

and equivavently for the other two spatial directions y and z.
Integration over the density profile n(~r) gives the total number of atoms

in the condensate N , a readily measurable quantity. In the Thomas-Fermi
regime one can therefore determine the chemical potential:

µ =
1

2

(
15aNh̄2ω̄3

)2/5
m1/5 (42)

Free Expansion of a BEC In our experiment we usually cut the trap
and let the cloud expand freely before taking a picture of the distribution.
The expansion of a BEC in the Thomas-Fermi regime can be described by a
scaling theory [26, 58]: The initial parabolic shape of the condensate density
distribution n(~r) is stretched along the proper axes of the trap x, y, and z
by the factors bx(t), by(t), and bz(t) respectively:

n(~r, t) =
1

bx(t)by(t)bz(t)
· n(~ρ, 0) (43)

Here, ~ρ is the rescaled position vector, ~ρ = (x/bx(t), y/by(t), z/bz(t)).
The global picture that we observe is then the following: Below the

condensation threshold a fraction of the atoms are in the collective ground
state of the system and form a condensate that is well described by the
Thomas-Fermi approximation. The density distribution of this condensed
fraction after a free expansion is parabolic. The non-condensed atoms have
a gaussian velocity distribution. Both distributions overlap, and the global
density distribution is described by a double structure, with the condensate
distinctly visible on top of the broader gaussian background. Figure 3.3.6
shows a typical example of a BEC. The projection of the recorded density
profile clearly shows the aforementioned double structure.
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Figure 24: Typical example of a BEC. Shown here is an example of a
typical BEC in our experimnent with ≈ 105 atoms after a time of flight
of 150 ms. a) The recorded density profile. This density profile is already
integrated along the optical axis of the imaging system. b) The projection
on the horizontal axis (black) together with a gaussian fit of the wings,
showing the thermal fraction of the atomic cloud. The double structure is
clearly visible.

3.3.7 Delta-kick cooling

At the end of the evaporation cycle in the crossed dipole trap a cloud of
about 105 atoms is obtained, more than 50% of which are Bose condensed.
We estimate the chemical potential in the condensate to be µ/h ≈ 40 Hz.
The temperature of the thermal fraction is 4 nK. Upon release from the
trap the cloud expands and the interaction energy is converted into kinetic
energy, which leads to a velocity distribution of the condensate fraction with
a maximum velocity of vmax = 0.3− 0.36 mm/s.

With a neat trick, the delta-kick cooling method, it is possible to re-
duce the velocity distribution even further without any downsides, like the
decrease of the number of atoms, for our experiments. A more detailed
treatment, as well as a quantum mechanical picture can be found in [9].
Here this technique is explained in a classical picture as shown in figure 25:
Initially all the atoms are found around the center of the trap at ~r = 0.
Upon release, and after the interaction energy between the atoms is fully
converted to kinetic energy, each atom travels with its own constant velocity
v away from the center. In the following we assume that the center of mass
of the cloud does not move during this expansion, which is a requirement
fullfilled in our experiment due to the magnetic levitation. When after a
time texp the size of the cloud is large compared to its initial size the dis-
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Figure 25: Delta-Kick Cooling. On top the size of the cloud, and on the
bottom the potential of the trap is indicated. Four stages in the expansion
of the atom cloud are shown: Initially the atoms are located in the trap,
and the size of the cloud is constant. Once it is switched off (shown as a
flat potential line) the cloud expands. Then the trap potential is switched
on again for a short time and with a calibrated curvature, which affects the
expansion just like a focalising lens renders a diverging beam collimated. In
the last stage the potential is off again, and the expansion is stopped.

tance traveled by each atom is to a good approximation proportional to its
velocity:

r(v) = vtexp (44)

The delta-kick cooling technique now consists of switching the trap on again
for a short time ∆t. During this time a given atom with velocity vi and
distance from the center ri = vitexp is subject to a force towards the origin.
Assuming a harmonic potential its velocity at the end of this kick is:

ṙi(∆t) = vi (−texpω sin(ω∆t) + cos(ω∆t)) (45)

Experimentally it is possible to adjust the trap frequency ω and the length
of the kick ∆t such that ṙi(∆t) = 0. This is the case when

∆tω = arctan

(
1

texpω

)
. (46)

Since equation (46) is independent of the initial velocity vi it holds true for
all atoms, and applying such a kick stops each one in its place.
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Figure 26: Free expansion with and without delta-kick cooling. The
size of the cloud, shown here for the y-axis (vertical) is measured with a
gaussian fit. The red points indicate the evolution of the size without,
and the black triangles with delta-kick cooling. The solid lines are the
corresponding fits (see text). The right graph shows a close-up for short
expansion times. The expansion time for the data without delta-kick cooling
is measured starting from the release of the trap. The fit here starts at 40 ms,
when the interaction energy has been transformed into kinetic energy. In the
case with delta-kick cooling the expansion time is measured from starting
from the delta-kick.

To evaluate the effect of the delta-kick cooling method we release the
cloud from the trap and measure its size after different times of flight. The
results of such a measurement are shown in figure 26. As explained in
section 3.3.4 the magnetic levitation has an expelling curvature, which has to
be taken into account when fitting the data. Solving the equation of motion
for a harmonic expelling potential with anti-trap frequency ωlev = 2πflev we
find for the evolution of the size σ(t) of the cloud

σ(t) =

√
x2

0 cosh(2πflevt)2 +

(
v0

2πflev

)2

sinh(2πflevt)2, (47)

where x0 is the initial size and v0 is the initial velocity spread.
Using this method we find a reduction of the velocity spread by a factor

∼ 2, from 0.3− 0.36 mm/s to 0.18 mm/s. We choose texp = 50 ms, when all
the interaction energy is converted to kinetic energy, and ∆t = 0.5 ms. The
trap frequencies were adjusted experimentally to give the lowest velocity
spread after the delta-kick. We found ω ≈ 200 s−1, which is in very good
agreement with equation (46).

There are two obvious limiting factors, which can explain why not a
greater reduction in the velocity spread is achieved. First, the trap is formed
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by gaussian laser beams, which only close to their optical axis form an
approximate harmonic potential. Second, the initial size of the atomic cloud
(RMS size ≈ 10 µm) is not negligible compared to its size at texp (RMS
size ≈ 30 µm). The reduction in the velocity spread by a factor two is a
compromise we found between these two limiting factors. Nevertheless the
result is impressive: With a size of ≈ 30 µm and a typical momentum mRb×
0.18 mm/s we are only an order of magnitude above the Heisenberg limit.
Another way to emphasize the minute velocity distribution is to translate
it to a temperature, which gives about 150 pK. The delta-kick cooling
completes the preparation of the atomic cloud for our experiments.

3.4 Conclusion

The initial goal of achieving a sample of atoms with a very low velocity
spread was achieved vie a combination of laser cooling, and forced evapora-
tion in a magnetic and an optical dipole trap. This results in the creation
of an ultracold sample of ≈ 105 atoms, more than 50% of which are form-
ing a Bose-Einstein condensate. The chemical potential of the condensate
is µ/h = 40 Hz, and the temperature of the thermal fracition is 4 nK.
Upon release from the trap the interaction energy between the atoms is
converted to kinetic energy, such that the cloud expands with a velocity of
0.3 − 0.36 mm/s. With the delta-kick cooling method this velocity spread
is reduced by a about factor 2 to 0.18 mm/s. The RMS size of the cloud at
this point is σ ≈ 30 µm.

Figure 27 shows the atomic cloud at some exemplary stages of the ex-
perimental cycle described in this section.

49



3.4 Conclusion

Figure 27: The atomic cloud at different stages of the experiment.
Each image shows the atomic cloud after a time of flight of 8 ms at different
stages of the experiment. The approximate temperature and the order of
magnitude of the phase space density D are given. The first row shows
absorption images taken in the first chamber directly after loading into the
magnetic trap (a), after evaporation in the magnetic trap (b), and after
loading into the tweezer (c). The second row shows fluorescence images
taken in the second chamber directly after transport (d), after loading into
the crossed trap (e), and after evaporation (f). The inset in panel f shows
the BEC after an expansion time of 150 ms.
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4 Optical speckles

In our experiments on wave propagation in disordered potentials the char-
acteristics of said potentials naturally play an important role. Ideally its
interaction with the atoms should be completely conservative, meaning that
all scattering events are fully elastic. Furthermore the typical length scales
on which the potential fluctuates should be small compared with the de-
Broglie wavelength, a necessary requirement if one wants to enter into the
strong localisation regime (see section 2.6). All these requirements can be
fullfilled with an optical speckle potential, whose basics will be discussed in
this section. Since the speckle is optical it is furthermore possible to switch
the disorder on and off quasi instantaneously on the relevant time scales
of the atomic dynamics, and it is possible to regulate the strength of the
disorder seamlessly simply by changing the optical power.

Optical speckles have been employed in ultracold atom experiments for
roughly a decade now due to the reasons given above, but also because
they are comparatively simple to produce, and their statistical properties
are well known. Prominent examples include the observation of Anderson
localisation in 1D [20], the study of 2D diffusive expansion [98], and trans-
port through a disordered 2D channel [22].27 Recently the observation of
3D Anderson localisation of ultracold atoms was achieved, also using optical
speckles [56, 62, 103]. One of these experiments was conducted during this
thesis, and will be treated in section 6.

This introduction to speckle potentials is based on [32] and [48] for the
general theory describing optical speckles, and [30] for a discussion with
a focus more on its application to cold atom experiments. In addition a
description of our specific configuration is given.

4.1 A general introduction to optical speckles

A speckle is the interference pattern of many waves with random phases.
It can easily be observed by shining a coherent light source, for example a
simple laser pointer, on a rough surface. Due to the roughness a random
path difference, and consequently a random phase is imprinted on the beam.
Another possibility to introduce these random phases, which is used in our
experiment, is to shine the laser beam through a glass plate with randomly

27It should be mentioned that there is a second method that can be used to produce
a quasi-random potential in cold atom experiments, namely, bichromatic lattices with
incommensurate wavelengths. These were for example employed for the observation of
1D Anderson localization, conducted in parallel with the above cited experiment [97].
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Figure 28: An idealised speckle setup. Panel a shows how a speckle
pattern is created by shining a laser beam through a rough glass plate.
Wavelets from different points of the diffusor arrive at a point ~r with comlex
amplitudes Ak with random phases. Panel b shows a numerically generated
speckle pattern. The probability distribution of the intensity is exponential,
P (I) = 1/〈I〉 exp(−I/〈I〉) as shown in panel c. The black points follow a
numerically generated intensity distribution, and the red line is a fit. The
blue dotted line shows the value 〈I〉.

varying thickness as shown in figure 28 a. In the following it is assumed that
this glass plate, the diffusor, has a circular cross section, a constant index
of refraction, and is evenly illuminated by the laser.

4.1.1 Intensity distribution

The light incident at one position (x, y) of the diffusor acquires a phase
proportional to its thickness e(x, y) at this point,

∆φ(x, y) =
2π

λ
e(x, y) · (n− 1), (48)

where λ is the wavelength of the laser, and n is the refractive index of
the diffusor. In our experimental configurations the phase ∆φ is in a very
good approximation equally distributed over the whole interval [0, 2π[. Each
partial wave is diffracted into an outgoing cone with an opening angle that is
determined by the ratio of the wavelength and the average size of a surface
structure of the diffusor, much like the angle of the light cone behind a small
hole is determined by the ratio of the wavelength and the diameter of the
hole. The intensity at a given point ~r can then be thought of as the result of
the interference of many partial waves with random phases emenating from
different positions of the diffusor. Assigning a complex amplitude Ak =
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|Ak| exp(iφk) to each of these partial waves the total amplitude at point ~r
then is:

A(~r) =
∑
k

Ak =
∑
k

|Ak|eiφk (49)

This sum describes a random walk of the amplitude in the complex plane,
with the steps 0, A1, A2, etc. In the limit of infinitely many point sources
on the diffusor it follows from the central limit theorem that the absolute
value of the resulting amplitude is normally distributed around zero. It then
follows from a probability transformation that the probability distribution
P (I) of the intensity I = |A|2 is an exponential,

P (I) =
1

〈I〉
e
− I
〈I〉 , (50)

where 〈I〉 doubles as the average intensity of the speckle field and the stan-
dard deviation of the distribution. Panel b in figure 28 shows a numerically
calculated speckle field, and panel c shows the probability distribution of the
intensity, together with a fit of the form of the distribution in equation (50).

Two interesting properties of speckle fields that are advantageous for
our experiments are already visible in formula (50): First, the probability
to find points of high intensity is exponentially small, meaning that the
speckle field is only occasionally accentuated by strong scattering points.
Conversely, the probability for low intensities is high. This means that
the atoms propagate in a potential landscape that consists mainly of low
valleys, and only particles with very low energy can be classically bound, a
consideration important for our experiments on Anderson localisation.28

Second, since the standard deviation of the intensity distribution is equal to
its mean value the flucutations of the amplitude of the potential are large.
In other words, the speckle is a disorder with a high contrast.

4.1.2 Spatial structure

Information about the spatial structure of the speckle field is contained in
the intensity autocorrelation function

CI(δ~r) = 〈I(~r)I(~r + δ~r)〉, (51)

where the brackets 〈. . .〉 imply statistical averaging over different speckle
realisations (see section 2.1).

28The potential felt by the atoms is directly proportional to the intensity of the speckle,
as discussed in section 3.3.1.
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Speckle
Lenses and

Di�usors

Glass Cell

Figure 29: Schematic setup of the speckle. Panel a shows the schematic
setup of the speckle. In order to increase the maximum optical power in-
cident onto the atoms, and to minimize the speckle grain size and their
anisotropy the light is focalised with a lens (see text). To further decrease
the anisotropy two independent speckle fields can be superposed: One beam
produces highly anisotropic structures (panel b), whereas the coherent su-
perposition of the two beams changes the spatial configuration and decreases
the overall anisotropy (panel c).

The transverse and longitudinal size of this autocorrelation function de-
pend on the maximum angle θ under which light can arrive at the point
~r from the diffusor.29 The size of the correlation function CI(δ~r) is de-
termined by the displacement δ~r it takes to dephase the different complex
amplitudes Ak with respect to each other. It turns out that this size is
diffraction limited, producing a correlation function that has a transverse
extent σ⊥ ∼ λ/ sin(θ), and a longitudinal extent of σ‖ ∼ λ/ sin(θ)2 (just
like the size of the Airy disk and the Rayleigh length of a diffraction lim-
ited focussed gaussian beam). With sin(θ) < 1 this produces longitudinally
elongated structures. The asymmetry σ‖/σ⊥ is reduced when the numerical
aperture NA ∼ sin(θ) is increased.

4.2 The speckle configuration in our experiment

The design goal in our experiment was to obtain a speckle potential with
small structures and a minimal anisotropy, which are necessary requirements
to enable experiments on Anderson localization and to simplify their inter-

29“Transverse” and “longitudinal” are to be taken with respect to the optical axis of
the speckle setup.
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pretation (see section 6). In order to accomplish this our speckle setup
contains several key features, shown schematically in figure 29:30

Additionally to the diffusors the laser light is led through a focalising
lens, which is positioned such that its focal point coincides with the position
of the atoms. This increases the available optical power shining onto the
atoms, and ensures that the angle θ mentioned in the previous section is
maximal. As outlined earlier, the latter point is important for a minimal
size and anisotropy of the speckle grains.

To further decrease the anisotropy we have the option to superpose two
independent speckle fields, whose optical axes form a 90◦ angle. When the
polarisation axes of the two beams are orthogonal with respect to each other
the resulting light pattern is the incoherent superposition of the two speck-
les. In the other case of coherent superposition, when the polarisation axes
are parallel, the two speckles interfere with each other. The resulting inter-
ference pattern retains the exponential intensity probability distribution of
equation (50), but changes the autocorrelation function. It is this coherent
superposition that was employed in our experiments on Anderson localiza-
tion, and a more detailed treatment of this configuration can be found in
the thesis of F. Jendrzejewski [55]. We are only pointing out here that
the anisotropy of the coherent superposition of two speckles reduces the
anisotropy by about a factor 3 as compared to a single speckle field.

During the course of this thesis the speckle setup was completely over-
hauled. Its characterisation can be found in section 5.3.

4.3 Natural units

An isotropic disordered speckle potential introduces a natural length scale
of the system, namely its correlation length σ. From this length scale other
units can be derived, namely [64]:

• Wavenumber: kσ = σ−1

• Momentum: pσ = h̄kσ

• Energy: Eσ = h̄2

mσ2 , with m the mass of an atom

• Time: τσ = h̄/Eσ

30This configuration was developed by F. Jendrzejewski, a former PhD student in our
group. Detailed information can be found in his thesis [55]. The success of our setup
motivated another group at the LENS in Florence to build an experiment using a very
similar speckle setup [103].

55



4.3 Natural units

These units are the natural and convenient measures when describing the
propagation of waves in such a disordered potential. They are employed for
example in the code for the numerical simulations described in section 8.6.1,
and for numerous qualitative arguments describing the propagation of the
atoms.

This being said, the speckle potentials used in our experiments are not
perfectly isotropic: In the case of the crossed speckle, used in our explo-
rations of 3D Anderson localization (see section 6), the correlation lengths
along the three major axes of the speckle are 0.11 µm, 0.27 µm, and 0.08 µm
respectively. Since they are all of the same order, qualitative arguments us-
ing the corresponding natural units, for example the comparison of Eσ with
the amplitude of the disorder VR, could nevertheless be drawn.
For our experiments on Coherent Backscattering and Coherent Backscatter-
ing Revival (see sections 7 and 8) a single speckle beam was used, giving
very different correlation lengths of σ⊥ = 0.235 µm and σ‖ = 2.77 µm.
But since the dynamics in these experiments were taking place only within
a plane perpendicular to the optical axis of the speckle, the only relevant
length scale of the disorder was σ⊥. Therefore, in these cases, there is no
ambiguity as to which natural units to use.
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5 Modifications of the experiment

During the course of this thesis several modifications of the experiment were
implemented. These modifications were carried out after the experiments
on Anderson localization / CBS, and before the experiments on CBSR. The
overall goal was to improve stability of already existing capabilities, and to
add flexibility for future projects:

• The imaging system around the science chamber was upgraded in order
to have diffraction limited imaging. The new system is also flexible
and allows two different configurations, one with a high field of view
and another with a high resolution.

• The beam line for one of the crossed optical dipole trap beams, the
dimple, shares optical elements with one of the new imaging systems.
It was therefore completely redone, putting an emphasis on the stabil-
ity of the setup.

• The whole speckle setup was redone. It now has a dedicated optics
table, giving more room and flexibility for future modifications of the
speckle.

In addition a remark on the implementation of a procedure to increase the
quality of the vacuum using light induced atomic desorption (LIAD) is made
at the end of the chapter.

Not treated is the installation of a magnetic shielding around the science
chamber to increase the stability of the magnetic field at the position of the
atoms. This will become important for future works, and has no impact
on the description of the CBSR experiments. A full characterisation of the
performance of the magnetic shielding has therefore not been carried out
yet at the moment of this writing.

5.1 Imaging system

There are three camera systems installed in our experiment: One to take
images in the first, and two for imaging in the second chamber. All three
cameras are EMCCD Hamamatsu C9102, with 1000× 1000 pixel, each with
a size of 8 × 8 µm2. These cameras work in conjunction with an objective
that transports the light from the focal plane to the CCD chip.

For fluorescence imaging (see section 3.1) that we use in the science
chamber a spherical wavefront emenating from a point-like object first has
to be transformed into an ideally flat wavefront. In order to achieve this and
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Figure 30: Schematic overview of the science chamber imaging sys-
tem. The beam paths for the top and the bottom imaging systems are
shown. Both are centered on the center of the glass cell (blue square),
where the atoms are situated (red point).

obtain diffraction limited imaging while having a high numerical aperture
(NA ≈ 0.4) it is necessary to take into account the aberrations induced
by the wall of the glass cell that the light coming from the atoms has to
pass. This was not the case for the old imaging systems, and it was there-
fore decided to upgrade the two around the science chamber. The design
process was carried out by Valentin Volchkov, who was then a visiting PhD
student and is now working as PostDoc in our group, together with Ray-
mond Santoso, a Master student intern. It took inspiration from the diploma
thesis of T. Ottenstein, and detailed information about the design that is
qualitatively similar to ours can be found therein [85].

The general setup of the imaging system around the science chamber
is shown in figure 30. In the following we will concentrate on the top cam
imaging system, which is nearly identical to the bottom system. The only
exception is that the fluorescence light in the bottom imaging system is once
reflected by a (dichroic) mirror. The optical access used for the bottom
imaging is shared with the dimple beam setup, which will be described in
the next section 5.2.

The glass cell is made of 3 mm thick Vycor glass (refractive index n =
1.46) and measures 30 mm on each side.31 Simulations with the program
Oslo were carried out to adapt the design of [85] to our specifications.32 As

31This is the outside length of the glass cell. This means that the atoms at the center
of the glass cell are 15 mm away from the outside surfaces.

32Due to mechanical contraints the maximum diameter of our lenses is smaller, and our
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5.2 Dimple beam setup

in [85] a combination of three lenses is used to collimate the light coming
from the atoms and correct for the aberrations introduced by the glass cell.
The numerical aperture of this system is NA = 0.4. The lenses were built
to our specifications by Lens-Optics, and are made of SF11 glass (refractive
index n = 1.77) with a 780 nm anti-reflection coating. Figure 31 shows the
technical drawings of this lens system, together with the mount used to hold
them together and position them close to the glass cell. Not shown is the
second part of the mount which holds the lens that focusses the light onto
the CCD chip of the camera (f2 in figure 30). In order to have the choice
between either a high field of view or a high resolution it was decided to
order lenses with two different focal lengths f2 and design the mount such
that one can easily switch between the two. The lenses are doublets from
Melles Griot, MG01LAO795 (f = 300) and MG01LA0523 (f = 100). With
these two different lenses we obtain a magnification of roughly 10 and 3
respectively.

At the time of writing this thesis we have only been using the low mag-
nification, high field of view imaging. We found the pixel size to be 2.71 µm,
which is in agreement with the expected magnification, and translates to an
observable surface in the focal plane of 2.7×2.7 mm2. This pixel size was de-
termined experimentally by measuring the (vertical) center of mass position
of the cloud in the crossed dipole trap y0, and comparing it to the position y1

after a free fall of duration t. The difference in position ∆y = y0−y1, initially
measured in number of pixels, must equal to gt2/2, where g = 9.81 m/s2 is
the gravitational constant.

5.2 Dimple beam setup

As explained in section 3.3.3, in the science chamber the atoms are held in a
crossed optical dipole trap, consisting of a horizontal beam (tweezer), and a
vertical beam (dimple). For both beams of the crossed dipole trap a single
Ytterbium laser (20 W @ 1070 nm, from Keopsys) is used, and it is in this
trap where the evaporation ramps leading to the BEC are performed.

The dimple beam uses the optical access port and part of the objective of
the bottom imaging system. As laid out in the previous section, an update
of both imaging systems of the science chamber was performed to achieve
diffraction limited imaging, and it was therefore decided to revamp the whole
dimple beam line. A characterisation of the old setup can be found in the
PhD thesis of F. Jendrzejewski [55] and A. Bernard [19]. The first part of

glass cell is thinner.
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Figure 31: Technical drawings of the top cam imaging system. The
system of lenses shown here (shaded green) correspond to the one denoted f2
in figure 30. A diaphragm (shaded brown) can be used to decrease the
effective numerical aperture of the imaging system in order to increase the
depth of field.
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Figure 32: The dimple beam line. Shown here is the beam line of the
dimple, starting from the output fiber of the Ytterbium laser, up until the
“dimple box”. About 20% of the total power are diverted to the tweezer by a
polarising beam splitter (PBS 1). Several telescopes, including a cylindrical
one, are used to prepare the beam in its desired shape before entering the
dimple box. Also included is the beginning of the path of the tweezer. For
the missing part of the tweezer beam path, see figure 19.

the new dimple beam line is shown in figure 32, and the second part up until
the science chamber in figure 33. This second part shares optical elements
with the bottom imaging system and is contained in a single housing that
is shown in figure 33 and will be referred to as the “dimple box”.

5.2.1 Design considerations

Stability of the new setup Great care was taken to achieve a good
stability of the system. Whereas with the old setup it was necessary to
adjust the dimple on a nearly daily basis to optimise its crossing with the
tweezer we now don’t need to touch it for several weeks without loosing the
alignment. Three key changes led to this improvement in stability:
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Figure 33: The dimple box. A technical drawing showing the dimple box,
which combines the last optical elements of the dimple beam line as well as
those of the bottom imaging system. This drawing was provided by André
Guilbaud from the institute’s mechanical workshop, who manufactured this
setup. The beam path of the dimple is marked in red, and the optical
elements (lenses and mirrors) are marked in green. Before the dimple box
the beam is collimated. Upon entering it is focalised by a f = +200 lens,
and its focal points are indicated with blue crosses. A small fraction of the
beam is reflected by a dichroic mirror, and is used to align it with respect
to the dimple box. In order to precisely position the setup it is mounted on
a 5-axis aligner, shown in brown. The glass cell, which contains the atoms,
is shown in blue.
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5.2 Dimple beam setup

• The fiber outcoupler coming from the Ytterbium laser had degraded,
resulting in a considerable part of the total beam power being dumped
into it. This left less power for the dimple and the tweezer, but also
led to substantial heating of the outcoupler.

• As much as possible of the beam path was tubed. This prevents poynt-
ing fluctuations of the beam due to air currents, and dust settling on
the optical elements.

• Most of the optical elements shown in figure 32 were shielded from the
surroundings by a plastic box. This again prevents air currents, but
also serves to decrease temperature fluctuations. Finally it is a safety
measure to protect the eyes of PhD students.

Servo-loop In order to regulate the power that enters into the dimple and
the tweezer beams, typical PI feedback loops using Acousto Optical Modu-
lators (AOM) in conjunction with photo-diodes (PD) are employed. These
are shown in figures 19 and 32 (“Dimple AOM” and “Tweezer AOM”). The
efficiency of the type of AOM used for the servo-loops of both dimple and
tweezer depends on the input polarisation of the beam, and each is therefore
preceeded by a λ/2 plate.
To monitor the power in the beam a small fraction is diverted towards a
photo-diode (“PD”) using a glass prism (“wedge”). The reflection coeffi-
cient of the wedge depends on the polarisation of the incoming beam. We
observed an instability of the output polarisation of the AOMs, which we
attribute to a heating effect of the AOM crystals. Therefore a polarising
beam splitter (“PBS 2”) is put before the wedge, which cleans the polari-
sation. Fluctuations of the polarisation of the beam are transformed into
fluctuations of the beam power passing the PBS, but these fluctuations are
corrected by the subsequent servo loop.
A similar setup is used for the servo loop of the tweezer.

Alignment of the new setup Another key point in the conception of
the last part of the dimple beam line was to ensure a good alignment of the
dimple beam with respect to the optical axis of the bottom imaging system
and the magnetic coils of the levitation:

• Since the position of the tweezer-dimple crossing determines the posi-
tion of the atomic cloud it is paramount that this position coincides
with the optical axes of the top and bottom imaging systems around
the science chamber. A deviation would lead to a deterioration of the
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5.2 Dimple beam setup

image resolution. To ensure this alignment we installed a pinhole that
is positioned at the conjugate focal point of the bottom imaging triplet
(see figure 33). If the dimple beam can pass this pinhole we are sure
that it is also on axis with the bottom imaging system.

• The atoms are levitated in a magnetic gradient field, which is produced
by pairs of coils built symmetrically around the vacuum glass cell (see
section 3.3.4). These coils have a well defined geometric center, where
the performance of the levitation is expected to be best. Since the
(initial) position of the atoms is defined by the crossed dipole trap
between the tweezer and the dimple, it is crucial that both meet as
close to this center as possible.
In the new setup geometrical constraints were used to align the tube
containing the last optical elements of the dimple with the levitation
coils: The coils are held in a housing with a vertical hole along its
symmetry axis. Attached to the dimple tube is a ring with a diameter
1 mm smaller than the diameter of this hole. The tube can then
only enter the hole if it is centered better than 0.5 mm with respect
to the symmetry axis of the levitation coils. Additionally, an even
finer alignment was achieved by centering this ring precicely in the
hole using the 5-axis aligner, on which the dimple box is mounted.
Provided that the dimple beam passes the glass cell vertically we can
therefore assume that it too is centered with an accuracy better than
0.5 mm.

Heating in the crossed dipole trap During the construction of the
dimple beam line we observed a high loss rate of the atoms in the crossed
optical dipole trap, with a lifetime of only about 2-4 seconds.33 Initially
a vibration of the tweezer or the dimple beam (“pointing fluctuations”)
was suspected as a parametric heating source of the atoms [6, 45], and
we went to great lengths to verify the mechanical stability of the setup.34

But the loss rate was eventually determined to be due to heating induced
by interferences between the dimple and the tweezer beams, as it can be
completely eliminated by rotating the polarisation of the dimple beam such
that the polarisation of both beams are orthogonal with respect to each

33The lifetime of the atoms just in the tweezer was found to be 20-25 seconds, which
we assume to be the limit due to collisions with the background gas.

34Intensity fluctuations can also lead to heating. During the course of these investiga-
tions we therefore also verified the proper working of the intensity lock of the dimple and
the tweezer.
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other. To turn the beam polarisation a λ/2 plate is installed between the
wedge of the servo-loop and the dimplebox (see figure 32).
The Ytterbium laser that we use as a source for both the dimple and the
tweezer beam has a spectral bandwidth of the order of some MHz, which
translates into a coherence length of less than a millimeter. Overlapping the
two beams when their path length difference is larger than this coherence
length should lead to interference fringes that change too rapidly for the
atoms to follow. They would then experience an averaged potential and not
be subject to any heating.
The difference in the path length of dimple and tweezer is about a meter,
and therefore much larger than the coherence length. The fact that we still
observe heating may be explained if the laser spectrum is not continuous, but
is composed of many discrete peaks. Coherent superposition of the dimple
and the tweezer would then be possible not only within one coherence length,
but at repeating intervals of the path difference.35

5.2.2 Characterisation of beam shape and trap frequency

In the old setup the dimple beam had an anisotropic shape at the position of
the atoms, with waists ωx ≈ 180 µm and ωz ≈ 90 µm [55]. Since the dimple
beam waist in x-direction is much larger than that of the tweezer (the waist
of the tweezer is on the order of some tens of microns) a practically spheri-
cally symmetrical trap can be obtained by choosing the appropriate power
ratio in tweezer and dimple. An additional advantage is that small changes
of the relative alignment between dimple and tweezer in this direction don’t
have a big effect on the characteristics of the trap.
For the new setup we tried to recreate a dimple beam with the same char-
acteristics. This would allow us to re-use the evaporation ramps of the old
setup, which we knew were working well (the performance of the evaporation
in the old setup is detailed in [55]). An additional constraint in the plan-
ning was that the dimple beam should enter the glass cell well collimated,
in order not to be sensitive to uncertainties in the vertical position of the
atoms.

Direct measurements of the dimple beam characteristics As shown
in figure 32, starting from the fiber coupler with a measured isotropic waist of
1.2±0.1 mm the laser beam passes several telescopes, including a cylindrical
one, to shape the beam into an anisotropic gaussian profile. The beam

35In order to have an intensity-noise limited life time of 2-4 seconds fluctuations of the
order 10−3 to 10−4 are sufficient.
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 Position of the atoms
Beam waist along direction

 x: 203.2 ± 1.1 micron
 z: 90.9 ± 1.2 micron

Figure 34: Characterisation of the dimple beam shape. A test setup
to measure the dimple beam characteristics was built next to the science
chamber. It included the whole and unchanged beam path. To simulate
the vacuum chamber a piece of glass of equal thickness and material was
placed above the dimple box. Panel a shows a typical image obtained. The
tweezer would pierce the dimple beam parallel to the z-axis. b To extract
the waists the image is projected onto the x and z-axis (black), and fitted
by a gaussian (red). c Waists along x and z-axis for different distances
between the imaging system and the lens system of the dimple box. The
blue vertical line at zero indicates the center of the glass cell, where the
tweezer and therefore the atoms would be.
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waists were verified to have the expected values by directly measuring the
dimple beam shape with a camera at several points along the beam line. At
the input of the dimple box (see figure 33) the measured beam waists are
ωvert = 840 µm and ωhori = 1390 µm. The beam is then focalised by a lens
with focal length f = 200 mm, which is positioned such that the focal point
coincides with the focal point of the imaging lens system (marked by a blue
cross in figure 33). This lens system then collimates the beam, so that its
shape stays constant while passing through the glass cell. An image of the
beam shape at the position of the atoms and a measurement verifying its
collimation is shown in figure 34. We measure a waist of the dimple beam
at the position of the atoms of ωx = 203.2 µm and ωz = 90.0 µm. The beam
within the glass cell is well collimated at least ±3 mm around the position
where the atoms are expected.
The maximum total power arriving at the atoms in the dimple beam is ≈
7.4 W. Using the measured waists ωx and ωz this translates into a maximum
trap depth of U0/h ≈ 210 kHz, where h is the Planck constant. As a
comparison, the roughly 2 W coming from the tweezer, focalised into a
minimal waist of 28 µm has a maximum trap depth of U0/h ≈ 4.9 MHz.36

Measurements of the dimple trap frequencies A final characterisa-
tion was carried out by measuring the trap frequencies of the dimple. To
do this a cloud of atoms was held in the crossed trap, with the power in
the dimple beam set to a specific value P . With a pulsed magnetic gradient
field that exerted a brief force in the z-direction, an oscillation of the center
of mass of the cloud in the trap was induced. After an oscillation time t the
trap was switched off, and the position of the cloud after a time of flight was
recorded. Two examples of such recorded oscillations are shown in figure 35.
According to equation (29) the trap frequency ω is proportional to the square
root of the power P . Figure 35 also shows the measured dimple trap fre-
quencies as a function of the total power in the beam, fitted by the function
A
√
P . The measured slope gives A = 64.5 ± 1.2 s−1W−0.5. In order to

compare this slope with the theoretical prediction formula (28) for the trap
depth has to be changed for an anisotropic beam shape with waists ωx and
ωz:

U0 = − 3c2

ω3
aωxωz

Γ

δ̃
P (52)

36Taking into account the respective beam waists, the maximum trap depths of dimple
and tweezer correspond to temperatures of ≈ 4 µK and 100 µK respectively.
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Figure 35: Dimple trap frequencies. The left hand graph shows two
examples of the center of mass oscillations of the atomic cloud in the crossed
optical dipole trap. The fits used are exponentially damped sine curves. For
the black curve the power in the dimple beam is 1.8 W, and for the red
curve the power is 0.9 W. The right hand graph shows the measured trap
frequencies f = ω/2π as a function of the power P of the dimple beam,
together with a fit, f(P ) = A

√
P .

Together with equation (29) this predicts a slope A of 76.9 s−1W−0.5, when
using the independently measured waists ωx = 203.2 µm and ωz = 90.9 µm,
which is in qualitative agreement with the measured slope given above.

5.3 Speckle setup

The optical speckle is a central part of our experiment, as it provides the
disordered potential wherein the atoms are propagating. A theoretical in-
troduction to speckles was already given in section 4, and in this section
the setup we are using is presented. A previous configuration, detailed in
the theses of A. Bernard and F. Jendrzejewski [19, 55], was built during the
construction of our experiment, which was used to perform the experiments
of Anderson Localisation and Coherent Backscattering. This setup, albeit
working well, was limiting in the long run as it was lacking flexibility: Since
future experiments will utilise another laser with a different wavelength we
decided to revamp the existing setup completely. More precisely, the wave-
length of the laser currently used for the creation of the speckle is 532 nm,
which provides a far blue detuned repulsive potential (see section 3.3.1). We
are currently working on implementing a laser with a tunable wavelength
around 780 nm, which would allow us to change from attractive to repulsive
potentials, and to work with disorder strengths that depend strongly on the
spin-state of the atoms.
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A whole optics table is now dedicated to the preparation of the laser
beams for the speckle, with enough place to accomodate these two lasers,
and with the flexibility to easily change between them. In the following the
new setup is presented, which creates an anisotropic disordered potential
configuration and was used in our experiments on Coherent Backscattering
Revival. It is similar to the old configuration used for our studies of CBS
(described in section. A crossed speckle with a reduced anisotropy as used
in our experiments on Anderson Localisation is foreseen and can easily be
implemented. After the presentation of the setup the characterisation of the
crucial properties of this new configuration, the auto-correlation function of
the speckle field, its temporal stability, and the intensity shining onto the
atoms will be given.

5.3.1 Setup of the speckle

The new speckle setup was installed on an own dedicated optics table, which
provides enough space to be much more flexible than the previous configura-
tion. This table is situated close to the science chamber over the translation
stage. To dampen any possible mechanical noise or vibration Sorbothane
sheets37 were placed between the supporting feet and the table. At the time
of writing there are two lasers installed, a Verdi (VerdiTMV-18, 18 W @
532 nm), and a Toptica (TA pro, 780 nm @ 1.1 W). For all experiments
described in this thesis the far blue detuned light from the Verdi was used,
whereas the Toptica laser with a frequency close to resonance of the atoms
will be necessary for future experiments.

A schematic drawing of the new speckle setup, not including the Toptica
laser, is shown in figure 36. In order to ensure a well defined and know polar-
isation axis the laser beam is first led through a glan. To switch it on and off,
to regulate the power, and to reduce intensity noise a servo loop comprising
an Acousto-Optical Modulator (AOM) in connection with a photo-diode is
used. The second order reflection of a wedge, which separates roughly 4%
of 4% from the total power, is directed onto this photo diode. The beam
waist, which initially measures 1.1 mm, is enlarged by two telescopes to a
final waist of ≈ 12 mm. A compromise has to be made here: Ideally one
would like to have a homogeneous illumination of the diffusor in order to
obtain very small speckle grains. A quasi-homogeneous illumination can be
approximated by having a very wide (larger than the 1-inch diameter of the
diffusor) laser beam incident on the diffusor. But this would let only a small

37Thorlabs product number SB12B, with a thickness of 1/4 inch.
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Figure 36: Setup of the speckle. For the speckle a Verdi Laser (18 W
@ 532 nm) is used. To ensure a very well defined and known initial polar-
isation the beam is first led through a glan. A servo loop using an AOM
in conjunction with a photo diode is employed to enable rapid switching of
the laser power, its regulation to a set value, and to reduce intensity noise.
Before reaching the diffusor the beam is magnified by two telescopes to a
final waist of ≈ 12 mm. This is a compromise between wanting a homoge-
neous illumination of the diffusor, while still having a large fraction of the
total power shining onto the atoms. With a diaphragm the effective numer-
ical aperture of the speckle, and therefore its autocorrelation function, can
be regulated. This setup can shine two independent speckle fields onto the
atoms, both of which are indicated here. For the main results of this thesis
only one arm was used (darker blue).
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part of the total power pass to the atoms, whereas the rest is blocked by the
finite aperture of the lens / diffusor. A waist of 12 mm is a sweet spot, tak-
ing into account both requirements. Nevertheless, the first (Telescope 1 in
figure 36, magnification factor 4) can be easily exchanged if a different final
beam waist incident on the diffusors is desired. At the moment of writing
this manuscript we are only using one speckle arm as opposed to the crossed
speckle configuration, and all the beam power is therefore diverted into this
arm.38 The beam is then enlarged a second time by a factor ≈ 2.7 to a final
waist of about 12 mm.

We use standard broadband dielectric mirrors39, which have a reflection
coefficient of ≥ 99% for both 532 nm and 780 nm. For the lenses a custom
double anti-reflection coating from CVI Melles Griot was applied to uncoated
Thorlabs lenses. The reflection coefficients of the broadband mirrors and the
theoretical transmittance of the lenses are shown in figure 37. Both together
ensure that a maximum of optical power can reach the atoms.40

Finally, the light hits an aspheric lens and the diffusor.41. In order to
have the focal point of the aspheric lens coincide with the position of the
atoms at the center of the glass cell its flat face must be positioned ≈ 1.5 mm
away from the glass cell. The thickness of the diffusor was therefore reduced
from 3 mm to 0.5 mm by the institute’s optics workshop.

We measured that a maximum power of 8.6 W exits the diffusor. The
inner and outer surface of the glass cell each reflect about 4%, so that the
maximum power shining onto the atoms is ≈ 7.9 W.

5.3.2 Characterisation of the speckle

Since the speckle is a crucial part of our experiment a considerable amount
of time was spent to properly characterise the properties of the new setup.
In particular we were looking into the auto-correlation function and the sta-
bility of the speckle field. To do so, the lens and the diffusor at the end
of the beam line were installed such that a measurement setup could be

38Optionally the beam can be divided using a polarising beam splitter and fed through
two arms. This configuration was so far only used with the previous setup for our exper-
iments on Anderson Localization.

39Thorlabs coating E02.
40It has to be noted that the anti-reflection coating was optimised for the N-BK7 sub-

strate, wich is used for all the lenses except for the last one just before the diffusor.
This lens is made of a different substrate (B270). It was verified experimentally that the
anti-reflection coating still works well.

41The lens is a plano-convex ashperic (Thorlabs ACL2520) with a nominal focal distance
of 20 mm.
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Figure 37: Reflection and transmission coefficients. Panel a shows
the reflection coefficients of Thorlabs dielectric broadband mirrors with
E02 coating. This image was taken from the Thorlabs catalogue. In panel b
the theoretical transmittance of the custom double anti-reflection coating
on N-BK7 substrate from CVI Melles Griot is given. Both work well for
532 nm and 780 nm light.

Figure 38: Setup to measure the spatial structure and stability of
the speckle. The light coming from the focalising lens and the diffusor is
first fed through a pinhole to avoid parasitic reflections on the inside of the
microscope objective. The objective is necessary to be able to resolve the
small scale structures of the speckle, which are on the order of 0.1 μm. The
pinhole, the objective, and the camera are mounted on a computer controlled
translation stage that can move the ensemble parallel to the optical axis of
the speckle system. The camera can either take one image, or it can take
a rapid succession of images. The latter mode is used to either verify the
stability of the speckle field (translation stage is fix), or in conjunction with
the moving translation stage to reconstruct a 3D image of the speckle field.
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Figure 39: Stability measurement of the speckle field. Using a series
of images the stability of the speckle field was measured by calculating the
cross-correlation with a reference image. This reference image is the one
recorded just after switching on the speckle beam. The value 1 corresponds
to perfect correlation, and lower values indicate a change of the speckle field.
This measurement was repeated for three different values of the beam power,
as measured behind the diffusor. Panel a and b show the same data using
different scales on the y-axis.

mounted where usually the atoms would be, as shown schematically in fig-
ure 38: Since the transverse spatial structures of the speckle field have a size
of the order of 0.1 µm, much too small to be resolved directly by the camera,
it must first be magnified by a microscope objective. The light behind the
focal point of the lens-diffusor is strongly diverging, which would lead to
reflections inside of the objective. In order to avoid these most of the beam
is blocked by a 50 µm diameter pinhole, placed in front of the microscope. It
has the additional practical advantage of serving as a reference point when
adjusting the focal plane of the microscope. The magnified image of the
speckle is then detected with a camera. The ensemble of pinhole, objective,
and camera can be moved along the optical axis of the system to measure
the spatial structure of the speckle field as a function of the distance from
the lens / diffusor. The camera can be operated in two modes, either taking
a single, or a rapid series of images.42 The latter mode was used with a
fixed position of the translation stage to verify the stability of the speckle
field over time, or with the translation stage moving to obtain the full 3D
autocorrelation function of the speckle.

42The maximum frame rate of this camera is 12.7 fps.
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Stability of the speckle field In our experiments it is paramount that
the speckle stays constant during the propagation time of the atoms since
fluctuations either in its amplitude, or in its spatial configuration can lead to
decoherence, and therefore to the suppression of localization. Unsteadiness
of the disorder amplitude is caused by intensity noise of the laser beam,
which in our setup is suppressed by the servo loop. Possible reasons for
changes of the spatial configuration of the speckle are poynting fluctuations
of the laser beam, mechanical noise affecting the optical components (mirrors
and lenses), and heating effects. Poynting fluctuations can be induced by
air currents in the beam path, and we therefore closed the whole beam line
off from the environment. Great care was taken to achieve a mechanically
stable setup that would prevent vibrations, and finally elements heating up
due to the beam being dumped on them were placed such as not to influence
the beam line.

To verify the stability of our setup the following procedure was used: The
camera took a series of images with a frame rate of 12.7 fps for about 20 sec-
onds. While the camera was already recording we switched on the speckle
using the AOM. In this way we were sure to capture any eventual effects
happening right after the switch-on of the laser beam.43 The first image in
the series that showed the speckle, that is, the first one recorded after the
speckle laser had been switched on, serves as the reference to which all fol-
lowing images were compared. The cross-correlation between the reference
and all the other images was calculated using the Matlab normxcorr2 rou-
tine. This function returns values ranging from -1 to 1, with 1 corresponding
to perfect correlation.

Figure 39 shows the result of these measurements for three different pow-
ers of the laser beam (measured behind the diffusor). An initial decrease of
the cross-correlation value lasting about 2 seconds is observed, after which
it stays constant at around 0.94-0.96. It is not entirely clear at this point
what causes this change of the speckle field, but the time scale of two seconds
and the fact that later the cross-correlation stays constant suggests heating
by the laser beam as cause. To put this decrease of the cross-correlation
value into perspective we compared two numerically calculated independent
speckle configurations in the same manner, and found the value to lie be-
tween 0.20 and 0.24. We therefore assess that the observed change of the
speckle is very small.

43Due to the limiting frame rate of our camera we were not able to observe any eventual
changes ofthe speckle at the millisecond to 10-millisecond scale.
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Figure 40: Experimental image of a speckle. Panel a shows an ex-
perimentally obtained image of the speckle. Values of high intensity are
yellow to red, and low intensities are painted blue. In panel b the intensity
distribution of this image is plotted, together with an exponential fit.

Intensity distribution and spatial structure of the speckle field
Figure 40 shows an image of a speckle realisation obtained in the way de-
scribed above. It also shows the experimental confirmation of the exponen-
tial intensity distribution, which was already introduced theoretically in the
introduction of this chapter (compare with figure 28 and equation (50)).
The deviation from the exponential form for very low intensities in panel b
is due to the finite resolution of the imaging system used to measure the
speckle.

By taking images like this for different distances between the camera
and the diffusor the 3-dimensional speckle field can be recorded. This is
shown in panel a of figure 41: The anisotropy of the speckle grains is clearly
visible, and is quantified by calculating the autocorrelation of the speckle
field. Panel b shows the longitudinal and the transverse plot of this au-
tocorrelation function of the experimentally measured speckle. As laid out
in section 4 the longitudinal profile is well approximated by a lorentzian,
and the transverse profile by a gaussian. We use these functions to fit and
extract the longitudinal and transverse correlation lengths, finding the lon-
gitudinal FWHM of the speckle to be σ‖ = 2.77±0.2 µm and the transverse
RMS σ⊥ = 0.235± 0.007 µm.

5.4 Vaccum / LIAD

The atomic cloud is held in a vacuum of extremely low pressure, on the order
of ∼ 10−11 mbar, which is necessary to ensure that it is well isolated from
the environment. A limitation is the remaining background pressure, which
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Figure 41: Autocorrelation of the speckle field. Panel a shows a portion
of the experimentally obtained speckle field. From this data one can calcu-
late the autocorrelation function: The longitudinal and transverse speckle
autocorrelation functions are shown in panel b (black points), together with
a fit (lorentzian and gaussian, respectively). Note that the scales of the posi-
tion axes differ by a factor 10, and that the longitudinal correlation function
is much broader than the transverse.

is due to atoms and molecules thermalised to the ambient temperature of
about 300 K. Since their thermal energy is very high compared to the depth
of the trapping potential used to confine the atoms, a collision between a
background gas particle and an atom in the cooled cloud leads to the loss
of the atom from the ensemble. To maintain a low pressure several vacuum
pumps are installed in different places on our experiment (see figure 11
and [19] for more details on the design of the vacuum system).

In addition, we illuminate the glass chamber in which our experiments
take place every night with energetic blue light.44 This leads to a cleaning of
the inner surface of the glass cell from any rubidium atoms that have stuck
to it over the course of a day. This effect is known as Light Induced Atomic
Desorption (LIAD). Even though the exact mechanism(s) by which it works
are still not fully understood, experimental characterisations exist (see for
example [61] for an investigation with parameters very close to our setup).

Before having implemented the LIAD method the lifetime of our atoms
in the science chamber had decreased down to ≈ 10 seconds. After having
illuminated the glass cell with the energetic light the lifetime went up to
20-30 seconds. We attribute this dramatic increase in lifetime to the fact
that during the experimental cycle a beam of atoms emenating from the oven
directly hits the glass cell of the science chamber and pollutes its surface. For

44To produce the light we are using LEDs from Roithner Laser Technik, LED395-66-60,
with a wavelength of 395 nm.
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Figure 42: Lifetime of the atoms in the tweezer. The normalised num-
ber of atoms in the tweezer is shown as a function of the hold time. We
observe an increase of the lifetime in the second chamber after the appli-
cation of LIAD (see text) from about 10 seconds to about 30 seconds. For
comparison the same measurement was carried out in the first chamber,
which gave an equally slow decay. Also included in the plot are the expo-
nential fits (straight lines), which overlap for the dataset in the first chamber
and the dataset in the second chamber after LIAD.

atoms that are only weakly bound to the glass the thermal energy is enough
to slowly let them break free and contaminate the vacuum. By illuminating
the glass cell with the blue light at least these weakly bound atoms are
cleaned off the surface, thereby eliminating this source of pollution.

Figure 42 shows three measurements of the lifetime: The number of
atoms in the tweezer in the second chamber was recorded as a function of
the hold time t and fitted with an exponential A exp(−t/τ). Whereas before
the illumination with blue light the lifetime τ was 10 seconds it increased to
28 seconds after LIAD. For comparison a dataset taken in the first chamber
is also included, which also gives 28 seconds.

A similar experiment was carried out while holding the atoms in the
magnetic trap in the first chamber, which also resulted in a lifetime of ≈
30 seconds. This implies that the limiting factor is indeed the background
pressure of the vacuum, and not a loss mechanism related to the tweezer
like intensity or pointing fluctuations.
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6 3D Anderson localization

In a classical picture a particle performs a random walk in a medium with a
random assortment of scatterers, leading to diffusive propagation. It was al-
ready discussed in section 2 that this description is insufficient, and that the
quantum mechanical wave nature of particles can in fact lead to the complete
halt of propagation. This was first postulated in 1958 by P. W. Anderson [11]
under the title “Absence of Diffusion in certain random lattices”, describing
the halt of the motion of a spin in a disordered lattice. Originating in the
field of condensed matter physics Anderson localization was also observed
experimentally with classical waves such as light [120, 110, 102, 67], mi-
crowaves [27], and acoustic waves [53]. Open questions like the position of
the mobility edge in 3D, the critical behaviour around the mobility edge,
and the interplay of interactions between an ensemble of particles and the
disorder still remain though due to the complexity of the theory. Ultracold
atoms offer the prospect of investigating some of them.

Our experiment was built for the express purpose to observe and study
Anderson localization in 3D, and after the completion of the setup the first
step was to show that it is indeed capable to localize atoms. It builds
on the observation of Anderson localization with ultracold atoms in a 1D
configuration, which was carried out in 2008 in our group [20].45 In this
section the results of this experiment, which were published in [56], are
discussed. This work was executed at the beginning of this thesis, and is
already described in detail in the PhD thesis of Fred Jendrzejewski [55]. Only
a short description of our findings will therefore be given here. We worked in
close collaboration with Marie Piraud and Luca Pezzé of the theory group of
Laurent Sanchez-Palencia at our institute. Details to the theoretical work
can be found in [91] and in the PhD thesis of Marie Piraud [90]. Our
results came in parallel with works in the group of Brian DeMarco [62].46

Recently there was another observation at the LENS laboratory, which took
inspiration of our setup, but used a different atomic species (39K) enabling
a control over the inter-atomic interactions via a Feshbach resonance [103].
Previously Anderson localization had also been studied with ultracold atoms
in a kicked rotor configuration [82, 28, 71, 75].
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6.1 Experimental sequence

Figure 43: Overview of the experimental setup and sequence for 3D
Anderson localization.

6.1 Experimental sequence

The experimental sequence starts with the production of a BEC as explained
in section 3, and its final steps are sketched in panel b of figure 43.47 A
schematic drawing of the experimental setup is shown in panel a. Dur-
ing the whole duration of the experiment there are no outside forces acting
on the atoms, as gravity is cancelled by the magnetic levitation (see sec-
tion 3.3.4). The BEC is released from the trap and first expands freely
for 50 ms during which time the interaction energy between the atoms is
converted into kinetic energy. The cloud can then be seen as an ensemble
of independent, non-interacting atoms with a RMS size of about 30 µm.
At this stage the speckle is switched on rapidly (within 0.1 ms), and the
atoms start propagating in the disorder, with the disorder amplitude VR left
constant. A nearly isotropic disorder configuration was used for these exper-
iments, which is obtained by the coherent superposition of two speckle fields
(see section 4.2). After a propagation time in the disorder Tp the speckle
is switched off rapidly, followed immediately by the imaging of the atomic
cloud. An image therefore records the atomic density distribution n(~r, Tp),
integrated once along the optical axis of the imaging system, as a function

45A simultaneous experiment was performed in the group of Massimo Inguscio at the
LENS laboratory in Florence, Italy [97].

46See [83] for a recent discussion of their findings.
47At the time this experiment was conducted we had not yet implemented the delta-

kick cooling technique. The energy spread of the BEC cloud is therefore determined by
its chemical potential of 40 Hz.
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6.2 Expected behaviour of the system

Figure 44: Evolution of the atom cloud for two weak and strong
disorder. The evolution of the atomic cloud, starting from the same initial
conditions, is shown for two different disorder strengths: For weak disorder
(VR/h = 135 Hz) observation is only possible for a little longer than one
second, after which the cloud has expanded so much as to make the density
no longer detectable. For strong disorder on the other hand (VR/h = 680 Hz)
observation is possible up to six seconds.

of the propagation time Tp and the disorder amplitude VR.

Figure 44 shows the thus recorded evolution of the density distribution
for two different strengths of the disorder. Due to the levitation we are able
to observe the cloud for up to several seconds.

6.2 Expected behaviour of the system

The atomic cloud at the instant before the speckle is switched on has a cer-
tain energy distribution that stems from the interaction energy between the
atoms µin. The kinetic energy associated with the maximum velocity in this
distribution is approximately Emax

k = mv2
max/2 ≈ 2µin, with µin/h ≈ 40 Hz

for this experiment. Compared with the typical disorder amplitudes on the
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6.2 Expected behaviour of the system

Figure 45: Energy diagrams. Panel a shows a speckle potential indicating
the rough position of the disorder amplitude VR and the mobility edge Ec.
Indicated in panel b are sketches of the energy distribution of the atom
cloud before and after the rapid switch on of the speckle. The perturbed
energy distribution extends to both sides around the mobility edge, such that
only a fraction of the atoms is localized. Note that in panel b the energy
distribution is shifted by VR such that the average disorder amplitude 〈V 〉
is equal to zero.

order of VR/h = 100 Hz and correlation energy ER/h = 6.5 kHz this initial
energy distribution is very narrow. The rapid switch on of the disordered
potential modifies this distribution: Qualitatively it can be thought to be
shifted by the average amplitude of the disorder VR and broadened to a
width on the order of of V 2

R/ER in the case of quantum disorder. For a
strong disorder V 2

R/ER � µin the energy distribution of the atoms in the
disorder is completely determined by this perturbation. Figure 45 shows
qualitatively the position of the disorder amplitude and the broadening of
the energy distribution.

According to the scaling theory of localization [1] in 3D systems there
exists a threshold energy separating diffusive from localized states. This
threshold, the mobility edge Ec, is also predicted to be located in the vicinity
of VR [38] (see figure 45).48 Due to the modification of the energy distribu-
tion by the rapid switch on of the speckle potential a part of the atoms will
fall into the localized regime, whereas the rest will diffuse [107, 123]. Two
competing factors, the increase of the mobility edge for increasing disorder

48The reference given is a very recent (2014) result coming from numerical simulations.
It agrees qualitatively with results from the so-called method of “self-consistent theory of
localization”, which was employed by M. Piraud to theoretically confirm our experimental
findings [90, 91].
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amplitude and the more and more violent perturbation of the energy distri-
bution for increasing disorder amplitude result in a maxumum fraction of
atoms that fall into the localized regime. It has previously been qualitatively
estimated using the self-consistent theory of localization to be about 60%
for an isotropic speckle potential [123].

The density of the atom cloud in the disorder n(~r, Tp) can therefore be
separated into two parts, the localized part nl(~r) and the diffusive part nd(~r, Tp).
For energies far below the mobility edge the localization length is predicted
to be on the order of 1 µm [64, 91], which we cannot resolve with our
imaging system.49 For atoms with energies close to the mobility edge the
localization length diverges, but theoretical analysis shows that the number
of atoms with localization lengths much larger than 1 µm is negligible in
our experimental conditions [91, 90]. Within our experimental accuracy the
localized fraction of the atoms therefore should be a replica of the atom
density distribution at the moment the disorder is switched on:

nl(~r) = fl · n(~r, Tp = 0) (53)

Here, n(~r, Tp = 0) is the density distribution of the cloud at the moment
the speckle is switched on, and fl is the fraction of localized atoms.

Atoms with an energy above the mobility edge are diffusive, their dif-
fusion constant being dependent on their energy D = D(E). Using the
Ioffe-Regel criterion kl? ≈ 1 (see section 2.6) in conjunction with the defi-
nition of the diffusion constant D = vl?/3 = h̄/(3m)kl? (see section 2.4) it
is possible to estimate an order of magnitude of the diffusion constant for
energies close to the mobility edge:

D ≈ h̄

3m
≈ 250 µm2/s (54)

In order for atoms propagating with this diffusion constant to cover distances
greater than the initial size of the cloud (≈ 30 µm) it is therefore necessary to
allow for propagation times on the order of seconds, which is a formidable
experimental challange and only possible due to our magnetic levitation.
As described in section 2.6 the diffusion constants close to the mobility edge
tend towards zero.

6.3 Experimental observations

The evolution of the density distribution was measured for different disorder
strengths VR while leaving all other parameters equal. Figure 44 shows

49The final resolution obtained in our data is estimated to be about 15 µm.
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two examples, an evolution in weak (VR/h = 135 Hz) and one in strong
disorder (VR/h = 680 Hz). Qualitatively two differences are apparent: First,
the observation in weak disorder is limited by the vanishing density as the
cloud becomes larger, whereas in strong disorder a longer observation time is
possible. Second, in strong disorder a pronounced peak remains, but in weak
disorder the cloud continously spreads out over larger and larger volumes.

In order to quantify these observations we measured the diffusion con-
stant by monitoring the RMS width of the cloud ∆u for increasing propa-
gation times. The increase of the size is then given by ∆u2(Tp) = 2〈D〉Tp.
Due to the large broadening of the energies the measured diffusion constants
are necessarily an average,

〈D〉 =

∫ ∞
Ec

dE D(E) η(E) , (55)

where η(E) is the distribution of energy in the disorder. This method and
the results are shown in figure 46. We observe that for a disorder amplitude
VR/h ≥ 500 Hz the diffusion constant is of the order of the diffusion constant
close to the mobility edge as given in equation (54), and kl? ≈ 4. This
constitutes a strong hint that here the atoms are at least close to the localized
regime.

To extract the information whether a fraction of the atoms are local-
ized we employ a phenomenological model for the evolution of the recorded
central column density at the center of the cloud ñ(0, Tp).

50 This model is
based on the decomposition of the density into a localized, and a diffusive
part:

ñ(~r, Tp) = ñl(~r, Tp) + ñd(~r, Tp) (56)

Panel a of figure 47 shows that this central density asymptotically tends
towards a finite value. After normalising with respect to the initial central
column density ñ(0, 0) we fit this behaviour with a function

ñ(0, Tp)/ñ(0, 0) = floc +
C

Tp
, (57)

with some constant C. A decrease inversely proportional to the propagation
time is expected from diffusive behaviour where the density in 3D falls as ∼

50The full three-dimensional density was previously denoted by n(~r, t). Taking an im-
age automatically integrates this density over the x-axis, and we show this by adding a
tilde, ñ((y, z), t) =

∫
dx n(~r, t). The central column density of the distribution therefore

is ñ(0, t).
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6.3 Experimental observations

Figure 46: Diffusion constants. To measure the average diffusion con-
stants 〈D〉 we monitor the mean square width of the cloud ∆u2 as a function
of the propagation time, as shown on the left hand graph. The blue points
are the size along z, and the red diamonds along y. The straight lines are
linear fits. These diffusion constant are shown on the right hand graph as
a function of the disorder amplitude VR. They are normalised with respect
to the typical diffusion constant close to the mobility edge h̄/3m from equa-
tion (54). The remaining anisotropy of the speckle potential leads to a slight
anisotropy of the diffusion. The lines stem from theoretical calculations (see
text).

85



6.3 Experimental observations

Figure 47: Extraction of the localized fraction. Panel a shows the
evolution of the normalised central density as a function of the propagation
time Tp for two disorder amplitudes VR/h = 135 Hz and VR/h = 680 Hz.
The inset shows the same data, only this time as a function of the inverse
propagation time, 1/Tp. Using a fit it is possible to extract the localized
fraction floc (see equation (57)). Panel b shows the localized fraction of the
atoms as a function of the disorder strength. The results of the theoretical
calculations are plotted as a straight line (see [56, 91]).

T
−3/2
p . The 1/Tp behaviour then follows from integrating over one spatial

direction.
The fit-parameter floc is interpreted as the localized fraction of the atoms,
and their value as a function of the disorder strength is shown in panel b
of figure 47. The central result of this experiment is the thus extracted
localized fraction as shown in panel b. We observe a steady increase until
floc saturates at around 20-25%. We attribute this saturation to the fact
that the increasing disorder strength also increases the broadening of the
atoms’ energy distribution: For increasing VR one expects an increase of the
localized fraction, as observed for VR/h ≤ 400 Hz. But above VR/h ≈ 500 Hz
the induced broadening of the energy distribution seems to counter-balance
this effect. There is a discrepancy between theory and experimental results
for high disorder strengths, which prompts for a more elaborate theoretical
description.
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6.4 Conclusions

The work presented here constitutes a first observation of 3D Anderson local-
ization of ultracold atoms. We monitored the expansion of an atomic cloud
in a quasi-isotropic optical speckle disorder, and observed a diffusive as well
as a localized fraction. These two fractions respectively correspond to atoms
above, and below the mobility edge. The full experimental observations, the
diffusive behaviour, the localized fraction, and the overall evolution of the
density distribution are in good agreement with a self-consistent theoretical
approach adopted to our experimental parameters.

In the setup presented here the energy of the atoms in the disorder cannot
be very well controlled, since for strong disorder it is entirely determined by
the disorder induced spread. An ongoing work is the development of a
technique to precisely control the energy of the atoms, which would open up
the possibility to study the critical behaviour around the mobility edge.
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7 Coherent Backscattering

The transport of classical particles in a disordered medium can be modelled
by a random walk. This random walk is the microscopic picture underly-
ing the macroscopic diffusive transport. As laid out in chapter 2, coherent
wave propagation in disordered media differs from this classical description
by interference corrections. These corrections can ultimately lead to the
complete halt of propagation, resulting in the so called Anderson Localisa-
tion (see sections 2.6 and 6). Preceeding the localisation of waves are first
order corrections of the propagation, namely Weak Localisation (WL) and
Coherent Backscattering (CBS). WL and CBS are related as they both rely
on the interference between multiply scattered counter-propagating paths.
WL results in an increased probability to return to the same spatial point
during a random walk, whereas CBS leads to an increased directly backscat-
tered intensity. Both effects have been investigated thouroughly for several
decades, with notable examples for CBS being the first theoretical descrip-
tions [117, 112, 4] which were going hand in hand with the first laboratory
controlled experimental observations [63, 113, 122]. These first explorations
were carried out using electromagnetic waves, but just like Anderson lo-
calization, Coherent Backscattering is a very general effect for waves in
disordered media. It has also been observed for acoustic waves [16, 111],
and seismic waves [68]. Figure 48 portrays an example of the coherent
backscattering enhancement as recorded previously by another experiment
using electromagnetic waves [121].

In this section the first observation of Coherent Backscattering of ultra-
cold atoms is presented. We took inspiration from a theoretical proposal
by N. Cherroret et al. in [29]. It suggested to launch atoms with a well
defined momentum into a disordered potential in a 2D configuration, and
to monitor the ensuing evolution of the atoms’ momentum space distribu-
tion. Figure 49 shows numerical simulations of the momentum distribution
for two propagation times in the disorder, reproduced from [29]. In it the
coherent contribution to the propagation, the CBS peak, is clearly visible
on top of the incoherent contribution, which forms a ring structure.
This clear signal provides a telltale sign of phase coherent transport of cold
atoms in disordered media. Also it was noted that the momentum space evo-
lution would make it possible to directly measure two fundamental transport
parameters, the mean scattering time and the transport time.

Our experimental results were published in [57], and are also described
in the PhD thesis of F. Jendrzejewski [55]. It provides the context for our
experiments on the Coherent Backscattering Revival, which will be treated
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Figure 48: Example of the Coherent Backscattering enhancement.
Shown here is the CBS peak of light incident on fine powders, reproduced
from [121] (the two data sets correspond to two different samples with dif-
ferent mean free paths). It showcases the enhancement by a factor 2 relative
to the incoherent background (dashed line).

Figure 49: Evolution of the momentum-space distribution in 2D.
From an initially well defined momentum state the atoms are elastically
scattered by the disordered potential and populate momenta on a ring cen-
tered around zero. The left hand picture shows the beginning of the forma-
tion of this ring, while a small number of atoms still remain unscattered in
the initial momentum state (initial peak). The CBS peak starts to form in
backscattering direction and remains the only feature for longer propagation
times in the disorder (right image). This figure is reproduced from [29].
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7.1 The Coherent Backscattering mechanism

Figure 50: Panel a shows different paths between two fixed points, �r1
and �r2. Each path is associated with a complex amplitude ak, and the
total amplitude f(�r1, �r2) corresponding to the propagation from �r1 to �r2 is
the sum of the amplitudes of all individual paths. The phase accumulated
during the propagation outside the disorder dephends on the wavevectors of
the incoming and outgoing wave �ki and �kf as shown in panel b. Without

loss of generality it can be written as exp[i(�ki · �r1 − �kf · �r2)].

in section 8.

7.1 The Coherent Backscattering mechanism

In order to investigate the mechanism underlying Coherent Backscattering
we will follow the approach given in [3], which is based on looking at individ-
ual paths along which the wave can propagate in the disorder. The disorder
itself is modelled as an ensemble of point scatterers with random positions,
and all scattering events are supposed to be completely elastic.

In order to understand the mechanism leading to coherent backscatter-
ing we are investigating the complex amplitude that is associated with a
plane wave with wavevector �ki that scatters in the disordered medium into
a final state �kf . First, the wave can take different paths within the disor-
der. Shown in figure 50 a are different paths connecting an initial scattering
point �r1 with a final point �r2. Each path is associated with a complex ampli-
tude ak = |ak|eiδk , and the total amplitude f(�r1, �r2) describing the propaga-
tion between these points is the sum over all paths, f(�r1, �r2) =

∑
k ak. We

also have to take into account the phase accumulated due to the propagation
outside the disorder. Without loss of generality for the further calculations
this phase can be written as exp[i(�ki · �r1 − �kf · �r2)], resulting in a total
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7.1 The Coherent Backscattering mechanism

amplitude

A(~ki,~kf , ~r1, ~r2) = f(~r1, ~r2)ei(
~ki·~r1−~kf ·~r2) (58)

Since the waves are extended many starting and end points are possible,
and we sum to arrive at the total amplitude that connects the given initial
wave with a given outgoing wave:

A(~ki,~kf ) =
∑
~r1,~r2

A(~ki,~kf , ~r1, ~r2)

=
∑
~r1,~r2

f(~r1, ~r2)ei(
~ki·~r1−~kf ·~r2)

(59)

The intensity of the backscattered wave is proportional to the square of the
absolute value of this amplitude:

I(~ki,~kf ) = A(~ki,~kf )A∗(~ki,~kf )

=
∑
~r1,~r2

∑
~r3,~r4

∑
k

∑
l

|ak||al|ei(δk−δl)ei[
~ki·(~r1−~r3)−~kf ·(~r2−~r4)] (60)

So far the intensity is the result of a sum of many complex amplitudes with
random phases. This was already treated in section 4 and leads to a speckle,
where the intensity is a random function with exponential distribution. The
speckle depends on the distribution of the scatterers so that each disorder
configuration leads to a different speckle. One expects that averaging the
intensity over many different disorder configurations leads to a featureless
function of the intensity, but surprisingly this is not the case: The phase of
the term |ak||al| exp[i(δk−δl)] in equation (60) is equal to 1 for any disorder
configuration if the paths k and l are either the same, or if they are time-
reversed counterparts. These two possibilities are shown in figure 51. In
the first case the end points of the paths are equal and one has ~r1 = ~r3

and ~r2 = ~r4, whereas in the second case one has ~r1 = ~r4 and ~r2 = ~r3.
Since, at least to first order, all except these two classes of paths vanish
when averaging over different disorder configurations we are able to rewrite
equation (60) in the simpler form (the averaging is denoted by 〈· · · 〉):

〈I(~ki,~kf )〉 =

〈∑
~r1,~r2

∑
k

|ak|2
(

1 + ei(
~ki+~kf )·(~r1−~r2)

)〉

=

〈∑
~r1,~r2

|f(~r1, ~r2)|2
(

1 + ei(
~ki+~kf )·(~r1−~r2)

)〉 (61)
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Figure 51: When averaging over many disorder configurations two classes
of paths contribute to the average intensity: Both follow the same sequence
of scatterers, either in the same (panel a) or in counter-propagating direc-
tions (panel b). The second class of paths are responsible for the Coherent
Backscattering signal.

The constant term corresponds to the pair of paths that traverse the disorder
in the same direction, and we will refer to it as the “classical” term. The
second term depends on the incoming and the outgoing wavevectors, and is
equal to 1 when ~ki = −~kf , that is in direct backscattering direction. We have
therefore identified the mechanism leading to coherent backscattering as
the constructive interference between counter-propagating paths. It ideally
leads to an increase in the intensity by a factor 2 compared to only the
classical term.

It should be noted here that the same line of arguments leads to the
description of weak localisation (see section 2.5): In equation (61) an increase
of the intensity (probability) can also be achieved by setting ~r1 = ~r2. In this
case the paths form closed loops, with the paths either circulating in the
same or in opposite directions. Weak localisation is then an increase in the
return probability due to the interference of counter-propagating loops.

7.2 Experimental sequence

In order to realise an experiment to observe the coherent backscattering peak
with ultracold atoms in 2D we follow a theoretical proposal by Cherroret
et al. [29], which suggested the study of CBS in momentum space: A cloud
of atoms is prepared with a well defined initial mean momentum h̄~ki and a
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Figure 52: Experimental setup and sequence. Panel a shows the exper-
imental setup, with the levitation coils (yellow), the glass cell (gray square),
the speckle field (shaded blue), and the atomic cloud (orange point). A
2D representation is chosen, since all relevant dynamics happen in the
y − z plane (see text). The anisotropic speckle intensity distribution is
indicated. On the upper right hand of the panel a side-view of the setup
(x− y plane) is shown, including the speckle arm and the camera. Panel b
shows the different steps of the experimental sequence.

small momentum spread. This assures that we are close to the theoretical
description in the previous section, where we assumed an incoming plane
wave. Also, any interactions between the atoms should be eliminated, since
we assumed that the evolution of the wave function is linear.

The experimental setup and the sequence are shown in figure 52. The
initial preparation of a Bose-Einstein condensate and the reduction of the
velocity spread of the cloud using the delta-kick cooling technique follows
the steps laid out in section 3. Gravity can be neglected throughout the
experiment due to the magnetic levitation (see section 3.3.4). We then
accelerate the atoms with an additional magnetic gradient field along y for
12 ms to a velocity of 3.3± 0.2 mm/s (|~ki| ≈ 4.5 µm−1).

Thus prepared we expose the atoms to the disorder by abruptly (within
0.1 ms) switching on the optical speckle described in section 4. We choose
the anisotropic speckle configuration generated by only one laser beam. The
initial velocity is perpendicular to the optical axis of the speckle, leading to
a quasi 2-dimensional dynamics (see section 7.3.1). The atoms are allowed
to propagate in the disorder for a controlled time Tp before the speckle is
switched off. After having switched off the speckle we let the atoms fly freely
for 150 ms before taking a picture. During this time of flight the velocity
distribution is converted into a position distribution, so that the image that
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Quantity Value

Initial Velocity vi = 3.3± 0.2 mm/s

Corresponding Wavevector ki = 4.5 µm−1

Disorder Amplitude VR/h = 975± 80 Hz

Speckle Autocorr. Function Transverse Size σ⊥ = 0.2 µm (RMS)

Speckle Autocorr. Function Longitudinal Size σ‖ ≈ 1 µm (HWHM)

Mean Scattering Time (Transverse) τS = 0.33± 0.02 ms

Transport Time (Transverse) τ? = 0.4± 0.05 ms

Table 1: Key parameters for the CBS experiments.

we take of the density distribution in real space corresponds directly to
the density distribution in momentum space. The key parameters for this
experiment are combined in table 1.

7.3 Expected dynamics

In this section the expected dynamics of the system are laid out. We first
argue that, even though we do not have a 2D confinement for the atoms, we
can treat the dynamics as being 2-dimensional. The resolution in momentum
space that we can achieve is briefly introduced before the expected dynamics
of the CBS peak is laid out.

It will be discussed in section 7.4.1 that we are able to determine the key
transport parameters τS and τ?, the mean scattering time and the transport
time. Together with the initial velocity, the disorder amplitude, and the
autocorrelation function of the speckle we have a complete characterisation
of the system.

7.3.1 Quasi 2D dynamics

The atoms are exposed to an anisotropic speckle field, whose features are
large in the longitudinal direction x and comparatively short in the trans-
verse plane y − z (see figure 52). As discussed in section 4 this speckle is
created by a single laser beam passing through a diffusive plate and focussed
onto the atoms by a lens. The optical axis of the speckle is x. The initial
velocity of the atoms is perpendicular to the optical axis of the speckle, and
the redistribution of the momenta is strongly influenced by the anisotropy
of the disorder (see figure 53):
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Figure 53: Momentum isotropisation in the anisotropic speckle. The
anisotropy of the disordered speckle potential has an effect on the redistri-
bution of the momenta. The atoms, with an initial velocity along y, are
redistributed in the y − z plane on the time scale of a single scattering
event, since the typical size of a speckle grain in this plane is small (on the
order of the deBroglie wavelength). This is shown in the top row. Along x
on the other hand the size of the speckle grains is larger and it takes several
scattering events to completely redistribute the momenta. The images in
the bottom row indicate that the redistribution along x becomes important
only for propagation times larger than ≈ 5 ms (about 15 τS or 13 τ?). The
bottom row images are blurred since most of the atoms are situated outside
the focal plane of this imaging system. The experimental parameters for
these images are the same as the ones used for our experiments on CBS (see
table 1).
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In the transverse plane y − z the typical size of the speckle grains is
σ⊥ ≈ 0.2 µm and therefore smaller than the deBroglie wavelength of the
atoms: σ⊥ki ≈ 0.9 < 1. This implies a nearly isotropic scattering in the
transverse plane, that is, a single scattering event is enough to completely
redistribute the momenta in this plane.

Longitudinally the typical size of a speckle grain is larger, and we have
kiσ‖ ≈ 4.5 > 1. Therefore the scattering is directed mainly in the forward
direction, and it takes several scattering events to completely redistribute
the momenta along x.

The anisotropy of the disorder therefore leads to quasi 2-dimensional
dynamics for short propagation times up to ≈ 5 ms: Even though we do not
have a 2D confinement for the atoms, as long as the redistribution along x
is negligible we are able to treat the dynamics as 2D.

7.3.2 Momentum space resolution

The resolution that we obtain in our velocity (momentum) space measure-
ments is determined by several factors: The long but still finite time of flight
TOF , the initial size of the cloud ∆r, and the initial velocity spread of the
cloud ∆vi. They are combined to give the velocity resolution

∆vres =

√
∆v2

i +
∆r2

TOF 2
. (62)

In our experiments the time of flight is TOF = 150 ms, the initial size of
the cloud is ∆r ≈ 30 µm (gaussian fit RMS), and the initial velocity spread
is ∆vi = 0.12 mm/s, leading to a resolution of ∆vres = 0.23 mm/s that is
mainly limited by the initial size of the cloud.

7.3.3 Dynamics of the CBS peak

In our experiments we are observing the evolution of the momentum space
distribution. The shortest time-scale of our system, the mean scattering time
τS = 0.33 ms is long enough to be resolved easily, allowing us to monitor
the CBS peak after a precisely determined propagation time in the disorder
Similar experiments, where the time-evolution of the CBS peak was recorded
using femtosecond laser pulses and acoustic waves [116, 111].

Two quantities are of interest here: the contrast of the CBS peak, that
is its amplitude with respect to the amplitude of the incoherent momentum
space contribution, and its width. We are giving here again equation (61),
since the discussion of the dynamics of the CBS peak will be based on it.
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7.3 Expected dynamics

Instead of the disorder averaged intensity 〈I(~ki,~kf )〉 depending on the initial

and final wave vectors ~ki and ~kf we will write here the disorder averaged

momentum space density 〈n(~kf )〉 depending only on the final momentum
state since the initial momentum is fixed by the preparation of the atomic
cloud:

〈n(~kf )〉 ∝ 〈I(~ki,~kf )〉

∝
∑
~r1,~r2

|f(~r1, ~r2)|2
(

1 + ei(
~ki+~kf )·(~r1−~r2)

)
(63)

For the further discussion we will use the convention to call the incoherent
momentum space contribution 〈nincoh(~k)〉 (described by the first constant
term in equation (63)), and the coherent contribution 〈ncoh(~k)〉 (the second
exponential term). The contrast is then defined as C(~k) = 〈ncoh(~k)〉/〈nincoh(~k)〉.
According to equation (63) the contrast in direct backscattering direction
C(~kf = −~ki) should always be equal to one. One caveat is that in order to
be able to speak about counter-propagating loops there have to be at least
two scattering events. For short propagation times Tp ≤ 2τS it is there-
fore not yet appropriate to talk about coherent backscattering since single
scattering is predominant.

The width of the CBS peak is determined by the gradual dephasing be-
tween the counter-propagating paths when looking in directions that differ
from the direct backscattering direction ~kf = −~ki. The rate of this de-
phasing is determined by the average distance between the first and the last
scattering point after a propagation time Tp: 〈d〉Tp = 〈|~r1−~r2|〉. Writing ex-
plicitly the average phase difference between the counter-propagating paths
∆ΦCBS we have:

∆ΦCBS = 〈d〉Tp |~ki + ~kf | (64)

It is well known that the average distance travelled for diffusive motion is
〈d〉diffTp

=
√

2DTp, where D is the diffusion constant. But here again we have
to take into account that we can probe very short propagation times where
the number of scattering events is on the order of one. Taking a path with
two scattering points as an example it is clear that the propagation between
them is not diffusive but ballistic. This leads to 〈d〉ballTp

∼ viTp. A theoretical

treatment of this initial ballistic propagation in [49] gives 〈d〉ballTp
= viTp/3.

Setting the limit of the dephasing in equation (64) to 1 we can therefore
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extract the evolution of the width of the CBS peak:

|~ki + ~kf | ∼
1

〈d〉Tp
=


3

viTp
ballistic

1√
2DTp

diffusive
(65)

We therefore expect the width to decrease as 1/Tp for small times before
there is a transition to diffusive propagation when the width decreases as
1/
√
Tp. The time this transition takes place should be on the order of the

transport time τ?. The shape of the CBS peak in momentum space at
time Tp is the Fourier transform of the 2D real space density distribution at
the same time. For diffusive propagation both are gaussian, an approxima-
tion that we find to be also in good agreement in our data treatment for the
ballistic regime.

7.4 Experimental results

Figure 54 shows some representative examples of the experimentally ob-
tained momentum-space densities for different propagation times.51 Initially
all atoms are located in a peak around the initial momentum ~pi = h̄~ki. For
increasing propagation times they are scattered out of this initial state and
start populating other momenta located on a ring with |~k| ≈ |~ki|. The CBS
peak is clearly visible above the incoherent background at ~k = −~ki as soon
as there is an appreciable amount of atoms in this backscattered region.

As described in the next section we can use the evolution of the ini-
tial peak and the redistribution of the momenta to extract the mean scat-
tering time τS and the transport time τ?, which were already introduced
in section 2.3. The extraction of the CBS dynamics are detailed in sec-
tion 7.4.2. For both measurements we extract the angular density profile of
the momentum-space distribution as indicated in figure 55.

7.4.1 Determination of the mean scattering and the transport
time

The mean scattering time The mean scattering time τS reveals itself
in the exponential decay of the number of atoms in the initial momentum
state ki [29]:

n(ki, Tp) = n(ki, 0)e
−Tp
τS (66)

51The similarity with those of numerical simulations, shown in figure 49, is striking.
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Figure 54: Momentum space density evolution. The recorded mo-
mentum space density is shown for different propagation times. Initially all
atoms are concentrated in a peak at ~pi = h̄~ki. As the propagation time
increases the atoms are scattered out of the initial k-mode and start popu-
lating all states with |~k| = |~ki|. As soon as the ring is established the CBS
peak becomes visible at ~k = −~ki.

We extract this decrease using a heuristic lorentzian fit of the initial peak
in the angular profile for different propagation times as shown in figure 56.
For the parameters used in this experiment we obtain τS = 0.33± 0.02 ms,
which implies a mean free path of lS = viτS = 1.1 µm. This experimental
result is in agreement with numerical simulations, but is about a factor 2
larger than a theoretical result obtained from perturbative calculations [91].
The latter discrepancy can be explained by the fact that we are not fully in
the weak disorder regime (kilS ≈ 5).

The scattering time is linked to the energy distribution of the atoms in
the disorder, which reveals itself in the radial width of the ring in momentum
space (see figure 55). In the weak disorder limit this spread is a lorentzian
with HWHM ∆E = h̄/τS , which we find to be in qualitative agreement with
our data.

The transport time The transport time is, loosely speaking, the time
scale after which the incoherent momentum distribution becomes fully isotropic,
and the propagation becomes diffusive. In our data treatment it is there-
fore roughly the time after which the angular profile becomes flat, neglect-

100



7.4 Experimental results

pz

py
θ

θ (rad)

2

1

2ππ0

1.5

0.5

n(θ)/n

Figure 55: Extraction of the angular profile of the momentum space
distribution. The picture on the left hand side shows the recorded mo-
mentum distribution after a propagation time of 2 ms. A radial integration
over a small strip, indicated by the dashed lines, is performed and results in
an angular profile, shown on the right side. In this angular representation
the decay of the initial peak, the redistribution of the momenta, and the
evolution of the CBS peak can be monitored. The thus extracted profiles
are normalised such that for long propagation times the flat background
distribution has a value equal to 1.

Figure 56: Extraction of the mean scattering time. The decrease of
the initial peak is shown together with an exponential fit used to extract the
mean scattering time (see equation 66). The inset shows an example of the
heuristic lorentzian fit function used to extract the amplitude of the initial
peak from the angular profile of the momentum space density.
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ing the persisting CBS peak (see figure 57). Its quantitative value can be
calculated from the decomposition of the angular profile into its Fourier
components [93]:

n(θ, Tp) =

∞∑
m=0

nm(Tp) cos(mθ) (67)

The first Fourier component n1(Tp) decays exponentially with its character-
istic time being the transport time:

n1(Tp) = n1(0)e−
Tp
τ? (68)

We find τ? = 0.4 ± 0.05 ms, which implies a transport path of l? = viτ
? =

1.32±0.17 µm. The transport time is only slightly larger than the scattering
time since for this experiment the scattering is nearly isotropic (kiσ⊥ = 0.9).
Inspecting the angular profiles we find that the momentum distribution is
isotropic for propagation times longer than about 2.5 ms ≈ 6τ?.

7.4.2 CBS dynamics

Following from equation 63 the CBS peak is a gaussian in the diffusive
regime. The incoherent background distribution is expected to be a smooth
function [93], and can locally be approximated by a parabola. We are there-
fore led to the following function, used to extract the contrast and the width
of the CBS peak in the region around θ = π of the angular profiles:

f(θ) = A1 +A2(θ − θ0)2 +A3e
−(θ−θ0)2/(2σ2

θ) (69)

The width of the CBS peak here is given by σθ, and the peak contrast is
easily extracted by C(−~ki) = A3/A2. Figure 57 shows the angular profiles
of some propagation times including this fit, and figure 58 shows the thus
extracted evolution of the contrast and width of the CBS peak.

To compare the evolution of the width with theoretical predictions we
must take into account the finite momentum space resolution ∆θres = ∆vres/vi =
0.07 (see section 7.3.2). The black line in panel b represents a convolution of
this resolution with the CBS width in the diffusive regime σθ = ∆k,CBS/ki =
1/(ki

√
2DTp) (compare with equation 65), where the diffusion constant is

evaluated using the standard relation D = v2
i τ

?/2. This approach works well
for propagation times larger than ≈ 4τ? when the propagation is diffusive,
but does not fit the observations for shorter times. A similar calculation
using the ballistic approximation of the propagation in formula 65, shown in
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Figure 57: Extraction of CBS contrast and width. In the angular
profiles the initial peak is located at θ = 0, and the CBS peak is at θ = π.
The sum of a gaussian and a quadratic function, shown in red, are used to
extract the contrast and the width of the CBS peak (see text).
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Figure 58: Contrast and width of the CBS peak. Panel a shows the
evolution of the contrast, and panel b the evolution of the width of the CBS
peak. The propagation time Tp is normalised with respect to the transport
time τ?. The experimental results (blue points) are shown together with the
theoretical predictions for purely diffusive (black) and ballistic propagation
(red).

red, where width is expected to decrease as 1/Tp on the other hand provides
a good approximation to our observations.

The contrast, shown in panel a, is initially increasing. This can be ex-
plained by the fact that for coherent backscattering at least two scattering
events are necessary, and for short times the probability of single scatter-
ing is not negligible. A theoretical treatment for isotropic scattering of
light [49] predicts for times up to several τS an evolution of the contrast
C = (2Tp/πτS)/(1 + 2Tp/πτS). This short term evolution is plotted as a
dashed red line in figure 58 a. We never see a contrast of one, which again is
due to the necessary convolution with our finite resolution and was also ob-
served in numerical simulations in [29]. The predicted evolution of the peak
contrast is shown as a black line, and we observe a consistently lower contrast
for longer propagation times. This is due the onset of the 3D isotropisation
of the momenta, which increase the apparent incoherent contribution of the
momentum distribution.

7.4.3 Inherent disorder averaging

We saw in section 7.1 in order to make the CBS peak clearly visible it is
necessary to average over many different realisations of the disorder. In
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principle this could be achieved in our experiment by rotating the diffusive
plate that creates the speckle potential, but due to mechanical constraints
this is hardly feasible. Fortunately we heuristically found that even without
changing the disorder configuration we do not record a noisy speckle-like
distribution, but rather one that already seems to be disorder-averaged.
There are several tentative explanations for this observation:

• The data presented here are averaged about 20 times for each propaga-
tion time. Although the disorder configuration does not change, small
variations in the initial conditions of the atomic cloud (for example
its position) could make the atoms experience disorder configurations
that differ from shot to shot.

• The resolution of the imaging system is larger than the typical size of
a speckle grain (≈ 3 µm compared to ≈ 0.2 µm), which washes out
any small fluctuations.

• It could be that the atoms’ phase relation in the initial cloud changes
between shots, since we perturb it with the delta-kick cooling method.
The positions of the light and dark spots in a speckle depend on the
configuration of the disorder, but equally they depend on any eventual
phase relation of the incident waves so that averaging over several shots
with different phase relations would have the same effect as a disorder
averaging.

• The initial cloud is extended over several tens of microns in all direc-
tions, which is larger than the longitudinal size of the speckle grains
(on the order of a micron). Different parts of the cloud therefore ex-
perience different disorder configurations. The imaging performs an
integration along the longitudinal speckle axis, so that even within
one shot one has an average over maybe as many as several tens of
disorder configurations.

7.5 Conclusion

In this section the first observation of the CBS signal with ultracold atoms
propagating in a disordered optical speckle potential was described. Due to
the anisotropy of the speckle the dynamics of the atoms happen in a plane
perpendicular to the speckle grains for short propagation times, and we can
treat the system to be quasi 2-dimensional. In contrast to previous experi-
ments where there is always a boundary between free space and disorder we
are able to instantaneously immerse the waves in the scattering potential
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simply by switching on the speckle. Also, we are able to directly observe
the full evolution of the momentum space distribution. Next to the observa-
tion of the CBS peak this allows us to directly determine two fundamental
transport parameters, the mean scattering time and the transport time.

We performed similar experiments to the ones described above while
changing the disorder strength and the initial velocity of the atoms, which
also led to the observation of CBS. Its maximum observed contrast did
not change significantly while varying these parameters. The maximum
width of the CBS peak on the other hand was found to increase with higher
disorder amplitude and lower initial velocity. From the highest observed
width of ∆θ ∼ 1.2 rad we infer kilS ≈ 1.2, which indicates that we are not
far from the strongly localized regime. But to observe Anderson localization
longer propagation times than possible in this experimental setup would be
necessary.

With the observations described in this section we showed that ultracold
atoms are a powerful system to study the first order coherence corrections
to wave transport in disordered media. Interesting further investigations
include for example the effect of interactions on this problem: It was pre-
dicted that such non-linearities of the wave propagation can suppress the
CBS peak, or even replace it with a dip, that is, a decreased probability to
scatter in the backwards direction [51].
Other recent theoretical proposals transposed the scheme of observing the
momentum space distribution to the strongly localized regime and predicted
the appearance of another as yet unobserved peak in the forward direction,
the Coherent Forward Scattering peak (CFS) [59, 79, 69, 46]. In numerical
simulations it is shown to appear after the localization time, and to grow on
the time scale of the Heisenberg time.52 A reproduction of a figure from [59]
is given in figure 59.
Ultracold atoms also offer the possibility to study the underlying mechanism
of CBS, namely the constructive interference of counter-propagating paths,
which is based on the time-reversal symmetry of the wave propagation in
the disorder. We performed such an experiment, which will be treated in
the next chapter (Coherent Backscattering Revival - CBSR).

52The Heisenberg time is connected to the localization volume ldloc and the average
density of states per unit volume ν. Here, lloc is the localization length and d is the
dimensionality of the system. The Heisenberg time is given by τH = hνldloc, with h the
Planck constant.
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Figure 59: Coherent Forward Scattering (CFS) in 2D. For strong
disorder the momentum space distribution reveals a second peak in forward
scattering direction. Shown here is the reproduction of results of numerical
calculations for increasing propagation time in the disorder [59].
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8 Coherent Backscattering revival

It was already laid out in sections 2.5 and 7.1 that weak localisation (WL)
and coherent backscattering (CBS) are the first order manifestations of co-
herent transport in disordered media. They are based on the constructive
interference of counter-propagating paths, which acquire the same phase
and therefore always interfere constructively. In the previous chapter our
results of CBS were described, showing that with our experimental setup
we are able to observe these quantum mechanical transport corrections. In
this chapter the focus will be on the underlying symmetry between a pair
of counter-propagating paths, which is at the heart of weak-disorder coher-
ence effects. Namely, coherent backscattering and weak localisation can be
observed if the propagation of waves in the disordered medium is symmet-
ric with respect to time reversal, or more precisely if it obeys the weaker
condition of reciprocity.53

Indeed, one of the first experiments to observe the coherent quantum
transport corrections used a controlled breaking of this symmetry to make
the effect of weak localization visible: Sharvin and Sharvin [105] measured
the resistance of a thin walled cylinder as a function of an applied magnetic
field. The magnetic flux through the cylinder introduces a phase shift be-
tween counter-propagating paths. Since it does not introduce a decoherence
between the different paths this leads to a periodic modulation of the weak
localization correction, and consequently to a modulation of the measured
resistance, see figure 60.54

Following a theretical proposal of T. Micklitz, C. Müller, and A. Alt-
land [80] we attempted a new approach that benefits from the precise spatial
and temporal control over the propagation of ulatracold atoms in disorder:
The experiment is very much like the one enabling us to observe the CBS
peak described in the previous chapter. In contrast to the CBS experiment,
here we deliberately introduce a dephasing between the counter-propagating
paths without loosing coherence. This dephasing is administered at a precise
moment and only during a short time. As shown qualitatively in figure 61
the proposal predicted that this would lead to the suppression of the CBS
peak for all times except for a moment when time-reversal symmetry is
briefly re-established and the CBS peak briefly reappears.

This chapter will follow the following outline: A definition of the reci-

53The difference between these two properties will be discussed in section 8.1.2. In the
scope of our experiment they can be used interchangeably.

54This oscillatory magnetoresistance behaviour was predicted by Altshuler, Aronov, and
Spivak [7].
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Figure 60: Oscillations in resistance due to periodic dephasing. This
graph, reproduced from [8], shows the resistance to an electrical current I
through a thin walled metal cylinder, as shown in the inset. The phase differ-
ence between counter-propagating closed electron loops around the cylinder
is proportional to the strength of the magnetic field ~B, leading to an oscilla-
tion of the resistance when the field strength is changed. The solid line are
experimental data, and the dashed line is the theoretical prediction.

procity and time-reversal symmetry for wave propagation in disordered me-
dia and their importance for WL and CBS is given in section 8.1. An
overview of experiments that introduced a deliberate dephasing, that is a
breaking of the reciprocity of the system, is given in section 8.2. The method
by which we break time-reversal symmetry in our experiment is discussed in
section 8.3, before a study of the expected dynamics of the system is given
in 8.4. This is followed by the discussion of our experimental results in 8.5,
which is complemented by numerical simulations shown in section 8.6.

8.1 Reciprocity and time reversal symmetry

It was already mentioned in section 7.1 that underlying the effects of Weak
Localization and Coherent Backscattering is an inherent symmetry in the
wave propagation in disordered media. Namely, it was necessary to make
the assumption that two counter-propagating paths acquire the same phase
and therefore interfere constructively. In this section this notion will be
justified in a more precise manner. First, some basic notations regarding
fundamental scattering theory is introduced. This lays the foundation on
which the concept of reciprocity and its relation to time reversal invariance
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8.1 Reciprocity and time reversal symmetry

Figure 61: Qualitative behavior of the CBS contrast with a brief
dephasing pulse. This graph shows the idealized evolution of the CBS
contrast: Before the dephasing is administered (t < td) the contrast is at
its usual value equal to 1. After the dephasing it is completely suppressed,
except for a short time around t = 2td when counter-propagating paths are
again symmetric with respect to time reversal, and the CBS peak reappears.

in multiple scattering systems can be discussed.

8.1.1 Basic notations on scattering theory

In the following the very basic notions on scattering theory will be given.
Full derivations of the results presented here can be found for example in [3].
We consider a simple system, depicted in figure 62 a, consisting of a plane
wave incident on a single, localized obstacle described by a potential V (~r).
The plane wave is characterised by a wave vector ~ki, and we are interested in
a final state with a wave vector ~kf . In the far field, that is, for distances from
the center of the scattering potential greater than its extent, the scattered
wave will be spherical. Assuming that the center of the potential V (~r) is
located at the origin the wave function can be written as:

Ψ(~r) = ei
~ki·~r +

eikir

r
f(~ki,~kf ) (70)

The first exponential describes the incoming plane wave. The second term is
the spherical outgoing wave, multiplied by the scattering amplitude f(~ki,~kf ),

that gives the amplitude of the scattering process into the final state ~kf . It
is given by

f(~ki,~kf ) = − m

2πh̄2

∫
d~r e−i

~kf ·~rV (~r)Ψ(~r). (71)

111



8.1 Reciprocity and time reversal symmetry

Figure 62: Scattering process. a An initial plane wave with wave vector �ki
is incident on a scattering potential V (�r). It is assumed that this obstacle
is static and of finite size. Then, in the limit of distances greater than the
size of the obstacle, the scattered wave will be spherical. The scattering
amplitude (see text) links a final state �kf to the initial state �ki. b In the

case of one particular multiply scattered path a final state �kf is still linked

to the initial state �ki via a scattering amplitude. This scattering amplitude
is only valid for the exact sequence of scattering events 1 → n.

Here, m is the mass of the particle associated with the quantum wave, and h̄
is the reduced Planck constant.55 Since we have not specified the scattering
potential V (�r) in any way other than that it should be zero as |�r| → ∞,
this solution already incorporates multiple scattering within the potential,
which may be random. For the further discussion it is useful to single out
one particular multiply scattered path, as shown in figure 62 b. In this case
the final state �kf will still be linked to the initial state �ki by a scattering
amplitude, but in addition to the inital and the final state it also depends
on the sequence of the scattering events {1 → n} of this particular path,
and will be denoted by f(�ki,�kf , {1 → n}). The total scattering amplitude of
equation 71 can be recovered by summing the partial scattering amplitudes
of all multiple scattering paths that are involved in the process.

8.1.2 The reciprocity theorem

In very qualitative words, reciprocity of wave propagation means that “if I
can see you, you can see me” [3, 115]. An example would be two people

55The definition of the scattering amplitude is at the basis of the Born formalism of
scattering.
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separated by an absorbing fog: If person A can observe person B through
the fog, then the reciprocal case of person B being able to observe person A
is also true. An example of a non-reciprocal system is the optical isolator,
a device that lets light pass only in one direction and blocks it in the other.
A more precise definition of reciprocity is that the scattering amplitude
defined in the previous section must be invariant when the inverse process
is considered [3]:

f(~ki,~kf , {1→ n}) = f(−~kf ,−~ki, {n→ 1}) (72)

On the left side the amplitude of the “direct” path is given, with initial
state ~ki, final state ~kf , and scattering sequence {1→ n}. On the right hand

side the initial state is −~kf , going through the inverse sequence of scattering

events {n→ 1}, and ending up in the final state −~ki (compare with panel b
in figure 62).

It is tempting to draw a parallel between reciprocity and time-reversal
symmetry: Since the reversal of time transforms the momenta h̄~k into −h̄~k
and inverses the sequence of scatterers it seems like the definition of reci-
procity in equation (72) would be equivalent with the requirement of time-
reversal symmetry of the wave propagation. In general, though, this is not
the case: Employing again the example of the absorbing fog given above,
the absorption breaks the time-reversaly symmetry of the wave propagation,
but it leaves reciprocity intact. In this case, a decrease of the wave’s ampli-
tude due to absorption would be included in the scattering amplitude. Since
the absorption would be the same for the direct and the reversed path the
definition of reciprocity (72) is not violated.

In our experimental system there is no absorption. Under this circum-
stance it can be shown that reciprocity and time-reversal invariance are
equivalent [3, 24]. In the following terms like “reciprocal path” and “time-
reversed path” will therefore be used interchangeably.

8.1.3 Reciprocity and Coherent Backscattering

Reciprocity is the fundamental condition for Coherent Backscattering (and,
equally, for Weak Localization). We have already argued in section 2.5
and 7.1 that the enhancement of the probability of direct backscattering (or
the enhancement of the probability of return) comes from the constructive
interference between multiply scattered, counter-propagating paths. We can
now justify this by using the reciprocity theorem: Equation (72) is valid in
a medium where reciprocity is observed. Combining it with the condition
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of direct backscattering ~kf = −~ki gives:

f(~ki,−~ki, {1→ n}) = f(~ki,−~ki, {n→ 1}) (73)

This means that in a medium that observes reciprocity the scattering am-
plitudes of time-reversed paths are exactly the same. Since the initial and
final states are the same these amplitudes have to be added, and since the
acquired phase is the same the resulting interference is always constructive.

8.2 Previous experiments on CBS and time-reversal invari-
ance of wave propagation in complex media

In order to provide the context for our experiments on the Coherent Backscat-
tering Revival the following section contains an overview of related works
by other groups. The common element of the experiments listed here is that
they specifically view coherent transport phenomena with an emphasis on
time-reversal symmetry. They can be combined into two groups:

• The time-reversal symmetry of propagation in complex and disordered
media was tested with so called time-reversed mirrors, pioneered by
the group of M. Fink. These record the response of a wave after propa-
gation in a disordered potential, and can then generate a time-reversed
wave form of this recording. This time-reversed wave then propagates
through the same disorder and converges to recreate the initial wave
form. Although conceptually quite similar to coherent backscatter-
ing, the counter-propagating wave packets in these experiments have
different sources and don’t propagate in the disorder at the same time.

• The other conceptual group of experiments are closer to our setup
in that they observe real weak localisation or coherent backscattering.
That is, in their setups the counter-propagating wave packets have the
same source, propagate in the disorder at the same time, and inter-
fere with each other. In these experiments the time-reversal symmetry
between the counter-propagating paths is broken by methods appro-
priate to the system in question. This manifests itself in a dephasing
or in decoherence, and therefore in a reduction of the constructive
interference between these paths.

8.2.1 Time reversal mirrors

In a typical time-reversal mirror experiment first a short, broadband wave
is generated at a point A. This wave then propagates and is scattered by
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Figure 63: Refocussing using Time Reversal Mirror (Reproduced
from [95].) Panel a shows the experimental setup: An initial surface water
wave is produced by a wavemaker at point A, propagates in a reverberating
cavity, and is recorded at points R1-R6. At these points the time-reversed
recorded waveform is then re-emitted. The wave then retraces its evolu-
tion until it converges at its original source point A, shown in panel b (the
temporal focus is at 0 s).
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Figure 64: Dephasing in weak localization of electrons due to an
external magnetic field. The phase difference ∆ϕ between a pair of
counter-propagating loops is determined by the magnetic flux φ through the
loop.

obstacles or the boundaries of a reverberating cavity, leading to a chaotic
global wave form. This chaotic wave pattern is recorded at some fixed points
Ri. When the wave form recorded at all points Ri is then time-reversed and
re-emitted it will exactly retrace its evolution and recreate the short initial
wave at point A. Since this initial wave is typically well defined in space
and time one speaks of temporal and spatial focusing accomplished by time-
reversal mirrors. An example is given in figure 63, where the evolution of a
time-reversed water wave around the source point A is shown.

Such time-reversal experiments have been carried out using acoustic
waves [39, 43, 65], electromagnetic waves [73], and surface water waves [95].
The topic of time-reversal mirrors has potential practical applications, for
example in biomedicine [44] and telecommunications [73]. But it also carries
a fundamental interest, since it shows the time-reversability of wave propa-
gation even in complex media. Its connection with Coherent Backscattering
is discussed in [37].

8.2.2 Previous experiments on the deliberate breaking of time-
reversal symmetry

In this section an overview of experiments is presented that investigated
the effect of time-reversal symmetry breaking on coherent backscattering or
weak localisation. They are combined into groups, each one highlighting the
mechanism by which the breaking of TRS was achieved.

Magneto-Resistance In electronic systems the electron wave function
propagates in a lattice potential and is scattered for example by impurities
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and dislocations in this crystal. In the presence of an external magnetic
field the electrons couple to its magnetic vector potential ~A, which induces
an additional phase. This phase has opposite signs for the direct and the
counter-propagating paths, showing that time-reversal symmetry is broken.
The total phase difference induced by the magnetic flux is

∆ϕ = 2π
φ

φ0
, (74)

where φ0 = h/(2e) with h the Planck constant and e the electron charge
(see figure 64). It was already mentioned in the introduction of this chap-
ter that this effect was observed in thin walled metallic cylinders [105, 8]
(see figure 60). Here, the dephasing leads to a periodic modulation of the
weak localization correction since the loops are geometrically confined to the
cylinder and therefore enclose the same magnetic flux.56 As a side note, it
is a testiment of the importance of Weak Localization that the exact same
experiment was conducted nearly two decades later, only this time using
carbon nano-tubes, and still gain a lot of traction [15].

An anomalous behaviour of the resistance is also observed in thin metallic
films (see [18] and references therein). The impact is biggest if the magnetic
field is perpendicular to the film, and WL corrections monotonically disap-
pear with increasing field strength as shown in figure 9. The dependence
of the resistance on the magnetic field here is not periodic since in the thin
film loops of different sizes exist, each of which encloses a different magnetic
flux for a given magnetic field strength.

Faraday Rotation A partial destruction of the Coherent Backscattering
cone was observed in optical experiments making use of the Faraday Effect
(FE): By the FE a rotation of the polarisation of light can be achieved by
applying a magnetic field to a magneto-optically active material through
which the light passes. This effect is employed for example in optical isola-
tors, where the reciprocity breaking by the FE is very apparent: Light can

56The origin of this phase is the Aharonov-Bohm effect [2]. In the original experiments
on the AB effect, which were performed using an electron beam in vacuum where no
scattering occurs, a period of h/e was observed [87]. This periodicity can persist even
in scattering media, as shown by Webb et al., where the resistance over a thin ring was
measured as a function of the magnetic flux through the ring [118]. In the aforementioned
experiments by Sharvin and Sharvin, and by Altshuler et al. the long cylinder can be
thought of as an ensemble of independent rings, where where the inherent disorder av-
eraging smoothes out the h/e periodicity and makes the h/2e periodicity linked to weak
localization apparent.
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Figure 65: Suppression of the CBS peak through the Faraday Effect.
In a magneto-optically active medium the time-reversal symmetry can be
broken due to the Faraday Effect (see text). This was used in experiments
to dephase counter-propagating paths with respect to each other, leading
to a suppression of the CBS peak. The image is reproduced from [72].
On top, a fully developed CBS peak is obtained when no magnetic field is
present and TR symmetry is observed. The bottom image shows the nearly
complete suppression due to the breaking of the TR symmetry due to a
present magnetic field.

pass the isolator only in one direction, whereas it is blocked when coming
from the opposite direction. In other words, a given beam of light may pass,
whereas its time-reversed counterpart is blocked. This is due to the fact
that the induced rotation of the polarisation only depends on the direction
of the magnetic field, and not the propagation direction of the light.

As first proposed by [47, 76] and experimentally observed by [40, 72], a
circularly polarised light beam was sent into a magneto-optically active mul-
tiple scattering medium that exhibits the FE. The coherent backscattering
peak was then measured for different strengths of the applied magnetic field
permeating the medium. The time-reversal symmetry was (partly) broken
since the phase-shifts induced by the FE have different signs for the counter-
propagating paths. Short paths, which give the broad contribution to the
CBS cone, are less affected by this dephasing. Long paths on the other
hand, which interfere in a narrow peak, could be completely dephased.

Change of Refractive Index A different approach to break the TRS
in optical systems was very recently taken by Muskens et al. [84]. Here,
the setup consisted of a diffusive medium whose refractive index could be
changed by shining a femto-second pulsed laser (pump) on it. The CBS
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contrast of a second pulsed beam (probe) was measured as a function of the
delay between the pump and the probe beam impinging on the medium.

The time during which the nonlinear medium changes its refractive index
to the excited state is shorter than the typical dwell time of the probe beam
photons in the medium. The time it takes the medium to relax to its initial
state on the other hand is long compared to the dwell time of the probe
photons. Time reversal symmetry breaking between counter-propagating
paths was therefore achieved by changing the refractive index while the
photons were already propagating in the medium. The maximum observed
reduction of the CBS contrast was 12%.

The similarity between this experiment and our work is that there is
a control over the time when the breaking of reciprocity is induced. But
contrary to our experiments this disturbance happens during an apprecia-
ble part of the total propagation, whereas in our case it is shortly peaked.
Moreover, the reciprocity breaking here is due to decoherence of the wave
propagation, whereas in our case coherence is preserved.

8.3 Breaking of time-reversal symmetry by short perturba-
tions

The novel approach in our experiments in regards of the breaking of time-
reversal symmetry between counter-propagating paths is that the dephasing
mechanism is applied during a time very short compared to all other time-
scales of the experimental system, while leaving the medium unchanged at
all other times. More specifically, the time-reversal symmetry is broken
while preserving coherence by applying a shortly pulsed, position dependent
potential. In general this leads to a destruction of the constructive interfer-
ences and a disappearance of the CBS peak. Time-reversal symmetry can be
briefly re-established though when the dephasing potential is applied exactly
halfway through the propagation. In this case the dephasing briefly vanishes
and a revival of the coherent backscattering peak is expected. This proce-
dure was proposed and brought to our attention by T. Micklitz, C. Müller,
and A. Altland [80].57

8.3.1 Perturbative picture

We first focus on a perturbative approach, where to first order the ap-
plication of the dephasing potential does not alter the trajectories of the

57The proposal also covers more involved sequences of dephasing pulses, which lead to
the revival of higher order quantum corrections.
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Figure 66: TRS Breaking and Recovery. Panel a shows the configu-
ration without any dephasing between the counter-propagating paths (red
and blue), where the CBS peak is visible. The direct path enters with an
initial wave vector �ki at �r1 and exits the disorder at �r2 after a propagation
time in the disorder Tp with wave vector �kf . Panels b and c show that when
the short dephasing potential is applied at time td the direct and reciprocal
paths are at positions �r3 and �r4 respectively. Whereas �r3 �= �r4 in panel b
and the time-reversal symmetry between the paths is broken, in panel c one
has �r3 = �r4 and TRS is re-established. Experimentally, panel b shows a sit-
uation in which the CBS peak is suppressed, and panel c shows a situation
in which the CBS peak reappears (CBSR). Below each panel the duration
of the speckle potential with amplitude VR and the moment of dephasing td
is shown. TRS is re-established for td = Tp/2.
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atoms and only has an impact on the quantum phases. Figure 66 shows
the schematic representation of a pair of counter propagating paths in the
disorder. Arbitrarily the red path will be called the direct, and the blue
path will be called the reciprocal path. As indicated in panel a the direct
path enters the disorder at time t = 0 and at the spatial point ~r1, and exits
it after the total propagation time Tp at ~r2. The incoming wave is charac-

terised by its wavevector ~ki, and ~kf is the wavevector of the outgoing wave.
It was already pointed out in section 7.1 that in absence of any additional
dephasing the phase-difference between these two paths is given by

∆φCBS = ~q · (~r1 − ~r2), (75)

where ~q is the sum between the incoming and the outgoing wavevectors,
~q = ~ki + ~kf . In the pure CBS case depicted in panel a of figure 66, that is,
without any additional dephasing, it suffices to require direct backscattering
(~q = 0) to ensure zero phase difference and constructive interference.

The position dependent potential in our experiment is realised by a mag-
netic gradient field along the y-axis, Vd = −Fy, where F characterises the
slope of the gradient, equal to the force experienced by the atoms. It is
assumed that this gradient is homogeneous, that is, the force is constant
and independent of position. The gradient is applied for a short delta-like
pulse with length ∆t, leading to a change of the momentum of the atoms
of ∆~p = h̄∆~k = F∆t~ey, where ~ey is the unit vector in y-direction.58 As
depicted in panels b and c of figure 66 the direct path is at some position
~r3, and the reciprocal path is at position ~r4 when this gradient potential is
applied. The phase that is acquired in the time ∆t due to the potential Vd
for the direct path is Vd(~r3)∆t/h̄, and analogously for the reciprocal path.
Since the acquired phase is position dependent we therefore have a phase
difference that depends on the momentary position of the direct and its
reciprocal path:

∆φdeph = [Vd(~r4)− Vd(~r3)]∆t/h̄

= ∆~k · (~r3 − ~r4)
(76)

In the perturbative regime the total phase difference between the counter-
propagating paths is the sum of the normal CBS phase (75) and the dephas-
ing (76):

∆φ = ∆φCBS + ∆φdeph

= ~q · (~r1 − ~r2) + ∆~k · (~r3 − ~r4)
(77)

58This momentum change serves to characterise the perturbative picture, which is valid
if ∆p� h̄ki.
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8.3 Breaking of time-reversal symmetry by short perturbations

Figure 67: Re-establishment of TRS for strong perturbations. In
the case of strong perturbations the trajectories are strongly altered by the
dephasing potential as shown on the left hand side picture. Nevertheless
there are still paths symmetric under time reversal at Tp = 2td (see text).
The momentum of the direct path just before the dephasing pulse denoted
by ~k1(t−d ), and just after the pulse by ~k1(t+d ). Similarly the momenta for the

reciprocal path are ~k2(t−d ) and ~k2(t+d ).

Contrary to the pure CBS case the backscattering condition ~q = 0 is no
longer sufficient to ensure that the phase difference becomes zero, and the
constructive interferences that usually lead to the CBS peak are washed out.
But by adding an additional constraint, ~r3 = ~r4, the phase difference again
becomes zero. As shown in panel c of figure 66 this condition is naturally
fullfilled when the dephasing potential is applied at exactly half the total
propagation time in the disorder, td = Tp/2.

8.3.2 Extension to strong perturbations

For reasons that will be laid out later in section 8.5.2 our experiments are
not performed in the perturbative regime. In fact, the change in momen-
tum is on the order of the initial momentum, implying that the trajectories
are strongly altered by the dephasing potential. Nevertheless the main ar-
guments outlined above still hold. In particular, time-reversal symmetry
between counter-propagating paths is re-established at Tp = 2td as shown in
figure 67 for paths whose absolute values of their momenta are not changed
by the perturbation. Writing explicitly and using the notation in figure 67
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Figure 68: Contrast as a function of ~q and Tp. Using equation (79) the
evolution of the contrast as a function of the momentum ~q and the propa-
gation time Tp can be evaluated in the approximation of diffusive transport.
Here, experimentally realistic parameters are used: The time of the dephas-
ing pulse is td = 1 ms, the strength of the pulse is ∆~k = 2.5 µm−1, and
the diffusion constant is D = 2.88 µm2/ms. Panel a shows the contrast as
a function of ~q and Tp, whereas panel b shows the contrast only as a func-
tion of Tp for ~q = 0 (“on-shell”). In order to show the evolution before the

dephasing pulse the term ∆~k in equation (79) was set to zero for Tp < td.

this means that:

~k1(t−d ) + ∆~k = ~k1(t+d ) = −~k2(t−d )

~k2(t−d ) + ∆~k = ~k2(t+d ) = −~k1(t−d )
(78)

A revival of the CBS peak is then also expected in the regime of strong
perturbations of the trajectories.

8.4 Expected dynamics of the system

T. Micklitz, C. Müller, and A. Altland carried out a theoretical study of
the dynamics of the coherent contribution to the momentum distribution
in the perturbative regime described above [80]. These calculations were
carried out under the assumption of diffusive propagation, where the average
distance covered by an atom in the disorder in a time t is 〈d〉t =

√
2Dt, with

D the diffusion constant.59 Therefore a discussion based on the diffusive
approximation will be given here, which at least qualitatively reproduces all

59Since our experiments are carried out on time scales on the order of the transport
time, the propagation of the atoms is ballistic or in the transition regime between ballistic
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Figure 69: Schematic of the spatial points and the corresponding
times during the propagation.

effects we observe. An exception is the evolution of the on-shell contrast
(~q = 0), the central quantity we extract experimentally. For this instance
we were able to derive an expression for the regime of ballistic propagation
(see section 8.4.1).

The contrast of the coherent contribution to the momentum distribution
(including CBS and CBS revival) as a function of the momentum ~q = ~ki+~kf
at total propagation time Tp is given by60

C(~q, t′) = e−D(2~q2t′+(~q−∆~k)2|td−t′|). (79)

The time t′ is related to the total propagation time Tp and the time of the
dephasing pulse td by t′ = Tp− td. A plot of the contrast C(~q, t′), and a plot
for the contrast at ~q = 0 for experimentally realistic parameters is shown in
figure 68.

Before analysing this equation we want to show how to derive it in a
näıve way. First, the probability to diffuse from a spatial point ~r to another
point ~̃r within a time t is:61

P (~r, ~̃r, t) =
1

4πDt
e−

(~r−~̃r)2
4Dt (80)

Using the conventions shown in figure 66 we will assume that the direct
path starts at time t = 0 at point ~r1, and ends at point ~r2 after the total
propagation time Tp (see also figure 69). The dephasing potential will be
switched on in a delta-like pulse at time td. At this moment the direct
path will be at some point ~r3, and the reciprocal path at ~r4. With these
conventions we can piece together the evolution within the disorder going
through the points ~r1, ~r2, ~r3, and ~r4 as the product of the corresponding
probabilities, P (~r1, ~r4, t

′) · P (~r4, ~r3, td − t′) · P (~r3, ~r2, t
′). Assuming that the

starting point of the direct path ~r1 is fix we have to integrate over all possible

and diffusive motion. A full theoretical treatment of our experimental situation is still
lacking.

60Private communications with T. Micklitz et al..
61It is assumed here that the system is 2D, as is the case in our experiments.
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points ~r2, ~r3, ~r4 and multiply with the phase difference between the direct
and the reciprocal path given in equation (77) to recover the contrast:

C(~q, t′) = A

∫
d~r2d~r3d~r4e

− (~r1−~r4)
2

4Dt′ e
− (~r4−~r3)

2

4D(td−t′) e−
(~r3−~r2)

2

4Dt′ ei∆
~k·(~r3−~r4)+i~q·(~r1−~r2)

= e−D(2~q2t′+(~q−∆~k)2|td−t′|)

(81)

The normalisation factors of the form 1/(4πDt) in the first line are con-
densed into A, and they cancel out with the integrations.

8.4.1 Evolution of the contrast in direct backscattering direction

When looking at the direct backscattering direction ~q = 0 formula (79)
simplifies to (compare with panel b of figure 68)

C(~q = 0, t′) = e−D∆~k2|td−t′|

= e−|Tp−2td|/τR ,
(82)

where the relation t′ = Tp − td was used. The characteristic time of the

revival is τR = (D∆~k2)−1. This means that the the phases of the counter-
propagating paths, which are initially scrambled by the dephasing pulse,
align again perfectly at the revival time 2td. The contrast rises exponentially
to its maximum value of one before falling exponentially again for longer
propagation times.

This particular result, the evolution of the contrast at ~q = 0, can also
be understood intuitively starting from the phase difference between the
counter-propagating paths ∆Φtot given in equation (77): For ~q = 0 one
has ∆Φtot|~q=0 = ∆~k · (~r3 − ~r4). The positions ~r3 and ~r4 are where the
direct and the reciprocal trajectories find themselves when the dephasing
pulse is applied. The distance between these two points 〈d〉 and the time
t it takes to propagate between them in the diffusive regime are related
by 〈d〉t =

√
2Dt. Assuming that the interference between the counter-

propagating paths becomes appreciable when ∆Φtot|~q=0 ≤ 1 leads to an
estimation of the revival time:

∆Φtot|~q=0 = ∆k
√

2Dt ≤ 1

⇒ t =
(
2D∆k2

)−1 ≈ τR
(83)

This result for the characteristic time of the revival τR differs only by a
factor 1/2 from the proper theoretical result given above.
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We use this intuitive understanding to modify the behavior of the con-
trast around the revival time to obtain a description for ballistic propagation:
Following the arguments given above one can write in general that

C(~q = 0, Tp) = e
− 1

2
∆k2〈d〉2|Tp−2td| . (84)

In the diffusive case this reduces to equation (82). For ballistic propagation
one has 〈d〉t ∼ vt, therefore leading to a gaussian evolution of C(~q = 0, t′)
around the revival time. More precisely, a theoretical treatment of the ini-
tially ballistic propagation gives 〈d〉t = vit/3 [49], leading to

C(~q = 0, Tp) = e−
1
18

∆k2v2i (Tp−2td)2

= e−(Tp−2td)2/(2τ2R)
(85)

with τR again the characteristic time of the rivival. Here though, it is
the RMS width of a gaussian and given by τR = 3/(∆kvi). We use this
formulation later in the analysis and interpretation of our data.

8.4.2 Momentary shift of the momentum distribution

One can see in panel a of figure 68 that just after the kick the CBS peak
is briefly shifted by ∆~k.62 This behavior is evident when evaluating equa-
tion (79) just after the kick was applied at Tp = t+d ⇔ t′ = 0+:

C(~q, t′ = 0+) = e−D(~q−∆~k)2td (86)

The contrast, initially located at ~ki +~kf = ~q = 0 therefore momentarily has

its maximum value at ~q = ∆~k. Following this momentary perturbation the
incoherent momentum distribution will redistribute until it is symmetric
around zero for longer propagation times (greater than some τ?) in the
disorder.

8.4.3 Evolution of the coherent contribution between dephasing
and revival

The coherent peak moves from the initial position just after the dephasing
pulse ~q = ∆~k at Tp = t+d to the position of its revival ~q = 0 at Tp = 2td.

63

62In fact, this shift applies to the whole momentum distribution and not just its coherent
contribution. It can be clearly seen in our experimental data, see figure 73.

63This is not obvious in figure 68 due to the choice of parameters.
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To extract this movement the equation ~∇~q C(~q, t′) = 0 has to be solved:

~∇~q C(~q, t′) = C(~q, t′)
(
−D

(
4~qt′ + 2(~q −∆~k)|td − t′|

))
= 0

⇒ ~qmax = ∆~k
td − t′

td + t′

= ∆~k
2td − Tp
Tp

(87)

~qmax is the position where the effect of the dephasing is minimal, and the
coherent contribution to the momentum distribution is maximal. Combining
this result for the position of the maximum contrast ~qmax with equation (79)
gives the evolution of the maximum contrast at all propagation times:

C(~qmax, t
′) = exp

(
−2D∆~k2t′

td − t′

td + t′

)
= exp

(
−2D∆~k2(Tp − td)

2td − Tp
Tp

) (88)

In the framework of diffusive propagation that is employed here we see that
the contrast drops rapidly after the dephasing pulse, reaching its minimal
value at Tp =

√
2td.

8.4.4 Comparison between the CBS and the CBS Revival peak

One can compare the width of the CBSR peak in momentum space with the
width of a CBS peak at the same time. It was shown in section 7.3.3 that the
CBS peak in the diffusive approximation has a gaussian shape, with a width
of σCBS(Tp) = (2DTp)

−1/2. By setting t′ = td ⇔ Tp = 2td in equation (79)
one gets

C(~q, t′ = td) = e−2Dtd~q
2

= e−DTp~q
2

= e
− ~q2

2σ2
CBSR , with σCBSR(Tp) = (2DTp)

−1/2 .

(89)

The shape and width of the CBSR peak at the revival time is therefore
exactly the same as that of the CBS peak after an equal propagation time.
This can be understood intuitively, since at the revival time the dephasing
that was induced between the counter-propagating paths vanishes. The
situation then briefly resembles that of a pure CBS case.
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8.4.5 Summary of the dynamics

To summarise, the CBS peak is momentarily shifted by ∆~k just after the
dephasing pulse at time Tp = td. Next, the coherent peak moves from

~q = ∆~k to ~q = 0 within a time td. During this movement its contrast
first decreases until reaching a minimum at time Tp =

√
2td, then increases

again. Looking only at the position ~q = 0 the evolution of the contrast is
exponential, with a time constant τR that is proportional to the inverse of
the diffusion constant D and to the inverse of the square of the strength
of the dephasing pulse ∆~k. For even longer propagation times the contrast
decreases asymptotically towards zero, while continuing its motion.

It should be noted again that the dynamics presented here stem from
calculations carried out in the perturbative regime ∆k � ki and in the
approximation of diffusive propagation. Both requirements are not fullfilled
in our experiments, and the derived behavior therefore does not describe our
experimental findings quantitatively. Nevertheless, the qualitative results of
the dynamics of the coherent contribution to the momentum distribution,
namely the existence of the CBS revival, the movement, and the decrease
in contrast between the dephasing pulse and the revival still hold.

8.5 Experimental observation of the CBS Revival

After the theoretical investigations of the CBSR dynamics in the previous
section we present here the experimental results we obtained. These ex-
periments were carried out after the completion of the modifications of our
experimental setup, which were described in section 5. Although no fun-
damentally new capabilities with respect to the previous setup were added,
we nevertheless profited from increased flexibility. In particular, in the old
setup it would have been difficult to implement the coil for the magnetic
dephasing field due to mechanical constraints.64

In the following the experimental sequence is laid out in section 8.5.1,
after which we present the raw data and the analysis procedure employed
to extract the coherent peak in section 8.5.2.
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Figure 70: CBS Revival experimental setup and sequence. Panel a
shows the experimental setup. Except for the additional dephasing coil (red,
above the glass cell) it is similar to the setup we used for our experiments
on CBS (see figure 52). In panel b the different steps of the CBS Revival
experimental sequence are shown. The duration of each step is indicated on
the time axis.

8.5.1 Experimental sequence

The experimental sequence employed to observe the revival of the coherent
backscattering peak is nearly identical to the one for our CBS experiments,
already detailed in section 7.2 (compare panels b of figures 52 and 70): We
prepare a cloud of non-interacting atoms with a very well defined initial mo-
mentum ~pi = h̄~ki. This cloud is then exposed to the disordered potential by
abruptly switching on the optical speckle (see section 4). As laid out in sec-
tion 7.3.1, since the speckle is anisotropic the redistribution of the momenta
for short propagation times happens mainly in the y−z plane, perpendicular
to the optical axis of the speckle. The dynamics can therefore considered to
be two dimensional. The momentum distribution after a propagation time
Tp in the disorder is measured by a standard time of flight method, where
the velocity distribution of the atoms at Tp is transformed into a position
distribution and recorded via fluorescence imaging.

A sketch of the experimental setup is shown in panel a of figure 70. The
modification compared with the pure CBS sequence is the application of a
shortly pulsed magnetic gradient field Vd(~r) during the propagation in the
disorder, produced by coils close to the atoms.65 A current of > 100 A

64The place where we installed this magnetic coil used to be occupied by the vertical
speckle arm. This arm was physically connected to the horizontal arm, and removing one
without the other would have proven difficult. In the new setup both arms are mechanically
independent, and the vertical one was simply removed for this experiment.

65The distance between the coil and the atoms is about 1-2 cm, limited by the dimensions
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Figure 71: Characterisation of the dephasing pulse. Panel a shows
the current flowing through the dephasing coil. The programmed length
was 29 µs, with the intended beginning and end indicated by the red dashed
lines. There is a certain delay, and the pulse is broader than programmed.
Panel b shows the strength of the dephasing pulse |∆~k| as a function of its
programmed length. A heuristic exponential fit A exp(t/τ) +B is indicated
in red. Since the current stems from the discharge of a capacitor the dephas-
ing pulse becomes less effective for longer times as the capacitor becomes
discharged and the current of the pulse tends towards zero.

could be switched on and off for a duration on the order of 10 µs, providing
a peak magnetic gradient of about 100 G/cm.66 With the atoms in the
F = 2,mF = −2 hyperfine ground state this translates to an acceleration
of about 10 g (g ≈ 9.81 m/s2). The strength of the dephasing pulse ∆~k
can be adjusted by changing the time for which current is running through
the dephasing coil and the magnetic gradient field is acting on the atoms.
The corresponding characterisation is shown in figure 71. There is a certain
delay of about 20 µs until the current reaches its maximum value due to the
interplay of the capacitor that serves as the power supply for the pulse, and
the inductance of the circuit. The same delay is visible when switching the
current off. There is a limit to its strength of |∆~k| ≈ 6− 7 µm−1 for a pulse
duration of > 0.1 ms. This is due to the capacitor being depleted and the
current running through the dephasing coil tending towards zero for long
pulses.

of the vacuum glass cell containing the atoms.
66This quick delivery of high currents was accomplished by closing the circuit consisting

of the coil and precharged 1kV capacitors.
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8.5.2 Presentation of the data and analysis

Motivation for the choice of the experimental parameters As ex-
plained in section 7.4 the time we are able to observe the CBS peak is limited
due to the initial size and momentum spread of our atomic cloud, and the
inevitable redistribution of the momenta out of the 2D plane for long prop-
agation times. We therefore changed the key parameters that influence this
maximum observation time to set ourselves in optimal conditions with the
longest visibility.

Calling the characteristic limiting time due to the initial size and mo-
mentum spread of the atoms τ∆k, and the characteristic time of the redis-
tribution of the momenta out of the 2D plane τ3D we therefore strive to
maximise the ratios τ∆k/τ

? and τ3D/τ
? (τ? is the 2D transport time). The

influencing parameters which we can control experimentally are the disorder
amplitude VR, the initial momentum h̄ki, and finally the anisotropy of the
speckle grains σ⊥/σ‖.
First, assuming a given anisotropy of the speckle, it is advantageous to be in
the regime of isotropic scattering kiσ⊥ ≈ 1, which maximises τ3D/τ

?. This
fixes the initial velocity of the atoms. Second, in order to maximise τ∆k/τ

?

a high disorder amplitude has to be chosen.67

To change the anisotropy of the speckle we change the numerical aper-
ture NA of the speckle system: Since the longitudinal size of the autocorrela-
tion function of the speckle potential depends on the numerical aperture NA
of the speckle system as σ‖ ∼ 1/NA2, whereas its transverse size changes
as σ⊥ ∼ 1/NA a smaller numerical aperture leads to a bigger overall size of
the speckle grains, and a higher anisotropy σ‖/σ⊥ = 1/NA (see section 4).68

Experimentally we performed CBS experiments for different speckle nu-
merical apertures while observing the considerations for τ∆k and τ3D given
above. In each case the maximum CBS observation time was compared with
the transport time, in order to find the configuration in which the momenta
can be completely randomised in the 2D plane a maximum number of times
without loosing the visibility of the CBS peak.

Using this procedure for several configurations of the speckle potential we
found the optimal experimental parameters, which are detailed in table 2
and are used for all data presented here. It turned out that a maximum

67A high disorder amplitude leads to a short transport time, which in turn leads to a
small diffusion constant, and the CBS width decreases as ∼ 1/

√
2DTp. An upper limit

for the disorder amplitude is given when already the switching on of the speckle induces
a significant broadening of the momenta outside the 2D plane.

68In practise the numerical aperture was regulated with a diaphragm placed in front of
the diffusor.
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8.5 Experimental observation of the CBS Revival

Quantity Value

Initial Velocity vi = 3.09± 0.04 mm/s

Wavevector corresponding to vi |~ki| = 4.24± 0.05 µm−1

Disorder Amplitude VR/h = 660± 60 Hz

Scattering Time τS = 0.22 ms

Transport Time τ? = 0.6 ms

Diffusion Constant D = 1
2v

2
i τ

? = 2.86 µm2/ms

Speckle autocorr. function σ‖ = 1 µm (HWHM)

σ⊥ = 0.2 µm (RMS)

Table 2: Key parameters for the CBSR experiments.

numerical aperture is most favorable. The observation of the CBS peak was
possible up to ≈ 3.5 ms, which corresponds to about 16 τS or 6 τ?.

We took a set of data for the pure CBS case as a comparison with the
same parameters. The key quantity extracted is the contrast of the coherent
peak: The contrast of the CBSR peak at a given propagation time Tp will
be compared to the contrast of the CBS peak at equal propagation time,
and ideally the two will be equal at the revival time. Figure 72 shows the
CBS contrast as a function of the propagation time.

Finally, in our choice of experimental parameters we can adjust the
strength of the dephasing pulse. As shown in section 8.4.3 in the pertur-
bative regime and for diffusive propagation the minimum contrast of the
coherent contribution to the momentum distribution between the dephasing
pulse and the revival depends on the strength of the kick. We found this
conclusion to qualitatively hold true also in our experimental situation. In
order to achieve a maximum suppression of the coherent contribution we
therefore chose very strong kicks, where ∆k is on the order of ki.

Method of the data analysis Right after the dephasing pulse is applied
the whole momentum distribution is shifted by ∆~k, and subsequently relaxes
towards a steady state symmetric around zero momentum (see figure 73).
This redistribution of the incoherent part of the momentum distribution is
taking place on the same time scale as the evolution of the CBSR peak, a
direct consequence of the limited time we are able to observe the CBS peak.
This constitutes a major complication in the data analysis, since it was
not obvious how to extract the CBSR peak from an evolving background.
In order to make the coherent peak visible we employed a specialised data
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Figure 72: CBS contrast evolution. This CBS contrast was recorded
under the same experimental conditions as the CBS revival experiments. In
the following data treatment the CBSR contrast at a given propagation time
is always normalised with respect to the CBS contrast at the same time. In
order to exclude the noise that would be introduced in the normalisation
by this measurement of the CBS contrast we use a heuristic polynomial fit,
K0 +K1 · Tp +K2 · T 2

p +K3 · T 3
p +K4 · T 4

p (red line).

treatment that aims to extrapolate the incoherent momentum distribution
where the CBSR peak is expected. This treatment is explained in detail in
Appendix B, and only the general idea is given here.

In broad terms, we cut out the region from ~q = ∆~k to ~q = 0 in which the
evolution of the coherent contribution to the momentum distribution takes
place. We recover the incoherent part of the distribution in this area by
quadratically extrapolating the momentum distribution to the left and to
the right into this region. Subtracting this extrapolation from the recorded
data leaves only the coherent part, which is then easy to analyse. In order
to get the contrast the extracted coherent distribution is divided by the ex-
trapolated incoherent contribution. Finally, this contrast is then normalised
with respect to the CBS contrast at the same propagation time.

Figure 73 shows an example of the momentum space evolution with and
without dephasing pulse (CBSR and CBS configuration). In this case the
dephasing pulse was applied at td = 1 ms with a strength of ∆k = 3.4 µm−1.
Using the method described above the coherent part of the momentum dis-
tribution was extracted and normalised to retreive the contrast evolution,
and is displayed in a window around ~q = ~ki + ~kf = 0, where the CBS peak
is located and the CBSR peak appears around the revival time.
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Figure 73: Example of the evolution of the momentum space distribution in
comparable CBS and CBSR configurations. In a the initial evolution is shown,
before at td = 1 ms the dephasing pulse (∆k = 3.4 µm−1) is applied. The upper row
(b) shows as a comparison the continued evolution of the pure CBS case, whereas
in the lower row (c) the initial shift and subsequent redistribution of the momenta
due to the kick are clearly visible. A circle with radius ki centered around zero is
given as reference for the on-shell momenta (red broken line). For each image the
coherent contribution to the momentum distribution, normalised with respect to the
CBS contrast in figure 72, is shown in a small window around ~q = 0. The normalised
coherent contribution in these windows are again given for more timesteps in d and e.
The revival around 2td = 2 ms in e is clearly visible.
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8.5 Experimental observation of the CBS Revival

Figure 74: CBSR contrast evolution. Shown here are the evolution of
the on-shell CBSR contrast for different times of the dephasing pulse td,
while all other parameters are equal. The values for td are 0.7 ms (black),
1 ms (red), 1.3 ms (blue), and 1.6 ms (green). The expected revival times
2td are indicated by gray dashed vertical lines. To extract the time of the
revival and its width the curves are fitted by gaussians with zero offset. The
fitted revival time and corresponding error (±2×RMS) is indicated by the
vertical orange shaded bars. For a roundup of the extracted quantities see
table 3.

Discussion of the Experimental Results The data presented in fig-
ure 74 are the central result of this experiment. They show the on-shell
contrast evolution for different data sets, where all parameters except the
time of the dephasing td are equal. As discussed in section 8.4 the shape
of the revival in the diffusive and perturbative approximation should be
an exponentially increasing / decreasing function ∼ exp(−|Tp − 2td|/τR)
with τR = DΔk2. With the diffusion constant as given in table 2, and the
strength of the dephasing pulse Δk = 3.4 μm−1 in this set of experiments
the predicted revival time equals to τR ≈ 0.03 ms. This is about an order
of magnitude smaller than what we observe. Also the shape of the revival
is not sharp enough to be described by the exponential.

Both these observations are readily explained by the fact that during the
timescales that we observe the CBSR dynamics the propagation of the atoms
is not diffusive, but ballistic, or at least in the cross-over regime between
the two. The transport time τ� gives the order of magnitude after which
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8.5 Experimental observation of the CBS Revival

measured quantity td [ ms ] value [ ms ]

revival width 0.7 0.324± 0.040
1.0 0.325± 0.036 mean value:
1.3 0.241± 0.023 0.28± 0.04 ms
1.6 0.264± 0.049

revival time 0.7 1.290± 0.037
1.0 1.997± 0.036 slope:
1.3 2.650± 0.023 1.991± 0.029 ms
1.6 3.177± 0.044

peak contrast 0.7 0.574± 0.055
1.0 0.570± 0.055 mean value:
1.3 0.779± 0.063 0.60± 0.13
1.6 0.482± 0.065

Table 3: Results of CBS revival measurements. Extracted by gauss
fits with zero offset from the data shown in figure 74. The errors given are
the RMS fit errors.

the transport becomes diffusive, and here we have τ? ≈ 0.6 ms. As detailed
in section 8.4.1 in the ballistic regime the evolution of the CBSR peak is
described by a gaussian ∼ exp[−(Tp − 2td)

2/(2τ2
R)], with τR = 3/(∆kvi).

With our parameters we obtain τR = 0.28 ms.

The width of the revival in the data set shown in figure 74 is therefore
extracted using gaussian fits with zero offset. The individual values for the
four different dephasing times, together with the other extracted parameters,
are given in table 3. From this we calculate the average time of the width
of the revival to be 0.28± 0.04 ms, which is in excellent agreement with our
prediction in the ballistic regime.

The second quantity given by these fits is the measured time of the
revival. These are shown in figure 75, together with a linear fit. The slope
of the fit, measured to be 1.991± 0.029, is very close to the predicted value
of 2.

We can also compare the maximum contrast of the revival with the CBS
contrast at the same time. The predicted behavior is that both are equal,
but we find it to be consistently smaller. This might be due to the fact
that we are far from the perturbative regime: The strength of the kick, and
the resulting modification of the scattering paths could possibly lead to a
reduction of the contrast. That being said, the clear existence of the revival
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Figure 75: Revival time as a function of the dephasing pulse time.
The fitted revival time of the data shown in figure 74 as a function of the
dephasing pulse time td is given. The error bars indicate the fit error (±2×
RMS). The red line is a linear fit without offset, giving a slope of 1.991 ±
0.029, in perfect agreement with the predicted value of 2.

with an average peak contrast of 0.6 nevertheless shows that our method of
time-reversal breaking preserves coherence at least to a large degree.

In another set of experiments all experimental parameters were left con-
stant except for the strength of the dephasing pulse ∆k. The widths of the
revival τR were again extracted using gaussian fits, and a decrease of the
revival width is expected for an increase in the dephasing pulse strength, as
τR = 3/(∆kvi) with vi the initial velocity of the atoms. Figure 76 shows the
results of this set of data. The experimental parameters are again the ones
given in table 2, and the time of the dephasing pulse is td = 1.3 ms. We
observes a relatively good agreement between the expected behavior and the
experimental results. Note in particular that the aforementioned decrease of
the revival width with increasing pulse strength is clearly visible, and that
the theoretical curve does not contain any free parameters. The deviation
from the prediction at the lowest dephasing pulse may be due to the fact
that here the width of the revival is highest. Within the duration of the
revival the ballistic propagation then transitions to diffusive propagation,
for which the width is much more narrow.

8.6 Numerical simulations and investigations of arbitrary
pulse shapes

In order to verify our understanding of the dynamics of the system, 2D
numerical simulations of the Schrödinger equation were carried out. In par-
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Figure 76: Width of the revival as a function of the dephasing pulse
strength. In this data set all experimental parameters are constant except
for the strength of the dephasing pulse ∆k. The width of the revival τR is
extracted using gaussian fits, and the error bars signify the uncertainty of
the fit. The red line shows the theoretical prediction in the ballistic regime,
τR = 3/(∆kvi).

ticular we aimed to recreate the conditions in the calculations by T. Mick-
litz et al. in [80], which we could not achieve experimentally. These con-
ditions are that the propagation is diffusive, and that the disturbance by
the dephasing pulse is small. The results of these simulations are given in
section 8.6.1.

We also investigated the effect of an arbitrary pulse shape on the CBS
revival, which will be treated in section 8.6.2. This was done to verify that
the finite length of our pulse does not have a negative impact on the max-
imum contrast of the CBS revival. It was also prompted by measurements
of the magnetic field of the dephasing pulse, which was found to be not
perfectly symmetric.

8.6.1 2D numerical simulation of the Schrödinger equation

Parallel to our first experimental investigations numerical simulations of the
Schrödinger equation were carried out. The code was developed by Thomas
Plisson, a former PhD student in our group, and a detailed description of
it can be found in his thesis [92]. It uses the Crank-Nicolson algorithm, a
finite difference method, to calculate the evolution of a wave packet in a 2D
box. To avoid reflections of the wave function from the boundaries of the
box absorbing boundary conditions are imposed.69

69These absorbing boundary conditions were implemented for the study Anderson lo-
calization in 2D, which necessitates long propagation times. Here, the wave function in
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8.6 Numerical simulations and investigations of arbitrary pulse shapes

Figure 77: 2D Numerical Simulation of CBS and CBSR Dynam-
ics. Shown here is the momentum space evolution of a CBS and CBSR
configuration (upper and lower row respectively). The parameters in this
simulation are equal in both cases, and were chosen to highlight an “ideal”
configuration, where the contrast of the CBS peak stays equal to 1, and
the propagation times are much longer than the transport time (diffusive
propagation). Up until 75 tσ there is no difference between the CBS and
the CBSR evolution. At td = 75 tσ a momentum kick Δ�k is given in the
CBSR case, which shifts the distribution. The black circles with a radius
of ki around the origin at 50 tσ, 75 tσ, and 100 tσ highlight this shift and the
subsequent redistribution of the momenta. The coherent peak is suppressed
except around the revival time Tp = 2td = 150 tσ.
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As in our experiments the initial wave function in momentum space is
a gaussian centered around an initial momentum h̄~ki. A speckle potential
is switched on abruptly, and the evolution of the momentum space density
is recorded. We previously used this configuration to verify the scatter-
ing and the transport times, and the dynamics of the CBS peak [55]. The
only change that was implemented to study the CBS revival dynamics was
a dephasing at a specific time. To accomplish this the wave function was
multiplied by the factor exp(i∆kx) at one point during the propagation,
mirroring the effect of the dephasing due to a gradient field. The evolu-
tion is calculated for several realisations of the speckle potential, and then
averaged. The code uses the natural units given by the size of the speckle
autocorrelation function, as detailed in section 4.3. The results of the nu-
merical simulations presented here will therefore be given in dimensionless
quantities, renormalised to these natural units: wavenumber κ = k/kσ, en-
ergy ε = E/Eσ, and time τ = t/tσ.

In order to be in a configuration that recreates the behaviour predicted
by Micklitz et al. we first had to choose a configuration where the diffu-
sive approximation holds, that is where the observation of the CBS peak
is possible for times much longer than transport time. Practically this can
easily be achieved by having a very narrow initial momentum distribution.70

Figure 77 shows the results of this simulation compared to the case of a pure
CBS configuration. The parameters chosen were VR = Eσ/2, ki = kσ, and
∆k = 0.2kσ, which leads to a mean scattering time of τS = 2.1 tσ. The
diffusion constant was determined directly by monitoring the increase of the
size of the real space distribution ∼

√
2DTp, giving D = 3.1 k−2

σ t−1
σ . From

this one can derive the transport time (see section 2.4) τ? = 2D/v2
i ≈ 6.2 tσ.

The dephasing pulse was administered at Tp = 75 tσ, leading to a revival
of the CBS peak around Tp = 150 tσ. Since the dephasing is applied after
more than 10 τ? the propagation can safely assumed to be diffusive.

According to equation 82 the shape of the revival is a double exponential,
with a characteristic time of τR = (D∆k2)−1. By monitoring the contrast
at ~q = 0 (“on-shell”) we tested this prediction in our simulations with the
parameters described above, as well as another data-set with a weaker de-

real space could propagate to the edges of the box and reflections from its boundaries
could distort the results. They are of less importance in the simulations with relatively
short diffusion times presented here.

70The other experimentally limiting factor, the eventual 3D redistribution of the mo-
menta, is not present in the 2D simulations. See section 7.4.2 for a discussion of these
effects on the maximum observation time of the CBS peak.
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Figure 78: Simulation of the CBSR on-shell contrast evolution. The
evolution of the contrast at ~q = 0 (“on-shell”) is shown in two CBSR config-
urations with ∆k = 0.2 kσ (panel a) and ∆k = 0.1 kσ (panel b). Both are
drawn in blue. The coherent peak is completely suppressed at td = 75 tσ
(i.e. at the time of the kick), and reappears at 2td = 150 tσ. As comparison
in each case the contrast of a pure CBS evolution is shown in black. The
dotted red lines show the theoretical prediction of the shape of the revival,
where only the amplitude was manually adjusted (see text).

phasing pulse ∆k = 0.1 kσ.71 The results are shown in figure 78, compared
to the contrast of the pure CBS case. The noise in the data is a combined
effect from the limited amount of averaging over different disorder config-
urations during the simulation, and uncertainties in the extraction of the
contrast.72 In the stronger kick case in panel the noise is higher compared
to the case of weaker kick. This may be explained by the fact that the
momenta get redistributed over an intereval from ki −∆k to ki + ∆k. For
a weaker kick this interval is smaller, which increases the signal to noise
ratio. The CBS contrast stays nearly constant over the whole duration of
the simulated evolution, whereas the contrast falls to zero right after the de-
phasing pulse and only reappears around the revival time. Additionally the
predicted behavior of the revival is shown, where all parameters except the
amplitude are fixed. The latter was adjusted manually to accomodate for
the slight decrease in the CBS contrast. The characteristic time of the re-

71The method used to extract the on-shell contrast is the same as for our experiments
on CBS, that is we performed a radial integration over a thin ring with radius ki to obtain
an angular profile. The more involved method for the extraction of the contrast used in
our experiments on the CBS revival was not necessary, since here the revival appears long
after the redistribution of the momenta after the kick is complete.

72All data presented here was averaged over 50 disorder configurations. It takes approx-
imately one day to complete one data set on a fairly fast computer.
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vival is τR ≈ 16 tσ for the stronger, and τR ≈ 64 tσ for the weaker dephasing
pulse.

8.6.2 Arbitrary shape of the dephasing pulse

Experimentally it is impossible to create a true delta-like pulse of the de-
phasing potential. First, the pulse itself always has a finite length. On top
of that we found that there is a perturbation of the levitation after the pulse
such that for some time the overall magnetic potential is different compared
to before the pulse.

In order to try to account for this experimental reality we analysed a
theoretical description provided to us by T. Micklitz that is based on an
arbitrary pulse shape. This description is, again, valid in the perturbative
regime of weak kicks, and in the diffusive limit of propagation. Since on
the relevant time scales our experiment is situated in the ballistic regime,
or in the transitional regime between ballistic and diffusive propagation, it
cannot be directly compared to our results. Nevertheless we studied it to
at least get qualitative figures of how the evolution of the coherent peak is
modified by a non delta-like dephasing pulse.

The contrast as a function of the momentum ~q and the total propagation
time Tp in the case of an arbitrary pulse is given by:73

C(~q, Tp) = exp
[
−D

(
Tp~q

2 + 2χ0(Tp)~q ·∆~k + χ1(Tp)∆~k
2
)]

χ0(Tp) =

∫ Tp

0
ds(Tp − 2s)p(s)

χ1(Tp) =

∫ Tp

0
ds1

∫ Tp

0
ds2(|Tp − s1 − s2| − |s1 − s2|)p(s1)p(s2)

(90)

Here, p(t) is the normalised shape of the dephasing pulse:
∫
p(t)dt = 1. For

a delta-like pulse p(t) = δ(t−td) this set of equations reduces to formula (79).

First one can investigate what happens for a pulse shape p(t) that has a
finite width but is evenly symmetric around its center td, that is for a pulse
that observes p(t − td) = p(td − t). In particular, it is tempting to assume
that such a symmetric pulse would still lead to a revival at the position
~q = 0 and at the time Tp = 2td with a contrast of one, since both the direct
and the reciprocal paths would acquire the same phase due to the dephasing
potential. To verify this we set ~q = 0 and Tp = 2td in equation (90), and
expand the pulse shape p(t) in a Taylor series, p(t) =

∑
n αn(t−td)2n, where

73Private communications with T. Micklitz, C. Müller, and A. Altland.
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Figure 79: Dynamics with an asymmetric pulse. Using equation (90)
the effect on the CBSR dynamics were explored for an asymmetric pulse.
The pulse shape used here is shown in panel a. It starts at 1 ms and decreases
exponentially with a time-constant of 0.2 ms. All relevant parameters are
equal to the ones used to compute the behavior with a delta-like pulse,
shown in figure 68: The strength of the dephasing pulse ∆~k = 2.5 µm−1,
and the diffusion constant D = 2.88 µm2/ms. The contrast as a function
of the position ~q and the propagation time Tp is shown in panel b. One
observes that the position of the highest contrast of the revival is no longer
at ~q = 0, and also not at Tp = 2td. The highest contrast is also reduced to
≈ 0.84.

n = 0, 1, 2, . . .. With this power series that is by definition symmetric around
td one can then show that χ1(Tp = 2td) = 0, and therefore

C(~q = 0, Tp = 2td) = exp
[
−Dχ1(2td)∆~k

2
]

= 1.
(91)

Using the Taylor expansion one can also show that any asymmetric term of
the Taylor expansion of the pulse shape leads to χ1(2td) 6= 0, and therefore
to a contrast C(~q = 0, Tp = 2td) 6= 1. Although not a stringent proof, this
is at least an indication that in order to achieve a contrast of one at the
revival time the pulse shape should be symmetric.

To show the effects of an asymmetric pulse shape, formula (90) was solved
numerically for a short pulse with an exponentially decreasing tail, shown
in figure 79. The parameters for this simulation are the same as the ones
used to compute the contrast in figure 68: The time of the dephasing pulse
is td = 1 ms, its strength (integrated over its whole duration, including the
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Figure 80: Magnetic field of a dephasing pulse close to the atoms.
The magnetic field of a dephasing pulse with a programmed length of 29 µs
was recorded about 2 cm from the atoms with a Hall probe. The black and
red lines show the same data, with the red line magnified by a factor 10.
In the magnified plot a perturbation lasting several hundred µs is visible.
According to numerical simulations this tail does not affect the dynamics of
the CBS revival (see text).

exponential decrease) is ∆~k = 2.5 µm−1, and the diffusion constant is D =
2.88 µm2/ms. The pulse decreases as exp(−Tp/τ) with τ = 0.2 ms. There
are four notable changes with respect to the ideal case shown in figure 68.
The time the highest contrast appears is at Tp ≈ 2.4 ms, it is situated at
~q ≈ 0.13 µm−1, and its maximum contrast is Cmax ≈ 0.84. Finally the
displacement of the CBS peak naturally does not happen instantaneously
at td = 1 ms for this very long pulse.

This is an example of a very asymmetric pulse shape, and serves just
to illustrate qualitatively the effects. We wanted to quantify whether the
aforementioned asymmetry in our experimental setting has an appreciable
influence on the position and the maximum contrast of the revival. In order
to do this we recorded the magnetic field with a hall probe just above the
glass cell, with a distance ≈ 1-2 cm from the atoms. An example of such a
curve is shown in figure 80. Solving again numerically equation (90) with
the recorded pulse shapes used in our experimental studies we found no
appreciable deviation from the ideal behavior.

8.7 Conclusion

In conclusion, we have studied the underlying symmetry of wave propagation
in disordered media that leads to Coherent Backscattering and Weak Local-
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Figure 81: Extension to higher order corrections. With a sequence of
several timed pulses of the same strength higher order corrections to coherent
transport can be probed. On the left hand side a schematic drawing of the
CBS real space trajectories is given. A pulse at td leads to a revival after
the propagation time Tp = 2td. On the right hand side the diagram leading
to the coherent forward scattering peak (CFS) is shown. This contribution
is revealed by a sequence of two pulses at td1 and td2 with a revival at Tp =
2(td2 − td1).

ization. The basis of these fundamental corrections to coherent transport of
waves is the constructive interference of counter-propagating paths due to
the time-reversal symmetry of the propagation. Owing to the precise spatial
and temporal control over the potential landscape that is available for cold
atom systems a dephasing between the pairs could be introduced, leading
to the suppression of interference, and therefore the suppression of the CBS
peak. Since the dephasing is applied during a short time and does not de-
stroy coherence we observe a short revival of the CBS peak. In this sense
our experiments perform a loop spectroscopy, isolating specific diagrams in
the multiple scattering process.

We observed the revival of the CBS peak after a propagation time Tp =
2td when the dephasing pulse was administered at time td. In their publica-
tion T. Micklitz et al. propose that higher order corrections can be probed
by applying multiple pulses at times td1, td2, . . . [80]. For example, a re-
vival of the Coherent Forward Scattering peak [59, 79, 69, 46] is expected
at time Tp = 2(td2− td1) (see figure 81). Such a study would provide insight
into the processes that eventually lead to Anderson localization.

We did not experimentally try techniques other than the application of
a magnetic gradient to achieve the dephasing. But numerical simulations
suggest that a revival of the CBS peak could also be observed by a short
modulation of the disorder amplitude.
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9 Conclusion and outlook

The present manuscript contains our work on coherent transport phenomena
in disordered potentials. Since several decades this field has been intensely
investigated, both theoretically and experimentally. Early experiments used
electronic systems, which were later joined by optical, acoustical, and other
waves. A relatively recent addition, the study of the propagation of ultra-
cold atoms in optical speckles, was pioneered in our group and led to the
observation of 1D Anderson localization [20]. Amongst others, this system
offers the advantage of having precise control over the disordered potential,
and to be able to directly image the evolution of the density distribution
either in real, or in momentum space.
During the course of this thesis several major upgrades in the experimental
setup were carried out. These include, but are not limited to, an improve-
ment of the imaging system, and the complete overhaul of the speckle sys-
tem. The sum of these changes make the experiment more flexible, and run
better than ever.

In the first experiment described in this manuscript we were able to ob-
serve 3D Anderson localization by monitoring the evolution of the real space
density of the atoms in a strong disorder. A maximum localized fraction of
about 20% was observed, which puts the localization beyond any reasonable
doubt, but a limitation in our experimental scheme is the lack of control over
the energy distribution in the disorder. This experiment is among the first
two to observe 3D Anderson localization with ultracold atoms, and paves
the way to a study of the critical regime around the mobility edge.

In our second experiment we exploited the possibility to record the evo-
lution of the momentum distribution to perform the first observation of
Coherent Backscattering with ultracold atoms. Preparing the atoms with a
well defined initial velocity we are able to observe the full evolution of the
momentum space distribution. The contrast and width of the CBS peak
were measured and shown to be in good agreement with theory.
Next to the observation of CBS this experiment allows us to directly measure
two fundamental transport parameters, the mean scattering time and the
transport time. An experimental study of these transport parameters for
different momenta and disorder strengths was carried out during this the-
sis, but their analysis and interpretation is still under way. The parameters
ranged from weak to strong disorder, which provides a good opportunity for
a comparison with theory.

In the third experiment we were using the precise spatial and temporal
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control over the atoms to observe a novel effect, predicted by T. Mick-
litz et al., the revival of the Coherent Backscattering Peak [80]. Through a
deliberate breaking of the time-reversal symmetry of the wave propagation
the CBS peak is suppressed, except for a brief moment when the symmetry
is re-established and the CBS peak reappears. This TRS breaking is accom-
plished by the application of a shortly pulsed magnetic gradient field.

Efforts are currently underway to upgrade our experiment with an opti-
cal speckle whose frequency can be tuned around the resonance of the atoms.
This would allow us to create a state-dependent disorder and precisely con-
trol the energy of the atoms. For instance, the laser wavelength could be
tuned to a so called “magic wavelength”, where the dipolar interaction is
cancelled for one state and not for the other. With a precisely controlled
energy in the disorder a study of the critical regime around the mobility
edge in a 3D Anderson localization experiment would be possible.

An exciting extension of the CBS experiments would certainly be the
observation of the CFS peak. This novel effect, first predicted in 2012 by
T. Karpiuk et al. [59], is believed to be a direct signature of Anderson
localization. It already has initiated several theoretical works, but has not
yet been seen in experiments.

Finally, the scheme to use a short dephasing pulse to single out the
quantum corrections responsible for the CBS peak can be expanded to higher
order corrections. It would therefore be possible, albeit experimentally very
challenging, to repeat this experiment in the Anderson localized regime and
observe a revival of the aforementioned CFS peak.
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A Ensemble view of the experiment

Figure 82 shows a photograph of the entire experimental apparatus. In
figure 83 the same view is given schematically, pointing out the position
of different components of the experiment. They are to be compared with
figure 11, which shows only the various components of the vacuum system
(the viewpoint is on the backside of the experiment when compared to the
images given here). Note that at the time the picture was taken the new
speckle setup was still under construction.

The entire room is temperature controlled to 21.5◦ C. A deviation by
only some degrees leads to misalignments, most notably of the various trap
and cooling laser beams, which render the operation of the experiment im-
possible.

The experiment rests on vibration damping supports, which in turn are
positioned on a vibration damped part of the floor.
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Figure 82: View of the entire experiment.
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Figure 83: View of the entire experiment - schematic.
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Figure 84: Extraction of the coherent part of the momentum dis-
tribution. The top row shows the raw data of CBS and CBSR momentum
distribution (center and right column respectively). The image is cut into
three regions: Region I and III are used to extrapolate the incoherent mo-
mentum distribution into region II, where the coherent peak is located. The
second row shows the result of this extrapolation. The third row shows the
coherent part of the momentum distribution, obtained by subtracting the
incoherent part (second row) from the raw data (first row).

B CBSR data treatment

The CBSR data treatment posed considerable difficulties, which mainly stem
from the fact that the signal we are looking for is sitting on an evolving
background: The incoherent part of the momentum distribution is still in
the process of evolving towards its symmetric equilibrium state after its
perturbation due to the dephasing pulse while the CBSR peak appears.
This is a direct consequence of the fact that in our experiment it is possible
to observe the CBS peak for a limited amount of time, on the order of several
τ?, where τ? is the transport time. The transport time gives the time scale
it takes for the momenta to redistribute.

In order to extract the coherent part of the momentum distribution we
developed a method that extrapolates the incoherent momentum distribu-
tion into the region where the CBS or the CBSR peak is located. The code
used can be found at the end of this section.

Figure 84 shows the general idea of the treatment for the CBS and the
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CBSR configuration. The experimental parameters are the ones described in
table 2, the diffusion time is 2 ms, and the time of the dephasing pulse is 1 ms.
The raw data is separated into three regions I, II, and III. Regions I and
III do not contain any coherent contribution to the momentum distribution,
which is located entirely in region II. The incoherent part of the momentum
distribution in region II is extrapolated using the fit routine given at the
end of this chapter. The coherent part is then obtained by subtracting this
extrapolated incoherent contribution from the raw data.

In parallel to this method for the extraction of the coherent part of
the momentum distribution Vincent Denechaud, a master student in our
group, explored a different approach: We are able to measure the momentum
distribution right after the dephasing pulse, at Tp = t+d . As was pointed
out earlier, this distribution is equal to the CBS distribution at Tp shifted

by ∆~k. The atoms therefore populate momenta roughly in the range of
[|~ki| − |∆~k|, |~ki| + |∆~k|]. In a separate set of experiments we measured the
scattering times τs and the transport times τ? in this momentum range.
With the knowledge of these quantities and the initial state just after the
pulse it is in principle possible to predict the momentum space evolution [93].
The thus predicted evolution of the momentum space density does not take
into account interference effects and therefore only represents the incoherent
part. Subtracting this computed distribution from the recorded data then
should leave only the coherent contribution.

At the moment of writing this thesis first positive results were achieved
using this method. Its main inconvenience is though that it does not take
into account the inevitable 3D isotropisation of the momenta which is taking
place for longer diffusion times. This introduces a systematic difference
between the predicted and the recorded distribution. Since the signal we
are seeking to extract is small, on the order of 10%, even a small error of
the same magnitude then falsifies the results.
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1 function [ IncohImg ] = Radia lQuadrat icFit ( img , mask1 , mask2 ,
centerRingCol , centerRingRow )

2
3 % De f i n i t i on o f the f i t f unc t i on :
4 radquadfun=@( a , b , c , x0 , y0 , x , y ) . . .
5 a+b ∗ ( ( x−x0 ) .ˆ2+(y−y0 ) . ˆ 2 )+c∗sqrt ( ( x−x0 ) .ˆ2+(y−y0 ) . ˆ 2 ) ;
6
7 % Only a par t o f the image i s used f o r the f i t − s e l e c t i t wi th

mask1 and mask2 :
8 imgcut=img .∗mask1 .∗mask2 ;
9

10 CountMat=zeros (1000 ,1000) ; % Counter
11 IncohImg=zeros (1000 ,1000) ; % This matrix w i l l ho ld the

e x t r a po l a t e d incoheren t momentum d i s t r i b u t i o n .
12 width =20;
13 [ colMatrix , rowMatrix ]=meshgrid ( 1 : 1 0 0 0 , 1 : 1 0 0 0 ) ;
14 radiusmat=sqrt ( ( colMatr ix−centerRingCol ) .ˆ2+( rowMatrix−

centerRingRow ) . ˆ 2 ) ;
15
16 for k =1:10:round( centerRingCol−2∗width ) ;
17 disp ( [ ’ s t a r t f i t r eg i on ’ num2str( k ) ’ . . . ’ ] )
18 % These are a d d i t i o n a l p i x e l s t h a t are exc luded from the f i t

:
19 vec1=find (abs ( radiusmat−(centerRingCol−k ) )>round( width /2) ) ;
20 % And the s e inc l ude the reg ion where the f i t i s v a l i d :
21 vec2=find (abs ( radiusmat−(centerRingCol−k ) )<round( width /2) ) ;
22 ROIimg=imgcut ;
23 ROIimg( vec1 ) =0;
24 % Perform the f i t :
25 s f=f i t ( [ co lMatr ix ( : ) , rowMatrix ( : ) ] , ROIimg ( : ) , radquadfun , . . .
26 ’ Exclude ’ ,ROIimg ( : ) ==0, ’ Star tPo int ’ , [ 0 , 0 , 0 , 5 0 0 , 5 0 0 ] )
27 IncohImg ( vec2 )=IncohImg ( vec2 )+s f ( co lMatr ix ( vec2 ) , rowMatrix (

vec2 ) ) ;
28
29 CountMat ( vec2 )=CountMat ( vec2 ) +1;
30 disp ( ’ . . . done ’ )
31 end
32 IncohImg=IncohImg . / CountMat ;

Code 1: Analysis code used to extrapolate the incoherent momentum
distribution into the region of the Coherent Backscattering Revival peak.
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C Properties of Rubidium 87

Rubidium 87 is an element of the alkali metal group. With its single va-
lence electron and its otherwise filled orbitals its electronic level structure
resembles that of hydrogen. The electron spin S = 1/2 can combine with the
nuclear spin of I = 3/2 to a total angular momentum F = 1 and F = 2 in the
52S1/2 ground state. The degeneracy between these states is lifted by the hy-
perfine splitting of ∆Ehfs/h ≈ 6.8 GHz. Transitions to the 52P1/2 and 52P3/2

excited states are respectively called the D1 and D2 lines, with transition
wavelengths of 795 nm and 780 nm. The D2 line transition F = 2↔ F ′ = 3
forms a cycling transition that is used for imaging (see section 3.1) and cool-
ing via the radiation force (see section 3.2.2). The light necessary to drive
this transition can conveniently be obtained by inexpensive diode lasers.
The D2 hyperfine level structure of 87Rb is shown in figure 86.
The scattering length a = 5.3 nm describes the effective size of the atoms
for s-wave scattering, which is important for cooling via evaporation.

These properties make 87Rb favorable for cold atom experiments, and
indeed one of the first realisations of Bose-Einstein condensation used this
atomic species [10].74 The following table summarises some of the physical
properties of 87Rb, which are collected from [109]. The same reference also
contains more detailed information about the electronic level structure.

Quantity Symbol Value

Mass mRb 1.44× 10−25 kg

Nuclear Spin I 3/2

Melting Point TM 39.30 ◦C

D2 Transition Wavelength (Vacuum) λ 780.241 nm

D2 Transition Wavelength (Air) λair 780.033 nm

52P3/2 Lifetime τ 26.23 ns

52P3/2 Decay Rate
Natural Line Width (FWHM)

Γ 2π × 6.07 MHz

D1 Transition Wavelength (Vacuum) λ 794.979 nm

D1 Transition Wavelength (Air) λair 794.767 nm

52P1/2 Lifetime τ 27.68 ns

52P1/2 Decay Rate
Natural Line Width (FWHM)

Γ 2π × 5.75 MHz

74Two other experiments published the observation of a BEC in the same year using
other elements in the alkali metal group, sodium [35] and Lithium 7 [21].
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D Optical setup for laser cooling, trapping, and
imaging

As described in sections 3.1 and 3.2.2 we use laser beams resonant with
hyperfine transitions of the D2 line of 87Rb to cool, trap, and image the
atoms. In total we have three lasers, L1 (“probe”), L2 (“repumper”), and
L3 (“trap”) at our disposal. They are mounted on a dedicated optics table,
separated from the rest of the experiment, in order to avoid vibrations.75

These lasers are extended cavity lasers, originally designed at the Observa-
toire de Paris (SYRTE), with a wavelength of about 780 nm and a spectral
width of about 30 kHz, each producing an output power of 20 − 30 mW.
Their frequency can be adjusted over a maximum range of 1.5 GHz (the free
spectral range of the laser) by changing the cavity length with a piezo. A
description of their design can be found in [5, 19].

Figure 85 shows a schematic overview of the optics table, and figure 86
shows the frequencies of the lasers together with the D2 hyperfine level
structure. Both images represent the state of the optics table at the writing
of this manuscript. Some minor changes were effectuated during the course
of this thesis, namely the addition of the transverse molasses and the op-
tical pumping, and modifications of some frequencies in figure 86. For a
description of the previous setup see [19].

The probe beam is frequency locked on the F ′ = 2 × 3 cross over of
the 52P3/2 manifold using saturated absorption. Increasing its frequency by
2 × 66 MHz using an AOM double pass it is resonant with the F = 2 →
F ′ = 3 transition. It is then fed into an optical fiber (“absorption fiber” in
figure 85) and used for absorption imaging in the first chamber.
L2 and L3 are frequency locked with the fixed frequency of L1 using the
beat signal recorded by fast photodiodes (“PD”).

In order to bridge the 6.8 GHz gap between the F = 1 and F = 2 hy-
perfine levels the beat signal between L1 (offset by an AOM by 200 MHz)
and L2 is mixed with an RF frequency of a dielectric resonant oscillator
(“DRO”) at 6.587 GHz. The command value of the servo loop controlling
the frequency of L2 is −203 MHz. A final AOM shifts the frequency by
117 MHz such that L2 is resonant with the F = 1→ F ′ = 2 transition.
L3 is resonant with the F = 2 → F ′ = 3 cycling transition. Its frequency
chain is similar to the one of L2, but does not necessitate a mixing of fre-
quencies with the DRO.

75The mechanical shutter and the translation stage induce vibrations to the table on
which the experiment is mounted.
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For both L2 and L3 the command value, which is shown at its standard
value of 203 MHz and 200 MHz respectively, can be changed during the ex-
perimental cycle between 0 and 512 MHz. This is the case for the molasses
and depumping phase.

Except for the optical pumping, L2 and L3 are always used in combi-
nation. They are therefore combined before sending them towards the ex-
periment via the fluo fiber (for fluorescence imaging), the trap fiber (for the
MOT), the transv. molasses fiber, and the zeeman slower beam. Since the
optical power coming directly from L2 and L3 is not sufficient for the needs
of our experiments it is amplified using two tapered amplifiers (“MOPA 1”
and “MOPA 2”).
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Figure 85: Schematic view of the optic table.

Figure 86: Frequency chain of the lasers on the optics table. The
relative hyperfine shifts and frequencies are shown to scale in the 52S1/2 and
52P3/2 manifolds. Note though that the scale for each manifold is different.
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thesis, Université Pierre et Marie Curie, 2010.

[20] Juliette Billy, Vincent Josse, Zhanchun Zuo, Alain Bernard, Ben
Hambrecht, Pierre Lugan, David Clément, Laurent Sanchez-Palencia,
Philippe Bouyer, and Alain Aspect. Direct observation of Ander-
son localization of matter waves in a controlled disorder. Nature,
453(7197):891–894, June 2008.

[21] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence
of Bose-Einstein Condensation in an Atomic Gas with Attractive In-
teractions. Physical Review Letters, 75(9):1687–1690, 1995.

[22] Jean-Philippe Brantut, Jakob Meineke, David Stadler, Sebastian Krin-
ner, and Tilman Esslinger. Conduction of ultracold fermions through
a mesoscopic channel. Science, 337(6098):1069–1071, 2012.

[23] G. Breit and I. I. Rabi. Measurement of Nuclear Spin. Physical Review,
38(11):2082–2083, 1931.

160



REFERENCES

[24] R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas.
Reciprocity, unitarity, and time-reversal symmetry of the S matrix of
fields containing evanescent components. PRA, 62(012712):1–7, 2000.

[25] Y. Castin. Bose-einstein condensates in atomic gases: Simple the-
oretical results. In R. Kaiser, C. Westbrook, and F. David, editors,
Coherent atomic matter waves, volume 72 of Les Houches - Ecole dEte
de Physique Theorique, pages 1–136. Springer Berlin Heidelberg, 2001.

[26] Y Castin and R Dum. Bose-Einstein Condensates in Time Dependent
Traps. Physical Review Letters, 77(27):5315–5319, 1996.

[27] AA Chabanov, M Stoytchev, and AZ Genack. Statistical signatures
of photon localization. Nature, 404(6780):850–853, 2000.
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[41] M. Fauquembergue. Réalisation d’un dispositif de condensation de
Bose-Einstein et de transport d’un echantillon coherent d’atomes. PhD
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