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Introduction

L’ordre est le plaisir de la raison,
mais le désordre est le délice de l’imagination.

Platon

Physics have always liked simple systems, and managed to explain the world in terms
of basic laws and equations. As pointed out by Goldenfeld and Kadanov [1],

“One of the most striking aspects of physics is the simplicity of its laws. [...] The world is
lawful, and [...] everything is simple, neat, and expressible in terms of everyday mathematics

[...]. Everything is simple and neat -except, of course, the world.”

Indeed, complex systems are in fact everywhere. When trying to find out the properties and
the states of matter, be it in solid-state, nuclear, or liquid physics, one faces incredibly complex
structures, which can no longer be understood from simple equations. Such complexity arises
from two reasons.

A first one is that when looking at them at the microscopic scale, all macroscopic systems are
made of many elementary components, which unavoidably interact with each other. Electrons
and atoms in solids, nucleons in nuclei, molecules in liquids, do not behave independently of
each other, but interact via forces of all kinds. Therefore, the behaviour of the whole system is
intrinsically a many-body one, which generally cannot be described as the sum of all one-body
behaviours. As summarized by Anderson, “More is different”, and new approaches are needed.
Although statistical physics provides the tools to deal with such systems, finding a simple and
intuitive description of the physics at stake remains in most cases extremely difficult.

The second reason is that real-life systems are never perfect, in the sense that they always
display uncontrolled imperfections at the microscopic scale. For instance in solid-state physics,
crystals are modelled by periodic arrangements of atoms, but in practice, such structures
always exhibit unavoidable defects, whose nature or positions are not necessarily known. All
those unknown degrees of freedom, which are traditionally referred to as disorder, make the
system impossible to exactly describe microscopically, and one has to develop other approaches
to still make reliable -and useful- predictions.

Somehow fascinatingly, both interactions and disorder turn out to play a prominent role
when entering the quantum world.

Interactions in quantummechanics can have several origins, e.g. conservative external forces,
spin-spin or spin-orbit couplings, matter-light interactions... Additionally, one puzzling feature
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10 INTRODUCTION

of quantum mechanics is the existence of several quantum statistics. Due to their indistin-
guishability, identical particles in quantum mechanics obey a specific statistics, which depends
on their nature (bosonic or fermionic). As a result, they do not behave independently but
display, even in the absence of interactions, a many-body behaviour, as illustrated by the Pauli
exclusion principle for fermions and Bose-Einstein condensation for bosons. More generally, in-
teractions and quantum statistics are responsible for collective behaviours, and underlie original
phenomena and fascinating quantum phases, such as superconductivity and superfluidity.

As regards disorder, it has been known since Anderson that in phase coherent systems,
disorder can dramatically alter the physics, not only quantitatively, but also qualitatively. The
most celebrated example in undoubtedly Anderson localization [2], an interference effect where
a small amount of disorder can lead to a total suppression of transport in disordered samples.

Furthermore, disorder and interactions interplay in a very complex way [3]. While disorder
is now recognized to possibly destroy superfluidity [4,5] or superconductivity [6,7], it has been
shown that disorder and interactions can compete or cooperate depending on situations, yield-
ing non-trivial localization effects. A theory of localization with interactions, a long-standing
quest that Anderson himself has dreamt of in the early days after his seminal discovery [8], is far
from being achieved. While new concepts have emerged, such as many-body localization [9,10],
new questions have arised and many aspects of the field remain still unexplored. This is for
instance the case of the disorder-induced superfluid to insulator transition [11, 12] and of the
localization properties of collective excitations [13,14].

Somehow unexpectedly, a renewed interest in the field has emerged from the development
of quantum gases. Such systems, which offer unprecedented control over their parameters,
including disorder and interactions, have stimulated both experimental and theoretical research
in the field and produced landmark results. Moreover, they have proved to feature their own
original effects, which are worth studying in their own right.

From a theoretical point of view, addressing the question of disorder in interacting systems
represents a considerable challenge, firstly because the many-body problem is an extraordinary
difficult one. Describing the intricate motions of all individual particles is impossible and
pointless, and new approaches are required. Among the concepts that have emerged, a central
one is the concept of quasiparticle. Instead of considering individual particles, the idea is to
think in terms of elementary fictitious bodies. For instance, as the motion of one particle
affects all the neighboring ones, this amounts altogether to a global motion of a cloud of
particles. This fictitious body, which has its own physical properties (mass, lifetime...), is
called a quasi-particle, and corresponds to an elementary collective excitation of the system.
Remarkably in many cases, all motions within a complex interacting system can be described
in terms of the independent motions of elementary excitations. Therefore, a central question
in the field of disordered interacting quantum systems is to understand how disorder affects
those collective excitations.

In this thesis, we theoretically investigate the collective localization properties of disordered
Bose systems, focusing on the localization properties of their collective excitations. Since
the latter govern most elementary processes in interacting systems, understanding how they
behave in the presence of disorder is of prime importance to penetrate both dynamical (energy
transfer, thermalization properties...) and static (phase transitions) properties of disordered
many-body systems. We will focus on the case of a Bose gas in the weakly-interacting regime,
for which the Bogoliubov theory has proved an efficient tool, and address the question of col-
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lective localization transitions in several contexts : the disordered Bose gas, the quasiperiodic
Bose gas, and the two-component Bose gas. This manuscript is organized as follows.

In chapter 1, we introduce the basic concepts and the general framework of our study. We
review the main notions about disordered systems, among which Anderson localization, before
addressing in details the question of disorder in interacting quantum systems. We show that
those topics, which originally emerged in condensed matter, have known a renewed interest
sparked by the development of ultracold gases. A brief state of the art concludes this chapter.

Chapter 2 is devoted to an introductory presentation of the Bose gas in the weakly-
interacting regime, and provides the technical tools to be used in this thesis. Much attention is
devoted to the Bogoliubov theory, which successfully describes the gas in terms of elementary
quasiparticles. The theory is presented in details in the most general inhomogeneous situation.
General features of Bose gases, such as condensation, quasi-condensation, and superfluidity,
are also discussed.

Then, chapters 3 to 5, which constitute the heart of this manuscript, study the influence
of disorder on collective excitations in three different cases.

Chapter 3 considers the case of a weakly-interacting Bose gas in the continuous space and
in arbitrary dimension, in the presence of a truly disordered potential. While the 1D case
was already studied by weak-disorder approaches, revealing that collective excitations are also
subjected to Anderson localization, no study has so far been performed in the strong-disorder
case, which is however needed to address the problem in higher dimensions. This is done
in this chapter, which provides us with a generic and rather complete description of the
localization behaviour of collective excitations in arbitrary dimension. We discuss universal
and non-universal features of their propagation and present a microscopic interpretation of
the observed behaviours. Implications on ultracold-atom experiments are discussed.

Chapter 4 is devoted to the case of a weakly-interacting Bose gas in the presence of a
one-dimensional quasiperiodic potential. Quasiperiodic potentials are known to display an
intermediate behaviour between truly disordered and periodic ones. However, the influence
of such potentials on the collective excitations of the gas has been little studied so far.
We perform here a numerical and analytical treatment of this problem. We quantitatively
characterize the localization transition of the excitations and provide an interpretation of our
results in terms of localization in an effective multiharmonic model.

Finally, chapter 5 is devoted to the case of a two-component Bose gas. Although such
systems are expected to display their own original effects when subjected to disorder, a unified
formalism to address those questions in the most general inhomogeneous situation is missing.
We develop such a formalism here, and apply it to the homogeneous case to enlighten the
basic -but already rich and non-trivial- physics at stake.

A conclusion summarizes the obtained results and discusses both theoretical and experi-
mental perspectives of this work.
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12 INTRODUCTION

Version française

La physique a toujours aimé les systèmes simples, et cherché à expliquer le monde à
l’aide de lois et d’équations élémentaires. Comme le soulignaient Goldenfeld et Kadanov [1],
“l’un des aspects les plus fascinants de la physique est la simplicité de ses lois [...] Le monde
est régi par des lois [...] tout est simple, net, et peut s’exprimer à l’aide des mathématiques de
tous les jours [...] Tout est simple et net - excepté bien sûr le monde”.

En effet, les systèmes complexes sont en réalité partout. Dès que l’on cherche à comprendre
les propriétés et les états de la matière, que ce soit en physique des solides, en physique nucléaire
ou en physique des liquides, l’on est immédiatement confronté à des structures prodigieusement
complexes, qui ne peuvent plus être décrites par des équations simples. Les raisons d’une telle
complexité sont multiples.

La première d’entre elles est que dès qu’on les regarde à l’échelle microscopique, tous les
systèmes macroscopiques sont constitués d’une multitude de constituants élémentaires qui,
inévitablement, interagissent les uns avec les autres. Les électrons et les atomes dans les
solides, les nucléons dans les noyaux atomiques, ou encore les molécules dans les liquides, ne se
comportent pas indépendamment les uns des autres mais interagissent via des forces de toutes
sortes. De ce fait, le système tout entier possède un comportement intrinsèquement collectif,
qui ne peut généralement pas se réduire à une somme de comportements individuels. “More is
different”, résumait Anderson, soulignant la nécessité de recourir à des approches radicalement
nouvelles. Si celles-ci ont en partie été fournies par le développement de la physique statistique,
trouver une image simple et intuitive de la physique à l’oeuvre dans ces systèmes demeure, dans
la plupart des cas, extrêmement difficile.

La seconde raison est que les systèmes réels ne sont jamais parfaits, mais présentent
toujours, à l’échelle microscopique, des imperfections impossibles à prendre en compte de façon
exacte. En physique des solides par exemple, les structures cristallines, bien que modélisées par
un arrangement périodique d’atomes, contiennent en pratique toujours d’inévitables défauts,
dont la nature et la position sont rarement connues. Ces degrés de liberté non contrôlés, que
l’on rassemble traditionnellement sous l’appellation de désordre, rendent le systèmes impossible
à décrire exactement au niveau microscopique, et d’autres approches sont nécessaires pour
obtenir malgré tout des prédictions fiables et utiles.

D’une façon tout à fait remarquable, les interactions comme le désordre ont une influence
accrue dès que l’on entre dans l’univers quantique.

Les interactions en mécanique quantique peuvent avoir des origines diverses, qu’il s’agisse de
forces extérieures conservatives, de couplages spin-spin ou spin-orbite, d’interactions lumière-
matière... A cela s’ajoute l’existence des statistiques quantiques -une spécificité de la physique
quantique. Les particules identiques étant indiscernables en mécanique quantique, elles
obéissent à une statistique différente des particules classiques, qui dépend qui plus est de
leur nature (bosonique ou fermionique). De ce fait, les particules identiques ne se com-
portent pas indépendamment mais ont, même en l’absence d’interactions, un comportement
intrinsèquement collectif, illustré par exemple par le principe d’exclusion de Pauli pour les
fermions et la condensation de Bose-Einstein pour les bosons. Plus généralement, interac-
tions et statistiques quantiques sont à l’origine de comportements collectifs qui sous-tendent
l’existence de phases et d’états de la matière originaux et fascinants, tels la supraconductivité
et la superfluidité.

En ce qui concerne le désordre, il est désormais bien connu, depuis les travaux
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d’Anderson [2], que dans les systèmes cohérents, celui-ci peut profondément altérer la physique
à l’oeuvre, non seulement quantitativement mais aussi qualitativement. L’exemple le plus
emblématique est sans conteste la localisation d’Anderson, un effet d’interférence multiple où
une quantité même infime de désordre peut conduire à une suppression totale du transport à
travers l’échantillon.

De plus, les effets du désordre et des interactions se combinent d’une façon extrêmement
complexe. S’il est communément admis que le désordre peut détruire la superfluidité [4, 5] et
la supraconductivité [6,7], on sait également que désordre et interactions peuvent s’opposer ou
coopérer selon les situations, conduisant à des effets de localisation non triviaux. Plus d’un
demi-siècle après la découverte d’Anderson, une théorie unifiée de la localisation en présence
d’interactions, théorie dont Anderson lui-même a longtemps rêvé [8], n’est encore qu’une loin-
taine utopie. Si de nouveaux concepts ont émergé, comme celui de localisation d’Anderson
à N corps [9, 10], de nouvelles questions ont surgi et bien des aspects du domaine demeurent
inexplorés. C’est par exemple le cas des transitions de phase induites par le désordre [11, 12],
et des propriétés de localisation des excitations collectives [13,14].

D’une façon quelque peu inattendue, c’est le développement récent des gaz quantiques
ultrafroids qui a ravivé l’intérêt pour ces questions-là. Ces systèmes, qui permettent un
contrôle sans précédent de tous leurs paramètres, y compris désordre et interactions, ont
stimulé des recherches aussi bien expérimentales que théoriques et permis des avancées
majeures. Ils présentent de surcrôıt de nombreux effets originaux qui leur sont propres, et sont
donc intéressants à étudier en tant que tels.

D’un point de vue théorique, comprendre le rôle du désordre dans les systèmes quantiques
en interaction représente un défi considérable, avant tout parce qu’il s’agit d’un problème à N
corps. De fait, chercher à décrire les mouvements individuels, enchevêtrés à l’extrême, de toutes
les particules qui constituent le système est impossible et inutile, et il faut adopter un nouveau
point de vue. Parmi les approches qui se sont développées, un concept fondamental est celui de
quasi-particule : au lieu de considérer les particules individuelles, l’idée est de raisonner en ter-
mes d’objets fictifs élémentaires. Pour s’en faire une idée, on peut se représenter le mouvement
d’une particule qui, affectant toutes ses voisines, va résulter en un mouvement global de tout un
nuage de particules. Cet objet fictif, qui possède ses caractéristiques propres (masse, durée de
vie...) est appelé quasi-particule, et correspond de fait à une excitation collective élémentaire
du système. De façon tout à fait remarquable, dans bien des cas, tous les mouvements
se produisant au sein d’un système en interaction peuvent se décomposer en mouvements
indépendants de ses excitations élémentaires. Ainsi, une question centrale dans le domaine des
systèmes désordonnés est de comprendre comment le désordre affecte ces excitations collectives.

Ce manuscrit présente une étude théorique des propriétés de localisation collective dans
les systèmes bosoniques désordonnés en interaction, en se focalisant sur la question de la
localisation de leurs excitations collectives. Dans la mesure où ces dernières gouvernent la
plupart des processus élémentaires à l’oeuvre dans les systèmes en interaction, appréhender
leur comportement en présence de désordre revêt une importance particulière, en vue de
comprendre les propriétés dynamiques (transfert d’énergie, thermalisation...) et statiques
(diagramme de phase) de ces systèmes désordonnés. En nous focalisant sur le cas d’un gaz de
Bose dans le régime de faibles interactions, très bien décrit par la théorie de Bogoliubov, nous
étudions cette question dans différents contextes : le gaz de Bose désordonné en dimension
arbitraire, le gaz de Bose quasi-périodique unidimensionnel , et le gaz de Bose à deux
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composants. Le manuscrit est organisé comme suit.

Le chapitre 1 introduit les notions de base et le contexte général dans lequel s’inscrit notre
étude. Nous passons en revue les concepts utiles à la description des systèmes désordonnés,
au premier chef desquels la localisation d’Anderson, avant de discuter en détail de la question
des systèmes en interaction. Nous montrons que ces sujets, bien qu’originellement introduits
dans le contexte de la matière condensée, ont connu un renouveau récent stimulé par le
développement des gaz quantiques ultrafroids. Un bref état de l’art conclut ce chapitre.

Le chapitre 2 s’ouvre avec une présentation introductive du gaz de Bose dans le régime
de faibles interactions, puis fournit la plupart des outils techniques qui seront utilisés par
la suite. Nous consacrons une large part à la théorie de Bogoliubov, qui décrit avec succès
les excitations élémentaires du gaz de Bose. Cette théorie est présentée en détail, dans sa
formulation la plus générale. Les principales propriétés physiques du gaz de Bose, telles que
condensation, quasi-condensation et superfluidité sont également discutées.

Les chapitres 3 à 5, qui constituent le coeur du travail présenté ici, étudient ensuite
l’influence du désordre sur les excitations collectives dans différentes situations.

Le chapitre 3 considère le cas d’un gaz de Bose en dimension arbitraire dans l’espace
continu, en présence d’un vrai potentiel désordonné. Une telle situation avait déjà été étudiée
en 1D à faible désordre, au moyen d’approches perturbatives, révélant en particulier que les
excitations élémentaires étaient sujettes à la localisation d’Anderson. Toutefois, pour traiter
le cas des dimensions supérieures, où la localisation survient à plus fort désordre, de nouvelles
méthodes doivent être adoptées afin de pouvoir décrire un régime de fort désordre. Dans
ce chapitre, nous développons une telle approche, aboutissant à une description générique
et complète du comportement de localisation des excitations en dimension arbitraire. Nous
discutons en particulier leurs propriétés universelles et non universelles de transport, et
présentons une interprétation microscopique des comportements observés. Les implications
expérimentales des ces résultats sont également discutées.

Le chapitre 4 est consacré au cas d’un gaz de Bose soumis à un potentiel quasi-périodique
unidimensionnel. Si les potentiels quasi-périodiques sont connus pour posséder des propriétés
intermédiaires entre les potentiels périodiques et désordonnés, la question des propriétés de
localisation collective dans ces systèmes a jusqu’alors été très peu étudiée. Nous effectuons ici
un traitement analytique et numérique du problème. Nous caractérisons quantitativement la
transition de localisation observée, et l’interprétons en termes de localisation dans un modèle
effectif multiharmonique.

Enfin, le chapitre 5 traite du gaz de Bose à deux composants. Bien que ces systèmes
soient connus pour présenter des effets originaux en présence de désordre, l’absence d’un
formalisme unifié dans le régime inhomogène le plus général manque cruellement à ce jour.
Nous développons ici un tel formalisme, avant de l’appliquer au cas homogène qui renferme
une physique riche et déjà non triviale.

Une conclusion récapitule les résultats obtenus et discute d’un certain nombre de perspec-
tives à ce travail, aussi bien théoriques qu’expérimentales.
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Chapter 1

Disorder and interactions : from

condensed matter to ultracold gases

On se fait une idée précise de l’ordre, mais non pas du désordre.
Jacques-Henri Bernardin de Saint-Pierre

Solid-state systems, which are made of the spatial arrangement of atoms sharing their
valency electrons, are tremendously complex structures. They result from elaborate interactions
processes between their numerous elementary components, and unavoidably feature structural
imperfections, which are generically referred to as disorder. Fascinatingly, both interactions
and disorder turn out to have a crucial impact on their physical properties.

On the one hand, interactions are intrinsically present in all solids. As charged particles,
electrons necessarily interact with each other and with the crystalline structure via the Coulomb
force, the coupling with the material phonons, or via spin and magnetic exchanges. Although
conduction properties of solids can be obtained at the simplest level from a description in terms
of free electrons propagating in a frozen cristalline structure, interactions are crucial to account
for some of the most fascinating phenomena in condensed matter, such as superconductivity [15]
or superfluidity [16]. Whatever their origin, interactions and quantum statistics underlie a
specific many-body physics.

On the other hand, disorder, which refers to all uncontrolled imperfections of the system, is
necessarily present in all real-life systems. As a non-desirable ingredient, it is often neglected
when interested in a macroscopic behaviour, mostly resulting in uncertainties on the predicted
results or on the experimental measurements. However, it is well-established today that even
at the macroscopic scale, disorder can have dramatic effects, as illustrated by the emblematic
phenomenon of Anderson localization [2], in which weak disorder can turn a metallic sample into
an insulator. In condensed-matter systems, disorder is recognized today to underlie numerous
properties of solids, such as the physics of spin glasses, disorder-induced phase transitions,
quantum Hall effect, quantum chaos and -presumably- high-Tc-superconductivity.

From a fundamental point of view, disorder and interactions are very difficult to study. A
first reason is that both are immuable in solid samples, and mostly unknown at the microscopic
level, being in the best case taken into account via idealized models. A second and more
conceptual reason is that either interacting or disordered systems are complex systems, in the
sense that they cannot be understood from the properties of their elementary components. As
regards interactions, they turn the problem into a many-body one, coupling ∼ 1023 particles,
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16 1. DISORDER AND INTERACTIONS : FROM SOLIDS TO COLD ATOMS

and approximations are indispensible, although very difficult to control. As regards disorder,
complexity means that in the presence of disorder, novel behaviours arise at the macroscopic
scale, that cannot be extrapolated from the microscopic properties of the sample.

Moreover, the interplay between disorder and interactions in quantum systems is today
among the most challenging questions in the field. While it is of crucial importance to describe
condensed-matter systems, it raises fundamental questions which are still the subject of vivid
debates. This topic has attracted a renewed interest over the past decades thanks to the
developement of ultracold gases. As remarkably well-controlled systems, they can promisingly
be used for a systematic study of such questions.

This introductive chapter is devoted to a basic review of the previous concepts and provides
a background overview for the remainder of this manuscript. In Sec. 1.1, we introduce disorder
and review the basics of transport in disordered media, among which Anderson localization.
In Sec. 1.2, we discuss the interplay between disorder and interactions, first in general terms,
before enlightening the questions of disordered bosons, many-body localization, and disordered
many-body dynamics, which are directly relevant for this work. Finally, Sec.1.3 provides an
introduction to ultracold gases, focusing on their contribution to the field of disordered inter-
acting quantum systems.

1.1 Matter waves in disorder : from diffusion to Anderson lo-

calization

1.1.1 Disorder in solids

Disorder is ubiquitous in all solid-state systems. Traditionally, the understanding of elec-
tronic transport in solids relies on Bloch’s theory, which requires a perfect underlying cristalline
structure. In this case, the periodicity of the cristalline potential felt by the conduction electrons
results in the existence of extended Bloch waves, whose occupancy accounts for the insulator
or conducting behaviour of the system. In practice however, the cristalline structure is never
perfect, and always contains defects, which break the translational invariance. This lack of
regularity, which is referred to as disorder, can take the form of local impurities (an atom
which is replaced by another), excess atoms or atomic vacancies, as well as dislocations of the
cristalline structure. Furthermore, disorder can also be structural in glasses and amorphous
materials, where the atoms are irregularly arranged in space.

Dealing with disorder proves to be difficult and the latter is often neglected in first approxi-
mations. However, it is now recognized after Anderson [2] that even a small amount of disorder
can qualitatively -and dramatically- alter the physics. It should be realized that dealing with
disorder requires a conceptual change of viewpoint. In a disordered sample, the exact micro-
scopic structure is not known, neither experimentally accessible. Furthermore, all samples are
different since they correspond to different configurations of defects. Therefore, a useful theory
should not deal with one single specific sample -which would be pointless-, but rather describe
a whole class of systems which share global common properties. This can be achieved by the
introduction of randomness to inlude all degrees of freedom that we cannot or do not want to
control (e.g. the exact position of defects will be replaced by a random potential). Disordered
systems of a same class will be characterized by common statistical properties -although each
sample is unique since it corresponds to a specific realization of disorder-, and their universal
features will be obtained by statistical averaging. Theoretical approaches therefore provide
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1.1 Matter waves in disorder : from diffusion to Anderson localization 17

Figure 1.1: Interference contributions of several multiple-scattering trajectories in the disorder medium.
(a) Three typical paths from r to r′; each path is a random walk in the impurity landscape, and
is represented by a specific color. (b-d) Three contributions which survive disorder averaging. Solid
lines represent the field amplitude, and dashed lines represent its conjugate. (b) Classical contribution
leading to diffusion (first term of Eq. (1.1). (c) Loop trajectories in the case r = r′, where a path i (blue)
interferes with a different conjugate path j (red), leading to an enhancement of the return probability
to the origin. (d) Loop trajectories in the case r �= r′, which dominate the weak localization corrections
and lead to reduced diffusion.

access to average quantities (or possibly their fluctuations), and a key question is then to re-
late them to the results of a given experiment, which generally concerns one single realization.
In many cases, large disordered systems are self-averaging, and observables take their aver-
age values, but it may not be the case, and one has to think at which level the averaging is
performed.

1.1.2 Wave transport in disordered media

To understand the key role of disorder, let us start with a simplified description of solids
which neglects both interactions and quantum statistics, and consider the elementary problem
of the propagation of a single wave (or quantum particle, as an electron in a solid) in a disordered
medium.

This problem can be formalized in the framework of an elaborate quantum transport the-
ory [17, 18] [see appendix B]. However, its main qualitative features, among which weak and
strong localization, can be captured by a multiple-scattering picture, which proves an intuitive
tool to appreciate the effect of disorder. Let us describe a given realization of the disordered
medium by a static random arrangement of point-like impurities. The incoming wave is as-
sumed to propagate freely in space and to undergo elastic scattering from each impurity. All
multiply-scattered wavelets can then interfere, and the wave density (or energy) is the result
of this complex interference process. The problem of the propagation of a quantum particle
turns out to be exactly equivalent. Indeed, in Feynman’s approach of quantum mechanics, the
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18 1. DISORDER AND INTERACTIONS : FROM SOLIDS TO COLD ATOMS

propagation of a quantum particle from a point r to r′ is described by a complex amplitude
G(r, r′), known as well as the Green function. The latest is the sum of all contributions as-
sociated to coherent multiple-scattering paths from r to r′ [see Fig. 1.1(a)], each contribution
i being described by a complex amplitude Ai(r, r

′), whose phase is notably proportional to
the full path length and to all individual dephasings induced at each scattering event. The
probability to go from r to r′, which is the square modulus of the Green function, thus reads

P (r, r′) = |G(r, r′)|2 =
∑

paths j

|Aj(r, r
′)|2 +

∑
paths i�=j

Ai(r, r
′)A∗

j (r, r
′) (1.1)

and depends, via the second term, on interferences between all possible paths from r to r′.

In practice, dephasing or inelastic processes (phonons, photon absorption,...) may destroy
the coherence of the paths, for instance by regularly randomizing the phase of the amplitudes,
leading to decoherence and suppression of interference effects. The coherence length Lφ,
which is the typical length before the particle undergoes such a dephasing event, determines
the maximal length of the paths for being added coherently. We will neglect such effects and
consider only the coherent regime where Lφ � lS , with lS the scattering mean-free path,
i.e. the average length travelled by the particle before it undergoes one scattering event.

The structure of Eq. (1.1) is exactly similar to the Young experiments. The first term,
where all phases have disappeared, is purely classical : the probability to travel from r to r′

is the sum of all probabilities of individual paths, and leads to diffusive transport, recovering
Drude-Boltzman theory [see Fig. 1.1(b)]. The second term represents quantum interferences
between different paths. Since each path represents a random walk in the landscape of the
impurity configuration, two different paths a priori accumulate two different phases which
depend on the precise disorder realization, and their interferences can therefore be expected
to vanish after disorder averaging. However, there exist contributions which survive disorder
averaging. This is the case when a path Ai and a conjugate path A∗

j visit both the same
scatterers. For instance, if r = r′, this happens when paths i and j correspond to reversed
trajectories [see Fig. 1.1(c)], and quantum interferences increase in that case the probability
to come back to the origin. If r �= r′, the same argument applies to any trajectory containing
a loop [see Fig. 1.1(d)], since it can interfere with a trajectory where the loop is travelled
backwards; in that case, quantum interferences reduce transport from r to r′, and although the
motion remains diffusive, the diffusive constant and the conductivity are reduced.

This effect, which is referred to as weak localization, has been intensely studied experi-
mentally [7, 19, 20]. Reduction of the conductivity has been studied as a function of disorder
(e.g. impurity concentration), dimensionality, and temperature (which activates decoherence
processes). The effect of a magnetic field, which breaks the time-reversal invariance and
dephases reversed trajectories, alters weak localization and especially results in negative
magnetoresistance. Among the other numerous signatures of weak localization, let us
mention coherent backscattering (enhancement in the backwards direction of the intensity
of a wave reflected by a disordered medium), which has been observed in various systems
(colloids [21–23], light diffusing on cold atoms [24], BEC in speckle potential [25, 26]), as well
as universal conductance fluctuations.

So far, we have considered only trajectories containing a single loop, but many other con-
tributions (multiple-loop trajectories,...and more generally all pairs of paths visiting the same
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1.1 Matter waves in disorder : from diffusion to Anderson localization 19

scatterers) yield non-vanishing interference effects. The latter may lead not only to reduction
of conductivity, but to complete suppression of transport, an effect called strong localization or
Anderson localization.

1.1.3 Anderson localization

Anderson localization was first predicted [2] within the framework of the so-called Anderson
model. The latter is a tight-binding Hamiltonian

Ĥ = −
∑
〈i,j〉

t(ĉ†i ĉj + h.c.) +
∑
i

εiĉ
†
i ĉi (1.2)

describing free particles on a lattice (here, ĉi and ĉ†i are the annihilation and creation operators
on site i), with a uniform hopping parameter t between nearest-neighbor sites 〈i, j〉, and
in the presence of random on-site energies εi, independently and uniformly distributed in
[−W/2;W/2]. By analysing the time evolution of the probability amplitude of a particle at
a given energy E, Anderson found that in three dimensions, and for a sufficiently strong
disorder (measured by the width W ), the particle remains exponentially localized around
its original position, yielding a total suppression of transport. Conversely, at fixed disorder
strength, the energy spectrum displays a mobility edge separating localized low-energy states
from extended high-energy ones. When increasing the disorder strength, more and more
states turn localized. Since transport properties are determined by the states located at the
Fermi level, the system undergoes, at the point where the mobility edge crosses the Fermi
level, a phase transition from a metallic to an insulator phase, named the Anderson transi-
tion. For strong enough disorder, the whole spectrum is localized (the energy spectrum on a
lattice is indeed upper-bounded), yielding an insulator whatever the position of the Fermi level.

Although originally predicted in the specific case of the above model, Anderson localization
was realized later to be very general in nature, and to arise from destructive interference
between all coherent paths associated to multiple scattering within the disordered medium.
This ubiquitous phenomenon possesses many universal features :

• First, it is a single-particle effect, where interactions between waves/particles and quan-
tum statistics have been discarded. The effect of interactions and quantum statistics on
Anderson localization [see Sec. 1.2] is one of the most challenging questions in the field
of disordered systems.

• Anderson localization strongly differs from classical trapping and can notably occur even
if the particle energy lies far above the potential maxima. It is characterized by an
exponential localization of the wavefunctions and the absence of diffusion.

• Anderson localization applies to all kinds of waves (among which quantum particles)
and all type of disorder. Although introduced in the framework of electronic transport
and quantum particles, it has so far been widely studied outside its original context, and
reported in numerous experimental systems [27]. In particular, experiments with classical
waves, such as light, offer the advantage of circumventing the problem of interactions,
which are difficult to control in electronic systems. By studying the transmission through
a disordered sample of variable length, one can discriminate between an exponential
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20 1. DISORDER AND INTERACTIONS : FROM SOLIDS TO COLD ATOMS

decay characteristic of Anderson localization and a linear one typical of Ohm’s law 1.
Observation of Anderson localization was reported for microwaves [28, 29] and visible
light [30, 31], and more recently in disordered photonic crystals [32, 33], as well as for
ultrasound [34–36] and seismic waves [37]. Observation of Anderson localization with
matter waves in various situations [38–42] is discussed in more details in Sec. 1.3.3.

• Similarly to weak localization, Anderson localization crucially depends on dimensionality,
since the existence of loop paths is governed by the probability for a random walk to come
back to its origin in a finite time or not. In 1D and 2D where every random walk has a
loop (asymptotically in 2D), all states are localized in infinite systems (2D being thus the
marginal dimension), whatever their energy or the disorder strength. Conversely in 3D,
a phase transition in energy 2 called the Anderson transition shows up at the so-called
mobility edge energy Ec. The latter can be approximately captured by the Ioffe-Regel
criterion [43], which states that localization requires that the phase accumulated between
two successive scattering events be less than 2π, yielding klS � 1 (with lS the scattering
mean-free path).

So far, there exists no exact theory of Anderson localization near the critical point, especially
as regards the exact location of the mobility edge and the values of the critical exponents s
and ν, which characterize the behaviour of both the conductance σ (on the conducting side)
and the localization length Lloc (on the insulating side) at the transition

Lloc ∝ (Ec − E)−ν , σ ∝ (E − Ec)
s. (1.3)

The scaling theory of localization, introduced in the late 1970s by Abrahams, Anderson, Lic-
ciardello and Ramakrishnan [44], and which we will review in a general form in Sec. 3.1.2,
remarkably captures the dependence on dimensionality. Although being qualitative, it pro-
vides a correct scaling of the localization length as a function of the microscopic parameter lS ,
in 1D (Lloc ∝ lS) and 2D (log(Lloc/lS) ∝ klS), and recovers the Ioffe-Regel criterion in 3D. It
predicts as well the relation s = (d−2)ν (which yields s = ν in 3D), but cannot give the values
of the critical exponents.

Quantitative approaches based on perturbative quantum transport theory [17, 18] [see ap-
pendix B] can successfully describe classical diffusive transport, as well as weak localization
corrections, which can be obtained from the lowest-order terms of the perturbative series.
Such theories however break down in the strong localization regime, which would require to
take into account all diagrams an resum them all. The self-consistent theory [45, 46] circum-
vents this problem by taking the weak-localization correction expressed as a function of a
self-consistently renormalized diffusion constant. Although not being justified a priori, such
a procedure amounts to sum up a whole class of diagrams of all orders, although not all. It
reproduces the qualitative features of the Anderson transition, provides a good estimation of
the mobility edge for weak disorder [47,48], and predicts the values of s = ν = 1 for critical ex-
ponents. The latter were evaluated numerically as s = ν = 1.58 in simulations of the Anderson
model [49].

1Absorption effects, which also induce an exponential decay, can be excluded by studying the transmission
fluctuations, unambiguously identifying Anderson localization.

2or equivalently in disorder, if the energy is fixed.
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1.2 Disorder and interactions 21

Figure 1.2: Qualitative effect of weak interactions on the localization properties of Bose and Fermi gases.
For bosons, attractive interactions enhance localization while repulsive interactions compete with it. It
is the opposite for fermions.

1.2 Disorder and interactions

So far, we have considered only non-interacting particles evolving in purely disordered po-
tentials. Although conceptually well understood, such a description is however oversimplistic,
since a complete theory of disordered solids should take into account the Coulomb interaction,
the underlying cristalline structure, the fermionic statistics of electrons, as well as interactions
with phonons and possible magnetic effects. Incorporating all those ingredients is a priori es-
sential to capture most phenomena reported in condensed-matter systems. Indeed, interactions
of all kinds and quantum statistics underlie a rich and specific many-body physics, which is not
only quantitatively different, but also qualitatively : they can induce collective behaviours,
phase transitions (e.g. the Mott transition on a lattice, a metal-insulator transition driven by
interactions) [50, 51], and lie at the heart of the most spectacular phenomena in condensed
matter, such as superfluidity [52] and superconductivity [15].

Unfortunately, dealing with disorder in many-body systems represents a formidable chal-
lenge, since even the simplest models including all minimal ingredients are hardly solvable, and
often lead to unsolved questions and controversial answers. The most challenging one is the
interplay of disorder with interparticle interactions and quantum statistics.

1.2.1 General issues

To address this question, one can consider two different angles, which are nevertheless
interrelated. On the one hand, one can wonder how interactions affect Anderson localization,
or more generally, all disorder-induced single-particle effects. On the other hand, one can study
what happens to the many-body states and phase transitions in the presence of disorder.

How interactions challenge Anderson localization ?

Strictly speaking, Anderson localization is a single-particle effect, but the question of
interactions, which could presumably destroy localization, was raised immediately after it was
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introduced. Anderson himself, in his Nobel lecture [8], presented it as the major challenge for
the next generations :

“A reason why I felt discouraged in the early days was that I couldn’t fathom how to reinsert
interactions, and was afraid they, too, would delocalize. The realization that, of course, the

Mott insulator localizes without randomness, because of interactions, was my liberation on this
[...] The present excitement of the field for me is that I feel a theory of localization with

interactions is beginning to appear...”

Although such a theory is still missing, it seems today well established that interactions
can compete or cooperate with localization, depending on their sign and on quantum statistics.
In particular, the effect of weak interactions on localization can be efficiently captured by a
useful picture [3] that we briefly review [see Fig. 1.2].

Let us start with bosons. In the absence of interactions, all bosons condense in the same
single-particle state, which is localized in the disorder. Then, weak attractive interactions
are expected to further contract the gas, enhancing localization. Conversely, for weak repulsive
interactions, bosons will populate an increasing number of single-particle states, thus competing
with localization. In this case, if interactions are weak, the overlap between all populated single-
particle states, which are only a few and exponentially localized in space, is small and the whole
system remains localized; then, when increasing interactions, the overlap increases and the gas
can eventually form a connected cloud, being globally delocalized. This competition between
disorder and repulsive interactions in Bose systems can in particular underlie a metal-insulator
transition, as reviewed below (Sec. 1.2.2).

For fermions, the situation is very different. In the absence of interactions, free fermions
form a Fermi sea and populate all lowest-energy states, which are localized in the disorder.
Then, for attractive interactions, a given state will tend to expand, so as to maximize its
overlap with the others, thus competing with localization. Conversely, for repulsive interactions,
a given state will tend to contract, enhancing localization. In the latter case, localization thus
remains the rule, which should be of no surprise since repulsive interactions in Fermi systems
are known to lead only to a renormalization of the single-particle physics (the Fermi liquid
theory). Remarkably, the conclusion seems inverted for bosons and for fermions.

Notice that the previous conclusions can be challenged in strongly-correlated regimes. For
instance with bosons, strong attractive interactions can lead to delocalizing instabilities, while
strong repulsive interactions can lead to a localized Mott insulator phase in the presence of a
lattice.

How disorder alters many-body phases ?

The second question that has been puzzling for decades concerns the effect of disorder on
many-body phases, in particular superfluidity and superconductivity. The latter are generically
believed to be possibly destroyed by disorder, in agreement with the previous conclusions that
disorder competes with repulsive interactions (which support superfluidity) in Bose systems
and with attractive interactions (which support superconductivity) in Fermi systems. Many
questions are nevertheless open : are such states completely destroyed in the presence of disorder
? Are the associated phase transitions suppressed, or only quantitatively, or qualitatively,
modified ? What are the mechanisms for such a destruction ?

As regards superfluidity, much attention has been devoted to understanding the influence
of disorder on the BKT transition (finite-temperature superfluid transition in 2D), and to the
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phase diagram of disordered bosons (see Sec. 1.2.2).
As for superconductivity, it seems today established that weak disorder only shifts the

normal to superconductor transition temperature [53], while strong disorder can totally
suppress the existence of the superconducting state [54]. However, understanding the
mechanisms of such a destruction, as well as the microscopic nature of the strongly-disordered
superconducting and insulating phases, on both sides of the transition, remains an open
challenge. Several scenarii have been proposed (a bosonic scenario of localization of preformed
Cooper pairs and a fermionic one of destruction of pairs), and the possibility to have a two-step
transition, with two criticalities, is not excluded.

In the following, we will specifically enlighten three current topics which are directly relevant
for our work : disordered bosons (Sec. 1.2.2), many-body localization (Sec. 1.2.3) and disordered
many-body dynamics (Sec. 1.2.4).

1.2.2 Disordered bosons

Although condensed matter mainly deals with electrons in solids, which are fermions,
much attention has been devoted, somehow paradoxically, to disordered bosons. The latter
have been investigated first in the context of the superfluidity of 4He in porous media [4],
and in the field of disordered superconductors, where charge carriers are bosonic Cooper
pairs. They can furthermore prove useful to understand fermions in 1D, where the paradigm
of the Luttinger liquid allows for an explicit mapping between the two. More recently, the
development of ultracold gases, which can simulate bosonic Hamiltonians, has renewed the
interest for disordered bosons, all the more that bosons are more easily coolable than fermions.

From a fundamental point of view, repulsively interacting disordered bosons represent
a great theoretical challenge. Their intrinsically collective behaviour and the competition
between repulsive interactions and disorder in Bose systems suggest rich and non trivial
localization effects. This strikingly contrasts with fermions, where repulsive interactions
only quantitatively renormalize the free-particle case (see sec. 1.2.1). In particular, while for
fermions, the non-interacting case is a good starting point around which interactions can
be tackled perturbatively [7, 55], such an approach is impossible with bosons 3, where the
non-interacting disordered case is pathological [57]. Indeed, such a state has all particles in
the lowest eigenstate of the single-particle Hamiltonian (which is localized), and is therefore
unstable to the introduction of even the weakest interaction.

The dirty boson problem is traditionally defined as understanding the nature of the phases,
and the transitions between them, in a system of interacting bosons in a random potential at
zero temperature. It was originally studied in 1D by bosonization and renormalization group
(RG) techniques, treating disorder as a perturbation [11, 58]. Relying on those results, much
attention was devoted to understanding the physics of the disordered Bose-Hubbard model

Ĥ = −
∑
〈i,j〉

J(â†i âj + h.c.) +
∑
i

Viâ
†
i âi +

∑
i

U

2
â†i â

†
i âiâi (1.4)

This model, which describes lattice bosons (âi and â†i being the annihilation and creation

3For weak interactions, generalizations of this approach nevertheless exist, by considering for instance not
only the single-particle ground-state, but a whole set of low-energy states [10,56].
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Figure 1.3: Phase diagrams of 1D disordered bosons at zero temperature as a function of interaction
(x-axis) and disorder (y-axis) strengths. (a) Original phase diagram obtained from renormalization
group (RG), for bosons in the continuum (or equivalently on a lattice at incommensurate filling); K
is the Luttinger parameter (K = ∞ for free bosons and decreases for increasing repulsion) and D
is the strength of the disorder. The red solid line is the SF-BG transition computed from RG, and
has to bend down (dashed line) at weak interactions to be compatible with the non-interacting limit
(Anderson phase, in blue). The possible existence of two distinct localized phases (suggested by the
dash-dotted line) is still an open question. Figure based on Ref. [57]. (b)-(c) Phase diagrams for the
1D Bose-Hubbard model with onsite energy Vi randomly distributed in [−Δ;−Δ], as obtained from
density-matrix renormalization group (DMRG), at half (b) and integer (c) filling. Figures extracted
from [59].

operators on site i) with tunelling rate J , random on-site energies Vi, and interaction energy U
when placed in the same site, contains all minimal ingredients of the dirty boson problem. In
particular, it features two fundamental metal-insulator transitions, the Anderson transition (for
U = 0) and the Mott transition (for Vi = 0). Its study permitted to predict most qualitative
features of the phase diagram of disordered bosons in arbitrary dimensions [12], which were then
completed by many numerical studies (density-matrix renormalization group, quantum Monte-
Carlo) [59], and investigation of other models (e.g. Josephson model and strongly-disordered
RG [60]).

We review here the obtained phase diagrams at zero temperature, which to some extent
constitute a background for this work.

Bosons on the continuum or on a lattice at incommensurate filling

The case of bosons on the continuum and bosons on a lattice at incommensurate filling
are very similar 4. The 1D phase diagram as originally obtained by perturbative RG [11] is
presented on Fig. 1.3(a). Two phases were predicted : a superfluid phase (SF), obtained in
the RG approach when the disorder becomes irrelevant on large scales, and a localized phase,
when the disorder becomes increasingly relevant. The later was named Bose glass (BG) and
shown to be insulating, gapless and compressible.

For vanishing interactions, all bosons are Anderson localized in a single state and the
system is insulating. For finite interactions, several states are populated, but the system
remains insulating while their overlap remains small (see Sec. 1.2.1). When increasing the
interactions, this overlap eventually connects the whole system and the gas enters the superfluid
regime [56, 60]. Superfluidity is then destroyed again for stronger interactions, where the 1D
Bose gas enters the Tonks-Girardeau regime.

4Subtle differences between the two situations may exist, as explained in [61].
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In the strongly-interacting regime, the transition (red line) was precisely characterized [11].
It was shown to be of BKT type, with a Luttinger parameter of K = 3/2 jumping discontinu-
ously at the transition. Critical exponents were as well predicted. The SF-BG transition was
interpreted as a localization-delocalization phase transition, driven by the enhanced role of the
phase slips (long-range phase fluctuations) which reduce the coherence over large distances.

Conversely, because of strong spatial modulations of the density, the perturbative RG fails
describing the weakly-interacting transition, which mostly remains uncharacterized. The qual-
itative reentrant shape on Fig 1.3(a), originally argued as an extrapolation to connect to the
free bosons case, was confirmed by numerical studies [10, 56, 62, 63]. However, the mechanism
at stake seems to be rather different, and to involve the fragmentation of the density.

Investigation of the Bose-Hubbard model at incommensurate filling by density-matrix
renormalization group (DMRG) [59] confirmed the 1D phase diagram [see Fig. 1.3(b)], as well
as the evidence for a localized bosonic phase and a superfluid-insulating transition [11]. The
latter was then shown to exist in higher dimensions as well, where the qualitative physics of the
Bose-Hubbard model and the critical properties of the transition were elucidated by general
scaling arguments [12]. So far, numerical simulations are however needed for quantitative
results.

Many questions still remain open. The very different mechanisms and universal properties
for the weakly- and strongly- interacting transitions could indicate the existence of two different
localized phases (as suggested by the dash-dotted line on Fig. 1.3(a)), with a possible phase
transition between the two. If it were the case, this would raise the question of an order
parameter to distinguish the two. On that point, numerical studies have so far provided
conflicting answers [61,64].

Bosons on a lattice at commensurate filling

Let us turn to the case of bosons on a lattice at commensurate filling. In this case, it
should be reminded first that a phase transition towards a Mott insulator (MI), driven by
strong repulsive interactions, occurs in the absence of disorder [see Fig. 1.4(a)]. This phase,
where each single site is occupied by a fixed number of particles, is insulating, incompressible
and gapped (at variance with the Bose glass).

The 1D phase diagram of the disordered Bose-Hubbard model at commensurate filling was
elucidated first by Fisher [12], and more recently by numerical studies [59]. As shown on
Fig. 1.3(c), it is very similar to that of the incommensurate case, except that a Mott insulator
appears for strong interactions. Remarkably here, strong interactions cooperate with disorder
while weak interactions compete with disorder. The MI-BG phase transition was found to be
of Griffiths type [65].

One puzzling question is whether the Bose glass phase totally surrounds the Mott lobes
of the phase diagram as in Fig. 1.4(b), or whether a direct MI-SF transition is possible as in
Fig. 1.4(c). In 1D, the first analysis based on RG [12], confirmed later by further arguments [66,
67], proved that a Bose glass phase always shows up between the MI and the SF phases. After
controversial theories, it was finally shown to be the case in higher dimensions as well [68, 69],
proving that in the presence of disorder, a direct transition MI-SF is not possible.
Today, one major challenge concerns the possible extension of such phase diagrams to finite

temperature regimes. Such an issue, which requires to take into account two-body processes and
collective excitations of the gas, is in fact intimately related to the question of the conductivity
of the Bose glass phase and the concept of many-body localization, that we review now.
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26 1. DISORDER AND INTERACTIONS : FROM SOLIDS TO COLD ATOMS

Figure 1.4: (a) Zero-temperature phase diagram for the Bose-Hubbard model in the absence of disorder.
For a commensurate filling, a transition to a Mott insulating (MI) phase occurs at strong interaction
strength (small J/U). (b)-(c) Two possible scenarii when adding weak bounded disorder Vi ∈ [−Δ;−Δ]
with Δ < U/2. Figure (b), where the SF-MI transition occurs only through the Bose glass phase (BG),
has been proved to be the correct scenario. Figures extracted from Ref. [12].

1.2.3 Many-body localization

Many-body localization, which was originally introduced for fermions, concerns the pos-
sible extension to the interacting case of a metal-insulator transition similar to the Anderson
transition.

For free electrons, we recall that the Anderson model (see Sec. 1.1.3) predicts that for
sufficiently strong disorder, the zero-temperature conductivity should identically vanish since
all states are localized 5. When introducing weak repulsive interactions, it was found [9] that
all states should remain localized, and that the conductivity should be exactly zero below a
certain temperature, and finite above, signaling a finite-temperature metal-insulator transition.
This so-called many-body localized phase was claimed to occur because the interaction term
only couples a finite number of energy levels, which all correspond to localized excitations.

The many-body localization transition was then studied using renormalization proce-
dures [70] or exact diagonalization [71], which helped characterize its critical properties and
the two phases. In particular, it was shown that the existence of a localized phase at finite
temperature for weak interactions necessarily implies its persistence for strong interactions and
high temperature [72]. A similar finite-temperature many-body localization transition was then
predicted and investigated for interacting bosons in 1D [10].

More generally, many-body localization refers to the existence of a finite-temperature phase
with vanishing transport coefficients. Such a transition generically arises because of the compe-
tition between a local coupling and the random levels discreteness. Indeed, while the Anderson
transition can be viewed as the result of a competition between the possible hybridization of
two quantum states located on different lattice sites and their random energy difference, the
many-body localization-delocalization transition can be qualitatively understood by extending
this physical picture to states with more than one particle. Therefore, it is intimately linked
with the ’localization’ properties of the many-body eigenstates of the system in the Fock space.
In the conducting phase, the latter are thermal and ergodic in the Fock space. In the insulat-
ing phase, many-body excitations are localized in the Fock space; due to the resulting lack of
ergodicity, the localized phase is characterized by an absence of relaxation and a breakdown
of thermalization. Refs. [73, 74] discuss the connections between localization in Fock space,

5For weak disorder, only part of the spectrum is localized and it therefore depends on the position of the
Fermi level respectively to the mobility edge.
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thermalization processes and dynamical properties, which we review now.

1.2.4 Disordered many-body dynamics

Many-body dynamics is generically defined as the study of the dynamical properties and
of the conditions for thermalization in isolated many-body systems.

In classical physics, the requirements for thermalization are well understood, and intimately
linked with the concept of ergodicity, which establishes a connection between long-time averages
of observables and statistical ensemble averages. As established by Boltzman, a condition for
ergodicity is that the motion of the individual particles be fully chaotic. In classical physics
then, violation of ergodicity may occur only for integrable (or close to being integrable) systems.
Integrability indeed implies the existence of constants of motion, which restricts the ergodic
exploration of the microcanonical energy shell. Conversely, disorder in classical physics is
expected to break integrability, hence favoring ergodicity and thermalization of any observable 6

The situation in quantum mechanics is less clear, and first pioneering works date back to
Von Neumann [75, 76]. At variance with the classical case, ergodicity in quantum systems
can be broken by integrability, interactions [77, 78], and more importantly by disorder, via
one-body [2] or many-body [9, 10, 13, 70–72, 79–81] Anderson localization. For instance,
it was shown [82] that many-body localization effects can invalidate the expectation that
classical chaos leads to thermalization of the quantum counterpart. More precisely, absence
of thermalization and persistence of local fluctuations have been reported in one-dimensional
spin [73, 74] and Fermi [77, 82, 83] systems. Therefore, understanding the effect of disorder
in many-body quantum dynamics has become an increasingly attractive issue [77, 82, 83]. A
renewed interest has in particular been sparked by the new experimental possibilities offered
by ultracold atomic gases. In such systems, out-of-equilibrium dynamics can indeed be induced
by a very simple setting, which is that of a quantum quench, i.e. an abrupt change of some
Hamiltonian parameter. The system abruptly gets out of equilibrium, and thermalization to a
new equilibrium state can be monitored.

More generally, studying the interplay between disorder and interactions has long remained
difficult to address experimentally, since disorder and interactions in condensed-matter samples
are frozen, and mostly unknown. New approaches to these issues have emerged from atomic
physics, where ultracold gases have proved to be versatile and flexible simulators.

1.3 Ultracold atoms

Over the second half of the 20th century, advances in the understanding of matter-light in-
teraction gradually allowed for considerable progress in cooling and trapping atoms. The regime
of quantum degeneracy finally became accessible, as illustrated by the pioneering experimental
realizations of a Bose-Einstein condensate (BEC) [84–86] and first interference experiments
on BECs [87]. Although more challenging, the obtention of quantum degenerate Fermi gases
soon followed [88,89], while observation and manipulation techniques improved rapidly. Today,
ultracold gases are dilute atomic (or molecular) systems cooled down to very low temperatures
(a few nKs), and confined in immaterial traps thanks to appropriate combinations of opti-
cal beams. Such systems offer unpreceedented control and versatility, and have proved very
promising tools to investigate the field of disordered systems [3].

6except the energy, which is the only conserved quantity.
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1.3.1 Versatile and controlled simulators

Compared to condensed-matter systems, ultracold gases offer numerous advantages in
terms of control and versatility.

Firstly, one can choose to work with bosons, fermions, or even mixtures, and can precisely
control the number of atoms and the temperature.

Secondly, electromagnetic fields can be used to design at will optical potentials for the atoms,
which can then be controlled and varied by continuously tuning experimental parameters, such
as light intensities or frequencies. Harmonic traps of adjustable anisotropy may be obtained
from magnetic fields or laser light; a tight anisotropic confinement can reduce the effective
dimensionality, realizing low-dimensional systems. Waveguides can as well be realized using a
strongly focused laser beam. More importantly, the dipolar force induced by laser light proves
a powerful tool to design external potentials. Lattice potentials mimicking condensed-matter
systems can be produced from the interference pattern of several laser beams; for instance, using
pairs of counterpropagating laser beams creates a periodic potential, simulating the Hubbard
model. The dipolar force may also be used to design disordered optical potential, as reviewed
in the next section 1.3.2.

Thirdly, interactions between atoms can be controlled using Feshbach resonances, making
it possible to go from non-interacting to strongly-correlated regimes by simply tuning the
magnetic field. Manipulating the internal states of atoms offers as well the possibility to
simulate spin systems or new types of interactions in spinor and dipolar gases. Artificial gauge
fields can be realized, simulating magnetism for neutral atoms.

Finally, ultracold gases are relatively robust to decoherence processes, which are intrinsi-
cally present (e.g. via phonons) in condensed-matter systems.

Furthermore, ultracold gases have come with new experimental techniques, measurement
tools and can advantageously be probed over relatively long times (up to a few seconds).
Imaging techniques (by fluorescence or absorption) give access to density profiles in situ,
while momentum distributions can be inferred from time-of-flight techniques. Light-shift
tomography may be used to precisely determine the energy or positions of atoms, and
correlation functions of the gas can be obtained from interference experiments, and Raman or
Bragg spectroscopy.

For all those reasons, ultracold gases are often referred to as quantum simulators, in the
sense that they realize model Hamiltonians, whose parameters can be experimentally controlled
and continuously varied, as well as calculated ab initio from the experimental parameters. Their
original approaches prove complementary to theoretical and numerical tools. Most importantly,
they permit to explore new regimes that are hardly accessible in condensed matter, leading to
unexpected findings and raising new challenges for theory. Their successes no longer have to be
demonstrated, since they have led for instance to the observation of the Mott transition [90–92],
and Tonks-Girardeau [93, 94] and Berezinskii-Kosterlitz-Thouless [95] physics. They have as
well provided a decisive contribution to the field of disordered systems, as we review below.

1.3.2 Disordered optical potentials

Disorder may be introduced in ultracold systems in several ways. From a theoretical point
of view, disorder can be modelled by any random parameter in the Hamiltonian (e.g. a random
on-site energy, a random tunneling rate...). In this work, we will focus only on time-independent
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Figure 1.5: Optical apparatus to create a speckle potential (see description in the text), and typical
realization of a 2D speckle field. Figure extracted from Ref. [3].

(quenched) disorder, which takes the form of a static external random potential V (r). A random
potential is generically characterized by its statistical properties, which depend on the precise
way it is experimentally generated. In Appendix A, we review the basic concepts of disorder
statistics, and set the conventions used in this thesis.

A fruitful way to generate a random potential relies on the dipolar force induced by an
electromagnetic field on an atom. Indeed, when submitted to an electromagnetic field E(r)
such as that of a laser, an atom experiences a conservative dipolar force which results from the
coupling between the electric field and the induced atomic electric dipole 7, and which derives
from the so-called dipolar potential [18]

V (r) =
3πc2ΓI(r)

2ω3
0δ

, (1.5)

where I(r) = |E(r)|2 is the intensity of the field, Γ is the decay rate of the excited state,
and δ = ωL − ω0 is the detuning between the laser frequency ωL and the atomic transition
frequency ω0 : if δ < 0 (red-detuned laser), the potential is attractive, whereas it is repulsive
for δ > 0 (blue-detuned laser). Therefore, designing any suitable intensity pattern I(r) permits
to tailor an optical potential for the atoms, and possibly a disordered one.

Speckle potentials and quasiperiodic lattices, which rely on this technique, but also impurity
disorder, which proceeds rather differently, are among the most commonly implemented models
of disorder. Since they will be considered later in this manuscript, we review below their main
features in some details.

Speckle potentials

A speckle field [96,97] results from the reflection or transmission of a coherent beam through
a rough diffusive plate, which is then focused by a convergent lens, as illustrated on Fig. 1.5.
The rough plate imprints a random phase to each partial wave emitted from each of its points.
The complex electric field E(r) in the observation focal plane at point r = (x, y) results from
the coherent superposition of those elementary contributions. In the paraxial approximation, it

7There is as well a dissipative part, the radiation pressure, but since the two scale differently with the laser
parameters, both can be idenpendently controlled; in particular, the radiation pressure can be made negligible
at high detuning.
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can be expressed as a function of the electric field ED(ρ) at a point ρ = (ρx, ρy) of the diffusive
plate,

E(r) = e2πif/λ

ifλ
eπif(x

2+y2)/λ

∫
eπi(ρ

2
x+ρ2y)/fλe−2πi(xρx+yρy)/fλED(ρ)ddρ. (1.6)

with f the focal distance and λ the laser wavelength. Since the phases of all ED(ρ) at all points
ρ of the diffusor are identically and independently distributed random variables, the electric
field E(r) in the observation plane is a complex Gaussian random variable, by virtue of the
central limit theorem. The statistical properties of the intensity I(r) = |E(r)|2 -and of the
speckle field deriving from Eq. (1.5)- can then be inferred from the Gaussian statistics of the
electric field.

• The one-point intensity, I(r), is the sum of two squared Gaussian random variables
(namely the real and imaginary parts of the electric field). It therefore follows an expo-
nential probability distribution [97]

P (I) =
1

I
e−I/I (1.7)

and so does the speckle potential, up to a shift which ensures that it is of zero average.
Since such distribution is highly asymmetric and unbounded, the speckle field V (r) will be
as well asymmetrically distributed, as exemplified on Fig. 1.5. From Eqs. (1.5) and (1.7),
it appears that it has no upper (resp. lower) bound for a blue (resp. red)-detuned speckle.
Furthermore, such a distribution yields the standard deviation

VR =
3πc2ΓI

2ω3
0δ

(1.8)

for the speckle potential. Notice that all those single-point properties require only the cen-
tral limit theorem to be valid, and therefore apply to any speckle pattern, independently
of the dimensions or transmission properties of the diffusive plate.

• The two-point correlation function or autocorrelation function, C(r, r′) = V (r)V (r′), can
be expressed as a function of the electric field four-point correlation function, which can
be computed using Wick’s theorem. This yields

C(r− r′) = V 2
R

∣∣∣∣∣
∫
e−2πi(r−r′).ρ/fλID(ρ)d

dρ∫
ID(ρ)ddρ

∣∣∣∣∣
2

(1.9)

where ID(ρ) = |ED(ρ)|2, which is the intensity distribution in the diffusive plate, is re-
ferred to as the pupil function. The two-point correlation function is therefore the squared
modulus of the Fourier transform of the pupil function. It can be entirely controlled ex-
perimentally by designing the pupil shape and transmission factor. The translation of
Eq. (1.9) to Fourier space expresses that the power spectrum of the speckle potential
(i.e. the Fourier transform of its autocorrelation function) is the autoconvolution of the
pupil function.

• Higher-order correlation functions can in the same manner be computed from the under-
lying Gaussian structure of the electric field. Importantly, for a speckle potential, they
do not vanish, at variance with the case of a Gaussian disorder [see appendix A].
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Figure 1.6: Realization of a one-dimensional quasi-periodic potential by superimposing two periodic
lattices of incommensurate frequencies. Figure extracted from Ref. [111].

Speckle potentials offer numerous advantages. They are easily (and widely) implemented in
cold atom experiments [25,38,41,42,96,98–107]. As seen above, their statistical properties are
well-known and can be designed by tailoring the optical apparatus. Speckle potentials offer an
example of correlated potentials, allowing for the investigation of disorder correlations. They
are also an example of non-Gaussian potentials, suitable though for analytical calculations
thanks to the underlying Gaussian structure of the electric field.

Impurity disorder

Speckle potentials are however not the only way of generating disordered potentials. An
alternative proposal, which does not involve the dipolar force, consists in creating an impurity
disorder for one atomic species [108, 109] by using a secondary atomic species trapped on
random sites of an optical lattice. If the main species is insensitive to the lattice, it experiences
only the impurity potential created by the second species,

V (r) =
∑
i

U(r− ri), (1.10)

with U the potential created by a single atom of the second species, and ri its random position.
This proposal realizes the so-called Edwards model and has been implemented in cold atom
experiments [110]. It notably proves useful to investigate disorder correlations, since the latter
are determined by the shape of U(r). For instance, for delta-correlated impurities (i.e. U(r) =
δ(r)), it realizes a white-noise disorder (see appendix A). The latter is widely used in the
literature since it allows for analytical calculations while containing in most cases the relevant
physics 8. A Gaussian disorder (see appendix A) can also be obtained within this framework
in the limit of infinite impurity density of vansihingly small amplitudes.

8Many continuous potentials reduce as well to a white-noise potential in the low-energy limit.
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Quasiperiodic potentials

When considering a lattice configuration, such as in the Hubbard model, several ways
exist to experimentally add a disorder. One can of course superimpose to the main optical
lattice a speckle potential, resulting in random on-site energies whose statistics are determined
by those of the speckle potential. However, an alternative and fruitful approach consists in
designing a so-called quasiperiodic potential, which strictly speaking is not a purely disordered
one but has very similar properties. To do so [39, 100, 112–114], the idea is to superimpose
a shallow periodic lattice, whose frequency is incommensurate with that of the main lattice
(see Fig.1.6). In such a bichromatic lattice, the on-site energy is then pseudo-periodic, εi =
Δcos(2πβi+ φ), with Δ and φ being determined by the depth and the phase of the secondary
lattice, and β = k2/k1 being given by the (incommensurate) ratio between the two lattice
wavelengths. Although deterministic, such a configuration mimics a disordered potential for
finite size-systems 9. Localization properties of quasiperiodic potentials however differ from
those of a true disorder, as will be widely discussed in chapter 4.

1.3.3 State of the art

Let us conclude this section by a brief state of the art of the main achievements and
challenges in the field of disordered cold atoms.

Anderson localization of non-interacting matter waves was experimentally observed
for the first time in 2008 in one dimension, simultaneously for cold atoms in a speckle
potential [38], and in a quasiperiodic lattice [39]. In 2012, three-dimensional Anderson
localization was reported as well in ultracold atomic systems, for BEC in a speckle poten-
tial [42], and in fermionic gases [41]. The quest for Anderson localization in 2D is more
challenging : since it is the marginal dimension, localization lengths can be exponentially
large, and the window between a detectable localized state and a classically trapped one
is very narrow. Let us mention as well the realization of quantum versions of kicked-rotor
models [40], which can be mapped onto the Anderson Hamiltonian [115]. In such systems,
dynamical localization [116, 117] (localization in momentum space) has been observed, allow-
ing for an experimental determination of the critical exponents of the Anderson transition [118].

Those pioneering works have opened numerous perspectives, paving the way to the
investigation of many other challenges [3], among which the most exciting one is undoubtedly
the interplay between disorder and interactions.

As regards the problem of disordered bosons, most efforts have been devoted to experimen-
tally study the superfluid to Bose glass transition. The latter was in particular observed in
1D in the weakly-interacting regime, in LENS with a quasiperiodic lattice [112–114], in Stony
Brook with an impurity disorder on a lattice [110], and in Houston in the presence of a speckle
potential [105]. In such experiments, evidence of a Bose glass phase has been reported, and
the transition was characterized using both dynamical (damping of a BEC in the disorder,
subdiffusive transport) and static (BEC fragmentation) criteria. Since experiments are carried
out at (small but) finite temperature, some observations could be linked to the questions
of many-body localization and localization of excitations, which are attracting an increasing
attention. In 2D, where the clean system displays a finite-temperature superfluid transition

9The system size should indeed not be too large, to avoid periodic replicas of the potential.
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(the BKT transition), most experiments have focused on studying the influence of the disorder
on the BKT transition [106, 107]. Experiments exist as well in strongly-correlated regimes,
for instance at Urbana Champaign where disorder-induced condensate depletion has been
studied for 3D strongly-correlated lattice bosons, in the presence of a superimposed speckle
potential [99].

The field of disordered many-body dynamics is more recent. As briefly mentionned previ-
ously, out-of-equilibrium dynamics can be induced in ultracold gases by a quantum quench,
i.e. an abrupt change of some Hamiltonian parameter (e.g. a lattice depth, a trapping fre-
quency...). Propagation of correlations in the system and relaxation to a new equilibrium state
can then be monitored. So far, first studies have been performed in clean systems [119–124],
focusing on light-cone propagation of correlations and Lieb-Robinson theorem. Quantum
quenches in the presence of disorder have not been realized yet, but theoretical studies have
started [77,82,83]. This field can be expected to become very active in a close future, since it
is related to the questions of localization of collective excitations and many-body localization,
which remain far from being understood.

Let us mention as well several studies with disorder in multi-component ultracold gases.
The latter can be used to mimic spin systems and simulate spin glasses [125], whose phase
diagrams remain an outstanding challenge in condensed matter. Moreover, multi-component
disordered ultracold gases are known to exhibit their own specific features, such as disorder-
induced order [126–129].

Outlook

While disorder and interactions lie at the heart of the most complex phenomena in solid-
state physics, understanding their interplay represents a formidable challenge. Among the most
puzzling issues, the question of collective localization transitions is particularly intriguing. It is
expected to underlie some celebrated disorder-induced phase transitions, such as the superfluid-
to-insulator and superconducting-to-insulator ones, as well as many-body localization effects,
and dynamical properties of disordered many-body systems. While theoretical questions remain
far from being fully explored, recent experiments carried out with ultracold atoms are now in
a position to address those long-standing issues.

The theoretical study of collective localization transitions is the main topic of this thesis.
More precisely, we will focus in this manuscript on the localization transitions of collective ex-
citations in the case of Bose superfluids. We will successively address this question in different
contexts, which are all realized by current ultracold-atom experiments (disordered, quasiperi-
odic, and multi-component Bose gases).
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Chapter 2

Ultracold Bose gases - Bogoliubov

theory

1. d2-d4 Cg8-f6
2. c2-c4 e7-e6
3. Cg1-f3 Ff8-b4+

Défense Bogoliubov

This chapter is devoted to an introductory presentation of the quantum degenerate Bose
gas, in particular in the weakly-interacting regime. It constitutes a preliminary step before
addressing the question of disorder, whose interplay with interactions in weakly-interacting
Bose systems is the main topic of this manuscript. Therefore, the objectives of this chapter are
twofold. On the one hand, it reviews the main features and physical properties of Bose gases
without disorder, among which Bose-Einstein condensation, quasicondensation, superfluidity,
and coherence properties. On the other hand, it provides the theoretical tools to be used when
dealing with weakly-interacting Bose gases. Much attention will be devoted to the Bogoliubov
method, which will be widely used in this work, and which is therefore presented here in its
most general inhomogeneous formulation.

In Sec. 2.1, after a brief history, we discuss the basics of Bose-Einstein condensation. We
first introduce it in the case of an ideal Bose gas (Sec. 2.1.2), before generalizing the concept
to the most general inhomogeneous situation, where we establish the link between condensa-
tion and long-range order (Sec. 2.1.3). We then move to the case of the weakly-interacting
Bose gas in Sec. 2.2. After introducing the principle of meanfield approaches (Sec. 2.2.1), we
present in details the Bogoliubov theory (Sec. 2.2.2), and apply it to a homogeneous gas to
enlighten its main physical properties (Sec. 2.2.3). The case of low dimensions is addressed in
Sec. 2.2.4, where we discuss the phenomenon of quasicondensation and possible extensions of
the Bogoliubov theory.
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36 2.1. BOSE-EINSTEIN CONDENSATION

Figure 2.1: Three successive steps in the obtention of a BEC (from left to right, T ∼ 400nK, T ∼ 200nK,
T ∼ 50nK), obtained by imaging the velocity distribution of the gas after time-of-flight expansion of the
cloud (the trap is suddenly released so that the atoms expand freely according to their initial velocity).
At very low temperature, the central peak reveals a high number of atoms with the same velocity (the
signature of BEC), surrounded by a cloud of thermal atoms with random velocities. Image provided by
JILA, University of Colorado, Boulder.

2.1 Bose-Einstein condensation

2.1.1 History

Bose-Einstein condensation is undoubtedly one of the most spectacular manifestations
of quantum statistics, which sees bosons acquire a collective behaviour, even in the absence
of interactions. Pioneering works date back to Bose, who studied the quantum statistics of
photons, and proposed a different statistics from the classical Boltzman one, assuming that
photons are indistinguishable and can occupy the same quantum state. This idea was then
generalized by Einstein to all bosonic particles, defining the so-called Bose-Einstein statistics.
Applying this concept to an ideal (i.e. non-interacting) gas of bosons [130], Einstein found that,
as a direct consequence of this statistics, a phase transition was predicted to happen at finite
temperature, between a classical gas and a state where bosons accumulate in the same single-
particle quantum state. This new state of matter was nicknamed Bose-Einstein condensate
(BEC), but Einstein himself doubted about its reality :

“It is a nice theory, but does it contain any truth ?”

It took until 1937, and the discovery of superfluidity in liquid helium 4He [16], before
Einstein’s prediction was considered with a renewed interest. Superfluidity is a macrsocopic
hydrodynamic property of some fluids which, below a critical temperature, flow with zero
viscosity. Noticing that the superfluid critical temperature of 4He (2.2K), was remarkably
close to the condensation temperature of an ideal Bose gas with the density of helium (3.2K),
London suggested that superfluidity might be a manifestation of BEC 1. At the same time,
studies on superconductivity, where charge carriers were identified as bosonic Cooper pairs,
reinforced the idea that it could as well be a consequence of BEC. Simultaneously, theoretical

1It is today known that the link between BEC and superfluidity is more subtle, since superfluidity requires
in particular interactions between particles.
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2.1 Bose-Einstein condensation 37

works [131] developed rapidly, revealing that Bose-Einstein condensation was not specific to
the non-interacting gas, but expected to be a rather generic feature in Bose systems.

The experimental observation of Bose-Einstein condensates was finally made possible by
the development of ultracold gases over the last decades of the 20th century. On the one hand,
significant advances in atom trapping and cooling enabled to reach the quantum degeneracy
regime (low temperature/high density) where BEC arises. On the other hand, the development
of new diagnostic apparatuses, among which time-of-flight measurements, provided the decisive
tools to unambiguously identify a BEC. In 1995, in Boulder, Cornell and Wieman managed
to observe a BEC of rubidium atoms at ∼ 100nK for a few seconds, soon followed by other
observations [84–86] (see Fig. 2.1). Such efforts have been honoured by the Nobel prize in 2001
to Cornell, Wieman and Ketterle, ”for the achievement of Bose-Einstein condensation in dilute
gases [...] and for early fundamental studies of the properties of condensates”. Since then,
BECs have been realized for many atomic species [132–135], in the presence of dipolar interac-
tions [136], for molecules of fermionic atoms [137–139], as well as for magnons [140,141], exciton
polaritons [142,143] and photons [144]. Direct observation of condensation and measurements
of BEC coherence properties have today reached an impressive degree of precision.

2.1.2 The ideal Bose gas

The ideal (i.e. non-interacting) Bose gas case is treated in most statistical physics
textbooks, and we refer to them for an exhaustive presentation, especially as regards all
thermodynamical properties of condensates. In this section, we mostly recall the general
picture, and provide an intuitive criterion for condensation to occur.

In an ideal gas, the N-body Hamiltonian is the sum of identical independent single-particle
Hamiltonians, whose eigenstates and eigenenergies are respectively denoted |λ〉 and ελ. A
many-body state is then entirely characterized by the number of particles populating each
single-particle eignestate |λ〉. At T = 0, all particles occupy the single-particle ground state
(labelled by λ = 0 for simplicity) and the ideal Bose gas is always perfectly condensed. At
finite temperature T , the number of atoms Nλ in a given state |λ〉 obeys the Bose-Einstein
distribution

Nλ =
1

eβ(ελ−μ) − 1
(2.1)

where β = 1/kBT and the chemical potential μ is adjusted to fulfill the condition of fixed
number of particles N =

∑
λNλ (necessarily, μ < ε0 to ensure stability of the gas). In finite-

size systems, the single-particle spectrum ελ is discrete and will be labelled for simplicity by
λ ∈ N. In this case, the number of particles in the excited states (i.e. λ �= 0) is upper-bounded
by

Nmax
e =

∑
λ>0

1

eβ(ελ−ε0) − 1
. (2.2)

Because of this saturation of excited states, if the gas contains N > Nmax
e particles, at least

N−Nmax
e will populate the ground state, which will be macroscopically occupied. Therefore, a

BEC always arises at finite temperature in finite-size systems. However, a true phase transition
can only exist in the thermodynamic limit, and the key question is whether this saturation of
excited states survives in this limit, i.e. when the spectrum becomes continuous, ε1 → ε0.
Replacing the discrete sum in Eq. (2.2) by an integral, it is immediate to see that Nmax

e
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38 2. ULTRACOLD BOSE GASES - BOGOLIUBOV THEORY

Figure 2.2: When a true condensate is present, the g(1) function exhibits long-range order, in the sense
that it decreases to a finite value at large separations. In a homogeneous system, the latter is given by
the condensate density. When g(1) goes to zero at infinity, no BEC occurs; it is for instance the case in
low dimensional Bose gases.

remains finite provided ∫ ∞

0

ρ(ε)

eβε − 1
dε < ∞, (2.3)

with ρ(ε) the single-particle density of states. A simple criterion to have a BEC at finite

temperature in the thermodynamic limit is therefore that
∫ ρ(ε)

ε
dε converge for ε → 0. It

strongly depends on dimensionality and on the single-particle density of states. For instance,
while BEC occurs in free space in 3D, and in harmonics traps in 2D and 3D, it cannot occur
in free space in 1D and 2D, as well as in 1D harmonics traps 2. The difficulty to condense in
low dimensions is a general feature which will be discussed later in this chapter.

2.1.3 Long-range order

It has however taken a long time before a univeral definition of BEC was admitted, en-
capsulating both ideal or interacting, as well as uniform or inhomogeneous, systems. It is now
recognized that one of the key concepts is the first-order correlation function, or one-body
density matrix (OBDM), defined by

g(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 (2.4)

where ψ̂(r) (resp. ψ̂†(r)) is the bosonic annihilation (resp. creation) operator of a particle at
position r, which satisfies the bosonic commutation rule [ψ̂(r), ψ̂†(r′)] = δ(r− r′). The OBDM
contains information about the spatial density of the gas, its momentum distribution, and
correlations of the field. It was first proposed by Yang [145] to define a BEC by the existence
of off-diagonal long range order (ODLRO), namely the fact that g(1)(r, r′) does not vanish at
large distance, |r− r′| → ∞, but goes to a finite value (see Fig. 2.2),

lim
|r−r′|→∞

g(1)(r, r′) ≡ ψ∗
0(r)ψ0(r

′) �= 0. (2.5)

For a homogeneous gas, the translation of this property to Fourier space 3 indeed expresses that
the momentum distribution is not regular, n(k) = n0δ(k) + ñ(k) with ñ(k) a regular function,

2We recall that the single-particle density of states scales as ρ(ε) ∝ εd/2−1 in free space, and ρ(ε) ∝ εd−1 in
harmonic traps.

3We recall that for a homogeneous gas, the momentum distribution n(k) is the Fourier transform of the
function g(1)(s), which depends only on the separation s = r− r

′.
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2.2 The weakly-interacting Bose gas 39

the k = 0 single-state thus being macroscopically occupied. The Yang definition also applies to
inhomogeneous systems, ψ0 defining the condensate wavefunction. However, it cannot hold for
finite-size systems where g(1)(r, r′) always vanishes at large distances. Threfore, a more general
definition was proposed by Penrose and Onsager [146], which is based on the eigenvalues of the
OBDM. Let us denote by Ni the eigenvalues and φi(r) the eigenvectors of g(1)(r, r′), which are
solutions of ∫

g(1)(r, r′)φi(r
′)dr′ = Niφi(r)∫

|φi|2 = 1. (2.6)

In this diagonal basis, the OBDM rewrites

g(1)(r, r′) =
∑
i

Niφ
∗
i (r)φi(r

′). (2.7)

A BEC is then defined by the existence of one macroscopic (extensive) eigenvalue, N0, which
is of the order of the total number of particles N . In the thermodynamic limit, this definition
coincides with Yang’s criterion of ODLRO, since

g(1)(r, r′) = N0φ
∗
0(r)φ0(r

′) +
∑
i

Niφ
∗
i (r)φi(r

′) −→
|r−r′|→∞

N0φ
∗
0(r)φ0(r

′) (2.8)

as the discrete sum can be replaced by an integral which vanishes in the thermodynamic
limit. The BEC wavefunction therefore expresses ψ0(r) =

√
N0φ0(r), where N0 is the number

of atoms populating the macroscopically occupied single-particle state φ0. It is the order
parameter of the BEC phase transition, and BEC is thus related to the symmetry breaking of
the gauge invariance [147]. The Penrose-Onsager defintion is very general, and applies for both
inhomogeneous and finite-size systems. From this defintion, BEC is thus related to first-order,
or phase, coherence.

Diagonalizing the OBDM enables to clearly identify the single-particle wavefunctions, φi,
usually referred to as natural orbitals4. Interestingly, a BEC can only arise in one of those
states 5. Let us further denote by âi the annihilation operator in state φi. The field operator
may be written :

ψ̂(r) = φ0(r)â0 +
∑
i�=0

φi(r)âi. (2.9)

If N0 ≈ N , one may treat the macrocopic component as a classical field, by replacing â0, â
†
0 by√

N0. The field operator then rewrites

ψ̂(r) = ψ0(r) + δψ̂(r) (2.10)

where ψ0(r) is the BEC wavefunction and the depletion operator δψ̂(r) =
∑

i φi(r)âi includes
quantum and thermal fluctuations. This is the starting point of mean-field theories for the con-
densed phase, such as the Bogoliubov theory for the weakly-interacting Bose gas (see Sec. 2.2).

4For a homogeneous systems, the natural orbitals are the plane waves of well defined momentum, and Eq. (2.9)

is nothing but the Fourier transform for the field operator, ψ̂(r) =
1√V

∑
k
âke

ik.r =
â0√V +

∑
k�=0 âke

ik.r.

5When several eigenvalues Ni of the OBDM are of the order of N , one speaks of a fragmented BEC.
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40 2.2. THE WEAKLY-INTERACTING BOSE GAS

Figure 2.3: (a) Weakly-interacting configuration where the wavefunctions of individual particles (blue
lines) overlap, yielding a roughly homogeneous mean-field density profile (shaded area). In this case,
there is no kinetic energy and the interaction energy is EI = gn. (b) Strongly-correlated configuration
where the wavefunctions of different particles (shaded areas) exclude each other. In this case, there is
no interaction energy and the typical kinetic energy is EK = �

2nd/2/2m. Comparing their energies, one
can find which of those two configurations is the more favourable, yielding a criterion for the weakly-
interacring regime.

2.2 The weakly-interacting Bose gas

2.2.1 Weak interactions and mean-field theories

In dilute Bose gases, interactions mainly reduce to two-body collisions. At low tem-
peratures, the latter are dominated for bosons by s-wave scattering, and interactions can
be accurately modelled by a contact pseudopotential V (r) = gδ(r), where the coupling
constant g can be expressed as a function of the scattering length aS . The latter encodes
the interaction strength and is an intrinsic property of the considered atomic species.
For instance in 3D, g = 4π�2aS/m, while in lower dimensions, the expression can depend
on the transverse confinement, which determines whether collisions still take place in 3D or not.

A general criterion for the weakly-interacting regime can be found by requiring that the
typical interaction energy EI = gn, in a weakly-interacting meanfield configuration where the
wavefunctions of all particles completely overlap, be much smaller than the typical kinetic
energy EK = �

2nd/2/2m, in a strongly-interacting configuration where the wavefunctions of
different particles exclude each other (see Fig. 2.3). In 3D, this criterion yields the condition
na3S � 1, stating that the weakly-interacting regime is reached at low density. In 2D, the
criterion is found to weakly depend on the density, while in 1D, weak interactions occur at
high density !

In the weakly-interacting regime, one can rely on mean-field theory. The starting point of
meanfield theories for the condensed phase is to assume the existence of a condensate (an as-
sumption which is checked a posteriori in the theory), and to develop the field operator around
the condensate wavefunction [see Eq. (2.10)], assuming a small depletion of the condensate,
|δψ̂(r)| � ψ0(r). Such an assumption requires weak quantum and thermal fluctuations, which
in 3D is achieved in the weakly-interacting regime (na3S � 1) at low-temperatures (T � Tc).
Conversely, it breaks down in strongly-correlated regimes where many-body physics dominates.
Such regimes are hardly accessible in 3D experiments, except in the presence of a lattice, where
the strong confinement at each lattice site causes strong correlations between particles. More
importantly, the assumption of an existing condensate can also break down in low dimensions,
where large phase fluctuations can possibly prevent condensation. Extensions of meanfield
theories, with reduced hypotheses, nevertheless exist (see Sec. 2.2.4).
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2.2 The weakly-interacting Bose gas 41

In the following, we will present in details the mean-field theory for the weakly-interacting
Bose gas (the so-called Bogoliubov theory), focusing first on the simple (3D) case where a
true condensate exists, as originally introduced by Bogoliubov [131]. Possible extensions of the
theory to lower dimensions, where no true condensate wavefunction can be identified due to
large phase fluctuations, will be discussed in Sec. 2.2.4.

2.2.2 Bogoliubov theory

The Hamiltonian of the weakly-interacting Bose gas writes

Ĥ =

∫ {
ψ̂†

[−�
2∇2

2m
+ V (r)

]
ψ̂ +

g

2
ψ̂†ψ̂†ψ̂ψ̂

}
ddr, (2.11)

where ψ̂(r) is the field operator of a particle at position r, g is the interaction coupling constant,
and V (r) is a static external potential. The general idea of the Bogoliubov theory consists in
a perturbative expansion of Ĥ in the fluctuation part δψ̂ of the field operator. As discussed
above, it is expected to be valid for dilute (na3S � 1) gases at low-temperatures (T � Tc).
Although originally formulated in momentum space for homogeneous systems, we will present
here the real-space formulation of the theory, which can advantageously apply to the most
general inhomogeneous situation we will consider later in this manuscript.

Ground-state and Gross-Pitaevskii equation

To lowest order, fluctuations are neglected and the field operator ψ̂†(r) is replaced by the
condensate wavefunction ψ0(r). Furthermore, at this order, N0 = N , so that ψ0(r) =

√
Nφ0(r).

The N-body wavefunction then describes all particles in the same single-particle state, φ0(r),
ψ(r1, r2, ...rn) =

∏N
i=1 φ0(ri).

There are several ways to derive the equation governing the condensate wavefunction ψ0(r).
A first one is to minimize the classical energy functional,

E[ψ0] =

∫ [
�
2

2m
|∇ψ0(r)|2 + V (r)|ψ0(r)|2 + 1

2
g|ψ0(r)|4

]
ddr, (2.12)

which is obtained by replacing ψ̂†(r) by ψ0(r) in Hamiltonian (2.11), under the constraint
of fixed average number of particles. This yields the stationary Gross-Pitaevskii equation
(GPE) [148–150] [

− �
2∇2

2m
+ V (r)− μ+ g|ψ0(r)|2

]
ψ0(r) = 0, (2.13)

where the chemical potential μ is the Lagrange multiplier associated to the constraint of fixed
average number of particles, which reads

μ =
1

N

∫ [
�
2

2m
|∇ψ0(r)|2 + V (r)|ψ0(r)|2 + g|ψ0(r)|4

]
ddr. (2.14)

The GPE (2.13) governs static properties of the condensate, and determines for instance the
density profile |ψ0(r)|2 of the condensate.

An alternative way to derive the GPE consists in replacing ψ̂†(r, t) by ψ0(r, t) in the Heisen-
berg equation of motion, which yields the dynamical GPE

i�∂tψ0(r, t) =
[
− �

2∇2

2m
+ V (r) + g|ψ0(r, t)|2

]
ψ0(r, t). (2.15)
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42 2. ULTRACOLD BOSE GASES - BOGOLIUBOV THEORY

Apart from recovering the static GPE by writing ψ0(r, t) = ψ0(r)e
−iμt/�, this equation governs

all dynamical properties of the condensate 6. More importantly, the linearization of the dy-
namical GPE around the stationary solution ψ0(r) enables to compute the eigenmodes of the
condensate or determine its response to a perturbation.

Elementary excitations and Bogoliubov equations

The next order in the Bogoliubov expansion corresponds to a quadratization of Hamilto-
nian (2.11) in fluctuation terms. Indeed, the linear terms are found to vanish, using the fact
that ψ0 solves the GPE. Keeping terms up to second order in Hamiltonian (2.11) yields the
so-called Bogoliubov Hamiltonian

Ĥ(2) =
1

2

∫ (
δψ̂†,−δψ̂

)
LGP (r)

(
δψ̂

δψ̂†

)
ddr + cst. (2.16)

where

LGP =

⎛
⎜⎜⎝
−�

2∇2

2m
+ V (r)− μ+ 2g|ψ0(r)|2 gψ0(r)

2

−gψ∗
0(r)

2 −
[
− �

2∇2

2m
+ V (r)− μ+ 2g|ψ0(r)|2

]∗

⎞
⎟⎟⎠ . (2.17)

As a quadratic form in δψ̂ and δψ̂†, the Bogoliubov Hamiltonian can a priori be diagonalized,
i.e. put into the canonic form

Ĥ(2) =
∑
ν

εν b̂
†
ν b̂ν + cst. (2.18)

thanks to a suitable linear transformation

b̂ν =

∫
dr

[
u∗ν(r)δψ̂(r)− v∗ν(r)δψ̂

†(r)
]

b̂†ν =

∫
dr

[
uν(r)δψ̂

†(r)− vν(r)δψ̂(r)
]

(2.19)

Such a form [Eq. (2.18)] describes non-interacting quasi-particles of energy εν , which are cre-

ated (resp. annihilated) by the Bogoliubov operator b̂†ν (resp. b̂ν). In practice, to obtain such
a canonic form, one can show that the suitable uν and vν wavefunctions in the linear transfor-
mation Eq. (2.19) should be the solutions of positive energy εν > 0 of the so-called Bogoliubov
De-Gennes equations (BdGEs)

LGP

(
uν
vν

)
= εν

(
uν
vν

)
, (2.20)

together with the bi-orthogonality conditions

∑
σ

∫
dr

[
uν(r)u

∗
ν′(r)− vν(r)v

∗
ν′(r)

]
= δνν′

∑
σ

∫
dr

[
uν(r)vν′(r)− vν(r)uν′(r)

]
= 0 . (2.21)

6Hydrodynamic equations can for instance be inferred from Eq. (2.15) [147].

42



2.2 The weakly-interacting Bose gas 43

The latter ensure that the operators b̂† and b̂ satisfy the bosonic commutation relations. It
is important to note that only positive energies εν > 0 enter Eq. (2.18), which means that
populating quasiparticle modes necessarily increases the total energy, as required by stability
conditions.

Therefore, the Bogoliubov theory amounts to describe a complex N-body gas of interacting
particles as a gas of non-interacting quasi-particles 7. The latter can thus be treated as an ideal
Bose gas, the populations of the quasiparticle modes obeying the Bose-Einstein statistics. To
obtain all the thermodynamics of the gas, it is therefore crucial to determine the quasi-particle
energy spectrum and wavefunctions. This is achieved by solving the BdGEs, Eq. (2.20), which
take the form of an eigenproblem.

The solution to this eigenproblem is commonly treated in literature [151, 152]. All eigen-
modes (

uν
vν

)

of the operator LGP of energy εν > 0 come along with an eigenmode(
v∗ν
u∗ν

)

of energy −εν , which however does not enter into the sum in Eq. (2.18). Besides this, LGP has
a mode of zero energy (

ψ0(r)
−ψ∗

0(r)

)
.

However, since the operator LGP is not Hermitian, it is in general not diagonalizable and one
cannot in principle reduce the Bogoliubov Hamiltonian to the canonic form Eq. (2.18). In this
case however, the symmetries of LGP and the assumption that ψ0(r) is a local minimum of the
GPE are sufficient to make LGP almost diagonalizable, in the sense that only one eigenvector
is missing to span the whole space. As we shall see, this is sufficient to put the Bogoliubov
Hamiltonian in a form which is very close to Eq. (2.18). More precisely, an additional vector

(
∂ψ0(r)
∂ψ∗

0(r)

)

is introduced to obtain a complete basis. In this basis, the field operator expands as

(
δψ̂

δψ̂†

)
=

∑
ν

(
uν(r)
vν(r)

)
b̂ν +

(
v∗ν(r)
u∗ν(r)

)
b̂†ν +

1

i�
Q̂

(
ψ0(r)
−ψ∗

0(r)

)
+ P̂

(
∂ψ0(r)
∂ψ∗

0(r)

)
, (2.22)

where b̂†ν and b̂ν are still given by Eqs. (2.19), and

P̂ =

∫
dr

[
ψ∗
0(r)δψ̂(r) + ψ0(r)δψ̂

†(r)
]

Q̂ = i�

∫
dr

[
∂ψ0(r)δψ̂

†(r)− ∂ψ∗
0(r)δψ̂(r)

]
, (2.23)

7Interactions between quasi-particles arise when considering higher orders (i.e. cubic and quartic) in Bogoli-
ubov expansion, and confer to them a finite lifetime, which is purely neglected at this level.
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represent additional conjugate operators. With this expansion, the Bogoliubov Hamiltonian is
finally almost-diagonalized under the form

Ĥ(2) =
∑
ν

εν b̂
†
ν b̂ν +

P̂ 2

2meff
+ cst. (2.24)

It is made of a canonic part similar to Eq. (2.18) describing quasi-particle excitations.
Additionnally, the spurious modes and the corresponding conjugate operators Q̂ and P̂ play
no role on the dynamics, but should be interpreted as a collective phase coordinate and its
conjugate momentum. They induce quantum phase diffusion and fluctuations of the number
of particles [153, 154]. Their presence can indeed be traced to the fact that the Bogoliubov
Hamiltonian (2.16) does not conserve the total number of particles which, from a mathematical
point of view, is intimately related to the fact that the operator LGP , as discussed above, is
not diagonalizable (its eigenvectors do not span the whole space).

A solution to this problem can be achieved by making LGP diagonalizable by extracting only
the ”relevant” part of δψ̂, i.e. restricted to an appropriate subspace [151]. This idea is formalized
by the so-called ”number-conserving” approach, which consists in expanding Hamiltonian (2.11)
up to second order in the operator

Λ̂(r) =
â†ψ0

δψ̂(r)

N̂1/2
,

which, at variance with δψ̂(r), does conserve the number of particles. The resulting Bogoliubov
Hamiltonian writes

Ĥ(2) =
1

2

∫ (
Λ̂† − Λ̂

)
L(r)

(
Λ̂

Λ̂†

)
ddr + cst. (2.25)

where

L =

⎛
⎜⎜⎝
−�

2∇2

2m
+ V (r)− μ+ 2gQψ0 |ψ0(r)|2Qψ0 gQψ0ψ0(r)

2Q∗
ψ0

−gQ∗
ψ0
ψ∗
0(r)

2Qψ0 −
[
− �

2∇2

2m
+ V (r)− μ+ 2gQψ0 |ψ0(r)|2Qψ0

]∗

⎞
⎟⎟⎠ ,

with Qψ0 (resp. Q∗
ψ0
) denoting the projection operator orthogonally to ψ0 (resp. ψ∗

0). Contrary
to LGP , L is diagonalizable. Most importantly, one has the remarkable result that if (uν , vν)
is an eigenvector of LGP of eigenvalue εν > 0, then (Qψ0uν , Q

∗
ψ0
vν) is an eigenvector of L of

same eigenvalue εν . Therefore, the Bogoliubov transformation(
Λ̂

Λ̂†

)
=

∑
ν

(
u⊥ν (r)
v⊥ν (r)

)
b̂ν +

(
v∗⊥ν (r)
u∗⊥ν (r)

)
b̂†ν , , (2.26)

where u⊥ν (resp. v⊥ν ) stands for Qψ0uν (resp.Q
∗
ψ0
vν), exactly diagonalizes the Bogoliubov Hamil-

tonian (2.25) into
∑

ν εν b̂
†
ν b̂ν + cst, where no spurious mode appears any longer. In particu-

lar, the particle-number conserving and non-conserving approaches yield the same excitation
spectrum, while the excitation wavefunctions in the two approaches are related by a simple
projection operation. This justifies the common use of the non-conserving approach, simply
omitting the spurious modes is the modal expansion, provided that the eigenvectors are then
correctly orthogonalized with respect to the condensate wavefunction.
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ε
μ

ξ
Figure 2.4: Bogoliubov excitation spectrum of the weakly-interacting Bose gas, in units of the homo-
geneous chemical potential μ = gn, and as a function of kξ, with ξ = �√

2mμ
the healing length of the

condensate. The spectrum is phononic at low-energy and particle-like at high-energy, as indicated by
the dashed lines.

2.2.3 Results for the homogeneous weakly-interacting Bose gas

Although approximate, the Bogoliubov theory remarkably reproduces the main features
of dilute weakly-interacting Bose gases at low temperature, as observed experimentally. In this
section, we focus on the homogeneous case, and review the main predictions of the theory. We
recall that in this case, the condensate wavefunction is homogeneous, n0(r) = n = μ/g, as
straightforwardly obtained from Gross-Pitaevskii equation. Equivalently, condensation occurs
in the state of zero momentum k = 0.

Excitation spectrum and wavefunctions

The excitation spectrum can be obtained from the Bogoliubov equations (2.20). In the
homogeneous case, the latter rewrite⎛

⎜⎝−�
2∇2

2m
+ gn gn

−gn
�
2∇2

2m
− gn

⎞
⎟⎠

(
uν
vν

)
= εν

(
uν
vν

)
. (2.27)

Translation invariance ensures that the excitation wavefunctions uν (resp. vν) are plane waves
labelled by a well-defined momentum k (instead of ν), uke

ik.r/V, with V the volume of the
system. The eigenproblem (2.27) then reduces to diagonalizing a 2× 2 matrix⎛

⎜⎝
�
2k2

2m
+ gn gn

−gn −�
2k2

2m
− gn

⎞
⎟⎠(

uk
vk

)
= εk

(
uk
vk

)
, (2.28)

yielding the Bogoliubov spectrum

εk =

√√√√�
2k2

2m

(
�
2k2

2m
+ 2gn

)
. (2.29)

The latter is plotted on Fig. 2.4, and is found to be gapless. At high energy, it is particle-like,
εk = �

2k2/2m+gn. At low energy, it is phononic, εk = �ck = cp, and the velocity c =
√

gn/m
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46 2. ULTRACOLD BOSE GASES - BOGOLIUBOV THEORY

coincides with the macroscopic sound velocity as measured in experiments. Moreover, this
linear low-energy dispersion accounts for the superfluidity of the weakly-interacting Bose gas
as expressed by the Landau criterion 8.

As regards excitation wavefunctions, they are plane waves of well-defined momentum, whose
amplitudes are found to be

u2k =
1

2

(
�2k2

2m + gn

εk
+ 1

)
, v2k =

1

2

(
�2k2

2m + gn

εk
− 1

)
(2.30)

Moreover, the Bogoliubov transform Eq. (2.19) can be explicitely rewritten as a function of the
creation/annihilation operators of k-states 9

b̂k = u∗kâk − v∗kâ
†
−k âk = ukb̂k + v∗−kb̂

†
−k

b̂†k = ukâ
†
k − vkâ−k â†k = u∗kb̂

†
k + v−kb̂−k (2.31)

This in particular enlightens the nature of a Bogoliubov quasiparticle, which can be viewed as
a pair excitation made of a particle of momentum k and a hole of momentum −k. At high
energy, uk ≈ 1 and vk ≈ 0, so that Bogoliubov quasiparticles are simlar to free bosons, while
at low energy, uk ≈ vk, so that they are particle-hole excitations.

Condensate depletion, ground-state energy and chemical potential

In the Bogoliubov description, quasiparticles are non-interacting, and can therefore be
treated as an ideal Bose gas. In particular, their thermal occupancy at finite temperature
T is given by the Bose-Einstein distribution, Nk ≡ 〈b̂†

k
b̂k〉 = 1/(eβεk − 1), and all the

thermodynamics can then be computed.

For instance, the condensate depletion, i.e. the number of non-condensed particles, defined
by N ′ = 〈∑k �=0 â

†
kâk〉 (〈...〉 denoting thermal average), is straightforwardly obtained by rein-

serting Eqs. (2.31) for âk in its definition, yielding

N ′ =
V
2π

∫ [
v2k + (u2k + v2k)Nk

]
ddk. (2.32)

In 3D at T = 0, this yields the celebrated result N ′(T = 0) = 8/3
√
π(na3S)

1/2N [151], which
scales as the small parameter of the weakly-interacting Bose gas, (na3S)

1/2. This quantity is
referred to as the quantum depletion of the condensate. At finite temperature, there is an
additional thermal depletion which is given by N ′(T ) = N ′(T = 0)[1 + (πkBT/2gn)

2 + ...] for
low temperatures.

In lower dimensions, infrared divergences may appear in Eq. (2.32), suggesting the absence
of condensation, as discussed in the next section.

8We recall that the Landau criterion discriminates between a superfluid and a viscous fluid by examining the
possibility for a dissipative process to take place within the fluid, via the creation of an excitation. According
to this criterion, a fluid is superfluid at velocity v if v < vc ≡ minp

εp
p
. Here, the critical velocity vc is finite and

equal to the sound velocity c, so that the fluid is superfluid at zero velocity. This is in striking contrast with the
ideal Bose gas, for which εp = p2/2m yields vc = 0.

9We recall that the depletion operator δψ̂(r) indeed develops in the basis of k-states as δψ̂(r) =
∑

k�=0 âke
ik.r

(see footnote 3, page 39).
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Corrections to the mean-field ground state energy and chemical potential can as well be
computed, yielding in 3D the well-known Lee-Huang-Yang corrections

E0 =
gN2

2V
[
1 +

128

15
√
π
(na3S)

1/2
]

(2.33)

and

μ =
gN

V
[
1 +

32

3
√
π
(na3S)

1/2
]

(2.34)

Notice that here as well, corrections scales as (na3S)
1/2.

Fluctuations and correlations

Density and phase correlations and fluctuations can finally be inferred from the
computation of the coherence functions g(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 and g(2)(r, r′) =
〈ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)〉, which express, in the Bogoliubov approach,

g(1)(r− r′) = n0 +
1

N

∑
k �=0

e−ik(r−r′)[v2k + (u2k + v2k)Nk] (2.35)

and

g(2)(r− r′) = n2 +
2n

V
∑
k �=0

[(uk + vk)
2Nk + (uk + vk)vk] cos[k(r− r′)]. (2.36)

The g(2) function provides access to density correlations 〈n̂(r)n̂(r′)〉 = g(2)(r − r′) 10;
in particular, one finds here that g(2)(r − r′) �= n2 = n(r)n(r′), the Bogoliubov the-
ory successfully accounting for density correlations in the gas. Density fluctuations
〈δn̂(r)δn̂(r′)〉 = g(2)(r− r′)− n2 can as well be inferred from the g(2) function.

Conversely, the g(1) function provides information about phase coherence. For instance
in 3D, Eq. (2.35) yields g(1)(s) �s→∞ n0, recovering the existence of a long-range order
given by the condensate density. The case of lower dimensions, where long-range order may
not exist, is discussed in the next section. As already mentioned, the Bogoliubov theory is
a priori not valid in this case and a proper treatement of the g(1) function should be performed.

Let us finally give a more precise link between the behaviour of g(1) at large separations
and phase fluctuations, which will be useful to understand why phase fluctuations can prevent
condensation and long-range order. At large separations, density fluctuations may be neglected,
and one may rewrite

g(1)(r) = 〈ψ̂†(r)ψ̂(0)〉
�

√
n0(r)n0(0)〈e−iθ̂(r)eiθ̂(0)〉

�
√

n0(r)n0(0)e
〈(Δθ(r))2〉 (assuming Gaussian fluctuations)

�
√

n0(r)n0(0)e
−(χ(r)−χ(0)) (2.37)

where Δθ(r) = θ̂(r)− θ̂(0) and χ(r) = 〈θ̂(r)θ̂(0)〉. Therefore, long-range order arises when the
phase fluctuations χ(r) = 〈θ̂(r)θ̂(0)〉 remain finite at large separations. On the contrary, phase
fluctuations diverging when the separation increases prevent the establishment of long-range
order.

10 There is in principle an additional singular term nδ(r − r
′), but the latter can be left aside provided

correlations are computed taking the normal order.
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48 2. ULTRACOLD BOSE GASES - BOGOLIUBOV THEORY

2.2.4 Low dimensions : extensions of Bogoliubov theory and quasiconden-

sation

So far, we have focused on the 3D case, which is well described by mean-field theories.
In low dimensions however (i.e. when the confinement is so strong that the motion along the
tight direction(s) is frozen), the physics can be significantly different. Due to the confinement,
interactions are generally stronger and strongly-correlated regimes are easier to access, while
meanfield theories become questionnable. Most importantly, one generically expects as well
larger fluctuations, which can possibly prevent condensation.

Condensation and quasi-condensation

The absence of condensation/long-range order in low dimensions can be viewed as a
consequence of the Hohenberg-Mermin-Wagner theorem. The latter applies to any system
(classical or quantum) in the presence of short-range interactions, and states that in low
dimensions, fluctuations are too strong to allow for the spontaneous breaking of a continuous
symmetry (in particular the U(1) symmetry, thus prohibiting the establishment of long-range
order and the formation of a BEC). At T = 0, this arises from quantum fluctuations and
applies only to 1D systems, while at T > 0, it comes from thermal fluctuations and concerns
both 1D and 2D systems.

This general statement is remarkably corroborated by the previous results of the Bogoliubov
theory.

As regards the condensate depletion (2.32), a divergence is found in 2D at T > 0 and 1D
at T = 0 (which are logarithmic with V), as well as in 1D at T > 0 (which is linear with V),
suggesting that no condensate can exist.

The same conclusions arise from an analysis of phase fluctuations and first-order coherence,
which are related by Eq. (2.37). Phase fluctuations can for instance be estimated within a
hydrodynamic approach [147], yielding

χ(s) =
mc2

n

∫
(nk + 1/2)

eik.s

�k

ddk

(2π)2
. (2.38)

This gives the following results :

- in 3D at any T , or in 2D at T = 0, the integral in Eq. (2.38) always converges and phase
fluctuations remain finite, guaranteeing the existence of true long-range order;

- in 2D at T > 0 and 1D at T = 0, the integral in Eq. (2.38) diverges logarithmically,
yielding an algebraic decay of g(1)(r) by virtue of Eq. (2.37), g(1)(r) ∝ r−ν, referred to as
quasi-long range order.

- in 1D at T > 0, the integral in Eq. (2.38) diverges linearly, yielding an exponential decay
of g(1)(r), g(1)(r) ∝ e−r/r0 .

Therefore, in the last two cases, which correspond to low dimensions, large phase fluctua-
tions prevent the establishment of long-range order.

However, although large phase fluctuations forbid condensation, a kind of ”coherent” state
can be identified at sufficiently low temperatures. Indeed, the computation of density fluctu-
ations, either from Bogoliubov theory (2.36) or from hydrodynamic approaches [155], reveals
that in the presence of interactions, density fluctuations are suppressed below a critical tem-

48
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perature 11. Such a state, characterized by weak density fluctuations, has been referred to
since Popov [156] as a quasi-condensate (QBEC), and is defined by the condition 〈δ2n〉 � n2.
Equivalently, this implies that the second-order correlation function g(2) satisfies g(2)(0) = 1 12.
In other words, a QBEC does not have first-order (phase) coherence as a BEC, but exhibits
second-order (density) coherence. An alternative definition of a QBEC indeed requires that
the phase coherence length be much larger than the density coherence length [157–159]. In a
quasicondensate, the density is close to its average value and thermodynamic properties are
locally similar to those of a BEC.

Bogoliubov theory in the density-phase representation

As we have discussed above, the hypothesis on which relied the Bogoliubov theory (i.e. the
existence of a condensate wavefunction) is invalidated in low-dimensions where large phase
fluctuations prevent condensation in a state of well defined phase. An alternative and more
general formulation of the theory, which does not require the existence of a condensate, was
introduced by Popov [156], and proves particularly relevant in low dimensions. The latter relies
on the density-phase representation of the field operator,

ψ̂(r) = eiθ̂(r)
√

n̂(r), (2.39)

where the density (n̂) and phase (θ̂) operators satisfy the bosonic commutation rule
[n̂(r), θ̂(r′)] = iδ(r − r′). In this representation, the general Hamiltonian of the weakly-
interacting Bose gas (2.11) rewrites

Ĥ =

∫ √
n̂
[−�

2

2m

(
∇2−|∇θ̂|2

)
+ V (r) +

g

2
n̂
]√

n̂ dr. (2.40)

Similarly to the standard Bogoliubov approach, Popov’s idea consists in developing density
and phase operators around classical fields,

n̂(r) = n0(r) + δn̂(r), θ̂(r) = θ0(r) + δθ̂(r), (2.41)

assuming small density and small gradient of phase fluctuations 13. Importantly, this hypothesis
of slowly variating phase fluctuations does not require phase fluctuations to be weak. For
instance, Popov’s theory can be used in situations where no condensate exists due to large
phase fluctuations (e.g. varying from 0 to 2π over the whole system size), provided the phase
fluctuations locally vary sufficiently slowly. It is therefore particularly well-suited to describe
quasicondensates.

Hamiltonian (2.40) is then perturbatively expanded in fluctuation terms.

To zeroth order, it yields the two-coupled equations for the classical fields n0(r) and θ0(r),

− �
2

2m

(∇2√n0√
n0

− |∇θ0|2
)
+ V − μ+ gn0 = 0 (2.42)

∇(n0∇θ0) = 0. (2.43)

Remarkably, Eqs. (2.42) and (2.43) exactly coincide with the GPE (2.13) for the field
ψ0(r) = eiθ0(r)

√
n0(r). In many cases, when no constraint is imposed on the phase, one

11The critical temperature goes to zero when the interactions vanish.
12Notice that interactions are indeed crucial to have a quasicondensate since g(2)(0) = 2 for an ideal gas.
13It can in fact be shown that weak density fluctuations also imply weak fluctuations of the phase gradient [160].
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50 2. ULTRACOLD BOSE GASES - BOGOLIUBOV THEORY

immediately gets θ0(r) = 0, while
√

n0(r) obeys then the usual Gross-Pitaevskii equation.
Exceptions to this situation can be encountered when considering phase-twisted boundary
conditions, as commonly done when studying the superfluidity 14, or when studying the
relative phase between coupled BECs, as done in chapter 5 . Therefore, we will consider here
the most general situation.

At second order in the fluctuation terms, Hamiltonian (2.40) reads

Ĥ(2) =
1

2

∫ (
B̂† − B̂

)
LGP (r)

(
B̂

B̂†

)
ddr + cst. (2.44)

where

B̂ ≡ δn̂(r)

2
√

n0(r)
+ i

√
n0(r)δθ̂(r) (2.45)

and

LGP =

⎛
⎜⎜⎜⎜⎝

[
− �

2

2m

(∇2 + 2i∇θ0 · ∇ − |∇θ0|2
)
+ V − μ+ 2gn0

]
gn0

−gn0 −
[
− �2

2m

(∇2 + 2i∇θ0 · ∇ − |∇θ0|2
)
+ V − μ+ 2gn0

]∗

⎞
⎟⎟⎟⎟⎠ .(2.46)

Remarkably, Hamiltonian Ĥ(2) is diagonalized in the same canonic form as in the usual Bogoli-
ubov approach [Eq. (2.24)], using the same Bogoliubov transform [Eq. (2.22)] (with B̂ replacing
δψ̂), provided the Bogoliubov wavefunctions uν and vν are solutions of the Bogoliubov equations

LGP

(
uν
vν

)
= εν

(
uν
vν

)
. (2.47)

Note that here again, the zero-modes P̂ and Q̂ can be left aside provided the Bogoliubov
wavefunctions are properly orthogonalized with respect to the ground state. In the density-
phase picture, the Bogoliubov transformation (2.22) is more likely rewritten explicitely in terms
of phase and density fluctuations,

δn̂(r) =
√

n0(r)
∑
ν

(
f−⊥
ν b̂ν + f−⊥∗

ν b̂†ν
)

(2.48)

δθ̂(r) =
1

2i
√

n0(r)

∑
ν

(
f+⊥
ν b̂ν − f+⊥∗

ν b̂†ν
)

(2.49)

with f±⊥
ν = u⊥ν ∓ v⊥ν , the superscript ⊥ indicating orthogonalization with respect to the

ground-state.

The density-phase representation yields the same excitation spectrum and wavefunctions,
as well as ground-state energy and second-order correlation function g(2), Eq. (2.36). It is thus
remarkable that the previous results also apply in low dimensions, although no true condensate

14The superfluidity is indeed obtained from the answer of the fluid to an imposed velocity flow, which amounts
to impose a gradient in the phase of the condensate wavefunction.
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exists. As regards the first-order correlation function g(1), the situation is less simple. The
density-phase representation yields

g(1)(r− r′) =
1

N

∑
k �=0

e−ik(r−r′)[v2k + (u2k + v2k)Nk] (2.50)

which is the same expression as Eq. (2.35), but without the first term n0. Although this
result captures the absence of long-range order in low dimensions, it is inconsistent with the
usual Bogoliubov theory in 3D, which is well-described by Eq. (2.35). Moreover, a more
careful inspection of Eq. (2.50) reveals the presence of divergences in low dimensions. Those
inconsistencies can in fact be traced to the fact that the density-phase picture does not rely
on a precise definition of the phase operator, and needs to be regularized.

Regularizations of Bogoliubov theory

Several attempts have been made to overcome this long-standing issue. Popov first de-
veloped a functional integral approach [156], but the latest requires the introduction of an
arbitrary cutoff, so that there is no full equivalence in 3D with the Bogoliubov theory. A suc-
cessful method to treat this problem was provided by Mora and Castin [154], who improved the
density-phase formulation by introducing a grid discretisation to properly define the phase and
density operators, and built a unified theory where all divergences have been solved. The latter
in particular recovers all the results of the usual Bogoliubov theory, for instance as regards
density fluctuations and second-order correlation function g(2). Most interestingly, their proper
treatment enabled them to exactly compute phase fluctuations and the first-order correlation
function (and not only their asymptotic behaviour) in all dimensions. In the case where a
true condensate is present, their formula for g(1) coincides with the usual Bogoliubov theory,
Eq. (2.35). More importantly, in low dimensions, they find the remarkable formula

g(1)(r) =
√

n(r)n(0)exp

[
g(1),Bogo(r)√

n(r)n(0)
− 1

]
, (2.51)

where g(1),Bogo(r) is given by Eq. (2.50).

Conclusion

The Bogoliubov theory successfully describes the Bose gas in the weakly-interacting regime.
Although originally introduced in the 3D case where a true condensates exists, it can also apply
to quasicondensates, and is therefore very general. Moreover, it can advantageously be used in
inhomogeneous systems, proving thus a powerful tool when addressing the question of disorder.
Since it precisely describes the collective elementary excitations of the system, it is particularly
well-suited for an investigation of the collective localization transitions, which is the main topic
of this manuscript. Therefore, it is to some extent one of the cornerstones of this manuscript,
and will be widely used in the next chapters in various situations.
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Chapter 3

Propagation of collective pair

excitations in disordered many-body

Bose superfluids

Plus il y a de gruyère, plus il y a de trous,
et malheureusement, plus il y a de trous,

eh bien moins il y a de gruyère.
Coluche

Collective excitations govern most dynamical properties of many-body quantum sys-
tems. In many-body dynamics, propagation of correlations, relaxation of integrable systems,
and thermalization processes, are for instance determined by the transport properties of col-
lective excitations [161]. Those issues have known a renewed interest sparked by the recent
development of quantum devices with long coherence times and dynamically controlable pa-
rameters, such as ultracold atomic gases and superconducting circuits [162]. In those systems,
out-of-equilibrium dynamics can for instance be induced by a quantum quench, i.e. an abrupt
change of some Hamiltonian parameter [119,121–124]. A quantum quench generates collective
excitations, which can then propagate and mediate long-range energy transfer throughout the
system.

As discussed in Sec. 1.2.4, understanding how disorder alters this dynamics re-
mains a challenging issue, especially in quantum systems where one-body [2] or many-
body [9, 10, 13, 70–72, 79–81] Anderson localization is expected to possibly break ergodicity.
So far, absence of thermalization and persistence of local fluctuations were only reported for
systems where localization is the rule, e.g. one-dimensional spin [73, 74] and Fermi [77, 82, 83]
systems. The case of Bose systems in higher dimensions, on which we will focus in this
chapter, is much less advanced, although one can anticipate a richer behavior. On the one
hand, disorder in dimension higher than one sparks a variety of transport regimes, including
incoherent diffusion, weak localization, and strong localization [163]. On the other hand,
repulsive interactions in Bose systems can compete or cooperate with disorder, inducing
nontrivial localization effects [11,12,164,165], which are still debated.

Furthermore, it should be pointed out that collective excitations govern also some static
properties of interacting quantum systems. They generically determine the finite-temperature
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behaviour of most observables, as well as quantum fluctuations around the ground state at
zero temperature. In particular, in the case of a Bose gas we will consider in this chapter,
collective excitations are directly linked with coherence properties and macroscopic quantities,
such as superfluidity. Understanding the effect of disorder on collective excitations can thus
help understand how disorder destroys those quantities and characterize the superfluid to Bose
glass phase transition at finite temperature (see Sec.1.2.2), which remains an open question.

Therefore, understanding the localization properties of collective excitations in Bose gases
is not only directly relevant to describe many-body dynamical properties, but can as well pave
the way towards the investigation of the disordered bosons phase diagram at finite temperature.

A generic and important starting point in the understanding of localization in correlated
quantum systems relies on a classification according to the symmetries of their excitations [166].
For Fermi systems, it is mostly based on the three classes of random matrices [167] as well as
chiral or particle-hole symmetries [168]. For Bose systems, a strong distinction arises between
Goldstone and non-Golstone modes [14,169]. In particular, localization is generically suppressed
for low-energy Goldstone modes.

In the precise case of a repulsively interacting Bose superfluid, it has been shown that
although weak interactions destroy single-particle localization (the system being an extended
superfluid), localization can survive at the level of collective excitations, which are in this
case Bogoliubov quasiparticles [13, 79]. Localization properties of collective excitations have
then been investigated, and several studies have agreed that localization should generically be
suppressed for phonon excitations [13, 79, 170], in agreement with the anticipated behaviour
for Goldstone modes. However, such conclusions were based on a weak disorder analysis,
which holds only in dimension d ≤ 2 where localization occurs for arbitrary weak disorder.
They are challenged in higher dimension, where the onset of the Anderson transition requires
sufficiently strong disorder. Strong disorder may then affect the very nature of the excitations,
and deeply alter this localization picture.

In this chapter, we develop a formalism allowing us to treat both the weak and strong
disorder case, which will permit to study localization in 3D as well, and provide an intuitive
description of the nature of the excitations and the physics at stake. The chapter is organized
as follows. In Sec. 3.1, we use the Bogoliubov theory to set up a scattering problem describing
the transport of the excitations. This problem is then reformulated in terms of an effective
screened scattering problem. The latter is solved in Sec. 3.2, first for a generic impurity model,
before extending the results to others models of disorder. In particular, we find that the
competition of disorder, screening, and density depletion yields a strongly non-monotonic and
non-universal energy dependence of the disorder parameter, which controls the localization
properties. In three dimensions, the resulting localization diagram exhibits several classes of
mobility spectra, characterized by either no or several mobility edges. Section 3.3 is devoted to a
more detailed analysis of the effect on disorder correlations, which may be used to obtain richer
and tailored localization diagrams. Finally, we quantify the validity conditions of our approach
in Sec. 3.4, before discussing observability and experimental implications of our predictions.
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3.1 Devising a scattering problem for the excitations 55

3.1 Devising a scattering problem for the excitations

We consider a disordered Bose fluid in arbitrary dimension d, in the presence of weak repul-
sive interactions. Its dynamics can be captured by the many-body grand-canonical Hamiltonian

Ĥ =

∫ {
Ψ̂†

[−�
2∇2

2m
+ V (r)− μ

]
Ψ̂ +

g

2
Ψ̂†Ψ̂†Ψ̂Ψ̂

}
ddr (3.1)

where m is the particle mass, μ denotes the chemical potential, and the repulsive interactions
are modeled by a contact potential of coupling constant g > 0. The field operator is

conveniently written Ψ̂ = eiθ̂
√
n̂, where the phase (θ̂) and density (n̂) operators obey the

commutation rule [n̂(r), θ̂(r′)] = iδ(r − r′).

The disordered potential, V , is chosen to be a random field with spatially homogeneous
statistical properties. We assume without loss of generality that it is of vanishing average
〈V 〉 = 0 (which amounts to choose the zero of energies adequately). We denote by VR =

√
〈V 2〉

its root-mean-square amplitude and

C(r) = 〈V (r′)V (r+ r′)〉 ≡ V 2
R c2(r/σR) (3.2)

its two-point correlation function, where σR is the correlation length and c2 is the dimensionless
correlation function (see appendix A). We will also assume the disorder to be isotropic, which
means that C(r) is a radial function, C(r) = C(r). In Fourier space, isotropy ensures that the
power spectrum of the disorder C̃(q) =

∫
C(r)e−iq.rddr is as well a radial function.

Furthermore, the translation of Eq. (3.2) to Fourier space reads

C̃(q) = V 2
Rσ

d
Rc̃2(qσR) (3.3)

and
〈Ṽ (q)Ṽ ∗(q′)〉 = (2π)dδ(q− q′).C̃(q) (3.4)

The dimensionless power spectrum c̃2 is therefore a radial [c̃2(q) = c̃2(q))], positive [c̃2(q) ≥ 0]
and normalized [

∫
c̃2(q)d

dq = (2π)d] function.

In the weakly-interacting regime we are interested in (n � mg/�2), meanfield theory pro-
vides a good description of the Bose gas, as detailed in chapter 2. Therefore, to devise a
scattering problem for the excitations, we will follow the Bogoliubov-Popov approach [156]. As
already explained, such an approach mostly consists in a perturbative expansion of Hamilto-
nian (3.1) in weak fluctuation terms, around the inhomogeneous classical fields (∇θc, nc) which
minimize the classical energy functional associated to Hamiltonian (3.1).

Therefore, we will proceed in three successive steps. Firstly, we will determine the inhomo-
geneous classical fields (∇θc, nc), which will in particular provide us with a precise description
of the disordered density profile of the condensate. This will be the object of Sec. 3.1.1.
Then, in Sec. 3.1.2, expanding Hamiltonian (3.1) in the weak fluctuation terms ∇θ̂(r) and
δ̂n(r) = n̂(r) − nc(r) will allow us to write the Bogoliubov equations which govern the be-
haviour of collective excitations. As we shall see, this will define a scattering problem for the
excitations, whose universal transport properties can be straightforwardly inferred from one-
parameter scaling theory. However, to obtain non-universal transport properties, which are
necessary to completely characterize the localization behaviour of collective excitations, we will
have to resort to a microscopic approach, which will be the object of Sec. 3.1.3. This will set up
an explicit scattering problem, which we will be in a position to solve for any model of disorder
in the next sections.
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Figure 3.1: Density background in the weak disorder case, as numerically obtained by solving the
GPE (3.5) using imaginary time propagation. The system has a size 2L and contains N = 104 atoms.
Due to the disorder, the density is modulated around its average value Lnc = 5000. If the limit
ξ � σR (solid red line), the density profile follows the spatial modulations of the bare disorder. For
ξ � σR (dashed red line), it follows the modulations of a smoothed potential Ṽ where short-wavelength
variations of the bare potenital have been smoothed out.

3.1.1 The inhomogeneous density background

The fields ∇θc and nc are the solutions of the Gross-Pitaevskii equation, Eqs. (2.42)
and (2.43). Since no constraint is imposed on the phase of the condensate, one immediately
sees that the latter is uniform, ∇θc = 0, and that nc is the solution of the Gross-Pitaevskii
equation (GPE) for the density

[
− �

2∇2

2m
+ V (r)− μ+ gnc(r)

]√
nc(r) = 0, (3.5)

In the following, we determine and describe the disordered density background nc, which is
given by the solution of Eq. (3.5).

Let us first recall that contrary to the disordered Schrödinger equation, which can yield
exponentially localized wavefunctions, the non linear term of the GPE always makes the
ground state delocalized, in the sense that no localization of the density profile can occur
on asymptotically large scales. Indeed, two distant finite subsystems with typically similar
variations of V (r) and similar kinetic energy cannot have significantly different average
densities, since the GPE would then yield different chemical potentials for the two subsystems,
violating equilibrium. In other words, contrary to the single-particle Schrödinger equation,
which does not involve directly the absolute amplitude of the wavefunction, the iteracting
term here does so; it balances the external potential, the kinetic energy and the chemical
potential, and therefore cannot drop on lagre scales if the potential has homogeneous properties.

Therefore, the disordered density profile is traditionally determined as a perturbation of
the homogeneous density profile nc = μ/g. More precisely, for weak disorder, Eq. (3.5) can be
solved using straightforward perturbation theory [171, 172]. It is now well-known that at first
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order, the density profile follows the modulations of a so-called smoothed disorder,

nc(r) =
μ− Ṽ (r)

g
, (3.6)

where, in Fourier space,

Ṽ (q) =
V (q)

1 + ξ2|q|2 , (3.7)

with ξ = �/
√
4mμ denoting the healing length of the condensate. The latter is traditionally

interpreted as the typical length over which the condensate density can accomodate to spatial
variations of an external potential. If ξ � σR (Thomas-Fermi regime), the potential V
varies on a length scale much larger than ξ, so that the density profile can follow its spatial
modulations, Ṽ = V . If ξ � σR, the potential V varies on a length scale shorter than ξ. In
this case, a density profile following the modulations of the bare potential is thus no longer
energetically favorable since it generates too much kinetic energy. The density then follows
the modulations of a smoothed potential Ṽ , where short-wavelength variations of the bare
potenital have been smoothed out (see Fig. 3.1).

However, the previous approach is not valid for strong disorder, mainly because it does
not take into account the possible depletion of the density around the local maxima of the
disordered potential. To incorporate this effect, which will play a crucial role in the following,
we extend the perturbative approach by writing the density field in the generic form

nc(r) =
μ+Δ− η(r)

g
, (3.8)

where the field η(r) describes the modulations of the density due to the disorder, and the
quantity Δ is a shift in the chemical potential which allows us to impose the conventional
condition that η(r) is of zero statistical average. Since the density is positive everywhere,
nc(r) ≥ 0, the field η(r) is bounded above, η(r) ≤ μ + Δ. Notice that necessarily, μ +Δ ≥ 0
since η(r) cannot be negative everywhere.

Then, the general idea of the approach consists in inserting the generic expression Eq. (3.8)
into the Gross-Pitaevskii equation (3.5), and solving it self-consistently for η(r) and Δ. We
detail below the resolution before analysing the physics of the solution.

Self-consistent resolution

To solve self-consistently the GPE for η(r) and Δ, we first rewrite Eq. (3.8) in the form
√
nc =

√
μ+Δ

g
(1+ψ1), and insert it in the GPE, lifting temporarily the constraint ψ1 ≥ −1.

We then linearize it at first order in ψ1 and V . This yields

ψ1(r) = −Δ+ Ṽ (r)

2μ + 3Δ
(3.9)

where, in Fourier space,

Ṽ (q) =
V (q)

1 + ξ2Δ|q|2
. (3.10)

57
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Figure 3.2: One-dimensional cut of the density profile of a Bose superfluid in a disordered potential [full
line, V (r)]: exact numerical solution of the GPE (3.5) [shaded area, nc(r)] vs. self-consistent solution
using Eq (3.8) [dashed line], for a disorder of amplitude VR/μ = 0.87 and correlation length σR = ξ.
The density profile may be locally depleted around disorder maxima.

The quantity Ṽ (r) is a generalized smoothed potential [171], where the healing length is renor-
malized by the shift Δ to the value ξΔ = �/

√
4m(μ+ 3Δ/2). From ψ1, we immediately infer

nc and η, which yields, putting back the constraint that it is bounded above,

η(r) = (μ +Δ) min

{
Δ+ Ṽ (r)

μ+ 3Δ/2
, 1

}
. (3.11)

The quantity Δ is then determined using the condition 〈η(r)〉 = 0, which yields

0 = Δ+ 〈min{Ṽ (r), μ +Δ/2}〉, (3.12)

where 〈. . .〉 denotes statistical averaging. Note that Eq. (3.12) ensures that μ + 3Δ/2 ≥ 0, so
that the above quantity ξΔ is well defined.

Therefore, the density field nc(r) (3.8) is finally found by solving self-consistently Eqs. (3.10)
and (3.12) for Δ and Ṽ (r), and using Eq. (3.11) to deduce η(r).

Discussion

The previous solution, Eq. (3.11), shows that the density modulations η(r) follow those
of a disordered field Ṽ (r), which is smoother than the bare disorder due to a finite healing
length. However, due to the presence of the min function, the field η(r) locally saturates to
the constant value μ + Δ at positions where Ṽ (r) typically exceeds the chemical potential μ
(more precisely, where Ṽ (r) ≥ μ+Δ/2). In those regions, which will be referred to as depleted
regions, we thus have nc(r) ≈ 0 (see Fig. 3.2).

In order to interpret the shift Δ, we may rewrite Eq. (3.12) in the form

Δ = −〈min{Ṽ , μ+Δ/2}〉
= −

∫
dṼ P (Ṽ ) min{Ṽ , μ+Δ/2}

= −
∫
depl.

dṼ P (Ṽ )(μ+Δ/2)−
∫
non depl.

dṼ P (Ṽ )Ṽ

=

∫
depl.

dṼ P (Ṽ ) [Ṽ − (μ+Δ/2)], (3.13)
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where P (Ṽ ) is the probability distribution of the smoothed potential, ”depl.” (resp. ”non depl.”)
denotes the depleted (resp. non depleted) regions, and where we have used the fact that Ṽ is
of zero statistical average.

From Eq. (3.13), it appears that the quantity Δ represents the weight of the part of the
smoothed potential that is truncated in the depleted regions, as illustrated below :

In particular, in the case of weak disorder for which Ṽ (r) never exceeds μ, we get Δ = 0,
so that we recover from Eqs. (3.10) and (3.12) the solution given by usual perturbation
theory, Eq. (3.6) [171, 172]. For stronger disorder, Δ is finite and depleted regions ap-
pear at positions where Ṽ (r) ≥ μ + Δ/2. Moreover, both the amplitude of the density
modulations and the healing length are then renormalized by the shift Δ. Therefore, the
self-consistent solution Eq. (3.11) accounts for the local depletion of the density field around
the disorder maxima, an effect that will crucially affect the propagation of collective excitations.

The above self-consistent procedure can be numerically implemented in a very simple way.
Starting from Δ = 0, we iterate the following two-step process until convergence :

(i) Use Eq. (3.10) to compute Ṽ from Δ and the bare disorder;

(ii) Use Eq. (3.12) to compute a new value of Δ (Δnew) from Ṽ and the current value of Δ
(Δold), by Δnew = −〈min{Ṽ (r), μ +Δold/2}〉.

Once Δ and Ṽ (r) have been determined, η(r) is straightforwardly inferred from Eq. (3.11),
and so is nc(r) from Eq. (3.8). Note that in the numerical calculation, the statistical average is
simply replaced by the spatial average of the considered realzation, which allows to determine
the density profile for one single disorder realization. Figure 3.2 shows that this procedure is in
very good agreement with the exact density profile, which is numerically obtained by imaginary
time propagation.

3.1.2 Transport equation for the excitations - Universal properties

Bogoliubov equations : a two-wave scattering problem

Knowing the density field nc(r), we now turn to the collective excitations. In the density-
phase picture [see chapter (2)], Hamiltonian (3.1) is developed up to second order in the Bo-
goliubov operator

B̂(r) ≡ δn̂(r)

2
√

nc(r)
+ i

√
nc(r)θ̂(r) (3.14)

where θ̂ and δn̂ denote phase and density fluctuations. The resulting quadratic Hamiltonian is
then diagonalized by expanding the Bogoliubov operator into the excitation basis,

B̂(r) =
∑
ε

{uε(r)b̂ε + v∗ε(r)b̂
†
ε}, (3.15)
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60 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

where b̂ε is the annihilation operator of a Bogoliubov quasiparticle of energy ε. The excitation
fields uε(r) and vε(r) are then determined by the Bogoliubov-de-Gennes equations (2.47). The
latter involve the density field nc, and rewrite, after replacing it by its expression (3.8),

L0

(
uε
vε

)
+ U(r)

(
uε
vε

)
= ε

(
uε
vε

)
, (3.16)

where we have on purpose separated the two contributions

L0 =

⎛
⎜⎝−�

2∇2

2m
+ μ+ 2Δ +μ+Δ

−μ−Δ +
�
2∇2

2m
− μ− 2Δ

⎞
⎟⎠

and

U(r) =
(
+V (r)− 2η(r) −η(r)

+η(r) −V (r) + 2η(r)

)
.

In this form, Eq. (3.16) devises a well-defined two-wave scattering problem. The dynamics of
a given excitation at energy ε is governed by the homogeneous propagator L0 and scattering
from a disordered medium defined by U(r). The latter combines the two random fields V (r)
and η(r), which are strongly correlated according to Eqs. (3.10) and (3.11).

Universal transport properties

Universal transport properties can be obtained using the one-parameter scaling (OPS)
theory [44], which proved successful for analyzing linear [166,173,174] as well as nonlinear [175]
disordered systems. As we shall see, it is easily extended to the case of excitations.

The general idea of a scaling theory is that the relevant macroscopic properties of a system
can be inferred by analysing how those properties evolve when increasing the system size. The
scaling theory of localization is traditionnaly formulated in terms of a dimensionless conduc-
tance, which is supposed to be the only scaling variable of the system. The latter is identified
to the so-called Thouless number [176], which is the ratio of the energy-scale associated to
diffusion across a finite sample of size L,

δε = �DB/L
2

(with DB = wlB/d the classical diffusion constant, w = �
−1|∂ε/∂k| the excitation velocity, and

lB the Boltzmann transport mean-free path), to the energy-level spacing,

Δε = 1/N(ε)Ld

(with N(ε) the density of states per unit volume). In the diffusive regime, if kε is the momentum
associated to energy ε, then N(ε) ∝ kd−1

ε /|∂ε/∂k| = kd−1
ε /�w, so that

G(L) ∝ (kεlB)(kεL)
d−2.

In the localized regime, the conductance is exponentially small,

G(L) ∼ exp(−L/Lloc)
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3.1 Devising a scattering problem for the excitations 61

Figure 3.3: RG flow β(L) of the one-parameter scaling theory of localization in dimensions 1, 2 and 3.
In 3D, the crossing with the horizontal axis indicates the transition point between the diffusive and the
locaized regimes. Figure from the original paper [44].

with Lloc the localization length.
The idea is then to develop a renormalization-group (RG) analysis of this size-dependent

conductance. The evolution of the conductance under a change in the system size is determined
by the RG flow β ≡ d logG/d logL. It can be shown that it is a regular, monotonic function
of G only [44]. The latter is plotted on Fig. 3.3. In the diffusive regime (large G, right part
of the figure), β ≡ d logG/d logL ∼ d − 2. In the localized regime (small G, left part of the
figure), β ∼ logG. The OPS then predicts the following well-known behavior. For d ≤ 2, β(G)
is strictly negative and G(L) always flows down to the localized regime when increasing the
system size. In such case, all states are localized, and the localization length Lloc is found to
scale linearly with lB in 1D, Lloc ∝ lB, and exponentially in 2D, log(Lloc/lB) ∝ kεlB. Conversely,
for d > 2, β(G) has both negative (for small G) and positive (for large G) values and crosses
zero at Gc ∼ 1. This point is an unstable RG fixed point, known as the mobility edge, which
separates a diffusive regime from a localized regime. Therefore, a localization transition occurs
for kεlB � 1.

At this stage, there is virtually no difference between single-particle and many-body local-
ization universal scaling laws, for they are independent of the dispersion relation. In particular,
all excitations are localized in 1D and 2D, while a localization transition shows up in 3D. Nev-
ertheless the localization behaviour crucially depends on the inverse disorder parameter (IDP)
kεlB, which determines the onset of 3D Anderson localization for kεlB � 1. For single particles
in continuous space, kεlB usually increases monotonously with energy, giving rise to a single
mobility edge 1. What happens for pair excitations in the interacting Bose fluid ?

1Exceptions exist for some disorder correlations (see for instance Refs [47,177–179]), a case that we disregard
here.
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62 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

3.1.3 Microscopic approach

To completely solve the scattering problem (3.16), one therefore has to estimate the
disorder parameter kεlB, which requires to resort to a microscopic approach. A fruitful,
although approximate, approach is to use diagrammatic perturbation theory and retain the
leading-order disorder terms [17]. For single particles, it is now a well-established method,
whose basics are reviewed in appendix B. This in paricular permits to characterize field
and intensity transport, and compute, among others, the Boltzmann transport mean-free
path lB. For pair excitations, it is a much more complicated problem, since the scattering
problem (3.16) involves twice as many waves as for single-particles. So far, this two-wave
problem has been solved at the level of field transport, i.e. for single-scattering only [172].
As regards intensity transport, from which is traditionally computed the transport mean-free
path, it is much more involved, since it a priori involves all possible diagrams coupling the two
Bogoliubov waves and their conjugates.

A solution to this problem can be achieved by finding an appropriate linear combination of
the two Bogoliubov modes which will dominate the diagrammatic expansion. In other words,
this will enable us to reduce the two-wave scattering problem (3.16) to an effective single-wave
problem, which can then be solved by applying the standard diagrammatic perturbation theory
procedure.

Decoupling into an effective single-wave problem

To do so, we generalize the approach of Ref. [79] to the strong disorder case where Δ �= 0.
We first rewritte Eq. (3.16) in the form

�
2

2m
∇2

(
uε
vε

)
=

(−ε+ μ+ 2Δ μ+Δ
μ+Δ ε+ μ+ 2Δ

)(
uε
vε

)
+

(
V (r)− 2η(r) −η(r)

−η(r) V (r)− 2η(r)

)(
uε
vε

)
.

(3.17)
A suitable basis to perform a diagrammatic expansion in leading disorder terms is found

by applying the linear transform (uε, vε) → (g+ε , g
−
ε ) that diagonalises the homogeneous term

in Eq. (3.17), i.e. the matrix M ≡
(−ε+ μ+ 2Δ μ+Δ

μ+Δ ε+ μ+ 2Δ

)
. It yields

(
g+ε
g−ε

)
=

(
�
2γ2ε/2m−Δ+ε −�

2γ2ε/2m+Δ+ε
�
2k2ε/2m+Δ−ε −�

2k2ε/2m−Δ−ε

)(
uε
vε

)
, (3.18)

where −�
2k2ε/2m ≡ −

√
ε2 + (μ+Δ)2 + (μ+2Δ) and �

2γ2ε/2m ≡
√

ε2 + (μ+Δ)2 + (μ+2Δ)
are the eigenvalues of the homogeneous matrix M .

Without any approximation at this stage, the BdGEs in the (g+ε , g
−
ε ) basis then read

�
2k2ε
2m

g+ε (r) = − �
2

2m
∇2g+ε (r) +

[
V (r)− f−(ε)η(r)

]
g+ε (r) + Φ+(ε)η(r)g

−
ε (r) (3.19)

−�
2γ2ε
2m

g−ε (r) = − �
2

2m
∇2g−ε (r) +

[
V (r)− f+(ε)η(r)

]
g−ε (r) + Φ−(ε)η(r)g+ε (r), (3.20)

with f±(ε) =
2
√

ε2+(μ+Δ)2±(μ+Δ)√
ε2+(μ+Δ)2

and Φ±(ε) =
√

ε2+(μ+Δ)2±(μ+Δ)√
ε2+(μ+Δ)2

.
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In the absence of disorder, Eqs. (3.19) and (3.20) are now decoupled and are straightforward
to solve. The g+ε modes are plane waves of momentum kε, while the g−ε are evanescent waves
of penetration length γ−1

ε . The latter vanish identically if the system is infinite or has periodic
boundary conditions 2.

In the presence of disorder, we can therefore make the assumption that |g−ε | � |g+ε | by at
least one order in VR/μ and Δ/μ. Keeping only the leading-order terms in disorder in Eq. (3.20),
one can neglect the second term of the r.h.s. Equation (3.20) is then straightforwardly solved
by

g−ε � − 2m

�2β2
ε

Φ−(ε)
∫

dr′ G1/γε(r− r′)η(r′)g+ε (r
′) (3.21)

where G1/γε is the Green function associated to the differential operator −∇2/γ2ε+1. In Fourier
space,

G1/γε(q) =
(2π)−d/2

1 + q2/γ2ε
.

In real space, it is a positive function of integral 1 decaying on a length scale 1/γε. Then, since
2m

�2γ2ε
< μ and |Φ−(ε)| < 1 for all energy ε, we have

|g−ε | �
∫

G1/γε(r− r′)|η(r′)||g+ε (r′)|dr′/μ � VR/μ|g+ε |,

which is consistent with our initial assumption |g−ε | � |g+ε |. Therefore, the last term of
Eq. (3.19) can be neglected, yielding a closed equation for g+ε :

�
2k2ε
2m

g+ε (r) = − �
2

2m
∇2g+ε (r) + Vε(r)g

+
ε (r) (3.22)

with
Vε(r) = V (r)− f(ε)η(r) (3.23)

where for simplicity, we now denote by f(ε) the quantity f−(ε) =
2
√

ε2+(μ+Δ)2−(μ+Δ)√
ε2+(μ+Δ)2

.

Equation (3.22) contains the leading disorder terms and features an effective single-wave
scattering problem. Transport properties are entirely determined by the wave g+ε . The g−ε
wave is enslaved on g+ε , as expressed by Eq. (3.21), and only renormalizes the disorder seen by
g+ε . The quantity Vε(r) indeed defines a so-called screened potential, in the sense that it can
be viewed as the screening of the bare potential V (r) by the density background encoded in
η(r). It notably depends on the energy ε of the Bogoliubov excitation. Note as well that since
〈η(r)〉 = 0 by construction, the screened potential is of zero statistical average.

Disorder parameter of excitations

The effective single-wave scattering problem (3.22) can now be solved by standard
quantum transport theory [17]. Details of this procedure are provided in appendix B. In brief,

2This is rigorously true only for excitations of energy ε >
√

2Δ(μ+ 3Δ/2) -otherwise both modes are
evanescent-. However, it is indeed the case of almost all excitations, except for a very narrow energy range
at the bottom of the spectrum. Therefore, in the following, we will always assume that it is the case for the
considered excitations.
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64 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

localization properties are determined by a two-step process [45,46].

Firstly, the transport mean-free path is calculated in the Boltzmann approximation where
interference between multiple-scattering paths are neglected. Within the on-shell approxima-
tion, which amounts to assimilate the spectral function to the disorder-free one, diagrammatic
theory (see appendix B) yields, in d > 1 :

1

kεlB(ε)
� 2πm2

�4k4−d
ε

∫
dΩd

(2π)d
(1−cos θ)Cε[2kε sin(θ/2)], (3.24)

where Cε is the power spectrum of the screened potential and dΩd the infinitesimal solid angle
in d dimensions. Notice that Eq. (3.24) is valid only for models of disorder with isotropic
correlation functions [18], as considered here 3. The 1D case is particular, as the angular
integral reduces to the two angles θ = 0 and θ = π. Moreover, since the contribution of θ = 0
vanishes due to the anisotropy factor (1 − cos θ), the IDP in that case is entirely determined
by the backscattering process θ = π, which yields the formula

1

kεlB(ε)
� 2πm2

�4k4−d
ε

Cε[2kε], (3.25)

This expression in 1D can be derived in a more rigorous way [13] by considering the
Lyapunov exponent which, according to the scaling theory, scales as Γ = 1/Lloc ∝ 1/lB. There-
fore, our approach captures as well the 1D case provided Eq. (3.25) is used instead of Eq. (3.24).

Secondly, localization is found using either the one-parameter scaling theory [44], as
discussed in the previous Sec. 3.1.2, or the self-consistent approach [45,46]. The self-consistent
theory incorporates interference corrections on the top of diffusive dynamics, which yields a
self-consistent equation for the diffusive constant or the localization length. Both approaches
give in 3D the approximate localization threshold kεlB ∼ 1, and the respective scalings
Lloc ∝ lB and log(Lloc/lB) ∝ kεlB in 1D and 2D, which we will use in the following.

The calculation of the IDP kεlB from Eq. (3.24) requires to know the power spectrum of the
screened potential. Since the latter depends on the density background η(r), which includes
both density modulations and depletion induced by the disorder [see Eq. (3.11)], it is in general
non universal, in the sense that it depends on the precise model of the disorder. For any given
model of disorder, one can in principle numercially solve the density background, Eq. (3.11),
compute the screened potential, Eq. (3.23), and deduce the IDP from Eq. (3.24).

3.2 Localization of excitations for an impurity model

For the sake of concreteness, and to facilitate the discussion, we will in this section focus on
a precise impurity model. The reasons of such a choice are twofold. The first one is pedagocical,
since an impurity model more easily allows for a physical interpretation, as positive and negative
peaks are clearly identified. The second one is technical : one shall indeed see that in the limit
of dilute impurities, the power spectrum of the screened potential can be expressed as a sum
over impurities of decoupled individual terms. This dispenses us to generate a full disorder
realization, which can be computationnally demanding in 3D, but allows us to solve instead
the meanfield background and the screened potential at the level of each single impurity.

3For extension to anisotropic correlation functions, see Refs. [47,180].
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3.2 Localization of excitations for an impurity model 65

Figure 3.4: Schematic view of the impurity model (3.26).

3.2.1 The imbalanced impurity model

The model

The generic impurity model we will consider (see Fig .3.4) is described by the potential

V (r) =
∑
j

V 0
j h(r− rj)− V . (3.26)

It is made of identical Gaussian-shaped impurities of width σR, h(r) = exp(−r2/2σ2
R), which

are independently and randomly distributed in space, with a uniform probability distribution.
Their amplitudes V 0

j are independent random variables which can only take two values

+V +
0 > 0 or −V −

0 < 0, with equal probability. The impurity density is denoted ρ. The
constant term V ≡ ρ(

√
2πσR)

d(V +
0 − V −

0 )/2 ensures that the potential V (r) is of vanishing
statistical average.

Let us emphasize a few properties of this model of disorder. Such a potential is by con-
struction stationnary and of zero statistical average. Its correlation function reads, in the
thermodynamic limit where both the volume and the number N of impurities go to infinity at
fixed impurity density ρ :

C(r) = 〈V (0)V (r)〉 = ρ(
√
πσR)

de−r2/4σ2
R [(V +

0 )2 + (V −
0 )2]/2. (3.27)

Therefore, the standard deviation of this potential reads V 2
R = ρ(

√
πσR)

d[(V +
0 )2 + (V −

0 )2]/2.
Moreover, since C̃(0) is finite, such a potential has a white-noise limit (see appendix A), in
the sense that its low-energy properties can be obtained by replacing it by a delta-correlated
potential, C(r) = Dδ(r) with D = c̃2(0)V

2
R σ

d
R = 2dπd/2V 2

R σ
d
R.

The dilute limit

We will further assume that the impurities are dilute, namely ρσd
R � 1. In this limit, we

show below that the impurities decouple, in the sense that the power spectrum of the screened
disorder expresses as a sum over each single impurity.
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66 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

To show this, we recall that the screened potential can be expressed [see Eqs. (3.23)
and (3.11)] by

Vε(r) = V (r)− f(ε)
μ+Δ

μ+ 3Δ/2

[
min

(
μ+Δ/2, Ṽ (r)

)
+Δ

]
(3.28)

The quantity min[μ+Δ/2, Ṽ (r)] can then be calculated in the limit of dilute impurities,

min

(
μ+Δ/2, Ṽ (r)

)
= min

(
μ+Δ/2,

∑
j

V 0
j h̃(r− rj)− V

)

= min

(
μ+Δ/2 + V ,

∑
j

V 0
j h̃(r− rj)

)
− V

�
∑
j

[
min

(
μ+Δ/2 + V , V 0

j h̃(r− rj)

)
,

]
− V

where we have used the fact that in the dilute limit, distinct impurities do not overlap. Note
that adding and substracting V as done above is essential since the second argument of the
min function has to be zero far from the impurities for the decoupling to work. Therefore,

Vε(r) =
∑
j

V 0
j h(r− rj)− V (3.29)

−f(ε)
μ+Δ

μ+ 3Δ/2

∑
j

min

(
μ+Δ/2 + V , V 0

j h̃(r− rj)

)
+ f(ε)

μ+Δ

μ+ 3Δ/2
(V −Δ)

Since the screened potential is of zero statistical average, its correlation function reads Cε(r) =
〈Vε(0)Vε(r)〉, which yields:

Cε(r) =

〈∑
i,j

V 0
i V

0
j h(0− ri)h(r− rj)

〉
(3.30)

−2f(ε)
μ+Δ

μ+ 3Δ/2

〈∑
i,j

V 0
i h(0− ri)min

(
μ+Δ/2 + V , V 0

j h̃(r− rj)

)〉

+f(ε)2

(
μ+Δ

μ+ 3Δ/2

)2〈∑
i,j

min

(
μ+Δ/2 + V , V 0

i h̃(0− ri)

)
min

(
μ+Δ/2 + V , V 0

j h̃(r− rj)

)〉

up to constant terms which will have no impact on the IDP [see Eq. (3.24)]. To simplify this
expression, we then use the fact that the statistical average is an average over all the random
parameters of the disorder model (positions rj and amplitudes V 0

j ),

〈...〉 =
∏
j

∫
...P (V 0

j )dV
0
j

ddrj
V ,

where V denotes the volume of the system, and the probability density for the impurity ampli-
tudes P (V ) is simply for our model P (V ) = (δ(V − V +

0 ) + δ(V + V −
0 ))/2. This yields the final
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expression

Cε(r) =
ρ

2
(V +

0 )2
∫

h(r′)h(r+ r′)dr′ (3.31)

−2f(ε)
μ+Δ

μ+ 3Δ/2

ρ

2

∫
V +
0 h(r′)min

(
μ+Δ/2 + V , V +

0 h̃(r+ r′)

)
dr′

+
ρ

2
f(ε)2

(
μ+Δ

μ+ 3Δ/2

)2 ∫
min

(
μ+Δ/2 + V , V +

0 h̃(r′)

)
min

(
μ+Δ/2 + V , V +

0 h̃(r+ r′)

)
dr′

+
ρ

2
(V −

0 )2
∫

h(r′)h(r+ r′)dr′

−2f(ε)
μ+Δ

μ+ 3Δ/2

ρ

2

∫
(−V −

0 )h(r′)min

(
μ+Δ/2 + V ,−V −

0 h̃(r+ r′)

)
dr′

+
ρ

2
f(ε)2

(
μ+Δ

μ+ 3Δ/2

)2 ∫
min

(
μ+Δ/2 + V ,−V −

0 h̃(r′)

)
min

(
μ+Δ/2 + V ,−V −

0 h̃(r+ r′)

)
dr′.

One now sees the advantage of considering the dilute limit. Since impurities are decoupled
in this expression, one does not have necessarily to generate a full impurity disorder, but can
directly use Eq. (3.31). In other words, to infer the correlation function of the full screened
potential, the only quantities to know are the smoothed function of a single impurity h̃ and Δ.
A priori, those are determined by applying the self-consistent procedure detailed in Sec. 3.1.1
to the full disordered potential, which amounts to iterate Eqs. (3.10) and (3.12). However,
here again, this latter equation can be rewritten in the dilute limit

Δ = −〈min{Ṽ (r), μ +Δ/2}〉 = −ρ

2

∫
min

(
μ+Δ/2 + V , V +

0 h̃(r)

)
ddr (3.32)

−ρ

2

∫
min

(
μ+Δ/2 + V ,−V −

0 h̃(r)

)
ddr+ V

using the same trick as above to decouple the impurities. This permits to calculate h̃ and Δ
without necessarily having to generate the full disordered potential, but by simply iterating
Eqs. (3.10) and (3.32).

3.2.2 The disorder parameter of excitations

Using the above procedure, we can now compute from Eq. (3.24) the IDP of the excitations
for our impurity model. Figure 3.5 shows the energy dependence of the IDP for the 3D impurity
model, in the balanced impurity case (V +

0 = V −
0 ≡ V0) for three different impurity amplitudes

V0. Depending on the disorder strength, it can exhibit three generic behaviors, that will be
analysed in the following :

- case (A) (weak disorder) : non monotonic curve diverging at low and high energy, with
one local minimum in-between;

- case (B) (intermediate disorder) : non monotonic curve going to zero at low energy and
diverging at high energy, with one local maximum and one local minimum in-between;

- case (C) (strong disorder) : monotonic increasing curve going to zero at low energy and
diverging at high energy.
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68 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

ε

εξ
Figure 3.5: Inverse disorder parameter (IDP) versus pair-excitation momentum for the 3D balanced
impurity model, with σR = ξ, ρσ3

R = 2 × 10−4, and for various values of the disorder amplitude
V0 ≡ V +

0 = V −
0 . Shown are the results of Eq. (3.24), with the full screened power spectrum Cε(q)

(dots) or with Eq. (3.33) (solid line), as well as the contributions of the bulk (dashed lines) and depleted
(dotted lines) regions.

Qualitatively similar curves are found for lower dimensions and for imbalanced impurity
cases (V +

0 �= V −
0 ). In all cases, they are of type A, B, or C. The exact positions of the local

maximum and minimum then depend on the parameters of the disorder potential. The variety
of behaviours for the IDP curves strongly differs from the free-particle case, where the IDP
increases monotonously with energy. As we shall see below, it is the result of a non universal
interplay between disorder, sceening, and density depletion.

Weak disorder : screening at low-energy

For weak disorder (case A in Fig 3.5), the nonmonotonic energy dependence of the IDP
can qualitatively be understood as follows. At high energy, the excitations are insensitive
to the density background and behave as free particles in the bare disordered potential.
Conversely, at low energy, the excitations are strongly affected by the density background,
which screens the disorder and suppresses scattering, enhancing transport.

More precisely, this holds provided the chemical potential exceeds the maximum of the
smoothed potential (i.e. for V +

0 h̃(0) − V < μ) so that the density background has no depleted
region. In this case, one has Δ = 0 and η(r) = Ṽ (r), so that Vε(r) = V (r) − f(ε)Ṽ (r). The
power spectrum of the screened potential, Cε(q), can then be computed explicitly as a function
of that of the bare disorder, C(q), and of the excitation energy, ε. It yields

Cε(q) =
(
1− 1 + 4k2εξ

2

1 + 2k2εξ
2

1

1 + q2ξ2

)2

C(q). (3.33)

From Eqs. (3.24) and (3.25), the IDP is then given by

1

kεlB(ε)
� 2πm2

�4k4−d
ε

∫
dΩd

(2π)d
(1−cos θ)S2(kεξ, cos θ)C[2kε sin(θ/2)] (3.34)

in d > 1, and
1

kεlB(ε)
� 2πm2

�4k4−d
ε

S2(kεξ, cos π)C[2kε] (3.35)
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in 1D, where

S(kεξ, cos θ) =

(
1− 1 + 4k2εξ

2

1 + 2k2εξ
2

1

1 + 4k2εξ
2 sin2 θ/2

)
=

2k2εξ
2

1 + 2k2εξ
2

2k2εξ
2(1− cos θ)− cos θ

2k2εξ
2(1− cos θ) + 1

.

(3.36)
Remarkably, the IDP is determined only by the power spectrum of the bare disorder. The
so-called screening function, S, which is the only difference compared to the free-particle case
in Eqs. (3.34) and (3.35), is completely universal. It contains all the influence of interactions,
which renormalize the disorder seen by an excitation. At low-energy (kεξ � 1), S2(kεξ, cos θ) ∼
4(kεξ)

4 cos2(θ) vanishes, the bare disorder being efficiently screened by the density background.
At high-energy (kεξ � 1), S2(kεξ, cos θ) ∼ 1 for almost all θ : the screening is irrelevant and
one recovers the free-particle physics.

The same function has also been identified in single-scattering processes [172], and in pre-
vious studies in the 1D case [13, 79]. However, in d > 1, Eq. (3.34) shows that the transport
length of an excitation results from the contribution of the full on-shell integral. In particu-
lar, it is not simply proportional to the free-particule one as it is in the 1D case [13, 79] [see
Eq. (3.35)].

Equation (3.34) yields the solid line in Fig. 3.5, which reproduces very well the data in the
full energy range for case A.

The behavior of the IDP can now be found by inspection of Eqs. (3.34) and (3.35), which are
entirely analytical. A fully detailed discussion of this behaviour is provided in the supplement
at the end of this chapter, Sec. 3.6. In brief, we find the following results.

The IDP is directly proportional to the disorder strength V 2
R , which trivially acts as an

overall magnitude. Increasing the disorder strength amounts to shift down the IDP curves as
those of Fig. 3.5.

For kε � ξ−1, σ−1
R , the screening function is irrelevant in Eq. (3.34). We then recover the

free-particle behavior [18,47,180]. In d > 1, this yields 4

kεlB ∼ μ2

V 2
R

σR

ξ
(kεξ)

5. (3.37)

Conversely, for kε � ξ−1, σ−1
R , the screening strongly enhances kεlB compared to the free-

particle case and we find, in any dimension

kεlB ∼ μ2

V 2
R

( ξ

σR

)d
(kεξ)

−d. (3.38)

Both low-energy and high-energy scalings reproduce the behavior of case A. In-betwwen, the
local minimum of the IDP is generically located at

kmin
ε ∼ min(1/ξ, 1/σR), (3.39)

as derived in the supplement at the end of this chapter, Sec. 3.6.

The divergence of the IDP observed at low energy has already been reported in the 1D
case, where previous studies [13, 79] have in particular concluded to protected transport

4The 1D case is particular, and the scaling can depend on the precise form of the correlation function of the
bare disorder, as discussed in the supplement at the end of this chapter, Sec. 3.6.
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70 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

for low-energy excitations [170]. Most importantly, it is as well in agreement with the
universal behavior expected for bosonic Goldstone modes [14, 169]. In a study based on
general symmetries properties of the excitations, Gurarie and Chalker indeed found that the
localization length for Goldstone modes necessarily diverges at low energy, according to the
scalings Lloc ∝ ω−2 in 1D and Lloc ∝ exp(ω0/ω)2 in 2D. Those scalings coincide with our low
energy expression (3.38), since ω ∝ kε at low energy, and recalling that Lloc ∝ lB in 1D while
log(Lloc/lB) ∝ kεlB in 2D.

Let us emphasize that all the previous conclusions rely on a weak disorder assumption,
be it the absence of density depletion or the assumption of having Goldstone modes. They
accurately describe localization properties in 1D and 2D, where localization occurs for arbitrary
weak disorder, but predict the absence of localization at low enegry in 3D. We shall however
see below that this picture no longer holds when considering stronger disorder.

Strong disorder : the impact of density depletion

For intermediate to strong disorder (cases B and C in Fig. 3.5), the energy dependence of
the IDP strongly differs from the weak disorder case at low energy, where kεlB now increases
with the energy. To understand this, it should be noticed that in this case, V +

0 h̃(0) − V > μ,
so that the background density is now locally depleted around the positive impurities. Hence,
during its propagation, an excitation goes through two types of regions, namely the density
depleted region, and the rest, which constitutes the density bulk (see Fig. 3.6). Therefore, it
will prove convenient to split the screened potential into two contributions

Vε(r) = VBulk
ε (r) + VDepl

ε (r) (3.40)

where

VBulk
ε (r) = Vε(r)|Bulk =

⎧⎨
⎩ V (r)− f(ε)

(μ +Δ)(Ṽ (r) + Δ)

μ+ 3Δ/2
if Ṽ (r) < μ+Δ/2

0 elsewhere

(3.41)
and

VDepl
ε (r) = Vε(r)|Depl =

{
0 if Ṽ (r) < μ+Δ/2

V (r)− f(ε)(μ +Δ) elsewhere
(3.42)

In the bulk, the disorder (3.41) seen by an excitation, VBulk
ε (r), may be approximated

by (V (r) − f(ε)Ṽ (r))|Bulk, provided we neglect the quantity Δ, which is valid for low
impurity density, ρσd

R � 1. Due to the screening of the bare potential by the smoothed
one, this so-called bulk contribution yields a nonmonotonic contribution to kεlB similar
to case A (see Fig. 3.6), up to very slight differences. A first one is that the overall

magnitude of this contribution, which we will denote V B
R

2
, is no longer V 2

R but the square
amplitude of VBulk

ε (r), which is smaller due to the truncation around the positive impurities.
The second one is that since VBulk

ε (r) has a non zero average value, this introduces a shift
in kε; the latter is nevertheless negligible for weak impurity density, except at very small energy.

In the depleted regions, the disorder (3.42) seen by an excitation, VDepl
ε (r), is nothing

but the bare disorder, up to a homogeneous shift. In this field, no screening occurs and
the excitations thus behave as free particles, yielding a monotonic contribution to kεlB (see
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3.2 Localization of excitations for an impurity model 71

Figure 3.6: Contributions to the IDP of the bulk and depleted regions. Each contribution is characterized
by a precise energy dependence for the IDP (decreasing-increasing for the bulk, monotonously increasing

for the depleted regions), and by its overall magnitude (V B
R

2
or V D

R

2
), which measures the typical disorder

strength of the contribution. Neglecting the correlations between those two contributions, the full IDP
is dominated by the smallest contribution : therefore, depending on their relative importance, it can
exhibit several behaviours, as observed on Fig. 3.5.

Fig. 3.6). In the white-noise limit (kεσR � 1), this contribution is kεlB ∼ (kεξ)
4−d, while at

high energy, kεlB ∼ (kεξ)
5. Here again, its overall magnitude, which we will denote V D

R

2
, is

smaller than V 2
R since this depleted contribution only comes from a residual disorder, made of

the truncated part of the positive impurities. We again do not include the negligible shift of
kε due to the nonzero average value of VDepl

ε (r).

To interpret the various behaviors of the IDP observed in Fig. 3.5, we will neglect
the correlations between those two contributions, which amounts to approximate Cε(q) by
Cε(q)|Bulk + Cε(q)|Depl

5. Within this approximation, the disorder parameter (kεlB)
−1 is then

the sum of the bulk and depleted contributions. Its inverse (the IDP kεlB) is thus dominated by
the smallest corresponding contribution. This is clearly visible on Fig. 3.5, where the bulk and
depleted contributions have been respectively represented by dashed and dotted lines. More-
over, we are now in a position to understand the various behaviours of the IDP. To obtain
the full IDP, one has to compare the bulk and depleted contributions, each one being roughly
characterized by a specific energy dependence of the IDP (decreasing-increasing for the bulk,

monotonously increasing for the depleted regions), and by its overall magnitude (V B
R

2
or V D

R

2
)

5Let us emphasize that bulk and depleted contributions are in principle correlated; for instance, if VDepl
ε (r0) �=

0 at some point r0 (near the center of one impurity), then VBulk
ε will necessarily be non zero close to r0 (in

the non truncated part of the same impurity); therefore, although this approximation holds very well when one
contribution clearly dominates the second one, it may become quantitatively inaccurate when both are of the
same order of magnitude.
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72 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

(see Fig. 3.6).

At low energy, the energy dependances of the two contributions differ dramatically : because
of the screening in the bulk, the contribution of the depleted region always dominates if it exists,
and captures the increasing behavior of kεlB.

At intermediate and high energy, where both contributions are finite, the behavior of kεlB
crucially depends on the relative magnitudes of the two contributions. When V +

0 h̃(0)− V � μ
(case B), only the very upper fraction of the positive impurities is truncated, so that V D

R � V B
R .

Therefore, the bulk starts to dominate at moderate energy. It results in a turning point
kmax
ε where bulk and depleted regions equally contribute to the IDP, yielding there a local

maximum. Above it, the high-energy behaviour is dominated by the bulk, and is characterized
by the presence of a local minimum. The IDP curve is therefore of type B. When V +

0 further
increases (case C), an increasing part of the positive impurities depletes the density, so that the
depleted regions dominate in a wider energy range. As a consequence, kmax

ε moves to higher
values. At some point, it eventually merges with the local minimum kmin

ε , which does not
significantly depend on V +

0 . The curve then becomes monotonic. In the limit V +
0 h̃(0)−V � μ

, the positive impurities are almost entirely truncated. In this case, and for the particular case
of the balanced impurity model, bulk and depleted regions exactly equally contribute to the
IDP in the high-energy limit.

Therefore, the diversity of behaviours for the IDP arises from the interplay between screen-
ing in the bulk and density depletion. While the disorder is efficiently screened in the bulk by
the density background, enhancing transport, no screening can arise in the depleted regions,
where the excitations thus behave as free particles in a bare residual disorder. This mechanism
strongly modifies the universal low-energy behaviour of Goldstone modes. It suggests that
depletion alters the very nature of the excitations, which are no longer pure Goldstone modes
but locally behave as free particles.

3.2.3 Localization diagram

We now turn to the localization properties of the collective bosonic excitations, focusing
on the 3D case where mobility edges appear at the localization threshold kεlB ∼ 1. Using this
criterion, the latter are easily determined from IDP curves as those of Fig. 3.5. At variance
with the free-particle case where the IDP increases monotonously with energy, giving rise to
one single mobility edge, the case of collective excitations is much more involved. Due to its
nonmonotonic energy dependence, the IDP can cross the localization threshold several times.
Moreover, due to the non trivial interplay between screening and density depletion, the IDP
curves depend on the impurity amplitudes V +

0 and V −
0 in a very complex way. As a consequence,

the resulting localization diagram, shown on Fig. 3.7 as a function of positive (V +
0 ) and negative

(V −
0 ) impurity amplitudes, displays a rich variety of scenarii with up to three mobility edges

in the excitation spectrum. The various regions are characterized by the number of mobility
edges in the excitation spectrum, which is entirely determined by three conditions.
Firstly, the existence of depleted regions results in a band of localized states at low energy,

with one upper mobility edge. Those states are qualitatively similar to free-particle localized
states, since localization is dominated here by the propagation of excitations in the depleted
regions and subjected to the bare disorder. The condition for having depleted regions defines
the roughly vertical left boundary on the diagram. It is given by

V +
0 h̃(0)− V = μ,
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3.2 Localization of excitations for an impurity model 73

Figure 3.7: Localization diagram of pair excitations in the 3D impurity model, plotted as a function
of the amplitudes of positive (V +

0 ) and negative (V −
0 ) impurities, for σR = ξ and ρσ3

R = 2 × 10−4.
It exhibits four classes of mobility spectra, characterized by zero (0), one (I), two (II), or three (III)
mobility edges. Note the different scales on the two axes.

i.e. V +
0 h̃(0) + ρ(

√
2πσR)

dV −
0 /2 � μ in the limit of small impurity density, ρσd

R � h̃(0). The
IDP curve is of type A on the left part and of type B or C on the right part.

Secondly, depending on the position of the local minimum of the IDP, (kεlB)
min, relatively

to the localization thresehold, a band of localized states can also arise at mid-energy with
two additional mobility edges, which is more specific to many-body localization. As long as
V +
0 � V −

0 and the contribution of the depleted regions is weak enough, this local minimum is
governed by the bulk contribution. Its position, kmin

ε , is nearly independent of the disorder
strength [see Eq. (3.39)] and the value of the IDP at the minimum is proportional to the overall
magnitude of the bulk contribution, (kεlB)

min ∝ 1/(V −
0 )2. This yields the nearly horizontal

boundary on the diagram, above which a band of localized middle-energy states exists in the
excitation spectrum. Therefore, on the left part of the first boundary, there is no mobility
edge on the bottom part (0) and two mobility edges on the top part (II). On the right side,
there is one mobility edge on the bottom part (I) and three on the top part (III).

On the top part of the diagram, when V +
0 further increases, the contribution of the depleted

regions increases and the band of low-energy localized states grows up; at some point, it merges
with the band of middle-energy localized states, and the intermediate band of extended states
disappears, yielding only one mobility edge left in the spectrum. The corresponding condition,
which defines the nearly vertical boundary on the top right of the diagram, is governed by the
position of the local maximum relatively to the threshold (when V +

0 increases and crosses this
boundary, the maximum goes below the threshold and only one mobility edge is left). It thus
results from the competition between depleted and bulk contributions. Its inclination is due
to the fact that an increase of the depleted contribution (via V +

0 ) has to be compensated by a
decrease of the bulk contribution (via V −

0 ) to keep (kεlB)
max ∼ 1.

Conversely, on the bottom part of the diagram, when V +
0 further increases, the IDP curves

turn monotonic at higher V +
0 (as indicated by the dotted line), but this does not affect the

number of mobility edges, which remains one.
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3.2.4 Beyond the impurity model

Although obtained in the frame of the impurity model, we expect this diagram to be very
generic. As discussed before, the diversity of scenarii for mobility spectra generically arises from
the interplay between screening in the bulk and density depletion. However, this interplay is
strongly nonuniversal, in the sense that it depends on the precise statistics of the disorder.
More precisely, the statistics of the disorder is involved at two different levels :

• The two-point correlations (correlation length σR and shape of the correlation function
c̃2(q)) govern the screening process and the behaviour of the bulk contribution, as already
discussed. A more detailed study of the influence of disorder correlations will be found
in Sec. 3.3, showing that the energy dependance of the IDP can be tailored by designing
the shape of the correlation function.

• The one-point statistics of the disorder in involved via density depletion in a non trivial
way. Indeed, the full probability distribution of the one-point amplitude governs the onset
of depletion and the statistics of depleted regions. In particular, the disorder strengh does
not only act as an overall magnitude V 2

R as in the weak disorder case [see Sec 3.2.2 ]. For
instance, a blue-detuned and a red-detuned speckle with same amplitude V 2

R will lead
to completely different mobility spectra since only in the first case, depleted regions are
always present.

Therefore, although the previous localization diagram displays the generic picture, the
details of such a diagram, notably the shape of the boundaries, are specific to each model of
disorder. Furthermore, a given model of disorder does not necessary display all possibilities.
The imbalanced impurity model with a finite correlation length is actually the simplest disorder
we found that does.

For instance, for only positive impurities (x-axis of the localization diagram) or in the
balanced case (first bisector of the diagram), the only possibilities are (0) or (I) because the
minimum of the IDP cannot be controlled independently of the density depletion.

Conversely, for only negative impurities (y-axis of the localization diagram), the depleted
region is absent and the only possibilities are (0) or (II).

The case of a white-noise disorder is also limited because the smoothed impurity potential
diverges in the center, h̃(r) = e−r/ξ/4πξ2r. In this case, depleted regions appear as soon as
V +
0 �= 0 and the only left possibilities are (I) and (III). The same situation is encountered with

a blue-detuned speckle.

3.3 Influence of the disorder correlations

In this section, we analyse the influence of disorder correlations on the disorder parameter
and the localization diagram. In particular, we show that while standard correlation functions
lead to very similar results as those of the impurity model, tailored correlations can lead to
more complex IDP curves and richer localization diagrams. They can thus eventually be used
to enhance either transport or localization at a specific energy. However, we will also show
that the effect of disorder correlations is generally expected to be less marked when the spatial
dimension increases.
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For the sake of simplicity, we will perform this analysis in the weak disorder case without
density depletion 6. The onset of density depletion being mostly governed by the disorder
one-point statistics, it can, in a first approximation, be conceptually dissociated from the
correlations 7. In this regime, we recall that the IDP is given in d > 1 by Eq. (3.34), which
may be rewritten as a function of dimensionless parameters

1

kεlB
�

(
VR

μ

)2(
σR
ξ

)d
π

8

1

(kεξ)4−d

∫
(1−cos θ)S2(kεξ, cos θ)c̃2(|2kεσR sin(θ/2)|) dΩd

(2π)d
. (3.43)

In 1D, Eq. (3.35) should be used, which is rewritten in a dimensionless form

1

kεlB
∼ π

8

(
VR

μ

)2(
σR
ξ4k3ε

)
S2(kεξ, cos π)c̃2(|2kεσR|). (3.44)

We recall that a detailed analytical inspection of those formulas is provided in the supplement
at the end of the chapter, Sec. 3.6.

In both cases, the IDP explicitely depends on the dimensionless power spectrum c2, which
encodes the shape of the disorder correlations. In experiments carried out with speckle po-
tentials, the latter can be precisely designed via the shape and transmission properties of the
diffusive plate. More precisely, as shown in Sec. 1.3.2, the power spectrum of the disorder is the
autoconvolution of the pupil function (i.e. the intensity distribution within the diffusive plate).

3.3.1 Generic case : Gaussian autocorrelation function

In many ultracold-atom experiments, the autocorrelation function c2 is Gaussian. Such
a case can for instance be achieved with speckle potentials if the pupil function is Gaussian,
or with Gaussian impurity disorders. Note that our previous impurity model falls into this
category. In this case, the correlation function reads

C(r) = V 2
Re

−r2/σ2
R i.e. c̃2(q) = πd/2e−q2/4.

Figure 3.8(a) shows the disorder parameter 1/kεlB as a function of excitation energy and
correlation length in the 3D case. Very similar curves are found in 1D and 2D.

The IDP admits one and only one local minimum, which clearly obeys the general scaling
kmin
ε ∝ min(1/ξ, 1/σR). The absolute minimum of the IDP in the (kεξ, σR/ξ) plane is obtained

in the limit kεξ ∝ σR/ξ → 0. Interestingly, if one looks at the quantity lB (see Fig 3.8(b) in
1D), the absolute minimum is now reached at finite correlation length and finite energy. In 1D,
where lB ∝ 
Lloc, this yields an absolute localization maximum at finite correlation length, an
effect that was already reported in [13]. This effect however disappears in higher dimensions
: in 2D for instance, using log(Lloc/lB) ∝ kεlB, we find the absolute localization maximum in
the limit kεξ ∝ σR/ξ → 0.

All those features are in fact very generic to any standard correlation function c2, i.e. max-
imum and finite for q = 0, monotonously and rapidly decaying.

6In the presence of depletion, correlations will influence both the bulk and the depleted contribution, and
possibly in different ways, which makes the full analysis very challenging.

7This is not rigorously true since depletion is actually governed by the one-point statistics of the smoothed

disorder, which depends on disorder correlation via the mechanism of smoothing. Such effects are however
expected to be relatively small.
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76 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

Figure 3.8: (a) Disorder parameter 1/kεlB for a 3D Gaussian disorder, as a function of excitation
energy and correlation length. The white solid line represents the local minimum kmin

ε , which scales as
kmin
ε ∝ min(1/ξ, 1/σR). (b) Inverse transport length 1/lB for the 1D Gaussian disorder, which gives the

localization behaviour (we recall that 1/lB ∝ 1/Lloc in 1D). An absolute localization maximum occurs
at finite correlation length.

3.3.2 Speckle with uniform apertures

Very often in experiments with speckle potentials, the diffusive plane consists in an uni-
formly illuminated aperture. In this case, the pupil function is simply determined by the shape
of the aperture. We will consider here the case of isotropic apertures, where I(r) = I0Θ(R−|r|)
with Θ denoting the Heaviside function. From Eq. (1.9), this yields the following correlation
functions :

In 1D,
C(r) = V 2

RsinC
2(r/σR) i.e. c̃2(q) = π(1− q/2)Θ(1 − q/2).

In 2D,

C(r) = V 2
R

(
2J1(r/σR)

r/σR

)2

i.e. c̃2(q) = 8

(
arccos(q/2)− q/2

√
1− (q/2)2

)
Θ(1− q/2),

with J1 the first Bessel function.
In 3D,

C(r) = V 2
RsinC

2(r/σR) i.e. c̃2(q) =
π2

q
Θ(2− q).

The results for the IDP are shown on Fig. 3.9. They are very similar do the previous case, which
should be of no surprise since the correlation function in Fourier space is again monotonously
decaying from q = 0. All considerations about localization maxima still hold. A few differences
should be emphasized.

In 1D, the existence of a cutoff at q = 2 in c̃2(q) creates an effective mobility edge (the
IDP is infinite for kεσR > 1, and no localization occurs), as represented by the red dashed line
on Fig. 3.9(b). This specificity of 1D speckle potentials already appears in the non-interacting
case.

In 3D, the divergence of c̃2(q) in q = 0, which is responsible from the absence of white-noise
limit, modifies the low-energy scaling of the IDP. As discussed in the supplement at the
end of this chapter, this yields kεlB ∼ (kεξ)

−2, instead of kεlB ∼ (kεξ)
−3 for a model which

admits a white-noise limit. Similar corrections to the general scalings of the IDP can also be
encountered with speckle potentials exhibiting long-range (e.g. power-law) correlations (see
supplement 3.6 at the end of this chapter).
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3.3 Influence of the disorder correlations 77

Figure 3.9: (a) Disorder parameter 1/kεlB for a 3D speckle potential with a uniform aperture, as a
function of excitation energy and correlation length. (b) Inverse transport length 1/lB for a 1D speckle
potential with a uniform aperture. An absolute localization maximum occurs at finite correlation length,
and an effective mobility edge (red dashed line) shows up due to the cutoff in the power spectrum of
the disorder.

Figure 3.10: (a) Power spectrum of a 1D speckle obtained by crossing two Gaussian beams, Eq. (3.45),
for q0 = 10. (b) Disorder parameter 1/kεlB for the 1D speckle disorder obtained by crossing two
Gaussian beams, as a function of excitation energy and correlation length. Several localization maxima
show up.

Altogether, compared to the previous standard situation, this leads only to minor quan-
titative changes in the IDP dependence (and therefore in the localization diagram, at fixed
one-point statistics of the disorder.).

3.3.3 Tailored correlations

We now turn to major qualitative specificities in the IDP behaviour which can be achieved
by tailoring exotic optical potentials. Exotic correlations have already been studied in the non-
interacting case [180, 181], and have been shown to possibly modify the standard localization
picture. We extend here this analysis to the interacting case.

Multiple localization maxima

As discussed above, the IDP generically displays one single localization maximum. It is
however possible, as already observed for free-particles [178,181], to have several, in particular
by designing a non-monotonic correlation function c̃2(q).

Several experimental tools can be used to obtain non-monotonic correlation functions with
speckle potentials. The 1D experimental configuration proposed in [47] consists in using two
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78 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

Figure 3.11: (a) Power spectrum of a 1D speckle obtained through a uniform aperture of radius R with
a mask of radius r (in inset, the real space configuration), for r/R = 0.5. (b) Inverse disorder parameter
kεlB for the 1D speckle obtained from a uniform aperture with a mask. Bands of energy are protected
against localization due to vanishing correlations.

Figure 3.12: (a) Radial cut of the power spectrum of a 2D speckle obtained through a circular aperture
of radius R with a mask of radius r (in inset, the real space configuration), for r/R = 0.95. (b) Inverse
disorder parameter kεlB for the 2D speckle obtained from a circular aperture with a mask.

crossed Gaussian beams instead of just one, yielding

c̃2(q) =
π

4

[
e−(q−q0)2/4 + e−q2/4 + e−(q+q0)2/4

]
, (3.45)

which is plotted in Fig. 3.10(a). Alternatively, one can send one single laser beam onto a
diffusive plate made of a uniformly illuminated aperture partly masked by a dark diaphragm.
In 1D and 2D, in the case where the mask is placed at the center of the aperture, this generates
non-monotonic correlation functions. The corresponding power spectra are represented on
Figs. 3.11(a) (2D) and 3.12(a) (1D).

In 1D, where the energy dependance of the IDP directly follows that of c̃2(q) by virtue of
Eq. (3.44), such non-monotonic correlation functions always lead to multiple local extrema in
the IDP curves [see for instance Fig. 3.10(b) for the 1D two-beam speckle case of Eq. (3.45), or
Fig. 3.11(b) for the 1D speckle with a mask]. The example of the 2D speckle with a mask [see
Fig. 3.12(b)] shows that it can also be the case in 2D, although the phenomenon is less marked
due to the global attenuation by the onshell integral in Eq. (3.43).

Correlation-forbidden localization

We have seen previously that in 1D, a speckle potential can give rise to an effective mobility
edge if it exhibits a high-momentum cut-off in its power spectrum. More generally, in 1D, it is
straightforward to see from Eq. (3.35) that any power spectrum with zeros at a given momentum
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q0 will result in extended states at the energy ε(q0/2). This phenomenon, which was already
reported for free particles, survives in the presence of interactions. The only difference is the
dispersion relation ε(q), which is the Bogoliubov one instead of the free-particle one. The case
of the 1D speckle with a mask (see Fig. 3.11) offers a concrete example where two bands of
extended states appear, localization being there forbidden by disorder correlations.

In higher dimensions, such an effect would require that c̃2(q) identically vanish below a
certain momentum. The experimental realization of such correlations has remained so far an
open challenge.

Correlation-enhanced localization

Conversely, using strongly-peaked correlation functions can enhance localization at a given
energy.

In 1D, this is again obvious from Eq. (3.44).
Interestingly, this effect can be expected to survive in 2D. Indeed, the analytical calcu-

lation with an ”idealized” delta-peaked ring power spectrum, c̃2(q) ∝ δ(q − q0), leads to a
divergence in Eq. (3.43), yielding a vanishing IDP at 2kεσR = q0. Although this case is purely
ideal, highly-peaked off-centered power spectra may enable to reach arbitrarily low localiza-
tion lengths in 2D. This effect should be all the more marked than any small reduction in the
IDP is exponentially transmitted to the localization length in 2D. However, the experimental
realization of highly-peaked off-centered power spectra seems more challenging. In particular,
the correlation function in real space should have both positive and negative values (in the
previous example of a delta-peaked ring, the Fourier transform is a Bessel function). For this
reason, such a situation cannot be achieved with speckle configurations, where the real-space
correlation function is the square modulus of the Fourier transform of the pupil function.

3.4 Beyond the Bogoliubov approximation- Observability and

experimental perspectives

In this section, we show that the previously predicted behaviours for the localization
of excitations and the existence of different mobility spectra can be observed in present-day
ultracold-atom experiments. In particular, our results rely on the Bogoliubov approximation,
which neglects all couplings between excitations and treats them as an ideal gas (see chapter 2).
In fact, due to nonlinear couplings, Bogoliubov quasi-particles acquire a finite lifetime. There-
fore, the observability of their transport and localization properties requires that this lifetime τ
exceed the typical transport mean-free time τB ≡ lB/wε (with wε the excitation group velocity).
We will show here that this can be achieved experimentally in Sec. (3.4.1), before enlightening
some experimental perspectives in Sec. (3.4.2).

3.4.1 Estimation of Beliaev lifetimes

Inhomogeneous Beliaev damping

For sufficiently low temperatures, the decay of Bogoliubov excitations is dominated by
Beliaev processes [147,182,183]8. In such a process, an excitation of momentum k spontaneously
decays into two excitations of momenta k′ and k−k′. To estimate the corresponding damping
rate Γ = 1/τ in the presence of disorder, we will perform our analysis in the most general

8Landau damping being then negligible.
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80 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

inhomogeneous situation. We recall that Γ arises from the cubic terms in the Bogoliubov
expansion (see chapter 2), which read,

Ĥ(3) = g

∫ √
nc(r)B̂

†(r)[B̂†(r) + B̂(r)]B̂(r)ddr, (3.46)

with B̂ the Bogoliubov operator (3.14). As routinely done in the homogeneous case, the idea
is to use the Fermi golden rule to compute the decay rate Γν of an excitation ν (initial state

|i〉 ≡ b̂†ν |0〉) into two excitations ν1 and ν2 (final state |f〉 ≡ b̂†ν1 b̂
†
ν2 |0〉). It yields

Γν =
2π

�

g

2

∑
ν1,ν2

∣∣∣ ∫ √
nc(r)〈0|b̂ν2 b̂ν1B̂†(r)[B̂†(r) + B̂(r)]B̂(r)b̂†ν |0〉ddr

∣∣∣2δ(Ef − Ei). (3.47)

The matrix element appearing in the integral is then computed using the Wick theorem and is
expressed as a function of the quantities 〈b̂B̂〉, 〈b̂B̂†〉, 〈b̂†B̂〉, 〈b̂†B̂†〉. Those quantities can then
be expressed as a function of the excitation wavefunctions uν(r) and vν(r) only, by reinserting
the Bogoliubov transform (3.15), which yields the exact expression

Γν =
2π

�

g

2

∑
ν1,ν2

∣∣∣ ∫ √
nc(r)Bν

ν1,ν2(r)d
dr

∣∣∣2δ(Ef − Ei) (3.48)

where

Bν
ν1,ν2(r) = 2

(
u∗ν2(r)u

∗
ν1(r)uν(r) + u∗ν2(r)v

∗
ν1(r)uν(r) + u∗ν2(r)v

∗
ν1(r)vν(r)

+v∗ν2(r)u
∗
ν1(r)uν(r) + v∗ν2(r)u

∗
ν1(r)vν(r) + v∗ν2(r)v

∗
ν1(r)vν(r).

)
(3.49)

In the homogeneous case, where the uν(r) and vν(r) functions are given by Eq. (2.30), explicit
analytical scalings can be obtained in both the phonon and the free-particle regimes. In the
phonon regime, a low-energy expansion of the uν(r) and vν(r) functions yields the well-known
result

Γ � 3�q5/320πmn,

with n the average density of the gas. In the free-particle regime, we find similarly

Γ � g2nmq/2π�.

Remarkably, both scalings coincide at the crossover q � 1/ξ, yielding τ � m/10�n3/2a
5/2
sc ,

where asc = mg/4π�2 is the scattering length.

Local density approximation

In the presence of disorder, the excitations can be fairly described in the diffusive regime
within a local density approximation. This amounts to write them as plane waves whose
amplitudes are determined by the local value of the density. Each mode is therefore labelled
by its momentum k and reads

uk(r) =
eikr√V Uk(r)

vk(r) =
eikr√V Vk(r) (3.50)
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where

Uk(r) =

√√√√1

2

[
εk + gnc(r)√

εk(εk + 2gnc(r))
+ 1

]

Vk(r) =

√√√√1

2

[
εk + gnc(r)√

εk(εk + 2gnc(r))
− 1

]
, (3.51)

similarly to the homogeneous case. In the same spirit of what we did in Sec. 3.2.2, we will now
make a distinction between bulk and depleted regions.

In the depleted regions, Uk ∼ 1 and Vk ∼ 0, recovering a free-particle behaviour. Since B(r)
is a regular function and nc(r) ≈ 0, the contribution of the depleted regions to the integral
in Eq. (3.48) vanishes. Therefore, the depleted regions, where the excitations behave as free
particles with infinite lifetime, very weakly contribute to Γ.

Conversely, in the bulk, the local contribution of position r to the integral is all the more
higher than the local density is higher.

Therefore, a rigorous upper estimate (although very rough) for Γ is given by its homogeneous

expression evaluated at the maximum density nmax, yielding τ � m/10�n
3/2
maxa

5/2
sc . This in

particular shows that the lifetime τ can always be increased by lowering the average density 9.
Furthermore, since all functions in Eq. (3.48) are regular as a function of density, a reasonable
order of magnitude for Γ is expected to be obtained by evaluating the previous expression at
the average density. For a typical excitation at the crossover between the phonon and the

free-particle regime, q � 1/ξ, it yields τ � m/10�n3/2a
5/2
sc .

Validity of the linear approach

We now compare this lifetime to the transport mean-free time τB = lB/wε, for a typical
excitation (ε ∼ μ) near the localization threshold kεlB ∼ 1. On the one hand, we can roughly
use for wε the value of the sound velocity in the phonon regime, c =

√
gn/m. On the other

hand, lB ∼ 1/kε for excitations of interest. Altogether, one gets τB ∼ m/4π�nasc. Therefore,
the validity condition of our approach reads τB/τ ∼

√
na3sc � 1, which remarkably is nothing

but the validity condition of the Bogoliubov approach. The latter is always verified in dilute-
gas Bose-Einstein condensates. For instance, using the parameters of Ref. [42], we find τ ∼ 6s
and τB ∼ 5ms, making experimental observations of our predictions possible (we recall as well
that a typical experiment can be a few seconds).

3.4.2 Experimental perspectives

The existence of several mobility spectra is particularly relevant to ultracold-atom experi-
ments, especially as regards quench experiments. In these systems, out-of-equilibrium dynamics
can be generated by a local quench, which produces collective excitations [120,123,124,184,185].
Their transport properties in the disorder and their ability to mediate long-range energy trans-
fer are then determined by the four classes of mobility spectra of the localization diagram such
as that of Fig. 3.7. In case (0), all excitations are protected against localization and can prop-
agate to infinity, although with a diffusive (not ballistic) wave front, i.e. 〈r2〉 = 2DBt, owing
to the finite value of the transport mean-free path lB. In all other cases, energy can only be

9provided the disorder is bounded below, otherwise the density can locally remain very high.
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82 3. PROPAGATION OF EXCITATIONS IN DISORDERED BOSE FLUIDS

partially transferred since some excitation modes are localized. In case (I), those are low-energy
modes, which is qualitatively similar to the noninteracting case. In cases (II) and (III), this
is (also) the case of intermediate-energy modes, which is specific to many-body localization.
Energy-resolved quenches may thus provide experimental evidence of such mobility spectra in
ultracold gases, since energy can or cannot be transferred throughout the system depending on
the selected excitations. This feature would hardly be observable in condensed-matter systems,
where the relevant energy generally lies around the Fermi level.

Moreover, ultracold gases offer a wide range of models of disorder, from impurities [108–110]
to speckle potentials [3, 186, 187]. We stress again the possibility to tailor their statistical
properties [47, 178, 179] (both correlations and one-point statistics) in order to observe richer
localization diagrams. This could permit to design a large class of mobility spectra, which
could eventually prove a precious tool to control quench experiments.

3.5 Conclusions

In this chapter, we have studied the transport and localization properties of collective
excitations in disordered weakly-interacting Bose gases in the superfluid regime. Our formal-
ism, based on the inhomogeneous Bogoliubov theory, enabled us to consider the problem in
arbitrary dimension, and to treat both the weak and strong disorder cases, going beyond the
previous studies. We briefly summarize here our results.

At the meanfield level, the disorder modulates the density background, and can possibly
deplete it locally if it is strong enough. We developed an analytical description of the
ground-state including density depletion at the mean-field level. The ground-state was
however found to remain an extended delocalized superfluid.

As regards collective excitations, we followed then a two-step process. Firstly, we used the
Bogoliubov theory to formulate the transport properties of collective excitations in terms of
a two-wave scattering problem. This enabled to enlighten their universal features : while all
excitations are localized in 1D and 2D, a localization transition occurs in 3D, determined by
the criterion kεlB ∼ 1. Secondly, to estimate the inverse disorder parameter (IDP) kεlB, we had
to develop a microscopic theory. We found that the behaviour of the IDP results from the non-
trivial competition between density depletion induced by strong disorder and screening induced
by the interactions. As a consequence, it is strongly non-universal, in the sense that it depends
on the model of disorder. Most importantly, we found that this non-universal competition can
lead to a non-monotonic energy dependence of the IDP. In 3D where the IDP determines the
onset of localization, the excitation spectrum can split into alternating bands of localized and
extended states, with up to three mobility edges. A generic localization diagram was derived.
We then investigated in more details the role of disorder correlations. Although their effect
diminishes when the spatial dimension increases, they were shown to possibly lead to richer
mobility spectra.

Finally, we discussed the experimental observability of our predictions. In particular, an
estimation of Bogoliubov quasi-particles lifetimes permitted to conclude to the observability
of our predictions. Experimental perspectives and implications on quench experiments were
discussed.
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3.6 SUPPLEMENT : Universal behaviour of the disorder pa-

rameter in the weak disorder case

In this section, we provide a detailed description of the behaviour of the IDP in the weak
disorder case without density depletion. We recall that in this case (see Sec. 3.2.2), the IDP is
given, in d > 1, by Eq. (3.34), which may be rewritten as a function of dimensionless parameters

1

kεlB
�

(
VR

μ

)2(
σR
ξ

)d
π

8

1

(kεξ)4−d

∫
(1−cos θ)S2(kεξ, cos θ)c̃2(|2kεσR sin(θ/2)|) dΩd

(2π)d
. (3.52)

The 1D case is discussed later. The IDP is therefore uniquely determined by the correlation
function of the disorder, since the screening function S is universal and the disorder amplitude
trivially acts as an overall magnitude.

For any given correlation function c̃2, the disorder parameter depends on only two param-
eters, namely the correlation length σR/ξ and the excitation energy kεξ. As expressed by
Eq. (3.52), it is determined by the angular integral of the product of two functions of the angle
θ:

• The screening function S2(kεξ, cos θ) encodes the effect of interactions. In Eq. (3.52),
it is the only difference compared to the free-particle case. It is governed only by the
excitation energy kεξ . At low-energy (kεξ � 1), S2(kεξ, cos θ) ∼ 4(kεξ)

4 cos2(θ) vanishes
due to screening. At high-energy (kεξ � 1), S2(kεξ, cos θ) ∼ 1 for almost all θ, recovering
the free-particle case.

• The on-shell correlation function c̃2(|2kεσR sin(θ/2)|) expresses that the IDP probes only
the on-shell Fourier components of the disorder. It is governed only by the parameter
kεσR.

Universal scalings in d > 1

Universal scalings in d > 1 can be inferred by inspection of Eq. (3.52). Four limiting cases
can be considered.

(a) For kεσR � 1 and kεξ � 1, one has S2(kεξ, cos θ) ∼ 4(kεξ)
4 cos2(θ) and

c̃2(|2kεσR sin(θ/2)|) ∼ c̃2(0) for a potential which admits a white-noise limit (see appendix B).
Therefore,

1

kεlB
∼ V 2

R

μ2

(
σR

ξ

)d

(kεξ)
d. (3.53)

More generally, if c̃2(q) ∼
q→0

1/qα, one gets

1

kεlB
∼ V 2

R

μ2

(
σR

ξ

)d−α

(kεξ)
d−α. (3.54)

Notice that integrability of c̃2
10 necessarily imposes that d > α. Therefore, the transport

length always diverges at low energy.

10We recall that
∫
c̃2(q)d

d
q = (2π)d.
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(b) For kεσR � 1 and kεξ � 1, one has S2(kεξ, cos θ) ∼ 1. Assuming again a scaling of the
form c̃2(q) ∼

q→0
1/qα (with α = 0 if the potential has a white-noise limit), one gets

1

kεlB
∼ V 2

R

μ2

(
σR

ξ

)d−α
1

(kεξ)4−d+α
. (3.55)

Since d > α, one can check that the transport length always diverges at high-energy 11.

(c) For kεσR � 1 and kεξ � 1, one has S2(kεξ, cos θ) ∼ 1; one the other hand, the effect
of large kεσR will be to select in the integral the angle θ = 0 since the function c̃2 generically
vanishes at high momenta. To properly quantify this, we may change variables by posing
u ≡ 2kεσR sin(θ/2). This yields, in the limits we are considering

1

kεlB
∼ V 2

R ξ

μ2σR

1

(kεξ)5

∫ 2kεσR

0
udc̃2(u)du. (3.56)

In most cases, the correlation function decreases rapidly enough so that
∫∞
0 udc̃2(u)du is finite,

and one simply finds
1

kεlB
∼ V 2

R ξ

μ2σR

1

(kεξ)5
. (3.57)

The transport length diverges at high energy as (kεξ)
5, in all dimension. Yet, long-range corre-

lations (integrability of c̃2 only requires that
∫∞
0 ud−1c̃2(u)du be finite) may lead to corrections

to this scaling. For instance, in 3D, if c̃2(q) ∼
q→∞ 1/q7/2, one finds

1

kεlB
∼ V 2

R ξ

μ2σR

1

(kεξ)9/2
.

(d) For kεσR � 1 and kεξ � 1, one should similarly perform the same change of variables
u ≡ 2kεσR sin(θ/2). Using then S2(kεξ, cos θ) ∼ 4(kεξ)

4 cos2(θ) ∼ 4(kεξ)
4[1 − 4(u/2kεσR)

2 +
4(u/2kεσR)

4], one finds for most correlation functions (i.e. such that
∫∞
0 udc̃2(u)du is finite)

1

kεlB
∼ V 2

R

μ2

1

kεσR

. (3.58)

Here as well, corrections can arise for long-range correlations.

Note - In the white-noise limits (kεσR � 1, cases (a) and (b)), we recover as expected the
overall dependance on V 2

Rσ
d. In the free-particle limits (kεξ � 1, cases (b) and (c)), the overall

dependance on μ2ξ4 makes the interactions disappear.

Specificities in d = 1

The previous scalings have been derived from Eq. (3.52), which is valid in dimension d > 1.
In 1D, Eq. (3.35) should be used, which is rewritten in a dimensionless form

1

kεlB
∼ π

8

(
VR

μ

)2(
σR
ξ4k3ε

)
S2(kεξ, cos π)c̃2(|2kεσR|). (3.59)

11This is strictly true for α > 0 only, but the case α < 0 seems very exotic.
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3.6 SUPPLEMENT : Universal behaviour of the IDP 85

Figure 3.13: Universal behaviour of the IDP as a function of kεξ and σR/ξ. The four areas in red
correspond to the four limiting cases (a),(b),(c),(d) where a scaling for kεlB has been previously obtained.
From those behaviours, it appears that the local minimum, represented by the purple line, obeys the
general scaling kmin

ε ∝ min(1/ξ, 1/σR).

Notice that this expression is exactly the same as that of the Lyapunov exponent Γ found in
Ref. [13] 12, in agreement with the fact that in 1D, Γ = 1/Lloc ∝ 1/lB.

Universal scalings and limiting cases in 1D can then be found by inspection of Eq. (3.59).
For kεσR � 1 (in both limits kεξ � 1 and kεξ � 1), one finds that the previous scalings in
d > 1, Eqs. (3.54) and (3.55), still hold. Conversely, for kεσR � 1, Eq. (3.59) shows that the
energy dependence of the IDP in 1D follows the momentum dependence of the power spectrum,
yielding a scaling which is specific to each model of disorder. In particular, the previous scalings
Eqs. (3.56) and (3.58) no longer hold in 1D.

Local minimum

The previous scalings (a), (b), (c) and (d), Eqs. (3.53) to (3.58), show that the trans-
port length generically diverges at low-energy due to screening, and diverges as well at high-
energy, hence recovering the free-particle behaviour. Therefore, it exhibits in-between a lo-
cal minimum. According to the previous scaling laws, the latter may be located around
kmin
ε ∝ min(1/ξ, 1/σR), as illustrated on Fig. 3.13. Its exact position however depends on

the detailed shape of the correlation function (several minima can in principle exist for compli-
cated correlations). Importantly, it does not depend on VR, since the disorder amplitude acts
as a global multiplicative factor on the transport length.

White-noise limit

In the white-noise limit, kεlB can be analytically computed in the full energy range. Indeed,
since c2(r) = c̃2(0)δ(r) in this case (see appendix A), c̃2(q|) = c̃2(0) is a constant. Therefore,

12There is a difference of a factor
√
2π in [13], which arises from the different convention used for Fourier

transforms.
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Eq. (3.52) immediately yields
1

kεlB(ε)
� 2πm2D

�4k4−d
ε

F (kεξ),

where D = V 2
Rσ

d
Rc̃2(0), and F (kεξ) =

∫ dΩd

(2π)d
S2(kεξ, cos θ)(1−cos θ) is a universal function of

the unique parameter kεξ which can be analytically or numerically computed.
In 3D for instance, we find

F (kεξ) =
1

(2π)2

[
2

(
1 + 2

1− t2

t

)
+

(
2(1 − t2)(t− 1)

t
− (t2 − 1)2

t2

)
ln

(
t− 1

t+ 1

)

−
(
(1− t2)2(1− t)

t2

)(
2

(1− t2)

)]
(3.60)

where t =
1 + 2(kεξ)

2

2(kεξ)2
.

86



Chapter 4

Localization-delocalization

transition of interacting bosons in

one-dimensional quasiperiodic

lattices

Grâce à presque et à quasi, plus d’un mensonge s’esquive.
(proverbe)

Quasiperdiodic potentials, which are formed of a small number of incommensurate si-
nusoidal components, have attracted over the past decades an increasing attention. They have
proved relevant to describe the structure of incommensurate crystals, which are characterized
by a superimposed periodic modulation of the atomic positions which is incommensurate with
that of the main lattice. Such structures are naturally created during the growth of certain
crystals [188] by Peierls instabilities or as a result of charge-density waves [189]. They can
also be created on purpose in crystals by molecular epitaxy [190], or in ultracold gases loaded
in optical potentials [3, 111, 191–193], using for instance a bichromatic setup as introduced in
Sec. 1.3.2.

Quasiperiodic potentials constitute an appealing intermediate between disordered and
periodic systems. On the one hand, their energy spectrum shows reminiscences of energy
bands. On the other hand, the lack of translation invariance can induce the existence of
localized states, similarly to the phenomenon of Anderson localization in truly disordered
systems [2]. In this case however, the quasi-repetition of finite patterns radically changes the
localization picture. For instance, in the non-interacting case in one dimension, while a truly
disordered potential localises all states as soon as it is switched on, with an energy-dependent
localization length [44, 194], there exists, in the case of a quasiperiodic potential made of
a single incommensurate sinusoidal modulation, a critical potential strength above which
localization occurs; below it, all states are extended Bloch-like waves, and above it, all states
are localized with an energy-independent localization length [195–197].

Similarly to the case of purely disordered systems, taking into account interactions and
many-body effects in quasiperiodic systems constitutes a very challenging question. Such issues

87



88 4. LOCALIZATION TRANSITION OF 1D QUASIPERIODIC BOSONS

Figure 4.1: Phase diagrams of the bichromatic Bose-Hubbard model for densities n = 1, n = r (the
incommensurate ratio of the two lattices), and n = 0.5, as a function of interaction strength U and
V2 = 2Δ, with Δ the quasiperiodic potential strength. Figure extracted from Ref. [208].

have been first investigated in disordered systems, as reviewed in Sec. 1.2, and extensions
to quasiperiodic systems are just starting. So far, most studies have focused on the zero-
temperature phase diagram of one-dimensional bosons in quasiperiodic lattices 1. Indeed,
what remains of the truly disordered phase diagrams presented in Sec. 1.2 (see Fig. 1.3) when
considering a quasiperiodic potential is not obvious at all, since quasiperiodic potentials can
be expected to display an intermediate behavior between commensurate and disordered ones.

Early studies considered first the case of a commensurate superlattice, where a Mott
insulating state with fractional filling and a weakly superfluid phase were found [200–202].
As regards quasiperiodic superlattices, most analytical studies have relied so far on bosoniza-
tion [203,204] and meanfield [205] approaches. Additionally, many numerical studies of the 1D
quasiperiodic Bose-Hubbard model have been performed, based on exact diagonalization [206],
quantum Monte-Carlo [207] or density-matrix renormalization group (DMRG) [208,209]. The
latter were in particular combined with analytical considerations, which allowed for a rather
complete description of the physics of such interacting quasiperiodic systems, as depicted on
Fig. 4.1. As in the purely disordered case, the phase diagram exhibits a superfluid (SF)-Bose
glass (BG) transition. For strong interactions, a Mott insulator (MI) is obtained if the density
is commensurate with the main lattice, while a pinned incommensurate density wave (ICDW)
is obtained if it is commensurate with the secondary lattice. For a filling incommensurate with
both lattices, a superfluid phase is expected for all interaction strength. In particular, no Bose
glass can arise in this region, at variance with the truly disordered case (see Fig. 1.3).

Besides this quest for phase diagrams, the question of the localization of collective
excitations in quasiperiodic lattices remains largely open. As already pointed out, this issue
is particularly relevant to understand most dynamical properties of correlated quantum
systems [161], such as the propagation of correlations in recently-developed quench exper-
iments [123, 124, 185]. Moreover, it is timely in view of current experiments performed on
interacting Bose gases in bichromatic lattices [192].

In this chapter, we study the localization properties of collective excitations of a weakly-
interacting Bose gas in the superfluid regime, subjected to a one-dimensional quasiperiodic
potential [210]. As explained in Sec. 1.3.2, such a system can be realized with ultracold gases
in a bichromatic configuration, i.e. by superimposing, on top of a main optical lattice, a weak

1More recent studies at finite [198] and infinite temperature [199] have been reported.
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4.1 Localization of free particles in quasiperiodic lattices 89

secondary lattice of incommensurate period. In the tight-binding limit, one can restrict to the
lowest energy band of the main lattice and work in the basis of the corresponding Wannier
states. The effect of the main lattice therefore reduces to a discretization of space, while the
second lattice acts as an effective quasiperiodic potential,

Vj = Δcos(2πrj + ϕ), (4.1)

of amplitude Δ, phase ϕ, and with r the incommensurate ratio between the two lattice
wavelengths. Such a system can thus be explicitely mapped onto a Bose-Hubbard model
in the external potential (4.1), whose various parameters (Δ, ϕ, tunnelling rate...) can be
extracted ab initio from the directly tunable parameters of the experiment (laser intensities
and frequencies) [193].

This chapter is organized as follows. In Sec. 4.1, we first recall useful results about the
localization properties of non-interacting particles in quasiperiodic lattices. We then turn to
the interacting case. In Sec. 4.2, we briefly recall the meanfield theory for the weakly-interacting
regime, and set the localization problem of the excitations. The latter is numerically solved
in Sec. 4.3. In particular, we determine the localization diagram of collective excitations and
show evidence of a sharp localization transition separating extended states at low energy and
localized states at high energy. In Sec. 4.4, we develop an analytical treatment, which allows
us to accurately reproduce and understand the numerical results. Our approach permits to
quantitatively map the localization transition of interacting bosons onto that of an effective
multi-harmonic quasiperiodic system, which is analytically solvable [210].

4.1 Localization of non-interacting particles in quasiperiodic

lattices

Before addressing the question of interacting bosons, we study in this section the
case of non-interacting particles in quasiperiodic lattices. In Sec. 4.1.1, we focus on the
one-dimensional lattice with a single quasiperiodic modulation (the so-called Aubry-André
model), and review the analytical prediction by Aubry and André [195] about the localization
transition, as well as other useful analytical results. In Sec. 4.1.2, we discuss the numerical
resolution of this problem, which will provide us the tools to numerically investigate more
elaborate models. Indeed, in Sec. 4.1.3, we discuss the physics of more involved quasiperiodic
potentials (generalized Aubry-André models) and present a perturbative approach developed
by Sokolov [211] to qualitatively capture their localization behaviour.

4.1.1 Aubry-André model - Analytical results

The physics of a single particle in a one-dimensional lattice in the presence of the quasiperi-
odic potential (4.1) is described by the Schrödinger equation 2

t(ψj+1 + ψj−1) + Δcos(2πrj + ϕ)ψj = Eψj (4.2)

where ψj is the value of the wavefunction of energy E at site j, and where only nearest-
neighbor hopping is considered, with a rate t. We recall that r is an irrational number to

2Consistently with Aubry and André convention, we do not put here a ”-” sign in the kinetic term, so that
our t actually denotes the opposite tunelling rate.
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90 4. LOCALIZATION TRANSITION OF 1D QUASIPERIODIC BOSONS

ensure incommensurability of the potential with the main lattice spacing (we will in fact see
later that stronger requirements should be imposed on r).

Equation (4.2) defines the so-called Aubry-André or Harper model, which arises in several
other contexts. For instance, for Δ = 2, it describes the physics of an electron moving on
a 2D square lattice in a perpendicular magnetic field [212, 213], the parameter r = Φ/Φ0

corresponding then to the magnetic flux Φ per cell in units of the flux quantum Φ = h/e. In
the mathematical language, Eq. (4.2) defines the almost Mathieu operator [214]. It has been
intensively studied in both physical [195,215] and mathematical [216] contexts.

In the following, we will first derive Aubry and André argument for the localization tran-
sition, before enlightening a few properties of the energy spectrum.

The Aubry-André argument - Self-duality and localization transition

a/ Self-duality - The Aubry-André argument is based on the fundamental property that
Eq. (4.2) is invariant under a suitable transformation. To show it, the idea introduced by
Aubry and André [195] consists in writing ψ as a plane wave enriched with harmonics coming
from the potential V . This defines the duality transform

ψj = eiϕj
l=∞∑
l=−∞

χle
il(2πrj+ϕ) (4.3)

Reinserting it into Eq. (4.2) yields

t(χl+1 + χl−1) +
4t2

Δ
cos(2πrl + ϕ)χl =

2tE

Δ
χl (4.4)

or equivalently
Δ

2
(χl+1 + χl−1) + 2t cos(2πrl + ϕ)χl = Eχl (4.5)

Equation (4.5) is called the dual equation of Eq. (4.2), and remarkably has the same form of
the model equation (4.2). It shows that the dual wavefunction χ of the wavefunction ψ obeys
the same equation as ψ, with an interversion of tunnelling and quasiperiodic amplitudes. The
Aubry-André model is therefore said to be self-dual.

Moreover, it should be noticed that the duality transform Eq. (4.3) exchanges the
localization and extension properties of the wavefunctions, in the sense that if

∑
j |ψj |2 < ∞

(as expected for an exponentially localized state) and Eq. (4.3) converges, then
∑

l |χl|2 = ∞
(as expected for an extended state). By combining this observation with the duality between
Eqs. (4.4) and (4.2), Aubry and André were able to infer the localization properties of their
model, i.e. which states are extended and which are localized, as we explain now.

First of all, using the duality between Eqs. (4.4) and (4.2), one can immediately infer a
relation for the integrated density of states per unit volume of the model equation. The latter,
denoted Na,b(E), is defined as the number of eigenstates of energy lower than E, divided by
the total number of sites 3, for the model equation Eq. (4.2) with tunneling a and quasiperiodic
amplitude b. With this notation, duality straightforwardly yields

Nt,Δ(E) =
2t

Δ
Nt,4t2/Δ

(2tE
Δ

)
(4.6)

3We recall that in all this chapter, the cell spacing is assumed to be 1.
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4.1 Localization of free particles in quasiperiodic lattices 91

Although very intuitive, this relation hides some subtleties, and requires in particular that r
be an irrational number. This distinction between commensurate and incommensurate cases
is detailed in Ref. [195].

b/ Lyapunov exponent and Thouless formula - The localization behaviour of a state
at energy E can then be captured by inspection of its characteristic exponent γ(E). The latter,
also known as the Lyapunov exponent, is defined by

γ(E) = − lim
j→∞

log(|ψj |2)
2j

(4.7)

with ψ the wavefunction of energy E. It measures the exponential decay rate of the wavefunc-
tion at large distance. For an exponentially localized state, γ(E) coincides with the inverse
localization length (in unit of the lattice cell spacing), while it vanishes for an extented state.
Moreover, the characteristic exponent γ(E) can advantageously be calculated by using the
Thouless formula [217]. The latter establishes a relation, for a one-dimensional random sys-
tem with nearest-neighbor hopping, between γ(E) and the density of states per unit volume
ρ(E) = dN(E)/dE, according to

γ(E) =

∫ ∞

−∞
log

|E −E′|
t

ρ(E′)dE′. (4.8)

There exist several proofs for this formula [194], and we give one in the note below 4. In
particular, it enlightens what are the crucial hypotheses for the Thouless formula to hold :

- Firstly, since it relies on the iteration of Eq. (4.2), the Thouless formula is restricted
to one-dimensional systems with nearest-neighbor hopping. Extensions of the formula to other
situations exist [218].

- Secondly, replacing the discrete sum by an integral in the thermodynamic limit
requires regularity properties of the density of states, which is guaranteed if the system is truly
disordered. It is also valid for a quasiperiodic disorder such as the one used here, provided r
is not only an irrationnal, but as well a Diophantine number (i.e. the solution of a polynomial
equation with integer coefficients).

Using the Thouless formula and the duality equation for the density of states (4.6), we
immediately obtain the duality equation for the characteristic exponents

γt,Δ(E) = γt,4t2/Δ

(2tE
Δ

)
+ log(Δ/2t). (4.9)

4To prove the Thouless formula, let us fix a site j and study ψj(E) as a function of the energy E. To do so,
we consider the differential problem defined on [0; j] by Eq. (4.2) with the boundary conditions ψ0/ψ−1 = cste
(Von Neumann) and ψj = 0 (Dirichlet). We can in fact assume that both the values of ψ0 and ψ−1 are fixed,
since ψ0 is fixed by the global normalization of the wavefunction. Let us call Ei, i = 1, 2, ..., j the eigenvalues of
the considered differential problem. By definition, ψj(E) has zeros for all energies E = Ei, i = 1, 2, ..., j. Then,
for any arbitrary energy E, one can iteratively compute from ψ−1 and ψ0 the values of ψ1(E), ψ2(E),... by
iterating the second-order recursion relation Eq. (4.2). One immediately finds than ψj(E) is a polynomial in E
of order j, and of dominant coefficient 1/tj . Since its zeros are known, one can therefore explicitely write that
ψj(E) = (1/tj)

∏j
i=1(E − Ei). Hence, log(|ψj |2)/2j = (1/j)

∑j
i=1 log |(E − Ei)/t| =

∫
log |(E − E′)/t|ρ(E′)dE′

in the thermodynamic limit j →∞, yielding the Thouless formula.

91



92 4. LOCALIZATION TRANSITION OF 1D QUASIPERIODIC BOSONS

c/ Localization transition - The localization behaviour can now be straightforwardly
inferred from Eq. (4.9), if one recalls that a characteristic exponent is always non-negative [see
definition (4.7)].

If Δ > 2t, one necessarily has γt,Δ(E) > 0 from Eq. (4.9), whatever the energy E, corre-
sponding to localized states at all energies. Such localized states are associated to extended dual

states χ, characterized thus by γt,4t2/Δ

(2tE
Δ

)
= 0. Therefore, one gets γt,Δ(E) = log(Δ/2t),

stating that all states are localized with the same energy-independent localization length,
Lloc = 1/ log(Δ/2t).

Conversely, if Δ < 2t, all states ψj are extended. Indeed, the existence of an exponentially
localized state 5 would imply an extended dual state, yielding simultaneously γt,Δ(E) > 0 and

γt,4t2/Δ

(2tE
Δ

)
= 0, violating Eq. (4.9).

Therefore, one gets an energy-independent localization transition at Δ = 2t (all states lo-
calize simultaneously at this quasiperiodic amplitude), characterized by an energy-independent
localization length in the localized regime. This strikingly contrasts with the case of a
one-dimensional true disorder where all states are localized for any disorder strength, with an
energy-dependent localization length. This transition also differs from the Anderson transition
in 3D, which is energy-dependent and occurs for any disorder strength.

This localization transition also translates into the dynamics [205], as numerically studied
by measuring the time evolution of the width w(t) ∼ tγ of a wavepacket. Three different
asymptotic regimes were then found :
- for Δ < 2t, a ballistic regime, γ = 1;
- for Δ = 2t, a sub-diffusive regime, γ ∼ 0.5;
- for Δ > 2t, a localized regime, γ = 0.

d/ Finite-size systems - Commensurate or incommensurate ? - As seen above,
a necessary and sufficient mathematical condition to observe a sharp transition in the Aubry-
André model is that r be a Diophantine number. In practice however, experiments are always
carried out on a finite system and r can always be known up to a finite number of digits. For this
reason, there is in fact no sharp distinction between commensurate and incommensurate cases,
and the condition is more subtle. In practice, to observe a sharp transition, one requires to have
many lattice sites per period of the quasiperiodic potential, and a system size which does not
exceed too much the period of the quasiperiodic potential (in order to avoid periodic replicas).
This defines a so-called effective degree of commensurability, which depends on whether r is
close to a simple ratio or not, and on the relation between the period of the potential and the
system size. Studies with tunable degree of commensurability have been reported [193] and
revealed a broadening of the transition for values of r that are close to simple rational ratio.

In that case, the mechanism for the transition has been more precisely described by Aubry
and André [195]. When increasing the quasiperiodic amplitude, what happens in fact is that
states corresponding to wavevectors that are commensurate with r localize first, yielding dense
localized states in the spectrum. When the quasiperiodic amplitude further increases, local-
ization spreads out from those points before invading the whole spectrum. Therefore, the
transition as a function of Δ/t is broadened compared to the ideal incommensurate case. Such
an effect however decreases exponentially fast when the degree of commensurability is increased.

5As pointed out by Aubry and André, there might exist non-exponentially localized states, but those are
expected to have a zero measure.
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4.1 Localization of free particles in quasiperiodic lattices 93

Figure 4.2: Hofstadter butterfly. Energy spectrum of an electron moving on a 2D square lattice as a
function of the perpendicular magnetic flux. This system can be mapped onto the Aubry-André model
at Δ = 2t, with r representing the magnetic flux. The spectrum displays a rich fractal structure.

Energy spectrum of the Aubry-André model

The energy spectrum of the Aubry-André model (4.2) has been the object of numerous
studies [195, 196, 213, 219] and was found to exhibit a very different structure in the extended
and localized regimes.

In the extended regime, Δ < 2t, the spectrum is independent of the phase ϕ [195].
Each eigenvalue has a twofold degeneracy. More interestingly, the energy spectrum is made
of several narrow energy bands separated by gaps (also referred to as minigaps in the
litterature) [196]. When Δ = 0, there is no gap and the spectrum consists in a unique
energy band of width 4t. When Δ increases, more and more minigaps open, and then
broaden. The spectrum is therefore uncountable, and its total measure decreases when Δ
increases, until vanishing at the transition point Δ = 2t. In particular, Aubry and André found
that the total Lebesgue measure of the spectrum, B(Δ), obeys the empiric law B(Δ) = 4t−2Δ.

In the localized regime Δ > 2t, the structure changes drastically. First, the energy spectra
obtained for two different phases ϕ and ϕ′ are fully disconnected, except if the latter are
related by a commensurability relation ϕ = ϕ′ + 2πrZ (mod 2π), in which case the energy
spectra are the same. The energy spectrum is then made of pointlike energy levels and has a
fractal structure : in particular, it is of zero measure, and has no ground state.

The critical case Δ = 2t has been intensively studied in another context, since it describes
the physics of an electron moving on a 2D square lattice in a perpendicular magnetic field [212,
213]. In particular, much attention has been devoted to understanding the spectrum as a
function of the parameter r = Φ/Φ0, which in this context corresponds to the magnetic flux Φ
per cell in units of the flux quantum Φ = h/e. For irrational values of r, it was found to be a
singular and fractal set of zero measure, in agreement with the previous results, and to form a
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Figure 4.3: (a) Colorplot of the onsite coefficients of the tenth eigenstate, obtained by exact diagonaliza-
tion of the Aubry-André model, for increasing quasiperiodic amplitudes Δ/t. A localization transition
clearly appears for Δ = 2t. (b)-(c) Semilog profiles of the same eigenstate for Δ/t = 2.1 [localized
regime, (b)]) and Δ/t = 1.9 [extended regime, (c)].

Cantor set in the thermodynamic limit. Conversely, for rational values of r = p/q, it is made
of q energy subbands. This rich and complex structure is depicted on Fig. (4.2), referred to as
the Hofstadter butterfly.

4.1.2 Numerical results

In this section, we discuss the numerical resolution of the Aubry-André model (4.2). The
objectives are twofold. On the one hand, it will enable us to reproduce the previous theoretical
predictions. More importantly on the second hand, the same tools will be advantageously
applied in the next section to the case of generalized quasiperiodic potentials, which will play
an important role in the remainder of this chapter.

The numerical resolution is performed by exact diagonalization of Eq. (4.2). Notice that
the quasiperiodic potential that we consider here can in principle be replaced by any external
potential, so that the same procedure can be used to investigate the case of more elaborate
potentials (see Sec. 4.1.3).

We make the common choice of a maximally incommensurate ratio, r ≈ (
√
5−1)/2, known

to display a sharp transition in the non-interacting case [193, 197, 216]. A subtle point arises
here [197]. In principle, any Diophantine number would be suitable. However, numerical
calculations are performed on a finite system, and periodic boundary conditions should be
imposed to avoid undesirable boundary effects. Therefore, the periodic potential cannot be
truly incommensurate, but has to be in fact commensurate with the system size to fulfill the
periodic boundary conditions ! To do so, one has to choose not only a Diophantine number,
but also a number which can be very closely approximated by rational numbers (a so-called
Liouville number). In this respect, the golden ratio (

√
5 − 1)/2 is a good choice. Since it

is very well approximated by the ratio of two successive Fibonacci numbers Fp−1/Fp, we
choose for the number of lattice sites a Fibonacci number Fp, and perform our simulations
with r = Fp−1/Fp, simultaneously fulfilling the appearently contradicting requirements of
incommensurability and periodic boundary conditions.
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Figure 4.4: (a) Colorplot of the Lyapunov exponent of all eigenstates of the spectrum and for an
increasing quasiperiodic amplitude. It shows that the transition at Δ = 2t is energy-independent. The
dependence of the Lyapunov exponent on the quasiperiodic amplitude is essentially the same for all
eigenstates (as exemplified in (b) for three eigenstates), and well captured by Aubry-André formula (red
line in (b)).

Exact diagonalization of Eq. (4.2) gives access to the energy spectrum and wavefunctions
of the Aubry-André model. The numerical results are presented on Figs. 4.3 and 4.4.
Figure 4.3(a) displays the behaviour of a given eigenstate (here, the tenth) when increasing
the quasiperiodic amplitude. While it is extended over the whole system for Δ < 2t, it turns
localized on a very few number of sites as soon as Δ > 2t, recovering Aubry-André localization
transition. Semilog profiles are shown on Fig. 4.3(b) and (c) in the extended and localized
regimes, featuring in particular a neat exponential localization for Δ > 2t.

Several observables can then be considered to more accurately describe the localization
properties. The participation ratio PR, defined by

PR−1 =
Σ|ψj |4

(Σ|ψj |2)2 ,

measures the typical number of sites significantly contributing to a given eigenstate. From its
definition, it can be checked that it is 1 for a state localized on one single site, and N for a
state extending over the whole system. It is a good qualitative indicator of the localization
behaviour, but intermediate values are often difficult to interpret 6.

Therefore, to quantitatively characterize the localization transition, we will consider the
localization length, or equivalently its inverse, the Lyapunov exponent γ. The latter can be
extracted from a linear fit of the semilog tail of the wavefunction [see Eq. (4.7)]. Figure 4.4(a)
displays the behaviour of γ for all eigenstates of the spectrum and as a function of the quasiperi-
odic amplitude Δ. All states feature the same localization transition at Δ = 2t, which is there-
fore energy-independent. The behaviour of γ when increasing the quasiperiodic amplitude is
plotted for a few eigenstates on Fig. 4.4(b) : all states exhibit the same energy-independent
localization length, which is accurately described by the Aubry-André formula (red line).

6For instance, a PR of 2 can be obtained from a state localized over two sites, but also from an extended
state with two distant main peaks.
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Figure 4.5: (a) Colorplot of the Lyapunov exponent of all eigenstates of the spectrum for the Soukoulis
and Economou model, for an increasing main quasiperiodic amplitude Δ1 at fixed secondary amplitude
Δ2 = 0.5t. When increasing Δ1, high-energy modes localize first. Therefore, three regimes appear : for
Δ1 � t, all states are extended (’ext’ regime); for t � Δ1 � 3.5t, low-energy states are extended while
high-energy ones are localized (’ext-loc’ regime); for Δ1 � 3.5t, all states are localized (’loc’ regime).
The occasional abrupt changes in the Lyapunov exponent when going from an eigenstate to the following
correspond to the minigaps of the spectrum, where the excitation energy between consecutive modes
varies abruptly. (b) Dependence of the Lyapunov exponent on the main quasiperiodic amplitude Δ1 for
three eigenstates.

4.1.3 Generalized quasiperiodic potentials - Locator perturbation theory

We now turn to more elaborate incommensurate potentials, which are not made of one
single sinusoidal component. Such generalized quasiperiodic potentials are very interesting
in their own right. On the one hand, they are expected to be very general in nature, since
quasiperiodic structures are rarely described by a single purely sinusoidal modulation. On the
other hand, we shall see that they display a very different physics and a richer localization
behaviour, owing to the fact that they generally do not exhibit duality. From a practical point
of view, their study in this manuscript is motivated by the fact that they will naturally emerge
when considering the interacting case in the next section.

Non self-dual models

A first extension to the Aubry-André model was studied by Soukoulis and Economou, who
considered a two-harmonic quasiperiodic potential [220]

t(ψj+1 + ψj−1) +
[
Δ1 cos(2πrj) + Δ2 cos(4πrj)

]
ψj = Eψj . (4.10)

It can be checked that such model is no longer invariant under the duality transform (4.3)
and that the Aubry-André argument cannot be applied. For their parameters, Soukoulis and
Economou found a mobility edge, separating extended states in the lowest part of the spectrum
from localized states in the highest part.

Using the numerical tools developed in the previous section, we were able to study this
model for a wide range of parameters. In particular, we have studied the localization transition
when increasing the main quasiperiodic amplitude Δ1 in the presence of a fixed (small)
secondary modulation of amplitude Δ2. Our results are plotted on Fig. 4.5, for Δ2 = 0.5t. At
variance with the Aubry-André case where all eigenstates localize simultaneously at Δ1 = 2t,
high-energy eigenstates here localize first. Therefore, three regimes show up : for Δ1 � t, all
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4.1 Localization of free particles in quasiperiodic lattices 97

states are extended (’ext’ regime); for t � Δ1 � 3.5t, low-energy states are extended while
high-energy ones are localized (’ext-loc’ regime); for Δ1 � 3.5t, all states are localized (’loc’
regime).

Another extension of the Aubry-André model was then studied by Riklund et al. [221], who
kept the form of a single harmonic quasiperiodic potential, but added tunelling terms up to
the next-nearest neighbors,

t1(ψj+1 + ψj−1) + t2(ψj+2 + ψj−2) + Δcos(2πrj)ψj = Eψj (4.11)

Such a model is again not self-dual. However, it can be checked that the duality transform (4.3)
converts it into the Soukoulis and Economou model (4.10), with t = Δ/2, Δ1 = 2t1, and
Δ2 = Δt2/t1. Consistently, Riklund et al. found, when increasing the quasiperiodic amplitude
Δ, that the system should go from a situation where all states are extended to a situation where
all are localized, but through a ’loc-ext’ regime for intermediate quasiperiodic amplitude 7.
Interestingly, the system can have localized states for a quasiperiodic amplitude Δ < 2t1, where
the Aubry-André model has only extended states, yielding the somehow paradoxal conclu-
sion that increasing the hopping range in incommensurate systems can generate localized states.

Those results suggested to combine the two previous models [222] and study the model

t1(ψj+1 + ψj−1) + t2(ψj+2 + ψj−2) +
[
Δ1 cos(2πrj) + Δ2 cos(4πrj)

]
ψj = Eψj (4.12)

Interestingly, such a model is invariant under the duality transform Eq. (4.3), provided the
disorder amplitudes and hopping coefficients are related by the relations Δ1 = 2t1 (as in the
Aubry-André model) and Δ2/Δ1 = t2/t1. As in the Aubry-André model, self-duality was
found to result here in an energy-independent metal-insulator transition. However in this
precise case, the localization length in the localized regime was found to depend on the energy,
due to an additional energy-dependent term in the Thouless formula. Indeed, due to the
introduction of non-nearest-neighbor hopping, the Thouless formula cannot be used here in its
original form and needs to be generalized.

More generally, it was shown that all models of the form∑
l

tlψj+l +Δvjψj = Eψj (4.13)

exhibit self-duality [195,218], provided the hopping coefficients tl are related to the harmonics
of the on-site potential by the formula vj =

∑
l tle

il(2πrj+ϕ). In this case, a localization
transition at which all eigenstates localize simultaneously is expected to occur for a critical
value of the disorder strength Δc, which is the fixed point of the duality transform 8. However,
the localization length can depend on the energy due to the more complex form of the Thouless
formula when including non-nearest-neighbor hopping.

7Note that the intermediate regime in Riklund model is indeed ’loc-ext’, while it is ’ext-loc’ in the Soukoulis
and Economou model, consistently with the fact that localization properties are inverted when going to the dual
space.

8Interestingly, there exists self-dual models which are not of the form of Eq. (4.13), for instance with infinite-
range hopping, and for which energy-dependent mobility edges have been predicted [218].
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Figure 4.6: Lyapunov exponent as a function of excitation energy for the multiharmonic model (4.14)
with two (blue crosses), three (red squares), and four (dark triangles) harmonics included, and in the case
where all included harmonics have the same amplitude Δi = t. All cases display a similar localization
transition, and the position of the mobility edge weakly depends on the number of harmonics included.

Conversely, for non-dual quasiperiodic models, mobility edge(s) generically appears in the
spectrum for intermediate disorder strength, since all states do not localize simultaneously. We
have performed numerical simulations with multiharmonic quasiperiodic potentials, i.e. models
of the form

t(ψj+1 + ψj−1) +
[
Δ1 cos(2πrj) + Δ2 cos(4πrj) + Δ3 cos(6πrj) + ...

]
ψj = Eψj . (4.14)

As soon as two harmonic at least are present, we found very similar conclusions to the two-
harmonic case studied by Soukoulis and Economou, and the three regimes ’ext’, ’ext-loc’ and
’loc’ generically show up. The results for the Lyapunov exponent, obtained in the same way
as in the previous section 4.1.2, are displayed on Fig. 4.6 for a various number of harmonics
in the model. Interestingly, in the ’ext-loc’ regime, the position of the mobility edge weakly
depends on the number of harmonics included. All those multiharmonic models therefore fall
into the same universality class, except the particular one where only a single harmonic is
present, which exhibits duality and falls into Aubry-André universality class.

Locator perturbation theory

To systematically study localization in incommensurate lattice potentials, a general for-
mulation based on locator perturbation theory was developed by Sokoloff [196,211]. The latter
can be applied to any lattice model, and can advantageously be used in any dimension and for
any incommensurate on-site potential, i.e. for any model of the form∑

�a

tψ(�r + �a) + ψ(�r)V (�r) = Eψ(�r). (4.15)

The general idea [211] consists in writing a standard perturbation theory for the self-energy
and examining the possibility of divergence in it. A divergence at energy E indeed reveals an
extended state, whereas no divergences appear for localized states. In the thermodynamic limit
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Δ1 = 1.9t and Δ2 = t, as obtained from exact diagonalization (blue) and locator perturbation theory
Eq. (4.16) (red). Locator perturbation theory gives a fair estimation of the localization behaviour and
of the mobility edge.

and for incommensurate potentials, it was shown by Sokoloff [211] that the convergence of the
self-energy, which involves products of denominators of the form E−V (�r+ �a1+ �a2+ ...), can be
tested by examining the convergence of the geometric series whose ratio D(E) is the geometric
mean of an energy denominator,

D(E) = exp

(
1

V
∫

log
∣∣∣E − V (�r)

t

∣∣∣dd�r
)
. (4.16)

Indeed, it can be shown that the self-energy converges provided the so-called localization func-
tion D(E) is larger than K, where Kn is the number of self-avoiding paths of n steps in
the considered lattice geometry. For instance, in a one-dimensional lattice with only nearest-
neighbor hopping, K = 1, so that a simple localization criterion reads D(E) > 1, with D(E)
given by Eq. (4.16). Such a criterion can hence be applied to any quasiperiodic potential. Since
this result relies on perturbation theory, it is asymptotically valid near the center of the band
(E → 0). As discussed by Sokoloff [196], the localization function can as well be used as an
estimate for the localization length. In the limit of sharply localized states, the latter is roughly
given by Lloc(E) ≈ 1/ log(D(E)).

As an example, let us apply this criterion to the Aubry-André model. In this case, the
localization function reads

D(E) = exp
( 1

2π

∫ 2π

0
log

∣∣∣E −Δcos(x)

t

∣∣∣dx).
It can be analytically calculated and remarkably yields the value Δ/2t independently of E
(provided |E| < Δ, explicitely giving here the upper bound for the validity of the approach).
Therefore, one recovers the localization transition at Δ = 2t as predicted by Aubry and André,
as well as the energy-independent localization length Lloc = 1/ log(Δ/2t).

For more elaborate multiharmonic potentials, we can compare this formula to the previous
numerical results [see for instance Fig. 4.7 for the two-harmonic case]. Although quite an
approximative formula for Lloc, the mobility edge is rather fairly estimated.
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1004.2. THE WEAKLY-INTERACTING BOSE GAS ON THE QUASIPERIODIC LATTICE

Figure 4.8: (a) Free-particle dispersion relation on the lattice, Eq. (4.18), restricted to the first Brillouin
zone k ∈ [−π;π]. The low-k limit coincides with the quadratic free-particle dispersion relation on the
continuum, ε = tk2 (dashed line). The total bandwidth is 4t. (b) Bogoliubov dispersion relation on the
homogeneous lattice, Eq. (4.25), for two different parameters, t = Un and t = 5Un. Similarly to the
continuous case, it is linear at low momenta (dashed line) and free-particle-like at high momenta.

4.2 The weakly-interacting Bose gas on the quasiperiodic lat-

tice

We now turn to the interacting case. In this section, we briefly set the model and use the
mean-field theory to formulate the problem of the localization of collective excitations.

4.2.1 The model

The low-energy physics of interacting bosons in one-dimensional quasiperiodic lattices is
governed by the single-band Aubry-André-Hubbard Hamiltonian,

Ĥ = −
∑
j,l

Tj,lâ
†
j âl +

∑
j

Vj â
†
j âj +

U

2

∑
j

â†j â
†
j âj âj, (4.17)

where âj and â†j are the bosonic annihiliation and creation operators at the lattice site j. The

first term in Eq. (4.17) represents quantum tunneling with the hopping matrix T̂ chosen to
include only nearest-neighbor tunnelling, Tj,j±1 = t and Tj,l = 0 for |j − l| > 1, and where we
include the homogeneous on-site term Tj,j = −2t for convenience. With this convention, the
clean free-particle spectrum,

εk = 2t[1− cos(k)], (4.18)

is centered on ε = 2t with the band edges ε = 0 and ε = 4t [see Fig.4.8(a)]. The second term
represents the on-site quasiperiodic potential modulation,

Vj = Δcos(2πrj + ϕ), (4.19)

where r is an irrational number to ensure incommensurability of the modulation with the
spacing of the main lattice, ϕ is a phase, and Δ the quasiperiodic amplitude. Here again,
we make the common choice of a maximally incommensurate ratio, r ≈ (

√
5 − 1)/2. Finally,

the third term represents onsite repulsive interactions with the two-particle interaction energy
U > 0.
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4.2 The weakly-interacting Bose gas on a quasiperiodic lattice 101

4.2.2 Mean-field theory

In the weakly-interacting superfluid regime we are interested in, characterized by a high
occupation number per lattice site (n � U/t, with n the mean density), we can rely on meanfield
theory [223,224]. In this case, the discreteness of the particle number on each site indeed plays
no role and one can perform a continuous treatment of the extended condensate. The approach
for lattice systems is very similar to that of continuous systems, which was presented in details
in chapter 2.

Gross-Pitaevskii equation

The first step is to determine the meanfield density background nj, which is achieved
by minimizing the classical energy functional obtained by replacing the operator âj by the
real-valued field φj ≡ √

nj in Eq. (4.17). This yields the Gross-Pitaevskii equation (GPE)

μφj = −T̂φj + Vjφj + Uφ3
j (4.20)

where the term T̂φj is a shortcut for the hopping matrix contribution t(φj+1−2φj +φj−1) and
μ is the chemical potential. The latter is adjusted to fulfill the constraint of a fixed particle
number, N = Σj|φj |2.

Bogoliubov equations

Given the density background nj, we write δâj = âj − φj ≡ δn̂j/2
√
nj + i

√
njδθ̂j , where

δn̂j and δθ̂j are the density and phase fluctuations. Hamiltonian (4.17) is then expanded up
to second order in this Bogoliubov operator, yielding

H(II) =
∑
j

[
X̂j

T̂ φj

φj
X̂j − X̂j T̂ X̂j + 2UnjX̂

2
j

]
+

∑
j

[
P̂j

T̂ φj

φj
P̂j − P̂j T̂ P̂j

]
(4.21)

where we have introduced the standard operators X̂j = δn̂j/2φj et P̂j = δθ̂jφj . The collective
excitations, characterized by their energy E and represented by two fields uj and vj, are then
determined by diagonalizing the quadratic Hamiltonian (4.21), and are found to be the solutions
of the Bogoliubov de-Gennes equations (BdGEs)[−T̂+Vj−μ+2Unj Unj

−Unj T̂−Vj+μ−2Unj

] [
uj
vj

]
= E

[
uj
vj

]
.

(4.22)

Note that both the Gross-Pitaevskii (4.20) and the Bogoliubov (4.22) equations on the lattice
are straightforwardly deducible form the continuous case [Eqs. (2.13) and (2.20)] by applying
the following substitutions : g → U , �2/2m∇2 → t(.x+1 + .x−1 − 2.x) ≡ T̂ . In Fourier space,
the latter amounts to replace the free-particle quadratic dispersion relation by that of the
clean lattice, �2k2/2m → εk.

In particular, in the homogeneous case Vj = 0, one has μ = Un so that the Bogoliubov
equations rewrite (−T̂ + Un Un

−Un T̂ − Un

)(
uj
vj

)
= E

(
uj
vj

)
(4.23)
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In this case, translation invariance allows to search the excitations under the form uj = upũ
(p)
j

and vj = vpṽ
(p)
j where ũ

(p)
j and ṽ

(p)
j are Bloch waves of quasi-momentum p, and up and vp are

complex amplitudes. The eigenproblem (4.23) then reduces to diagonalizing a 2× 2 matrix,(
εp + Un Un
−Un −εp − Un

)(
up
vp

)
= Ep

(
up
vp

)
, (4.24)

yielding the Bogoliubov spectrum

Ep =
√

εp(εp + 2Un). (4.25)

This expression, which is plotted on Fig. 4.8(b), is similar to what is obtained in the continuous
case, except that εp is given by the free-particle dispersion relation on the lattice, Eq. (4.18),
instead of εp = p2/2m.

The GPE for the density background (4.20) together with the BdGEs (4.22) form a complete
set which determines the localization problem of collective excitations.

4.3 Numerical resolution

In this section, we first consider the numercial resolution of this problem, Eqs. (4.20)
and (4.22), on the 1D quasiperiodic lattice.

As already discussed in Sec. 4.1.2, the number of lattice sites is chosen to be a Fibonacci
number Fp and r is approximated by the ratio Fp−1/Fp in order to use periodic boundary
conditions with a good approximation of the incommensurate ratio r. In practice, we use
Fp = 610, which yields r = (

√
5− 1)/2± 0.000002.

Firstly, the density background is computed by solving the GPE (4.20) using imaginary
time propagation with a Crank-Nicolson scheme [225]. The good numerical convergence of
the imaginary-time propagation of the GPE is a delicate point for the later determination
of the collective excitations using the BdGEs, in which the density background nj computed
numerically is incorporated. As a convergence criterion, we fix a precision threshold on the
effective, imaginary time-dependent chemical potential

μ(τ) ≡ −�

2

d

dτ
log

⎛
⎝∑

j

nj

⎞
⎠ .

We have checked that the density profile is practically unchanged when the precision threshold
varies from 10−8 to 10−15. The same holds when the imaginary time step Δτ used in the
propagation varies from tΔτ = 0.01 to 0.5 9. Moreover, the density profile precisely agrees
with the perturbative expansion of the GPE solution (see Sec. 4.4.1) implemented up to order
50. Altogether, the precision on the density profile nj is estimated of the order of 10−8 for all
results presented here.

Secondly, using this precisely determined density field, the excitations are computed by ex-
act diagonalization of the BdGEs. (4.22) using the Lanczos algorithm for sparse non-Hermitian
eigenproblems [225].

9Above this value, the Crank-Nicolson scheme can become unstable.
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Figure 4.9: Numerical results. (a) Localization diagram as a function of the interaction strength and the
quasiperiodic amplitude. It displays three regimes: (i) ‘Extended regime’ where the density background
is connected and all excitations are extended; (ii) ‘Fragmented regime’ where the density background
is fragmented; (iii) ‘Extended-localized regime’ where the density background is connected and the
excitation spectrum shows a delocalization-localization transition with exponentially localized high-
energy states and extended low-energy states. (b)-(c) Typical excitation wavefunction u in the localized
(b) and extended (c) regimes, plotted in semi-log scale and for the 150 first lattice sites (similar plots are
found for the v wavefunctions). The two panels correspond to two excitations with consecutive energies
in the spectrum, above (b) and below (c) the mobility edge, for Un/t = 1.75 and Δ/t = 3.3.

The numerical results are summarized on the diagram of Fig. 4.9(a). It displays three
different regimes. For weak quasiperiodic amplitude Δ, the density background is fully
connected and all excitations are extended (‘extended regime’). For a given interaction
strength U and tunneling t, the density modulations increase with the quasiperiodic amplitude
Δ. Above a critical value of Δc, the density profile gets fragmented (‘fragmented regime’),
which yields the upper boundary on the diagram. The fragmentation condition is chosen to
be the minimal value of Δ such that at least one lattice site has a density lower than 0.01
atom per site. We have checked that varying this arbitrary threshold down to 0.001 yields
insignificant changes of the fragmentation boundary. Moreover the latter is in good agreement
with the experimental observation of Ref. [192]. In the fragmented regime, the density profile
is cut in disconnected pieces. It corresponds to trivial localization, a case that we disregard in
the following. Notice that in the limit U → 0, we recover the critical value Δc = 2t, that is the
localization transition of the non-interacting Aubry-André model. The most interesting regime
appears for intermediate quasiperiodic amplitude (‘ext-loc regime’). In this regime, although
the density background is fully connected, we find a localization transition of the collective
excitations. Remarkably enough, they are the high-energy excitations that are exponentially
localized over a few lattice sites [see Fig. 4.9(b)] while the low-energy excitations are extended
over the whole system [see Fig. 4.9(c)]. This transition is sharp as exemplified on Figs. 4.9(b)
and (c), which correspond to two consecutive excitations in the spectrum, for Un = 1.75t
and Δ = 3.3t. Such results are consistent with the observed behaviour of the participation
ratio [226], although the latter remains a qualitative indicator which does not allow for a
precise characterization of the localization transition.

In order to characterize the delocalization-localization transition, we compute two Lyapunov
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Figure 4.10: (a) Lyapunov exponents of the Bogoliubov wavefunctions u and v, for Un/t = 1.75 and
Δ/t = 3.3, 3.5, 3.7. The excitation spectrum is banded and displays a sharp localization transition
separating extended (γ = 0) and localized (γ > 0) states. (b) Mobility edge as a function of the
quasiperiodic amplitude Δ/t as extracted from power-law fits to the numerical γ(E) curves [solid lines
on panel (a)]. Error-like bars correspond to the edges of the minigap containing the mobility edge.
The dotted, red line shows the analytical prediction of the locator perturbation theory applied to the
effective model (4.45) with the potential (4.49).

exponents for the excitations corresponding to the two Bogoliubov wavefunctions,

γu(E) ≡ − lim
j→∞

log |uj |/j and γv(E) ≡ − lim
j→∞

log |vj |/j.

They are extracted from linear fits of the tails of the logarithm of the wavefunctions u and
v. Figure 4.10(a) displays those Lyapunov exponents versus the excitation energy, for fixed
interaction and disorder strengths. The Lyapunov exponents γu and γv are indistinguishable
and herafter we omit the wavefunction index u or v. In the ‘ext-loc’ regime the Lyapunov
exponent curves clearly show the transition, separating extended (γ = 0) and localized (γ > 0)
states. As already discussed, the excitation spectrum splits into several bands separated by
minigaps, a general feature in quasiperiodic systems [196, 197, 211, 218, 220, 222], and we find
that the transition generally lies into one of the minigaps. Therefore, to precisely determine the
position of the mobility edge, we rely on fits of the γ(E) curves wih several fitting functionals
[linear, γ(E) ∼ E−Ec; power-law, γ(E) ∼ Eα−Eα

c ; and logarithmic, γ(E) ∼ log(E/Ec)]. The
result is found to be almost independent of the fitting functional and thus provides a reliable
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estimate of the mobility edge. Figure 4.10(b) shows the mobility edge versus the quasiperiodic
amplitude for various interaction strengths. The error-like bars represent the edges of the
minigap containing the mobility edge. The uncertainty on the fitted mobility edge is smaller
than these bars. The red-dotted line is the result of the analytical effective model developed in
the next section.

4.4 Analytical approach : building an effective model

In order to interpret those results, we now turn to an analytical treatment of the local-
ization problem. The main difficulty lies on the fact that localization in quasiperiodic systems
occurs for strong quasiperiodic amplitude Δ [195]. For this reason, lowest-order perturbation
theory, which proved successful for 1D disordered systems [13, 79, 170], fails here 10. To over-
come this issue, we will develop in the following an approach based on a generic expansion in
harmonics of the quasiperiodic potential. In Sec. 4.4.1, we analytically determine the density
background nj and show that it takes the form of a series of harmonics of the quasiperiodic
potential. As we detail then in Sec. 4.4.2, this permits to map the localization problem for the
excitations onto that of an effective multiharmonic quasiperiodic system. The latter is solved in
Sec. 4.4.3 using locator perturbation theory, providing analytical estimates of the localization
transition.

4.4.1 Harmonic expansion of the density background

In this section, we determine the density background nj, and show that it takes the form
of as a series of harmonics of the quasiperiodic potential which, remarkably, can be analytically
computed.

General series expansion of the density background

To determine the density background nj ≡ φ2
j , one has to solve the GPE (4.20) together

with the normalization condition

n =
1

L
Σjnj, (4.26)

where L is the number of sites and n is the averaged density. To do so, we perform a series
expansion in powers of the quasiperiodic potential Vj . In the absence of an external potential,
we have φj =

√
n and the chemical potential μ = Un. In the presence of an external potential,

we then write

φj =
√
n
(
φ
(0)
j + φ

(1)
j + φ

(2)
j ...

)
(4.27)

μ = Un
(
μ(0) + μ(1) + μ(2) + ...

)
(4.28)

nj = n
(
n
(0)
j + n

(1)
j + n

(2)
j ...

)
(4.29)

where the superscripts denote increasing orders in the quasiperiodic amplitude Δ, and φ
(0)
j = 1,

n
(0)
j = 1, μ(0) = 1. Notice that the chemical potential has to be expanded also to fulfill the

10We have found that lowest-order perturbation theory as used for 1D disordered, interacting Bose gases in
Refs. [13,79,170] is both quantitatively and qualitatively incorrect here. In particular, it predicts a diagram that
is inconsistent with that of Fig. 4.9 and it is not able to predict the localization transition. We will come back
on this point later.
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normalization condition (4.26). Inserting the expansions (4.27) and (4.28) in the GPE (4.20),
and the expansion (4.29) in the normalization condition (4.26), we get

Un
(
μ(0) + μ(1) + ...

)
(φ

(0)
j + φ

(1)
j + ...) = −T̂

(
φ
(0)
j + φ

(1)
j + ...

)
+ Vj

(
φ
(0)
j + φ

(1)
j + ...

)
+Un

(
φ
(0)
j + φ

(1)
j + ...

)3
(4.30)

and
1

L

∑
j

(
φ
(0)
j + φ

(1)
j + ...

)2
= 1. (4.31)

Then, collecting all the terms of same order p in the quasiperiodic amplitude yields

(
1− 1

2Un
T̂

)
φ
(p)
j = − Vj

2Un
φ
(p−1)
j − 1

2

∑
k+�+m=p

0≤k,�,m≤p−1

φ
(k)
j φ

(�)
j φ

(m)
j +

1

2

∑
1≤k≤p−1

μ(k)φ
(p−k)
j +

μ(p)

2

(4.32)
and ∑

j

⎛
⎝2φ

(0)
j φ

(p)
j +

∑
1≤k≤p−1

φ
(k)
j φ

(p−k)
j

⎞
⎠ = 0. (4.33)

Equations (4.32) and (4.33) can then be used to iteratively compute all φ
(p)
j and μ(p), at any

required order p. The iteration process works as follows. Given all φ
(k)
j and μ(k) at orders k < p,

we calculate φ
(p)
j as a function of μ(p) from Eq. (4.32) by inverting the operator 1 − T̂ /2Un.

The quantity μ(p) is then found by inserting this expression for φ
(p)
j into Eq. (4.33). Having

determined φ
(p)
j , we then find the density field using Eq. (4.29), whose expansion in powers of

the quasiperiodic amplitude writes

n
(p)
j =

∑
k+�=p
0≤k,�≤p

φ
(k)
j φ

(�)
j . (4.34)

This procedure is completely general and can be applied to any external potential Vj . In
particular, it can easily be numercically implemented in a recursive way. In the case of a
quasiperiodic potential Vj = Δcos(2πrj + ϕ), we have implemented it up to order 50 and
found excellent agreement with the direct numerical solution of the GPE (4.20) obtained by
imaginary time propagation (see Fig. 4.11). It provides a cross-check of the precision of the
numerical solution and of the convergence of the present analytical expansion. Additionally,
Fig. 4.11 shows that in the regime of interest (‘ext-loc regime’ of Fig. 4.11), first-order terms
are generally not sufficient to accurately capture the density profile. Therefore, one needs a
priori to take into account the full series to accurately describe this regime.

Analytical expansion in the case of a quasiperiodic potential

We now show that in the case of the quasiperiodic potential Vj = Δcos(2πrj + ϕ), the
above iterative process remarkably becomes fully algebraic, since the operator 1 − T̂ /2Un in
Eq. (4.32) can be analytically inverted at any order. This will in particular allow us to give
explicit analytical formulas for the lowest-order terms, and enlighten the harmonic structure of
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Figure 4.11: Comparison between the density profile as numerically obtained by imaginary time prop-
agation (blue), and as obtained from the above perturbative procedure (red), iteratively implemented
at various orders (from left to right and top to bottom : 0, 1, 2, 3, 4, 50). The used parameters
(Un/t = 1.75 and Δ/t = 3.7) correspond to a regime ‘ext-loc’ in the localization diagram). When going
to increasing orders, the agreement gets better and better. This provides a cross-check of both the
precision of the numerical solution and the convergence of the analytical expansion.

the density background nj. In the following, it will prove convenient to write the density field
in the form

nj =
μ− Ṽj

U
, (4.35)

where the field Ṽ includes corrections of all orders to the homogeneous density profile.

At first order, Eq. (4.32) reduces to −T̂φ
(1)
j +2Unφ

(1)
j = −Vj+Unμ(1). It is straightforward
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to solve it in Fourier space where the operator T̂ is diagonal. It yields

φ
(1)
k = −Vk − Unμ(1)δk,0

εk + 2Un
,

where we recall that the free-particle dispersion relation is εk = 4t sin2(k/2) [see Eq. (4.18)].

Inserting the previous expression for φ
(1)
k into Eq. (4.33), we find μ(1) = Vk=0/Un = 0 and

φ
(1)
k = − Vk

εk + 2Un
.

Remarkably, since the quasiperiodic potential contains only the spatial frequency r (in Fourier
space, Vk = Δ(eiϕδk,+2πr + e−iϕδk,−2πr)/2), one can immediately get back to real space and
write

φ
(1)
j = − Δ

2Un
fr cos(2πrj + ϕ), (4.36)

where fr =
1

1 + ε2πr/2Un
.

Hence, to lowest order, the density profile is a quasiperiodic field. It exactly follows the
modulations of the quasiperiodic potential, although with a reduced amplitude since fr < 1 11.
The factor fr is a remainder of the nonlocal operator 1−T̂ /2Un in the l.h.s. of Eq. (4.32), which
reduces to an algebraic operation in the case of a quasiperiodic potential. Then, Eqs. (4.34)

and (4.35) yield the first order term of the field Ṽj . It reads Ṽ
(1)
j = −2Unφ

(1)
j where φ

(1)
j is

given by Eq. (4.36), i.e.

Ṽ
(1)
j = Δfr cos(2πrj + ϕ). (4.37)

The next orders are found following the same process, which remains algebraic to any order
in the case of the quasiperiodic potential. To second order, it yields the term

φ
(2)
j =

(
Δ

2Un

)2
[
− f2

r

4
+

(
fr − 3

2
f2
r

)
f2r

cos[2(2πrj + ϕ)]

2

]
, (4.38)

and a negative shift on the chemical potential,

μ(2) = −
(

Δ

2Un

)2

(fr − f2
r ). (4.39)

The field Ṽj is then given at second order by Ṽ
(2)
j = Un[μ(2)−n

(2)
j ] = Un[μ(2)− (2φ

(2)
j +φ

(1)2
j )]

where φ(1), φ(2) and μ(2) are given by Eqs. (4.36), (4.38), and (4.39), i.e.

Ṽ
(2)
j = − Δ2

4Un

{
fr − f2

r +

[
f2
r

2
+

(
fr − 3

2
f2
r

)
f2r

]
cos[2(2πrj + ϕ)]

}
. (4.40)

Hence, the second-order terms φ
(2)
j and Ṽ

(2)
j contain a constant term and the second harmonics

of the quasiperiodic potential. Those terms are generated by the nonlinear term of the GPE.

11The presence of the factor fr is closely linked to the smoothing effect occurring in the continuous case and
discussed in chapter 3. However, since the bare quasiperiodic potential contains only one frequency, smoothing
simply amounts here to a reduction of its amplitude (instead of smoothing out its short-wavelength variations,
as generically expected).
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Indeed, since the first order term contains only the first harmonic, φ
(1)
j ∝ cos(2πrj + ϕ),

the product terms φ
(1)
j φ

(1)
j φ

(0)
j appearing in Eq. (4.32) contain only the zeroth and second

harmonics.

More generally, it is straightforward to show recursively that the terms of order p, φ
(p)
j and

Ṽ
(p)
j , contain the p-th harmonics of the quasiperiodic potential, cos[p(2πrj + ϕ)], as well as all

lower harmonics of same parity. In particular, a constant term in φj and a correction to the
chemical potential μ appear only at even orders. Hence, Ṽj takes the form of a multi-harmonic
quasiperiodic field

Ṽj =
∑
p

Ap cos[p(2πrj + ϕ)], (4.41)

where the amplitude Ap of the p-th harmonics is a power series of order p, Ap ∼ αp(Δ/2Un)p+
αp+2(Δ/2Un)p+2 + ..... The amplitudes Ap can be analytically obtained iteratively following
the above procedure.

4.4.2 A multi-harmonic effective model for the excitations

Knowing the density field, we now turn to the localization problem for the excitations, as
defined by the BdGEs (4.22). Using the energy-dependent linear transformation [13,79]

g±j = ±ρ
±1/2
E (uj − vj) + ρ

∓1/2
E (uj + vj) (4.42)

where ρE =
√

1 + (μ/E)2 + μ/E, the BdGEs (4.22) exactly rewrite

−(ρ−1
E E + T̂ )g+j +

[
Vj− 3 + ρ2E

1 + ρ2E
Ṽj

]
g+j =

2ρE Ṽj

1 + ρ2E
g−j (4.43)

(ρEE − T̂ )g−j +

[
Vj− 1 + 3ρ2E

1 + ρ2E
Ṽj

]
g−j =

2ρE Ṽj

1 + ρ2E
g+j . (4.44)

The solution of these equations is significantly simplified by noticing that the real-space
Green function of the operator −T̂ + ρEE is of width

√
t/ρEE and amplitude 1/(ρEE +

2t)
√

1− [2t/(ρEE + 2t)]2. Hence, for ρEE � t, this operator can be replaced by the local
operator ρEE+2t in Eq. (4.44). It is then straightforward from Eq. (4.44) to write the expres-
sion of g−j as a function of g+j and of the potentials Vj and Ṽj. Inserting this expression into

Eq. (4.43) we find a closed equation for g+j ,

− T̂ g+j + VE
j g+j = Eρ−1

E g+j , (4.45)

with the effective potential 12

VE
j � Vj − 3 + ρ2E

1 + ρ2E
Ṽj −

(
2ρE

1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj − 1 + 3ρ2E
1 + ρ2E

Ṽj

. (4.46)

Equation (4.45) with the potential (4.46) shows that the localization problem of an excitation
at energy E can be mapped onto that of a single particle in an effective potential VE

j . As

12Notice that in the non-fragmented regime, the denominator in Eq. (4.46) is always strictly positive.
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Figure 4.12: Lyapunov exponent as obtained from the full numerical resolution (dark red triangles,
same curve as on Fig. 4.10), and from the numerical diagonalization of the effective model (4.45) (orange
crosses), for parameters Un/t = 1.75 and Δ/t = 3.7. The effective model qualitatively and quantitatively
reproduces the localization transition and the behaviour of the Lyapunov exponent.

an additional cross-check, we have performed an exact diagonalization of Eq. (4.45) with the
potential (4.46) around energy E (taking for Ṽj the (exact) numerical density profile). The
results are displayed on Fig. 4.12, and show that the Lyapunov exponents and the localization
transition given by this effective model coincide with those found using direct diagonalization
of the BdGEs (4.22). It validates the effective model (4.45)-(4.46) and the approximation
−T̂ + ρEE � 2t+ ρEE used above.

More importantly, this effective model qualitatively explains the localization transition
of the collective excitations. Indeed, the quantity VE

j is a multiharmonic periodic potential
whose period 1/r is incommensurate with that of the main lattice, which is unity. As discussed
in Sec. 4.1.3, multiharmonic quasiperiodic potentials are known to exhibit in general an
energy-dependent mobility edge with low-energy extended states and high-energy localized
states [211, 218, 220, 222]. This holds except in the particular case of self-dual models, where
the localization transition is generally energy-independent. This is however not the case of our
effective model, since self-duality requires a specific relation between the amplitudes of the p-th
harmonics and of the tunelling rate to the p-th neighbors, while tunelling is strictly restricted
here to the first neighbors. Therefore, the mapping onto a multi-harmonic quasiperiodic
potential provides an interpretation of the energy-dependent localization transition observed
numerically 13. Importantly, it should be noticed that interactions change here the universality
class of the transition, which differs from that of the non-interacting Aubry-André case.
This contrasts with the purely disordered case discussed in the previous chapter, where all
excitations remain localized in one-dimension, similarly to the non-interacting case [79].

One now understands as well why lowest-order perturbation theory fails here to repro-
duce the localization transition. At lowest order, the effective potential VE

j would artifi-
cially be truncated to its first-order term, and would become a pure quasiperiodic potential

13Rigourously speaking, the energy dependance of the effective potential VE
j could yield a more complex energy

dependence of the localization behaviour, but we find that it is not the case.
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Δ
(1)
E cos(2πrj+ϕ). This would unphysically restore duality in the effective model, which would

fall into the very particular universality class of the Aubry-André model. More precisely, a dis-

cussion of the effective model based on the simple Aubry-André criterion, Δ
(1)
E > 2J , predicts

a completely wrong localization diagram.

4.4.3 Localization behaviour

Localization properties can be further inferred using locator perturbation theory [211], as
presented in Sec. 4.1.3. In particular, the latter provides a localization criterion, which roughly
corresponds to the convergence of the self-energy in the thermodynamic limit. This criterion
reads D(E) > 1, where D(E) is the so-called localization function. In the case of the effective
model Eq. (4.45), the latter reads

D(E) = exp

(
r

∫ 1/r

0
dx ln

∣∣∣∣∣Eρ−1
E − 2t− VE(x)

t

∣∣∣∣∣
)
. (4.47)

Indeed, this straightforwardly comes from the general definition Eq. (4.16), by noticing that
the integral can be restricted to one period of the potential, and that the effective energy of the
equivalent model, Eρ−1

E (and not E !), should be shifted by −2t to correct for the position of
the center of the band (we recall that locator perturbation theory is formulated for an energy
band centered on the zero of energies). Equation (4.47) can in principle be applied to the full
effective potential VE(x). In order to obtain analytical results, it is however worth truncating
the infinite series of harmonics in VE . As mentionned previously, keeping only one harmonic is
not sufficient to capture the physics even qualitatively, since it would artificially restore duality
and change the universality class of the localization transition. On the other hand, beyond two,
the number of harmonics does not change the universality class and very weakly affects the
position of the mobility edge, as discussed in Sec .4.1.3. We may thus restrict ourselves to the
two lowest-order harmonics, which are generated in first instance in second-order perturbation
theory. As this order, one immediately gets from Eq. (4.46)

VE
j � Vj − 3 + ρ2E

1 + ρ2E
Ṽ

(1)
j − 3 + ρ2E

1 + ρ2E
Ṽ

(2)
j −

(
2ρE

1 + ρ2E

)2

ρEE + 2t

(
Ṽ

(1)
j

)2
, (4.48)

where Ṽ (1) and Ṽ (2) are given in Eqs. (4.37) and (4.40). It yields the two-harmonic effective
potential

VE
j � Δ

(0)
E +Δ

(1)
E cos(2πrj + ϕ) + Δ

(2)
E cos[2(2πrj + ϕ)] (4.49)

with the amplitudes

Δ
(0)
E =

3+ρ2E
1+ρ2E

Δ2

4Un
(fr−f2

r )−
2ρ2E

(1+ρ2E)
2

Δ2f2
r

ρEE+2t
(4.50)

Δ
(1)
E = Δ

[
1− 3 + ρ2E

1 + ρ2E
fr

]
(4.51)

Δ
(2)
E =

3 + ρ2E
1 + ρ2E

Δ2

4Un

[
f2
r

2
+

(
fr − 3

2
f2
r

)
f2r

]
− 2ρ2E

(1 + ρ2E)
2

Δ2f2
r

ρEE + 2t
, (4.52)
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and fr =
1

1 + 2t sin2(πr)/Un
. The result of locator perturbation theory applied to the two-

harmonic potential (4.49) is shown on Fig 4.10(b). It correctly predicts a localization transition
where collective excitations are extended at low energy and localized at high energy. Moreover,
its estimation of the position of the mobility edge is in very good agreement with the full
numerical results.

Perturbation theory beyond second order generates higher-order harmonics in the effective
potential and renormalizes the amplitudes Δ(0), Δ(1) and Δ(2). For U � 3t, we find that they
induce negligible effects and do not significantly affect the prediction for the mobility edge. For
higher values of U , however, second-order perturbation theory is not sufficient to accurately
estimate the density background, and higher-order terms should be included.

4.5 Conclusions

In summary, we have shown that the collective excitations of lattice Bose superfluids
subjected to a single-harmonic quasiperiodic potential undergo a localization transition with
extended low-energy states and localized high-energy states. In particular, it should be empha-
sized that the interactions change here the universality class of the localization transition. This
is in striking contrast with the purely disordered case [13,79,170], where even in the presence
of interactions, all excitations remain localized in one dimension. In the quasiperiodic case,
the transition can be understood as the result of the scattering of collective excitations by the
potential and the density background, which contains an infinite series of harmonics of the
potential.

It could be observed in ultracold-atom experiments, using for instance spectroscopy tech-
niques, which give direct access to the excitations [227–229]. Alternatively, it could be ob-
served in quench dynamics, where the abrupt change of some physical parameter gener-
ates collective excitations that govern the propagation of experimentally-observable correla-
tions [119,120,123,124,184,185].
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Chapter 5

Two-component Bose gases with

one-body and two-body couplings

Mais je n’ai plus trouvé qu’un horrible mélange.
Jean Racine, Athalie, Acte II, scène 5

Multi-component (spinor) quantum fluids underlie a variety of physical systems, such
as 3He-4He mixtures in three-fluid models [230], Bose-condensed spin-polarized Hydrogen
gases in the two lowest-energy states [231–233], optically-excited excitons in high-quality Cu20
crystals [234,235], as well as gaseous Bose-Einstein condensates either in two overlaped atomic
hyperfine states [236–238] or in adjacent traps coupled by tunnel effect [239]. In particular,
in the context of ultracold gases, manipulating the internal states of alkali atoms via the
combination of optical and magnetic fields offers numerous possibilities to accurately engineer
multi-component quantum fluids. The dynamics of such spinor gases sparks a variety of
physical effects, including quantum phase transitions, topological defects and spin domains,
governed by the complex interplay between particle-particle interaction, exchange coupling,
magnetic-like ordering, and temperature effects. Early studies focused on the possibility of
observing Bose-Einstein condensation [240], as well as stability conditions [230, 241, 242],
phase separation [237,243–249], and spontaneous symmetry breaking mechanisms [250–253] in
two-component Bose-Einstein condensates. Two-component Bose gases have also been used to
study phase coherence [254], Josephson-like physics [255–259], spin texture dynamics [260–263],
and twin quantum states for quantum information processing [264–266].

Among the main challenges in the field of two-component Bose gases lies the question of
disorder. As for single component Bose gases, disorder in interacting Bose systems is indeed
expected to induce nontrivial effects [3]. More interestingly however, multi-component gases
have been shown to display more intriguing features, among which random-field-induced order
(RFIO) effects [126–129], i.e. long-range order induced by a random field, which are attracting
a growing attention.

Random-field-induced order effects were originally predicted in the context of spin sys-
tems [126]. In low-dimensional spin systems with continous symmetry, long-range order is
a priori forbidden by virtue of the Mermin-Wagner-Hohenberg theorem. However, a small
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amount of disorder can break the continuous symmetry of the system and make it magne-
tize, hence restoring long-range order. This is for instance the case of the classical XY model
on a 2D lattice in a uniaxial random field, which spontaneously magnetizes at T = 0 in the
direction perpendicular to the magnetic field axis, as well as at low temperatures. An analo-
gous effect has be identified in two-component Bose gases [127] submitted to a random Raman
coupling, the latter inducing at the meanfield level a relative phase of π/2 between the two
Bose-Einstein condensates. This effect has been proved in 1D, 2D and 3D at zero temperature,
but understanding how finite temperature affects it remains an open question.

More generally, disorder can be introduced in multi-component ultracold gases in sev-
eral other ways, which would be worth studying. First, disordered potentials have been
shown to induce Anderson localization of Bogoliubov excitations in single-component Bose
gases [13, 79, 172, 267] [see chapters (3) and (4)], but the extension to the case of coupled
Bose gases is an open question. Secondly, since disorder can be included in interaction terms
using inhomogeneous Feshbach resonances [268], it could be interesting to study the effects of
random inter-species couplings.

To systematically study disorder-induced effects at zero and finite temperature, one needs
to develop a unified formalism for inhomogeneous two-component Bose gases, going beyond
the meanfield level. For single-component Bose gases, this is achieved by the Bogoliubov
theory [see chapter (2)], which has been successfully used to study the influence of disorder
in various contexts, as presented in the previous chapters (3) and (4). In this chapter, we
extend the Bogoliubov theory to the case of a two-component Bose gas, in the most general
inhomogeneous framework. We then apply this formalism to the case of a homogeneous gas,
which in particular allows for the determination of collective excitations, as well as correlation
functions and fluctuations of the two-component Bose gas at zero and finite temperature [269].
Although technically simpler, the homogeneous case already features many non-trivial physical
effects. Therefore, its understanding constitutes to some extent a necessary step before
addressing the question of disorder.

All along this chapter, we will consider a two-component Bose gas with both one-body
(field-field) and two-body (density-density) couplings, and formulate our theory in the most
general case, where both one-body and two-body couplings are position-dependent and the
fluid is subjected to a state-dependent external potential. This can be realized in ultracold-
atom gases by using a mixture of atoms in two different internal hyperfine states (noted 1 and
2) of the same atomic species. The two-body interaction with coupling constant g12 results
from short-range particle-particle interactions between atoms in different internal states, while
the one-body interaction can be implemented by two-photon Raman optical coupling, which
transfers atoms from one internal state to the other (see schematic view on Fig. 5.1). In
Sec. 5.1, we present the model and derive the meanfield theory of the coupled two-component
Bose fluid for both ground state and low-energy pair excitations. The use of the phase-density
Bogoliubov-Popov approach permits to treat true condensates and quasi-condensates on an
equal footing [156, 270]. General formulas for phase and density correlations are derived. In
Sec. 5.2, we focus on the case of homogeneous systems. After rewriting the general meanfield
equations for homogeneous systems (5.2.1), we discuss the pair-excitation spectrum and the
corresponding fields (5.2.2), and use them to calculate the correlation functions including both
quantum and thermal fluctuation terms (5.2.3).
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5.1 Mean-field theory of a two-component Bose gas 115

5.1 Mean-field theory of a two-component Bose gas

We consider a two-component Bose-Bose mixture at thermodynamic equilibrium at tem-
perature T , and in the weakly interacting regime. We assume that the two components (labelled
by σ ∈ {1, 2}) interact with each other and can exchange atoms to maintain chemical equi-
librium. The average total number of atoms, N = N1 + N2, is conserved but the average
number of atoms in each component, Nσ, is not. The physics of this system is governed by the
grand-canonical Hamiltonian

Ĥ ≡ Ĥ − μN̂ = Ĥ1 + Ĥ2 + Ĥ12 , (5.1)

where Ĥ is the many-body Hamiltonian and N̂ = N̂1 + N̂2 is the total number operator, with
N̂σ =

∫
dr ψ̂†

σ(r)ψ̂σ(r) and ψ̂σ(r) the (bosonic) field operator of component σ. Assuming two-
body contact interactions, the Hamiltonian associated the the sole component σ (written in
the grand-canonical form for the chemical potential μ of the mixture) is

Ĥσ =

∫
dr ψ̂†

σ

[
−�

2∇2

2m
+ Vσ − μ+

gσ(r)

2
ψ̂†
σψ̂σ

]
ψ̂σ (5.2)

and the coupling Hamiltonian is

Ĥ12 =

∫
dr

[
g12(r)ψ̂

†
1ψ̂

†
2ψ̂1ψ̂2 +

(
�Ω(r)

2
ψ̂†
2ψ̂1 +H.c.

)]
. (5.3)

The single-component Hamiltonian Ĥσ contains (i) a kinetic term (m is the atomic mass),
(ii) a potential term, Vσ(r), both associated with single-particle dynamics, and (iii) an intra-
component interaction term of coupling parameter gσ. The coupling Hamiltonian, Ĥ12, contains
(i) a term originating from elastic contact interaction between two atoms in different compo-
nents characterized by the inter-component coupling constant g12, and (ii) an exchange term
proportional to Ω, which transfers atoms from one component to the other and in particular
permits chemical equilibrium. In ultracold-atom systems, the exchange one-body term can be
realized by two-photon Raman or radio-frequency coupling [236] or by Josephson coupling be-
tween two adjacent traps [255,259,271–273], whereas the two-body coupling can be controlled
by Feshbach resonance techniques [274]. In the most general case, all coupling terms g1, g2,

Figure 5.1: Coupled two-component Bose gas. The gas is made of bosonic particles of a single atomic
species, which can be in two different internal states (labeled 1 and 2). It is described by the two field

operators ψ̂1(r) and ψ̂2(r), corresponding to each component. We assume that the two components are
coupled by one-body and/or two-body interactions of respective coupling constants Ω and g12, which
can be position dependent in the most general case.
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116 5. TWO-COMPONENT BOSE GAS WITH ONE- AND TWO-BODY COUPLINGS

g12, and Ω can be position-dependent. Hereafter, we write Ω(r) ≡ Ω0(r)e
−iα(r), with Ω0 = |Ω|

and α(r) the phase of the exchange coupling, for convenience.
In the following, we first reformulate the above Hamiltonians into the phase-density formal-

ism, which is more appropriate for our study. We then apply the Gross-Pitaevskii approach,
which describes the meanfield quasicondensate background of the two-component Bose-Bose
mixture, and develop the Bogoliubov-de Gennes theory for the mixture, which provides the
spectrum of collective excitations and can be used to describe finite-temperature effects. We
finally write down the general expressions for the density and phase correlation functions, which
will be calculated in the next sections.

5.1.1 Phase-density formalism

The complete grand-canonical Hamiltonian Ĥ is invariant under the gauge transformation
{ψ̂1(r), ψ̂2(r)} → eiθ0{ψ̂1(r), ψ̂2(r)} for any value of θ0 ∈ R, as can be easily checked in Eqs. (5.2)
and (5.3). More precisely, if Ω(r) ≡ 0, the phases of the two components are independent and
Ĥ is invariant under the more general transformation {ψ̂1(r), ψ̂2(r)} → {eiθ10 ψ̂1(r), e

iθ20 ψ̂2(r)}
for any values of θ10, θ

2
0 ∈ R. If however Ω(r) �≡ 0, the phases of the two components are coupled

via the last term in Eq. (5.3) and the relative phase is a determined quantity. In both cases,
the phases of the field operators ψ̂σ(r) are not fully determined and it is useful to turn to the
phase-density formalism. The latter has been successfully used for a long time [270, 275] and
was recently developed in a lattice formulation, which allows for a precise definition of the
phase operator [154]. We write the field operator for each component in the form

ψ̂σ(r) = eiθ̂σ(r)
√

n̂σ(r), (5.4)

where the density (n̂σ) and phase (θ̂σ) operators satisfy the Bose commutation rule
[n̂σ(r), θ̂σ′(r′)] = iδσσ′δ(r − r′). Replacing ψ̂σ by expression (5.4) into Eqs. (5.2) and (5.3),
we find

Ĥσ =

∫
dr

√
n̂σ

[−�
2

2m

(
∇2−|∇θ̂σ|2

)
+ Vσ − μ+

gσ
2
n̂σ

]√
n̂σ (5.5)

and

Ĥ12 =

∫
dr

[
g12n̂1n̂2 +

{
�Ω

2

√
n̂2e

i(θ̂1−θ̂2)
√
n̂1 +H.c.

}]
. (5.6)

Expressions (5.5) and (5.6) determine the complete Hamiltonian (5.1) in terms of density
and phase operators 1. This form is particularly suitable for perturbative expansion in the
condensate or quasi-condensate regime, where the density fluctuations are suppressed by strong-
enough repulsive interactions but the phase fluctuations can be large [154,156,158,270,276].

5.1.2 Meanfield background: Gross-Pitaevskii theory

The zeroth-order term in quantum and thermal fluctuations corresponds to the meanfield
background. The latter is determined using the Gross-Pitaevskii approach [147,277], adapted
to the two-component mixture. It amounts to minimize the grand-canonical energy functional
EMF ≡ 〈ψMF|Ĥ |ψMF〉 with the two-component Hartree-Fock ansatz

|ψMF〉 = (â†1)
N1

√
N1!

(â†2)
N2

√
N2!

|vac〉 , (5.7)

1Note that we have dropped a constant term arising from the commutation relation of ψ̂σ(r) and ψ̂†
σ(r) in the

intra-component interaction term of Eq. (5.2). The latter can be absorbed in a renormalization of the chemical
potential μ.
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5.1 Mean-field theory of a two-component Bose gas 117

where â†σ creates an atom in component σ with a spatial wave function ψσ(r) ≡ eiθσ(r)
√

nσ(r).
At this stage, the number of atoms in each component, Nσ, and the corresponding phase [θσ(r)]
and density [nσ(r)] fields are unknown variational quantities. Here, we use the normalization
condition

∫
dr nσ(r) = Nσ and we recall that the chemical potential μ is determined implicitly

by the relation
∫
dr [n1(r) + n2(r)] = N .

Proceeding in the standard way, we evaluate the complete grand-canonical Hamilto-
nian (5.1) within the Hartree-Fock ansatz (5.7) and find

EMF = 〈Ĥ1〉MF + 〈Ĥ2〉MF + 〈Ĥ12〉MF (5.8)

where 〈Ĥσ〉MF and 〈Ĥ12〉MF are given by Eqs. (5.5) and (5.6) with the phase θ̂σ(r) and density
n̂σ(r) operators replaced by the corresponding Hartree-Fock fields θσ(r) and nσ(r). Then,
minimizing EMF with respect to θσ(r) and nσ(r) yields the following coupled Euler-Lagrange
equations:

0 = − �
2

2m

(∇2√nσ√
nσ

− |∇θσ|2
)
+ Vσ − μ+ gσnσ + g12nσ̄ +

�Ω0

2

√
nσ̄

nσ
cos(θ − α) (5.9)

0 =
�
2

m
∇(nσ∇θσ)± �Ω0

√
n1n2 sin(θ − α) , (5.10)

where θ(r) ≡ θ1(r)−θ2(r) is the relative phase between the two components, σ̄ is the conjugate
of σ [i.e. σ̄ = 2 (resp. 1) for σ = 1 (resp. 2)], and the ± sign in Eq. (5.10) is + (resp. −) for
σ = 1 (resp. 2).

5.1.3 Excitations: Bogoliubov-de Gennes theory

The low-energy spectrum of the collective excitations of the two-component Bose gas
is then determined using the Bogoliubov-de Gennes approach [131, 156, 270, 278, 279], which
amounts to perform a perturbative expansion of Hamiltonian (5.1) in phase and density fluc-
tuations. We write n̂σ = nσ + δn̂σ and θ̂σ = θσ + δθ̂σ, with nσ(r) and θσ(r) given by the
mean-field Gross-Pitaevskii theory, and

|δn̂σ | � nσ and |∇δθ̂σ | � mc/� (5.11)

where c =
√

μ/m is the velocity of sound in a single-component Bose-Einstein (quasi-
)condensate of chemical potential μ. These conditions are usually well verified in weakly-
interacting ultracold, two-component gases [236–238,280].

Weak-fluctuation expansion of the Hamiltonian

Proceeding up to second order in phase and density fluctuations, it is convenient to define
the position-dependent operators

X̂σ(r) ≡ δn̂σ(r)

2
√

nσ(r)
(5.12)

and

P̂σ(r) ≡
√

nσ(r)δθ̂σ(r) , (5.13)
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118 5. TWO-COMPONENT BOSE GAS WITH ONE- AND TWO-BODY COUPLINGS

which are canonical conjugates (up to a multiplying factor of 1/2), i.e.
[
X̂σ(r), P̂σ′ (r′)

]
=

iδσ,σ′δ (r− r′) /2. Then, inserting
√
n̂σ � √

nσ + X̂σ − X̂2
σ/2

√
nσ and θ̂σ = θσ + P̂ /

√
nσ into

Eqs. (5.5) and (5.6), we find

Ĥ � EMF + Ĥ
(2)
1 + Ĥ

(2)
2 + Ĥ

(2)
12 . (5.14)

The zeroth-order term, EMF, coincides with the mean-field energy (5.8) where the fields nσ and
θσ are substituted to the solutions of the coupled Euler-Lagrange equations (5.9) and (5.10).

The first-order term, Ĥ(1) =
∑

σ

{
δn̂σ · ∂Ĥ

∂n̂σ

∣∣∣
ψMF

+ δθ̂σ · ∂Ĥ
∂θ̂σ

∣∣∣
ψMF

}
, vanishes since the zeroth-

order term minimizes 〈ψMF|Ĥ|ψMF〉 = EMF. The second-order terms, Ĥ
(2)
1 , Ĥ

(2)
2 and Ĥ

(2)
12 , are

found after some straightforward algebra, which yields

Ĥ(2)
σ =

∫
dr X̂σ

[
− �

2

2m

(
∇2 − ∇2√nσ√

nσ

)
+ 2gσnσ

]
X̂σ +

∫
dr P̂σ

[
− �

2

2m

(
∇2 − ∇2√nσ√

nσ

)]
P̂σ

+

∫
dr

2�2

m
∇θσ ·

(√
nσX̂σ

)
∇

(
P̂σ/

√
nσ

)
, (5.15)

where some irrelevant constant terms have been dropped, and

Ĥ
(2)
12 = −

∑
σ

∫
dr

�Ω0

2

√
nσ̄

nσ
cos(θ − α)

[
X̂2

σ + P̂ 2
σ

]
+

∫
dr

[
4g12

√
n1n2 + �Ω0 cos(θ − α)

]
X̂1X̂2

+

∫
dr �Ω0 cos(θ − α)P̂1P̂2 +

∫
dr �Ω0 sin(θ − α)

[
X̂1P̂2 − X̂2P̂1

]

−
∫
dr �Ω0 sin(θ − α)

[√
n2√
n1

X̂1P̂1 −
√
n1√
n2

X̂2P̂2

]
. (5.16)

We now apply the canonical transformation 2 to our quadratic Hamiltonian 3

B̂σ ≡ X̂σ + iP̂σ , (5.17)

such that the operators B̂σ satisfy the Bose commutation rules

[B̂σ(r), B̂σ′(r′)] = 0 (5.18)

[B̂σ(r), B̂
†
σ′(r

′)] = δσσ′δ(r − r′) . (5.19)

Then, summing all contributions of Eq. (5.15) for σ = 1 and σ = 2 and those of Eq. (5.16), we
find

Ĥ(2) =
1

2

∑
σ

∫
dr

[
B̂†

σAσB̂σ + B̂σA
∗
σB̂

†
σ +

{
gσnσB̂σB̂σ +H.c.

}]
(5.20)

+

∫
dr

[
g12

√
n1n2B̂1B̂2 +H.c.

]
+

∫
dr

[{
g12

√
n1n2 +

�Ω

2
eiθ

}
B̂†

2B̂1 +H.c.

]
2This transformation simply arises by analogy with the annihilation operator of the harmonic oscillator.

Here, the density fluctuation operator δn̂σ/2
√
nσ plays the same role as the position operator X̂σ and the

phase fluctuation operator
√
nσδθ̂ plays the same role as the momentum operator P̂σ of the quantum harmonic

oscillator [281].
3In the case of a pure condensate with macroscopic occupation of a unique single-particle state, ψσ (assumed

to be real-valued), the operator B̂σ represents the fluctuations of the field operator: ψ̂σ � ψσ + B̂σ.
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where we have used the coupled Euler-Lagrange equation (5.9) to simplify a couple a terms,
and have introduced the super-operator

Aσ = − �
2

2m

(∇2 + 2i∇θσ · ∇ − |∇θσ|2
)
+ Vσ − μ+ 2gσnσ + g12nσ̄ . (5.21)

Finally, the Hamiltonian (5.20) can be written in a more compact form by introducing the
four-component operators

B̄ ≡
[
B̂†

1,−B̂1, B̂
†
2,−B̂2

]
and B ≡

⎡
⎢⎢⎢⎣

B̂1

B̂†
1

B̂2

B̂†
2

⎤
⎥⎥⎥⎦ (5.22)

so that

Ĥ(2) =
1

2

∫
dr B̄(r)M(r)B(r) + const (5.23)

where M(r) is the 4× 4 super-operator defined by

M ≡
[ LGP

1 Γ
Γ∗ LGP

2

]
(5.24)

with

LGP
σ =

[
+Aσ +gσnσ

−gσnσ −A∗
σ

]
(5.25)

and

Γ =

[
+g12

√
n1n2 +

�Ω∗

2 e−iθ +g12
√
n1n2

−g12
√
n1n2 −g12

√
n1n2 − �Ω

2 e+iθ

]
. (5.26)

Bogoliubov transformation

The second-order term (5.23) in the expansion of the many-body Hamiltonian (5.1) governs
the low-energy excitations of the two-component Bose gas. Its quadratic form is convenient
for diagonalization via the usual Bogoliubov method [131, 156, 270, 278], adapted to the two-
component Bose gas. Here, we extend previous approaches [241,255] to the most general case
where the coupling terms can be position-dependent. Inserting the modal expansion

B(r) =
∑
ν

⎛
⎜⎜⎝
⎡
⎢⎢⎣

u1ν(r)
v1ν(r)
u2ν(r)
v2ν(r)

⎤
⎥⎥⎦ b̂ν +

⎡
⎢⎢⎣

v∗1ν(r)
u∗1ν(r)
v∗2ν(r)
u∗2ν(r)

⎤
⎥⎥⎦ b̂†ν

⎞
⎟⎟⎠ , (5.27)

with b̂ν the annihilation operator of an elementary excitation of the coupled two-component
Bose gas, into Eq. (5.23), we find

Ĥ(2) =
1

2

∑
ν

Eν

(
b̂†ν b̂ν + b̂ν b̂

†
ν

)
, (5.28)

provided that the wave functions fulfill the so-called coupled Bogoliubov equations:

[ LGP
1 Γ
Γ∗ LGP

2

]⎡
⎢⎢⎣

u1ν
v1ν
u2ν
v2ν

⎤
⎥⎥⎦ = Eν

⎡
⎢⎢⎣

u1ν
v1ν
u2ν
v2ν

⎤
⎥⎥⎦ (5.29)
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and the bi-orthogonality conditions

∑
σ

∫
dr

[
uσν(r)u

∗
σν′(r)− vσν(r)v

∗
σν′(r)

]
= δνν′ (5.30)

∑
σ

∫
dr

[
uσν(r)vσν′(r)− vσν(r)uσν′(r)

]
= 0 . (5.31)

These modes (indexed by ν), being of bosonic nature, satisfy the Bose commutation rules

[b̂σν , b̂
†
σ′ν′ ] = δσσ′δνν′ and [b̂σν , b̂σ′ν′ ] = 0.

Notice that we disregard here the contribution of the zero-mode terms in the modal ex-
pansion (5.27). As discussed in Sec. 2.2.2, they arise from the non conservation of the particle
number in the approach the use. They induce quantum phase diffusion [153] and fluctuations
of the numbers of particles [154]. A proper particle-number conserving approach could be
performed. However (see Sec. 2.2.2), the non-conserving approach is sufficient if one is only
interested in the quasi-particle part of the Bogoliubov spectrum.

Orthogonal field operator

Yet, the only subtle issue [see Sec. 2.2.2 and Ref. [154,282]] when using such an approach
is that the field operators B̂σ(r) should be properly orthogonalized with respect to the (quasi-
)condensate wave function ψσ(r) ≡ eiθσ

√
nσ, which amounts to apply the substitution B̂σ(r) →

Λ̂σ(r) with

Λ̂σ(r) ≡ B̂σ(r)− ψσ(r)

Nσ

∫
dr′ B̂σ(r

′)ψ∗
σ(r

′) . (5.32)

We then have
Λ̂σ(r) =

∑
ν

[
u⊥σν(r)b̂ν + v⊥∗

σν (r)b̂
†
ν

]
(5.33)

with

u⊥σν ≡ uσν − ψσ(r)

Nσ

∫
dr′ uσν(r′)ψ∗

σ(r
′) (5.34)

v⊥σν ≡ vσν − ψ∗
σ(r)

Nσ

∫
dr′ vσν(r′)ψσ(r

′) . (5.35)

According to Eqs. (5.18) and (5.19), the orthogonal field operators Λ̂σ satisfy the modified
commutation rules

[Λ̂σ(r), Λ̂σ′ (r′)] = 0 (5.36)

[Λ̂σ(r), Λ̂
†
σ′ (r

′)] = δσσ′

[
δ(r−r′)− ψσ(r)ψ

∗
σ(r

′)
Nσ

]
. (5.37)

The solutions of the non-Hermitian eigenvalue problem (5.29), together with the bi-
orthogonality conditions (5.30)-(5.31) and the orthogonalization process (5.34)-(5.35), de-
termine the excitation spectrum of the two-component Bose gas in the weakly-interacting
regime. A mode ν describes a coupled two-component elementary excitation (Bogoliubov
quasiparticle) of the mixture. The energy and wave functions of these excitations are Eν

and {u⊥1ν(r), v⊥1ν(r), u⊥2ν(r), v⊥2ν(r)}, respectively. They can be determined numerically, or ana-
lytically in certain cases. All physical observables can then be constructed by expansion on the
corresponding basis.
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5.1.4 Correlation functions

We now consider the correlation properties of observable quantities, namely the phases and
the densities of the two-component Bose gas. These quantities can be measured independently
for each component in experiments with ultracold atoms, using a gaseous mixture of a single
bosonic atom prepared in two different internal states [236–238,280] and internal-state depen-
dent imaging techniques [137]. The density profiles, fluctuations and correlation functions of
each component are then found directly from the images [283,284]. The phase fluctuations and
correlation functions of each component are found by time-of-flight [285, 286] or Bragg spec-
troscopy [229,287,288] techniques. The total and relative density profiles are then obtained by
addition or subtraction of those of each component, which also provides their fluctuations and
correlation functions. Finally, the correlation function of the relative phase, θ = θ1 − θ2, can
be found using matter-wave interference techniques [238,259].

For each component σ, the phase correlation function is

Gσ
θ (r, r

′) ≡ 〈θ̂σ(r)θ̂σ(r′)〉 − 〈θ̂σ(r)〉〈θ̂σ(r′)〉

= −〈: (Λ̂σ − Λ̂†
σ)(Λ̂′

σ − Λ̂†′
σ ) :〉

4
√

nσ n′
σ

, (5.38)

where the bare (resp. primed) quantities are evaluated at point r (resp. r′). The operator : :
represents normal ordering with respect to the orthogonal field operators Λ̂ and Λ̂†, which is
used to avoid unphysical divergences [154]. Similarly, the density correlation function is

Gσ
n(r, r

′) ≡ 〈nσ(r)nσ(r
′)〉 − 〈nσ(r)〉〈nσ(r

′)〉
=

√
nσ n′

σ 〈: (Λ̂σ + Λ̂†
σ)(Λ̂

′
σ + Λ̂†′

σ ) :〉 . (5.39)

Using the expansion of the orthogonal field operator into the basis of orthogonal Bogoliubov
modes, Eq. (5.33), and the usual auxiliary wave functions 4

fp
σν(r) = u⊥σν(r)− v⊥σν(r) , (5.40)

fm
σν(r) = u⊥σν(r) + v⊥σν(r) , (5.41)

we then get the following explicit expressions after some algebraic calculations:

Gσ
θ (r, r

′) =
1

2
√

nσn′
σ

∑
ν

Re
[
fp
σνf

p′∗
σν Nν − fp

σνv
⊥′∗
σν

]
(5.42)

and

Gσ
n(r, r

′) = 2
√

nσn′
σ

∑
ν

Re
[
fm
σνf

m′∗
σν Nν + fm

σνv
⊥′∗
σν

]
, (5.43)

where

Nν =
1

exp(Eν/kBT )− 1
(5.44)

is the thermal population of mode ν, according to the Bose-Einstein statistical distribution.
Note that expressions (5.42) and (5.43) are symmetric in (r, r′). This can be checked by

4Here, we use the notations fp,m
σν instead of the more usual notations f±

σν because the ± sign below labels a
different quantity (the two branches of the spectra).
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noting that the commutation rule [Λ̂σ(r), Λ̂σ(r
′)] = 0 [see Eq. (5.36)] implies the relation∑

ν u
⊥
σν(r)v

⊥∗
σν (r

′) =
∑

ν u
⊥
σν(r

′)v⊥∗
σν (r).

The two-point correlation function of the relative phase is defined by the same formula as
Eq. (5.38) with θσ replaced by θ = θ1 − θ2. The same calculation strategy yields

Gθ(r, r
′) =

1

2

∑
ν

Re
[( fp

1ν√
n1

− fp
2ν√
n2

)( fp′
1ν√
n′
1

− fp′
2ν√
n′
2

)∗
Nν −

( fp
1ν√
n1

− fp
2ν√
n2

)( v⊥′
1ν√
n′
1

− v⊥′
2ν√
n′
2

)∗]
.

(5.45)

Having developed a general formalism for calculating the excitation modes of the two-
component Bose gas with arbitrary one- and two-body couplings, and established general for-
mulas for the density and phase correlation functions, we explicitly calculate these quantities
in the homogeneous case in the next section.

5.2 Homogeneous systems

In this section, we consider a homogeneous system, where all potentials (V1 and V2) and
coupling terms (g1, g2, g12 and Ω) in Hamiltonians (5.2) and (5.3) are independent of the
position. Assuming that the potentials V1 and V2 are equal

5, it can be assumed without loss of
generality that V1 = V2 = 0. This case allows for analytical calculations and contains the main
physical effects discussed below. Hereafter, we first rewrite the formalism of Sec. 5.1 in a form
adapted to the homogeneous case (Sec. 5.2.1). We then solve it in the most general situation
where both one-body and two-body couplings coexist to discuss the excitation spectrum and
wavefunctions (5.2.2), as well as density, phase, and relative-phase fluctuations of the two-
component gas (5.2.3).

5.2.1 Meanfield equations

Since all derivative terms in the Euler-Lagrange equations (5.9) and (5.10) vanish in the
homogeneous case, it immediately follows from Eq. (5.10) that θ−α = 0 or π if Ω = Ω0e

−iα �= 0.
Inserting these two solutions into the meanfield version of Eq. (5.6), we find that θ = α is a
maximum of EMF and is thus an unstable solution. The stable solution is θ = α+ π, which is
a minimum of EMF. For instance, the two components are in phase (resp. out of phase) when
Ω ∈ R

− (resp. Ω ∈ R
+). If Ω = 0, the relative phase θ is not a determined quantity as already

discussed in the first paragraph of Sec. 5.1.1. Inserting the stable solution into Eq. (5.9), we
then find

g1n1 + g12n2 − μ− �Ω0

2

√
n2

n1
= 0 (5.46)

g2n2 + g12n1 − μ− �Ω0

2

√
n1

n2
= 0 (5.47)

and n1 +n2 = n = N/V with N the total number of particles and V the volume of the system.
We will assume that the parameters are such that the two components are miscible, i.e. there
exists a homogeneous solution of Eqs. (5.46) and (5.47) of minimal energy with n1 > 0 and
n2 > 0.

5In the case where V1 �= V2, the densities n1 and n2 would be modified compared to the following calculations.
It is expected to lead to similar effects as those due to a modification of the coupling parameters g1, g2 and g12.
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Translation invariance ensures that the Bogoliubov modes are the plane waves

uσk(r) =
1√V ũσke

ik.r (5.48)

vσk(r) =
1√V ṽσke

ik.r , (5.49)

f
p/m
σk (r) =

1√V f̃
p/m
σk eik.r , (5.50)

where we label the modes by the wave vector k (instead of ν). In the following, we omit
the tilde sign to simplify the notations. Then, the amplitudes u1k, v1k, u2k, and v2k are the
solutions of the eigenproblem (5.29) for the diagonal blocks

LGP
σ =

[
+Aσk +gσnσ

−gσnσ −Aσk

]
, (5.51)

with Aσk = εk+2gσnσ+g12nσ̄−μ where εk = �
2k2/2m is the free-particle dispersion relation,

and for the off-diagonal blocks

Γ =

[
+g12

√
n1n2 − �Ω0/2 +g12

√
n1n2

−g12
√
n1n2 −g12

√
n1n2 + �Ω0/2

]
. (5.52)

The biorthogonality conditions (5.30) and (5.31) reduce to∑
σ=1,2

(|uσk|2 − |vσk|2
)
= 1 (5.53)

or equivalently
fm
1kf

p
1k + fm

2kf
p
2k = 1. (5.54)

since the f
p/m
σk functions can be chosen to be real. Note that since the classical fields φσ is homo-

geneous and the Bogoliubov wave function uσk and vσk are plane waves, the orthogonalization
procedure of Eqs. (5.30) and (5.31) is irrelevant for k �= 0.

Finally, the correlation functions introduced in Sec. 5.1.4 are found by inserting Eqs. (5.48)
and (5.49) into Eq. (5.42) and (5.43), which yields the following explicit formulas. For the
phase correlation function of component σ,

Gσ
θ (r, r

′) =
1

2nσV
∑
k �=0

[
|fp

σk|2Nk − fp
σkv

∗
σk

]
cos

[
k.(r− r′)

]
; (5.55)

For the density correlation function of component σ,

Gσ
n(r, r

′) =
2nσ

V
∑
k �=0

[
|fm

σk|2Nk + fm
σkv

∗
σk

]
cos

[
k.(r− r′)

]
. (5.56)

Similarly, the correlation function of the relative phase is

Gθ(r, r
′) =

1

2V
∑
k �=0

[∣∣∣ fp
1k√
n1

− fp
2k√
n2

∣∣∣2Nk −
( fp

1k√
n1

− fp
2k√
n2

)( v1k√
n1

− v2k√
n2

)∗]
cos

[
k.(r − r′)

]
. (5.57)

Notice that, for simplicity, we have indicated only k �= 0 below the sum symbols of Eqs. (5.55),
(5.56) and (5.57). As a matter of fact, we will see that in general the Bogoliubov spectrum
displays two branches, over which the sums should be performed.
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124 5. TWO-COMPONENT BOSE GAS WITH ONE- AND TWO-BODY COUPLINGS

5.2.2 Excitation spectrum and wavefunctions

We now study the excitation spectrum of the homogeneous two-component Bose gas.
Detailed calculations in the most general case are provided in the supplement at the end of
this chapter 5.4. In brief, we generically find that the excitation spectrum is composed of two
branches (see Fig. 5.2), one being gapped provided Ω0 �= 0, and the other one being ungapped
and of Bogoliubov type. Both are particle-like at high energy. The two branches are found
to be always distinct except if Ω0 = g12 = 0, in which case they both coincide with the usual
Bogoliubov spectrum, Ek =

√
εk (εk + 2μ). This holds for any positive values of g1 and g2. For

the sake of simplicity, we will restrict in the following to the case where the two intra-component
couplings are equal, g1 = g2, which captures the main physics of the problem and is technically
simpler. We will assume that g12 < g, which is the miscibility condition for Ω0 = 0 [243].

Meanfield background and Bogoliubov spectrum

In the case g1 = g2 ≡ g, the meanfield densities of the two components are equal, n1 = n2,
and Eqs. (5.46) and (5.47) yield the chemical potential

μ = (g + g12)n/2− �Ω0/2, (5.58)

with n = n1 +n2 the total density. The excitation spectrum is computed in the supplement at
the end of this chapter 5.4.2 [see Eq. (5.98) together with Eqs. (5.96) and (5.97)]. As mentioned
above, it is composed of two branches, which explicitly read

Ein
k =

√
εk (εk + gn + g12n) (5.59)

Eoff
k =

√
(εk + �Ω0) (εk + �Ω0 + (g − g12)n) . (5.60)

as a function of the problem parameters. The meaning of the labels ”in” and ”off” used to
distinguish the two branches will become clear later. The spectrum is plotted in Fig. 5.2. The
”in” branch shows the usual (ungapped) Bogoliubov-like dispersion relation : it is phonon-like
for εk � gn, g12n and Ein

k � c�k with c =
√

(g + g12)n/2m the sound velocity; it is free-particle-
like for εk � gn, g12n and Ein

k � εk+(g+ g12)n/2. Conversely, the ”off” branch is gapped, and
free-particle-like in both low and high-energy limits, provided Ω0 �= 0: for εk � (g−g12)n, �Ω0,

we have Eoff
k � Egap +

2�Ω0+(g−g12)n

2
√

�Ω0(�Ω0+(g−g12)n)
εk where Egap =

√
�Ω0(�Ω0 + (g − g12)n); for εk �

(g− g12)n, �Ω0, we have Eoff
k � εk + �Ω0 + (g − g12)n/2. Thus, at low energy, the ”off” branch

is always above the ”in” branch. At higher energy though, it depends on the strengths of the
two couplings, since the two branches are separated by an energy Δ = limk→∞(Eoff

k − Ein
k ) =

�Ω0 − g12n. For attractive two-body coupling, g12 < 0, we have Ein
k < Eoff

k for any momentum
k, and the separation Eoff

k −Ein
k increases with both Ω0 and g12. Therefore, attractive two-body

coupling cooperates with one-body coupling. In contrast, repulsive two-body coupling, g12 > 0,
competes with one-body coupling and tends to decrease the separation between the branches.
If the repulsive interactions are strong enough, g12n > �Ω0, the two curves exhibit a crossing
point, above which Ein

k > Eoff
k . This happens at the energy εck ≡ (�kc)2/2m = �Ω0[�Ω0 +

(g − g12)n]/2(g12n − �Ω0). When increasing the repulsive inter-component interactions, this
crossing first appears at high momentum k ≈ ∞, and then moves to lower momenta.

In the particular case where Ω0 = 0, the ”off” branch as well turns to be Bogoliubov-like;
it is ungapped and phonon-like at low energy and Eoff

k � c�k with c =
√

(g − g12)n/2m the
sound velocity. In this case, which can be viewed as the limiting situation where the crossing
of the two branches takes place at k = 0, the ”off” branch entirely lies above the ”in” branch
for g12 < 0, and entirely below for g12 > 0.
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μ

ξ
Figure 5.2: Bogoliubov spectrum of the coupled excitations in a homogeneous two-component Bose gas

with g12 �= 0 and Ω �= 0. Plotted are the two energy branches E
in/off
k

[Eqs. (5.59) and (5.60)] in the case
g1 = g2, for g12 = 0.7g1 and �Ω0 = 0.4g1n. This corresponds to a situation where g12n > �Ω0 and the
two branches cross at a certain momentum kc (see text). For g12n < �Ω0, there is no crossing point and
the ”off” branch is always above the ”in” branch . Here, μ0 = g1N/2V is the chemical potential in the
absence of any coupling, and ξ0 = �/

√
2mμ0 is the corresponding healing length.

Bogoliubov excitations

Let us come back to arbitrary values of Ω0. The computation of Bogoliubov wavefunctions
is performed in the general case in the supplement (5.4) at the end of this chapter. Their
expressions in the case g1 = g2 follow from the procedure indicated there [see Eqs. (5.92)
to (5.95)] and read

fm,in
1k = fm,in

2k =

[
εk

2Ein
k

]1/2
(5.61)

fp,in
1k = fp,in

2k =

[
Ein

k

2εk

]1/2
(5.62)

for the ”in” branch , and

fm,off
1k = −fm,off

2k =

[
εk + �Ω0

2Eoff
k

]1/2
(5.63)

fp,off
1k = −fp,off

2k =

[
Eoff

k

2εk + 2�Ω0

]1/2
. (5.64)

for the ”off” branch. In the following, we will omit the branch labels (”in”/”off”) in the

functions f
p/m
σk for simplicity, except when necessary. The moduli of the f

p/m
σk functions, which

do not depend on the component σ in the case g1 = g2 considered here, are plotted on Fig. 5.3.
For the ”in” branch , each component behaves as an effective single-component Bose gas with
renormalized effective parameters, since the previous Bogoliubov spectrum and wavefunctions
are similar to those of a single-component gas. Notice in particular the divergence of the fp

σk

functions. In contrast, the gapped dispersion relation of the ”off” branch yields a different

behavior for the f
p/m
σk functions. They do not depend much on k as soon as �Ω0 and gn are of
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126 5. TWO-COMPONENT BOSE GAS WITH ONE- AND TWO-BODY COUPLINGS

σ

ξ

σ

σ

σ

σ

Figure 5.3: Amplitudes of the wavefunctions f
p/m
σk of the coupled Bogoliubov excitations for a homo-

geneous two-component Bose gas with g12 �= 0 and Ω �= 0. Plotted are the absolute values, |fp/m
σk | [see

Eqs. (5.61) to (5.64)] for the same parameters as in Fig. 5.2. Since g1 = g2, the absolute values are
independent of the component σ. The excitations are in phase in the ”in” branch (Ein

k
) and off phase

for the ”off” branch (Eoff
k
).

the same order, and in particular, the fp
σk functions no longer diverge at low energy, since the

gap acts as a low-momentum cut-off.

It follows as well from Eqs. (5.61) to (5.64) that, for a given component σ, the fm
σ (r) and

fp
σ (r) wavefunctions are always in phase [i.e. fm

σkf
p
σk > 0]. Conversely, the modes associated

to the components 1 (fm
1k, f

p
1k) and 2 (fm

2k, f
p
2k) are off phase in the ”off” branch and in phase

in the ”in” branch, hence the denomination used to label the two branches. More precisely,
since the separation Eoff

k − Ein
k increases with Ω0, we find that the one-body coupling Ω(r)

tends to favor fluctuations of the phases of the components that are in phase, independently
of its sign and more generally independently of its phase α. This contrasts with the behavior
of the mean-field phases θ1 and θ2, the difference of which is imposed by the phase of Ω(r)
(see Sec. 5.2.1). Indeed, the behavior of the fluctuations can by understood from the fact
that the one-body coupling tends to impose the difference between the total phases of the
two components. Since it is realized at the meanfield level, the phase fluctuations tend
to be in phase, whatever the phase of Ω(r). As regards two-body coupling, we find that
Eoff

k − Ein
k decreases with g12, so that for g12 > 0, the two-body coupling favors off-phase

density fluctuations whereas for g12 < 0, it favors in-phase density fluctuations. This can be
traced to the fact that for repulsive inter-component interactions (g12 > 0), off-phase density
fluctuations (fm

1kf
m
2k < 0) cost less interaction energy than in-phase density fluctuations (and

the other way round for g12 < 0). Therefore, for attractive two-body coupling, in-phase
fluctuations are energetically favored, cooperatively by one-body and two-body couplings.
Conversely, if the two-body coupling is repulsive and strong enough to compete with the
one-body coupling (g12n > �Ω0), so that the two branches cross, they compete with the
following result : for low-energy excitations (εk < εck), in-phase fluctuations cost less en-
ergy than off-phase fluctuations, whereas it is the opposite for high energy excitations (εk > εck).
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5.2.3 Fluctuations and correlations

Phase and density correlations

The phase and density correlations in each component σ are determined by the fp
σk and

fm
σk functions [see Eqs. (5.55) and (5.56)]. Due to the similarity, in the in-phase branch, of the

dispersion relation and formulas for the f
p/m
σk functions with those of a single-component Bose

gas, each component behaves as an effective single-component gas. The effective parameters
however depend on all coupling parameters g1, g2 and g12 and are in general different for the
two components (if g1 �= g2). Then, the density fluctuations remain small for strong-enough
interaction parameters and low temperatures in any dimension. In contrast, the behavior of the
phase fluctuations strongly depends on the dimension, owing to the 1/

√
|k| divergence of the

fp,in
σk functions. In three dimensions, the two components form true Bose-Einstein condensates
with intra-component phase coherence. In lower dimensions, they form quasi-condensates with
strong intra-component phase fluctuations driven by the ungapped Bogoliubov-like spectrum
of the in-phase branch.

Relative phase correlations and fluctuations

Let us turn to the relative phase correlations. Equation (5.57) shows that in the case
g1 = g2 that we consider here, only the off-phase branch contributes to the sum. The correlation
function for the relative phase can thus be rewritten

Gθ(r, r
′) =

1

2Vn
∑
k �=0

{
2Nk +

(
1− εk+�Ω0

Eoff
k

)}∣∣∣fp,off
1k −fp,off

2k

∣∣∣2cos [k.(r− r′)
]
, (5.65)

making appear the thermal and quantum contributions. Owing to the gap in the off-phase
branch, its contribution remains finite, which ensures mutual phase coherence between the
two Bose gases, in any dimension. This is however not true in the particular case Ω0 = 0
where the off-phase branch is ungapped : there, the two components are mutually phase
coherent only in three dimensions, but show no true long-range mutual phase coherence in
lower dimensions. Therefore, a finite one-body coupling suppresses the fluctuations of the
relative phase, in agreement with the previous discussion according to which it tends to impose
the phase at the meanfield level, favoring in-phase fluctuations of the phase. To be more
quantitative, we can rewrite Eq. (5.65) into the form

Gθ(r, r
′) =

1

nV
∑
k �=0

[√
εk + (g − g12)n+ �Ω0

εk + �Ω0
coth

(
Eoff

k

2kBT

)
− 1

]
× cos[k.(r− r′)] . (5.66)

Since Eoff
k increases with Ω0 and both coth(Eoff

k /2kBT ) and√
(εk + (g − g12)n+ �Ω0)/(εk + �Ω0) decrease when Ω0 increases, the relative phase

fluctuations Gθ(r, r) indeed decrease when the intensity of the one-body coupling increases.
The influence of the two-body coupling on relative phase fluctuations is more involved. On

the one hand, coth
(

Eoff
k

2kBT

)
is an increasing function of g12 since Eoff

k decreases when g12

increases [see Eq. (5.60)]. Indeed, an increase of the two-body coupling lowers the contributing
off-phase branch, increasing its thermal occupancy. On the other hand, the amplitude of

phase fluctuations in the off-phase branch,
√

εk+(g−g12)n+�Ω0

εk+�Ω0
= Eoff

k /(εk + �Ω0) ∝ (fp,off
k

)2,
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r/L

G
θ
(r

)

kBT = 0
kBT = 1.0μ0
kBT = 1.5μ0
kBT = 2.0μ0

Figure 5.4: Correlation function of the relative phase for a one-dimensional two-component Bose gas
with one-body (Ω0 �= 0) and two-body (g12 �= 0) couplings, plotted for various temperatures (kBT/μ0 =
0, 1, 1.5, 2) in the case where g1 = g2 ≡ g. The parameters here correspond to N = 104 atoms
of 87Rb (m � 144 × 10−27kg) in a 1D box of size 2L = 10−4m, and interacting via the scattering
length a1 = a2 = 5.95nm. It corresponds in the absence of any coupling to the chemical potential
μ0 = gn = 7.88 × 10−31J, which we choose as the energy unit. In these units, we use the parameters
�Ω0 = 1μ0 and g12n = 0.75μ0.

is a decreasing function of g12, which is intimately linked to the previously discussed ob-
servation that an increasing g12 enhances the amplitude of off-phase density fluctuations.
To determine the overall behavior of the relative phase fluctuations, it is worth replacing√

(εk + (g − g12)n+ �Ω0)/(εk + �Ω0) by Eoff
k /(εk+�Ω0) in Eq. (5.66). Then, since ucoth(u) is

an increasing function of u (for u > 0) and Eoff
k is a decreasing function of g12, we conclude that

the relative phase fluctuations decrease when the two-body coupling increases. In particular,
the relative phase fluctuations are maximally suppressed when g12 > 0 approaches g from
below. In other words, in a homogeneous two-component Bose gas, repulsive inter-component
interactions reduce relative phase fluctuations while attractive inter-component interactions
enhance relative phase fluctuations.

Let us mention that the physics of the general case g1 �= g2 can be expected to be slightly
different. Indeed, in this case, the contribution of the in-phase branch to the relative phase
correlation function is non zero [see Eq. (5.57)] and the divergence of the fp,in

σk functions in this
branch can lead to large fluctuations in low dimensions. Therefore, a small difference between
g1 and g2 suppresses mutual phase coherence on large scales.

Temperature dependence of relative phase correlations

Let us discuss as well the behavior of the relative phase correlation function Gθ(r, r
′)

versus temperature, in the case g1 = g2. Equation (5.66) is plotted on Fig. 5.4 as a function of
|r − r′| for various temperatures, in the 1D case. The function Gθ(r, r

′) generically decreases
with |r − r′| and goes to zero at large separations. Furthermore, it increases with the
temperature T , as is easily checked from Eq. (5.66), since the thermal contribution gets more
and more important.
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a/ At zero temperature, the relative-phase correlation function reads

Gθ(r)=
1

n

∫
dk

(2π)d

[
Eoff

k

εk + �Ω0
− 1

]
cos(k.r), (5.67)

which is found by replacing the discrete sum in Eq. (5.66) by an integral. It can be seen from
Eq. (5.60) that this function identically vanishes in the limit g12 = g. For (g−g12)n � �Ω0, we

can approximate
Eoff

k

εk+�Ω0
− 1 by (g−g12)n

2(εk+�Ω0)
and analytically calculate the integral in Eq. (5.67).

In 1D, it yields the exponentially decaying correlation function

G1D
θ (r) =

m(g − g12)n

2n�2L−1
θ

e−|r|/Lθ , for T = 0, (5.68)

where the correlation length is

Lθ =

√
�

2mΩ0
. (5.69)

Equation (5.68) accurately reproduces the exact formula (5.67) plotted on Fig. 5.4, which
corresponds to (g − g12)n = 0.25�Ω0. In 3D, we find

G3D
θ (r) =

m(g − g12)n

4πn�2|r| e−|r|/Lθ , for T = 0, (5.70)

which exhibits a divergence in r = 0 and decreases over the same characteristic length Lθ as in
1D, Eq. (5.69). For larger values of (g− g12)n, a formal expansion in powers of (g− g12)n/�Ω0

of the term inside the brackets in Eq. (5.67) shows that the main dependence of the relative
phase correlation function in e−|r|/Lθ is preserved, with a multiplicative correction that is
polynomial in |r|/Lθ. We numerically checked that the previous analytical formulas continue
to hold up to this polynomial correction in both 1D and 3D. They predict in particular the
correct correlation length, which therefore very weakly depends on the two-body coupling,
although they tend to slightly overestimate the value of Gθ(0).

b/ At finite temperature, the behavior of Gθ(r) at large separations |r| can as well be
obtained analytically. To do so, we replace in Eq. (5.66) the discrete sum by an integral and
use Eq. (5.60), which yields

Gθ(r)=
1

n

∫
dk

(2π)d

[
Eoff

k

εk + �Ω0
coth

(
Eoff

k

2kBT

)
− 1

]
cos(k.r). (5.71)

The behavior at large |r| is dominated by the components of momentum k smaller than 1/r.
Thus, for kT |r| � 1, where kT is defined by Eoff

kT
= kBT , we have kBT � Eoff

k for all contributing
terms of the integral. Then, if kBT � (εk + �Ω0), Eq. (5.71) can be simplified into

Gθ(r) � 1

n

∫
dk

(2π)d
2kBT

εk + �Ω0
cos(k.r). (5.72)

Notice that the previous condition requires that kBT � Egap, �Ω0, Eq. (5.72) thus being valid
in a large-separation and high-temperature regime. For kT |r| � 1, the integral in Eq. (5.72)
can be calculated, yielding

G1D
θ (r) � 2mkBT

n�2L−1
θ

e−|r|/Lθ , (5.73)
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Δ
δθ

μ

Figure 5.5: Relative phase fluctuations as a function of temperature for a one-dimensional two-
component Bose gas with one-body (Ω0 �= 0) and two-body (g12 �= 0) couplings, plotted for the same
parameters as in Fig. 5.4. The solid blue line with dots is the exact calculation, corresponding to
Eq. (5.71) in r = 0. The solid red line is the expansion (5.81) and the dotted red line corresponds to the
first left-hand-side term in Eq.(5.81). While the quantum fluctuations are small, the thermal contribu-
tion increases with temperature. At high temperature, the exact calculation is accurately reproduced
by the high-temperature expansion (5.81), whereas the linear dominant term proves insufficient to do
so.

in one dimension, and

G3D
θ (r) � mkBT

πn�2|r|e
−|r|/Lθ , (5.74)

in three dimensions. Remarkably, we find the same expression for the correlation length of the
relative phase Eq. (5.69), as for zero temperature. In 1D, this result recovers that of Ref. [255]
and extends it to the case where one-body and two-body couplings coexist. The correlation
length of the relative phase then weakly depends on the two-body coupling and decreases when
the one-body coupling increases. For smaller separations, the previous formulas no longer hold.
A cut-off at kT in the integral would have to be taken into account, which in particular would
solve the apparent divergence found in Eq. (5.74) for r = 0.

Temperature dependence of relative phase fluctuations

We finally discuss the relative phase fluctuations, which are given by

Gθ(0) =
1

nπ

∫ ∞

0
dk

[
Eoff

k

εk + �Ω0
coth

(
Eoff

k

2kBT

)
− 1

]

(5.75)

with Eoff
k =

√
(εk + �Ω0) (εk + �Ω0 + (g − g12)n), see Eqs. (5.60) and (5.71).

As already pointed out, the relative phase fluctuations always decrease with the one-body
coupling Ω0, which thus favors mutual phase coherence between the two condensates. Moreover,
repulsive two-body coupling (g12 > 0) tends to reduce the fluctuations of the relative phase
while attractive two-body coupling enhance them.

We will focus here on the temperature dependence of those fluctuations, which is shown
in Fig. 5.5, for the 1D case. The zero-temperature fluctuations, which are given by their
quantum contribution, are smaller than those of a single condensate [255]. The fluctuations
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then unsurprisingly increase with temperature. At high temperature, the dominant term
commonly found in literature [255] is linear in T and reads 2mkBT/n�

2L−1
θ , which coincides

with the prefactor in Eq. (5.73). In particular, the one-body coupling favors local mutual phase
coherence between the two components. However, the dominant contribution is generally not
sufficient to accurately reproduce the exact calculations as shown in Fig. 5.5. In order to
get a better accuracy, we perform here a high-temperature expansion of the relative phase
fluctuations in the 1D case, valid for kBT � �Ω0, (g−g12)n, which recovers the linear dominant
term and goes beyond it by capturing the next-order correction.

High-temperature expansion - Introducing kT such that Eoff
kT

= kBT , we can split the
integral in Eq. (5.75) into two parts, corresponding to k < kT and to k > kT , respectively.

For k � kT , coth
(

Eoff
k

2kBT

)
≈ 1 up to some exponentially decaying terms. Hence, we can safely

approximate the first part of the integral by 1
nπ

∫∞
kT

dk
(

Eoff
k

εk+�Ω0
− 1

)
, the leading-order term

of which scales as 1/kT ∝ 1/
√
T in the high-temperature limit. We can thus disregard this

contribution. For k � kT , we have Eoff
kT

� 2kBT so that we can use the expansion coth(x) ≈x→0

1/x + x/3 − x3/45 + ..., yielding the contribution

1

nπ

∫ kT

0
dk

[
2kBT

εk + �Ω0
+

εk + �Ω0 + (g − g12)n

6kBT
− ...− 1

]
, (5.76)

where we have retained the first two contributions. At high temperature, the first term is linear

in T and reads 2mkBT

n�2L−1
θ

, where Lθ =
√

�

2mΩ0
. Then, all terms coming from the expansion of the

coth function are of order
√
T and more, and the last term coming from the −1 is constant.

Therefore, at high temperature, one recovers the well-known linear dominant term

Gθ(r = 0) � 2mkBT

n�2L−1
θ

+ O(
√
T ) (5.77)

Obtaining the next correcting terms, scaling as
√
T , from Eq. (5.76) is not straightforward

since one would have to evaluate all terms of the integral and resum them. Furthermore, with
this approach, each term would depend on kT , which was introduced as a typical bound to
split the integral and is thus somehow defined up to an arbitrary constant of the order of one.
It would prevent us to extract the correct numerical prefactor of the

√
T term.

In order to overcome this issue, we resort to an alternative method. As can be checked from
Eq. (5.76), the term in (g−g12)n = 0 contributes to the expansion only in terms of order 1/

√
T

and more. We can thus neglect it here. With this approximation, we have Eoff
k � εk + �Ω0, so

that we can simply rewrite Eq. (5.75) in the form

Gθ(0) =
1

π

√
2kBT

�2n2/2m

∫ ∞

0
du

[
coth

(
u2 + η

)− 1
]

(5.78)

where we defined the small parameter η = �Ω0/2kBT . We now split the integral into two parts.
For u � √

η, u2 + η � 1 so that we can use the previous expansion of the coth function, and
obtain

1

π

√
2kBT

�2n2/2m

∫ √
η

0
du

(
1

u2 + η
+

u2 + η

3
+ ...− 1

)
(5.79)
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Each term can then be exactly integrated. The first term gives a contribution linear in tem-
perature, which reads mkBT

n�2L−1
θ

. Notice that, comparing to Eq. (5.77), it yields only one half

of the leading-order term linear in T . All the other terms are of orders 1, 1/T , 1/T 2,..., thus
strictly smaller than the

√
T term we are looking for. For u � √

η, we can use the expansion

coth
(
u2 + η

) ≈ coth(u2)+η coth(1)(u2)+ ..., where coth(n) is the n-th derivative of coth, which
yields

1

π

√
2kBT

�2n2/2m

∫ ∞
√
η
du

{[
coth(u2) − 1

]
+

∑
n≥1

ηn

n!
coth(n)(u2)

}
. (5.80)

Notice first that each term contains a contribution that is linear in T . Indeed, their respective
equivalents in 0 are non integrable and read (coth(u2) − 1) ∼u→0 1/u2 and coth(n)(u2) ∼u→0

n!(−1)n/u2n+2, so that all the terms in Eq. (5.80) scale once integrated as 1/
√
η. Together with

the global prefactor
√

2kBT , it yields a linear scaling. The latter can be explicitly calculated by
integrating the previous equivalents, which yields 4mkBT

nπ�2L−1
θ

×(1−1/3+1/5−1/7+ ...) = mkBT

n�2L−1
θ

,

that is one half of Eq. (5.77). Together with the contribution of the first part of the integral,
we thus recover exactly the same linear term as in the above subsection. Then, coming back
to Eq. (5.80), we can find the next order terms by subtracting to each term its equivalent in

u = 0. The first correction reads 1
π

√
2kBT

�2n2/2m

∫∞√
η du [coth(u2) − 1 − 1/u2]. The latter scales as√

T when η → 0 since the function u → coth(u2) − 1 − 1/u2 is integrable. One can then check
that the contributions of the other terms will respectively scale as 1/

√
T , 1/T 3/2,... We hence

find the final expansion

Gθ(r = 0) � 2mkBT

n�2L−1
θ

− I1
π

√
2kBT

�2n2/2m
+ O(1), (5.81)

where I1 =
∫∞
0 du [1/u2 − coth(u2) − 1] � 1.82.

The first correction to the linear term, which scales as
√
T , is remarkably independent from

the couplings. As can be seen in Fig. 5.5, Eq. (5.81) provides a fair approximation to the exact
calculations. In particular, we find that the

√
T correction significantly lowers the relative

phase fluctuations.

5.3 Conclusions

In this chapter, we have derived a general meanfield theory for a two-component Bose gas
in the presence of both one-body and two-body couplings. We considered the most general
situation where both one-body and two-body couplings can be position dependent, and where
the gas can experience a component-dependent external potential. Our formulation uses the
phase-density formalism, which applies to both true condensates and quasi-condensates with
large phase fluctuations. We have written the coupled Gross-Pitaevskii equations, which
determine the ground-state background, as well as the Bogoliubov equations, which determine
the pair-excitation spectrum of the mixture. We obtained general formulas for phase and
density correlation functions within each component, as well as for their relative phase, at zero
and finite temperature.
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We have then applied our formalism to a homogeneous case where both one-body and two-
body couplings coexist (Sec. 5.2). Our discussion then focused on the excitation spectrum
and the relative phase fluctuations in the case of equal intra-component interactions, which
captures the main physics. We summarize our main results in the following.

The excitation spectrum is composed of two branches, which are distinct provided at least
one of the couplings is present. The first branch, which corresponds to in-phase fluctuations
of the two Bose gases, is of Bogoliubov type. It depends only on the two-body coupling while
being unaffected by one-body coupling. The second branch, which corresponds to off-phase
fluctuations, is gapped as soon as the one-body coupling is non zero. The two branches cross
each other at a given momentum if the two-body coupling is repulsive and exceeds the one-body
coupling.

As regards phase and density fluctuations, each component behaves as an effective single-
component Bose gas with coupling parameters that are renormalized by the inter-species two-
body coupling. In particular, while the density fluctuations remain small in all dimensions, the
two components exhibit strong intra-component phase fluctuations in low dimensions, driven
by the ungapped Bogoliubov-like spectrum of the in-phase branch.

The behavior of the relative phase is more involved. At the meanfield level, it is imposed
by the one-body coupling, in particular by its phase. Then, the fluctuations of the relative
phase depend only on the modulus of the one-body coupling and on the two-body coupling.
At variance with the phase and density fluctuations within each component, the relative-phase
fluctuations are mostly determined by the off-phase branch of the spectrum, provided that the
intra-species interaction strengths are not too different. This is strictly the case where they
are equal (g1 = g2). Then, the two components are mutually phase coherent in any dimension,
due to the gap in the contributing off-phase branch (provided the one-body coupling does not
vanish, �Ω0 �= 0). Therefore, the one-body coupling always favors relative-phase coherence
of the two Bose gases, independently of its phase. As regards the two-body coupling, two
mechanisms compete. On the one hand, an increasing g12 tends to lower the contributing
off-phase branch, hence increasing its thermal occupancy. On the other hand, it enhances
the amplitude of off-phase density fluctuations, and therefore reduces the amplitude of
phase fluctuations in the contributing off-phase branch. We found that the latter effect
always dominates. Therefore, repulsive inter-component interactions suppress relative phase
fluctuations while attractive inter-component interactions enhance relative phase fluctuations.
Then, repulsive two-body coupling cooperates with one-body coupling and further suppresses
relative-phase fluctuations, while attractive two-body coupling competes with one-body
coupling and enhances relative-phase fluctuations. Closed analytical forms were eventually
found for the relative-phase correlation function, in the high-temperature and large-separation
regime. This enabled us to identify a correlation length for the relative phase, which was
found to decrease when the one-body coupling increases, and to be roughly independent on
the two-body coupling.

Moreover, the general formalism we have developped in this chapter is ready to be used in
the case of inhomogeneous gases, and many direct applications can be envisionned.

For instance, one can study the effect of inhomogeneous (e.g. harmonic, and possibly
component-dependent) trapping. This would be particularly relevant to describe ultracold-
atom experiments. In this case, one may resort to numerical solutions of the Gross-Pitaevskii
and Bogoliubov equations.

Other interesting applications of this formalism include the study of the effects of dis-

133
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order and random couplings, among which random-field-induced-order at finite temperature,
Anderson localization of Bogoliubov excitations of coupled Bose gases, random interatomic
couplings... Here again, resorting to numerical solutions or combining our formalism with well-
established methods developed for single-component disordered gases could efficiently lead to
promising advances.
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5.4 SUPPLEMENT : General formulas for the homogeneous

two-component Bose gas

In this supplement, we compute the excitation spectrum and wavefunctions of the ho-
mogeneous two-component Bose gas in the most general situation where both one-body and
two-body couplings are present.

5.4.1 General case, g1 �= g2

In principle, the first step is to solve the meanfield background, Eqs. (5.46) and (5.47).
However, in the most general case with g1 �= g2, Ω0 �= 0, and g12 �= 0, we did not find a simple
closed solution 6, 7. Thus, in the following, we will write directly the Bogoliubov equations as
a function of n1, n2 and μ.

Given the meanfield solution n1, n2 and μ, one has to solve the homogeneous Bogoliubov
equations (5.29) together with (5.51) and (5.52). By taking the sum and difference of the first
two rows on the one hand, and of the last two rows of the other hand, we can rewrite those
Bogoliubov equations in terms of the fp,m

σk functions :

Ekf
m
σk =

(
εk +

�Ω0

2

√
nσ̄

nσ

)
fp
σk − �Ω0

2
fp
σ̄k (5.82)

Ekf
p
σk =

(
εk +

�Ω0

2

√
nσ̄

nσ
+ 2gσnσ

)
fm
σk +

(
2g12

√
n1n2 − �Ω0

2

)
fm
σ̄k, (5.83)

where σ̄ is the conjugate of component σ [σ̄ = 2 (resp. 1) for σ = 1 (resp. 2)]. Using the
normalization condition (5.54), it yields

E2
kf

p
σk = (εσk + 2Uσ)

(
εσkf

p
σk − �Ω0

2
fp
σ̄k

)
+

(
2U12 − �Ω0

2

)(
−�Ω0

2
fp
σk + εσ̄kf

p
σ̄k

)
(5.84)

Ek = fp
1k

(
ε1kf

p
1k − �Ω0

2
fp
2k

)
+ fp

2k

(
ε2kf

p
2k − �Ω0

2
fp
1k

)
, (5.85)

where we have defined εσk ≡ εk +
�Ω0

2

√
nσ̄
nσ

, Uσ ≡ gσnσ, and U12 ≡ g12
√
n1n2. By defining as

well

Akσ = εσk(εσk + 2Uσ) − �Ω0

2

(
2U12 − �Ω0

2

)
(5.86)

Bkσ = εσ̄k

(
2U12 − �Ω0

2

)
− �Ω0

2
(εσk + 2Uσ) (5.87)

we can rewrite Eq. (5.84) separating the terms in fp
σk from those in fp

σ̄k

fp
σ̄kBkσ = fp

σk[E2
k −Akσ] (5.88)

6In the case g1 = g2 ≡ g, we have n1 = n2 = N/2V, with N the total number of atoms, by symmetry
of the two components. Equations (5.46) and (5.47) are then identical and yield the simple solution μ =
(g + g12)N/2V − �Ω0/2.

7In the case Ω0 = 0, Equations (5.46) and (5.47) reduce to a linear problem whose solution reads nσ =
N
V

gσ̄−g12
g1+g2−2g12

and μ = N
V

g1g2−g2
12

g1+g2−2g12
with σ̄ = 2 (resp. 1) for σ = 1 (resp. 2)
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The Bogoliubov energies are then found from the ratio of the two avatars of Eq. (5.88) corre-
sponding to σ = 1 and σ = 2 respectively. It yields

E±
k =

√
1

2
(Ak1 + Ak2) ±

√
(Ak1 −Ak2)2/4 + Bk1Bk2. (5.89)

The excitation spectrum is composed of two branches, the one labelled by (+) always being
above the one labelled by (−). Their low/high-momentum behaviors are easily found from a
low/high-momentum expansion of the Akσ and Bkσ. At low momentum, the (−) branch is
ungapped and phonon-like; conversely, the (+) branch exhibits a finite gap as soon as Ω0 �= 0,
given by

Egap =

[
�
2Ω2

0

4

(
2 +

n1

n2
+

n2

n1

)
+ �Ω0

√
n1n2(g1 + g2 − 2g12)

]1/2
. (5.90)

At high energy, both branches are particle-like, and separated by an energy

Δ =

[(
�Ω0

2

n2 − n1√
n1n2

+ g1n1 − g2n2

)2

+ (2g12
√
n1n2 − �Ω0)2

]1/2
. (5.91)

In between, the two branches can possibly coincide at a specific k provided the equation
(Ak1 − Ak2)

2/4 + Bk1Bk2 = 0 has a solution (see Sec. 5.2.2 for a precise example in the case
g1 = g2).

In the particular case where Ω0 = g12 = 0, and only in this case 8, the two branches are iden-
tical and correspond to the usual single-particle Bogoliubov spectrum, E±

k =
√

εk (εk + 2μ).
Notice that this holds even for g1 �= g2 because the meanfield background is identical for the
two Bose gases, i.e. g1n1 = g2n2 = μ [see Eqs. (5.46) and (5.47) with Ω0 = g12 = 0]. In this
case, the spectrum shows twofold degeneracy (there is also a trivial +k ↔ −k degeneracy,
which we disregard here).

Given the excitation spectrum, we can then compute the Bogoliubov wavefunctions fp,m
σk .

To do so, we use Eq. (5.88) and express fp
2k as a function of fp

1k. Inserting this expression into
Eq. (5.85), we find

fp
1k =

√√√√√ Ek

ε1k − �Ω0
E2

k −Ak1

Bk1
+ ε1k

(
E2

k −Ak1

Bk1

)2 (5.92)

up to an arbitrary phase that we set to zero. Using again Eq. (5.88), we find :

fp
2k =

E2
k −Ak1

Bk1

√√√√√ Ek

ε1k − �Ω0
E2

k −Ak1

Bk1
+ ε1k

(
E2

k −Ak1

Bk1

)2 . (5.93)

Notice that although fp
2k could also be expressed by a symmetric expression as Eq. (5.92), this

would not be sufficient to determine its relative phase with respect to fp
1k. We finally deduce

8For the two branches to be identical, one necessarily have Ω0 = 0 to make the (+) branch ungapped [see
Eq. (5.90)], and then g12 = 0 to make the two branches coincide at high energy [see Eq. (5.91)].
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the fm
σk waves from the fp

σk using Eq. (5.82). It yields

fm
1k =

ε1k − �Ω0(E
2
k −Ak1)/2Bk1√√√√Ek

[
ε1k − �Ω0

E2
k −Ak1

Bk1
+ ε1k

(
E2

k −Ak1

Bk1

)2
] (5.94)

and

fm
2k =

ε2k(E2
k −Ak1)/Bk1 − �Ω0/2√√√√Ek

[
ε1k − �Ω0

E2
k −Ak1

Bk1
+ ε1k

(
E2

k −Ak1

Bk1

)2
] . (5.95)

5.4.2 Symmetric case, g1 = g2

In the case discussed in Sec. 5.2.2 where the intra-component couplings are equal, g1 = g2,
we have by symmetry of the two components n1 = n2, Ak1 = Ak2 ≡ Ak and Bk1 = Bk2 ≡ Bk

with

Ak =

(
εk +

�Ω0

2

)(
εk +

�Ω0

2
+ gn

)
− �Ω0

2

(
ng12 − �Ω0

2

)
(5.96)

Bk =

(
εk +

�Ω0

2

)(
ng12 − �Ω0

2

)
− �Ω0

2

(
εk +

�Ω0

2
+ gn

)
. (5.97)

Equation (5.89) then reads E±
k

=
√

Ak ± |Bk|. Therefore, the two energies corresponding to a
given momentum k, irrespective to the branches, are nothing but

√
Ak ±Bk. This allows for

redefining the two branches of the spectrum in a different way :

E
in/off
k

=
√

Ak ±Bk (5.98)

Although none of the branches is now systematically above or below the other one, this conven-
tion for the ”in” branch and the ”off” branch will prove more convenient in Sec. 5.2.2, especially
while computing the Bogoliubov wavefunctions. Indeed, notice that (E2

k−Ak1)/Bk1 = 1 for the
”in” branch and −1 for the ”off” branch . This enables us to considerably simplify Eqs. (5.92)
to (5.95) for the Bogoliubov wavefunctions in the case g1 = g2.
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Conclusions and perspectives

La bêtise consiste à vouloir conclure.
Gustave Flaubert

In this manuscript, we have studied the collective localization transitions of disordered
weakly-interacting Bose superfluids in various contexts. Such an issue is essential to under-
stand the dynamics of disordered many-body systems and is for instance directly relevant to
quench experiments, where energy and information transfer within the fluid are mediated by
the ability of collective excitations to propagate throughout the system. Additionally, since
collective excitations govern most finite-temperature properties of Bose gases, understanding
their behaviour in the presence of disorder can constitute a promising step in the quest for the
phase diagram of disordered bosons at finite temperature.

By the systematic use of both analytical and numerical methods, we have addressed this
question in different contexts, which remarkably led to a rich and original physics in each case.

In the case of a Bose gas in continuous space subjected to a true disorder, presented
in chapter 3, we have shown that the propagation of collective excitations displays both
universal and non-universal features. Similarly to the free-particle case, we found a universal
localization behaviour, stating that all excitations are localized in 1D and 2D while a mobility
edge shows up in 3D. Conversely, the energy dependence of the localization length and the
position of the mobility edge(s) are strongly non-universal and depend on the interplay, at the
microscopic scale, between disorder and interactions. On the one hand, interactions screen the
disorder, protecting the transport of low-energy excitations in contrast with the free-particle
case. On the other hand, density depletion induced by strong disorder alters the very nature
of collective excitations, which may locally behave as free particles. This competition yields a
nontrivial localization diagram, with possibly several mobility edges in the spectrum.

The case of a one-dimensional quasiperiodic lattice, presented in chapter 4, is very
different. For non-interacting particles, it is characterized by an energy-independent lo-
calization transition. Our study in the interacting case, supported by both numerical and
analytical calculations, has revealed that interactions dramatically alter this picture. An
intermediate regime, where low-energy extended states and high-energy localized states
coexist in the excitation spectrum, appears for intermediate quasiperiodic strength. There-
fore, interactions change in this case the universality class of the transition. To explain
it, we have developed an analytical treatment of the problem, which allowed us to map
the problem onto an effective free-particle problem in a multi-harmonic field. Both ana-
lytics and numerics are in quantitative agreement, and a full localization diagram was obtained.
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Finally, in chapter 5, we have set the formalism to address the case of two-component Bose
gases. Our approach, based on the Bogoliubov theory, gives access to collective excitations,
as well as fluctuations and correlation functions of the coupled Bose gas, in the most general
inhomogeneous situation. Applying it to a homogeneous gas, we have worked out the non-trivial
physics of this case, which already displays a great diversity of regimes, and derived explicit
formulas for the relative phase correlation function, which may be useful for experiments.
Therefore, the route is now opened to the investigation of disorder in this context.

Outlook

The experimental activity in the field of disordered and quasiperiodic ultracold gases is
currently very active. On the one hand, disordered, quasiperiodic, and multi-component Bose
gases are today commonly realized. On the other hand and although more recent, so are now
quantum-quench experiments, sparked by the increasing interest for many-body dynamics.
Therefore, the experimental observation of collective localization transitions can be expected
to come soon, yielding fruitful comparison with our works. In the case of a Bose superfluid
subjected to a true disorder (chapter 3), the main challenge would be the experimental
observation of the various classes of mobility spectra. Our analysis has shown that this should
be within the reach of current experiments. In the case of a one-dimensional Bose superfluid
on a quasiperiodic lattice (chapter 4), our localization diagram is consistent with the reported
observations of the superfluid-Bose glass transition. As regards the localization transition for
collective excitations, the latter lies in a very typical range of parameters, and could therefore
be observed. Additionally, recent transport measurements with BECs in quasiperiodic lattices,
as well as observations of the superfluid to Bose glass transition at finite temperature, could
be related to the localization properties of collective excitations that we have described. As
regards multi-component Bose gases (chapter 5), experiments with disorder could start in
the coming years. Our general formalism, which already provides a successful quantitative
description of the homogeneous case, for instance as regards relative phase fluctuations, could
thus be promisingly applied to the coming experiments with disorder.

As regards theoretical perspectives, one can envision several extensions to our work.

In the case of a true disorder (chapter 3), we have predicted the existence of several classes
of mobility spectra. Since our approach mostly amounts to characterizing a diffusive motion by
retaining the leading disordered terms, relying then on the criterion kεlB ∼ 1 for localization, it
would be fruitful to resort to an independent method to corroborate such predictions, especially
in the strongly disordered regime. For instance, transport properties of collective excitations
could be studied by a dynamical treatment of the problem, via large scale numerical simulations
of the time-dependent Gross-Pitaevskii equation in a disordered potential. The diffusive or
localization behaviour of collective excitations, as well as their propagation in both depleted
and non depleted regions, could then be explicitely monitored.

In the case of a 1D Bose superfluid on a quasiperiodic lattice (chapter 4), two main ex-
tensions could be envisioned. On the one hand, investigating the 2D and 3D cases could be
particularly promising, especially for non-separable systems (i.e. which cannot be split into
several one-dimensional systems). In such case, since the single-particle physics already dif-
fers from the 1D case (locator perturbation theory predicts in higher dimensions an energy-
dependent localization transition), one should expect for collective excitations a rich behaviour.
Moreover, our methods, be it the numerical resolution (imaginary time propagation and ex-
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act diagonalization) or the analytical treatment (derivation of an effective model and locator
perturbation theory), are completely general and can be applied in higher dimensions as well.
On the other hand, one could stay in 1D but consider the case of two weak incommensurate
optical lattices on the continuous space (instead of having one deep lattice discretizing space).
From a theoretical point of view, the absence of duality in such a model should give rise to an
richer physics, although presumably reminiscent of the case we have studied. Moreover, such
a configuration could be promisingly realized in future experiments, and would considerably
help reduce heating, which is always important in the presence of deep lattices.

In the case of a two-component Bose gas (chapter 5), our work opens the way to the inves-
tigation of disorder. The latter can be introduced in several ways (random external potential,
random couplings,...) and one can therefore expect a rich physics. For instance, combining our
inhomogeneous formalism with the techniques developed in the previous chapters, it would be
interesting to study the collective localization transitions of excitations of the coupled conden-
sates. In view of the diversity of scenarii that we have enlightened in the homogeneous case,
a rich behaviour can be anticipated. Another promising appplication of our work would be
the study of random-field-induced order (RFIO) at finite temperature, which so far remains an
open question.

141



142 CONCLUSIONS AND PERSPECTIVES

Version française

Dans ce mémoire, nous nous sommes intéressés à la question des transitions de locali-
sation collective dans les superfluides de Bose désordonnés. C’est une question essentielle pour
mieux appréhender les phénomènes de dynamique à N corps dans les systèmes désordonnés,
et qui est par exemple directement pertinente pour décrire les expériences de quench, dans
lesquelles c’est précisément la capacité des excitations collectives à se propager au sein du flu-
ide qui détermine la manière dont l’information est véhiculée à travers le système. De plus,
dans la mesure où les excitations collectives déterminent aussi la plupart des propriétés du gaz à
température finie, comprendre leur comportement en présence de désordre peut constituer une
avancée majeure dans la quête du diagramme de phases de bosons désordonnés à température
finie.

En combinant systématiquement approches analytiques et méthodes numériques, nous
avons étudié cette question dans différents contextes, conduisant, d’une façon très remarquable,
à une physique riche et originale dans chacun des cas étudiés.

Dans le cas d’un gaz de Bose dans l’espace continu et soumis à un vrai potentiel de
désordre, étudié au chapitre 3, nous avons montré que la propagation des excitations présente
à la fois des propriétés universelles de transport et des caractéristiques non universelles. En
effet, les excitations collectives présentent le même comportement universel de localisation
que les particules libres, à savoir qu’elles sont toujours localisées en 1D et 2D, alors qu’une
transition de localisation apparâıt en 3D. En revanche, la dépendance en énergie des longueurs
de localisation, et la position du/des éventuel(s) seuil(s) de mobilité sont fortement non
universels et résultent de la compétition, à l’échelle microscopique, entre le désordre et les
interactions. D’une part, les interactions ont tendance à écranter le désordre, protégeant
le transport des excitations de basse énergie. D’une part, un fort désordre peut conduire
à une dépletion locale du profil de densité du condensat, altérant la nature même des
excitations collectives qui, localement, se comportent alors comme des particules libres.
De cette compétition résulte en particulier un diagramme de localisation non trivial, car-
actérisé par la présence éventuelle de plusieurs seuils de mobilité dans le spectre des excitations.

Le cas d’un réseau quasi-périodique unidimensionnel, présenté au chapitre 4, est très
différent. Pour des particules libres, un tel système est caractérisé par une transition de
localisation indépendante de l’énergie. Notre étude du problème avec interactions, menée à
l’aide d’outils analytiques et numériques, révèle que les interactions modifient radicalement
cette image. Elles se traduisent en effet par l’apparition d’un régime intermédiaire caractérisé
par la coexistence, dans le spectre d’excitation, d’états étendus de basse énergie et d’états
localisés de haute énergie, et changent donc de ce fait la classe d’universalité de la transition.
L’approche analytique que nous avons développée nous a permis d’expliquer ce comportement
en termes de localisation dans un modèle effectif multiharmonique. Nos méthodes, numérique
et analytique, sont quantitativement en accord, et nous présentons un diagramme complet de
localisation.

Enfin, au chapitre 5, nous avons établi le formalisme de base pour étudier le cas d’un gaz
de Bose à deux composants. Ce formalisme, basé sur la théorie de Bogoliubov, donne accès
aux excitations collectives du gaz, ainsi qu’à ses fluctuations et fonctions de corrélation, dans la
situation inhomogène la plus générale. L’appliquant dans un second temps au cas homogène,
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nous avons mis en lumière la physique du gaz à deux composants, qui présente une grande
diversité de régimes, et dérivé des formules analytiques explicites pour les fluctuations de sa
phase relative, qui pourraient s’avérer utiles aux expériences en cours sur ces systèmes. D’une
certaine manière, ce travail ouvre ainsi la voie à l’étude des effets du désordre dans ces systèmes.

Perspectives

Le domaine des gaz d’atomes froids désordonnés est aujourd’hui extrêmement actif sur le
plan expérimental. D’une part, les gaz de Bose désordonnés, quasi-périodiques, ou à plusieurs
composants sont couramment réalisés dans un grand nombre de groupes expérimentaux.
D’autre part, depuis quelques années maintenant, il en va désormais de même des expériences
de quench, motivées par l’intérêt grandissant pour les questions de dynamique des systèmes à
N corps. Par conséquent, on peut espérer être en mesure d’observer expérimentalement, d’ici
quelques années, les comportements de localisation collective décrits dans ce mémoire. Dans
le cas d’un gaz de Bose soumis à un vrai désordre (chapitre 3), le principal objectif serait
l’observation des multiples seuils de mobilité prédits dans le spectre d’excitation. Notre analyse
a montré à cet égard que ce régime intéressant était à la portée des expériences actuelles
d’atomes froids. Dans le cas d’un réseau quasi-périodique unidimensionnel (chapitre 4), il faut
d’abord souligner que notre diagramme de localisation est tout à fait cohérent avec les observa-
tions expérimentales de la transition superfluide-verre de Bose. En ce qui concerne la transition
de localisation des excitations collectives, celle-ci se trouve précisément dans la même gamme
de paramètres que les expériences actuelles, et pourrait donc être observée. Qui plus est, de
récentes expériences de transport d’un condensat dans un potentiel quasi-périodique, ainsi que
certaines observations de la transition superfluide-verre de Bose à température finie, pourraient
être directement reliées aux propriétés de localisation des excitations collectives que nous avons
décrites. En ce qui concerne les gaz de Bose à deux composants (chapitre 5), les expériences
en présence de désordre pourraient débuter dans un futur très proche. L’application de
notre formalisme, qui fournit déjà une description quantitative du cas homogène, par ex-
emple en ce qui concerne les fluctuations de phase relative, pourrait alors être très prometteuse.

Sur le plan théorique, notre travail ouvre également de nombreuses perspectives.

Dans le cas d’un vrai désordre (chapitre 3), nous avons conclu à l’existence possible de
plusieurs seuils de mobilité dans le spectre. Dans la mesure où notre approche repose essen-
tiellement sur la caractérisation, à l’ordre le plus bas en désordre, d’un mouvement diffusif, et
s’appuie dans un second temps sur le critère de localisation kεlB ∼ 1 , il serait particulièrement
prometteur de la tester au moyen d’une méthode totalement indépendante, en particulier dans
le régime de fort désordre. Une possibilité pourrait consister à effectuer un traitement dy-
namique du problème, et étudier le transport des excitations par des simulations numériques
de grande échelle basées sur l’équation de Gross-Pitaevskii dépendant du temps, en présence
d’un potentiel désordonné. Le comportement, diffusif ou localisé, des excitations pourrait
alors être directement observé, ainsi que la manière dont celles-ci se propagent localement, en
présence et en l’absence de dépletion du profil de densité.

Dans le cas d’un gaz de Bose quasi-périodique (chapitre 4), on peut envisager deux exten-
sions principales à notre travail. D’une part, il serait intéressant d’étudier le cas des dimensions
supérieures, en particulier pour des systèmes non séparables (i.e. qui ne se découplent pas en
plusieurs systèmes unidimensionnels). Dans la mesure où le comportement des particules li-
bres est déjà très différent en dimensions 2 et 3 (la théorie de locateur prédit en effet une
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transition de localisation dépendant de l’énergie), on peut s’attendre pour les excitations col-
lectives à une physique très riche. De plus, toutes les méthodes que nous avons utilisées,
qu’elles soient numériques (propagation en temps imaginaire, diagonalisation exacte) ou an-
alytiques (dérivation du modèle effectif, théorie de locateur), sont complètement générales et
directement transposables au cas de dimensions supérieures. D’autre part, il serait intéressant
de rester en dimension 1 mais d’étudier le cas de deux réseaux optiques incommensurables et
d’amplitudes voisines, dans l’espace continu (au lieu d’avoir un réseau principal profond qui
discrétise l’espace). En effet dans ce cas-là, l’absence de dualité du modèle devrait conduire
à une physique plus riche, possédant toutefois un certain nombre de réminiscences du cas que
nous avons étudié. De plus, une telle configuration pourrait être particulièrement prometteuse
pour les expériences futures, dans la mesure où elle contribuerait à réduire les problèmes de
chauffage, qui sont toujours importants en présence de réseaux optiques profonds.

Dans le cas d’un gaz de Bose à deux composants (chapitre 5), notre travail ouvre la voie à
l’étude du désordre dans ces systèmes. Ce dernier peut être introduit de nombreuses façons (po-
tentiel extérieur, couplages désordonnés...) et on peut donc s’attendre à une physique très riche.
Par exemple, la combinaison de notre formalisme inhomogène et des méthodes développées dans
les chapitres précédents pourrait permettre d’étudier les propriétés de localisation des excita-
tions collectives dans les condensats couplés. Au vu de la diversité de scénarios rencontrés
dans le cas homogène, on peut pressentir une grande variété de comportements. Une autre
application prometteuse de notre travail pourrait être l’étude des effets d’ordre induit par le
désordre (RFIO) à température finie, qui demeure à ce jour une question ouverte.
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Appendix A

Statistical properties of random

potentials

Un beau désordre est un effet de l’art.
Nicolas Boileau

A random potential V (r) is a random function of position r (i.e. for each point r, V (r)
is a random variable). A given realization of the potential corresponds then to a given function
of position r. In principle, to completely characterize a random potential, one needs to know
all the n-point probability distributions :

- Pr(V ) (the one-point probabilty distribution) for all r;
- Pr,r′(V, V

′) (the joint probabilty distribution) for all r, r′;
...etc.

In most cases, to completely describe a random potential, it is however sufficient to know
all the n-point correlation functions

Cn(r1, r2, ...rn) = 〈V (r1)V (r2)...V (rn)〉, (A.1)

where 〈...〉 denotes statistical averaging (i.e. ensemble averaging over all realizations of the
potential).

A.1 General properties

Homogeneity- A random potential is assumed to be spatially homogeneous, which means that
its statistical properties are translation-invariant (for instance, the one-point probability distri-
bution is independent of the position). As a consequence, all n-point correlators Cn(r1, r2, ...rn)
satisfy

Cn(r1 + ρ, r2 + ρ, ...rn + ρ) = Cn(r1, r2, ...rn), (A.2)

and depend only on n− 1 relative coordinates.

Vanishing correlations at infinity- Another key assumption is the disappearance of
statistical correlations at large separations, as expressed by

〈V (r1)...V (rn)V (rn+1 + ρ)...V (rm + ρ)〉 −→
|ρ|→∞

〈V (r1)...V (rn)〉〈V (rn+1)...V (rm)〉 (A.3)
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Properties of the first correlation functions- In most problems, the physics is effi-
ciently described by the single-point and two-point properties of the disordered potential. Let
us briefly review their main properties, which come from the previous general assumptions.

• Single-point properties are determined by the probability distribution P (V ), and do not
depend on position due to spatial homogeneity. In particular, one can assume without loss
of generality a vanishing statistical average, 〈V 〉 = 0. The standard deviation therefore
reads V 2

R = 〈V 2〉.
• Due to spatial homogeneity, the two-point correlation function, or autocorrelation func-
tion, depends only on one relative coordinate C2(r) = 〈V (r′)V (r + r′)〉. Homogeneity
implies as well the relations

C2(r) = C2(−r) and C̃2(q) = C̃2(−q),

where the Fourier transform of the two-point correlation function, also referred to as the
power spectrum of the disorder, is defined by C̃2(q) =

∫
C2(r)e−iq.rddr .

Due to the disappearance of correlations at infinity, the autocorrelation function drops to
zero at large separations, on a typical length-scale called the correlation length, σR. The
latter can be used to define a dimensionless autocorrelation function c2(r) by C2(r) =
V 2

R c2(r/σR), or equivalently in Fourier space C̃(q) = V 2
Rσ

d
Rc̃2(qσR).

In many cases, the disorder is further assumed to be isotropic, which means that C2(r) =
C2(r) is a radial function (and so is its Fourier transform).

A.2 Standard examples

Gaussian disorder

A Gaussian disorder is a random potential whose all n-point correlation functions can be
expanded into products of two-point correlators using Wick’s theorem. In other words, all
cumulants of order n > 2 identically vanish 1. Since 〈V 〉 = 0, this implies that all correlation
functions of odd order vanish identically, while correlation functions of even order expand into
products of two-point correlation functions C2. For instance, the four-point correlator of a
Gaussian potential reads

C4(r1, r2, r3) = C2(r1)C2(r2 − r3) + C2(r2)C2(r3 − r1) + C2(r3)C2(r1 − r2) (A.4)

Therefore, all statistical properties of a Gaussian random potential are entirely determined by
its two-point correlator C2.

Notice that the expression ”Gaussian” disorder is sometimes misleadingly used to refer
to a disorder whose one-point probability distribution is a Gaussian, or to a disorder whose
two-point correlation function is Gaussian. Such disorders are however not necessarily
Gaussian in the sense of the previous definition. For example, a Gaussian speckle is a speckle
potential whose autocorrelation function C2 is Gaussian, but it is not a Gaussian disorder (a
speckle potential is actually never Gaussian since it always has non-vanishing cumulants of
order higher than 2.)

1We recall that the cumulants are obtained from the moments Cn by substracting all possible factorized
contributions.
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White-noise disorder

A white-noise (or uncorrelated) disorder is a Gaussian disorder whose autocorrelation
function is delta-correlated,

C2(r) = Dδ(r). (A.5)

The coefficient D characterizes the disorder strength and has the dimension of
(energy)2(length)d, where d is the dimensionality.

White-noise disorders are widely used, mostly because at low-energy, many continuous
random potentials can be replaced by a white-noise potential. Indeed, when the correlation
length σR of a random potential becomes much smaller than all the relevant length scales
present in the problem, the physics can be well-described within the so-called white-noise limit,
which amounts to let σR → 0 at fixed V 2

Rσ
d
R. In this limit, the autocorrelation function of the

potential reads
C2(r) = c̃2(0)V 2

R σ
d
Rδ(r)

and the potential can be described by a white-noise potential with D = c̃2(0)V 2
R σ

d
R.

This applies to all random potentials for which c̃2(0) < ∞. The others, among which some
speckle potentials, do not have a white-noise limit.
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Appendix B

Elements of quantum transport

theory

It is notoriously difficult to obtain reliable results for quantum
mechanical scattering problems [...] any simple uncontrolled
approximation is not worth more than the weather forecast.

W. Thirring

In this appendix, we briefly review the basics of quantum transport theory. Although
it does not aim at providing an exhaustive presentation, which would hardly fit into the present
format, this short summary outlines the main ideas and gives a justification of all the results
used in this manuscript. We refer to [17,18,289,290] for a more detailed presentation 1.

We will consider the general situation of a single particle propagating in a disordered
medium defined by a disordered potential, in arbitrary dimension d. The Hamiltonian can
be typically written

Ĥ = Ĥ0 + V̂ (B.1)

where Ĥ0 = p̂2/2m describes the disorder-free, translation-invariant, Hamiltonian and V̂ the
time-independent disordered potential, which breaks translation invariance.

Diagrammatic perturbation theory is a perturbative approach in V̂ , which roughly consists
in an expansion of Ĥ in powers of V̂ . It is therefore expected to be valid in the weak-disorder
regime.

B.1 Quantum propagator

The time evolution of the particle wavefunction |ψ〉 obeying the Schrödinger equation,
i�∂t|ψ〉 = Ĥ|ψ〉, is determined by |ψ(t)〉 = GR(t)|ψ(0)〉, where GR(t) denotes the forward

time evolution operator defined by GR(t) = − i

�
Θ(t) exp(−iĤt/�) (with Θ(t) the Heaviside

function).

1Figures of this appendix are extracted or based on [289,290].
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The retarded Green function, also referred to as the field propagator, is the Fourier transform
of the forward time evolution operator GR(t) 2,

GR(E) =

∫
GR(t)ei(E+i0+)t/�dt =

1

E − Ĥ + i0+
(B.2)

For notational brievity, we will in the following omit the superscript R, except when necessary.
From Eq. (B.2), one immediately gets

G(E) = G0(E) + G0(E)V G(E) (B.3)

where G0(E) denotes the disorder-free Green function. The latter is diagonal in momentum
space and writes

〈k′|G0(E)|k〉 = (2π)dδ(k − k′)G0(E, k) =
(2π)dδ(k − k′)
E − ε0(k) + i0+

(B.4)

where ε0(k) = �
2k2/2m is the free-disorder dispersion relation.

Iterating Eq. (B.3) yields the so-called Born series

G = G0 + G0V G0 + G0V G0V G0 + ... (B.5)

where we have omitted the energy arguments for brievity. Explicitely rewriting Eq. (B.5) as a
function of all matrix elements proves very tedious

〈k′|G(E)|k〉 = δ(k − k′)G0(E, k) + G0(E, k′)Vk′−kG0(E, k)

+
∑
k′′

G0(E, k′)Vk′−k′′G0(E, k′′)Vk′′−kG0(E, k) + ... (B.6)

but can be simply represented by the Feynman diagram

Here, solid lines supported by k represent the disorder-free propagator G0(E, k) while scattering
by the disordered potential is repreented by a dotted line. Labelling the latter is useless since it
is automatically determined by the incident and scattered momenta. Finally, in such diagrams,
all internal momenta, such as k′′ here, have to be summed over.

B.2 Ensemble averaging and self-energy

Dyson equation

Although the Born series (B.5) permits to compute the full propagator, the result will be
different for each particular realization of the disorder, and so will be the calculation of any
observable quantity. In fact, relevant quantities are only obtained after statistical averaging
over realizations of the disorder, and what one has to consider is the averaged propagator. The
latter expresses

G = G0 + G0V G0V G0 + G0V G0V G0V G0 + ... (B.7)

2The regularisation term i0+ in Eq. (B.2) guarantees the causality of the forward time evolution operator.
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where we have used the fact that V = 0 to drop the first term G0V G0. Equation (B.7) can be
advantageously represented using Feynman diagrams

Remarkably, averaging over disorder restores translation invariance, and G is diagonal in mo-
mentum space. It appears as well that the average propagator involves correlations of the
potential of all orders, as represented by the connected dotted lines between disordered vertex.
Equation (B.7) can be rewritten in the most compact form

G = G0 + G0ΣG, (B.8)

known as the Dyson equation, which defines the self-energy Σ, one of the most fundamental
objects in diagrammatic perturbation theory. Indeed, by iterating the Dyson equation, one
gets

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + ..., (B.9)

conveniently rewritten in the form

Therefore, since no disorder correlations appear here between the different self-energy blocks,
it appears that the self-energy contains exactly all the correlations that cannot be split into
products of independent factors by suppressing a single propagator line (referred to as the
one-particle irreducible contributions). In some sense, the self-energy is the simplest object
containing all relevant disorder correlations.

Physical meaning of the self-energy

The Dyson equation can be formally solved into G = [G−1
0 − Σ]−1. Since translation-

invariance is restored by disorder-averaging, the matrix elements of G are diagonal in momen-
tum space and read

〈k′|G(E)|k〉 = (2π)dδ(k − k′)G(E, k) =
(2π)dδ(k − k′).

E − ε0(k) − Σ(E, k) + i0+
(B.10)

From the knowledge of the average propagator, one can calculate many physical quantities. In
particular, information about the dressed eigenstates of the problem are encoded in the spectral
function

A(E, k) ≡ −2Im(G(E, k)) =
−2ImΣ(E, k)

(E − ε0(k) − ReΣ(E, k))2 + (ImΣ(E, k))2
, (B.11)

which represents the probability distribution for an excitation k to have the energy E. In the
free-disorder case, A(E, k) = 2πδ[E − ε0(k)], describing eigenstates at energies E = ε0(k) and
of infinite lifetime. In the disordered case [see Eq. (B.11)], the self-energy encodes how the
disorder affects the free dispersion relation :

• One the one hand, its real-part shifts the energy levels, the disordered ones, Ek, being
given by the implicit equation Ek = ε0(k) + ReΣ(Ek, k).

153



154 APPENDIX B. ELEMENTS OF QUANTUM TRANSPORT THEORY

• One the other hand, since plane waves of momentum k are no longer eigenstates of the
disordered problem, they acquire a finite spectral width, defining the elastic scattering
rate Γk = −2ImΣ(Ek, k), and a corresponding elastic scattering lifetime τS(k) = �Γ−1

k .

Further physical quantities can be computed from the spectral function, such as the density
of states

N(E) =
1

2π

∫
A(E, k)

ddk

(2π)d
(B.12)

More generally, the spectral function is a central quantity in quantum transport theory,
which regularly appears in calculations. Very often, calculations rely on the on-shell approx-
imation, which amounts to replace it by its disorder-free expression, 2πδ[E − ε0(k)], and is
sufficient at the lowest order in disorder.

Born approximation

To compute physical quantities, one therefore needs to know how to calculate the self-
energy. This can in principle be achieved by applying the Feynman rules to evaluate and
sum up all irreducible diagrams entering the self-energy. However, since Σ contains diagrams
with correlations of all orders, an exact calculation is impossible. In practice, a frequent
approximation, which proves correct for weak disorder, consists in taking into account only the
lowest-order term. Within this Born approximation, the only contributing diagram

is easily evaluated as

Σ(2)(E, k) =

∫
C(k − k′)G0(E, k′)

ddk′

(2π)d
(B.13)

with C(k) the power spectrum of the disorder potential.

We are now in a position to apply the previous tools to compute the most fundamental
quantities of quantum transport theory.

B.3 Scattering mean-free path

The scattering mean-free path lS , i.e. the average distance travelled by a wave k without
being scattered, is a central quantity to characterize the disordered transport. It is directly
related to the elastic scattering lifetime τS(k) by lS = τS(k)�k/m = −�

2k/2mImΣ(2)(Ek, k).
At lowest order in disorder, one can use the on-shell approximation, which amounts here to
replace Σ(2)(Ek, k) by Σ(2)[ε0(k), k]. The latter can be straightforwardly evaluated within the
Born approximation using Eq. (B.13). Recalling that ImG0(E, k′) = −πδ[E − ε0(k′)], one gets
the final result

1

klS
=

2πm2

�4k4−d

∫
dΩd

(2π)d
C[2k sin(θ/2)], (B.14)

where dΩd is the infinitesimal solid angle in dimension d, and the correlation function of the
disorder, C[2k sin(θ/2)], is probed on the energy shell ε = ε0(k).
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B.4 Intensity transport

So far, our analysis has been based on the field propagator G, since we have considered
properties related to the wavefunction of the particle. However, some fundamental observables
in quantum transport theory, such as the spatial density, are not directly linked to G and
require a more elaborate formalism.

Bethe-Salpeter equation

Whereas the wavefunction evolves as |ψ(t)〉 = GR(t)|ψ(0)〉, the one-body density matrix
ρ(t) evolves as ρ(t) = Θ(t) exp(−iĤt/�)ρ(0) exp(+iĤt/�). Therefore, we need a theory
not only for the average field propagator GR(E), but for the average intensity propagator
Φ ≡ GR(E)GA(E′), with GA(E) the advanced Green function. This intensity propagator
includes all correlations between advanced and retarded amplitudes (referred to as particle-
and hole-channels in condensed matter), and can be diagrammatically represented by a
four-point vertex. In the same way than we derived a theory for the field propagator, a theory
for the intensity propagator is needed. We will not enter into the detailed derivation of such a
theory, which requires more elaborate tools, but the idea works as follows.

By complete analogy with the approach used for the average field propagator GR(E), leading
to the Dyson equation (B.8), the idea is to construct a structurally similar equation for the
intensity propagator, known as the Bethe-Salpeter equation

GRGA = GR ⊗GA + GR ⊗GAUGRGA (B.15)

The first term corresponds to the known evolution where the propagations of the field and
of its conjugate in the effective medium are uncorrelated. All scattering events coupling those
amplitudes are encoded in the intensity scattering operator U , as diagrammatically represented
by

Note that the Bethe-Salpeter equation defines U , in the same way that the Dyson equation
defines Σ. The precise form of U depends on the model of disorder but it has the general
structure

Using elaborate tools of quantum kinetic theory, one can formally solve the Bethe-Salpeter
equation and generically show that on long times and over long distances, the motion is diffu-
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sive 3, in the sense that the intensity propagator exhibits a diffusion pole,

Φ(k, q, ω) =
1

−iω + D(k)q2
. (B.16)

In real space, it is the solution of the diffusion equation [∂t − D(k)∇2]Φ(k, r, t) = δ(r, t).
This diffusive motion is characterized by the momentum-dependent diffusion constant D(k),
or equivalently a transport time τ(k), which is given by

1

τ(k)
=

∫
dE

2π

A(E, k)

2πN(E)

∫
A(E, k′)A(E, k′′)(1 − k′.k′′)U(E, k′, k′′)

ddk′ddk′′

(2π)2d
. (B.17)

Since the latter depends on U , one should in principle take into account all possible correla-
tions between retarded and advanced amplitudes (i.e. sum up all diagrams in U) to exactly
characterize this diffusive/localized motion.

Boltzmann diffusion

Since generally, U cannot be calculated exactly, a first approximation consists in truncating
U after its lowest-order contribution. In this so-called Boltzmann approximation, which is very
similar to the Born approximation for the self-energy, one simply keeps for U the first diagram,
which is evaluated as UB(E, k, k′) = C(k − k′). From Eq.(B.15), it yields for the intensity
propagator the well-known ladder diagram structure,

which describes an infinte series of independent scattering events. Such diffuson contribution
depicts the situation where retarded and advanced amplitudes travel along the same paths,
discarding all interference effects between them. It can more rigorously be shown that retaining
only those ladder diagrams leads to Drude-like diffusion for the intensity propagator, with a
diffusive constant which is directly evaluated by replacing in Eq. (B.17) U by its Boltzmann
expression. Equivalently, one can write a corresponding transport length lB defined by DB =
klB/d. Within the on-shell approximation, which amounts to replace in Eq. (B.17) the spectral
function by its disorder-free expression 2πδ[E − ε0(k)], one gets the final result

1

klB
=

2πm2

�4k4−d

∫
dΩd

(2π)d
(1−cos θ)C[2k sin(θ/2)]. (B.18)

The transport length lB can be viewed as the typical length travelled by the particle before
it loses the memory of its initial direction. Remarkably, it differs from the scattering length
expression Eq. (B.14) only via the anisotropy factor 1 − cos θ. Indeed, for fully isotropic
scattering, the latter is zero and lB = lS , consistently with the fact that in this case, one
scattering event is sufficient to completely blur the initial direction. Conversely, in most cases
with correlated disorder, the anisotropy factor is finite and a large number of scattering events
is required to significantly deflect the particle trajectory.

3or eventually localized if the diffusive constant vanishes.
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B.5 Localization corrections

Weak Localization

Corrections to Boltzmann transport can be taken into account by including interference
effects between retarded and advanced amplitudes. Such interferences arise when the correlated
scattering events do not occur in the same order for the propagation of the advanced and the
retarded amplitudes, as expressed diagrammatically by crossed correlation lines between the
advanced and the retarded channels.

A first correction can be obtained considering the case where the advanced and retarded
amplitudes travel along reversed trajectories, no matter how long they are. This so-called
Cooperon contribution is diagrammatically represented by the maximally-crossed diagrams

Remarkably, using a time-reversal argument, this contribution can be expressed in terms of the
diffuson contribution. Its effect can thus be exactly taken into account, yielding the corrected
diffusion constant

1

D
=

1

DB

[
1 +

1

πN(ε0(k))

∫
1

DBq2 − i0+
ddq

(2π)d

]
. (B.19)

The Cooperon correction, corresponding to the second term, makes D < DB , providing a
microscopic justification of weak localization.

Strong Localization

Due to its perturbative character, quantum diagrammatic theory cannot describe the
strongly-disordered regime. To obtain a quantitative theory for strong localization, one would
have in principle to take into account the contributions of all diagrams in U and resum all of
them, which so far remains inextricable.

The self-consistent theory of localization [45] circumvents this problem by replacing in the
denominator of Eq. (B.19) the Boltzmann diffusion constant DB by the corrected one D itself,
which is then self-consistently determined. This amounts to a self-consistent resummation of
the diagrammatic series, including a whole class of diagrams of all orders (although not all),
and provides qualitative estimates for the Anderson transition.

Alternatively, at variance with the diagrammatic perturbation theory, several approaches
start from the opposite limit where Ĥ0 is small and develop weak-coupling perturbative meth-
ods. It is for instance the case of Anderson locator perturbation theory (see Sec. 4.1.3).
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[283] J. Estève, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook, and I. Bou-

choule. Observations of density fluctuations in an elongated Bose gas: Ideal gas and
quasicondensate regimes. Phys. Rev. Lett., 96 130403, 2006.

[284] J. Armijo, T. Jacqmin, K. V. Kheruntsyan, and I. Bouchoule. Probing three-
body correlations in a quantum gas using the measurement of the third moment of density
fluctuations. Phys. Rev. Lett., 105 230402, 2010.

[285] S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock,

D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos, and M. Lewen-

stein. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys.
Rev. Lett., 87 160406, 2001.

[286] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ert-

mer, and J. J. Arlt. Measurement of the spatial correlation function of phase fluctu-
ating Bose-Einstein condensates. Phys. Rev. Lett., 91 010406, 2003.

[287] F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A. As-

pect. Momentum distribution and correlation function of quasicondensates in elongated
traps. Phys. Rev. A, 67 051602, 2003.

176



BIBLIOGRAPHY 177

[288] L. Cacciapuoti, D. Hellweg, M. Kottke, T. Schulte, W. Ertmer, J. J. Arlt,

K. Sengstock, L. Santos, and M. Lewenstein. Second-order correlation function
of a phase fluctuating Bose-Einstein condensate. Phys. Rev. A, 68 053612, 2003.

[289] C. A. Müller and D. Delande. Ultracold Gases and Quantum Information, C.
Miniatura et al. eds., Lecture Notes of the Les Houches Summer School in Singapore
2009: Vol. XCI, chapter Disorder and interference: localization phenomena. Oxford
University Press, Oxford, 2011.

[290] M. Piraud. Anderson localization of matter waves in correlated disorder:from 1D to 3D.
PhD Thesis, UNIVERSITE PARIS-SUD, 2012.

177





.



Résumé

Ce mémoire présente une étude théorique des propriétés de localisation collective dans les
superfluides de Bose désordonnés ou quasi-périodiques. S’il est connu depuis Anderson que
le désordre peut localiser les particules libres, comprendre ses effets dans les systèmes quan-
tiques en interaction, où il est à l’origine de transitions de phase et d’effets de localisation
non-triviaux, représente aujourd’hui un défi majeur. En nous focalisant sur le cas d’un gaz
de Bose dans le régime de faibles interactions, bien décrit par la théorie de Bogoliubov, nous
étudions les transitions de localisation de ses excitations collectives dans différents contextes.
Dans le cas d’un vrai désordre dans l’espace continu tout d’abord, nous développons un for-
malisme de désordre fort allant au-delà des études antérieures, aboutissant à une description
complète des propriétés de localisation des excitations en dimension arbitraire. Nous présentons
un diagramme de localisation générique, et une interprétation microscopique de la propagation
des excitations dans le désordre. Dans un second temps, nous considérons le cas d’un potentiel
quasi-périodique unidimensionnel, aux propriétés intermédiaires entre un vrai désordre et un
potentiel périodique. Notre traitement analytique et numérique du problème révèle une transi-
tion de localisation collective, que nous caractérisons et interprétons en termes de localisation
dans un potentiel effectif multiharmonique. Pour finir, nous considérons le cas d’un gaz de
Bose à deux composants. Nous développons le formalisme général pour étudier ces questions
et décrivons la physique de base de ces systèmes qui présentent leurs propres spécificités.

Abstract

In this thesis, we theoretically investigate the collective localization properties of weakly-
interacting Bose superfluids subjected to disordered or quasiperiodic potentials. While disorder
has been recognized since Anderson to induce single-particle localization, the interplay between
disorder and interactions in quantum systems is today among the most challenging questions
in the field, and underlies fascinating phase transitions and non-trivial localization effetcs. Fo-
cusing on Bose gases in the weakly-interacting regime for which the Bogoliubov theory proves
a successful tool, we study the localization transitions of collective excitations in several con-
texts. First, in the case of a continuous true disorder, we develop a strong-disorder formalism
going beyond previous studies, providing us with a complete description of the localization
behaviour of collective excitations in arbitrary dimension. A generic localization diagram is
obtained and the transport of excitations in the disorder is microscopically interpreted. Sec-
ondly, we consider the case of one-dimensional quasiperiodic potentials, which are known to
display intermediate properties between periodic and disordered ones. We perform a numeri-
cal and analytical treatment of the localization problem of collective excitations, allowing us
to quantitatively characterize and interpret the localization transition in terms of an effective
multiharmonic problem. Finally, we set up the general inhomogeneous formalism to address
such issues in multicomponent Bose gases, and we enlighten the basic physics of such systems,
which are known to exhibit their own specific features.
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