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Nomenclature 

BIPM: Bureau International des Poids et Mesures 

BS: Base Surface 

CAD: Computer Aided Design 

CMI: Czech Metrology Institute 

CMM: Coordinate Measuring Machines 

DBACD: Discrete B-Spline Active Contour Deformation algorithm 

IBSPE: IBS Precision Engineering 

ICP: Iterative Closest Point 

JRP: Joint Research Project 

L-BFGS: Limited memory Broyden-Fletcher-Goldfarb-Shanno 

LM: Levenberg-Marquardt 

LNE: Laboratoire National d'Essais (or French National Metrology Institute) 

METAS: Federal Institute of Metrology 

MKEH: Hungarian Metrology Institute 

MRF: Magnetorheological Finishing 

NMI: National Metrology Institute 

PCA: Principal Components Analysis 

PTB: Physikalish-Technische Byndesanstalt (or German National Metrology Institute) 

PV: Peak-to-Valley 

QR: Q-R Decomposition 

RMS : Root Mean Square 

SI: International System of Units 

SMD: Belgian National Metrology Institute 

SPDT: Single Point Diamond Turning 

SPM: Scanning Probe Measurement 

SVD: Singular Value Decomposition 

TNO: Netherlands Organization for Applied Scientific Research 

TWI: Tilted-Wave Interferometer 

UHPMM: Ultra High-Precision Measuring Machines 

VIM: International Vocabulary of Metrology 

VSL: Dutch Metrology Institute 
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Chapter 1 

PSI: Phase-Shifting Interferometer 

LPIB: Local Polishing Ion Beam 

LPPB: Local Polishing Plasma Beam 

RH: Relative Humidity 

 : Machine table axes perpendicularity angles 

 : Coverage factor 

 : Spatial sampling step 

 : Tactile probe tip diameter 

        : Spatial frequency 

 : Implicit classical asphere function 

 
     

   : Jacobi polynomial basis 

Chapter 2 

P: Data points 

  
   : Data point in Cartesian coordinates            

  
   

: Data point in Cylindrical coordinates            

 : Projection of a data point on the theoretical model 

  : Orthogonal projection of a data point on the theoretical model 

  : Vertical projection of a data point on the theoretical model 

  : Orthogonal distance between a data point and its orthogonal projection point 

  : Vertical distance between a data point and its vertical projection point 

   : Point-to-mesh distance 

R: Rotation matrix representing the rotational transformation parameters 

  : Rotation matrix about the x-axis 

  : Rotation matrix about the y-axis 

T: Translation vector 

        : Components of the translation vector 

 : Aspherical model implicit function 

 : Cylindrical r-coordinate of the asphere equation 

 : Cylindrical z-coordinate of the asphere equation 
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 : Cylindrical  -coordinate of the asphere equation (since asphere is axis-symmetric, this 

coordinate is a dummy variable) 

 : classical asphere model parameters 

 : Forbes asphere model parameters 

 : Curvature at the asphere apex 

 : Conic constant of the asphere 

    : Forbes strong asphere polynomials 

 
   

: Forbes mild asphere polynomials 

  : Tangent vector to the asphere surface at a certain point and in a given   -plane 

 : Hessian matrix 

 : Jacobian matrix 

 : Objective function for L-BFGS, LM and ICP 

 : Newton-Raphson's footpoint computation objective function 

 : Gradient 

 : Solution of the objective function minimization problem 

 : Descent direction 

 : Step length in the descent direction 

 : The Levenberg-Marquardt parameter 

        : Stop criteria for optimization algorithms 

Chapter 3 

 : Degree of the B-Spline curve 

  : Number of data points 

 : Size of knot vector 

  : Number of control points 

 : Level of subdivision 

  : Number of subdivided points 

  : Number of distances data 

 : Data points 

      : Segmentation of   

 : Control points 

 : Subdivided polygon points 



 

11 

 

      : Segments of the subdivided polygon 

 : Subdivision matrix from   to   

  : Subdivision matrix in the  -direction 

  : Subdivision matrix in the  -direction 

 : Normal orientations of control points   

 : Error vector from   to   

 : Distance vector in the direction of   

 : Translation vector of control points 

 : Algorithm's stop criterion (mean of residual errors) 

 : Optimization matrix without fairing 

 : Fairing parameter 

 : Knot sequence 

      : Smooth B-Spline curve's second derivative 

    
   

   : B-Spline basis functions' second derivatives 

  : Diagonal matrix of second derivative B-Spline basis functions 

 : Optimization matrix with fairing 

 : Right-hand side of the linear system to solve with fairing 
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With the advances of technology, the trend in the design of parts leans more and more 

towards the use of complex shapes. We use the term complex shapes when we want to refer to 

surfaces exhibiting variations in shape and geometry and which reveal hurdles in their 

manufacturing and measurement. Another term to refer to complex surfaces is freeform 

surfaces. Among the wide variety of freeform shapes families which are classified with 

respect to their size, shape complexity and relative tolerance in regard to manufacturing and 

measurement, optics and aerofoil parts are of particular interest to us in this thesis. 

 

Optics have seen remarkable changes implying better performance and optimized optical 

systems in various fields such as metrology, photonics, energy, medicine, ophthalmology… 

[1]. The shapes that characterize the family of optics today are freeform optical surfaces and 

aspheres. Aspherical optics are a subset of freeform optics with the particularity of being 

described by a specific mathematical formula. Although aspherical surfaces can have a 

revolute invariance degree, they are of complex geometry, i.e. a composition of two 

geometries such as, for example, a conic part and a polynomial part. Advances in 

manufacturing as well as measurement capabilities have allowed designers to conceive 

complex optical surfaces with improved functionalities and performances. Their shape/form is 

controlled with a nanometric level of accuracy thanks to the development of dedicated Ultra 

High-Precision Measuring Machines (UHPMM). 

Freeform surfaces have also seen outstanding advances and find an application in a 

multitude of fields like the automotive, aircraft and energy (wind turbines) industries, etc… 

Freeform parts have come to enhance the products and systems they are integrated in, thanks 

to the development of new geometries. They have allowed improvements in the designs and 

performances of aircrafts and car bodies while reducing fuel consumption and ecological 

footprint. Freeform and more particularly aerofoil parts, have completely different 

manufacturing processes and different metrology systems, and by that they are at a different 

level of complexity. The sought precision for freeform surfaces is rather sub-micrometric. 

Freeform surfaces are mainly measured using scanning contact probe based Coordinate 

Measuring Machines (CMM) which are a physical representation of Cartesian coordinates in 

space. 

Due to the difference in precision sought and geometry, we want it to be clear in this 

work that we will deal with aspherical optics and turbine blades in disconnected manners. In 

fact, the thesis has come up to be about complex surfaces reconstruction and metrology in 
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general because there are two motives: a European joint research project and an industrial 

project. 

In order to promote leadership in high-end optics, the European Metrology Research 

Programme (EMRP) has launched a project (IND10: FORM) entitled "Optical and tactile 

metrology for absolute form characterization", with the aim of developing methods for the 

measurement and form characterization of aspherical surfaces with a nanometric level of 

uncertainty. The project is coordinated by the German national metrology institute, PTB (Dr. 

Michael Schulz), and involves many National Metrology Institutes (NMIs) such as LNE 

(France), VSL (Netherlands), METAS (Switzerland), SMD (Belgium), CMI (Czech 

Republic), MKEH (Hungary) as well as academic (ITO from Stuttgart University (Germany), 

Fraunhofer-Institut für Produktionstechnologie IPT (Germany), Technical University of 

Ilmenau (Germany), XPRESS Precision Engineering (Netherlands)) and industrial partners 

(TNO (Netherlands), IBSPE (Netherlands)). 

Nowadays, there are no known methods capable of achieving very low levels of 

uncertainty in the case of aspherical surfaces. The French National Metrology Institute (LNE), 

in collaboration with Arts et Métiers ParisTech (ENSAM), Ecole Normale Supérieure de 

Cachan (ENS Cachan) and Geomnia company, is a major actor on a work package of this 

project dealing with the comparison of optical and tactile measurements of aspherical 

surfaces. It is also a leader of another work package focusing on data analysis and the 

development of software for form characterization of aspheres. The work of this thesis is 

mainly focused on the second work package. While inspection on simple shapes is mastered 

and well understood, the objective of project IND10 is to assess the measurement capabilities 

regarding complex shapes and to evaluate aspherical form. Generally speaking, form refers to 

the shape at the macroscopic scale and corresponds to the spatial wavelengths that are larger 

than   mm for aspherical and freeform optics [2]. 

 

Geomnia, a company with core skills in 3D metrology participates in this project for its 

expertise and know-how in metrology systems engineering and software solutions and 

because one of its recent interests is the characterization of gas turbine blades. Turbine blades 

characterization methods are not standardized and not robust but are only based on common 

practices.  

 

In both cases, the characterization of complex surfaces involves data processing and 

brings up the problem of surface reconstruction. Surface reconstruction is an extensive field 
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of research long studied by different communities such as Computer Graphics, Reverse 

Engineering and Metrology. Each of these disciplines defines different tools and 

methodologies to solve the inverse problem. The process of surface reconstruction starts with 

a cloud of points and aims at retrieving the shape of the underlying object represented by the 

points. The Computer Graphics community seeks to build a piecewise-linear interpolation of 

the points by constructing a mesh. The Reverse Engineering community performs fitting of 

CAD models as an approximation of the points. The metrologists look at the problem 

completely differently and fit known mathematical models to the data points. So, a metrology 

application holds if and only if a nominal model of the measured surface is known. 

With the technological advances of instruments and systems, some optical measurements 

can generate very large volumes of data exceeding a million points within a short time 

(typically few seconds). The resulting cloud of points is a set of unorganized points. The 

connectivity between points is not inherent to the cloud of points; therefore, the latter does not 

infer any knowledge pertaining to the geometry and the topology of the underlying surface. 

Moreover, the cloud of points is noisy, might contain outliers, and can present regions of 

overlap after aligning multiple raw scans, making the process of surface reconstruction even 

more elaborate. Ideally, a measurement would lead to data that fall exactly on the surface. 

However, in the real world, one observes the presence of parasite data and noise which add to 

the relevant data. Noise can either be internal, related to the electronic apparatus, or external, 

related to the surrounding environment. As for an outlier, it is a point situated remarkably far 

from the rest of the data points. Its manifestation might be a result of a measurement error or a 

false measurement due to an obstacle that blocks the intended region to be measured. 

Moreover, due to the complexity of the intended complex shapes, measurement and 

processing times are quite long. What we seek here is a fast processing algorithm that would 

be at least equivalent in time to the measurement time. The algorithm must also be evaluated 

and validated for its intended purpose. 

 

How to get a surface reconstruction algorithm from large amounts of data to be - for 

metrology purposes - automatic in favor of unorganized noisy data, robust against 

outliers and fast relative to measurement time? 

 

This research work tries to bring solutions to this issue and addresses the problems 

related to the measurement systems and data processing as well. The measurement systems 

cover a wide range of different techniques varying from contact to contactless techniques. In 
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this project, we deal with both tactile (stylus) and optical single point and line measurements 

(confocal and laser triangulation). These measurement probes can be mounted on UHPMM, 

CMM, robotic arms or can even be held in hand. Each measurement system has its own 

specificities. Some of these might be, for example, the ability to generate structured lines of 

scans, XY scans in grids, spiral-like scans, or even completely unorganized 3D scans. Hence, 

any knowledge about the measurement system, or the measurand, has an influence on the 

reconstruction process as well as on the choice of the reconstruction algorithm. 

Metrology reveals the hidden structures and geometrical aspects (form and dimensions) 

of an object, and by that, verifies that it is conform to its design specifications. Measurement 

techniques using CMMs are copiously applied today because they are accurate, reliable and 

traceable (Fig. 1 and Fig. 2). However, the uncertainty budget of a measurement can merely 

be established for regular geometry parts.  

 

  

Fig. 1 Asphere measurement on the Nanomefos 

ultra-high precision machine (TNO) [2]. 

Fig. 2 Turbine blade measurement by laser 

triangulation scanning (Nikon metrology labs). 

Standards replicating regular geometries such as spheres and cylinders exist. They are 

manufactured with fine quality, calibrated by means of primary instruments and then 

employed as reference standards for CMM calibration. The feature of a standard is that it has 

completely known dimensions and form. When a machine is calibrated using a standard, the 

machine's measurement becomes traceable according to the International System of Units (SI) 

meter definition given by the Bureau International des Poids et Mesures (BIPM) (Fig. 3). The 

task of the BIPM is to ensure world-wide uniformity of measurements and their traceability to 

the SI. The latest adopted meter definition suggests that the meter is the length of the path 

travelled by light in vacuum during a time interval of               of a second [3]. 

Nevertheless, when dealing with freeform shapes, the Guide to the expression of Uncertainty 

in Measurement is not easily applicable to complex measurement processes on CMMs due to 
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the absence of universal calibrated workpieces (standards) [4,5]. Since a freeform surface has 

no such parameters like diameter or well-known features, the creation of calibrated 

workpieces out of freeform shapes represents a major challenge [6]. Some task-specific 

artifacts have been proposed in [7]. 

When ultra high-precision is demanded, CMMs are not helpful anymore and are replaced by 

UHPMMs. The main asset of UHPMMs is that they do not require calibration based on 

standards because measurement here occurs with direct comparison to primary instruments 

mounted in-situ. Primary instruments, such as laser interferometers are at a higher level on the 

traceability pyramid (Fig. 3). 

 

 

Fig. 3 Metrology traceability pyramid (SPM: Scanning Probe Measurement). 

The measuring machines (CMM and UHPMM) main issue is that they constitute a time 

consuming two-fold process. The first part of the process is a set-up procedure where the 

object is aligned with respect to the machine's reference frame. Alignment is key to achieve 

high precision in measurement because if the part reference and the machine measuring head 

reference coordinate systems are not well aligned, the measurement contains errors. We 

distinguish three different alignment procedures. A visual alignment operation that uses 

feelers and a light source, a physical operation where the part is mounted on pre-installed 

accurate fixtures (Fig. 4), and a mathematical operation that performs registration of the part 

with respect to its CAD model. The visual alignment is an old method that is still used 

nowadays but only in applications where very high-precision is not required. It is also still 

used in some applications involving the measurement of turbine blades [8]. 
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Fig. 4 Example of an alignment of a part (aluminum material) using accurate fixtures (blue). 

The physical alignment is a method used for the repeated measurement of similar parts and 

especially for parts which geometry is perfectly known. The fixtures are usually designed and 

pre-installed on the measuring machine in a way to hold the part and have its reference 

coordinate system well aligned with the reference coordinate system of the machine [9]. 

However, the work of Zhu et al confirms that precision in inspection of freeform surfaces is 

difficult to achieve when dealing with accurate fixtures [10]. The mathematical alignment, 

also known as the indirect comparison process [8], is the most accurate process among all and 

is generally done using the Iterative Closest Point (ICP) method or some adapted variants of it 

[8,10–13]. Here again the computer aided processing is effective and more precise. 

The second part of the process is the measurement itself and it is usually done point-by-point 

or by sets of 2D scans, not always representative of a 3D object's complete geometry. The 

corresponding maximum data acquisition rate is around    to    points per minute [6]. 

Today's metrology involves more advanced measurement devices that lean towards being 

independent of alignment, acquiring data at very fast rates of        points/s, and are in most 

cases, non-contact optical systems. They offer the possibility to convey very large datasets 

containing more than         points but they drop in precision. Although it is not our 

concern here, we bring to mind this trend in metrology instruments to say that in case high-

precision is not sought, technologies generating unorganized and large datasets exist and build 

up the difficulty regarding surface reconstruction. 3D scanners make up a recent measurement 

capability with increased effectiveness when working with complex shapes. However, with 

the non stopping emergence of a multitude of sensors and technologies, 3D scanning can 

hardly have a unified and well-determined calibration process as well as a traceable 

measurement. In some specific cases, measurement is a fusion of a multitude of scans, 
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eventually coming out from different instruments, and this is indeed another issue with 3D 

scanning. 

 

Two types of complex surfaces serve as a support for this research. 

 

I. Aspherical surfaces: 

A. the AO775 aspherical lens model which is manufactured by Anteryon® 

company and measured at LNE on the high-precision profilometer using a 

tactile probe [14]. The resulting dataset contains around           points. 

B. the same lens is measured at LNE on the same machine with a confocal probe. 

The resulting dataset contains around           points. This measurement 

aims at comparing optical and tactile measurements in regard to measurement 

uncertainty and to robustness of surface reconstruction. 

C. the same lens is measured by other IND10 partners (VSL, METAS, TNO and 

IBSPE). 

Aspherical models are known and defined as axis-symmetric surfaces in ISO 10110-12 [15]. 

The challenge in regard to surface reconstruction of aspheres is that they contain a great 

number of parameters, and with a large number of points, optimization algorithms are slow. 

 

II. Freeform surfaces, where a dataset of a turbine blade measured by laser triangulation 

is described (Fig. 2). For this dataset, four scans have been merged together to obtain a 

cloud of points containing         points distributed in lines of scan. The difficulties 

regarding surface reconstruction here are the abundance of noise, the regions of 

overlap due to the fusion of data and the disparity in the spatial frequency of the 

points.  

 

Freeform surfaces do not usually have a mathematical model. In fact, they can sometimes be 

defined by a CAD model but in the scope of this work, we are interested in working on 

freeform surfaces without any given model. For the specific example of blades and the 

problem encountered by Geomnia [16], where profile characterization at a certain elevation is 

sought, a continuous representation of the underlying surface is of primary importance so that 

any cross section can be deduced by extracting the intersection between the reconstructed 

surface and a predefined cutting plane (Fig. 5). If the reconstructed surface is a mesh, the 

intersection between the cutting plane and the mesh will make room for a piecewise linear 
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curve that would allow extracting the dimensions needed (Fig. 6). That same curve can be 

smoothened if the latter operation guarantees extracting the same dimensions more precisely. 

It is only by performing the above procedure that a metrologist can estimate the dimensions 

sought by the designer at any cross-section of the blade (Fig. 5 and Fig. 6) [8]. 

 

 

Fig. 5 Cross-sectional characterization of turbine blades. 

 

Fig. 6 Some geometrical dimensions defined on a turbine blade profile (  : leading edge radius of 

curvature;   : trailing edge radius of curvature). 

Regardless of the measurement technique used, the process of characterizing a surface 

urges the need to reconstruct one and have a continuous representation of it. With an 

unorganized 3D point set, the determination of nearest points is hard. Surface reconstruction 

in computer graphics solves this issue by creating a piecewise linear surface known as a mesh. 

The mesh is a data structure that has several uses. On the one hand, it is used to partition the 
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points space more clearly and then to associate parametric patches to each partition so that a 

smooth representation of the surface is created [17–23]. These algorithms transform triangular 

meshes into quadrilateral meshes which are more regular and susceptible to patching. Then a 

parametric base function is fitted to each mesh patch. The issues encountered here are the 

generation of a regular and consistent quadrangular mesh and the establishment of the 

connectivity among patches. On the other hand, a mesh can be used to calculate differential 

metrics on the point set, such as normals and curvatures. By computing such information, 

filtration of undesired and irrelevant points can be done. A first order approximation is not 

sufficient to determine intrinsic smooth surface metrics. When smooth surfaces are necessary, 

the approach cited above is one way of performing association of smooth surfaces. Otherwise, 

a new active contour deformation approach based on B-Splines will be detailed later and 

applied directly on the unorganized points. 

 

The aim of this thesis is to be able to associate/fit a surface to the data in order to be able 

to proceed to the deviation analysis, the estimation of form defects and the inspection of 

optical and mechanical freeform surfaces. The metrology of aspheres is done through the 

association of a mathematical model to the points. Depending on the fitting criterion used, or 

what is widely known as the norm of minimization, form metrology is assessed differently 

since it is achieved by computing the minimal zone that would contain all the points in the 

dataset. According to the standards, form metrology makes use of the infinite norm    in 

order to calculate the envelope enclosing the points in the dataset by minimizing the 

difference between the maximum deviation and the minimum deviation between the surface 

and the dataset. Whilst it is not deterministic for complex surfaces [24,25], the fitting problem 

is still solved by the Least-Squares norm (Fig. 7). Although it is not a rigorous parameter to 

depict form defects, current research practices calculate the Peak-to-Valley (PV) error from 

the difference between the maximum and minimum residual errors. In fact, the commonly 

used    method is prone to over-estimation so it remains a safe approach. 

 

 

Fig. 7 Least-Squares fitting (orth. dist.: orthogonal distance, vert. dist.: vertical distance). 
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In a work developed by METAS, the Swiss metrology institute, aspheric models are fit to 

the dataset based on a Least-Squares distance minimization. The distances are calculated in 

the  -direction assuming that both the model and the dataset are aligned along the  -axis 

which is coincident with the axis of symmetry [26]. Concerning project IND10: FORM, no 

constraint is set with regard to the methodology used for the analysis of form deviation. 

Nonetheless, the fitting problem is complex because of the large size of the datasets available 

from optical measurements and the fact that they are generally unorganized. For this matter, 

we propose to study the mostly used association techniques and try to select the methods that 

are the most suitable. 

The global approach to complex surface reconstruction follows the scheme in Fig. 8. The 

preprocessing phase is important since it reduces noise and removes outliers from the raw 

dataset. Eventually, preprocessing might include point-set orientation that may be done by 

Principal Component Analysis methods, using Voronoi Diagram approaches [27,28], or other 

approaches [29–31]. This part of the process is not our main concern here. On the contrary, 

reconstruction and association are our main focus in this manuscript. We firstly study the need 

for a mesh reconstruction and then, with the analysis and comparison of many surface 

reconstruction methods, we come up with some assessment tools and criteria to validate a 

method and use it to characterize freeform surfaces. Meshing is a step that we include in our 

study but the reader must be advised that it may not be necessary for the rest of the process. 

We then perform the association of implicit models when they exist and B-Spline models 

when they do not, to the points. Those points are either the outcome of the pre-processing 

phase or the ordered points resulting from the meshing phase in case data structure was 

indispensable. The last phase consists of both the analysis of the residual errors that remain 

after the association phase and the evaluation of the form and/or some required geometric 

dimensions of the measured surface. 
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Fig. 8 Data processing scheme. 

 

The manuscript is organized in three chapters: 

 

 In chapter 1 we start by presenting a classification of complex surfaces according 

to criteria like invariance class, shape complexity and tolerance. The classification 

leads to the distinction between aspherical surfaces and turbine blades which we 

will deal with separately for the rest of the manuscript. We then focus on the 

design and specification of such surfaces, describe some of their advanced 

manufacturing technologies and lastly center the attention on the measurement 

methods of aspherical surfaces and turbine blades. We give a review of ultra-high 

precision machines and probe technologies for the measurement of aspherical 

surfaces used by the project partners and then expose, in details, the principles of 

the LNE's high-precision profilometer and the probing technologies used along 

with details about their calibration. Finally, we describe the principle of the usual 

3D coordinate measuring machines for the measurement of turbine blades.  

 In chapter 2, we concentrate the process of surface reconstruction onto aspherical 

surfaces in particular, knowing that any mathematically defined surface can be 

characterized using the same scheme. We give a brief review of aspherical fitting 



 

25 

 

by presenting the principles of two classical optimization approaches, the 

Levenberg-Marquardt (LM) and the Iterative Closest Point (ICP) and then point 

out a newly used Limited memory-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

algorithm for aspherical surface fitting. All above algorithms are based on Least-

Squares minimization. We define a procedure for the validation of the algorithms 

for aspherical surface fitting by experimenting on simulated data. We compare the 

algorithms and show the efficiency and performance of L-BFGS as compared to 

LM and ICP. Finally, we apply those algorithms to measured data of an aspherical 

lens and show again the effectiveness of L-BFGS in regard to running time and 

precision. 

 In chapter 3, we focus on the general freeform surfaces reconstruction which are 

not defined by any mathematical formulation. We even assume that a CAD model 

is not available and perform the reconstruction using B-Spline parametric models. 

We start by an exhaustive literature survey of surface reconstruction techniques, 

concentrate on the state-of-the-art of B-Spline fitting techniques and then propose 

a contribution to this problem by developing a new algorithm that solves major 

issues involved in B-Spline fitting. Our algorithm does not need any particular 

close curve/surface initialization or location parameters calculations. This 

algorithm applies local knot insertion for the improvement of the fitting precision 

and considers fairing for overall curve smoothness. The algorithm works well on 

closed curves such as turbine blade profiles and converges relatively fast to the 

pre-set tolerance in most cases. Some robustness issues need to be addressed in 

later works as well as the extension to surfaces. 
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Chapter  1 -  Design, manufacturing and 

measurement of complex surfaces 
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I.  Introduction 

With the advances of technology, the trend in the design of parts leans more and more 

towards the use of complex shapes. We use the term complex shapes when we want to refer to 

surfaces exhibiting variations in shape and geometry and which reveal hurdles in their 

manufacturing and measurement. An artifact for complex shapes is the NPL freeform artifact 

which is a new freeform reference standard. 

 

 

Fig. 9 The NPL freeform artifact. 

Manufacturing and measurement are two key stages of a product's life cycle following 

design. At the very first stage, a designer may have an outstanding concept of a given product, 

however, if the blueprint cannot be manufactured according to design specifications, or if it 

cannot be verified by the existing/available measurement systems, this product cannot be 

guaranteed to fulfill its functionalities [32]. Today, technology has led to overcome the 

hurdles of all what is related to high precision measurement and accurate manufacturing [33], 

[34], [35]. Not only high precision processes, such as rectification and polishing techniques, 

have reduced manufacturing defects, but also, measurement techniques have shifted to a 

whole new scale, a scale of high precision, high repeatability and low uncertainty [36,37], 

[38], [39], [40], [41]. Ultra-high precision measuring machines (UHPMM) show 

distinguished performances since they are equipped with ultra-high precision mechanical 

guiding systems and are motion-controlled by laser interferometers [2,14,42–45], [46,47], 

[48]. Interferometers can achieve     nm accuracy and, by that, are the most accurate among 

optical measurement systems that exist today [49,50]. 

So it has become promising to go further in design specifications and ask for more 

complex product designs. From aspherical surfaces to freeform shapes, we describe in this 
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chapter how these complex surfaces are classified. The classification is based on both the ISO 

standard on Geometrical Product Specification [51] as well as the keynote paper of Savio et al 

[8] and helps distinguish between aspherical surfaces and turbine blades. We then portray 

how each of these two types of surfaces are defined and specified according to standards. We 

give an overview of their design, make a brief listing of the state-of-the-art manufacturing 

processes and focus on the state-of-the-art measurement technologies and machines dedicated 

for complex surfaces metrology. Mainly, we review the UHPMM used for aspherical surfaces 

measurement and then thoroughly describe the LNE High-precision profilometer, also for the 

measurement of aspherical surfaces. We finally recall the measuring principle of CMMs for 

the measurement of freeform shapes in general and turbine blades in particular. 

II.  Classification of complex surfaces 

Complex shapes are defined to be surfaces which exhibit shape variations and compound 

geometrical features. The Geometrical Product Specifications (GPS) standards define shapes 

according to their invariance class [51] and complex shapes are the ones having no 

unconstrained degrees of freedom (Table 1). The invariance class is a "group of ideal features 

defined by the same displacement(s) of the ideal feature for which the feature is kept identical 

in the space" [51]. Another definition of complex shapes is given by Scott et al [52]. They 

identify complex shapes as surfaces exhibiting variations in shape consisting of partial 

geometries that can be decomposed into features of interest. The NPL artifact is a concrete 

example and is composed of both convex and concave forms as well as spherical, cylindrical 

and flat features (Fig. 9) [53]. 

 

Based on these definitions of complex shapes, we come up with our own definition as a 

mix of the previous definitions. We refer to complex surfaces, by the surfaces that are 

composed of different geometries and which generally, but not necessarily, have no 

invariance degree. From this point on, aspherical surfaces which are of the revolute invariance 

class will be considered as complex if their mathematical formulation is based on composite 

geometrical terms. 
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Invariance class Unconstrained degrees of freedom 

Complex none 

Prismatic 1 translation along a straight line 

Revolute 1 rotation around a straight line 

Helical 1 translation along and 1 rotation combined around a straight line 

Cylindrical 1 translation along and 1 rotation around a straight line 

Planar 
1 rotation around a straight line and 2 translations in a plane 

perpendicular to the straight line 

Spherical 3 rotations around a point 

Table 1 Invariance classes of shapes [51]. 

According to Savio et al [8], there are different types of freeform surfaces and these are 

classified according to criteria related to their geometry and their specification. The aim of the 

classification is to distinguish between freeform surfaces in order to know which precision 

and care to take when it comes to their manufacturing and measurement. The main types of 

freeform surfaces are airplane wings and fuselage, automotive body parts, turbine blades and 

blisks, optical parts and haptic sensor surfaces. 

Airplane wings/fuselage 

In the objective of reducing fuel consumption while increasing passenger capacity, the 

aircraft wing and fuselage designs are of primary significance. The improvements in the 

designs do not only come from using lighter and new types of materials, but also from the 

development of new freeform geometries which require specific measurement techniques and 

specific precision. 

 

 

Fig. 10 Airbus A380: today's largest airplane. 
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Automotive body parts 

Reducing fuel consumption and improving performances are not the only criteria to 

specify the geometry of car body parts as, nowadays, the emotional and ergonomic aspects are 

increasingly affecting this industry. Car body parts are manufactured by a stamping process 

that requires precision forming tools which should be precisely measured and before being 

processed. 

 

 

Fig. 11 Automotive B-pillar. 

Haptic interfaces 

Haptic surfaces are interfaces that transmit, in forward and backward modes, mechanical 

forces or excitations to or from a user through the sense of touch. The need for such surfaces 

today covers many fields in engineering, such as robotics, bio-medicine, communications and 

many other disciplines [54,55] (Fig. 12). First generation haptic interfaces are kinds of 

vibratory motors integrated into cell phones that would create an alert to phone calls. Second 

and third generation haptic interfaces include audio and electrostatic haptic technologies. 

Fourth generation haptic interfaces can deliver pressure sensitivity but are still under research. 

In biomedical devices like prosthetic limbs, research is conducted to make the haptic 

interfaces deliver the essential feedback to the wearer (Fig. 12b) and improve its 

manufacturing quality [56]. 
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(a) (b) 

Fig. 12 Haptic interfaces: (a) in robotics applications; (b) in biomedical applications. 

Turbine blades and blisks 

Turbine blades and blisks (bladed disks) are found in a wide variety of industrial products 

such as cooling fans, turbochargers, jet engines, etc… (Fig. 13). The fabrication of jet 

engines, for example, is the most challenging regarding material selection and the blade shape 

design. 

 

   

(a) (b) 

Fig. 13 (a) Turbine blades in a jet engine; (b) Axial flow blisk. 

In turbomachinery, freeform geometries are essential for optimizing performance and 

minimizing energy losses (Fig. 14). 
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Fig. 14 Set of blades in a turbo-machine. 

Optical parts 

Aspheric and freeform optics have seen enlarged applications because of their unmatched 

optical performances. They can be found in bar code scanners, laser diode collimation 

systems, cameras, satellite surveillance systems and even medical products [57], [58]. Their 

designs vary depending on the application: spiral mirrors used in laser scanning, 

discontinuous or step-like lenses (Fresnel lenses) used in lighting, structured/functional 

surfaces used in retro-reflective applications, etc… [59]. They have widely replaced spherical 

lenses because they have the property to reduce wavefront error, eliminate spherical 

aberrations and focus all incident light into one point (Fig. 15) [60]. Freeform surfaces can 

offer even better optical performances than aspherical surfaces as they additionally allow for 

increasing the depth of field and expanding the field of view [59]. 
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Fig. 15 Aspherical and freeform optics reduce spherical aberrations [57]. 

For an equivalent optical performance, one aspherical or freeform component can replace 

several spherical components in a given optical system (Fig. 16), reducing both size and cost 

of the system. 

 

 

Fig. 16 Aspherical lens based systems replacing spherical systems. 

Video projectors for example have seen quite a remarkable transformation thanks to the 

advances in asphere design, manufacturing and measurement technologies. A hand-sized 
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projector is available in the market today and can achieve the same resolutions as a standard-

sized projector (Fig. 17). 

 

 

(a) (b) 

Fig. 17 Micro video projector: (a) for Smartphone; (b) for standard use. 

 

Each of the complex surfaces that we have evoked above are actually classified based on 

both their geometry (shape complexity classification) and the precision sought regarding their 

manufacturing and inspection (relative tolerance classification). Savio et al [8] propose a 

shape complexity classification which is based on three categories: (a) the low class for 

surfaces that are nearly flat, aspheric or limited in curvature change. (b) the medium class for 

multi-facetted surfaces or surfaces exhibiting moderate or large curvature changes. (c) the 

high class for surfaces exhibiting undercuts, internal features or limited access/visibility 

features. Freeform surfaces are also classified with respect to their specification as it varies 

considerably with the precision sought (Fig. 18). This classification is based on relative 

profile tolerance defined by the ratio between tolerance and main part dimension. Savio et al 

[8] summarize the classifications for the freeform surface types listed previously (Table 2). 
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Fig. 18 Tolerance versus part dimension of freeform surfaces [8]. 

 Airplane 

parts 

Auto body 

parts 

Haptic 

interfaces 

Turbine 

blades/blisks 

Optical 

parts 

Part dimensions (m) 

large (        )           

medium (        )             

small (         )          

micro (    )        

Shape complexity 

low          

medium             

high         

Relative tolerance 

medium (         )            

fine (         )           

ultra-fine (     )        

Table 2 Classification of shapes with respect to shape complexity and tolerance according to Savio et 

al [8]. (legend:   : typical case;  : less frequent case). 

Regarding our applications, aspherical surfaces, a particular case of freeform optics, are 

classified as having a low shape complexity but fine/ultra-fine relative tolerance and therefore 

necessitate ultra-high precision manufacturing and measurement (Fig. 18 and Table 2). 

Turbine blades, on the contrary, have a high shape complexity and require medium precision 

for manufacturing and inspection. For the remainder of the chapter, the focus will be on those 

two types of surfaces. 
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III.  Definition and design specification of aspherical surfaces and turbine 

blades 

Geometrical and functional requirements that are set by the designer of a part are mapped 

into geometrical specifications either according to tolerancing practices of the industrial 

companies or in reference to existing standards on geometrical dimensioning and tolerancing 

[61]. Geometrical tolerances are specified in conformance with functional requirements of the 

part and can be influenced also by the manufacturing and inspection operations. For 

aspherical surfaces, form tolerances follow the procedures indicated in ISO 1101 [61] and 

ISO 10110-Part 12 [15]. Form tolerance appears with the symbols  and  on a 

specification drawing according to [61] (Fig. 19a), but can also be indicated as in Fig. 19b 

with the "slash" symbol. For turbine blades, the specifications are either according to cross-

sectional profiles or surface tolerances but in this case, the surface is decomposed into 

separate features [51], [62]. The geometry of the leading and trailing edges cannot be 

controlled by specifying a tolerance zone alone and thus further mathematical specification is 

needed [52]. 

 

   

(a) (b) 

Fig. 19 Geometrical tolerance specification of an asphere using two different practices: (a) ISO 1101; 

and ISO 10110-Part 5 [63] (taken from [15]). 

1.  Definition and specification of aspherical surfaces 

1.a  Classical definition of aspherical surfaces 

Aspherical surfaces have seen enlarged applications because of their unmatched 

performances and because it is now possible to achieve manufacturability and metrology up to 
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a nanometric level of precision [6,64,65]. Their size is determined by two dimensions, the 

clear aperture (  ) which is the effective diameter of the lens and the sag ( ) which is the 

maximum height of the lens (Fig. 20). 

 

 

Fig. 20 Aspherical lenses: illustrating the clear aperture (  ) and sag ( ). 

The mathematical formulation of axis-symmetric aspherical surfaces is detailed and 

standardized in ISO 10110-Part 12 [15]. According to this standard, aspherical surfaces are 

defined as being imbedded in an orthogonal coordinates frame in which the  -axis is the 

optical axis and the origin is the apex of the asphere (Fig. 21). For axis-symmetric aspheres, 

the optical axis coincides with the axis of symmetry. Unless specified otherwise, when 

drawing aspheres, the  -axis is always found in the drawing plane and oriented from left to 

right [15]. This specification is important in order to give a conventional meaning to the sign 

of the aspherical model parameters. For instance, the radius of curvature at a given point on 

the surface of the asphere is affected the positive sign if the curvature center is located to the 

right side of the apex of the surface. It is affected the negative sign otherwise. 

 

 

Fig. 21 Coordinate system of aspheres according to ISO 10110-Part 12 [15]. 
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Aspherical surfaces are of many types. The two main types that are most abundantly used are 

the generalized surfaces of order   and the surfaces of higher order. Among the generalized 

surfaces of order  , we can distinguish the conic surfaces, the quadratic surfaces and the 

parabolic surfaces. Among the high order surfaces we differentiate between polynomial and 

toric surfaces. An asphere can also be a combination of any of these types of surfaces. A 

summary of all possible types of aspheric surfaces is available in appendix A of ISO 10110-

Part 12 [15]. The general axis-symmetric aspherical form of revolute invariance class, 

             is defined in implicit form such as in (1): 

                       (1) 

where          and   are the Cartesian coordinates with a change of variables applied 

on   and  ;   is the curvature at the apex,   is the conic constant,                is the 

vector of the    -order aspherical deviation parameters. For a given  , the height in   is 

independent of the angle         
 

   , and      can be written as in (2): 

       
   

              
      

  

   

   

   (2) 

For any         ,              is twice differentiable. 

1.b  Forbes definition of aspherical surfaces 

The new paradigm in representing asphere surfaces is leaning towards a representation 

derived by Forbes [66,67]. Forbes models are an equivalent representation of aspherical 

surfaces in which, however, the polynomials are orthogonal meaning that the asphere 

parameters are independent [68]. In this case, design becomes easier as each parameter 

controls one specific aspect of the shape of the asphere [69]. There are two proposed models 

to define aspheres, the mild aspheres and the strong aspheres. The mild aspheres are the lenses 

with soft departure from a spherical shape, whereas the strong aspheres are aspheres that are 

strongly non spherical and are closer to conical shapes (3). Tests based on the strong asphere 

definition will be performed in chapter 2 and compared to the tests based on the classical 
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asphere definition as no work has been performed on the characterization of asphere models 

defined by any of the Forbes models. 

       
   

              
        

       

 

   

   (3) 

where   and   and the   's have different values than in the classical model.     
    are the 

terms of a set of orthogonal polynomials that represent the departure from the conical shape 

and          with      being the aperture of the asphere. The polynomials are a set of 

Jacobi polynomials derived from: 
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and for integer  , 

 
 
    

      

              
     

      

     

with      being the Gamma function. 

 

There exists a conversion software called the QED surface conversion tool [70] developed by 

Forbes in order to convert classical models into Forbes models and conversely. 

2.  Definition and specification of turbine blades 

Unlike simple shapes and rotationally symmetric aspheres, freeform surfaces are non-

rotationally symmetric and can therefore be of any shape. They are characterized by having 

no invariance degree [8]. In some attempts to define such surfaces, Campbell and Flynn 

propose a rather informal definition to freeform surfaces by stating that they are surfaces 

which are composed of one or more non-planar and non-quadric surface patches [71]. Besl 

[72] equivalently states that "a free-form surface has a well defined surface normal that is 

continuous almost everywhere except at vertices, edges and cusps". Freeform shapes are 
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interesting because their surfaces are designed in a way to improve the functional 

specifications of an object and meet its aesthetic requirements [8], [73], [74]. 

For turbine blades in particular, some general tolerancing specifications are done on 

cross-sectional profiles according to ISO 1101 and following common practices within a 

given company (Fig. 22). The specification of each profile is independent of the others as the 

thickness of one cross-section can be larger or smaller and the length of trailing and leading 

edges longer or shorter from one profile to the other. Depending on the complexity of the 

profile and the environment in which turbine blades are used, more constraints and 

specifications than the general tolerancing can be required. This might be a constraint related 

to the flow of the air stream for example [75]. Another common practice in turbine blade 

profile specification is profile splitting. According to Petitcuenot et al [75], Scnema® 

specifies aerodynamic constraints by splitting the profile into features like leading edge, 

trailing edge, pressure curve and suction curve. Then each portion is appended a tolerance 

specification alone. 

According to Makem et al [62], the geometric design parameters of a turbine blade are 

the blade dimensions, the profile tolerance and the blade displacement and orientation. The 

commonly inspected blade dimensions are the chord length, the length from the 

leading/trailing edge to the stacking axis and the blade's thickness (Fig. 22). Profile 

tolerancing is a measure of form error and is defined, as previously mentioned, on a specific 

region of the blade's profile (pressure or suction surfaces, etc…) (Fig. 22). Blade displacement 

and orientation are evaluated based on the stacking points and the stacking axis [62]. 

 

 

Fig. 22 Geometrical tolerancing of a turbine blade profile according to ISO 1101 (    : leading edge to 

stacking axis distance;     : trailing edge to stacking axis distance;   : stacking points;   : leading edge 

radius of curvature;   : central thickness). 
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Freeform surfaces are rarely described by a complete explicit or implicit mathematical form 

and are rather defined in parametric form. Parametric forms facilitate design because objects 

can be locally controlled and modified, and are easily sampled [71]. The general parametric 

form is given in (5): 

        

      
      
      

  (5) 

where       ,        and        are functions of two parametric variables   and  . 

Without loss of generality,   and   can be restricted to the square domain            . The 

mostly used parametric form in CAD software is the Non-Uniform Rational B-Spline 

(NURBS). However, we are interested in a simpler form called the Uniform B-Spline such as 

in (6): 

           
      

        

  

   
(6) 

where      are the bidirectional control points of the surface,   
     and   

     are the      

and      degree B-Spline basis functions in   and   directions, respectively. 

Aspherical surfaces can also be defined in parametric form but this is not of our interest for 

project IND10: FORM. 

IV.  Manufacturing of aspherical surfaces and turbine blades 

1.  Manufacturing of aspherical surfaces 

In the field of aspherical and freeform optics manufacturing, different processing and 

manufacturing techniques are exhaustively summarized in Fang et al in [59]. For instance, 

one of the major manufacturing processes for rotationally symmetric surfaces is Single Point 

Diamond Turning (SPDT) shown in Fig. 23 [76]. This process is applied for the fabrication of 

surfaces that are made of non-ferrous metals or ceramics. It can also be used with freeform 

surfaces provided that an adaptation is applied, like precision grinding or Fast Tool Servo 

(FTS) [2,77]. Other manufacturing methods for freeform optics and freeform optical molds 
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are diamond fly-cutting and ball-end milling, respectively [78,79]. Some recent computer 

aided polishing methods, also referred to as deterministic polishing methods, enable achieving 

high precision and high repeatability in the manufacturing of complex surfaces (Fig. 24). 

Among these methods we cite the ion and plasma beam machining [36], [80] (Fig. 25), the 

Magnetorheological Finishing (MRF®) [38] (Fig. 27), the Magnetorheological Control Servo 

polishing [37], and the Precession Process [81] (Fig. 24b). Computer assisted tool path 

generation techniques have also been improved for accurate manufacturing of freeform 

optical surfaces. Brecher et al [82] developed a NURBS-based tool path generation scheme 

that allows an off-axis FTS manufacturing achieving a surface roughness below    nm. 

According to Walker et al [81], the Precession Process allows to control the form error of 

aspherical lenses. 

 

 

Fig. 23 Single Point Diamond Turning from Empire Precision. 

 

(a) (b) 

Fig. 24 (a) High precision polishing machine by Zeeko LTD; (b) Precession process polishing [81], 

[83]. 
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Fig. 25 Ion and plasma beam machining from TNO. 

Henselmans [2] proposes an auto-correction manufacturing process consisting of a closed 

loop control system in which the NANOMEFOS ultra high-precision measuring machine 

recursively sends feedback after a manufacturing operation is done until the desired form and 

roughness errors are below a pre-defined tolerance (Fig. 26). 

 

 

Fig. 26 General manufacturing process chain for aspherical and freeform optics (PSI: Phase-shifting 

interferometer, LPIB/LPPB: Local polishing ion beam/plasma beam) [2]. 
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Fig. 27 Magnetorheological Finishing polishing process. 

Another manufacturing process for aspherical parts which is also abundantly used is the 

molding process (Fig. 28). But here yet again, the molds need to be manufactured by some 

turning techniques. For instance, Konika Minolta
®

's lenses are produced using pre-

manufactured molds using a SPDT technique (Fig. 23). 

 

 

Fig. 28 Aspheres molding [84]. 

2.  Manufacturing of turbine blades 

Freeform shapes are primarily manufactured on  -axis Computer Numerical Control 

(CNC) milling machines [79], [82]. It is the case for turbine blades manufacturing in most of 

their applications (Fig. 29), nevertheless these parts can also be manufactured using closed die 

hot-forging techniques [85] (Fig. 30). In the latter case, numerical simulation methods using a 

Finite Elements Method model have been developed in order to optimize the forging process. 

Moreover, virtual inspection frameworks have been introduced to improve the manufacturing 

precision [62]. 
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Fig. 29 Turbine blade milling, retrieved from Sandvik Coromant's website [86]. 

 

Fig. 30 Closed die hot-forging of stainless steel turbine blades [85]. 

Turbine blades are fabricated using three dominant categories of materials, Prepreg (pre-

impregnated composite fibers), Infusion materials such as resin and high strength stainless 

steel. Other high-performance materials like ultra-high temperature titanium and nickel alloys 

or titanium aluminides (TiAl) are also used but they are difficult to shape and require special 

processes, precision casting and/or isothermal forging followed by precise finishing (Electro-

chemical machining [87]). The material used influences the weight of the blade and the 

efficiency of the system in which it is integrated. For wind turbine blades in particular, 

materials such as fiberglass and carbon fibers are used, and, according to Veer et al [88], 

techniques like open-mold wet process, vacuum-assisted resin transfer molding (VARTM) 

and single-shot infusion are predominant in their manufacturing. 

For gas turbine blades, alloy improvement and directional crystal solidification as well as the 

use of coating systems have allowed for improved thermodynamic efficiency, for increased 

system strength and for higher gas temperatures of more than       C [8]. 
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V.  Measurement of aspherical surfaces and turbine blades 

While current techniques allow for manufacturing arbitrary optical surfaces [2], high 

precision measurement of optical surfaces (aspherical and freeform optics) as well as large 

data processing are still a challenge in industry [33], [35]. A detailed benchmark of the 

measurement techniques that are used in today's freeform surfaces metrology is reported by 

Savio et al [8] and improved here in the graph of Fig. 31. For aspherical surfaces, nanometric 

level of uncertainty is sought and we will give a thorough description of the UHPMM that 

were developed for this purpose as well as the corresponding measuring instruments [89]. For 

turbine blades, a rather sub-micrometric uncertainty is sought and the description of the CMM 

as well as the related measuring technologies will be given. 

 

 

Fig. 31 Associated measurement uncertainty of different measurement systems (com.: commercial, 

met.: metrological; AFM: Atomic Force Microscopy). 

1.  Review of existing ultra-high precision measuring machines for the 

measurement of aspherical surfaces 

The aim of project IND10: FORM is to improve the measurement of high quality optical 

surfaces such as aspherical lenses. The project gathers a number of NMIs, such as, LNE, PTB, 

VSL, METAS, SMD, CMI and MKEH, industrial partners such as IBSPE and TNO and 

academic partners. In the field of ultra-precision 3D metrology, various dedicated UHPMMs 

have been developed and calibrated at the cited institutes and laboratories [89]. These 
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machines typically feature 3D measuring ranges less than                 mm
3
, and usually 

embody the same set of fundamental principles. The main one consists in achieving high 

positioning and measuring accuracy with perfect respect of the Abbe principle [90]. The 

measuring instruments can be stylus-based or optical-based [91][92][93]. The traceability of 

these measuring apparatus is performed using laser interferometers which are in-turn traceable 

to the SI meter definition through a frequency calibration by comparison with an I2-stabilized 

primary He-Ne laser source [94], [95]. 

The mostly known UHPMMs dedicated for the measurement of ultra-high precision optical 

surfaces, the Zeiss F25 (VSL, SMD), the METAS µCMM apparatus, the ISARA 400 

apparatus (IBSPE), The NANOMEFOS apparatus (TNO), The Tilted-Wave Interferometer 

(PTB) apparatus and the LNE high-precision profilometer are detailed here. 

1.a  The Zeiss F25 apparatus 

The Zeiss F25 UHPMM has been developed by the Zeiss company in collaboration with 

the Dutch Metrology Institute (VSL) and the Eindhoven University of Technology (Fig. 32a) 

[45]. The ultra-precise performance of this machine not only relies on the above described 

principles, but also on the high-tech components and systems of the machine. The latter uses 

highly accurate air-bearing kinematics structure with linear drives and an active air damping 

base. The three axes length measurements are controlled by ultra-precise glass-ceramic scales 

which have a resolution below   nm for the older model of F25 and below   nm for the latest 

F25 generation. The measuring volume of F25 is about             mm
3
. In order to 

reach very high accuracy, the Abbe principle is applied and realized using additional 

intermediate bodies in  - and  - directions as compared to conventional CMM designs [45]. 

The intermediate bodies A and B are supported on orthogonal beams I and II (Fig. 33) which 

are connected to the probe by a moving platform PL and fixed to a base. This architecture 

makes the first order Abbe error in the  - and  - directions equal to  . The  -Abbe error is not 

similarly controlled and is thus not null. However, it is considerably reduced by mounting the 

 - linear drive as close as possible to the center of mass of the platform center of mass. 
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(a) 

 

(b) 

Fig. 32 The F25 µCMM. (a) complete apparatus; (b) freeform optical surface measurement using a 

tactile probe [45]. 

 

Fig. 33 Schematic of the F25 XY platform (Top View). PL: moving platform (thick black);   and  : 

 - and  - linear drives;    and   : Ultra-precise glass ceramic length measuring systems with 

nanometric scales [45]. 

The total sources of error that contribute to the uncertainty of the measurement are reduced to 

thirteen. They result from the sum of the individual errors related to the moving bodies, the 

platform motion, the probing entity and the imperfect perpendicularity between the  -,  - and 
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 - guiding systems. The error model is described in more details in the thesis of Marcus 

Vermeulen [45]. 

 

Finally, this machine accepts two types of probing systems, a tactile micro-probe as well as a 

tilt-robust confocal probe (Fig. 34). The tactile probe consists of a very thin shaft with a 

contact ball at its end which can have a diameter as low as     µm. The shaft length of 

several millimeters makes depth measurements possible. The measuring forces with this 

probe are as low as     mN. The confocal probing system is developed at the Belgian 

metrology institute (SMD) and is a tilt-robust probe that incorporates an aperture monitoring 

system to compensate for errors of tilt. It uses the same principle as the one of the 

NANOMEFOS machine, however without the interferometer system that allows to extend the 

measurement range. The probe delivers measurement data with nanometer level of 

uncertainty. 

 

   

Fig. 34 (a) Tactile probe of the F25 machine; (b) conceptual design and layout of the tactile (A) and 

confocal (C) probes mounted on F25 [89]. 

1.b  The METAS µCMM apparatus 

The METAS µCMM has been developed and especially designed for the measurement of 

micro-parts with an ultra-high precision [42]. It is composed of a tactile probe and a motion 

table (Fig. 35a). The motion table is constituted of vacuum preloaded air bearings driven by 

Lorenz actuators and is controlled by position measurement interferometers. A special slide 

configuration with two wedges makes the table movement very compact and stiff. A 

pneumatic weight compensation system minimizes the heat generation for lifting up the heavy 

stage in the  -direction. The working volume of the machine is about          mm
3
. 
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During measurement, the probe is fixed and only the motion table moves the workpiece 

around and about the probe in all directions. The workpiece is posed on a Zerodur corner cube 

on which three flat mirrors are mounted in all three directions to form the reference coordinate 

system of the measurement. The displacement in each direction is monitored by a laser 

interferometer that points to the center of the tactile probing sphere. Thus the Abbe principle 

is satisfied along the three axes for the entire volumetric working range. The metrology frame 

of the METAS µCMM consists of the interferometers, the motion table and the probe. Since 

the frame has to be large to go around the table and include the  -axis interferometer from 

below, it becomes very sensitive to temperature variations. For this machine, Aluminum was 

found to be optimal as in regard to its predictable thermal behavior. To limit thermal impact, 

the machine is shielded inside a thick Aluminum shell and is placed inside a temperature 

controlled clean room where temperature of the frame varies by not more than   mK during 

one measurement. 

 

  

(a) (b) 

Fig. 35 (a) METAS µCMM apparatus and (b) tactile microprobe [42]. 

The 3D touch probe (Fig. 35b) head has a particular parallel kinematic structure that exhibits 

very week and isotropic probing forces, and minimizes the moving mass within the probing 
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system. Having a very low stiffness, deformations caused by the force of gravity are 

compensated by an adjustable system of permanent magnets. 

1.c  The ISARA 400 apparatus 

The ISARA 400 has been developed by the IBSPE company and is a UHPMM featuring 

the largest measurement volume of about             mm
3
 [43,96] (Fig. 36). Such as 

for the previous machines, the axes motions are controlled by laser interferometers monitoring 

each direction independently. The moving stage that holds the workpiece has three flat 

mirrors that are used as reflectors to the laser interferometers in  -,  - and  - directions. These 

interferometers are mounted in one metrology frame which also holds the measuring probe 

system (Fig. 37). The laser interferometer beams all point towards the center of the probe tip 

making the measurement satisfy the Abbe principle. Since this property remains true within 

the complete measuring volume, straightness errors as well as rotations of the three translation 

stages will have zero first order influence on the measurement result. On the ISARA 400, the 

flatness and squareness errors of the three mirrors are reduced by means of a series of in-

machine calibration measurements. The moving stage can translate over a granite base plate 

in  - and  - directions and is guided by air bearings in a "floating table"-like configuration. 

The entire metrology frame moves in the  -direction with a guide provided by air-bearings 

against a vertical granite surface (Fig. 37a). The main function of the metrology frame is to 

maintain the respective position and alignment of the probe with the laser interferometers with 

high stability. This frame is made of hollow beams of Silicon Carbide (SiC) making it both 

stiff and light-weight, while also enabling a good thermal stability. The stage is a table made 

of Zerodur material and has three reflective sides serving as the flat reference mirrors. 
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Fig. 36 Photograph of the ISARA 400 measuring machine [89]. 
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(b) 

Fig. 37 Design of ISARA 400 measuring machine; (a) 2D design concept; (b) 3D design concept [96]. 

The ISARA 400 tactile micro-probe system is the Triskelion described in detail in [43] and 

shown in Fig. 38. The design of this micro-probe features an elastically suspended stylus 

which can deflect at its tip in any of the  -,  - or  - directions. The small size of the tip 

enables extremely high spatial resolution. The elasticity of the probe further provides the 

ability to reduce probing force and damage of the workpiece surface. Overall, for a probe tip 

deflection of less than   µm, measurement errors are below    nm per axis and less than    

nm in 3D. 
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Fig. 38 IBSPE Triskelion B-500 miniature probe [89]. 

1.d  The NANOMEFOS apparatus 

The NANOMEFOS machine [2] was originally designed specifically for non-contact 

measurement of aspherical and freeform optics (Fig. 39). As these surfaces are in general 

rotationally symmetric, the machine has a cylindrical setup, therefore has less moving axes 

and higher measurement speed as compared to orthogonal setup machines. The machine is 

capable of measuring slopes up to    ° in both concave and convex configurations. The 

measurement volume is relatively large and is about      mm in diameter and     mm in 

height. About   million points sampled with a density of     mm can be measured within    

minutes. 

 

 

Fig. 39 NANOMEFOS non-contact measurement machine for freeform optics [2]. 

On this machine the workpiece is mounted on an air bearing spindle that rotates at constant 

speed. The optical probe is mounted on a rotating axis ( -axis) which can make sure that the 
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probe is always oriented in the orthogonal direction with respect to the surface at the point 

being measured. Moreover, the probe can translate in the radial and vertical directions by the 

R (radial) and Z (vertical) stages, respectively. Then the measurement trajectory can either be 

spiral or annular.  

When a freeform surface is measured, the measurement distance can vary by few millimeters 

due to the shape of the surface. For optical probes, the focal depth is of a few micrometers 

when nanometer resolution is required. To keep the probe in focus, the R and Z stages need to 

be actuated with large accelerations, resulting in undesirable dynamics of some hundreds of 

kilograms of mass. In order to avoid this issue, a specific optical probe was designed with a   

mm range and nanometric resolution in which only the    g objective lens translates [97]. 

The measurement uncertainty is mainly determined by the metrology loop between the probe 

and the workpiece and is about    nm and for the largest surfaces. By applying the 

dissociated metrology structure principle [98], [99], the metrology loop becomes much shorter 

and independent from the structural loop (Fig. 40). According to Vissiere et al [100] the cited 

principle considers that the structural loop involves all the elements which are required for 

maintaining the relative position of the probe with respect to the target. Conversely, the 

metrology loop is a virtual chain involving all elements such as supports, probes and linkages 

which are required to determine the position between the probe and the target. Both loops are 

linked together using isostatic links to avoid any influence from the structure on the 

measurement, such as deformations due to unpredictable loads. 

 

 

Fig. 40 Machine concept with long range optical probe and separate metrology frame [2]. 

With the probe almost constantly orthogonal to the surface, the error sensitivity is different 

compared to the error sensitivity in vertical machine setups. As the surfaces are smoothly 
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curved, the tangential error sensitivity is negligible (Fig. 41), reducing the metrology problem 

to a 2D-problem. 

 

 

Fig. 41 Error sensitivity with a probe orthogonal to the surface [2]. 

Hence, a metrology system (Fig. 42) consisting of interferometers (3,6), capacitive probes (9) 

and a Silicon Carbide metrology frame (2) provide a short and stable loop in the measurement 

plane. A high-stability parallel air-bearing stage setup with split position and preload frames 

provides sub-micrometer and micro-radian repeatability in the other directions (Fig. 43). 

 

 

Fig. 42 Short metrology loop [2]. 

 

6

3

7

2

9

5

8

1

4

6

3

7

2

9

5

8

1

4



 

58 

 

 

Fig. 43 Parallel air-bearing stage setup with separate preload and position frames [2]. 

When measuring an aspherical surface, only the probe focusing mechanism is moving 

dynamically while measuring a circular track. The static and dynamic displacements of probe 

and workpiece that occur during this measurement are recorded by the metrology system and 

can be compensated for in the (off-line) data-processing. The measurement uncertainty is of 

   nm when the probe is perpendicular to the surface under test and    nm when the surface 

is at    . The non-contact probe system used was developed by Cacace et al [97]. It consists of 

the combination of a differential confocal method with a dual pass interferometer that allows 

to extend the measurement range. The system has a measuring range of   mm. A motion 

controller detects the surface and maintains a good focus of the objective of the probe onto the 

surface with some tens of nanometers servo error. 

 

 

Fig. 44 NANOMEFOS probe assembly [2]. 
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1.e  The Tilted-Wave Interferometer 

The Tilted-Wave Interferometer (TWI) apparatus was recently developed at the Institute 

for Applied Optics (ITO) in collaboration with Mahr® company [39,93], [101,102] ().This 

measuring machine is especially designed for the measurement of aspheres and freeform 

optics surfaces [103] and is based on an adapted interferometric measurement (Fig. 46). 

 

 

 

Fig. 45 The TWI apparatus. 

The main challenge of measuring an aspherical or freeform surface with interferometry is that 

the optical rays no longer impinge perpendicularly on the surface. This phenomenon, known 

as the interferometric null-test condition, requires that the interferometer's axis is perfectly 

aligned with the target at all times. Usually, the targets of interferometers are flat reflectors, 

but with the TWI, the target is an asphere or even a freeform. The violation of the null-test 

induces retrace errors in the measurement because incoming and outgoing rays to and from 

the surface take uncalibrated paths through the interferometer [104]. The TWI's solution to 

overcome the problem of standard interferometric null-test is through the usage of a set of 

tilted waves which will locally compensate for the deviation of the surface under test from the 

spherical shape [102]. Pruss et al [103] propose a technique to overcome null-test violation 

based on the usage of optical elements which adapts the wavefront to the design shape of the 

surface. The optical elements evoked are some state-of-the-art technology referred to as 
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Computer Generated Holograms (CGH). As compared to other technologies that take into 

consideration retrace errors, the CGH technology is the most precise but is expensive and time 

consuming since CGH must be produced for each different surface. 

The basic setup of the TWI is that a coherent laser source L is split into two waves, a 

reference wave and a test wave using a polarizing beam splitter (Fig. 46). The test wave 

travels through a micro lens array followed by a pinhole array (PSA). The exiting rays are a 

set of beams that will go through a beam splitter. Then a collimator C1 transforms the 

incoming spherical wavefronts into a set of plane wavefronts with different amounts of tilt. 

Those wavefronts are transformed back into spherical wavefronts thanks to a transmission 

sphere TS in order to compensate the basic spherical form of the surface under test (SUT). All 

wavefronts are reflected back onto the beam splitter. Then, they propagate and cross an 

aperture A that filters fringes having a density larger than the Nyquist criterion. An imaging 

optics L1 projects the rays onto a camera arm C [96]. The main contributions of this 

interferometer as compared to scanning-type interferometers are that the TWI can acquire 

data in parallel and without the need to move the SUT during measurement. 

 

 

Fig. 46 The Tilted-Wave Interferometer setup. (L: coherent laser source, PBS: polarizing beam 

splitter, BS: beam splitter, C0,1,2: collimators, PSA: micro-lens array followed by a pinhole array, L0,1: 

imaging optical lens, TS: transmission sphere, SUT: Surface Under Test) [96]. 

The TWI measuring apparatus is capable of performing a measurement over an asphere 

within few seconds, provided that the angle deviation from the best fit sphere does not exceed 
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   °. This interferometer also allows for automatic alignment, high flexibility and high lateral 

resolution. The current aim is to integrate this measurement technique in the process chain of 

asphere and freeform manufacturing. 

2.  The LNE high-precision profilometer 

In the same context, the LNE developed its own machine and validated the usage of this 

machine for the measurement of planar surfaces roughness with nanometric accuracy. Just 

like the previously described machines, the architecture of the LNE's high-precision 

profilometer perfectly complies with the Abbe principle. The metrology loop is optimized to 

be as short as possible. The design of the profilometer allows for both tactile and chromatic 

confocal probing. On this apparatus, three high precision guiding axes equipped with 

encoders insure three independent translational degrees of freedom, in  -,  - and  - directions 

(Fig. 47). A Zerodur table on which the measured object is posed travels along  - and  - 

directions and its movement is controlled by two independent Renishaw laser interferometers 

to a nanometric level of accuracy. The working range in the   - plane is         mm². The 

fixture of the Zerodur table on the top side of the  -mechanical guiding system is carried-out 

via three balls with a diameter less than    mm, to insure isostatic linkages. The probe and its 

supporting structure are mounted on the vertical guiding system in the  - direction along 

which the measurement is done (Fig. 47 and Fig. 48). The working range of the mechanical 

guiding system in  - direction is about     mm but the practical working range strongly 

depends on the travel range of the probe used. A third Renishaw differential laser 

interferometer controls the movement in   with a nanometric level of accuracy and its use 

allows reducing the metrology loop (Fig. 48). A differential laser interferometer directly 

measures the phase difference between two parallel emitted beams separated by a small 

spatial offset, thereby providing a more direct determination of local displacement. The 

metrology frame involves parts and components made of Invar which makes it less sensitive 

to thermal expansion and other environmental fluctuations. The thermal expansion coefficient 

of Invar is about   
µm/m/°C. The thermal behavior of the metrology frame made of Invar with 

the dimensions of                 mm
3
 is estimated by varying the surrounding temperature 

by     °C. It generates a temperature change in the Invar structure of less than      °C, 

especially when the environment temperature varies smoothly. For this case, the thermal 

expansion of the metrology frame is estimated to   nm which can be considered small. For 
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Zerodur, the thermal expansion coefficient is about      
µm/m/°C and the dimensions of the 

table are                mm
3
. For the same temperature variation, the thermal expansion of 

the table is even smaller and is estimated to     nm. The mechanical guiding systems, the 

probe and the metrology frame are all supported by a structure made of massive granite. Any 

vertical expansion or deformation of the supporting frame does not influence the metrology 

frame since the vertical motion is controlled by the differential laser interferometer. The 

vertical thermal expansion of the granite structure induces an identical variation of the first 

and second laser beams of the differential interferometer and is therefore directly 

compensated. In differential laser interferometry, only the variations of the distance between 

the external reference (R) mirror and the external moving mirror (M) are taken into account 

(Fig. 47c). The advantage of differential interferometry is that it reduces the metrological 

chain (Fig. 48). The high-precision profilometer applies the dissociated metrology frame 

principle which means that the metrology frame is dissociated from the supporting frame. The 

metrology frame is fixed on the supporting frame using isostatic links (flexible blades) to 

avoid any transmission of eventual mechanical strain induced by the supporting frame. As a 

consequence, the metrology frame supports its own mass and only performs the function of 

measurement [44,98]. 

 

 

(a) 
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(b) 

 

(c) 

Fig. 47 The LNE's high precision profilometer. (a) architecture of the apparatus. (b) Picture of the 

apparatus. (c) The differential laser interferometer system (R is the reference mirror and M is the 

moving mirror). 

R 
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Fig. 48 A differential interferometer reduces the metrology loop. (a) Differential interferometer; (b) 

Standard interferometer; (c) Top view of the Abbe axes. 

The machine respects the Abbe principle in all directions [90]: the measuring probe's axis 

and the differential laser interferometer's beam are collinear during the measurement 

operation. However during in-situ calibration, the Zerodur table remains fixed. This means 

that the reference mirror facing beam (1) in Fig. 48a becomes the moving reflector and the 

underside of the Zerodur table becomes the reference reflector. The touching element of the 

contact probe in the case of tactile measurement, or the focus point of the optical single point 

probe in the case of an optical measurement, are coplanar with the  - and  - laser 

interferometer beams. Since the  - and  - laser interferometers and the probe are all on the 

same metrology frame, any displacement of the frame induces a displacement of all these 

elements. The machine is configured to hold both tactile and optical single point scanning 

probes that can be calibrated in-situ. The Zerodur table is controlled by the three laser 
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interferometers as mentioned above and shown in Fig. 47a and b, so the reflecting elements 

and the interferometers should be well aligned. Each interferometer beam must be 

perpendicular to its target reflecting mirror and collinear with the respective direction of 

motion within the acceptable angle of    arc-seconds. A four quadrant photodiode fixed on 

the moving table is used for the alignment of each laser beam with the direction of motion. 

The laser beam must theoretically remain focused at the center of the photodiode over the 

entire travel range. The misalignment is measured and the average value found on this 

machine for  - and  - motions is about    µrad per    mm range. The alignment error is 

estimated to           mm and considered negligible. Since the  -,  - and  - motions are 

independent, the mirrors facing the laser interferometer beams should be orthogonal among 

themselves. The evaluation of orthogonality is performed using the LNE's coordinate 

measuring machine (“CMM5”) which is accurate to     µm over a working volume range of 

    m
3
. To guarantee such a volumetric uncertainty, the translation errors (two straightness 

and one positioning) for each mechanical guiding system, and the rotational errors (pitch, yaw 

and roll) are calibrated using a ball-bar (alternatively hole-bar) system. Many other 

instruments can be used for the calibration of measuring machines such as step gauges, gauge 

blocks, ball plates, the Zeiss check artifact, hole plates, ball-ended bars, laser interferometers, 

tracking interferometers and tracer interferometers. The perpendicularity between each two 

axes is calibrated twice: first, using the ball-bar and then using an angle gauge block. For the 

perpendicularities between the  -,  - and  -axes, the uncertainty is estimated to      . More 

details about the calibration of CMM5 are widely presented in [105–108]. 

The perpendicularities between the different sides of the Zerodur table are measured by the 

CMM5 machine (Fig. 49). At least    points are measured on each side and the Least-Squares 

plane is fitted. The angles between normal directions to each of the planes are   ,    and    

and are equal to                   ,                    and                     , respectively. 

These misalignments are tolerated since they are identified and compensated in software [14]. 

The motion errors of the guiding elements induce inclination of the Zerodur table and must 

also be corrected in the software. These errors are characterized using the long-term 

extremely stable and accurate probe (      mm/m), Leica Nivel20 shown in Fig. 50. For the 

   mm working range of the apparatus, the motion induced inclination errors are below   nm. 

The high precision profilometer is placed in the LNE's cleanroom where environmental 

conditions are optimal. The temperature is controlled to         °C and humidity to      
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%RH. The variation in temperature is very slow and smooth in the bandwidth      which 

leads to a very low temperature variation in the parts of the machine. 

The Newport anti-vibration system as shown in Fig. 47b attenuates all low-frequency 

vibrations generated by the surrounding environment. Furthermore, all the above system is 

mounted on a concrete anti low-frequency vibration massif that isolates it from the room 

floor. 

 

 

Fig. 49 The moveable Zerodur table angles check by CMM5. 

The uncertainty budget established for the measurement according to the GUM [4] takes 

into consideration all of the aforementioned error sources such as: the error motions of the 

mechanical guide systems, the Abbe and cosine errors, the dynamics of the machine, the 

geometry of the Zerodur table, thermal drift and the tactile probe and laser interferometer 

errors. For the case of a flat artifact, uncertainty budget for a tactile measurement is 

established considering all sources of error. It results in an expanded uncertainty of    

        nm, using a coverage factor   of  . This uncertainty is mainly affected by the 

performance and the behavior of the probe which will be detailed later. The stated value is 

only valid for a flat artifact measured by tactile probing. When using chromatic confocal 

probing on aspherical artifacts, the uncertainty budget should be re-evaluated. 

 

 

Fig. 50 The Nivel20 inclination sensor of Leica industry. 
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From contact measurement techniques, which were firstly introduced by McMurtry 

(Renishaw) in 1972 and then implemented by Zeiss in 1973, to the wide explosion of non-

contact measurement techniques, metrology has seen a remarkable evolution and a great 

diversification of technologies [34,35].  

Contact measurement on the LNE's high-precision profilometer 

In the field of dimensional metrology, the most widely used measurement technique is 

stylus profilometry because this process is very well understood. A tactile probe, or stylus 

probe, is a sensor that measures the profile of a surface through contact with the surface. The 

tip of the probe is a high precision sphere of a given diameter and is located at one end of a 

beam which pivots around its center (Fig. 51). When the probe tip touches the surface, it 

induces a rotation   of the beam which at the other end consists of an armature that displaces 

between two coils. The variation of the position of the armature changes the relative 

inductance between both coils which are connected in an AC bridge circuit. This means that 

when the armature is centrally positioned, the AC bridge is balanced and no output is 

generated. Whereas, when the armature moves, the AC bridge is unbalanced and the relative 

inductance between the coils varies, generating a proportional output to its displacement. The 

direction of displacement is identified by the phase of the signal. Contact probes present lower 

repeatability than some contactless probes due to their mechanical nature. In fact, coils do not 

always return to their original positions after each reading. However, progress in technology 

has considerably improved the quality of mechanical linkages reducing the bias errors due to 

hysteresis down to few nanometers [92]. 

On the LNE's high-precision profilometer, the used tactile single point scanning probe 

has a stylus tip angle of    °, a tip radius of   µm and a static measuring force below     mN 

(Fig. 51). Its measuring range can be selected among three possible ranges, the smaller range 

      µm, the medium range       µm and the larger range        µm, depending 

on the maximum depth to be measured. 
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Fig. 51 The stylus probe principle. 

Before real measurement and as part of the preprocessing phase (Fig. 8), the probe is first 

calibrated in-situ since the LNE high precision profilometer offers this possibility. During in-

situ calibration facing a flat artifact, the Zerodur table is kept fixed and the metrology frame is 

put into motion over the entire travel range with perfect respect of the Abbe principle. The 

tests are repeated    times and data are recorded and fitted by a    -order polynomial model. 

For the smaller range, the residual errors vary between     nm with a standard deviation of 

     nm (Fig. 52a) and for the medium range, the residual errors vary between     nm with 

a standard deviation of     nm (Fig. 52b). The repeatability of the measurements with the 

tactile probe has been tested and approved to be less than   nm. 
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(a) 

 

(b) 

Fig. 52 In-situ calibration of the tactile probe: Evolution of the residual errors versus the displacement 

measured by the  -differential laser interferometer with a     order polynomial approximation of the 

data: (a) over its smaller range of     µm at a fixed scanning speed of    µm/s giving a standard 

deviation for residual errors (y-std) less than   nm (red). (b) over its medium working range of     

µm for three different scanning speeds (  ,   ,     µm/s) giving a standard deviation for residual 

errors (y-std) less than    nm (black dotted line). 
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The main limitation of contact metrology is inherent to its nature, more precisely, to the 

fact that a contact is established between the probe and the measured object. For non rigid 

objects, contact might cause surface deformations and alter the shape of the object. Although 

it has been taken care of recently by error compensation, the contact point between the probe 

tip and the surface changes constantly and this also adds to the uncertainty of the 

measurement. Moreover, spatial resolution is limited by the diameter of the spherical tip (7). 

 

   
          

 

   
 (7) 

where,   is the number of points on the profile and   is the spatial sampling step itself 

dependent of the diameter   of the sphere (      ). 

Contactless measurement on the LNE's high-precision profilometer 

It is true that stylus profilometry has become more accurate, but it is not free of 

limitations [109] and this is why non-contact technologies have become the major focus in 

today's metrology research fields. As mentioned above, the LNE's high-precision profilometer 

accepts confocal probing too (Fig. 53). The principle of such a system based on white-light 

chromatic confocal technology is illustrated in Fig. 54. 

 

   

Fig. 53 Chromatic confocal probing system: (a) micro-epsilon [110]; (b) STIL [111]. 

A LED sends a white light beam through a lens that diffracts emerging light into spectral 

waves. These spectral waves are directed towards the surface being measured, then reflected 

back and analyzed in a spectrometer. Only the wavelength ( ) that is best focused on the
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(8)

  

 

       (8) 

where   is the sought distance and   is the peak wavelength. 
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Fig. 54 The working principle of the chromatic confocal probe [113]. 

The chromatic confocal probe is firstly calibrated on a separate test bench specifically 

designed for the identification of all sources of errors involved in the confocal probe 

measurement. The sources of errors are listed in Fig. 55 as detailed by Nouira et al. in [113]. 
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Fig. 55 Ishikawa diagram: measurement error sources affecting uncertainty. Sample refers to the 

measured workpiece (sample: workpiece). 

For this calibration on a flat standard, most of the cited systematic errors are identified and 

assessed separately through different calibration tests described in detail by Nouira et al. 

[113]. The nano-scale confocal probe used for the measurement is calibrated on a separate 

calibration bench which respects the Abbe principle and includes two laser interferometers as 

reference sensing elements (Fig. 56). 

and the behavior of the

of light. The 

small part that is reflected should be enough to detect the peak position in the intensity curve 

recorded in the spectrometer. The variation of the percentage of reflected light may affect the 

quality of the spectrum (intensity curve) 

The calibration of the optical confocal probe on a flat target after identification of the 

sources of error and their integration into a piece-wise linear model constituted of      linear 

parts, show that the residual errors are considerably reduced (Fig. 57). 
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Fig. 56 The calibration bench designed for the characterization of the chromatic confocal probe used 

in the measurement of aspherical lenses [115]. 

 

Fig. 57 In-situ calibration of the chromatic confocal probe over the entire working range of     µm. 

Evolution of the residuals versus the displacement measured by the  -differential laser interferometer 

for three values of speed:   ,    and     µm/s (blue, green, red). Modeling of the data with a 

piecewise linear model of      models giving a standard deviation of residual errors below   nm 

(black). 
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Interferometry as a reference for the measurement 

Since the LNE high-precision profilometer is equipped with laser interferometers, the 

principle of interferometry is worth the description. Interferometry is the most precise optical 

measuring device and when calibrated, it serves as a reference for the actual measurement in 

conformance with the traceability pyramid (Fig. 3). Interferometry lies on coherence, which is 

related to the ability of light to undergo interference. The interference in interferometry is the 

result of merging two coherent wavelengths, each coming from a distinct path. The Michelson 

interferometer is the most basic interferometer and easily illustrates the principle of 

interferometry (Fig. 58). 

 

 

Fig. 58 The Michelson interferometer. 

An initial light beam (laser or white light), also called the emitted beam  , is projected on a 

beam splitter that splits   into two separate beams,    and   .    travels towards a reference 

mirror that does not move and is reflected back as is.    is directed towards a moving mirror 

which is normally the target of the interferometer (the measured sample) and is reflected back 

with an altered signal    . The difference between    and     is a small phase shift that is due to 

the displacement of the moving mirror. When    and     are merged, the signal    in the 

receiver is phase-modulated (9). 
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                           (9) 

where the phase shift   is directly proportional to the displacement   of the target and the 

laser source wavelength  : 

    
 

 
 (10) 

Differential laser interferometers apply the same principle with the difference that they emit 

two equal and parallel signals having different frequencies [116]. 

Measurement of the AO775 aspherical lens on the LNE's high-precision profilometer 

The aspherical lens AO775 that is measured is illustrated in Fig. 59. This lens was 

manufactured by Anteryon® company using a Single Point Diamond Turning (SPDT) process 

and finished with a high precision polishing process and glass coating. It has a rectangular 

base of dimensions           mm² and a height of     mm. 

 

 

Fig. 59 The AO775 aspherical lens model. 

The lens is mounted on the LNE high-precision profilometer for the measurement process. 

The asphere is posed on the Zerodur table (Fig. 47a) and a manual alignment process is 

performed. On this machine, it is not possible to exactly align the asphere's axis of symmetry 

with the  -axis of the measurement (Fig. 60), however, an approximation of the apex position 

can be done by estimating the cusp of the surface. For this matter, the surface is scanned once 

in the  -direction and once in the  -direction and a peak is computed. This peak represents an 
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approximation of the cusp around which a symmetrical measurement is performed in   and   

directions. 

 

 

Fig. 60 Illustration of the problem with the alignment of the measurement coordinate system. Indices 

 ,   and   stand for model, measured point-set and real surface, respectively; AS: theoretical axis of 

symmetry. 

Once the software-aided alignment is done, the data are recorded and reported in Cartesian 

coordinates ( ,  ,  ). The surface is scanned over a rectangular area using either a tactile 

probe or a confocal probe (Fig. 61). The measurement area depends on the measuring range of 

the probe used, the shape of the measured surface and the level of uncertainty sought. For the 

tactile probing, the measured area is     mm² because we restrained the measuring range to 

        µm which has an associated uncertainty of       nm. Beyond this measuring 

range, the uncertainty deteriorates. For the chromatic confocal probe, OP350 µm by STIL, the 

measurement area is     mm² and this is totally limited by the probe's uncertainty. The 

comparison and effect of using either of these probes is detailed in the works of El-Hayek et 

al [117], [118]. 
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(a) 

 

(b) 

Fig. 61 The aspherical lens AO775 measurements. (a) tactile measurement; (b) confocal measurement. 

Measurement of the AO775 aspherical lens performed by the project partners 

The partners of IND10: FORM project have all measured the same AO775 asphere on 

their respective UHPMMs in order to assess the measurement capabilities of each of them and 

compare the results in an attempt to come up with a standard procedure for characterizing 

aspherical surfaces. The comparison results given by the partners will be given in chapter 2. 

3.  Coordinate Measuring Machines for the measurement of turbine blades 

The measurement of turbine blades, considered as highly freeform, presents real 

challenges. In some cases, visual inspection is applied where the blade is posed against a 

master template and the inspection of the gaps between the blade and the master is performed 

using either a light source or microscopy [8]. However, the mostly used metrology system is 

the CMM, an accurate physical realization of a 3D rectilinear Cartesian coordinate system 

[119]. CMMs allow for measurement with relatively high accuracy because they are assisted 

with numeric control [120]. Generally, every measured point is only represented by its 

Cartesian coordinates, except for advanced systems which can also indicate the normal 

direction at a measured point [119]. A measurement on CMM is accompanied by an 

alignment process which consists of aligning the measured part to a reference model so that 

the coordinate systems are identical. As depicted by Savio et al [8], alignment is a major 

difficulty and then the choice of the measuring instrument is also variable. 

5 6 
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Depending on the application, CMMs can have different configurations. Pereira et al [119], 

enumerate a few configurations, out of which the horizontal arm configuration is specific to 

car bodies measurement and the Gantry configuration is specific to aerospace structures 

measurement. 

CMMs can be equipped with either contact or non-contact probing systems (Fig. 62a and Fig. 

62b). According to a recent keynote paper, Weckenmann et al [46] assert that CMMs 

equipped with contact probes can measure up to     points per second at speeds as high as 

    mm/s. Non-contact probes such as laser scanners can perform much faster measurements 

of some thousands of points per second. Since turbine blades have particular specifications, 

faster measurement strategies using contact probing can be employed. For instance, cross-

sectional or spiral-like scanning can be used and generate less noise. For helix scanning the 

part rotates around an axis and the measuring machine performs a motion along the same axis. 

In freeform metrology in general, it is however fundamental to measure points covering the 

entire surface area of the part so that a precise inspection is insured. 

 

 

(a) 

 

(b) 

Fig. 62 Measurement of a blade: (a) Contact point-by-point CMM measurement (METRIS machine) 

[121]; (b) Non-contact laser scanning CMM measurement (Nikon metrology labs). 

Due to the advances of technology, today's CMM metrology involves also optical 

measurement devices that lean towards being fast and independent of referencing. Here we 

cite the most common optical principles involved: autofocus and triangulation. The turbine 

blade presented at the beginning of the report is measured using a laser triangulation 

instrument mounted on CMM (Fig. 62b). The measurement strategy is in the form of parallel 

cross-sectional lines scanned along the length of the blade but in   separate raw scans: one 
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raw scan has been done facing the pressure surface of the blade, another facing the suction 

surface and two separate scans facing the leading and the trailing edges, respectively. The 

actual cloud of points of the blade provided by Geomnia [16] is the result of a registration 

operation performed on the   raw scans (Fig. 63). 

 

   

(a) (b) 

Fig. 63 The turbine blade provided by Geomnia: (a) the measured dataset; (b) the real part. 

Measurement using laser triangulation is among the mostly used techniques in freeform 

metrological applications, although laser scanners are not the most precise instruments (Fig. 

64). But as specified in the beginning of the chapter, turbine blades are classified in a cluster 

that does not need ultra-fine precision measurement. 

 

    

Fig. 64 OptoNCDT single-point laser scanner by micro-epsilon [110]. 

The principle of triangulation states that a distance can be measured by knowing the length of 

any side and two angles in a triangle [112] (Fig. 65). The knowledge of the relative position of 

15 mm 

30.5 mm 
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both the detector (CCD or CEMOS camera or Position Sensing Device (PSD)) and the laser 

source with respect to the target being measured makes the calculation of the coordinates of 

the measured datum straightforward by simple trigonometric relations. 

 

 

Fig. 65 Laser triangulation principle. The distance   is the unknown that is computed during 

measurement. 

The major drawback of using optical instruments in the measurement of turbine blades is that 

the leading and trailing edges can offer quite a challenge in data acquisition [8]. 

VI.  Conclusion 

Aspherical and freeform surfaces have complex geometries and have been classified 

according to their shape complexity, relative tolerance and invariance class. Aspherical 

surfaces can be completely freeform but we will be interested in just the revolute class 

invariant aspheres. Turbine blades are classified as highly freeform surfaces and their 

specification is done according to cross-sectional profiles or surface partial features. 

Both aspherical and freeform shapes need to be precisely manufactured in order to meet 

their intended performances. Aspherical optics require a nanometric precision while turbine 

blades do not generally go below a sub-micrometric precision. Aspherical optics which have 

found many applications because of their unmatched designs are mainly produced with high 

precision manufacturing processes, the main ones being SPDT and molding, whilst molding 

inherently involves SPDT for the fabrication of the mold. Turbine blades are mainly 
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manufactured either using closed die hot-forging techniques or on  -axis milling machines 

but other methods such as electromechanical machining and molding exist. 

Although high-precision manufacturing technologies exist and are applied today, 

measurement remains inevitable. Measurement is what gives an insight of the dimensional 

characteristics of a shape as well as of its form. High-precision measuring instruments are 

available in the market, the mostly used being the stylus that can achieve measurements with 

nanometric level of uncertainty. Despite the advances of stylus profilometry, this technique 

still shows the evident limitation of being in contact with the target. Contactless techniques 

have invaded the market and the most commonly used are point and line laser triangulation, 

chromatic confocal single point probing and interferometry. Interferometry is the most precise 

having a level of uncertainty below the nanometer, whereas laser triangulation is the least 

precise achieving micrometric uncertainties. 

The AO775 aspherical lens model is measured by the different project partners using 

UHPMMs. The LNE performed two measurements of AO775 in order to compare tactile and 

confocal single-point measurement probes and to characterize its form errors (c.f. chapter 2). 

The tactile probe has been calibrated on a flat artifact and the resulting uncertainty with 

systematic error compensation amounts to   nm. The confocal probe has been calibrated also 

on a flat artifact and the resulting uncertainty amounts to   nm. The laser scanner used to 

measure the turbine blade has an announced uncertainty of some tenths of micrometers. We 

also introduced two different definitions of an aspherical surface, the classical and the Forbes 

definitions, which we will compare in the next chapter also. The Forbes definition consists of 

a polynomial part with independent polynomial coefficients. 

The turbine blade provided by Geomnia was measured using a laser triangulation 

technique. Due to the fact that the resulting cloud of points is the outcome of separate raw 

scans, neither order nor structure are inherent to the data points. Therefore, we choose to 

tackle the turbine blade surface reconstruction problem in its most generic aspect by 

disregarding all assumptions about measurement strategy. Since the actual specifications of 

turbine blades are on cross-sectional profiles, we will introduce an algorithm for the 

reconstruction of curves in the plane and present all the elements for its extension to surfaces 

in 3D (c.f. Chapter 3). 
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Chapter  2 -  Form metrology of aspheres: 

characterization and evaluation of fitting algorithms 
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I.  Introduction 

The term reconstruction is very broad in the sense that it refers to solving an inverse 

problem. An inverse problem consists of extracting information from an actual measurement 

or observation and converting it into parameters which characterize the observed object. 

While the forward problem has a deterministic solution, the inverse problem does not [122]. 

Metrologists would rather refer to the term reconstruction as association or fitting. In 

metrology applications particularly, the mathematical description of the surface is known and 

is either explicit or implicit and the characterization of simple shapes is very well understood 

and mastered [123], [124]. Literature concerning the characterization methods of aspherical 

surfaces is not very extensive and only a few works have been published [13,125] and [126–

130]. The European project IND10: FORM has been launched in order to come up with 

reliable solutions to this matter [131]. 

When given data to fit, the issues encountered are mainly related to understanding the 

fitting problem, choosing an appropriate optimization algorithm, identifying the variables that 

must be optimized, setting the minimization criterion, as well as defining the process by 

means of which the algorithm is validated. Then, in the context of metrology applications 

involving large and noisy data, the algorithm must also meet the requirements related to 

automatism, robustness and time complexity.  

The problem of aspherical form evaluation is unconstrained and non-linear so the 

optimization algorithms studied here are chosen accordingly. We look into classical methods 

such as the Levenberg-Marquardt (LM) and the Iterative Closest Point (ICP) algorithm and 

compare them to the newly introduced Limited memory Broyden-Fletcher-Goldfarb-Shanno 

(L-BFGS) algorithm which will be shown to be more efficient [132]. LM is abundantly used 

in fitting applications and has been evaluated and approved by the National Institute of 

Standards and Technology (NIST) for metrology applications that require fitting simple 

curves and surfaces in 3D [133]. This optimization algorithm may sometimes be slower than 

the simple Gauss-Newton algorithm but at the advantage of guaranteeing convergence when 

the initial solution is chosen appropriately [134]. The ICP is very popular when it comes to 

registration or alignment which is nothing but minimizing the relative position and orientation 

difference between two discrete datasets. It consists of applying a rigid transformation of one 

point-set towards the other and optimizing for transformation parameters (rotation and 

translation parameters) only. This operation either serves for the analysis of the resulting 

deviations between both datasets, or can serve for the fusion of separate raw scans of the same 
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object [135]. Since ICP does not optimize for shape parameters, we will set the rotation and 

translation parameters as the parameters to identify for all three optimization algorithms so 

that these can be compared. 

The process of fitting surfaces to data implies that an objective function must be iteratively 

minimized while optimizing for some variables and evaluating the output at each iteration, 

such as: 

     
 

        (11) 

where   is the vector of variables to optimize,      is the objective function to minimize and 

  is the function value at each iteration. 

Fitting surfaces to data also implies that there are two optimization routines: one routine 

for the calculation of the projections of datapoints, also referred to as footpoints, and a routine 

for minimizing distances according to a criterion (norm). Ahn [136] gives a thorough 

description of the paradigm to solve Least-Squares fitting problems for curves and surfaces in 

space. Ahn underlines the existence of two approaches to the problem, being the total method 

and the variable-separation method. In the first approach, the footpoints and the variables are 

computed simultaneously while in the second approach, footpoints and variables are 

computed sequentially in a nested scheme. We implement the studied algorithms following a 

sequential minimization scheme that includes an outer iterative loop for the global 

minimization of distances and an inner loop for the approximation of footpoints. 

We use the Least-Squares criterion,    norm, because of its robustness to outliers and 

noise and its simplicity in regard to implementation and problem solving. Moreover, it is the 

common criterion chosen for comparing results among the partners of the IND10: FORM 

project. Despite the fact that the MinMax criterion, or infinite norm, is normally used for form 

metrology applications, it is very sensitive to outliers and its implementation is not 

straightforward. It becomes even more complicated with aspherical shapes which are 

considered complex. 

The evaluation of the fitting algorithms is done in conformance to ISO 10360-Part 6 

[107] which gives directives for the generation of simulated data on simple shapes. The 

standard does not give any directives for aspherical surfaces, so we propose a framework. 

Then, in order to assess the fitting results, we evaluate the residual errors and quantify them 

by means of two commonly used values, the Root-Mean-Square (RMS) and the Peak-to-

Valley (PV) [137]. 
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In this chapter, we start by giving a thorough review of the existing fitting methods of 

aspherical surfaces and describe the commonly used optimization algorithms. We describe the 

two classically used algorithms for the fitting of aspherical surfaces, LM and ICP and then 

introduce our proposed L-BFGS algorithm. The evaluation and comparison of the three 

algorithms based on simulated datasets as well as the assessment of the L-BFGS optimization 

parameters are performed. After that the three algorithms are confronted to real measured 

data. The simulations and experimental results show the superior effectiveness of L-BFGS. 

There are several participating partners in the project which have all measured the same 

aspherical part. Therefore, finding a unified framework for the comparison of measurements 

is a serious issue that we address in this chapter. Finally, an extension to the strong Forbes 

model definition of asphere is presented and compared with the classical model definition in 

regard to the problem of fitting. Forbes models have the particularity to be constituted of 

independent asphere parameters, thus a study is performed to show the usefulness of such an 

alternate description of aspheres. 

II.  Methods for form evaluation of aspheres in metrology 

The form evaluation of aspheres can be done by performing the association of a known 

aspherical model to the measured data. This process, defined in ISO 17450-Part 1 [51], is the 

operation used to fit an ideal feature (the model) to a non-ideal feature (the data points) 

according to an association criterion (such as Least-Squares or MinMax). To make things 

simple, we refer to the ideal feature here as being the reference model which can be expressed 

in different forms. Either in discrete form such as a point-set model or a mesh model, or in 

continuous form such as a CAD model or an implicit mathematical model. Reference models 

such as a point-set model or a mesh model can be used when the problem needs to be 

expressed in discrete form. In these two cases, the very well-known ICP algorithm is used and 

distances are calculated on a point-to-triangle basis and on a point-to-point basis, respectively. 

Otherwise, the reference model is a mathematical equation and distances are calculated on a 

point projection basis. In both cases, the algorithm incorporates a footpoint calculation step 

followed by the distances minimization step. In discrete form, the distance is an Euclidean 

distance because as shown in Fig. 66a, the point-to-point distance     is not orthogonal (or in 

other words minimal) and     might also happen to be not orthogonal. Whereas in 

continuous form, the distance is optimized to be orthogonal to the surface at all times. 
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(a) 

 

(b) 

Fig. 66 Distance calculation in case of a discrete (mesh) model. (a) Difference between a point-to 

point distance (   ) and a point-to-mesh distance (   ); (b) Point-to-mesh distance configurations 

with    : point-to-vertex distance,    : point-to-edge distance and    : point-to-triangle distance; (th.: 

theoretical,     : chord error). 

The fitting process goes by iteratively optimizing for six transformation parameters consisting 

of both rotation and translation,   and  : 

                      

 

   

  (12) 

  being the number of points in the dataset,    the footpoints,    the datapoints,   the 

translation vector and   the combined rotation matrix about  ,   and  . In the case of a 

discrete model fitting, the footpoints    might either be points in the second set    
 or the 

projections    
 of    onto a mesh model (Fig. 66a). 

 

Many fitting algorithms exist but only a few were actually applied to aspherical surfaces since 

these are of complex shapes. In general, they are axis-symmetric but can also be freeform so 

with very large dataset sizes, optimization algorithms become computationally expensive. 
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Among the known families of numerical algorithms, we cite, the non-linear orthogonal Least-

Squares minimization algorithms, the Iterative Closest Point (ICP) algorithm and its variants 

[138–140], the simplex algorithm [141] and non deterministic algorithms such as the 

differential evolution, the genetic algorithm, etc... In this manuscript, we focus on the 

algorithms that are mostly used in metrology applications for curve/surface fitting and point 

out the Newton Raphson method, the Gauss-Newton method, the gradient descent method, the 

Levenberg-Marquardt algorithm, the ICP algorithm and call attention to the newly used 

Limited memory- Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. 

The Newton-Raphson method [142] is used in many optimization problems that are not 

highly non-linear or complex (Fig. 67). So we make use of it here for the computation of 

footpoints which are required for the orthogonal distance minimization problem. 

 

 

Fig. 67 Pseudo-code of the Newton-Raphson algorithm (    : maximum number of iterations and    

is the stop criterion). 

At every iteration, the method which has a simple algorithmic structure aims at finding an 

approximation of the roots of a real-valued function       . The goodness of the 

approximation depends on the stop criterion and on the quality of the initial guess    (the 

relative position of the data and the model should be close to the optimal solution) [142,143]. 

If the initial guess is close enough and the derivative of   exists everywhere, the algorithm 

guarantees convergence to the roots of  . For the problem of aspheres which have low 

curvatures, the vertical projection point   
  is taken as an initial guess to the optimal 

orthogonal projection point   
  (Fig. 68). Newton-Raphson iterates until   

  is accurately 

approximated with a stop criterion:                  . 
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Fig. 68 Orthogonal/vertical distance vector from a data point    to its footpoint   
    

  on an asphere is 

contained in the   -plane (red) at an angle    passing through the axis of symmetry (points O, A, B, 

  
  and   

  are coplanar). 

As for the minimization of the non-linear squared distances problem,   
  for orthogonal and 

  
  for vertical, it is dealt with using other optimization algorithms such as LM and other 

Newtonian or quasi Newtonian methods. 

1.  Classical methods 

LM is a well-known optimization algorithm that is based on an interpolation between a 

Gauss-Newton approach and the gradient descent as shown in (13) [144,145]. The pseudo-

code for the three algorithms, Gauss-Newton, gradient descent and LM are given in Fig. 69, 

Fig. 70 and Fig. 71, respectively. LM has been evaluated and approved by the National 

Institute of Standards and Technology (NIST) for metrology applications that require fitting 

simple curves and surfaces in 3D [133]. 
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Fig. 69 Pseudo-code of the Gauss-Newton algorithm (    : maximum number of iterations,    is the 

stop criterion and   is the Jacobian matrix). 

 

Fig. 70 Pseudo-code of the gradient descent algorithm (    : maximum number of iterations and    is 

the stop criterion). 

 

Fig. 71 Pseudo-code of the Levenberg-Marquardt algorithm (    : maximum number of iterations). 

The solution update for the LM algorithm goes as in the following equation: 
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         (13) 

where    is the solution vector at iteration  ,       is the Hessian matrix at iteration  , 

            is the diagonal elements of the Hessian and    is the gradient of the objective 

function.   is the parameter that can be assimilated to the coefficient of the gradient descent.   

changes at each iteration such as when it is large, the gradient descent predominates the 

optimization process, otherwise Gauss-Newton predominates. According to Shakarji [133], 

the Levenberg-Marquardt parameter   is suggested to start with the value of       . This 

value is updated at each iteration according to the objective function's evolution. If   turns 

out to be decreasing, it means that the solution is approaching the minimum and that more 

effect has to be given to the Gauss-Newton component. In this case,   is reduced by a factor 

of     , otherwise,   is increased by a factor of   . In an application to freeform surfaces, 

Jiang et al [146] propose another way of determining the value of   based on the smallest 

singular value of the Hessian matrix. Since the Hessian is positive semi-definite, a 

decomposition of the form given by (14) is equivalent to a Singular Value Decomposition 

(SVD) according to the spectral theorem [147]. 

       (14) 

with                    and            being the singular values of  . 

By these means,   is chosen in accordance with the smallest singular value    of   found in 

the   matrix. If     , where   is a user specified threshold, then    , otherwise,     

  . Generally, this algorithm converges reasonably quickly and accurately for a wide range of 

initial guesses that are close to the optimal solution [145]. 

In [146] a method to fit freeform surfaces to small numbers of data in two steps is described. 

A coarse fitting is firstly performed by using a structured region signature procedure and 

secondly, a LM optimization is applied for fine fitting in which a Jacobian matrix needs to be 

calculated. The fitting of B-Spline curves using the LM algorithm also requires the calculation 

of a large Jacobian matrix   and the storage of a considerable system of linear equations, as 

described by Speer et al [148]. The LM algorithm further necessitates the computation of the 

Hessian matrix by linear approximation       and its inverse at each iteration. Although 

matrix inversion is taken care of by some efficient pseudo-inverse techniques such as SVD or 

QR decomposition, it is still the major issue of this kind of algorithms. The complexity of 



 

92 

 

matrix inversion ranges between          (Williams algorithm) and       (Gauss-Jordan 

elimination) with   being the number of variables in the system [149]. For a large  , the cost 

of inverting   is considerable. 

2.  The ICP method 

The ICP is a registration algorithm which finds a spatial transformation to align two 

point-sets. It is the mostly used algorithm in registration and/or alignment because it is 

designed for discrete data, making it a relatively fast algorithm with very low memory 

storage. ICP is based on two main operations, point identification and point matching which 

are usually computationally expensive. In this context, some ICP variants have been 

developed to reduce the point matching phase time by applying a  -D tree subdivision to the 

space of points [150,151]. The general ICP framework is such that an iterative loop identifies 

pairs of points and matches them according to a distance criterion (Euclidean, Hausdorff, …). 

The matching phase triggers a Least-Squares distance minimization which results in a 

transformation matrix that brings one point-set closer to the other with residual errors 

quantified by the mean square error      also called the error metric and shown in Fig. 72   

with   being the objective function such as defined in (12). All points are involved in the 

point matching phase but only a subset of those is selected for the computation of the 

transformation matrices,   and T. Different approaches to calculating   and T are available: 

the Unit Quaternion method [140], the Dual Quaternions method [152], the Singular Value 

Decomposition (SVD) method [153], the LM method [154], the Neural Network Modeling 

method [155], etc … 

 

 

Fig. 72 Pseudo-code of the ICP algorithm (  : mean square error (average of the objective function), 

    : maximum number of iterations,   : stop criterion,  : mean square error tolerance). 
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We can see from Fig. 72 that if the variation of mean square error     is larger than the 

threshold value   , point identification and matching restarts until the error cannot be 

improved anymore (      ). Further, if the mean square error is still larger than a 

predefined tolerance  , the entire process restarts with different parameters ( ) in point 

identification and matching. To have fine precision on the results, it is preferable that the size 

of both point-sets be equal. 

 

The variant of ICP that is proposed here is designed to be used in fitting applications where 

one of the point-sets is replaced by a mesh representation of it. A mesh model offers the 

advantage of obtaining a more accurate distance calculation than a point model does [156]. 

Fig. 66a shows that the point-to-mesh distance     is smaller than the point-to-point distance 

    and that there are three possible configurations for a point-to-mesh distance (Fig. 66b). A 

mesh is a first order approximation of the surface so it is a better representation of the 

theoretical surface than points only. It is a regular triangular mesh built from theoretical points 

simulated on the asphere's surface and reconstructed using a Delaunay triangulation technique 

[157]. To guarantee accurate residual errors, equivalent to those found when fitting smooth 

models, the chord error      between the mesh triangles and the theoretical surface is taken to 

be very small:        nm (Fig. 66a). The value of      is determined according to the 

precision sought for aspherical lens characterization and is assured by increasing or 

decreasing the sampling density. 

III.  L-BFGS, a newly proposed method in metrology 

For a very large number of variables or unconstrained non-linear problems, iterative 

quasi-Newton methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method can 

be more convenient [158]. Like any minimization algorithm, BFGS preferably requires a 

twice differentiable objective function whose gradient must be zero at optimality. The method 

approximates the inverse Hessian of the function by cumulating information from previous 

iterations, therefore, a sequence of matrices is constructed throughout. This sequence occupies 

a very large memory space which eventually comes to saturation when all the matrices are 

stored [159,160]. Subsequently, Nocedal describes an improved method called L-BFGS 

which keeps updating the Hessian matrix using a limited amount of storage [161]. At every 

iteration, the Hessian is approximated using information from the last   iterations with each 
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time, the new approximation replacing the oldest one in the queue. L-BFGS is an enhanced 

BFGS optimization algorithm for reducing memory usage when storage is critical and is 

suitable for applications involving large volumes of data and variables. Furthermore, Zheng et 

al [159] propose a L-BFGS algorithm to perform B-Spline curve fitting and show that, unlike 

traditional methods, L-BFGS can perform optimization of control points and location 

parameters simultaneously if the initial curve is sufficiently close to the underlying shape of 

the dataset. Additionally, neither formulating nor solving linear equations is needed, making 

the algorithm very efficient and faster than other methods such as the one in [148]. Zheng et 

al [159] have also studied the complexity of the algorithm and showed that it is linear in the 

number of data. 

The L-BFGS algorithm goes as follows: consider the problem in which the objective function 

  has gradient    and Hessian  . 

 

a) Initialization 

The initialization consists of four main settings: 1) make an initial guess   , 2) choose   for 

the number of iterations to be considered for the inverse Hessian update (preferably    ), 

3) set two real numbers    and   such that       

 
 and        and 4) choose a 

symmetric, positive definite starting inverse Hessian matrix   
   such as the identity matrix. 

 

b) Iterations 

Perform a line search routine to compute the quasi-Newton direction. By being positive 

definite, the Hessian ensures that    is a descent direction (15). 

        
             (15) 

Determine the step size   (for example by backtracking line search).    should satisfy the 

Wolfe conditions (16) at each iteration.    and   are parameters to control the accuracy of the 

line search routine.    defines a tolerance on the function   and   a tolerance on its gradient. 

                                 
 
      

            
 
               

 
    . 

(16) 



 

95 

 

The Wolfe conditions along with exact line search routine require a large number of function 

and gradient evaluations. Nevertheless, inexact search allows to determine a step length   at 

minimal cost while adequately reducing   and making a reasonable progress in minimization. 

Then the update rule for the solution   is done as (17) indicates. 

              (17) 

 

c) Update   
   

The inverse Hessian at step     is the inverse Hessian at step   plus a certain variation   : 

    
     

                   
     (18) 

   depends on the change in the variables,    , as well as in the change of the gradient, 

       expressed as: 

                   and                              (19) 

Therefore the inverse Hessian becomes: 

    
      

    
 

  
   

    
      

      
 

  
   

    
      

 

  
   

   (20) 

Due to the iterative process, an inverse Hessian matrix at an iteration   can be written in 

function of   
   and the vectors     and        of all iterations up to   only. This 

automatically means that the Hessian matrices shall not be stored and this reduces memory 

storage by much. The update goes as follows: 
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(21) 

At iteration    , in order to limit storage in L-BFGS, the first term                 
    

is deleted. Nonetheless,                 
   ,                 

   , … , 

                
    all depend on                 

   , hence, only the terms that are 

enough to calculate                 
    for       are kept. 

The complexity of the update for L-BFGS is of the order of       as compared to its 

predecessor BFGS which complexity is      . 

IV.  Implementation of the algorithms for aspherical fitting 

The previously described optimization algorithms are going to be tested for aspherical 

surface fitting, knowing that we are putting forward the L-BFGS algorithm for this purpose 

[132]. The algorithms, are evaluated in conformance with standards defined in ISO 10360-

Part 6 [107] and the works provided by Lin et al [162]. We propose a procedure inspired from 

the ISO standards in order to evaluate L-BFGS and LM and conclude on their robustness to 

input dataset size, initial alignment and computational time. 

The Orthogonal non-linear Least-Squares algorithms as well as ICP follow the same 

structure and sequentially compute for footpoints and transformation parameters ( : rotation 

matrix,  : translation vector) as shown in Fig. 73. After being evaluated on simulated 

datasets, the algorithms are tested on measured surfaces with large volumes of data and with 

different initial relative positions of the data with respect to the reference model (initial rough 

alignment). The fitting process, illustrated in Fig. 73, is the process in which the model 

parameters ( ,   and  ) are fixed and the only variables to optimize are the transformation 

parameters often called motion parameters so that comparison with ICP is possible. The 

AO775 aspherical lens is axis-symmetric, therefore, the rotation about   is a redundant degree 
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of freedom and is inhibited from the minimization except for ICP. Hence, only   

transformation parameters out of   are required to determine a good fitting of the dataset with 

respect to the model: a rotation matrix    about the  -axis, a rotation matrix    about the  -

axis and three translations   ,    and    in  -,  - and  - directions, respectively. 

 

 

(a) (b) (c) 

Fig. 73 Sequential algorithm for the fitting problem.   : Least-Squares norm;     or     : combined 

rotation matrix and T: translation vector;   : change in the objective function value;    : norm of the 

gradient of  ;         : the algorithms stop criteria;  : ICP convergence tolerance. 

The objective function   to minimize is the sum of the squared distances between the 

transformed data points              and their respective footpoints              on the 
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model. Equation (22) is an expression of this functional in which              denotes the 

translation vector and   and   the rotation angles about   and  , respectively: 

            
            

                   

 

   

 (22) 

where           is the combined rotation matrix about   and  . 

 

L-BFGS, LM and ICP optimization algorithms are compared based on the RMS and PV of 

residual errors since those quantities are commonly used in fitting applications [137]. 

Orthogonal distance-based fitting and vertical distance-based fitting are also compared 

because, as described by Sun et al [128], the aspherical surface fitting onto simulated small-

sized datasets can be achieved by applying a Gauss-Newton optimization with vertical 

distance minimization. We will show that the usage of vertical distance is limited to cases 

where both entities (dataset and model) are defined in the same reference frame, whereas 

orthogonal distance calculation guarantees the freedom to have the measured dataset and the 

model in different coordinate systems [136]. 

1.  Implementation of L-BFGS and LM 

The L-BFGS and LM algorithms are implemented in sequential computation of 

footpoints and transformation parameters. Vertical footpoints are simply the projection of 

each data point onto the surface along   and by that we do not necessarily assume that the  -

axes of both sets are in the vertical direction. We will only make this assumption when we 

perform an optimization involving vertical distances minimization. When we deal with 

orthogonal distances minimization, orthogonal footpoints need to be computed. This is done 

by starting with the vertical footpoint projections and then solving for orthogonal projections  

in a nested minimization loop within the main transformation parameters minimization loop 

using the Newton-Raphson method (Fig. 74). 
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Fig. 74 Orthogonal/vertical distance vector from a data point    to its footpoint   
    

  on an asphere is 

contained in the   -plane at an angle    passing through the axis of symmetry (red points O, A, B,   , 

  
  and   

  are coplanar): planar view in the   -plane. 

The asphere is an axis-symmetric surface that only depends on the variable   

      . Finding the 3D orthogonal projection of a data point can be seen as a 2D problem. 

In fact, the   -plane that contains the data point to which a projection point must be found, is 

oriented by an angle   , and definitely contains the projection point as well as the axis of 

symmetry (Fig. 74). Usually, the projection of a point    on a surface requires the 

optimization of two parameters, here    and   . But, since the model of the asphere (2) is 

independent of the  -coordinate,    is directly determined from the corresponding data point 

provided that it is expressed in its cylindrical coordinates. 

Each Cartesian data point   
              is written in cylindrical coordinates   

   
            

(23). Then, as shown in Fig. 74, the footpoint   
  (vertical) or   

  (orthogonal) is computed in 

the selected   -plane at      . 

  
   

 
 

 
      

    
 

         
  

  
  

     

  (23) 

For the vertical distance minimization problem, the  -coordinate of the vertical footpoint   
  

(Fig. 74) is taken to be that of the data point,   
    . The  -coordinate   

      
   is 

calculated following equation (24): 
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  (24) 

For the orthogonal distance projection problem, the r-coordinate of the footpoint is initially 

taken to be that of the data point,       
    

    . Then, the Newton-Raphson method 

iteratively optimizes for   
 , and   

      
   is calculated following (24). The asphere profile 

is of simple geometry, therefore, the Newton-Raphson method converges to a global 

minimum inevitably. Indeed, finding the orthogonal footpoint by Newton-Raphson's method 

requires setting the dot product            to  . In this formulation,     is the distance vector 

from   
   

 to           in the corresponding   -oriented   -plane (Fig. 74) and     is the tangent 

vector at    and is expressed as in (25), by differentiating the implicit function   of the 

surface at   . 

    

 

 
 

    
       

  
 
            

         

  
 
             

 
 

 (25) 

The initial distance vector input to (26) is the vertical distance vector    
     

        
  

   . The orthogonal footpoints function    is iteratively solved until the dot product between 

    and     falls below a certain predefined threshold         . 

          
         

  
        

          

  
    (26) 

The derivative   
  is needed in order to update the Newton-Raphson solution given in (27) at 

each iteration  : 

  
     

   
   

 
     

   
 

  
    

   
 
  (27) 

The orthogonal footpoint calculated in cylindrical coordinates is then transformed back to 3D 

Cartesian coordinates following (28). 
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(28) 

With the coordinates of each footpoint, vertical   
    

    
    

   or orthogonal   
    

    
    

  , 

obtained from the inner loop, it becomes possible to plug in the distances and solve for the 

transformation parameters. The outer loop is executed repeatedly until convergence 

conditions are met. The norm of the gradient, is minimized with L-BFGS with a stop criterion 

         . A stop criterion           is set to be the objective function's tolerance for 

LM and ICP and measures the relative error desired in the sum of squared distances (Fig. 73). 

2.  Implementation of a variant of ICP 

With the proposed discrete fitting approach on a mesh model, the objective function to 

minimize in the case of the ICP is the sum of the squared distances     (29).     is the 

shortest distance separating a data point    from its footpoint     situated on the closest 

triangle in the mesh, i.e.,                      with respect to the closest triangle (Fig. 

75). Normally, it is not possible to claim rotational symmetry for point-sets therefore in the 

case of ICP, the variables cannot disregard the angle about  . 

                 
              

                     

 

   

   (29) 

with                  .  

 

 

Fig. 75 Distance calculation in the case of ICP and choice of projection point according to minimal 

point-to-triangle distance. 
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V.  Evaluation of the fitting algorithms on simulated data 

In this project, we deal with a     -order aspherical surface that is not exactly expressed 

as in ISO standard 10110 - Part 12 [15] due to the presence of the    term (here   starts at  ) 

which was originally mingled with the curvature parameter   in the ISO (30). 

       
   

              
      

  

 

   

   (30) 

The coordinate system is defined such that the origin coincides with the apex of the asphere 

and the  -axis is always oriented upwards. The parameters of the asphere are then defined 

accordingly. For the considered lens model AO775, the curvature at the apex is positive and 

equal to         mm
-1

, the conic constant      and the asphere parameters are    

                                                            

     . The manufacturer of AO775, Anteryon® states that the asphere has a sag         

mm of and a clear aperture          mm (Fig. 20). 

 

For the evaluation of the optimization algorithms, the aspherical model is simulated based on 

equation (30) by generating points around the asphere's axis on a square grid (Fig. 76). This is 

because the Matlab function ("surf") used to plot the simulated data in 3D requires having a   

matrix over a square    grid. Note, however, that this issue only concerns the graphical 

representation and does not apply to the process of fitting which is based on taking points 

within the clear aperture of the lens. To evaluate the robustness and correctness of the 

developed fitting algorithms in conformance with ISO 10360: Part 6 [1], we propose a new 

procedure. Two simulations each containing     points are performed: one with added 

orthogonal random errors to characterize surface roughness and another with orthogonal 

combined random and systematic errors to characterize both surface roughness and form 

errors owing to the manufacturing processes. The simulations do not take into account 

measurement errors (noise and probing random errors) but these will not be disregarded. The 

specification of form errors and surface roughness is that they act in the orthogonal direction 

to the aspheres' surface, whereas measurement random errors manifest in the vertical 

direction. 
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Fig. 76 Simulated asphere model AO775. 

1.  Random errors simulated data 

The first test involves generating Gaussian noise with controlled mean and standard 

deviation (   ,     nm). This value is coherent with areal surface roughness that can 

manifest on real datasets due to manufacturing defects such as tool wear, tool mark and other 

asynchronous motion errors [163]. A Matlab function ("randn") is used to generate the noise 

(Fig. 77) which is added to the theoretical data of Fig. 76 in the orthogonal direction at each 

data point. 

 

    

(a) (b) 

Fig. 77 Simulated Gaussian noise (   ,     nm). (a) 3D plot and (b) 2D distribution at the middle 

section in the   -plane. 
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The execution of this function returns actual standard deviations that slightly differ from the 

imposed value. The aim of this simulation is to study the robustness of the algorithms when 

confronted to repeated random datasets of theoretically equal magnitude. L-BFGS, LM and 

one variant of ICP are then used to fit the noisy data and their robustness is qualified. The 

RMS of the residual errors and their PV are both evaluated and compared to the simulated 

ones since they transcribe the form specifications of aspheres [25]. The machine used for the 

tests is an Intel core i7/x64 platform with   Gb of RAM and a     GHz processor. 

The obtained residual PV values, reported in Table 3, are quasi identical for all three 

algorithms and are sufficiently close to the simulated PV values to about some hundredths of 

nanometers. The RMS values are also coherent, and this remains unchanged for the   

repeated tests which prove that the algorithm is repeatable. 

 

Gen. err. (nm)                              

                                                    

                                                                       

                                                                      

                                                                        

                                                                        

                                                                      

                                                                        

                                                                       

Table 3 Fitting of   random error datasets with Gaussian noise of   mean and     standard deviation; 

          points are used. (Gen. err.: Generated errors). 

2.  Combined random and systematic errors simulated data 

The test involves superposing systematic errors onto the previous random errors in the 

normal direction by projecting the error value onto the normal vector to the surface. 

Systematic errors    are referred to as form deviations and are generated using Fourier 

harmonics according to (31) and ISO10360-Part 6 standard for simple shapes. Fig. 78 shows 

the combined systematic and random errors which can in reality be due to the manufacturing 

process errors and especially the synchronous (systematic) motion errors of the mechanical 

guiding systems [2,163]. The generated PV value of the Fourier harmonics        nm) 

corresponds to a realistic form error on aspherical lenses. 
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  (31) 

where   is the index of the harmonic cosine wave,    is the fundamental frequency,    and 

   are the user-specified partial amplitudes of the     harmonic and   is the  -coordinate to 

which the form defects are applied. The simulation is obtained using the following parameter 

values:        Hz,    ,                                  and        

                          . 

 

 

(a)                  (b) 

Fig. 78 Combined errors: simulated form deviations with added random noise (      nm). (a) 3D 

plot; (b) profile view at the middle section in the   -plane. 

The systematic errors are taken as axis-symmetric (Fig. 78) because one of the major 

manufacturing processes of aspheres is a turning process that combines a rotation of the 

substrate and a functional motion of the tool [164]. They occur in the orthogonal direction to 

the surface and that is why an orthogonal distance fitting is applied. For this simulation, the 

points are selected from the data file following the order of the recorded data and by picking   

point every   points, where   is an integer number representing a ratio by which the number 

of points will be reduced by. Fig. 79 is an example showing how sampling one every   points 

is done. 
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Fig. 79 Sampling strategy: reading one every   points. 

All three fitting methods return the same RMS and PV value as the simulated ones (Table 4). 

The RMS and PV values remain quasi-unchanged whichever the number of points   in the 

dataset is as long as it is not too small (      points). When the number of considered 

points is below    , a RMS variation of about   nm is observed. 

 

  
                                          

                            

    

                

                                                

                                                      

                                                       

                                                        

                                                          

                                                          

                                                           

Table 4 Fitting using Least-Squares orthogonal distance minimization for the combined systematic and 

random errors dataset.   is the number of generated/simulated points. (Gen. err.: Generated errors). 

In order to further examine the correctness of the algorithms, the estimated motion parameters 

resulting from the fitting of the simulated dataset with combined errors are reported in Table 

5. We impose two theoretical initial alignments and check whether the optimizations return 

the same values. The first initial alignment     is generated with an offset of   mm in all three 

directions  ,   and   with respect to the model while keeping rotations at zero and     is 

generated with rotations by    ° about   and   directions with respect to the model while 

keeping translations to zero. The results of the motion parameters estimation show that both 

L-BFGS and LM are accurate for both imposed initial alignments as they return accurately 

enough (          variation for the angles and           variation for the translations) 

good estimates. ICP fails to return estimations for the case of     as the algorithm diverges 

when the angle is greater than    °. It returns inaccurate transformation parameters in the case 

of     with more than     variation in the translation parameters. 
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  Gen. alignment L-BFGS LM ICP 

    

 
 
 
   

  
  

 

   
   
   

    
    
    

 

            
          

 
             
             
             

 

           
          

 
             
             
             

 

           
          
         

            
            
            

 

    

 
 
 
   

  
  

 

    
    
   

    
    
    

 

            
            

 
             
            
            

 

            
            

 
             
            
            

   

Table 5 Fitting using orthogonal distance minimization for the simulated combined errors dataset with 

two theoretical initial alignments. 

3.  Vertical versus orthogonal distance minimization 

The evaluation of the effect of fitting data based on vertical and orthogonal distance 

minimization is achieved here by using the previously simulated datasets and the results are 

compared. In Table 6 we show a comparison between vertical and orthogonal Least-Squares 

distance minimizations using the L-BFGS algorithm (LM giving the similar results) with the 

added combined errors. Recall that for the vertical distance case, the input datasets are 

perfectly aligned in   and   directions with respect to the model. 

 

  
Gen. RMS err. 

(nm) 

Orthogonal (nm) Vertical (nm) 

                    

      

        

                                

                                       

                                        

                                          

                                           

Table 6 Comparison of vertical and orthogonal distance minimization for different dataset sizes and 

for combined simulated errors: reporting RMS values.   is the number of generated/simulated points. 

(Gen. RMS err.: Generated RMS error). 

The results show that orthogonal distance minimization is more accurate than vertical distance 

minimization. This is clearly due to the fact that noise was added to the data in the orthogonal 
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direction. It is to note, however, that vertical distance minimization fitting time is extremely 

fast (   seconds for     points). If it were legitimate, we could have considered both the 

noise generated by the probing system and the systematic errors generated by the machine 

motions to be in the vertical direction and the optimization would have been extremely fast. 

 

Another simulation is performed to reproduce optical probing noise which can occur 

during a measurement process. Such errors occur in the vertical direction since measurement 

is done along this direction. For the current case, vertical and orthogonal distance 

minimization are performed and compared residual errors are compared (Table 7). It is shown 

that, in this particular case where errors manifest in the vertical direction, vertical distance 

minimization is more appropriate. Nevertheless, the error made by choosing to perform 

orthogonal distance minimization is less than      for the PV and RMS values. Since this 

error is negligible as compared to form and roughness errors which predominate, choosing 

orthogonal distance minimization is not very detrimental. Nonetheless, the combination of 

vertical and orthogonal effects in the same optimization problem is the most exact solution, 

and this topic should be addressed in the follow-up project EMPIR. 

 

Algorithm 
Gen. err. (nm) Orthogonal (nm) Vertical (nm)       

                              

                                                          

                                                      

                                                      

Table 7 Comparison of vertical and orthogonal distance minimization for a simulated random errors 

dataset in the vertical direction using L-BFGS, LM and ICP. 

4.  Algorithmic complexity 

The L-BFGS, LM and ICP algorithmic complexities are analyzed based on two criteria, the 

units of memory used and the computational time expressed as Central Processing Unit time 

(CPU time). Fig. 80 shows that the time complexities of L-BFGS and LM are linear in the 

number of points for the case of added random errors. However, it can be observed based on 

the given implementations of L-BFGS, LM and ICP, that ICP is slow as compared to L-BFGS 

and LM and that LM is about twice slower than L-BFGS (               ) especially 

when the number of points exceeds     points. 
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Fig. 80 Time performances in seconds of the algorithms versus the number of points for a simulated 

dataset with added Gaussian noise of   mean and     standard deviation. 

Regarding memory storage, all algorithms use less than   Gb in general which mainly 

consists of the size of the data. L-BFGS stores the least memory space among all because of 

its limited memory feature (less than     Gb). As the number of variables grows, the Jacobian 

of the function to minimize in the case of LM grows very large and its inversion costs more. 

ICP needs to store a massive triangular mesh of the model. The time complexity of the 

algorithms is compared for the case of combined errors too (Fig. 81) and confirms that the 

time complexity of the L-BFGS and LM algorithms is linear in the number of data points. 
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Fig. 81 Time performances in seconds of the algorithms versus the number of points for a simulated 

dataset with added random and systematic errors. 

5.  Sensitivity of L-BFGS intrinsic parameters 

Some additional tests are performed on the simulated combined errors dataset in order to 

analyze the sensitivity of the time complexity and residual errors to the L-BFGS parameters, 

such as, the limited number of iterations   and the coefficients    and  . One parameter is 

changed at a time while the others remain fixed. The evolution of the variables and the 

objective function over the iterations are also discussed. This analysis is only performed on L-

BFGS parameters because a similar analysis has been done for LM parameters [133]. 

The time performance of the L-BFGS algorithm for the dataset with the added combined 

errors versus the parameter    over its entire range of possible values is shown in Fig. 82. The 

time complexity of L-BFGS is not affected by the value of    as only a fluctuation of   

seconds is observed. Fig. 83 shows the influence of this parameter on the residual errors of the 

fit and reveals that they are independent of   . In both cases,   and   are fixed to default 

values of    and     respectively. From these plots, it can be concluded that    has no major 

impact on either of the algorithm's complexity or the residual errors. 
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Fig. 82 The influence of    on L-BFGS computational time for the simulated combined errors dataset. 

 

(a)          (b) 

Fig. 83 The influence of    on the residual errors for the simulated combined errors dataset. (a) RMS 

of residual errors; (b) PV of residual errors. 

Fig. 84 and Fig. 85 illustrate the influence of the parameter   on the time complexity and 

residual errors while   and    are fixed to    and       , respectively. Here again, the 

residual errors are unaffected by the choice of  , nonetheless, convergence time is clearly 

influenced and can vary by up to     . 

 

 

Fig. 84 The influence of   on L-BFGS computational time for the simulated combined errors dataset. 



















 

112 

 

 

(a)           (b) 

Fig. 85 The influence of   on the residuals for the simulated combined errors dataset. (a) RMS 

residuals; (b) PV residuals. 

Fig. 86 illustrates the effect of changing the number of iterations   to be taken into account 

for the limited memory criterion. The graph reveals that a value of     should be generally 

considered. Below this value, computational time becomes significant and the advantage of 

using a limited memory is depreciated. It is to note that the value of   does not affect residual 

errors. 

 

 

(a)           (b) 

Fig. 86 The influence of   on the time performance. (a)    ; (b)    . 

Based on the above, the intrinsic L-BFGS parameters have a very low impact on residual 

errors. Nonetheless, computational time is sensitive to all three parameters. For one specific 

set of parameter values, the evolution of the objective function value and the transformation 

parameters are illustrated in order to show how they vary along the iterations and give the 

reader an idea about convergence rate.  
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Fig. 87 is a plot of the evolution of the objective function's value over the iterations of the 

fitting algorithm. Starting from around the     iteration, the objective function value 

stabilizes with a soft decrease whilst the motion parameters still delicately adjust until a 

minimum is found and convergence conditions are met around the      iteration. As 

compared to the LM function evolution, it takes   iterations to stabilize and    iterations to 

reach the stop criterion. The sum of squared distances evolution depicts the rate of 

convergence of the L-BFGS algorithm and confirms that it is relatively fast compared to LM. 

Fig. 88 shows the evolution of the transformation (motion) variables over the iterations. An 

offset of     mm along the  -direction is added on purpose while all other variables are set to 

zero. It is therefore clear from Fig. 88e why parameter    decreases fast by     mm. The 

objective function's value decreases constantly and follows the decay of variable   . 

 

 

Fig. 87 The evolution of the objective function's value over the iterations for both L-BFGS (blue) and 

LM (red). 

 

(a)       (b) 
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(c)       (d) 

 

(e) 

Fig. 88 Evolution of each of the transformation (motion) parameters over the iterations of L-BFGS: (a) 

 ; (b)  ; (c)   ; (d)   ; (e)   . 

6.  Impact of variable sampling density 

In this paragraph, we simulate variants of the combined errors dataset by subdividing it 

into two separate regions having different and various sampling densities. For a given 

aperture value, we distinguish the inner points from the outer points and select, in each region, 

a percentage of the existing points. Table 8 shows the residual errors that result from different 

choices of aperture and percentage points. 

 

The main conclusion to expose from these tests is that sampling density does not play a major 

role on the PV of the residual errors, however, it does affect the results of RMS by an amount 

not exceeding     and equivalent to a few nanometers. Furthermore, the less points 

considered in the inner region, the higher the value of RMS. 
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  Inn. percentage Out. percentage     (nm)    (nm) 

                              

  

                          

                         

                         

  

                          

                         

                         

  
                          

                         

                          

  

                         

                          

                         

Table 8 Impact of sampling density based on separate aperture regions on the residual errors for the 

combined errors dataset ( : aperture radius; Inn.: inner; Out.: outer). 

7.  Impact of the region 

Since it seems that the considered region has impact on the residual errors, we perform 

some last simulations to study the impact of the region alone. We consider the same dataset 

with combined random and systematic errors and fit the aspherical model to the dataset by 

accounting for a sub-region of the points delimited by an aperture value. The original 

simulated dataset covers an area of     mm² but here we will consider a larger dataset that 

would cover the entire clear aperture (         mm          mm) of the measured 

asphere. In these tests we also vary the ratio of data to be read so that we study the effect of 

reducing the number of points   too. Fig. 89 illustrates the effect of fitting data by changing 

the value of   which delimits the region within which data are read. The blue curve represents 

the full aperture where all the points have been accounted for. 
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(a) (b) 

Fig. 89 Log-log plot of the evolution of the residual errors with aperture and number of points for the 

simulated combined errors dataset: (a) evolution of RMS; (b) evolution of PV. 

The major conclusion is that even if        points, the residual errors do not change by 

much for the full aperture. Conversely, for larger values of   but smaller apertures, the 

residual errors vary considerably (green and magenta curves). 

VI.  Application to the measured aspherical lens AO775 

Once the algorithms are validated on simulated datasets, the aim is to tackle real 

measured data with the three proposed algorithms in order to further compare them and show 

the efficiency of L-BFGS. With the data in-hand, we expose a comparison involving the other 

project partners who have measured the same aspherical lens. The evaluation of the asphere 

form errors must be done over the confinement of its clear aperture. 

The aspherical lens described earlier is mounted on the LNE high precision profilometer for 

the measurement process. The asphere is posed on the Zerodur table as described in Fig. 60 

and a manual alignment is performed. Since the alignment of the measurement coordinate 

system with the model coordinate system is approximated, vertical distance minimization is 

not valid because it inhibits horizontal degrees of freedom    and   . From another 

perspective, the vertical synchronous motion errors of the mechanical high precision guiding 

elements of the profilometer are compensated by the vertical laser interferometer, therefore 

they have no impact in the vertical direction. The asynchronous vertical motion errors are 
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supposed negligible compared to form errors which act in the orthogonal direction, hence, it is 

wiser to apply orthogonal distance fitting from here on. 

The aspherical lens is measured on the LNE high-precision profilometer twice: once with the 

tactile stylus probe and once with the optical chromatic confocal probe. The measurement 

takes place in the LNE's cleanroom where temperature and humidity are monitored and 

controlled (c.f. Chapter  1 - V. 2. ). Moreover, the aspherical lens is carefully cleaned with 

special products before each measurement. 

1.  Comparison of the fitting algorithms 

The measurement process is automatic and the data are recorded and reported in 

Cartesian ( ,  ,  ) coordinates. The lens is firstly scanned using the tactile probe over an area 

of     mm², giving a grid of           points denoted as TScan1. Then the lens is 

scanned using the chromatic confocal probe over an area of     mm², giving a grid of 

          points denoted as OScan1. 

For practical purposes, portions of each scan are extracted and are denoted as TScan2 and 

Oscan2. These extracted portions are about         mm² in area and are non-centered grids 

of about         points each. The results of the L-BFGS, LM based on Least-Squares 

orthogonal distance minimization are compared to ICP for all the experimental datasets: the 

complete measurements and the extracted portions. Table 9, Table 10, Table 11 and Table 12 

report the residual errors (RMS and PV) for different dataset sizes for TScan1, TScan2, OScan1 

and Oscan2, respectively. 

 

               

                                                     

                                                 

                                                  

                                                  

                                                    

Table 9 Fitting using orthogonal distance minimization for TScan1.   denotes the number of points. 
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Table 10 Fitting using orthogonal distance minimization for TScan2.   denotes the number of points. 

               

                                                     

                                                 

                                                  

                                                  

                                                    

Table 11 Fitting using orthogonal distance minimization for OScan1.   denotes the number of points. 

               

                                                     

                                                 

                                                  

                                                  

Table 12 Fitting using orthogonal distance minimization for OScan2.   denotes the number of points. 

The residual errors are almost identical for all three algorithms, especially L-BFGS and 

LM. For the tactile measurement, TScan1 returns a RMS value of about       nm and TScan2 

returns a RMS of about      nm. This result is coherent since TScan1 covers a wider 

measured area for which the measurement distance of the probe becomes larger at farther 

regions from the apex. Fig. 90 illustrates the computational time in CPU seconds for the 

fitting of the measured points of TScan1 for different dataset sizes. It shows a linear 

complexity for L-BFGS with respect to the number of points. Fig. 91 plots the evolution of 

the sum of squared distances over the iterations of the L-BFGS and LM algorithms for the 

case of TScan1. The algorithms are remarkably comparable with respect to the objective 

function's evolution. A rapid decay can be observed along the first   iterations for L-BFGS 

and   iterations for LM. A more or less stable solution starts at iterations    and    for L-

BFGS and LM, respectively. As for the optical measurement, OScan1 returns a RMS value of 
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about     nm and OScan2 returns a RMS of about       nm. Again, this result is reasonable 

since the measurement distance in the case of OScan1 is larger than the distance in the case of 

OScan2. As mentioned previously in Chapter 1, the uncertainty of confocal measurement is 

very sensitive to the measurement distance. 

 

 

Fig. 90 Computational time of the algorithms versus dataset size. 

 

(a)                (b) 

Fig. 91 Evolution of the objective function value through the iterations for the case of TScan1 (legend: 

L-BFGS: blue, LM: red, fobj= ). (a) All iterations; (b) Starting from iteration   . 
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The error maps of the residual errors resulting from the fitting of each of the tactile 

measurement datasets using L-BFGS are plotted in Fig. 92a and Fig. 92b, and show that the 

residual errors distribution depend on the measured zone. The plots are shown only for the 

clear apertures of   mm (complete measurement) and     mm (extracted portion), 

respectively. The error maps of the residual errors resulting from the fitting of each of the 

optical measurements are represented in Fig. 92c and Fig. 92d for the clear apertures of   mm 

(complete measurement) and     mm (extracted portion), respectively. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 92 3D residual errors map characterizing form defects. (a) TScan1, (b) TScan2, (c) OScan1, (d) 

OScan2. 
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2.  Comparison with the IND10 partners measurements 

As mentioned previously, the same aspherical lens AO775 is measured at different 

metrology labs and industries by means of different UHPMMs and measurement techniques. 

Each partner used its own machine with the aim of assessing its measuring capabilities over 

aspherical parts and employed its own software for data analysis. However, in order to have a 

truthful comparison of the results, the measurement and the data processing techniques must 

be founded on a common basis. A round-robin schedule was set for this purpose after which 

the outcomes have been gathered and exposed here. The major differences between the 

recorded datasets is that they have different numbers of recorded data points and constitute 

dissimilar measurement areas (Fig. 93). VSL, METAS and IBSPE (Measurement 1: 

IBSPE_1) have measured the entire surface of the lens surface on their respective UHPMMs, 

F25, µCMM and ISARA 400. TNO on NANOMEFOS and IBSPE on F25 (Measurements 2 

and 3: IBSPE_2 and IBSPE_3) have measured the lens over a    mm clear aperture. Finally 

the LNE has measured the lens over smaller square grids around the apex (Fig. 93). 

 

 

Fig. 93 Different measurement regions and number of points for the same aspherical surface. 

The meetings held with the JRP partners revealed that the data they provide result from a pre-

processing stage which might have included filtration, outlier removal, tilt and coma 

corrections, etc... Our first fitting of the LNE data was applied to the raw data directly with no 

filtration or special treatment what-so-ever (TScan1 and Oscan1). However, by removing 

outliers, we are able to improve our results and obtain more coherent residual errors 

(TScan1_of and Oscan1_of). The partners have agreed to discard points which have residual 

errors greater than     nm because beyond this value, data are considered to be dust particles.  
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(a) 

 

(b) 

Fig. 94 Residual errors map: (a) tactile and (b) optical measurements after removing outliers from the 

data (holes indicate positions of removed outliers). 
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Usually outlier removal happens during a pre-processing stage and one way of proceeding is 

by fitting the raw data to the model a first time and then detecting residuals larger than     

nm. Fitting is applied a second time and the outliers-free residual errors are re-evaluated 

(Table 13 and Fig. 94). In view of comparing the measured data of all project partners 

properly, we firstly need to bring back all datasets to the same reference frame. To do that, we 

perform a first fitting operation to all the datasets and expose the results (Mean, RMS and PV 

of residual errors) in Table 13. The available residual errors of the measurements (Mean 

and/or RMS) originally found by each partner are displayed in the last column. As compared 

to the RMS results we find with our proposed L-BFGS software, we observe that the partners 

announce similar values (Fig. 95). Without having the values of PV from the partners, we are 

not able to compare them to the values we find with our software. 

 

 

Fig. 95 Comparison of RMS values found by JRP partners and RMS values found by LNE with the 

proposed L-BFGS software for the datasets measured by JRP partners. 
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Data 
Nbr. of 

Points 
Stats (nm) L-BFGS LM ICP 

Partners 

available results 

TScan1           
                       

                        
                        

TScan1_of         

                 
                    

                 

OScan1           
                       

                        
                        

OScan1_of         

                 
                    

                 

METAS        
                    

                               
                           

VSL_1       
                    

                             
                     

VSL_2       
                    

                             
                     

VSL_3       
                    

                              
                     

TNO_1        
                    

                             
               

TNO_2        
                    

                             
               

TNO_3        
                  

                           
               

IBSPE_1       
                  

             
             

                      
               

IBSPE_2       
                    

             
          

                   
               

IBSPE_3       
                  

           
            

             
               

Table 13 Measurement results (residual errors) for AO775 aspherical lens of IND10 project partners 

(Nbr. of Points: Number of Points; Stats: Statistics). 
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In order to make the comparison more accurate, we now need to bring all the previous 

datasets (Table 13) down to the same area. The least common area among all datasets 

corresponds to the area of the dataset (OScan1) having the smallest aperture (      mm). 

Recall that, in section V. 7. , the simulations have shown that taking a smaller region might 

alter the results. The new results which are suitable for comparison are exposed in Table 14 

and plotted in Fig. 96. For a matter of avoiding repetitive results, we only run the tests with 

the L-BFGS software. 

 

 

Fig. 96 Comparison of the RMS and PV of the residual errors of the measured data by the project 

partners. 

The results show that within the lower bound on the number of points which is about a few 

hundreds of points, the residual errors found still have dissimilarities. These are the 

consequence of different pre-processing approaches and different measurement uncertainties 

as shown in the kernel smoothing density estimate plot of Fig. 97 using function "ksdensity" 

in Matlab. The Kernel Density Estimation, also known as the Parzen–Rosenblatt window 

method, is a method that can be used for estimating the underlying probability density 

function of multivariate distributions. 
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Fig. 97 Probability density function plot of the residual errors of the project partners data fitting. 

For VSL, TNO and IBS measurements we choose to consider the data which gave the 

smallest residual errors (Fig. 97). We also consider the same number of sample points. From 

this plot, we can see that each fitting gives a different residual errors distribution. Although 

the mean of residual errors is small for the fitting of the METAS data, we can see that there 

are residual errors that are considerably high. 
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DATA 
Original measured 

aperture (mm) 
Nbr. of Points Stats (nm) with L-BFGS 

TScan1_of           
          
          
         

OScan1_of             
           
          
         

METAS           
            
          
          

VSL_1        
           
          
         

VSL_2        
           
          
         

VSL_3        
           
          
         

TNO_1          
          
         
         

TNO_2          
          
         
         

TNO_3          
          
         
         

IBS_1        
            
          
          

IBS_2        
           
          
          

IBS_3        
           
          
          

Table 14 Measurement results (residual errors) for AO775 of IND10 project partners taken on the least 

common aperture of     mm (Nbr. of Points: Number of Points of reduced datasets; Stats: Statistics).  
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VII.  Extension to Forbes models (strong aspheres) 

The classical expression of aspheres lacks of simple and one-to-one interpretation, 

meaning that the model parameters are dependent among themselves and do not describe 

shape clearly. The parameters do not act independently in the definition of the shape of the 

surface and they can reach very low values for higher-order asphericity. Although not 

embodied in any ISO standard, two new expressions of aspherical surfaces have been 

introduced by Forbes et al [66,67]. According to Forbes, these expressions are more 

"efficient" than the classical one across two aspects. On one hand, the polynomial coefficients 

(  s) can be expressed with less decimal digits and increase numerical precision. On the other 

hand, the independency of the model parameters makes the processes of optical design, 

tolerancing and human interpretation much easier. Forbes gives detailed clarifications on this 

topic [66] and proposes a first equation based on conics and a second one based on a 

departure from a sphere. Each formula is more or less appropriate according to whether the 

aspherical shape is closer to a conical shape with slight departures from a conic or closer to a 

sphere with slight departures from the best-fit sphere. 

Conical shapes are known to have special optical properties and the equation of what 

Forbes calls them strong aspheres is given in (32). 

     
   

          
        

       

 

   

 (32) 

where,  ,   and the   s have different values than in the classical expression with less decimal 

digits.     
    are the terms of a set of orthogonal polynomials that represent the departure 

from the conical shape. The polynomials are written in terms of the normalized variable 

   
      where      is the aperture of the asphere. They are a particular case of the 

Jacobi polynomials (4). The first few polynomials are a set of Jacobi polynomials calculated 

with     and    : 

 
 
 

 
 
  

        

  
            

  
                  

  
                          

 

  (33) 



 

131 

 

Not only the manufacturing of aspheres is more cost effective if the deviation from a sphere is 

constrained, but also metrology is more appropriate. mild aspheres, evoked in Chapter 1, are 

another expression for aspherical shapes which also consist of polynomials with independent 

model parameters (34). 

     
     

 

         
   

 
        

        
   

      
       

 

   

 (34) 

where,      is the curvature of the best-fit sphere,     
   

 are the terms of a set of orthogonal 

polynomials that represent the departure from the best-fit sphere. 

 

Being part of QED Technologies company, Forbes has developed a software called QED 

surface conversion tool capable of converting aspherical surface expressions from one model 

to another [70] (Fig. 99). The measured aspherical lens model involved in this thesis has been 

converted into both of the Forbes asphere definitions. The conversion residual errors have 

shown that the aspherical model we are dealing with is closer to a strong asphere than a mild 

one. The residual errors due to the conversion to a strong asphere are negligible as they range 

between       nm; whereas the residual errors after the conversion to a mild asphere range 

between       and       nm (Fig. 98). 

The strong asphere model has the following model parameters:               ,   

         ,             ,              ,              ,            , and 

            . Unlike the classical model parameters, the strong asphere parameters 

values turn out to be limited in the decimal digits they have and are not too small, i.e. not very 

close to  . 

 

  

(a) (b) 

Fig. 98 Residual errors after conversion from the classical model to: (a) the strong asphere model; (b) 

the mild asphere model [70]. 



 

132 

 

Our objective here is to try to depict whether there are advantages in using Forbes 

equations in the characterization of aspherical surfaces. Besides describing the shape better 

and facilitating its interpretation, we want to investigate the possibility of improving 

algorithmic complexity. For the converted model, fitting is applied on the same simulated 

datasets as well as the measured ones [165]. 

 

 

Fig. 99 Screenshot of QED surface conversion tool software [70]. Upper left: input of classical model 

parameters. Lower left: output of converted parameters. Lower right: plot of the residual errors 

between both models. 

1.  Tests on simulated data 

For this study, we are not only interested in residual errors (RMS and PV), but also in 

model parameters estimation. The correctness of the estimation as well as the time to perform 

the fitting for a different number of parameters are all taken into consideration. The 

parameters are initialized to their design values and we use L-BFGS for the optimization. 

Table 15 shows the computational time and the residual errors output by fitting the combined 

errors simulated dataset with both the classical and the Forbes model and solving for the 

motion parameters only. 
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 Forbes strong asphere model Classical model 

                                                     

                                             

                                            

                                                

                                                   

Table 15 Residual errors and computational time for the fitting of both the classical and the conical 

Forbes models with the combined errors simulated dataset. 

The results reveal that the complexity is not reduced when using the Forbes equation. For 

instance, the computational time measured in seconds is almost half for the classical model 

fitting with respect to the Forbes model fitting. Another test is done by increasing the number 

of variables in the minimization problem in order to see the effect of adding more variables on 

the behavior of the algorithm with each aspherical model. For this test, we optimize for the 

respective model parameters as well ( ,   and   s for classical and   ,    and   s for Forbes 

strong asphere, respectively). Table 16 shows the optimization results in which we solve for 

the motion and the model parameters. The estimation of model parameters is more accurate 

with the usage of the Forbes equation than with the usage of the classical asphere equation. 

 

Forbes strong asphere model Classical model 

Design values Estimated values Design values Estimated values 

                                                 

                                      

           2                                          

            6                                             

                                                          

                                                     

                                                      

                                  

                                

Table 16 Model parameters estimation for the fitting of both the classical and the conical Forbes 

models with the combined errors simulated dataset. 
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Moreover, the deviations between design parameters and estimated parameters are partly due 

to the fact that only a portion of the asphere is simulated with data as it is shown in Fig. 100. 

The dotted line delimits the region       mm which contains the data. The result of the 

fitting is illustrated in Fig. 100a for the Forbes model and in Fig. 100b for the classical model. 

The fitting using the Forbes equation gives slightly more accurate RMS and PV values than 

the fitting with the classical equation (Table 16). Although the shapes considerably diverge 

when    , the region         is fitted well. However, from the results reported in Table 

16, we deduce that for the classical equation, the model parameters may vary a lot but 

converge to a shape that fits the data very well, while this phenomenon does not occur in the 

second case. With the Forbes equation, the parameters are independent therefore they do not 

change by much. Parameter    has changed randomly but has not affected the fitting accuracy 

in the interest region         and this could be explained by the fact that    only influences 

the shape at higher values of  . The sign difference for parameter    explains why the 

estimated curve diverges in the opposite direction. 

 

   

(a) (b) 

Fig. 100 The estimated aspherical form after fitting the simulated data with: (a) the estimated Forbes 

model (black) and (b) the estimated classical model (black). The design shape is represented in red. 

The dotted line delimits the region of available data at a radius of   mm. 

The above analyses have been also performed using the LM algorithm and output similar 

results. 

2.  Tests on measured data 

The first tests involve fitting the data of TScan1, TScan1_of, OScan1 and OScan1_of with 

both the classical and strong Forbes models without model parameters estimation (Table 17). 
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On measured data, the same conclusions can be extracted, the fitting is identical whether with 

the classical or the strong Forbes model without model parameters estimation and the time 

complexity is almost double with the Forbes equation. 

 

 Forbes strong asphere model Classical model 

                                                     

TScan1                                      

TScan1_of                                     

OScan1                                       

OScan1_of                                     

Table 17 Residual errors and computational time for the fitting of both the classical and the conical 

Forbes models with some measured datasets. 

We repeat the same tests, however this time, we include the estimation of model parameters 

and compare the outcomes of both the classical and the strong Forbes models (Table 18). We 

observe similar outcomes as compared to the simulations in Table 16. 

 

Forbes strong asphere model Classical model 

Design values Estimated values Design values Estimated values 

                                                 

                                     

           2                                         

            6                                            

                                                         

                                                     

                                                     

                                

                                

Table 18 Model parameters estimation for the fitting of both the classical and the conical Forbes 

models with the measured dataset TScan1. 
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VIII.  Conclusion 

This chapter detailed the fitting of aspherical surfaces in the aim of characterizing their 

form errors. The L-BFGS method was proposed and compared to the classically used LM and 

ICP algorithms on both simulated and measured data. Two cases were proposed for the 

simulations in conformance with ISO10360-Part 6: a simulation with random errors and 

another with combined random and systematic errors. The three algorithms return similar 

results regarding the simulated PV and RMS values. ICP fails to converge accurately for 

relatively far initial alignments of the data with respect to the model. The impact of the 

number of points is investigated and does not influence the obtained results (RMS and PV) in 

the proposed way of selecting points. Nonetheless, L-BFGS shows linear time complexity 

with respect to the number of points and runs faster than LM and largely faster than ICP. 

It was also shown that vertical distance minimization is more suitable than orthogonal 

distance minimization when errors manifest in the vertical direction. Indeed, random errors 

that are purely due to noise act in the measurement direction and in the case of the LNE high-

precision profilometer, this direction is vertical. It is only in particular contexts where the 

measurement direction is constantly normal to the surface (NANOMEFOS machine), that 

orthogonal distance minimization is the most appropriate. 

In an attempt to compare data processing techniques and measurement capabilities, we 

have listed the results of the project partners against our results. The partners, with their own 

fitting methods, find similar RMS values to those we find using the L-BFGS method and our 

version of LM. This means that the optimization algorithms are similar with the exception that 

the newly proposed L-BFGS runs faster. L-BFGS can handle very large data of several 

millions of points and converge relatively fast. 

Also in this chapter, we outlined a comparison between the usage of the classical model 

and the usage of one of the new aspherical models proposed by Forbes. It has been observed 

that performing the fitting with the Forbes strong aspherical model gives a more accurate fit 

that consists of smaller residuals and a more accurate estimation of model parameters. 

Nonetheless, fitting using the strong aspherical model is much slower than fitting with the 

classical model. 

The major conclusion that we stress is that the detailed data processing scheme for 

aspherical form evaluation based on L-BFGS does not exclusively hold for aspheres. In fact, 

any surface can be processed as long as it is defined by an analytical formulation. The 
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mathematical expression of the surface needs to be input to the program and the L-BFGS 

fitting algorithm can be used for form characterization. 

 

According to the standards, form metrology makes use of the infinite norm    in order to 

calculate the envelope enclosing the points in the dataset by minimizing the difference 

between the maximum deviation and the minimum deviation between the surface and the 

dataset (Fig. 101). This method grows in complexity as the number of points in the dataset 

increases especially that the involved algorithms are unstable and non-deterministic. 

 

 

 

Fig. 101 MinMax fitting (minimal zone containing the maximum distance). 

Despite the fact that this method works for simple geometries, it is still a major challenge 

when used on complex geometries such as aspheres. Only the recent works of Zhang et al 

[24,25] disclose approaches to a Chebyshev fitting of aspherical surfaces, however using non-

deterministic algorithms such as the Differential Evolution (DE) algorithm and the 

Exponential Penalty Functions (EPF) algorithm.  We intend to address this issue of MinMax 

fitting of aspherical surfaces in future works and that would be the core subject of the next 

European project EMPIR. 
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Chapter  3 -  Reconstruction of freeform curves 

and surfaces 
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I.  Introduction 

Freeform surfaces exhibit a real challenge because in numerous applications, they might 

only be defined using a CAD model instead of an implicit or an explicit mathematical formula 

besides the parametric one [166]. As discussed at the beginning of the manuscript, blades or 

other freeform surfaces lack of a mathematical definition and are described using parametric 

models with polynomial or rational basis functions, such as B-Spline or Non-Uniform 

Rational B-Spline (NURBS) models [167]. Consequently, metrological characterization 

becomes more complicated. Classically, freeform surface reconstruction follows the general 

framework illustrated in Fig. 102 which consists of building a triangular mesh, transforming it 

into a quadrangular mesh and finally associating B-Spline or NURBS patches to identified 

regions of the mesh [168], [17–23]. 

 

 

Fig. 102 Classical freeform surface reconstruction framework (Trimesh: triangular mesh; Quadmesh: 

quadrangular mesh). 

Since a cloud of points does not infer too much information about the measured surface, a 

triangular mesh is constructed in order to organize the points. The mesh is a connectivity 

graph whose vertices are the given points and edges their connections. Triangular meshing 

techniques are classified into two categories: the category of methods based on combinatorial 

structures, such as Voronoi and Delaunay structures, and the category of methods, based on 

the calculation of implicit functions. The first section of this chapter is dedicated to the 

description of those methods and their assessment. Mesh reconstruction algorithms based on 

combinatorial structures were developed in the field of Computer Graphics and are founded 

on the assumption that data are simulated points on a   -smooth surface. Mesh reconstruction 
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algorithms based on implicit functions are founded on the assumption that an initial surface 

can be built using the implicit functions. 

Nevertheless, these algorithms are studied here in the aim of applying them to measured data 

of real parts. For our purpose of reconstructing freeform surfaces in an automated fashion, we 

report that meshing techniques do not always give satisfying results and tend to make the 

process much longer. Moreover, the described framework indicates the fitting of parametric 

surface patches rather than a single surface. This involves problems related to the continuity 

between the patches which builds up in terms of complexity. We therefore come to propose 

an algorithm that avoids going through a meshing phase but that associates B-Spline curves 

and surfaces directly to the raw data without any parameterization requirement (Fig. 103). 

 

 

Fig. 103 Our proposed surface reconstruction framework that excludes the meshing phase. 

To describe our algorithm and expose its outcomes and limitations we give a demonstration 

on closed curves. The algorithm will be referred to as the Discrete B-Spline Active Contour 

Deformation algorithm (DBACD). In section II, we thoroughly study and compare mesh 

reconstruction methods. In section III, we describe the proposed DBACD algorithm on closed 

curves and then give the basis for extending the matter to surfaces. 

II.  Meshing techniques 

The surface reconstruction techniques which build a mesh from unstructured datasets are 

detailed and compared here. We proceed by describing the algorithms and then comparing 

their performances according to criteria that are good indicators of both robustness and 

reconstruction quality [169–174]. We distinguish the family of algorithms based on 

combinatorial structures such as the Voronoi diagram and its dual representation, the 

Delaunay triangulation, from the family of algorithms based on implicit techniques via the 
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calculation of implicit functions [175]. The algorithms that are based on combinatorial 

structures have all the same objective of extracting the restricted triangles that belong to the 

underlying surface. Nevertheless, each of the algorithms provides a different means of 

building the mesh. The algorithms that are based on implicit functions seek to output the same 

kind of mesh, however, not through a geometrical and topological approach, but through the 

calculation of a function that would be zero at the underlying surface's level. 

The goal of this section is to expose the limits of mesh reconstruction techniques and 

demonstrate that they are not sufficient in general to our purpose of having an automated 

reconstruction from large and noisy clouds of points. We establish the evaluation on the 

following three assessment criteria: guarantees, robustness and complexity. 

 

1- Guarantees. The surface reconstruction algorithm should output a mesh with equivalent 

topology and close geometry to the underlying surface which is generally unknown. 

 

a) The topological equivalence is based on homeomorphisms. According to Moore [176], a 

homeomorphism between two topological spaces   and   is a one-to-one 

function   from   onto   such that   is continuous and the inverse of   is also continuous. A 

mesh is homeomorphic to a  -manifold (surface) if the star (Fig. 104) of each mesh vertex is 

homeomorphic to a topological  -disc [177]. This can be verified once the mesh is built 

through a simple algorithm that would traverse all mesh vertices and their incident triangles. 

In general, these triangles must be of sizes that are relatively small and proportional to the 

sampling density. Large triangles are considered to be topologically incorrect as they badly 

link points among themselves. 

 

 

Fig. 104 Star (green triangles) of a point (yellow dot) in a mesh (blue triangles). 
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A tool to assess topological correctness of a mesh has been introduced by Amenta et al [171]. 

This tool, called the  -sampling criterion, relies on the knowledge of the theoretical surface 

that we are trying to reconstruct as it relates notions on its local curvature with notions on the 

sampling density in order to prove that the reconstructed mesh is a  -manifold. To clarify this 

idea, let us define the medial axis of curves knowing that this definition holds also for 

surfaces (Fig. 105). The medial axis of a curve is the locus of all points, such as  , having 

more than one closest point (  and  ) on the curve. Additionally, the orthogonal distance from 

a point   on the curve to the medial axis (point  ) is denoted as the Local Feature Size of   

and written as       . Dey et al [178] prove the existence of a strong correlation between a 

parametric curve and its medial axis but state that only an approximation of the latter is 

possible. The exact computation of a medial axis is very difficult. 

 

 

(a) 

 

 

(b) 

Fig. 105 (a) Medial axis of a curve (red). (b) Medial axis of a surface (red) [179]. 
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Let   be a set of points sampled on the underlying curve denoted by  . The  -sampling 

condition is based on the relationship between the sampling density of the underlying curve 

and its Local Feature Size (   ). In general, it states that for any point    , there should be 

a point      in the neighborhood of   (35):  

                     
      

      
    (35) 

We can deduce from this inequality that more points are needed where the curvature of the 

underlying curve is high and less points are needed elsewhere.   is a real number which 

characterizes the  -sampling criterion, thus a small value of   means that the sampling should 

be dense. Fig. 106 illustrates this principle on a curve: point   is a point that verifies the  -

sampling condition because   has at least one point in   (in this case two points    and   ) 

closer than                 when      . However, point   does not verify the  -

sampling condition because no point in   is close enough. The sampling in this specific 

region on   is not an  -sampling. 

 

 

Fig. 106  -sampling condition with      .   is a point that respects the  -sampling condition while   

does not. 

It is important to note that the maximum distance separating two sample points around any 

given point     will not exceed           . Dey et al [180] prove that, generally, a 
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value of       guarantees that the mesh reconstruction algorithms return a mesh which is 

homeomorphic to the underlying curve topology. They also demonstrate that all of the above 

holds for surfaces. 

The  -sampling condition is a necessary but not sufficient condition as we will show in 

some further examples (c.f. section 4) the ability to perform correct mesh reconstruction 

without necessarily having this condition fulfilled. Moreover, based on the study that will 

follow in section 2, we suggest that there should be some lower bound    to the  -sampling 

condition. The value of    is very difficult to determine but this bound is going to be a major 

limitation to the mesh reconstruction algorithms due to degenerate Delaunay configurations. 

 

b) Provided that the topological equivalence is verified, some geometrical requirements must 

be met. Firstly, geometrical equivalence is about proximity and is quantified by the Hausdorff 

distance [181]. The Hausdorff distance describes the distance that separates two topological 

spaces, in this case, these spaces are the mesh and the underlying surface which is generally 

unknown: 

                
   

    
   

           
   

    
   

         . (36) 

Let     such that                     , then                    . As we can see 

in Fig. 107, in general,     . 

 

 

Fig. 107 Hausdorff distance between two spaces   and  . The distance is the longest among both 

dashed red lines. 
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Geometrical equivalence is also about mesh orientation. Each facet of the mesh should 

necessarily have a normal orientation that is very close to the orientation of the normal of the 

underlying curve at the same location (Fig. 108). Each facet corresponds to a portion of the 

curve so the average normal orientation    of that portion and the normal orientation of the 

corresponding facet    should be within an angle difference proportional to  . Dey et al 

[180], demonstrate that this limit angle must satisfy the following inequality: 

                   
 

   
   (37) 

This inequality can differ from one algorithm to another, but the important thing to keep in 

mind is that the normal orientation condition is a function of  . 

 

 

Fig. 108 Geometrical equivalence between a mesh (red segments) and the underlying curve (black).   

is the chord error between the curve and the mesh. Vectors    and    are the normal directions to the 

curve and the mesh respectively. 

2- Robustness is the capability of a result to remain unchanged even in the presence of added 

disturbances or noise in the input. This criterion guarantees that the algorithm can reconstruct 

a surface from noisy point clouds that might also contain outliers and be randomly scattered in 

3D space. We also refer to robustness as in regard to sampling, meaning that the algorithm 

should also be robust to various sampling conditions. 

 

3- Complexity of an algorithm is expressed in function of the size of the input data, the 

algorithm's instructions and the size of the output. Complexity is measured by two quantities, 

computational time and memory storage. 
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1.  Combinatorial structures 

The first family of surface reconstruction techniques is based on the Voronoi and 

Delaunay structures. These two dual representations are suitable for data structuring. The 

fundamentals of these combinatorial structures have been initiated at the beginning of the 

     century through the work of Gregory Voronoi in 1908 followed by the work of Boris 

Delaunay in 1934 [182]. The Voronoi diagram delimits space with respect to a neighborhood 

criterion; whereas the Delaunay triangulation is a particular triangulation of the point set 

which connects points that are exclusively neighbors among themselves. 

1.a  Voronoi Diagram 

Constructing the Voronoi diagram of a point set   is the process of dividing space into 

subspaces according to the concept of neighborhood as described in (38). Each point is 

allocated its exclusive subspace called the Voronoi cell. The Voronoi cell of a point     is 

the subspace in    that covers all points   that are closer to   than any other point   is. 

                                   (38) 

The graphical representation of the Voronoi diagram is illustrated in the two dimensional 

Euclidean space (Fig. 109). The diagram is generated using the Matlab function voronoi. The 

blue graph is the Voronoi diagram of the point set  . The properties of this diagram are such 

that a Voronoi edge is the bisector of the segment formed by the couple of points in   which 

are delimited by this edge according to a notion of neighborhood. For instance, the Voronoi 

edge that passes through   in Fig. 110a delimits space between points    and   , which is in 

fact the bisector of segment      ]. Furthermore, a Voronoi vertex, i.e. the intersection of 

three Voronoi edges, is equidistant from three points in   and is therefore the center of the 

circumscribed circle to these three points. In Fig. 110b, Voronoi vertex   is equidistant from 

  ,    and   . 
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Fig. 109 The Voronoi diagram of a set of points in the plane (        Voronoi cell of  ). 

  

      (a)             (b) 

Fig. 110 Voronoi properties: (a) a point on a Voronoi edge   is equidistant from the adjacent data 

points    and   ; (b) a Voronoi vertex  , center of a circumscribing circle passes through   data 

points   ,    and   . 

The restricted Voronoi diagram of a set of points is a subset of the Voronoi diagram. It is 

obtained by adding a restriction to the initial Voronoi diagram. Considering the subspaces 

         in Fig. 111, a Voronoi diagram is said to be restricted to these subspaces if what 

belongs to the Voronoi representation is intersected by         . Here, all cells        , 

       ,         and         intersect with the subspace   . This implies that these four 

Voronoi cells belong to the restricted Voronoi diagram of the subspace   . 
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Fig. 111 Restricted Voronoi diagram (left) and corresponding Delaunay graph (right) (adapted from 

[180]. 

As for the weighted Voronoi diagram, also called the power diagram, is a Voronoi 

delimitation of the space of a point-set, with the additional restriction of assigning weights to 

points. In fact, weighted points attract more or less large neighborhood area depending on 

their value and the Voronoi diagram is a combinatorial structure of these points. The 

complexity to construct such a structure for   points is of the order of       in the worst 

case. 

                                (39) 

1.b  Delaunay triangulation 

The Delaunay triangulation is a dual representation of the Voronoi diagram (Fig. 112). In 

2D Euclidean space, the Delaunay triangulation is a  -simplicial complex formed of simplices 

of lower or equal dimension. For instance, a 2D Delaunay triangulation is composed of 

vertices ( -simplex), edges ( -simplex) and triangles ( -simplex). The process of going from 

the Voronoi diagram to the dual Delaunay representation is straight forward and inversely. 

For the general case of space dimension  , duality suggests that a  -simplex in Voronoi 

corresponds to a  -simplex in Delaunay, and a  -simplex in Voronoi corresponds to a (  

 )-simplex in Delaunay, etc… 

A Voronoi vertex is equidistant to exactly three points in a 2D point-set and to exactly 

four points in 3D. Among themselves, those points form a Delaunay triangle in 2D and a 
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Delaunay tetrahedron in 3D, respectively. In other words, each Voronoi vertex is the center of 

the circumscribing circle to a Delaunay triangle, and inversely, each Delaunay triangle 

connects three points which are exclusively neighbors among themselves and belong to the 

circumscribed circle of that triangle (Fig. 112). It is key to mention that the circumscribed 

circle of a Delaunay triangle is empty of other points in the dataset. The Delaunay 

triangulation can be directly constructed given a certain point-set as it can be seen as the 

triangulation of its convex hull (Fig. 112). 

 

 

Fig. 112 2D Delaunay triangulation (green) and Voronoi diagram (blue) of points in the plane (red) 

[183]. The highlighted triangle is inscribed in the circle (dashed) centered at a Voronoi vertex   

In some cases, the Delaunay triangulation algorithm can be degenerate (Fig. 113) or 

manifest non-uniqueness of a solution. Degeneracies occur when more than three points in 2D 

are aligned or more than four points in 3D are co-planar [184]. We shall extend this notion of 

degenerate Delaunay simplices to what are called flat Delaunay triangles in 2D and flat 

Delaunay tetrahedra in 3D [185]. 

Non unique solutions occur when more than four points in 2D are co-circular or more than 

five points in 3D are co-spherical. Non-uniqueness is taken care of the recent Delaunay 

algorithm by optimizing for the shape regularity of the triangles/tetrahedra. The solution 

across all combinations is chosen so that the largest angle in each triangle/tetrahedron is 

minimal. The algorithm used to allow for such flexibility in the Delaunay triangulation is the 
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flip algorithm where edges can be flipped over and over to reach a state which satisfies the 

regularity condition [186]. For the case shown in Fig. 114, solutions (c) and (d) have more 

regular triangles with more homogeneous angles. 

 

 

Fig. 113 Degenerate points (red) for a Delaunay triangulation (blue). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 114 Non unique solutions for 2D Delaunay (blue triangulations) when more than   points (  , 

  ,   ,    and   ) are co-circular. 

The restricted Delaunay triangulation (Fig. 111) is the dual representation of the restricted 

Voronoi diagram. From a surface reconstruction point of view, the restricted Delaunay 

triangulation represents the triangles which are restricted to the surface sought. However, in 

surface reconstruction applications, the surface is not known beforehand, and therefore the 

restricted Delaunay triangulation cannot exactly be built. Indeed, all mesh reconstruction 

algorithms seek to approximate the restricted Delaunay triangulation of the underlying surface 

by means of some assumptions and heuristics which will be presented in section 2. 

 

The complexity of an algorithm reflects the time, in seconds, it would need to run and the 

space, in units of memory, it would need to use for storage. The complexity depends on all, 

the size of the input, the size of the output and the number of operations to perform during 

runtime [187]. The optimal algorithm for the 3D Delaunay triangulation is          , the 

worst case being       where   is the number of input data. In a more general case, and 

according to [188], Delaunay complexity in  -dimensions is as given in (40). 

          
 
   (40) 

Optimality can be reached when either the incremental or the divide-and-conquer algorithms 

is used, but only for specific sampling conditions as described in [189], [190] and [191]. 
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An incremental Delaunay triangulation algorithm is proposed in [192] for the 

reconstruction of surfaces embedded in spaces of arbitrary dimensions. CGAL libraries also 

offer an incremental Delaunay triangulation algorithm in two and three dimensional spaces 

(Fig. 112 and Fig. 115). 

 

 

Fig. 115 3D Delaunay triangulation (green) of points in the space [183]. 

1.c  Gabriel graph 

The Gabriel graph is another graph for data points. It is not a basis for surface 

reconstruction algorithms but a tool serving as a criterion or inspiration to some of the surface 

reconstruction algorithms such as the geometric convection algorithm developed by Chaîne 

[173]. The Gabriel graph is also a graph linking points based on neighborhood. However, 

unlike the notion of neighborhood of the Voronoi diagram, the points that are linked together 

are the points that form a segment defined as the diameter of an empty circle in 2D (Fig. 

116b); or the points that form a triangle defined as the inscribed triangle of the great circle of 

an empty sphere in 3D. For the sake of simplicity, consider points in Euclidean space E² and 

then refer to the intuitive algorithm of Gabriel graph as the process of passing a circle having 

the segment, linking each couple of points, as its diameter. The boundary    of   passes by   

points, say    and   . If the circle is empty of other points in the dataset, then the segment      

belongs to the Gabriel graph (Fig. 116b). The Gabriel graph is a subset of the Delaunay 

triangulation of a given dataset. It is therefore sufficient to pass a circle through Delaunay 

segments only. 
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(a) 

 

(b) 

(c) (d) 

Fig. 116 (a) A non empty circle of diameter     ; (b) an empty circle of diameter     ; (c) Delaunay 

triangulation; (d) The Gabriel graph, a subset of the Delaunay triangulation: only Delaunay edges are 

considered as diameters of Gabriel circles. 

2.  Mesh reconstruction by combinatorial structures 

The mesh reconstruction algorithms that will be presented here rely on the construction of 

the Voronoi diagram and the Delaunay triangulation. These algorithms are studied and 

compared in the aim of assessing their capacities and eventually applying them to measured 

data of aspherical and freeform surfaces. 
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2.a  Sculpture 

The sculpture algorithm is among the first algorithms in the history of surface reconstruction and 

computer graphics. Boissonnat in [193] uses a volumetric approach to the problem by starting with the 

3D Delaunay triangulation of the points. The basic idea behind this algorithm is that points must all 

belong to the boundary of the end-result convex polytope (  ). A polytope is a geometric object with 

flat sides and is a term that refers to a generalized form of polygons to any dimension. In 3D, a 

polytope is a polyhedron. In order to maintain the shape as a polytope, tetrahedra having at least one 

vertex inside the convex hull of the points and the greatest circumscribing sphere at the same time 

must be sculpted out. The condition to be satisfied is that    must remain a polytope all along the 

iterations. It is to note that the interior of the convex hull is also the interior of the Delaunay 

triangulation. The remaining tetrahedra approximate the shape of the measured object. Boissonnat 

proved that performing Sculpture comes back to the following rule [193]: "The only tetrahedra that 

can be eliminated are those with exactly one face, three edges and three points on   , or those with 

exactly two faces, five edges and four points on   ". In 2D, the idea behind the algorithm goes back 

to searching for interior points to the Delaunay complex and testing incident facets (Fig. 117a). When 

an interior point is detected, all incident facets/triangles which have at least one edge belonging to    

are examined and the triangle with largest circumscribing circle is eliminated (Fig. 117b). The 

resulting shape is a volumetric approximation of the measured object (Fig. 117c). 

 

(a) 

 

(b) 
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(c) 

Fig. 117 Sculpture algorithm. (a) Delaunay triangulation; (b) Detection of an interior point in the 

Delaunay triangulation; (c) Elimination of the incident triangle with largest circumscribing circle. 

In order to compare the algorithms we are presenting in this section, we consider a simple 

closed curve represented by points in the plane. The Sculpture algorithm is firstly applied and 

the result is shown in Fig. 118. As we can see in this example, the interior point criterion is 

not sufficient for having a proper mesh reconstruction because it returned a rather volumetric 

reconstruction. 

 

  

(a) (b) 

Fig. 118 Sculpture (green) applied on a closed curve represented by the red points. (a) the Delaunay 

triangulation of the points; (b) the mesh reconstruction containing a lot of interior segments. 

Data points

Delaunay
triangulation

Data points

Sculpture
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2.b  Alpha Shapes 

The method of  -shapes introduced by H. Edelsbrunner and E. Mücke [185] is inspired 

by the work of Boissonnat discussed in the previous paragraph.  -shapes, however, do not 

seek to build a volumetric mesh on the points like the sculpture algorithm but the boundary of 

the volume that would be the boundary of the shape sought.  -shapes are a generalization of 

the convex hull of the points and the shape retrieved is denoted by   .    is not necessarily 

manifold nor convex, and can contain simplices of lower dimensions than the ambient 

dimension of the points' space. 

The idea behind the  -shapes is intuitive. Not only can it be seen as a surface 

reconstruction algorithm, but also as a morphological filtering technique. In other words, a 

parameter   represents the diameter of a sphere that must be passed across triangles and be 

maximal, meaning that it must be empty of other points in the set when passing through   

points. We refer to the same example mentioned by Edelsbrunner and Mücke in [185]. 

Imagine that the space of the points is a mass of ice-cream and that the points are chocolate 

pieces. Say the chocolate grains are fixed and cannot move or be removed and that ice-cream 

can be carved away using an unchanging spoon diameter. The algorithm of  -shapes is pretty 

much like carving away as much ice-cream as possible, emptying the space around the 

chocolate grains. By analogy,  -shapes seek to keep triangles and segments that have a 

circumscribing sphere empty of other points in the dataset. For a  -simplicial complex,  -

simplices are examined. Fig. 119 clarifies how simplices are kept or rejected. In 2D, a circle   

is passed through edges. The boundary of   contains points which form the  -simplex    

studied. If   is empty of other points,    is said to be  -exposed. The graph obtained after 

passing through all simplices contains all and only  -exposed simplices. 

 

 

Fig. 119  -shape condition featuring a  -simplex    (red segment). (a) non  -exposed simplex; (b)  -

exposed simplex. (red points belong to the dataset) 
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The  -shape of a point-set can be seen as a sub-complex of the Delaunay triangulation. 

Therefore, a more efficient and simpler approach is to solve for the  -shape by extracting  -

exposed simplices from the Delaunay triangulation of the dataset. The simplices that are 

tested are (   )-simplices of the Delaunay triangulation. A sphere of pre-defined diameter 

  is passed through Delaunay triangles (not tetrahedra) and removes non  -exposed 

simplices. The value of   is chosen to be the optimal value calculated based on as many 

intervals as there are (   )-simplices in the Delaunay complex. Each Delaunay triangle 

defines an interval for which, a sphere, of a certain diameter value within the interval, is 

empty of points in the dataset. The combination of all intervals gives the best estimate for  . 

Remark that the computed   might not satisfy all intervals. In fact, this explains why, most of 

the time, an  -shape gives a non-manifold surface. Once   is chosen the intervals determined 

for each    make the algorithm directly infer the class of a simplex. First, let's define the  -

complex, a simplicial complex deduced from the Delaunay triangulation. 

 

Let    be a k-simplex (       ) of the Delaunay triangulation, and    the radius of the 

sphere    containing   . Let all the spheres be maximal and define   as the smallest value 

corresponding to the smallest radius of all the Delaunay spheres. The  -complex    is the 

collection of simplices which belong to      and the ones which are incident to (   )-

simplices of   . 

 

        

   Sphere containing    Great circle of    

containing    

Circle with diameter    

     All tetrahedra with      All triangles with      All edges with      

 

According to the classification proposed by Edelsbrunner and Mücke [185], the simplices are 

classified such that, a k-simplex    that belongs to the  -complex    is said to be: 

 

1. Interior  if        

2. Regular if        and is incident to   higher dimension simplices of    

3. Singular if        but is not incident to higher dimension simplices of    
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Fig. 120 (   )-simplex as a common face between    -simplices 

As shown in Fig. 120, for a (   )-simplex such as           which is nothing but 

triangle ABC, the algorithm seeks to determine whether    is interior, regular or singular.    

is adjacent to two  -simplices, tetrahedron ABCE and tetrahedron ABCD. By computing the 

circumscribing spheres to each of the tetrahedra, the respective radii of those spheres can be 

deduced. Refer to ABCD as    
 and to ABCE as    

 and their respective radii as    
 and 

   
. Suppose that    

    
. 

 

 Case 1:      
     

    and    
   , and    is not  -exposed so it cannot belong 

to the  -shape being an interior simplex. 

 Case 2:    
      

     
    but    

   , and    is  -exposed so it belongs to 

the  -shape being a regular simplex (   delimits    
   ). 

 Case 3:      
    

     
    and    

   . What determines the class of    is the 

radius    of its circumscribing circle. Here two cases are possible: if     , then    is  -

exposed and belongs to the  -shape being a singular simplex (   
    and    

   ).  

   is not  -exposed otherwise. 

 

The simplices constituting the  -shape are the regular and singular simplices which are  -

exposed. The application of the algorithm on the same previous curve example is plotted in 

Fig. 121 and starts with the Delaunay triangulation of the points (Fig. 118a). The best value 

for   in this example is equal to     and is selected after trying out multiple values. The 

reconstructed mesh is in all cases non-manifold and for low values of   (Fig. 121a), not 

continuous. 
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(a) (b) 

Fig. 121  -shape (green) applied on a closed curve represented by the red points. (a) for      ; (b) 

for      . 

Provided that an optimal value for   is hardly found, and that finding it requires user 

intervention, the  -shape's algorithm cannot be made automatic. Finding a global  -interval 

satisfying all individual  -intervals of every simplex is practically unachievable. The output 

mesh has locally-manifold zones where   is within the  -intervals of the simplices belonging 

to this zone. 

The complexity of the  -shape's algorithm is also considerable as it depends on three 

algorithm key steps: the Delaunay triangulation of the points, the search for  -intervals of all 

Delaunay  -simplices and the sorting of these intervals and the extraction of  -exposed 

simplices. All three steps have complexity       in the worst case where   is the number of 

points in the dataset. Therefore, for a large dataset of some hundred thousands of points, the 

 -shape algorithm is demanding in terms of units of computational time and memory storage. 

Finally, this algorithm presents no guarantees, meaning that no theory proves any correct 

reconstruction (no relation to the  -sampling condition). 

 -shapes have seen improvements, yet, guarantees are still lacking. Some works have 

been done on elliptical  -shapes and conformal  -shapes [194]. Non-spherical  -shapes 

provide a higher flexibility on individual  -intervals, and by that, make them span larger 

ranges. Elliptical  -shapes increase the likelihood of finding a value for   which covers more 

Data points

alpha-shape alpha-shape

Data points
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 -intervals than regular  -shapes do. Another step up on  -shapes is the Ball Pivoting 

Algorithm developed by Bernardini et al [195]. 

 -shapes are sometimes used as a filtration technique such as stated by Zhang et al in 

[25].  -shapes can indeed serve as a filter for point-sets according to points spacing. For a 

given value of  , a sphere filters out points that come out to be inside the sphere when it is 

passed through three points. 

 

The  -shapes algorithm is implemented in MeshLab 1.3 as well as in CGAL libraries 

[183,196]. Some applications of the  -shapes in MeshLab are shown in Fig. 122. The 

machine used has a     GHz  -cores processor and   Gb of RAM. The  -shape 

reconstruction of the turbine blade dataset of some         points is done in about    s. The 

figure shows three different reconstructions for three different values of   all chosen by the 

user. Fig. 122b illustrates the  -shape with      . The value is very close to the samples 

density in the  -direction and that is why it outputs a relatively fine mesh with some missing 

triangles. Fig. 122c takes a large value of      . The output mesh exhibits non-fine regions 

encircled in red. The reason is that the value of   is very large and that the sphere of diameter 

  cannot fit to the samples density in those regions, i.e., the sphere touches distant points and 

cannot go any further where points are closer because the sphere would contain other points 

and the simplices under test would be non  -exposed. 

 

 

(a) 

 

(b) 
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(c) 

Fig. 122  -shape reconstruction of the blade using MeshLab. (a) for       (missing triangles); (b) 

for       (large sized triangles, i.e. bad connectivity); (c) for    . 

2.c  Crust 

The Crust and all of the improvements of this technique have been developed by Amenta 

et al [170,171,179,197–199]. The Crust is another mesh reconstruction algorithm based on the 

Voronoi diagram and the Delaunay triangulation. This algorithm is the first to give 

geometrical and topological guarantees derived from mathematical proof based on the medial 

axis and the  -sampling condition [171]. Recalling the definition of the medial axis of a 

curve/surface, it is the locus of the centers of circles/spheres that are tangent to the 

curve/surface in two or more points (Fig. 105). The particularity of those centers is that they 

belong to the Voronoi diagram of the dataset (Fig. 123). They are in fact some of its Voronoi 

vertices and the centers of circles/spheres circumscribing Delaunay  -simplices. This 

intrinsically means that some Delaunay (   )-simplices which are facets of Delaunay  -

simplices constitute the restricted Delaunay triangulation of the underlying curve/surface. 

Consequently, by using an approximation of the medial axis given by a subset    of Voronoi 

vertices, the Crust algorithm computes an approximation of the object being discretized. 
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Fig. 123 Medial axis of a curve approximated by Voronoi vertices. 

In 2D, all the Voronoi vertices approximate the medial axis therefore they all belong to 

  , but in 3D, only part of them does. In this case, Amenta et al [179] introduced a method to 

identify those vertices, called the poles of  , and state that they are the set of couples of 

farthest Voronoi vertices from    , located on opposite sides in the Voronoi cell of   (Fig. 

124). The poles are denoted by    and   . 

 

 

Fig. 124 A 3D Voronoi cell        of a point   with the poles    and   , one on each side. 

The Crust is tested on the same set of points representing a closed curve to assess its outcome. 

The result is plotted in Fig. 125d after showing the major steps of the algorithm (Fig. 125a, b 

and c). The algorithm starts with the Voronoi diagram of the cloud of points   which is 

already implemented in CGAL and Qhull libraries [183]. Then the union of   and the 

Voronoi vertices    make up an augmented point-set             and the Delaunay 
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triangulation of      is constructed. The Crust proceeds by keeping the Delaunay (   )-

simplices whose vertices are points of   (Fig. 125c). 

This procedure does not necessarily lead to a proper reconstruction, therefore an additional 

step cleans the mesh from eventually remaining non-manifold elements by checking out 

triangles which are badly oriented according to the geometrical equivalence condition on 

normal directions. The normal to the surface is approximated by the poles (Fig. 124) and the 

vector             is a good indication of the normal orientation at point   on the surface. So if the 

angle between the normal to a given triangle and the normal to the corresponding   is greater 

than the limit angle, the triangle is suppressed. 

 

The Crust algorithm requires a Voronoi diagram construction and another Delaunay 

triangulation. Both are equivalent in complexity since they are dual representations. So the 

overall complexity of Crust is      . 

 

1. Voronoi diagram         points 

2. Identification of poles and normal approx.              poles 

3. Delaunay Triangulation          points 

4. Normal filter        triangles 

Table 19 Complexity of the Crust algorithm's steps. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 125 (a) Points (red) and their Voronoi diagram (blue). (b) Delaunay triangulation (green) of the 

union of the points (red) and the Voronoi vertices (black). (c) Crust, a subset of Delaunay (highlighted 

in yellow). (d) Crust of a closed curve in 2D (green) without any interior segments. 

The outcome of the Crust mesh reconstruction on the example of Fig. 125 is correct as the 

output approximation curve is  -manifold when the  -sampling condition is satisfied as well 

as its lower bound   . Fig. 126 illustrates a counter example where    is not satisfied leading 

to the formation of flat Delaunay tetrahedra. The problem with flat tetrahedra is that more 

than one facet of a tetrahedron are almost coplanar so they all approximate the restricted 

Delaunay of the curve and are all output in the mesh. 
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Fig. 126 Example of Crust non-manifold mesh reconstruction (double layer) where the lower bound 

on the  -sampling,   , is not satisfied. 

The Crust algorithm is implemented in MeshLab, thus, a test on the turbine blade and another 

on the aspherical lens are run and shown in Fig. 127 and Fig. 128. The blade reconstruction is 

obviously non-manifold containing large triangles and an improper connectivity among 

points. The lens reconstruction is also non-manifold, however, with much less non-manifold 

elements than in the example of the blade (Fig. 128a). Again, this non-manifoldness is due to 

oversampling which creates irregularities in the Delaunay triangulation. We will elaborate 

more on this matter in the next paragraph because it is easier to understand this issue with the 

Cocone algorithm. A cleaning operation is available in MeshLab to remove triangles in the 

vicinity of non-manifold edges and the result of this operation is plotted in Fig. 128b. The 

latter is shown to contain missing triangles in the output mesh. The overall process of 

reconstruction takes about    seconds for        points. With the complete original cloud of 

points which contains           points, the process does not reach completion, knowing that 

the threshold that we found on the number of points for performing a Crust reconstruction in 

MeshLab is around         points. 

 

Crust

Data points
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Fig. 127 Blade mesh reconstruction using Crust in MeshLab. 

 

(a) 

 

 

(b) 

Fig. 128 The aspherical lens with          points and snapshots of its Crust mesh reconstruction in 

MeshLab: (a) original mesh containing non-manifold edges; (b) cleaned mesh after removing triangles 

near non-manifold edges (output mesh contains some missing triangles). 
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2.d  Cocone and its variants 

On the basis of the Crust algorithm, Amenta et al introduce the Cocone algorithm [170] 

which will be in turn followed by some heuristics and improved variants [174,200–202]. 

Cocone is presented as a simplified version of the Crust with reduced algorithmic complexity. 

Up to step   where the identification of poles occurs, both algorithms are identical. However, 

instead of building the Delaunay triangulation of the augmented point-set such as in step   of 

Crust, the Cocone directly performs a test called the Cocone test. This test consists of 

verifying whether a Delaunay triangle having a vertex      is a good approximation of the 

tangent plane at   . A good approximation means that the angle between the normal vector at 

   and the triangle lies within a pre-defined tolerance angle of 
 

 
  , where   is set to a 

certain value and is referred to as the Cocone angle. Cocone is also based on the  -sampling 

criterion and by that states that for an  -dense sampling  , a point      has an elongated 

Voronoi cell in the direction of the normal      at   . The normal at    is the vector     
             from 

   to its corresponding outside pole   
 . The tangent plane is nothing but the plane having the 

normal vector     
            . Since this vector is an approximation of the normal, the tangent plane is 

also an approximation. By allowing a tolerance angle   derived from the  -sampling 

condition, Amenta et al demonstrate that any triangle having    as a vertex and found within 

this angle tolerance, is a valid triangle that passes the Cocone test [170]. The Cocone can be 

thought of a double cone representing this angle tolerance within which the restricted 

Delaunay triangles must theoretically be found. The double cone has apex    and axis     
             

(Fig. 129). Not every triangle that passes the Cocone test belongs to the restricted Delaunay 

triangulation of the points. Only triangles having passed the test with respect to their three 

vertices are part of the output surface mesh. 
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Fig. 129 The Cocone test at a given point in its Voronoi cell (adapted from [180]). 

The Cocone algorithm starts with a Delaunay triangulation of the point-set. This convex 

representation of the set of points, like any convex representation, allows for the identification 

of each of the interior and the exterior subspaces. When inside and outside poles are 

identified, the normal orientation of the point-set is done and only positive normals oriented 

towards   
  are considered (Fig. 129). The Cocone test then traverses all Delaunay triangles 

with a predetermined angle  . The test on the closed curve is shown in Fig. 130. 

 

 

Fig. 130 Cocone applied on a closed curve represented by the red points with         . The 

reconstruction is  -manifold and an angle range for   varying from      to      works just fine. 

Data points
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Among the facets which pass the Cocone test, only a subset belongs to the restricted 

Delaunay representation of the underlying surface. The remaining ones are either found in the 

vicinity of sharp edges or flat Delaunay tetrahedra. The reason why these pass the Cocone test 

is explained based on the following example which we restrict to flat Delaunay tetrahedra 

only (Fig. 131). 

 

 

Fig. 131   Flat Delaunay tetrahedra in 3D explaining the issue of having missing triangles in the 

output mesh. 

In fact, the facets of a flat Delaunay tetrahedron are almost coplanar, meaning that when they 

are approximated by the Cocone test, they have a very high probability of falling within the 

bounds of the double cone. Consequently, the choice of   is critical in this configuration as an 

extreme value for the angle becomes required (      in 2D and        in 3D). Choosing an 

extreme value evidently deteriorates the reconstruction in the other regions. Keeping a 

moderate value results in superimposed layers of triangles like it is the case for both the Crust 

and the Cocone algorithms. 

Nonetheless, the Cocone algorithm applies a heuristic in order to remove triangles that are 

adjacent to sharp edges (Fig. 132) and to extract the outer layer of triangles in regions where 

triangles are superimposed as a result of the existence of flat tetrahedra (Fig. 133a). 

 

 

Fig. 132 left: e is a normal edge. Right: e is a sharp edge [180]. 

In particular cases, this heuristic solves the problem encountered by the Crust algorithm 

shown in Fig. 126. However, this heuristic opts for the outer layer (by choice) and does not 
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rely on a founded methodology for selecting the facets that are part of the output mesh. If we 

confront this issue to real measured data, the superposition of layers could be either the result 

of the presence of noise or outliers or the result of scan merging (case of the turbine blade 

measurement). Therefore, how to really reconstruct such regions, even on a curve, is not clear 

nor robust (Fig. 133b). 

 

  

(a) (b) 

Fig. 133 Mesh reconstruction is a region of superimposed layers of points: (a) A Cocone heuristic that 

opts for the outer layer. (b) Several ways are possible and none can be judged to be a better solution. 

The algorithm is then tested on both the aspherical lens and the turbine blade but gives 

incomplete non-manifold reconstructions. For the aspherical lens, some triangles have been 

eliminated by the Cocone reconstruction process (heuristic) in regions where sharp edges and 

flat Delaunay tetrahedra are present (Fig. 134). For the turbine blade mesh reconstruction, not 

only there are missing triangles, but also non restricted Delaunay triangles and therefore the 

mesh is also non-manifold (Fig. 135). 
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Fig. 134 Aspherical lens reconstruction using the Cocone approach for a dataset that does not satisfy 

the lower bound on the sampling density. 

 

Fig. 135 Turbine blade mesh reconstruction using the Cocone algorithm. 

When simulating an  -sampling condition satisfying the lower bound (   found after many 

tests), the Cocone reconstruction of the aspherical lens becomes correct and manifold (Fig. 

136).  
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Fig. 136 Aspherical lens reconstruction using the Cocone approach for a dataset that satisfies the lower 

bound on the sampling density. 

Variants of the Cocone algorithm are proposed with some additional heuristics to deal 

with under-sampling, large volumes of data and noise [180]. The SuperCocone [174], or more 

recently the LocCocone (Localized Cocone) [201] algorithms are an implementation of the 

Cocone algorithm with local resolution which allows processing large volumes of data. They 

are a kind of "Divide and Conquer" algorithms in which an Octree subdivision is applied 

[203]. It splits the space of the points into cells and then the reconstruction occurs in each 

individual cell  . In order to have a well-connected mesh from the subdivided partitions, the 

local reconstruction accounts for a small neighborhood in the adjacent cells to  . This results 

in an augmented cell    such as shown in Fig. 137. The LocCocone algorithm presents 

guarantees based on the  -sampling condition with an Octree subdivision that controls the 

number of points in   and therefore the size of  . According to the results published by Dey 

et al, the runtime for LocCocone as compared to SuperCocone is    times slower [201]. 
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Fig. 137 A subdivided cell   and the augmented cell   . The black points are points contained in   

and red points are points added from the neighboring cells. 

Other extensions to the Cocone algorithm exist and these are the TightCocone and the 

RobustCocone [200,202]. These algorithms were especially developed for datasets with 

undersampling and noise, respectively. The TightCocone adds a routine to detect 

undersampled regions and update them by identifying Voronoi cells which are not long and 

thin. The RobustCocone deals with noisy data up to a certain scale proportional to the 

sampling density and following a Gaussian distribution. Both algorithms have very specific 

sampling conditions to return reliable results, thus they are limited to particular cases which 

cannot be easily found in metrology applications. 

2.e  Natural Neighbors Interpolation (N.N.I) 

This method is developed by Boissonnat and Cazals [204] at the French Institute for 

Research in Computer Science and Control (INRIA). It has been implemented in Catia V5 but 

was rapidly improved and modified leaving no trace of what is actually running in this 

software in matter of mesh reconstruction. The particularity of the Natural Neighbors 

Interpolation (N.N.I) is that it uses a blend of implicit techniques and combinatorial 

structures. Like the previously discussed algorithms (Crust and Cocone), N.N.I mesh 

reconstruction technique assumes a   -smooth, closed  -manifold with no boundary and no 

self intersections. It also assumes an  -sampling, but, the value of the parameter   is slightly 

B 

B' 
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more flexible. It also assumes that the point-set orientation is either given or can be robustly 

computed so that interior and exterior subspaces are identified. 

When the data points do not have a uniform distribution, it is not easy to establish the 

surface neighborhood of each point. The  -nearest neighbors technique and the Voronoi 

diagram determine the 3D neighborhood but do not provide notions about surface 

neighborhood. Nevertheless, natural neighbors, introduced by Sibson [205] and used by 

Boissonnat and Cazals [204] are a good tool to determine surface neighborhood. The natural 

neighbors are calculated from the Voronoi diagram of the point-set and are computed using 

(41). Fig. 138 illustrates the technique on a 2D Voronoi graph. A point   is arbitrarily inserted 

in the Voronoi diagram of the points and the intersection of its Voronoi cell,       , with the 

original Voronoi diagram of   defines the natural coordinate of  .        cuts the Voronoi 

cells of points    to    and by that concludes that points    to    are natural neighbors among 

themselves. 

   
    

   
   

    
   

   (41) 

where    
    is the area (respectively the volume in 3D) measure of the portion         

intersected by       . Therefore the natural coordinate is nothing but the ratio of this portion 

with respect to the total area (respectively the volume in 3D) of       . The closer the data 

point    is to  , the larger is its area/volume measure. In fact,   can be seen as the center of 

gravity of its natural neighbors. An exception to the area/volume measure occurs when   

intersects a Voronoi cell at infinity, in which case, the value of    
    is infinite. Boissonnat 

and Cazals suggest adding a bounding box around the cloud of points in order to limit the 

workspace and throwing out exceptions. 

 



 

176 

 

 

Fig. 138: Natural neighbors. Point insertion in a Voronoi diagram in 2D. 

Once the natural coordinates have been assigned, they serve as weighting coefficients in the 

N.N.I which is in turn calculated on the basis of an implicit distance function      

weighted by    
    (42). The interpolating function is a first approximation of the underlying 

surface of the point-set. The function naturally takes a value of zero at the data points since 

   
      at   . 

         

          
     (42) 

Where    
    is the signed distance function calculated from the points [168]. The 

assumption about point-set orientation indicates the sign of      and states whether a point is 

on one side (interior) or the other side (exterior) of the convex object that is reconstructed. 

Hence, once   is calculated, an implicit surface is created and delimits interior and exterior 

sides of the point-set. Finally, the mesh is extracted by searching for Delaunay triangles which 

are close to the implicit function. The method to identify those triangles goes by searching for 

bipolar Voronoi edges having one vertex outside and another inside the confinement of the 

implicit function. 

Recall that a Voronoi edge is orthogonal to its dual Delaunay triangle. So if a Voronoi 

edge is an approximation of the normal direction at some location, it follows that its dual 

representation approximates the tangent plane. The Voronoi edges that have each vertex on 

one side of the implicit surface would not only infer that their dual Delaunay triangles 

approximate the tangent plane, but also that these triangles are close to the surface and are a 
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good approximation of it. Detecting bipolar Voronoi edges reduces to performing a simple 

product of the   values of their vertices. Let   and   be the vertices of a Voronoi edge. A 

Voronoi edge is said to be bipolar if the product             meaning that   and   are 

on opposite sides of the surface and their   values take opposite signs (Fig. 139). 

 

 

Fig. 139: Natural Neighbors Interpolation: bipolar Voronoi edges (orange highlighted segments) and 

mesh extraction (green). (Legend: Data points (red); implicit function        (black curve); 

Voronoi diagram (blue)). 

The same example of the closed curve is tested with N.N.I and the result is shown in Fig. 

140. We show the Voronoi diagram (blue) because it is the basis for N.N.I. mesh 

reconstruction. The reconstruction is proper for this example since the  -sampling is satisfied. 

 

 

Fig. 140 N.N.I (green) applied on a closed curve represented by the red points.  Some bipolar Voronoi 

edges are highlighted. The reconstruction contains no interior segments. 
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The complexity of the N.N.I algorithm is covered by the complexity of the 

Voronoi/Delaunay structures, therefore, it is quadratic (Table 20). Since the algorithm 

calculates areas/volumes and then computes for the natural coordinates this adds to the 

complexity of the point insertion operation done over the Delaunay triangulation. As 

compared to the Cocone algorithm, N.N.I has a larger complexity. Point insertions and bipolar 

Voronoi edges search are more complex operations than the filtration step of Cocone. The 

algorithm assumes an  -sampling, consequently, it offers the same surface reconstruction 

guarantees as the Cocone or any other algorithm based on this assumption. The natural 

neighbors might come up being not exclusively close points on the real surface as this 

problem occurs for under-sampled data. The main limitation of this algorithm is that it 

assumes that the normal directions at each data point are well approximated or known in 

advance. 

 

1. Voronoi diagram/Delaunay triangulation         points 

2. Normal approximation (if any)              poles 

3. Natural coordinates/implicit function             point insertions 

4. Mesh extraction        Voronoi edges 

Table 20: Complexity of the N.N.I algorithm steps. 

2.f  Geometric Convection 

The geometric convection algorithm developed by Chaîne is a geometric tool for surface 

reconstruction based on the Delaunay triangulation of the point-set [173,206]. Given a closed 

surface    enclosing a point-set  , the convection of this surface along the gradient field of the 

distance function        computed on   converges to a piecewise linear "pseudo-surface" 

that approximates  . The term "pseudo-surface" is picked from Chaîne in [173] and denotes a 

piecewise linear surface made of oriented Delaunay triangles which can join or disjoin after 

each iteration. The initialization of    are the Delaunay facets constituting the convex hull of   

for which the normal directions can be computed easily. Consequently, the facets are oriented 

inwards and undergo the Gabriel test. Facets that fail the Gabriel test are the facets that are 

removed from    and replaced by their complementary facets in the corresponding Delaunay 

tetrahedron (Fig. 141a and Fig. 141b). 
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(a)          (b)    (c)     (d) 

Fig. 141 The geometric convection algorithm and the Gabriel test for a 2D curve. 

The Gabriel test consists of checking the enclosing of the inner half-ball of each of the 

Delaunay facets. If the half-ball contains points from  , it means that the current Delaunay 

facet should be removed and replaced by new facets which should be re-oriented inwards if 

they happen to be exteriorly oriented. The process is repeated for all facets of the evolving    

until all facets pass the test. The normal direction to each facet belonging to    is updated at 

each iteration. 

 

The complexity of the algorithm is equivalent to that of the Delaunay triangulation as it is its 

most complex routine (Table 21). 

 

1. Delaunay triangulation         points 

2. Convex Hull of          points 

3. Oriented Gabriel test        tetrahedra 

Table 21: Complexity of the geometric convection algorithm steps. 

The conditions to use the geometric convection algorithm are that the underlying surface 

to the points must be closed and embedded in   . The  -sampling criterion is required in 

order to guarantee geometrical closeness and topological equivalence. The major limitation of 

the geometric convection algorithm are highly concave regions which are also referred to as 

pockets and shown in Fig. 142. The actual Delaunay facet under test (segment in 2D) passes 

the Gabriel test although it must not belong to the output mesh. 
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Fig. 142 Pockets: high concavity regions not solved by geometric convection. 

2.g  Other algorithms 

The Wrap and the Flow complex are other developed algorithms in the subject matter of 

mesh reconstruction [169,207], [208]. The algorithms differ in the mesh reconstruction 

technique from the previous ones although the Delaunay triangulation is still the basis for this 

class too. For both techniques, functions describe a flow relation among Delaunay simplices, 

a subset of which constitute the mesh [135]. Comparison of those algorithms with all the 

above is summarized in Table 22. 

There has also been the Tangential Delaunay Complexes algorithm developed by 

Boissonnat and Ghosh which relies on the notions of tangential neighborhood [42], [209]. 

Instead of solving the problem according to natural neighbors interpolation (N.N.I) and 

having to reason based on a global Voronoi diagram, the method of tangential complexes uses 

a technique to create a local system of coordinates. 

2.h  Comparative study 

All of the above algorithms belong to the family of algorithms which require the 

computation of a Voronoi diagram and a Delaunay triangulation. Although they seem 

different, they all aim at approximating the restricted Delaunay triangulation to the underlying 

surface. In theory, if the surface is known, the restricted Delaunay set is unique. But since the 

surface is unknown and only unorganized points are given, mesh reconstruction falls within 

the family of approximation methods. The above presented algorithms are all based on the 3D 

global Delaunay triangulation of the point-set, except for the Localized Cocone method which 

computes local Delaunay sets after hashing the points space. The algorithms are all equivalent 
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with respect to complexity as they depend on the Delaunay triangulation which is the most 

computationally expensive task (     ). The sculpture algorithm and the  -shapes are the 

earliest algorithms in this field and are excluded from the previous statement. Table 22 

summarizes the performances of each algorithm with respect to the criteria defined at the 

beginning of this chapter, the most important being the guarantees that each algorithm 

provides, its complexity and the initial conditions it requires. Note that we have chosen the 

most relevant algorithms without redundancies, i.e. we put Cocone to represent the basic 

Cocone algorithm and its variants, TightCocone and RobustCocone. Localized Cocone is the 

most recent Cocone variant and an enhanced SuperCocone algorithm and performs surface 

reconstruction locally. 

 

   Complexity Guarantees Large datasets 

Input 

requirement 

Sculpture               

 -shapes        Uniform 

sampling 

Cocone                

N.N.I              
Points normal 

orientation 

Wrap                

Convection    (local)     
Points normal 

orientation 

LocCocone    (local)             

Table 22 Comparison of mesh reconstruction techniques based on combinatorial structures. 

The algorithms without guarantees are the algorithms that are not based on any 

assumption with respect to sampling density. The Sculpture algorithm and the  -shapes are as 

such. The other algorithms in the list present guarantees based on the  -sampling density 

criterion. However, as it has been seen in this chapter, the guarantees remain theoretical 

because they are based on the knowledge of the theoretical surface and its medial axis.  

For all the algorithms based on combinatorial structures, an additional key condition being a 

lower bound on sampling density must also be satisfied. This lower bound    is not easily 

achievable along with the  -sampling condition. In practice, for the measurement of an 
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unknown freeform surface, the sampling density cannot be controlled because the surface 

curvature and normal orientation are usually unknown [210][211][212][10][11]. 

Having a quadratic complexity in the number of points, large datasets can be processed as 

mentioned in Table 22. Nevertheless, computational time will not, in general, be acceptable 

for metrology applications requiring fast processing, especially that further operations are yet 

to be performed in terms of the classical freeform surface reconstruction (Fig. 102). 

Some of the algorithms source codes are found online or implemented in software and are 

tested for comparison on a cylindrical artifact (Table 23) [215][196][183]. For this example, 

we look for geometrical and topological correctness through statistical information on the 

generated mesh. The number of triangles in the mesh should be minimal (   ) without 

having undesired holes in the mesh. The size of the triangles should be proportional to the 

sampling density. 

 

Table 23 Comparison of selected algorithms software for the mesh reconstruction of a cylindrical 

artifact with respect to computational time and some elements that infer about geometry and topology 

correctness (SupCoc: SuperCocone; TigCoc: TightCocone; N.N.I: Natural Neighbors Interpolation). 

For the example in Table 23, the sampling is taken as uniform, points are sampled on a 

theoretical CAD cylinder and the distance separating any two consecutive sampled points is 

about      mm. So, based on the mesh triangles area it can be observed that the algorithms 

return a reasonable value (almost equal to         . Inconsistencies and undesired holes can 

however be present in the output mesh for all the listed algorithms. 

For the case of the aspherical lens, the algorithms have been tested and the results are 

reported in Table 24. The mesh triangles average area is slightly larger in order of magnitude 

 

 -shape 

MeshLab 

 -shape 

CGAL 
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N.N.I 
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Geomagic 

Number of 
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Computational 
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than the order of magnitude of the sampling density (point spacing is about ~       mm) 

for the case of the  -shape (
       

 
         ). 

 

Table 24 Comparison of selected algorithms software for the mesh reconstruction of the asphere with 

respect to computational time and elements that infer about geometry and topology correctness 

(SupCoc: SuperCocone; TigCoc: TightCocone and N.N.I: Natural Neighbors Interpolation).

For more complex surfaces such as the blade, the mesh reconstruction algorithms return 

bad results due to the complexity of the shape of the surface. The tip of the blade as well as its 

leading and trailing edges are all regions of high curvature containing overlapping points. 

Moreover, the nature of the scanning is done in lines of scan along which the longitudinal 

density is higher than the lateral density (Fig. 143). 

 

  

Fig. 143 Scanning of the turbine blade in lines of scan. Lateral point spacing (blue) is much larger than 

longitudinal spacing (green). 
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3.  Mesh reconstruction by implicit techniques 

As opposed to the techniques detailed previously, implicit mesh reconstruction 

techniques use implicit functions to approximate the restricted Delaunay triangulation of the 

underlying surface which is generally unknown [168,175,216–219]. These techniques have 

the advantage to adapt to the modeling of complex topologies [220] and maintain a simple 

data structure [175]. While explicit surfaces can localize and describe a point on the surface in 

an exact manner, implicit techniques approximate the surface by calculating an iso-contour 

associated to a scalar   of an implicit distance function. Contours with a scalar smaller than   

define the interior space of a surface and contours having scalars greater than   define the 

exterior space of the surface. The computation of a point on the surface is very difficult with 

implicit representations, but the computation of the normal vector and tangent plane at a given 

location is easy [168]. 

Fig. 144 illustrates the difference between an explicit representation of a circle and the 

implicit one. Also, the parametric representation which is explicit is also shown for this 

example. It can be observed that the implicit representation of the circle in Fig. 144 has a 

scalar equal to  . This means that the values of   and   which match the value of    are 

points on the circle of radius  . Points that satisfy            are points on another 

circle of radius     . 

 

 

Explicit:           

 

Parametric:  
 
    

        

        
         

 

Implicit:            

Fig. 144 Explicit, implicit and parametric definitions of a circle. 

In a more general way, an implicit function associates a scalar to a set of points in space 

                . For mesh reconstruction problems,   is usually a distance function 

that must be zero at the data points. Other implicit functions exist and are the radial basis 
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functions [216], [221], the polynomial bi-variate functions [217] and indicator functions such 

as Poisson functions [218]. 

Normal orientation of the point-set is key for the implicit function methods except for the 

Level-set methods. Normal directions are the first order approximation of the surface and are 

used to identify interior and exterior regions of the underlying surface. When the implicit 

function is determined and the surface is implicitly approximated, efficient methods can 

generate the mesh [222,223]. 

3.a  Tangent planes method 

Among the first published works in implicit mesh reconstruction, the tangent plane 

approximation method has been introduced by Hoppe et al and is the reference for the implicit 

mesh reconstruction methods [168]. It uses an implicit distance function      to approximate 

the tangent plane at each point. For all     where   is the neighborhood of a data point 

    , the method computes the distance separating   from   . Naturally, this function is zero 

when     , i.e.,          , and we refer to the set of solutions to this equation as the 

zero set of     . With this procedure, interior and exterior regions can be locally identified 

(Fig. 145), and, a contour tracing method for the zero set, such as the marching cubes, allows 

to obtain the mesh [224]. 

 

 

Fig. 145 The tangent planes method on a curve example.    is the distance separating a point   from 

its closest data point     . 

The algorithm starts with the assumption that the data may contain noise and thus are 

expressed as          where,    represents the noise vector and    is the projection of a 

data point    on the theoretical surface. Therefore    is the error vector oriented along the 
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normal direction to the surface. According to Hoppe et al, an acceptable sampling is given by 

the following inequality: 

                 (43) 

where,   is the radius of the sphere centered at a given point   on the theoretical surface. The 

condition is that the sphere contains at least one projection point    of a data point   . This is 

illustrated on a curve in Fig. 146. 

 

 

Fig. 146 The noise condition for the tangent planes method: a curve example. 

The signed distance given by      is calculated in the normal direction to each data point 

    . Normal estimation is deduced from the tangent planes estimation based on a discrete 

Principal Component Analysis (PCA) of  . For each point     , the  -neighborhood of 

each point is considered and a Least-Squares plane is fitted to the cluster of points and 

denotes the tangent plane    
 at   . The normal direction    and the center of gravity of the 

cluster of points    can be deduced. Among all    with point of application   , the algorithm 

initializes the normal orientation with the orientation of    of the point having the largest  -

component of   . All the other normal vectors are re-oriented according to the orientation 

chosen for this first vector according to the normal propagation method proposed by Hoppe et 

al [168].  

With the normal orientations of the points being approximated, each data point    is now 

projected onto    
 along   . The distance separating    from its projection is the distance    

(Fig. 145). If       , where   is a small predetermined tolerance, then        , 

otherwise,      is undefined. All the undefined values of      define the other contours 

having specific scalar values different from   as the contour with scalar value   determines 



 

187 

 

the curve/surface sought. Since the normal orientation is computed, the distance is signed and 

interior and exterior points are distinguished. 

 

1. Tangent planes approximation        points 

2. Tangent planes re-orientation        points 

3. Orientation propagation         points 

4. Signed distance function calculation        points 

Table 25 Complexity of the Tangent Planes method. 

The complexity of this algorithm depends on the complexity of the steps listed in Table 25. 

The most complex of all being the normal orientation propagation routine, the algorithm's 

complexity follows. Knowing that this step requires an Euclidean Minimum Spanning Tree 

routine (EMST) the complexity amounts to       for   points in the dataset. Nevertheless, 

the algorithm can be simplified by applying an Octree or a  -D tree subdivision to the set of 

points and reduce the EMST complexity to the order of      . 

The tangent planes algorithm requires the estimation of normal directions of the point-set and 

this issue is not so simple. Although the tangent planes approximation is relatively simple, 

defining a globally consistent orientation for the surface is the major difficulty of the 

algorithm as stated by Hoppe et al [168].  

3.b  Level-set 

The Level-set method developed by Zhao et al is an implicit mesh reconstruction method 

that relies on the calculation of a distance function and the solution of a variational partial 

differential equation [175]. The formulation of the surface shape includes the minimization of 

oscillations between data points allowing for an implicitly smooth reconstruction. This 

method has inspired the work of Chaîne [173] presented in section Chapter  3 - II. 2.f and 

other works that are based on making an initial surface evolve to the underlying shape of the 

points. 

The main idea is to start from an initial enclosing surface that roughly approximates the 

underlying surface to the points and transform it to a minimal representation of the points. 

The process involved in this surface representation evolution is based on minimizing the 

gradient flow of an energy functional and is called the Level-set method. It can be perfectly 

assimilated to an optimization problem based on the gradient descent criterion, only that here, 
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the functional implicitly implies notions about the distance between the surface at a given 

state and the data points. Zhao et al propose a surface initialization procedure that starts with 

the computation of a signed distance function      calculated by resolving the Eikonal 

equation given in (44):  

           (44) 

Then the initialization of the implicit surface can be done through a fast tagging algorithm that 

identifies interior from exterior subspaces. A more efficient way of solving the Eikonal 

equation (44) and finding numerical approximations to it is the Fast marching Method (FMM) 

introduced by Sethian [225], [226]. 

It is important that the initial surface be close to the datapoints so that the solution to the 

partial differential equation (PDE) (46) is efficiently computed. This PDE comes from the 

expression of the problem as the minimization of an energy functional that includes notions 

about both distance and mean curvature (45). It is independent of parameterization and 

invariant under rigid transformation. 

               

 
  

  (45) 

Minimizing      reduces to solving the PDE of      either following the gradient flow of the 

surface or the time dependent convection model given in [175]. 

                   
 

 
          (46) 

where,   is the surface at a given state (or iteration),      is the distance separating a point   

on the surface from a data point     ,   is an exponent to determine the extent of the 

distance, i.e.,     means that the distance is calculated between   and its closest data point 

  .     is the unit outwards normal vector and   is the mean curvature of   at  . 

The PDE can be seen as an equilibrium of forces equation in which the terms are forces 

to be balanced out. The first term represents an attraction that attracts the surface towards the 

points and the second term represents a surface tension that minimizes oscillations and 

smoothens the surface (Fig. 147). Any point on   at a given iteration undergoes a force in the 

direction of the gradient towards its closest point      and a lateral force in the tangent 
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direction to the surface. The algorithm stops at equilibrium state when the forces cancel each 

other meaning that (46) is solved. PDE allows to naturally build the connectivity among the 

points without having resort to any combinatorial structures. 

 

 

Fig. 147 The Level-set forces, attraction (black vectors) and curve tension (red vectors). 

The steps involving the calculation of the distance function and initializing the implicit 

surface for the gradient flow require that the data points   are within a rectangular grid 

consisting of cells having a dimension  . This dimension transcribes the resolution of the 

approximation to the surface as it evolves across the grid cells. An illustration showing this 

evolution for a 2D curve is shown in Fig. 148. 

 

 

Fig. 148 The Level-set principle and evolution of the curve based on a rectangular grid. 

The complexity of the Level-set algorithm depends on the initial curve/surface. The steps 

of the algorithm as well as their respective complexities are shown in Table 26. 
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1. Distance function calculation          points,   cells 

2. Initial implicit surface          points,   cells 

3. PDE solution          points,   cells 

Table 26 Complexity of the Level-Set method. 

If the curve/surface is too far from the optimal shape, complexity might happen to be 

expensive in time. So in order to have a good initial guess, the condition is to have all the 

     terms close to zero because theoretically, the zero Level-set represents the true surface. 

Following this logic, the terms          should be minimal. Nevertheless, they should not be 

too small, i.e., smaller than the point-set sampling density (c.f.  -sampling [171]), else, the 

contour would be a set of small spheres around the data points. Zhao et al claim that a good 

initial curve/surface (initial contour) intersects the Voronoi diagram of the point-set based on 

[204]. To guarantee a correct value for     , the condition in relation to the sampling density 

states that:              
 

         
, where   is the spacing between each couple of 

theoretically connected data points and           is the minimum local feature size of the 

theoretical curve/surface. 

When the curve/surface is initialized, the points     are also initialized and distributed 

in the form of a grid. The distance calculation from   to its corresponding data point      

requires        operations for   grid points and   data points. With a grid resolution 

comparable to the sampling density,       , the total complexity of the Level-set routine 

is          Moreover, if the PDE is solved following the gradient flow, the result is a smooth 

implicit minimal curve/surface. However, this is computationally even more expensive. On 

the contrary, if the PDE is solved following the convection model, the output is a mesh that 

does not exactly pass by the data points but is within a pre-defined tolerance from the dataset. 

Our applications involve very high density samplings, so they require grids of high resolution, 

leading to the multiplication of the complexity by an order of    or more. 

The Level-set method guarantees a good convergence provided that the surface is well 

initialized and this is based on the  -sampling density criterion. Since that in inverse problems 

such as mesh reconstruction, the theoretical curve/surface is unknown, it is complicated to 

guarantee an acceptable initial distance function and an initial curve/surface because the local 

feature size is also unknown. The most important issue to point out here is that the smooth 

result of the Level-set is an implicit curve/surface approximated by discrete points on a grid 
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but which helps building a mesh on the dataset. It is only in the case where the mesh is 

manifold that a parametric smooth representation of the surface can be performed according 

to the framework illustrated in Fig. 102. 

3.c  Multi-level partition of unity 

The Multi-level Partition of Unity (MPU) algorithm is another type of shape 

representation that is based on implicit quadratic functions [217]. This algorithm, proposed by 

Ohtake et al, is designed for problems with large data and for shapes that present regions of 

high curvature or even sharp edges. MPU is among the few algorithms ([174,201]) that were 

designed to subdivide the space of the points. These are segregated into clusters and each 

cluster is processed separately, making the algorithm runtime considerably shorter than the 

case where points are processed all at once. Nonetheless, the major difficulty regarding 

subdivision is the step in which the partial results are merged in order to generate the result. 

Subdivision can be a uniform hashing of the space, an Octree subdivision or a  -D tree 

subdivision. Each cluster of points contains a finite number of data points to which a 

quadratic function is associated (fitted). Here, Ohtake et al [217] use an iterative Octree 

subdivision that is subject to a condition on the residual errors of the fitting and this is what is 

called a multi-level partition of unity. If the local mean residual error is smaller than a pre-

defined tolerance, the Octree subdivision stops. 

The algorithm starts by assuming that the points are oriented, i.e., the normal directions at 

each point are known. Since the space of the points needs to be subdivided, it is limited to the 

bounding box of the points. These can therefore be scaled down until the bounding box 

diagonal has a unit length. Then the Octree subdivision is applied and subdivides the 

bounding box into smaller boxes indexed by  , having a diagonal length   , a center    and 

containing a finite number of points   . The sphere    centered at    and having a radius 

       should contain a minimum number of data points      (a typical value for   

    ). Hence, if    contains less than      points,    is increased. Based on this setting, 

implicit quadratic functions are fit to the points in each cell and the local mean residual error 

is compared to the pre-defined tolerance. Cells where the error is still large are further 

subdivided and the process is the same. 

Since the bounding box diagonal has been set to unit length, the subdivided cells 

represent a partition of unity. Hence, the fitted implicit functions to each cell are also a 
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partition of unity and their fusion creates a global implicit function    describing the shape of 

the underlying surface to the points (47). The local implicit function that is used is either a 

quadric, a set of quadratic polynomials or a piecewise quadric (48) and is weighted according 

to a smooth B-Spline weighting model (49). 

      
 

       
   

         

 

    (47) 

where, 

       

       

                   

                 

              
  

              
  

        

  
(48) 

and 

           
       

   
   

(49) 

The variability of the choice for the local functions       allows to fit different surface 

features such as, locally smooth surface parts (bi-variate quadratic polynomials) or sharp 

features (piecewise quadrics). 

 

The complexity of this algorithm depends on the size of the output (number of functions 

and fittings to perform) and is of the order of        (Table 27). Since no assumptions are 

made on the sampling density and that the choice of the local implicit function is 

approximate, the MPU algorithm does not provide any reconstruction guarantees. 

 

1. Point-set scaling      

2. Octree subdivision          constant 

3. Weighting         neighbors 

4. Local implicit functions fit          points 

Table 27 Complexity of the Multi-Level Partition of Unity algorithm. 
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The major issue about the MPU algorithm is that it reconstructs an approximation to the 

underlying curve/surface with piecewise models which might be a mixture of different 

implicit forms. This does not answer the requirements for a metrology application where form 

and dimensions need to be evaluated. 

3.d  Poisson 

The Poisson surface reconstruction method is the mostly known implicit technique 

[218,227] and is implemented in both MeshLab and CGAL [183,196]. This method, 

introduced by Kazhdan et al [181], is remarkably robust to noise, however, at the expense of 

solving the problem in a global approach and processing data all at once. The output surface is 

expressed as the solution to a Poisson equation and is obtained by extracting the iso-surface 

from an implicit function   . More specifically,    is an indicator function that distinguishes 

outside (    ) from inside spaces of the surface (    ). While the value of    is constant 

on the outside and inside of the surface, its gradient is null in these regions. The gradient of    

is thus only different from zero at the surface level and is nothing but the normal vector at that 

location on the surface. This reduces to solving for    by minimizing the following functional: 

   
  

             (50) 

where      is the normal vector field. 

The solution to the Poisson problem in (50) is obtained when the divergence of    and 

       tend to equality, i.e.,           . The algorithm works well in practice, however, with no 

geometrical or topological guarantees due to the fact that no assumptions on sampling density 

are made. The surface must necessarily be closed so that the notions of interior and exterior 

are meaningful. There exists an enhanced version of the Poisson mesh reconstruction 

algorithm for which the space of points is subdivided and all clusters are solved 

simultaneously. It is the parallel Poisson mesh reconstruction using an Octree subdivision 

[227] and is the version currently implemented in MeshLab. We tried out this algorithm for 

both the aspherical lens and the turbine blade datasets. Since this method needs to identify 

interior from exterior regions to the surface, the reconstruction occurs in two steps. In the first 

step, we use a MeshLab routine to approximate the normal orientation of the points. This 

routine cannot be successful without user input on the number of neighboring points to 
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consider in the normal estimation and the possibility to re-orient normal directions according 

to a universal interior point selected by the user (Fig. 149). 

 

 

(a) 

 

 

(b) 
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(c) 

Fig. 149 Normal estimation of the point-set of the turbine blade: (a) based on    neighbors without 

any re-orientation; (b) based on    neighbors and a re-orientation routine about an exterior point 

        ; (c) based on    neighbors and a re-orientation routine about an interior point          . 

In the second step, we proceed to the mesh reconstruction of the blade with the default 

parameters suggested by MeshLab (Fig. 150). The reconstruction of the blade is obviously 

geometrically not close to the underlying surface of the blade although being manifold. 

 

 

Fig. 150 Poisson mesh reconstruction using default settings on MeshLab. 



 

196 

 

We also try out this algorithm on a subset of the aspherical lens and find similar results (Fig. 

151). We further conclude that datasets having more than about         points cannot be 

handled by the Poisson reconstruction algorithm in MeshLab as the number of points 

considered for the following example is around       . 

 

 

Fig. 151 Aspherical lens Poisson reconstruction which works fine at the points but adds an additional 

layer of triangles at the boundaries (highlighted large triangles). 

4.  Discussions 

In this section, a thorough review of the mesh reconstruction algorithms that build a first 

order approximation of the surface has been achieved. The methods that are based on the 

Voronoi and Delaunay graphs are subject to an adaptive sampling condition which cannot be 

guaranteed in practice. Therefore, the reconstruction guarantees that these methods provide 

become insignificant. 

Although the test on the aspherical lens shows that reconstruction using the Cocone 

approach with an  -dense sampling of the data works (Fig. 136), it does not make the 

algorithm robust. For instance, Fig. 134 shows a case where the  -sampling density criterion 

is satisfied whereas the    lower bound is not. For the special case of aspherical lenses and 

axis-symmetric surfaces, a 3D mesh reconstruction approach (Cocone, N.N.I, etc…) can be 

replaced by a 2D approach relying only on the Delaunay triangulation only. These surfaces 

have the particularity of being open surfaces that can be mapped, using a bijection, onto the 

plane that is normal to the axis of symmetry without loss of information or topological 
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superposition (Fig. 152). Otherwise, such as in the case of Fig. 152d, the right hand side 

portion of the curve will generate a surjection on the projection line in Fig. 152e and will 

create a superposition of some curve parts. The process consists of mapping the data points on 

a plane and performing the 2D Delaunay triangulation on the mapped points. This will surely 

generate a manifold mesh. 

 

 

Fig. 152 Curve mapping on a straight line. (a),(d) Selected points mapping; (b),(e) Meshing of the 

mapped points; (c),(f) Inverse mapping function. 

Fig. 153 shows the mesh reconstruction of points that do not satisfy the  -sampling condition 

using this procedure calling a 2D Delaunay triangulation of the mapped points. The mesh is 

manifold and complete and this proves the claim that the  -sampling condition is a necessary 

but not sufficient condition. 

 

 

Fig. 153 Aspherical lens reconstruction using a 2D Delaunay approach with data that do not respect 

the  -sampling condition. 
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Due to its complicated shape, the turbine blade cannot be mapped onto a 2D plane as 

described in Fig. 152, thus the only possible mesh reconstruction is a 3D one. We can recall 

from Fig. 135 that a reconstruction using the Cocone algorithm fails at sharp edges and where 

the sampling is inappropriate. For our application, if the mesh procedure is not guaranteed and 

does not solve the problem, especially that the complexity is of the order of      , the above 

mesh reconstruction techniques are not adequate and must be avoided. Despite the fact that it 

creates a structure on the points when those are initially unorganized, a mesh is not a perfect 

descriptor of form and the classical framework for freeform surface reconstruction we evoked 

at the beginning of this chapter must be followed truthfully (Fig. 102). In this scheme, meshes 

are transformed to smooth representations by associating parametric surface patches among 

which the continuity is an additional difficulty. 

While meshing techniques relying on combinatorial structures need additional steps for 

smoothing the data, implicit methods allow for that but the surface is always approximated by 

discrete data. Although they seem to work well in practice, especially in the presence of noise, 

outliers and even sharp features, implicit mesh reconstruction techniques mainly lack of 

reconstruction guarantees except for the Level-set method. Plus, they rely on the knowledge 

of point-set orientation and that is not achievable in an automatic way when data are 

unorganized. Unfortunately, for most implicit techniques studied in this thesis except for the 

Poisson's method, no implementation was available in commercial software. The Poisson 

reconstruction does not output a mesh with geometrical equivalence to the underlying surface. 

The requirement of most methods about normal orientation of the dataset has also been 

proven not to be straightforward in MeshLab. 

Provided that the freeform surface reconstruction process consists of more operations 

when passing through the meshing phase, and that mesh reconstruction is complex, not 

robust, and lacks of guarantees in practice, we find it more legitimate, for our applications, to 

put the effort into an approach that discards the meshing phase and seeks the direct fitting of a 

single parametric surface (not in the form of patches) to the points. We therefore bring up the 

state-of-the-art techniques that exist in this field and then propose a Discrete B-Spline Active 

Contour Deformation (DBACD) algorithm. We start by a demonstration on curves in the 

plane and then pass on to an application on surfaces. 



 

199 

 

III.  Discrete B-Spline Active Contour Deformation (DBACD) 

1.  Active contour deformation 

The principle of active contour deformation originates from the works of Kass et al [228] 

on the detection of image contours. The concept was adapted later to many other applications 

such as implicit surface reconstruction, algorithmic geometry, computer aided geometry 

design algorithms, etc… [229]. We cite the Level-set method [175] described earlier in 

section II. 3.b , the geometric convection algorithm [173] described in section II. 2.f , and the 

active B-Spline curves and surfaces approximation of Pottmann et al [230]. Active contour 

deformation is the process of evolving a base surface around a given dataset so that it 

approximates the data points without necessarily having any knowledge about the underlying 

shape of the data points. The surface continuously deforms and progresses along a given 

direction (not necessarily the gradient direction) and gets closer to the desired shape along the 

iterations. 

The algorithm that we propose here is a discrete active contour deformation algorithm applied 

to closed B-Spline curves and surfaces. A discrete approach makes the distance calculations 

(point-to-segment in the case of curves and point-to-triangle in the case of surfaces) much 

faster than distance calculations using a continuous model. Indeed, for continuous and smooth 

models, location parameters must be initialized and then optimized before computing the data 

points projections. One can obtain different approximation results by modifying the initial 

parameterization. The initialization of both the location parameters and the surface is usually 

cumbersome as it is not easy to determine a relatively good initial surface especially when the 

shape of the surface is unknown. Initial parameterization techniques can be found in 

[148,159,230–235]. According to Kineri et al [232], initial parameterization can be different 

based on whether the problem is an interpolation or an approximation. In interpolation 

problems, the centripetal method or the chord length method can be used [167]. When it 

comes to approximation problems in which data are randomly distributed, the above 

initialization methods do not apply because no order on the data is assumed. Here instead, a 

base surface (BS) is generated according to the method of Ma et al [233] by approximating 

four boundary curves with the smallest number of control points possible (Fig. 154a). The 

boundary curves are fitted from points digitized for this purpose and form a tensor product 

surface which is nothing but BS (Fig. 154b). For complex shapes, Kineri et al use the 

Dynamic Base Surface method introduced by Azariadis to construct the base surface [236]. 
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However, this method assumes the existence of four boundary curves and this is not 

straightforward when shapes get more complex. Provided that BS is constructed, the 

parameterization is done by projecting the data points onto BS along the normal to BS or 

some optimized direction with respect to BS. Then the error vector between a data point and 

its projection on the base surface is calculated and the sum of squared errors is minimized and 

the solution at each iteration gives the amount by which each control point of the B-Spline 

surface must translate in order to approach the final shape (Fig. 154c). 

 

   

(a) (b) (c) 

Fig. 154 B-Spline surface fitting methodology of Kineri et al [232]. (a) input points with the four 

boundary curves approximation; (b) base surface; (c) resulting B-Spline surface. 

In a different work, Minh and Forbes describe a geometrical approach to parameters 

initialization for CAD models fitting but then they assume that a reference surface (CAD) 

exists [237]. They propose that the initialization be done based on combinatorial structures 

information given by the Delaunay triangulation of sampled points on the reference model. 

The reference surface is sampled and a Delaunay triangulation is built. Points are organized 

thanks to the Delaunay triangulation, and the matching of a data point to a sampled point 

gives a footpoint (parameter) initialization. Yet, the necessity to have a reference model is a 

limitation because in Reverse Engineering applications the model is not always known. In the 

works of Zheng et al [159], where a L-BFGS algorithm for B-Spline curve fitting is proposed, 

the automatic generation of the initial curve is out of the scope of the paper. Authors rather 

start with a hand-drawn curve which somehow follows the shape of the underlying curve of 

the dataset. Hereafter, a sufficiently dense sampling of the curve is performed so that location 

parameters are found fast and as close to optimum as possible. Zheng et al follow the scheme 

proposed by Wang et al [235] which relies on a Gauss-Newton method for iteratively 

computing footpoints. Since the initial curve is very close to the dataset the authors assume 

that footpoints will not change across the iterations. Unless the residual errors after a L-BFGS 
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fitting is larger than a threshold value, the footpoints computation is only performed once. 

This suggests that the location parameters update and the distances minimization occur 

simultaneously. 

As parameterization seems cumbersome, different approaches such as the works of 

Pottmann et al [230] and Yang et al [238] deal with the direct approximation of point-sets, 

curves and surfaces by active B-Spline models using the Squared Distance Minimization 

method (SDM). The advantage of SDM is that it does not require computing a 

parameterization of the data points in case of point-set approximation. As an alternative, a 

technique using local quadratic approximants of the squared distance function is used to help 

moving the active B-Spline to lower levels of squared distance without having to specify 

which point of the active B-Spline should move to which point in the dataset. Nevertheless, 

the latter technique requires the calculation of discrete curvatures and consequently assumes 

that the points are dense and organized. Because it is based on local optimization, the SDM 

method's sensitivity with respect to the initial B-Spline curve/surface is not negligible. To 

address this issue, Yang et al [238] propose a procedure to insert and remove knots and adjust 

the locations of control points when necessary. The SDM method with those added 

improvements appears to work well in practice but still assumes that the data are organized. 

 

From what has just been said, and the observation that curve/surface initialization as well 

as parameters initialization are very critical, we come to propose a new approach that consists 

of disregarding the issues of a necessary good initialization as well as parameterization. For 

that we test one initialization that starts with a curve for which the control points are located 

on the circumference of a circle around the data and another initialization that starts from an 

offset of the bounding box of the dataset. The originality of our algorithm is that it fits a B-

Spline curve to a cloud of points which can be unorganized and noisy, using a topological 

association and a subsequent distance calculation which does not need any parameterization 

methodology. Additionally, working with a discrete form of the B-Spline makes the 

processing very fast as differential calculations and footpoints projections, which are normally 

time consuming on smooth parametric models, are not required anymore. Our method does 

not entail any organization of the data points. 
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2.  Planar active contour deformation with a B-Spline curve 

2.a  Initialization 

A B-Spline is defined by three elements. The degree of the curve, a knot vector and a 

control polygon. Cubic B-Spline curves are usually enough to represent complex shapes, 

therefore we choose a degree    . The control polygon consists of points that locally 

control the shape of the curve. By moving a control point, the curve is locally tailored within 

the knot intervals that are under the influence of that control point. Therefore, the idea here is 

to test both initialization configurations of a B-Spline control polygon around the given data 

points in the plane. Since we deal with closed profiles, periodic control points are needed. So 

if we geometrically want    control points to start with,      control points are implicitly 

needed for periodicity issues. 

The initial base knot vector is deduced from the initial non-periodic control polygon with the 

degree specified. In the base knot vector, there are      knots and    knot intervals. 

Therefore there are as many knot intervals as non-periodic control points. Taking into account 

periodicity,     additional knots are needed in such a way that   knot intervals are 

appended at each end of the base knot vector and that they are equal in pairs as illustrated in 

Fig. 155. The initial periodic knot vector consists of an ordered uniform sequence of 

parameters which satisfy (51): 

  
    

   

  
               (51) 

Fig. 155 shows a periodic knot vector for     and      . In fact, what actually 

determine periodicity are the knot intervals between periodic knots. The key is to always 

make sure that the intervals, from inner-most to outer-most, are pairwise equal, i.e., the 

respective green, blue and yellow pairs of knot interval are equal.  

 

 

Fig. 155 The initial periodic knot vector denoted by         
   

         

   
 . 
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If the previous rule of conserving the pairwise equality between periodic knot intervals is not 

satisfied, the closure of the B-Spline curve is not properly generated (Fig. 156b). 

 

 

(a) (b) 

Fig. 156 Initial periodic B-Spline curve (magenta): (a) knot vector respecting the rule on the periodic 

knot intervals; (b) knot vector failing the rule on the periodic knot intervals. 

2.b  Subdivision points 

The piecewise linear model that we use results from a subdivision of the control polygon 

of the B-Spline obtained using the Oslo algorithm which proceeds on the basis of global knot 

insertion [239]. We denote by   the number of global insertions. Then, the number of 

subdivided points depends on   and the number of control points (        ). So if we 

choose one level of insertion, i.e.    , it means that we will only insert knots at the middle 

of all the base knots intervals once and that the number of subdivided points will be double. 

The relationship between control points and subdivided points, in matrix form, is governed by 

equation (52) and shown in Fig. 157. In this plot, the blue polygon is the subdivided version 

of the initial red control polygon. 

              (52) 

where, 
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and      is the       subdivision matrix that computes the subdivision of the control points 

at iteration  . As long as there are no local knot insertions and the addition of control points in 

     (c.f. section 2.e ),      maintains a constant size. Since the control points will move at 

each iteration, the subdivided points will also follow according to      (52). 

 

       

(a) (b) 

Fig. 157 Initialization of the B-Spline piecewise-linear curve. (a) Initialization based on a generic 

circular form around the data; (b) Initialization based on an offset of the bounding box of the dataset. 

2.c  Point-segment association for distance calculations 

The subdivided polygon      is piecewise linear. The distances      are point-to-segment 

distances from the data points   to the segments of     , denoted by          . Nonetheless, 

these distances are not just geometric Euclidean distances. Since the initialization of the B-

data points

control polygon

subdivided polygon
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Spline curve is generic, it might highly occur that geometrically nearest segments of      to   

are topologically incorrect (Fig. 158). Point-to-segment correspondences might be erroneous 

and be established on wrong sides. Therefore, a heuristic is applied and builds a 

correspondence between data points and B-Spline segments in     
 with a preservation of 

topology. The order of the data points is initially unknown, but their topology can be coarsely 

set by constructing a polygonal mesh based on the topology of          . A procedure is 

therefore introduced and consists of an inverse association phase (Fig. 159) followed by a 

direct association phase (Fig. 160). 

 

 

Fig. 158 Some topologically incorrect point-to-segment associations (  is the center of the circle 

circumscribing the control points). 

The inverse association routine is the part of the algorithm that guarantees the 

preservation of the topology of the points. A surjective mapping of the discrete points 

       (blue squares in Fig. 159) to points in   (black dots) is created based on nearest 

neighbor search. The naïve algorithm of nearest neighbor search where the distances are 

computed from each point        to all points     is computationally expensive (     ). 

To avoid this we apply a uniform point space partitioning strategy which reduces 

computational time by at least a factor of   . Other optimized point space partitioning 

O
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methods exist such as Octree [203] or  D-tree [240] but are not yet integrated in our 

algorithm. Since the points of      are ordered, their respective nearest points in   (magenta 

dots in Fig. 159) are also ordered. This results in a surjection function between           and 

          (magenta segmentation in Fig. 159). 

 

 

Fig. 159 Inverse association phase (blue) building a certain structure and orientation on the point-set 

(magenta segments): calculating the distance from each point in      to the nearest data point in P. 

The direct association routine is the part of the algorithm that matches data points to 

subdivided polygon segments in           (Fig. 160). As a consequence of the segmentation 

built on the points, each data point     is firstly associated to its nearest segment in 

         . The order on      which is consequent on           insures that           has a 

well-known orientation (green arrows in Fig. 159). This orientation helps increasing the 

probability of having perfect point-to-segment associations. It consists of making the 

association of a data point to a segment in           robust, i.e. the data points in concave 

regions, for example, will be associated to the nearest segment that is consistently oriented. 

Then, because of the surjection between           and          , each point     can be 

associated to a segment in          . It might occur that the actual correspondence is not 
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optimal, so we tolerate the search for the minimum distance also over the previous and the 

next segments of the associated segment in          . 

 

 

Fig. 160 Direct association phase (red) deduced from the inverse association phase. 

2.d  Active contour deformation scheme 

The proposed association process between datapoints and subdivided control polygon 

segments establishes a good correspondence between both sets. We carried out many tests 

that revealed that this association method infers geometrically and topologically correct 

distances to be passed on to optimization problem schematized in Fig. 161. 
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Fig. 161 Methodology of the DBACD algorithm. The control polygon is represented in red, normal 

directions at all control points    are the vectors denoted by     ,   
   

 are the computed point-to-

segment distances at iteration  ,     are the normalized distance vectors and    are the magnitudes by 

which the control points must be translated. 

Optimization in the normal direction of the control points 

The objective function to minimize (53) is the sum of squared differences between the    

distances separating the data points in   from their respective segments in           and the 

B-Spline curve evolution between iteration   and    . A control point   
   

      is 

allowed to move in the direction of its normal     
   

 updated at each iteration. It follows that 

the new control points are obtained such that   
     

   
   

   
   

    
   

, where   
   

 is a scalar. 

    
   

 for            is taken to be the bisector of the adjacent segments to   
   

 at iteration 

 . 
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 (53) 

where    
   

 is the unit vector of the     distance separating a data point from its associated 

segment in           . Equation (53) written in matrix form gives: 

   
    

                                
 

 
  (54) 
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Recall the relationship between the control points and their subdivision points given in (52), 

we get: 

   
    

                                        
 

 
 (55) 

What we need to find is the required translations that would move the control points     , 

along their normal directions, from a current position to a new position while insuring that 

       brings the curve closer to the data points after each iteration (56): 

                   
    , (56) 

where            
   

        

   
 
 

  and     
              

  

   

Consequently, by blending (55) and (56) gives an expression of the objective function in 

terms of the solution vector      as follows (57): 
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 (58) 

and      are the elements of the subdivision matrix     .  

Here, the solution      is computed by solving the linear system of equations written in 

normal form in function of the optimization matrix      at iteration  . Note that      is an 

augmented matrix that includes for each point-to-segment distance    a pair of entries 

corresponding to each of the vertices of the current segment   
   

 and     
   

 (58). 

       
 
               

 
    . (59) 

Solving the system in a Least-Squares sense produces a vector of scalars by which the control 

points      of the curve must move in order to approach the dataset. Each control point is 

translated by an amount proportional to   
   

,   
   

  
   

, where   
   

   
   

           is a 

vector of scalars between   and   proportional to   
   

 and which can be assimilated to the step 

of gradient descent in usual optimization algorithms (Gauss-Newton, gradient descent, etc…). 

This choice of   
   

 is motivated by the fact that it slows down the deformation of the B-

Spline curve, and by that allows to avoid overshoots and curve self-intersections. 
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Optimization in the separate   and   directions 

Another interesting solution to the problem of DBACD is to add some more degrees of 

freedom to the problem by letting the control points move independently in   and   

directions. In this case, the vector      is decomposed into two separate components,   
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 and two systems are solved separately, one 

along the  -direction and another along the  -direction (60): 
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(60) 

The suitable scheme for this alternate approach is illustrated in Fig. 162. 

 

 

Fig. 162 Methodology of the DBACD algorithm by optimizing separately along   and   directions 

(            ). 
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Written in matrix form the two systems to solve are as such: 

   
  
   

     
   

  
   

   
   

  
 

 

  

and 

   
  
   

     
   

  
   

   
   

  
 

 

  

(61) 

where   
   

 

 
 
 
 
 
 
 
 
 
 
 
          

   
         

     

   
 

         

   
         

     

   
 

 

         
   

         
     

   
 

           
   

           
     

   
 

 

           

   
          

      

   
 

          

   
         

      

   
  

 
 
 
 
 
 
 
 
 
 
 

,  with           

2.e  Knot insertion 

Both systems presented above can be solved and each one of them iteratively gives out a 

solution for         
   

   
   

      

   
  with a fixed number of control points   . Now it may 

occur that    is not always sufficient to reach a mean of errors below the specified tolerance 

 . Therefore, the algorithm is designed to admit local knot insertion for adding control points. 

Knot insertion is applied locally where more flexibility is needed for the B-Spline curve to 

match high curvature regions. A control point is added at the locations where the distance 

between the B-Spline curve and the points is still larger than the specified threshold  . We 

compute the value of the knot to be added in the knot vector by identifying the B-Spline 

segment with largest error and by calculating its position on the piece-wise linear curve. The 

ratio of the distance from the curve starting point to the identified segment over the length of 

the entire curve gives the knot value to be inserted in the knot vector. The position of the knot 

value within the knot vector translates into an insertion of an additional control point in the 

control polygon [167]. 
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Knot insertion is a very well known process for B-Spline curves and surfaces and has 

been clearly detailed by Piegl and Tiller and Farin et al [167], [241]. The scheme is described 

as follows assuming that the knot value   to be added            and that for a cubic B-

Spline, the addition of a control point replaces   current control points by   new control 

points whilst the remaining ones are kept unchanged (62). Denoting by      the set of new 

control points after insertion we get that each one of them is a barycentric combination of   

successive current control points (Fig. 163 and Fig. 164). 

    
         

  
                                    

    
       

(62) 

where     
    

       
 .  

 

 

Fig. 163 General knot insertion scheme with the    computed as the ratio of  
  

  
 . 
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Fig. 164 Knot insertion in the case of a curve in 2D. Two current control points (black) are replaced by 

three control points (red). 

Applications to simple curves 

Our algorithm, shown in Fig. 165, is implemented in C++ and takes as input the degree of 

the curve  , the number of control points   , the level   of subdivision desired in order to 

approximate the curve by control points and the stop criterion  . A cubic degree is chosen as a 

compromise between degrees of freedom and curve smoothness. A higher degree would make 

the curve too flexible resulting in undesired undulations of the curve and a lower degree 

would be too rigid to follow up with freeform shapes. The initial number of control points 

must be small so that the least flexibility is allocated. Too much flexibility at the start of the 

active contour deformation algorithm can degenerate into undulations and curve loops and 

self intersections. Finally the level of subdivision is a parameter that must be relatively high 

for better resolution, but it does not influence the system solution considerably. Only the 

residual errors remain large for small levels of subdivision below  . This parameter has an 

incident on the complexity of the algorithm since it directly affects the size of matrix     . 

Because there are repeatable matrix multiplications and matrix inversions at each iteration of 

the algorithm, the computational time and memory allocation are directly impacted by the 
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value of  . The compromise between complexity and accuracy is established and the 

numerous tests confirm that the values   and   are satisfactory. 

 

 

Fig. 165 DBACD algorithm (    : mean of residual distances and     : standard deviation of residual 

distances). 
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In order to assess the effectiveness and correctness of our algorithm we firstly try it out on 

simple shapes with two different generic initializations that do not require knowledge about 

the underlying shape. These would be a generic initialization with control points on a circle 

around the data and an offset polygon of the bounding box of the data. For the following 

dataset, the points are measured on a cylinder at a given cross section with a tactile probe 

generating around      points. These points are noisy and the measurement uncertainty is of 

some tens of nanometers. We therefore set the tolerance criterion of mean residual errors   to 

be    nm and the results are illustrated in Fig. 166 and Fig. 168. The algorithm runs in     

seconds and performs    iterations in the case where   control points are initialized to be on 

the circumference of a generic circle around the data (Fig. 166). In the other case, where the 

initialization is an offset of the bounding box and where   control points are considered, the 

algorithm runs in   seconds and performs    iterations (Fig. 168). The respective residual 

errors of each of the configurations are plotted in Fig. 167 and Fig. 169. 

 

 

(a) 
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(b) 

Fig. 166 DBACD on data representing a circular profile with generic initialization of 6 control points 

around the data. No knot insertions required. (a) Initial state and final state; (b) Zoom on the final 

state. 

 

Fig. 167 Residual errors of the fitting based on a generic initialization for the circular profile dataset. 
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(a) 

 

(b) 

Fig. 168 DBACD on data representing a circular profile with an offset bounding box initialization of   

control points around the data. No knot insertions required. (a) Initial state and final state; (b) Zoom on 

the final state. 
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Fig. 169 Residual errors of the fitting based on an offset bounding box initialization for the circular 

profile dataset. 

The graphs showing the residual errors with respect to the B-Spline subdivided segments 

reveal that the algorithm converges in the case of the circle dataset for both initializations 

(generic and offset of bounding box) and the mean of the residual errors is smaller than  . It is 

to note, however, that the resulting B-Spline curve is not exactly the same for each of the 

cases of initialization. 

 

We consider another typical dataset with some     points which is slightly more 

complex in shape because of concave features. Applying the DBACD algorithm on this 

dataset replicated from a dataset found in [159], we get to observe that the algorithm operates 

properly (Fig. 170). Nonetheless, it does not converge if we inhibit knot insertion, residual 

errors remain large as the mean of residual errors is about     µm and the PV is about   mm 

(Fig. 171). 
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Fig. 170 DBACD on data representing a profile with concavities starting from generic initialization of 

  control points around the data. Knot insertions are inhibited. 

 

Fig. 171 Residual errors of the fitting based on a generic initialization for the concave profile dataset. 
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Now we let local knot insertions where the local error is still larger than the threshold      

nm. Runtime is about   seconds for    inner iterations and   outer iterations (Fig. 172), 

giving a total of    final control points. 

 

 

Fig. 172 DBACD on data representing a profile with concavities starting from generic initialization of 

  control points around the data with local knot insertion. 
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Fig. 173 Residual errors of the fitting based on a generic initialization for the concave profile dataset. 

The graph of Fig. 173 shows that the residual errors improve with local knot insertion. 

Despite the fact that the mean of errors has reduced to    µm and the PV to   mm, the mean 

of residual errors is still far from the specified threshold  . For this specific shape, the 

algorithm does not converge. If we allow more knot insertions, the active B-Spline starts 

having self-intersections, a problem that will be addressed later (Fig. 174). 
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Fig. 174 DBACD on data representing a profile with concavities starting from a generic initialization 

of   control points around the data with local knot insertion. 

Local knot insertion improves the outcome, as seen for the example of the shape representing 

some concavities, but does not necessarily make the algorithm converge. A lot of knot 

insertions might cause self-intersections in the B-Spline curve. 

Application to the turbine blade profile 

For the next example, we take a more complex shape which consists of a region of high 

curvature making a suitable fitting near that region difficult. The dataset contains about       

points and we start with   control points uniformly distributed on a circle around the dataset 

(generic initialization) with a randomly chosen circle radius and center. The radius must 

however be such that all the control points are on the outside of the dataset without crossings. 

The objective tolerance   is set to     µm, a value that corresponds to turbine blades profile 

form tolerance (Chapter  1 - II. ). 

After fitting, the residual errors have a mean of       µm before local knot insertions (Fig. 

175d), and with   additional knots, the mean of errors drops down to      µm (Fig. 175e). 

The process requires a total of     inner iterations and runs in   s. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Fig. 175 DBACD algorithm for the turbine blade profile containing      points. (a) step  ; (b) step  ; 

(c) step   ; (d) step    all without knot insertions. (e) one additional outer iteration of knot insertions 

giving   final control points. 

 

Fig. 176 Residual errors of the fitting based on a generic initialization for the blade profile dataset. 
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The end-result approaches the underlying shape of the data points but does not converge as 

the mean of residual errors is larger than the threshold       µm (Fig. 176). 

 

As a matter of robustness to initialization, we test several initial orientations of the initial 

control polygon. We take the same polygon rotated by     ,      and      (Fig. 177). The 

residual errors are reported in . 

 

 

(a) 
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(b) 

 

(c) 

Fig. 177 DBACD algorithm for the blade profile applied for several initial control polygons rotations 

with respect to the dataset: (a)     ; (b)     ; (c)     . 
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Angle                    

  (µm)                           

  (µm)                             

   (µm)                           

Table 28 Residual errors of the different relative initial rotations of the control polygon for the blade's 

profile. 

 

Fig. 178 DBACD algorithm for the blade profile applied for the bounding box offset initialization. 

The results of Fig. 178 show once again that our algorithm is robust to control polygon 

initialization. For all the above tests, DBACD was applied by alternating between 

optimization directions. Optimization was once in both   and   directions and once in the 

normal direction to each control point. The independent   and   optimization directions, 

instead of the single normal direction, offer an additional degree of freedom for control points 

to move in the plane. Optimizing along the normal direction restrains the control points to 

move along one axis and by that require the need to insert more knots. The drawback of the 

algorithm up to this point is that having too many control points (excessive knot insertions) 

leads to self-intersections within the B-Spline curve and/or the control polygon (Fig. 179). 
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Fig. 179 Excessive knot insertions create buckles in the resulting B-Spline curve. 

Although our algorithm is robust to initialization, robustness is still questionable in regard to 

convergence as the DBACD algorithm does not deterministically achieve a mean of residual 

errors that is below the pre-requisite tolerance  , even with the knot insertion pattern. In the 

aim of solving this problem, we now propose to investigate about adding a fairing term to the 

objective function which would allow to simulate surface smoothness and minimize curve 

self-intersections. 

2.f  Fairing 

Principle and implementation 

Fairing has been used in many parametric fitting approaches [159] and even implicit 

methods [175]. We will introduce this principle here and describe how we append it to our 

minimization functional and implement it. Normally, the fairing term transcribing curve 

smoothness is expressed as the integral of the    norm of curvature of a curve   (63). For 

parametric B-Spline curves, fairing can be applied onto the control polygon and the 

expression can be written in terms of the control points. In order that the newly computed 
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polygon takes into account notions of smoothness, fairing must be applied directly to the 

points        at iteration    : 

            
 

 

     
      
    

      
     

  

   

 

 

  
 

 

   (63) 

where      is the knot sequence at iteration  . 

Since we work with a discretization of the B-Spline control polygon, we write the above 

expression in discrete form: 

      
      
    

       
     

  

   

 

 
   

   

 (64) 

where   is the number of sampled points,       is the sampling step and   
     

 are the 

control points at iteration    . 

The second derivative B-Spline basis functions  
      
    

    are computed using a simple 

algorithm found in [167]. Adding the fairing term in (64) to the original objective function we 

get that the new functional to minimize in the normal direction of control points is the 

following: 

   
    

                        
 

 
                              

      
 

 
   

   

 (65) 

where           is the diagonal matrix consisting of  
      
    

     terms such that: 

                
      
    

        
    

   
    

     .  

The parameter         is called the fairing parameter and gives a certain weight to each of 

the terms of the objective function. The larger   is chosen to be, the more the influence of 

curve smoothness is and the less the influence of distances becomes. In our implementation,   

is set to vary according to the average distance that separates the B-Spline model from the 
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data points at each iteration. If the average distance is small,   takes a small value so that the 

B-Spline curve which is now close to the data progresses mainly under the influence of 

distances. 

The expression in (65) can be reduced to: 
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where,      

 
 
 
 
 
 
 

            

 
              

              

 
                    

 
 
 
 
 
 

          

 
 
 
 
 
 
 

            

 
                   

                   

 
                        

 
 
 
 
 
 
 

 

 

and           is the matrix such that:                 
                  . 

 

The linear system to solve at iteration  , written in normal form, is then: 

      
 
                

 
    . (67) 

Application 

We now present a result on the examples of the concave shape and the turbine blade 

profile with the addition of the fairing term. We show that with fairing, curve self-

intersections tend to disappear and convergence is improved. Fig. 180 shows the B-Spline 

curve fit to the data with a fairing parameter starting value of    . The value starts to decrease 

when the average distance is below    µm until it reaches, in this example, a value of    . 
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(a) 

 

(b) 

Fig. 180 DBACD algorithm with fairing:       and varies automatically according to the average 

distance: (a)    final control points for the concave shape; (b)    final control points for the blade 

profile. 
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(a) 

 

(b) 

Fig. 181 Residual errors of the fitting with fairing: (a) of the shape with concavities; (b) of the turbine 

blade profile. 

We can see from Fig. 181 that the algorithm has an improved convergence with fairing and 

gives far better residual errors than without it with a mean       µm for the shape with 
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concavities and          µm without having any self-intersections in the resulting B-Spline 

subdivision curve. For the turbine blade profile, the mean of residual errors is below the 

threshold. Fig. 182 shows that the subdivided curve is actually very close to the smooth B-

Spline curve. Adding the fairing term to the minimization increases computational time by 

around    to     . 

 

 

Fig. 182 The smooth B-Spline curve resulting from the fitting with our algorithm for the turbine blade 

profile. 

3.  Perspectives for the extension to surfaces 

The DBACD algorithm that we developed for curves can be extended to surfaces but the 

work is still underway. The approach that we particularly proposed to address reconstruction 

problems related to turbine blades is somehow a first attempt to turbine blade surface 

reconstruction. The surface problem can be seen in two perspectives. Either a surface 

reconstruction that is based on lofting methods, i.e. the junction of the section curves in order 

to form a smooth lofted surface [242], or a surface reconstruction approach that resembles the 

proposed curve approach but in three dimensions. 

The extension of the DBACD algorithm to surfaces following the approach proposed for 

curves is clear since the passage from B-Spline curves to surfaces is well-defined and 
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straightforward such as given in (6). For parametric surfaces, bidirectional parameters are 

needed and we will refer to these directions by   and   (5). The steps of the DBACD 

algorithm for surfaces are similar to the procedure of the algorithm for curves so it will be 

presented following the same sequence for the example of the turbine blade. The dataset 

contains about        points. 

Initialization 

The three elements that defined a B-Spline curve also define a B-Spline surface. The 

degree of the unidirectional curves, the knot vector and the control polygon must be specified 

for each direction   and  . Cubic B-Spline surfaces are enough to represent complex shapes, 

therefore we choose a degree     for both   and   directions.  

Since we are dealing with a special example of surfaces, the turbine blade, we assume that the 

unidirectional curves are closed in the  - direction and that the unidirectional curves in the  - 

direction are open. The set of control polygons in both directions will be referred to as the 

control net. The control net is such that the control points are periodic in  -direction and non-

periodic in  -direction. The initial knot vectors are deduced from the degree and the control 

points in each direction in the same way as in (51). For the periodic knots,     additional 

knots are appended to the base knot vector in such a way to reproduce periodicity (Fig. 155). 

For the non-periodic knots, the end-knots are repeated with a multiplicity equal to   so that 

the  -direction curves coincide with the  -direction curves at their end points. 

Subdivision points 

By applying a global knot insertion in  -direction first, exactly as indicated in the 

previous section (Oslo algorithm), we can deduce the subdivision in this direction from the 

relation given by equation (52). Then, taking the subdivided points in the  -direction and 

preserving the order in  , we apply a subdivision matrix    in the  -direction across all   

corresponding values. The relationship between control points and subdivided points sums up 

to (68): 

       
     

                 (68) 
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where,       

 

 
 
 
 
 
 
 
 
 

   

   

   

 
    

   

   
   

 
    

 
      

 
 
 
 
 
 
 
 
 

 ,       

 

 
 
 
 
 
 
 
 
 

   

   

   

 
      

   

   
   

 
      

 
          

 
 
 
 
 
 
 
 
 

 

and    and    are block matrices. 

(69) 

Having this in hand, we can proceed just like in the curves problem, except that the matrices 

are much larger. The result of subdivision is a coherent subdivided control net as shown in 

Fig. 183. For curves in the plane, it was easy to compute the distance from a data point to 

subdivided segments formed by each subdivided point and the next one. In 3D, the segments 

are no longer valid geometrical elements and must be replaced with triangular facets. 

 

 

Fig. 183 Initial control polygon (red) and initial subdivision (blue squares) of the turbine blade dataset 

containing about        points. 
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Point-triangle association for distance calculations 

The problem of distance calculation falls back to a point-to-triangle problem just like the 

ICP method discussed in Chapter 2. After the subdivided points      are calculated, a 

triangular mesh is built on the ordered points and this triangulation is referred to as          . 

          is represented in magenta color in Fig. 184. 

 

 

Fig. 184 Triangular mesh of the initial subdivided net. 

The subdivided net      is piecewise linear. The distances   are point-to-triangle distances 

from the data points   to the triangular facets          . Just like for curves, these distances 

are not just geometric distances but they also account for topology. The inverse and direct 

associations seen previously are sequentially applied to give a good correspondence between 

data points and B-Spline facets with a preservation of topology. The inverse association 

routine associates to each triangle's barycenter, the nearest data point in the dataset. The direct 

association matches, in a backward correspondence, the data points to the subdivided net's 

triangular facets          . In the intermediate step in which a data point is associated to its 

closest facet in          , which is the segmentation of the data points, the nearest facet in 

          is selected carefully by taking into account the orientation of the facets and their 

order. With a topological consideration, the association process gives the shortest distance 
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 separating a data point    from its closest triangular facet in the subdivision net. 

Knowing that each facet in           consists of   vertices that belong to the subdivided net 

of the B-Spline surface, the correspondence between a data point and   subdivided points is 

considered in the construction of an augmented optimization matrix      in which each vertex 

is taken into account with the same distance magnitude. 

Active contour deformation scheme 

The distance   
   

 is signed and its value is integrated in the objective function to be 

minimized in a Least-Squares sense. Here again, the optimization direction can be chosen by 

the user and it can either be an optimization in the normal directions of the control points or 

an optimization in the three independent directions,  ,   and  . In the first case, normal 

vectors are calculated as the resultants of the normal vectors to the incident facets at the 

control points (Fig. 185). In the second case, the vector      is decomposed into three separate 

components,   
   

,   
   

 and   
   

 and three systems are solved separately, along each of the 

concerned directions. 

 

 

Fig. 185 Approximating the normal direction at a control point. 

The system to solve here is written in a similar way as for curves but the matrices are much 

larger in size. Each distance    is considered thrice, each time for one vertex of the 

corresponding triangular facet of the subdivided net. This is primordial because the 

transformation matrix      correlates the subdivided points      to the control net and not the 

subdivided facets           to the control net (68). Instead of taking the index of a single line 

in matrix      to construct      for each data point   , the indices of three lines 

corresponding to the vertices                  of a triangular facet in           are selected for 
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the same distance    (Fig. 186). The elements of      for each data point consist of a block of 

  entries at a time. 

 

 

Fig. 186 Correspondence between a data point and a triangular facet of the subdivided net. The 

distance    is orthogonal and the   vertices of the facet are considered in the construction of the 

optimization matrix     . 

Knot insertion 

The DBACD algorithm iterates until either convergence or a maximum number of inner 

iterations has been reached. In the latter case, where the current number of control points is 

not sufficient to fit the B-Spline surface to the data points accurately (average of residual 

errors must be below the tolerance  ), local knot insertions are applied. For B-Spline surfaces, 

an inserted knot at a given  -value should be inserted and applied on all  -direction polygons. 

Similarly, an inserted knot at a given  -value should be applied on all  -direction polygons. 

IV.  Conclusion 

Freeform surface reconstruction techniques are well developed especially in the fields of 

computer graphics and reverse engineering. In computer graphics, meshing techniques are 

employed in order to approximate the surface with a piecewise linear model that is the surface 

mesh of the data points. Usually in these applications, the data points are simulated on a CAD 

model and therefore the sampling strategy and density can be controlled in order to fulfill the 

requirements related to the key condition of the reconstruction method, the  -sampling 

condition. All the reconstruction methods that are based on the combinatorial Voronoi and 
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Delaunay structures need this condition to guarantee a geometrical and topological equivalent 

surface that is also manifold. However, this condition is not sufficient because a lower bound 

on it is also shown to be necessary. This lower bound is not easily computable and can be 

variable from one example to another. 

The reconstruction methods that are based on implicit techniques and the calculation of 

implicit functions mainly require that the normal direction at each data point is known. Some 

methods assume the dataset orientation to be known while some other methods compute it 

either by principal components analysis (PCA) or by some techniques relying on the Voronoi 

diagram. 

Whilst the purpose of the computer graphics community is mainly visual, the dedicated 

methods are well adapted and their outcomes can be useful in other applications. For instance, 

in reverse engineering, some methods that attempt to reconstruct surfaces are based on 

meshes. A mesh is constructed on the dataset and then it is transformed into a quadrilateral 

mesh before being approximated by B-Spline patches or NURBS. These methods are 

generally not robust. 

Other techniques in reverse engineering fit B-Spline or NURBS curves and surfaces 

directly on the dataset. These techniques are more and more efficient but not completely 

robust. A major limitation to these techniques is that they require some knowledge about the 

underlying curve or surface to the data points. It is assumed that an initial curve/surface can 

be constructed in such a way that it is close to the data points and close to the shape of the 

target curve/surface. By being close, the location parameters which are the parameters of the 

projections of data points onto the model are computed correctly. Nevertheless, this 

assumption cannot be guaranteed, especially when the underlying curve or surface is 

unknown. 

Consequently, we have come to propose active contour deformation algorithm for curves 

that does not require any knowledge of the original curve. Curve initialization is not inevitable 

anymore. Additionally, the DBACD algorithm is a discrete approach to fit B-Spline curves to 

points in the plane and does not require any computation of location parameters. Point 

projections are calculated based on an association procedure that takes into account 

geometrical distances with a preservation of topology: an inverse association matches B-

Spline subdivided segments to data points and then a direct association matches all remaining 

data points to subdivided B-Spline segments. 

The different tests we have carried out show that the algorithm is robust to relative 

positions of the dataset and the initial B-Spline control polygon. Knot insertion allows 
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improving the accuracy of the fit but is not sufficient because convergence tolerance is not 

necessarily met. Moreover, excessive knot insertions (addition of control points) might end up 

creating self-intersections within the active B-Spline curve. The remedy to these issues is the 

addition of a fairing term that would take into account the smoothness of the active B-Spline 

curve at each iteration and allow attaining the required tolerance in general. In the case of the 

turbine blade profile, the computational time is considerably low (few seconds) for a dataset 

containing       points and can be made even faster with parallelization. In the case of the 

turbine blade surface, where about         points are involved, computational time for the 

major steps of the algorithm (initialization and distances computation) remains very low of 

the order of a few tens of seconds. 

The DBACD algorithm can perform the approximation of unorganized and noisy 

datapoints in the plane measured on a freeform closed curve. The application can be easily 

extended to open curves in the plane. However, the algorithm requires further adjustments, 

namely in regards to robustness of convergence and computational time. When those 

improvements are met, we believe that the DBACD algorithm can be extended to curves and 

surfaces in 3D quite simply.  
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General conclusion 
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Complex surfaces can be classified according to their geometrical shape complexity and 

their tolerance specification. Aspheres belong to the class of surfaces that are not very 

complex in shape but which require a nanometric precision in manufacturing and 

measurement. Turbine blades belong to the class of surfaces that are very complex in shape 

but necessitate less precision than optical surfaces. The tolerance sought is sub-micrometric. 

Although high-precision manufacturing technologies exist and are applied today, an 

equal-level-of-precision measurement remains inevitable in order to inspect parts that come 

out of production lines. Measurement is what gives an insight of the dimensional 

characteristics of a shape as well as of its form. The UHPMM for aspherical and freeform 

optics, as well as the CMM for turbine blades, are widely used in metrology of freeform parts. 

These machines can handle different measuring instruments from a variety of scanning speeds 

and precisions. The mostly used probing system is the stylus which can achieve 

measurements with nanometric level of uncertainty. Despite the advances of stylus 

profilometry and the fact that it measures points in an ordered sequence/strategy, this 

technique's inherent limitation is the contact with the target. In contrast, some new optical 

measuring instruments and probing systems can generate very large volumes of data 

exceeding a million points within a much shorter amount of time. However, the data can be 

highly unorganized, making it impossible to infer notions about the geometry or the topology 

of the underlying surface to the points. 

Aspherical surfaces specification is clearly defined in ISO standards and states that an 

asphere shall be specified with respect to form tolerance according to a known mathematical 

model of the asphere. Turbine blades do not have known mathematical models and their 

specifications in the standards are rather according to cross-sectional profiles or at best 

according to partial surface features, such as pressure or suction surface and leading or trailing 

edge surface. In all cases, the specification of turbine blades without a known model makes 

the approach of surface reconstruction very different than the approach to aspherical surface 

reconstruction. Therefore, we have divided surface reconstruction into two separate aspects: 

an aspect involving fitting techniques when an analytical model of the surface is known and 

another aspect consisting of active contour deformation when the surface model is either a 

CAD model or unknown. In both cases, we did not assume any organization of the data points 

to remain in the general case that disregards measurement strategies. 

 

The present thesis report has addressed the issues related to the EMRP project IND10: 

FORM entitled "Optical and tactile metrology for absolute form characterization". We have 
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proposed a fitting algorithm for aspherical surfaces based on the L-BFGS method. The 

processing scheme can handle very large volumes of data and can fit an aspherical shape to 

the raw data within a few seconds in an automated manner. This conclusion is founded on a 

thorough comparative study based on simulating data containing errors and validating the use 

of some algorithms for aspherical surface fitting. Precisely, we have compared our newly used 

L-BFGS algorithm to classical algorithms used in metrology such as the Levenberg-

Marquardt algorithm (LM) and the Iterative Closest Point algorithm (ICP). The comparison 

showed the superior performances of L-BFGS as compared to LM and ICP while preserving 

accuracy. We additionally studied the effect of having a variable sampling density in the 

dataset as well as having variable regions of the surface represented in the dataset. This was 

basically done in the aim of proposing an approach to compare different measurements of the 

same optical part performed by the different project partners of IND10: FORM. The 

simulation results revealed that the sampling density does not affect the residual errors when 

points are taken all over the surface, except when the number of points is considerably 

reduced (         of the original points).  However, the residual errors are slightly altered 

with the variation of the sampled region and the variation of the density in the respective 

sampled regions. Consequently, the comparison of the actual measurements done by the 

project partners was based on taking data points in a common region (aperture) of the asphere. 

The results revealed that the residual errors were not exactly similar although the same 

aspherical lens model was measured. 

Furthermore, we have experimented on the type of aspherical model used to describe the 

measured lens. A comparison between using the classical model defined in ISO standards and 

the newly proposed Forbes conic model led to the following conclusions: the Forbes conic 

representation of aspherical surfaces consists of independent model parameters and by that 

was better suited for a fitting involving model parameters estimation. Conversely, the fitting 

runtime was almost twice slower. If the fitting does not need to be done for model parameters 

estimation but only for motion parameters, we recommend using the classical model 

definition. 

In future works, the MinMax fitting of aspherical surfaces is going to be addressed in order to 

better evaluate form errors. The development of a robust and deterministic algorithm for this 

purpose is going to be the subject of the next European project: EMPIR. 

 

The present thesis report has also addressed the issues related to the general problem of 

freeform shape reconstruction and more particularly, the reconstruction of turbine blades. For 
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that we have built a benchmark and thorough study of mesh reconstruction techniques: the 

techniques based on combinatorial structures and the techniques based on implicit functions. 

Although these techniques have been mainly developed for computer graphics applications, 

they drag interest to several aspects. The topological and geometrical guarantees that the 

techniques based on combinatorial structures can offer, raise the first aspect about sampling 

density, expressed in terms of the  -sampling condition. We have shown that this condition is 

necessary to guarantee geometrical closeness and topological correctness but is not sufficient. 

In fact, a lower bound on the sampling density   , was demonstrated to be also necessary in 

our applications. 

Knowing that turbine blades are still specified today according to cross-sectional profiles, we 

have come to propose a new active contour deformation algorithm that consists of a planar B-

Spline curve model that will iteratively deform until it matches the shape of the underlying 

curve to the points. Active contour deformation techniques exist in literature but are all based 

on at least a good initial parameterization or a good B-Spline curve initialization. Our 

proposed algorithm uses a discrete representation of the B-Spline and by that disregards the 

issues of a necessarily good initial parameterization or a good initial curve to the datapoints. 

Instead, a robust point-to-segment association procedure was introduced to preserve both the 

geometry and the topology of the underlying curve to the points. Computational time is quite 

effective but can be enhanced by parallel programming. In actual time, the algorithm can 

handle very small datasets of some thousands of points within negligible time and some 

hundreds of thousands of points within a few tens of seconds (         points in     s). 

The Discrete B-Spline Active Contour Deformation (DBACD) algorithm can converge with a 

sub-micrometric tolerance which matches the form tolerance of turbine blades, however, the 

robustness of the algorithm regarding convergence is not yet guaranteed at all times. 

So, this issue of convergence is going to be addressed in future works in order to have a 

robust fitting that works for any freeform curve. We would also like to extend this algorithm 

to surfaces in 3D in such a way to solve the turbine blade problem when a non measured 

cross-section needs to be characterized or when the specification of the blade is based on 

surface features (pressure surface, suction surface, leading edge surface and trailing edge 

surface features). 
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Appendix 

Résumé substantiel en français 

Introduction générale 

Les surfaces complexes sont des surfaces qui manifestent des variation de forme et de 

géométrie et qui posent des défis quant à leur fabrication et leur mesure. Les surfaces 

complexes sont normalement appelées surfaces gauches et celles-ci sont classifiées selon leur 

taille, la complexité de leur forme ainsi que la tolérance associée à leur spécification. Les 

surfaces optiques et aubes de turbines sont des cas de surfaces complexes et font l'objet de ce 

travail de thèse. 

L'optique a connu un essor remarquable à travers les décennies induisant ainsi des 

performances inégalées dans innombrables domaines tels que la métrologie, la photonique, 

l'énergie, la médecine, l'ophtalmologie… [1]. Les progrès sont notamment dus à l'avancement 

des technologies de fabrication et de mesure. De nouvelles machines à mesurer de très haute 

précision sont désormais capables d'atteindre des niveaux d'incertitudes nanométriques pour la 

mesure de surfaces optiques asphériques. Les surfaces asphériques sont des surfaces 

complexes car elles sont composées de plusieurs formes, i.e., une forme conique et une forme 

polynomiale. Les surfaces gauches ou freeform ont elles aussi connu d'énormes progrès et se 

trouvent concernées par des applications diverses comme dans l'automobile, l'aéronautique, 

l'énergie (éoliennes), etc… L'utilisation de pièces freeform notamment en aéronautique et 

dans l'automobile a permis de réduire considérablement la consommation de carburants et les 

effets nuisibles à l'environnement. Les surfaces freeform sont fabriquées et mesurées avec une 

tolérance sub-micrométrique et donc à l'aide de machines à mesurer tridimensionnelles 

(MMT/CMM). 

Dû à la différence concernant la tolérance recherchée nous allons traiter les surfaces 

asphériques et les aubes de turbines de deux manières distinctes. Le sujet de thèse est motivé 

par projet Européen portant sur les pièces asphériques et un projet industriel portant sur les 

aubes de turbines. Afin de promouvoir l'expertise Européenne en tout ce qui concerne les 

technologies optiques de pointe, l'European Metrology Research Programme (EMRP) a lancé 

le projet IND10: FORM intitulé "Optical and tactile metrology for absolute form 

characterization", et ce, dans le but de développer des méthodes pour mesurer et caractériser 
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des surfaces complexes à un niveau d'incertitude nanométrique. Le projet est coordonné par la 

laboratoire national de métrologie Allemand, le PTB, et regroupe différents laboratoires 

nationaux de métrologie Européens ainsi que des partenaires académiques et industriels. 

Aujourd'hui, il n'existe pas de méthodes universelle pouvant atteindre un niveau nanométrique 

lorsqu'il s'agit de la mesure et de la caractérisation de surfaces complexes telles que les 

surfaces asphériques et les surfaces gauches aussi appelées freeform. Le Laboratoire National 

de métrologie et d'Essais Français (LNE), en collaboration avec l'école d'Arts et Métiers 

ParisTech (ENSAM), l'école Normale Supérieure de Cachan (ENS) et l'entreprise Geomnia, 

est le leader d'un workpackage centré sur le traitement de données et le développement 

d'algorithmes pour la métrologie de forme de surfaces asphériques. 

Geomnia, une PME avec des compétences en métrologie 3D, participe à ce projet pour 

son savoir-faire en ingénierie des systèmes métrologiques et son expertise en apport de 

solutions logicielles à des problèmes de métrologie et parce que l'une de ses problématiques 

actuelles concerne la qualification dimensionnelle d'aubes de turbines à gaz. 

 

Dans les deux cas précédents, la caractérisation de surfaces complexes requiert du 

traitement de données et par conséquent la reconstruction de surfaces. La reconstruction de 

surfaces est une filière de recherche abondamment étudiée et inculquée dans différentes 

disciplines scientifiques telles que l'Informatique Graphique, l'Ingénierie Inverse (Reverse 

Engineering) et la Métrologie. Chacune de ces disciplines a ses propres méthodes et outils 

pour résoudre le problème inverse. En général, le processus de reconstruction part d'un 

ensemble de données cartésiennes, et vise à reconstituer la forme de la surface sous-jacente 

aux points. La communauté d'informatique graphique, par exemple, se suffit d'une 

reconstruction du premier ordre, c'est-à-dire, linéaire par morceaux, en construisant un 

maillage triangulaire. La communauté de l'ingénierie inverse effectue la régression de 

modèles Splines bidirectionnelles (B-Splines et/ou NURBS) comme une approximation de la 

surface sous-jacente aux points. En métrologie, une problématique d'association n'existe pas 

en l'absence d'une connaissance bien précise du modèle mathématique/analytique de la 

surface mesurée. 

 

Avec l'avancée technologique des instruments et des systèmes de mesure, certains 

instruments optiques sont capables de générer de grands flots de données contenant plus d'un 

million de points, et ce, pour un temps de mesure très court. Le nuage de points qui en résulte 

est un ensemble de points non-organisés. La connectivité entre les points n'étant pas inhérente 
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au nuage de points, ce dernier ne communique pas d'informations suffisantes sur la géométrie 

et la topologie de la surface sous-jacente. D'autant plus, le nuage de points est bruité, peut 

contenir des points aberrants (outliers) et peut présenter des régions de recouvrement dans la 

cas où plusieurs scans séparés ont été réalisés et ensuite fusionnés pour constituer le nuage de 

points de la surface complète. Dans le but d'augmenter toujours en efficacité et en rendement, 

il est toujours inéluctable de développer des solutions automatisées et rapides d'où le l'objectif 

de ce travail qui est de développer un algorithme robuste et automatique pour la 

reconstruction de surfaces complexes avec un temps ne dépassant pas le temps de mesure.  

 

Afin d'atteindre cet objectif, nous définissons brièvement le type de données que l'on va 

traiter dans ce travail et nous exposons les capacités liées à la métrologie actuelle et décrivons 

notre approche pour résoudre le problème auquel nous faisons affaire. L'entrée à notre 

problème est un nuage de points à très grand nombre de points (quelques millions). Un nuage 

de points est un ensemble de données non-organisées, bruitées, non-orientées et contenant des 

points aberrants. Idéalement, une mesure conduira à un ensemble de données qui se trouvent 

exactement sur la surface. Or en pratique, ceci est impossible et on observe toujours la 

présence de points parasites. Un bruit peut être interne, provenant de l'appareillage 

électronique, ou externe, lié à l'espace environnant. Tandis qu'un point aberrant (ou outlier) 

est un point qui est situé relativement loin du reste des points. Sa présence peut être due à une 

erreur de mesure aberrante (dépôt de poussières sur la surface) ou à une mesure erronée due à 

la présence d'un obstacle qui bloquerait la zone de mesure désignée. 

De plus, la complexité des surfaces induit que le temps de mesure et de traitement est long. 

Cependant, nous cherchons un algorithme dont le temps de traitement serait au moins 

équivalent au temps de mesure. Par ailleurs, il faudra aussi pouvoir évaluer et valider 

l'algorithme dans le sens de ces fonctionnalités. 

 

Comment obtenir un algorithme de reconstruction de surfaces à partir de grands flots 

de données non-organisées qui soit automatique, robuste aux données d'entrée et rapide 

par rapport au temps de mesure ? 

 

Ce travail de thèse contribue à cette problématique et tente d'en proposer des solutions. Dans 

ce travail, nous traitons de mesures à contact, notamment les mesures avec stylet, et de 

mesures sans contact, notamment les mesures optiques confocales, interférométriques et à 

triangulation laser. Chaque système de mesure possède ses propres spécificités. Celles-ci 
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peuvent être, par exemple, la capacité de générer des mesures en lignes de scans structurées, 

en Z-buffer, en spirales, ou encore des mesures complètement aléatoires non-organisées. 

Ainsi, toute connaissance par rapport au système de mesure et le mesurande a une influence 

sur le processus de reconstruction et sur le choix de l'algorithme de reconstruction. 

La métrologie révèle les aspects de forme et les grandeurs géométriques de l'objet mesuré 

et par conséquent permet de vérifier la conformité de ce dernier vis-à-vis des spécifications 

définies lors de sa conception. Les techniques de mesure traditionnelles se font sur MMT et 

sont encore très utilisées aujourd'hui puisqu'elles sont fidèles et traçables. Néanmoins, ceci 

n'est vrai que pour des formes simples et régulières et pour lesquelles il existe des étalons 

(sphères, plans, cylindres …). Ces étalons sont fabriqués avec une très bonne qualité de 

finition et étalonnés par le biais d'instruments primaires avant d'être utilisés comme étalons de 

référence pour l'étalonnage de MMT. Lorsqu'une machine est étalonnée à l'aide d'un étalon de 

référence, toute mesure sur le même type de forme que celle de l'étalon devient désormais 

traçable selon la définition du 'mètre' communiquée par le Bureau International des Poids et 

Mesures (BIPM). Le BIPM est un organisme qui a pour rôle de garantir l'uniformité 

universelle des mesures et leur traçabilité selon le Système International des unités (SI) [2]. 

En revanche, lorsque les surfaces complexes ou freeform sont traitées, le Guide pour 

l'expression de l'incertitude de mesure (GUM) n'est plus applicable dû à l'absence d'étalons de 

référence [3], [4]. Une sphère par exemple possède un paramètre de grandeur qui est son 

diamètre, ce qui peut être facilement mesurable par une machine dédiée à la mesure de 

diamètres. Etant donné qu'une surface freeform n'a pas de tels paramètres naturellement 

identifiables, il est très difficile d'en fabriquer des étalons de référence universels [5], malgré 

le fait que quelques uns commencent à être proposés [6]. 

Lorsque une très haute précision est requise, les MMT traditionnelles ne sont pas 

suffisantes et sont remplacées par des MMT d'extrême précision que l'on va abréger par 

UHPMM. L'atout majeur des UHPMM est qu'elles ne nécessitent plus d'étalonnage par des 

étalons car la mesure est directement contrôlée par des instruments primaires tels que des 

interféromètres laser. 
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Pyramide de traçabilité métrologique (SPM: Mesure par capteurs scan). 

Les machines à mesurer (MMT et UHPMM) engendrent un processus de mesure en deux 

temps. La mesure consiste premièrement à recaler la pièce à mesurer dans le repère de la 

machine. Deuxièmement, la mesure consiste à scanner la pièce une fois recalée et là il existe 

plusieurs techniques telles que la mesure point-à-point ou en lignes de scans, pas toujours 

représentatives de la géométrie 3D de l'objet mesuré. Dans ces cas de mesure, la fréquence 

d'acquisition ne dépasse pas les    à    points par minute [5]. La métrologie d'aujourd'hui 

implique des instruments plus avancés qui sont indépendants de l'étape de recalage des 

repères permettant ainsi l'acquisition de données à des fréquences très élevées atteignant les 

      points/s. Ceux-ci sont des instruments sans contact, en majorité optiques, générant 

plusieurs centaines de milliers de points en une durée de temps réduite. En particulier, les 

scanners 3D montrent une bonne efficacité quant à la mesure de surfaces complexes. 

Cependant, et surtout avec l'émergence continue de nouvelles technologies, les scanners 3D 

sont difficilement étalonnés et calibrés, leur mesure manquant de traçabilité. De plus, les 

nuages de points qui en résultent sont non-organisés et grands en nombre de points. 

 

Deux types de surfaces complexes servent de support à ce travail de recherche: 

I. Une surface asphérique AO775 fabriquée par Anteryon® : 

 Une mesure réalisée au sein du LNE à l'aide d'un profilomètre de haute-précision et 

d'un capteur tactile. La mesure tactile contient         points. 

 Une autre mesure sur le profilomètre du LNE à l'aide d'un capteur optique confocal 

[7]. La mesure confocale contient         de points. Le but de cette deuxième 

mesure est de comparer la mesure tactile à la mesure confocale. 
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 Des mesures différentes par des partenaires du projet IND10: FORM pour l'évaluation 

des capacités de mesure de chacun des laboratoires concernés. 

La difficulté concernant la reconstruction de surfaces asphériques découle du fait que leur 

modèle est constitué d'un bon nombre de paramètres. En rajoutant le fait qu'il y ait un très 

grand flot de données, rend les algorithmes d'optimisation longs. 

 

II. Une aube de turbine mesurée par triangulation laser. Pour cette mesure, quatre scans, 

résultant de quatre posages différents de la pièce, sont fusionnés et produisent un 

nuage de points à        points distribués en lignes de scans. 

Les difficultés liées à la reconstruction dans ce cas sont l'abondance du bruit de mesure, les 

régions de recouvrement dues à la fusion des données et la disparité de la fréquence spatiale 

des points dans les différentes directions de mesure. 

 

Les surfaces freeform n'ont normalement pas de modèles mathématiques associés. En effet, 

elles sont souvent définies par des modèles CAO. Ce cas n'étant pas toujours vérifié, nous 

nous intéressons au cas où aucun modèle n'est fournis. C'est ainsi que, dans le cas des aubes 

de turbines où la caractérisation d'un profil à une hauteur donnée est requise, une 

représentation continue de la surface est primordiale afin de pouvoir extraire un profil à toute 

hauteur désirée (Fig. 5). 

 

 

Caractérisation des aubes de turbine par section. 
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Des dimensions recherchées sur un profil d'aube de turbine. 

Quelque soit la technique de mesure utilisée, le processus de caractérisation d'une surface 

représentée par des points induit la nécessité d'en reconstruire une approximation de celle-ci. 

Les raisons les plus simples sont que, par exemple, pour un nuage de points 3D non-

organisés, la détermination du voisinage est compliquée. Les techniques proposées par la 

communauté de l'informatique graphique dénouent ce problème en créant un maillage des 

points. Le maillage est une structure de données à plusieurs utilités. D'un premier côté, le 

maillage permet de plus simplement partitionner l'espace des points permettant ainsi 

l'association de patchs paramétriques lisses de type Splines à chacune des partitions [9]–[15]. 

Ces algorithmes nécessitent de rendre les maillages triangulaires quadrangulaires et donc 

requièrent un temps de calcul considérable. Dans d'autres approches au problème, des travaux 

ont permis de montrer qu'il est aussi possible d'associer des surfaces paramétriques, 

directement sur des nuages de points sans passer par l'interpolation de premier ordre. Ces 

techniques font l'objet d'une bibliographie suivie d'une contribution par une méthode de 

déformation de contour actif de modèle B-Spline. 

 

L'association, ou autrement dit, le fitting d'une surface à des points doit permettre de 

procéder à une analyse des déviations, d'estimer les défauts de forme et d'inspecter les 

surfaces complexes, qu'elles soient asphériques ou freeform et qu'elles aient un modèle 

mathématique connu à priori ou pas. La métrologie des surfaces asphériques se fait par le 

biais de l'association du modèle mathématique aux points en estimant les paramètres de 

transformations (rotation et translation) et éventuellement les paramètres du modèle. Suivant 

la norme d'association utilisée, la caractérisation de forme n'est pas la même. Selon les 

standards ISO, la métrologie de forme s'effectue en utilisant la norme    consistant à calculer 

une enveloppe minimale contenant les points. Par contre, cette méthode augmente en 

complexité plus le nombre de points en entrée est important surtout que les algorithmes qui 

existent sont instables et non-déterministes [16], [17]. Cela dit, le problème d'association peut 
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être résolu en utilisant la norme   . Malgré le fait que cette norme n'est pas appropriée pour 

faire de la métrologie de forme, les travaux actuels continuent à en faire service. Le défaut de 

forme est surestimé avec la norme    mais l'erreur crête-à-crête ou Peak-to-Valley (PV) est un 

indicateur encore très utilisé et accepté [18].  

 

L'approche globale à la caractérisation de surfaces complexes suit le schéma de la figure 

suivante.  

 

 

Procédure de traitement des données mesurées d'une surface complexe. 

La phase de prétraitement est importante dans le sens où elle permet d'éliminer les points 

aberrants et/ou les bruits de mesures. Normalement, cette étape est intégrée en tant qu'étape 

après-mesure dans le post-processeur de la machine à mesurer et tel est le cas de la machine 

du LNE. Eventuellement, cette étape de prétraitement peut être utile pour estimer l'orientation 

normale des points par une technique d'Analyse par Composantes Principales (PCA) ou par 

des approches utilisant le diagramme de Voronoï [19]–[21] mais cette phase du processus 

n'est pas notre point d'intérêt dans ce travail. L'étape suivante qui consiste à la reconstruction 

et l'association constitue notre centre d'intérêt. Nous étudions la robustesse et l'efficacité des 

techniques de reconstruction par maillage triangulaire avec une analyse et une comparaison de 

plusieurs méthodes existantes et nous définissons les éléments clés afin de valider l'une ou 
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l'autre des méthodes en ce qui concerne la caractérisation des surfaces complexes. Le maillage 

est une étape que nous incluons dans l'étude mais il faut savoir qu'elle peut n'est pas 

indispensable pour la suite du traitement. Nous procédons ensuite à l'association de modèles 

analytiques lorsque ceux-ci existent ou de modèles B-Splines dans le cas contraire. Les 

données sont soit les points résultant du prétraitement soit les points ordonnés constituant les 

sommets du maillage si la structuration des données s'est avérée indispensable. La dernière 

étape consiste à analyser les écarts qui résultent de l'association et à qualifier ainsi la forme 

et/ou les grandeurs dimensionnelles requises de la surface mesurée. 

 

Le manuscrit est divisé en trois chapitres. Le chapitre 1 présente une vue globale sur la 

conception, la fabrication et les techniques de mesures de surfaces complexes et fournit un 

état de l'art sur les machines à mesurer de très haute précision ainsi que sur les technologies 

de capteurs. Ce chapitre explique aussi comment les surfaces complexes citées ci-dessus sont 

mesurées. Dans le chapitre 2, nous mettons le point sur les techniques d'optimisation par le 

biais d'une étude bibliographie suivie d'une comparaison et nous proposons un algorithme de 

régression robuste pour l'association de modèles implicites à des points issus d'une mesure sur 

une pièce asphérique. L'algorithme proposé est validé sur des données simulées avant d'être 

appliqué à des données réelles. Dans le chapitre 3 nous traitons des surfaces gauches 

(freeform) qui ne sont définies ni par des modèles mathématiques ni par des modèles CAO. 

Nous commençons par une étude bibliographie sur les techniques d'association/fitting de 

modèles B-Splines tout en énumérant leurs limites et difficultés et proposons ensuite une 

méthode qui tient compte des difficultés et qui s'avère être une forte contribution.  
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Chapitre 1 - Conception, fabrication et mesure des surfaces asphériques et 

freeform 

Conception et spécification des surfaces asphériques et freeform 

Les surfaces complexes peuvent être classées tel que le montre la Fig. 18. Nous nous 

intéressons particulièrement aux classes de surfaces optiques et aux aubes de turbine. Ce 

graphe montre clairement qu'entre ces deux classes, la tolérance recherchée se trouve à 

différentes échelles. Les surfaces optiques requièrent une tolérance nanométrique alors que les 

aubes de turbines sont au niveau micrométrique (ou aujourd'hui sub-micrométrique). 

 

 

Tolérance en fonction de la dimension des surfaces complexes et freeform [22]. 

La fabrication et la mesure sont les deux étapes-clé qui suivent la conception sur la chaîne 

du cycle de vie d'un produit avant que celui-ci ne soit transmis au consommateur. A la toute 

première étape de conception, un concepteur peut aller jusqu'à définir des spécifications 

(tolérances) très fines, cependant, si le produit ne peut être fabriqué précisément ou si son 

inspection ne peut être réalisée avec les moyens de mesures existants, ce produit n'a aucune 

raison d'exister car ses fonctionnalités ne sont pas garanties [23]. L'avance technologique a 

permis de surmonter les difficultés liées à la mesure et à la fabrication de haute précision [24], 

[25], [26]. Non seulement des processus de fabrication avancés tels que la rectification et le 

polissage ont réduit les défauts de fabrication, mais aussi les technologies de mesures ont 

évolué vers une échelle micrométrique voire nanométrique que se soit en termes d'incertitude 

ou de répétabilité [27], [28], [29], [30], [31], [32]. Cela est vrai pour les formes simples avec 

des débuts de progrès pour les formes complexes. Ceci dit, il devient promettant d'en vouloir 
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demander davantage aux concepteurs et aller vers des produits aux formes plus complexes 

avec l'assurance d'évoluer en performance. Des surfaces asphériques aux aubes de turbines, 

nous décrivons comment ces surfaces complexes sont spécifiées, nous listons rapidement les 

procédés de fabrication et nous nous concentrons sur la métrologie dédiée à ces types de 

surfaces. Actuellement, il est devenu possible d'atteindre un niveau nanométrique dans la 

fabrication de surfaces asphériques et leur mesure [5], [33], [34]. 

Surfaces asphériques 

 

Lentilles asphériques: illustrant les grandeurs physiques telles que l'ouverture ou le diamètre effectif 

(CA) et la hauteur (S). 

Les surfaces asphériques (Fig. 20) sont formulées et définies dans l'ISO 10110-Part 12 

[35]. En ce qui concerne les surfaces axisymétriques, elles sont de la forme suivante (1): 

         
   

              
      

  

   

   

   (70) 

où          et   sont les coordonnées Cartésiennes;   est la courbure au sommet,   est 

la conicité et                est le vecteur des paramètres de déviation asphérique 

d'ordre  . Pour tout couple         ,              est dérivable deux fois. 

 

Dans notre cas nous traitons d'une surface asphérique (modèle AO775) d'ordre    qui 

n'est pas exactement définie comme dans l'ISO [35] en question. Les paramètres ont pour 

valeurs respectives:         mm
-1

, la conicité      et les paramètres asphériques 

                                                               

     . Cette lentille a les dimensions         mm et          mm. 
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Il existe deux autres définitions mathématiques plus récentes pour les surfaces 

asphériques qui ont été proposées par Forbes [36], [37]. Ces nouvelles définitions sont 

intéressantes car elles sont fondées sur des polynômes à base orthogonale pour lesquels les 

coefficients, qui ne sont autres que les paramètres asphériques, sont indépendants [38]. Cela 

implique que chacun des coefficients joue sur une fréquence spatiale de la surface [39]. 

Aubes de turbines 

Contrairement aux formes simples et/ou asphériques, les surfaces gauches n'ont pas de 

forme particulière et peuvent donc prendre toutes formes. Dans l'absence d'une définition 

formelle, Campbell et Flynn perçoivent les freeform comme étant des surfaces composées 

d'un ou plusieurs bouts de surfaces non planes et non quadriques [40]. Les surfaces gauches 

sont intéressantes dans le sens où elles remplissent un cahier de charge à la fois fonctionnel et 

esthétique [22], [41], [42]. Pour une turbomachine, une freeform permet d'optimiser les 

performances et de réduire les pertes d'énergie. 

En optique et imagerie, les freeform sont capables d'atteindre des performances encore 

plus poussées que celles fournies pas des surfaces asphériques. En plus d'éliminer les 

aberrations optiques, les lentilles freeform augmentent le champs de profondeur et élargissent 

le champ de vue [43]. Les surfaces freeform sont rarement accompagnée de modèles 

mathématiques mais sont souvent décrites par des modèles paramétriques. Les modèles les 

plus utilisés en CAO sont les modèles B-Splines (6). 

           
      

        

  

   
(71) 

où      les points de contrôle de la surface paramétrique,   
     et   

     les fonctions de 

mélanges d'ordre   et   dans les directions   et  , respectivement. 

Fabrication des surfaces asphériques et freeform 

Les techniques de fabrication de surface optiques asphériques et gauches sont listées 

d'une manière exhaustive dans les travaux de Fang et al in [43]. Pour les surfaces de 

révolution composées de matériaux non-ferrés ou céramiques, une méthode de fabrication très 

courante est le tournage à pointe de diamant unique (ou Single Point Diamond Turning 

(SPDT)) [44]. Le SPDT peut être utilisé pour des surfaces freeform à condition qu'une 
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adaptation soit possible telle que la Fast Tool Servo (FTS) [8], [45]. Beaucoup d'autres 

processus de fabrication existent et nous citons le fraisage rotatif diamanté (fly-cutting), le 

fraisage à bout sphérique, et le moulage de précision [46], [47]. Des technologies de polissage 

assistées par ordinateur font l'ample montée en précision et en répétabilité de la fabrication de 

surfaces complexes. Nous citons ici l'usinage par faisceaux ioniques et/ou plasma [27], [48], 

le polissage magnétorhéologique asservi [28] et le Precession Process [49]. 

D'autres techniques asservies permettent aussi d'atteindre des précisions importantes. 

Henselmans propose une technique qui consiste à réaliser une mesure après chaque étape de 

fabrication, en boucle fermée, afin d'obtenir la qualité de surface désirée [8]. 

 

Les surfaces gauches telles que les aubes de turbines sont généralement fabriquées sur 

des machines  -axes à commande numérique [47], [50] ou par des techniques de forge [51]. 

Les matériaux utilisés pour les aubes de turbine, par exemple, sont le Prepreg ou des 

matériaux d'infusion ou encore l'acier inoxydable. Pour des performances plus poussées en 

terme de température, des techniques de fabrication par procédés électrochimiques sont 

utilisés et les matériaux concernés sont des alliages à base de Titane et de Nickel ou encore de 

l'aluminure de Titane. 

Métrologie des surfaces asphériques et freeform 

Dans le but d'améliorer leurs capacités de mesurer des pièces complexes, les laboratoires 

nationaux de métrologie, les laboratoires de recherche et quelques industries Européens ont 

développé des machines d'ultra-haute précision [52]. La clé de cette fidélité de mesure élevée 

et inégalée est dans le fait que ces machines respectent bien le principe d'Abbe, utilisent des 

matériaux à très faibles coefficients de dilatation thermique, des éléments de guidages 

robustes et précis et sont équipées d'interféromètres laser qui contrôlent la mesure. La 

traçabilité de ces machines est établie grâce à ces interféromètres laser eux-mêmes étalonnés 

en fréquence par comparaison avec une source laser He-Ne I2-stabilisée primaire [53], [54]. 

Finalement les instruments de mesure utilisés sont soit tactiles (stylet mécanique) soit 

optiques (confocal chromatique) [55][56][57]. Les machines évoquées sont la machine F25 de 

Zeiss utilisée par le VSL et le SMD, la µ-CMM du METAS, l'ISARA400 de chez IBSPE, 

NANOMEFOS de chez TNO, le TWI du PTB et finalement le profilomètre du LNE. Nous 

allons nous contenter de présenter le profilomètre de haute précision du LNE dans ce travail 



 

292 

 

résumé sachant que la description détaillée des autres machines se trouve dans l'article par 

Nouira et al [52]. 

Le profilomètre de haute précision du LNE pour la mesure de pièces asphériques 

Le profilomètre du LNE a été conçu à la base pour la métrologie d'état de surfaces planes 

avec des incertitudes de l'ordre du nanomètre. Mais aujourd'hui cette machine est mise en 

œuvre pour la mesure de surfaces asphériques et ses capacités y sont évaluées. L'architecture 

de cette machine répond aux exigences du principe d'Abbe et comporte une chaîne 

métrologique courte et dissociée [58]. La machine admet deux types de capteurs, un capteur 

point tactile et un capteur point confocal chromatique. La machine est stable et précise grâce 

aux matériaux utilisés et aux éléments de guidage de très haute précision, complètement 

indépendants dans chacune des directions  ,   et  . Pour    mm de course, la rectitude du 

mouvement des guidages est à moins de   nm d'erreur. 

Une table en Zerodur qui se déplace dans le plan horizontal et sur laquelle la pièce à 

mesurer est posée, est contrôlée par deux interféromètres laser (en   et en  ) dont l'incertitude 

de mesure ne dépasse pas le nanomètre. La mesure se fait dans la direction verticale de   et 

les déplacements dans cette direction sont aussi contrôlés mais par un interféromètre 

différentiel raccourcissant ainsi la chaîne métrologique et l'isolant des altérations thermiques 

de la structure porteuse de la machine. Les variations thermiques des éléments constituant la 

chaîne métrologique sont estimés à quelques centièmes de degrés conduisant ainsi à une 

dilatation thermique maximale faible de   nm pour l'aluminium et     nm pour le Zerodur. 

Le profilomètre adopte le principe de la structure métrologique dissociée qui consiste à 

désunir la structure métrologique de la structure porteuse de la machine [58], [59]. De ce fait, 

la structure métrologique est reliée à la structure porteuse par des liaisons isostatiques 

flexibles afin de limiter la transmission des déformations que peut subir cette dernière. Par 

conséquent, la structure métrologique n'est que sous l'effet de sa propre masse et n'a pour 

fonction que d'effectuer la mesure. 

La machine est installée dans la salle blanche du LNE où les conditions 

environnementales sont optimales. La température ambiante est réglée à         °C et 

l'humidité relative à      %RH. Cette petite amplitude de variation de température est lente 

et conduit à de très faibles impacts sur les éléments de la machine. Les vibrations basses-

fréquences venant du sol sont réduites grâce à un système antivibratoire. Le budget 

d'incertitude a été établit pour cette machine avec un facteur d'élargissement égal à   et en 
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conformité avec le GUM [3]. L'incertitude élargie est estimée à            nm, où   est la 

distance mesurée avec un capteur tactile. Lorsqu'il s'agit d'un capteur confocal, cette 

incertitude est à ré-estimer. 

 

 

(a) 

 

(b) 

Le profilomètre de très haute précision du LNE:  (a) architecture de l'appareil. (b) photo de l'appareil. 
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La technique la plus couramment utilisée en métrologie dimensionnelle jusqu'à ce jour 

demeure la mesure à contact car elle est bien maîtrisée. Le stylet utilisé sur le profilomètre 

pour la mesure d'une lentille asphérique possède un angle au bout de     , un rayon de la 

sphère de   µm et une force statique de mesure inférieure à     mN. Trois courses de mesures 

sont possibles avec ce capteur, le plus petite allant jusqu'à     µm, la moyenne allant jusqu'à 

    µm et la plus large allant jusqu'à   mm. La mesure à contact connaît une limitation 

majeure liée au contact entre le capteur et la pièce mesurée. Pour des objets non rigides, le 

contact peut engendrer des déformations et pour des objets rigides, des égratignures peuvent 

se manifester. C'est pourquoi les technologies évoluent davantage aujourd'hui dans le sens de 

la mesure sans contact avec des efforts multipliés pour rendre ces technologies très fiables. 

La mesure confocale chromatique est l'une des plus répandues avec entre autres les 

techniques de triangulation laser et l'interférométrie. Le principe du confocal ne sera pas 

évoqué ici mais de bonnes références bibliographiques sont à la portée du lecteur 

[61]. 

La pièce asphérique AO775 décrite précédemment est posée sur la table de la machine à 

mesurer du LNE et un recalage manuel de la pièce par rapport aux repères de la machine est 

effectué. Sachant que sur le profilomètre il n'est pas possible de faire un recalage parfait et 

d'aligner l'axe de la pièce avec l'axe   de la machine, le point de rebroussement de la surface 

peut être plus ou moins bien estimé. Ce point là représente le centre autour duquel une mesure 

symétrique en   et en   est effectuée. Une fois l'alignement accompli, la surface est scannée 

sous forme de grille XY et les coordonnées Cartésiennes des points sont enregistrées. Pour la 

mesure tactile, l'aire mesurée est de     mm² car nous avons restreint la course de mesure à 

l'intervalle         µm pour une incertitude associée de       nm. Pour la mesure 

confocale, l'aire mesurée est de     mm², cette étendue étant limite par rapport à une 

incertitude associée qui soit faible, ou du moins du même ordre que celle de la mesure tactile. 

La comparaison et l'effet de mesure avec l'un ou l'autre des capteurs sont détaillés dans les 

travaux de El-Hayek et al [62], [63]. 

Mesure des aubes de turbine 

Les aubes de turbines étant considérées comme fortement freeform, présentent un vrai 

défi quant à la mesure. Selon Savio et al [22], l'étape de recalage de la pièce sur le repère de la 

machine est compliqué et le choix de l'instrument de mesure est variable. Dans quelques cas, 
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l'inspection visuelle simple est encore employée alors que dans d'autres cas qui requièrent 

plus de fidélité (precision en anglais), des moyens de mesure à triangulation laser sont utilisés. 

Dans notre cas, l'aube de turbine est mesurée à l'aide d'un scanner à triangulation laser monté 

sur MMT. Le regroupement des points finaux est la fusion de scans issus de   posages 

différents de la pièce. Les scans sont des scans parallèles formant ainsi des lignes de scans 

tout au long de l'aube. 

 

 

(a) 

 

(b) 

Mesure d'une aube: (a) point-à-point avec capteur à contact (machine METRIS) [64]; (b) triangulation 

laser sans contact (labo de métrologie de Nikon). 

Conclusion 

Les surfaces asphériques et freeform ont trouvé leur place sur la marché car elles offrent 

des performances inégalées. Ayant des géométries et des formes complexes, les surfaces 

asphériques et freeform doivent cependant être fabriquées mesurées avec très haute précision 

afin que leurs performances soient perçues. Pour les surfaces asphériques nous cherchons une 

précision à l'échelle du nanomètre tandis que pour l'aube de turbine nous sommes à l'échelle 

sub-micrométrique. Les moyens de mesure qui existent sur le marché sont multiples, le stylet 

étant le plus maîtrisé. Les technologies optiques voient leur essor aussi. Les machines à 

mesurer dédiées à la mesure de surfaces complexes sont très précises et peuvent atteindre des 

niveaux d'incertitude et de répétabilité à l'échelle du nanomètre. Concernant la mesure de la 

pièce asphérique, le LNE a effectué deux mesures, une mesure tactile et une mesure confocal 

sans contact et les partenaires Européens du projet ont eux aussi effectuer des mesures 

diverses.  De nouvelles technologies de mesures certes très rapides mais qui manquent de 

l'étape de recalage de repères deviennent de plus en plus demandées. Les nuages de points y 
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résultants sont non organisés et ont des topologies non identifiables et c'est pour cela qu'il est 

impossible d'avoir un cadre de travail unique dans le cas des freeform. L'aube de turbine a été 

mesurée par triangulation laser sur MMT et le nuage de points résultant manque 

d'informations sur sa topologie et sa géométrie et ne peut être utilisé pour faire de la 

métrologie dimensionnelle. Les méthodes de caractérisation des surfaces asphériques ainsi 

que celles des surfaces gauches feront l'objet des chapitres 2 et 3, respectivement. 

 

Chapitre 2 - Reconstruction de surfaces complexes à modèles connus: cas 

des surfaces asphériques 

Les métrologues font référence au terme reconstruction par le terme association (qui veut 

dire fitting en anglais). Dans le cas de l'association, on associe un modèle mathématique 

(implicite ou explicite) connu à des données discrètes. C'est pourquoi que dans le cas des 

aubes, ce traitement n'est pas possible vu qu'aucun modèle mathématique n'existe. La 

caractérisation de surfaces asphériques via l'association de modèles asphériques n'est pas très 

abondante dans la littérature et seulement quelques travaux ont été recueillis [65], [66] et 

[67]–[71]. Ce chapitre traite d'un retour sur l'état de l'art des méthodes d'optimisation, les 

méthodes de caractérisation de surfaces asphériques mais aussi de la validation et de 

l'utilisation d'une nouvelle méthode que nous proposons à ce sujet, la méthode du L-BFGS. 

Cette méthode est validée sur des données simulées en s'appuyant sur la norme ISO 10360-6 

[72] et puis appliquée à des données mesurées. Le L-BFGS montre des performances 

supérieures à celles des méthodes classiques [73]. 

 

Le processus d'association est décrit dans la norme ISO 17450-Part 1 [74]. L'association 

est l'opération utilisée pour ajuster un élément idéal (le modèle) à un élément non idéal (le 

nuage de points) selon un critère (tel que les moindres carrés). Le modèle peut être sous forme 

discrète telle qu'un nuage de points théorique ou un maillage, ou sous forme continue telle 

qu'un modèle CAO ou une formulation mathématique. Dans le cas des modèles discrets, 

l'Iterative Closest Point (ICP) est l'algorithme le plus utilisé et les distances sont calculées 

point-à-point et/ou point-à-triangle. Parmi les algorithmes d'optimisation qui sont les plus 

utilisés nous citons les algorithmes de minimisation de distances orthogonales, l'ICP [75]–

[77], le simplex [78] et bien d'autres algorithmes tels que les algorithmes non déterministes 

comme l'évolution différentielle, l'algorithme génétique, etc… pour ce travail nous évoquons 
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l'ICP, la méthode Newton-Raphson, le Levenberg-Marquardt (LM). Nous mettons le point sur 

la méthode Limited memory- Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) qui sera la 

contribution de ce chapitre. 

     
 

        (72) 

Le LM et le L-BFGS ainsi que l'ICP sont testés pour l'ajustement de surfaces asphériques en 

s'appuyant sur la norme ISO 10360-Part 6 [72] et les travaux de Lin et al [79]. Nous nous 

intéressons uniquement à l'optimisation des paramètres de transformations (  et  ) en 

comparant la minimisation des distances verticales et orthogonales au sens des moindres 

carrés. Nous étudions également l'effet du nombre de points considérés et l'effet de leur 

répartition sur le temps de calcul et la précision. 

Validation des algorithmes L-BFGS, LM et ICP 

Afin de valider les algorithmes, de les comparer et de montrer l'efficacité de L-BFGS, le 

modèle asphérique est simulé en générant des points symétriquement distribués autour de 

l'axe de symétrie. Ensuite, à ces points simulés nous ajoutons du bruit Gaussien et 

superposons des erreurs systématiques pour modéliser le bruit, la rugosité et les défauts de 

forme. Le bruit aléatoire superposé aux données théoriques est un bruit Gaussien avec     

et     nm. La valeur d'écart-type est en cohérence avec l'état de surface qui peut se 

manifester sur des pièces réelles à cause de défauts de fabrications [80]. Les erreurs 

systématiques modélisant les défauts de forme sont représentées par des harmoniques de 

Fourrier et sont superposées aux données précédentes dans la direction orthogonale à la 

surface en chaque point. Ces erreurs peuvent survenir surtout des erreurs systématiques du 

mouvement de la machine de fabrication et/ou de mesure [92]. L'erreur crête-à-crête générée 

s'élève à environs     nm ce qui correspond à des erreurs de forme sur des surface 

asphériques. 

 

Nous montrons à travers l'étude que les trois méthodes, ICP, LM et L-BFGS retournent 

des valeurs de RMS et PV très similaires, et ce, pour tous les cas de nombres de points tant 

que ce dernier ne descend pas sous le seuil des      points. La complexité des algorithmes a 

été aussi étudiée et mesurée en termes de temps de calcul et de mémoire utilisée. En ce qui 

concerne l'allocation mémoire, tous les algorithmes ne dépassent pas les   Go de mémoire 

active. Par contre, concernant le temps de calcul, surtout si nous augmentons le nombre de 
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paramètres à calculer (on intègre l'estimation des paramètres du modèle dans le calcul), le L-

BFGS montre clairement ses atouts. Finalement, des tests que nous avons effectués pour 

évaluer les effets des paramètres intrinsèques de L-BFGS montrent que ces paramètres 

n'influençaient pas la complexité ou la précision du résultat d'une manière significative. 

Application à des données mesurées 

Les algorithmes sont validés sur des données simulées pour l'ajustement de modèles 

asphériques, et sont alors appliqués à des données issues de mesure. Le L-BFGS montre 

encore une fois son efficacité et sa précision : 

 

 

(a) 
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(b) 

Cartographies des erreurs résiduelles après ajustement du modèle de la lentille AO775 avec le L-

BFGS sur les données mesurées: (a) TScan1, (b) OScan1. 

Chapitre 3 - Reconstruction de courbes et surfaces freeform 

Les surfaces freeform ou gauches présentent un vrai défi car dans de nombreuses 

applications car elles peuvent ne pas être accompagnées d'un modèle CAO [81]. Au mieux, 

les surfaces freeform manquent d'une définition mathématique formelle mais sont 

représentées par des modèles B-Spline et/ou NURBS [82]. Nous nous appliquons aux 

modèles B-Splines afin d'effectuer une association sur des données initialement non-

organisées et bruitées. Dans ce chapitre nous faisons un retour sur l'état de l'art concernant les 

techniques de maillage, les techniques de régression de modèles B-Splines existantes et enfin 

proposons une nouvelle approche par déformation de contour actifs de B-Spline. Nous 

exposons les avantages et les limites de cette approche afin de montrer son efficacité et les 

pistes de son amélioration. 

 

Les techniques de maillage peuvent être classées sous deux grandes familles, une famille 

de techniques se basant sur des structures combinatoires et une autre famille de techniques se 
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basant sur le calcul de fonctions implicites. Les techniques appartenant à la première famille 

se basent sur les deux représentations duales, le diagramme de Voronoi et la triangulation de 

Delaunay. Ces graphes se sont avérés très appropriés quant à la structuration de données non-

organisées. Ensuite, la construction du maillage surfacique se fait à l'aide de techniques qui 

cherchent à trouver une approximation des facettes triangulaires appartenant au Delaunay 

restreint à la surface. Nous citons, présentons et comparons quelques méthodes de maillage en 

se basant sur des critères de comparaison bien définis et qui sont de bons indicateurs de 

robustesse et de qualité de reconstruction [83]–[88]. 

Les techniques appartenant à la catégorie des surfaces implicites cherchent à extraire le 

même type de maillages non pas grâce à une approche géométrique ou topologique mais le 

calcul de fonctions implicites qui s'annulent au niveau de la surface sous-jacente [89]–[94]. 

Plus précisément, une fonction implicite   associe un scalaire,    , à un ensemble de 

données dans l'espace. Généralement, les fonctions implicites sont des fonctions de distance 

mais peuvent prendre d'autres formes. 

Etat de l'art 

La raison pour laquelle nous étudions les techniques de reconstruction aboutissant à un 

maillage triangulaire se résume à la possibilité de convertir la surface reconstruite maillée en 

une surface paramétrique adaptée à la représentation d'objets et de topologies complexes. 

Classiquement, lorsque le modèle d'une surface n'est pas connu, et qu'il n'est surtout pas de 

forme canonique, la reconstruction de surfaces freeform se fait en passant par un maillage. 

Celui-ci permet la structuration des données et leur transformation en des patches 

paramétriques B-Spline ou NURBS [9]–[15]. Le but de ce chapitre est d'exposer les limites de 

ces techniques et  de montrer qu'elles ne sont pas suffisantes pour accomplir notre objectif 

étant le développement d'un algorithme de reconstruction automatique, robuste et qui 

s'applique à des données bruitées de grandes tailles. Les critères utilisés pour évaluer les 

différentes méthodes de maillage sont les garanties, la robustesse et la complexité. En ce qui 

concerne les garanties, il est impératif de rappeler la condition nécessaire pour l'obtention d'un 

maillage géométriquement proche et topologiquement équivalent à la surface sous-jacente. 

Cette condition sur la densité d'échantillonnage est bornée par un seuil haut indiquant une 

densité minimale et un seuil bas indiquant une densité maximale. Cette condition appelée 

condition d' -échantillonnage est basé sur une théorie impliquant que les points 

échantillonnés appartiennent à une surface théorique connue. Comme dans notre cas les 
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données peuvent être bruitées et la surface peut être inconnue, la garantie d'un maillage 

manifold correct n'existe plus [83]–[88], [95]–[102]. 

 

Les techniques de maillage ne garantissent pas une reconstruction correcte et/ou manifold 

et la complexité dépend majoritairement de la triangulation de Delaunay qui est de l'ordre de 

     . Pour nos applications de reconstruction de surfaces asphériques et freeform, nous 

montrons que ces techniques ne sont pas adaptées et nous optons alors à une méthode 

d'association de courbes et surfaces de type B-Spline aux points sans passer par un maillage. 

La littérature concernant ce sujet révèle des résultats promettant. L'une des méthodes les plus 

connues dans ce domaine est celle de la déformation de contours actifs en utilisant des 

modèles B-Spline. Cette technique introduite par Kass et al [103] et développée 

ultérieurement par Pottmann et al [104] consiste à faire évoluer une surface, d'une manière 

itérative, afin que celle-ci soit, à l'étape finale, une bonne approximation des points. La 

surface peut être initialisée de manières différentes mais les techniques d'initialisation ne sont 

pas assez robustes aujourd'hui et s'appuient sur le fait que la forme de la surface est connue au 

préalable. Il en découle aussi qu'une paramétrisation initiale ne peut être construite 

correctement que si la surface initiale est relativement proche des données. Selon Kineri et al 

[105] le problème d'initialisation de la surface se fait en construisant les courbes appartenant à 

la frontière de la surface B-Spline sur des points sélectionnés et supposés sur la frontière. 

Lorsque la forme de la surface n'est pas connue au préalable ou s'il est impossible de 

déterminer les points qui appartiennent à la frontière, la méthode de Kineri et al ne fonctionne 

plus. Dans les travaux de Minh et Forbes [106], la surface initiale est supposée connue grâce à 

la connaissance du modèle CAO de la surface sous-jacente et les auteurs proposent une 

technique géométrique (basée sur la triangulation de Delaunay) pour l'initialisation des 

paramètres. Dans les travaux de Zheng et al [107], la génération d'une surface B-Spline 

initiale n'est même pas traitée. Par conséquent, nous déduisons que l'initialisation est une 

étape très importante mais difficile. 

Déformation de contours actifs de courbes B-Spline dans le plan 

Nous sommes donc amenés à proposer une méthode qui ne tient pas compte de 

l'initialisation et qui garantisse une bonne reconstruction quelque soit la forme de la surface et 

l'initialisation associée, évidemment sous réserve de certaines limites (fortes concavités, 

topologies de genre élevé, etc…). Notre approche ne tient donc pas compte d'une initialisation 
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qui soit nécessairement proche des points ni de la paramétrisation de ces derniers. 

L'originalité de l'algorithme que nous proposons est qu'il permet d'associer des courbes B-

Spline à un nuage de points qui peut être non-organisé et bruité. De plus, étant discrète, notre 

approche offre un temps de calcul suffisamment rapide et permet d'éviter des calculs 

différentiels et des projections de points. Nous présentons pour le reste du travail, une 

application sur les courbes fermées dans le plan dans le but de caractériser les aubes de 

turbines. 

Caractérisation des aubes de turbine 

Les courbes fermées requièrent des modèles B-Splines dites périodiques dont le vecteur 

nœud a la particularité d'avoir des intervalles extrêmes égaux par paires. Une courbe B-Spline 

est définie par trois éléments, le degré de la courbe, le vecteur des nœuds et le polygone de 

contrôle. Comme nous ne nous intéressons pas à l'initialisation et que nous cherchons à 

résoudre le problème dans son cadre générique, l'initialisation de la B-Spline se fait en plaçant 

les points de contrôle sur un cercle autour des données. Cette initialisation s'affranchit de 

toute connaissance sur la forme de la surface sous-jacente et sur l'ordre des données. Lorsque 

le polygone de contrôle est construit, nous utilisons une forme très approchée de la courbe B-

Spline en appliquant des subdivisions globales récursives du polygone de contrôle par 

l'algorithme d'Oslo [108]. Nous obtenons ainsi un polygone de contrôle subdivisé dont les 

sommets sont suffisamment et finement proches de la courbe réelle. En notant les points de 

contrôle par le vecteur de points 3D  , et les points subdivisés par  , nous avons une relation 

très simple pour calculer les points subdivisés à partir des points de contrôle :  

    , où   est appelée la matrice de subdivision globale. 
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Initialisation générique d'une B-Spline périodique autour des données (noir) : le polygone de contrôle 

(rouge) et sa subdivision (bleu). 

Le principe de notre algorithme se résume par une minimisation au sens des moindres carrés 

des distances qui tiennent à la fois compte de la géométrie et de la topologie. Plus 

explicitement, nous cherchons à minimiser la différence entre la variation de la position des 

points subdivisés d'une itération à l'autre et la distance séparant les données du polygone 

subdivisé : 

   
  
   

      

   
        

     
   

   
         

       
   

 
 

  

   

  

   

  (73) 

où les points   
   

 sont les points subdivisés,    
   

 les vecteurs unitaires de distance et les   
   

 

les distances à l'itération  . Les scalaires    
   

      

   
  correspondent aux amplitudes par 

lesquelles les points de contrôle à l'itération   doivent se déplacer (dans la direction normale 

des points de contrôle) afin d'obtenir un polygone de contrôle        à l'itération     qui 

garantira que la courbe B-Spline se rapproche des données. 

 

Le calcul des distances   
   

 se fait comme précisé précédemment en tenant compte de la 

proximité géométrique et de la topologie sous-jacente aux points. Ce processus commence par 

la recherche des points les plus proches aux points   
   

 parmi les données. Cette première 

étape est l'étape de l'association indirecte dont nous montrons le principe dans la figure 
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suivante. Les segments bleus relient les données (noir) à des points de la subdivision (bleu) 

par une simple recherche de proximité géométrique (distance Euclidienne). 

 

 

Association inverse (segments bleus) : calcul des correspondances entre chaque point subdivisé et les 

données. 

Cette première étape d'association permet d'avoir une première notion sur la topologie sous-

jacente aux données et induit une certaine organisation sur ces dernières (segments magenta et 

flèches vertes).  

Une étape d'association directe vient ensuite calculer les distances séparant les données 

des segments subdivisés de la B-Spline. A l'aide des informations recueillies à travers la 

correspondance des points de l'étape précédente, les distances séparant chaque point de son 

correspondant géométrique et topologique sont calculées. Ces distances rentrent dans le 

processus de minimisation donné par l'expression ci-dessus (4). 
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Association directe (segments rouges) déduite de l'association indirecte. 

 

L'application de l'expression (73) ne mène généralement pas à une solution satisfaisante où la 

moyenne des écarts résiduels serait sous le seuil de tolérance prédéfini. C'est pour cela que 

notre algorithme admet deux améliorations : 

 une amélioration par l'insertion de nœuds et traduite par l'ajout de points de contrôle 

dans les zones où l'erreur résiduelle est localement supérieure au seuil, 

 une amélioration par le biais du "fairing" ou autrement dit de la tension de courbe. 

 

L'insertion locale de nœuds et par conséquent de points de contrôle se fait dans une boucle 

extérieure alors que la résolution itérative du problème de l'expression (73) se fait dans une 

boucle intérieure comme l'indique le pseudo algorithme de la figure ci-après. L'insertion 

locale de nœuds permet d'améliorer la précision de l'approximation mais présente des limites. 

L'insertion excessive peut créer des auto-intersections au niveau de la courbe B-Spline et ceci 

n'est pas souhaitable. Afin de remédier à ce problème, nous introduisons un terme de tension 

de courbe et le rajoutons à l'expression de minimisation. 
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Pseudo-algorithme de déformation de contours actifs de B-Spline discrètes. 

Les tests montrent que les deux améliorations proposées sont indispensables à l'obtention de 

bons résultats. La caractérisation d'aubes de turbine et plus généralement de courbes fermées 

dans le plan est réussie dans la majorité des essais que nous avons réalisés. Ces essais incluent 

différentes positions et orientations initiales du polygone de contrôle par rapport aux données. 
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L'algorithme est rapide mais une importante optimisation de code peut nettement améliorer le 

temps de calcul. L'algorithme n'est pas totalement automatique car le choix des paramètres qui 

le contrôlent n'est pas encore au point d'être robuste. Par ailleurs, la tolérance recherchée est 

dans la majorité des cas assurée. 

 

 

Algorithme DBACD avec terme de tension :       qui varie automatiquement en accord avec la 

moyenne des écarts résiduels. 

Conclusion générale 

Les surfaces complexes posent des défis considérables quant à leur spécification, 

fabrication et mesurage ainsi que lors de l'évaluation de leur défaut de forme. Les processus 

de fabrication et de mesure de surfaces complexes sont fortement tributaires des dimensions, 

des tolérances et des formes spécifiées. Afin de maîtriser les données acquises par les 

systèmes de mesure, une étape importante de traitement s'impose. Il s'agit généralement de 

reconstruction de surface afin de reconstituer la géométrie et la topologie de la surface sous-

jacente et d’en extraire les informations nécessaires pour des besoins de métrologie 

dimensionnelle (caractéristiques dimensionnelles et évaluation des défauts de forme). Pour la 

catégorie des surfaces asphériques, où un modèle mathématique y est associé, le processus de 

traitement de données géométriques, non nécessairement organisées, se fait par l'association 

du modèle sur les données. Les résidus d’association recherchés en optique sont typiquement 
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de l’ordre du nanomètre. Dans ce cadre, l'algorithme L-BFGS qui n'a jamais encore été utilisé 

en métrologie permet de résoudre des problèmes d'optimisation non-linéaires sans contraintes 

d'une manière fidèle, automatique et rapide. La méthode L-BFGS reste efficace pour des 

données constituées de plusieurs millions de points. La caractérisation des surfaces 

asphériques provient d'un besoin Européen qui s'est matérialisé par le projet Européen IND10: 

FORM. Par conséquent, ce travail de thèse comporte aussi une comparaison des moyens de 

mesures issues des différentes machines d'ultra-précision présentes dans chacun des instituts 

Européens partenaires du projet. Lors de cette comparaison menée, la méthode du L-BFGS 

s'est avérée être la plus performante. 

Dans la catégorie des surfaces gauches et notamment les aubes de turbines, la fabrication, 

le mesurage et le traitement sont à toute une autre échelle, sub-micrométrique. Les surfaces 

gauches ne sont généralement pas définies par un modèle mathématique et sont donc 

représentées par des modèles paramétriques de type B-Spline et/ou NURBS. Dans ce cadre, 

nous exposons un état de l'art détaillé et proposons une nouvelle approche itérative de 

régression B-Spline. L'algorithme proposé est indépendant des problèmes liés à l'initialisation 

et au paramétrage initial et par conséquent, c'est une nouvelle contribution dans ce domaine. 

Nous établissons par la suite une étude approfondie en évoquant les avantages ainsi que les 

limites actuelles de cette approche sur des exemples de courbes fermées en 2D.  

Ce travail de thèse a des perspectives variées. Sur la partie traitant des pièces asphériques, 

un prochain projet Européen EMPIR va se mettre en place afin de tenter de trouver une 

méthode d'association qui se baserait sur le critère du MinMax. En ce qui concerne le travail 

sur les aubes de turbine, les améliorations majeures se présentent dans l'optimisation de code, 

dans la maîtrise des paramètres de l'algorithme et dans l'extension de cette méthodes aux 

courbes et aux surfaces en 3D. 
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CONTRIBUTION A LA RECONSTRUCTION DE SURFACES COMPLEXES A PARTIR 
D'UN GRAND FLOT DE DONNEES NON ORGANISEES POUR LA METROLOGIE 3D 

RESUME : Les surfaces complexes ont des applications dans divers domaines tels que ceux de la 

photonique, de l'énergie, du biomédical, du transport... Par contre, elles posent de véritables défis 
quant à leur spécification, fabrication et mesure ainsi que lors de l'évaluation de leur défaut de forme. 
Les processus de fabrication et de mesure de surfaces complexes sont fortement tributaires des 
dimensions, des tolérances et des formes spécifiées. Afin de rendre exploitable les informations 
données par le système de mesure, une étape importante de traitement s'impose. Il s'agit ici de la 
reconstruction de surfaces afin de reconstituer la géométrie et la topologie de la surface sous-jacente 
et d'en extraire les informations nécessaires pour des besoins de métrologie dimensionnelle. Dans la 
catégorie des surfaces asphériques pour lesquelles un modèle mathématique est associé, le 
processus de traitement de données géométriques, non nécessairement organisées, se fait par 
l'association du modèle aux données. Les résidus d’association recherchés en optique sont 
typiquement de l'ordre du nanomètre. Dans ce cadre, nous proposons l'utilisation de l'algorithme L-
BFGS qui n'a encore jamais été utilisé en métrologie. Ce dernier permet de résoudre des problèmes 
d'optimisation non-linéaires, sans contraintes d'une manière robuste, automatique et rapide. La 
méthode L-BFGS reste efficace pour des données à plusieurs millions de points. Dans la catégorie 
des surfaces gauches et notamment des aubes de turbines, la fabrication, la mesure et le traitement 
sont à une toute autre échelle, sub-micrométrique. Les surfaces gauches ne sont généralement pas 
définies par un modèle mathématique mais sont représentées par des modèles paramétriques de type 
B-Spline et/ou NURBS. Dans ce cadre, nous exposons un état de l'art détaillé et proposons une 
nouvelle approche itérative d'association B-Spline. L'algorithme s'affranchit de tous les problèmes liés 
à l'initialisation et au paramétrage initial. Par conséquent, un tel algorithme constitue une nouveauté 
dans ce domaine. Nous établissons une étude approfondie en évoquant les avantages et les limites 
actuelles de cette approche sur des exemples de courbes fermées en 2D. Nous complétons ensuite 
cette étude par des perspectives d'amélioration et de généralisation aux surfaces en 3D. 
 

Mots clés : métrologie dimensionnelle, caractérisation, surfaces asphériques, ailette, L-BFGS, 

déformation de contours actifs, B-Spline. 

 

ABSTRACT : Complex surfaces exhibit real challenges in regard to their design specification, their 

manufacturing, their measurement and the evaluation of their manufacturing defects. They are 
classified according to their geometric/shape complexity as well as to their required tolerance. Thus, 
the manufacturing and measurement processes used are selected accordingly. In order to transcribe 
significant information from the measured data, a data processing scheme is essential. Here, 
processing involves surface reconstruction in the aim of reconstituting the underlying geometry and 
topology to the points and extracting the necessary metrological information (form and/or dimensional 
errors). For the category of aspherical surfaces, where a mathematical model is available, the 
processing of the data, which are not necessarily organized, is done by fitting/associating the 
aspherical model to the data. The sought precision in optics is typically nanometric. In this context, 
we propose the L-BFGS optimization algorithm, first time used in metrological applications and which 
allows solving unconstrained, non-linear optimization problems precisely, automatically and fast. The 
L-BFGS method remains efficient and performs well even in the presence of very large amounts of 
data. In the category of general freeform surfaces and particularly turbine blades, the manufacturing, 
measurement and data processing are all at a different scale and require sub-micrometric precision. 
Freeform surfaces are generally not defined by a mathematical formula but are rather represented 
using parametric models such as B-Splines and NURBS. We expose a detailed state-of-the-art 
review of existing reconstruction algorithms in this field and then propose a new active contour 
deformation of B-Splines approach. The algorithm is independent of problems related to initialization 
and initial parameterization. Consequently, it is a new algorithm with promising results. We then 
establish a thorough study and a series of tests to show the advantages and limitations of our 
approach on examples of closed curves in the plane. We conclude the study with perspectives 
regarding improvements of the method and its extension to surfaces in 3D. 
 

Keywords : dimensional metrology, form characterization, aspherical surfaces, freeform, blade 

inspection, L-BFGS, Active contour Deformation, B-Spline. 


