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jury.
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ment tout particulier à mes parents à ce sujet. Je pense également aux néo-
marseillais ex-New Yorkais (merci Anto pour la relecture), néo-ratisbonnais
ex-lillois et néo-montmartrois du nord ex-montmartrois du sud. Je pense aussi
à mon partenaire de tdm (merci d’être venu de Toulouse), à mon partenaire
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les calculs d’équilibres de Nash. Votre présence me touche beaucoup. Et si
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Manue, si je suis fier de soutenir ma thèse aujourd’hui, cette fierté n’est rien
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Abstract

We consider congestion games on graphs. In nonatomic games, we are given
a set of infinitesimal players. Each player wants to go from one vertex to
another by taking a route of minimal cost, the cost of a route depending on
the number of players using it. In atomic splittable games, we are given a
set of players with a non-negligible demand. Each player wants to ship his
demand from one vertex to another by dividing it among different routes. In
these games, we reach a Nash equilibrium when every player has chosen a
minimal-cost strategy.

The existence of a Nash equilibrium is ensured under mild conditions.
The main issues are the uniqueness, the computation, the efficiency and the
sensitivity of the Nash equilibrium. Many results are known in the specific
case where all players are impacted in the same way by the congestion. The
goal of this thesis is to generalize these results in the case where we allow
player-specific cost functions.

We obtain results on uniqueness of the equilibrium in nonatomic games.
We give two algorithms able to compute a Nash equilibrium in nonatomic
games when the cost functions are affine. We find a bound on the price of
anarchy for some atomic splittable games, and prove that it is unbounded in
general, even when the cost functions are affine. Finally we find results on
the sensitivity of the equilibrium to the demand in atomic splittable games.





Résumé court

Nous considérons des jeux de congestion sur des graphes. Dans les jeux non-
atomiques, nous considérons un ensemble de joueurs infinitésimaux. Chaque
joueur veut aller d’un sommet à un autre en choisissant une route de coût
minimal. Le coût de chaque route dépend du nombre de joueur la choisissant.
Dans les jeux atomiques divisibles, nous considérons un ensemble de joueurs
ayant chacun une demande à transférer d’un sommet à un autre, en la sub-
divisant éventuellement sur plusieurs routes. Dans ces jeux, un équilibre de
Nash est atteint lorsque chaque joueur a choisi une stratégie de coût minimal.

L’existence d’un équilibre de Nash est assurée sous de faibles hypothèses.
Les principaux sujets sont l’unicité, le calcul, l’efficacité et la sensibilité de
l’équilibre de Nash. De nombreux résultats sont connus dans le cas où les
joueurs sont tous affectés de la même façon par la congestion. Le but de cette
thèse est de généraliser ces résultats au cas où les joueurs ont des fonctions
de coût différentes.

Nous obtenons des résultats sur l’unicité de l’équilibre dans les jeux non-
atomiques. Nous donnons deux algorithmes capables de calculer un équilibre
dans les jeux non-atomiques lorsque les fonctions de coût sont affines. Nous
obtenons une borne sur le prix de l’anarchie pour certains jeux atomiques
divisibles et prouvons qu’il n’est pas borné en général, même lorsque les
fonctions sont affines. Enfin, nous prouvons des résultats sur la sensibilité de
l’équilibre par rapport à la demande dans les jeux atomiques divisibles.
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Résumé de la thèse

Les jeux de congestion forment un outil mathématique capable de modéliser
de grands nombres de problèmes concrets. C’est le cas de toute situation dans
laquelle plusieurs joueurs ont accès à des ressources, le prix d’une ressource
dépendant du nombre de joueurs la choisissant. En pratique, les champs d’ap-
plications des jeux de congestion concernent essentiellement les transports,
les télécommunications et les réseaux d’énergie. De nombreux résultats sont
connus lorsque tous les joueurs sont affectés de la même façon par la conges-
tion. Le but de cette thèse est de généraliser ces résultats au cas où les joueurs
peuvent être affectés différemment par la congestion.

Dans la Section 0.1, nous présentons les principaux enjeux et expliquons
comment ils peuvent être modélisés par des jeux de congestion. Nous intro-
duisons trois exemples montrant des comportements qui peuvent être contre-
intuitifs. Nous considérons des jeux sur des réseaux où chaque joueur veut
aller d’un sommet, son origine, à un autre, sa destination. Pour cela, il choisit
une route reliant ces deux sommets. Le coût de cette route est la somme du
coût de chaque arc qui la constitue, et le coût d’un arc dépend du nombre
de joueurs l’utilisant. On atteint un équilibre de Nash lorsque chaque joueur
a choisi une route de coût minimal.

L’exemple 0.1 est celui de Pigou (1924). Nous considérons un ensemble
de joueurs qui doivent choisir parmi deux ressources. Ce jeu est un jeu non-
atomique, où chaque joueur est de taille infinitésimale et n’influence pas la
congestion. Ce type de jeu représente une vision macroscopique : c’est la
proportion de joueurs faisant un choix qui influence la congestion. Les joueurs
ont les mêmes fonctions de coût : la première ressource a un coût constant
égal à 1, alors que le coût de la seconde ressource est égal à la proportion
de joueurs la choisissant. Ce jeu peut être modélisé par un jeu de congestion
sur un graphe à deux sommets o et d avec deux arcs parallèles a et b, chaque
arc reliant le sommet o au sommet d. Chaque joueur veut aller de l’origine o
à la destination d et doit donc choisir entre ces deux arcs. Les fonctions de
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coût sont ca(x) = 1 et cb(x) = x, voir Figure 1. A l’équilibre, tous les joueurs
choisissent l’arc b, car le coût est toujours plus intéressant que l’arc a. Le
coût à l’équilibre est donc égal à 1 pour chaque joueur, et le coût social à
l’équilibre, i.e. le coût pour l’ensemble des joueurs est aussi égal à 1.
Cependant, le coût optimal est obtenu lorsque la moitié des joueurs choisit
l’arc a est l’autre moitié l’arc b. Dans ce cas, la moitié des joueurs paye un
coût de 1 alors que l’autre moitié paye un coût de 1

2
. Le coût social optimal

est donc de 3
4
. Cet exemple montre que le coût social à l’équilibre n’est pas

nécessairement optimal. La notion de prix de l’anarchie a été introduite afin
de mesurer cette perte d’efficacité à l’équilibre.

L’exemple 0.2 est le paradoxe de Braess (1968). Comme dans l’exemple
précédent, un ensemble de joueurs non-atomiques veut aller du sommet o au
sommet d. Nous supposons dans un premier temps qu’il y a deux routes : la
route “nord” oud qui passe par le sommet u, et la route “sud” ovd, qui passe
par le sommet v. Chacune de ces deux routes est constituée de deux arcs,
un “rapide” dont le coût est égal à la proportion de joueurs l’utilisant, et un
“long” dont le coût est toujours égal à 1. Dans cet exemple les arcs ou et vd
sont “rapides” et les arcs ud et ov sont “lents”, voir Figure 2. A l’équilibre,
la moitié des joueurs utilise la route nord et l’autre moitié la route sud. Le
coût social à l’équilibre est donc de 3

2
.

Supposons maintenant que les deux arcs “rapides” sont reliés par un arc
uv dont le coût est nul. On s’attend intuitivement à ce que cela améliore le
coût social. Cependant, à l’équilibre, tous les joueurs utilisent désormais la
nouvelle route ouvd. Le coût social à l’équilibre est de 2. Ainsi, ajouter un arc
détériore le coût social à l’équilibre. Ce résultat est contre-intuitif, car cela
revient à dire que construire une autoroute peut augmenter la congestion.
De manière équivalente, cela veut dire qu’une augmentation du coût sur un
arc peut avoir un effet bénéfique pour l’ensemble des joueurs.

Finalement, l’exemple 0.3 est celui de Fisk (1979) et considère des joueurs
non-atomiques ayant des paires origine-destination différentes. Tous les joueurs
ont les mêmes fonctions de coût. Le nombre total de joueurs ayant une
paire origine-destination donnée est fixé. Dans cet exemple, en augmentant
le nombre total de joueurs associé à une certaine paire origine-destination,
nous trouvons un coût social à l’équilibre inférieur. Ce résultat est également
contre-intuitif car augmenter le nombre total de joueurs sur un réseau peut
être bénéfique.

Ces trois exemples illustrent des comportement parfois contre-intuitifs
et montrent la nécessité d’effectuer une étude plus approfondie des jeux de
congestion. La Section 0.2 introduit les principaux problèmes rencontrés :
l’existence et l’unicité d’un équilibre de Nash, son calcul effectif, ainsi que des
études sur l’efficacité et la sensibilité. De nombreux travaux ont été effectués
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traitant du cas où tous les joueurs sont affectés de la même manière par la
congestion. L’objectif de cette thèse est d’étendre certains de ces résultats au
cas où les joueurs peuvent être affectés différemment par la congestion.

Le Chapitre 1 est une présentation détaillée des jeux de congestion, des
principaux problèmes rencontrés et des principaux résultats. Il contient toutes
les définitions utilisées dans la suite de la thèse ainsi qu’un état de l’art.
Nous distinguons les jeux non-atomiques (Section 1.2), où chaque joueur est
infinitésimal et veut choisir une route de coût minimal, des jeux atomiques
divisibles (Section 1.3), où chaque joueur a un stock qu’il divise parmi les
différentes routes, afin de minimiser son coût total. Les exemples précédents
sont des jeux non-atomiques. Les jeux atomiques divisibles peuvent être vus
comme des jeux non-atomiques où certains joueurs se regroupent en une coa-
lition. Nous présentons dans ces sections les résultats d’existence et d’unicité
d’un équilibre de Nash. Sous de faibles hypothèses, un équilibre de Nash
existe. Cependant lorsque les fonctions de coût ne sont pas les mêmes pour
chaque joueur, un tel équilibre n’est pas nécessairement unique. Nous intro-
duisons également les principaux algorithmes de calcul d’un équilibre.
La Section 1.4 introduit le prix de l’anarchie, défini comme le rapport entre
le pire coût social à l’équilibre et le coût social optimal. C’est un indicateur
de la perte d’efficacité due à l’équilibre de Nash. Nous présentons les prin-
cipaux résultats connus dans le cas où les fonctions de coût sont les mêmes
pour chaque joueur. Finalement la Section 1.5 introduit une extension aux
jeux dits non-séparables. Il s’agit d’une catégorie de jeux où le coût d’une
route n’est plus défini comme la somme des coûts des arcs la constituant.
Nous présentons en particulier les jeux avec joueurs sensibles au risque. Dans
ces jeux, le coût de chaque arc est défini comme un coût moyen plus une
variable aléatoire de moyenne nulle. Chaque joueur veut choisir une route
qui minimise le coût moyen plus un facteur, l’aversion au risque, multiplié
par la variance du coût total. Certains résultats connus, comme l’existence
d’un équilibre, se généralisent à ce jeu. Cependant la question de l’unicité
de l’équilibre, même sur des graphes simples et lorsque les joueurs ont les
mêmes fonctions de coût, est une question ouverte.

Dans le Chapitre 2, nous nous intéressons à l’unicité des flux à l’équilibre
pour les jeux non-atomiques. Une telle étude a un intérêt pratique, par
exemple dans le domaine des transports, où un planificateur urbain veut an-
ticiper le comportement des usagers à la suite d’une nouvelle mesure (péage,
fermeture ou construction de route par exemple). Dans ce cas il veut non
seulement déterminer un équilibre mais également savoir s’il est unique. D’un
point de vue pratique, une telle étude permet d’étendre des résultats va-
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lables dans le cas où tout les joueurs sont affectés de la même manière par la
congestion, au cas où ils peuvent être affectés de manière différente. Milch-
taich (2005) a introduit la notion de propriété d’unicité. Un graphe possède
la propriété d’unicité si, quelles que soient les fonctions de coût strictement
croissantes, sur chaque arc, les flux à l’équilibre sont les mêmes dans tous les
équilibres. Il montre que lorsque tous les usagers partent d’une même origine
et vont vers une même destination, la propriété d’unicité est vérifiée pour une
certaine famille de graphes, appelés presque parallèles. Il donne également des
contre-exemples pour les graphes ne faisant pas partie de cette famille. Dans
le Chapitre 2, nous nous intéressons à la généralisation de ce résultat à des
graphes avec plusieurs paires origine-destination.

Nous traitons complètement le problème des cercles bi-directionnels. Dans
ces graphes, modélisant un périphérique routier par exemple, chaque usager
a le choix entre deux routes reliant son origine à sa destination : une dans
chaque sens. Nous supposons que le graphe et les différentes paires origine-
destination sont fixés. Le Théorème 2.1 stipule alors qu’un graphe circulaire
possède la propriété d’unicité si et seulement si chaque arc appartient à au
plus deux routes. Autrement dit, s’il existe un arc du graphe et trois paires
origine-destination distinctes telles que l’arc appartient à une route de cha-
cune de ces paires origine-destination, alors on peut construire une situation
donnant deux équilibres avec des flux distincts. Nous donnons explicitement
deux équilibres distincts dans ce cas, dans la Section 2.5.3. En particulier, ces
exemples sont construits avec des fonctions de coût affines et peuvent être
facilement adaptés avec des fonctions convexes. Ainsi, si l’on veut restreindre
l’ensemble des fonctions de coût disponibles afin de retrouver la propriété
d’unicité, il faut exclure les fonctions affines et les fonctions convexes.

Dans la Section 2.6, nous donnons d’abord un algorithme permettant
de déterminer le nombre maximal de routes contenant un arc d’un graphe
circulaire. Cela peut se faire en ne faisant qu’un seul tour du graphe. Nous
faisons ensuite une étude topologique permettant de déterminer quels sont
les graphes circulaires tels que chaque arc est dans au plus deux routes.
La Proposition 2.11 stipule qu’un tel graphe doit être homéomorphe à un
mineur d’un certain graphe appartenant à la famille de neuf graphes des
Figures 2.2–2.5. Ce résultat permet donc de décrire explicitement tous les
graphes circulaires possédant la propriété d’unicité.

Dans la Section 2.7.1, nous utilisons le Théorème 2.1 afin d’obtenir des
résultats pour des graphes plus généraux. Nous disons qu’un équilibre est
strict si chaque usager n’a qu’une seule route de coût minimal. La Proposi-
tion 2.13 stipule que lorsqu’on peut construire deux équilibres stricts avec des
flux différents pour un certain graphe, alors tout graphe ayant celui-ci comme
mineur ne possède pas la propriété d’unicité. En effet, nous pouvons alors
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adapter les deux équilibres au plus grand graphe. Ce résultat nous permet
d’obtenir une condition nécessaire pour posséder la propriété d’unicité : tout
graphe ayant comme mineur un des graphes de la Figure 2.10 ne possède pas
la propriété d’unicité.

Dans la Section 2.7.3, nous étendons le résultat de Milchtaich (2005) trai-
tant de l’équivalence des équilibres au cas des graphes circulaires. Supposons
que les usagers sont répartis en classes, les usagers d’une même classe ayant
tous les mêmes fonctions de coût. Deux équilibres sont dits équivalents si non
seulement les flux sont les mêmes sur chaque arc dans tous les équilibres,
mais la contribution de chaque classe au flux de chaque arc est la même. Le
Théorème 2.16 stipule que pour les graphes circulaires, génériquement tous
les équilibres sont équivalents si et seulement si le graphe possède la propriété
d’unicité.

Dans la Section 2.7.4, nous nous intéressons à la propriété d’unicité forte,
c’est-à-dire aux graphes possédant la propriété d’unicité pour tout choix de
paires origine-destination. Le principal résultat est le Théorème 2.17 indi-
quant que les graphes possédant la propriété d’unicité forte sont ceux ne
possédant pas de cycle de longueur 3 ou plus. Un tel graphe consiste en une
forêt dans laquelle on a éventuellement remplacé certaines arêtes par des
arêtes parallèles.

Finalement, dans la Section 2.7.5, nous donnons des exemples de graphes
possédant plusieurs équilibres avec seulement deux classes. En effet, les
exemples de Milchtaich (2005) ou de la Section 2.5.3 utilisent tous trois
classes. Ainsi, même en restreignant le nombre de classes, on ne peut espérer
obtenir des conditions plus simples d’unicité.

Un des principaux problèmes pratiques est le calcul d’un équilibre de
Nash. Les Chapitres 3 et 4 traitent ce sujet pour des jeux non-atomiques
multi-classes. Dans un tel jeu, l’ensemble des joueurs est divisé en classes,
les joueurs d’une même classe ayant les mêmes fonctions de coût. Dans le
Chapitre 3, nous construisons un algorithme efficace permettant de calculer
un équilibre de Nash lorsque les fonctions de coût sont affines (Théorème 3.9).
Cet algorithme est un algorithme de pivot, qui s’inspire de l’algorithme de
Lemke (1965) pour les problèmes de complémentarité linéaire. Nous ne savons
pas si cet algorithme est polynomial, mais nous démontrons qu’il appartient
à la classe de complexité PPAD. En pratique il s’avère être rapide sur les
instances que nous avons traitées. Le Chapitre 4 est davantage théorique.
Nous considérons toujours le cas où les fonctions de coût sont affines. Alors
il existe un algorithme polynomial lorsque le nombre de classes et le nombre
de sommets du graphe sont fixés (Théorème 4.7).

Plus précisément, le Chapitre 3 définit le problème de la recherche d’un
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équilibre dans les jeux non-atomiques multi-classes : le Multiclass Network
Equilibrium Problem. Ce problème peut être reformulé comme le problème
de complémentarité linéaire (MNEPgen), défini dans la Section 3.2. Plus
précisément, lorsque les fonctions de coût sont affines, cka(x) = αkax + βka ,
résoudre le Multiclass Network Equilibrium Problem revient à résoudre le
problème de complémentarité linéaire (MNEP ) suivant :

∑
a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V k

αkuv
∑
k′∈K

xk
′

uv + πku − πkv − µkuv = −βkuv k ∈ K, (u, v) ∈ Ak

xkaµ
k
a = 0 k ∈ K, a ∈ Ak

xka ≥ 0, µka ≥ 0, πkv ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

De façon similaire à l’algorithme de Lemke, nous ajoutons une variable ω
et considérons le problème augmenté (AMNEP (e)) suivant, où e est un
vecteur choisi ultérieurement.

min ω

s.t.
∑

a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V k

αkuv
∑
k′∈K

xk
′

uv + πku − πkv − µkuv + ekuvω = −βkuv k ∈ K, (u, v) ∈ Ak

xkaµ
k
a = 0 k ∈ K, a ∈ Ak

xka ≥ 0, µka ≥ 0, ω ≥ 0, πkv ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

Le point clé de l’algorithme est que la résolution de (MNEP ) consiste à
trouver une solution de (AMNEP (e)) avec ω = 0. Le vecteur e définissant
le problème (AMNEP (e)) est essentiel : un bon choix permettra de trouver
rapidement une solution réalisable.

Dans la Section 3.3, nous redéfinissons les notions classiques de bases et
solutions basiques, réalisables et complémentaires. Le but de l’agorithme est
de trouver une solution basique réalisable et complémentaire de (AMNEP (e)),
telle que l’indice associé à ω n’appartienne pas à cette base. Pour cela nous
construisons un algorithme de pivot, à l’aide des Lemmes 3.3 et 3.4. Ces
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deux lemmes stipulent que lorsqu’on a une base réalisable pour le problème
(AMNEP (e)) et une variable hors base, il existe au plus une autre base
réalisable contenant toutes les variables de la base initiale sauf une, ainsi
que la nouvelle variable. S’il n’existe pas de telle base, alors le polytope
des solutions réalisables contient un rayon infini. L’opération consistant à
déterminer une nouvelle base connaissant la variable entrante s’appelle un pi-
vot. Ces deux bases sont alors dites voisines. La Section 3.3.4 explique qu’en
considérant des bases réalisables complémentaires, la détermination de la va-
riable entrante est immédiate, et la nouvelle base est encore complémentaire.
L’algorithme peut ainsi pivoter de base réalisable complémentaire en base
réalisable complémentaire.
Il reste à déterminer une base réalisable complémentaire initiale afin de don-
ner un point de départ à l’algorithme. Cela est fait dans la Section 3.3.5,
en faisant un bon choix du vecteur e. Dans la Section 3.3.6, nous prouvons
qu’il existe un rayon infini partant de cette base initiale, mais pas de rayon
secondaire. L’agorithme suit donc un chemin dans le graphe abstrait où les
sommets sont les bases réalisables complémentaires et les arêtes connectent
deux bases voisines. Comme chaque base a au plus un voisin et qu’il n’y a
pas de rayon secondaire, l’algorithme se termine sur une base n’ayant plus
de variable entrante. Une telle base ne contient pas la variable ω et est donc
une base réalisable complémentaire optimale. Cet algorithme est expliqué en
détail dans la Section 3.3.7.

Nous obtenons ainsi un algorithme de pivot permettant de résoudre le
problème lorsque les fonctions de coût sont affines, le Théorème 3.9 de la
Section 3.4. En particulier, cet algorithme montre que le problème appar-
tient à la classe de complexité PPAD. Dans la Section 3.5, nous effectuons
des tests numériques sur des graphes de type Manhattan, i.e. des quadrillages
n× n. Les résultats répertoriés dans le Tableau 3.1 montrent que le nombre
de pivots reste raisonnable, tout comme le temps d’exécution de l’algorithme.
Pour obtenir les résultats finaux, nous devons inverser une matrice, ce qui est
coûteux, mais l’algorithme n’a pas été optimisé. Ainsi, ces résultats peuvent
être considérés comme très encourageants concernant l’efficacité de l’algo-
rithme.

Le Chapitre 4 présente un autre algorithme permettant de résoudre ce
problème. Cet algorithme, plus théorique, vise à améliorer la complexité du
problème. Une question naturelle est de savoir si le problème est polynomial.
Nous montrons que pour un nombre de sommets et un nombre de classes
fixés, il existe un algorithme polynomial en le nombre d’arcs. Cet algorithme
repose sur une correspondance entre le support de chaque classe pour un
équilibre et une cellule d’un certain arrangement d’hyperplans.
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La Section 4.1 introduit le modèle, et plus précisément le support d’une
classe pour un équilibre. Il s’agit de l’ensemble des arcs utilisés par cette classe
de joueurs. Nous définissons également pour chaque classe l’ensemble des arcs
de coût minimal. A l’équilibre, le support est inclus dans l’ensemble des arcs
de coût minimal, mais l’inclusion inverse n’est pas forcément vérifiée. Ainsi,
comme dans l’Exemple 0.1, il peut exister des arcs de coût minimal mais
non utilisés. Pour un équilibre ~x, l’ensemble des supports est noté supp(~x)
et l’ensemble des arcs de coût minimal mincost(x).

La Section 4.2 introduit les notions relatives aux arrangements d’hyper-
plans. Etant donné un ensemble H fini de n hyperplans de Rd, un arrange-
ment est une partition de l’espace en ensembles ouverts convexes. Lorsque
cette partition est celle déterminée par les hyperplans de H, on parle de
l’arrangement d’hyperplans associé à H, noté A(H). Chaque ensemble de
l’arrangement est appelé cellule, et le nombre total de cellules de A(H) est
polynomial O(nd).

L’algorithme est présenté dans la Section 4.3. Il est en deux étapes. La
première étape consiste à déterminer un ensemble S contenant des ensembles
d’arcs pour chaque classe et tel que pour chaque équilibre ~x, il existe un
élément S(~x) de S tel que supp(~x) ⊆ S(~x) ⊆ mincost(x). Cet ensemble S
a un nombre polynomial d’éléments. La seconde étape consiste à tester pour
chaque élément de S si effectivement cet élément est un S(~x) pour un certain
équilibre ~x. Dans ce cas il calcule les flux à l’équilibre. Cette étape peut être
effectuée en temps polynomial.

La Section 4.3.1 décrit la première étape. Nous définissons un ensemble
de K2|A| hyperplans de RK(|V |−1) et considérons l’arrangement d’hyperplans
associé. Nous définissons les polyèdres convexes P k

a permettant de relier
pour chaque classe le support à un équilibre au coût à cet équilibre. Plus
précisément, le Lemme 4.5 prouve que pour un équilibre ~x, une classe k
et un arc a, si cet arc appartient au support de la classe k, alors le coût à
l’équilibre π(~x) appartient au polyèdre P k

a . Ce lemme nous permet de définir
une application de l’ensemble des cellules de l’arrangement vers un ensemble
de supports possibles, voir la Proposition 4.4.

La Section 4.3.2 décrit l’outil permettant d’effectuer la deuxième étape.
Nous prouvons la Proposition 4.6 qui stipule qu’étant donné S, un ensemble
d’arcs pour chaque classe, nous pouvons déterminer en temps polynomial
s’il existe un équilibre ~x tel que supp(~x) ⊆ S ⊆ mincost(x), et dans ce cas
calculer en temps polynomial les flux à l’équilibre. Pour cela nous introduisons
le problème (PS) qui a une solution (~x, ~π) si et seulement si ~x est un équilibre
avec la propriété désirée. Comme ce problème consiste en inégalités linéaires
avec K(|A|+|V |−1) variables, nous pouvons le résoudre en temps polynomial
en utilisant un algorithme de point intérieur.
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La Section 4.3.3 décrit l’agorithme polynomial en le nombre d’arcs, pour
un nombre de classes et un nombre de sommets fixés : le Théorème 4.7. Dans
la Section 4.4, nous décrivons comment l’algorithme pourrait être amélioré,
en réduisant le nombre de cellules de l’arrangement d’hyperplans, ou en
considérant un sous-ensemble de graphes.

Un équilibre de Nash est en général non-efficace : le coût pour l’ensemble
des joueurs est plus élevé que le coût optimal. Cette situation, illustrée par
l’exemple 0.1, peut être quantifiée par le prix de l’anarchie, défini par Kout-
soupias and Papadimitriou (1999). Comme défini précédemment, il s’agit du
rapport entre le pire coût social à l’équilibre et le coût social optimal. Dans
le Chapitre 5, nous trouvons une borne pour le prix de l’anarchie dans les
jeux atomiques. Nous généralisons le résultat obtenu par Cominetti et al.
(2009) pour le cas où les joueurs ont les mêmes fonctions de coût au cas où
les fonctions de coût peuvent être spécifiques à chaque joueur.

La Section 5.1 explique plus en détail les motivations du problème et in-
troduit l’état de l’art sur le sujet. La Section 5.2 présente le modèle et les
principaux résultats : la borne générale du Théorème 5.1 et sa spécification
au cas des fonctions de coût affines dans la Proposition 5.2. Lorsque les fonc-
tions de coût considérées appartiennent à un ensemble C, nous définissons

λ(C) = sup
a∈A, k,`∈[K],~c∈C, x∈R+

x(c`a)
′(x)

cka(x)
.Alors, le Théorème 5.1 stipule que lorsque

λ(C) < 3,

PoA ≤ 1

1− λ(C)/3
.

Les bornes obtenues dépendent en partie de l’ensemble dans lequel nous
choisissons les fonctions de coût. Dans le cas où les fonctions sont les mêmes
pour chaque joueur et polynomiales, nous savons que le prix de l’anarchie
est borné. La Proposition 5.3 prouve que ce résultat n’est plus vrai lorsque
chaque joueur a ses propres fonctions de coût, même lorsque celles-ci sont
affines.

Dans la Section 5.3, nous prouvons le Théorème 5.1 et la Proposition 5.2.
Dans la Section 5.3.2, nous définissons un paramètre β(C) similaire à celui
défini dans Cominetti et al. (2009) et prouvons dans la Proposition 5.4 que le
prix de l’anarchie est borné par 1

1−β(C) . Dans la Section 5.3.3 nous calculons
plus précisément cette borne en prouvant la Proposition 5.5 dont le Théorème
5.1 et la Proposition 5.2 sont des corollaires immédiats.

Dans la Section 5.4, nous prouvons la Proposition 5.3. Pour cela nous
construisons un jeu sur un graphe avec une seule paire origine-destination
et deux arcs a et b. Le premier joueur a une demande totale de M et des
fonctions de coût c1

a(x) = x et c1
b(x) = x + 2M . Le second joueur a une
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demande totale de 1 et des fonctions de coût c2
a(x) = 2M2x + 1 et c2

b(x) =
M3x. Nous prouvons que le coût à l’équilibre (unique) est alors M2 + M3

alors que le coût optimal est majoré par 5M2 + 1. Le prix de l’anarchie est
alors minoré par une quantité de l’ordre de M . Ainsi, pour tout M nous
pouvons construire une instance donc le prix de l’anarchie est plus grand que
M . Cela montre qu’il n’est pas borné, même en considérant des fonctions
affines.

La Section 5.5 discute ces résultats plus précisément. Nous donnons une
généralisation de la Proposition 5.5, dont un corollaire est que le coût so-
cial à l’équilibre est borné par le coût optimal du jeu où les demandes sont
multipliées par 1 + β(C).

Le Chapitre 6 traite de la sensibilité d’un équilibre de Nash. La sensibilité
désigne le comportement d’un équilibre lorsqu’on fait varier les paramètres
du jeu : le graphe, les fonctions de coût ou encore la demande de chaque
joueur. Nous nous intéressons à un jeu atomique divisible sur un graphe avec
une seule paire origine-destination et des arcs parallèles. L’équilibre de Nash
est alors unique. Nous étudions la sensibilité de l’équilibre par rapport à la
demande de chaque joueur.

La Section 6.1 présente le problème et donne un état de l’art. En parti-
culier il est connu que les flux à l’équilibre sont continus en fonction de la
demande mais non différentiables dans les jeux non-atomiques. La Section
6.2 introduit les principaux résultats. Le Théorème 6.1 prouve que le flux
à l’équilibre est continu en fonction du vecteur contenant les demandes de
chaque joueur. De plus il est différentiable sur tout ensemble où les joueurs
gardent le même support à l’équilibre, lorsqu’il y a deux arcs ou deux joueurs.
Les Théorèmes 6.2 et 6.3 étudient le cas où un joueur transfère une partie de
sa demande à un autre joueur ayant initialement une demande plus impor-
tante. Dans ce cas, le Théorème 6.2 stipule que, sur chaque arc, le flux du
premier joueur diminue et le flux du deuxième augmente. Si de plus les fonc-
tions de coût sont les mêmes pour chaque joueur, le Théorème 6.3 indique
que le coût social à l’équilibre a diminué après le transfert. Nous retrouvons
ainsi le résultat indiquant que le coût social à l’équilibre diminue lorsque
deux joueurs fusionnent.

La Section 6.3 est dédiée à la preuve du Théorème 6.1. La partie trai-
tant de la continuité est prouvée dans la Proposition 6.5 et utilise la for-
mulation de l’équilibre de Nash comme la solution d’une inégalité variation-
nelle. L’exemple 6.6 montre que le flux à l’équilibre n’est pas différentiable
en général. Dans cet exemple, nous considérons un graphe avec deux arcs
parallèles a et b et un seul joueur ayant une demande d. Les fonctions de
coût sont ca(x) = x + 1 et cb(x) = x. Alors, à l’équilibre nous avons xa = 0
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et xb = d lorsque 0 ≤ d ≤ 1
2
, et xa = 2d−1

4
, xb = 2d+1

4
lorsque d ≥ 1

2
. Le flux à

l’équilibre n’est donc pas différentiable au point d = 1
2
. Cependant, nous ob-

tenons la différentiabilité sur tout ensemble ouvert où les joueurs conservent
le même support à l’équilibre, lorsqu’il y a deux joueurs ou deux arcs. Cela
est prouvé dans la Proposition 6.9.

La Section 6.4 introduit d’autres propriétés concernant les flux à l’équilibre,
qui vont être nécessaires pour prouver les Théorèmes 6.2 et 6.3. En particu-
lier, le Lemme 6.13 joue un rôle crucial dans la preuve du Théorème 6.2.
L’intuition de ce lemme est la suivante. Supposons qu’un joueur mette da-
vantage de flux sur un arc dans un équilibre ~z que dans un équilibre ~x, bien
que le coût de cet arc soit plus important. Alors ce joueur met davantage de
flux sur tous les arcs dont le coût à l’équilibre ~z est moins important qu’à
l’équilibre ~x.

La Section 6.5 contient la preuve du Théorème 6.2 ainsi que quelques
corollaires. Plus précisément, nous prouvons la Proposition 6.15. Rappelons
que nous considérons le cas où un joueur i transfère une partie de sa demande
à un autre joueur j ayant initialement une demande plus importante. Nous
supposons qu’il y a deux arcs ou deux joueurs. Alors la Proposition 6.15
stipule que sur chaque arc, le flux du joueur i diminue strictement ou reste
constant égal à zéro, alors que le flux du joueur j augmente strictement
ou reste constant égal à zéro. De plus, sur chaque arc, le flux des autres
joueurs a une évolution opposée à l’évolution du flux total. Nous en déduisons
en particulier le Corollaire 6.17 qui considère le cas où un arc est de coût
marginal égal au coût marginal à l’équilibre pour un certain joueur mais qui
n’appartient pas au support de ce joueur. Alors, ce joueur utilisera cet arc si
on augmente sa demande.

La Section 6.6 contient la preuve du Théorème 6.3. Pour cela, nous utili-
sons la différentiabilité des flux à l’équilibre prouvée dans le Théorème 6.1.
Nous considérons le cas où tous les joueurs ont les mêmes fonctions de coût.
Dans ce cas, le coût social ne dépend pas du flux de chaque joueur, mais
seulement du flux total sur chaque arc. Nous prouvons d’abord la Propo-
sition 6.20 valable quel que soit le nombre d’arcs et de joueurs. Cette pro-
position stipule que lorsque les deux joueurs i et j ont le même support à
l’équilibre, et ce support ne change pas après le transfert, alors les flux sur
chaque arc sont inchangés. En particulier, le coût social à l’équilibre reste le
même après le transfert. Pour prouver ce résultat, nous calculons explicite-
ment le flux de chaque joueur à l’équilibre. Lorsque les joueurs i et j n’ont
plus nécessairement le même support, mais que le support de chacun reste
le même avant et après le transfert, la Proposition 6.26 indique que le coût
social à l’équilibre est décroissant.
Nous pouvons alors prouver le Théorème 6.3. En effet, le Théorème 6.2, et
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plus précisément le Corollaire 6.16, indique que le support du joueur i est
décroissant pour l’inclusion, alors que celui du joueur j est croissant. Alors en
augmentant la valeur δ de demande qui est transférée, chaque joueur change
de support un nombre fini de fois. Les Propositions 6.20 et 6.26 montrent
donc que le coût social à l’équilibre est décroissant sur chaque intervalle d’un
ensemble fini d’intervalles de [0, di] dont la fermeture vaut [0, di]. Comme il
est également continu, en utilisant le Théorème 6.1, nous obtenons le résultat.

Finalement, dans la Section 6.7, nous étudions la généralisation de ces
résultats. Nous introduisons l’exemple de Huang (2011) qui montre que le
résultat du Théorème 6.3 n’est plus valable lorsqu’il y a trois arcs et trois
joueurs. La validité de celui du Théorème 6.2 dans ce cas n’est pas connue.
Un autre exemple montre que le résultat du Théorème 6.3 n’est plus valable
lorsque les joueurs ont des fonctions de coût spécifiques. Dans cet exemple,
nous considérons un graphe avec deux arcs a et b, et deux joueurs 1 et 2.
Nous prenons un coût très élevé sur l’arc b pour le joueur 1 (resp. sur l’arc
a pour le joueur 2), de sorte qu’à l’équilibre, quelle que soit la répartition de
la demande, le joueur 1 (resp. le joueur 2) met toute sa demande sur l’arc a
(resp. l’arc b). La demande totale est fixée égale à 5 et les fonctions de coût
sont c1

a(x) = 2x et c2
b(x) = x. Alors, lorsque la répartition de la demande est

d1 = 3, d2 = 2, le coût à l’équilibre est 8, alors qu’après un transfert de 1, i.e.
lorsque la répartition de la demande est d1 = 4, d2 = 1, le coût à l’équilibre
est 9. Le résultat du Théorème 6.3 ne s’applique pas.



Notations

Nonatomic games

I Set of users
K Set of classes
x = (xa)a∈A Aggregated flow
xk = (xka)a∈A Flow of all class k users
~x = (xk)k∈K All class flows
cia(xa) Cost of arc a for user i
cka(xa) Cost of arc a for class k users
Qi
r(x) Cost of route r for user i

Qk
r(x) Cost of route r for class k users

Atomic games

[K] Set of players
x = (xa)a∈A Aggregated flow
xk = (xka)a∈A Flow of player k
~x = (xk)k∈[K] All player flows
cka(xa) Per-unit cost of arc a for player k
c̃ka(x) Marginal cost of arc a for player k
Qk(~x) Total cost for player k
Q(~x) Social cost





Introduction

0.1 Why considering network congestion games?

0.1.1 Practical interest

Transportation planners face a lot of issues: congestion, pollution, acci-
dents... Congestion costs about 5.5 billion euros every year in France and
people living in Paris spend 55 hours per year in traffic jams on average
(Centre for Economics and Business Research, 2012). Over the last century,
a lot of work has been done to improve the traffic management.

To this purpose, a transport model has been developed in the 1960s:
this is the classical four-step model (Ortuzar and Willumsen, 1994). This
model consists in considering zones in a network, for example employment
spaces, shopping centres, education or recreational facilities. Data gives the
frequentation of these zones, and the first step, the trip generation, consists
in estimating for each zone how many people come inside and how many
leave. The second step is the determination of the distribution over space.
It consists in building the origin-destination matrix, i.e. how many people
want to go from a specific zone to another specific one. The third step is
the modal split and decides for example how many people going from one
zone to another choose to take the car, the bike, or the subway. Finally,
the last step is the assignment. It assigns the set of people associated to an
origin-destination pair and a mode over the set of possible routes joining the
origin to the destination.

Congestion games are a good way to see the assignment step (Patricksson,
1994). We have a set of selfish users with the information associated to each
user: from which zone and to which zone this user wants to go and how he is
impacted by the congestion. Each user wants to make his trip at the minimal
cost, but the choice of the others impacts his travel cost. After some while,
we reach a situation where every user is on a minium-cost route: a Nash (or
more precisely Wardrop (1952)) equilibrium. Since we want to know what is
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the total number of users on each part of the network, i.e. what is the flow
at equilibrium, we need to study such a Nash equilibrium.

These issues arise in any business based on a network structure. In
telecommunications for example, the extension of wireless networks and new
internet services, such as the video on demand or peer-to-peer based services,
appeared in the past few years. This has led to an increase of the bandwidth
requirements together with an increase of actors using the networks. These
actors include telecom firms, internet service providers, and users. Accord-
ing to the International Telecommunication Union (2013), 39 percent of the
worldwide population use the internet in 2013, while only 16 percent did in
2005. In Europe, this ratio raised from 46 percent in 2005 to 75 percent in
2013.

This rapid growth of the number of users has also led to inequalities,
often called the digital divide. In order to reduce it, a lot of operations have
been launched to extend the very high speed networks, such as the fiber-to-
the-home (FTTH) network. These operations are expensive, for example in
France it has an estimated cost of 20 billion euros for ten years (ARCEP,
2013).

Theoretical models able to deal with these issues are necessary. Network
congestion games is one of them and has led to a considerable amount of
work, see Altman et al. (2006) for an extended survey.

Among the other main fields of application of congestion games are elec-
trical networks. The development of electrical vehicles, and more generally
the increase in energy demand has led to an extensive work in the past years.
One of the main idea is to consider a smart grid infrastructure. In the smart
grid models, facilities needing energy are connected with each other, and can
decide when to charge and modulate the power. They are players competing
in a congestion game, since the cost they face depends on the number of
other facilities charging. This cost is fixed by the suppliers or the regulators.

When a user plugs his electrical vehicle on the evening, he has no prefer-
ence on when the vehicle will start charging, but he only needs it to be fully
charged on the next morning. With the present infrastructure, the electrical
network will not be able to face the peak demands if the number of electrical
vehicles continues to grow. According to CRE (2010), a million of electrical
vehicles charging at the same time need between 3000 and 6000 MW, i.e. the
power of 2 to 4 EPR reactors. Smart grids should be able to deal with this
issue. These topics lead to an intense investigation and investment. GTM
Research (2012) forecasts a cumulative global expense on smart-grid-related
of 20 billion dollars between 2012 and 2020, with an annual spend of 3.8
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billion globally in the year 2020.
In order to design good pricing policies, see Caron and Kesidis (2010)

for example, a good understanding of the properties of Nash equilibria is
necessary. An extended survey can be found in Saad et al. (2012), and
concrete applications to electrical vehicles in Beaude et al. (2014).

The study of the characteristics of a Nash equilibrium is essential before
any decision, i.e. before building a new infrastructure for example. Some
paradoxes may appear, see Section 0.1.2. Hence, theoretical work on the
existence and uniqueness of the equilibrium is necessary. Extensions on the
efficiency or stability of the equilibrium can be made. Taking the practical
point of view, we need to design algorithms that efficiently compute an equi-
librium. A lot of results are known in the specific case where all users are
impacted in the same way by the congestion.

The goal of this thesis is to find new results when we allow users
to be impacted differently by the congestion.

0.1.2 Examples

We introduce classical examples of congestion games showing some counter-
intuitive behaviours.

Example 0.1 (Pigou (1924)). Consider the situation where there is a very
large number of users having to choose between two ressources. Each user
has a negligible weight and the weight of all users is 1. The cost of the first
ressource is fixed equal to 1 and the cost of the second one is equal to the
proportion of users choosing it. This game can be modelled as a nonatomic
congestion game on the graph of Figure 1: each user wants to go from o to
d and has to choose between arc a and b. Each arc models a ressource. The
total flow is 1, the cost of the arcs are ca(x) = 1 and cb(x) = x.

o d

a

b

Figure 1: The example of Pigou

The Nash equilibrium of the game is reached when no user has an interest
in changing his choice. In this example, at the Nash equilibrium all users
choose arc b, and the cost at equilibrium is QNash = 1. However, the optimal
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cost is reached when half of the users choose arc a and the other half choose
arc b. The optimal cost is

QOpt =
1

2
× 1 +

1

2
× 1

2
=

3

4
.

This example shows that the equilibrium can be inefficient since QNash >
QOpt. The price of anarchy defined as the ratio between the worst equilib-
rium cost and the optimal cost allows to quantify this loss of efficiency, see
Section 1.4.

Example 0.2 (Paradox of Braess (1968)). Consider the graph of Figure 2.
Nonatomic users want to go from o to d and can choose between three routes:
the “north” route oud, the “south” route ovd or the “middle” route ouvd.
The total flow is 1.

cou(x) = x

cvd(x) = x

cud(x) = 1

cov(x) = 1

o d

u

v

Figure 2: The example of Braess

Suppose first that there is no arc uv, or equivalently that the cost on this
arc is prohibitively high. At equilibrium, half of the users take the north
route and the other half take the south route. The cost at equilibrium is
then 3

2
.

Suppose now that the cost on the arc uv is negligible, say cuv(x) = 0. At
equilibrium, all users take the middle route, and the cost at equilibrium is 2.

This example shows that deleting an arc can decrease the social cost, or,
in other words, that lowering the costs can increase the congestion. This
situation is called Braess’ paradox and is counter-intuitive. For example in
transportation, it means that building an highway can actually increase the
mean travel time. This paradox happened for example in New York when
the 42d Street, usually congested, was closed. According to Kolata (1990),

To everyone’s surprise [...] traffic flow improved when 42d
Street was closed.
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More recently Youn et al. (2008) proposed roads in Boston, New York,
and London that could be closed to reduce predicted travel times. In physics,
Pala et al. (2012) showed that Braess’ paradox may occur in semiconductor
mesoscopic networks: adding a path for electrons in a nanoscopic network
paradoxically reduced its conductance.

Example 0.3 (Fisk (1979)). We consider nonatomic users on the the graph
of Figure 3.

u v

w

Figure 3: The example of Fisk

There are three origin-destination pairs: (u, v), (u,w), and (v, w). Only
users with origin-destination pair (u,w) can choose between two routes, all
other users have only one choice. Users wishing to go from u to v form a total
flow of 100. The total flow associated to the origin-destination pair (u,w) is
20 and the one associated to (v, w) is 1.

Suppose that the users have the same cost functions:

cuv(x) = cvw(x) = x and cuw(x) = x+ 90.

The equilibrium is reached when the total flow of users with origin-
destination pair (u,w) is divided in the following way: a flow of 3 chooses
the route uvw and a flow of 17 chooses the route uw. The social cost is
QNash(100, 20, 1) = 12444.

Suppose now that the total flow of users with origin-destination pair (v, w)
has increased from 1 to 4. The equilibrium is reached when the total flow
of users with origin-destination pair (u,w) is divided in the following way: a
flow of 2 chooses the route uvw and a flow of 18 chooses the route uw. The
social cost is QNash(100, 20, 4) = 12384.

Then QNash(100, 20, 1) > QNash(100, 20, 4), while the total flow is greater
in the second case. This paradox shows that some intuitive notions may not
be correct: increasing the number of users on a graph can actually improve
the equilibrium cost.
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Furthermore, by computing the individual costs, we see that increasing
the total flow for the origin-destination pair (v, w) has decreased the equilib-
rium cost for the origin-destination pair (u, v). This result is also counter-
intuitive, since these users have no arc in common in their routes.

0.2 Main concerns and contributions

We distinguish two kinds of games: nonatomic and atomic splittable games,
see Section 1.2 and Section 1.3 respectively. In nonatomic games, every user
is infinitesimal and has no impact on the congestion. We are interested in the
choices of proportions of the total number of users. Examples of Section 0.1.2
are nonatomic games. In atomic splittable games, we have a finite set of
players, each one controlling a non-negligible amount of flow, and dividing it
among the different routes in order to minimize his cost.

We use the terminology user for nonatomic games and player for atomic
splittable games, each one corresponding to the classical term of player in
the general point of view of game theory. When we consider congestion
games in general, the terminology player must then be understood as user
for nonatomic games and player for atomic games.

We say that we reach an equilibrium when no player has an incentive to
change his strategy. The main concerns of congestion games are the exis-
tence, the uniqueness, the computation, the efficiency, and the sensi-
tivity of a Nash equilibrium. A lot of work has been done when all players
are impacted in the same way by the congestion, i.e. when they have the
same cost functions. The objective of this thesis is to study these concerns
when we allow player-specific cost functions.

0.2.1 Existence

The existence of an equilibrium is ensured under mild conditions, see Theo-
rems 1.3 and 1.8 for the nonatomic and atomic cases respectively. We focus
on the other issues.

0.2.2 Uniqueness

The equilibrium is not unique when considering the strategies of the players.
For example with nonatomic users, when a specific user changes his strategy,
he has no impact on the congestion. In particular at a Nash equilibrium, if
a negligible subset of users have several strategies giving the same cost, any
choice of these strategies gives a different Nash equilibrium. However the
flow on each arc remains the same in all these equilibria.
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Uniqueness is then considered in a “macroscopic” way: by uniqueness,
we mean uniqueness of the arc flows. By restricting the set of allowable
cost functions or the graph topology, uniqueness can be guaranteed, see Sec-
tions 1.2.4 and 1.3.4. However, for general cost functions and general graphs,
there can be multiple equilibria. In particular for nonatomic games, Milch-
taich (2005) characterized the graphs with one origin-destination pair having
the uniqueness property, i.e. for which the equilibrium flows are unique for
all assignments of increasing cost functions. In Chapter 2, we generalize this
result to graphs with several origin-destination pairs.

0.2.3 Computation

When all players have the same nondecreasing cost functions, the game be-
longs to the class of potential games, see Section 1.2.3. In particular, the
Nash equilibrium flows coincide with a solution of a convex optimization
problem. Then, the computation of such flows can be done with tools of
convex optimization. When players are impacted in a different way by the
congestion, there are few algorithms that are able to compute an equilibrium,
see Sections 1.2.5 and 1.3.5. In Chapters 3 and 4, we give algorithms that
compute an equilibrium for nonatomic games with affine cost functions.

0.2.4 Efficiency

As shown by the Example 0.1 of Pigou (1924), the equilibrium can be inef-
ficient. A notion to quantify this loss of efficiency is the price of anarchy,
introduced by Koutsoupias and Papadimitriou (1999). It is the worst-case
ratio between the social cost at equilibrium and the best possible social cost,
see Section 1.4. The main issue is to compute bounds on the price of an-
archy. Since the seminal paper of Roughgarden and Tardos (2002), tight
bounds are known when players have the same cost functions. In Chapter 5,
we find bounds on the price of anarchy for atomic games with player-specific
cost functions.

0.2.5 Sensitivity

We consider the sensitivity of the equilibrium with respect to the demand.
The demand is the total number of users, or the total flow of a player, asso-
ciated to an origin-destination pair. We are interested in how the character-
istics of an equilibrium change when there is an evolution of the demands.
As shown by the Example 0.3 of Fisk (1979), increasing the total demand
on a graph can give a better equilibrium cost. In Chapter 6, we study the
sensitivity in atomic games in graphs with parallel arcs. We prove regularity
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results on the flow at equilibrium. We also study the behaviour when a player
transfers a part of his demand to another player with initially more demand.
When there are two arcs or two players, the flow of the first player increases
on no arc while the flow of the second one does not decrease. In particular
when players have the same cost functions, such a transfer does not increase
the social cost at equilibrium.



CHAPTER 1

Network congestion games

1.1 Preliminaries

1.1.1 Graphs

An undirected graph is a pair G = (V,E) where V is a finite set of vertices
and E is a family of unordered pairs of vertices called edges. A directed graph,
or digraph for short, is a pair D = (V,A) where V is a finite set of vertices
and A is a family of ordered pairs of vertices called arcs. The arc (u, v) is an
outgoing arc of vertex u and an incoming arc of vertex v. For a vertex v, we
denote by δ+(v) the set of outgoing arcs and δ−(v) the set of incoming arcs
of v.

A walk in a directed graph D is a sequence

P = (v0, a1, v1, . . . , ak, vk)

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) for
i = 1, . . . , k. If all vi are distinct, the walk is called a path. If no confusion
may arise, we identify sometimes a path P with the set of its vertices or with
the set of its arcs, allowing to use the notation v ∈ P (resp. a ∈ P ) if a
vertex v (resp. an arc a) occurs in P .

For (s, t) ∈ V 2, a route is an s-t path of D and is called an (s, t)-route.
The set of all routes (resp. (s, t)-routes) is denoted by R (resp. R(s,t)).

An undirected graph G′ = (V ′, E ′) is a subgraph of an undirected graph
G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. An undirected graph G′ is a minor of an
undirected graph G if G′ is obtained by contracting edges (possibly none) of a
subgraph of G. Contracting an edge uv means deleting it and identifying both
endpoints u and v. Two undirected graphs are homeomorphic if they arise
from the same undirected graph by subdivision of edges, where a subdivision
of an edge uv consists in introducing a new vertex w and in replacing the
edge uv by two new edges uw and wv.

The same notions hold for directed graphs.
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1.1.2 Flows

Given a digraph D = (V,A) and (s, t) ∈ V 2, a (s, t)-flow is a vector x =
(xa)a∈A ∈ RA such that xa ≥ 0 for every arc a ∈ A and∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa

for every vertex v ∈ V \ {s, t}. This last condition is called the flow con-
servation law. The value of an (s, t)-flow is

∑
a∈δ+(s) xa −

∑
a∈δ−(s) xa, i.e.

the amount of flow leaving s. This value is also equal to the amount of flow
entering t. Given a value d, called the demand, an (s, t)-flow is said to be
feasible if it is a flow of value d. With a slight abuse of notation, given a flow
x and an arc a ∈ A, we say that xa is the flow on arc a.

Given a graph G = (V,E) and a digraph H = (T, L) with T ⊆ V , a
multiflow is a vector ~x = (x(s,t))(s,t)∈L such that for each (s, t) ∈ L, x(s,t) is
an (s, t)-flow. In the literature, the terminology multicommodity flow is also
used for a multiflow. In this case, each (s, t) ∈ L is called a commodity.

The graph G is called the supply graph and H is called the demand di-
graph. The set L is viewed as the set of origin-destination pairs. In the thesis,
we may use the set L without defining the demand digraph. In this case, H
is naturally defined with T being the set of all endpoints of arcs in L.

1.1.3 Graphs with parallel arcs

A specific class of graphs often considered in congestion games is the graphs
with parallel arcs. They represent a good modelling of games where players
share a set of independent ressources.

A graph with parallel arcs refers to a supply graph G = (V,E) and a
demand digraph D = (V, L) where V = {s, t} has only two elements, every
edge of E is a {s, t}-edge, and L = {(s, t)} has only one element.

1.2 Nonatomic games

1.2.1 Definition

In nonatomic games, the population of users is modelled as a bounded real
interval I endowed with the Lebesgue measure λ, the population measure.
Each user is infinitesimal. We are given a digraph D = (V,A) and a set
of origin-destination pairs L ⊆ V 2 such that for every (s, t) ∈ L, we have
s 6= t. The set I is partitioned into measurable subsets I(s,t) with (s, t) ∈ L,
modelling the users wishing to select an (s, t)-route.
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For a given graph and set of origin-destination pairs, and a given partition
of users, we define a strategy profile as a measurable mapping σ : I → R such
that σ(i) ∈ R(s,t) for all (s, t) ∈ L and i ∈ I(s,t). For each arc a ∈ A, the
measure of the set of all users i such that a is in σ(i) is the flow on a in σ
and is denoted xa:

xa = λ{i ∈ I : a ∈ σ(i)}.

The vector of flows is then denoted by x = (xa)a∈A.

The cost of each arc a ∈ A for each user i ∈ I is given by a cost function
cia : R+ → R+. When the flow on a is xa, the cost for user i of traversing a
is cia(xa). For user i, the cost of a route r is defined as the sum of the costs
of the arcs contained in r:

Qi
r(x) =

∑
a∈r

cia(xa).

The game we are interested in is defined by the digraph D, the set of
origin-destination pairs L, the population user set I with its partition, and
the cost functions cia for a ∈ A and i ∈ I.

A strategy profile is a (pure) Nash equilibrium if each route is only chosen
by users for whom it is a minimal-cost route. In other words, a strategy profile
σ is a Nash equilibrium if for each pair (s, t) ∈ L and each user i ∈ I(s,t) we
have

Qi
σ(i)(x) = min

r∈R(s,t)

Qi
r(x).

Remark 1.1. The equilibrium in nonatomic games was first defined by Wardrop
(1952). In the literature, the terminology of Wardrop equilibrium is often
used. However, in order to deal with user-specific cost functions and keep
the game theory terminology, we will call it Nash equilibrium.

Class of users

In some games, users may be split into classes. A class is a set of users
having the same cost functions on all arcs, but not necessarily sharing the
same origin-destination pair. In this case, the set I is partitioned into a
finite number of measurable subsets (Ik)k∈K – the classes – modelling the
users sharing a same collection of cost functions (cka : R+ → R+)a∈A. A user
in Ik is said to be of class k. For each arc a ∈ A, the measure xka of the set
of all class k users i such that a is in σ(i) is the class k flow on a in σ:

xka = λ{i ∈ Ik : a ∈ σ(i)}.
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In this case, the class k flow is denoted by xk = (xka)a∈A, while the vector of
all class flows is the multiflow ~x = (xk)k∈K . Note that the agregated flow
remains denoted by x = (xa)a∈A with xa =

∑
k∈K x

k
a.

Remark 1.2. When considering nonatomic games where the set of users is
partitioned into classes, we talk of multiclass games or of the multiclass case.
Note that in the multiclass case, the game remains a noncooperative game.
When users of a given class decide to cooperate, we say that they form a
coalition. In this case, the game belongs to the set of atomic games, see Sec-
tion 1.3. In particular, the terminology class will be used only for nonatomic
games.

1.2.2 Existence of a Nash equilibrium

Under mild conditions on the cost functions, a Nash equilibrium is always
known to exist. The original proof of the existence of an equilibrium was
made by Schmeidler (1970) and uses a fixed point theorem. The proof of
this result is also made in Milchtaich (2000) or can be deduced from more
general results (Rath, 1992).

Theorem 1.3 (Schmeidler (1970)). Consider a nonatomic congestion game.
Suppose that the cost functions satisfy: cia(·) is continuous for every arc a
and user i, and i 7→ cia(x) is measurable for every x ∈ [0, λ(I)]. Then there
exists a Nash equilibrium.

The definition of a Nash equilibrium can be reformulated, giving then
new characterizations.

1.2.3 Characterizations of a Nash equilibrium

Single-class case: a potential game

The specific case where all users have the same cost functions has been ex-
tensively studied. In this context, the game belongs to the class of potential
games. This class of games was first defined by Monderer and Shapley (1996),
extending a result of Rosenthal (1973). Then the Nash equilibrium flows are
optimal solutions of a convex optimization problem.

Proposition 1.4 (Beckmann et al. (1956)). Suppose that the cost functions
ca are continuous and nondecreasing. The multiflow ~x is an equilibrium flow
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if and only if it is a solution of the following problem.

min
∑
a∈A

∫ xa

0

ca(u) du (1.1)

s.t.
∑

(s,t)∈L

x(s,t)
a = xa a ∈ A,

∑
a∈δ+(v)

x(s,t)
a =

∑
a∈δ−(v)

x(s,t)
a + b(s,t)

v (s, t) ∈ L, v ∈ V,

x(s,t)
a ≥ 0 (s, t) ∈ L, a ∈ A,

where b
(s,t)
v =

(
1{v=s} − 1{v=t}

)
λ(I(s,t)).

However, in the multiclass case the game is not in general a potential
game.

Multiclass case: a nonlinear complementarity problem

Assume that the users are partitioned into classes. In the single-class case,
by writing the Karush-Kuhn-Tucker conditions of the problem (1.1), we get
that the equilibrium flows x coincide with the solutions of a nonlinear com-
plementarity problem, see Aashtiani and Magnanti (1981).

In the multiclass case, when the flows xk
′

for k′ 6= k are fixed, finding the
equilibrium flows for the class k is again a single-class problem. We get then
the following characterization, where for the ease of reading we ask the users
of a given class k to have the same origin sk, and the same destination tk.

Proposition 1.5. Suppose that the cost functions cka are continuous and
nondecreasing. The multiflow ~x is an equilibrium flow if and only if there
exist µk ∈ RA

+ and πk ∈ RV for all k such that (xk,µk,πk)k∈K is a solution
of the following complementarity problem:∑

a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V

ckuv(xuv) + πku − πkv − µkuv = 0 k ∈ K, (u, v) ∈ A

xkaµ
k
a = 0 k ∈ K, a ∈ A

xka ≥ 0, µka ≥ 0, πkv ∈ R k ∈ K, a ∈ A, v ∈ V.

where bkv =
(
1{v=sk} − 1{v=tk}

)
λ(Ik) for every class k.
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Proof. See Proposition 3.1 in Section 3.2.

Finding solutions for such systems is a complementarity problem, the
word “complementarity” coming from the condition xkaµ

k
a = 0 for all (a, k)

such that a ∈ A.

Multiclass case: a solution of a variational inequality

The equilibrium can also be viewed as a solution of a variational inequal-
ity (Smith, 1979, Dafermos, 1980). In our context, we obtain the following
characterization.

Proposition 1.6. Suppose that the cost functions cka are continuous and
nondecreasing. The multiflow ~x is an equilibrium flow if and only if, for all
k, it satisfies∑

a∈A

cka(xa)(y
k
a − xka) ≥ 0, for any feasible flow yk for class k.

1.2.4 Uniqueness of equilibrium

In the single-class case, i.e. when all users are equally affected by the conges-
tion, and when the cost functions are increasing, the equilibrium is unique,
since the convex optimization problem (1.1) has a unique solution. However,
this is not the case when we allow user-specific cost functions. Two types of
restriction can be made to have a unique equilibrium flow: conditions on the
cost functions, and conditions on the graph topology.

There are few works giving conditions on the cost functions that ensures
uniqueness. Altman and Kameda (2001) proved that when the cost functions
are the same for every user, up to an additive constant, the equilibrium flow
is unique.

Milchtaich (2005) defined the notion of uniqueness property as the unique-
ness of the equilibrium flow whatever are the increasing cost functions. He
introduced the family of nearly parallel graphs. A graph is nearly parallel if
it is one of the graphs of Figure 1.1 or a connection in series of those. When
all users have the same origin-destination pair, the uniqueness property holds
if and only if the graph is nearly parallel.

In Chapter 2, we generalize this result when the users have different
origin-destination pairs. We characterize completely bidirectional rings for
which the uniqueness property holds: it holds precisely for nine graphs and
those obtained from them by elementary operations. We deduce necessary
conditions for general graphs to have the uniqueness property. However,
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Figure 1.1: Basic graphs defining the class of nearly parallel graphs

there are still graphs for which neither Milchtaich (2005) nor Chapter 2 can
be used to prove or disprove the uniqueness property (see Figure 2.8).

1.2.5 Computation of an equilibrium

As noted in Section 1.2.3, when all users have the same cost functions, the
computation of a Nash equilibrium amounts to solve a convex optimization
problem. The currently most commonly used algorithm for such convex
programs is probably the Frank-Wolfe algorithm (Frank and Wolfe, 1956). In
the multiclass case, this method can be adapted, since finding the equilibrium
flows for a given class when the flows of the other classes is fixed is again a
single-class problem. We cite for example two approaches widely used but
whose convergence is not always guaranteed.

• In the Jacobi approach, we solve at iteration n the K problems

min
xka

∑
a∈A

∫ xka

0

cka

(
k−1∑
i=0

x(n),i
a + u+

K∑
i=k+1

x(n),i
a

)
du

where the minimum is taken over all feasible flows for class k users.

• In the Gauss-Seidel approach, we solve at iteration n the problem

min
xka

∑
a∈A

∫ xka

0

cka

(
k−1∑
i=0

x(n+1),i
a + u+

K∑
i=k+1

x(n),i
a

)
du

where the minimum is taken over all feasible flows for class k users.

The Jacobi approach consists then in solving a sequence of K problems
at each step, which can be done in an efficient way using parallelism. The
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Gauss-Siedel approach uses the latest vector update at each step. There
are various conditions ensuring the convergence, see Florian (1977), Harker
(1988), Mahmassani and Mouskos (1988), Marcotte and Wynter (2004) for
example. For a more general survey on methods used to solve variational
inequalities, see Marcotte (1997).

However, there is no general algorithm in the literature for solving the
problem when the cost of each arc is in an affine dependence with the flow
on it. We propose such algorithms in Chapters 3 and 4. The algorithm of
Chapter 3 is a pivoting Lemke-like algorithm and relies on the formulation of
an equilibrium as a solution of a linear complementarity problem. We prove
the convergence and proceed to computational experiments. In Chapter 4
we give an algorithm polynomial in the number of arcs, for a fixed number
of vertices and classes. It uses a correspondence between the set of arcs used
at equilibrium for each class and cells of a hyperplane arrangement.

1.3 Atomic games

In this thesis, the atomic congestion games we consider are assumed to be
splittable. In these games, we have a finite set of players, each player having a
non-negligible demand to transfer from an origin to a destination. In contrary
to unsplittable games, players can divide their demand among the different
routes. In practice, these games can model companies having a stock to ship
for one point to an other, and paradoxes similar as in Section 0.1.2 can occur,
see for example Catoni and Pallottino (1991).

Another way to see atomic splittable games is to consider nonatomic
games with coalitions. In this case, a subset of nonatomic users can decide
to act in a centralized way, as a coalition.

1.3.1 Definition

In atomic splittable games, we are given a digraph D = (V,A) and K players.
The players are identified with the integers 1, . . . , K and the set of all players
is denoted by [K]. Each player k ∈ [K] has to send dk units of flow, his
demand, from an origin sk ∈ V to a destination tk ∈ V in the digraph.

For a given digraph and set of players with their demand and origin-
destination pair, a strategy profile is a multiflow ~x = (x1, . . . ,xK) ∈ RA×K

+

such that for each player k, xk ∈ RA
+ is an (sk, tk)-flow of value dk. Such a
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flow for player k is an element of

Fk =

{
y ∈ RA

+ :
∑

a∈δ+(sk)

ya −
∑

a∈δ−(sk)

ya = dk and

∑
a∈δ+(v)

ya =
∑

a∈δ−(v)

ya, ∀v ∈ V \ {sk, tk}

}
and is referred as a feasible flow for player k. A strategy profile is then a
feasible multiflow, i.e. an element of F1 × · · · × FK .

Each player k has his own vector of cost functions ck = (cka)a∈A where for
each arc a the cost function cka(·) is a R+ → R+ function. We assume given
a set of allowable cost functions C in which ~c = (c1, . . . , cK) is taken. Since
each player has his own vector of cost functions, the game is said to be with
player-specific cost functions.

Remark 1.7. In the literature, this game is sometimes called a multiclass
game. On the contrary, if c1 = · · · = cK for every ~c ∈ C, one speaks of a
single-class game. However, in order to avoid confusion between nonatomic
and atomic games, we will use the terminology class only for nonatomic
games.

We denote the total flow on an arc a by xa =
∑

k∈[K] x
k
a. The cost

experienced by a player k is

Qk(~x) =
∑
a∈A

xkac
k
a(xa).

The goal of this player consists in sending his dk units of flows while mini-
mizing this cost.

The game we are interested in is defined by the digraph D, the set of
players [K] with their demand, origin-destination pair, and set of cost func-
tions.

A strategy profile ~x = (x1, . . . ,xK) is a Nash equilibrium if for each player
k, we have

Qk(~x) = min
y∈Fk

Qk(y, ~x−k), (1.2)

where (y, ~x−k) = (x1, . . . ,xk−1,y,xk+1, . . . ,xK).

The social cost of a multiflow is defined as

Q(~x) =
∑
k∈[K]

Qk(~x) =
∑
k∈[K]

∑
a∈A

xkac
k
a(xa).

A multiflow of minimal social cost is a social optimum.
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1.3.2 Existence of a Nash equilibrium

The existence of a Nash equilibrium is ensured when the game is a convex
game (Rosen, 1965). For an arc a and a player k, the cost function cka is a
per-unit cost. The contribution of this arc to the total cost of the player is
xkac

k
a(xa). To have a convex game, it is sufficient that the functions xk 7→

xkcka(x) are convex. However we make the stronger assumption that the cost
functions cka are nondecreasing.

In this case, the result of Rosen (1965) holds, using the Kakutani fixed
point theorem. The formulation of the proof in the framework of congestion
games can be found in Orda et al. (1993).

Theorem 1.8 (Rosen (1965), Orda et al. (1993)). Consider an atomic split-
table congestion game. Suppose that the cost functions cka are continuous
and nondecreasing for every arc a and player k. Then there exists a Nash
equilibrium.

The definition of a Nash equilibrium can be reformulated, giving then
new characterizations.

1.3.3 Characterizations of a Nash equilibrium

Throughout the thesis, the components of x ∈ RK
+ are denoted xk. Given

a K-tuple of continuously differentiable cost functions c = (c1, . . . , cK), we
define for every k the marginal cost c̃k : RK

+ → R+ by

c̃k(x) =
∂

∂xk
(
xkck (x)

)
where x =

∑
`∈[K]

x`.

For the ease of reading, we drop the parenthesis over the derivatives and note
ck
′

instead of (ck)′. To avoid any confusion, no index with a prime k′ will be
used in the thesis. We have then

c̃k(x) = xkck
′
(x) + ck(x).

The characterizations of a Nash equilibrium in nonatomic games still
hold for atomic splittable games where the cost functions ck are replaced
by the marginal cost c̃k. In particular, Proposition 1.6 can be reformulated.
However, the following proposition is standard in this context and can be
directly obtained by writing the optimality conditions of Equation (1.2).
This characterization has been used in particular in Haurie and Marcotte
(1985).
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Proposition 1.9. Suppose that the cost functions cka are continuously dif-
ferentiable and nondecreasing. The multiflow ~x is a Nash equilibrium if and
only if, for all k, it satisfies∑

a∈A

c̃ka(xa)(y
k
a − xka) ≥ 0, for any feasible flow yk for player k, (1.3)

where xa = (x1
a, . . . , x

K
a ) ∈ RK

+ .

Furthermore, Proposition 1.5 can also be transposed for atomic games.
We reformulate it in a more convenient way that will be used in the following.

Proposition 1.10. Suppose that the cost functions cka are continuously dif-
ferentiable and nondecreasing. The multiflow ~x is a Nash equilibrium flow if
and only if, for all k, xk is a feasible flow for player k such that there exists
πk ∈ RV with

c̃ka(xa) ≥ πkv − πku for all a = (u, v) ∈ A,
c̃ka(xa) = πkv − πku for all a = (u, v) ∈ A such that xka > 0.

1.3.4 Uniqueness of equilibrium

Uniqueness of the Nash equilibrium is not guaranteed in general. In their
seminal paper, Orda et al. (1993) showed that the equilibrium is unique
for symmetric players i.e. when all players have the same demand, origin-
destination pair and cost functions. They gave a counterexample for more
general games. The conditions for uniqueness can be divided into two types:
restrictions on the set of allowable cost functions, and restrictions on the
graph topology.

Applying the general result of Rosen (1965), uniqueness is guaranteed
when we assume conditions on the cost functions, related to the notion of
diagonal strict convexity. More recently, Altman et al. (2002) proved that
when players have the same monomial cost functions of degree at most three,
the equilibrium flow is unique.

Topological restrictions on the graph ensure uniqueness as well. Richman
and Shimkin (2007) extended the result of Milchtaich (2005) holding for
nonatomic graphs. They proved that when all players have the same origin-
destination pair, the uniqueness property holds if and only if the graph is
nearly parallel, see Figure 1.1. Bhaskar et al. (2009) extended the result to
generalized parallel graphs, when all players have the same cost functions.
The generalization to graphs with several origin-destination pairs is still an
open problem. In particular, whether the results of Chapter 2 for nonatomic
games can be extended to atomic games deserves future work.
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1.3.5 Computation of an equilibrium

Since the equilibria for both nonatomic multiclass and atomic games are solu-
tions of a variational inequality, the methods introduced in Section 1.2.5 hold
for atomic games, when replacing the cost functions cka by the marginal costs
c̃ka. In particular, the algorithms given in Chapters 3 and 4 can be adapted
to give an equilibrium flow for atomic games with affine cost functions.

More specific algorithms exist for games with a finite number of players,
beginning with Rosen (1965). The algorithm introduced by Rosen (1965)
needs restrictive conditions, but the dynamic is shown to converge to an
equilibrium. Algorithms have been designed in other specific cases, using
supermodularity or monotonicity, see Altman et al. (2006) for a review. In
particular, Altman et al. (2001) and Boulogne et al. (2002) proved that some
basic algorithms converge to an equilibrium in simple graphs with linear cost
functions.

1.4 Efficiency of equilibrium: the price of anarchy

As shown by the Example 0.1, the equilibrium is in general inefficient. To
quantify the loss of efficiency, Koutsoupias and Papadimitriou (1999) intro-
duced a ratio that Papadimitriou (2001) named the price of anarchy. The
price of anarchy is the worst-case ratio between the social cost at equilibrium
and the best possible social cost. Given a set of allowable instances I, for
any I ∈ I let NE(I) be the set of Nash equilibria of the game and consider
~xOPT (I) a feasible multiflow achieving the minimal social cost. The price of
anarchy is defined by

PoA(I) = sup
I∈I

sup
~x∈NE(I)

Q(~x)

Q(~xOPT (I))
.

1.4.1 Nonatomic games

The interest on the price of anarchy has led to a considerable amount of
work for games where the users have the same cost functions. In their semi-
nal paper, Roughgarden and Tardos (2002) proved that the price of anarchy
is bounded by 4

3
for affine cost functions. This bound is reached for simple

graphs as in Example 0.1. This has led to the result of Roughgarden (2003)
stating that the price of anarchy is independent of the graph topology. These
results have been extended, see for example Correa et al. (2004, 2008), Dum-
rauf and Gairing (2006). In particular, Correa et al. (2004) found a new
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geometric proof of some previous bounds. The next proposition summarizes
these results.

Proposition 1.11. Let I be a set of instances of a nonatomic game with
users having the same cost functions,

1. PoA(I) = 4
3

when the cost functions in I are all affine cost functions,

2. PoA(I) = Θ
(
d

ln d

)
when the cost functions in I are all polynomial

functions of degree d with nonnegative coefficients.

Proof. 1. See Roughgarden and Tardos (2002).

2. The exact bound of (d+1)1+1/d

(d+1)1+1/d−d is proved in Roughgarden (2003).

The generalization to games with user-specific cost functions is still an
open question, considered in very few works, see Gairing et al. (2006) for
example.

1.4.2 Atomic games

Most of the works dealing with the price of anarchy for atomic splittable
games consider situations where players have the same cost functions. The
first general bound on the price of anarchy is probably the one of Cominetti
et al. (2009). It yields a bound for polynomial functions of degree at most
3 with nonnegative coefficients. In particular they found a bound of 3K+1

2K+2

for affine cost functions when the number K of players is fixed. These re-
sults have been extended, see for example Harks (2008, 2011), Bhaskar et al.
(2010). Finally, Roughgarden and Schoppmann (2011) found a bound hold-
ing for polynomial functions with nonnegative coefficients of any degree.

Proposition 1.12 (Roughgarden and Schoppmann (2011)). Let I be a set
of instances of an atomic splittable game with players having the same cost
functions,

1. PoA(I) = 3
2

when the cost functions in I are all affine cost functions,

2. PoA(I) =
(

1+
√
d+1

2

)d+1

when the cost functions in I are all polynomial

functions of degree d ≥ 2 with nonnegative coefficients.

The generalization to games with player-specific cost functions is made in
Chapter 5, where we find a general bound, see Theorem 5.1. Unfortunately,
this bound uses a parameter depending on the cost functions, and the price of
anarchy is generally unbounded, even when considering affine cost functions,
see Section 5.4.
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1.4.3 Comparison and extensions

When the players have the same cost functions, a way to find a bound for
the price of anarchy of an atomic splittable game is to compare it with the
one of the corresponding nonatomic game. We can then consider the price of
collusion, defined by Hayrapetyan et al. (2006) as the ratio between the social
cost at the equilibrium of the atomic game and the one at the equilibrium
of the corresponding nonatomic game. Since the optimal cost is the same in
both games, it can also be viewed as the ratio between the price of anarchy
of the atomic game and the one of the nonatomic game.
In some specific situations, Hayrapetyan et al. (2006), Cominetti et al. (2009)
and Altman et al. (2011) showed that the price of collusion is at most 1.
Unfortunately, this result does not hold in general as shown by the example
of Cominetti et al. (2009), adapted from Catoni and Pallottino (1991). This
notion has led to several other works, see Bhaskar et al. (2010), Wan (2012b),
Blocq and Orda (2013) for example, still in the context where players have
the same cost functions. The generalization to games with player-specific
cost functions could be done by comparing an atomic splittable game to the
corresponding multiclass nonatomic game, but it is still an open problem.

The price of anarchy has also been studied in the context where the cost
functions are nonseparable. In this case, the cost of a route is not defined as
the sum of the cost of the arcs in the route, see Section 1.5. Some results on
the price of anarchy for games with nonseparable costs are proved in Chau
and Sim (2003) and Perakis (2007).

1.5 Extension: games with risk-averse users1

A natural extension of the previously defined games is to consider nonsep-
arable cost functions. In this case, the cost of a route is not defined as the
sum of the cost of the arcs in the route. This kind of cost functions ap-
pears for example in congestion games with risk-averse users, see Ordóñez
and Stier-Moses (2010).

In these games, we consider nonatomic users. Each user chooses the route
that minimizes the mean travel time plus a multiple of the standard deviation
of the travel time. The weight of the standard deviation corresponds to
the user risk aversion. This problem is a stochastic shortest path problem
(Bertsekas and Tsitsiklis, 1991).

1This section introduces the work I did in collaboration with Nicolas Stier-Moses, during
my visit in 2013 at Universidad Torcuato di Tella in Buenos Aires, Argentina.
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This has been studied for example in Nie (2011), Cominetti and Torrico
(2013), and Nikolova and Stier-Moses (2014)

The model is the same as in Section 1.2, except for the definition of the
cost functions. The cost function of an arc a ∈ A for a user i ∈ I is defined
by

cia(xa) = `ia(xa) + ξia(xa).

The quantity `ia(xa) measures the expected travel time for user i on arc a
when the flow is xa, and ξia(xa) is a random variable whose expectation is
zero and standard deviation is σia(xa).

The functions `ia and σia are assumed to be R+ → R+ functions, contin-
uous, increasing, and such that i 7→ `ia(x) and i 7→ σia(x) are measurable for
all a ∈ A and x ∈ R+.

The cost of a route r for user i is the mean-standard deviation objective,
that is

Qi
r(x) =

∑
a∈r

`ia(xa) + γi
√∑

a∈r

(σia)
2(xa),

where γi ≥ 0 represents the user’s risk-aversion.
When the cost functions and the risk-aversion are the same for all users,

this is the mean-risk model for nonatomic congestion games defined in Nikolova
and Stier-Moses (2014). A Nash equilibrium for this game is called a mean-
stdev equilibrium.

The generality of the result of Schmeidler (1970) gives that a mean-stdev
equilibrium exists. Nikolova and Stier-Moses (2014) gave another proof in
the specific case where the cost functions and the risk-aversion are the same
for all users. However, some results of Section 1.2 do not hold anymore and
further investigation is necessary.

In particular, since the cost of a route is different from the sum of the
cost of each arc in this route, there is no monotonicity of the cost, as shown
in the following example.

Example 1.13 (Nikolova and Stier-Moses (2014)). We consider the graph
of Figure 1.2.

s t1 t2
a

b

c

Figure 1.2: An example of non-monotonicity
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The cost functions are constant and the same for each user. The means
and standard deviations are in the following table.

Arc a b c

Mean 6.9 5 5
Standard deviation 1 3 1

Furthermore, the risk-aversion is equal to 1 for every user. Then, when
users want to go from s to t1, the most attractive arc is the arc a, with a
cost of 7.9, while the cost of arc b is 8.

When users want to go from s to t2, the arc a is not attractive anymore,
since the cost of the route bc is 13.16 and the cost of the route ac is 13.31.

Nikolova and Stier-Moses (2014) distinguish two cases of standard devia-
tion: the exogenous and endogenous cases.

In the exogenous case, the variability that affects travel times does not
depend on the traffic. Hence, the standard deviation is constant : σia(x) = σia
for every arc a and user i.

In this case, when all users have the same cost functions, Nikolova and
Stier-Moses (2014) proved that the game is a potential game, and the mean-
stdev equilibrium is unique when the expected travel time functions ` are
strictly increasing.

In the more general endogenous case, the standard deviation is dependent
of the flow. Nikolova and Stier-Moses (2014) showed that, even when players
have the same cost functions, the game is not a potential game. There is no
general result on uniqueness. The only known results concern extreme cases
where users are either risk-neutral (γi = 0) or infinitely risk-averse (γi →∞).
In these cases, when the expected travel times and standard deviation are
strictly increasing, the equilibrium flows are unique.

The question of uniqueness in a more general setting and the design of
algorithms for the computation of an equilibrium need further investigation.



CHAPTER 2

The uniqueness property for graphs with
several origin-destination pairs

This chapter is based on the paper “The uniqueness property for networks
with several origin-destination pairs” (Meunier and Pradeau, 2014). This
work was presented at the ISMP 2012 and ROADEF 2013 conferences.

Abstract

In this chapter, we consider congestion games on graphs with nonatomic users

and user-specific costs. We are interested in the uniqueness property defined by

Milchtaich (2005) as the uniqueness of equilibrium flows for all assignments of

strictly increasing cost functions. He settled the case with two-terminal graphs.

As a corollary of his result, it is possible to prove that some other graphs have the

uniqueness property as well by adding common fictitious origin and destination.

In the present work, we find a necessary condition for graphs with several origin-

destination pairs to have the uniqueness property in terms of excluded minors

or subgraphs. As a key result, we characterize completely bidirectional rings for

which the uniqueness property holds: it holds precisely for nine graphs and those

obtained from them by elementary operations. For other bidirectional rings, we

exhibit affine cost functions yielding to two distinct equilibrium flows. Related

results are also proven. For instance, we characterize graphs having the uniqueness

property for any choice of origin-destination pairs.

2.1 Introduction

In many areas, different users share a common network to travel or to ex-
change information or goods. Each user wishes to select a path connecting a
certain origin to a certain destination. However, the selection of paths in the
network by the users induces congestion on the arcs, leading to an increase
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of the costs. Taking into account the choices of the other users, each user
looks for a path of minimum cost. We expect therefore to reach a Nash equi-
librium: each user makes the best reply to the actions chosen by the other
users.

This kind of games is studied since the 1950’s, with the seminal works
by Wardrop (1952) and Beckmann et al. (1956). Their practical interest is
high since the phenomena implied by the strategic interactions of users on a
network are often counter-intuitive and may lead to an important loss in ef-
ficiency. The Braess paradox (Braess, 1968) – adding an arc may deteriorate
all travel times – is the classical example illustrating such a counter-intuitive
loss and it has been observed in concrete situations, for example in New
York (Kolata, 1990). Koutsoupias and Papadimitriou (1999) initiated a pre-
cise quantitative study of this loss, which lead soon after to the notion of
“Price of Anarchy” that is the cost of the worst equilibrium divided by the
optimal cost, see Roughgarden and Tardos (2002) among many other refer-
ences.

When the users are assumed to be nonatomic – the effect of a single user
is negligible – equilibrium is known to exist (Milchtaich, 2000). Moreover,
when the users are affected equally by the congestion on the arcs, the costs
supported by the users are the same in all equilibria (Aashtiani and Mag-
nanti, 1981). In the present chapter, we are interested in the case when the
users may be affected differently by the congestion. In such a case, examples
are known for which these costs are not unique. Various conditions have
been found that ensure nevertheless uniqueness. For instance, if the user’s
cost functions attached to the arcs are continuous, strictly increasing, and
identical up to additive constants, then we have uniqueness of the equilib-
rium flows, and thus of the equilibrium costs (Altman and Kameda, 2001).
In 2005, continuing a work initiated by Milchtaich (2000) and Konishi (2004)
for graphs with parallel routes, Milchtaich (2005) found a topological charac-
terization of two-terminal graphs for which, given any assignment of strictly
increasing and continuous cost functions, the flows are the same in all equi-
libria. Such graphs are said to enjoy the uniqueness property. Similar results
with atomic users have been obtained by Orda et al. (1993) and Richman
and Shimkin (2007).

The purpose of this chapter is to find similar characterizations for graphs
with more than two terminals. We are able to characterize completely the
ring graphs having the uniqueness property, whatever the number of ter-
minals is. Studying equilibria on rings can be seen as the decentralized
counterpart of works on the optimization of multiflows on rings, like the one
proposed by Myung et al. (1997). Our main result for ring graphs is that
the uniqueness property holds precisely for nine graphs and those obtained
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from them by elementary operations. For other rings, we exhibit affine cost
functions yielding to two distinct equilibrium flows. It allows to describe
infinite families of graphs for which the uniqueness property does not hold.
For instance, there is a family of ring graphs such that every network with a
minor in this family does not have the uniqueness property.

2.2 Preliminaries on graphs

Recall the definitions of Section 1.1.1. We define a mixed graph to be a graph
having edges and arcs. More formally, it is a triple M = (V,E,A) where V is
a finite set of vertices, E is a family of unordered pairs of vertices (edges) and
A is a family of ordered pairs of vertices (arcs). Given an undirected graph
G = (V,E), we define the directed version of G as the digraph D = (V,A)
obtained by replacing each (undirected) edge in E by two (directed) arcs,
one in each direction. An arc of G is understood as an arc of its directed
version. In these graphs, loops – edges or arcs having identical endpoints
– are not allowed, but pairs of vertices occurring more than once – parallel
edges or parallel arcs – are allowed.

The notions of subgraph, minor and homeomorphism defined in Sec-
tion 1.1.1 hold for mixed graphs in the same way. Finally, let G = (V,E) be
an undirected graph, and H = (T, L) be a directed graph with T ⊆ V , then
G+H denotes the mixed graph (V,E, L).

2.3 Model

Similarly as in the multiflow theory (see for instance Schrijver (2003) or Korte
and Vygen (2000)), we are given a supply graph G = (V,E) and a demand
digraph H = (T, L) with T ⊆ V . The graph G models the (transportation)
network. The arcs of H model the origin-destination pairs, also called in the
sequel the OD-pairs. H is therefore assumed to be simple, i.e. contains no
loops and no multiple edges. A route is an (s, t)-path of the directed version
of G with (s, t) ∈ L and is called an (s, t)-route. The set of all routes (resp.
(s, t)-routes) is denoted by R (resp. R(s,t)).

The population of users is modelled as in Section 1.2.1. The cost functions
cia : R+ → R+ are assumed to be nonnegative, continuous, strictly increasing,
and such that i 7→ cia(x) is measurable for all a ∈ A and x ∈ R+.

The game we are interested in is defined by the supply graph G, the
demand digraph H, the population user set I with its partition, and the cost
functions cia for a ∈ A and i ∈ I. If we forget the graph structure, we get



28 CHAPTER 2. UNIQUENESS PROPERTY WITH SEVERAL OD-PAIRS

a game for which we use the terminology nonatomic congestion game with
user-specific cost functions, as in Milchtaich (1996).

Recall the definition of an equilibrium: a strategy profile is a (pure) Nash
equilibrium if each route is only chosen by users for whom it is a minimal-cost
route. In other words, a strategy profile σ is a Nash equilibrium if for each
pair (s, t) ∈ L and each user i ∈ I(s,t) we have∑

a∈σ(i)

cia(xa) = min
r∈R(s,t)

∑
a∈r

cia(xa).

Under the conditions stated above on the cost functions, a Nash equilib-
rium is always known to exist, see Theorem 1.3. However, such an equilibrium
is not necessarily unique, and even the equilibrium flows are not necessarily
unique.

2.4 Results

Milchtaich (2005) raised the question whether it is possible to characterize
graphs having the uniqueness property, i.e. graphs for which flows at equilib-
rium are unique. A pair (G,H) defined as in Section 2.3 is said to have the
uniqueness property if, for any partition of I into measurable subsets I(s,t)

with (s, t) ∈ L, and for any assignment of (strictly increasing) cost functions,
the flow on each arc is the same in all equilibria.

Milchtaich found a positive answer for the two-terminal graphs, i.e. when
|L| = 1. More precisely, he gave a (polynomial) characterization of a family
of two-terminal undirected graphs such that, for the directed versions of this
family and for any assignment of (strictly increasing) cost functions, the flow
on each arc is the same in all equilibria. For two-terminal undirected graphs
outside this family, he gave explicit cost functions for which equilibria with
different flows on some arcs exist.

The objective of this chapter is to address the uniqueness property for
graphs having more than two terminals. We settle the case of ring graphs and
find a necessary condition for general graphs to have the uniqueness property
in terms of excluded minors or subgraphs.

In a ring network, each user has exactly two possible strategies. See
Figure 2.1 for an illustration of this kind of supply graph G, demand digraph
H, and mixed graph G+H. We prove the following theorem in Section 2.5.

Theorem 2.1. Assume that the supply graph G is a cycle. Then, for any
demand digraph H, the pair (G,H) has the uniqueness property if and only
if each arc of G is contained in at most two routes.
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undirected graph G digraph H mixed graph G+H

o1

o2

v

d1

d2

w

u

Figure 2.1: Example of a supply graph G, a demand digraph H, and the
mixed graph G + H. According to Theorem 2.1, (G,H) has the uniqueness
property

Whether such a pair (G,H) of supply graph and demand digraph is such
that each arc in contained in at most two routes is obviously polynomially
checkable, since we can test each arc one after the other. We will show that
it can actually be tested by making only one round trip, in any direction,
see Section 2.6.2. More generally, Section 2.6 contains a further discussion
on the combinatorial structure of such a pair (G,H). Especially, we prove
in Section 2.6.3 that such a pair (G,H) has the uniqueness property if and
only if G + H is homeomorphic to a minor of one of nine mixed graphs,
see Figures 2.2–2.5. Except for the smallest one, none of the uniqueness
properties of these graphs can be derived from the results by Milchtaich
(2005), even by adding fictitious vertices as suggested p.235 of his article.

Furthermore, we find as a byproduct a sufficient condition for congestion
games with nonatomic users to have the uniqueness property when each user
has exactly two available strategies (Proposition 2.8).

Section 2.7.1 proves a necessary condition for general graphs to have the
uniqueness property in terms of excluded minors (Corollary 2.15). With
the help of Theorem 2.1, it allows to describe infinite families of graphs
not having the uniqueness property. The remaining of Section 2.7 contains
complementary results. For instance, Section 2.7.4 defines and studies a
strong uniqueness property that may hold for general graphs independently
of the demand digraph, i.e. of the OD-pairs.
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2.5 Proof of the characterization in case of a ring

2.5.1 Proof strategy and some preliminary results

In this section, we prove Theorem 2.1. The proof works in two steps. The
first step, Section 2.5.2, consists in proving Proposition 2.7 below stating
that, when each arc is contained in at most two routes, then the uniqueness
property holds. The second step, Section 2.5.3, consists in exhibiting cost
functions for which flows at equilibrium are non-unique for any pair (G,H)
with an arc in at least three routes.

From now on, we assume that the cycle G is embedded in the plane.
It allows to use an orientation for G. Each route is now either positive or
negative. The same holds for arcs of G: we have positive arcs and negative
arcs.

Claim 2.2. For any (s, t) ∈ L, if a+ and a− are the two arcs stemming from
an edge e ∈ E, then exactly one of a+ and a− is in an (s, t)-route.

Proof. Indeed, given an (s, t) ∈ L and an edge e ∈ E, exactly one of the
positive and negative (s, t)-routes contains e.

For any subset J ⊆ L, we define A+
J (resp. A−J ) as the set of positive

(resp. negative) arcs that are exclusively used by OD-pairs in J . For each
OD-pair ` ∈ L, define r+

` (resp. r−` ) to be the unique positive (resp. negative)
route connecting the origin of ` to its destination. Then a ∈ A+

J if a ∈ r+
`

for all ` ∈ J and a /∈ r+
` for all ` ∈ L \ J . We proceed similarly for A−J . We

define moreover AJ = A+
J ∪A

−
J . In particular, A∅ is the set of arcs contained

in no route. The sets AJ form a partition of the set A of arcs of G.
Defining the positive direction as the counterclockwise one on Figure 2.1,

we have
A+
{(o1,d1),(o2,d2)} = {(o2, v), (v, d1)}

A−{(o2,d2)} = {(o2, o1)}

A∅ = {(d1, v), (v, o2), (d2, w), (w, u), (u, o1)}.

The sets AεJ enjoy three useful properties.

Claim 2.3. For any ε ∈ {−,+} and any ` ∈ L, there is at least one J ⊆ L
containing ` such that AεJ is nonempty.

Proof. Let a ∈ rε` . Since the sets AJ form a partition of A, there is a J such
that a ∈ AεJ . By definition of AεJ , we must have ` ∈ J .

Claim 2.4. For any J ⊆ L, we have A+
J 6= ∅ if and only if A−L\J 6= ∅.
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Proof. It is a consequence of Claim 2.2: if a+ ∈ A+
J , then a− ∈ A−L\J .

Claim 2.5. For any distinct ` and `′ in L, there is at least one J such that
|{`, `′} ∩ J | = 1 and AJ 6= ∅.

Proof. Indeed, let ` = (s, t) and `′ = (s′, t′) be two distinct OD-pairs of H.
Since H is simple, it contains no multiple edges and s 6= s′ or t 6= t′. It means
that there is at least one arc a of G which is in exactly one of the four (s, t)-
and (s′, t′)-routes. We have a ∈ AJ , for some J ⊆ L. By definition of AJ , we
must have |{`, `′} ∩ J | = 1.

2.5.2 If each arc of G is contained in at most two routes, the uniqueness
property holds

For each user i, we define r+
i (resp. r−i ) to be the unique positive (resp.

negative) route connecting the origin of i to its destination. For a strategy
profile σ and a subset J ⊆ L, we define x+

J and x−J to be:

x+
J =

∫
i∈
⋃
`∈J I`

1{σ(i)=r+i }
dλ and x−J =

∫
i∈
⋃
`∈J I`

1{σ(i)=r−i }
dλ.

The quantity x+
J (resp. x−J ) is thus the number of users i in a I` with ` ∈ J

choosing a positive (resp. negative) route. Note that the quantity x+
J +x−J =∑

`∈J λ(I`) does not depend on the strategy profile σ.
Assume that we have two distinct equilibria σ and σ̂. The flows induced

by σ̂ are denoted with a hat: x̂. We define for any subset J ⊆ L:

∆J = x+
J − x̂

+
J = x̂−J − x

−
J . (2.1)

By a slight abuse of notation, we let ∆` := ∆{`} for ` ∈ L.
For each user i, we define δ(i) = 1{σ(i)=r+i }

− 1{σ̂(i)=r+i }
= 1{σ̂(i)=r−i }

−
1{σ(i)=r−i }

. Then, the following lemma holds.

Lemma 2.6. Let ` ∈ L and i ∈ I` be such that δ(i) 6= 0. Then exactly one
of the following alternatives holds.

• There is a J ⊆ L with ` ∈ J , AJ 6= ∅, and δ(i)∆J < 0.

• For all J ⊆ L with ` ∈ J and AJ 6= ∅, we have ∆J = 0.

We briefly explain the intuition behind this lemma. Assume that we move
from σ to σ̂. When a user i changes his chosen route, it is for one of the two
following reasons.
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The first situation is when the cost of the new route decreases or the cost
of the old route increases. If the cost of a route decreases (resp. increases),
there is at least one arc of this route whose flow decreases (resp. increases).
Since an arc belongs to some set AεJ , we get the first point of Lemma 2.6.

The second situation is when the costs remain the same for both routes
and both routes have same costs, which implies the second point of Lemma 2.6.

Proof of Lemma 2.6. As σ is an equilibrium, we have for each user i:∑
a∈A

cia(xa)
(
1{a∈σ(i)} − 1{a∈σ̂(i)}

)
≤ 0. (2.2)

For ε ∈ {−,+} and a ∈ AεJ , we have xa = xεJ and 1{a∈σ(i)} = 1{σ(i)=rεi }1{a∈rεi }.
By decomposing the sum (2.2), we obtain that

∑
J⊆L

 ∑
a∈A+

J ∩r
+
i

cia(x
+
J )δ(i)−

∑
a∈A−J ∩r

−
i

cia(x
−
J )δ(i)

 ≤ 0.

We can write a similar equation for the equilibrium σ̂. By summing them,
we obtain

δ(i)
∑
J⊆L

 ∑
a∈A+

J ∩r
+
i

(cia(x
+
J )− cia(x̂+

J ))−
∑

a∈A−J ∩r
−
i

(cia(x
−
J )− cia(x̂−J ))

 ≤ 0.

(2.3)
According to Equation (2.1) and using the fact that the maps cia are

strictly increasing, both
∑

a∈A+
J ∩r

+
i

(cia(x
+
J )−cia(x̂+

J )) and−
∑

a∈A−J ∩r
−
i

(cia(x
−
J )−

cia(x̂
−
J )) have the sign of ∆J . Therefore, if all terms of the sum in Equa-

tion (2.3) are equal to 0, the second point of the lemma holds. If at least one
term of the sum is < 0, we get the first point.

With the help of this lemma, we get one direction of Theorem 2.1.

Proposition 2.7. If each arc of G is contained in at most two routes, the
uniqueness property holds.

Proof. Note that the assumption of the proposition ensures that AJ = ∅ if
|J | ≥ 3. We want to prove that ∆J = 0 for all J ⊆ L such that AJ 6= ∅.

Assume for a contradiction that there is a J0 such that ∆J0 6= 0 and
AJ0 6= ∅. Then there is a `0 ∈ J0 such that ∆`0 6= 0. Since ∆`0 =

∫
I`0
δ(i) dλ,

at least one user i0 ∈ I`0 is such that δ(i0)∆`0 > 0.
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Suppose that the first case of Lemma 2.6 occurs. There exists `1 ∈ L, `1 6=
`0 with A{`0,`1} 6= ∅ and δ(i0)∆{`0,`1} < 0. Then, δ(i0)∆{`0,`1} = δ(i0)(∆`0 +
∆`1) < 0, which implies that |∆`0| < |∆`1|. It follows that ∆`1 6= 0, and
taking i1 ∈ I`1 with δ(i1)∆`1 > 0, only the first case of Lemma 2.6 can
occur for i = i1 and ` = `1. Indeed, the second case would imply that
∆{`0,`1} = 0 since A{`0,`1} 6= ∅. Repeating the same argument, we build
an infinite sequence (`0, `1, . . .) of elements of L such that, for each k ≥ 0,
A{`k,`k+1} 6= ∅ and |∆`k | < |∆`k+1

|. This last condition implies that the `k are
distinct, which is impossible since |L| is finite.

Thus, the second case of Lemma 2.6 occurs for `0, and hence ∆J0 = 0,
which is in contradiction with the starting assumption. On any arc, we have
a total flow that remains the same when changing from σ to σ̂.

The only fact we use from the ring structure is that there are two sets
A+ (positive arcs) and A− (negative arcs) and that each user has exactly
two possible strategies, each of them being included in one of these two
sets. We can state a result holding for more general nonatomic congestion
game with user-specific cost functions. We omit the proof since the one of
Proposition 2.7 holds without any change.

Proposition 2.8. Consider a nonatomic congestion game with user-specific
(strictly increasing) cost functions. Let A+ and A− be two disjoint finite sets.
Assume that every user i has exactly two available strategies r+

i and r−i with
r+
i ⊆ A+ and r−i ⊆ A−. Then, if all triples of pairwise distinct strategies

have an empty intersection, the uniqueness property holds.

2.5.3 If an arc of G is contained in at least three routes, a counterexample
exists

We give an explicit construction of multiple equilibrium flows when an arc is
contained in at least three routes.

If |L| = 3

In order to ease the notation, we use 1, 2, and 3 to denote the three OD-
pairs of H. We denote accordingly by I1, I2, and I3 the three sets of users
associated to each of these OD-pairs.

We can assume without loss of generality that A+
{1,2,3} 6= ∅, A{1,2} 6= ∅,

and A{1,3} 6= ∅. The first assumption can be done since there is an arc in
three routes. For the other ones: with the help of Claim 2.5, and if necessary
of Claim 2.4, we get that there is at least a J of cardinality two such that
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AJ 6= ∅. Again, using Claim 2.5, this time with the two elements of J , and if
necessary Claim 2.4, we get another J ′ of cardinality two such that AJ ′ 6= ∅.

Definition of the cost functions. We define three classes of users. Each
of these classes is attached to one of the OD-pairs. For a class k ∈ {1, 2, 3},
we define the cost functions ck,εJ , for all J ⊆ {1, 2, 3} and ε ∈ {−,+}. The
cost function for a class k user i on an arc a of AεJ is set to cia := ck,εJ . If the
set AεJ is empty, the definition of ck,εJ is simply discarded.

Class 1: We define this class to be the users of the set I1. We set λ(I1) = 1.5
and choose J1 ⊆ {1, 2, 3} with 1 ∈ J1 such that A−J1 6= ∅ (with the help
of Claim 2.3).



c1,+
{1,2,3}(x) =

24x+ 7

|A+
{1,2,3}|

c1,+
J (x) =

x

|A+
J |

for any J 6= {1, 2, 3} with 1 ∈ J

c1,−
J1

(x) =
x+ 48

|A−J1|
c1,−
J (x) =

x

|A−J |
for any J 6= J1 with 1 ∈ J .

Class 2: We define this class to be the users of the set I2. We set λ(I2) = 1.
We have assumed that A{1,2} 6= ∅. We distinguish hereafter the cases
A+
{1,2} 6= ∅ and A−{1,2} 6= ∅ (which may hold simultaneously, in which

case we make an arbitrary choice).

If A+
{1,2} 6= ∅: We choose J2 ⊆ {1, 2, 3} with 2 ∈ J2 such that A−J2 6= ∅
(with the help of Claim 2.3).

c2,+
{1,2}(x) =

25x

|A+
{1,2}|

c2,+
J (x) =

x

|A+
J |

for any J 6= {1, 2} with 2 ∈ J

c2,−
J2

(x) =
x+ 31

|A−J2|
c2,−
J (x) =

x

|A−J |
for any J 6= J2 with 2 ∈ J .
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If A−{1,2} 6= ∅:

c2,+
{1,2,3}(x) =

x+ 26

|A+
{1,2,3}|

c2,+
J (x) =

x

|A+
J |

for any J 6= {1, 2, 3} with 2 ∈ J

c2,−
{1,2}(x) =

22x

|A−{1,2}|
c2,−
J (x) =

x

|A−J |
for any J 6= {1, 2} with 2 ∈ J .

Class 3: We define this class to be the users of the set I3. We set λ(I3) = 1.
We have assumed that A{1,3} 6= ∅. We distinguish hereafter the cases
A+
{1,3} 6= ∅ and A−{1,3} 6= ∅ (which may hold simultaneously, in which

case we make an arbitrary choice).

If A+
{1,3} 6= ∅: We choose J3 ⊆ {1, 2, 3} with 3 ∈ J3 such that A−J3 6= ∅
(with the help of Claim 2.3).

c3,+
{1,3}(x) =

25x

|A+
{1,3}|

c3,+
J (x) =

x

|A+
J |

for any J 6= {1, 3} with 3 ∈ J

c3,−
J3

(x) =
x+ 31

|A−J3|
c3,−
J (x) =

x

|A−J |
for any J 6= J3 with 3 ∈ J .

If A−{1,3} 6= ∅:

c3,+
{1,2,3}(x) =

x+ 26

|A+
{1,2,3}|

c3,+
J (x) =

x

|A+
J |

for any J 6= {1, 2, 3} with 3 ∈ J

c3,−
{1,3}(x) =

22x

|A−{1,3}|
c3,−
J (x) =

x

|A−J |
for any J 6= {1, 3} with 3 ∈ J .
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Definition of two strategy profiles. We define now two strategy profiles
σ and σ̂, inducing distinct flows on some arcs. We check in the next paragraph
that each of them is an equilibrium.

Strategy profile σ: For all i ∈ I1, we set σ(i) = r+
i and for all i ∈ I2 ∪ I3,

we set σ(i) = r−i . Then, the flows are the following:

J {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

x+
J 1.5 0 0 1.5 1.5 0 1.5
x−J 0 1 1 1 1 2 2

Strategy profile σ̂: For all i ∈ I1, we set σ̂(i) = r−i and for all i ∈ I2 ∪ I3,
we set σ̂(i) = r+

i . Then, the flows are the following:

J {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

x̂+
J 0 1 1 1 1 2 2
x̂−J 1.5 0 0 1.5 1.5 0 1.5

The strategy profiles are equilibria. We check now that σ and σ̂ are
equilibria, by computing the cost of each of the two possible routes for each
class.

For a class k ∈ {1, 2, 3}, we denote with a slight abuse of notation the
common positive (resp. negative) route of the class k users by r+

k (resp. r−k ).

Class 1: We put in the following tables, the costs experienced by the class
1 users on the various arcs of G for each of σ and σ̂. For a given J ⊆
{1, 2, 3} with 1 ∈ J and ε ∈ {−,+}, we indicate the cost experienced
by any class 1 user on the whole collection of arcs in AεJ . For instance
in σ, if J = {1, 2, 3}, then x+

J = 1.5, and the cost of all arcs together
in A+

J is |A+
J |c

1,+
J (1.5) = 43.

For the strategy profile σ, we get the following flows and costs on the
arcs of G for a class 1 user.

ε = + ε = −
J with 1 ∈ J {1,2,3} other J1 other

xεJ 1.5 1.5 0, 1, or 2 0, 1, or 2
Cost on AεJ 43 1.5 48, 49, or 50 0, 1, or 2
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Using the fact that A+
{1,2,3} 6= ∅, the total cost of r+

1 in σ for a class 1
user is equal to

43 + 1.5×
∣∣{J 6= {1, 2, 3} such that A+

J 6= ∅ and 1 ∈ J}
∣∣ .

Since there are at most three sets J 6= {1, 2, 3} such that A+
J 6= ∅ and

1 ∈ J , we get that the total cost of r+
1 lies in [43; 47.5]. Similarly, using

the fact that A−J1 6= ∅, we get that the total cost of r−1 for a class 1 user
lies in [48; 54]. Therefore the users of class 1 are not incited to change
their choice in σ.

For the strategy profile σ̂, we get the following flows and costs.

ε = + ε = −
J with 1 ∈ J {1,2,3} other J1 other

x̂εJ 2 0 or 1 1.5 1.5
Cost on AεJ 55 0 or 1 49.5 1.5

The total cost of r+
1 for a class 1 user lies in [55; 58] and the total cost

of r−1 for a class 1 user lies in [49.5; 54]. Therefore the users of class 1
are not incited to change their choice in σ̂.

Class 2: If A+
{1,2} 6= ∅: We put in the following tables, the costs experienced

by the class 2 users on the various arcs of G for each of σ and σ̂.

For the strategy profile σ:

ε = + ε = −
J with 2 ∈ J {1,2} other J2 other

xεJ 1.5 0 or 1.5 1 or 2 1 or 2
Cost on AεJ 37.5 1.5 32 or 33 1 or 2

The total cost of r+
2 for a class 2 user is precisely 39 (we use the

fact that A+
{1,2,3} 6= ∅) and the total cost of r−2 lies in [32; 38]. The

users of class 2 are not incited to change their choice in σ.

For the strategy profile σ̂:
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ε = + ε = −
J with 2 ∈ J {1,2} other J2 other

x̂εJ 1 1 or 2 0 or 1.5 0 or 1.5
Cost on AεJ 25 1 or 2 31 or 32.5 0 or 1.5

The total cost of r+
2 for a class 2 user lies in [27; 30] and the total

cost of r−2 lies in [31; 34]. The users of class 2 are not incited to
change their choice in σ̂.

If A−{1,2} 6= ∅: We put in the following tables, the costs experienced by
the class 2 users on the various arcs of G for each of σ and σ̂.

For the strategy profile σ:

ε = + ε = −
J with 2 ∈ J {1,2,3} other {1, 2} other

xεJ 1.5 0 or 1.5 1 1 or 2
Cost on AεJ 27.5 0 or 1.5 22 1 or 2

The total cost of r+
2 for a class 2 user lies in [27.5; 29] and the total

cost of r−2 lies in [22; 27]. The users of class 2 are not incited to
change their choice in σ.

For the strategy profile σ̂:

ε = + ε = −
J with 2 ∈ J {1,2,3} other {1, 2} other

x̂εJ 2 1 or 2 1.5 0 or 1.5
Cost on AεJ 28 1 or 2 33 0 or 1.5

The total cost of r+
2 for a class 2 user lies in [28; 32] and the total

cost of r−2 lies in [33; 34.5]. The users of class 2 are not incited to
change their choice in σ̂.

Class 3: The symmetry of the cost functions for classes 2 and 3 gives the
same tables for class 3 as for class 2, by substituting {1, 3} to {1, 2}.
Therefore, we get the same conclusions: neither in σ, nor in σ̂, the class
3 users are incited to change their choice.
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Therefore, σ and σ̂ are equilibria and induce distinct flows. It proves that
the uniqueness property does not hold. It remains to check the case when
|L| > 3.

Remark 2.9. A classical question when there are several equilibria is whether
one of them dominates the others. An equilibrium is said to dominate an-
other one if it is preferable for all users. In this construction, no equilibrium
dominates the other, except when A+

{1,2,3} 6= ∅, A
−
{1,2} 6= ∅, and A−{1,3} 6= ∅

where σ dominates σ̂.

If |L| > 3

Denote 1, 2, and 3 three OD-pairs of H = (T, L) giving three routes con-
taining the same arc of G. For these three arcs of H, we make the same
construction as above, in the case |L| = 3. For the other ` ∈ L, we set I` = ∅
to get the desired conclusion.

However, note that we can also get multiple equilibrium flows, while re-
quiring I` 6= ∅ for all ` ∈ L. For ` /∈ {1, 2, 3}, we use a fourth class, whose
costs are very small on all positive arcs of G and very large on all negative
arcs of G, and whose measure is a small positive quantity δ. Each user of
this class chooses always a positive route, whatever the other users do. For
δ small enough, the users of this class have no impact on the choices of the
users of the classes 1, 2, and 3, as the difference of cost between the routes
is always bounded below by 0.5.

2.6 When the supply graph is a ring having each arc in at most
two routes

In this section, we provide a further combinatorial analysis of the character-
ization of the uniqueness property for ring graphs stated in Theorem 2.1.

2.6.1 A corollary

We first state a corollary of Theorem 2.1.

Corollary 2.10. Suppose that the supply graph is a cycle.

• If there are at most two OD-pairs, i.e. |L| ≤ 2, then the uniqueness
property holds.

• If the uniqueness property holds, then the number of OD-pairs is at
most 4, i.e. |L| ≤ 4.
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The first point of Corollary 2.10 is straightforward. The second point is
a direct consequence of Claim 2.2: if |L| ≥ 5, then there is necessarily an arc
of G in three routes.

2.6.2 How to compute in one round trip the maximal number of routes con-
taining an arc of G

In an arc (u, v), vertex u is called the tail and vertex v is called the head.
The algorithm starts at an arbitrary vertex of H and makes a round trip in
an arbitrary direction, while maintaining a triple (list, min, max). In this
triple, list is a set of arcs of H whose tail has already been encountered but
whose head has not yet been encountered. At the beginning, list is empty
and min and max are both zero. When the algorithm encounters a vertex v,
it proceeds to three operations.

First operation. It computes the number of arcs in δ−H(v) (arcs of H
having v as head) not in list. The corresponding routes were “forgotten”,
since the tail is “before” the starting vertex of the algorithm. To take them
into account, this number is added to the values min and max.

Second operation. All arcs of list being also in δ−H(v) are removed
from list.

Third operation. All arcs in δ+
H(v) (arcs of H having v as tail) are

added to list. The value of min is updated to the minimum between the
previous value of min and the size of list, and similarly max is updated to
the maximum between the previous value of max and the size of list.

The algorithm stops after one round trip. At the end, the values min and
max are respectively the minimal and maximal number of routes containing
an arc in the direction chosen. According to Claim 2.2, max(|L| − min, max)
is the maximal number of routes containing an arc of G.

Note that with a second round trip, this algorithm can specify the routes
containing a given arc, by scanning the content of list.

2.6.3 Explicit description of the graphs having the uniqueness property when
the supply graph is a cycle

Proposition 2.11. Let the supply graph G be a cycle. Then, for any demand
digraph H, the pair (G,H) is such that each arc of G is in at most two routes
if and only if the mixed graph G+H is homeomorphic to a minor of one of
the nine mixed graphs of Figures 2.2–2.5.
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Combined with Theorem 2.1, this proposition allows to describe explicitely
all pairs (G,H) having the uniqueness property, when G is a cycle.

Proof. One direction is straightforward. Let us prove the other direction,
namely that, if each arc of G is in at most two routes, then G+H is home-
omorphic to a minor of one of the nine mixed graphs. We can assume that
V = T . Moreover, if each arc is in at most two routes, Claim 2.2 implies
that |L| ∈ {1, 2, 3, 4}, as already noted in the proof of Corollary 2.10.

If |L| ∈ {1, 2}, there is nothing to prove: all possible mixed graphs with
|L| = 1 or |L| = 2 are homeomorphic to a minor of the graphs of Figures 2.2
and 2.3.

If |L| = 3, we can first assume that L contains two disjoint arcs that are
crossing in the plane embedding. By trying all possibilities for the third arc,
we get that the only possible configuration is the right one on Figure 2.4 and
the ones obtained from it by edge contraction. Second, we assume that there
are no “crossing” arcs. The three heads of the arcs cannot be consecutive
on the cycle otherwise we would have an arc of G in three routes. Again
by enumerating all possibilities, we get that the only possible configuration
is the left one on Figure 2.4 and the ones obtained from it by edge contraction.

If |L| = 4, Claim 2.4 shows that each arc of G belongs to exactly two
routes. It implies that, in H, the indegree of any ` ∈ L is equal to its
outdegree. There are therefore circuits in H. It is straightforward to check
that it is impossible to have a length 3 circuit. It remains to enumerate the
possible cases for length 2 and length 4 circuits to get that the only possible
configurations are the ones of Figure 2.5 and the common one obtained from
them by edge contraction.

We can also describe the rings having the uniqueness property by minor
exclusion, similarly as in Milchtaich (2005).

Proposition 2.12. Let the supply graph G be a cycle. Then, for any demand
digraph H, the pair (G,H) is such that there exists an arc of G belonging to
at least three routes if and only if G + H has one of the nine mixed graphs
of Figure 2.10 as a minor.

Proof (sketched). Suppose that one of the nine mixed graphs of Figure 2.10
is a minor of the mixed graph G+H. The construction of Section 2.5.3 shows
that we can build two distinct equilibria for this minor where all users of a
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Figure 2.2: All rings with |L| = 1 (i.e. one OD-pair) having the uniqueness
property are homeomorphic to this graph

Figure 2.3: All rings with |L| = 2 (i.e. two OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs

Figure 2.4: All rings with |L| = 3 (i.e. three OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs
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Figure 2.5: All rings with |L| = 4 (i.e. four OD-pairs) having the uniqueness
property are homeomorphic to one or to minors of these graphs

given class have the same strategy. Then, we can extend this counterexample
to the graph G + H, see Corollary 2.15 in Section 2.7.1 holding for more
general graphs.

To prove that if an arc of G belongs to at least three routes, then one
of the nine mixed graphs of Figure 2.10 is a minor of G + H, we proceed
to an explicit, but tedious, enumeration. We enumerate all possible mixed
graphs with |V | = 6 and |L| = 3 such that each vertex is the tail or the
head of exactly one arc in L. Then, we try all possible sequences of edge
contractions leading to mixed graphs satisfying two properties: the demand
graph is simple and an arc is in three routes. We keep the mixed graphs such
that any additional edge contraction leads to a violation of these properties.
The details are omitted.

In particular, the construction in Section 2.5.3 cannot be simplified by
exhibiting a counterexample for each mixed graph of Figure 2.10, since the
proof of Proposition 2.12 needs this tedious enumeration.

2.7 Discussion

2.7.1 Results for general graphs

For the sake of simplicity, given a supply graph G and a demand digraph H,
we say that the mixed graph G+H has the uniqueness property if the pair
(G,H) has it.

Using the results of Milchtaich (2005) and Theorem 2.1, we can derive
results for more general graphs. Milchtaich suggests to add a fictitious origin,
linked to all origins, and similarly for the destinations. If the new graph
has the uniqueness property, the original one has it as well. However, this
approach cannot be used to prove that a graph does not have the uniqueness
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property. For instance this method allows us to prove that the graph on the
left in Figure 2.6 has the uniqueness property, but fails to settle the status of
the graph on the right. Indeed, the new graph does not have the uniqueness
property, using the result of Milchtaich (2005), but the original one has it,
using Theorem 2.1.

A way for proving that a pair (G,H) does not have the uniqueness prop-
erty consists in using subgraphs or minors as obstructions to uniqueness
property. If G+H has a subgraph without the uniqueness property, then it
does not have the property either since we can set prohibitive high costs on
the arcs outside the subgraph. However, it is not clear whether having a mi-
nor without uniqueness property is an obstruction for having the uniqueness
property. Indeed, the cost functions are strictly increasing and we do not see
how in general a counterexample to uniqueness at the level of a minor can
be extended at the level of the network itself. Yet, we can settle two specific
cases.

The first case is when the contractions involve only bridges of G (a bridge
is an edge whose deletion disconnects the graph). In this case, if the minor
does not have the uniqueness property, the pair (G,H) does not have it
either. Checking this property is easy.

A second case is formalized in the following proposition. An equilibrium
is strict if each user has a unique best reply.

Proposition 2.13. Let G′ and H ′ be respectively a supply and a demand
graphs such that G′ +H ′ is a minor of G+H. If there are counterexamples
of uniqueness property for (G′, H ′) involving strict equilibria, then (G,H)
does not have the uniqueness property.

Proof. We start with a counterexample for (G′, H ′). We de-contract an edge.
We assign to this edge a small enough cost function so that the route followed
by any user remains a strict best reply for him, whether the route contains the
edge or not. Therefore, we can de-contract all edges and get conterexamples
to uniqueness property for subgraphs of G+H. As noted above, it allows to
conclude that (G,H) does not have the uniqueness property.

Remark 2.14. Note that Proposition 2.13 remains valid if we restrict the set
of cost functions, as soon as this set is a cone. Indeed, we need to choose
both functions with sufficiently small costs and functions with prohibitive
high costs.

Since the construction of Section 2.5.3 provides strict equilibria, we get
the following corollary.

Corollary 2.15. Any mixed graph containing one of the graphs of Fig-
ure 2.10 as a minor does not have the uniqueness property.
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Figure 2.6: Adding a fictitious origin and a fictitious destination settles the
case of the left graph but not the case of the right graph

Figure 2.7: Any graph having this one as a subgraph does not have the
uniqueness property

Let us now give an example using some of these conditions. According
to Corollary 2.15 or to the “bridge-contraction” condition above, the mixed
graph of the Figure 2.7 does not have the uniqueness property. Indeed, a
ring with an arc in three routes is a minor of it. We can conclude that any
network having the mixed graph of the Figure 2.7 as a subgraph (or as a
minor) does not have the uniqueness property.

However, there are still graphs for which none of the considerations above
allows to conclude, see for example the graph of Figure 2.8.

2.7.2 Possible extensions

We assume in this work that each edge in the graph can be traversed in both
directions. When the supply graph is a cycle, this condition is not restrictive,
since allowing one-way edges is equivalent to consider a game with fewer OD-
pairs and modified cost functions. Indeed, if an arc a is not present in the
graph, every user whose OD-pair has a route going through a has no choice
and has to take the route in the other direction. Hence we can remove all
such users and the associated OD-pairs, and modify the cost functions by



46 CHAPTER 2. UNIQUENESS PROPERTY WITH SEVERAL OD-PAIRS

Figure 2.8: A graph for which neither Theorem 2.1 nor Milchtaich (2005)
can be used to prove or disprove the uniqueness property

adding the (fixed) congestion due to them.

Another way to extend the model is to add restrictions on the cost func-
tions. As already noted in the Introduction, Altman and Kameda (2001)
have shown that if the cost functions are equal for each user up to an addi-
tive constant, then the uniqueness property holds for every graph. We can
try to extend this set of cost functions. The construction of Section 2.5.3 is
made with affine cost functions, and can be extended to strictly convex cost
functions, by adding εx2 at each cost functions, for ε small enough. Using
Proposition 2.13 or Remark 2.14, we can build two different equilibria with
affine or strictly convex cost functions for any mixed graph having one of the
graphs of Figure 2.10 as a minor. Then, to ensure the uniqueness property
for a larger class of graphs, we have to exclude both affine and strictly convex
functions from the set of possible cost functions.

2.7.3 Equivalence of equilibria

Let us assume that we have a finite set K of classes. We denote by Ik` the
set of class k users in I` and we assume that all Ik` are measurable.

Let σ and σ̂ be two Nash equilibria. We define for an ` ∈ L, a class k,
and an arc a the quantity

xk`,a = λ{i ∈ Ik` : a ∈ σ(i)},

and
x̂k`,a = λ{i ∈ Ik` : a ∈ σ̂(i)}.

Following Milchtaich (2005), we say that the two equilibria are equivalent
if not only the flow on each arc is the same but the contribution of each
pair and each class to the flow on each arc is the same, i.e. xk`,a = x̂k`,a for
any arc a, OD-pair `, and class k. Milchtaich proved that a two-terminal
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network has the uniqueness property if and only if every two Nash equilibria
are equivalent for generically all cost functions (Theorem 5.1 in Milchtaich
(2005)). A property is considered generic if it holds on an open dense set.
“Open” and “dense” are understood according to the following metric on the
cost functions.

Define the set G of assignments of continuous and strictly increasing cost
functions (cia)a∈A,i∈I , with cia : R+ → R+ such that cia = ci

′
a whenever i and i′

belong to the same class.
Given a particular element of G, the function i 7→ cia(x) is measurable

for all a ∈ A and x ∈ R+. Every element of G has therefore a nonempty
set of Nash equilibria. Note that the set G depends on the partition of the
population in classes. We can define the distance between two elements
(cia)a∈A,i∈I and (c̃ia)a∈A,i∈I of G by max |cia(x) − c̃ia(x)|, where the maximum
is taken over all a ∈ A, i ∈ I and x ∈ R+. This defines a metric for G.

Theorem 2.16. Assume that the supply graph G is a cycle. Then, for any
demand digraph H, the following assertions are equivalent:

(i) (G,H) has the uniqueness property.

(ii) For every partition of the population into classes, there is an open
dense set in G such that for any assignment of cost functions that be-
longs to this set, every two equilibria are equivalent.

Proof (sketched). Up to slight adaptations, the proof is the same as the one
of Theorem 5.1 in Milchtaich (2005).

If (i) does not hold, we can use the construction of Section 2.5.3 to build
two distinct equilibria for an assignment in G. These equilibria are such that
the gap between the costs of the two routes available to any user is uniformly
bounded from below by a strictly positive number. The equilibria are said
to be strict. Thus, in a ball centered on this assignment with radius ρ > 0
small enough, we still have two equilibria with distinct flows, which cannot
be equivalent. Therefore (ii) does not hold either.

If (i) holds, three claims (Claims 1, 2, and 4 of Milchtaich (2005)) lead to
the desired conclusion, namely that (ii) holds. These three claims are now
sketched. Their original proof does not need to be adapted, except for the
second one, which is the only moment where the topology of the network is
used. In our case the second claim gets a simpler proof.

For an assignment in G, we denote φk` the number of minimal-cost routes
for users in Ik` , which is in our case 1 or 2. Since the uniqueness property
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is assumed to hold, this number is fully determined by the assignment in G.
Define the mean number of minimal-cost routes by

φ =
∑

k∈K,`∈L

λ(Ik` )φk` .

The first claim states that the map by φ : G → R is upper semicontinuous
and has finite range.

The second claim states that for every assignment of cost functions in G
that is a point of continuity of φ, all Nash equilibria are equivalent. To prove
this second claim, we consider two Nash equilibria assumed to be nonequiv-
alent σ and σ̂. Using these two equilibria, a new one is built, σ̄, such that
for some ` ∈ L, some class k and some `-route r1 we have xk`,r1 > 0 and

x̂k`,r1 > 0, but x̄k`,r1 = 0. As the two `-routes do not share any arc (Claim 2.2

of Section 2.5.1), we have xk`,a > 0, x̂k`,a > 0, and x̄k`,a = 0 for any a in r1.
The second claim is achieved by choosing any a1 in r1 and by adding a

small value δ > 0 to the cost function cia1 for i ∈ Ik` , while keeping the others
unchanged. It can be checked that for δ small enough, the set of minimal-cost
routes is the same as for δ = 0, minus the route r1 for users in Ik` . The map
φ has therefore a discontinuity of at least λ(Ik` ) at the original assignment of
cost functions.

Finally, the third claim allows to conclude: in every metric space, the
set of all points of continuity of a real-valued upper semicontinuous function
with finite range is open and dense.

2.7.4 The strong uniqueness property

A supply graph is said to have the strong uniqueness property if for any choice
of the OD-pairs, the uniqueness property holds. In other words, G = (V,E)
has the strong uniqueness property if, for any digraph H = (T, L) with
T ⊆ V , the pair (G,H) has the uniqueness property.

Theorem 2.17. A graph has the strong uniqueness property if and only if
no cycle is of length 3 or more.

Alternatively, this theorem states that a graph has the strong uniqueness
property if and only if it is obtained by taking a forest (a graph without
cycles) and by replacing some edges by parallel edges.

Before proving this theorem, let us state a preliminary result allowing to
extend the strong uniqueness property whenever one “glues” together two
supply graphs on a vertex. This latter operation is called a 1-sum in the
usual terminology of graphs.
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Lemma 2.18. The 1-sum operation preserves the strong uniqueness prop-
erty.

Proof. Let G = (V,E) and G′ = (V ′, E ′) be two graphs, and let H = (T, L)
and H ′ = (T ′, L′) two directed graphs with T ⊆ V and T ′ ⊆ V ′, such that
(G,H) and (G′, H ′) have the uniqueness property. Assume that (G,H) and
(G′, H ′) have a unique common vertex v, i.e. V ∩ V ′ = T ∩ T ′ = {v},
and define (G′′, H ′′) as the 1-sum of them: G′′ = (V ∪ V ′, E ∪ E ′) and
H ′′ = (T ∪ T ′, L ∪ L′ ∪ L′′) with L′′ := {(u,w) : (u, v) ∈ L and (v, w) ∈ L′}.

Assume that we have an equilibrium on (G′′, H ′′) for some cost functions
and some partition (I(s,t))(s,t)∈L∪L′∪L′′ of the population. The restriction of
this equilibrium on (G,H) is an equilibrium for (G,H) with the same cost
functions and with a partition of the population obtained as follows.

When s and t are both in H, we keep the same I(s,t). Moreover, we

complete this collection of subsets. For each vertex s of H, we define Ĩ(s,v)

to be the union of all I(s,w) with w a vertex of H ′. For each vertex t of H,

we define Ĩ(v,t) to be the union of all I(w,t) with w a vertex of H ′. We get
the partition of the population I we are looking for. The restriction of the
equilibrium on (G,H) is an equilibrium since for each user, the restriction of
a minimum cost route of (G′′, H ′′) is a minimum cost route of (G,H).

The same property holds for (G′, H ′). Therefore, if we had two equilibria
inducing two distinct flows on some arc a of the directed version of G′′, we
would get equilibria inducing two distinct flows on the arc a, which is in the
directed version of G or G′. It is in contradiction with the assumption on G
and G′.

Proof of Theorem 2.17. Suppose that there is a cycle C of length 3 in G
with vertices u, v, and w. Define H as the digraph with arcs (u, v), (u,w),
and (v, w). The mixed graph C + H is then the top left one of Figure 2.10.
Corollary 2.15 implies that (G,H) does not have the uniqueness property,
and thus that G does not have the strong uniqueness property.

Conversely, suppose that there is no cycle of length 3 or more. The
graph G can then be obtained by successive 1-sums of a graph made of two
vertices and parallel edges. Since a graph with two vertices and parallel edges
has the uniqueness property for any demand digraph (see Konishi (2004) or
Milchtaich (2005)), we can conclude with Lemma 2.18 that G has the strong
uniqueness property.

2.7.5 When there are only two classes

When exhibiting multiple equilibrium flows in the proof of Theorem 2.1, we
need to define three classes. The same remark holds for the characterization
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of the two-terminal graphs having the uniqueness property in the article by
Milchtaich (2005): all cases of non-uniqueness are built with three classes.
We may wonder whether there are also multiple equilibrium flows with only
two classes of users. The answer is yes as shown by the following examples.
The first example is in the framework of the ring network; according to
Theorem 2.1, such an example requires at least three OD-pairs. Since it will
contain exactly three OD-pairs, it is in a sense a minimum example for ring
network. The second example involves a two-terminal network – K4, the
complete graph on four vertices – as in Bhaskar et al. (2009). They used it in
order to answer a question by Cominetti et al. (2009) about the uniqueness
of equilibrium in atomic player routing games. However, their cost functions
do not suit our framework and we design specific ones.

Multiple equilibrium flows on the ring with only two classes

Consider the graph on top on the left of Figure 2.10. Define the two classes
1 and 2, with the following population measures.

` ∈ L (u,w) (u, v) (w, v)

λ(I1
` ) 0 1.5 0

λ(I2
` ) 1 0 1

Cost functions are:

Arc (u,w) (w, v) (v, u) (w, u) (u, v) (v, w)

Class 1 x x+ 48 24x+ 7
Class 2 22x 22x x x+ 26 x

For a given class, arcs not used in any route lead to blanks in this table.
We define the strategy profile σ (resp. σ̂) such that all users of the class

1 select a negative (resp. positive) route and all users of the class 2 select a
positive (resp. negative) route. We get the following (distinct) flows.

Arc a (u,w) (w, v) (v, u) (w, u) (u, v) (v, w)

xa 1 1 0 0 1.5 0
x̂a 1.5 1.5 0 1 2 1

We check that σ is an equilibrium.
For users in I1

(u,v), the cost of the positive route is 50 and of the negative

43. For users in I2
(u,w) and in I2

(w,v), the cost of the positive route is 22 and
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of the negative 27.5. No user is incited to change his route choice.

We check that σ̂ is an equilibrium.
For users in I1

(u,v), the cost of the positive route is 51 and of the negative

55. For users in I2
(u,w) and in I2

(w,v), the cost of the positive route is 33 and
of the negative 29. No user is incited to change his route choice.

Remark 2.19. Actually, when we specialize the construction of Section 2.5.3
to the graph on top on the left of Figure 2.10, we can merge classes 2 and 3
in a unique class 2 leading to the example above. More generally, using the
symmetry of the cost functions for class 2 and class 3 users, we can merge
the two classes for any graph such that Aε{1,2} 6= ∅ and Aε{1,3} 6= ∅, with

ε ∈ {−,+} in order to get other ring examples with two classes and multiple
equilibrium flows.

Multiple equilibrium flows for a two-terminal network with only
two classes

Consider the two-terminal network K4 of Figure 2.9.

o

d

u v

Figure 2.9: A two-terminal network for which multiple equilibrium flows exist
with only two classes

Suppose that we have two classes of users I1 and I2, with λ(I1) = 3 and
λ(I2) = 4, with the following cost functions on each arc, where “∞” stands
for a prohibitively high cost function.

Arc (o, u) (o, v) (u, v) (v, u) (u, d) (v, d) (o, d)

Class 1 x “∞” x+ 18 “∞” “∞” x 7x
Class 2 5x x “∞” “∞” x 5x x+ 10
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Users of class 1 have only the choice between the two routes ouvd and od,
while users of class 2 can choose between the three routes oud, ovd, and od.

The strategy profile σ is defined such that all class 1 users select the route
ouvd and all class 2 users select the route od.

The strategy profile σ̂ is defined such that all class 1 users select the route
od, half of class 2 users select the route oud, and the other half select the
route ovd. We get the following (distinct) flows.

Arc a (o, u) (o, v) (u, v) (v, u) (u, d) (v, d) (o, d)

xa 3 0 3 0 0 3 4
x̂a 2 2 0 0 2 2 3

We check that σ is an equilibrium.
For users of the class 1, the cost of ouvd is 27, and the cost of od is 28.

For users of the class 2, the cost of oud is 15, the cost of ovd is 15, and the
cost of od is 14. No user is incited to change his route choice.

We check that σ̂ is an equilibrium.
For users of the class 1, the cost of ouvd is 22, and the cost of od is 21.

For users of the class 2, the cost of oud is 12, the cost of ovd is 12, and the
cost of od is 13. No user is incited to change his route choice.
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Appendix: Minimal ring graphs without the uniqueness prop-
erty

Figure 2.10: Any ring without the uniqueness property has one of these
graphs as a minor





CHAPTER 3

A Lemke-like algorithm for the
Multiclass Network Equilibrium Problem

This chapter is based on the paper “A Lemke-like algorithm for the Multiclass
Network Equilibrium Problem” (Meunier and Pradeau, 2013). This work was
presented at the WINE 2013 and ROADEF 2014 conferences.

Abstract

In this chapter, we consider a nonatomic congestion game on a connected graph,

with several classes of users. Each user wants to go from his origin vertex to

his destination vertex at the minimum cost and all users of a given class share

the same characteristics: cost functions on each arc, and origin-destination pair.

Under some mild conditions, it is known that a Nash equilibrium exists, but the

computation of an equilibrium in the multiclass case is an open problem for general

functions. We consider the specific case where the cost functions are affine and

propose an extension of Lemke’s algorithm able to solve this problem. At the

same time, it provides a constructive proof of the existence of an equilibrium in

this case.

3.1 Introduction

Context

Being able to predict the impact of a new infrastructure on the traffic in a
transportation network is an old but still important objective for transport
planners. In 1952, Wardrop (1952) noted that after some while the traffic
arranges itself to form an equilibrium and formalized principles characteriz-
ing this equilibrium. With the terminology of game theory, the equilibrium
is a Nash equilibrium for a congestion game with nonatomic users. In 1956,
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Beckmann et al. (1956) translated these principles as a mathematical pro-
gram which turned out to be convex, opening the door to the tools from
convex optimization. The currently most commonly used algorithm for such
convex programs is probably the Frank-Wolfe algorithm (Frank and Wolfe,
1956), because of its simplicity and its efficiency, but many other algorithms
with excellent behaviors have been proposed, designed, and experimented.

One of the main assumptions used by Beckmann to derive his program is
the fact that all users are equally impacted by congestion. With the trans-
portation terminology, it means that there is only one class. In order to
improve the prediction of traffic patterns, researchers started in the 70s to
study the multiclass situation where each class has its own way of being
impacted by the congestion. Each class models a distinct mode of trans-
portation, such as cars, trucks, or motorbikes. Dafermos (1972, 1980) and
Smith (1979) are probably the first who proposed a mathematical formula-
tion of the equilibrium problem in the multiclass case. However, even if this
problem has been the topic of many research works, an efficient algorithm
for solving it remains to be designed, except in some special cases (Florian,
1977, Harker, 1988, Mahmassani and Mouskos, 1988, Marcotte and Wynter,
2004). In particular, there is no general algorithm in the literature for solving
the problem when the cost of each arc is in an affine dependence with the
flow on it.

Our main purpose is to propose such an algorithm.

Model

We are given a directed graph D = (V,A) modelling the transportation
network. We consider the model of multiclass nonatomic games as in Sec-
tion 1.2.1. We require the users of a given class k to have not only the same
cost functions but also the same origin sk, and the same destination tk. The
set of vertices (resp. arcs) reachable from sk is denoted V k (resp. Ak).

Recall the definition of an equilibrium: a strategy profile is a (pure) Nash
equilibrium if each route is only chosen by users for whom it is a minimum-
cost route. In other words, a strategy profile σ is a Nash equilibrium if for
each class k ∈ K and each user i ∈ Ik we have∑

a∈σ(i)

cka(xa) = min
r∈R

(sk,tk)

∑
a∈r

cka(xa) .

This game enters in the category of nonatomic congestion games with
user-specific cost functions, see Milchtaich (1996). The problem of finding a
Nash equilibrium for such a game is called the Multiclass Network Equilib-
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rium Problem.

Contribution

Our results concern the case when the cost functions are affine and stricly
increasing: for all k ∈ K and a ∈ Ak, there exist αka > 0 and βka ≥ 0
such that cka(x) = αkax + βka for all x ∈ R+. In this case, the Multiclass
Network Equilibrium Problem can be written as a linear complementarity
problem. In 1965, Lemke (1965) designed a pivoting algorithm for solving a
linear complementarity problem under a quite general form. This algorithm
has been adapted and extended several times – see for instance Adler and
Verma (2011), Asmuth et al. (1979), Cao and Ferris (1996), Cottle et al.
(1992), Eaves (1973), Schiro et al. (2012) – to be able to deal with linear
complementarity problems that do not directly fit in the required framework
of the original Lemke algorithm.

We show that there exists a pivoting Lemke-like algorithm solving the
Multiclass Network Equilibrium Problem when the costs are affine. To our
knowledge, it is the first algorithm solving this problem. We prove its ef-
ficiency through computational experiments. Moreover, the algorithm pro-
vides the first constructive proof of the existence of an equilibrium for this
problem. The initial proof of the existence from Schmeidler (1970) uses a
non-constructive approach with the help of a general fixed point theorem.

On our track, we extend slightly the notion of basis used in linear pro-
gramming and linear complementarity programming to deal directly with
unsigned variables. Even if it is natural, we are not aware of previous use of
such an approach. An unsigned variable can be replaced by two variables –
one for the nonnegative part and one for the nonpositive part. Such an oper-
ation considerably increases the size of the matrices, while, in our approach,
we are able to deal directly with the unsigned variables.

Related works

We already gave some references of works related to ours with respect to
the linear complementarity. The work by Schiro et al. (2012) is one of them
and deals actually with a problem more general than ours. They propose a
pivotal algorithm to solve it. However, our problem is not covered by their
termination results (the condition of their Proposition 5 is not satisfied by
our problem). Another close work is the one by Eaves (1973), which allows
additional affine constraints on the variables, but the constraints we need –
flow constraints – do not enter in this framework. Note also the work by
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De Schutter and De Moor (1995), devoted to the “Extended Linear Comple-
mentarity Problem” which contains our problem. They propose a method
that exhaustively enumerates all solutions and all extreme rays, without giv-
ing a priori guarantee for the existence of a solution.

Papers dealing with algorithms for solving the Multiclass Network Equi-
librium Problem propose in general a Gauss-Seidel type diagonalization method,
which consists in sequentially fixing the flows for all classes but one and solv-
ing the resulting single-class problem by methods of convex programming,
see Florian (1977), Florian and Spiess (1982), Harker (1988), Mahmassani
and Mouskos (1988) for instance. For this method, a condition ensuring the
convergence to an equilibrium is not always stated, and, when there is one, it
requires that “the interaction between the various users classes be relatively
weak compared to the main effects (the latter translates a requirement that
a complicated matrix norm be less than unity)” (Mahmassani and Mouskos,
1988). Such a condition does clearly not cover the case with affine cost func-
tions. Another approach is proposed by Marcotte and Wynter (2004). For
cost functions satisfying the “nested monotonicity” condition – a notion de-
veloped by Cohen and Chaplais (1988) – they design a descent method for
which they are able to prove the convergence to a solution of the problem.
However, we were not able to find any paper with an algorithm solving the
problem when the costs are polynomial functions, or even affine functions.

Structure of the chapter

In Section 3.2, we explain how to write the Multiclass Network Equilib-
rium Problem as a linear complementarity problem. We get the formulation
(AMNEP (e)) on which the remaining of the chapter focuses. Section 3.3
presents the notions that underly the Lemke-like algorithm. All these no-
tions, likes basis, secondary ray, pivot, and so on, are classical in the context
of the Lemke algorithm. They require however to be redefined in order to
be able to deal with the features of (AMNEP (e)). The algorithm is then
described in Section 3.4. We also explain why it provides a constructive proof
of the existence of an equilibrium. Section 3.5 is devoted to the experiments
and shows the efficiency of the proposed approach.

3.2 Formulation as a linear complementarity problem

In this section, we formulate the Multiclass Network Equilibrium Problem
as a complementarity problem which turns out to be linear when the cost
functions are affine.
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From now on, we assume that the cost functions are increasing. As al-
ready noted in Section 1.2.3, the equilibrium flows (xka) coincide with the
solutions of a system of the following form, where b = (bkv) is a given vector
with

∑
v∈V k b

k
v = 0 for all k.∑

a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V k

ckuv(xuv) + πku − πkv − µkuv = 0 k ∈ K, (u, v) ∈ Ak

xkaµ
k
a = 0 k ∈ K, a ∈ Ak

xka ≥ 0, µka ≥ 0, πkv ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

(MNEPgen)

Actually in our model, we should have moreover bkv = 0 for v /∈ {sk, tk}, and
the inequalities bk

sk
> 0 and bk

tk
< 0, but we relax this condition to deal with

a slightly more general problem. Moreover, in this more general form, we
can easily require the problem to be non-degenerate, see Section 3.3.2.

Finding solutions for such systems is a complementarity problem, the word
“complementarity” coming from the condition xkaµ

k
a = 0 for all (a, k) such

that a ∈ Ak.
We have thus the following proposition.

Proposition 3.1. (xk)k∈K is an equilibrium flow if and only if there exist
µk ∈ RAk

+ and πk ∈ RV k for all k such that (xk,µk,πk)k∈K is a solution of
the complementarity problem (MNEPgen).

Proof. The proof is based on the following fact: (xk)k∈K is an equilibrium if
and only if for each k ∈ K, the vector xk is an equilibrium flow of the game
where all xk

′
, k′ 6= k are fixed. Using the result of Beckmann et al. (1956)

for single-class problems, we get that (xk)k∈K is an equilibrium if and only
if for each k ∈ K, the vector xk is a solution of the following problem.

min
∑
a∈Ak

∫ xka

0

cka(u+ x−ka ) du (P k)

s.t.
∑

a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv v ∈ V k,

xka ≥ 0 a ∈ Ak ,

where x−ka =
∑

k′ 6=k x
k′
a . According to the Karush-Kuhn-Tucker conditions,

xk solves the problem (P k) if and only if there exist µk ∈ RAk

+ and πk ∈ RV k
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such that (xk,µk,πk)k∈K satisfies the constraints of the problem (MNEPgen).

When the cost functions are affine cka(x) = αkax+βka , solving the Multiclass
Network Equilibrium Problem amounts thus to solve the following linear
complementarity problem

∑
a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V k

αkuv
∑
k′∈K

xk
′

uv + πku − πkv − µkuv = −βkuv k ∈ K, (u, v) ∈ Ak

xkaµ
k
a = 0 k ∈ K, a ∈ Ak

xka ≥ 0, µka ≥ 0, πkv ∈ R k ∈ K, a ∈ Ak, v ∈ V k .

(MNEP )

Similarly as for the Lemke algorithm, we rewrite the problem as an opti-
mization problem. It will be convenient for the exposition of the algorithm,
see Section 3.3. This problem is called the Augmented Multiclass Network
Equilibrium Problem. It uses a vector e = (eka) defined for all k ∈ K and
a ∈ Ak. The problem (AMNEP (e)) is

min ω

s.t.
∑

a∈δ+(v)

xka =
∑

a∈δ−(v)

xka + bkv k ∈ K, v ∈ V k

αkuv
∑
k′∈K

xk
′

uv + πku − πkv − µkuv + ekuvω = −βkuv k ∈ K, (u, v) ∈ Ak

xkaµ
k
a = 0 k ∈ K, a ∈ Ak

xka ≥ 0, µka ≥ 0, ω ≥ 0, πkv ∈ R k ∈ K, a ∈ Ak, v ∈ V k .
(AMNEP (e))

Some choices of e allow to find easily feasible solutions to this problem.
In Section 3.3, e will be chosen in such a way. A key remark is that solving
(MNEP ) amounts to find an optimal solution for (AMNEP (e)) with ω = 0.

Without loss of generality, we impose that πk
sk

= 0 for all k ∈ K and it
holds throughout the chapter. It allows to rewrite the problem (AMNEP (e))
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under the form

min ω

s.t. M
e

 x
µ
ω

+

(
0
MT

)
π =

(
b
−β

)
x · µ = 0

x ≥ 0, µ ≥ 0, ω ≥ 0, π ∈ R
∑
k V

k\{sk},

where M
e

and C are defined as follows. (The matrix M
e

is denoted with a
superscript e in order to emphasize its dependency on e).

We define M = diag((Mk)k∈K) where Mk is the incidence matrix of the
directed graph (V k, Ak) from which the sk-row has been removed:

Mk
v,a =


1 if a ∈ δ+(v),
−1 if a ∈ δ−(v),
0 otherwise .

We also define Ck = diag((αka)a∈Ak) for k ∈ K, and then C the real matrix
C = ((Ck, · · · , Ck)︸ ︷︷ ︸

|K| times

k∈K). Then let

M
e

=

(
M 0 0
C −I e

)
.

For k ∈ K, the matrix Mk has |V k| − 1 rows and |Ak| columns, while Ck

is a square matrix with |Ak| rows and columns. Then the whole matrix M
e

has
∑

k∈K(|Ak|+ |V k| − 1) rows and 2
(∑

k∈K |Ak|
)

+ 1 columns.

3.3 Bases, pivots, and rays

3.3.1 Bases

We define X and M to be two disjoint copies of {(a, k) : k ∈ K, a ∈
Ak}. We denote by φx(a, k) (resp. φµ(a, k)) the element of X (resp. M)
corresponding to (a, k). The set X models the set of all possible indices for
the ‘x’ variables andM the set of all possible indices for the ‘µ’ variables for
the problem (AMNEP (e)). We consider moreover a dummy element o as
the index for the ‘ω’ variable.

We define a basis for the problem (AMNEP (e)) to be a subset B of the
set X ∪M∪{o} such that the square matrix of size

∑
k∈K

(
|Ak|+ |V k| − 1

)
defined by (

M
e

B

0
MT

)
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is nonsingular. Note that this definition is not standard. In general, a basis

is defined in this way but without the submatrix

(
0
MT

)
corresponding to

the ‘π’ columns. We use this definition in order to be able to deal directly
with the unsigned variables ‘π’. We will see that this approach is natural
(and could be used for linear programming as well). However, we are not
aware of a previous use of such an approach.

As a consequence of this definition, sinceMT has
∑

k∈K(|V k|−1) columns,
a basis is always of cardinality

∑
k∈K |Ak|.

Remark 3.2. In particular, since the matrix is nonsingular and since MT has∑
k∈K |Ak| rows, the first

∑
k∈K(|V k| − 1) rows of M

e

B have each a nonzero
entry. This property is used below, especially in the proof of Lemma 3.8.

The following additional notation is useful: given a subset Z ⊆ X ∪M∪
{o}, we denote by Zx the set (φx)−1 (Z∩X ) and by Zµ the set (φµ)−1 (Z∩M).
In other words, (a, k) is in Zx if and only if φx(a, k) is in Z, and similarly for
Zµ.

3.3.2 Basic solutions and non-degeneracy

Let B a basis. If it contains o, the unique solution (x̄, µ̄, ω̄, π̄) of

(
M

e

B

0
MT

)
xBx
µBµ
ω
π

 =

(
b
−β

)
xka = 0 for all (a, k) /∈ Bx

µka = 0 for all (a, k) /∈ Bµ .

(3.1)

is called the basic solution associated to B.
If B does not contain o, we define similarly its associated basic solution.

It is the unique solution (x̄, µ̄, ω̄, π̄) of

(
M

e

B

0
MT

) xBx
µBµ
π

 =

(
b
−β

)
xka = 0 for all (a, k) /∈ Bx

µka = 0 for all (a, k) /∈ Bµ

ω = 0 .

(3.2)

A basis is said to be feasible if the associated basic solution is such that
x̄, µ̄, ω̄ ≥ 0.
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The problem (AMNEP (e)) is said to satisfy the non-degeneracy assump-
tion if, for any feasible basis B, the associated basic solution (x̄, µ̄, ω̄, π̄) is
such that (

(a, k) ∈ Bx ⇒ x̄ka > 0
)

and
(
(a, k) ∈ Bµ ⇒ µ̄ka > 0

)
.

Note that if we had defined the vector b to be 0 on all vertices v /∈ {sk, tk},
the problem would not in general satisfy the non-degeneracy assumption. An
example of a basis for which the condition fails to be satisfied is the basis
Bini defined in Section 3.3.5. Remark 3.7 in that section details the example.

3.3.3 Pivots and polytope

The following lemmas are key results that will eventually lead to the Lemke-
like algorithm. They are classical for the usual definition of bases. Since we
have extended the definition, we have to prove that they still hold.

Lemma 3.3. Let B be a feasible basis for the problem (AMNEP (e)) and
assume non-degeneracy. Let i be an index in X ∪M∪ {o} \ B. Then there
is at most one feasible basis B′ 6= B in the set B ∪ {i}.

Proof. Let (x̄, µ̄, ω̄, π̄) be the basic solution associated to B and let Y =
B ∪ {i}. The set of solutions

(
M

e

Y

0
MT

)
xY x
µY µ
ω
π

 =

(
b
−β

)
xka = 0 for all (a, k) /∈ Y x

µka = 0 for all (a, k) /∈ Y µ

is a one-dimensional line in R1+
∑
k∈K(2|Ak|+|V k|−1) (the space of all variables)

and passing through (x̄, µ̄, ω̄, π̄). The bases in Y correspond to intersections
of this line with the boundary of

Q = {(x,µ, ω,π) : xka ≥ 0, µka ≥ 0, ω ≥ 0, for all k ∈ K and a ∈ Ak} .

This latter set being convex (it is a polyhedron), the line intersects at most
twice its boundary under the non-degeneracy assumption.

The operation consisting in computing B′ given B and the entering index
i is called the pivot operation.

If we are able to determine an index in X ∪M∪{o} \B for any basis B,
Lemma 3.3 leads to a “pivoting” algorithm. At each step, we have a current



64 CHAPTER 3. LEMKE-LIKE ALGORITHM

basis Bcurr, we determine the entering index i, and we compute the new basis
in Bcurr ∪{i}, if it exists, which becomes the new current basis Bcurr; and so
on. Next lemma allows us to characterize situations where there is no new
basis, i.e. situations for which the algorithm gets stuck.

The feasible solutions of (AMNEP (e)) belong to the polytope

P(e) =

(x,µ, ω,π) : M
e

 x
µ
ω

+

(
0
MT

)
π =

(
b
−β

)
,

x ≥ 0, µ ≥ 0, π ≥ 0, ω ∈ R+

}
.

Lemma 3.4. Let B be a feasible basis for the problem (AMNEP (e)) and
assume non-degeneracy. Let i be an index in X ∪M ∪ {o} \ B. If there is
no feasible basis B′ 6= B in the set B ∪ {i}, then the polytope P(e) contains
an infinite ray originating at the basic solution associated to B.

Proof. The proof is similar as the one of Lemma 3.3, of which we take the
same notions and notations. If B is the only feasible basis, then the line
intersects the boundary of Q exactly once. Because of the non-degeneracy
assumption, it implies that there is an infinite ray originating at (x̄, µ̄, ω̄, π̄)
and whose points are all feasible.

3.3.4 Complementarity and twin indices

A basis B is said to be complementary if for every (a, k) with a ∈ Ak, we
have (a, k) /∈ Bx or (a, k) /∈ Bµ: for each (a, k), one of the components xka
or µka is not activated in the basic solution. In case of non-degeneracy, it
coincides with the condition x ·µ = 0. An important point to be noted for a
complementary basis B is that if o ∈ B, then there is (a0, k0) with a0 ∈ Ak0
such that

• (a0, k0) /∈ Bx and (a0, k0) /∈ Bµ, and

• for all (a, k) 6= (a0, k0) with a ∈ Ak, exactly one of the relations (a, k) ∈
Bx and (a, k) ∈ Bµ is satisfied.

This is a direct consequence of the fact that there are exactly
∑

k∈K |Ak|
elements in a basis and that each (a, k) is not present in at least one of Bx

and Bµ. In case of non-degeneracy, this point amounts to say that xka = 0
or µka = 0 for all (a, k) with a ∈ Ak and that there is exactly one such pair,
denoted (a0, k0), such that both are equal to 0.

We say that φx(a0, k0) and φµ(a0, k0) for such (a0, k0) are the twin indices.
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3.3.5 Initial feasible basis

A good choice of e gives an easily computable initial feasible complementary
basis to the problem (AMNEP (e)).

An s-arborescence in a directed graph is a spanning tree rooted at s that
has a directed path from s to any vertex of the graph. We arbitrarily define
a collection T = (T k)k∈K where T k ⊆ Ak is an sk-arborescence of (V k, Ak).
Then the vector e = (eka)k∈K,a∈Ak is chosen with the help of T by

eka =

{
1 if a /∈ T k
0 otherwise .

(3.3)

Lemma 3.5. Let the set of indices Y ⊆ X ∪M∪ {o} be defined by

Y = {φx(a, k) : a ∈ T k, k ∈ K} ∪ {φµ(a, k) : a ∈ Ak \ T k, k ∈ K} ∪ {o} .

Then, one of the following situations occurs:

• Y \{o} is a complementary feasible basis providing an optimal solution
of the problem (AMNEP (e)) with ω = 0.

• There exists (a0, k0) such that Bini = Y \ {φµ(a0, k0)} is a feasible
complementary basis for the problem (AMNEP (e)).

Proof. The subset Y has cardinality
∑

k∈K |Ak|+1. To show that Y contains
a feasible complementary basis, we proceed by studying the solutions of the
system 

(
M

e

Y

0
MT

)
xY x
µY µ
ω
π

 =

(
b
−β

)
xka = 0 for all (a, k) /∈ Y x

µka = 0 for all (a, k) /∈ Y µ .

(Se)

It is convenient to rewrite the problem (Se) in the following form.

For all k ∈ K,
Mk

Tk
xk
Tk

= bk

αkuv
∑
k′∈K

xk
′

uv + πku − πkv − µkuv + ekuvω = −βkuv for all (u, v) ∈ Ak

xka = 0 for all a /∈ T k
µka = 0 for all a ∈ T k .

(3.4)
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The matrix Mk
Tk

is nonsingular (see Poincaré (1900) or for instance the
book by Ahuja et al. (1993)). It gives a unique solution xk

Tk
of the first

equation of (3.4), and since xka = 0 for a /∈ T k, we get a unique solution x to
system (Se).

We look now at the second equation of (3.4) for k and (u, v) such that
(u, v) ∈ T k. We get that any solution of system (Se) satisfies the equalities

αkuv
∑
k′∈K

xk
′

uv + πku − πkv = −βkuv, for all k ∈ K and (u, v) ∈ T k .

Indeed, if (u, v) ∈ T k, we have ekuv = 0 and µkuv = 0. Recall that we defined
πk
sk

= 0. Since T k is a spanning tree of (V k, Ak) for all k, these equations
completely determine π.

We look then at the second equation of (3.4), this time for k and (u, v)
such that (u, v) /∈ T k. We get that any solution of system (Se) satisfies the
equalities

αkuv
∑
k′ 6=k

xk
′

uv − µkuv + ω + πku − πkv = −βkuv, for all k ∈ K and (u, v) /∈ T k .

(3.5)
Indeed, if (u, v) /∈ T k, we have ekuv = 1 and xkuv = 0.

If αkuvxuv + βkuv + πku− πkv ≥ 0 for all k ∈ K and (u, v) /∈ T k, then we have
an optimal solution of the problem (AMNEP (e)) with ω = 0, and we get the
first point of Lemma 3.5. We can thus assume that αkuvxuv +βkuv +πku−πkv <
0 for at least one triple u, v, k. Let u0, v0, k0 be such a triple minimizing
αkuvxuv+βkuv+πku−πkv and let a0 = (u0, v0). Note that Equation (3.5) implies
that

µkuv ≥ µk0u0v0 , for all k ∈ K and (u, v) /∈ T k . (3.6)

We finish the proof by showing that Bini, defined as Y \ {φµ(a0, k0)},
is a feasible complementary basis for the problem (AMNEP (e)). For Bini,
system (3.1) has a unique solution. Indeed, the first part of the proof devoted
to the solving of (Se) has shown that x and π are uniquely determined,
without having to compute the values of the µka’s. By definition of (a0, k0),
since φµ(a0, k0) is not in Bini, we have

µk0u0v0 = 0 and ω = −αk0u0v0xu0v0 − β
k0
u0v0
− πk0u0 + πk0v0 .

Finally, Equation (3.5) determines the values of the µkuv for k ∈ K and
(u, v) /∈ T k, and Equation (3.6) ensures that these values are nonnegative.
Therefore, Bini is a basis, and it is feasible because all xka and µka in the
solution are nonnegative. Furthermore, for each (a, k) with a ∈ Ak, at least
one of φx(a, k) and φµ(a, k) is not in Bini.

Hence, the subset Bini is a feasible complementary basis.
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We emphasize that Bini depends on the chosen collection T of arbores-
cences. Note that the basis Bini is polynomially computable.

Remark 3.6. A short examination of the proof makes clear that the following
claim is true: Assuming non-degeneracy, if B is a feasible basis such that
Bx = {(a, k) : a ∈ T k, k ∈ K}, then B = Bini. The fact that the T k are
arborescences fixes completely x, and then π. The fact that B is a feasible
basis forces ω to be equal to the maximal value of −αkuvxuv − βkuv − πku + πkv
(except of course if this value is nonpositive, in which case we have already
solved our problem), which in turn fixes the values of the µkuv.

Remark 3.7. As already announced in Section 3.3.2, if we had defined the
vector b to be 0 on all vertices v /∈ {sk, tk}, the problem would not satisfy
the non-degeneracy assumption as soon as there is k ∈ K such that T k has a
vertex of degree 3 (which happens when (V k, Ak) has no Hamiltonian path).
In this case, the basis Bini shows that the problem is degenerate. Since the
unique solution xk

Tk
of Mk

Tk
xk
Tk

= bk consists in sending the whole demand
on the unique route in T k from sk to tk, we have for all arcs a ∈ T k not
belonging to this route xka = 0 while (a, k) ∈ Bini,x.

3.3.6 No secondary ray

Let (x̄ini, µ̄ini, ω̄ini, π̄ini) be the feasible basic solution associated to the ini-
tial basis Bini, computed according to Lemma 3.5 and with e given by Equa-
tion (3.3). The following inifinite ray

ρini =
{

(x̄ini, µ̄ini, ω̄ini, π̄ini) + t(0, e, 1,0) : t ≥ 0
}
,

has all its points in P(e). This ray with direction (0, e, 1,0) is called the
primary ray. In the terminology of the Lemke algorithm, another infinite ray
originating at a solution associated to a feasible complementary basis is called
a secondary ray. Recall that we defined πk

sk
= 0 for all k ∈ K in Section 3.2

(otherwise we would have a trivial secondary ray). System (AMNEP (e))
has no secondary ray for the chosen e.

Lemma 3.8. Let e be defined by Equation (3.3). Under the non-degeneracy
assumption, there is no secondary ray in P(e).

Proof. Suppose that P(e) contains an infinite ray

ρ =
{

(x̄, µ̄, ω̄, π̄) + t(xdir,µdir, ωdir,πdir) : t ≥ 0
}
,

where (x̄, µ̄, ω̄, π̄) is a feasible complementary basic solution associated to a
basis B.
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We first show that xdir = 0. For a contradiction, suppose that it is not the
case and let k be such that xdir,k is not zero. Since the points of ρ must satisfy
the system (AMNEP (e)) for all t ≥ 0, we have that (xdir,µdir, ωdir,πdir)
must satisfy for all v ∈ V k∑

a∈δ+(v)

xdir,ka =
∑

a∈δ−(v)

xdir,ka ,

which shows that xk is a circulation in the directed graph (V k, Ak). Moreover,
we must have for all (u, v) ∈ Ak

αkuv
∑
k′∈K

xdir,k
′

uv + πdir,ku − πdir,kv − µdir,kuv + ekuvω
dir = 0. (3.7)

where we have πdir,k
sk

= 0 since πk
sk

= 0 for any feasible solution of (AMNEP (e)),
see Section 3.2. The following relations must also be satisfied:

xdir · µdir = 0, (3.8)

and
xdir ≥ 0,µdir ≥ 0, ωdir ≥ 0 . (3.9)

Take now any circuit C in D = (V,A) in the support of xdir,k. Since we have
supposed that xdir,k is not zero and since it is a circulation, such a circuit
necessarily exists. According to Equations (3.8) and (3.9), we have µdir,ka = 0
for each a ∈ C. The sum

∑
a∈C e

k
a is nonzero since no tree T k can contain all

arcs in C. Summing Equation (3.7) for all arcs in C, we get

ωdir = −
∑

a∈C α
k
a

∑
k′∈K x

dir,k′
a∑

a∈C e
k
a

< 0 .

It is in contradiction with Equation (3.9). It implies that xdir,ka = 0 for all
k ∈ K and a ∈ Ak.

We show now that πdir = 0. We start by noting that Equation (3.7)
becomes

πdir,ku − πdir,kv − µdir,kuv = 0, for all k ∈ K and (u, v) ∈ T k .

Since T k is an sk-arborescence, we have 0 = πdir,k
sk
≥ πdir,kv for all v ∈ V k,

according to Equation (3.9).
Define now F k to be the set of arcs a ∈ Ak such that (a, k) ∈ Bx. Using

Remark 3.2 of Section 3.3.1, M
e

B has a nonzero entry on each of its first
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∑
k∈K(|V k| − 1) rows, which implies that the set F k spans all vertices in

V k \ {sk}.
According to the non-degeneracy assumption, x̄ka is non-zero on all arcs

of F k. The complementarity condition for all points of the ray give that
x̄ · µdir + xdir · µ̄ = 0, and since xdir = 0, we have x̄ · µdir = 0. Hence
µdir,kuv = 0 for all (u, v) ∈ F k, and Equation (3.7) becomes

πdir,ku − πdir,kv + ekuvω
dir = 0 for all k ∈ K and (u, v) ∈ F k . (3.10)

Thus, according to Equation (3.9), we have 0 = πdir,k
sk
≤ πdir,kv for all v ∈ V k.

Since we have already shown the reverse inequality, we have πdir,kv = 0 for all
v ∈ V k.

Now, if T k 6= F k for at least one k, we get the existence of an arc (u, v) ∈
F k for which ekuv = 1, while πdir,ku = πdir,kv = 0. Equation (3.10) implies
then that ωdir = 0. Still using xdir = 0, we get then, again with the help of
Equation (3.7), that µdir = 0, which contradicts the fact that ρ is an infinite
ray.

Therefore, we have T k = F k for all k. Using Remark 3.6 of Section 3.3.5,
we are at the initial basic solution: B = Bini. According to Equation (3.7),
and since xdir = 0 and πdir = 0, we have µdir,kuv = ekuvω

dir for all k ∈ K and
(u, v) ∈ Ak. Thus (xdir,µdir, ωdir,πdir) = ωdir(0, e, 1,0) for ωdir ≥ 0, and ρ
is necessarily the primary ray ρini.

Then there is no secondary ray, as required.

3.3.7 A Lemke-like algorithm

Assuming non-degeneracy, the combination of Lemma 3.3 and the point ex-
plicited in Section 3.3.4 give rise to a Lemke-like algorithm. Two feasible
complementary bases B and B′ are said to be neighbours if B′ can be ob-
tained from B by a pivot operation using one of the twin indices as an
entering index, see Section 3.3.4. Note that is is a symmetrical notion: B
can then also be obtained from B′ by a similar pivot operation. The abstract
graph whose vertices are the feasible complementary bases and whose edges
connect neighbour bases is thus a collection of paths and cycles. According
to Lemma 3.5, we can find in polynomial time an initial feasible complemen-
tary basis for (AMNEP (e)) with the chosen vector e. This initial basis has
exactly one neighbour according to Lemma 3.4 since there is a primary ray
and no secondary ray (Lemma 3.8).

Algorithm 1 explains how to follow the path starting at this initial feasible
complementary basis. Function EnteringIndex(B, i′) is defined for a feasible
complementary basis B and an index i′ /∈ B being a twin index of B and
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computes the other twin index i 6= i′. Function LeavingIndex(B, i) is defined
for a feasible complementary basis B and an index i /∈ B and computes the
unique index j 6= i such that B ∪ {i} \ {j} is a feasible complementary basis
(see Lemma 3.3).

Since there is no secondary ray (Lemma 3.8), a pivot operation is possible
because of Lemma 3.4 as long as there are twin indices. By finiteness, a
component in the abstract graph having an endpoint necessarily has another
endpoint. It implies that the algorithm reaches at some moment a basis B
without twin indices. Such a basis is such that o /∈ B (Section 3.3.4), which
implies that we have a solution of the problem (AMNEP (e)) with ω = 0,
i.e. a solution of the problem (MNEP ), and thus a solution of our initial
problem.

input : The matrix M
e
, the matrix M , the vectors b and β, an

initial feasible complementary basis Bini

output: A feasible basis Bend with o /∈ Bend.

φµ(a0, k0)← twin index in M;
i← EnteringIndex(Bini, φµ(a0, k0));
j ← LeavingIndex(Bini, i);
Bcurr ← Bini ∪ {i} \ {j};
while There are twin indices do

i← EnteringIndex(Bcurr, j);
j ← LeavingIndex(Bcurr, i);
Bcurr ← Bcurr ∪ {i} \ {j};

end
Bend ← Bcurr;
return Bend;

Algorithm 1: Lemke-like algorithm

3.4 Algorithm and main result

We are now in a position to describe the full algorithm under the non-
degeneracy assumption.

1. For each k ∈ K, compute a collection T = (T k) where T k ⊆ Ak is an
sk-arborescence of (V k, Ak).

2. Define e as in Equation (3.3) (which depends on T ).
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3. Define Y = {φx(a, k) : a ∈ T k, k ∈ K} ∪ {φµ(a, k) : a ∈ Ak \ T k, k ∈
K} ∪ {o}.

4. If Y \ {o} is a complementary feasible basis providing an optimal solu-
tion of the problem (AMNEP (e)) with ω = 0, then we have a solution
of the problem (MNEP ), see Lemma 3.5.

5. Otherwise, let Bini be defined as in Lemma 3.5 and apply Algorithm 1,
which returns a basis Bend.

6. Compute the basic solution associated to Bend.

All the elements proved in Section 3.3 lead finally to the following result.

Theorem 3.9. Under the non-degeneracy assumption, this algorithm solves
the problem (MNEP ), i.e. the Multiclass Network Equilibrium Problem with
affine costs.

This result provides actually a constructive proof of the existence of an
equilibrium for the Multiclass Network Equilibrium Problem when the cost
are affine and strictly increasing, even if the non-degeneracy assumption is
not satisfied. If we compute b = (bkv) strictly according to the model, we
have

bkv =


λ(Ik) if v = sk

−λ(Ik) if v = tk

0 otherwise .
(3.11)

In this case, the non-degeneracy assumption is not satisfied as it has been
noted at the end of Section 3.3.5 (Remark 3.7). Anyway, we can slightly
perturb b and −β in such a way that any feasible complementary basis of
the perturbated problem is still a feasible complementary basis for the orig-
inal problem. Such a perturbation exists by standard arguments, see Cottle
et al. (1992). Theorem 3.9 ensures then the termination of the algorithm on
a feasible complementary basis B whose basic solution is such that ω = 0.
It provides thus a solution for the original problem.

It shows also that the problem of finding such an equilibrium belongs
to the PPAD complexity class. The PPAD class – defined by Papadim-
itriou (1994) in 1994 – is the complexity class of functional problems for
which we know the existence of the object to be found because of a (ori-
ented) path-following argument. There are PPAD-complete problems, i.e.
PPAD problems as hard as any problem in the PPAD class, see Kintali
et al. (2009) for examples of such problems. A natural question would be
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whether the Multiclass Network Equilibrium Problem with affine costs is
PPAD-complete. We do not know the answer. Another natural question is
whether the problem belongs to other complexity classes often met in the
context of congestion games, such as the PLS class (Johnson et al., 1988) or
the CLS class (Daskalakis and Papadimitriou, 2011). However, these latter
classes require the existence of some potential functions which is not likely
to be the case for our problem.

Another consequence of Theorem 3.9 is that if the demands λ(Ik) and the
cost parameters αka, β

k
a are rational numbers, then there exists an equilibrium

inducing rational flows on each arc and for each class k. It is reminiscent of a
similar result for two users matrix games: if the matrices involve only rational
entries, there is an equilibrium involving only rational numbers (Nash, 1951).

3.5 Computational experiments

3.5.1 Instances

The experiments are made on n × n grid graphs (Manhattan instances).
For each pair of adjacent vertices u and v, both arcs (u, v) and (v, u) are
present. We built several instances on these graphs with various sizes n,
various numbers of classes, and various cost parameters αka, β

k
a . The cost

parameters were chosen uniformly at random such that for all a and all k

αka ∈ [1, 10] and βka ∈ [0, 100] .

3.5.2 Results

The algorithm has been coded in C++ and tested on a PC Intel R© Core
TM

i5-
2520M clocked at 2.5 GHz, with 4 GB RAM. The experiments are currently
in progress. However, some preliminary computational results are given in
Table 3.1. Each row of the table contains average figures obtained on five
instances on the same graph and with the same number classes, but with
various origins, destinations, and costs parameters.

The columns “Classes”, “Vertices”, and “Arcs” contain respectively the
number of classes, the number of vertices, and the number of arcs. The
column “Pivots” contains the number of pivots performed by the algorithm.
They are done during Step 5 in the description of the algorithm in Section 3.4
(application of Algorithm 1). The column “Algorithm 1” provides the time
needed for the whole execution of this pivoting step. The preparation of this
pivoting step requires a first matrix inversion, and the final computation of
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Classes Grid Vertices Arcs Pivots Algorithm 1 Inversion
(seconds) (seconds)

2 2 × 2 4 8 2 <0.01 <0.01
4 × 4 16 48 21 0.01 0.03
6 × 6 36 120 54 0.08 0.5
8 × 8 64 224 129 0.9 4.0

3 2 × 2 4 8 4 <0.01 <0.01
4 × 4 16 48 33 0.03 0.1
6 × 6 36 120 97 0.4 1.9
8 × 8 64 224 183 2.6 12

4 2 × 2 4 8 3 <0.01 <0.01
4 × 4 16 48 41 0.06 0.3
6 × 6 36 120 126 0.9 4.7
8 × 8 64 224 249 5.4 25

10 2 × 2 4 8 11 <0.01 0.02
4 × 4 16 48 107 0.7 4.1
6 × 6 36 120 322 15 70
8 × 8 64 224 638 87 385

50 2 × 2 4 8 56 0.3 2.6
4 × 4 16 48 636 105 511

Table 3.1: Performances of the complete algorithm for various instance sizes
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the solution requires such an inversion as well. The times needed to per-
form these inversions are given in the column “Inversion”. The total time
needed by the complete algorithm to solve the problem is the sum of the
“Algorithm 1” time and twice the “Inversion” time, the other steps of the
algorithm taking a negligible time.

It seems that the number of pivots remains always reasonable. Even if
the time needed to solve large instances is sometimes important with respect
to the size of the graph, the essential computation time is spent on the two
matrix inversions. The program has not been optimized, since there are
several efficient techniques known for inverting matrices. The results can be
considered as very positive.



CHAPTER 4

A polynomial algorithm for fixed number
of classes and vertices

Abstract

Nonatomic congestion games are a good model of the behaviour of users using a
network infrastructure. They are used in particular by transportation planners.
Under few conditions, an equilibrium is known to exist. One of the main issue is
the computation of a Nash equilibrium.

When all users are impacted in the same way by the congestion, the Nash
equilibrium coincides with the solution of an optimization problem, and can be
found using the tools of convex optimization. In the multiclass case, i.e. when users
can be impacted differently by the congestion, there are few algorithms known.
In Meunier and Pradeau (2013), see Chapter 3, an efficient pivoting algorithm
is designed, able to find an equilibrium when the cost functions are affine. In
particular, the problem belongs to the class of complexity PPAD. Whether the
problem is polynomial is an open question.

In this chapter, we give an algorithm polynomial in the number of arcs, when

the number of classes and the number of vertices are fixed. This algorithm relies

on a correspondence between the set of arcs used at an equilibrium and the cells

of some hyperplane arrangement.

4.1 Introduction

4.1.1 Model

We are given a directed graph D = (V,A) modelling the transportation
network. We consider the model of multiclass nonatomic games as in Sec-
tion 1.2.1. As in Chapter 3, we require the users of a given class k to have
not only the same cost functions but also the same origin sk, and the same
destination tk.
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Recall the definition of an equilibrium: a strategy profile is a (pure) Nash
equilibrium if each route is only chosen by users for whom it is a minimum-
cost route. In other words, a strategy profile σ is a Nash equilibrium if for
each class k ∈ K and each user i ∈ Ik we have∑

a∈σ(i)

cka(xa) = min
r∈R

(sk,tk)

∑
a∈r

cka(xa) .

This game belongs to the category of nonatomic congestion games with
user-specific cost functions, see Milchtaich (1996). The problem of finding a
Nash equilibrium for such a game is called the Multiclass Network Equilib-
rium Problem.

4.1.2 Supports and arcs of minimal cost

We define the set A as the set of all vectors of subsets of arcs, i.e.

A =
{
X = (Xk)k∈K , X

k ⊆ A for all k ∈ K
}
.

Given two elements X = (Xk)k∈K and Y = (Y k)k∈K of A, we say that
X ⊆ Y if Xk ⊆ Y k for all k. Note that A = P(A)K .

Given a flow y = (ya)a∈A, we define its support as the set of arcs with a
positive flow:

supp(y) = {a ∈ A, ya > 0}.

With a slight abuse of notation, given a multiflow ~y = (yk)k∈K we define
its support as the vector of supports: supp(~y) = (supp(yk))k∈K . It is an
element of A.

We reformulate Proposition 1.5, characterizing an equilibrium flow as a
solution of a complementarity problem, in the following way. For an equilib-
rium flow ~x, recall that x = (xa)a∈A is the vector of aggregated flow on the
arcs. We denote by πku(x) the minimal cost at equilibrium of the class k users
for going from the origin sk to the vertex u, and πk(x) = (πku(x))u∈V \{sk},
~π(x) = (πk(x))k∈K . Then, we have

cka(xa) ≥ πkv (x)− πku(x) for all a = (u, v) ∈ A, (4.1)

cka(xa) = πkv (x)− πku(x) for all a = (u, v) ∈ supp(xk). (4.2)

Remark 4.1. The definition of π coincides with the one of Proposition 1.5,
where πk

sk
is fixed equal to zero for every k.
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For an equilibrium flow ~x, we define for any k the set of min-cost arcs

mincostk(x) = {a = (u, v) ∈ A, cka(xa) = πkv (x)− πku(x)}.

The vector of these sets is denoted mincost(x) = (mincostk(x))k∈K ∈ A.
Note that contrary to the support, it depends only on the aggregated flow x.
We have supp(~x) ⊆ mincost(x). The inclusion is not necessarily an equality
as there can exist min-cost arcs with zero flow.

4.1.3 Contribution

We consider the specific case where the cost functions are affine and increas-
ing:

cka(x) = αkax+ βka , with αka > 0, βka ≥ 0,

for each class k and arc a.
We prove the existence of a polynomial algorithm solving the problem

when the number of classes and vertices is fixed. The main idea of the
algorithm relies on properties of hyperplane arrangements.

The remaining of the chapter is organized as follows. Section 4.2 intro-
duces basic definitions on hyperplane arrangements, and in particular on the
number of cells. Section 4.3 presents the algorithm. In Section 4.3.1, we
prove Proposition 4.4 stating that there is a set of elements of A of poly-
nomial size containing the support of any equilibrium. In Section 4.3.2, we
prove Proposition 4.6 stating that given a set of arcs for each class, we can
check in polynomial time if it is the support of an equilibrium, and compute
the equilibrium when it is the case. These results lead to Theorem 4.7. Fi-
nally, Section 4.4 discusses the results, in particular for graphs with parallel
arcs.

4.2 Preliminaries on hyperplane arrangements

A hyperplane h in Rd is a (d − 1)-dimensional subspace of Rd. It partitions
Rd into three regions: h itself and the two open half-spaces determined by it.
We give an orientation for h and note the two half-spaces h⊕ and h	. The
closed half-spaces are denoted by h⊕ = h⊕ ∪ h and h	 = h	 ∪ h.

Given a finite set H of hyperplanes, an arrangement is a partition of
Rd into relatively open convex subsets, called cells. A k-cell is a cell of
dimension k. A 0-cell is called a point. The terminology k-face is also used
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in the literature to designate a k-cell, in which case the term “cell” refers
only to a d-face.

The hyperplane arrangement A(H) associated to the set of hyperplanes
H is defined as follows. The d-cells are the connected components of Rd \H.
For 0 ≤ k ≤ d− 1, a k-flat is the intersection of exactly d− k hyperplanes of
H. Then, the k-faces of the arrangement are the connected components of
L \ {h ∈ H,L * h} for every k-flat L.

Remark 4.2. Once an orientation is given for each hyperplane, a cell P of the
arrangement A(H) can be described by its sign vector σ(P ) = (σh(P ))h∈H .
The sign vector is defined as σh(P ) = 1 when P ⊆ h⊕, σh(P ) = −1 when
P ⊆ h	 and σh(P ) = 0 when P ⊆ h.

The sign vector completely determines the cell, but not all possible sign
vectors correspond to nonempty cells.

An arrangement of hyperplanes is said to be simple if the set of hyper-
planes is in general position, i.e. the intersection of any k hyperplanes is
(d− k)-dimensional for 2 ≤ k ≤ d+ 1. When there is n ≥ d+ 1 hyperplanes,
to have this condition it suffices that the intersection of any d hyperplanes is
a point and the intersection of any d+ 1 hyperplanes is empty.

Given an arrangement of n hyperplanes, the number of k-cells is bounded
by

k∑
i=0

(
d− i
k − i

)(
n

d− i

)
with equality when the arrangement is simple. In particular the total number
of cells is a O(nd).

Further details on hyperplane arrangements can be found in Edelsbrunner
(1987) or Matoušek (2002) for example.

Remark 4.3. When considering surfaces or pseudo-lines instead of hyper-
planes, a similar result can be obtained under additional conditions such as
a bound on the maximal number of intersections between two surfaces. The
bound on the number of cells O(nd) still holds in these cases, see Agarwal
(1991), Edelsbrunner et al. (1992) for example.

4.3 The polynomial algorithm

The algorithm consists in two steps:

1. It computes a set S ⊆ A of polynomial size such that for any equilib-
rium flow ~x we have

supp(~x) ⊆ S(~x) ⊆ mincost(x)
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for some S(~x) ∈ S, see Section 4.3.1.

2. It tests for every S ∈ S whether S = S(~x) for some equilibrium flow
~x, and in this case it computes ~x, see Section 4.3.2.

4.3.1 Determining a set containing the support of an equilibrium

Proposition 4.4. For a fixed number of classes and vertices, we can deter-
mine in polynomial time a set S ⊆ A of polynomial size such that for any
equilibrium flow ~x there is a S ∈ S with supp(~x) ⊆ S ⊆ mincost(x).

In order to prove Proposition 4.4, we build a hyperplane arrangement.
For any classes k 6= k′ and arc a = (u, v), we define the following oriented
half-spaces of RK(|V |−1):

hk,k
′,	

a =
{
y ∈ RK(|V |−1), αk

′

a

(
ykv − yku − βka

)
> αka

(
yk
′

v − yk
′

u − βk
′

a

)}
,

hk,	a =
{
y ∈ RK(|V |−1), ykv − yku > βka

}
.

For a class k and an arc a = (u, v) we define moreover the convex polyhedron

P k
a =

⋂
k′ 6=k

hk,k
′,	

a ∩ hk,	a .

The P k
a ’s have a useful property that links the cost at an equilibrium to

the support.

Lemma 4.5. Let ~x be an equilibrium flow. For any class k and arc a, if
a ∈ supp(xk), then ~π(x) ∈ P k

a .

Proof. Let a = (u, v) ∈ supp(xk). According to Equation (4.2), we have

xa =
πkv (x)− πku(x)− βka

αka
.

In particular, since xa ≥ 0, we have πkv (x)−πku(x) ≥ βka and then ~π(x) ∈ hk,	a .
In this case, for any other class k′, Equation (4.1) gives

αk
′

a

(
πkv (x)− πku(x)− βka

αka

)
+ βk

′

a ≥ πk
′

v (x)− πk′u (x),

i.e. ~π(x) ∈ hk,k′,	a . Then, ~π(x) ∈ P k
a .
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We consider then the set of hyperplanes

H =
{
hk,k

′

a , k 6= k′ ∈ K, a ∈ A
}
∪
{
hka, k ∈ K, a ∈ A

}
.

There areK2|A| elements inH. We consider then the associated arrangement
A(H).

Proof of Proposition 4.4. Define the map ϕ : {cells of A(H)} → A in the
following way: for every cell P and class k ∈ K,

ϕ(P )k = {a ∈ A, s.t. P ∩ P k
a 6= ∅}.

Let then S = ϕ({cells of A(H)}). According to the number of cells
of a hyperplane arrangement – see Section 4.2 – the size of S is at most
O
(
(K2|A|)K(|V |−1)

)
.

It remains to show that for any equilibrium flow ~x, there exists S ∈ S
such that supp(~x) ⊆ S ⊆ mincost(x).

Let ~x be an equilibrium flow. Since the cells of A(H) make a partition
of RK(|V |−1), there is a cell P0 such that ~π(x) ∈ P0. Let k ∈ K and a ∈
supp(xk). Lemma 4.5 gives that ~π(x) ∈ P k

a , and in particular P0 ∩ P k
a 6= ∅,

i.e. a ∈ ϕ(P0)k. Since this is valid for any k ∈ K, we have supp(~x) ⊆ ϕ(P0).
We define S = ϕ(P0).

Finally, we prove that S ⊆ mincost(x). Consider a class k and an arc a
with P0 ∩ P k

a 6= ∅. We prove that a ∈ mincostk(x). Since P k
a is an union

of cells of A(H), we have P0 ⊂ P k
a . In particular, since ~π(x) ∈ P0, we have

~π(x) ∈ P k
a .

Suppose first that xa > 0. If a ∈ supp(xk), we have immediatly that
a ∈ mincostk(x). Otherwise, there is at least a class k0 6= k such that
a ∈ supp(xk0). Lemma 4.5 gives that ~π(x) ∈ P k0

a , and then ~π(x) ∈ P k0
a ∩P k

a .
In particular, ~π(x) ∈ hk,k0a , and by definition

αka

(
πk0v (x)− πk0u (x)− βk0a

αk0a

)
+ βka = αkaxa + βka = πkv (x)− πku(x),

i.e. a ∈ mincostk(x).

Suppose then xa = 0. Since ~π(x) ∈ P k
a , we have in particular ~π(x) ∈

hk,	a . It implies that a ∈ mincostk(x), since otherwise we would have βka >
πkv (x)− πku(x). We can conclude.
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4.3.2 Determining an equilibrium flow in polynomial time

Proposition 4.6. Let S ∈ A. We can decide in polynomial time whether
there exists an equilibrium flow ~x with supp(~x) ⊆ S ⊆ mincost(x), and
compute one if there is one.

Proof. Consider the following problem:

Find (~x, ~π) such that for every k ∈ K (PS)

αka

(∑
k′∈K

xk
′

a

)
+ βka = πkv − πku for a = (u, v) ∈ Sk

xka = 0 for a /∈ Sk∑
a∈δ+(sk)

xka −
∑

a∈δ−(sk)

xka = λ(Ik)

∑
a∈δ+(u)

xka −
∑

a∈δ−(u)

xka = 0 for u ∈ V \ {sk, tk}

αka

(∑
k′∈K

xk
′

a

)
+ βka ≥ πkv − πku for a = (u, v) /∈ Sk

xka ≥ 0 for a ∈ Sk.

The problem (PS) consists in linear inequalities withK(|A|+|V |−1) variables
and can be solved in polynomial time by an interior point method (see Wright
(1997) for example).

The problem (PS) has a solution (~x, ~π) if and only if ~x is an equilibrium
flow with supp(~x) ⊆ S ⊆ mincost(x). In this case, ~π = ~π(x), where with a
slight abuse of notation we have denoted by ~π an argument of the solution
of (PS) and ~π(·) the function giving the minimal cost at equilibrium.

4.3.3 The polynomial algorithm

The algorithm can be described in following way:

1. Build the cells of the arrangement A(H).

2. For each cell P , test whether there exists an equilibrium flow ~x with
supp(~x) ⊆ ϕ(P ) ⊆ mincost(x), using Proposition 4.6.

3. If it is the case, the algorithm has also computed ~x.
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There are several techniques for the first step. It can be done in O(nd)
steps where n is the number of hyperplanes and d the dimension of the space.
The construction of the cells can also be done step by step. For more details,
see Halperin (2004, Chapter 24) or Edelsbrunner (1987).

According to Proposition 4.6, the second and third steps can be done in
polynomial time. Moreover, since there is a polynomial number of cells, the
second step is made at most a polynomial number of times.

The algorithm stops, since there is at least one cell giving an equilib-
rium flow, according to Proposition 4.4. This algorithm gives the following
Theorem:

Theorem 4.7. For a fixed number of classes and vertices, there exists an
algorithm solving the Multiclass Network Equilibrium Problem with affine
costs in polynomial time with respect to the number of arcs.

4.4 Discussion

We can restrict the number of cells scanned by the algorithm. Indeed, since
every class uses at least one arc, for S ∈ S, we know without any computation
that (PS) has no solution as soon as there is a class k with Sk = ∅. It means
that we can consider only the cells P such that for every class k there exists
an arc a with P ∩ P k

a 6= ∅.
Then we can consider only the cells that do not belong to

⋃
k∈K

⋂
a=(u,v)∈A

(⋃
k′ 6=k

hk,k
′,⊕

a ∪ hk,⊕uv

)
.

Computing the improvement of the complexity obtained using this remark
deserves future work.

Finally, note that when we consider a graph with parallel arcs, there are
only 2 vertices. Furthermore, the set H has size K2|A|, and the number of
cells in A(H) is O((K2|A|)K). The question whether there exists an algo-
rithm polynomial in the number of classes, even for graphs with parallel arcs,
is an open question.



CHAPTER 5

Bounding the price of anarchy for games
with player-specific cost functions

Abstract

We study the efficiency of equilibria in atomic splittable congestion games on

graphs. We consider the general case where players are not affected in the same

way by the congestion. Extending a result by Cominetti, Correa, and Stier-Moses

(2009), we prove a general bound on the price of anarchy for games with player-

specific cost functions. This bound generalizes some of their results, especially

the bound they obtain for the affine case. However it holds when there is some

dependence on the cost functions of the players. In the general case, we prove that

the price of anarchy is unbounded, by exhibiting an example with only two players

and affine cost functions.

5.1 Introduction

In many economic fields, companies share common resources while being non
coordinated. These resources are often owned by agents that are paid for the
service they provide to these companies. These resources are for instance
machines in a flexible manufacturing environment, means of transportation
in a freight context, or arcs in a telecommunication network. An increase of
demand for a resource often leads to an increase of its cost, because the fees
increase, or because delay is created. This increase of the cost is seen as a
congestion on the resource.

Taking a game-theoretical point of view, Cominetti, Correa, and Stier-
Moses (2009) studied the efficiency loss implied by the lack of coordination.
The companies become players in a congestion game and the resources be-
come arcs of a graph. If there is no conditional use between the resources, the
parallel-link graph often models correctly the interaction between the players,
see for instance Orda, Rom, and Shimkin (1993), Hayrapetyan, Tardos, and
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Wexler (2006), Wan (2012b). However, in many situations, several resources
have to be chosen simultaneously by each company, but not all subsets of
resources are possible. Modelling the possible subsets as routes in a graph is
a way to cover these situations and makes sense in a freight transportation
context for instance. All possible congestion games cannot be modelled with
a graph, but this representation is helpful and the results often extend to
general congestion games without additional work (this is the case for the
game we deal with in the present work). To model the congestion, each arc
is endowed with a cost function.

A useful notion to quantify the loss of efficiency is the price of anarchy,
introduced by Koutsoupias and Papadimitriou (1999). The price of anar-
chy is the worst-case ratio between the social cost at equilibrium and the
best possible social cost. Its interest has lead to a considerable amount of
work since the seminal paper of Roughgarden and Tardos (2002). Cominetti,
Correa, and Stier-Moses (2009) are able to prove general upper bounds for
the price of anarchy of atomic splittable games, which are valid in a large
set of situations. These results have been extended by Harks (2011) and
Roughgarden and Schoppmann (2011).

One of the main assumptions in these papers is that, for each arc of the
graph, the players all have the same cost function. However, depending on
their size, the nature of the goods they carry, or other features, the companies
are not equally affected by the congestion. Thus, allowing the companies to
have their own cost functions makes sense. To the best of our knowledge, this
assumption has not been relaxed in the context of the computation of the
price of anarchy, except in Gairing, Monien, and Tiemann (2006) for different
models (atomic unsplittable and nonatomic games). In this chapter, we allow
player-specific cost functions and extend some of the results of Cominetti,
Correa, and Stier-Moses (2009) in this more general setting.

5.2 Model and main results

5.2.1 Model

The description of the game we deal with in this chapter goes as follows.
We are given a directed graph D = (V,A) and K players identified with the
integers 1, . . . , K. We consider the model of atomic splittable games as in
Section 1.3.1.

Recall the definition of an equilibrium and a social optimum: a feasible
multiflow ~xNE = (xNE,1, . . . ,xNE,K) is a Nash equilibrium if for each player



5.2. MODEL AND MAIN RESULTS 85

k, we have

Qk(~xNE) = min
y∈Fk

Qk(y, ~xNE,−k), (5.1)

where (y, ~xNE,−k) = (xNE,1, . . . ,xNE,k−1,y,xNE,k+1, . . . ,xNE,K).
The social cost of a multiflow is defined as

Q(~x) =
∑
k∈[K]

Qk(~x) =
∑
k∈[K]

∑
a∈A

xkac
k
a(xa).

A multiflow of minimal social cost is a social optimum.
This kind of games belongs to the class of atomic splittable network con-

gestion games. Atomic, because each player has non-negligible impact. Split-
table, because the goods are seen as a flow whose support is not necessarily a
unique route. For the game we consider in this chapter, a Nash equilibrium
always exists, see Section 1.3.2. However, it may not be unique and even the
total flows on the arcs may vary among the multiple Nash equilibria (Rich-
man and Shimkin, 2007, Bhaskar et al., 2009).

5.2.2 Main results

An instance of the game is defined by the graph, the set of players with
their origin-destination pairs, their demands, and their cost functions. We
denote by NE(I) the set of Nash equilibria for an instance I and by ~xOPT (I)
a feasible multiflow achieving the minimal social cost.

This chapter is focused on the price of anarchy (PoA) of the game, see
Section 1.4. Given a set of allowable instances I, the price of anarchy is

PoA = sup
I∈I

sup
~x∈NE(I)

C(~x)

C(~xOPT (I))
.

Theorem 5.1. Consider an atomic splittable network congestion game with
player-specific cost functions. Suppose that the available cost functions in C
are differentiable, nonnegative, increasing, and convex, and define

λ(C) = sup
a∈A, k,`∈[K],~c∈C, x∈R+

x(c`a)
′(x)

cka(x)
.

If λ(C) < 3, we have

PoA ≤ 1

1− λ(C)/3
.
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This theorem is also valid when all players have the same cost functions,
in which case λ(C) coincides with γ(C)− 1 in Cominetti et al. (2009).

The upper bound on the price of anarchy given in Theorem 5.1 can be
improved with a more complicated formula, see Proposition 5.5 below. A
corollary is then the following proposition, which is the generalization of
Proposition 3.5 in Cominetti et al. (2009) to the case with player-specific
cost functions.

Proposition 5.2. Consider an atomic splittable network congestion game
with player-specific cost functions. Suppose that the allowable cost functions
are affine of the form cka(x) = pkax + qka with pka > 0, qka ≥ 0, and define

∆ = sup
a∈A

sup`∈[K] p
`
a

infk∈[K] pka
.

If ∆ < 3, we have

PoA ≤ 3∆(K − 1) + 4

∆(3−∆)(K − 1) + 4
.

Proposition 5.2 uses the parameter ∆ with the same definition and with
a similar purpose as in Gairing et al. (2006). This parameter is independent
of the constant terms of the functions. This bound is valid for ∆ < 3, i.e.
when the marginal cost caused by the congestion does not vary too much
among the players. In particular, it handles cases where the marginal impact
of the congestion for any player is at most twice the one of the others. Note
that when players have the same cost functions, we have ∆ = 1, and our
proposition coincides with the aforementioned Proposition 3.5 of Cominetti
et al. (2009) giving a bound of 3K+1

2K+2
.

If the cost functions are affine, Proposition 5.2 shows that the price of
anarchy is bounded when ∆ < 3. However, according to the next proposition,
it is unbounded in general, even when the cost functions are affine.

Proposition 5.3. For any M > 0, there is an instance of an atomic split-
table network congestion game with player-specific affine cost functions, with
two players, and with

PoA > M.

This result contrasts with the case where players have the same cost
functions. Indeed, in this case it has been showed that the price of anarchy is
bounded for polynomial cost functions of degree d: Harks (2011), followed by
Roughgarden and Schoppmann (2011) found the closed-form upper bounds

of
(

1+
√
d+1

2

)d+1

for d ≥ 2 and 3
2

for affine costs. Bounds also exist for



5.3. THE PRICE OF ANARCHY FOR GENERAL COST FUNCTIONS 87

different games that are nonatomic games (Roughgarden and Tardos, 2004)
and atomic unsplittable games (Aland et al., 2011).

The remaining of the chapter is organized as follows. Section 5.3 gives
a general but not explicit bound on the price of anarchy, from which we
deduce Theorem 5.1 and Proposition 5.2. Section 5.4 presents the proof
of Proposition 5.3. In Section 5.5 we discuss the results and some open
questions.

5.3 The price of anarchy for general cost functions

5.3.1 Preliminary remarks

Throughout the chapter, the components of an x ∈ RK
+ are denoted xk.

Recall the notations of Section 1.3.3: given a cost function ck, we define
c̃k : RK

+ → R+ by c̃k(x) = ∂
∂xk

(
xkck (x)

)
, where x =

∑
`∈[K] x

`.
We have then

c̃k(x) = xk(ck)′(x) + ck(x).

Note that c̃k coincides with the notation ck in Cominetti et al. (2009).

According to Proposition 1.9, the multiflow ~xNE is a Nash equilibrium if
and only if, for all k ∈ [K], it satisfies∑
a∈A

c̃ka(x
NE
a )(yka − xNE,ka ) ≥ 0, for any feasible flow yk for player k, (5.2)

where xa = (x1
a, . . . , x

K
a ) ∈ RK

+ .

5.3.2 A general bound

Following Cominetti et al. (2009), for aK-tuple of cost functions c = (c1, . . . , cK),
we define

β(c) = sup
x,y∈RK+

∑
k∈[K]

[(
c̃k(x)− ck(y)

)
yk +

(
ck(x)− c̃k(x)

)
xk
]

∑
k∈[K]

xkck(x)
,

where x stands for
∑

k∈[K] x
k and y for

∑
k∈[K] y

k. We assume 0/0 = 0. Note

that β(c) ≥ 0, since the function we want to maximize is zero when x = y.
We also define β(C) = sup~c∈C, a∈A β(ca), where ca = (c1

a, . . . , c
K
a ).
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The following proposition gives a general bound, yet nonexplicit, on the
price of anarchy. For sake of simplicity, we assume that (1− β(C))−1 = +∞
for β(C) ≥ 1.

Proposition 5.4. Let ~xNE be a Nash equilibrium and ~xOPT be a social
optimum. Then

C(~xNE) ≤ 1

1− β(C)
C(~xOPT ).

This proposition coincides with Proposition 3.2 of Cominetti et al. (2009)
in the case where players have the same cost functions. They refer to Rough-
garden (2005) and use ideas of Correa et al. (2004). The proof is routine.

Proof of Proposition 5.4. We have

C(~xNE) =
∑
k∈[K]

∑
a∈A

(
cka(x

NE
a )− c̃ka(xNEa )

)
xNE,ka + c̃ka(x

NE
a )xNE,ka

≤
∑
k∈[K]

∑
a∈A

(
cka(x

NE
a )− c̃ka(xNEa )

)
xNE,ka + c̃ka(x

NE
a )yka

≤
∑
a∈A

β(ca)
∑
k∈[K]

xNE,ka cka(x
NE
a )

+ C(~y)

≤ β(C)C(~xNE) + C(~y)

where we use Equation (5.2) to get the first inequality and the definition of
β(·) to get the second inequality.

We finish by taking ~y = ~xOPT .

5.3.3 Computation of the bound

We give now an explicit upper bound on β(c).

Proposition 5.5. Consider a K-tuple of cost functions c = (c1, . . . , cK) and
define

δ(c) = sup
k,`∈[K], x∈R+

(c`)′(x)

(ck)′(x)
and λ(c) = sup

k,`∈[K], x∈R+

x(c`)′(x)

ck(x)
.

If each ck is differentiable, nonnegative, increasing, and convex, then the
following inequality holds

β(c) ≤ λ(c)

3

1

1 + 4
3

1
δ(c)(K−1)

.
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Before proving this proposition, let us note that the special case K = 1
gives β(c) = 0 and a price of anarchy of 1 as expected: if there is only one
player, Nash equilibrium and social optimum coincide.

Proof of Proposition 5.5. Here and throughout the proof, ck
′

stands for the
derivative of ck. We have thus

β(c) = sup
x,y∈RK+

f(x,y)∑
k∈[K] x

kck(x)
,

where

f(x,y) =
∑
k∈[K]

[(
xkck

′
(x) + ck(x)− ck(y)

)
yk −

(
xk
)2
ck
′
(x)
]
.

The proof goes as follows. We will first find an upper bound on f(x,y)
depending only on x, Equation (5.5) below. Then, using the quantities δ(c)
and λ(c) defined in the statement of the proposition, we will get an upper
bound on β(c) expressed as a supremum of a concave function on a convex
domain, Equation (5.6), which will lead by straightforward computations to
the desired expression.

We compute now an upper bound on f(x,y) depending only on x. We
have

f(x,y) ≤ sup
y∈R+,`∈[K]

(
x`c`

′
(x) + c`(x)− c`(y)

)
y −

∑
k∈[K]

(
xk
)2
ck
′
(x), (5.3)

since for a y ∈ RK
+ with fixed sum y =

∑
k∈[K] y

k, the first sum in the
definition of f can be made maximum by putting all the weight on a single
term.

The map g : y 7→
(
x`c`

′
(x) + c`(x)− c`(y)

)
y is concave on R+. Its

derivative is
g′(y) = x`c`

′
(x) + c`(x)− c`(y)− yc`′(y).

Let y? ∈ R+ such that g′(y?) = 0. We have

y?c`
′
(y?) + c`(y?) = x`c`

′
(x) + c`(x)

and thus, since x` ≤ x,

x`c`
′
(x`) + c`(x`) ≤ y?c`

′
(y?) + c`(y?) ≤ xc`

′
(x) + c`(x). (5.4)

Since the map u 7→ uc`
′
(u) + c`(u) is nondecreasing, these inequalities imply

x` ≤ y? ≤ x.
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Hence

g(y?) =
(
x`c`

′
(x) + c`(x)− c`(y?)

)
y? ≤ (x`+x−y?)c`′(x)y? ≤

(
x+ x`

2

)2

c`
′
(x),

where the first inequality is a consequence of the convexity of c`(·) and where
the second is obtained via direct calculations. Using this bound in Equa-
tion (5.3), we get an upper bound that does not depend on y and which is
valid for all x ∈ RK

+ :

f(x,y) ≤ sup
`∈[K]

(
x+ x`

2

)2

c`
′
(x)−

∑
k∈[K]

(
xk
)2
ck
′
(x)

≤ sup
`∈[K]

x2c`
′
(x)

4

[(
1 + 2

x`

x
− 3

(
x`

x

)2
)
− 4

δ(c)

∑
k 6=`

(
xk

x

)2
]
. (5.5)

Using Equation (5.5) in the definition of β(c) and with the help of the
parameter λ(c) defined in the statement of the proposition, we get

β(c) ≤ λ(c)

4
sup

x∈RK+ ,`∈[K]

[(
1 + 2

x`

x
− 3

(
x`

x

)2
)
− 4

δ(c)

∑
k 6=`

(
xk

x

)2
]
.

Without loss of generality we can assume that the maximum is attained with
` = 1. This inequality can thus be rewritten as

β(c) ≤ λ(c)

4
sup
z∈4

[(
1 + 2z1 − 3

(
z1
)2
)
− 4

δ(c)

K∑
k=2

(
zk
)2

]
, (5.6)

where 4 is the (K − 1)-dimensional simplex {z ∈ RK
+ :
∑

k∈[K] z
k = 1}. The

value of right-hand side can be obtained by maximizing a concave function
on a convex domain. We compute z? ∈ 4 maximizing its value:

z?,1 =
1 + θ(c)

3 + θ(c)
and z?,2 = · · · = z?,K =

1− z?,1

K − 1
,

where θ(c) = 4
δ(c)(K−1)

. Inequality (5.6) becomes then

β(c) ≤ λ(c)

4

[
1 + 2z?,1 − 3(z?,1)2 − θ(c)(1− z?,1)2

]
,

which leads to the upper bound given in the statement of the proposition.
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Note that when we adapt the proof of Proposition 5.5 with a parameter ω
analogue to the one of Harks (2011), we are not able to retrieve an equation
similar to (5.4).

We explain now how to deduce Theorem 5.1 and Proposition 5.2 from
Proposition 5.5.

Proof of Theorem 5.1. We have λ(C) larger that any λ(c), and we use the

inequality
1

1 + 4
3

1
δ(c)(K−1)

≤ 1.

Proof of Proposition 5.2. In this special case, we have ∆ larger than any δ(c),
and we have moreover δ(c) = λ(c) for all c. A straightforward calculation
leads to the desired formula.

5.4 The price of anarchy with affine cost functions is unbounded

In this section, we prove Proposition 5.3 by exhibiting an instance of the
game with affine cost functions giving a price of anarchy which can be made
arbitrarily large.

Consider the graph with one origin-destination pair and two parallel arcs
a and b. There are two players. The first player has a total demand of M
and his cost functions are c1

a(x) = x and c1
b(x) = x+ 2M . The second player

has a total demand of 1 and his cost functions are c2
a(x) = 2M2x + 1 and

c2
b(x) = M3x. Denote by I(M) this instance.

Since the graph has parallel arcs, the Nash equilibrium is unique (Rich-
man and Shimkin, 2007). We prove that it is reached with the multiflow ~x
where player 1 puts all his demand on the arc a and player 2 puts all his
demand on the arc b. Indeed, we have in this case, for any y1 ∈ F1 and
y2 ∈ F2,

c̃1
a(xa)(y

1
a − x1

a) + c̃1
b(xb)(y

1
b − x1

b)

= 2M(y1
a −M) + (2M + 1)(M − y1

a) = M − y1
a ≥ 0,

c̃2
a(xa)(y

2
a − x2

a) + c̃2
b(xb)(y

2
b − x2

b)

= (2M3 + 1)(1− y2
b ) + 2M3(y2

b − 1) = 1− y2
b ≥ 0.

Proposition 1.9 gives then that ~x is a Nash equilibrium. The social cost at
equilibrium is C(~x) = M2 +M3.

Consider now the multiflow ~z where player 1 puts all his demand on the
arc b and player 2 puts all his demand on the arc a. These flows are feasible
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and give a social cost C(~z) = 5M2 + 1. We have then

PoA(I(M)) ≥ C(~x)

C(~z)
=
M3 +M2

5M2 + 1
.

By lim
M→+∞

PoA(I(M)) = +∞, we get the result.

Proof of Proposition 5.3. The instance I(6M) gives a price of anarchy greater
than M .

5.5 Discussion and open questions

The bound of Proposition 5.5 makes sense only when λ(c) − 3 < 4
δ(c)(K−1)

,

since otherwise it is larger than 1. When λ(c) > 3, this condition is met only
when

K < 1 +
4

δ(c)(λ(c)− 3)
.

In other words, there is a whole range of cost functions and numbers of
players for which we are unable to provide any concrete bounds. It would be
interesting to extend the bound to a larger set of instances. Proposition 5.3
shows that the price of anarchy is unbounded as soon as the set of affine cost
functions is included in the set of allowable cost functions. Its proof needs
that the demand of one player becomes infinitely larger than the demands of
the others. The question whether the price of anarchy is bounded with affine
cost functions, when for instance the quantity dj∑

k∈[K] d
k remains bounded for

each player j, remains an open question.

Another result from Cominetti et al. (2009) that can be extended to the
case with player-specific cost functions is their Proposition 3.7 stating that
the social cost at equilibrium is bounded by the optimal cost of the game
where the demands are multiplied by 1 +β(C). More precisely, we can adapt
their proof to show the following proposition.

Proposition 5.6. Consider an atomic splittable network congestion game
with player-specific cost functions. Suppose that the available cost functions
in C are differentiable, nonnegative, increasing, and convex. Consider an
instance I with an equilibrium multiflow ~xNE(I) and the instance αI where
all demands are multiplied by α ≥ 1, with an optimal multiflow ~xOPT (αI).
Suppose that β(C) < 1, we have

C(~xNE(I)) ≤ 1

α− β(C)
C(~xOPT (αI)).
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Proof. The proof is almost the same as in Cominetti et al. (2009). For the
ease of reading, we denote ~xNE = ~xNE(I). Let ~y be a flow feasible for the
instance αI, then

αC(~xNE) = α

∑
k∈[K]

∑
a∈A

(
cka(x

NE
a )− c̃ka(xNEa )

)
xNE,ka + c̃ka(x

NE
a )xNE,ka


≤ α

∑
k∈[K]

∑
a∈A

(
cka(x

NE
a )− c̃ka(xNEa )

)
xNE,ka + c̃ka(x

NE
a )

yka
α


≤
∑
k∈[K]

∑
a∈A

(
cka(x

NE
a )− c̃ka(xNEa )

)
xNE,ka + c̃ka(x

NE
a )yka

≤ β(C)C(~xNE) + C(~y)

where we use Equation (5.2) with yka
α

to get the first inequality, the fact that
α ≥ 1 and cka(x

NE
a ) − c̃ka(x

NE
a ) ≤ 0 to get the second inequality, and the

definition of β(·) to get the last inequality.
We finish by taking ~y = ~xOPT (αI).

This proposition extends Proposition 5.4 which deals with the case α = 1.
In particular we have C(~xNE(I)) ≤ C(~xOPT ((1 + β(C))I)).

Another possible further development would be to compare the game
studied in this chapter with the nonatomic case. Cominetti et al. (2009)
proved that when all players have same cost functions, same demand, and
same origin-destination pair, the social cost at equilibrium of the atomic
game is bounded by the one of the corresponding nonatomic game. In par-
ticular, the price of anarchy of the atomic game is bounded by the one of the
nonatomic game. The key point in their context is that the atomic game is
potential, which is unlikely to be the case here. Whether this bound holds
with player-specific cost functions is an open question.





CHAPTER 6

Sensitivity of the equilibrium to the
demand

Abstract

We consider an atomic congestion game on a graph with parallel arcs. In this
game, each player has a non-negligible demand that he splits over the different
arcs, in order to minimize his total cost. We consider games with player-specific
cost functions: players are impacted in their own way by the congestion. In this
context, a Nash equilibrium is known to exist and to be unique. We are interested
in the sensitivity of the equilibrium to the repartition of the demand.

We prove regularity results on the Nash equilibrium flows. Moreover, we study

the impact of a transfer of a part of the demand of one player to another player

with initally more demand. When there are two arcs or two players, on each arc,

the flow of the player giving a part of his demand decreases or remains constant

equal to zero. Symmetrically, on each arc, the flow of the other player increases

or remains constant equal to zero. In the specific case where the cost functions

are equal for each player, the social cost at equilibrium does not increase. As a

corollary of this result, we found the already known result stating that the social

cost at equilibrium decreases when players form coalitions.

6.1 Introduction

The sensitivity analysis of a congestion game is the evaluation of the impact
of the input (graph, cost functions and demands) on the equilibrium flow.
In practice, these analyses are used for example for designing networks, es-
timating origin-destination matrices or fixing pricing rules. In this case, the
model is a nonatomic congestion game and formulas have been designed in
order to perform the sensitivity analysis, see Tobin and Friesz (1988), Qiu
and Magnanti (1989), Bell and Iida (1997). However the conditions of appli-
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cation are not always satisfied, even for simple graphs as shown by Josefsson
and Patriksson (2007).

Taking a more theoretical point of view, Hall (1978) proved that the equi-
librium flow of nonatomic games is continuous with respect to the demand
when all users have the same cost functions. This result have been extended
for more general cost functions by Dafermos and Nagurney (1984). A more
general study, concerning in particular the differentiability, has been made
by Patriksson and Rockafellar (2003) and Patriksson (2004). The latter gave
a characterization for the existence of a directional derivative of the equi-
librium flow with respect to the demand. Josefsson and Patriksson (2007)
showed that while equilibrium costs are directionally differentiable, this does
not hold for the flows.

A natural intuition would be that an increase of the demand gives an
increase of the equilibrium cost. Hall (1978) proved that this result is true
for two-terminal graphs when players have the same cost functions, and Lin
et al. (2011) gave another combinatorial proof. However this intuition is false
in general, as noted for example by Fisk (1979), see Example 0.3. Dafermos
and Nagurney (1984) proved that an “average” total cost will necessarily
increase.

More recently, Englert et al. (2008) proved that there are networks for
which a slight increase of the total demand changes the strategies of all users.
This “microscopic” instability, in the sense that the total flow on each arc
does not change too much, happens in particular for the class of generalized
Braess graphs introduced by Roughgarden (2006).

Our purpose is to make a sensitivity analysis for atomic splittable games.
We consider a set of players having a stock, the demand, to divide among
different resources. For example, a freight company may have to choose
between several means of transportation. This situation can be modelled
by an atomic game on a network with parallel arcs, each arc representing a
resource. This kind of games were extensively studied, see for example Orda
et al. (1993), Altman et al. (2002), Richman and Shimkin (2007), Bhaskar
et al. (2009, 2010). We say that we reach a Nash equilibrium when no player
can improve his cost by changing unilaterally his repartition. More results
and extensions on Nash equilibria can be found in Gairing et al. (2006), Harks
(2008), Cominetti et al. (2009). These works consider mostly the case when
every player is impacted in the same way by the congestion.

In this chapter, we study the sensitivity of the equilibrium in atomic
splittable games on parallel networks. We show that the equilibrium flow
is continuous with respect to the demand, but not necessarily differentiable.
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We find conditions ensuring the differentiability. Furthermore, we consider
the case where a player i transfers a part of his demand to an another player
j with initially more demand. In this case, we show that if there are two arcs
(i.e. two choices) or two players, on each arc, the flow of player i (resp. player
j) decreases (resp. increases) or remains constant equal to zero. Moreover,
when all players have same cost functions, the social cost at equilibrium
decreases of remains constant.

As a corollary of this result, when several players make a coalition, the
social cost at equilibrium decreases or remains constant. However, this last
result does not hold when players have specific cost functions.

6.2 Model and main results

We are given a two-terminal graph with a set A of parallel arcs and K ≥ 2
players identified with the integers 1, . . . , K. We consider the model of atomic
splittable games as in Section 1.3.1. We assume that the cost functions cka are
increasing and strictly convex. The topology of the graph allows to identify
arcs and routes. The strategies for the player k are then the repartitions of
his demand dk among the arcs.

This kind of games belongs to the class of atomic splittable network con-
gestion games, for which a Nash equilibrium always exists, see Section 1.3.2.
Furthermore, the graph belongs to the class of nearly-parallel graphs, and
the equilibrium flow is unique (Richman and Shimkin, 2007).

We are interested by the sensitivity of the equilibrium flow with respect to
the demand. We define the application ~xNE giving for a vector of demands
d ∈ RK

+ the (unique) equilibrium multiflow ~xNE(d).
Recall that the total cost faced by all players is called the social cost and

is defined by

Q(~x) =
∑
k∈[K]

∑
a∈A

xkac
k
a(xa).

The support of player k is the set of arcs used by this player

supp(xk) = {a ∈ A, xka > 0}.

The first result deals with the regularity of the equilibrium flow.

Theorem 6.1. The equilibrium multiflow ~xNE is continuous with respect to
the vector of demands.

Furthermore, when there are two arcs or two players, and the cost func-
tions are twice continuously differentiable, the equilibrium multiflow is dif-
ferentiable on every open set of demands where the support at equilibrium is
constant.
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Our two other main results are the following Theorems.

Theorem 6.2. Suppose that there are two arcs or two players and that a
player i tranfers a part of his demand to a player j with di ≤ dj. Then, on
each arc, the flow of player i (resp. player j) decreases (resp. increases) or
remains constant equal to zero.

Theorem 6.3. Suppose that there are two arcs or two players and that a
player i tranfers a part of his demand to a player j with di ≤ dj. Assume
that all players have the same twice continuously differentiable cost functions.
Then the social cost at equilibrium decreases or remains constant.

Remark 6.4. The assumption of twice differentiability is not necessary when
there are two arcs.

Theorem 6.3 is not valid when there are three arcs or three players, or
when players have specific cost functions, see Section 6.7. Whether the dif-
ferentiability part of Theorem 6.1 and Theorem 6.2 are valid when there are
three arcs or three players is an open question.

The remaining of the chapter is organized as follows. We prove Theo-
rem 6.1 in Section 6.3. Section 6.4 introduces general properties of the Nash
equilibrium that will be used to prove Theorems 6.2 and 6.3. Section 6.5
is devoted to the proof of Theorem 6.2, and the proof of Theorem 6.3 is in
Section 6.6. Finally, Section 6.7 gives examples disproving the results for
more general games.

6.3 Regularity of the equilibrium flow

This section is devoted to the proof of Theorem 6.1.
Theorem 6.1 is a direct corollary of Proposition 6.5, where we prove the
continuity, and Proposition 6.9, where we prove the differentiability of the
equilibrium flows.

6.3.1 Continuity

A natural question is the continuity of the equilibrium with respect to the
vector of demands.

Proposition 6.5. The application ~xNE is continuous on RK
+ .
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Proof. Let 4 = {p ∈ R|A|+ :
∑

a∈A pa = 1} be the (|A| − 1)-dimensional
simplex, and F : 4K × RK

+ → R|A|K defined by

F k
a (~p,d) =

cka
∑
`∈[K]

p`ad
`

+ pkad
kcka
′

∑
`∈[K]

p`ad
`

 dk,
for every a and k. The application F is continuous in both variables.

Then, according to Proposition 1.9, the multiflow ~xNE(d) is the Nash
equilibrium flow if and only if xNE,ka (d) = pkad

k, for all a and k, where ~p
satisfies the variational inequality

F (~p,d) · (~q − ~p) ≥ 0, for any ~q ∈ 4K . (V I(d))

By a sequential argument, using the continuity of F and the compactness
of4K , elementary calculations give that the solution of (V I(d)) is continuous
with respect to d. We can conclude.

6.3.2 Differentiability

The application ~xNE is not differentiable in general as shown by the following
example, inspired from Hall (1978).

Example 6.6. Consider a graph with two arcs a and b and only one player
with demand d. Suppose that the cost functions are

ca(x) = x+ 1 and cb(x) = x.

A direct calculation gives that at equilibrium xa = 0 and xb = d when
0 ≤ d ≤ 1

2
, and xa = 2d−1

4
, xb = 2d+1

4
when d ≥ 1

2
. Hence ~xNE is not

differentiable at the point d = 1
2
.

However we can prove that when the players have the same cost functions,
~xNE is differentiable on the sets where the support remains constant.

We begin with technical lemmas.

Lemma 6.7. Let I = {i1, . . . , ip} be a subset of indices of [K]. For any g
and h ∈ RI such that gik > 0 and hik > 0 for every k ∈ [p], we define the
p× p matrix MI(g,h) by

mk,`(g,h) =

{
gik for k 6= `
gik + hik for k = `.

Then, MI(g,h) is nonsingular.
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Let then AI(g,h) = MI(g,h)−1, and define the K ×K matrix ÃI(g,h)
by

ãk,`(g,h) =

{
ak,` for k and ` ∈ I,
0 for k or ` /∈ I.

Consider a set (Ii, gi,hi)i∈[n] with Ii ⊆ [K], gi and hi ∈ R|Ii|+ for every i. If
every k ∈ [K] belongs to at least a Ii, the K ×K matrix∑

i∈[n]

ÃI(gi,hi)

is nonsingular.

Proof. Without loss of generality, assume that I = [p]. A straightforward
calculation using classical techniques gives that

detM[p](g,h) =

∑
k∈[p]

gk
hk

+ 1

 ∏
k∈[p]

hk.

Since the hk and gk are positive, we get that detM[p](g,h) > 0 and hence
M[p](g,h) is nonsingular.

More precisely, M[p](g,h)−1 = A[p](g,h) is defined by

ak,`(g,h) =



− gk(∑
i∈[p]

gi
hi

+ 1
)
hkh`

for k 6= `

1

hk
− gk(∑

i∈[p]
gi
hi

+ 1
)

(hk)2
for k = `.

(6.1)

In particular, ak,`(g,h) < 0 for k 6= `, and ak,k(g,h) > 0. since the gi
and hi are positive. Moreover, the sum of the coefficients of column ` is

1(∑
i∈[p]

gi
hi

+1
)
h`
> 0.

Fiedler and Pták (1962) defined a Z-matrix as a square matrix A with
ak,` ≤ 0 for every k 6= ` . Minkowski (1900) proved that a Z-matrix whose
column sums are positive has a positive determinant, and in particular is
nonsingular. For more details, see (Berman and Plemmons, 1979, Chapter
6).

We saw that AIi(gi,hi) is a Z matrix with positive column sums for every

i, hence ÃIi(gi,hi) is a Z-matrix with nonnegative column sums, since we
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only add lines and columns of zeros. Furthermore, for every k ∈ [K], since k

is in at least a set Ii, the column k of
∑

i∈[n] ÃIi(gi,hi) has a positive sum.

Then
∑

i∈[n] ÃIi(gi,hi) is a Z matrix with positive column sums and is
nonsingular.

Fix a set of arcs for each player, i.e. S = (Sk)k∈[K] ∈ P(A)K . We

denote any vector of R
∑
k∈[K] |Sk| by ~xS = (xka)k∈[K],a∈Sk and define xS,a =∑

k∈[K],a∈Sk x
k
a.

Lemma 6.8. Suppose that the cost functions are twice continuously differen-
tiable. Fix a nonempty set of arcs for each player, S = (Sk)k∈[K] ∈ P(A)K.

Define the application HS : R
∑
k∈[K] |Sk| × RK → R

∑
k∈[K] |Sk| × RK by

HS(~xS,π) = (G(~xS,π), D(~xS)) where

Gk
a(~xS,π) = cka(xS,a) + xkac

k
a

′
(xS,a)− πk k ∈ [K], a ∈ Sk

Dk(~xS) =
∑
a∈Sk

xka k ∈ [K].

Then HS is continuously differentiable, invertible on any subset U × RK

such that cka
′
(xS,a) > 0 for every a and ~xS ∈ U . Moreover, H−1

S is continu-
ously differentiable on HS(U × RK).

Note that for the ease of notation, we drop the dependency on S of the
functions G and D.

Proof of Lemma 6.8. Since ca is twice continuously differentiable for every
a, HS is continuously differentiable. To prove that HS is invertible with an
inverse continuously differentiable, we use the inverse function theorem. We
only need to show that for every (~xS,π) ∈ U × RK , the Jacobian matrix of
HS at this point is nonsingular.

Let then (~xS,π) ∈ U × RK and denote by J the Jacobian matrix of HS

at this point. For every k, let gka = cka
′
(xS,a) + xkac

k
a
′′
(xS,a) for a ∈ Sk and

hka = cka
′
(xS,a) for every a ∈ A.
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A direct calculation gives that for any k ∈ [K] and a ∈ Sk,

∂Gk
a

∂x`b
(~xS,π) =


gka for a = b, k 6= `
gka + hka for a = b, k = `
0 for a 6= b.

∂Gk
a

∂π`
(~xS,π) =

{
0 for k 6= `
−1 for k = `

∂Dk

∂x`b
(~xS,π) =

{
0 for k 6= `
1 for k = `.

∂Dk

∂π`
(~xS,π) = 0.

For every a, we denote by Ka the set of players effectively using the arc:

Ka = {k ∈ [K], a ∈ Sk},

and consider the vectors ga = (gka)k∈Ka and ha = (hka)k∈Ka . Let then the
|Ka| × |Ka| matrix MKa(ga,ha) be as in Lemma 6.7. Since we assumed that
cka
′
(xS,a) > 0, we can apply the lemma, and this matrix is nonsingular.

Let (~λ,µ) ∈ R
∑
k∈[K] |Sk| × RK be in the kernel of J . J(~λ,µ) = 0 if and

only if 
MKa(ga,ha)λa = µKa a ∈ A,∑
a∈Sk

λka = 0 k ∈ [K].
(6.2)

where λa = (λka)k∈Ka and µKa = (µk)k∈Ka .

In order to consider matrices with same dimension, we consider for every
a the K × K matrix ÃKa(ga,ha) defined in Lemma 6.7. We also define
~Λ ∈ RK|A| by Λk

a = λka for a ∈ Ka and 0 elsewhere. Then, the system (6.2)
is equivalent to the following.

Λa = ÃKa(ga,ha)µ a ∈ A,∑
a∈A

Λa = 0.

These conditions imply that

∑
a∈A

Λa =

(∑
a∈A

ÃKa(ga,ha)

)
µ = 0.
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Since the sets Sk are nonempty, for every k ∈ [K], there is at least an
arc a such that k ∈ Ka. We can apply the second part of Lemma 6.7,
and

∑
a∈A ÃKa(ga,ha) is nonsingular. It gives µ = 0 and then ~Λ = ~0. In

particular, ~λ = 0, and J is nonsingular. We can conclude.

To prove that the equilibrium flow is differentiable when the support
of the players remains constant, we have to define notions relative to this
support. Fix a set of arcs for each player i.e. S = (Sk)k∈[K] ∈ P(A)K .

We can decompose any multiflow ~x ∈ RK|A| in the following way

~x = (~xS, ~xS̄),

with ~xS = (xka)k∈[K],a∈Sk and ~xS̄ = (xka)k∈[K],a/∈Sk .

Proposition 6.9. Suppose that there are two arcs or two players and that
the cost functions are twice continuously differentiable. The application ~xNE

is differentiable on every open subset D of RK
+ such that d 7→ supp(~xNE(d))

is constant on D.

Proof. Denote by S = (Sk)k∈[K] the constant support: for every d ∈ D,

supp(~xNE,k(d)) = Sk.
We extend the definition of Gk

a made in Lemma 6.8. For a multiflow
~x ∈ RK|A| and π ∈ RK ,

Gk
a(~x,π) = cka(xa) + xkac

k
a

′
(xa)− πk, k ∈ [K], a ∈ A.

Let d0 ∈ D, we prove that there is a neighbourhood V (d0) of d0 such
that ~xNE is differentiable on V (d0). Let ~x be a multiflow, then ~x = ~xNE(d0)
if and only if

HS(~xS,π(~xS)) = (0,d0) (6.3)

~xS̄ = 0 (6.4)

Gk
a(~x,π(~x)) > 0 k ∈ [K], a /∈ Sk. (6.5)

The condition (6.5) is valid since D is an open subset and Gk
a and ~xNE

are continuous. Indeed, if Gk
a(~x,π(~x)) = 0 for a given k and a /∈ Sk, the

player k will use the arc a when we increase his demand, see Corollary 6.17
valid when there are two arcs or two players and proved in Section 6.5.

Furthermore, there exists a neighbourhood V (d0) such that for any d ∈
V (d0), ~xNES̄ (d) still satisfies the condition (6.5).
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Since xNEa (d) > 0 for any a ∈ ∪k∈[K]S
k and d ∈ D, we have c′a(x

NE
a (d)) >

0. We can apply Lemma 6.8. Since (~xNES (·),π(~xNES (·)) = H−1
S (0, ·) is differ-

entiable, we get that ~xNES is differentiable on D.

Finally, condition (6.4) is satisfied on D by definition. In particular ~xNES̄

is differentiable.

We proved that ~xNE is differentiable on a neighbourhood of d0 for every
d0 ∈ D. We can conclude.

6.4 Further properties of the Nash equilibrium

6.4.1 Characterization of the Nash equilibrium

We recall the definition of an equilibrium as in Proposition 1.10, adapted to
the context of parallel arcs.

Proposition 6.10. The multiflow ~x is a Nash equilibrium flow if and only
if, for all k, xk is a feasible flow for player k such that there exists πk ∈ R
with

cka(xa) + xkac
k
a

′
(xa) ≥ πk for all a ∈ A, (6.6)

cka(xa) + xkac
k
a

′
(xa) = πk for all a ∈ A such that xka > 0. (6.7)

Then πk = πk(~x) is the marginal cost at equilibrium for the player k.

Remark 6.11. Let u and v be the two vertices, such that all arcs are (u, v).
Then πk coincides with πkv in Proposition 1.10, where πku is fixed equal to
zero.

This characterization shows that the cost of each arc in the support of
a player is smaller than the marginal cost of this player. More precisely, we
have the following corollary.

Corollary 6.12. Let ~x be an equilibrium flow. Then

max
a∈supp(xk)

cka(xa) < πk(~x) ≤ min
b/∈supp(xk)

ckb (xb).

Proof. Let a ∈ supp(xk) and b /∈ supp(xk). Proposition 6.10 gives cka(xa) +
xkac

k
a
′
(xa) = πk(~x) ≤ ckb (xb) and then cka(xa) < ckb (xb) since xka > 0.
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6.4.2 Comparison of two equilibria

In order to prove Theorem 6.2 we use the following useful lemma, holding
for any number of arcs and players. The intuition behind this lemma is the
following. Suppose that a player puts more flow on an arc in an equilibrium
~z than in an equilibrium ~x, although the cost of this arc is greater. Then
this player puts more flow on any arc whose cost is lower in ~z than in ~x.

Lemma 6.13. Let d and d̃ be two vectors of demands and ~x and ~z the
associated equilibrium flows . For any arcs a and b and player k, za ≥ xa

zka > xka
zb ≤ xb

⇒ (
zkb > xkb or zkb = xkb = 0

)
.

Proof. Suppose then that za ≥ xa, z
k
a > xka and zb ≤ xb.

Suppose first that xkb = 0. Then zkb ≥ xkb , with equality iff zkb = xkb = 0.
Suppose then that xkb > 0. Proposition 6.10 at the equilibrium ~x gives

ckb (xb) + xkbc
k
b

′
(xb) ≤ cka(xa) + xkac

k
a

′
(xa).

Furthermore, zka > xka ≥ 0, and Proposition 6.10 at the equilibrium ~z gives

cka(za) + zkac
k
a

′
(za) ≤ ckb (zb) + zkb c

k
b

′
(zb).

These two equations together with the facts that cka and cka
′

are increasing,
za ≥ xa and zka > xka give that

ckb (xb) + xkbc
k
b

′
(xb) < ckb (zb) + zkb c

k
b

′
(zb).

Finally, since zb ≤ xb and ckb , c
k
b
′

are increasing, we must have zkb > xkb in
order to satisfy this last equation.

Lemma 6.13 gives the following corollary, which precises the situation
when the flow on each arc is the same for two vectors of demands, and whose
proof is straightforward.

Corollary 6.14. Let d and d̃ be two vectors of demands and ~x and ~z the
associated equilibrium flows. Suppose that the aggregated flows are the same
in both equilibria: x = z. Then for every player k, there is an arc a ∈ A
with zka > xka if and only if d̃k > dk.

Furthermore, when d̃k > dk, we have zka > xka or zka = xka = 0 for every
arc a ∈ A.
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6.5 Evolution of the equilibrium flows after the transfer

We fix d a vector of demands and two players i and j, with di ≤ dj. We
consider the equilibrium after player i transfers a part δ > 0 of his demand
to player j. We define dδ the vector of demands after player i has transfered
a part δ of his demand to player j:

diδ = di − δ, djδ = dj + δ, and dkδ = dk for k 6= i, j.

6.5.1 Proof of Theorem 6.2

This section is devoted to the proof of Theorem 6.2. More precisely, we prove
the following Proposition:

Proposition 6.15. Suppose that there are two arcs or two players and let
~x = ~xNE(d) and ~y = ~xNE(dδ). Then for every arc a ∈ A,

yia < xia or
(
yia = xia = 0 and ya ≥ xa

)
,

yja > xja or
(
yja = xja = 0 and ya ≤ xa

)
.

Moreover, when there are two arcs,

(yka − xka)(ya − xa) ≤ 0 for k 6= i, j.

Theorem 6.2 is a direct corollary of Proposition 6.15.

Proof of Proposition 6.15. When y = x, the result holds for any number of
arcs and classes according to Corollary 6.14. Suppose then that y 6= x.

We first consider the case where there are two arcs, a and b. Suppose
without loss of generality that ya > xa and yb < xb. We first prove the
evolution for the arc a.

Consider a player k 6= j, then dkδ ≤ dk. Suppose that yka > xka, Lemma 6.13
applied with ~z = ~y gives that ykb ≥ xkb . Thus dkδ = yka + ykb > xka + xkb = dk

which is impossible. Then yka ≤ xka. In particular, yia ≤ xia.
Summing over all these players, we find that in order to satisfy ya > xa, we
have yja > xja.

We prove now the evolution for the arc b. Consider a player k 6= i, j.
Since dkδ = dk and yka ≤ xka, we must have ykb ≥ xkb . For player j, since
yja > xja, Lemma 6.13 applied with ~z = ~y and k = j ensures that yjb > xjb or
yjb = xjb = 0.
Again, summing over all players except i, we find that in order to satisfy
yb < xb, we have yib < xib.
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To conclude, apply Lemma 6.13 with ~z = ~x, ~x = ~y, k = i and a and b
exchanged. It gives that whenever yia = xia, they are both equal to zero.

Consider now the case where there are two players. Since y 6= x, there is
an arc a0 ∈ A such that ya0 6= xa0 . Without loss of generality ya0 > xa0 , and
there is an arc b0 ∈ A such that yb0 < xb0 . We have yka0 > xka0 for a player
k ∈ {i, j} and y`b0 < x`b0 for a player ` ∈ {i, j}.

For every arc b such that yb ≤ xb, Lemma 6.13 applied with ~z = ~y and
a = a0 gives that ykb > xkb or ykb = xkb = 0. In particular when applied with
b0, we get k 6= `. Then, in order to satisfy yb ≤ xb, we must have y`b ≤ x`b.

For every arc a such that ya ≥ xa, apply Lemma 6.13 with ~z = ~x, ~x = ~y,
k = `, a = b0 and b = a. It gives that y`a < x`a or y`a = x`a = 0. Again, in
order to satisfy ya ≥ xa, we must have yka ≥ xka.

Summing these inequalities over all arcs, we get that dkδ ≥ dk and d`δ ≤ d`,
and we conclude that k = j and ` = i.

We have proved that, for player i, yia < xia or yia = xia = 0 for every arc a
such that ya ≥ xa, and yib ≤ xib for every arc b such that yb ≤ xb. It remains
to prove that the inequality is strict for arcs b such that yb < xb. Consider
then such an arc b. Since yjb ≥ xjb and there are only two players, we must
have a strict inequality for player i too: yib < xib. The same argument for
player j with reverse inequalities allows to conclude.

6.5.2 Corollaries

In addition to Theorem 6.2, Proposition 6.15 gives other corollaries that will
be useful for the remaining of the chapter. The first one is straightforward.

Corollary 6.16. Suppose that there are two arcs or two players, and let
~x = ~xNE(d) and ~y = ~xNE(dδ). Then,

1. supp(yi) ⊆ supp(xi) and supp(xj) ⊆ supp(yj).

2. {a ∈ A, ya < xa} ⊆ supp(xi) and {a ∈ A, ya > xa} ⊆ supp(yj).

We consider now the “limit” cases when there are two arcs or two players.
These cases appear when the cost of an arc with no flow is equal to the
marginal cost.

Corollary 6.17. Suppose that there are two arcs or two players, and let
~x = ~xNE(d) and ~y = ~xNE(dδ).

1. Let b /∈ supp(xj) be such that cjb(xb) = πj(~x). Then b ∈ supp(yj).

2. Let b /∈ supp(yi) be such that cib(yb) = πi(~y). Then b ∈ supp(xi).
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Proof. We prove only the first point since the proof of the second one is
exactly the same, where we replace j by i and switch ~x and ~y.

Suppose first that yb > xb, then Proposition 6.15 gives yjb > xjb, and in
particular b ∈ supp(yj). Suppose then that yb ≤ xb and for a contradiction
that b /∈ supp(yj). For every arc a 6= b, we have since cjb is increasing

cja(xa) + xjac
j
a

′
(xa) ≥ πj(~x) = cjb(xb) ≥ cjb(yb) ≥ πj(~y). (6.8)

Consider then an arc a ∈ supp(yj). Equation (6.8) gives

cja(ya) + yjac
j
a

′
(ya) = πj(~y) ≤ cja(xa) + xjac

j
a

′
(xa).

Moreover, Proposition 6.15 gives that yja > xja, and since cja and cja
′

are
increasing we get that ya < xa.

Since the total demand is the same before and after the transfer, we get
a contradiction in the case where there are two arcs. In the case where there
are two players, there must be an arc a0 such that ya0 > xa0 . According to
Corollary 6.16, we have a0 ∈ supp(yj). Since we proved that ya < xa for
every a ∈ supp(yj), we get a contradiction.

6.6 Evolution of the social cost at equilibrium when players have
same cost functions

In this section, we suppose that every player has the same cost functions:
cka = ca is independent of k for every arc a. In this context, we redefine the
function Q giving the social cost, which does not depend on the multiflow ~x
but only on the aggregated flow x = (xa)a∈A:

Q(x) =
∑
a∈A

xaca(xa).

Recall that we consider the equilibrium after player i transfers a part
δ > 0 of his demand to player j, and that the vector of demands after the
transfer is denoted by dδ. We define x̄ and Q̄ on [0, di] by x̄(δ) = xNE(dδ)
and Q̄(δ) = Q(x̄(δ)).

We prove Theorem 6.3, i.e. that Q̄ is nonincreasing when there are two
arcs or two players. This result is a generalization of Theorem 3.23 of Wan
(2012a) where there is no nonatomic players. Wan (2012a) proved that when
there are two arcs the social cost at equilibrium cannot increase when two
players merge, i.e. in our context when player i tranfers all his demand to
player j. The question whether our result remains valid with nonatomic
players deserves future work.
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Note that this result is not valid with three arcs, as shown by Huang
(2011), or when we allow player-specific cost functions, see Section 6.7.

In order to prove Theorem 6.3, we consider the situation when the support
of the players remains the same after the transfer. We treat separately the
case where players i and j have the same support in Section 6.6.2, and the
case where they have a different one in Section 6.6.3. Hence the proof comes
form the monotonicity of the supports and the continuity of the equilibrium
cost, see Section 6.6.4.

We use extensively the following well-known result.

Lemma 6.18 (Orda et al. (1993)). Let d be a vector of demands and two
players k1 and k2 be such that dk1 ≤ dk2. Let ~x the equilibrium flow, then
xk1a ≤ xk2a for every arc a ∈ A. In particular, supp(xk1) ⊆ supp(xk2) and
πk1(~x) ≤ πk2(~x).

6.6.1 Preliminary results when the support of each player remains constant

Given a flow z = (za)a∈A and an arc a ∈ A, we define the vector z−a ∈ R|A|−1
+

by z−a = (za′)a′ 6=a. Then for every arc a ∈ A, we consider the function

Qa : R|A|−1
+ → R+ defined by

Qa(z
−a) =

∑
a′ 6=a

za′ca′(za′) +

(
d−

∑
a′ 6=a

za′

)
ca

(
d−

∑
a′ 6=a

za′

)
,

where d =
∑

k∈[K] d
k is the total demand.

For a feasible flow z, we have Qa(z
−a) = Q(z). Furthermore, Qa is dif-

ferentiable since the cost functions are differentiable. For a feasible flow x,
we have for any b 6= a

∂Qa

∂zb
(x−a) = cb(xb) + xbc

′
b(xb)− (ca(xa) + xac

′
a(xa)) .

Lemma 6.19. Suppose that the cost functions are twice continuously dif-
ferentiable. Let δ0 > 0 and suppose that for some a ∈ A and any δ small
enough, the support of each player keeps remains constant after a transfer of
δ, and ∑

b 6=a

∂Qa

∂zb

(
x̄−a(δ0)

)
(x̄b(δ0 + δ)− x̄b(δ0)) ≤ 0. (6.9)

Then Q̄′(δ0) ≤ 0.



110 CHAPTER 6. SENSITIVITY OF THE EQUILIBRIUM

Proof. According to Proposition 6.9, the equilibrium flow ~xNE is differen-
tiable, since the support of the players remains constant. In particular, x̄
and then Q̄ are differentiable. Moreover, Q̄(δ) = Q(x̄(δ)) = Qa(x̄

−a(δ)).
Then,

Q̄′(δ0) =
∑
b6=a

∂Qa

∂zb
(x̄−a(δ0))x̄′b(δ0)

= lim
δ→0

∑
b6=a

∂Qa

∂zb
(x̄−a(δ0))

x̄b(δ0 + δ)− x̄b(δ0)

δ

≤ 0.

6.6.2 When the two players keep the same common support

We look first at the situation when players i and j have the same support,
and this support is the same before and after the tranfer. In this case, we
can describe explicitely the flows.

Proposition 6.20. Let ~x = ~xNE(d) and ~y = ~xNE(dδ) and suppose that
supp(xi) = supp(xj) = supp(yi) = supp(yj). Then Q(x) = Q(y).

Proof. Denote by S0 be the common support. Let δmin = min(δ0, δ1), where

δ0 = min
a∈S0

(
xiac
′
a(xa)

)∑
a∈S0

1

c′a(xa)
,

δ1 =

(
min
b/∈S0

cb(xb)− πj(~x)

)∑
a∈S0

1

c′a(xa)
.

Note that δmin is well defined since c′a(x) > 0 for every x > 0, and is nonneg-
ative, according to Corollary 6.12. We show that when δ ≤ δmin, the players
keep the same support after the transfer.

Let then δ ≤ δmin. We consider the flow ~z defined by

zka = xka +
dkδ − dk

βc′a(xa)
1{a∈S0} for every player k,

where

β =
∑
a∈S0

1

c′a(xa)
.
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Then we show that ~z = ~y. Since za = xa for every arc a, it will give the
result.

We first check that ~z is an admissible flow. We have more precisely

zia = xia −
δ

βc′a(xa)
1{a∈S0}

zja = xja +
δ

βc′a(xa)
1{a∈S0}

zka = xka for k 6= i, j.

For each player k and arc a, we have zka ≥ 0 since δ ≤ δ0. Furthermore, we
can check easily that for every player k,

∑
a∈A z

k
a = dkδ . Hence, the flow ~z is

admissible.

We check now that ~z is an equilibrium flow, by checking that it satisfies

the conditions of Proposition 6.10 with πk(~z) = πk(~x)+
dkδ−d

k

β
for every player

k. Consider first a player k ∈ {i, j}. For every arc a ∈ S0.

ca(za) + zkac
′
a(za) = ca(xa) + xkac

′
a(xa) +

dkδ − dk

β

= πk(~x) +
dkδ − dk

β
with (6.7).

Consider now an arc a /∈ S0. In particular, zka = xka = 0. We have

ca(za) = ca(xa) ≥ πj(~x) +
δ

β
≥ πk(~x) +

dkδ − dk

β
,

where the first equality holds since za = xa, the first inequality since δ ≤ δ1,
and the last inequality for player i since πj(~x) ≥ πi(~x), according to Lemma
6.18. The conditions of Proposition 6.10 are satisfied for any player k ∈ {i, j}.

Consider then a player k 6= {i, j}, we have dkδ = dk and we retrieve

ca(za) + zkac
′
a(za) = πk(~x) for a ∈ supp(xk)

ca(za) ≥ πk(~x) for a /∈ supp(xk).

Then, using Proposition 6.10, ~z is an equilibrium, with πk(~z) = πk(~x)+
dkδ−d

k

β

for every player k. By uniqueness of the equilibrium, ~z = ~y.

Remark 6.21. Proposition 6.20 is valid for any number of arcs and players.
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Remark 6.22. We can extend Proposition 6.20 in a more general case. It
remains valid for any demand d̃ in the neighbourhood of d defined by

there exists S0 s.t. supp(xk) = S0 for all k s.t. d̃k 6= dk,

dk − d̃k ≤ mina∈S0

(
xkac
′
a(xa)

)
β,

d̃k − dk ≤
(
mina/∈S0 ca(xa)− πk(xa)

)
β,

d̃ =
∑

k∈[K] d̃
k =

∑
k∈[K] d

k = d.

We can also extend this result in the case where players have specific cost
functions. It remains valid as soon as for all players k such that d̃k 6= dk,∑

a∈S0

1
cka
′(xa)

does not depend on k. For example when the cost functions are

the same up to an additive constant.

6.6.3 When the two players keep the same different support

We suppose now that the players keep the same support, but there is at least
an arc in the support of one player which is not in the support of the other
one.

Since the players have the same cost functions, we can precise the Corol-
lary 6.16 coming from Proposition 6.15.

Corollary 6.23. Suppose that there are two arcs or two players. Let δ0 and
δ > 0 and note ~x = ~xNE(dδ0), ~y = ~xNE(dδ0+δ). Suppose that supp(xi) =
supp(yi) 6= supp(xj) = supp(yj). Suppose that x 6= y, then

{a ∈ A, ya < xa} = supp(xi),

{a ∈ A, ya > xa} = supp(xj) \ supp(xi).

Proof. When there are two arcs, Corollary 6.16 gives that {a ∈ A, ya <
xa} ⊆ supp(xi), and {a ∈ A, ya > xa} ⊆ supp(xj) \ supp(xi). A cardinality
argument gives the equalities.

When there are two players, let a ∈ supp(xi). Lemma 6.18 gives that
a ∈ supp(xj), and we have then

2ca(xa) + xac
′
a(xa) = πi(~x) + πj(~x). (6.10)

Since supp(~x) = supp(~y), we have also

2ca(ya) + yac
′
a(ya) = πi(~y) + πj(~y). (6.11)
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Since x 6= y, there is an arc a such that ya < xa. According to Corol-
lary 6.16, we have a ∈ supp(xi). Then, since the function u 7→ 2ca(u)+uc′a(u)
is increasing, we get with Equations (6.10) and (6.11)

πi(~y) + πj(~y) < πi(~x) + πj(~x).

In particular, if there is an arc a ∈ supp(xi) with ya ≥ xa, Equa-
tions (6.10) and (6.11) give πi(~y) + πj(~y) ≥ πi(~x) + πj(~x), which is not
possible. Then ya < xa for all arcs of supp(xi). Since Corollary 6.16 gives
that {a ∈ A, ya < xa} ⊆ supp(xi), we can conclude that {a ∈ A, ya < xa} =
supp(xi).

Finally, let a ∈ supp(xj) \ supp(xi). Since there are two players and
supp(~x) = supp(~y), we have xa = xja and ya = yja, and Proposition 6.15
gives that ya > xa. Conversely every arc a such that ya > xa belongs to
supp(xj) according to Corollary 6.16, but not to supp(xi) as we just proved.
Then {a ∈ A, ya > xa} = supp(xj) \ supp(xi).

In order to prove Theorem 6.3 we use the following lemmas.

Lemma 6.24. Let δ0 and δ > 0 and note ~x = ~xNE(dδ0), ~y = ~xNE(dδ0+δ).
Suppose that supp(xi) = supp(yi) 6= supp(xj) = supp(yj). For every a ∈
supp(xi) and b ∈ supp(xj) \ supp(xi),

∂Qa

∂zb
(x−a)(yb − xb) ≤ 0.

Proof. Since b /∈ supp(xi), Corollary 6.16 gives that yb ≥ xb and since a ∈
supp(xi), Corollary 6.12 gives that cb(xb) > ca(xa).

Consider the set Ib of players k such that b ∈ supp(xk). Then Ib is
nonempty and for every player k ∈ Ib we have, according to Proposition 6.10,

cb(xb) + xkbc
′
b(xb) ≤ ca(xa) + xkac

′
a(xa).

By summing over these players, we get

|Ib|cb(xb) + xbc
′
b(xb)

≤ |Ib|ca(xa) +

xa −∑
k/∈Ib

xka

 c′a(xa)

< |Ib|ca(xa) + xac
′
a(xa).

Since |Ib| ≥ 1, and cb(xb) > ca(xa) we must have

cb(xb) + xbc
′
b(xb) < ca(xa) + xac

′
a(xa),

i.e. ∂Qa
∂zb

(x−a) < 0.
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Lemma 6.25. Suppose that there are only two players. Let δ0 and δ > 0 and
note ~x = ~xNE(dδ0), ~y = ~xNE(dδ0+δ). Suppose that supp(xi) = supp(yi) 6=
supp(xj) = supp(yj). For δ small enough, there exists a ∈ supp(xi) such
that for every b ∈ supp(xi) \ {a},

∂Qa

∂zb
(x−a)(yb − xb) ≤ 0.

Proof. Consider an arc a ∈ arg max{ca′(xa′), a′ ∈ supp(xi)}. Let then b ∈
supp(xi) \ {a}.

Since supp(xi) ⊆ supp(xj) according to Lemma 6.18, a and b ∈ supp(xj).
Summing Equations (6.7) for both players, we get

2ca(xa) + xac
′
a(xa) = 2cb(xb) + xbc

′
b(xb). (6.12)

According to the definition of a, we have ca(xa) ≥ cb(xb) and then

ca(xa) + xac
′
a(xa) ≤ cb(xb) + xbc

′
b(xb), i.e.

∂Qa

∂xb
(x−a) ≥ 0. (6.13)

Furthermore, Corollary 6.23 gives that yb < xb.

We can now prove the result.

Proposition 6.26. Suppose that there are two arcs or two players. The cost
at equilibrium Q̄ is nonincreasing on the set of transfers such that the support
of each player remains constant after the transfer.

Proof. Let then δ0 such that the players keep the same support after a trans-
fer of δ0. We prove that Q̄′(δ) ≤ 0 for any δ ∈ [0, δ0].

When there are two arcs, the result is an immediate corollary of Propo-
sition 6.20 or Lemmas 6.19 and 6.24.

When there are two players, if they have the same support, the result
is a corollary of Proposition 6.20. If they have a different support, let a ∈
supp(xi) as in Lemma 6.25. Then, we prove that Equation (6.9) is satisfied.
Indeed, we use Lemma 6.24 for the sum over arcs in supp(xj) \ supp(xi),
Lemma 6.25 for the sum over arcs in supp(xi) \ {a}. The sum over arcs not
in supp(xj) is zero since there is no flow on these arcs before and after the
transfer. We can conlude with Lemma 6.19.

Note that when there are two arcs, Qa is a function of only one variable.
We can directly take its derivative, without using Lemma 6.19. Then, we do
not need to use the differentiability of ~xNE. The result holds then even if we
do not assume that the cost functions are twice continuously differentiable.
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6.6.4 Proof of Theorem 6.3

According to Theorem 6.2, and more precisely Corollary 6.16, the support
of player i is nonincreasing with respect to the inclusion, and the support of
player j is nondecreasing. Hence, when δ goes from 0 to di, the two players
change supports only a finite number of times. According to Proposition 6.26,
the equilibrium cost Q̄ is nonincreasing on a finite number of sub-intervals
of [0, di] whose closure is [0, di] itself.

Since Q̄ is continuous, using Theorem 6.1, we can conclude that Q̄ is
nonincreasing on [0, di]. It proves Theorem 6.3.

6.7 Discussion

A natural question is whether Theorems 6.2 and 6.3 are valid when there
are three arcs or three players. Another question is whether Theorem 6.3 re-
mains valid when we allow player-specific cost functions. The answer is “no”
for Theorem 6.3 and partially for Theorem 6.2, as shown by the following
examples.

6.7.1 When there are three arcs and three players

We introduce the example of Huang (2011).

Consider a graph with three arcs a, b and c, and three players 1, 2 and 3.
Suppose that the players have the same cost functions

ca(x) = 20x+ 5000, cb(x) = x2 + 500, and cc(x) = x11.

When the vector of demand is d = (0.1, 20.9, 200), the (rounded) flows at
equilibrium are in the following table and the equilibrium cost is 1 558 627.

Arc a b c

Flow
player 1 0 0 0.1
player 2 0 20.18 0.72
player 3 152.50 46.38 1.12

Total flow 152.50 66.55 1.95

After the transfer of δ = 0.1 from player 3 to player 2 we have a vector
of demand dδ = (0, 21, 200). The (rounded) flows at equilibrium are in the
following table and the equilibrium cost is 1 558 633. In particular, contrary
to Theorem 6.3, the cost has increased after the transfer.
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Arc a b c

Flow
player 1 0 0 0
player 2 0 20.24 0.76
player 3 152.49 46.33 1.18

Total flow 152.49 66.57 1.94

Moreover, the part concerning players that keep the same demand in
Theorem 6.2 does not hold, since (y3

a − x3
a)(ya − xa) > 0, where ~x (resp. ~y)

is the equilibrium flow before (resp. after) the transfer. However the other
part of Theorem 6.2 still holds, namely the part stating that on each arc the
flow of the player giving his demand decreases or remains constant equal to
zero, and the flow of the other player increases or remains constant equal to
zero.

Whether this result holds in general for graphs with more than two arcs
and two players is an open question.

6.7.2 When we allow player-specific cost functions

We introduce an example that contradicts Theorem 6.3 when we allow player-
specific cost functions.

Consider a graph with two arcs a and b, and two players 1 and 2.

Let the cost on arc b for player 1 (resp. on arc a for player 2) be pro-
hibitively high, in such a way that at equilibrium, for every repartition of the
demand, player 1 (resp. 2) puts all his demand on arc a (resp. b). Let the
total demand equal 5, and the costs c1

a(x) = 2x, c2
b(x) = x. When d1 = 3

and d2 = 2, the cost at equilibrium is 8, while after a transfer of 1, i.e. when
d1 = 4 and d2 = 1, the cost at equilibrium is 9. The result of Theorem 6.3
does not hold.

6.7.3 Consequences on the price of anarchy

A consequence of Theorem 6.3 is that for a fixed total demand, the repartition
giving the worst Nash equilibrium is when every player has the same demand.
More precisely, let d be the fixed total demand and denote by 4d the set of
repartitions of demand satisfying this total demand:

4d =

{
d ∈ RK

+ ,
∑
k∈K

dk = d

}
.
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We define then for every d ∈ 4d, the cost at equilibrium QNE(d). We
define furthermore the symmetric repartition d̄ such that d̄k = D

K
for every

k ∈ K. Then, we have

max
d∈4d

QNE(d) = QNE(d̄).
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Ordóñez, F., and Stier-Moses, N. E. Wardrop equilibria with risk-
averse users. Transportation Science, 44(1):63–86, 2010.

Ortuzar, J. d., and Willumsen, L. G. Modelling transport. 1994.

Pala, M., Baltazar, S., Liu, P., Sellier, H., Hackens, B., Mar-
tins, F., Bayot, V., Wallart, X., Desplanque, L., and Huant,
S. Transport inefficiency in branched-out mesoscopic networks: An analog
of the Braess paradox. Physical Review Letters, 108(7):076802, 2012.

Papadimitriou, C. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and System Sciences,



126 BIBLIOGRAPHY

48:498–532, 1994.

Papadimitriou, C. Algorithms, games, and the internet. In Proceedings
of the thirty-third annual ACM symposium on Theory of computing, pages
749–753. ACM, 2001.

Patricksson, M. The Traffic Assignment Problem: Models and Methods.
Utrecht, 1994.

Patriksson, M. Sensitivity analysis of traffic equilibria. Transportation
Science, 38(3):258–281, 2004.

Patriksson, M., and Rockafellar, R. T. Sensitivity analysis of aggre-
gated variational inequality problems, with application to traffic equilibria.
Transportation Science, 37(1):56–68, 2003.

Perakis, G. The price of anarchy under nonlinear and asymmetric costs.
Mathematics of Operations Research, 32(3):614–628, 2007.

Pigou, A. The economics of welfare. Transaction Publishers, 1924.
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Abstract

We consider congestion games on graphs. In nonatomic games, we are given a set of
infinitesimal players. Each player wants to go from one vertex to another by taking a route
of minimal cost, the cost of a route depending on the number of players using it. In atomic
splittable games, we are given a set of players with a non-negligible demand. Each player
wants to ship his demand from one vertex to another by dividing it among different routes.
In these games, we reach a Nash equilibrium when every player has chosen a minimal-cost
strategy.

The existence of a Nash equilibrium is ensured under mild conditions. The main
issues are the uniqueness, the computation, the efficiency and the sensitivity of the Nash
equilibrium. Many results are known in the specific case where all players are impacted
in the same way by the congestion. The goal of this thesis is to generalize these results in
the case where we allow player-specific cost functions.

We obtain results on uniqueness of the equilibrium in nonatomic games. We give
two algorithms able to compute a Nash equilibrium in nonatomic games when the cost
functions are affine. We find a bound on the price of anarchy for some atomic splittable
games, and prove that it is unbounded in general, even when the cost functions are affine.
Finally we find results on the sensitivity of the equilibrium to the demand in atomic
splittable games.

Résumé

Nous considérons des jeux de congestion sur des graphes. Dans les jeux non-atomiques,
nous considérons un ensemble de joueurs infinitésimaux. Chaque joueur veut aller d’un
sommet à un autre en choisissant une route de coût minimal. Le coût de chaque route
dépend du nombre de joueur la choisissant. Dans les jeux atomiques divisibles, nous
considérons un ensemble de joueurs ayant chacun une demande à transférer d’un som-
met à un autre, en la subdivisant éventuellement sur plusieurs routes. Dans ces jeux, un
équilibre de Nash est atteint lorsque chaque joueur a choisi une stratégie de coût minimal.

L’existence d’un équilibre de Nash est assurée sous de faibles hypothèses. Les princi-
paux sujets sont l’unicité, le calcul, l’efficacité et la sensibilité de l’équilibre de Nash. De
nombreux résultats sont connus dans le cas où les joueurs sont tous affectés de la même
façon par la congestion. Le but de cette thèse est de généraliser ces résultats au cas où les
joueurs ont des fonctions de coût différentes.

Nous obtenons des résultats sur l’unicité de l’équilibre dans les jeux non-atomiques.
Nous donnons deux algorithmes capables de calculer un équilibre dans les jeux non-
atomiques lorsque les fonctions de coût sont affines. Nous obtenons une borne sur le prix
de l’anarchie pour certains jeux atomiques divisibles et prouvons qu’il n’est pas borné en
général, même lorsque les fonctions sont affines. Enfin, nous prouvons des résultats sur la
sensibilité de l’équilibre par rapport à la demande dans les jeux atomiques divisibles.
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