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Abstract

Understanding oculo-vestibular dynamics during sensory rearrangement in the central nervous system
plays an extremely important role in better understanding human perception, and improves the technol-
ogy inmany engineering fields. Besides, the sensory conflict that occurs betweenocular, vestibular andpro-
prioception during sensory rearrangement at certain occasionsmight adversely affect the user performance
in a wide variety of domains including flight/car simulators, scale-one 3D systems, large-scale displays, seri-
ous games, and so on. Therefore, knowing the condition in which the sensory conflict happens has a great
deal of importance. This study aims at understanding the nature of sensory conflict bymodeling and sub-
jective studies, and the conditions in which it takes place in a synthetic environment. The results then
will be used to design better navigation and manipulation interfaces in immersive and interactive Virtual
Environments. A set of novel features including the area/shape of the user’s COG post-exposure postural
sway, the difference between LF andHF components of the sway in a frequency space, and the time of ex-
posure will be proposed as indicators of this conflict in real-time processes. Finally, the proposed method
will be used to evaluate a set of navigation interfaces. The interfaces include device-based, walking in place,
speech processing, iDevice-based, and finally sensor fusion. It will be shown that naturally inspired inter-
faces create less conflict comparing to artificial ones. Moreover, user trajectories and inappropriate settings
of navigation parameters can lead to higher conflict. In summary, to avoid user’s general discomfort, the
parameters of navigation need to be set in a certain range.
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Introduction

The current thesis supervised by Prof. FrédéricMérienne, Dr. Jean-Rémy Chardonnet and Christian Père
started on mid-November 2011 and was conducted under the FUI Callisto-SARI project. Institut Image
(Arts et Métiers ParisTech/Le2i) and Cité des Sciences et de l’Industrie (Paris) were two main centers who
hosted this thesis. The final implementation of the software platform, hardware architecture and HMI
interfaces were demonstrated in the immersive room located in the Cité des Sciences et de l’Industrie for
Bouygues Construction, the Callisto-SARI project team, and the industrial partners in November 2013.
Different development steps, related technologies, in-house provided technologies with their engineering
principles were presented to the project team in August 2013.

The final goal of the thesis was to find a practical solution for the well-known sensory conflict problem
in a virtual environment. Then, based on this solution, a set of efficient interaction (navigation / manip-
ulation) interfaces was proposed employing different technologies. As it will be seen, the sensory conflict
in the oculo-vestibular dynamics has been a very fundamental research question and affected several do-
mains including engineering, aviation, emerging technologies, car industries and so on, and considered
as a serious industrial challenge. Reliable research results will influence directly technologies such as avia-
tion (flight simulators, drone land base control, unmanned vehicle control and navigation), car industry
(car simulator, manufacturing, assembling and disabling of comportment), display systems, robotics and
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training. In addition, it can improve the quality of cyber products such as games, HCI and automation
industries.

This problemhas been inquired bydifferent teams and research groups all across theworld. Researchers
have studied the problem from various points of view including psychology, psychophysiology, neuro-
science, computer vision, Man Machine Interface (MMI), Human Computer Interaction (HCI), user
study, biology, robotics and telecommunication, and so on. We will study the sensory conflict problem
from modeling, signal processing and computational neuro-science perspectives, however the main focus
will be on signal processing. Simply, the modeling and experimental data will be recorded and analyzed
to validate our theory and hypotheses. However the proposed modeling solution should be approved by
practical experiments. Therefore, one chapter will be dedicated to the modeling and simulation, and a
huge amount of mathematical equations regarding computational neuro-science models were studied.

A nearly entire display system was developed on Windows platform and NVidia Quadroplex GPUs.
To simplify the development procedure for newcomer developers and future researchers, all theGPUKer-
nels, C++ code, MATLAB engine, wireless network telecommunication and interfacing toolboxes were
wrappedunder Javascript in Institut Image’s software platformwhichmakes the development very fast and
easy. Important efforts in debugging, software tests weremade for building such a user friendly and handy
platform. Nearly two third of the thesis was spent on practical development preparing above-mentioned
aspects. Practical aspects and development challenges will not be deeply explained in the manuscript. As
a result, this manuscript provides a solution for the proposed research question and scientific challenges.

Last, the development, related technologies and design aspects were presented in the form of posters,
technical notes, conferences and journal papers as well as presentations. A list of publications is included
at the end of the manuscript.

The sole aim of this manuscript is to present the sensory rearrangement of the oculo-vestibular system,
the sensory conflict condition and the benefits from the research achievements to design better interaction
interfaces. Hence a major part of this manuscript is dedicated to sensory conflict and the so-called visually
induced motion sickness. A summary of the development and related algorithms are explained in one
dedicated chapter.
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1
Problem definition

1.1 Context of the thesis

This thesis is part of the Callisto-SARI project: a collaborative research and development project led by
a French company (Bouygues Bâtiment International) and bringing together eight partners* (industrial
and research laboratories) from the fields of scale-one 3D visualization and virtual reality, architecture, and
other scientific and engineering research purposes. The project aims at constructing a novel immersive
room and developing different software tools for engineering and research uses. The project is focused
on 3D building modeling and environmental simulation as the first objective and other industrial and
scientific usages later as the second purpose. For that reason, a 3D model of a building will be used in the
entire experiments and evaluation processes throughout this thesis.

The construction domain is currently undergoing many changes: environmental (new regulations, en-
ergy constraints…) and industrial (better processes). The challenges require moving from the use of 2D

*The projet consortium comprises: one large group, Bouygues Bâtiment International (BBI) (Callisto leader),
two small companies, Immersion S.A., Art Graphique et Patrimoine (AGP), two half-public institutions, Univer-
science (Cité des Sciences et de l’Industrie), le Centre des Sciences et Techniques du Bâtiment (CSTB), and three
research laboratories, Arts etMétiers ParisTech (AMPT - Le2i), Ecole Centrale Paris (ECP), le Laboratory des Usages
en Technologies d’Information Numérique - Paris 8 (LUTIN).
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Figure 1.1: Callisto immersive room during the final construction steps.

plans to CAD (Computer Aided Design), 3D Building Information Model (BIM). The BIM includes se-
mantics for the construction process (as an example: structure, air conditioning / ventilation, mechanical,
electrical, piping, etc.) and data for simulations (materials/structure resistance, energy consumption, ther-
mal calculations, lighting, acoustic simulations...). These issues must be addressed throughout the con-
struction project but mainly at the beginning during the design phase to fulfill the client’s requirements,
during construction to anticipate technical constraints on the construction site and during the mainte-
nance phase to control the building.

Introducing 3D models in the construction process is a main way to do the following checks before
entering into the construction phase of the project:

1. Test the 3D mockup virtually and correct a construction project before the realization;

2. Reduce the production costs by the construction of a real mockup;

3. Avoid mistakes on site by a better project management which in turn leads to less material wastes.

1.1.1 Objectives of the Callisto project

The Callisto-SARI project came about for two main reasons: 1) the need to communicate or share the
efficiency of using 3D visualizations in the building production and 2) the need to aware constructors and
general public of 3D CADmodel usages in the pre-inspection of a construction process andmake use of it
in cost estimation and optimization. A list of functional requirements was suggested by the client of the
project to be considered during the research and engineering design.

The main objectives of the Callisto-SARI include:

1. To allow people to visit interior/exterior spaces of full-scale buildings with the physical properties,
acoustic and light rendering in real-time and in an innovative immersive system;
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Figure 1.2: Immersive room in operation.

2. To give the users, visual and acoustic sensations close to a real-life visit, and then to enable them to
take decisions concerning the construction project (and to avoid building a scale-one mockup);

3. To navigate inside the building, interact with the elements, modify them during the visit, and im-
mediately see the modifications results;

4. To provide a procedure in order to facilitate the visualization of scientific contents in 3D, open up
the system for scientific research and give access to university professors and partners laboratories;

During three years of the project development (2010-2013), the following research outcomes and engi-
neering developments have been achieved:

1. A lightingmodel for real-time applications has been derived and simulated (for natural and artificial
light sources);

2. An acousticmodel for real-time applications has been developed and simulated (processing spectral
and spatial 3D sound field informations);

3. The visual spectrum of the building material was extracted and simulated;
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4. Natural and artificial lighting simulations for a dynamic visit of heritage sites were done;

5. Progress in 3D BIM-IFC models toward building detailed modeling and realistic rendering;

6. Combination of laser-based and photo-based 3D digitalization and 3D digital building modeling;

7. Real-time, full-scale, constant geometrical visualization of a 3D building model;

8. New interaction modalities with 3D models adapted for architecture and construction usages.

The main cutting edge achievements of the project include:

1. TheCallisto-SARI roomwhich is well equippedwith an innovative, interactive, visually and acous-
tically immersive system;

2. Software applications for:

• Optimum light and/or sound-process integration

• Link between spectral simulation applications (light, material, and sound) and real-time ap-
plications

• Link between digital CAD model and hyper-realistic model rendering (engineers’ 3D model
→ promotion using computer graphics)

• Adapted 3D navigation/interaction based on gesture

3. A lower affordable VR (Virtual Reality) mobile system to allow a wider use of these techniques in
the construction trade.

1.1.2 Operational immersive room

A room in the Cité des Sciences et de l’Industrie, a science museum located in the north of Paris, previ-
ously dedicated to 3D films, has been renovated to install the immersive system. At the end of the project,
the public will have access to this room (50 people guided by a demonstrator) and, outside public open-
ing hours, industrialists or scientific researchers will be allowed to use it (five people in the center of the
immersive room for a project review use, one person for immersive/interaction use). The room has been
studied considering these three possible types of uses.

The immersive system includes:

1. A large hemispherical screen (10 m wide, 4 m high) which helps immersive sensations avoiding
angles (as in CAVE systems) and with good visualization of height for full-scale, building interior
visits (see Fig. 1.1);
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2. A GPU-based cluster projection system composed of eight HD video projectors, active stereo, and
a graphic server (see Fig. 1.2);

3. An acoustic ambisonic type system, allowing advanced sound propagation with speakers installed
all around the room, driven by a sound PC server synchronized on the graphic server. The screen
is acoustically transparent.

1.1.3 Requirements of the Callisto-SARI project

The current PhD thesis was proposed by Bouygues to fulfill the 3rd objective of the project, as explained
in section 1.1.1. As mentioned in the third objective of the project, the immersive roommust provide com-
fortable, user friendly and real-time navigation/interaction interfaces for the visitors. In this regard, the
management team provided a demonstration video along with a document to hand in the operational re-
quirements. Table 1.1 shows the short list of the operational requirements provided by the client (Cité des
Sciences et de l’Industrie museum).

The interaction system should be based on gesture (for example based onKinect or other technologies)
but the system should allow the connection of other possible devices. However interaction and naviga-
tion in 3D models in an immersive environment brings out technical challenges: how to implement user
friendly interaction systems, how to deal with well-known problems of cyber-sickness such as headache,
nausea and general discomfort when working in an immersive environment? In other words, how does
one clearly identify the origin of discomfort and sickness, and how to avoid them by a proper interaction
system design, technology selection, and parameter settings?

Different challenges have been discussed in the literature such as usability, precision, delay between the
command and the visual feedback, cyber-sickness, and so on. Among the challenges, cyber-sickness, or
visually induced motion sickness (VIMS), is more important than the others, because most of the visi-
tors have generally some ideas about smartphone applications and computer games but never experienced
immersion before, which results in severe sickness sometimes. Sometimes, a high rank manager can be
among the visitors and has never been immersed. The first immersionmay adversely affect this type of vis-
itors which in turnmay change their decision in financing a specific project. Therefore, VIMS or in general
cyber-sickness minimization was set as a target parameter in all the navigation/interaction interface design
by the project team.

This requirement will play a key role in the interface design and development technology selection
throughout the thesis.
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Function Requirements

Navigation

1. Traveling inside VEs (start, translation/rotation, stop)

2. Continuous (natural walking)/discontinuous (consecutive by a com-
mand from navigation devices) and path planning

3. Path indication (start/stop definition, placing benchmarkers and user
guides)

4. Staircase climbing up/downward

5. Multimodal navigation devices with selection possibility

Interaction

• Manipulation of an object

1. Object manipulation menu (initiate, set and reset)

2. Place a new object in the scene

3. Select, move and replace an object that already exists

4. Rotate an object in place

5. Allocate an action to the selected object

• Interaction with the environmental properties

1. Display menu (object, multimedia and lighting manipulation)

2. Scene, furniture and interior decoration display, placement, and
modification

3. Multimedia (display, move, play, stop, pause, next and previous
in the sound data base)

Table 1.1: Operational requirements provided by the project team.
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1.2 Objective of the thesis and research challenge

The preliminary study on different technologies, the scientific challenges in the field (immersive VR) and
different subjective and objective evaluation approaches were reviewed in the first phase of the project,
knowing the requirements of the industrial partner (Bouygues). Based on this review, the final objective
of the thesis is to find distinct answers for the following questions:

1. How visually inducedmotion sickness (VIMS) can be described in terms of navigation/interaction
parameters in real-time?

2. Can we use VIMS as a criterion to evaluate interaction/navigation interfaces? How can we validate
our findings with psychophysiological measurements analyses?

3. What is the main reason of VIMS in a synthetic environment?

4. How can the display parameters affect VIMS?

5. How does the achievement of the VIMS study influence the computational methods in other re-
search domains?

All these questions were combined in a main question called “research challenge” in this thesis. In fact,
the above-mentioned questions will be well addressed by answering this main question. The proposed an-
swer as well as the strategy and themethodology selected to verify this answer describe our “contribution”
(as shown in the next section).

The two main research questions, one for navigation and one for manipulation, are:

1. How can we navigate inside a real-scale virtual environment of a building? ⇒ Visually Induced
Motion Sickness

2. How tomanipulate VR objects in a real-scale virtual environment of a building? ⇒Manipulation
in the Virtual Environment (VE) versus the Real Environment (RE)

We sum up these questions by this main research question that will be the research challenge:

“Why does inappropriate selection of the navigation/interaction interface or parameter
settings lead to VIMS and divergence between real and virtual environment?”

1.2.1 Contribution

Definite findings during nearly a century of research were summarized in a theory proposed by two neu-
roscientists, Reason and Brand. The theory is known as “sensory conflict” in the literature and scientific
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Figure 1.3: Proposedwork flow.

documents. It is known as the “sensory rearrangement theory” alternatively in some literatures too. It
states that “Motion sickness is a self-inflicted maladaptation phenomenon which occurs at the onset and ces-
sation of conditions of sensory rearrangement when the pattern of inputs from the vestibular system, other
proprioceptors and ocular system is at variance with the stored patterns derived from recent transactions
with the spatial environment” 158.

We will see that VIMS is defined as the difference between the estimation coming from the nervous
system and the measurements reported by the sensory organs. This difference in mathematics is called
residual and inneuroscience is calledmotion sickness (MS) or visually inducedmotion sickness. Therefore,
the reduction of VIMS diverse effects is equal to the minimization of the residual signal. To this end,
first, the theoretical model will be used to show what the meaning of MS/VIMS is and how it emerges by
simulation and mathematical/computational neuroscience models. Then, different experiments will be
established to validate the theoretical achievements. Using the theoretical achievements helps us to validate
our findings with even few participants. For that, the followingwork flow (Fig. 1.3) will be followed to find
an appropriate answer for the research challenge and validate our answer by both objective and subjective
studies. The work flow has three distinctive parts: theory and simulation, experiments, and data analysis
using statistical methods and signal processing approaches.

Simulation and theory: human perception will be modeled using the Bayesian theory and Kalman
model. Then, the human vision system as the most important organ in the VIMS study will be simu-
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lated and different aspects will be considered. Since VIMS involves different sensory-motor functions, the
body equilibrium will be selected and analyzed in the time and frequency domains. Some features for the
VIMS detection will be proposed based on simulation.

Experiments: several experiments will be set up to see how much effective are the selected features in
the real process. Two types of data, self-reported questionnaires as well as psychophysiological signals are
recorded during the experiments.

Data analysis: Data is analyzed using signal processing approaches and statistical methods, and corre-
lated to find the most effective feature for practical applications.

The main contribution of this thesis includes the modeling and analysis of the binocular vision from a
computational neuroscience perspective, and providing a solid theory for a better understanding of VIMS
using some objective features such as the Center of Gravity (COG) area and its shape, the difference be-
tween low and high frequency components of the body sway, and the difference between two eye move-
ments, which make the evaluation process much more reliable than subjective studies. Unfortunately,
due to the fact that subjective studies are partly based on self-report questionnaires, it can be easily biased
which makes the research results totally unreliable if the number of participants is not enough. We hope
our proposed method can give higher reliability to the results by multiple checking.

1.2.2 Hardware/software design and verification work-flow

A design/verification work-flow is proposed to facilitate easier and faster progress through different stages
of design and development with respect to the schedule of the project time-line. The primary aim of the
thesis is to fulfill the project requirements by designing a novel set of interfaces for a large scale graphic con-
trol. Then, the effectiveness of the interfaces must be proven by conducting a subjective surveillance. Be-
sides, exposing a subject into a large scale video display is firmly connected to the oculo-vestibular research.
Therefore, the secondary aim is to study the effect of different parameters of navigation/manipulation in-
terfaces on the level of VIMS and presence. To this end, first, different technologies are selected to develop
different navigation/interaction interfaces for VR applications, as shown in Fig. 1.4. Then, a technologi-
cal approach is selected for interface design regarding three main requirements: operational requirements
provided by the project team, user requirements as explained in section 1.1.3 and provided by the partner
research labs and oculo-vestibular constraints.

Interfaces are split into two groups: 1- navigation interfaces, 2- manipulation interfaces which will be
detailed below.
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Figure 1.4: Final objective of the thesis and design-evaluation work flow.
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Figure 1.5: Hardware/software design and verification work-flow for navigation.

Navigation interface

Navigation interfaces are again divided into twomain categories. The first category is called gesture-based
interfaces (natural) which are designed by the analysis and the classification of the user’s body locomo-
tion. The second category is called device-based interfaces (artificial). A set of necessary GPU kernels and
drivers are developed and test points are created after designing an interface. However, to evaluate the
real performance of the user and to verify the design approach, we need a test-bench. For that reason, a
test-bench is established in a scale-one 3D display system to investigate the user performance during a navi-
gation/interaction task inside a given 3Dmodel, and further analysis is made to better understand the cons
and pros of the design and pave the road for the study of the oculo-vestibular dynamics and state estima-
tion mechanism. The results of this investigation then are validated by the analysis and interpretation of
the recorded signals from the process and the user. If the result of the evaluation proves that the level of
VIMS is low then the interface is selected otherwise, the parameter is readjusted and the test is repeated
again in a second round ormore. Sometimes, input devices are combined under a sensor fusion scheme to
improve the performance while decreasing the level of VIMS. A summary of this explanation is illustrated
in Fig. 1.5.
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Figure 1.6: Hardware/software design and verification work-flow for manipulation.

Manipulation interfaces

Two categories of manipulation interfaces are selected, exactly the same as navigation interfaces, how-
ever the task definition and the design of the interfaces are different. The same test-bench as for naviga-
tion interfaces is re-established to investigate the manipulation parameters, however with different oculo-
vestibular criteria as will be detailed later in chapter 3. Similarly, the design will be verified, evaluated and
finally modified to fulfill the user and design constraints. A design and verification work-flow is proposed
for manipulation interfaces as illustrated in Fig. 1.6.

1.2.3 Interface validation process

When the psychological measurements are collected and the statistical analysis is made (first method), two
other auxiliary methods, i.e., theory/simulation (second method) and a stochastic signal processing ap-
proach (third method), are used to validate the accuracy and correctness of the results (see Fig. 1.7, where,
FM , FPS , and FST represent the results from simulation, psychophysiological, and psychological data
analysis, respectively). The signal processing approach as the secondmethod includes simple feature extrac-
tion, classification and deterministic/stochastic signal processing techniques. The first and second meth-
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Figure 1.7: Evaluation and validation process of navigation/interaction interfaces.

ods are highly linked in the validation process as seen in Fig. 1.4. Usually, two types of data are analyzed:
synthetic data which comes from simulation and real data from the experiment. The synthetic data is
generated by mathematical models in simulation and the settings of initial conditions close to the real
experiment and similar assumptions. The synthetic and the recorded signal are processed by the same pro-
cessing approaches. The outcome of themodeling and simulation is used to evaluate the processing results
of the recorded signal. If the results from the theory, signal processing and statistical analysis are in accor-
dance, it means the results are valid and reliable. Finally, it will be shown that the results from self-reported
questionnaire analysis and the signal processing results are highly correlated. This process will provide al-
ternative quantitative criteria (a set of features) which can be used instead of self-report measurements.

1.3 Overall organization of the thesis

The thesis is organized in six chapters as follows to explain the details of development and the scientific
study:

Introduction: The introduction is a one page to explain the overall structure of the thesis and how the
thesis has been completed, what platform has been developed during the thesis, and the achievements of
the thesis including technological and scientific knowledge as well as publications.

Chapter one: A short summary of the Callisto-SARI project is introduced. In this short introduction,
the basic development idea and the final product are briefly explained. The project requirements, research
objective and exact scientific question are discussed in this chapter. The scientific contribution of the thesis

15



is detailed and the outcome of thesis is discussed. Then, a work scope including the design and develop-
ment plan, a review over concurrent work, and the prospective research plan to find an appropriate answer
to the scientific question and solve the industrial challenge are proposed. Visually inducedmotion sickness
during navigation inside the virtual model is the scientific challenge.

Chapter two: Theneuralmodel of the oculo-vestibular dynamics based onneural network andBayesian
formulation will be explained briefly. Since theoretically previous research in VIMS conducted based on
Bayesian and Kalman models, the principle of their modeling technique will be summarized. Binocular
visionwill bemodeled by splitting different eyemovements into five categories andderiving a deterministic
model for each category. The final binocularmodel will bemade by combining five sub-models and taking
into account ganglion nuclei in the model. Finally, a neural model will be integrated in the model of the
binocular vision to make any analysis possible. The study of the theoretical background, modeling and
simulation will be used to construct a solid background for the validation process.

Chapter three: First, a review over different navigation and interaction interfaces will be presented. A
software platform was developed to code any navigation and interaction application in Virtual Environ-
ments (VEs) easily and fast. Different components, the hardware and data communication infrastructure,
the configuration and display system will be explained, and their connection with the software platform
will be shown. The system has two operation modes: simulation and scale-one display. The configura-
tion for each mode will be detailed. The development language and its instructions will be summarized.
There are different versions of real-scale 3D displays. We did the navigation/interaction experiments in
a CAVE system which is widely used in VR studies because at the time of development, the Callisto im-
mersive room was under construction. The hardware compartments of our CAVE system will be briefly
introduced. Finally, five different technologies will be introduced which will be used in the development
of interaction/navigation interfaces. We will use these interfaces both to complete our studies and assess
the performance of the interfaces subjectively and objectively later in chapters 5 and 6.

Chapter four: Self-report questionnaires and psychological measurements will be explained at the be-
ginning of the chapter. We will briefly list different valid questionnaires and explain how to calculate
scores from the questionnaires. Later, these scores will be used to rate and compare different naviga-
tion/interaction interfaces using statistical analysis. Few approaches for statistical data analysis will be
explained. Different psychophysiological signals along with their measurement tools and sensors will be
introduced after statistical analysis. Some signal processing approaches will be used in the following chap-
ters. These approaches with a couple of examples will be summarized and explained in more detail math-
ematically. The final goal is to see how the features from psychophysiological signals are correlated with
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the variation of the scores (calculated by the questionnaires) to be able to use these features alternatively as
detection criteria in a real-time process.

Chapter five: Manipulation (selection, movement and placements) with virtual and real objects will
be compared by a presence questionnaire and Electromyography (EMG). A standard method will be pre-
sented to compare the user performance and assess the usability of interaction interfaces via only measure-
ments. The final achievement of this part is the standard time-frequency patterns for the comparison and
evaluation of different object manipulation mechanisms.

Chapter six: Three features including the COG shape, its area and the difference between frequency
components can be used to detect VIMS in a real-time process. The analysis of the features and their ef-
fects onVIMSwill be studied inmore detail. Kennedy’s SSQ (Simulator SicknessQuestionnaire)98 as psy-
chological and the COG (Center Of Gravity) as psychophysiological measurements are used in this study.
The difference between the two eyes during navigation is another useful feature for real-time processes.

The practical experiments and the corresponding results will be discussed in this chapter. The effect
of the translational and the rotational velocities on the level of VIMS will be studied relaying only on
the binocular disparity and Kennedy’s SSQ. Moreover, translational and rotational movements will be
compared using the difference of left and right eye movements. The effect of the distance from a virtual
barrier and the translational velocity of navigation on VIMS will be discussed in a second experiment.
Natural versus device-based navigation interfaces will be compared using the distance between frequency
components of a COG signal.

Conclusion: The results and achievement of the thesis will be summarized in this chapter, we will show
how the question asked in chapter one is answered by the achievements of this thesis. Some future works
and new challenges will be proposed for further research.
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2
Oculo-Vestibular dynamics and VIMS

modeling

Mathematical models for three dimensional human dynamics as a part of the brain functions have been
a hot research topic during the past four decades. Neuroscientists, cognitive scientists, mathematicians,
robotics and computer vision specialists, electronics and control engineers were largely involved in spatial
orientation modeling by developing, applying and modifying different algorithms and solutions to make
the models operate similar to the human dynamically. Consequently, the models have found a wide va-
riety of applications not only in scientific laboratories, but also in engineering fields such as electronics
engineering, aircraft avionic system design, accident investigation, car and flight simulator, robotics and
vision, motion system design, and in better understanding of disorientation among astronauts.

Researchers have followed two different approaches to explain the human Central Nervous System
(CNS) mathematically: 1) dynamic modeling using classic control rules and stochastic signal processing
techniques, 2) artificial intelligence relying on soft computing methods. The proposed models are based
on biological and neuroscience studies and researches have been done since 1960. However, some aspects
of these researches have beenunknown to the best of our knowledge and further investigations and surveil-
lance are required. For instance, the real biological mechanism and cognitive process behind nausea and
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vomiting and the way this mechanism is connected to vagal nuclei are not yet clear. Usually, a model is
made to facilitate the explanation of a physical phenomenon or a cognitive process via mathematical de-
scriptions. The outcomeof the process andphenomenonwill be called observation throughout this thesis.
The final objective of this chapter is to review these two approaches and then merge the second approach
into the first one to make a stronger model in order to explain more observations. Besides, we believe that
our fundamental research will provide a better solution for the current engineering problems and extend
the border of technology. The theory of Bayesian 173 (with emphasis onOman 144 / Kalman 190 model) and
neural network as two bases of state estimation and perception will be introduced. Then, neural network,
as an example of naturally inspired solution for prediction, will be embedded in the Bayesian model to
construct an approximate model for explaining a cognitive process more quantitatively.

Another important part of this chapter is about the human vision modeling. Different components of
an eyemovement will be characterized and amathematical model will be derived. Then these components
aremerged to construct a completemodel formonocular vision and finally for binocular vision. Due to the
complexity of thismodel a simplified versionwill be introduced to explain visually inducedmotion sickness
causedbybinocular disparity. At the endof this chapter, the biologicalmechanismbehind visually induced
motion sickness will be explained and Oman’s model as a complete model of descripting this process will
be presented.

2.1 Bayesian model and stochastic process

Many problems in engineering and science need an estimation of a state of a system that changes over time
using a sequence of noisy measurements recorded on the output of the system. We estimate the state be-
cause it is hidden and we do not have access directly. For instance, each cognitive parameter can be consid-
ered as a state in the human brain. The parameter can be estimated by psychophysiological measurements
and symptoms. The Bayesian theory provides a very generic conceptual solution based on noisy mea-
surements for the state estimation problem. To make ease of further reference, the principle of Bayesian
model 173 will be briefly reviewed in this section. To define the problem, consider the evolution of the state
sequence {xk, k ∈ N} of a target system given by

xk = fk (xk−1, vk−1) (2.1)

where, fk : Rnx × Rnv → Rnz in (2.1) denotes a possibly nonlinear function of the state xk−1

and vk−1, process noise distribution. {vk−1, k ∈ N}, nx, nv , nz represent the process noise sequence,
the dimensions of the state and process noise vectors, and measurement noise vectors, respectively. The
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objective of tracking, for instance, is to recursively estimate xk from the measurements

zk = hk (xk, nk) (2.2)

where, hk : Rnx × Rnn → Rnz in (2.2) similarly denotes another possibly nonlinear function,
{nk, k ∈ N} is ameasurement noise sequence, andnn demonstrates the dimension of themeasurements.
In particular, we are looking for filtered estimates of xk based on the set of all available measurements
z1:k = {zi, i = 1 . . . k} up to time k.

For a given event space with two members, A and B, the Bayesian theorem gives the relationship be-
tween the probabilities ofA andB, p(A) and p(B), and the conditional probabilities ofA givenB and
B givenA, p(A|B) and p(B|A). Formula (2.3) denotes the most common form of the theorem.

p(A|B) =
p(B|A)p(A)

p(B)
(2.3)

Often, for some partition {Aj} of the event space, the event space is given or conceptualized in terms
of p (Aj) and p (B|Aj). It is then useful to compute p(B) using the law of total probability:

p(B) =
∑
j

p (B|Aj) p (Aj) (2.4)

Then conditional probability ofAj givenB is calculated by (2.5).

p (Aj |B) =
p (B|Aj) p (Aj)∑
j p (B|Aj) p (Aj)

(2.5)

From a Bayesian perspective 173, the tracking problem is simplified to recursively calculate some de-
grees of belief in the state xk at time k, given measurement values up to time k, z1:k.Thus, it is required
to construct the probability distribution function (pdf) p (xk|z1:k). It is assumed that the initial pdf
p (x0|z0) ≡ p (x0) of the state vector, which is also known as a prior, is available. There is a set of no
measurements at time k = 0, z0 = 0 always.

Then, applying the Bayesian theorem, the pdf p (xk|z1:k) may be obtained in two stages recursively:
prediction and correction. Suppose the required pdf p (xk−1|z1:k−1) at time k − 1 is available. The
prediction stage involves using the system model (2.1) to obtain a prior pdf of the state at time k via the
Chapman–Kolmogorov equation (2.6).

p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1 (2.6)

Note that in (2.6), the fact has been used that p (xk|xk−1, z1:k−1) = p (xk|xk−1), as (2.1) describes a
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Markov process of order one. It means the distribution of a state at k knowing the state at k − 1 and
the measurements from the beginning to k − 1 is equal to its distribution knowing only the state at
k − 1 because the distribution has been corrected already. The probabilistic model of the state evolu-
tion p (xk|xk−1) is defined by the system equation (2.1) and the known statistics of vk−1. At time k, a
measurement zk becomes available, and this may be used to correct the prior (correction stage) via the
Bayesian theorem (2.7)

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(2.7)

where, the normalizing constant (2.8) is calculated using the law of total probability (2.4).

p (zk|z1:k−1) =

∫
p (zk|xk) p (xk|z1:k−1) dxk (2.8)

It depends on p (zk|xk), the likelihood, and nk, the dimension of the measurement vector, defined by
the measurement model (2.2). The measurement at time k, zk, is used to modify a prior density to obtain
the required posterior density of the current state in the correction stage (2.7).

The recurrence relations (2.6) and (2.7) form the basis for the optimal Bayesian solution. This recursive
calculation of the posterior density is only a conceptual solution and cannot be determined analytically in
general. Solutions only do exist in a restrictive set of cases (e.g., items 1-4). The Bayesian model provides a
very generic solution for the state estimation problem. Assumptions and solutions for fourmost common
cases of Bayesian model will be reviewed below 173:

1. Kalman Filter (KF): TheKalman filter assumes that the posterior density at every time step isGaus-
sian and, hence, parametrized by amean and covariance. These assumption and optimized solution
are only applied to linear systems. This case will be discussed in more detail later in section 2.2.

2. Extended Kalman Filter (EKF): If (2.1) and (2.2) cannot be rewritten in the form of KF because the
functions are nonlinear, then a local linearization of the equations may be a sufficient description
of the nonlinearity.

3. Approximate Grid-Based Methods (AGBM): If the state space is continuous but can be decom-
posed into Ns subspaces (“cells”),

{
xik : i = 1, . . . , Ns

}
, then (2.9) can be used to approximate

the posterior pdf at time k.

p (xk−1|z1:k−1) ≈
Ns∑
i=1

wik−1|k−1δ
(
xk−1 − xik−1

)
(2.9)

Then, (2.10) and (2.11) can be used recursively in prediction and correction stages.
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p (xk|z1:k−1) ≈
Ns∑
i=1

wik|k−1δ
(
xk − xik

)
(2.10)

p (xk|z1:k) ≈
Ns∑
i=1

wik|kδ
(
xk − xik

)
(2.11)

4. Particle filter (PF):MonteCarlo (MC) filtering based on the Sequential Importance Sampling (SIS)
algorithm has constructed the basis for most sequentialMC filters developed over the past decades.
This sequentialMC (SMC) approach iswidely known as bootstrap filtering, particle filtering, inter-
acting particle approximations and so on. It is an approach for implementing a recursive Bayesian
filter by MC simulations. The very basic idea behind is to represent the required posterior den-
sity function by a set of random samples with associated weights and to estimate the target states
by combining these samples and weights. As the number of samples becomes very large, this MC
characterization becomes an equivalent representation to the usual functional description of the
posterior pdf, and the SIS filter approaches the optimal Bayesian estimate.

As it will be shown in section 2.7,Oman 144 uses aKalman filter scheme to explainVIMS.Therefore, the
first case of Bayesian filters, KF, will be discussed inmore detail in section 2.2 to provide a clear insight into
the Kalman gain, a prior and posterior pdf calculation for both scalar and vector states and how Kalman
Filter works in practice. Cases 2 through 4 will be skipped because we will not refer to them anymore. To
this end, the biological background of Kalman filter will be reviewed in section 2.2.1.

2.2 State estimation theory using Kalman Filter

2.2.1 Biological basis of Kalman filter

The Kalman model was inspired by the brain functions in combining different sensory organs such as
vestibular and ocular for state estimation. In the Kalman approach, dynamic models are typically defined
for individual sense organs. Then the human CNS and brain cortex resolve the inherent ambiguities in in-
coming sensory informationby applying various systems identification and estimationmethods. Recently,
there has been renewed interest in the observer theory and different types of stochastic filtering (Bayesian
filtering, Kalman filtering, Unscented Kalman filtering, and Particle filtering) because both pose that the
sensory input is compared at the level of a second order neuron with internal model derived predictions
(Cullen 34). The value of different types of Bayesian models is that they reproduce - and also successfully
predict - a wide variety of 3D responses using a relatively small number of assumptions and parameters.
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Figure 2.1: Semi-circular canal and otolith End-Organs (utricle and saccule) in themiddle ear 182.

Two sensory organs are located in the inner ear: the vestibule and the cochlea. The vestibule is the or-
gan of equilibrium and the cochlea the organ of hearing. The Semi-Circular Canal (SCC) and the otolith
End-Organ Dynamics (EOD) are two organs of the vestibule as shown in Fig. 2.1. This arrangement is
called the vestibular system in the scientific literature and explains part of the human orientation percep-
tion. Since the world is three-dimensional, the vestibular system contains three semi-circular canals in each
labyrinth. They are approximately orthogonal (right angles) to each other. Human spatial perception not
only relies on vestibular organs but the vision system (ocular) as well. The earliest mathematical models
for human orientation perception 122 attributed the attenuation of sensations during prolonged rotation
around the vertical axis of the Earth entirely to the SCC and EOD.However, by Fernandez andGoldberg’s
studies44,51, it became clear that the time course of perceptionwas not entirely determined by the SCC and
EOD. Animal vestibulo-ocular reflex (VOR) data indicated that the mechanisms in the CNS extend the
bandwidth of motion perception and increase the VOR time constant and were not primarily due to the
otolith. Dynamically equivalent models of the Vestibule-Ocular system were proposed by Robinson 161

and Raphan et al. 156 to explain the perception mechanism. Mayne 122 proposed a 3D orientation model
where the CNS estimated “down” and linear accelerations respectively via complementary low and high
pass filtering of gravireceptor cues.

After these progress in system recognition andmathematical modeling, aerospace engineers further de-
veloped generalmethods for estimating the orientation andpositionof a vehicle, in real-time, basedondata
from a relatively small set of sensor measurements71. The vehicle trajectory is continuously estimated and
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Figure 2.2: Borah’s model for the vestibular system.

corrected by using internal models and the measurements. The difference between predicted and actual
sensor measurements is then appropriately weighted and used to correct the estimated trajectory (Luen-
bergerObserver 113). For themost common case in engineering, where the entire system is linear, andwhere
“noise” disturbances to both the vehicle and sensor measurements can be well characterized, Kalman91

demonstrated how to calculate optimal residual weighting coefficients that minimize the stochastic error
in the trajectory estimation, as seen in section 2.2.2. Such state estimator is referred to as a steady state
Kalman Filter (KF). Kalman Filter is a special case of the Bayesian Filter which was reviewed briefly in
section 2.1. Borah et al. 12,13 applied KF to a human riding passively in a vehicle (Fig. 2.2). Borah et al.’s
orientation estimator incorporated dynamic models for the SCC and EOD, as well as visual angular and
linear velocity cues. Other parameters such as the bandwidth and noise were regarded as noted by Mac
Neilage et al. 116. They applied their solution to the vehicle dynamics study.

Many engineering and cognitive paradigms involve an input variation (real or perceived) so large that
the system cannot be regarded as a linear system. Therefore, a linear KFmodel is not appropriate for such
an application. Merfeld et al. 128,127 therefore proposed an “Observer”model to solve this problem. Merfeld
et al.’s model has been put into practice, validated and extended by Haslwanter et al. 58 and Vingerhoets et
al.214. Although model inputs and outputs are usually physical quantities in the proposed models, most
CNS mechanisms remain physiologically unknown. For instance, Borah et al.’s KF model explains how
vestibulo-ocular cues are combined to describe the human orientation perception. However, Borah et al.
does not incorporate any information from proprioception. Weighted residual corrections were applied
in an ad-hoc fashion in the previous KFmodels, and linear system disturbances as well as sensor noise were
considered Gaussian noise. Besides, measurement transfer function in the architecture of the estimator
and process is assumed identical. This is not true when we are applying KF to the human orientation
perception because the state estimation comes from the CNS which is not necessary similar to physical
measurements.

It is widely accepted that simulator sickness, cyber sickness, and visually inducedmotion sickness occur
partly due to the difference between real and estimated measurements (perceived measurement) 157. This
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Figure 2.3: Linear systemmodel in KF scheme.

difference is called residual vector or conflict vector in theKalman theory of state estimation. Aswewill see
later in section 2.7, Oman 144 will use this vector to explain motion sickness. Therefore we need to study
the Kalman filter and understand how it works.

2.2.2 Kalman filter

In 1960, R. E. Kalman91 published his famous paper describing a recursive solution to the discrete-data
linear filtering problem. The Kalman filter is a set of equations that provides an efficient computational
mean to estimate and correct the state of a process by a set of noisymeasurements recursively, in a way that
it minimizes the mean of the squared error. The Kalman filter assumes that the posterior density at every
time step is Gaussian and, hence, parametrized by a mean and covariance. Equations (2.12) and (2.13) are
twomain equations that link the input and output of a linear system to the hidden target state, xj , at time
t.

A discrete time system with process noisew and measurement noise v is defined by:

xj = Axj−1 +Buj + wj (2.12)

zj = Hxj + vj (2.13)

The corresponding block diagram is shown in Fig. 2.3, where, distribution functions w and v indicate
the process andmeasurement noise withQ andR covariancematrices accordingly. Variablesxj , uj and zj
represent the hidden state, the input and output (measurement) at time t andmatricesA,B, andH define
the associated transfer function for a linear system andmeasurement devices. The block diagram including
the estimation part is given by Fig. 2.4. Usually, the parameters of the estimator and the main system are
the same in Fig. 2.4. But, in a stochastic process like the human brain, the estimator is being replaced by a
cognitive process. The cognitive process models the cortex operation or the human perception.

Fig. 2.4 models the prediction and correction stages for the cognitive process given by (2.14) and (2.15),
where, matrixKj refers to as Kalman Gain in the literature.
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Figure 2.4: Kalman filter including the estimation part.

x̂−j = Ax̂j−1 +Buj (2.14)

x̂j = x̂−j +Kj

(
zj −Hx̂−j

)
(2.15)

We want to use our knowledge of the measured value z to generate and estimate x̂ of the unknown
state x, in general. Thus we want to find the value of x that minimizes the weighted sum of squares of the
vector [z −Hx̂]. If we let matrixW be a general weighting matrix, then the aim is to find the vector x̂
that minimizes the scalar cost J :

J =
1

2
[z −Hx̂]W [z −Hx̂]T (2.16)

Where the superscript T denotes the matrix transpose. Note that if W = I , this is standard least
squares, with

J =
1

2
[z −Hx̂] [z −Hx̂]T =

1

2

m∑
i=1

[zi −Hx̂i]
2 (2.17)

IfW is a diagonal matrix with diagonal termsw1,w2, . . .,wm, then

J =
1

2

m∑
i=1

wi [zi −Hx̂i]
2 (2.18)

This minimization is accomplished by the values x̂wls, where the subscript denotes weighted least
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squares, if

∂J

∂x̂

∣∣∣∣
x̂=x̂wls

∆
=

[
∂J

∂x̂1

∂J

∂x̂2
· · · ∂J

∂x̂n

]∣∣∣∣
x̂=x̂wls

= 0 (2.19)

and

∂2J

∂x̂2

∣∣∣∣
x̂=x̂wls

≥ 0 (2.20)

However, often, we apply equation (2.23) to KF gain calculations. The priori (P−
j ) and posteriori (Pj)

covariance matrices are given by (2.21) and (2.22):

P−
j = E

{
e−j

(
e−j

)T}
= E

{(
xj − x̂−j

)(
xj − x̂−j

)T}
(2.21)

Pj = E
{
eje

T
j

}
= E

{
(xj − x̂j) (xj − x̂j)

T
}

(2.22)

To find the best value for the filter gain,Kj , we differentiate the posteriori covariance and set it to zero:

∂Pj
∂Kj

=
∂E
{
(xj − x̂j) (xj − x̂j)

T
}

∂Kj
= 0 (2.23)

In fact, our brain tries to solve this equation while the cognitive process is estimating the body state. In
terms of mathematical modeling, the following equations propose a good solution, however the underly-
ing cognitive process of the brain in reality is not very well understood and still the mental mechanism is
unknown. Besides most of the problems we face in reality, and in virtual reality as a subspace of a global
environment, is rooted in (2.22). Moreover, sensory conflicts 157 somehow are related to (2.23) which in
turn is hiddenly linkedwith (2.23). If the engineering design in aviation, flight and car simulator, or virtual
reality does not work and creates lots of cognition problems for the end-user, it means the effect of (2.23)
on the other part of the design has not been considered appropriately.

The Kalman filter gain, the recursive form of the priori, and posteriori covariance are obtained after
much algebra and are given by the following equations (2.24) through (2.26):

Kj = PjH
T
(
HPjH

T +R
)−1 (2.24)

P−
j = APj−1A

T +Q (2.25)

Pj = (I −KjH)P−
j (2.26)
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2.3 Neural network and cognitive process modeling

Wehavementioned two simulation approaches for the cognitive process orCentralNervous System (CNS)
modeling at the beginning of the chapter, i.e., stochastic and artificial intelligence. In the second approach
of the human CNS modeling, computational neuroscientists 126 proposed different models such as Arti-
ficial Neural Networks (ANN)74, Fuzzy Logic 151, and Neuro-Fuzzy22 to simulate the human brain and
create a similar system for engineering applications. ANNs are trainable models inspired by animal central
nervous systems (in particular the human brain) and capable of performing machine learning and pattern
recognition algorithms in parallel. Two examples of ANN are shown in Fig. 2.6 and Fig. 2.7. Due to the
similarity ofANN to the humanCNS, it attracts significant attention in cognitivemodeling and stochastic
signal processing.

McCulloch and Pitts 126 (1943) created amathematical model for neural networks referred to as “thresh-
old logic” in the literature. Rosenblatt 165 (1958) created the perceptron ANN and a learning algorithm
based on a two-layer network. Somemathematical computation (e.g., exclusive-or) in Rosenblatt’s model
could not be processed until after the back-propagation algorithmproposed byWerbos 224. Unfortunately,
the back-propagation of error algorithm is not very biologically plausible. Signals have never been seen to
flow backward across synapses in an actual neural tissue contrary to the manner necessary for the back-
propagation algorithm to be implemented. O’Reilly expanded on McClelland et al. 124 to implement a
biologically plausible version of back-propagation of error. This is called the generalized recirculation al-
gorithm (GRA) 146. McClelland et al. 124 interpreted the back-propagation error signal as the difference
between the expected outcome and the perceived outcome. Under this interpretation, these algorithms
are quite general in practical implementations.

2.3.1 Neural network architecture

The basic computational unit in the Central Nervous System (CNS) in general and the brain especially is
the nerve cell, or neuron. A neuron has been made up of three basic elements: Dendrites (inputs), Cell
body, Axon (output), as shown in Fig. 2.5. The mathematical model of a single neuron or a network of
neurons has the same architecture. In this architecture, any ANN has an input layer, an output layer and
a network body. The diversity and complexity of different ANNs is related to the network body and its
application. For example, a multi-layer perceptron (MLP) has a fairly simple architecture. Its body con-
sists of different hidden layers with different number of neurons and transfer functions. Now, let’s look
at another network with a fairly complex architecture which is inspired by brain functions. The cerebral
cortex is arguably the most fascinating structure in all of human physiology. Although vastly complex
on a microscopic level, the cortex reveals a consistently uniform structure on a macroscopic scale, from
one brain to another. Centers for such diverse activities as thought, speech, vision, hearing, and motor
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Figure 2.5: Nervous cell and its basic elements.

Figure 2.6: Example of Artificial Neural Network (ANN).

functions lie in specific areas of the cortex, and these areas are located consistently relative to one another.
Moreover, individual areas exhibit a logical ordering of their functionality. Auditory and vision regions
andmotor nerves can be referred to as ordered feature maps. Kohonen 104 proposed an ANN architecture
based on this biological knowledge called self-organizing map (SOM). A SOM or self-organizing feature
map (SOFM) is a type of artificial neural network (ANN) that is trained using unsupervised learning to
produce a low-dimensional (typically two-dimensional), discretized representation of the input space of
the training samples, called a map. As seen, a Kohonen neural network 104 has a very complicated architec-
ture in comparisonwithMLP. Its architecture consists of different layers connected in a 2D configuration.

Fig. 2.6 and Fig. 2.7 illustrate two examples of neural networks for two different purposes. Some-
times, more than one type of ANN is used in a configuration to fulfill the requirement of an application.
Two computational neurobiologists, McCulloch and Pitts 126, have constructed a very elaborate numerical
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Figure 2.7: KohonenNeural Network.

Figure 2.8: Typical neural network with input/output and hidden layers.
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model of neurons in order to run detailed simulations of particular circuits in the human brain (Fig. 2.8).
Then, theymade an artificial neural network (ANN) based on a set of neurons to explain amental process.
They proposed a two-layer perceptron neural network to validate their idea however, their model was very
limited. For example, they could not implement the logic gateXOR. Finally, it turned out that theMcCul-
loch andPitts’smodel could not learn anything requiringmore than two layers. Chauvin andRumelhart 23

found a generic solution for this problemwith two insights. First, they implemented a non-linear sigmoid
function (neuronal threshold). Second, they developed an algorithm called “back-propagation”, which
allows the output layer to propagate its error back (by updating the bias and weighting values in each iter-
ation) across all the layers such that the error can be corrected in a distributed fashion. In section 2.3.2 we
will discuss this training algorithm in more detail. Chauvin and Rumelhart used this new learning algo-
rithm to explore how cognitionmight be implemented in a parallel and distributed fashion in neuron-like
units.

Mathematical equations correspondingwith anMLPANNwill be discussedbelow to showhowwe can
build a network in a simulation environment such as MATLAB Simulink. The same formulation can be
repeated for any type of ANN to draw a set of equations which connects the output to the input variables.
As shown in Fig. 2.8, a typical ANN is built up of layers of neurons (minimum three layers: input, hidden
and output). Each neuron can either accept a vector or a scalar input (x = [x1, x2, x3, x4, x5]) and gives a
scalar or a vector output (z = [z1, z2, z3, z4]). The inputs are weighted byw =

[
wji

]
m×n

(index i and j

referred to as the selected input and layer index respectively) and given a bias vector (b =
[
b11, b

1
2, b

1
3, b

1
4

]
).

For instance, w1
2 represents the weighting for input 2 in the input layer). The first output of the hidden

layer, z1, can be expressed by (2.27):

z1 = f

(
5∑
i=0

w1
i xi + b1i

)
(2.27)

The output vector of the hidden layer then will be (2.28)

z = f (whx+ b1) (2.28)

We originally configured our neural network to use neurons with a linear (purelin, f(x) = x) or non-
linear (logsig, f(x) = 1

1+e−x ), tansig, f(x) = 1−e−x

1+e−x ) transfer function in (2.28). Index h in (2.28)
demonstrates the weighting matrix of the hidden layer. The non-linear neuron transfer function (2.29)
operates on this value to generate the final scalar output or output vector in the last layer (y = [y1, y2]).

y = f (w0z+ b2) (2.29)

The final transformation between the input and output vectors will be achieved by substituting z from
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(2.28) into (2.29), as shown in (2.30)

y = f (w0f (whx+ b1) + b2)

or

y = M(w,b)x (2.30)

Auniqueweighting andbiasmatrix canbe calculatedby a training algorithm, such asback-propagation 117

and a set of training data. It means we can define a transformation between each sensory organ such as vi-
sual and auditorial, and require sensory features in the cognition process.

2.3.2 Training algorithm

Back propagation

Once the networkweights and biases are initialized, the network is ready for training. Themultilayer feed-
forward network can be trained for function approximation (nonlinear regression) or pattern recognition.
The training process requires a set of examples of proper network behaviors - network inputs p and target
outputs t. The process of training a neural network involves tuning the values of the weights and biases
of the network to optimize network performance, as defined by the network performance function net.
The default performance function for feedforward networks is the mean square error (MSE) - the average
squared error between the networks outputs a and the target outputs t. It is defined by (2.31) as follows:

MSE =
1

N

N∑
i=1

(ei)
2 =

1

N

N∑
i=1

(ti − ai)
2 (2.31)

(Individual squared errors can also be weighted) There are two different ways in which training can
be implemented: the incremental mode and the batch mode. In the incremental mode, the gradient is
computed and theweights are updated after each input is applied to the network. In the batchmode, all the
inputs in the training set are applied to the network before theweights are updated. This chapter describes
thebatchmode trainingwith the train command. Batch training is significantly faster andproduces smaller
errors than incremental training.

For training multilayer feedforward networks, any standard numerical optimization algorithm can be
used to optimize the performance function, but there are a few key ones that have shown excellent perfor-
mance for neural network training. These optimization methods use either the gradient of the network
performance with respect to the network weights, or the Jacobian of the network errors with respect to
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the weights. The gradient and the Jacobian are calculated using a technique called the back propagation
algorithm, which involves performing computations backward through the network 117.

Deep Learning

What is deep learning? An intelligent system such as ANN needs to learn as a human being learns.
Although up to day back propagation is widely used for training purpose, a new strong training algorithm
which is called Deep Leering has been shown to work effectively in practice as well. Deep learning is a
set of algorithms in machine learning that attempt to model high-level abstractions by using architectures
composed of multiple non-linear transformations6. Deep learning architectures, specifically those built
from artificial neural networks (ANN), date back at least to 198046. ANNs themselves date back even
further. Yann LeCun et al. 105 were able to apply the standard back propagation algorithm to a deep neural
network with the purpose of recognizing handwritten zip codes on mail. Despite the success of applying
the algorithm, the time to train the network on this datasetwas approximately 3 days,making it impractical
for general use 105. Many factors contribute to the slow speed, one being due to the so-called vanishing
gradient problem (see Hochreiter et al.68,69). In combination with speed issues, ANNs fell out of favour
in practical machine learning and simpler models such as support vector machines (SVMs) became the
popular choice of the field in the 1990s and 2000s.

The term “deep learning” gained attraction in the mid-2000s after a publication by Geoffrey Hinton
showed how a many-layered feedforward neural network could be effectively pre-trained one layer at a
time, treating each layer in turn as an unsupervised restricted Boltzmann machine, then using supervised
back propagation for fine-tuning66. In 1992, Schmidhuber had already implemented a very similar idea
for the more general case of unsupervised deep hierarchies of recurrent neural networks, and has also ex-
perimentally shown its benefits for speeding up supervised learning 175,176.

Depth The computations involved in producing an output from an input can be represented by a flow
graph: a flow graph is a graph representing a computation, in which each node represents an elementary
computation and a value (the result of the computation, applied to the values at the children of that node).
Consider the set of computations allowed in each node and the possible graph structures and this defines
a family of functions. Input nodes have no children. Output nodes have no parents. The flow graph for
the expression tan

(
a2 + ab

)
could be represented by a graphwith two input nodes a and b, one node for

the division ab taking a and b as input (i.e., as children), one node for the square (taking only a as input),
one node for the addition (whose value would be

(
a2 + ab

)
and taking as input the nodes a2 and ab, and

finally one output node computing the tangent, and with a single input coming from the addition node.
A particular property of such flow graphs is depth: the length of the longest path from an input to an
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output. Traditional feedforward neural networks can be considered to have a depth equal to the number
of layers (i.e., the number of hidden layers plus 2, for the input and output layers). Support Vector Ma-
chines (SVMs) have depth 2 (one for the kernel outputs or for the feature space, and one for the linear
combination producing the output).

Motivations for deep architectures The main motivations for studying learning algorithms
for deep architectures are the following:

• The brain has a deep architecture;

• Cognitive processes seem deep;

• Insufficient depth can hurt.

Since the resurgence of deep learning, it has shown to be part of many state-of-the-art systems in differ-
ent disciplines, particularly that of computer vision and automatic speech recognition (ASR). Results on
commonly used evaluation sets such as TIMIT (ASR) and MNIST (image classification) are constantly
being improved with new applications of deep learning. Currently, it has been shown that deep learning
architectures in the form of convolution neural networks have been the best performing; however, these
are more widely used in computer vision than in ASR.

Advances in hardware have also been an important enabling factor for the renewed interest of deep
learning. In particular, powerful graphics processing units (GPUs) are highly suited for the kind of num-
ber crunching, matrix/vector maths involved in machine learning. GPUs have been shown to speed up
training algorithms by orders of magnitude, bringing running times of weeks back to days and days to
hours 32,155.

The brain has a deep architecture The brain has a deep architecture for the reason using deep
learning is always better than back propagation. For example, the visual cortex is well-studied and shows a
sequence of areas each of which containing a representation of the input, and signals flow from one to the
next (there are also skip connections and at some level parallel paths, so the picture is more complex). Each
level of this feature hierarchy represents the input at a different level of abstraction, with more abstract
features further up in the hierarchy, defined in terms of the lower-level ones.

Note that representations in the brain are in between dense distributed and purely local; they are sparse:
about 1% of neurons are active simultaneously in the brain. Given the huge number of neurons, this is still
a very efficient (exponentially efficient) representation.
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Cognitive processes seem deep

• Humans organize their ideas and concepts hierarchically;

• Humans first learn simpler concepts and then compose them to represent more abstract ones;

• Engineers break-up solutions into multiple levels of abstraction and processing.

It would be nice to learn/discover these concepts (knowledge engineering failed because of poor introspec-
tion). Introspection of linguistically expressible concepts also suggests a sparse representation: only a small
fraction of all possible words/concepts are applicable to a particular input (say a visual scene).

Insufficient depth can hurt Depth 2 is enough in many cases (e.g., logical gates, formal neurons,
sigmoid-neurons, Radial Basis Function (RBF) units like in SVMs) to represent any function with a given
target accuracy. But this may come with a price that the required number of nodes in the graph (i.e., com-
putations, and also the number of parameters, when we try to learn the function) may grow very large.
Theoretical results showed that there exist families of functions for which in fact the required number of
nodes may grow exponentially with the input size. This has been shown for logical gates, formal neurons,
and RBF units. In the latter case, Hastad 59 has shown families of functions which can be efficiently (com-
pactly) representedwithO(n)nodes (forn inputs)when depth isd, but forwhich an exponential number
(O (2n)) of nodes is needed if depth is restricted to d− 1.

One can see a deep architecture as a kind of factorization. Most randomly chosen functions cannot be
represented efficiently, whether with a deep or a shallow architecture. But many that can be represented
efficiently with a deep architecture cannot be represented efficiently with a shallow one (see the polyno-
mials example in the Bengio survey paper6). The existence of a compact and deep representation indicates
that some kind of structure exists in the underlying function to be represented. If there was no structure
whatsoever, it would not be possible to generalize well.

Deep neural networks training A deep neural network (DNN) is defined to be an artificial neu-
ral network with at least one hidden layer of units between the input and output layers; it is also a univer-
sal approximator 193. Similar to shallow ANNs, it can model complex non-linear relationships. The extra
layers give it added levels of abstraction, thus increasing its modeling capability. DNNs are typically de-
signed as feedforward networks, but recent research has successfully applied the deep learning architecture
to recurrent neural networks for applications such as language modeling 130. Convolutional deep neural
networks (CNNs) are used in computer vision where their success is well-documented 106. More recently,
CNNs have been applied to acoustic modeling for automatic speech recognition (ASR), where they have
shown success over previous models 171. For simplicity, a look at training DNNs is given here.
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A DNN can be discriminatively trained with the standard back propagation algorithm. The weight
updates can be done via a stochastic gradient descent using the following equation:

∆ωij(t+ 1) = ∆ωij(t) + η
∂C

∂ωij
(2.32)

Here, η is the learning rate, and C is the cost function. The choice of the cost function depends on
factors such as the learning type (supervised, unsupervised, reinforcement, etc.) and the activation func-
tion. For example, when performing supervised learning on a multiclass classification problem, common
choices for the activation function and cost function are the softmax function and cross entropy function,
respectively. The softmax function is defined as

pj =
exj∑
k e

xk
(2.33)

where, pj represents the class probability and xj and xk represent the total input to units j and k
respectively. Cross-entropy is defined as

C = −
∑
j

dj log (pj) (2.34)

where, dj represents the target probability for output unit j and pj is the probability output for j after
applying the activation function65.

2.4 Oculomotor control system: theory and modeling

Oculomotor nerve originates from motor neurons in the middle brain and is responsible for eyeball and
eyelidmovement. Numerousmathematical models have already been proposed to explain eyemovement.
However, none of them presented a complete model. Robinson et al. 162,163 discussed the mechanism in-
volved in only saccadic and pursuit eyemovements using the control system theory. Saeb et al. 170 found an
analytical solution to explain various aspects of saccadicmovement relying on amathematical formulation
and solving partial differential equations governing eye movement. The analytical results of this study
and the results from psychological studies are identical. Mergenthaler and Engbert 129 proposed a model
for eye fixation and retinal slip. Zhang and Wakamatsu 238 classified eye movements into five categories:
saccade, smooth pursuit, optokinetic reflex, vestibulo-ocular reflex (VOR), and vergence. Each category
of eye movement is tried to be explained in more detail in the following subsections. This introduction is
necessary here because these models will be referred to during the following chapters.

Since saccadic movement, smooth pursuit and retinal slip have great deal of importance in understand-
ing the other types of eye movement, more time will be spent on these three categories to make them
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Figure 2.9: Saccadic eyemovement.

completely clear and understandable in terms of theoretical background.

2.4.1 Saccade

Saccade is the ability of the eye(s) to move quickly from one point of interest to the next after an appro-
priate time of fixation (100 to 300 ms 170) as shown in Fig. 2.9. Saccadic movement is characterized by
the duration, the peak velocity and the amplitude. The relationship between the duration, the peak ve-
locity and the amplitude of saccadic eye movements is known as the “main sequence”. Mathematically,
the saccade control system is modeled by an optimal control. The optimized control signals achieved by
this method are compatible with “neuronal firing patterns” observed in the “Medial Superior Temporal”
(MST) area of the cortex and the oculomotor “Neural Integrator” (NI) neurons of the brainstem 203,199.

In 1968, Young et al. 232 developed a sampled-data and non-predictive model (Fig. 2.10) of the eye move-
ment system. Measurement devices, electronics and computer interfacing were not very well developed
and so little was known about the brain stem organization at the time. For that reason, the elements of
that model were not intended to resemble to the actual brain structure as it was rather influenced by the
theory of control systems. Besides, the model was not able to predict the correct experimental responses
when the target moved in a ramp, a step-ramp and in two steps in rapid succession.

In Fig. 2.10, angles θt and θ represent the target and the eye position respectively if we consider only
horizontalmovements. The eye plant (eyemuscles and eyeball) is explained by a second order linear system
where ωn = 240 rad/s and ξ = 0.7. When the error between the target and the eye position, e = θt − θ

exceeds the threshold et, the pulse generator (PG) is triggered which causes a sample to be taken. At the
same time, INHBT Dead Zone (DZ) blocks for 0.2 s. INHBT is a simple timer in the circuit to create a
delay for a certain period and if the signal meets the conditions then after, that period will be directed to
the next element. Consequently, when |e| ≥ et, samples will occur every 0.2 s, and when |e| < et, the
samples will stop.

Robinson 162 modified themodel by integrating the cognitive components, Neural Integrator (NI) and
Medial Longitudinal Fasciculus (MLF), in the model (Fig. 2.11). These components were discovered by
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Figure 2.10: Model of the saccademechanism proposed by Young et al. 232.

Figure 2.11: Model of the saccademechanism proposed by Robinson 162.

neuroscientists when they were studying the vision of monkeys7. Till now, these components have been
constant elements of any saccade mechanism. The second change has been made in the transfer function
of the eye. As seen in Fig. 2.10, the denominator of the transfer function was replaced by two poles with
time constant Te1and Te2 . Zuber 240 stimulated cat’s eyes in 1968 and discovered this relation between
oculomotor nerves and eye movement.

Much effort has beenmade by previous researchers in order to identify the optimality principles which
underlay the kinematic characteristics of saccades. The final objective of all these efforts was to propose a
functionally optimal and biologically plausible cost function. To this end, several studies have suggested
different cost functions. Enderle and Wolfe41 proposed a cost function to minimize the time to reach the
target (saccade trajectories optimization). Their assumption leads to a bang-bang control solution 189, how-
ever the resulting velocity profile was not biologically plausible 53. In control theory, a bang-bang controller
known as an on-off controller is a feedback controller that switches abruptly between two states. Since En-
derle and Wolfe’s model and its cost function were biological implausible, his successors relied more on
Harris solution 54,55.

Harris andWolpert 54 simplified the problem to find the optimal trajectory thatminimizes the total cost
associated withmoving the eye to a target imaged on the retina at a specified position as foveal eccentricity.
They approximated the total cost of an eye movement integrated over the movement as being composed
of two components: 1) the cost associated with retinal slip (movement cost), 2) the fixation cost (after the
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Figure 2.12: Foveal eccentricity definition.

movement ends). Equation (2.35) shows this cost function.

cost =
∫ T

0
αdt︸ ︷︷ ︸

Movement cost

+

∫ T+F

T
βe(t)2dt︸ ︷︷ ︸

Fixation cost

(2.35)

where, e(t) is the foveal eccentricity of the target at time t (the difference between the fovea center and
the current position of the object image on the retina, as shown in Fig. 2.12, andβ is a constant value. Once
the saccade has begun and vision is lost, the cost is a constant α (per unit time) until the saccade ends. T
and F represent movement and post-movement periods.

To explain briefly Harris and Wolpert’s solution, we denote the eye position at time t for a movement
made of desired amplitudeP , as xP (t). We assume that the aggregate neural command, u(t), is perturbed
by a zero-mean additive white noise process with instantaneous standard deviation (2.36) proportional to
the mean.

σu(t) = k |u(t)| (2.36)

We can rewrite xp(t) as (2.37) by the linearity of the system, where, g (g = P
A , A is the movement

resolution: the distance between two consecutive steps andP is the amplitude of the saccade) is a random
variable with mean, ḡ and variance, σ2g .

xp(t) = gxA(t) (2.37)

The cost function can be defined by (2.38),

J = E(cost) = αT + β′
∫ T+F

T
σ2x(t)dt+ γ (2.38)
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where, σ2x(t) is the variance of the eye position in the fixation period,

β′ =
(
ḡ2 + σ2g

)
β (2.39)

and

γ = Fβ
[
(A−Aḡ)2 + σ2gA

2
]

(2.40)

We denote the eye position asx(t)which is the output of a linear pole-only ocularmotor plant, with an
impulse response p(t), whose input is a single scalar aggregate mean neural command u(t). By definition,
the mean and variance of a random variable x(t) is defined by (2.41) and (2.42).

E [x(t)] =

∫ t

0
ku(τ)p(t− τ)dτ (2.41)

σ2x(t) = Var (x(t)) =
∫ t

0
k2u2(τ)p2(t− τ)dτ (2.42)

For more detail on (2.42), see 55. Based on this assumption, the variance of the eye response increases
when one tries to decrease the saccadic duration by recruiting larger command signals. As a result, a trade-
off needs to bemade between the speed and the accuracy of saccades. The optimal solution to this trade-off
is a trajectory that is biologically plausible. If (2.42) is substituted in (2.38), the final cost function will be
achieved by (2.43).

J = αT + β′
∫ T+F

T
σ2x(t)dt+ γ = γ + αT + β′

∫ T+F

T

[∫ t

0
k2u2(τ)p2(t− τ)dτ

]
dt (2.43)

We can split this function into movement (0 ≤ t ≤ T ) and fixation (T ≤ t < T + F ) as (2.44):

J = γ + αT + β′k2
∫ T+F

T

[∫ T

0
u2(τ)p2(t− τ)dτ +

∫ t

T
u2(τ)p2(t− τ)dτ

]
dt (2.44)

and finally, (2.44) can be expressed by (2.45)

J = γ + αT + β′k2
∫ T+F

T
u2(τ)qT (τ)dt (2.45)

40



Figure 2.13: Characteristic of themain sequence adapted from 5: solid line demonstrates data from simulation and analytical

approaches, and scatter points shows the data from experiments.

where

qT (τ) =

∫ T+F

T
p2(t− τ)dτ (2.46)

Then, by assuming the eye plant as (2.47), which is an ordern state spacemodel, the optimization result
will be as shown in (2.48).

ẋ = Ax(t) +Bu(t) (2.47)

From Pontryagin’s minimum principle the optimal control signal is given by

u(t) =

n∑
r=1

Cr
eγrt

qT (t)
(0 ≤ t ≤ T ) (2.48)

where, n and γr are the order of the system and a damping constant respectively. Coefficient Cr is
determined by the boundary and initial conditions. Later Harris and Wolpert’s model was extended by
introducing an internal feedback which consists of two state estimators 27. One predicts the state of the
eye, and the other estimates the state of the target. This feedback is used to generate the neural control
signal when the input is the target position. The feed-forward controller is optimized in a similar way as
explained above. It requires re-optimization for every saccade. Kardamakis and Moschovakis92 proposed
another cost function based on the squared sum of the eye torque signals integrated over the movement
velocity profile. This approach is compatiblewith the “main sequence” characteristics. Themain sequence
is stereotyped: The duration increases linearly with the saccadic amplitude, and the peak velocity increases
linearly for lowamplitudes and thenundergoes a soft saturation for larger amplitudes 5 as shown inFig. 2.13.

Although the approaches proposedbyHarris andWolpert 54 havebeen successful in explaining the kine-
matics of saccades in terms of satisfying some optimality criteria and the result was biologically plausible,
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Figure 2.14: Neural based architecture for saccademodeling.

they do not propose any neural implementation for the optimization procedure they use. This is because
they followed a pure mathematical procedure to solve the optimization problem. Optimization proce-
dures used by these approaches are based on Pontryagin’s extremumprinciple, which requires boundaries,
initial and final conditions to calculate the special solution, otherwise the solutionwill be a global solution.

Saeb et al. 170 proposed a neural based optimization procedure which can be implemented relying on
a neural function. Saeb et al.’s open-loop architecture (Fig. 2.14) provides local and biologically plausible
solutions on one side and on the other side minimizes the cost function. The model consists of two parts:
“open-loop control” and “adaptation”. Themodel calculates the object position with respect to the retina
coordinates and expressed as a visual error (∆θ). When a target object appears, depending on the initial
value of the visual error, the corresponding delay line is activated (Fig. 2.14). The saccade is initiated when
the first neuron in a delay line starts firing. The next neurons in the delay line start firing with a Gaussian
pattern (2.49) in a successive manner.

sij(t) = Ae−
(i− t

∆t)
2

2σ2 (2.49)

where, sij represents the firing rate of neuron i in line j and∆t is the sampling rate. The neural com-
mand then can be calculated by (2.50)

u(t) =
N∑
j=1

M∑
i=1

wijsij(t) (2.50)
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Symbolwij represents the weighted connection between neuron i in line j andN is the total number
of delay lines andM is the number of neurons in a delay line. Then, the cost function is defined as (2.51)

J =

∫ T

0
|∆θ|dt+ kreg

N∑
j=1

M∑
i=1

|wij |n (2.51)

Period T has a sufficiently large value so that the integral covers the whole movements and n = 4. A
gradient decent method was used for minimizing the cost function. To this end, the derivative of the cost
function (2.53) is calculated and the unknown parameters are replaced from the transfer function and the
neural signal.

∂J

∂wij
=

∫ T

0

∂

∂wij
|∆θ|dt+ kreg

∂

∂wij

N∑
j=1

M∑
i=1

|wij |4 (2.52)

= −
∫ T

0
sign(∆θ)

∂θ

∂wij
dt+ 4kregw

3
ij (2.53)

where,

sign(x) =


−1 if x < 0

0 if x = 0

+1 if x > 0

(2.54)

The eye movement at time t can be calculated by convolving the neural signal in an impulse response
(2.55), and by substituting ∂θ

∂wij
from (2.53), we will get (2.56). The detail of calculating the impulse re-

sponse h(t) is given in 5. In this model, we use a linear 3-pole oculomotor plant with time constants
Te1 = 232ms, Te2 = 14ms, Te3 = 4ms and DC gain k = 0.217. H(s) and the oculomotor plant are
considered the same function in Fig. 2.14 as mentioned in 5.

θ(t) =

∫ t

0
u(τ)h(t− τ)dτ (2.55)

∂J

∂wij
= −

∫ T

0
sign(∆θ)

(∫ t

0
sij(τ)h(t− τ)dτ

)
dt+ 4kregw

3
ij (2.56)

Now that we obtained the gradients, the weight adaptation rule can be defined based on the gradient
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Figure 2.15: Comparison of model velocity profiles to experimental data: (a) adapted velocity profiles for target positions

from 5° to 80°, (b) experimental data taken from 57 . In both plots, the symmetry degrades gradually as the saccadic amplitude

increases.

descent method as (2.57).

∆wij = −δij
∂J

∂wij
(2.57)

The result from this model is consistent with the practical experiment as shown in Fig. 2.15.

2.4.2 Smooth pursuit eye movement

Smooth pursuit eye movements allow the eyes to closely track a moving object in the visual environment.
It is one of the twoways that the vision system in primates and humans can voluntarily shift gaze, the other
one is saccadic eye movement. Large errors are eliminated by saccade and the role of the pursuit is subse-
quently to match the eye velocity to the target velocity. Most people are unable to initiate pursuit without
a moving visual signal. The pursuit of targets moving with velocities greater than a certain value tends to
require another tracking mechanism. Smooth pursuit eye movements are controlled by visual feedback
and thus the delays present in the visual system influence their characteristics (see Fig. 2.16). When the
target object velocity varies rapidly and unpredictably (faster than 30°/s), these delays cause the accumu-
lation of retinal error. Under such a condition, the strategy used by primates to track moving objects is to

44



Figure 2.16: Young’s model of smooth pursuit.

Figure 2.17: Robinson’s model of smooth pursuit eyemovement.

combine smooth eye movements with catch-up saccades that are rapid eye movements executed without
visual feedback 232.

Young et al. 232 proposed the firstmodel for a pursuit system in 1968 (Fig. 2.16). Lisberger et al. 109 discov-
ered the saturation effects on eye acceleration andOptican et al. 145 demonstrated themotor learning in the
pursuit system in 1981 and 1985 respectively. Meanwhile, the model remained unchanged and only more
data has been added to themodel. Robinson reviewed all the previousworks from 1965 to 1985 and studied
several parameters and proposed his final model (Fig. 2.17). This model answered nearly all the unknown
previous questions and very few components have changed after him. He started his study from Young’s
model with few parameters as shown in Fig. 2.16.

The signals θ̇T and θ̇E represent the velocity of the target and the eye movement, respectively. The
retinal slip signal, ė, is proportional to the eye acceleration. It is a velocity error and is a command to
change the eye velocity. Themodelmust bemodified subsequent to ˆ̇

θT to provide a signal proportional to
the eye acceleration. The estimated target velocity, ˆ̇θT , is declared by the central processing (CP) to be the
desired eye velocity, θ̇D. This process exhibits the activity of the Central Nervous System (CNS) with time
constant TC . The Pre-Motor Circuitry (PMC) provides the command to the oculomotor plants (eyeball
andmuscle) and contains anAcceleration Saturation (AS)with an integrator inside. The pre-motor circuit
compares the current eye velocity ˆ̇θE to θ̇D to create a motor error signal, ėm, that is amplified to drive ˆ̇θE
closer to θ̇D. This sub-system incorporates the findings of Lisberger et al. 109 and Optican et al. 145 in the
model. The values associated with the time delays and gains are shown in Table 2.1.

The modified version of Robinson’s model (Fig. 2.17) later was proposed by Barnes and Asselman in
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parameters and constants
τ1 τ2 τ3 TC Te2 ėo P1 P2 k A

values 15ms 35ms 30ms 7ms 15ms 4 °/s 0.95 1.0 1.0 1.1

Table 2.1: Constant values in Robinson’s model.

19914. Barnes and Asselman added two new components to Robinson’s model, prediction and memory,
and kept the rest of his model. The schematic of Barnes and Asselman’s model is illustrated in Fig. 2.18 in
more detail. They believed that prediction plays an important role in the smooth pursuit mechanism. In
addition, they added the head movement acceleration to the model which will be shown it is a very key
factor in the activation of smooth pursuit rather than the vestibulo-ocular reflex mechanism.

There is not a huge difference between Robinson and Barne and Asselman’s models, however the con-
figuration and details are sometimes different. In Barnes and Asselman’s model, the visual feedback from
the retina, θ̇E , and the target velocity, θ̇T , (head velocity θ̇H = 0) form the error signal. The mechanism
has one external feedback which calculates the error signal, ė, and an internal feedback which controls the
smooth pursuitmovement. The internal feedback is composed of twobasic components, a direct feedback
of the retinal velocity error and a secondary pathway incorporating a predictive velocity estimator (PVE).
The PVE is a sample and a hold mechanism that takes its input from an afferent copy of the gaze velocity.
In the nervous system, “afferent neurons” carry nerve impulses from receptors or sense organs toward the
central nervous system, while “efferent neurons” are doing reverse. So, when we say afferent copy, it means
a copy of the sensory signals. The output from the PVE is controlled by a periodicity estimator (PE) that
derives its control from the retinal velocity error signal and thereby estimates the periodicity of the most
frequently changing component of the stimulus. Any kind of estimator such as neural based and stochas-
tic based can be used in this circuitry. However, the neural one is strongly recommended since it is closer to
the brain function. The PVEmay obtain estimates of the required eye velocity either from direct sampling
of the afferent copy, through the predictor, or from information stored in memory (MEM) based on the
previous half-cycle of the response, as shown in Fig. 2.18 (gray area).

The output from PVE is partially integrated by a low pass filter P (s), which has a time constant Tp of
approximately 0 − 15 s, and is summated with the retinal velocity error signal before passing through a
band-pass filter F (s) with a time constant T of approximately 0.5 − 1 s. F (s) and P (s) have dynamic
characteristics as defined in the diagram,where s is theLaplace operator. ConstantKv represents the visual
feedback gain and τ the delay in visual feedback, approximately 0.1 s.
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Figure 2.18: Smooth pursuit mechanism of the eyemovement control system.

2.4.3 Optokinetic Reflex

The optokinetic reflex (OKR) is a combination of a saccade and smooth pursuit eye movements. There-
fore, a perfect understanding of saccade and smooth pursuits means a complete understanding of the
OKR. The OKR appears when an individual follows a moving object and finally the target object moves
out of the field of view and the eyes move back to the position it was in, where the object has been seen
at the beginning. The OKR happens when an observer watches a rotation drum with a stripped pattern
(optokinetic drum). The head does not move in the OKR, and if it moves then vestibular ocular reflex
happens, which will be discussed in the next section. The OKR has two components: slow and fast com-
ponents. As mentioned above, the OKR is composed of saccadic and smooth pursuit eye movements. If
the target object moves periodically, nystagmus can appear. Optokinetic nystagmus is caused either by the
retinal slip velocity signal (fast phase) or by the retinal slip signal itself (slow phase). An example of a step
response to a moving target can be simulated by the model shown in Fig. 2.17 and Fig. 2.18. The response
(OKR) and its associated target movements are shown in Fig. 2.19.

2.4.4 Vestibulo Ocular Reflex (VOR)

The vestibulo-ocular reflex occurs only during head movement and serves to stabilize gaze on a stationary
or moving object (Fig. 2.20). For instance, when an object is located outside the field of view and it needs
to be seen due to any reason, the eye movement mechanism in the sensory-motor cortex uses the VOR.
Another case of VOR is when the object is leaving the field of view and the eye needs to track down the
object. One of the best models of the VOR has been proposed by Minor and Goldberg 133 in 1991. Their
study was very vital for a better understanding of the eye movement mechanism.

47



Figure 2.19: Step response to a suddenmovement of the target object (optokinetic reflex against moving target).

Figure 2.20: Eyemovement due to Vestibular Ocular Reflex 40 .

Semicircular-canal afferents, SCC, (HC = sτc1
1+sτv

(1+sτc1)(1+sτc2)
) provide inputs to the vestibular nu-

clei (VN) as shown in Fig. 2.21. Central pathways (HB) link the VN to the oculomotor nuclei (OMN),
and drives the oculomotor plant (HE = s

1+sτE4

(1+sτE1)(1+sτE2)(1+sτE3)
). In the VOR simplified model,

Fig. 2.21, HB is composed of three parallel pathways, i.e., an eye-position (H2 = g2
s ), a head-velocity

(H1 = g1), and a filtered eye-velocity (H3 = g3
sτB+1 ). This arrangement is called a PID controller in the

classic control theory. Usually,HB refers to a much more complex mechanism than the one illustrated in
Fig. 2.21. This is because different mechanisms serve in the substrate of an eye movement control system.
As seen in Fig. 2.22, this component is replaced by another transfer function. For instance, in Fig. 2.17,
this model is the smooth pursuit mechanism. Two delays exist in the direct pathway from the SSC to the
eye: one between head rotations and the OMN (T1) and the other (T2) between the OMN and the eye
movements, totally T = T1 + T2 = 14 ms. The rest of the parameters and their associated values are
shown in Table 2.2. The value τv depends on the discharge regularity of the assumed afferent input.

2.4.5 Vergence

Vergence is the last item in the list of eyemovements that we hadmentioned above (Fig. 2.23). Vergence eye
movements are commonly treated as distinct subclasses of eye movements, with largely separate anatomic
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Figure 2.21: VOR simplifiedmodel along with neuron pathway.

parameters

values
τC1 τC2 τE1 τE2 τE3 τE4

6 s 3 ms 0.28 s 37 ms 3 ms 0.14 s

Table 2.2: Typical parameters setting of the VORmodel shown in Fig. 2.22.

Figure 2.22: Complete VORmodel provided for simulation purpose.
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Figure 2.23: (a) Small and large vergence, (b) vergence biological model.

and physiological substrates, and control systems characteristics. A vergence is defined as the simultaneous
movement in both eyes in opposite directions (as shown in Fig. 2.23.b in red) to obtain a single image by
binocular vision. We can consider vergence as the last step in the sequence of eye movement which always
exists in any type of eye movement, no matter the target object moves or the head. Vision neurons bring
images from the left and the right eyes into the visual cortex to give a sensation of an object and analyze the
object for further motor command generation. As seen, not only the vision signal (afferent) but also the
motor commands (efferent) cross over each other, the former in the ganglion nuclei (GN) and the later in
the motor nuclei (MN).

Zee et al. 234 established a solid base for research on vergence by reviewing previousworks and proposing
an analytical model (Figs. 2.24 and 2.25). Although this model explains how the saccademechanismworks
in conjunctionwith vergence, there aremodels 121 that explains how other eyemovement can be completed
by vergence.

As shown in Fig. 2.23.b, the image from the left and right eyes should be mixed up to make a unique
image. If the brain detects a little error between these two images due to the misalignment of the visual,
it will automatically initiate the vergence mechanism. The error signal, (∆C), is a desired change in the
conjugate position (see Fig. 2.24). The signal is compared with an afferent copy of the change (∆C ′) to
produce a instantaneous Conjugate Motor Error (CME) which drives the Saccade Burst Neurons (SBN)
to produce a Conjugate Velocity Command (CVC) by accessing to the nonlinearity innately existing in the
neuron model. The CVC also feeds back by a Resettable Integrator (CRI) and a time delay. Omnidirec-
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Figure 2.24: Saccade-vergence control mechanism.

Figure 2.25: Modified control mechanism based on vergence.

tional Pulse Neurons (OPN) are inhibited to initiate saccades or kept inhibited till saccade is active. The
velocity signal directly is sent to oculomotor neurons after being integrated byNI, amplified by gainGPC
and filtered by a slide filter with gainGSL and 3 dB frequency f = 1

TSL
, as shown in Fig. 2.24.

The error signal is the velocity difference between the left and the right eyes (∆V ), a desired change in
Fig. 2.25 is based on angular velocity. As shown in Fig. 2.25, the signal is compared with an afferent copy
of the change in the vergence velocity (∆V ′) to produce an instantaneous Vergence Motor Error (VME).
This signal drives the vergence velocity neurons (VVN) to produce a Vergence Velocity Command (VVC)
according to the nonlinearity as characterized in 123. The VVC signal is filtered by a low-pass filter with a
time constant (TF ) of0.01 s and0.05 s for convergence and divergence respectively. The rest of the process
is similar to that of Fig. 2.24 except the oculomotor neuron command is multiplied by 0.5 before entering
to the eye plants to give equal velocity to both eyes during vergence.

So far, saccadic eye movement, smooth pursuit, OKR, OVR and vergence as five fundamental compo-
nents of an eyemovement have been discussed in section 2.4 and the biologicalmechanismswere analyzed.
Besides, a computational model for each component were derived from the literature or existing models
were extended. Section 2.4 has already explained the brain cortex modeling using Artificial Neural Net-
work (ANN). Now, these five eye movement components and ANN will be used to build the complete
eye movement mechanism. The mechanism will explain the vision neural path for one eye (monocular).
Then, the model will be replicated and ganglion nuclei as well as motor nuclei will be added to explain the
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Figure 2.26: Neural path of the oculomotor mechanism.

complete binocular vision system. Later, the binocular vision model will be employed in order to explain
the sensory conflict and deduce the condition in which visually induced motion sickness takes place.

2.5 Binocular vision model

Vergence is the sole component which connects the monocular vision mechanism to binocular vision and
explains the relation between the two eyes. As mentioned, all of the previous models (see section 2.4.1
to 2.4.5) will be integrated into a unique oculomotor model to build a complete monocular vision model.
The vision neural path and its connectionwith the cortex will be explained in the following section. These
explanations will help to understand how ANN should be embedded in the model.

2.5.1 Oculomotor neural path

The neural path of the oculomotor mechanism based on a previous study77 is illustrated in Fig. 2.26.
The retinal image and the head movement are regarded as inputs, horizontal rotation angle E, as the

output of the oculomotor mechanism, and the eyeball and ocular muscles are the eye movement plant.
The head horizontal/rotational movement is detected by the horizontal canal (HC) of the otolith and
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considered as the vestibular signal (Fig. 2.26). The vestibular signal uses two paths to initiate the control
plant:

1. Vestibular Nucleus (VN), Oculomotor Nucleus (OMN), Medial Rectus muscles (MR);

2. VN, Abducent Nucleus (AN), Lateral Rectus Muscles (LR).

The retina signal is extracted from the retina image and can pass through two paths:

1. Retina (R), pretectum (PT), nucleus reticular tegmental pontis (NRTP), VN, OMN, MR;

2. VN, AN, LR.

The saccadic signals inputs from the Flocculus (a small lobe part of the VOR system helping stabilize gaze
during head rotation) are superior to VN.

The structure of the Flocculus has been described in77 in detail and will be considered as a black box
here. The input signals are transferred through the mossy fibers (mf). The mf stretch the receptors of
the eye muscles (LR, MR) that are considered as paths to transfer the signals of the eye rotational angle as
shown in Fig. 2.26. The VN plays an important role in the oculomotor mechanism and is thought as the
reason of sensory conflict. Reason andBrand 158 suggested a theory based on this conflict to explainmotion
sickness, which is known as the “sensory conflict theory”. This theory was completed and detailed by Bos
et al. 17 for visually induced motion sickness in 2008 which will be discussed in more detail in section 2.7.

2.5.2 Monocular vision mechanism

Themathematicalmodel of the eyemovementmechanism (Fig. 2.27) is derived to simulate the oculomotor
neuron path equivalent to the one that has already been explained in section 2.5.1 (see Fig. 2.26). This
model explains the neuron path of a single eyemovement only. In Fig. 2.27, only the rotational movement
of the head (θH ) and the target (θo), the retinal slip and the retinal slip velocity represented by ϵ(s) and
ov(s), respectively, will be considered to simplify the final interpretation of the binocular vision model
(see section 2.5.4). The angle of the optical axis, E, always moves in the opposite direction by the VOR
mechanism (Figs. 2.20 and2.21) duringhead rotation. Therefore, an invertedhead angle is used in the input
of themodel. The Flocculus ismodeled by a simplemulti-layer perceptronArtificialNeuralNetworkwith
a training stage, as shown at the top of Fig. 2.27.

To simplify the discussion, the total eye plant (muscles and eyeball) wasmodeled by a first-order system,
where, Te is the time constant of the eyeball, g is a amplification gain. The neural integrator between the
VNand theOMN is expressed as the sumof an imperfect integrator and a direct path, whereTn is the time
constant of the integrator, and ge is the gain of the direct path 237. The symbols α(t), γ and λ represent
the synaptic transmission gains of the neural fibers that transfer the head velocity signal, the retinal slip
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Figure 2.27: Completemonocular visionmechanism.

velocity signal, and the retinal slip signal. We need a training process to extract the weights and the bias
values of the neural network and α(t).

The training process for the Flocculus is very similar to ANN. Plenty of training algorithms can be
found in the literature but the one that has been explained in 100 describes the training algorithm which is
inspired by Biological Neural Network (BNN).

Adaptive performance is not only governed by the Flocculus, but also by the vestibular nucleus 100.
Since the neurons in the VN do not have a complex network structure as the Flocculus, the VN can be
considered as a simplenetworkwith a training system that does not have enough ability tomake an accurate
learning like the Flocculus, but can learn quickly due to its simple structure 100. The eyemovement control
mechanism suggests that the performance of the whole training system is improved by the combination
of two learning systems: 1) one ANN (Flocculus) with slow and precise learning which will be feasible by
setting the learning constant small, 2) anotherANN(VN)with a simple structure and learning systemwith
quick convergence. It can be thought that a simple learning system not only improves the total learning
speed, but also makes the main learning system avoid local minimums. Thus, the following algorithm is
used to simulate the learning performance of the vestibular nuclei. The training algorithm of the second
network is adapted from (2.58).

α (T (k + 1)) = α(kT ) + δ (ρ− α(kT )) + ϵξ(kT + τ)Hv(kT + τ) (2.58)

where, δ is a forgetting constant, ρ is the standard value of α(t), ξ is the learning constant, k is the
learning time, and T is the cycle time. Different steps of the training algorithm were clearly explained
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in 237. In spite of previous simplifications, the model shown in Fig. 2.27 is still complicated for explaining
binocular vision. So, we will go one step ahead to make a simpler model for studying binocular vision.

2.5.3 Monocular vision simplified model

We assume Tn ≫ ge and Te = ge to simplify the equation and the transfer function, and consequently
the monocular vision model in Fig. 2.27. Now, we can rewrite the neural integration (NI) as (2.59)

NI(s) = ge +
Tn

sTn + 1
=
sgeTn + (Tn + ge)

sTn + 1
(2.59)

Using the first assumption, (2.59) is written in the form of (2.60)

NI(s) =
Tn (sge + 1)

sTn + 1
(2.60)

By imposing a second condition and accepting an eye movement pole cancellation which has been
proven and acceptedbyprevious research 20 and studiedbybiological experiment, the eyeball transfer func-
tion, ( g

sTe+1 ) can be expressed by (2.61)

HE(s) =
Tn (sge + 1)

sTn + 1
× g

sTe + 1
(2.61)

Gain g = 1, therefore, the final transfer function of the eyeball and the NI is simplified to (2.62)

HE(s) =
Tn

sTn + 1
(2.62)

Fig. 2.28 shows the simplified version of Fig. 2.27 which will be used later in binocular vision. This
modelwill help to understand the eyemovementmechanismbetter. For instance, (2.63), (2.64), and (2.66)
explain the VOR, the OKR, the saccadic movement respectively. Only the effect of the Purkinje cell 237

from the Flocculus is neglected in this model for more simplicity. The Purkinje effect is well described
in 237 whichwill be added to the final binocularmodel as anANN in the next section. However, for deeper
consideration in a specific application, it needs to be considered similar to that shown in Fig. 2.27.
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Figure 2.28: Simplified version of the eyemovementmechanism.

HVOR(s) =
αTvTns

2 + Tn(γs+ λ) (Tns+ 1) e−sτ

(Tns+ 1) [(1 + γe−sτ )Tns+ λTne−sτ + 1]
(2.63)

HOKR(s) =
Tn(γs+ λ)e−sτ

(Tns+ 1) + Tn(γs+ λ)e−sτ
(2.64)

ϵ(s) = θE(s)− θo(s), θH(s) = 0 (2.65)

Hs(s) =
(sTn + 1) e−sτs + (γs+ λ)e−sτ

sTn + 1
(2.66)

In the next section, this model will be repeated for the left and right eyes and the ganglion nuclei will be
added to join the two eyes and complete the binocular vision model.

2.5.4 Binocular vision

A simple sketch of binocular vision of the human being is demonstrated in Fig. 2.29. The optic nerves
carry visual information from each eye to the brain via ganglion cells. These nerves travel from the back
of the eye ball (retina), entering the brain through the orbit at a small “hole” (the optic canal) in the skull
bone. The optic nerves of the left and right eyes meet and cross each other to form the optic chiasm (since
the visual cortex does not receive signals from each eye unilaterally, the right eye vision is partially perceived
on the left side of the brain and vice versa). Half of each optical field is directed to the opposite part of the
brain. This occurs when the bundled fibers of the optic nerves meet and cross at the optic chiasm (cross
road), located just a few centimeters inside the brain. The true vision information is formed and processed
in the visual cortex of the brain. The eye movement mechanism in the sensory motor cortex of the middle
brain processes the visual and vestibular data to generate an ocular motor command. Different elements
of the eye movement mechanism were introduced in section 2.4.
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Figure 2.29: Neural pathway of the binocular vision system.

A complete model of binocular vision is achieved by combining all the previous components and em-
bedding the optical never cross-over effect (Fig. 2.30). A simplified version of binocular vision was derived
by Zhang andWakamatsu237. His model forms the back bone of this research while the saccadic eyemove-
ment mechanism is integrated and the Flocculus network is embedded into the ANN for simplicity. The
model is modified to be more consistent with its biological equivalent as shown in Fig. 2.29, and the previ-
ousmodel of themonocular visionmechanism as introduced in Fig. 2.27 and Fig. 2.28 in section 2.5.3. The
symbol of the constant values were changed slightly in this model compared to that of Fig. 2.28 because
there are too constants in the model. In general, α and β, γ are used to explain the VN and the OMN
constants respectively. Besides, the rule of the ganglion nuclei (cross-over effect) is incorporated in the
model, the blue area in Fig. 2.31. As seen, not only the incoming vision information is crossed over but the
outgoing motor command for each eye is affected by the other eye too.

The proposedmodel is complete for studying the effect of different parameters involved in an eyemove-
ment and better understanding of the mechanism of binocular vision, although this model is a little bit
complicated in general. As a result, this complexity motivates us to think of a simple representation such
as the one shown in Fig. 2.32, which can be applied to the qualitative study conducted later only to have a
general idea. Fig. 2.32 introduces a block diagram-based of themodelwhichmakes the final study easier and
the model more comprehensive. In section 2.5.5, it will be explained how the model was derived and what
each element means. Later, the model will explain some visual conflicts during sensory rearrangement.
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Figure 2.30: Completemodel for binocular vision simulation with Flocculus comportment.
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Figure 2.31: Simplified binocular vision neural model.
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Figure 2.32: Simplified binocular visionmodel.

2.5.5 Simplified control mechanism of monocular vision

Zhang and Wakamatsu 238 derived an eye movement control system from human vision for robotic ap-
plications. The model is capable of explaining more visual effects and phenomena occuring during eye
movements. However, the model will be used to interpret binocular disparity 211 in detail and with more
precision later. However, some elements such as saccade still need to be integrated in the model compar-
ing the model shown in Fig. 2.27. We incorporate the saccade control mechanism (Robinson 162) into the
model and summarize the other elements in blockA,B, andC to make the process more understandable
(see Mergenthaler and Engbert 129 for more detail). The detail of the model, only for one eye, is explained
below to make each element clear and understandable (Fig. 2.33). Then the model is repeated for the left
and right eyes in conjunction to construct a model for binocular vision similar to what shown in Fig. 2.32.

Input/output: The eye moves due to either head or object motion or both. The head, the target object,
the system inputs, and the eye movement (degree), the system output, are denoted by θH , θo, and θE
respectively in Fig. 2.33. Object motion is detected by the visual cortex, V5 region of the visual cortex
(Born 15), and head movement by the semicircular canal and cochlea (Oman 144). The head rotation angle
is converted to a nerves signal by a “semicircular canal transfer function”, H1(s). The transfer function
is a function that convert the signal from one type to another. Since, the optical axis always moves in the
opposite direction of the head rotation which is multiplied by −1 before entering into the semicircular
transfer function as stated above.
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Figure 2.33: Eyemovement control system for a single eye.

Blocks: Block α(t) represents the synaptic transmission gains of the neural fibers that transfer the head
velocity signal. The synaptic gains are modeled by a set of neurons (a simple perceptron ANN with a
training algorithm explained in section 2.5.2) and is trained in real-time by the data coming from the Floc-
culus (blockB in Figure 2.33). It acts as a transfer function of the vestibular nucleus where the ocular and
vestibular signals are mixed up. When amovement is detected, the oculomotor control system is triggered
to perform different kinds of eye movements according to the position, movements of the target object,
and the head. The final motor command is converted to a rotation angle by an “Eyeball and muscle trans-
fer function”,H2(s), before entering into the eye muscles (see section 2.4.4 for more detail). The retina
slip processing unit (block A in Fig. 2.33, in red) and its parameters were well defined and discussed by
Zhang andWakamatsu 237. The saccade control system (blockC) is adapted fromRobinson 162 and Saeb et
al. 170 works. Most eye movements are composed of several types, which come one after another and with
co-ordination. As a result, more than one parameter is usually involved in a single movement analysis.

Parameters: Each component of the oculomotor can be mathematically modeled and described by
equations. The classic control theory can describe the relation between the input (retina image) and the
output (vertical andhorizontal amountof eye rotation) and the characteristics of eyemovement. Although
several components are involved in eye movement, only the effect of saccade (θ3), the Flocculus (θ2) and
the retina slip (θ1) will be described to give an insight into binocular disparity. For that, the oculomotor
model for binocular vision will be discussed and then the effect of these three parameters on binocular
disparity will be discussed.

2.5.6 Simplified oculomotor mechanism of binocular vision

A simplified block diagram of the eye movement control system for binocular vision is shown in Fig. 2.32.
To the best of our knowledge, thismodel is themost completed binocularmodel for human vision. Exactly
the same control system as Fig. 2.33 is used for each eye except the “L/R eye matching unit” is added to the
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Figure 2.34: Difference between the L/R eyes and the object position at time t = 0+ (immediately after object movement).

binocular control system just to model the Lateral Geniculate Nucleus (LGN) which models the cross
over effect of the optical nerves. An analytical definition of the LGN function and its components were
perfectly detailed by Zhang and Wakamatsu237 and intensive research has been conducted to study the
effects of different parameters on binocular vision. Now, we are ready to analyze the effect of blocksA,B,
andC in Fig. 2.33 to show how binocular disparity happens and is intensified by rotational motion.

2.5.7 TheeffectoftheFlocculus, saccadeandtheretinaslipvelocityonbinoc-
ular disparity

Retina slip and retinal slip velocity effects (θ1)

Considering only rotational movement, the retina slip signal (ϵ) at time t is defined as the angular dif-
ference between the current position of the object with respect to the head and the optical axes, ϵ =

θE − (θO − θH), as shown in Fig. 2.28.
If we assume the head is fixed, there is a natural difference between the left and right eyes at time t = 0+,

immediately after object movement, as shown in Fig. 2.34. Since this difference (for instance for values
shown in Fig. 2.34) is multiplied by an internal coefficient (velocity: γ = 0.5, angle: λ = 0.01 as de-
termined by Zhang and Wakamatsu237), the first difference between the left and right eyes appears (2.67).
The same calculation with a similar assumption is possible for the retina slip velocity. The velocity effect
is stronger because the coefficient is bigger (γ > λ).
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Figure 2.35: Output of the Flocculus network without movement.

θR1 =
[
θRE −

(
θRO − θRH

)]
λ = 65× 0.01 = 0.65, θL1 = 60× 0.01 = 0.6

θ1 = θR1 − θL1 = 0.65− 0.6 = 0.05 (2.67)

Faster rotation (bigger rotational velocity) leads to a bigger difference which in turn creates larger dis-
parity between the two eyes. However, the control system decreases the difference during the transition
to the new point by its natural feedback (Fig. 2.33).

Flocculus effect (the effect of Purkinge cells, θ2)

The second difference appears due to amismatching between the input pattern and the pattern existing in
Purkinge cells in the Flocculus during rotational movement. A simple 3-layers perceptron neural network
with a “purelin transfer function”, 5, 3 and 2 neurons in the input, hidden and output layers respectively
(Fig. 2.35), is selected to study the effect of the difference in the Flocculus due to a pattern mismatching on
binocular disparity. We will calculate the network output for two conditions:

Flocculus output for an original pattern We assume the Flocculus neural network has been
trained by the pattern and the feature as shown in Fig. 2.35.a. Therefore, the bias and weighting values
for each layer are known. Again for simplicity, we assume all the bias and weighting values equal to “1”,
as shown in Fig. 2.35. 5 rectangular features are selected and the feature value (F ) is calculated based on
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Figure 2.36: a) Original patternω = 0 °/s, b) pattern in motion forω = 20 °/s, c) 60 °/s.

the pixel values shown in Fig. 2.35.b. Then the output of each layer in the Flocculus network is calculated
using (2.68).

oj =

n1∑
i=1

(w(i, j)Ii +Bj) (2.68)

where, ni is the number of neurons in the previous layer, w and B are the weightings and bias values
and Ii, the input values. If the calculation is repeated 3 times, OO = 64 is yield for the original pattern
(Fig. 2.36.a). For a given original pattern, the effect of the speed on the pattern during the movement can
be modeled by applying simple “motion blurring filters”. The parameters of the filter for different speeds
must be set as described by Kim and Ko 101. Fig. 2.36 shows the original pattern (a), ω = 0 °/s, and the
pattern in motion (b, c), ω = 20, 60 °/s.

Flocculus output for a pattern inmotion We accept the training values from the original pat-
tern and will replace the input pattern with a pattern in motion (Fig. 2.36.b, 20 °/s) in Fig. 2.35. The
arrangement of the Flocculus will be as shown in Fig. 2.37.

The output of the Flocculus network in Fig. 2.37 is calculated using (2.68), OM = 25.8, there is a
big error between the output of the network to the original pattern and the pattern in motion, θL =

64− 28.5 = 38.2, and this error in turn leads to a wrong estimation ofα(t) andmore disparity between
the left and right eyes. The bias and the weight of the left and right Flocculus networks are not really equal
naturally. It means either the bias or weight is different in Fig. 2.37, BR

j ̸= BL
j or wLij ̸= wRij . We can

assume the same values and see the error due to the difference in the training data. This difference also leads
to more disparity between the two eyes because it is accumulated with the motor command directly. The
second source of disparity due to a pattern mismatching in the Flocculus network is described by (2.69).

θ2 = θL2 − θR2 (2.69)
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Figure 2.37: Output of the Flocculus network for a pattern inmotion.

Saccadic effect (θ3)

The saccade control system as described by Saeb et al. 170 is a neural network and can be modeled in a
similar way as the Flocculus, however it is slightly different in detail. The network is trained by a pattern
(a) in the real environment while a pattern (b) is captured by the retina and processed during rotational
movement. Therefore, it creates an extra errorwhich enters into themuscle transfer function and gives rise
to erroneous rotation consequently. The saccade control system is activated only when the position of the
eye and the object is different as described by Kim and Ko 101. As a result, this initial error is accumulated
with the two previous effects (θ1, θ2) and exacerbates binocular disparity (2.70).

θ3 = θL3 − θR3 (2.70)

The retina slip velocity and saccade are dependent systems therefore, we cannot say which one is the
main cause of the difference between the two eyes. However, we can say, both of them contributes in the
disparity. Finally we can say binocular disparity results from the accumulation of three factors (2.71):

∆θL−R = θ1 + θ2 + θ3 (2.71)
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Figure 2.38: (a) Different sections of a brain Igou , (b) detail of sub-areas associated with the visual cortexWikipedia.

2.6 VisualcortexanatomyandbiologicalmechanismofVisually InducedMo-
tion Sickness (VIMS)

2.6.1 Brain anatomy

The brain is the most complicated element in the human Central Neural System (CNS) and plays a vital
role in different mechanisms of the human body. It is composed of different areas and each area is respon-
sible for controlling and analyzing a unique organ of the body independently or dependently to other
areas. The detailed map of the brain areas is shown in Fig. 2.38.a Igou. The most important areas from an
ocular-vestibular perspective are the primary motor, the premotor, the visual and primary auditory areas.

2.6.2 Visual cortex

The visual cortex in turn consists of several sub-areas as specified in Fig. 2.38.bWikipedia. Fig. 2.38.b shows
the position and the function of each sub-area of the vision cortex in the occipital lob of the brain. The
visual cortex has several sub-areas named fromV1 toV8 andVP.These sub-areas are responsible formotion
detection and analysis (V5 and V3a), form and color recognition (V3 and V4), and relaying the processing
results to the other parts of the brain (V2). TheV5, V3a, andV4 aremore important than the others in this
research because they are responsible for motion and color. Later, it will be shown that visual stimulation
is one of the major sources of cyber sickness. This kind of sickness is normally induced by inharmonious
moving scenes and comes along with dizziness.
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Figure 2.39: Hypothalamus position in the brainNCI .

Figure 2.40: Connection between the hypothalamus and the visual cortex 142 .
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2.6.3 Hypothalamus and its function

The hypothalamus is a portion of the brain that contains a number of small nuclei with a variety of func-
tions. One of the most important functions of the hypothalamus is to link the nervous system to the
endocrine system via the pituitary gland. The hypothalamus is responsible for certain metabolic processes
and other activities of the autonomic nervous system. It synthesizes and secretes certain neuro-hormones,
often called releasing hormones or hypothalamic hormones, and these in turn stimulate or inhibit the se-
cretion of pituitary hormones. The hypothalamus controls the body temperature, hunger, important as-
pects of parenting and attachment behaviors, thirst, fatigue, sleep, and circadian rhythmsNCI. A 2D view
of the brain from a side perspective shows the size and the position of the thalamus and hypothalamus
(Fig. 2.39). It is located approximately behind the ear.

2.6.4 Connection between the hypothalamus and the visual cortex

The connectionbetween thehypothalamus and the visual cortex is interesting forVIMS studies. As shown
in Fig. 2.40, visual motion is analyzed by the visual cortex in region V5, V3a, and V4, and the result of
the analysis is relayed into the hypothalamus 142. Among the brain structures, the hypothalamus and the
vision cortex play an important role in VIMS studies because the vision cortex provides an input to the
hypothalamus (see Fig. 2.40) and the hypothalamus serves as a medium to transfer the signal from the
visual cortex to the vagal nuclei.

2.6.5 Biological mechanism of nausea

Now the question is “why is the hypothalamus important in the current research?” This is because, the
Area Postrema (AP) 142, which is a medullary structure in the brain and controls nausea and vomiting, gets
an input from the hypothalamus as seen in Fig. 2.41. In addition, the vagus nerve, which is responsible for
sending an excitation nervous signal to the abdominal muscles, is directly triggered by the hypothalamus
(see Fig. 2.41). The hypothalamus is directly connected to the thalamus. Any mismatching between the
stored pattern in the brain and the incoming image during motion can trigger the thalamus and lead to
VIMS. Consequently it may lead to headache, changes in saliva, stomach awareness, and finally burping in
the stomach. Because of these symptoms, in the experiments (see chapters 5 and 6), Kennedy’s question-
naire98 will be selected to study the effect of the velocity of the visual flow on the level of VIMS induced
by presence in a virtual environment. All these signalings in the brain are managed by an organ called the
thalamus. The thalamus is a midline symmetrical structure of two halves, within the vertebrate brain, sit-
uated between the cerebral cortex and the midbrain. Some of its functions are the relaying of sensory and
motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness. The thalamus
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Figure 2.41: Vagus nerve activation and biological mechanism of nausea 142.

is better demonstrated with the surrounding structures in Fig. 2.39. It is surrounded by the hypothalamus
and the hippocampus in the bottom and top respectively. A 2D view of the brain from a side perspective
shows the size and the position of the thalamus (Fig. 2.39 left). It is located approximately behind the ear.

2.7 VIMS modeling using the Bayesian theory

2.7.1 Motion sickness and visually induced motion sickness

When some species (mammals and especially humans) are exposed to motion, they may get sick. The mo-
tion may concern physical self-motion, the motion of a visual scene alone, and their combination. Typi-
cally, only synthetic conditions, like being on a moving platform (e.g., in a vehicle, train, boat) or viewing
a visual motion (as stationary observers) may induce sickness. The former is called motion sickness (MS)
and the later visually induced motion sickness (VIMS) in different literatures 144,17. Sickness is character-
ized by physical signs of malaise such as cold sweating, belching, retching, pallor, and decreased gastric
tonus, and typical subjective symptoms such as headache, stomach discomfort, feeling of warmth, nausea,
and eventually vomiting.

Human experience with MS chronically dates back to the time when US Admiral Nelson reported
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his soldiers are suffering from boat sickness 134. He found out by experience that adaptation and repeated
exposure canminimize these adverse effects. Additionally, a human encounteringwithmotion and virtual
environments as well as video games demonstrates the general rule that MS adversely affects susceptible
individuals 157. Adefinite findingduringnearly a century concerns the fact that peoplewithout functioning
organs of balance in the inner ears, so called labyrinthine defectives, never get sick from motion. This
has been studied and reported several times so far76,81,97. Interestingly, these patients do also not suffer
from visual motion, even in the absence of physical self-motion 28,29,86. Another observation concerns
the fact that passive passengers get sick more than people who do control their motion themselves (like
pilots) 164,194. Based on such observations and as mentioned earlier, Reason and Brand suggested a theory
onmotion sickness, the “sensory conflict theory” 158. Although the theorywas very successful in explaining
a lot of observations, it also had some flaws. That is the reason why Bos et al. 17 further detailed this theory
focusing on the observation that “people only get sick when there is an (apparent) change of gravity with
respect to their head”. Bos et al. also discussed the most prevalent cause of VIMS in more detail.

A set of symptoms might appear due to a susceptibility to VIMS during or after exposure to certain
dynamic visual displays. VIMS60 can be measured by psychological and physiological methods. The sim-
ulator sickness questionnaire (SSQ) is awell-knownpsychologicalmethod formeasuring the extent ofmo-
tion sickness98. AlthoughMS andVIMS are different in some characteristics, there are some fundamental
similarities. For that reason, the SSQ is used herein for verifying the occurrence of VIMS. The following
parameters of an autonomic nervous activity are appropriate for physiological methods: heart rate vari-
ability, blood pressure70, electrogastrography62, galvanic skin reaction 231, human postural sway 202, and so
on (for more detail see chapter 4).

Thehumanpostural swayduringupright standing is an interesting feature among the above-mentioned
features which can provide a good feedback from the user during immersion into a synthetic environment.
The human upright standing is preserved by an involuntary physiological adjustment mechanism called
the “righting reflex” (body balance function 143). Sensory signals such as visual, auditory and vestibular as
well as proprioceptive signals from the skin, the muscles, and the joints trigger the function 89. The study
of this function helps a better understanding of equilibriumdisorders such as cerebellar degenerations and
Parkinson disease 143 as well as VIMS characteristics. Different parameters are involved in VIMS, such as
circular and linear vection, rod and frame effects, pseudo Coriolis and Purkinje effects, the time delays,
foreground/background motion, the field of view, the image velocity, the frame rates, and so on.

2.7.2 VIMS modeling using the Bayesian theory

Reason and Brand 158’s “sensory conflict” or “sensory rearrangement” theory is the most cited theory on
motion sickness. They accordingly stated that “motion sickness is a self-inflicted maladaptation phenomenon
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Figure 2.42: a)ModifiedMSmodel proposed byOman 144 for the sensory conflict theory, b) dynamic model of the body, sen-

sory organs and their signaling with the CNS.

which occurs at the onset and cessation of conditions of sensory rearrangement when the pattern of inputs
from the vestibular system, other proprioceptors and vision is at variance with the stored patterns derived
from recent transactions with the spatial environment”.

The conceptual Bayesian model of this cognitive process is shown in Fig. 2.42.a. An “exogenous” (ex-
ternally generated), versus “indigenous” (self-generated), motion stimulus enters the model and a sensory
conflict is created as an output. The coefficients of the state equations (A, Â) for the body (B, B̂) and
the sense organ dynamics (S, Ŝ) are embodied in this model. Fig. 2.42.b details the central nervous system
(CNS) mechanism. Hatted variables of the state estimator with its matrices correspond to neural stores of
Reason andBrand’smore qualitativemodel 158. The observer continuously estimates and predicts the body
orientation and corrects the posterior estimation with a Kalman Gain (K)91. Then, the CNS re-identifies
the observer coefficients (Â, B̂, Ŝ), re-calculates K and updates the control strategy (C) for the next it-
eration (the CNS repeats this chain infinitely and non-stop). The sensory conflict vector c (Fig. 2.42.b),
divergence vector, is obtained by subtracting the actual sensory from the expected input ŜX̂. When the
image velocity goes above certain limit, the conflict vector grows because vestibular data is missing. Con-
sequently, the resulting vectorKc grows which in turn leads to more sickness.

Sensory conflict canoccurdue to adifferencebetween the vestibular-ocular, intra-ocular or intra-vestibular
and finally ocular-vestibular with a proprioceptive pattern. The proprioceptive pattern is defined as a pat-
tern derived from a recent transaction with a real environment. The term “non-vestibular” is alternatively
used instead of “proprioceptive pattern” in scientific publications 144. The proprioceptive pattern is ad-
justed and the cortex is trained in the real environment by observing events, feeling the physical properties
of objects, and interacting with the real environment. The objects and events in a virtual environment are
quite artificial with only few physical properties. Due to the lack of physical tangible properties such as
gravity, force feedback, temperature, and so on, the difference between the real and virtual environments
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is unavoidable even though the virtual environment is processed and visualized by very fast and high-end
graphic processors. The visual- non-vestibular difference perceived by immersion into the virtual envi-
ronment increases the amplitude of the divergence vector. A larger divergence vector means a larger sen-
sory conflict vector consequently, which leads to strong VIMS. VIMS in a synthetic environment mainly
emerges due to oculo-vestibular and oculo- non-vestibular conflicts. However, there are some cases that
VIMS appears due to intra-sensory conflicts 179.

2.8 Conclusion

In this chapter, we reviewed and proposed mathematical models for the vestibular dynamics as well as
human vision. These models allow us to better understand how the brain works when humans move and
see. We used thesemodels to explainmotion sickness or visually inducedmotion sickness that occurswhen
moving in a virtual environment. In the next chapter, we will discuss the technical part of the thesis, that
is, the technical tools used to set up our virtual reality platform and prepare the experiments for answering
our research questions.
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3
Interaction techniques and implementation

3.1 Introduction

This chapter is organized to give an insight into the development steps as follows: a review over differ-
ent navigation and manipulation interfaces will be presented in section 3.2. Sections 3.3 and 3.4 will be
dedicated to a review on different interaction interfaces. We will use this interfaces both to complete our
studies and assess the performance of the interfaces subjectively and objectively later in chapters 5 and 6.
Their design and mathematical definition will be explained in section 3.5 and 3.6. We have developed a
software platform to code any navigation and interaction in the Virtual Environments (VEs) easily and
fast. Different components, the hardware and data communication infrastructure, the configuration and
the display system will be explained in section 3.7. The system has two operation modes: simulation and
real scale display. The configuration for each mode will be detailed and the development language and its
instructions will be summarized in this section. There are different versions of real-scale 3D displays. We
did the navigation/manipulation experiments in a CAVE system which is widely used in VR studies. The
hardware compartments of our CAVE system will be briefly introduced finally.
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3.2 Interaction in scale-one 3D VEs used for modeling and simulation

Avirtual environment (VE) is an interactive computer image that employs awide variety of display systems
to convey information to theusers. Theusers of aVE are immersed in a synthetic space of virtual images en-
hanced by special processing andnonvisual displaymodalities 137. Three-dimensional virtual environments
are used in fields as diverse as manufacturing 35,206, medicine 207,178, construction 225,160,112, psychotherapy 30,
design 147, and education 217,216. They also play an important role in the investigation of spatial processes,
such as examining directional knowledge 82 or assessing spatial abilities 24, allowing researchers to design
realistic experimental settings and flexibly record user’s behaviors 88.

Although thediversity ofVEapplicationsmakes it necessary todesignVE interfaces that support domain-
dependent needs 37, some tasks, such as navigation, are common to all VE applications and are essential
even when they are not the main objective of a user in a VE. Navigation can be defined as the process
whereby people determine where they are, where everything else is and how to get to particular objects
or places49. Navigation is the aggregate task of way-finding and motion. Way-finding is the cognitive el-
ement of navigation. It does involve not only movement of any kind but the tactical and strategic parts
that guide movement as well 167. Navigation of users in VEs has been investigated to a large degree 166,181,213.
To navigate successfully, people must plan their movements using spatial knowledge, such as visual cues,
the position of the object and their color. Users gain spatial knowledge about the environment and store
them as amental map. However, accurate spatial knowledge of VEs typically is developed very slowly after
long periods of navigation or study, and users may not always be willing to spend this time 208. Thus, if
the navigation support provided by VEs’ user interfaces is insufficient or inappropriate, people become
disoriented and get lost.

Navigation problems are even more serious in large-scale VEs, where there is no vantage point from
which the entireworld can be seen in detail, and the amount of detail that can be seen (e.g., fromabird’s eye
view) is drastically reduced by occlusion. To learn the structure of an environment, users are thus forced to
navigate extensively and to integrate information derived from different points of view. In scaled desktop
VEs, where a mouse and keyboard are usually the main input devices and the virtual world is experienced
through a computer screen, navigation is further complicated by the absence of many sensorial stimuli
(e.g., vestibular and proprioceptive) that are commonly exploited by users in the physical world.

A large number of recent research focuses on how to face navigation issues in VEs. In particular, a lot of
effort has been aimed at developing navigation aids that help the user to explore and learn the environment
around, preventing disorientation and simplifying navigation. However, only limited attention has been
devoted to compare different navigation aids, and the relations between the effectiveness of navigation aids
and different levels of user experience in navigating VEs have been left largely unexplored.

In a recent study on the effect of age on the use of VEs, Sayers 174 took into consideration the impact of
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computer experience, Internet experience, and 3D-application experience in tasks where users were asked
to search for specific objects in a 3D store, with or without an overviewmap of the VE. The study showed
that, when the overview map was used, previous Internet experience did matter with respect to the time
spent to perform the tasks, but not with respect to the number of interaction steps to move around in the
VE. The experience in using VEs, instead, was not found to have an effect on performance.

In general, having an effort, such aswalking, talking, and actively involving in some physicalmovement,
during immersion in VEs helps better spatial perception and improves the navigation and manipulation
parameters. For instance, Giordano et al. 50 showed that exploring a VE in a walking condition allowed
better spatial learning of the environment with respect to a fly condition, particularly for complex 3DVEs.
Nevertheless, with practice, the performance in the fly condition improvedwhereas the performance in the
walk condition remained at its initial maximum. We can benefit all those domains where it is important
to provide simple yet effective indications to support user navigation in a VE, regardless of its scale, while
limiting visual obstruction and keeping as much as possible the feeling of immersion which is typical of
VEs. Examples include training, videogames but also new car or pedestrian navigation systems based on
3D environments.

For example, 3D arrows have been recently employed in an augmented reality environment to inform
drivers about dangerous situations around their cars 208. At the same time, studying experienced versus
inexperienced users makes it possible to determine the most appropriate solution for different situations,
e.g., allowing navigation support to adapt a user’s navigation skill improvement.

To effectively navigate in an environment, users rely on three distinct types of spatial knowledge: land-
mark, route, and survey 33,169. In unfamiliar environments, people first learn about landmarks, which are
distinctive environmental features (such as specific buildings, supermarkets, city squares, bridges, etc.)
functioning as reference points during navigation 33,67. Landmarks act as visual anchors that identify dif-
ferent regions of space 215 or provide an organizational structure that facilitates the location of points that
are nearby 135. Route knowledge is usually developed from a first person perspective and makes it possible
to connect different landmarks in a sequence, creating paths between locations in the environment 33,154,67.
It allows a user to travel to destinations through known routes, but does not allow the user to take al-
ternative unfamiliar routes. Finally, survey knowledge is developed from a third person perspective (e.g.,
through maps) or by extensive traveling in an environment and describes the relationships among loca-
tions allowing users to assess where certain objects are located with respect to others in the environment
and to recognize alternative routes 33,154.

It is now generally accepted that people simultaneously develop landmark, route and survey knowl-
edge 168,218, and form mental images of the places, known as cognitive maps. Research also suggests that
vestibular and proprioceptive cues are important in developing spatial knowledge 229, although some re-
searchers found little effect of proprioceptive information on spatial learning of environments 174. This
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contributes to the difficulties in navigating in VEs, as they are often limited to the motor-environment
interaction afforded by conventional keyboards and/or joysticks.

Navigation difficulties in VEs originate from different factors. Obvious sources of navigational prob-
lems are represented by not knowing the structure and layout of a particular VE as well as a lack of famil-
iarity with VEs in general 213. Lack of intuitiveness of traditional navigation methods, such as navigating
by mouse movement, a joystick or a keyboard causes additional difficulties 30,183.

Additional factors such as a lack of support for speed control, navigationmode (e.g., walking vs. flying),
lack of landmarks and restricted field of view create navigation problems 83. In general, there are twomain
ways to provide navigation support inVEs: buildingVEs that follow navigability guidelines and providing
navigation aids to help the user.

Approaches based on structuring a VE to facilitate navigation often derive from other fields which have
already faced the problem in the physical world, e.g., Lynch’swork on the classification of navigational con-
tents of cities 114. Some authors 135 derive the requirements for spatial design in VEs from architectural the-
ories, while others 167 discuss methods to organize the space for navigability, inspired by previous research
in fields such as urban planning. Extensive work is available on the design and placement of landmarks 215.
The important role played by landmarks when acquiring route knowledge in a network of paths is inves-
tigated by Jansen-Osmann and Wiedenbauer 83, who found that landmarks do indeed aid orientation in
way-finding, and a route with landmarks is learned faster than one without landmarks.

3.3 Navigation principles and interfaces

3.3.1 Navigation principle

Navigation devices and approaches are application dependent, however its principle and theoretical fun-
dament in VEs are approximately similar. In many domains, inappropriate solutions for a beginner might
be very efficient and comfortable for an experienced and vice versa. For instance, the graphical interface
provided by Microsoft in the Windows (XP and 7) platform is very comfortable and user-friendly for any
user; however software engineers prefer to work with Linux which is not really easy in general. As another
famous example, it is well-known that WIMP (Windows, Icons, Menus, and Pointers) interfaces are suit-
able for novices but experienced users may prefer quicker alternatives such as keyboard shortcuts or even
command line interfaces. Similarly, navigation aids which are appropriate for experienced users may not
provide a suitable level of support for inexperienced users. Contrarily, the solutions that may improve the
navigation performance of inexperienced users may not benefit experienced users beyond a certain degree.
Despite the diversity of application, some aspects of navigation interfaces are common in all the applica-
tions. For example, all the navigation can be defined as a set of continuous movements. Each movement
has a starting and stop point. We can move from the starting points off with acceleration and continue

76



Principle components of a navigation in an environment
Steps Description of the sub-task Detail of the sub-task
1 Start

2 Indicate target position position
Discrete target
One-time route
Continuous

3 Indicate orientation

4 Move
velocity
acceleration

5 Stop

Table 3.1: Basic components of a navigation.

Direction/target point parameter
Choice Methods Description

1 Gaze-direct steering
2 Pointing by gesture (in-

cluding props)

3 Discrete
List (e.g., menu)
Environmental or directional targets
(objects in the virtual world)

4 2D pointing

Table 3.2: Direction/target selectionmethods.

our path with a constant velocity. The description of the navigation components and their associated sub-
tasks are detailed in Table 3.1. As shown in Table 3.1, each navigation task begins with “start” and ends to
“stop” commands. The rest consists of a movement toward a target point along a pre-specified direction.

The direction of the movement, the target point and the velocity/acceleration are the key parameters
of navigation during traveling from a given point A to destination B. Each of these tasks can be selected
in different ways. For example, only the target and direction can be selected by four methods as shown
in Table 3.2. Usually, it is very preferable to select the target when walking in virtual reality and change it
during navigation. But in some applications, the user navigates to manipulate an object. The target point
must be specified in advance if the user is not close enough to the target object.

It is very important to know how we can approach to the target point. The instant variation of some
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Velocity/acceleration parameter
Choice Methods Description

1 Constant velocity and acceleration
2 Gesture-based (including props)

3 Explicitly assigned
Discrete (1 orN )
Continuous range

4 User of environment scaling
5 Automatic or adaptive approaches

Table 3.3: Different methods of acceleration selection.

parameters such as the velocity, the acceleration, and the direction influence the user adversely which leads
to general discomfort and nausea if the effect is quite severe. For example, very fast motion or sudden
variation in the velocity gives rise toVIMSasdetailed in chapter 6 (see section6.4). Table 3.3 showsdifferent
ways of acceleration and velocity selection. Velocity/acceleration can be set constant or adjusted by gesture
such as walking and head movement.

Not only the target and traveling parameters but also the navigation device is important for natural
and appropriate interaction. For example, stop and start buttons are used in some devices like the joy-
stick, while in gesture-based applications, only the human gesture controls the movement, albeit more
constrains can be imposed to the second traveling task. The movement can start and stop by pushing a
button from the navigation device and in between the motion continues constantly and non-stop. It can
be started and stopped automatically by analyzing a signal and checking some criteria. If the condition and
criteria are met, the movement will start or stop. This technique is used more in gesture-based interfaces.
Traveling sub-tasks need to be defined first in order to use navigation interfaces effectively everywhere in
VEs (Table 3.4). Let’s assume traveling along a random path from point A to F while passing through ran-
domly located points B, C and D between these two points. The very basic navigation task is to go from
point A to B (short travel). If this task is defined appropriately, the travel fromA to Fwill be completed by
repeating the short travel four times. Moreover, this navigation strategy can be employed everywhere with
any kind of navigation tools. That is why defining these details has a great deal of importance and plays
a critical role in designing any navigation interface. Table 3.1 shows that each travel can be split into five
steps. The points located along the path, between the start and stop points, can be assigned in different
ways as shown in Table 3.4.

The user position needs to be calculated or measured during navigation because the display system
uses this information to update the display area by projecting a new part of the 3D scene (3D mock-up).
Different techniques have been proposed for user tracking in VEs in the literature. Since these techniques
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Path planning by indicator position along the path
Methods Description

1 Discrete target
Marker selection from the environment

Position 3D cursor
Automatic position dependent selection

2 One-time route
Set series of markers

Specify by curvature and distance
Itinerary planning

3 Continuous
Gaze-directed position
Physical steering props

2D pointing via a virtual control interface

Table 3.4: Different strategies for path planning and point selection.

are more application dependent it is not easy to collect all of them under limited categories. The most
common form of the tracking system is the ray-based tracking as shown in Fig. 3.5.

The most predominant tracking system is an infrared-based system which uses a triangulation method
to calculate the user’s position (e.g., AR-Tracker system) and is arranged in a configuration of three or four
Z-depth IR cameras in combination with laser projectors. The position (x, y, z) and the orientation (p0,
p1, p2, p3) are calculated by applying the interpolation and triangulation algorithm to the coordinates of a
set of laser-sensitive balls attached to 3D glasses. The results are reported in Cartesian coordinates and the
quaternion system. A setup of a tracker system with four infrared cameras is shown in Fig. 3.1.

3.3.2 Examples of navigation interfaces

Navigation interfaces in VEs are a great issue for a long time in computer science, VR technology and
HCI 183 and quite a number of solutions have been proposed. These solutions can be divided into two
main categories:

1. Physical locomotion (raybased tracking,walking, “walking inplace” 183, “redirectedwalking” (RW) 135,
device actuated by walking and cycling, etc.) as shown in Fig. 3.2;

2. Steering techniques (gaze-directed steering, pointing, torso-directed steering, and camera in hand,
virtual motion controller and semi-automated steering, etc.) as shown in Fig. 3.3.a. They are re-
ferred to as human posture and gesture based navigation interface (the best example of this type
of navigation interface is the Kinect interface) (Fig. 3.3.b). These techniques apply human gesture
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Figure 3.1: Example of laser based tracking system.

and posture to provide a corresponding command to navigate in VEs. In fact all the commands
that one needs to inform the control system to update the 3D scene are extracted from the user’s
body motion. See an example of these body motion analysis in Fig. 3.4. As shown, the body image
grabbed by IR cameras is processed by a segmentation algorithm and then cleaned up by morpho-
logical operators. Themorphological centroid is calculated for the resulting image and the position
of the maxima on the silhouette contour are calculated. The centroid and the maximum points are
connected to make the skeleton of the body out of it. The extracted skeleton, for instance using a
Kinect sensor, is analyzed by pattern matching and a target gesture is assigned to the gesture in the
training phase, as seen in Fig. 3.5. In the evaluation phase, for an incoming IR image containing a
gesture, the gesture is detected as shown in Fig. 3.6.

An overview of these technologies can be found in 88. Several heuristic solutions have been developed to
enable omnidirectional walking through scale-one VEs, however all the possible omnidirectional walking
developments require strict constrains and dealing with security concerns 139,191. On the other hand, a user
really needs some constrain-free omnidirectional navigation interfaces with lower cognitive issues. The
most natural way to navigate inside the real world is by foot. However, it is not possible to walk inside a
scale-one 3DVE in the sameway as in reality because: 1) the user is limited to the projection space extended
up to maximum few meters in length; 2) only part of the 3D VE is visible, when a very huge model is
displayed. Therefore, either we need to develop an omnidirectional treadmill to use the same idea 50 or the
walking concept needs to be changed. The first approach has some physical constrains and need lots of
security issues to be taken care. Most of the papers followed the second approach.

Our natural walking in the real environment is a relativemovement. It is the best starting point because
immediately an idea strikes to the mind that: “instead of going towards a target point, the target point can
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Figure 3.2: Examples of navigation interfaces based on physical locomotion (Sarcos) 78 .

Figure 3.3: a) Task definition of the steering technique, b) navigation in VEs by gesture-based steering technique.

Figure 3.4: IR image analysis for skeleton detection: a) silhouette detection, b) skeleton definition.
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Figure 3.5: Example of body gesture analysis for five actions (walking, sitting, holding, standing, pointing at).

Figure 3.6: Output of the gesture detection processing unit: a) input IR image, b) detected gesture.
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Figure 3.7: WIP interface designed by swing wires for sensory incorporation: (a) concept, (b) realWIP interface 79 .

be drawn to us (by pulling the virtual scene)”. This will motivate us to construct a navigation interface
whichmoves the scene and all the objects attached to the scene back and forth by walking in place, moving
the left and right feet in place consecutively. This navigation interface is called “Walking in Place” (WIP)
in the literature. In this way, the user feels that he is going ahead inside VEs in the selected direction very
smoothly.

Research on VEs has provided converging evidence that being placed in a virtual environment can lead
to motion sickness96, as explained in chapter 2. For example, Kennedy et al.96 have shown that following
exposure to virtual environments and simulators, up to 30% of exposures result in reported nausea, up to
40% of exposures result in reported eyestrain, as well as the experience of numerous other symptoms of
motion sickness includingdrowsiness, salivation, sweating, headache, dizziness/vertigo and loss of postural
stability, although the prevalence of motion sickness in virtual environments appears greater than in flight
simulators94,95,38.

Recent work mainly tries to incorporate more sensory information into the design of WIP interfaces.
This is because, missing sensory will convey an incomplete pattern to the cortex which in turn, leads to a
sensory conflict and sever VIMS in practice (divergence between afferents and proprioception). Different
versions of the WIP interface have been proposed in the literature 50,36 regarding this fact. Fig. 3.7 shows
one of theWIP interfaces designed based on incorporatingmore sensory information. This incorporation
does have a profound vestibular and rather hypothetical basis. Nevertheless, in our view, a lack of sensory
information largely contributes in a VIMS symptoms provocation in a VE. Furthermore, different aspects
involved in VIMS, such as circular and linear vection, rod and frame effects, Purkinje effects, time delays,
foreground/ background motion, field of view, image velocity, frame rates, and the display parameters
must appropriately be considered in the interface design. Themore sensory is incorporated in the interface
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Figure 3.8: Cyber-walk on an omnidirectional treadmill 50.

design, the lower is VIMS because a more complete pattern will be relayed to the cortex. One of the most
completed WIP interface was proposed by Giordano et al. 50 as shown in Fig. 3.8.

However, walking is quite interesting for the researchers; there are some other devices that can be used
to handle a navigation task. Recent work proposed to use technologies provided by game manufacturers
such as the so-called Fly-stick, Gamepad,Wii board, andWiimote or combined with other methods 239,228.
Others designed special shoes including actuators and sensors and providing haptic and audio-haptic feed-
back 141. Although these technologies seem promising for navigating in a scale-one 3D model, they can be
intrusive for the users, thus they do not allow long navigation tasks.

3.4 Manipulation principles and interfaces

3.4.1 Manipulation principles

Object selection and positioning are among the most fundamental interactions between humans and en-
vironments, whether it is a “desktop” of 2D direct manipulation interfaces, a 3D virtual environment, or
the physical world 18,219. In the literature, a manipulation refers to as any act of handling physical/virtual
objects with one or twohands or interaction devices. Spatial rigidmanipulation is basically amanipulation
that preserves the shape of the object. Manipulation consists of three fundamental sub-tasks as shown in
Table 3.5: object selection, main manipulation sub-task, and object positioning. Target object selection is
the first sub-task performed by the user in each manipulation. The main manipulation sub-task includes
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Basic manipulation sub-task
Sub-task Definition

1 Selection Identifying an object
2 Main manipulation sub-task Moving, rotating and changing the property
3 Positioning Placing an object in the target position

Table 3.5: Sub-tasks associated with object manipulation.

a wide range of actions such as rotation, translation, deformation, scaling, and so on and so forth. The
last sub-task is positioning in which the user leaves the object in the target position after applying different
types of manipulation.

An object can be manipulated either by user gesture or interaction devices. If interaction devices are
used for object manipulation, some characteristics of the input device are important such as:

1. Degrees of Freedom (DOF), the more the better;

2. Returning feedback (force, pressure, temperature) from the target object;

3. Device placement and form factor (shape of the input devices and the place we put the devices, e.g.,
finger, hand, ...).

An example of interaction method based on hand gesture is shown in Figs. 3.9 and 3.10. As shown in
Fig. 3.10, the first step of gesture analysis is the skeleton detection. Then, the hand gesture will be assigned
by the finger configuration. For instance, if the finger configuration is as the first image (Fig. 3.9 top) then
code 001 is generated. At the same time, the position of the hand and of each finger is coded as analog
values. The latter is useful when two hands are involved in the object manipulation. Different steps of a
hand skeleton detection algorithm is shown in Fig. 3.9. The algorithm simply uses RGB and IR images of
the hand to segment the hand against the background. Small regions of segmentation can be eliminated
using one step of amorphological operation such as “Opening” or “Closing”. The pointswith amaximum
distance from the centroid in the resulting image are the finger tips. Having the finger tips and the hand
centroid, the skeleton can be drawn.

Prior research onmanipulation inVEs relates primarily to the assessment of user performance as a func-
tion of input and display devices and their properties. For example, a pioneering study byWare 219 demon-
strated the applicability and ease of use of a 3D input device for a six degree of freedom (6DOF) placement
task. A study by Zhai and Milgram 236 compares isometric versus isotonic input devices in various con-
ditions of spatial manipulation. Studies of stereoscopic versus monoscopic display devices suggest that
stereoscopy improves user manipulation performance 192,14. The effects of the system parameters (such as
lag and frame rate) in the manipulation task on user performance have also been extensively studied 221,115.
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Figure 3.9: Hand tracking by skeleton detection.

Figure 3.10: Hand gesture analysis and coding.
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Investigation of the human factors related to input and output devices has a considerable value; how-
ever, the lack of systematic research on interaction techniques, which map the user’s actions captured by
input devices into resulting actions in the VE 131, may significantly limit their appropriate use in VE design.
Interaction techniques essentially define the “look and feel” of VEs. A wide variety of techniques can be
implemented using the same input devices, and quite a few techniques for spatial manipulation have been
demonstrated. Still, there have been few attempts to formally evaluate them, to assess and compare their
functional capabilities under various circumstances.

A number of surveys have summarized and classified various approaches for designing techniques for
spatial inputs and identified problems and possible solutions 131,63. Zhai et al. 235 evaluated the application
of volumetric semi-transparent cursors (“silk” cursors) in a 3D target acquisition task, and reported a user
performance improvement as compared with traditional cursors. A study by Hinckley et al.64 evaluated
and compared several spatial rotational techniques. In a study by Mine et al. 132, automated world scaling
techniques were evaluated. More relevant here is the pioneering usability study reported by Bowman and
Hodges 18 that evaluated several VE techniques for manipulation at a distance. Although no quantitative
data were collected, this study provided useful preliminary observations of the techniques.

Starting with early techniques that simplymapped the position and orientation of the user’s hand onto
the position and orientation of manipulated objects 220,11, the field has been expanding with more sophis-
ticated techniques such as flashlight 107, aperture45, Go-Go 18,153 (Fig. 3.11), World-In-Miniature 196, image
plane 149, scaled-world grab 220 and many others. We will present some of them later. This variety of tech-
niques, however, is also a source of difficulty. How do all these techniques relate to each other? Which
interaction techniques should be chosen for particular task conditions? Which among the parameters of
interaction techniques, tasks, and environments should be considered to design efficient VE interfaces?
These questions persist and merit careful scrutiny by researchers and practitioners.

A straightforward evaluation and comparison of manipulation techniques is difficult. There are a mul-
titude of different techniques; even for the same technique, the performance varies depending on particu-
lar implementation; and studies of a particular technique implementation may not be readily generalized
to other implementations of the same technique, thus limiting their external validity.

On the other hand, many techniques apparently relate to each other and share many common proper-
ties. For example, there are more similarities between ray-casting and flashlight techniques than between
ray-casting (see Fig. 3.12.c) and techniques that use non-linear mappings (as in Go-Go 153). While an evalu-
ation of ray-castingmight provide insight into techniques similar to ray-casting, such as flashlight, it prob-
ably would not help in understanding techniques like Go-Go. The taxonomy of techniques, classifying
them according to their common properties, can be instrumental in understanding the relations between
the techniques and directing their design and experimental evaluation.

The analysis of current VE manipulation techniques suggests that most of them are based on a few
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Figure 3.11: TheGo-Gomethod 153: while the real hand (Rr) is within the distanceD (Rr < D), themapping is linear and

themovements of the virtual hand correspond to themovements of the real one. When the user extends the hand further than

D (Rr > D), themapping becomes non-linear and the virtual arm “grows”.

interactionmetaphors. Each of these basicmetaphors forms the fundamentalmentalmodel of a technique
- a perceptual manifestation of what users can do, how they can do it (affordances), and what they cannot
do (constraints) when using the technique 11,42.

Particular techniques are essentially implementations of basicmetaphors, often extending them inorder
to overcome some of the metaphor’s shortcomings and constraints. For example, the flashlight technique
enhances ray-casting by using a spotlight to ease selection of small objects 107 (see below). These improve-
ments often result in new constraints; for example, with the flashlight technique, an ambiguitymight occur
if several small objects fall into the spotlight.

As presented in Table 3.5, each object manipulation task has three sub-tasks, i.e., “selection”, “posi-
tioning” and “rotation”. Table 3.6 explains in brief only object “selection” techniques. The effect of the
distance and object size on user performance has been extensively studied, prior studies relate either to real
world target acquisition 135 or non-immersive object manipulation with 2D and 3D user interfaces236,14. In
both cases, manipulation occurs only within the natural reaching distance, as opposed to immersive VEs
in which users often need to access andmanipulate objects located both nearby and far outside the normal
area of reach 132.

3.4.2 Examples of object manipulation interfaces

The task of selecting andmanipulating objects located far away is often referred as “action at-a-distance”63.
The development of effective means of object manipulation across a wide range of distances has been rec-
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Figure 3.12: a), b) Object selection with a virtual pointer 152, c) ray-casting technique.

Techniques Description Detail

1 Indication of an object

Occlusion List
Pointing Voice selection
Touching of an object→ Automatic
Indirect selection Iconic object

2 Confirmation of selection

Event
Gesture
Voice command
Not explicit command

3 Feedback

Text, symbolic
Aural
Visual
Force, tactile

Table 3.6: Decomposition of an object selection sub-task.
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ognized as an important problem in virtual interface research and development 226. The whole variety was
divided into exocentric (Fig. 3.13) and egocentric techniques. Originating in studies of cockpit displays 80,
these terms are used now to distinguish between two fundamental frames of reference for user interaction
with VEs. With the exocentric interaction, also known as the God’s eye viewpoint, users interact with VEs
from the outside (the outside-in world referenced display 80). An example is theWorld-In-Miniature tech-
nique, which allowsmanipulation of objects by interacting with their representation in aminiaturemodel
of the environment held by the user 196. Another example is the automatic scaling technique 220, which
scales down the world so the user can access the objects located at a distance.

With the egocentric interaction, which is the most common for immersive VEs, the user is interacting
from inside the environment - i.e., the VE embeds the user 80. Currently there are few basic metaphors for
egocentric manipulation that will be introduced below63,219,149.

Another technique is called the virtual hand. Users can grab and position objects by “touching” and
“picking” them with a virtual representation of their real hand. The major design factor that defines a
particular technique is the choice of input devices andmappings between the real hand’s position and ori-
entation and the virtual hand’s position and orientation. For example a “classical” virtual hand technique
provides a one-to-one mapping between the real and virtual hands.

The Go-Go technique is another virtual hand technique that uses a non-linear mapping function to
translate the measured distance to the real hand into the controlled distance to the virtual one 153 (Fig. 3.11).
This allows for significant expansion of the user’s area of reach.

The virtual pointer is an object manipulation interface with which the user selects and manipulates
objects by pointing at them. When the vector emanating from the virtual pointer intersects with an object,
it can be picked and manipulated63. The major design aspects that distinguish techniques based on this
interface are the definition of the virtual pointer direction, the shape of the pointer (selection volume),
and the methods of disambiguating the object the user wants to select. In the simplest case, the direction
of the virtual pointer is defined by the orientation of the virtual hand, the pointer is a “laser ray,” and no
disambiguation is provided 152 (Fig. 3.12.a,b). Some techniques define the direction of the virtual pointer
by using two points: the position of the user’s dominant eye and the location of the tracker manipulated
by the user45,149. Volumetric pointers are also used to ease selection of objects45.

The direction of the virtual pointer is defined by the position and orientation of the virtual hand
(Fig. 3.12.a). The working volume of the technique is an invisible infinite ray emanating from the user’s
hand; a short segment of the ray is attached to the hand to indicate the direction of pointing. To select an
object, the user points at it and presses a button on a button device. When visual feedback is applied, the
color of an object changes when the ray intersects with it. Repositioning objects has been reported as diffi-
cult using virtual pointer techniques 219,220. The classical virtual pointer implementation does not permit
any change in the ray length; therefore, moving the object from a close to a far distance or vice versa can
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Figure 3.13: Egocentric object manipulation using the Head Crusher technique 149.

Figure 3.14: Virtual image plane: a) inside a virtual environment, b) detail of the virtual image plane 61 .

be accomplished only through iterative object picking, moving, releasing, re-picking and so on 220. This
method is obviously very inefficient.

Another useful manipulation interface is image plane. The image-plane family of techniques simplifies
the object selection task by requiring the user to control only 2 DOF.With this technique, the user selects
and manipulates 3D objects by touching and manipulating their 2D projections on a virtual image plane
located in front of the user (Figs. 3.13 and 3.14).

The spotlight and flashlight techniques were developed to provide a “soft” selection that does not re-
quire precision and accuracy of pointing to virtual objects with a ray. The techniques imitate pointing at
objects with a flashlight, which can illuminate an object even when the user does not point precisely at it.
The user can interactively control the spread of the angle of the selection volume simply by bringing the
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Figure 3.15: a) Aperture technique and b) selection-orientation planes.

Figure 3.16: VoodooDolls object manipulation 150.

hand sensor closer or moving it farther away. The aperture technique further simplifies the selection of
virtual objects by using the orientation of the pointer around a central axis as an additional disambiguation
metric (Fig. 3.15).

The Voodoo Dolls (Fig. 3.16) 150 interface is based on several key ideas. First, it proposes to manipulate
virtual objects indirectly, using temporary, miniature, handheld copies of objects called dolls. Similar to
the word inminiature (WIM), the usermanipulates these dolls instead of the virtual objects, which creates
the dolls representing the target objects and places them in the user’s hand.

So far we have suggested a taxonomy that identifies only the basics, which can be further subdivided to
reflect particular aspects of each technique. Also, techniques based on different metaphors can be com-
bined together to form new manipulation techniques. For example, techniques that combined virtual
pointer and virtual hand metaphors have been reported 18.

Positioning could be performed using iterative movements, i.e., the subjects could pick, move, and re-
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lease the object several times. Each time the object is released, the error of positioning is calculated. The
researcher can control the required accuracy of positioning by specifying maximal vertical and horizontal
displacements for task conditions. For example, a 0% displacement means that the target object must be
aligned on top of the terminal object without any positional error. When the error of positioning falls
below a specified threshold, the trial is completed and both objects disappear, cueing the subject that the
task is successfully accomplished.

3.4.3 Independent variables of navigation and manipulation

The primary goal of an interface assessment and evaluation is to understand the usability characteristics
of different object manipulation and navigation interfaces. Focusing on basic sub-tasks allows us to limit
the number of studied techniques and to generalize results beyond their specific implementations so as the
results of the evaluation can be applied to all techniques based on their sub-task. A lot of parameters can
be measured in tracking, navigation, and interaction inside a VE. Tables 3.7 and 3.8 show two short lists of
these parameters for navigation and manipulation interfaces. The main independent variables of interest
for the selection task are the distance to the object, the object size, the interaction techniques, and visual
feedback. However, as shown in Fig. 3.17, different parameters can be selected from the list for the object
manipulation evaluation. The position of an object in a VE is defined as the length d and orientation α,
β of the vector pointing from the user’s chest to the object (Fig. 3.17)79.

The size of the stimulus is defined as its non-occluded visual size: the vertical (φ), and horizontal (ϕ)
angles the object occupies in the user’s field of view (Fig. 3.17). Visual angles are also user-centered units.
The geometrical size of test objects is recalculated before each trial depending on the current position of the
user, in order to maintain the objects’ visual size as specified a priori by the experimenter. The benefit of
visual angles is the separation of influence of the distance and the object size on user’s performance: when
an object’s size is defined in terms of visual angles, it has the same visual size at different distances. Visual
angles also allow for an easy generalization of the results beyond the particular test VE.

The main independent variables of interest for manipulation tasks are the initial distance to the object,
the distance to the final position, the required accuracy of positioning, and the interaction technique.

3.5 Navigation/manipulation interface mathematical definition

As explained before (section 3.3.1), each navigation can be split up to several shorter navigations. In addi-
tion, a short navigation then canbe decomposed into two types ofmovement: translational and rotational.
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Navigation and tracking parameters
Parameter Description

1 Motion platform size
2 Position tracking error

3 Resolution
3D display system
Movement of the scene
Producing a command by a navigation device

4 Scene content
5 Time lag
6 Update rate
7 Calibration
8 Color
9 Contrast
10 Field of view, degree of control
11 Flicker

12 Velocity and acceleration
Rotational
Translational

Table 3.7: Independent variables for the evaluation of a navigation interface.

Figure 3.17: The object position is defined as distanced and directionsα,β in the user-centered coordinate system. The

object size is defined in terms of vertical (φ) and horizontal (ϕ) angles of the visual field subtended by the object.
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Canonical object manipulation parameters
Parameter Description

1 Selection

Distance
Direction
Size
Density of the objects around the target object
Number of the targeted objects
Target occlusion

2 Manipulation (rotation for example)
Distance
Initial an final orientation
Precision of the rotation

3 Position

Direction and orientation to the initial position
Distance and orientation to target position
Translation distance
Required precision of positioning

Table 3.8: Independent variables for the evaluation of amanipulation interface.

3.5.1 Translational movement

The real-time user’s position (xp(t), yp(t), zp(t)) and orientation (p0(t), p1(t), p2(t), p3(t)) are mea-
sured by the head tracker system with respect to the immersive room (here a CAVE) origin (x = 1.5,
y = 1.5, z = 0 for a CAVE with size 3× 3× 3m) and expressed by (3.1).

P⃗ (t) = (xp(t), yp(t), zp(t)) = xp(t)⃗i+ yp(t)⃗j + zp(t)k⃗ (3.1)

where, xp, yp, and zp are the Cartesian coordinates and i, j and k are the unique vectors along x, y, and
z axes respectively. The position vector at time t+∆t is represented by P⃗ (t+∆t) and expressed by (3.2).

P⃗ (t+∆t) = P⃗ (t) + ∆P⃗ (3.2)

where, vector∆P⃗ is called the translation vector and is calculated based on a constant or variable speed.
The translation vector depends on the linear velocity, v, and the parameters of the navigation device as
shown in Fig. 3.22 for instance.

The displacement value is calculated by (3.3) if themapping function (f ) between the real-virtualworlds
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is considered linear.

d = f (a(t)) ∗ v = kta(t)v (3.3)

The translation matrix is calculated by (3.4) if the movement occurs along x axis.
1 0 0 d

0 1 0 0

0 0 1 0

0 0 0 1

 (3.4)

If the movement is along another direction we need to redirect the displacement vector via the rotation
matrix (3.5) to the right direction then apply the translation operator.

 dx

dy

dz

 =

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


 d

0

0

 (3.5)

If we know the exact direction of the movement we can use (3.6) to calculate the new position, where
indicesA andB point at the initial and target positions, respectively.

xB

yB

zB

1

 =


1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1



xA

yA

zA

1

 =


xA + xB

yA + yB

zA + zB

1

 (3.6)

As we will see later, redirection is calculated by quaternion algebra.

3.5.2 Rotational movement and path correction using the orientation vec-
tor

Spatial rotations in 3D can be parametrized using both Euler angles and unit quaternions. A quaternion
is an extension of Euler’s formula. A given 2D point q with coordinate (r, θ) in the complex plane and
(x, y) in Cartesian coordinates can be represented either by a vector (3.7) or Euler representation (3.8).

q = xâx + yây = îx+ ĵy (3.7)

x+ jy = rejθ = r (cos(θ) + j sin(θ)) (3.8)
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Figure 3.18: Rotation of θ degrees around vector u⃗ in 3D space.

where, r =
√
x2 + y2 and θ = tan−1

( y
x

)
and âx = î, ây = ĵ are unit vectors along x and y

axes. Equation (3.5) can be interpreted as a rotation of θ degrees around z axis. In 3D space, point q with
(x, y, z) in 3D Cartesian coordinates, as shown in Fig. 3.18, is represented by xî + yĵ + zk̂ vector. The
rotation angle of θ degrees around u⃗ = (ux, uy, uz) is defined as (3.9) based on quaternion geometry.

q = e
1
2
θ(uxi+uyj+uzk) = cos

(
1

2
θ

)
+ (uxi+ uyj + uzk) sin

(
1

2
θ

)
(3.9)

Now, using equation (3.9), a unit quaternion can be described as (3.10):

q =
[
q0 q1 q2 q3

]T
(3.10)

where, q20 + q21 + q22 + q23 = 1 and the unique quaternion q⃗ is represented by vector q⃗ = q0 + q1î+

q2ĵ+ q3k̂. Quaternion q can be written with respect to Euler rotation angle by (3.11) as shown in Fig. 3.19.
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 (3.11)

Equation (3.11) links Euler to quaternion and defines the conversion from Euler to quaternion and vice
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Figure 3.19: Rotation angle in Cartesian coordinates with Euler representation.

versa. As a result, the rotation angles are calculated by (3.12).

 θ

ϕ

ψ

 =


arctan

(
2(q0q1+q2q3)

1−2(q21+q22)

)
arcsin (2 (q0q2 − q3q1))

arctan

(
2(q0q3+q1q2)

1−2(q22+q23)

)
 (3.12)

arctan and arcsin have a result between −π
2 and π

2 . When the rotation angles lay between −π
2 and

π
2 it is not possible to identify in which quarter we have been located in, and some orientations might be
miscalculated. Therefore, we need to replace arctan by atan2 in (3.12) to generate all the orientations as
restated in (3.13).

 θ

ϕ

ψ

 =

 atan2
(
2 (q0q1 + q2q3) , 1− 2

(
q21 + q22

))
arcsin (2 (q0q2 − q3q1))

atan2
(
2 (q0q3 + q1q2) , 1− 2

(
q22 + q23

))
 (3.13)

A rotation with angle θ, around a unit vector u⃗, the rotation axis, in a 3D space for Euler representation
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is defined by (3.14). Throughout this thesis, equation (3.14) will be used for rotation.

R =

 cos(θ) + u2x (1− cos(θ)) uxuy (1− cos(θ))− uz sin(θ) uxuz (1− cos(θ)) + uy sin(θ)

uyux (1− cos(θ)) + uz sin(θ) cos(θ) + u2y (1− cos(θ)) uyuz (1− cos(θ))− ux sin(θ)

uzux (1− cos(θ))− uy sin(θ) uzuy (1− cos(θ)) + ux sin(θ) cos(θ) + u2z (1− cos(θ))


(3.14)

Usually, cos(θ) and sin(θ) are replaced with C and S respectively to make the representation of the
rotation matrix simpler as seen in (3.15).

R =

 C + u2x (1− C) uxuy (1− C)− uzS uxuz (1− C) + uyS

uyux (1− C) + uzS C + u2y (1− C) uyuz (1− C)− uxS

uzux (1− C)− uyS uzuy (1− C) + uxS C + u2z (1− C)

 (3.15)

If the rotation takes place around z axis in the plane z = z0, the rotation axis is defined by u⃗ = (0, 0, 1)

then the rotationmatrix is rewritten as (3.16) which is the famous rotationmatrix we know from analytical
geometry.

R =

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (3.16)

It can be shown that this rotation can be applied to an ordinary vector p⃗ = (px, py, pz) = px⃗i+py j⃗+

pzk⃗ in a 3D space. Vector p⃗ can be considered as a quaternion with a real coordinate equal to zero and the
rotation operation can be expressed by (3.17) (well known as the Hamilton product), where,

(
p′x, p

′
y, p

′
z

)
in (3.17) is the new vector after rotation. If p and q are quaternions representing two continuous rotations,
then (3.18) is the result of the final rotation which is the same as rotating by q and then by p. The power n
of a quaternion rotation qn is a rotation by n times the angle around the same axis as q.

p′ = qpq∗ (3.17)

pqv⃗(pq)∗ = pqv⃗q∗p∗ = p (qv⃗q∗) p∗ (3.18)

where, q∗ is called the conjugated quaternion and is defined by q∗ = [ a −b −c −d ]T if q =

[ a b c d ]T . The conjugation definition in quaternion algebra is the generalized form of a complex
number. The conjugation of a complex number z = x+ jy is defined by z∗ = x− jy. As seen, only j
is converted into−j to calculate the conjugated complex number. The same operation can be done here,
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Figure 3.20: Reorientation during navigation.

q = a+ bi+ cj + dk is conjugated by converting i, j, k into−i,−j,−k, q = a− bi− cj − dk.
Sometimes the rotation takes place around z axis. In this case, it is much easier to project the naviga-

tion path on xy plane to make the calculation simpler and of course faster. In 2D, on z = 0 plane, the
2D rotation matrix (3.19) describes the kinematics of the user rotation. The current and target orienta-
tions are required to calculate the rotationmatrix andmake rotation in VEs possible (Fig. 3.20). Common
descriptions of a rotation include Euler angles and matrix products as explained above (3.14).

M (θ(t)) =

[
cos (θ(t)) − sin (θ(t))

sin (θ(t)) cos (θ(t))

]
(3.19)

The simplified rotation matrix (3.19) is used in angular rotation which means vector P⃗ (t) is redirected
to P⃗ (t+∆t) by (3.20) as shown in Fig. 3.20.

P⃗ (t+∆t) =M (θ(∆t)) P⃗ (t) (3.20)

where, θ(∆t) expresses the angular difference between the current and target orientations. The trans-
lational movement of the scene is along x and y directions. However, if the movement takes place in 3D
space (walking on the stairs, Fig. 3.21) the general form of the rotation and translation matrices (3.6) and
(3.14) will be used.

3.5.3 Acceleration/velocity of the movement

Themovementwill be accelerated/decelerated at the beginning/endof thenavigation. Aside from this, the
acceleration varies with the movement velocity alternation during natural walking which in turn changes
the user head movement. If the head moves rapidly the velocity will increase. If the user tends to slow
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Figure 3.21: Translation and rotation in 3D space.

down, the velocity will decrease, otherwise it will remain constant. The head movement not only repre-
sents the velocity and the acceleration but helps the user to experience navigation close to natural walking.
The body can adjust the speed autonomously. This automatic adjustment of the velocity is called auto-
matic adaption. There should be a mechanism to control the velocity and the acceleration during naviga-
tion by any type of interface. In the interfaces designed based on bodymotion, themechanism comes from
gesture analysis while in device-based interfaces, either a speed/acceleration curve is used for this purpose
or they are kept unchanged.

3.6 Interface design

In this section, the development details of six navigation/interaction interfaces are explained:

1. Device-based interface;

2. Walking in place based on gesture analysis and body motion classification;

3. Walking in place by head movement analysis;

4. Navigation with sound command (speech processing);
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5. Bracelet and sensor fusion;

6. Navigation using iDevice such as iPhone, iPad.

The second, third and fourth interfaces are referred to as natural navigation/interaction because at least
one element of navigation/interaction in the real environment was incorporated in the design while the
other three are artificial ways of navigation. In fact the final aim of the thesis is to compare these two
types of interfaces and adjust the parameters of the second group of interfaces to act close to natural. For
that reason, the navigation parameters and traveling components will be discussed mathematically before
entering to the design details.

3.6.1 Interface one: device-based interface

In device-based interfaces, a command from a navigation device is the starting point of any movement in
a virtual reality platform. Therefore, the first set of parameters of navigation and interaction corresponds
to navigation devices. The important parameters of a navigation device are:

1. Capability to generate an appropriate command (can generate digital, analog, and tracker data
type);

2. The resolution of an analog signal can be easily adjusted;

3. Smoothness of the generated command (generates and transmits commands without delay).

Here, the so-called Fly-stick will be used to introduce a device-based interface. Comparing to the previ-
ous generation of navigation devices (mouse, keyboard, etc.), it seems the Fly-stick is capable to generate
different commands and has enough digital buttons, analog values and a tracker with position and ori-
entation which makes it a very suitable device for navigation/interaction in VEs. For example, different
buttons on a Fly-stick can be allocated to different tasks as shown in Fig. 3.22. Different buttons can be
combined to generate more commands if it is required. It can be reconfigured for a new task as well.

As mentioned in section 3.5.2, several parameters are necessary for 3D navigation/interaction devices:

1. Orientation (vertical: θ, horizontal: φ);

2. Resolution (∆θ,∆φ,∆ϕ,∆x,∆z);

3. Backward/forward along the orientation and up/downmovement (x±∆x, z±∆z) with respect
to the main coordinates (usually the display coordinates);

4. Turning left/right (ϕ±∆ϕ) in αβ coordinates;
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Figure 3.22: Different parameters of a navigation device: a) position and orientation, b) navigation/interaction task definition.

5. Current location of the device (x, y, z);

6. Button for task definition.

Some parameters such as the movement resolution are very important. But, if the device has not this
capability it is possible to code it in the client application. Besides, the Fly-stick has a mechanical resolu-
tion however, it is recommended to deactivate this capability and activate the software resolution. More
accurate movement can be designed by the software resolution. Navigation paths are usually predefined
and marked up in the 3D scene to help the subjects follow them exclusively from departure to the desti-
nation during the performance evaluation. In such cases, the tracker position is recorded to calculate the
efficiency of the navigation device. Any kind of complex movements can be built by combining the ele-
ments which have been introduced (items 1-6). Thus, these parameters are theminimum requirements for
any 3D navigation device. These requirements need to be incorporated in the navigation devices and not
gesture-based interfaces which will be explained later.

A transformation function usually maps analog values (angles) to the navigation parameters. For ex-
ample, the rotation angle (ϕ) of the joystick (yellow button in Fig. 3.22.b) is used to rotate the 3D scene to
the left/right during navigation. It is mapped to the real rotation angle by (3.21).

θr(t) = f (ϕ(t)) (3.21)

where, function f is any analytical function inR and is defined in the form of a constant value (3.22) or
a polynomial function (3.23) most of the time.
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f(x) = kr (3.22)

f(x) = an−1x
n + an−2x

n−1 + · · ·+ a1x+ a0 (3.23)

For the simplicity of the analysis, equation (3.22) is selected for this study. Therefore, the actual rotation
angle is defined by (3.24) and consequently the rotation matrix is calculated by (3.16) or (3.25) if the scene
rotates around z axis. If the rotation axis is different, equation (3.14) will be applied.

θr(t) = krϕ(t) (3.24)

R =

 cos (krϕ(t)) − sin (krϕ(t)) 0

sin (krϕ(t)) cos (krϕ(t)) 0

0 0 1

 (3.25)

Each 3D point associated with a given scene, with coordinateA =

 xA

yA

zA

, will be in positionB =

 xB

yB

zB

 after rotation by applying the rotation matrix.

 xB

yB

zB

 =

 cos (krϕ(t)) − sin (krϕ(t)) 0

sin (krϕ(t)) cos (krϕ(t)) 0

0 0 1


 xA

yA

zA

 (3.26)

However, because of the simplicity of the calculation, quaternion equations are applied in practice. In
that way, the first rotation vector (3.27) in Cartesian coordinates is calculated. In (3.27), we assume that the
scene rotates around z axis.

 θr

ϕr

ψr

 =

 0

0

krϕ(t)

 (3.27)
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Then, quaternion q is calculated by (3.13) and yields (3.28).

q(t) =


cos
(
kr

ϕ(t)
2

)
0

0

sin
(
kr

ϕ(t)
2

)

 (3.28)

Finally, the rotation of the scene (3.29) is achieved by applying the Hamilton product (3.17).

 xB

yB

zB

 = q(t)

 xA

yA

zA

 q∗(t) =


cos
(
kr

ϕ(t)
2

)
0

0

sin
(
kr

ϕ(t)
2

)


 xA

yA

zA




cos
(
kr

ϕ(t)
2

)
0

0

− sin
(
kr

ϕ(t)
2

)

 (3.29)

As seen, the calculation is fairly time consuming in a real-time process especiallywhenmillions of points
are rotating with a simple command. Therefore, it is not easy to select a transfer function with more pa-
rameters like (3.23) to map the analog value to the real rotation angle, the more parameters the more delay.
The translation movement is calculated along a given motion vector in the same way. For instance, if the
second analog value is selected for translation (a joystick generates two analog values), it will be converted
to real displacement values by (3.30) by a transfer function similar to that of rotation, however the motion
vector along x axis is calculated by (3.31).

∆d = ktd(t) (3.30)

−→
∆d =

 ktd(t)

0

0

 (3.31)

If the target direction is along x axis, then simply the translation matrix is calculated by (3.32) and the
scale factor is set to 1 because the environment is real-scale. The future position of given pointsA andB,
is calculated by applying the translation matrix toA as shown in (3.33).

105



T =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1

 (3.32)


xB

yB

zB

1

 =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1



xA

yA

zA

1

 =


∆x+ xA

∆y + yA

∆z + zA

1

 (3.33)

If the target direction is different, we need to rotate the scene to reorient along the desired direction
first. In both examples we assumed the velocity is constant. We can assume a accelerated movement by
adding one more parameter to the equations. In a accelerated/constant-speed movement, θr(t) is defined
by (3.34) and (3.35), respectively.

θr(t) = kr(ωt) (3.34)

θr(t) = kr
(
ωt+ at2

)
(3.35)

The same assumption can bemade for translational movement. Here, the selection of a simple transfer
functionbecomes clear again. Wewill repeat the same strategy to explain thenextnavigation/manipulation
interfaces.

3.6.2 Interface two: walking in place by Kinect (WIP)

The first step for understanding the walking in place interface using a Kinect is to know whether the Z-
depth camera is working. For that, the principle of the infra-red camera in the depth ranging is explained
first.

Depth signal and object coordinates calculation using an infrared camera

The relation between the distance of an object (k) to the sensor relative to a reference plane and the mea-
sured disparity (d) is shown in Fig. 3.23. A depth coordinate system with its origin at the focal point of
the infrared camera will be established to express the 3D coordinates of points on an object. TheZ axis is
orthogonal to the image plane towards the object, theX axis perpendicular to the Z axis, and the Y axis
orthogonal toX andZ making a right handed coordinate system. Assume that an object is located in the
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Figure 3.23: Schematic representation of the depth-disparity relation.

reference plane at a distance Z0 and a point on the object is projected on the image plane of the infrared
camera. If the object is shifted closer to the camera, the new location of the point on the image plane will
be displaced alongX direction (disparity d).

SubstitutingD from D
b = Z0−Zk

Z0
(from the similarity of∆OCL and∆OMK triangles) into d

f = D
Zk

(from the similarity of∆HKC and∆CGA triangles) and expressingZk in terms of other variables yields
(3.36)

Zk =
Z0

1 + Z0
fb d

(3.36)

where Zk denotes the distance (depth) of point k in the object space, b is the base length between the
camera and the projector, f is the focal length of the infrared camera,D is the displacement of point k in
the object space, and d is the observed disparity on the image plane. The constant parameters Z0, f , and
b can be determined by the camera calibration. The Z coordinate of a point together with f defines the
imaging scale for that point. The coordinates of each point on the object can then be calculated from its
image coordinates and the scale by (3.37) and (3.38).
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Figure 3.24: Example of a humanwalking signal with a) constant, b) variable steps and distance from the sensor.

Xk =
Zk
f

(xk − x0 + δx) (3.37)

Yk =
Zk
f

(yk − y0 + δy) (3.38)

where xk and yk are the image coordinates of the point, x0 and y0 are the coordinates of the principal
point, and δx and δy are corrections for lens distortion.

Walking signal definition

The movement of a user is limited to a small area in a multi-projector real-scale 3D system. Therefore, the
user is not free to walk more than fewmeters. Throughout this thesis when we are talking about walking,
it means the user will stay in a specific coordinate and will move his feet up and down while his body is
not going forward or backward. In different literature, this interface is known as walking-in-place (WIP)
interface, as explained in section 3.3.2.

When the user is walking in place, the left and right ankles are moving up and down one after another
(Fig. 3.25.a). If only the motion of the point attached to the right ankle (based on the skeleton definition
shown in Fig. 3.25.c) is captured by IR-cameras (Fig. 3.25.b) and theX , Y , andZ coordinates of the point
are calculated by equations (3.36)-(3.38), the variation signal along Y axis (the Y axis is in accordance with
the coordinates defined in Fig. 3.23) can be depicted as Fig. 3.24b. The signal is called “walking with a
constant step length”. The difference between two picks shows the step length in Fig. 3.24.b. The user
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Figure 3.25: IR signal generation using body skeleton: a) IR image, b) IR image after process and c) body skeleton.

might move few centimeters alongZ axis (forward/backward) due to involuntary movement of the body.
A movement in Z direction changes the amplitude of the signal. When the user is moving involuntarily
along Z axis, the scale of the body in the images changes and it makes the same movement of the ankle
looks smaller or bigger. The distance between the ankles and the ground is highlighted for four scales on
Fig. 3.26 by a small white line near the user’s ankle.

That is the reasonwhy the amplitude of the signal is changing by themovements alongZ axis (indicated
in Fig. 3.24.a). This can be deducted from (3.36) as well. An example of the actual signal is shown in
Fig. 3.24.a. As involuntary movement of the body is controlled by the autonomous part of the Central
Nervous System (CNS), it is very hard to control this movement, especially when the user focuses on a
navigation task (see chapter 2).

The movement alongX axis has the same effect. Unlike Fig. 3.24.b, the steps have different lengths in
Fig. 3.24.a. Moreover, when the ankle comes up more, the amplitude of the signal is bigger and the length
of the step grows. For instance, around sample 1000, a longer step has been taken (Fig. 3.24.a). When
the amplitude and the step length change, the analysis becomes harder and a more complicated algorithm
needs to be used which creates delay in the calculations and makes the problem more complicated. To
solve the problem in a simple way, we used a mechanical restriction as shown in Fig. 3.27. When this
problem is solved, the navigation task can be assigned to a set of specific features of the walking gait signal.
However, anothermethodbased onwavelet has beenproposed to solve the amplitude alternationproblem
automatically.
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Figure 3.26: Scale variation (movement inZ direction) during walking in a real-scale 3Dmodel.

Figure 3.27: Mechanical restriction for the elimination of involuntary bodymovement.
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Figure 3.28: Interpretation of a gait signal for navigation command generation.

Navigation command generation based on walking signal analysis

The navigation task is constructed either by forward/backwardmovements and turning to the left/right or
by the combination of these movements and the itinerary as explained before. It means, to go from point
A to C by the way of point B, we go from point A to B while using only translational (forward/backward)
and rotational (left/right) movements, and then continue from B to C in the same way. Thus, the very
basic navigation task is to go from point A to B by combining translational and rotational movements.
If this task works perfectly, then it will be repeated in a for-loop to facilitate movement continuously and
real-time for different direction and destinations.

In this approach, user’s gesture is interpreted and the result is coded into a button type. Then, the
different values of the variable are used to initiate or terminate different tasks. A simple interpretation of
the gesture will be introduced here just to make the methodology clear. The current interpretation uses
the threshold as an evaluation criterion. The analysis applies the criteria to the walking signal to generate
a command pulse.

The user’s walking signals (solid black line) are shown in Fig. 3.28. The dot-line presents an activation
threshold (depicted on the walking signal, at the top of Fig. 3.28). The forward function will be activated
if the position of the ankle reaches to the threshold level and will remain active till the ankle is above the
threshold. During a short period of time, a pulse will be activated. The length of the pulse is equal to the
step length. The pulse activates and deactivates forward/backward movements. The acceleration of the
scene movement is adjusted to the average value of the walking signal. In this interpretation, if the user’s
step is bigger, the scene will move more because the pulse is longer.

In this interface the amount of displacement is proportional to the pulse duration and is calculated by
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(3.39).

d = kTi(t) (3.39)

The rest of the calculation is similar to what has already been explained in (3.30) through (3.33). The
rotation signal is generated by hand movement. When the right hand reaches 10 cm above the shoulder,
the pulse becomes active and remains active till the time the hand is in this position. When it comes down,
the pulse is set to zero. The rotation angle is calculated by (3.40) in the same way as displacement. The rest
is similar to the Fly-stick mode.

θr = krTir(t) (3.40)

3.6.3 Interface three: walking in place using head movement analysis

As seen in the first interface, a button is allocated to each subtask (translation and rotation). By pushing
each button the associated function is activated and the task begins. The function will run until the termi-
nation condition is met either by pressing another button or by checking a variable status which refers to
the result ofmeasurement analysis. In the second approach, user’s gesture is analyzed and interpreted as an
action and the result is coded into a button. Then, these values are used to initiate or terminate different
navigation tasks of the client application. If the user starts walking in place, the head will swing to the left
and the right. Thismovement can be used to initiate or terminate a navigation function such as translation
or rotation.

Fig. 3.29 shows the system architecture for walking in a virtual environment. The system has six main
parts including: measurement devices, movement detection, infrared head tracking system, path correc-
tion and command generation, speed adjustment and visual display.

Translational/rotation by head movement analysis

The real-time user’s position (x, y, z) and orientation (p0, p1, p2, p3) aremeasured byARThead tracker.
As in section 3.5.1, the position vector is represented by P⃗ (t), (3.41).

P⃗ (t) = (xp(t), yp(t), zp(t)) = xp(t)⃗i+ yp(t)⃗j + zp(t)k⃗ (3.41)

The position vector at t + ∆t is represented by P⃗ (t + ∆t) and the difference vector with respect to
time t is expressed by (3.42).

∆P⃗ = P⃗ (t+∆t)− P⃗ (t) (3.42)
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Figure 3.29: Block diagram of a navigation system bywalking gait analysis.

Now, the detection function is defined as (3.43).

D =

 1 if
∣∣∣∆P⃗ ∣∣∣ ≥ ϵ

0 if
∣∣∣∆P⃗ ∣∣∣ < ϵ

(3.43)

The detection threshold, ϵ, is ϵ = 0 in theory. However it is non-zero practically (due to involuntary
movement of the body which creates non-zero movement even if the user stands still). In fact, if the po-
sition of the user changes from t to t + ∆t orD = 1, the translational movement will start and moves
the scene in +y or +x directions (z upward). This movement will stop when the user stops walking,
D = 0. The rotation is done based on the head orientation instantaneously. When the head orientation
is changed, the rotation matrix as explained in (3.19) changes consequently.

3.6.4 Interface four: fusion of speech command with WIP

Signal processing approach for two types of sensors

Two sensor configurations will be introduced in this study: 1) microphone-array (voice) and 2) infrared
depth (IR-D) sensor (video). Each sensor employs its ownunique configuration andprocessing approaches
to capture and analyze the associated signal.
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Figure 3.30: Scheme for microphone-array sound capturing and speech processing in a noisy acoustical environment.

Audio sensor (microphone-array)

A robust real-time speech processing approach with the presence of noise while creating less delay will
be addressed here. We consider a sound capture situation, noise, echoes and reverberation as sketched in
Fig. 3.30. The channel impulse responses hi(r, t) describe the sound propagation from the source to the
individual microphones. The discrete-time beamformer is modeled by an FFT overlap-add filter bank.
The Minimum Variance Distortionless Response (MVDR) Beamformer algorithm in the frequency do-
main is used to analyze this multi-channel system. An MVDR Beamformer optimizes the power of the
output signal under the constraint that the signals from the desired direction are maintained.

Optimization constraints (3.44) can be solved using Lagrange’s method (3.45):

w0 = argmin
w

wHSxxw withwHh = 1 (3.44)

∇w

[
wHSxxw + λ

(
wHh− 1

)]
= Svvw + λh = 0 (3.45)

where, Sxx, w, ∇w are the spatio-spectral correlation matrix, beamformer weights and the gradient
with respect to the weight vector, respectively. SuperscriptH and h denote the conjugate transpose and
the channel transfer function vector. Combining the constraint equation from (3.44) with (3.45) leads to
the well-known solution for the optimum weight vector (3.46)

w0 =
S−1
vv h

hHS−1
vv h

(3.46)

If the noise is assumed as an homogeneous diffuse noise and if we estimate Svv for each signal frame
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with indexm by

Svv

(
ejθ,m

)
= αSvv

(
ejθ,m− 1

)
+ (1− α)v

(
ejθ,m

)
vH
(
ejθ,m

)
(3.47)

where θ = 2π f
fs

is the frequency variable and α ≈ 0.8 (v is the vector of the noise spectra), the
optimum weight vector can be found iteratively with a steepest descent algorithm expressed by (3.48).

wk+1 = wk − µ∇w

[
wHk Sxxwk + λ

(
wHk h− 1

)]
= wk − µ (Svvwk + λh) (3.48)

Lagrange multiplier, λ, is calculated by substituting the second constraint of (3.44) in (3.45). By elimi-
nating λ from (3.48), we finally get the update equation (3.49).

wk+1 = wk − µ

(
I − hhH

||h||2

)
Svvwk︸ ︷︷ ︸

gk

(3.49)

In (3.49), the weight vector is updated by using Svv estimated from (3.47) and iterated in each frame.
Furthermore, the convergence speed is improved by computing an optimum step size factorµ. We choose
the step size so that it minimizes the noise power at the beamformer output in each iteration.

∂
(
wHk+1Svvwk+1

)
∂µ∗

= 0 (3.50)

Combining (3.49) and (3.50) results in (3.51).

µk =
gHk Svvwk

gHk Svvgk
(3.51)

Speech processing

Fig. 3.31 shows the speech recognition approach and the system components. The key signal processing
components include a Feature analysis, a Unit matching system, a Lexical coding and a Syntactic analysis.
The speech processing algorithm is performed in the frequency and time domains to extract observation
vectors which can be used to train the Hidden Markov Model (HMM). The HMM is a strong algorithm
to characterize various speech sounds.

First, a choice of speech recognition must be made by a unit matching system. Possibilities include lin-
guistically based sub-word units as well as derivative units. For a specific application (current application),
it is both reasonable and practical to consider theword as a basic speech unit. Wewill consider such systems
exclusively in this section. For that, we use only the words included in Table 3.9.
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Figure 3.31: Different components of speech processing with a Kinect.
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Vocabulary
start stop forward backward turn right turn left

Code 000001 000010 000100 001000 010000 100000

Table 3.9: Vocabulary listed in the dictionary and used speech processing system (lexicon).

Figure 3.32: Hardware infra-structure for speech processing and data transmission.

The lexical coding process places the constraints on the unit matching system so that the paths investi-
gated are corresponding to the sequences of speech units which are stated in a word dictionary (lexicon).
This procedure implies that the speech recognition result must be specified in terms of basic units chosen
for recognition. Syntactic analysis adds further constraints to the set of recognition search paths. One way
in which semantic constraints are utilized is via a dynamic model of the state of the recognizer. When the
vocabulary is recognized by the speech processing system, an associated code (second row in Table 3.9) will
be selected (Fig. 3.32), an appropriate command is generated and sent to the navigation application via a
wifi network.

IR-D (vision sensor) and laser beamer configuration

An IR-D camera and a laser beamer (Fig. 3.33.a) were arranged in a precise configuration to localize and
calculate the position of the user head. The setup is a real-time optical tracking system including four IR-D
cameras. The system uses the TOF (Time of Flight) theory (corresponding to interface two), image pro-
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cessing based onmorphology and triangulation to estimate the position of the head. Five balls (indicators
in Fig. 3.33.a, b) were attached to an E-shape marker andmounted on 3D stereoscopic glasses. An example
of this type of indicator arrangement is shown in Fig. 3.33.b.

IR image processing for head tracking

Theoptic tracking systemuses anon-linear/non-GaussianBayesian algorithmto track themarkers (Fig. 3.33.b).
From a Bayesian perspective, the tracking problem is to recursively calculate some degrees of belief in the
state of xk at time k, taking different values, given the data z1:k up to time k. Thus it is required to
construct the pdf (probability distribution function) p (xk|z1:k). The pdf p (xk|z1:k)may be obtained,
recursively, in two stages: prediction and update. Suppose pdf p (xk−1|z1:k−1) at time k − 1 is available.
The prediction stage involves using (3.52) (process model) to obtain the prior pdf (prediction stage) of the
state at time k via (3.53).

xk = fk (xk−1, vk−1) (3.52)

zk = hk (xk−1, nk)

p (xk|z1:k−1) =

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1 (3.53)

At time step k, a measurement zk becomes available and this may be used to update the prior (update
stage) via Bayes’ rule (3.54).

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(3.54)

where, the normalizing constant is calculated by (3.55)

p (zk|z1:k−1) =

∫
p (zk|xk) p (xk−1|z1:k−1) dxk (3.55)

Now by having the position and the orientation of the head, we can implement the navigation task
(rotation by head orientation). Any rotation in a 3D space can be represented as a combination of an axis
vector and an angle of rotation. Quaternions give a simple way to encode this axis-angle representation in
four numbers and apply the corresponding rotation to a position vector representing a point relative to
the origin inR3.

118



Figure 3.33: Left) vision configuration (IR-D camera-laser beamer), right) indicators in an E-shape arrangement.

Figure 3.34: Microphone-array configuration.

Translation/rotation command generation

When the word “start” is said, the translational movement begins and by saying “stop” the movement
is terminated. The velocity and acceleration can be automatically/manually adjusted by the navigation
function. The rotation angle around Yaw axis (Fig. 3.33.a) is used for rotation and reorientation of the
movement. Figs. 3.34 and 3.35 show the audio, video and sensor fusion configuration. The user was stand-
ing 1.5meter away from the Kinect microphone-array (Fig. 3.34) and commanding the system.

The rotation command comes from ART head-tracking with a configuration shown in Fig. 3.35.a.
Two sensors in theprevious setupswere combined in sensor fusion (Fig. 3.35.b). The translationalmove-

ment can be initiated and terminated by both a Fly-stick and the user headmovement (the person imitates
walking in place and the algorithm, as designed and detailed above, see section 3.6.2, captures and analyzes
the movement).

Sound and vision sensor fusion

A sensor fusion scheme for combining video and audio sensor data is shown in Fig. 3.36. A complete
navigation task in a scale-one 3D display or simulator consists of translational and rotational movements.
Audio and video data are analyzed and processed to provide a command for translational and rotational
movements respectively.
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Figure 3.35: a) Head tracking system and b) sensor fusion configuration.

Figure 3.36: Sensor fusion scheme for combining audio and vision sensor data.
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3.6.5 Interface five: magic bracelet

An interfacewas designed based on a pair of bracelets in order tomanipulate an object in 3D. In fact, in this
interface, bothhands are identified and trackedby ahighprecisionAR-tracker and theposition/orientation
of the hand are used as input in different applications (Fig. 3.37. For instance, the hand position and the
orientation are used to select/manipulate and place an object in a scale-one VE. Some of the characteristics
of the magic bracelet are as follows:

1. Used mostly for object manipulation and menu selection;

2. Provides position, orientation and analog values both for the left and right handswhich can be used
for hand gesture analysis;

3. Because there is no button on the bracelet so far, it is being used along with the Fly-stick. Now, we
are using this bracelet only for tracking purpose;

4. AR-tracker is used to detect and localize the position of the hands and orientation;

5. It provides a very high precision data (with good calibration), however the calibration takes some
time and more data needs to be recorded for training.

3.6.6 Interface six: iDevice (iPhone 4)

Nowadays, several sensors such as GPS, gyrometer, the electromagnetic field, temperature are embedded
in different smart phones. Different Apple devices we will call iDevice also are equipped with such sen-
sors which can provide a rich source of navigation/interaction interfaces. In addition, the screen and the
keypad of the iDevice can provide another source for interface design. For instance, the sensor output can
be treated by signal processing approaches and coded as buttons as it has already been seen in section 3.6.2.
Recently, a lot ofX-code examples have been released for speech processing and gesture detection. The fin-
germovement on the touch screen of any iDevice can be interpreted as a gesture. The gesture consequently
can be streamed as a button using wifi or Bluetooth connections.

In this interface, we are using the keypad buttons as values to navigate in a scale-one VE. For that, three
virtual buttons like themouse buttons are coded on an iPhone as shown in Fig. 3.38.a. Then, the right/left
buttons are used for rotational movement and the center button performs translational movement with a
constant speed. Different versions of the iDevice-based interfacewere designed and tested using the similar
idea that has already been introduced in the five previous interfaces (Fig. 3.38.b).
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Figure 3.37: Magic bracelet interface for manipulating and interacting with a 3D object in VEs.

Figure 3.38: Navigation/manipulation with iDevice: a) iDevice interface of VRPN server, b) interface in application.
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3.7 Software platform and hardware architecture

3.7.1 System architecture

Fig. 3.39 shows the overall scheme of the software platform and the hardware components with their in-
terconnections. The measurement and calculation unit (MCU) was incorporated in the system to update
the appropriate settings for the selected device and dynamically renew the parameters of interfacing units,
and provide natural and comfortable navigation for the user. As mentioned above, putting inappropriate
settings for a navigation interface creates someproblems for the users. This approach can solve the interfac-
ing problem by a proper setting of navigation/interaction parameters. To evaluate the user performance,
different strategies are required to be implemented. This requirement was fulfilled by adding a matching
system, the device function matching unit (DFMU). A group of participants will be selected to navigate
with the interface and their data will be recorded during the test procedure.

This online data is referred to as psychophysiological signal (bio-feedback) throughout this thesis (for
instance, EEG represents a bio-feedback in Fig. 3.39). Analyzing these data and having some criteria which
will be defined later will help to find out which device fits to a specific application. Signal recording and
evaluation process will be discussed in detail in chapter 4. The dedicated arrangement of the software and
hardware set-up is called a test-bed, or test-bench, in the literature. The test-bench should both collect
information of the user, the navigation device and the 3D system.

Fig. 3.40 demonstrates the complete platform with some extra modules. DT-entity graphic engine was
added tomake the development of an immersive virtual environment easier and decrease the development
time to less than a week. The graphic engine allows adding some objects during the real-time rendering
of a 3D model and environmental properties. Some properties like spawning a new object in the scene
are interesting in a lot of applications. Moreover, we need to change the properties of the scene such as
the color, the lighting, the texture and so on. Sometimes, the VR system requires importing an external
3D model from co-designed or joint platforms (any standard 3D model) into the platform. The engine
provides a handy interface to incorporate this type of 3D models easily in the environment.

Additionally, the platform benefited from features such as hardware configuration which makes the
parameters setting for a specific hardware and display system very easy. The modified software platform is
an extension of the previous architecture shown in Fig. 3.39. The platform was set up on a CAVE system
for the implementation and the test.

The platform, called iiVR, uses OpenSceneGraph on the top of OpenGL to render the 3D model. A
set of functions for moving forward, backward, up, down, rotation to the left and right have been devel-
oped for navigation purpose. The velocity of the straight and rotational movements can be controlled by
the user via a pair of buttons on the device or by gesture analysis. One button is allocated for rotational
velocity adjustment and the other for straight movement. However, there are different ways to adjust the

123



Figure 3.39: Overall scheme for the system development and software platform.
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Figure 3.40: Extended software platformwith the graphic engine.

Figure 3.41: Development platform.
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speed and acceleration of the movement which has already been discussed. The resolution of the velocity
variation (increased and decreased steps) can be either constant or variable. When the step is set to be a
constant value, each step is 0.05 unit by default and needs to be replaced with the desired value (it can be
adjusted by an internal function non-linearly as well). The device is connected via VRPN to the VR sys-
tem. The software architecture is shown in Fig. 3.41 in more detail which shows the connection between
input/output devices as well as the software component interconnection; four main configuration files
manage the device, the display system, the VE and Javascript coding. More details can be found in the
iiVR user guide.

VRPN (Virtual-Reality Peripheral Network) was proposed and implemented by Russell M. Taylor et
al.204. It has been very fruitful to think of VRPN not as providing drivers for a set of devices, but rather
as providing interfaces to a set of functions. Particular devices are of one or more canonical device types.
VRPN also provides an abstraction layer that makes all devices of the same base class look the same; how-
ever, it does notmean that all trackers produce the same report. For example, all tracking devices are known
by the typevrpn_Tracker. The currentVRPNtypes areAnalog, Button,Dial, ForceDevice, Sound,Text
and Tracker.

The most used device types in our software platform are listed below:

• Tracker: position and orientation;

• Button: press and release events for one or more buttons;

• Analog: one or more analog values.

Other device types are provided in the source code of VRPN which exist in the VRPN website; new
types can be created. Each of these abstracts is a set of semantics for a certain type of device. Like any other
type of network, VRPN has two important parts:

1. VRPNserver: it is knownby aunique address in thenetwork, for instance “Vrpn_server@localhost”;

2. VRPN client: there are one or more servers for each type of device, and a client-side class to read
values from the device and control its operation.

All the parameters of VRPN, the display system and the VE properties (3D model) are configured in
threedifferent configuration fileswhich canbe foundwith*.jconf (or*.xml), i.e.,Display_Configuration.xml,
3D_model_property.xml, Interaction_device_property.xml, in the “project asset” folder (see
iiVR user guide). The Javascript function associated with the navigation/manipulation strategy is embed-
ded in the xml model file because it explains the behavior of the model during navigation/manipulation.
It is possible for an application that requires access to specialized features of a certain tracking device (for
example, telling a certain type of tracker howoften to generate reports), to derive a class that communicates
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Figure 3.42: Simulation with two screens, left and right views.

with this type of tracker. If this specialized class were used with a tracker that did not understand how to
set its update rate, the specialized commands would be ignored by that tracker. Mapping a set of devices
into one canonical type requires mapping the different capabilities of each device onto one interface.

3.7.2 Configuration for real experiments and simulation mode

An end-user is connected to a virtual environment via navigation devices, VRPN network and the hard-
ware resources of the operating system (OS). Navigation devices such as a gamepad, a Fly-stick, a mouse,
a keyboard and so on, must be connected to the OS (32-bit system in Windows OS, for instance) to be
able to propagate their output data into the network. VRPN server uses these devices to collect the tracker
position, analog, digital data and send it to the target client application. The server address, device type
and driver (*.dll) are defined in a VRPN configuration file. The display system, which is usually single
or multi-screen, is configured in the display configuration file.

A single screen display (laptop or PC) is used for simulation purpose. Functional simulation is carried
out before launching an application on the real-scale systemonly to test and debug the application code. In
the simulationmode,multiplewindows appear on the single screen to showdifferent views. An example of
this simulation with two (left, right) and four (left, right, top, back) views are shown in Figs. 3.42 and 3.43.
The user is located at the point (−7,−1,−3) in the real system coordinateswhile looking into the interior
space.

The display, the device and the VRPN connection are set up in an immersive configuration file. The
shadow, the lighting, the texture, the color, the material along with collision estimation and detection are
accommodated with the 3D model to build the unified 3D VE. The Javascript code calls the associated
libraries and the immersive configuration files to get information from the input devices. The 3D model,
its attributes and the script code are called byMPI.Thenumber of processors (depending on the hardware)
are allocated by MPI. All these information is sent to the scene viewer for display. Most of the time, an
executable *.bat file is built to run the application easier. After running the application, the scene appears
and we can navigate inside the scene. The command signal is started from the user and ends to the display
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Figure 3.43: Simulation with four screens (views: left, right, top and back) on a single screen display.

system.

3.7.3 Development language

The main development language in the platform is Javascript. Javascript was selected because it is simple,
handy and the instructions are easy to remember. All the C++ functions were wrapped under a Javascript
code. An example of a Javascripting code is shown in Fig. 3.44. A set of functions have been developed
for navigation inside a 3D model. The velocity and the acceleration of translational and rotational move-
ments can be controlled by the head movement, a pair of buttons, speech and the body movement in
general. Ascending and descending steps of the acceleration/speed variation can be defined in different
ways. For instance, if a Fly-stick is used for navigation, then a pair of buttons can be allocated to control
the step resolution. If a motion capture is used for navigation then a natural acceleration/speed of the
body movement can be used to adjust the speed.

Since a Javascript function explains the behavior of the model during navigation and manipulation
inside the VE, the script is incorporated in the model properties the same way as other properties such as
the lighting, the texture, the sound and so on. Any application has two important parts in the Javascript
file: an initialization and a body function.

128



Figure 3.44: Example of Javascript code for a basic navigation.

3.7.4 Hardware apparatus and devices

The main compartment of the hardware infra-structure consists in a display system, a head tracking sys-
tem, and graphic processors. The main display system is multi-projector CAVE system. Fig. 3.45 shows
the CAVE system we used for practical experiment during the evaluation process both for navigation and
manipulation.

Our CAVE system has four walls (left, right, back and bottom - there is no ceiling and front walls),
two projectors per wall (to project images for the left and right eyes). An infrared based head-mounted
tracking system (AR-tracker) is used to localize the user position. Devices come along with the system for
navigation and control purposes. The model is projected into the display area by MPI and four NVidia
Quadroplex 7000 GPUs.

3.8 Conclusion

We presented a review of navigation andmanipulation interfaces as well as metaphors. We showed several
interfaces we designed for interacting as naturally as possible, as well as technical implementation. Some
of these interfaces will be used for conducting experiments and evaluate VIMS.

In the next chapter, we will present different methods for measuring physiological parameters that will
allow us to detect and evaluate VIMS.
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Figure 3.45: Our CAVE system (multi-screen display system) (3× 3meters across).
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4
Signal measurement and processing

techniques

4.1 Introduction

Motion sickness (MS) andVisually InducedMotion Sickness (VIMS) are a common experience of numer-
ous people and has motivated extensive engineering, physiological, neurophysiological and psychophysi-
ological research. The focus of early MS and VIMS studies was on the physiological changes emerging
during various conditions. For instance, electrogastrography (EGG) signals 26,223 have been employed to
detect the symptoms of motion sickness, for instance vomiting, and galvanic skin responses (GSR) have
been used to detect sweating 125. Holmes and Griffin70 observed increased heart rate variability (HRV)
during nausea, indicating the modulation of the automatic nervous system (ANS) inMS. Rapid advances
in measurement technology have enabled the neural correlates of MS and VIMS to be examined.

The aimof the current chapter is to introduce a set of psychophysiological signals and the corresponding
sensors as well as the processing techniques used to treat these signals. However, only a small set of signals
are accessible for measurement and the rest is identified by symptoms. Symptoms are quantified as scores
or levels and calculated by psychological self-report questionnaires. Different statistical analysis techniques
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will be explained in brief in this chapter.
This chapter is organized in three main sections: section 4.2 explains self-report questionnaires and

psychological measurements. Data acquisition from Man-Machine System (MMS) will be explained in
an example. We will briefly list different valid questionnaires and explain how to calculate scores from the
questionnaires. Later, these scores will be used to rate and compare different navigation/manipulation in-
terfaces using statistical analysis. Fewapproaches for statistical data analysiswill be explained in this section.
Different psychophysiological signals along with their measurement tool and sensors will be introduced
in section 4.3. Some of these signal processing approaches will be used in this chapter and the following
chapters 5 and 6. These approaches will be summarized in more detail mathematically in section 4.4. The
final goal is to show how the features from psychophysiological signals are correlated with the variation of
the scores (calculated from the questionnaires) to be able to use these features alternatively as indicators of
MS/VIMS in a real-time process.

4.2 Psychological measurement

A biofeedback or a psychophysiological signal is a process of gaining greater awareness and real-timemon-
itoring of many physiological functions primarily using instruments that provide information on the ac-
tivity of the user. It is applied to a system with the goal of evaluating the general condition of a user or
returning an abnormal condition back to normal in case sudden changes are detected. Some of the pro-
cesses that can be controlled include brainwaves, muscle tone, skin resistance, heart rate, pain perception
and so on. A real-time psychophysiological signal is used as an input to the control system when it is
monitoring the user condition. Biofeedback may also be used to improve health, performance and the
physiological changes which often occur in conjunction with changes to thoughts, emotions and behav-
ior. Eventually, these changes may be maintained without the use of extra equipments, even though no
equipment is necessarily required to practice biofeedback actually.

As it has been explained in chapter 3 (section 3.7), a typical VE (Virtual Environment) has three parts:
1) a user, 2) navigation devices and 3) real-time 3D rendering and display systems. It is necessary to collect
real-time data from these three parts to have a full control over the entire events that are happening during
operation. Fig. 4.1 illustrates how data is collected from the user, the navigation devices and the 3D system.

4.2.1 Data acquisition system

Data acquisition will be detailed for three above-mentioned parts with respect to Fig. 4.1 as follows:
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3D rendering and display systems

All the virtual reality platforms provided some tools in order to record system side data such as the frame
rate, the output images, the rendering system, different signals of Graphic Processing Units (GPUs), Gen-
eral Purpose Processor (GPP) of the host workspace, projectors and external signals from the trackers.
However, the number of system side signals should not be long because it makes the visualization process
slow and consequently induces some cognitive problems. The parameters of a 3D system are not collected
necessarily from a 3D rendering/visualization system, rather it might be recorded by an external recorder
system and then transferred into the data acquisition system via a networking interface.

Interaction devices

Data acquisition of interaction devices are highly tied up with the 3D rendering system. However, it can
operate sometimes totally independent from the 3D system. Usually, device manufacturers produce their
device regarding into the requirements of available 3D display systems. As an example, University of
Michigan 3D Lab has been using the Emotive EPOC device21 for navigation in a virtual reality CAVE.
Standard tools that come with the Emotive EPOC SDK and the rendering engine, VR juggler 8, are capa-
ble to provide some basic navigation through a 3D scene and data logging during operation. Throughout
this thesis, an in-house developed platform called iiVR (see chapter 3, section 3.7) will be used for inter-
action (navigation/manipulation) in a 3D VR environment. The platform provides a rich source of navi-
gation/manipulation interfaces and data logging tools through a VRPN server for VR system developers.
Besides, the tool is connected to MATLAB for data analysis.

In Fig. 4.1, the blocks in gray color show the access points from which the system side measurements
are recorded. For instance, this data acquisition set-up was established to measure the delay between the
navigation command and the display system operation. This was a great first step into figuring out how
reliable the device is and whether it can be used with immersive Virtual Reality.

End-user

Data acquisition from the user side is a verywide area and requires an exhaustive discussion and reviewover
the related literature. Avoiding further extra explanation herein, it is insisted that only a little portion of
data acquisition techniques will be covered in this chapter. To make our explanation comprehensive and
coherent, first, the physiological function of the brain, cerebral and non-cerebral biological mechanism
behind MS/VIMS will be explained in brief before getting into different questionnaires and statistical
data analysis. Physiological aspects will be explained here once and will be referred to elsewhere in this
thesis. Following this short introduction about the brain anatomy opens the way to better understand the
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Figure 4.1: Schematic diagram of iiVR platform data logging during a navigation/manipulation task.

mechanism behind VIMS and MS. As explained before, the concentration of the current research is the
sickness resulting from motion due to presence in virtual environments. Thus only the parts in charge of
VIMS will be focused in this thesis.

4.3 Subjective measurements and statistical data analysis

4.3.1 Self-report questionnaires

Different self-report questionnaires havebeen created andused forpsychologicalmeasurements. Kennedy’s
simulator sickness questionnaire (SSQ)98 (see appendix B), the presence questionnaire 230, Pensacola Mo-
tion SicknessQuestionnaire (MSQ)93 and theNASA task load index 56 werewidely used to evaluateVIMS
and presence in virtual environments. The subjects experience numerous symptoms of motion sickness
including drowsiness, salivation, sweating, headache, dizziness/vertigo and loss of postural stability dur-
ing immersion or navigation in VEs which are a lot in commonwith simulator sickness. That is one of the
reasons why we will use SSQ.

Measurements of motion sickness by pre and post self-report questionnaires are significantly biased by
demand characteristics. Comparative studies of motion sickness in virtual environments should employ
experimental designs not subject to such biases or at least take measures to balance the biases. Alterna-
tively, more objective physiological measures may be used with awareness that these measures too can be
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subject to experimental demand characteristics as noted in the introduction. Early worries that motion
sickness could significantly limit that application of the virtual environment technologies 180 clearly have
been shown by experience to have some basis, but motion sickness in a fast, low-latency, well-calibrated
system for manipulative simulation does not appear to be a major problem.

Consequently, all the subjects should be screened for absence of illnesses. To reduce the possibility that
the screening could be suggestive of motion sickness effects, it should be done in the context of admis-
sion to a general subject pool rather than as a requirement for a specific experiment. This type of generic
pre-screening may also be used to inform the subjects of the overall possibility of motion sickness with-
out specifically suggesting that a particular experiment might provoke it. Finally, it should be noted that
though physiological measurement techniques can provide a potentially more objective motion sickness
measure, these also need to be compared to norms since they can be influenced by suggestion 158.

4.3.2 Statistical data analysis

Data is needed to be analyzed across the subjects after collecting data from the subjects to see which pa-
rameters are changing significantly or are in correlation with other parameters. For that reason, different
statistical tests are used as follows.

T-test

The t-test is usedwhen comparing samplemeans, when only the sample standard deviation is known. The
t-test, and any statistical test of this sort, consists of three steps.

1. Define the null (Ho : µ = µo) and alternate hypotheses (HA : µ > µo),

2. Calculate the t-statistic for a data,

3. Compare tcalc to the tabulated t-value, for the appropriate significance level and degree of freedom.

tcalc =
x̄− µ0

s√
n

(4.1)

If tcalc > ttab wewill reject the null hypothesis and accept the alternate hypothesis, otherwise, we accept
the null hypothesis. The t-test can be used to compare a sample mean to an accepted value (a population
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mean), or it can be used to compare the mean of two sample sets (4.2).

tcalc =
x̄1 − x̄2√
s21
n1

+
s22
n2

(4.2)

F-test

TheF-test is used to compare two variances or standard deviations. Whenusing the F-test, we again require
a hypothesis, but this time, it is to compare standard deviations. That is, we will test the null hypothesis
Ho : σ

2
1 = σ22 against an appropriate alternate hypothesis. We calculate the F-value as the ratio of the two

variances where, s21 ≥ s22, so that F ≥ 1. The degrees of freedom for the numerator and denominator
are n1 − 1 and n2 − 1, respectively. As with the t-test, we compare Fcalc to a tabulated value Ftab, to see
if we should accept or reject the null hypothesis.

ANOVA

Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences between
group means and their associated procedures (such as “variation” among and between groups). The fol-
lowing formulas are used to calculate an F value for the validation of the hypothesis. Sums of squares are
calculated by (4.3) through (4.5) where, p andnj represents the number of groups and the number of cases
in each group respectively.

SStotal =

p∑
j=1

nj∑
i=1

(xij − x̄)2 (4.3)

SSbetween =

p∑
j=1

nj (x̄j − x̄)2 (4.4)

SSwithin =

p∑
j=1

nj∑
i=1

(xij − x̄j)
2 (4.5)

Mean squares are calculated by (4.6) and (4.8).

136



MSbetween =
SSbetween

p− 1
(4.6)

N =

p∑
j=1

nj (4.7)

MSwithin =
SSwithin∑p

j=1 nj − p− 1
(4.8)

Finally F is calculated by (4.9) as follows

Fcalc =
MSbetween

MSwithin
(4.9)

The value ofFcrit for such an analysis isFα,p−1,N−p and can be found in a standard F-table. IfFcalc >

Fcrit the null hypothesis will be proved, otherwise the alternative hypothesis will be proved, similar to the
F-test. This test is called one-way ANOVA in a statistical toolbox. The test can be extended to a two-way
ANOVA by little modification in the formula.

Correlation

Correlation is defined as anyof a broad class of statistical relationships involving a dependence between two
variables. Pearson’s product moment correlation coefficient (r) is given as a measure of a linear association
between the two variables, xi, yi (4.10).

r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
(4.10)

If the two variables are correlated, then it is possible to fit a line to the data by yi = b0 + b1xi where b0
and b1 are calculated by (4.11) and (4.12).

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2
(4.11)

b0 = ȳ − b0x̄ (4.12)

4.3.3 Psychophysiological measurement and data acquisition

Some studies 119 are underway to determine whether advanced psychophysiological biofeedback such as
EMG, EOG, EEG, heart rate, muscle contraction and so on 148 are helpful or not. A group of researchers
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worked to base the device onNASA’s “artificial vision” technology that allows pilots to see a virtual view of
what should be outside the cockpit no matter what the actual visibility conditions are. In this project, the
sensors attached to the fingers measure the volume of blood pumping through the fingers with each pulse
and the temperature of the fingers. A computer translates this data into a 3-dimensional representation of
red and blue blood vessels that change the size and shape as blood vessels are manipulated.

In the previous section, some psychological measurements were introduced and data logging from the
processwas briefly explained. This sectionwill introduce someof the cutting edge sensors andpsychophys-
iological measurements in addition to those that have already been introduced. A measurement device is
selected to record some signals from the participants to be able to find common features across the sub-
jects and generalize the result of a subjective study to similar cases. Later, measurement and questionnaire
results will be linked to theoretical results via modeling and mathematical descriptions in order to prove
our hypothesis and validate the results.

Electromyography (EMG)

Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by
skeletal muscles. EMG (Fig. 4.2.a) is performed using an instrument called an electromyograph, to pro-
duce a record called an electromyogram. An electromyograph detects the electrical potential generated by
muscle cells when these cells are electrically or neurologically activated. The signals can be analyzed to de-
tect medical abnormalities, the activation level and the recruitment order or to analyze the biomechanics
of human or animal movement.

Electro-Oculography (EOG)

Eye movements (Fig. 4.2.b) are measured from the bioelectrical potential appearing between two cuta-
neous electrodes located on each side of the cornea-retinal axis. This is a very useful measurement because
it has been proven that the speed of the eye movement from left to right or up and down can strongly be
correlated with VIMS 25, if we analyze this signal in the frequency domain. We should carefully place the
sensors in the right position and select an appropriate position for the reference electrode. Any mistake
in this step will yield nothing. Recently, most of the smartphones and modern media use this signal as a
commanding media. For instance, the Google glass in the X-project uses this feature to command a Skype
operation.

• EOG uses the same recording equipment as visual electrophysiology examinations;

• Both eyes can be recorded simultaneously;

• It is limited to horizontal and vertical movements.
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Figure 4.2: Different psychophysiological measurements: (a) EMGUJI , (b) EOG 233, (c) MET or VOG SMI and (d) EGG 1 .

Video-Oculography (VOG) and Mobile Eye Tracking System (METS)

The SMI Eye Tracking Glasses SMI is a tool for just about any mobile applications, ranging from brand
awareness at the point of sale, user experience onmobile devices, manmachine interaction or even profes-
sional training in sports. There are no adjustments in lifestyle that the user needs tomake. This system has
an array of 6 IR cameras and an IR emitter LED embedded in the glasses to record the reflecting laser beam
from the eye. The precision of the system in the pupil diameter measurement is very high. The software
application removes all the eye movement and blinking artifact from the signal. This is an amazing tool to
record human reactions during an activity which needs high concentration and visual attention. The gaze
direction is measured from the distance between the corneal reflex and the pupil center (Fig. 4.2.c). This
technique provides measurements which are:

• Absolute (no drift) and easily quantified;

• Reliable in all gaze directions (horizontal, vertical and oblique);

• Independent from head movements.

Electrogastrogram (EGG)

An electrogastrogram (EGG) is a graph and signal produced by an electrogastrograph, which records the
electrical signals that travel through the stomachmuscles (Fig. 4.2.d) and control themuscles’ contractions.
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An electrogastroenterogram (or gastroenterogram) is a similar procedure, which writes down electric sig-
nals not only from the stomach, but also from the intestines. Recently some atlas has been proposed by
researchers for an appropriate placement of the recording electrodes. An electrogastrogram and a gas-
troenterogram are similar in principle to an electrocardiogram (ECG) in that the sensors on the skin detect
electrical signals indicative of the muscular activity within. Where the electrocardiogram detects the mus-
cular activity in various regions of the heart, the electrogastrogram detects the wave-like contractions of
the stomach (peristalsis).

Electroencephalography (EEG)

Electroencephalography (EEG) is the recording of the electrical activity along the scalp (Fig. 4.3.a). EEG
measures voltage fluctuations resulting from ionic current flows within the neurons of the brain. In clin-
ical contexts, EEG refers to the recording of the brain’s spontaneous electrical activity over a short period
of time, usually 20-40 minutes, as recorded from multiple electrodes placed on the scalp. Diagnostic ap-
plications generally focus on the spectral content of EEG, i.e., the type of neural oscillations that can be
observed in EEG signals. In neurology, the main diagnostic application of EEG is in the case of epilepsy,
as an epileptic activity can create clear abnormalities on a standard EEG study. A secondary clinical use of
EEG is in the diagnosis of coma, encephalopathy and brain death. A third clinical use of EEG is for studies
of sleep and sleep disorders where recordings are typically done for one full night, sometimes more. EEG
used to be a first-line method for the diagnosis of tumors, stroke and other focal brain disorders, but this
use has decreasedwith the advent of anatomical imaging techniqueswith high (< 1mm) spatial resolution
such asMRI and CT.Despite a limited spatial resolution, EEG continues to be a valuable tool for research
and diagnosis, especially when a millisecond-range temporal resolution (not possible with CT or MRI) is
required.

Center of gravity (COG)

The center of mass is the balance point of an object’s mass. If a pivot was placed at this point, the object
would remain in place and be balanced (Fig. 4.3.b). The center of mass of a system is not always at the
geometric center of the system. For example, a car’s center of mass is closer to the ground rather than in
the geometric center of the car so that the car is better balanced. Another example of this is the technique
of a high jumper. A high jumper bends his body in a certain way so that the center of mass does not clear
the bar, but the body does.

When a system is balanced around its center ofmass, it is said to be in a state of equilibrium. The center
ofmass can be referred to as a pivot point aroundwhich the system can revolve. The system revolves due to
the rotational equivalents of force, known as torques, which rotate the system either clockwise or counter-
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Figure 4.3: (a) ElectroencephalographyUnige, (b) Techno-concept center of gravity board 205, (c) Sense-Wear Pro2 GSR sensor

worn by a test participant 2.

clockwise. Placing a pivot at the center of mass of a system results in that system being in equilibrium
and having a net torque of zero. On each end of a long, rigid body, the torque on one end is equal in
magnitude but opposite in direction to the torque on the other end, resulting in a net torque of zero.
The center of gravity (COG) of the human body is a hypothetical point around which the force of gravity
appears to act. It is the point at which the combinedmass of the body appears to be concentrated. Because
it is a hypothetical point, the COG needs not to lie within the physical bounds of an object or person.
One subjective way (there are objective measures) to approximate the COG of an object is to visualize it
balancing on one finger.

Galvanic Skin Response (GSR)

Galvanic skin response is another psychophysiological signal which can be recorded during subjective ex-
periments (Fig. 4.3.c). The GSR signal can be recorded by different sensors. One of the most known
is a small, lightweight, unobtrusive body monitor called the Sense-Wear Pro2 armband manufactured
by BodyMedia, Inc. (comparable products are available which measure similar autonomic functions).
The sensor is worn on the back of the upper arm, which enables continuous physiological data collec-
tion (Fig. 4.3.c). Using metallic sensors close to the skin (Fig. 4.4.a), the sensor collects biorhythmic data
in real time, with a configurable sample rate, and gathers raw physiological data such as the movement,
the heat flow, the skin temperature, the ambient temperature and the galvanic skin response. A data time
stamp feature allows the researcher to mark specific events in the data to facilitate later data analysis. The

141



Figure 4.4: (a) Example of metallic sensors 2, (b) wireless heart rate sensorGarmin, (c) blood pressure sensor 140 , (d) typical ECG

signal for a healthy person.

device is designed to provide auditory and tactile feedback during certain events; however, the feature can
be altered (through firmware modification) for specific research, so this feedback does not interfere with
the experimentation.

Heart rate

HeartRateMonitors (HRM)have been an inherent part and an important step of diagnosis in themedical
field for ages (Fig. 4.4.c). The current generation of portable heart rate sensors has extended the usability
of these devices out to the average person for use during day to day activities such as exercise and sports.
These devices are typically either mechanical-based (converting vessel ripples using piezoelectric signals)
or utilize pulse rate electrical signal detection methods, which require the placement of two or more elec-
trodes on the skin for electric impulse reception. An example of a heart rate signal (associated to an ECG
signal) is shown in Fig. 4.4.d. Modern heart rate monitors (Fig. 4.4.c) usually comprise two elements: a
chest strap transmitter and a wrist receiver or mobile phone (which usually doubles as a watch or phone).
In early plastic straps, water or a liquid was required to get good performance. Later units have used con-
ductive smart fabric with built-in microprocessors which analyze the ECG signal to determine the heart
rate. Strapless heart rate monitors now allow users to just touch two sensors on a wristwatch display for a
few seconds to view their heart rate.

These are popular for their comfort and ease of use though they do not give as much detail as monitors
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Figure 4.5: Sensor network for blood pressuremeasurement 140.

whichuse a chest strap. More advancedmodelswill offermeasurements of the heart rate variability, activity
and the breathing rate to assess the parameters relating to a subject’s fitness. Sensor fusion algorithms
allow thesemonitors to detect the core temperature and dehydration. Another style of heart ratemonitors
replaces the plastic around the chest strap with fabric sensors - the most common of these is a sports-bra
for women which include sensors in the fabric.

Blood pressure

Blood pressure also can be used as a good feedback from the user side. Different sensors for blood pressure
are used nowadays but the wireless one is more interesting because of the simple usage of that. An exam-
ple of this sensor is shown in Fig. 4.4.b. The sensor shown has a measurement module which helps to get
accurate values of blood pressure. The sensors can be attached to different organs of the body and synchro-
nized by a measuring center which in turn enables better monitoring and measurement. Fig. 4.5 shows a
network configuration for network based measurements. Data from different sensors is transmitted to
the workstation PC or laptop and is recorded by the user application simultaneously and synchronously.
Most of the softwares and attached SDK provide support for more development and design for specific
applications which makes the sensor usability very flexible and efficient.

Digital pill

The Food andDrugAdministration in theUnited States has approved a request by ProteusDigitalHealth
to allow the inclusion of tiny digestible microchips into medicines to assist health care workers in moni-
toring intake of medicines by patients. This new technology can help to get psychophysiological signals
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Figure 4.6: (a) Minimum components of a digital pill package, (b) bio-component of a digital pill, (c) digital pill iPhone application

and example of output of the transmitter 102.

directly from the stomach, the place which is very important for cyber sickness. The microchip, which is
described as about the size of a grain of sand, is made of copper, magnesium and silicon, reacts with the
stomach juices when swallowed along with a pill (Fig. 4.6.b). Upon reaction, it sends a signal to a patch
the users have applied to their skin where it is relayed to a smartphone (Fig. 4.6.a). The smartphone then
relays the information to the researcher or doctor office, allowing the researcher to track howwell a subject
adheres to instructions on when and how sickness or any other phenomena will emerge (Fig. 4.6.c).

Once the microchip has done its job, it dissolves and passes out of the body along with other digested
food. Just as a review over the human aspect of this technology, it is enough to say new technology is being
pushed forward by recent reports that have found just half of all patients take their medicines the way they
are supposed to, which of course can reduce their effectiveness. An example of digital pills is shown in
Fig. 4.6.a (green pills) 102.

Proteus believes some patients can benefit more than others from the microchips, such as those that
take medicines toward off tuberculosis, diabetics and elderly patients who have difficulty remembering to
take their pills at the right time or if they have already taken them. Making things even more difficult,
some have a whole list of pills with different schedules for each. The next logical step would of course
be to allow the patient access to the data or to have it routed to a device set near where they keep their
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medicine, whichwould both alert themwhen it is time to take theirmedicines and to let themknow, if they
cannot remember, if they took themornot. Some suggest thismoveby the Food andDrugAdministration
(FDA) is the first of many likely to come over the next few years, as other technologies are waiting in the
wings. Coming soonmaybe swallowedor implanted devices that dose us automatically, sensors that report
on other bodily activities, or devices that swim around in our bloodstream monitoring conditions and
cleaning out plaque deposits. The output of smart pills will be similar to Fig. 4.6.c.

If the permission can be issued by the FDA, these devices can help a lot to the progress of cutting edge
researches. Because, not only a vagus signal is send to the stomachmuscleswhenVIMSoccurs but enzymes
are secreted by the abdominal glands too, which is easy to detect by a digital pill. A digital pill is capable to
report the temperature, the pressure, the pH of the stomach.

4.4 Signal processing approaches

Very few unmanned 3D systems exist. Almost in all the available systems, the human being as an end-
user is in one side and the machine performs specific tasks in the other side. The end-user convenience is
one of the big concerns of a system designer in such a system. Although collecting appropriate feedbacks
from a machine (alternatively we call it a process) is less complex than the user side, new technological de-
velopments, especially in EEG (Electroencephalography), MRI (Magnetic Resonance Imaging), EM (Eye
Movement), Infrared (contactless body temperaturemeasurement), EMGandothers asmentioned above,
make recording feedback from the end-user feasible. We need multiple feedbacks from both the process
and the end-user simultaneously and synchronously in order to involve all the possible parameters in our
study and analysis.

Multiple feedbacks from the process can be acquired by different sensors and measurement devices.
These feedbacks can be analyzed consequently to understand the characteristics of the process and to study
not only the effects of different parameters on the target variables but on user performance as well. These
feedbacks are known as psychophysiologicalmeasurements as explained above, which provide quantitative
values for the analysis, assessment and comparison. In addition, these analyses provide objective criteria for
the amendment and modification of the system which in turn makes the design of better systems feasible.

This section will introduce different representations of measurement signals, stochastic and determin-
istic approaches for signal processing as well as mathematical tools that we will use to analyze and treat
signals.

4.4.1 Signal representation in the time and frequency domains

We will use an EEG signal as an example to explain the signal representation in the time and frequency
domains. An EEG signal is the spontaneous cortical electrical activity recorded at the scalp. The brain
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Figure 4.7: Single-channel EEG signal.

EEG was discovered by Berger in the 1800s using a primitive galvanometer with a surface electrode placed
on his son’s scalp and recorded a rhythmic pattern of electrical oscillations. This signal was the instanta-
neous electrophysiological response of cortical brain cells. Understanding an EEG signal is very important
because later the same principle can be applied to EMG, EOG, and ECG but with different sensors.

Withindepth inquiries during the last twodecades, it is understood that the electrical potentials recorded
as EEG are produced by electrical dipoles in the pyramidal cell layer. Many pyramidal cells and their den-
drites are arranged vertically. This arrangement sets up a dendro-somatic “dipole” or potential which os-
cillates with the arrival of excitatory or inhibitory postsynaptic potentials. An EEG signal practically can
easily be recorded by electrodes of some conductive metal (gold, silver/silver chloride and tin are popular
choices) attached to the scalp in a bed of conductive gel.

A time domain representation of a signal can be continuous or discrete. We will deal with a discrete
(sampled) signal in entire this thesis; the equations are extracted from continuous approaches with little
modification. A single-channel EEG signal is shown in the time domain in Fig. 4.7. This signal is a time
series with 1000 samples and the amplitude varies between−62.9 and 158.6µV. Typical values of EEG is
in the range of 20 − 100 µV, however lesser values can be recorded in averaged evoked potentials: nearly
10 µV. Larger values are recorded in epilepsy and other disorders.

One of themost commonways to convert a signal from the time domain to the frequency domain is the
Fourier transform. The Fourier transform of a given function f(t), with limited integral, is called F (ω)
and calculated by (4.14).

∫ +∞

−∞
|f(t)| dt <∞ (4.13)

F (ω) =

∫ +∞

−∞
f(t)e−jωntdt (4.14)
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Figure 4.8: Single-channel EEG signal in the frequency domain.

For a discrete signal with a sequence ofN samples, x0, x1, x2, · · · , xN−1, the Discrete Fourier Trans-
form (DFT) is defined by (4.15)

Xk(ω) =

N−1∑
i=0

xie
−j2π kn

N (4.15)

Notice that this new sequenceXk repeats afterN termswhichmeans the Fourier transform of a sample
signal is periodic. However, we use the Fast Fourier Transform (FFT) to calculate the DFT of a signal in
practice. The EEG signal of Fig. 4.7 is represented by a spectrum as shown in Fig. 4.8.

When the objective is to study a certain part of the brain, usually we use multi-channel EEG. The elec-
trical activity of the brain behaves like any other material system changing in membrane polarization; in-
hibitory and excitatory post synaptic potentials, action potentials, etc., impress voltages are conducted
through the surrounding medium of the CSF (Central Spinal Fluid), the meninges, the skull and the
scalp. Usually, more than one electrode becomes active during brain activity. That is the reason why a
multi-channel configuration of sensors is employed to record the brain activity in certain regions of the
brain. An example of a high resolution EEG sensor arrangement, the spontaneous measurement of mul-
tiple electrodes, is shown in Fig. 4.9 172. The electrical voltages conduct up through the brain tissue, enter
the membranes surrounding the brain, continue on up through the skull to appear at the scalp. At this
point they are reduced from mV range (of the membrane potential gradients and action potentials) to a
few µV. A typical multi-channel EEG is shown in Fig. 4.10. As seen, certain parts of the brain under these
electrodes became active during a specific period.

4.4.2 Instrumentation consideration during data acquisition

These signals can be processed and meaningful information can be taken out of them. The amplitude
of a measurement signal is small compared to the amplitude of common artefacts (muscle, mains power
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Figure 4.9: EEG probe location on the scalp for amplitudemap extraction 172 .

frequency radiation). The quality of the recorded signals depends on the scalp/electrode impedance, dif-
ferential amplifiers, and filtering. Low impedance, a better amplifier and filtering devices and techniques
will help to get cleaner signals. The position of the amplifiers is very important. The amplifiers are in the
measuring boxmost of the time. In this case, the signals are affected bydifferent disturbances such as power
supply noise, the electrostatic charge of the body and so on. An electrically shielded recording laboratory
can also help in this respect. However, in recently developed technologies, the amplifiers are mounted on
the electrodes. These systems are highly secured against noise and any other ambient contamination.

The EEG signal is typically recorded by an “instrumentation” amplifier which uses a third “common”
electrode to remove noise. The signals on this common channel are subtracted from each of the signal and
reference channels. This removes the signals which are present on both the signal and reference electrodes
(the common mode signal). A good amplifier has a high common mode rejection ratio - the ability to
subtract out these common signals. The common mode rejection rate is measured in dB and should be
more than 90 dB. Additional factors in the amplifier design include high input impedance. This factor
determines the amount of current that can be driven. High input impedance leads to a low current and,
consequently, even a high resistance scalp-electrode interface will be quite immune to picking up the envi-
ronmental electrical noise which surrounds us. A kind of interfacing gel is usedmost of the time to reduce
this impedance and increase the amplitude of the signal.
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Figure 4.10: Example of amulti-channel EEG signal 172.

4.4.3 Classification of different events in a signal

One strong signal processing technique is the classification of an event in the signal based on the period
of the event, statistical features such as the mean and standard deviation, the amplitude, the frequency
spectrum or other features in the frequency domain. For instance, most EEGwaves range from 0.5− 500

Hz. Alpha, beta, theta and delta waves are observed more than other waves and are called Essential Brain
ActivityWaveforms (EBAW). Fig. 4.11 shows these waves in the time domain (a) and their spectrum (b) in
the frequency domain. Alpha and beta signals are differentiated by their amplitude and the period, while
the same thing is difficult to apply to theta and delta signals. In this case, it is better to diagnose one from
another by their spectrum in the frequency domain as shown in Fig. 4.11.b. However, other physiological
characteristics as shown in Tables 4.1 and 4.2 can be used to identify each signal.

The most important features of these waves, EBAW, such as the bandwidth, the age dependency, the
variation speed (slow or fast) and so on are detailed in Table 4.1.

Some phenomena can be recognized by their EEGwave forms. In fact, only by looking at the waveform
we can say approximately what kind of event is happening. These waves are recognized by their shape and
form and secondarily by their frequency. They include waves that may be normal in some settings and
abnormal in others. Table 4.2 shows a summary of these waves and their characteristics (see Fig. 4.12).
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Figure 4.11: Sub-categories of an EEG signal.

Figure 4.12: Few examples of wave patterns in an EEG signal.
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Wave name Range (Hz) Characteristics

Alpha 8.0− 13.0

adults
closed eyes and with relaxation
disappears with attention (mental arithmetic, stress, opening
eyes)

Beta f ≥ 13.0

all age groups
open eyes and anxieties
small in amplitude, symmetric, and fast
accentuated by sedative-hypnotic drugs (ex. benzodiazepines)

Theta 3.5− 7.5
awake adults and children up to 13 years
slow

Delta f ≤ 3.0

infants up to one year and in stages 3 and 4 of sleep (abnormal
in an awake adult)
high amplitude and slow (the slowest among the four waves)

Table 4.1: Four essential brain activity waveforms.

EEGsignals are analyzed indifferentways: Fourier time-frequency, 3Drepresentationof time-frequency-
amplitude, wavelet analysis and brain map. The best way of analyzing an EEG signal is multi-spectrum
analysis. In this method, different resolutions of time and frequencies are applied to a signal with a pair of
filters, a scale and a wavelet filter. An example of this multi-resolution analysis is shown in Fig. 4.13.

4.4.4 Wavelet multi-spectrum analysis

Since wavelet multi spectrum analysis is very important in signal processing, this part will provide a brief
explanation of wavelet analysis. More information is available in the related literature (see Mallat 118 and
Antonini et al. 3 publications).

Mathematically, a signal x(t) ∈ L2(R) can be decomposed into a linear combination of a set of n base
functions {ϕ0, ϕ1, · · · , ϕn} if the signal is in the space spanned by the basis. The linear combination of
function x(t) is,

x(t) =
∑
k

akϕk(t), k ≺ n(k ≺ ∞), k ∈ Z (4.16)

where, k is an integer index of the finite or infinite sum and ak, ϕk(t) are expansion coefficients and
expansion functions respectively. Fourier (ϕk(t) = e

2fktj
T ) and wavelet (ϕj,k(t)) are two well known
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Wave name Range (Hz) Feature

Spike and wave 3 and 6
children
large amplitude, slow wave (delta), generated in the
thalamus

Poly spike and wave 3.5− 4.5
with multiple spikes, slow, generated in the my-
oclonus

Lambda and posts
occurs in the second stage of sleep and awaken patient
when the eyes stare at a blank surface
triangular shape

K complex f ≥ 13.0

sleep when aroused (2 stages of sleep), sleep again or
the awake state
similar to beta wave

V-wave
seen in the second stage of sleep
occurs in the parasagittal and bi-parietal

MU activity
(1/2) ∗ f of shape of a wicket fence with sharp tips
fast activity phase reversal between two channels

Psychomotor variant
rare rhythm
higher in amplitude than the surrounding waves
asymmetrical (14 & 6 rhythm)

14 & 6 rhythm 6− 14

children and adolescents
opposite/same direction with the wave
in sleep and mono-polar recording

Periodic Lateralized acute brain injury or damage
Epileptic Discharges associated with severe focal signs and much illness

Tri-phasic wave
the wave was found with hepatic encephalopa-
thy, subsequently been associated with many other
metabolic encephalopathies

Burst suppression
slow and mixed waves often of high amplitude
seen after a severe brain injury such as post-ischemia or
post-anoxia
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Wave name Range (Hz) Feature

Artifact
produced by technical or other disturbances
solution between electrodes shorting them out

EKG and pulse artifact
recognized by their periodicity
much larger electrical signal than EEG
caused by an electrode moving

Pop
patient movement artifacts
large in amplitude and last a long timebyEEGstan-
dards

Electrode and other
movement artifact

Movement and 50 or 60
periodic and small in amplitude and easy to recog-
nize

50Hz artifact causes spikes at 50 or 60 per second
60Hz is seen with poor electrode contacts

Table 4.2: Morphology of different EEGwaves.
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Figure 4.13: Multi-resolution analysis with wavelet.

examples of decomposition into primitive or fundamental constituents of their spaces. In fact, a Fourier
series decomposes a signal into a set of sine and cosine functions. By aDiscreteWavelet Transform (DWT)
in multi-resolution analysis, however, a signal is represented by a sum of a more flexible function called
a wavelet that is localized both in time and frequency. In the DWT where the decompositions are based
on a rate of power 2, which has been mostly used in practice base functions, ϕj,k(t) can be expressed
by 2

j
2φ
(
2jt− k

)
, j ≻ 0, k ∈ Z. In this decomposition, the signal x(t) can be written as a linear

combination of wavelet functions as follows:

x(t) =
∑
j,k

aj,kϕj,k(t) (4.17)

ϕj,k(t) is called the mother wavelet or scale function (dual function), and the set {ϕj,k(t), k ∈ Z} is
an orthonormal basis for Vj , which can be expressed as: Vj = span {ϕj,k(t), k ∈ Z}. In definition, the
subspace Vj(j ∈ Z) should satisfy the following properties:

• · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V+1 ⊂ V+2 ⊂ · · · ;

•
∩
j∈Z Vj = {0},

∪
j∈Z Vj = L2(R);

• f ∈ Vj if and only if f(2·) ∈ Vj+2;
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• f ∈ V0 implies f(· − k) ∈ V0 for all k ∈ Z.

If the properties above are met, there exists a set of functionsψj,k(t), which is called the father wavelet,
and the set {ψj,k(t), k ∈ Z} is an orthonormal basis forWj .

The inner product is

⟨ψj,k(t), ϕj,k(t)⟩ =
∫
ψj,k(t)ϕ

∗
j,k(t)dt = δi,j (4.18)

With this orthonormal property, we can find the coefficients by

⟨x(t), ψj,k(t)⟩ =
∫
x(t)ψ∗

j,k(t)dt =

∫ (∑
k′

aj,k′ϕ
′
j,k′(t)

)
ψ∗
j,k(t)dt

=
∑
k′

aj,k′

(∫
ϕ′j,k′(t)ψ

∗
j,k(t)dt

)
=
∑
k′

aj,k′δk′k = aj,k (4.19)

rewritten as follows:

aj,k = ⟨x(t), ψj,k(t)⟩
∫
x(t)ψ∗

j,k(t)dt (4.20)

The satisfying result comes because of the orthonormal property of the basis. Note that Wj is the
orthogonal complement of spaces Vj and Vj+1, which can be expressed as:

Vj+1 = Vj ⊕Wj (4.21)

In general,

Vj = Vj0 ⊕Wj0 ⊕ · · · ⊕Wj−1, j ≻ j0 (4.22)

and

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕W3 · · · (4.23)

It is important to choose an appropriate set of basis and its dual for the signal decomposition. For the
signal we want to deal with, if a particular basis satisfying the orthonormal property is applied, it will be
easy to find the expansion coefficients ak. Fortunately, the coefficients concentrate on some critical values,
while others are close to zero. We can drop the small coefficients and record the important values. Various
sources of noise usually inject various types of contamination into a signal and disturb the recording pro-
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cess. Therefore, the polluted signal needs to be cleaned up by a de-noising filter. Some information of the
signal appearing in high frequencies can be mixed up with noise.

4.4.5 Time-frequency analysis

Fourier time-frequency analysis has been a powerful tool to extract features from a signal or see some hid-
den characteristics of a signal. A simultaneous demonstration of time-frequency of a signal can illustrate
the real capability of this analysis technique.

Given the width and the definition of the window function w(t), we initially require the area of the
window function to be scaled so that ∫ +∞

−∞
w(τ)dτ = 1 (4.24)

It easily follows that ∫ +∞

−∞
w(t− τ)dτ = 1 ∀t (4.25)

and

x(t) = x(t)

∫ +∞

−∞
w(t− τ)dτ =

∫ +∞

−∞
x(t)w(t− τ)dτ (4.26)

The continuous Fourier Transform is

X(ω) =

∫ +∞

−∞
x(t)e−jωtdt (4.27)

Substituting x(t) from above

X(ω) =

∫ +∞

−∞

[∫ +∞

−∞
x(t)w(t− τ)dτ

]
e−jωtdt =

∫ +∞

−∞

∫ +∞

−∞
x(t)w(t− τ)e−jωtdτdt (4.28)

Swapping the order of integration

X(ω) =

∫ +∞

−∞

∫ +∞

−∞
x(t)w(t− τ)e−jωtdtdτ =

∫ +∞

−∞

[∫ +∞

−∞
x(t)w(t− τ)e−jωtdt

]
dτ

=

∫ +∞

−∞
X(τ, ω)dτ (4.29)
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Figure 4.14: Time-frequency EEG signal analysis.

Figure 4.15: Example of an EMG signal.

The time-frequency representation can be calculated by

X(τ, ω) =

∫ +∞

−∞
x(t)w(t− τ)e−jωtdt (4.30)

Fig. 4.14 shows two different signals (a, b) in the time domain which contain two events (Event 1, Event
2) with different lengths and their corresponding time-frequency representations (c, d). Only the length
of the event can be well seen from the time domain representation, not the detail. The time-frequency
representation shows more detail.

For example, in general, signal 1 contains frequency components up to 60Hzwhile the frequency com-
ponents of signal 2 approach beyond 60Hz and reaches to nearly 90Hz. Besides high frequency compo-
nents were active approximately from the beginning till the end of the measurements.

The starting point and the stop point of both events were marked up in Fig. 4.14.c and d.
Fig. 4.16 shows another example of time-frequency analysis. This time, an EMG signal and its time-
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Figure 4.16: Time-frequency representation of the EMG signal shown in Fig. 4.15.

frequency will be discussed. Fig. 4.15 shows that three events occurred with the same length and approx-
imately the same amplitude. There are high and low components in the signal that hardly can be differ-
entiated. On the other hand, time-frequency shows a very clear image of the signal, shown in Fig. 4.16.
Three events occurred during this EMG activity and three events are approximately identical. This is the
only information that can be understood from the time domain, howevermore detail needs to be extracted
from this signal to better identify each event from the other. The time-frequency representation perfectly
does this and separates the content of each event into components with long (14 s) and short (1 − 3 s)
durations. Besides, the long period component has three low frequency components, 15 Hz, 20 Hz and
150Hz. Maximum 300Hz appears in the signal.

In general, the time and frequency domains provide very useful information about the characteristics
of a signal. The time-frequency representation is extracted only when the time and frequency domains
cannot provide enough information.

Equation (4.29) is one of the ways to generate a time-frequency representation. However, as seen in
section 4.4.4, a wavelet can easily provide us a time-frequency analysis with (4.31) as well if the mother
wavelet function is appropriately chosen.

C(t, s) =
1√
s

∫
x(τ)w

(
t− τ

s

)
dτ (4.31)
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If the function is selected, the so-called Morlet mother wavelet (4.31) then (4.32) will be frequency de-
pendent and the result will be a time-frequency representation.

w(t) =
1

kσ
e−(σt)2 cos(2πft) (4.32)

4.4.6 3D representation of time-frequency data

Two types of signals, the real signal and noise are really difficult to separate even with very sophisticated
adaptive filters. To avoid bad election, it is better to apply amulti resolution analysis to be able to recognize
the real signal values from the noise as explained in section 4.4.4. A 3D representation of a signal can
effectively help us to see this difference and select the right signal and suppress the noise.

Fig. 4.17.b shows the 3D representation of a signal. As seen the signal has two distinct components.
The first part looks quite regular and periodic and the second part has less regularity but still keeps its
periodicity. Although this representation provides a very useful insight into the signal, it can help to do
better analyses only in case we do not have any idea about the content of the signal. Most of the time,
a 3D representation is counted as a preprocessing step for time-frequency analysis and processing in the
frequency domain. If we are dealing with multiple channel data acquisition, for instance high resolution
EEG, it is better to use another representation called mapping. Mapping is transforming from one space
to another space.

4.4.7 Mapping into a new space

One of the best ways of multiple channel signal analysis, for instance EEG, in the case of a clean measure-
ment (noise free) is the brainmap. This representation is shown in Fig. 4.17.a. As seen, it is very easy to see
which part of the brain is active at a certainmoment. This representation is amapping of sensors data sim-
ilar to that of Fig. 4.17 at time t into a 2D space. The red and blue colors illustrate the regions with severe
brain activities and the inactive regions respectively. For instance, it has been understood from the brain
map shown in Fig. 4.17.a that the frontal lobe of the brain has experienced severe activities from t = 0.78

s to t = 1.14 s while at the same time the occipital lobe was totally inactive. In turn, it can be deduced
that the participant’s body was in motion during this measurement.

4.4.8 Signal fusion

Electroencephalography (EEG) is one of the best methods for brain dynamics monitoring because of its
high temporal resolution and portability. However, using only an EEG signal is not enough to track down
the activity of a specific region and associate a function with the region. Usually, an extra sensor data such
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Figure 4.17: (a) Brain EEG amplitudemap, (b) 3D representation of amulti-channel EEG signal, (c) equivalent dipole source

locations andmean, and individual scalp maps for five IC clusters, 3D dipole source locations and their projections onto aver-

age 26.

160



asMRI is required to do the analysis more accurately. In such a case, we need to fuse and combine the data
from twodifferent sensors to getmore precise results and find closer answers to our question. For instance,
Chen et al. 26 proposed a method based on simultaneous vestibular and ocular signal measurements for
motion sickness evaluation. The analysis has been done by ICA (see below) and time-frequency analysis.
The result of these analyses is shown in Fig. 4.17.c.

The right side shows the 3D representation of the brain and the left side is the brain map. A transfor-
mation is used to transfer data from 2D to 3D. This combined representation will help better understand
where the source of activity is. However, finding amapping transformation is not always easy. Fig. 4.17.c is
an example of an MS study on a car motion platform (car simulator). Fig. 4.17.c compares the mean com-
ponent power spectra of the IC clusters under differentmotion sickness levels and various road conditions.
Evidently, the alpha powers of the right, left motors and the parietal components were suppressed from a
straight-road driving to a winding-road driving as the car swayed from side to side. This finding suggests
that these brain networksmaybe highly responsive to themovements of the platformandhence to somatic
sensation. Further, the occipital midline IC cluster exhibited significant alpha power suppression.

4.4.9 Independent component analysis (ICA)

When the statistical independence assumption is correct, a blind ICA separation of a mixed signal gives
very good results43. It is also used for signals that are not supposed to be generated by amixing for analysis
purposes. A simple application of ICA is the “cocktail party problem”, where the underlying speech sig-
nals are separated from a sample data consisting of people talking simultaneously in a room. Usually the
problem is simplified by assuming no time delays or echoes.

4.5 Conclusion

In this chapter, we have reviewed different psycho-physiological methods to measure biofeedback from a
user. Some of the methods described require specific tools and materials that can be very expensive and
hard to use. Wewill see in the following chapters howwewill use some of thesemethods tomeasureVIMS
in an interaction (navigation/manipulation) task.
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5
Usability of manipulation interfaces in a real

vs virtual environment

Different navigation and manipulation interfaces were introduced in chapter 3. These interfaces facilitate
the navigation and movement in a virtual environment. This chapter will provide a set of heuristic ma-
nipulation interfaces to interact and modify different elements of a large-scale 3D scene. An end user is
fully immersed in a virtual environment during manipulation; that is the reason why the proposed ma-
nipulation interfaces proposed in this chapter are important. The feedback is taken from the system side,
including graphic processors, visualization and other devices. In addition, psychophysiological data are
recorded from the user during immersion, as detailed in chapter 4.

The effects of the manipulation parameters including the interface modality, the effect of presence on
user performance in the absence of some sensory information will be studied in this chapter. Besides,
manipulation in a real and virtual environments will be compared.
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Figure 5.1: Visualization hardware architecture and software platform designed for the experiments.

5.1 Apparatus and test setup

A test setup was established to perform the experiments, as shown in Fig. 5.1. The test-bench consists of a
multi-screen scale-one 3D display system, a navigation device and its interfacing system based on a VRPN
server, a LANnetwork, a wireless and Ethernet router, a LANHub and aVEworkstation computer along
with its accessories. Different versions of scale-one 3D display systems were proposed and experimented
in the literature 17. A CAVE system is used to perform the experiments and the subjective evaluation test
setups. The CAVE system was already presented in chapter 3. Two images are generated for each wall and
are sent to a GPU cluster via Multi-Processor Interface (MPI) for display and projection. Based on the
software platform presented in chapter 3, the visualization hardware architecture and software platform
designed for the experiment is shown in Fig. 5.1.

A second joint platform was developed on a Java Virtual Machine (JVM) platform using MATLAB
engine C++ library. The aim of the platform was to import test data from the experiments via VRPN
and easier and faster using MATLAB scripting language, Simulink and processing toolboxes. All the sen-
sors used in the experiments are connected to the JVM platform as psychophysiological measurement as
shown in Fig. 5.2 (right). The iiVR and JVM platforms are able to communicate with each other through
wireless/LAN network and TCP/IP protocol (Fig. 5.2 (left)). The JVM platform is capable to analyze
measurements in real-time synchronous with the display system and send the command to the motion
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Figure 5.2: iiVR and JVM joint platform for real-time synchronous experiments.

platform.
The participants are capable of moving forward/backward, rotating to the left/right up to 360°, if it is

required, using the Fly-stick as navigation/manipulation device in the validation experiment. It is possible
to fly along a specified direction or alongx, y, and z axeswhichmeans complete unconstrainedmovements
in 3D space. The Fly-stick was presented in chapter 3.

5.2 Comparison between virtual and real object manipulations

Object manipulation has attracted special attention among other interaction tasks especially in virtual en-
vironments andmixed real-virtual environments. Obviously, manipulationwith an object depends on the
environmental situation such as the lighting, the presence of other objects, the location of the objects in the
scene and so on. There is a huge difference between object manipulation in the virtual and real environ-
ments because of missing sensory feedbacks. For instance, sensory feedback such as gravity, roughness, the
pressure, the temperature and the sensation associated with materials are missing during the interaction
with virtual objects which in turn leads to this difference.
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Figure 5.3: Object manipulation in (a) a virtual and (b) a real environments.

5.2.1 Experiment design

Two test-benches were set up in both real and virtual environments to study the effect of these above-
mentioned missing feedbacks on the human perception during an object manipulation task in scale-one
immersion (Fig. 5.3). As shown in Fig. 5.3.a, the object manipulation task consists of replacing three blue
cubes into three green cubes using a Fly-stick in the virtual environment. The objectmanipulation task has
three sub-tasks, i.e., selection, displacement and positioning. Selection is performed by pointing the Fly-
stick at the center of the target cubes andpushingbutton 1 (see Fig 3.22 of chapter 3 forFly-stickdetail)when
theFly-stick is enough close to a target cube (d ≤ 20 cm,d represents thedistancebetween theFly-stick and
the cube). If d ≤ 20 cm, then by pushing the Fly-stick button the selected cubewill be attached to the Fly-
stick. During translation, the participant will keep pushing the button if he aims at relocating the selected
cube. The blue cube will be carefully placed inside the marker cube (three left cubes) during the positing
sub-task. The right blue cubes should be placed inside the marker cubes (the first cube inside the first
marker) in order. The same task is performed by hand in the real environment (Fig. 5.3.b). The participant
grabs the first cube (15×15×15 cm3 and an approximate weight of 1 kg), holds it up and places it inside
the first red squaremarkedupon the left side of the table (Fig. 5.3.b), the same task is repeated for each cube.
The test procedure is detailed below step by step. The presence questionnaire 230 and electromyography 10

(EMG) are used as psychological and psychophysiological measurements respectively in this study.

5.2.2 Test procedure

1. Three Bio-Pack sensors are placed on the participant’s right arm (see section 5.2.3, sensor position-
ing).

2. The participants were asked to lift off three cubes one by one from the right side of a white table
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(Fig. 5.3.b), move in a semi-circular path and place them inside three red squares on the left side of
the table.

3. The participants use the red marker to adjust each cube in the exact position.

4. An EMG signal is recorded during the experiment (Fig. 5.4).

5. The same setup is established in the virtual environment by placing a virtual table with exactly the
same size in the CAVE and a set of cubes and markers are assigned for object manipulation (blue
and green). The blue cubes represent the target objects which will be manipulated and the green
cubes will be used as markers to help the user to place each cube in the exact position.

6. The position of the object will be tracked by anAR-tracker system consisting of four infra-red high
precision cameras.

7. An EMG signal is recorded in the virtual environment during the experiment too.

8. The time of the task completion is recorded in both environments.

5.2.3 EMG Sensor positioning

A three-lead wireless Biopack EMG sensor 10 is used in this experiment (+, -, GR). The sensor is connected
to an amplifier and a A/D stand (Fig. 5.4) via wireless and from there, data logging becomes feasible by a
PC via a network connection. The Wireless EMG BioNomadix (Fig. 5.4)9 consists of a matched receiver
module. The module is specifically designed to measure EMG data and provide a fully-wireless recording
connection from the computer to the subject, with all the benefits of a wired system. EMG signal data is
transmitted at a rate of 2, 000Hz, providing an extremely high resolution wireless EMG waveform at the
receiver’s output. Raw data from the sensor is band-limited from 5.0Hz to 500Hz, to provide a very high
quality recording.

The position of the sensors was selected so that we can have a stable connection during the experiment.
Different muscles of the armwere selected and tested usingMSO9200 double-probe scope of LinkInstru-
mentLinkInstruments to find the most stable muscles for the sensor position and to record an EMG signal
with higher amplitude. A precise measurement test setup was established as shown in Fig. 5.5. The data is
recorded for biceps muscles as shown in Fig. 5.7. The arm keeps opened (a), semi-opened (b) and closed
(c) as seen in Fig. 5.6 (left). The signals associated with these three positions were recorded and analyzed in
real-time both in the frequency and time domains as shown in Fig. 5.6 (right). As shown, in the frequency
domain, the difference apparently is not noticeable, while in the time domain, the difference between
opened and closed arm is noticeable.
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Figure 5.4: Wireless EMG sensor, measuring and data logging stand.

Figure 5.5: Precise measurements setup for sensor positioning.
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Figure 5.6: Three arm positions (left), data recorded by the BIOPACK sensor in the time and frequency domains (right).

Not only the signal variation should be noticeable but also practically the sensor position during the
measurement regarding the body temperature variation and movement tension needs to be completely
stable and solid. Finally by taking into consideration all these criteria, the biceps muscle (Fig. 5.7.a) was
identified as an appropriate place for EMGsignal logging. As seen in Fig. 5.7.a, the positive (+) andnegative
(-) leads were placed at the origin and end of the bicepsmuscle respectively and the ground lead (GR) right
on the elbow. Wehavenoticedby experiment that bicepsmuscles aremore involved in objectmanipulation
too. Itmeans, five subjects did the trial run experiments and the datawas analyzed. The results have shown
that this sensor placement can give us robust and meaningful results.

5.2.4 EMG sensor data analysis

An example of a logged signal is shown in Fig. 5.8. The muscle activity during the placement of each
cube can be easily recognized in the real environment while it is not the same for the virtual environment.
This is because in the real environment complete feedbacks are provided by the sensory organs for the
CNS, consequently the human brain can recall the appropriate pattern and generate more accurate motor
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Figure 5.7: The bicepsmuscle is used for EMG data logging (a), EMG sensor position for measurement (b).

commands for themuscles. In the virtual environment, some sensory information ismissing; as a result the
brain cannot extract the appropriate pattern and therefore, generate not very accurate motor commands
for themuscles. Later, it will be shown that this pattern can be easily seen in the time-frequency responses.
As shown in Fig. 5.8 (first signal), three activities can be easily distinguished in the time space (reality) while
in the virtual environment the activities (Fig. 5.8, third signal) are not easily distinguishable, although the
tasks in both environments are approximately the same.

5.2.5 Object manipulation evaluation criteria

Wewill propose three criteria based on the evaluation parameters that have already been reviewed in chap-
ter 3 (see section 4.2.1). The length of the movement,φ1, the amount of rotation,φ2, and the completion
time, t, are considered as time space features for the comparison between the real and virtual environments
(5.1).

criteria = {φ1, φ2, t} (5.1)

Criteria 1: the length of the object movement trajectory (φ1)

Fig. 5.10 shows the average path of the movement for each cube in the real environment (red dot-line)
and the virtual environment (solid-line). The first feature that will be discussed here is the length of the
movement. The movement in the real environment is considered as a semi-circular path with an average
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Figure 5.8: EMG signals recorded in the real/virtual environments.

Figure 5.9: Calculation of the length for a given curve.
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radius (r̄) and an average length πr̄. Theoretically, the length of a given continuous curve similar to the
one shown in Fig. 5.9 is calculated by (5.2) in 2D and (5.3) in 3D space.

L =

∫ b

a
ds =

∫ b

a

√
dx2 + dy2 =

∫ b

a

√(dx

dt

)2

+

(
dy

dt

)2
 dt (5.2)
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)2
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+

(
dz

dt

)2
dt (5.3)

In 3D space, (5.3) can be easily substituted by (5.4) for a curve with sampled data with∆t = 1.

L =
n−1∑
i=1

(
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2
) 1

2 (5.4)

where, n indicates the number of points along the path.

Criteria 2: the amount of rotation (φ2)

The amount of rotation along the circular path in Y Z plane is defined by (5.5) as specified in 201.

∇× F =

∮ 2π

0
F⃗ (x, y, z)dr⃗ (5.5)

Since themovement is semi-circular, (5.6) and (5.7) are used for the rotation calculation for a continuous
and a discrete functions respectively.

∇× F =

∫ π

0
F⃗ (x, y, z)dr⃗ (5.6)

∇× F =

n−1∑
i=1

− (xi+1 − xi) cos(θ) cos(ϕ)− (yi+1 − yi) cos(θ) sin(ϕ) + (zi+1 − zi) sin(θ)√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2


(5.7)

where, θ and ϕ represent the parameters of the sphere coordinates and F is the movement trajectory.
Triple xi, yi, zi demonstrates the coordinate of the ith point, P , on curve F . We assume, the reference
semi-circular path lies on Y Z plane, x = 0, therefore ϕ = π

2 . Moreover, the resolution of an angle θ is
chosen π

n for simplicity. As a result, (5.7) can be rewritten as (5.8). Using (5.8) the total rotation along the
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Figure 5.10: Spatial representation of an object displacement in the virtual and real environments.

path can be calculated.

∇× F =

n−1∑
i=1

− (yi+1 − yi) cos
(
iπn
)
+ (zi+1 − zi) sin

(
iπn
)√

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2

 (5.8)

5.2.6 Data analysis in the time domain

Recorded sensor data will be analyzed in the time and frequency domains. Recorded data will be analyzed
in the time domain first and then in the frequency domain.

Length of the movement trajectory

By applying (5.4) the length of the movement can be calculated for each cube. The results of this calcu-
lation are shown in Fig. 5.11 for each participant. The length of the movement in an environment for a
given task (selection, movement and placement of the first cube) is a criterion to assess the task in different
environments. Besides, it can be used to compare a manipulationmechanism or to compare the same task
in two different environments. As a result, the longer the length of the movement, the harder the task is.

We found a significant difference between the length of the average movement in the virtual (M =

2.48, SD = 0.53) and the real (M = 1.58, SD = 0.13) environments, p < 0.001 (p = 0.039)
and t(9) = 5.41 as shown in Fig. 5.11. An ANOVA test shows that neither in the real nor in the virtual
environment the difference of themovement among the three cubes is significant, p = 0.141, p = 0.243.
We did an ANOVA test to be sure that the difference between each cube displacement with the next one
is not significant in both environments.
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Figure 5.11: Length of themovement trajectory in the virtual environment (blue) for the three cubes with the order shown in

Fig. 5.10.

Figure 5.12: Amount of rotation for each cube in the real and virtual environments.
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Amount of rotation

The amount of total rotation can be calculated easily by (5.8). Constant n in (5.8) represents the number
of points onF . The amount of total rotation during the experiment for each subject is shown in Fig. 5.12.
A comparison of the amount of rotation during the manipulation of the cubes in the two different envi-
ronments shows that in the virtual environment this value is significantly p < 0.001 (p = 0.0035) higher
than in reality.

Time of completion

Fig. 5.13 shows the time taken to complete the manipulation task both in the virtual (black) and the real
(gray) environments. We found a significant difference, p < 0.005 (p = 0.0026, t(9) = 3.62), between
the time of completion in the virtual (M = 79.78 s, SD = 43.20 s) and the real (M = 24.16 s,
SD = 5.095 s) environments. Therefore, the participants spent more time in the virtual environment
(Mv = 79.78 > Mr = 24.16) to complete the manipulation task which shows object manipulation
in the virtual environment is harder than (∼= 3 times) in the real environment. Moreover, the variation
in the virtual environment is much bigger (SDv = 43.20 > SDr = 5.095) than in reality. This huge
difference, 9 times, is because of different training experiences. All the participants did not have any object
manipulation experience in the virtual environment nearly. However, surely they had experienced similar
object manipulation experience in the real environment. Since the participants did not have the same
experience in the virtual environment, they recalled their experience from the real environment. Due to
the fact that there is a big difference in terms of sensory input to the cortex and expectation, the calculated
motor command either is overestimated or underestimated which in turn creates a big deviation from the
mean value in the virtual environment.

5.2.7 Data analysis in the frequency domain

The recorded EMG signal is converted to the time-frequency space with the equation which has already
been presented in chapter 4 (see section 4.4.5). The time-frequency space is a 3D representation of EMG
data, Fig. 5.14. A comparison between the two environments in this space is not easy because many details
appear. We transform this representation to an image representation by putting the amplitude as a pixel
value. Now, the representation is much clearer and the difference can be seen much easier as shown in
Fig. 5.15. In addition, we have recorded the signal for a complete set of sub-tasks involved in object manip-
ulation as shown in Fig. 5.16. These sub-task time-frequency responses will help a lot to understand the
nature of the manipulation in the two environments. For instance, as shown in Fig. 5.17.a, case 4, three
activities can be easily distinguished in the real environment, for picking an object, carrying and placing it
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Figure 5.13: Time of task completion in the virtual and real environments.

Figure 5.14: Time-frequency representation for object manipulation in the real and virtual environments.

in a given position. While as seen in the virtual environment (Fig. 5.17.b), these activities cannot be easily
distinguished and some are short while the others are quite long.

5.2.8 Questionnaire data analysis

Data acquired from the participants were analyzed by the method explained in 230. Here we will analyze
some of the questions and answers from the questionnaires. We asked the participants to rate the level
of their satisfaction in the real and virtual environments. As seen, the highest rate has been given to the
real environment, in average 5.9 (see Fig. 5.18). We found the difference between the real (M = 5.9,
SD = 1.17) and the virtual (M = 4.5, SD = 1.19) environments significant, p < 0.05 (p = 0.0013,
t(9) = 3.45). The control (CF), sensory (SF) and distraction (DF) factors were calculated as three main
factors with the correction factor proposed byWitmer and Singer 230, the result of the calculation is shown
in Fig. 5.19. In average, the score associated with CF and SF is higher than DF.
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Figure 5.15: Time-frequency representation of the spectrum in the real and virtual environments and the difference.

Figure 5.16: Time-frequency components of the handmovement with/without an object.
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Figure 5.17: Four cases during interaction with an object in the real (a) and virtual environments (b).

Figure 5.18: Level of satisfaction in both environments.
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Figure 5.19: Sub-score of object manipulation for the virtual environment.

CF (M = 7.049, SD = 1.32) and SF (M = 5.93, SD = 1.37) are significantly higher, p1 < 0.001

(p1 = 2.71 × 10−6, t(9) = 4.32) and p2 < 0.001 (p2 = 0.0009, t(9) = 3.75) than DF (M = 3.9,
SD = 0.79). In turn, it means the user interface was very well designed for an object manipulation task
and was less distractive. It was capable to involve a lot of sensory inputs. To verify this claim, we have
calculated DF against the involvement (INV). We found INV (M = 3.9, SD = 0.785) is significantly,
p < 0.005 (p = 0.0038, t(9) = 3.95), higher than DF (M = 5.75, SD = 1.64) as shown in Fig. 5.20.

5.3 Conclusion

We evaluated a simple manipulation task using EMG and presence questionnaires and compared the user
performance as well as presence between a real and a virtual environment situations. We showed that the
task is much difficult to complete in the virtual environment than in the real environment. This is because
of missing sensory proprioceptors.
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Figure 5.20: Level of involvement and distraction of object manipulation in the virtual environment.
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6
VIMS estimation to guide navigation

techniques

In this chapter, several features will be presented to describe VIMS mathematically. In fact, the entire
biological model which has already been presented in chapter 2 will be studied by experiment. Since the
first place that sickness can affect is the sensory motor area, we expect to see some changes in any aspect of
locomotion and bodymovement in the time and frequency domains. For instance, in section 6.1, the effect
of cognitive parameters will be simulated on the upright postural stand. This simulation is a connection
betweenprevious research and the analytical study ofVIMS. In sections 6.1 and 6.2, four features including
the area, the shape and the frequency components of the postural sway, and binocular disparity during
vergence will be presented. These features will be used to predict and anticipate VIMS occurrences. We
will present the application of the features in a real-time monitoring will be presented in section 6.3. In
section 6.4, three experiments will be presented to show the effectiveness of the features across the subjects.
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6.1 Features for VIMS prediction and estimation

6.1.1 Body postural sway modeling

The human upright equilibrium is controlled by a function called the “righting reflex”. The righting reflex
in humans malfunctions when exposed to 3D visual stimuli 202. It has been observed that VIMS is caused
by the disagreement between vergence and visual accommodation in a virtual environment90. Thus, vir-
tual environments have been devised to reduce this disagreement90. Several parameters such as the “area
of sway”, the “total locus length” and the “locus length per unit area” have been widely proposed in clini-
cal studies to quantize the instability involved in the standing posture 143. It has been reported that a wide
stance significantly increases the total locus length of the center of gravity (COG) of individuals with high
SSQ scores, while the length in those of individuals with low scores is less affected by such a stance 177.
Takada et al. 202 observed that a high density of the center of pressure (COP) decreases during exposure to
stereoscopic images. They notice that the Sparse Density (SPD), the dilation of the COG area, would be a
useful index of a COG signal to measure VIMS.

A projection of a body’s center of gravity (COG) on anXY plane of a detection balance board is mea-
sured as an average of the center of pressure (COP) of both feet. The analysis of a COG signal gives a good
insight into the control theory of two-legged robots and the human stance 200, helpsmedical diagnosis and
treatment for preventing falls in elderly people 197. Recent studies suggest that animals experience sickness
symptoms in circumstances where they have not acquired strategies tomaintain their balance 159,197. Riccio
and Stoffregen argued that MS is caused by postural instability 159. Stoffregen et al. 197 reported that the
onset of motion sickness may be preceded by significant increases in postural sway.

The human quite upright stance is inherently unstable since it requires a large body consisting ofmulti-
ple flexible segments to be kept in an upright posture with the center of gravity (COG) located high above
a relatively small base of support (Fig. 6.1). The complexity of this system and its ability tomaintain stable,
against various perturbations, have attracted attention of researchers in various fields such as robotics, vi-
sion, control engineering, Human Machine Interface (HMI) and Human Computer Interaction (HCI).
It has inspired various theories that try to explain the controlmechanismof the human quiet stance. How-
ever, the true nature of this control mechanism is still an object of discussion and controversy. The ankle
joint torque needed to control the body during a quiet stance can be evoked actively. Since the COG is
located in front of the ankle joint, a plantar flexing torque 185,136,111,120 and an additional active torque 136,111,
regulated by the CNS and produced by the plantar flexors 136,120, are continuously required to prevent the
body from falling forward. Gatev et al.48 reported a significant statistical correlation between a lateral
gastrocnemius muscle activity and the position of a spontaneous body sway, which was measured as the
COG position. The gastrocnemius muscle is a very powerful superficial bipennate muscle located in the
back part of the lower leg. This finding supports the notion that the active torque is provided by lateral
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Figure 6.1: Dynamicmodel of the body sway during a quite upright stance.

gastrocnemius muscle contractions in response to body sway.
Fig. 6.2 illustrates the schematic of the model in which the body is regulated by a simple Proportional

Differential (PD) controller. The model was adapted from 120, the components of the neurological time
delay (closed-loop system with a time delay) were chosen according to recent findings available in the lit-
erature as discussed in 120.

The body dynamics and kinematics during a quiet stance were described using an inverted pendulum
(Fig. 6.1). The input to the body model was the total torque exerted about the ankle joint. The PD con-
troller was used to simulate the regulation of the balance performed by the CNS as defined by the propor-
tional and derivative gains,Kp andKd, respectively. A low-pass filter after the proportional gain is used to
smooth the controller output signal. The time delay, τF , represents the latency recorded from the instant
the sensory stimulation is provided to the foot, to the instant the sensory evoked potential is recorded in
the somatosensory area I of the brain as explained in chapter 2 (see section 2.6).

The electromechanical response time, τE , represents the time difference between themoment amuscle
activity signal is generated in the sensorymotor and the moment the muscle reacts. The motor command
time delay, τM , represents the cumulative time loss due to the sensory-motor information process in the
CNS and the neural transmission from the CNS to the plantar flexors. These three time constants, τE , τM
and τF , are referred to as the cognitive parameters of the model. Two remaining components represent
the body model which will be explained below in detail. The motor command (Mc) is calculated using
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Figure 6.2: Inverted pendulummodel and closed-loop control scheme of a quiet stance.

the COG position and velocity information according to the following equations, (6.1)-(6.3):

Mc(t) = −Kpθ (t− τF − τM )−Kdθ̇ (t− τF − τM ) (6.1)

Equation (6.2) is achieved after applying the Laplace transform to (6.1)

Mc(s) = [−Kp −Kds] θ(s)e
−(τF+τM ) (6.2)

To show the effect of indigenous (internal from the CNS) and exogenous (external physical) forces,
equation (6.2) is written as (6.3)

Mc(s) = [Kp +Kds] θ(s)e
−τM ×

(
0− e−τF

)
(6.3)

We have introduced θ to describe the angular deviation from the upright position, and assume that we
can affect the body by the total torque T = Tc+ Td at its base. As illustrated in Fig. 6.1, gravity forces the
body to get away from its upright equilibrium. Themotion of the human body during the stance posture
is rotational rather than translational, so we will have to use the following variation of Newton’s law

M = Iθ̈(t) (6.4)

Coefficient I in (6.4) represents the moment of inertia, andM denotes the total momentum acting on
the body:

M = T (t) +mgl sin (θ(t))− bθ̇(t) (6.5)
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The first two terms in (6.5) represent the force applied at the base (time-varying) and the influence of
gravity, while the last term describes a damping proportional to the angular velocity. We can now combine
(6.4) and (6.5) to construct (6.6).

Iθ̈(t) = T (t) +mgl sin (θ(t))− bθ̇(t) (6.6)

The solution θ(t) to this ordinary differential equation predicts the motion of the body around the
z axis. We assume the human body as a system without loss and damping, just for the simplicity of the
simulation and analysis. Therefore, term b ˙θ(t) is eliminated from (6.6), see 120 for more detail. As it is
often hard to find analytical expressions and solutions for nonlinear differential equations, we will assume
that the deviation from the upright position is small, so that sin (θ(t)) ≈ θ(t), and consider the linearized
model as (6.7).

Iθ̈(t) = T (t) +mglθ(t) (6.7)

After applying the Laplace transform to (6.7) and assuming all the initial condition zero, the final equa-
tion (6.8) will be achieved

T (s) = Is2θ(s)−mglθ(s) ⇒ H(s) =
θ(s)

T (s)
=

1

Is2 −mgh
(6.8)

Equations (6.1) through (6.8) allow simulating humanpostural swayby substituting the systemparame-
terswith appropriate numerical values. The bodymodel, as shown in Fig. 6.2, was simulated inMATLAB-
Simulink. The PD controller is obtained by setting integrator gain I = 0 in the Simulink standard PID
controller definition (6.9).

P + I
1

s
+D

N

1 +N 1
s

(6.9)

Human upright postural modeling and simulation

Themodel of body sway during upright standing including cognitive parameters was derived. Themodel
can successfully describe body movements under different cognitive parameters reconfigurations. The
area associated with a scatter plot of Left/Right (L/R) and Forward/Backward (F/B) signals inXY plane
is defined as an ellipse or a circle which holds 90% of the scatter points. Both L/R and F/B signals are
needed to depict the COG movement onXY coordinates, however the model can provide either F/B or
L/R movement. To overcome this problem, the F/B and the L/R movements were simulated with the
same model however different values were set up for the cognitive parameters (PD gains and time delays).
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Parameters
States τF (ms) τE (ms) τM (ms) kp kd N

Selection range 35.1− 40.1 10.54− 11.5 25− 215 50− 3000 50− 2000 5− 2000

Stable L/R 40 11 135 750 350 20

Stable F/B 40 11 135 680 320 15

Marginally stable L/R 40 11 175 750 392 27

Marginally stable F/B 40 11 175 750 380 25

Table 6.1: Simulation parameters for stable andmarginally stable studies of a stance posture.

In the simulation, we kept the time delay unchanged and modified PD parameters to generate F/B and
L/R signals (see table 6.1).

Based on the classic control theory99 for any close-loop control process, there exist three states: stable,
marginally stable and unstable. Stability during a stance posture indicates the situation that the body stays
upright with very tinymovements. On the contrary, the body tends to fall downwhen it is unstable. Dur-
ingmarginally stable, the body tends to become unstable while the CNS tries to keep it upright by sending
commands to different joints using the righting reflex function. Consequently, the body physically fluc-
tuates around z axis and the CNS alternates between stable and unstable states. An example of F/B and
L/R movements for marginally stable and stable states are shown in Figs. 6.3.A and 6.3.B respectively. As
shown in Figs. 6.3.A and 6.3.B, the amplitude of the signal is higher for themarginally stable state compar-
ing to the stable state which in turn means the course of movement in marginally stable is higher. Besides,
the amplitude of the two signals for marginally stable at the beginning is low and increases exponentially
by time, while the external input (see input values, Ref = 0, in Fig. 6.2) always is zero during the entire
simulation time.

The controller and the cognitive (CNS) parameters are set to values shown in table 6.1. Different con-
stants of the body transfer function are calculated for a male adult as found by 120 (m = 76 kg, I = 66

kg.m2 and h = 0.87m). The same constants will be used later for frequency component analysis.
The simulation data will be analyzed in the time and frequency domains separately as follows.

Area and shape of the COG (time domain analysis)

First, the simulation data (Figs. 6.3.A and 6.3.B) will be analyzed by extracting features in the time domain
without converting the signal into another space such as frequency, time-frequency and multi-resolution.
The F/B and L/R signals at time t (or kth sample) determinex and y coordinates in Cartesian coordinates.
These two signals are projected intoXY plane by (x(t), y(t)) couple, a COG scatter plot, as shown in
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Figure 6.3: (A) Forward/backward and left/right signals for amarginally stable state, (B) forward/backward and left/right

signals for a stable state ,(C) COG area created by projecting the forward/backward and left/right corresponding values onto

XY plane: a) points associated with the stable state, b) points associated with themarginally stable state, c) zoom in to show

detail of the stable state which is hidden under themarginally stable points.

Fig. 6.3.C. The area and the shape are extracted from the COG scatter plot as features. The features will be
used as criteria to compare body sway during the stable andmarginally stable states. As mentioned above,
by definition 205, the COG area is defined as an optimum ellipse (circle) surrounded by 90% of the points.
The confidential interval is calculated from the scatter center not from the origin of the coordinates.

The marginally stable and stable signals as shown in Figs. 6.3.A and 6.3.B, blue and red curves, are pro-
jected onXY plane. Since the blue points cover the red points, we zoomed in a small region of Fig. 6.3.C
to show the points associated with a stable state, red points. Circles “b” and “a” (Fig. 6.3.C) demon-
strate the COG area for the stable and marginally stable states of the body. As seen, the body does not
move widely during the stable state, hence the COG area (Fig. 6.3.C.b) is quite dense and smaller than in
the marginally stable state in which the body movement is larger and the corresponding area dilates sig-
nificantly (Fig. 6.3.C.a). As shown, the area associated with the stable state has an elliptical shape while
marginally stability is circular.

Difference between LF and HF components (frequency domain analysis)

TheL/RandF/B sway signals are generatedusing theproposedmodel for three different states: marginally
stable (Fig. 6.4.a), unstable (Fig. 6.4.b) and stable (Fig. 6.4.c). First, the F/B and L/R signals are converted
to a spectrum-frequency representation using the Fast Fourier Transform (FFT) in order to analyze and
interpret the signals in the frequency domain and disclose their hidden aspects.
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Figure 6.4: Body F/B postural sway signal for the a) marginally stable, b) unstable, c) stable states in the time domain (left col-

umn) and associated spectrum in the frequency domain (right column).

Parameters
States τF (ms) τE (ms) τM (ms) kp kd N

Possible choice 35.1− 40.1 10.54− 11.5 25− 215 50− 3000 50− 2000 5− 2000

Stable 40 11 135 750 350 20

Marginally stable 40 11 175 750 380 9.5

Unstable 40 11 190 850 590 10

Table 6.2: Simulation parameters for different states of the stance posture.

Since the F/B and L/R signals are similar both in characteristics and in shape, only the F/B signal will
be analyzed in this section. The high and low frequency components will be extracted as features to study
the upright postural sway. The time delay associated with feedback (τf ) and feed forward (τe), (τm) delays
were set to 40ms, 11ms and 135ms respectively in this simulation (table 6.2). However, the exact value
of themotor command time delay, i.e., the time needed for the sensorymotor information to be processed
in the CNS, is unknown. Since the upright postural sway is important in this study, only the stable and
marginally stable states will be considered.

The body can fall intomarginally stable under different situations. As shown in Fig. 6.4.a, the spectrum
of the marginally stable F/B sway has two components: high (HF) and low frequency (LF), regardless of
the stimulus causing the sway, external or internal. The LF andHF components are associatedwith volun-
tary and involuntarymovements. TheHF component stretches beyond 1Hz (see Fig. 6.4.a), while the LF
component remains below 1Hz. A previous study by Bos 16 showed that 1Hz is an important frequency
because it is a criterion tomeasure the bodymotion. As shown in Fig. 6.4, under a completely stable state,
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the body stays upright with minimum sway and only voluntary movement can occur. Voluntary move-
ment is slow thus its spectrum has frequency components close to zero (f ↓= 1

T↑ ). The bandwidth of
voluntary movement (stable state) is limited to 0Hz-0.5Hzwhile the bandwidth for unstable movement
has two components 0.3Hz-0.4Hz and 0.5Hz-1.0Hz (Fig. 6.4.b). As seen in Fig. 6.4.a, the second fre-
quency component (HF) falls beyond 1.0Hz in themarginally stable state. Itmeans, more high frequency
components due to a malfunctioning of the CNS or an inaccurate estimation of the body state appear in
the sway signal.

6.1.2 Binocular disparity

Since nearly a century the theory of sensory conflict has been the subject of many studies 17,72,84,85,19,25,210.
There is no doubt in the efficiency of VR technology for commercial usage such as manufacturing, design,
construction, exhibitions and industrial public shows. However, the main issue of VIMS still remains un-
solved and more research is felt more than any time in this field, especially with the rapid growth of video
games, VR and display technologies. The severity of VIMS in some applications such as virtual reality
was so severe that the International Organization for Standardization (ISO) has held several symposiums
andworkshops in dynamic image safety and reported that more research is needed to determine the causal
factors and indexes for VIMS 210. About 30% of the population are susceptible to motion sickness 188,187.
In this regards, different statistics have been published so far to show the importance of VIMS suscepti-
bility. For instance, one study showed that about 30% of the Chinese population is susceptible to motion
sickness 186.

Researchers have been measured VIMS in virtual environments (VEs) for two purposes. First, they
thought of VIMS as an effective criterion to evaluate different navigation/manipulation interfaces and
select the interface with less sickness. This group of researchers used SSQ as psychological measurements
in their surveillances. Second, VIMS is measured and analyzed to see under what condition it will emerge
and how it progresses by time with different configurations of navigation parameters. The detection of
first symptoms of VIMS helps to inform the user of imminent sick in a couple of minutes and consecutive
cares. This section will focus on the second aspect of VIMS.

When watching a moving visual stimulus, our eyes will voluntarily follow the moving stimulus. Eye
movements are classified in saccade, smooth pursuit, optokinetic reflex (OKR), vestibulo-ocular reflex
(VOR) and vergence237, as seen in chapter 2. Different efforts have been made to characterize, model
and study each component of eye movement. For example, Juhola 87 established a solid theoretical back-
ground to detect different kinds of OKR by applying a recursive filter under an ideal situation (without
noise). This type of eye movement is characterized by two phases: 1) slow phase eye movement (smooth
pursuit) following the stimulus, 2) fast saccadic eye movement to reset the eye positions. Depending on
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the velocity of the stimulus, the slow phase OKR velocity can match about 30% to 70% of the velocity of
the stimulus 103.

In 1994, Ebenholtz et al. 39 proposed a theory to link VIMS with eye movements. This theory is con-
sistent with the findings that the suppression of eye movements by fixation can significantly reduce the
level of VIMS 195,222. Ebenholtz et al. hypothesized that the afferent signals in the ocular mechanism will
trigger the vagal nuclei, resulting in a range of sickness symptoms associatedwith the autonomous nervous
systems (so called parasympathetic nerves system), and the nystagmus theory. Because eye movements fol-
low a foveal stimulation and vection follows a peripheral stimulation 19, the nystagmus theory indicates
that in the presence of foveal stimulation, sickness will correlate with eye movements but not necessarily
with vection. Since then, there have been competing studies reporting the decoupling between vection
and VIMS 222 as well as the coupling between vection and VIMS 25,110. However, the finding of neurosci-
entists 25 shows a coupling between vection and VIMS, at least based on the modeling of binocular vision.

During watching amoving stimulus, eye fixationwill result in the suppression of eyemovement and an
increase in the retinal slip velocity. The retinal slip signal is defined as the difference between the current
position of the eye and the target object position. The derivative of the retinal slip signal is called the retinal
slip velocity. Both retinal slip and its velocity signals provide feedback for the eyemovementmechanism 237

to correct the imagepositionon the fovea. As a result, the significant reductionofVIMSduring eye fixation
can be due to either the suppression of optokinetic nystagmus (OKN), or an increase in the retinal slip
velocity, or both. Because changes in the retinal slip velocity have been shown to affect the level of VIMS
and vection73, if the effects of eye fixation are proven to be due to an increase in the retinal slip velocity,
it will provide much support to the sensory conflict theory which predicts VIMS associated with vection.
Hu et al.73 reported that when watching striped rotation patterns and changing the rotating velocity once
from 60 dps (degree per second) to 90 dps (increasing), and once from 60 dps to 15 dps (decreasing)
maximum, VIMS will appear at 60 dps. On the other hand, reducing the rotating velocity of the moving
pattern from 60 dps to 15 dps also reduces the level of VIMS. Maximum VIMS occurs when the moving
striped patterns rotate at 60 dps.

The effects of OKN and vection can be separated by modifying the rotating pattern 85. Ji et al. 85 has
shown that VIMS severity increases as the pattern velocity increases from 34 dps to 60 dps in the absence
of vection. The same effect has been observed when OKN is suppressed. The profile of the summed
result well matched with the profile reported by Hu et al.73. Guo et al. 52 studied the use of measurable
optokinetic after nystagmus (OKAN) parameters to predict a susceptibility to VIMS. They suggested this
measure as an objective indicator of VIMS to ISO organization.

VIMScan appear under different conditions duringnavigation in virtual environments (VEs). Basically,
any travel in VEs consists of translation and rotation or both. It has been shown that the main cause
of VIMS during translation movement is vection 25. This finding was justified in several studies 31. The
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main cause of VIMS during rotational movement still is the subject of various studies as seen above. Lo
and So 110 compared the level of VIMS resulting from watching a visual scene with oscillations around
different rotational axes in a VE. A stereoscopic immersive virtual environmentwith amulti-mural display
system (for instance a CAVE) uses 3D glasses to convey the sensation of full immersion to the user. It
seems the projection of two images for each eye with two different colors disturbs vergence 237 and leads to
binocular disparity. The same problem and corresponding effects on headache were reported by Ukai 211.
These findings can be strongly supported not only by subjective studies but also by the binocular vision
modeling proposed byZhang andWakamatsu 237. Binocular disparity can be exacerbated during rotational
movements in VEs and leads to severe headache or VIMS.

6.2 Experimental validation

Based on Reason’s theory 157, VIMS is expressed by (6.10)

f
(
IO, IV , Ipro

)
=

3∑
i=1

αi
∣∣∆IiV N ∣∣ (6.10)

where,
∣∣∆IiV N ∣∣ in (6.10) is defined by

∣∣Ipro − IO
∣∣, ∣∣Ipro − IV

∣∣, |IO − IV | and indexesO, V and pro
refers to ocular, vestibular and proprioceptive inputs, respectively. Bos et al. 17 extended themodel (6.10) by
proposing a new index as a strong cause of VIMS, “subjective-vertical”. He states “people only get sick when
their head changes (apparent) suddenly against gravity”. Earth gravity is aligned with r axis of the spherical
coordinates, in each point on the Earth. As a result, the new component of VIMS can be interpreted as
the variation of the head along r axis with respect to time which will be denoted by ∂2IV

∂r∂t . Consequently,
equation (6.10) is replaced by (6.11) and themodel is capable to explainmore observations related to VIMS
and MS.

f
(
IO, IV , Ipro

)
=
∑

αi
∣∣∆IiV N ∣∣+ β

∂2IV
∂r∂t

(6.11)

One of the main focus of this thesis is to show the inter-ocular difference during rotational movement
can significantly contribute in VIMS. Accordingly, model (6.11) can be completed by adding another com-
ponent,∆IO, as shown in (6.12).

f
(
IO, IV , Ipro

)
=
∑

αi
∣∣∆IiV N ∣∣+ β

∂2IV
∂r∂t

+ γ∆IO (6.12)

Above, four features were introduced which can be used for VIMS prediction. These features include:

1. ThedifferencebetweenLF (LowFrequency) andHF(HighFrequency) components of post-exposure
postural sway (the more the difference the higher the sickness);

190



2. The dilation of the post-exposure COG (Center of Gravity) area and the COG shape variation;

3. Binocular disparity at the onset of eye-movement (the difference between the two eyes immediately
after stimulation);

4. The expected time of VIMS onset.

Below, we will study these four features in more detail practically and will show how they can help to
predict a VIMS occurrence. The efficiency of the proposed features will be validated by practical exper-
iments. The validation procedure is quite simple: a group of participants is immersed in a virtual en-
vironment (VE), different psychophysiological measurements (such as the COG and eye movement) are
recorded and self-report questionnaires (Kennedy’s SSQ98) is filled out by each participant. The extracted
features frommeasurements and the questionnaire scores should be highly correlated. Three experiments
were designed for this purpose which will be presented below.

6.2.1 Experiment design

The test setup used in the following experiments is the same as the one described in section 5.1 of chapter 5.

Participants and questionnaire

Seventeen subjects (13 males and 4 females: 31.58 ± 12.69 years, 74.65 ± 15.22 kg) participated in the
experiment. There was a briefing to give enough information about the test procedure and possible risks
before each experiment individually. All the subjects participated voluntarily in the experiments. A pre-
exposure questionnaire (Q1) was obtained from each subject to know their backgrounds and to evaluate
their health condition (see appendix A). The result of the questionnaire showed that there was no test
subject whose participation in the experiment would be unsuitable due to health issues. Kennedy’s SSQ
questionnaire (see appendix B) was used with the same scoring indexes adapted to collect a self-report
questionnaire and calculate the sickness total score.

Experiment procedure and data acquisition

The procedure was designed as follows:

1. A pre-exposure questionnaire was asked to be filled out (Q1) by each participant.

2. Since the participants needed to know how to navigate with devices we had a training period (2-3
min) before exposing participants to visual stimuli (base line).

3. The COG of each participant was recorded for t1 = 30 s (pre-exposure measurement).
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Figure 6.5: a) Experiment inside the CAVE, b) path indicator and environment pattern.

4. The participants navigated along a path (detailed in Fig. 6.5.a) for t2 s.

5. The COG signal was recorded immediately after navigation for t3 = 30 s (post exposure measure-
ment).

6. An SSQ (Q2) was filled by the participants.

7. Steps 3 to 6 were repeated 7 times.

In the following section, thedatawill be analyzedboth in the time and frequencydomains to validate the
results and compare them with the simulation results. In general, a feature explains certain characteristics
of a given signal, measurement, and time series. The mean, median, variance, maximum and minimum
of a signal are the most known features, however an efficient feature has a more complicated definition in
practice. The efficiency of three features, i.e., the difference between LF andHF components, the area and
the shape of the COG, and binocular disparity will be studied using experimental data.

6.2.2 Feature 1: COG area and shape

The experiment has been carried out for a period of t = 50 ± 20min based on the procedure explained
in section 6.2.1. The F/B andR/L signals are recorded directly by the COG sensor (here a Techno-concept
sensor) and then the parameters are calculated by the interfacing software (see the Techno-conceptmanual
for further detail 205). Fig. 6.6 shows an example of a recorded F/B (red) and L/R (blue) signal for pre and
post-exposures. As seen, it is fairly difficult to compare these two signals in the time representation with-
out any feature extraction. Feature extraction facilitates the comparison between these two raw signals.
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Figure 6.6: Example of F/B and L/R sways signals for pre and post exposures.

Moreover, the analysis of a huge amount of data by feature extraction is limited to the study and com-
parison of a few set of features. 13 features (see the first column in table 6.3) are calculated using the pre
and post-exposures measurements as shown in table 6.3. The pre and post-exposures values refer to min
(pre-exposure) and max (post-exposure) values among the participants. Now, more efficient parameters
can be identified only by looking at the variation (fourth column in table 6.3). The column associated to
“Variation” shows the difference between pre and post-exposures measurements (columns 2 and 3).

Statistical analysis forn = 17participants shows that 6outof 13COGfeatures includingArea (F (1, 16) =
198.6, p < 0.005), Length (F (1, 16) = 154.9, p < 0.005), Lng. L/R (F (1, 16) = 105.2, p <

0.001), Lng. Fr./Bk. (F (1, 16) = 149.5, p < 0.001), Slope (F (1, 16) = 91.23, p < 0.01), S Var.
(F (1, 16) = 98.23, p < 0.001) have experienced significant variations. Other features either do not
follow a specific trend or did not undergo significant variations. The term “no trend” means the pre and
post-exposures difference is not significant and the variation across the subjects is random. On the other
hand, the term “with trend” means there is a meaningful difference either positive or negative (some re-
mains unchanged) but it is not significant. L/R Avg. (F (1, 16) = 1.23, p = 0.46, no trend), Fr./Bk.
Avg. (F (1, 16) = 2.19, p = 0.58, no trend), AN02 L/R. (F (1, 16) = 3.94, p = 0.17, with trend),
AN02 Fr./Bk. (F (1, 16) = 2.98, p = 0.96, with trend), LFS (F (1, 16) = 1.73, p = 0.64, no trend),
SV Fr./Bk. (F (1, 16) = 1.05, p = 0.31), S Avg. (F (1, 16) = 2.87, p = 0.08, no trend) have not
changed dramatically. Therefore they have not been considered in this study. As seen in section 6.1.1 (pos-
tural sway study), some researches were focused on the area as well. Furthermore, the aim is to see if the
simulation results can be proven by experiments or not. Among all the features that experienced a signifi-
cant difference, the “area” and the “shape of the area” are selected to be analyzed.

The COG area is calculated at 8 points during the test (see the test procedure in section 6.2.1). However
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COG SENSOR DATA
PARAMETERS abbreviation pre-exposure post-exposure variation p

Forward/Backward
Average

Fr./Bk. Avg. −26.2 3 29.2 0.46

Left/Right Average L/R Avg. −8.8 59.8 68.6 0.58

Area Area 29 553.4 524.4 0.0035

Length Length 163 489.3 326.3 0.0023

Length of Left/Right Lng. L/R 59.9 195.5 135.6 0.0001

Length of For-
ward/Backward

Lng. Fr./Bk. 127.5 436.9 309.4 0.00054

Slope Slope 43 129.3 86.3 0.0075

Normal Amplitude at
0.2Hz Left/Right

AN02 L/R 1.1 26.4 25.3 0.17

Normal Ampli-
tude at 0.2 Hz
Forward/Backward

AN02 Fr./Bk 2.1 29.5 27.4 0.96

Length function of
the surface

LFS 0.4 0.9 0.5 0.64

Sway Velocity For-
ward/Backward

SV Fr./Bk. −17.2 8.2 25.4 0.31

Speed Variance S Var. 10.7 188.1 177.4 0.00017

Speed Average S Avg. 5.3 15.6 10.3 0.08

Table 6.3: Sensor features extracted from pre and post-exposuresmeasurements of the COG sensor.
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only three instances aremore important in this study: base-line (pre-exposure), at the sickness onset (before
sickness) and at the end of the experiment (post-exposure). The time of the sickness onset is determined by
the examiner based on the participants’ self-reports. The examiner simply asks the participant “Does he/she
feel any vomiting, stomach awareness, saliva increase and nausea?” at the end of each step. Moreover, two
indexes, i.e., “Susceptibility (S)” and “Average Sickness (AS)”, are defined to double check the self-report.
TheS andAS indexes are calculated byS =

∣∣∣ SSQn−1−SSQn

t

∣∣∣ andAS =
∑m

i=1 SSQi
m , respectively using SSQ

reports, where SSQn−1 and SSQn represent the total sickness score associated with the previous and the
current steps, SSQi is the score calculated at the end of the ith step, t is the time the participants spend to
complete the current step, andm is thenumberof the steps that have alreadybeen completed. For example,
suppose SSQ1 = 125, SSQ2 = 150, SSQ3 = 300, t1 = 3, t2 = 2.5min are reported in an experiment,
then S1 =

∣∣150−125
3

∣∣ = 8.3, S2 =
∣∣300−150

2.5

∣∣ = 60,AS1 = 275
2 = 137.5,AS2 = 575

3 = 191.6. Now,
it can be clearly seen that some event is happening in step 2 because the two indexes increased suddenly.
Based on the experiment, a rapid change in these two indexes happened approximately at the same step
reported by the participant. Another way to double check the self-report is to plot the SSQ score versus
the steps and find the first step where the variation happens. To the best of our knowledge very little is
known about the time of the sickness onset (Oman’s work in chapter 2).

The COG area associated with these three instances, for one of the participants, is depicted in Fig. 6.7.
The COG areas corresponding to pre-exposure (Fig. 6.7.1.a), Spre, at the sickness onset (Fig. 6.7.1.b), SSO,
and post-exposure,Spost, (Fig. 6.7.1.c) are shown in Fig. 6.7 (top-right in red, green and blue colors). Then,
these areas are superimposed as a scatter plot in Fig. 6.7.1.d, one at the top of the other to highlight the dif-
ference between the areas. As seen, post-exposure distributed sparsely comparing to the pre-exposure area
and the shape is almost circular. The shape of the COG area remains elliptical (red and green areas in
Fig. 6.7, left side) till the onset of sickness and after that it tends to be circular (blue circle). The COG area
is defined as the geometrical shape (ellipse or circle) which contains 90% of the points of a scatter plot. The
area, shape and sickness score are changing by time simultaneously due to exposure to the virtual environ-
ment. Now, it must be proven that the variation in the area and shape is correlated with the variation in
the sickness score across the subjects.

The difference between the three areas, i.e., pre_sick_area (∆S1 = SSO−Spre), pre_post_area (∆S2 =
Spost − Spre), and sick_post_area (∆S3 = Spost − SSO) are calculated for each participant.

Then, equivalently the difference between the total SSQ score at these three important instances as
mentioned above, i.e., SSQ1 (SSQSO − SSQpre), SSQ2 (SSQpost − SSQpre), and SSQ3 (SSQpost − SSQSO)
are derived assuming that the total sickness scores for pre, at the sickness onset, and post-exposures are rep-
resented by SSQpre, SSQSO, and SSQpost. Fig. 6.7.2 shows the correlation between SSQ1 and pre_sick_area
whichmeans the dilation of the area is highly correlatedwith the increase in the total calculated SSQ score.
Figs. 6.7.3 and 6.7.4 present similar results for sick_post_area and pre_post_area respectively. STATIS-
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Figure 6.7: Variation of the COG area and the shape during the experiment (1.d), pre-exposure (1.a), at the sickness onset (1.b),

post-exposure (1.c), and correlation between the pre-exposure (2), post-exposure (3), at the sickness onset (4) areas and the

SSQ total score.
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Figure 6.8: Correlation between pre_sick_area and SSQ1.

TICA 8.0 andMATLAB 2013.b statistic toolboxes were used for data analysis. The result of the data anal-
ysis shown in Fig. 6.7.2-4 is presented in more detail in Fig. 6.8 through Fig. 6.10. As seen, pre_sick_area
(M = 198.13, SD = 10.898) and SSQ1 (M = 184.02, SD = 19.83), pre_post_area (M = 383.19,
SD = 18.97) and SSQ2 (M = 294.89, SD = 15.3), and sick_post_area (M = 185.35, SD = 7.44)
and SSQ3 (M = 111.8,SD = 7.7) are highly correlated, r = 0.96, r = 0.97 and r = 0.98 respectively.

The mean of the dilated area (sick_post_area= 185.35 and pre_sick_area= 198.13, pre_post_area=
383.19, asmentioned above) and the correspondingSSQscores (SSQ1= 184.02, SSQ2= 296.42, SSQ3=
111.34) are calculated across the subjects. The SSQ score versus the COG area dilation is depicted in
Fig. 6.11 for three instances. As seen, the COG area becomes larger with an increase in the sickness score
simultaneously, but not with the same rate necessarily, which means the COG area is a good feature for
VIMS detection.

The COG area is plotted at 8 points for two example participants to explain how the geometric shape
of the COG area varies with VIMS (Fig. 6.12). In the first example, the area starts with an elliptical shape
(Area= 234.38mm2) before sickness, the shape remains an ellipse (Area= 423.13mm2) during the 7th

step and the shape switches from an ellipse to a circle (Area= 553.41mm2) immediately after the sickness
onset. In the second example, the ellipse to circle alternation occurs in the 5th step, however the dilation
of the area carries on till the end of the experiment.

An ellipse can be recognized from a circle usingR = r2
r1

fraction, where r1 and r2 represent the short
and long radius. If r2r1 = 1 the shape is a circle, otherwise ( r2r1 ̸= 1, r2 ̸= r1) it is an ellipse. The
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Figure 6.9: Correlation between pre_post_area and SSQ2.

Figure 6.10: Correlation between sick_post_area and SSQ3.
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Figure 6.11: Relation between the area dilation and the VIMS score.

Figure 6.12: Shape variation of the COG area before and after the sickness onset increase.

199



Figure 6.13: Correlation between the COG shape and the VIMS score.

fraction and the SSQ total score are calculated for the sickness onset (SO) and one step after (SO+1).
Then, the difference between two fractions (∆

(
r2
r1

)
= RSO+1 − RSO) and two SSQ scores (SSQ =

SSQSO+1 − SSQSO) are extracted for each participant. Statistical analysis across the subjects shows that
the fraction difference (M = 0.41, SD = 0.17), ∆

(
r2
r1

)
and SSQ (M = 112.4, SD = 8.98) are

highly correlated (r = 0.95) as shown in Fig. 6.13. As a result, the COG shape is an efficient indicator of
VIMS.

Fraction R is one of the shape descriptor which can be used when r1 and r2 are available in the mea-
surement and can be recalculated frommeasurement. Otherwise, the shape can be alternatively described

by a new descriptorR =
√

S
2π .

6.2.3 Feature 2: difference between LF and HF components

The F/B sway signals of the experiment are transformed into the frequency space using the Fast Fourier
Transform (FFT). The frequency components of the F/B signal corresponding to the one of the par-
ticipants at three instances, i.e., pre-exposure, at the sickness onset, and post-exposure, are illustrated in
Fig. 6.14.1. A curve is fitted over each signal (samples) to make them visually recognizable and distinguish-
able fromone to another. The vertical red dotted line indicates the first frequency component of voluntary
movements and the green and blue dotted lines show the first components of involuntarymovements. As
a matter of fact, the most important criterion is the difference between the frequency components associ-
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ated with voluntary and involuntary movements.
In general, the frequency components of the body movement can extend up to 20 Hz however here

only 0− 3Hz has been depicted. This is because the amplitude of the spectrum is almost close to zero for
f ≥ 6 Hz. The pre-exposure F/B signal (in red color) has two frequency components: 0.0 − 0.36 Hz,
0.43 − 0.93 Hz. Comparing these frequency components with the one that has already been presented
in Fig. 6.4 (see section 6.1.1, frequency components in the stable state: 0− 0.5Hz) makes this point clear
that these components are related to voluntary movements because they are smaller than 1Hz. The F/B
signals associated with the sickness onset (in green color) has two frequency components for voluntary
movements, 0.0− 0.36Hz, 0.5− 1.2Hz, and one component for involuntary movements, 1.18− 2.63

Hz. Referring to the previous discussion, the later components will be responsible for VIMS as illustrated
in Fig. 6.4 anddiscussed in section 6.1.1. The post-exposure F/B signal (in blue color) has three components
for voluntary movements, 0.0 − 0.4 Hz, 0.45 − 0.79 Hz and 0.85 − 1.2 Hz, and one component for
involuntary movements, 1.75 − 2.85 Hz. The frequency components associated with voluntary (f ≤
1 Hz) and involuntary (f > 1 Hz) movements will be referred to as Low Frequency (LF) and High
Frequency (HF) components.

Though, the first components of involuntarymovements, 0.0−0.36Hz, in the pre-exposure signal are
selected as the LF component (LFpre). However, the average of the first components in the three signals
(0.0− 0.36Hz, 0.0− 0.36Hz and 0.0− 0.4Hz) also can be selected as LF which does not make really
a big difference (their first spectrums expand approximately on the same interval). The last components
of the sickness onset (HFSO), 1.18− 2.63Hz, and the post-exposure signal (HFpost), 1.75− 2.85Hz, are
selected as the HF components.

It needs to be shown that the difference between the LF and HF components is significant across the
subjects. It means always the difference between the LF and HF components remains significantly large.
The difference betweenLFpre andHFSO,∆f1 = 1.80Hz, is significant (F (1, 16) = 85.71, p = 0.0048).
Statistical data analysis using an F-test shows that the difference between HFpost and LFpre is quite signifi-
cant,∆f2 = 2.13Hz, (F (1, 16) = 98.21, p = 0.0032) and the same for the difference between HFpost

and LFSO (F (1, 16) = 94.03, p = 0.012). The difference between each two components is calculated,
Df1 (∆f1 = HFSO − HFpre), Df2 (∆f2 = HFpost − HFpre), Df3 (∆f3 = HFpost − HFSO), for each
participant. The difference between the HF and LF components is important for this study, however the
difference between the HF components can be interesting since the HF components of the sickness onset
is lower than the HF components of post-exposure. Now, it has to be proven that the distance between
the LF and HF components is correlated with the SSQ total score.

SSQ1, SSQ2 and SSQ3 have the same definition as explained in section 6.2.2 and are calculated by the
same formulation for each participant.

Statistical analysis shows that Df1, Df2 and Df3 are highly correlated with SSQ1 (r = 0.96), SSQ2
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Figure 6.14: Frequency components of the F/B sway signals for the pre, post-exposures and before the sickness onset in-

stances.

Figure 6.15: VIMS growswhen the difference between the HF and LF components of a postural sway increases.
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Figure 6.16: Correlation between∆f1 and SSQ1.

Figure 6.17: Correlation between∆f2 and SSQ2.

203



Figure 6.18: Correlation between∆f3 and SSQ3.

(r = 0.97) and SSQ3 (r = 0.97) respectively. The correlation between the SSQ score and the HF-
LF difference is shown in Fig. 6.14.2 through Fig. 6.14.4 respectively. Fig. 6.16 through Fig. 6.18 detail the
results of the data analysis. As seenwhen the difference betweenHF andLF increases, the SSQ score grows
simultaneously. The results of the analysis are summarized in Fig. 6.15, which shows, when the difference
between the LF and HF components of a postural sway increases (0.99Hz→ 2.63Hz), the VIMS score
grows (111.81 → 296.42) which in turn means the difference between the LF and HF components is a
very effective feature for detecting a VIMS occurrence and estimating the amount of sickness.

In fact, three different features, i.e., the area, the shape and the frequency components of a postural
sway explain different aspects of the same signal for that reason it is logical to think they are all correlated
with SSQ score.

6.2.4 Feature 3: binocular disparity

The experiment setup and test procedure are modified to demonstrate that VIMS can be detected and
estimated quite reliably and effectively by binocular disparity. In this experiment, the visualization system
still is the CAVE, with the compartments that has been detailed in section 5.1 of chapter 5. The AR-tracker
calculates the user position inside the projection space and an ART Fly-stick2 is used as the navigation
device (six buttons, one joy-stick, a tracker and a position sensor).
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Figure 6.19: (a) Real test setup for the experiment and (b) calibration pattern for the calibration of the SMI system.

Measurement sensor

SMIglasses (designedbySMIVision Inc. SMI and referred to asVideo-Oculography,VOG, in thismanuscript)
records left/right eye movements and the 3D scene simultaneously. The glasses provide a set of noise free
psychophysiological measurements for biological, psychological and cognitive studies. The SMI sensor
(Fig. 6.20) is glasses consisting of two interior cameras mounted on the inner side of the frame, capturing
images from the left/right eyes, and one exterior camera right in themiddle of the glasses, looking outward
and recording images from the scene. Sample data is transferred to a laptop computer optimized for SMI
glasses and equipped with image/signal processing toolboxes.

The end-user wears the VOG glasses with a tracker mounted on top of it (Fig. 6.19.b). A calibration
procedure is conducted to obtain the best possible calibration for the interior and exterior cameras of the
VOG glasses. A 3D cubic pattern, as demonstrated in Fig. 6.19.b, is projected into the CAVE and the
participant is asked to look at the red, green and blue balls at the top corners of the cube during calibration
(3 points calibration). The accuracy of the calibration is double checked by asking the user to look at a
yellow ball at the left bottom corner of the pattern (Fig. 6.19.b).

Several parameters including the pupil diameter, the center and the position of the eye in the eye image
plane (interior camera, Fig. 6.21.a), the gaze position in the scene image plane (exterior camera, Fig. 6.21.b),
the calibration detail and three types of eye movement, i.e., “saccade”, “fixation” and “eye blink”, are ex-
tracted from the images. The human eyes can reflect and absorb the emitted light, similar to a mirror or
any optic devices. This is the principle of the pupil counter detection used in the SMI sensor. As seen
in Fig. 6.20, six LEDs were installed in a precise configuration inside the SMI glasses. The eye reflects
the emitted light from the LEDs into the vision sensor (interior camera), as seen in Fig. 6.20. The pupil
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Figure 6.20: SMI eye tracking sensor.

Figure 6.21: (a) Eye position and pupil counter estimation (internal camera), (b) gaze position (external camera).
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counter is extracted using the position of these LEDs on the image plane by a precise image processing al-
gorithm. The gaze position is calculated using the eye position and the camera calibration parameters, and
superimposed on a scene image captured by an external camera as shown in Fig. 6.21.b. The gaze shows
the place and the direction where the participant looks. The two interior cameras and the exterior cam-
era are recording images synchronously with a simple rate of 30 Hz as reported in the data acquisition
sheets. The final calculation result sheet is reported in Excel whichmakes further process and data analysis
extremely easy. The Excel sheet can be easily exported to other processing toolboxes such as MATLAB,
SPSS, STATISTICA and so on.

Objectives and hypotheses

Based on the theory and relative work on VIMS, introduced in sections 2.6 and 2.7 of chapter 2, the ob-
jective of this study is to test whether the effect of the velocity of a visual flow on VIMS during rotational
movements inside a real-scale VE is primarily higher than translation movement. Besides, we would like
to see if binocular disparity is a good criterion to detect VIMS. To this end, the following hypotheses are
studied:

1. The participants will report a significantly higher sickness score during navigation in a VE (H1a),
the score associatedwith oculomotor is expected to be higher than disorientation andnausea (H1b).

2. The difference between the left and right eyes during rotational movement is significantly higher
than translational movement (H2), the difference between the two eyes during rotation is highly
correlated with the total sickness score reported in the SSQ.

Experiment design and test procedure

The experiment setup permits the participants to navigate inside a building model (Fig. 6.22.a). The pro-
jection room (the place the CAVE is located in) is completely darkened during the exposure and all lights
are turned off except that from the display projectors. During navigation, standing participants are asked
to follow the test path illustrated in Fig. 6.22.a using a Fly-stick within 5 minutes maximum. Similar to
the previous experiments presented in section 6.2.1, the path indicators (yellow balls in Fig. 6.22.b) with
the same size and color are set to 1.25 m above the ground. Navigation is designed to be an exhaustive
combination of rotational (with a rotating velocity of 60 degrees per second, dps) and translational (with
a linear velocity of 2.5 meter per second (mps)) movements. A 60 dps rate is chosen because the highest
level of VIMS was reported in this speed (see Hu et al.73). The translational velocity is set to 2.5 mps to
lower sickness. The 3D scene is updated in the projection space based on the new position of the user
instantaneously with a high frame rate (nearly 60 fps for the selected model). This is important as any
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Figure 6.22: (a) Path planning for the experimental test (maximum rotation angle: 90°, minimum: 30°, speed of rotation: 60
dps), (b) stimulation pattern (the yellow balls indicate the path).

response delays commonly found in a head-tracked virtual reality (VR) system can significantly affect user
performance and questionnaire scores taken subsequently.

Participants

11 participants aged from 27 to 38 (6male and 5 female) took part in the experiment. They were either with
normal eye sight or corrected eye sight. They all attained a 10/10 visual acuity. Before the experiment, they
were informed of the general aim of the study but not the specific objectives and hypotheses. They needed
to complete a pre-exposure SSQ (Kennedy et al.98) after the VOG calibration and before a 5 minutes ex-
posure. Should a participant report a total pre-exposure SSQ total score of 10 or more, he or she would
be asked to rest for 5 minutes and fill in another pre-exposure SSQ. If the total score is still greater than
10, he or she will be asked to come back on another date. The post-exposure SSQ is filled at the end of the
experiments (point 12 in Fig. 6.22.a).

Data analysis and feature study

Raw sensormeasurements include the left/right eye images, in contrast image, and camera calibration data.
The rotational/translational commands of the navigation device are recorded synchronous with the SMI
glasses using time stamps. The left and the right images were analyzed and selected during translation
(Fig. 6.24.1-2) and rotation (Fig. 6.24.3-6) using the time stamps. The two images are put side-by-side using
image processing techniques to display the eye situation at each time stamp. The images are superimposed
by two reference lines which show the difference between the two eyes move evidently.

As shown in Fig. 6.24, the difference between the left and right eyes with respect to the reference lines is
not very noticeable (Fig. 6.24.1-2). The first two images in Fig. 6.24 belong to the end of the translational
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Figure 6.23: (a) Left/right eye position and difference between the two eyes during translational movement, (b) difference

between left/right movements immediately (200ms) after rotation of the scene (the right eyemoved 3.8mmmore than the

left eye).
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Figure 6.24: Difference between the left and right eyes during navigation with respect to the reference lines, (1-2) during

translation and right before rotation, (3-6) immediately after rotation.
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movement, right before the activation of the rotational command. This selection is done on purpose and
the reason will be explained later. On the contrary, the difference between the two eyes is significantly
noticeable during rotation as shown in Fig. 6.24.3-6. The difference is calculated for two samples during
translation (Fig. 6.23.a) and rotation (Fig. 6.23.b) to give a numerical estimation concerning the amount of
the differencementioned above. The eye position is defined as the center of the pupil on the eye image and
is measured in pixel in the image coordinates (see the SMI Visionmanual SMI). The pupil is located within
the area enclosed by the LEDs (highlighted in red in Fig. 6.23.a, b). The position of the left and right eyes
before (during translation) and during rotation is shown in Fig. 6.23.a and Fig. 6.23.b, respectively. The
red dot-line shows the position of the eyes at the current time stamp and the green dot-line illustrates the
position of the eye in the previous time stamp (the time difference between two stamps is∆t = 30ms).
Nearly, there is no difference between the left/right eyes during translation, however this difference is 3.8
mm for rotation.

Regarding the previous discussion in chapter 2 (see section 2.5.7), during navigation in virtual environ-
ments, binocular disparity is deteriorated and leads to VIMS. However, previous observations shows that
this disparity during rotation is higher than during translation. Therefore, it is logical to hypothesis that
the induced sickness is more due to the rotation than the translation.

The calculatedparameters of the SMI glasses (Excel sheets) is used to validate this hypothesis. In fact, the
position of each is extracted from the test sheets and depicted versus time for each participant. Fig. 6.25.a,
b and c illustrate left and right eyes movements and the difference between the two eyes (residual signal)
during navigation. Fig. 6.25.d shows the rotation points (12 turning points for the given example), where
a participant commands the rotational movement, and the duration of the command at each point. For
the given example, intervals [tn tn+1] and [tn+1 tn+2] are the duration of the translation and rotation
commands at point n = 3, respectively (Fig. 6.25.d). Most of the rotation points are in accordance with
the navigation path as shown in Fig. 6.22.a. However, the user is not restricted to 11 rotation points along
the path. If he/she makes a mistake and selects a wrong path, he/she can correct his/her path by extra
rotational commands.

The pre (at the beginning) and post-exposure SSQ scores are calculated for each participant. The value
associated with rotational (stripped red in Fig. 6.25.c) and translation (non-stripped) movements is cal-
culated and accumulated for rotation and translation separately (two values) for each participant. The
primary result of the statistical analysis using a T-test shows the difference between the two eyes during
rotation (M = 140.7, SD = 95.6) is significantly higher (t(10) = 4.25, p < 0.05, p = 0.0152) than
the difference during translation (M = 97.8, SD = 53.8).

To be sure that the significant difference between the two eyes is due to the navigation mode and not
an eye-blink artifact, eye-blinks are extracted from sensor data and plotted together with the difference
(Fig. 6.26). As seen, none of the eye blink happened at the same timewith the peaks. This double-check has
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Figure 6.25: (a) Right and (b) left eyes position, (c) difference between the two eyes and (d) rotation command versus time.
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Figure 6.26: Eye-blink and residual signals.

been carried out across the subjects (for all the participants) and the same results were observed. However,
in case an eye-blink and a peak appear at the same place during translation/rotation, the corresponding
value is removed and replaced with the mean of the neighboring values. Nevertheless, few eye-blinks do
not affect the statistical analysis noticeably.

As mentioned above, two types of measurement were recorded for evaluating the level of the sickness
induced by a visual stimulus, i.e., the difference between the two eyes and SSQ. The total VIMS score for
each subject is extracted from participant’s SSQ reports. Besides, the Oculomotor, Nausea and Disori-
entation sub-scores are calculated separately using the same SSQ reports by applying a correction factor
proposed by Kennedy et al.98. Based on the calculation results for each individual, the total VIMS score
varies from 31.04 to 512 (M = 251.62, SD = 159.83). Statistical data analysis using an ANOVA test
clearly shows that oculomotor is significantly higher than nausea and disorientation (F (2, 20) = 10.939,
p < 0.001, p = .00062, Fig. 6.27). The summary of the ANOVA test is shown in tables 6.4 and 6.5.
As seen, there is a significant difference between oculomotor, nausea (p < 0.01, F = 12.296) and dis-
orientation (p < 0.005, F = 14.55) but there is not such a significant difference between nausea and
disorientation (p = 0.302, F = 1.851).

In addition, the total sickness scores were calculated by applying the correction factor of Kennedy et al.
The correlation between the average residual during rotation (M = 92.01, SD = 52.48) and the total
SSQ level (M = 251.6, SD = 159.8) is calculated and depicted in Fig. 6.28.

The test result shows that the SSQ score is highly correlated (r = 0.98) with themean of the difference
between the two eyes and can be replaced with the SSQ report as a feature to evaluate the level of sickness.
The difference of eye movement during saccade and fixation is explored too. The result of this analysis is
shown in Fig. 6.29.

The difference between fixation during rotation and translation is not significant (p = 0.149, F =
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Figure 6.27: Sub-score average across the subjects.

Figure 6.28: Correlation between the SSQ and the difference during rotation.
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Figure 6.29: Analysis of the difference between the two eyes during saccade and fixation.

Factors Mean SD -95% +95%
oculomotor 12.45455 2.487655 6.911704 17.99739

nausea 6.00000 1.095445 3.559196 8.44080

disorientation 7.18182 1.605775 3.603929 10.75971

Table 6.4: Statistical information of each sub-score in the SSQ.

Factors oculomotor nausea disorientation
oculomotor - p = 0.006/F = 12.296 p = 0.0034/F = 14.550

nausea p = 0.006/F = 12.296 - p = 0.302/F = 1.851

disorientation p = 0.0034/F = 14.550 p = 0.302/F = 1.851 -

Table 6.5: p andF values associated with each two pairs of parameters in table 6.4.
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Figure 6.30: Time constant of VIMS and comparison with the time constant ofMS for 9 subjects who participated in the experi-

ment of feature 2.

2.625). Similarly, the difference between saccadic eye movement is not significant (p = 0.0787, F =

3.93) either. However, as seen the difference between rotation and translation due to saccadic eye move-
ment is very close to significant.

6.2.5 Feature 4: expected time of the VIMS onset

Based on previous research 144, MS can appear via two different processes with two different time con-
stants: Ts (short: less than 30 s), TL (long: more than 10minutes). Usually the later process with a longer
time constant appears because of accumulation effect 144. From this perspective, MS appears after passing
a period of time. During the experiment, we have noticed that VIMS has a long time constant during
translational movement, even longer than MS. For that reason, not only the SSQ and relevant features
(features 1-3) were measured during the experiments but also the time of the experiments were carefully
monitored. For instance, Fig. 6.30 shows the time constants corresponding to the 9 first participants who
completed the experiment of feature 2 (solid-line). The measurement shows the average time constant of
TL = 24min (M = 23.89, SD = 11.54) for translational movement. The total time of the task com-
pletion during the study of feature 3 was set to< 5min. The time constant during rotational movement
is Ts ≤ 5min (M = 2.34, SD = 1.75) which means probably the short process (Ts = 30 s) of motion
sickness appeared during rotational movement too. This is because the experiment is not long enough
for the activation of the long process. That is the reason why the participants might get sick immediately
during rotational movement.
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Figure 6.31: VIMS prediction in a real-time application.

6.3 Prediction of VIMS in a real-time process

Wehad twomain achievements in the feature studies and later during the practical experiments: 1) VIMS is
time dependent, 2) the amount of the COG area dilation, the difference between the HF-LF components
of F/B sway and the COG shape as well as the difference between the two eyes (four features) indicate the
level of sickness. Now we can use these two results to predict the onset of VIMS and track the level of
sickness during navigation and presence in a virtual environment. When the level of sickness goes above a
certain thresholdwe can inform the end user or stop the process. Fig. 6.31 shows a prediction systemwhich
uses only the shape, the area, the frequency components and the time features to predict an occurrence of
VIMS.

From an implementation perspective, we can develop an extra module and attach it to the JVM and
iiVR platforms. The connection and operation cycle are shown in Fig. 6.32.

6.4 Effect of the navigation parameters on VIMS

Four features including the shape and the area, the difference between the LF and HF components of the
F/B sway, the difference between the left/right eyes and the time of the sickness onset were introduced as
a set of efficient features to predict and estimate VIMS during navigation in a VE. Sickness emerges due to
an inappropriate adjustment of the navigation parameters, the navigation interface, an incorrect selection
of the scene contents and so on. The following section studies only the effects of the navigation parameters
such as the velocity and the distance as well as the navigation interface on the level of sickness. Six different
navigation interfaces were proposed in chapter 3 using various technologies. They can be divided into
two main groups: natural and artificial. Now, we will select two navigation interfaces of each group and
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Figure 6.32: Implantation of a VIMS predictor in a real-time process.

compare user performance during navigation with the selected interface.

6.4.1 Navigation interface

Device-Based Navigation Interface (DBNI)

This navigation interface is designed based on the Fly-stick2 (Fig. 6.33) and the navigation principles which
have already been explained in detail in chapter 3 (section 3.6.1). The participants are capable of moving
forward/backward and turn to the left/right up to ±15°, if it is required. The Fly-stick has five buttons,
one joy-stick handle, a laser-based optic tracker (position and orientation) and a trigger button. Fig. 6.33.b
demonstrates the upper view of a Fly-stick with a label on each button. The movement can be acceler-
ated/decelerated by two buttons allocated for this purpose on the Fly-stick (blue buttons 1, 2 with +/-
label). The speed variation steps are identical for positive and negative directions (increase/decrease), 0.45
per unit. This value is adapted from trial run experiments and is calculated by∆V = Vmax−Vmin

N , where
Vmax,Vmin, andN represent themaximumandminimum speeds and the number of steps. If 1.8m/s and
0 are selected for the speed limits and 4 for the number of steps, then the step resolution is∆V = 0.45.
However, all these parameters are adjustable by the user depending on the experiments.

A speed controller was designed to keep the user speed within a certain speed limit. If the user crosses
the upper or lower limit then the speed controller will return the speed to the operation range according
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Figure 6.33: a)Mechanism of the speed controller and sequence of its operation (e.g., the speed controller automatically op-

erates at t = 12 s and decreases the speed, because the user crossed the topper speed limit, while at t = 7 s the speed is

decreased by the user manually), b) Fly-stick and navigation sub-task assigned to each button.

to the operation curve shown in Fig. 6.33.a. The “speed controller function” has twomodes of operation;
automatic and manual. The automatic mode becomes active when the user crosses the upper or lower
speed limit. Themanual mode functions by a user command and during the experiment keeps on-hold to
receive the user command and consequently change the speed. For instance, the user decreases the speed
intentionally at time t = 7 s and similarly at t = 17 s while the speed decreases automatically at t = 12 s
because of the upper limit crossing in Fig. 6.33.a. The joy-stick handle (yellowhandle at the top, Fig. 6.33.b)
sends the forward/backward command to the “navigation function”.

The rotation is commanded by turning the handle to the left and right (first option). However, the
“navigation function” can perform the rotation task by reading the instantaneous orientation of the optic
tracker attached to the Fly-stick and redirecting the user movement along the Fly-stick orientation (second
option). The navigation task is initiated and terminated when the blue buttons 3, 4 (labeled by “start”
and “stop” in Fig. 6.33.b) respectively are pushed by the participant. The navigation interface based on
the Fly-stick represents a huge group of interfaces called device-based navigation interface (DBNI). Few
examples of this type of interfaces were explained in chapter 3.

Natural Gesture-Based Navigation Interface (NGBNI)

The second group of interfaces based on natural body gesture such as walking, hand and headmovements
and so on will be presented here. This group is referred to as Natural Gesture-Based Navigation Interface
(NGBNI). Here we will use a Microsoft Kinect Xbox 360 that captures the user motion and a FAAST
VRPN server 198 that interprets the motion into gesture and streams the gesture on VRPN. Asmentioned
in chapter 3 (section 3.5), any travel inVEs either is rotation or translation or a combination of both. Trans-
lational movement (Fig. 6.34.a) is commanded and controlled by up/down movements of the feet during
walking-in-place (WIP), and rotational movement (Fig. 6.34.b) is commanded when the left/right hand
moves above the shoulder as explained in chapter 3 (see section 3.6.2) and shown in Fig. 6.34. The user nat-
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Figure 6.34: Navigation based on natural gesture: (a) walking forward, (b) rotation to the left/right.

ural walking controls the forward/backward movement speed which means, when the user walks faster
the movement is faster and vice versa. The rotational speed is controlled by the height of the hand which
means when the hands go above the shoulder the scene rotates faster and other way around.

VIMS can appear due to various situations 17 such as the texture quality, an unsuitable velocity and ac-
celeration of the visual flow, self-motion and so on. The effect of the speed, the distance and the navigation
interface on VIMS will be studied in three experiments while some of the previous features will be used
for the evaluation, validation and verification.

6.4.2 Experiment 1: effect of the speed variation on VIMS

This experiment aims at studying the effect of the velocity variation on the level of VIMS during naviga-
tion while keeping the scene texture and distance from the virtual scene constant for all the participants.
This study will focus only on translational movement. Translational movement is defined as a straight
movement from one point to another without doing any rotation along the path in between. A transla-
tional movement in VEs can be simply expressed by VL = fL(v, d)where, independent variables v and d
represent the velocity (m/s) and the distance (m) from a virtual barrier respectively (distance between the
participants and VE objects or scene, see Fig. 6.35).
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Participants and questionnaires

Seventeen subjects (13 males and 4 females: 31.58 ± 12.69 years, 74.65 ± 15.22 kg), participated in the
experiment. There was a briefing to give enough information about the test procedure and possible risks
before each experiment individually. All the subjects participated voluntarily in the experiments. A pre-
exposure questionnaire (Q1) was obtained from each subject to know their backgrounds and to evaluate
their health condition (see appendix A). The result of the questionnaire showed that there was no test
subject whose participation in the experiment would be unsuitable due to health issues. Kennedy’s SSQ
questionnaire with the same scoring method as detailed in98 (appendix B) applied to the experiments to
calculate the SSQ score.

Experiment design

A row of balls were lined up in parallel with a virtual wall as indicated by “path 1” (Fig. 6.35.a). These
balls were demonstrated in yellow and named “path indicator” in Fig. 6.35.a. The distance between path
1 and the virtual wall is set to 2 meters as shown and tagged byD1 in Fig. 6.35.a (the real setup is shown
in Fig. 6.35.b). The path indicators are set to 1.25 m above the ground to keep the user in a constant
distance from the virtual barrier. A Fly-stick is used to navigate along the path using the DBNI navigation
definition.

Test procedure

The participants navigated along path 1 during the experiment as follows:

1. The COG of each participant is recorded for t1 s (pre-exposure measurement).

2. The participants navigate along path 1 (detailed in Fig. 6.35.b) for t2 s with a speed of v = 2m/s.

3. The participants increase the speed one step (by pressing button 1, Fig. 6.33.b) and navigate for t2
s.

4. Step (3) is repeated 6 times for equal periods of t2 s.

5. The post-exposure COG of the participants is recorded for t1 s.

6. An SSQ (Q2) is filled out and the test is terminated.

The test procedure was planned, “scheduled plan”, to be performed in 7 steps. However, the examiner
could stop the experiment if the participants would not feel good (if they felt abnormal uneasiness in their
stomach and head) or the sickness score changed abruptly similar to that explained above (section 6.3). We
did not have any case with serious sickness during the experiment.
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Figure 6.35: (a) Test parameters (velocity, distance= D1 constant), path planning for navigation inside a 3DVE, (b) real path

setup inside a scale-one 3D display.

Statistical data analysis

The level of post-exposure sickness for 17 participants is calculated using the SSQ report and Kennedy’s
correction factor98 (the sickness level in pre-exposure is zero). Statistical analysis using an F-test shows
that the incremental variation of the speed significantly increases (F (1, 16) = 121.86, p = 0.042) the
SSQ scores (M = 325.56, SD = 47.15). The speed variation leads to a noticeable post-exposure area
dilation with respect to the pre-exposure area (F (1, 8) = 133.86, p = 0.0015). The same effect has been
observed on the COG shape (F (1, 8) = 112.21, p = 0.0054). At the same time, the difference between
the LF and HF components of COG sway significantly increases (F (1, 8) = 29.41, p < 0.0001). The
difference between theLF andHF components, theCOGarea dilation and a higher level of sickness appear
only due to a velocity increase. Based on the pre-test questionnaire (Q1)most of the selected subjects (13 out
of 17) were daily computer user and playing computer/video games at least once a week. This experience
can affect the level of the SSQ score, however the fact that sickness increases due to a velocity increase is
unavoidable.

Themodel proposed byOman 144 (see chapter 2, section 2.7) helps to understandwhy the SSQ score in-
creases bymodifying the navigation parameters. When the participants are navigating inside a real-scale 3D
model, due to the conflict between proprioceptive data (stored pattern, Purkinge cell effect) andmeasure-
ment of the sensory organs,K (Kalman gain in the Bayesian model, red color in Fig. 6.36) and Ŝmatrices
are overestimated or underestimated (yellow color in Fig. 6.36).

This parameter,K , is calculatedmathematically by applying ∂Pj

∂Kj
=

∂E{(xj−x̂j)(xj−x̂j)T}
∂Kj

= 0, where
xj and x̂j demonstrate the actual and estimated values of a target state of the body such as rotation, trans-
lation and so on (any parameter related to navigation). To the best of our knowledge, the biological and
cognitive mechanisms which lay under this estimation are almost unknown. The calculation usually has a
certain amount of error. This error leads to more divergence between actual and estimated sensory data,
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Figure 6.36: CNSmodel for explaining the reason of VIMS by the theory of sensory conflict 144.

however it is dissolved sometimes by adaptation or habituation in the real environment. But in a virtual
environment, the conflict vector grows due to some missing non-vestibular and vestibular sensory which
in turn gives rise to more sickness. When the sickness level crosses a certain level of perception tolerance,
the symptoms of sickness will appear. Since the first effect of a re-calculation error appears in sensorymo-
tor commands (control mechanism shown in Fig. 2.42 in chapter 2 and Fig. 6.36 in the current chapter), it
can be easily sensed in the stance posture stability and the central gravity sway area.

That is the reason why the COG was selected as a psychophysiological measure for our study. A little
difference between F/B and L/R sways makes the COG area elliptical. The body starts turning around its
base in a circular shape with the presence of sickness and mal-operation ofC function (control strategy as
seen in Fig. 6.36). Based on subjective studies, the frequency of this marginally stable post-exposure sway
appears in the bandwidth of 1.3− 2.75Hz and can move to further frequencies up to 20Hz. However,
our observation shows that after 5 Hz the participants will be severely sick, this process is definitely time
dependent (see Fig. 6.31). The longer the participants navigate inside a VE, the more difference appears
between voluntary and involuntary components∆f (see Fig. 6.14).

6.4.3 Experiment 2: effect of the distance from the virtual barrier on VIMS

Experimental design

The experiments were designed in the same system and 3D model as section 6.4.2. As seen, the only dif-
ference between the current and the previous experiments is the number of paths which is 4 in this ex-
periment. The participants navigate along paths 1 through 4 by a Fly-stick2 using a DBNI throughout
the experiment. The navigation speed was kept constant and set to 2 m/s as it was the minimum speed
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Figure 6.37: Experimental design for studying the effect of the distance on VIMS.

in the previous experiment (section 6.4.2) and induces the lowest level of sickness. This time the distance
increases and the effect of this modification on VIMS will be studied. The distance between two consec-
utive lines is approximately 1m. As shown in Fig. 6.37, path 1 through path 4 are adjusted 1m (D1 = 1

m), 2 m (D2 = 2 m), 3 m (D3 = 3 m) and 4 m (D4 = 4 m) away from the virtual wall, respectively.
The difference between frequency components (HF and LF) will be used as a feature for data analysis.
Therefore, the pre and post-exposures COG are recorded in four points (at the end of each path) to prove
the hypothesis.

Hypothesis

When the speed of the navigation is kept constant by increasing the distance between the virtual barriers
and the participants, the level of sickness decreases.

To be sure about our findings and double check the hypothesis, we have set up a trial experiment with
few subjects. As seen, the strategy and the test procedure is exactly the same except the number of paths
in this experiment is greater than the previous one and the speed is constant. The distance between two
adjacent lines as well as the first line and thewall were set to 1m(Di = 1m). 10males from the first experi-
ment participated in this experiment. Kennedy’s SSQwas collected from each participant as psychological
measurements.
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Figure 6.38: Frequency components analysis of the COG signal.

Statistical data analysis

The following steps were taken to calculate the statistical parameters in the frequency domain:

1. The FFT transform of the COG signal was calculated;

2. The mean and variance of the signal for each frequency was calculated;

3. A confidentiality interval (C.I.) was extracted via the following equation;

95%C.I. =

∑n
i=1

√
(X−µ)2
n−1√

n
× 1.96 (6.13)

4. All the previous parameters were combined and plotted.

In general, the signal spectrum can expand from −∞ Hz to +∞ Hz. Practically, the frequency spec-
trum is limited to 0− 20Hz 205 in this experiment. Since the body movement is not extremely fast due to
its natural inertia, high frequency cannot extend to higher than a specific limit. If we consider very high
frequency, then we might mix up noise and the signal. On the other hand, the movement can contain 0

Hzwhichmeans the body is in a standing posture without any voluntary and involuntarymovements. We
expect frequencies up to 20Hz appear in the spectrum. By increasing the distance, the effect of the virtual
stimuli on the participants decreases.
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Figure 6.39: Post-exposure sickness score associated with paths 1 and 4.

Thepost exposureCOGsignalwas recorded at the end of each line and the SSQ filled. TheCOGsignals
were analyzed in the frequency domain and the difference of LF and HF components were calculated.
Fig. 6.38 shows the difference between each path with the next path. Statistical data analysis using a T-
test shows VIMS in path 1 (M = 4.65, SD = 0.61) is significantly higher (t(9) = 5.21, p < 0.05,
p = 0.0124) than in path 2 (M = 3.9, SD = 1.1). However, VIMS in path 3 (M = 4.18, SD = 2.1)
does not significantly (f(9) = 0.95, p = 0.705) reduce with respect to path 2. On the contrary, VIMS in
path 4 (M = 2.8, SD = 1.2) is significantly lower (f(9) = 3.56, p < 0.01, p = 0.0023) than in path
4 and path 3 (f(9) = 3.03, p < 0.05, p = 0.0324). SSQ data analysis shows significant (f(9) = 3.15,
p < 0.05, p = 0.042) difference between the sickness score associated with path 1 and path 4. It means
closer distance induces more vection and in turns more visually induced motion sickness, as shown in
Fig. 6.39.

6.4.4 Experiment 3: comparison between DBNI and NGBNI

The effect of the navigation interface will be studied in the experiment. Two navigation interfaces, i.e.,
DBNI (fly-stick) and NGBNI (gesture detection with a Kinect, WIP) are selected for this step. As men-
tioned above, these two navigation interfaces represent two types of navigation interfaces, natural and
artificial. The first type is navigation based on user gesture and the second type is navigation via devices
such as a gamepad, a Fly-stick, a mouse and so on. Based on the theory that has already been discussed in
chapter 2, when a gesture-based interface is employed for a navigation purpose, it seems that the motion
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pattern perceived by sensory afferents is more in accordance with the proprioceptive pattern, which in
turn creates less sensory conflict at the onset and the cessation of the sensory rearrangement. For that rea-
son, it makes absolutely sense to hypothesis that navigation interfaces such as NGBNI creates less sickness
comparing to DBNI.

Experiment design and participants

Fifteen subjects were selected to participate in the experiment. The experiment consists of moving along a
straight path in a virtual environment. The balls were aligned in the sameway as in the previous test-bench
(see section 6.4.2) and the same model as in the previous experiments is used in this experiment. The ex-
periment setup is exactly the same as that of section 6.4.2. This time the speed and the distance are kept
unchanged and the navigation interface is changed. However, if the parameter such as the speed, the ac-
celeration and the spatial virtual distance from themodel aremiss-adjusted, severe sickness will be induced
and the experiment is then totally biased. Avoiding the intervention of other navigation parameters, the
speed and the distance are set to 2.5m/s and 4m, respectively. Experiments 1 and 2 show that this speed
and distance induce the lowest sickness. The speed is approximately close to the human natural walking
speed.

Now, wewill benefit from the spectrum analysis of postural sway to study the effect of different naviga-
tion interfaces on the user performance. We know that the difference between the LF andHF components
of COG sway will grow up dramatically if the level of VIMS increases. Based on this finding, it is easier to
hypothesis that the distance between HF and LF in NGBNI is smaller than in DBNI. Therefore, the pre
and post-exposure COG signals are collected from the subjects in the same way as done in section 6.4.2.

Data analysis

First the pre and post-exposures F/B signals are transformed into the frequency space and the spectrum is
calculated for each participant using the FFT. Then, at each frequency, the spectrum mean, variance and
confidential interval (C.I.) are calculated by equation (6.13) as explained in section 6.4.3 across the subjects.
The amount of the difference betweenHFandLF components is evaluated by aT-test (as seen in Figs. 6.40
and 6.41). When we change the navigation interface from DBNI to NGBNI, the HF components of the
post-exposure sway (Fig. 6.40, signal in blue) get closer to 1 Hz as shown in Fig. 6.40 which means less
sickness is induced by the navigation interface. Because we have better postural sway responses, it means
better stability in turn. The first component seems to bemore voluntary bodymovement due to presence
and the second component refers to the degree of instability of the user posture due to presence and the
interface. Interval 4.32 − 4.35 Hz represents the HF components of the post-exposure sway for DBNI
which is significantly far from the LF components (t(14) = 4.19, p < 0.001). Interval 1.26 − 1.35
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Figure 6.40: Spectrum analysis for NGBNI.

Hz contains the LF components of the post-exposure sway. At the same time, the HF components of
post-exposure is quite far away from the LF components of pre-exposure too (t(14) = 2.93, p < 0.05)
which creates a difference nearly 3.1 Hz, as shown in Fig. 6.41. On the other hand, an HF component
of the post-exposure sway for NGBNI is located in interval 2.94 − 2.97 Hz. This HF component is
significantly further away from the LF components, 1.1 − 1.4 Hz, (t(14) = 2.33, p < 0.05) which
creates a difference of 1.9Hz as shown in Fig. 6.40. Comparing the difference of the HF-LF components
of NGBNI and DBNI shows a difference of 1.2 Hz which means the Fly-stick (DBNI) induced more
sickness comparing to walking in place (NGBNI). As a result, we can conclude that NGBNI provides a
better navigation interface for the users comparing to DBNI.

6.5 Conclusion

It has been shown that VIMS affects the postural body sway which in the frequency domain, means the
body sway switches from a stable state, with only voluntary movements, to a marginally stable state, with
voluntary and involuntary movements. Simulation results show that the second frequency component
(HF) of the body sway moves to the far end of the spectrum. In fact, the difference between the low fre-
quency (LF) and high frequency components grows. Therefore, we can say the difference between LF and
HF components is an indicator of VIMS susceptibility. This is equivalent to the dilation of the COG area
and changing from an elliptical shape to a circular shape in the time domain. Besides, binocular disparity
can be used as a simple feature to calculate the level of VIMS and its onset.

VIMS increases linearly by translational velocity as shown in Fig. 6.42.bwhile the effect of the rotational
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Figure 6.41: Spectrum analysis for DBNI.

Parameters Range
ω (°/s) 15.0− 55.0 15.0− 55.0 15.0− 55.0

v (m/s) 0.5− 2.5 2.5− 6.5 > 6.5

d (m) 1.0 1.0− 4.0 > 4.0

Table 6.6: Possible settings for navigation parameters.

velocity on VIMS has a Gaussian distribution, with a mean located in µ = 60°/s as shown in Fig. 6.42.a.
Moreover, VIMS decreases linearly by increasing the distance from the virtual barrier as seen in Fig. 6.42.c.
In addition, the variation of VIMS during rotation changes independent of the rotation radius, while
VIMS during translation depends on the distance and the velocity. For instance, when the velocity is low
(2.5 m/s) and the distance is far (4 m) the level of VIMS is low (150), while when the distance is close
to the virtual barrier (1 m) and the velocity is low (2.5 m/s) VIMS is high (400). Thus, when the user is
navigating inside a narrow corridor, he needs to decrease the speed and shift his trajectory to the middle of
the corridor.

To make the long story short, the navigation parameters are suggested to be selected from the range
specified inTable 6.6. Although setting the values proposed in table 6.6 as navigation parameters decreases
the VIMS level, to minimize the VIMS level, an optimization problem needs to be solved in real-time to
correct the traveling trajectory. The update rate of the target 3D display should be above 60 fps to be able
to implement this speed control system.
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Figure 6.42: (a) VIMS-rotational velocity, (b) VIMS-translational velocity, (c) VIMS-distance from the virtual barrier.
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7
Conclusion

7.1 Conclusion

The oculo-vestibular dynamics was modeled and discussed using Bayesian and Kalman theories, by in-
corporating the CNSmodel (artificial neural network). It has been shown that a sensory conflict (MS and
VIMS) can appear at the onset or cessationof any sensory rearrangement in the vestibular nuclei (VN).The
upright postural sway modeling revealed that an inappropriate visual flow can dilate the COG area, mod-
ify the COG shape and increase the difference between the frequency components of the post-exposure
upright stance. More precisely, the participant’s SSQ score increases by growing the difference between LF
and HF components and dilating the COG area simultaneously. For that reason, the COG area/shape as
well as the frequency components can be used as an alternative solution for VIMS prediction and estima-
tion in a real-time process. Since VIMS is mostly provoked by the visual flow, the mathematical model of
binocular vision was derived to study the effect of rotational and translational movements on VIMS sus-
ceptibility. It has been shown that vergence is deteriorated during rotational movement by increasing the
rotational velocity of a 3D scene. As a result, the difference between the two eyes (residual signal) increases
during the transition from one point to another. Such a divergence between the two eyes gives rise to a
higher SSQ score. So, it can be effectively used as an indicator of a VIMS occurrence.
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Another reason of the sensory conflict is the divergence between vestibular and non-vestibular mea-
surements due to the lack of sensory information. It means the pattern perceived by the user via sensory
inputs is not the same as the stored pattern (a previous knowledge is made by the latest translation in the
real environment). Avoiding this conflict, a navigation/manipulation interface either needs to be designed
in a very similar manner that we interact in the real environment (gesture-based interfaces), or maximum
sensory inputs (texture, pressure, gravity, weight and so on) should be incorporated in the interface. Six
interaction interfaces were developed to study the effect of the navigation and manipulation interface on
VIMS. The navigation/manipulation interfaces are:

1. Artificial interfaces

(a) Device-based interface

(b) Navigation using iDevice such as an iPhone, an iPad

2. Natural interfaces

(a) Walking in place based on gesture analysis and body motion classification

(b) Walking in place by head movement analysis

(c) Navigation with sound command (speech processing)

(d) Bracelet and sensor fusion

This study, as explained on chapter 6, shows that artificial interfaces induce more sickness compared to
natural interfaces. However, the display technology, the interaction (navigation/manipulation) interfaces
and the parameters (velocity/acceleration), the traveling trajectory, the system parameters (frame rate, de-
lay, 3D rendering, ...) highly influence the user performance and contribute largely in VIMS and other
cyber effects.

Manipulation of an object in a virtual environment is very different than the one in real environment.
This is because a lot of sensory inputs is missing in the virtual environment. As a result, the brain cannot
generate exactly the same action as produced in the real environment with the full sensory inputs.

7.2 Future work

Due to the fact that the EEG sensorwas not accessible in the current research, theVOG signal was recorded
and analyzed to seewhat is going onwhenVIMSoccurs, as shown in chapters 5 and 6. But a better solution
formeasuringVIMS is to provoke the ocular systemwhilemeasuring anEEG signal in theV3a andV5 areas
of the visual cortex as they are responsible for motion, as explained in chapter 2. Since these two areas are
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responsible for motion estimation, therefore the characteristics of VIMS can be better understood in this
way. The brain map can be used to study the effect of the visual flow on VIMS susceptibility.

This thesis studied binocular vision very deeply using the classic control theory and artificial intelli-
gence. Both of these two technologies are widely used in robotics, machine vision and some other similar
disciplines. We have not gone deep inside the simulation of binocular vision. However, the model can be
separately studied and the result can be used in robot intelligence and man-robot interactions.
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A
Q1: Examinee general information

(pre-exposure)

A.1 English

1. First name:

2. Family name:

3. Email address: @gmail.com or

4. Age: 15-20 years

5. Weight: 0-50

6. Gender: man�woman�

7. Profession: student� engineer� programmer� office clerk� other professions� :

8. Experience with a computer:
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(a) professional gamers�
Level: every day: � at least once a week: � at least once a month � played before a lot but
not now� played but I don’t know exactly how much�

(b) computer users�
Level: daily users (office clerk, ...) � use the computer not so much�

9. From the gadgets/devices listed below which one you have used so far:
Kinect� gamepad� Fly-stick�

10. Have you played to a laser game so far: yes� no�

11. Do you get sick when you travel: yes� no�

12. If the answer to item 11 is yes which of the following travel vehicles makes you sicker:
car� train� airplane� boat� ship/ferry�

13. When the traveling vehicle is in motion do you study: yes� no�

14. If the answer to item 13 is yes do you feel (during study): headache� eyestrain� fatigue�

15. If you are a woman have you been pregnant: yes� no�

16. Do you have any auditorial disorder: yes� no�

17. If the answer to item 16 is yes what is the level of disorder:
slight�moderate� headphone implanted� severe� near to deaf�

18. Do you have any visual disorder: slight�moderate� sever� other� :

19. Do you wear glasses: yes� no�

A.2 French

1. Prénom :

2. Nom de famille :

3. Adresse Email : @gmail.com ou

4. Age : 25-30 ans

5. Poids : 60-70
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6. Sexe : homme� femme�

7. Profession :
étudiant� ingénieur� employé de bureau� programmeur� autres professions� :

8. Expérience avec un ordinateur :

(a) joueur professionnel�
Niveau : tous les jours � au moins une fois par semaine � au moins une fois par mois �
joué avant beaucoup mais pas maintenant� joué mais je ne sais pas exactement combien de
temps�

(b) utilisateur d’ordinateur�
Niveau : utilisateur quotidien (employé de bureau, ...) � ordinateur pas souvent utilisé�

9. Parmi les gadgets / appareils énumérés ci-dessous lequel avez-vous utilisé jusqu’à présent :
Kinect� gamepad� Fly-stick�

10. Avez-vous déjà joué au laser game : oui� non�

11. Tombez-vous malade lorsque vous voyagez : oui� non�

12. Si la réponse à la question 11 est oui, quel mode de transport vous rend davantage malade :
voiture� train� avion� bateau� navire / ferry�

13. Lorsque le véhicule est en mouvement avez-vous l’habitude d’étudier : oui� non�

14. Si la réponse à la question 13 est oui, sentez-vous (pendant que vous étudiez) :
maux de tête� fatigue oculaire� fatigue�

15. Si vous êtes une femme avez-vous été enceinte : oui� non�

16. Avez-vous des troubles d’audition : oui� non�

17. Si la réponse à la question 16 est oui, quel est le niveau de trouble :
léger�modéré� appareil implanté� sévère� proche de la surdité�

18. Avez-vous des troubles visuels : léger�modéré� autre�:

19. Portez-vous des lunettes : oui� non�
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B
Kennedy’s Simulator Sickness Questionnaire

(SSQ)

B.1 Questionnaire and report example

The Simulator Sickness Questionnaire (SSQ) introduced by Kennedy et al.98 was used as a measure in vi-
sually inducedmotion sickness experiments (see tables B.1 and B.2). The symptoms used and their weight-
ings are given in table B.3 (adapted from98). The SSQ is based on three components: nausea, oculomotor
problems, and disorientation. These can be combined to produce a total SSQ score, as described in ta-
ble B.3.

B.2 Calculation instruction

The participants report the degree towhich they experience each of the above symptoms as one of “None”,
“Slight”, “Moderate” and “Severe”. These are scored respectively as 0, 1, 2 and 3. To compute the scale
scores for each column, the reported value for each symptom is multiplied by the weight in each column
and then summed down the columns. The total SSQ score is obtained by adding the scale scores across
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Level
Human factors Non Slight Moderate Severe

0 X0 X1 X2

General discomfort � � � �
Fatigue � � � �
Headache � � � �
Eyestrain � � � �
Difficulty focusing � � � �
Salivation increasing � � � �
Sweating � � � �
Nausea � � � �
Difficulty concentrating � � � �
Fullness of the head � � � �
Blurred vision � � � �
Dizziness with eyes open � � � �
Dizziness with eyes closed � � � �
Vertigo � � � �
Stomach awareness � � � �
Burping � � � �

Table B.1: Questionnaire.
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Level
Human factors Non Slight Moderate Severe Val.

0 X0 = 1 X1 = 2 X2 = 3

General discomfort � � � � 1

Fatigue � � � � 0

Headache � � � � 1

Eyestrain � � � � 2

Difficulty focusing � � � � 1

Salivation increasing � � � � 0

Sweating � � � � 0

Nausea � � � � 1

Difficulty concentrating � � � � 2

Fullness of the head � � � � 1

Blurred vision � � � � 1

Dizziness with eyes open � � � � 0

Dizziness with eyes closed � � � � 0

Vertigo � � � � 0

Stomach awareness � � � � 0

Burping � � � � 0

Table B.2: Example of filled questionnaire.
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Weight
SSQ Symptom Nausea Oculomotor Disorientation
General discomfort 1 1 0

Fatigue 0 1 0

Headache 0 1 0

Eyestrain 0 1 0

Difficulty focusing 0 1 1

Salivation increasing 1 0 0

Sweating 1 0 0

Nausea 1 0 1

Difficulty concentrating 1 1 0

Fullness of the head 0 0 1

Blurred vision 0 1 1

Dizziness with eyes open 0 0 1

Dizziness with eyes closed 0 0 1

Vertigo 0 0 1

Stomach awareness 1 0 0

Burping 1 0 0

Table B.3: Computation of the SSQ Scores.

the three columns and multiplying by 3.74. The weighted scale scores for each column individually can
be found by multiplying the “Nausea” scale score by 9.54, the “Oculomotor” subscale by 7.58 and the
“Disorientation” subscale by 13.9298.
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INFLUENCE DES TECHNIQUES D’INTERACTIONS SUR LE MAL DE SIMULATEUR 

DANS LES ENVIRONNEMENTS VIRTUELS : ESTIMATION ET PREDICTION 

RESUME : La compréhension de la dynamique oculo-vestibulaire pendant un réarrangement 

sensoriel dans le système nerveux central joue un rôle extrêmement important pour mieux 

appréhender la perception humaine, et améliore la technologie dans de nombreux domaines de 

l’ingénierie. Par ailleurs, le conflit sensoriel qui apparaît entre les systèmes oculaire, vestibulaire 

et proprioceptif pendant un réarrangement sensoriel à certains instants peut affecter 

grandement la performance d’un utilisateur dans un grand nombre d’applications telles que la 

simulation de vol/conduite, les systèmes d’affichage 3D échelle 1, les affichages de grande 

taille, les serious games, etc. De fait, connaître la condition dans laquelle le conflit sensoriel 

apparaît est d’une grande importance. Cette étude a pour objectif la compréhension de la 

nature du conflit sensoriel par la modélisation et des études subjectives, ainsi que les conditions 

dans lesquelles ce conflit apparaît dans un environnement synthétique. Les résultats sont 

ensuite utilisés pour concevoir de meilleures interfaces de navigation et de manipulation dans 

des environnements virtuels immersifs et interactifs. Plusieurs éléments, tels que la 

surface/taille projetée du balancement postural d’un utilisateur (mesurée par le centre de 

gravité) après exposition au conflit, la différence entre les composantes hautes et basses 

fréquences du balancement, et le temps d’exposition, seront proposés comme indicateurs de ce 

conflit dans des processus temps réel. Enfin, la méthode proposée sera utilisée pour évaluer 

plusieurs interfaces de navigation. Celles-ci sont basées sur des périphériques, la marche sur 

place, la reconnaissance vocale, les supports nomades, ou une fusion multi-sensorielle. Nous 

montrerons que les interfaces naturelles engendrent moins de conflit que celles artificielles. De 

plus, les trajectoires de l’utilisateur et de mauvais réglages des paramètres de navigation 

peuvent amener à un conflit plus élevé. 

Mots clés : conflit sensoriel, dynamique oculo-vestibulaire, interfaces d’interaction, éléments 

temps réel, environnement virtuel à l’échelle 1, réalité virtuelle. 

INFLUENCE OF INTERACTION TECHNIQUES ON VIMS IN VIRTUAL 

ENVIRONMENTS : ESTIMATION AND PREDICTION 

ABSTRACT: Understanding oculo-vestibular dynamics during sensory rearrangement in the 

central nervous system plays an extremely important role in better understanding human 

perception, and improves the technology in many engineering fields. Besides, the sensory 

conflict that occurs between ocular, vestibular and proprioception during sensory rearrangement 

at certain occasions might adversely affect the user performance in a wide variety of domains 

including flight/car simulators, scale-one 3D systems, large-scale displays, serious games, and 

so on. Therefore, knowing the condition in which the sensory conflict happens has a great deal 

of importance. This study aims at understanding the nature of sensory conflict by modeling and 

subjective studies, and the conditions in which it takes place in a synthetic environment. The 

results then will be used to design better navigation and manipulation interfaces in immersive 

and interactive Virtual Environments. A set of novel features including the area/shape of the 

user’s COG post-exposure postural sway, the difference between LF and HF components of the 

sway in a frequency space, and the time of exposure will be proposed as indicators of this 

conflict in real-time processes. Finally, the proposed method will be used to evaluate a set of 

navigation interfaces. The interfaces include device-based, walking in place, speech 

processing, iDevice-based, and finally sensor fusion. It will be shown that naturally inspired 

interfaces create less conflict comparing to artificial ones. Moreover, user trajectories and 

inappropriate settings of navigation parameters can lead to higher conflict. 

Keywords : sensory conflict, oculo-vestibular dynamics, interaction interfaces, real-time 

features, scale-one virtual environment, virtual reality. 


