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Titre Vers l’étalonnage interne de caméra à haute précision

Établissment École des Ponts ParisTech
IMAGINE / CERTIS Nobel B006
6, Av Blaise Pascal - Cité Descartes, Champs-sur-Marne
77455 Marne-la-Vallée cedex 2 - France

Resumé Cette thèse se concentre sur le sujet de l’étalonnage interne de la caméra
et, en particuler, sur les aspects de haute précision. On suit et examine deux fils
principaux: la correction d’une aberration chromatique de lentille et l’estimation
des paramétres intrinsèques de la caméra.

Pour la problème de l’aberration chromatique, on adopte une méthode de post-
traitement numérique de l’image, afin de se débarrasser des artéfacts de couleur
provoqués par le phénomène de dispersion du système d’objectif de la caméra, ce
qui produit une désalignement perceptible des canaux couleur. Dans ce contexte,
l’idée principale est de trouver un modéle de correction plus général pour réaligner
les canaux de couleur que ce qui est couramment utilisé – différentes variantes du
polynôme radial. Celui-ci peut ne pas être suffisamment général pour assurer la
correction précise pour tous les types de caméras. En combinaison avec une détec-
tion précise des points clés, la correction la plus précise de l’aberration chromatique
est obtenue en utilisant un modèle polynomial qui est capable de capter la nature
physique du décalage des canaux couleur. Notre détection de points clés donne une
précision allant jusqu’à 0,05 pixels, et nos expériences montrent sa grande résistance
au bruit et au flou. Notre méthode de correction de l’aberration, par opposition aux
logiciels existants, montre une erreur géométrique résiduelle inférieure à 0,1 pixels,
ce qui est la limite de la perception de la vision humaine.

En ce qui concerne l’estimation des paramètres intrinsèques de la caméra, la
question est de savoir comment éviter la compensation d’erreur résiduelle inhérente
aux méthodes globales d’étalonnage, dont le principe fondamental consiste à estimer
tous les paramètres de la caméra ensemble – l’ajustement de faisceaux. Détacher
les estimations de la distorsion de la caméra et des paramètres intrinséques devient
possible lorsque la distorsion est compensée séparément. Cela peut se faire au moyen
de la harpe d’étalonnage, récemment développée, qui calcule le champ de distorsion
en utilisant la mesure de la rectitude de fils tendus dans différentes orientations. Une
autre difficulté, étant donnée une image déjà corrigée de la distorsion, est de savoir
comment éliminer un biais perspectif. Ce biais dû à la perspective est présent quand
on utilise les centres de cibles circulaires comme points clés, et il s’amplifie avec
l’augmentation de l’angle de vue. Afin d’éviter la modélisation de chaque cercle par
une fonction conique, nous intégrons plutôt une fonction de transformation affine
conique dans la procédure de minimisation pour l’estimation de l’homographie.
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Nos expériences montrent que l’élimination séparée de la distorsion et la correction
du biais perspectif sont efficaces et plus stables pour l’estimation des paramètres
intrinsèques de la caméra que la méthode d’étalonnage globale.

Mots clés Étalonnage interne, matrice de caméra, aberration chromatique
latérale, étalonnage de haute précision, correction de la distorsion, biais perspectif,
points de contrôle circulaires.
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Abstract This dissertation focuses on internal camera calibration and, especially,
on its high-precision aspects. Two main threads are followed and examined: lens
chromatic aberration correction and estimation of camera intrinsic parameters.

For the chromatic aberration problem, we follow a path of digital post-processing
of the image in order to get rid of the color artifacts caused by dispersion phenomena
of the camera lens system, leading to a noticeable color channels misalignment. In
this context, the main idea is to search for a more general correction model to
realign color channels than what is commonly used – different variations of radial
polynomial. The latter may not be general enough to ensure stable correction for
all types of cameras. Combined with an accurate detection of pattern keypoints,
the most precise chromatic aberration correction is achieved by using a polynomial
model, which is able to capture physical nature of color channels misalignment.
Our keypoint detection yields an accuracy up to 0.05 pixels, and our experiments
show its high resistance to noise and blur. Our aberration correction method, as
opposed to existing software, demonstrates a final geometrical residual error of less
than 0.1 pixels, which is at the limit of perception by human vision.

When referring to camera intrinsics calculation, the question is how to avoid
residual error compensation which is inherent for global calibration methods, the
main principle of which is to estimate all camera parameters simultaneously - the
bundle adjustment. Detachment of the lens distortion from camera intrinsics be-
comes possible when the former is compensated separately, in advance. This can
be done by means of the recently developed calibration harp, which captures dis-
tortion field by using the straightness measure of tightened strings in different ori-
entations. Another difficulty, given a distortion-compensated calibration image, is
how to eliminate a perspective bias. The perspective bias occurs when using cen-
ters of circular targets as keypoints, and it gets more amplified with increase of
view angle. In order to avoid modelling each circle by a conic function, we rather
incorporate conic affine transformation function into the minimization procedure
for homography estimation. Our experiments show that separate elimination of
distortion and perspective bias is effective and more stable for camera’s intrinsics
estimation than global calibration method.

Keywords Internal calibration, camera matrix, lateral chromatic aberration,
high precision calibration, lens distortion correction, perspective bias, circular con-
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Chapter 1

Introduction - version française

Cette thèse se concentre sur les aspects de précision de l’étalonnage interne de
l’appareil photo, et il appartient au projet de recherche CALLISTO (Calibration
en vision stéréo par méthodes statistiques) financé par l’ANR (Agence Nationale
de la Recherche), dont l’objectif final est la reconstruction des scènes 3D en haute
précision. Pour la dissertation deux directions principales d’étalonnage ont été
choisis: la correction de l’aberration chromatique et l’extraction de paramétres
internes de camèra.

La raison principale pour laquelle nous nous référons à l’étalonnage de l’appareil
photo dans le contexte de scènes 3D de haute précision parce qu’elle est la première
étape dans une chaîne de reconstruction 3D, et si l’étalonnage n’est pas fait cor-
rectement, il va ruiner les étapes suivantes, peu importe le degré de précision ils
ont; l’erreur sera propagée, amplifiée ou mélangée avec les erreurs suivantes. En
conséquence, cela conduira á un modèle 3D imprécis. Bien qu’il ne semble pas pos-
sible d’améliorer directement la précision globale utilisant les données imprécises
obtenus, la bonne façon est de se référer à chaque composante séparément et étud-
ier sa précision. Par ailleurs, le calibrage de la caméra doit être fait une fois, jadis
les réglages de l’appareil sont fixes.

Lorsqu’on référe au problème d’étalonnage, une question se pose - est-ce que le
sujet peut être considéré complet et résolu, ou s’il y a toujours de travail qui peut
être fait dans la domain. La question n’est pas simple et dépend de ce qui est con-
sidéré comme une contribution à la recherche de valeur et aussi si la solution actuelle
satisfait les résultats requis. Par exemple, les méthodes d’étalonnage et de modèles
qui étaient valables pour les exigences de précision dernières, ne sont plus satisfais-
ant pour les nouveaux appareils photo numériques avec une résolution plus élevée,
ce qui signifie que le sujet n’est pas entièrement fermé. L’augmentation de résolu-
tion du capteur concerne également le problème de l’aberration chromatique. Des
tests de perception visuelle ont été effectués afin de voir que les solutions existantes
ne sont plus si efficaces.

1.1 Correction de l’aberration chromatique

La première partie de la thèse est consacrée à la méthode précise pour la correction
de l’aberration chromatique. En raison de l’évolution plus rapide de la technologie
des capteurs par rapport à la technologie optique pour les systèmes d’imagerie, la
perte de qualité de résultat qui se produit en raison de l’aberration chromatique
latérale est de plus en plus importantes pour l’augmentation de la résolution du
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(a) Essai du cadrage,
non corrigée

(b) Essai du cadrage,
corrigée

Figure 1.1: Recadrée et agrandie dans l’image de la caméra Canon EOS 40D, avant
(a) et après (b) la correction de l’aberration chromatique par notre méthode. Re-
marquez les franges de couleurs atténuées au niveau des bords entre (a) et (b) des
images.

capteur. Nous cherchons à trouver de nouvelles façons de surmonter les limites de
qualité de l’image obtenue pour des raisons de performances et systèmes de lentilles
plus légers.

La principale raison de l’aberration chromatique est le phénomène physique qui
s’appelle réfraction. C’est la cause pour laquelle les canaux de couleur se concentrer
un peu différemment. En raison de l’aberration, les couches de couleur sont légère-
ment décalée lorsque l’image numérique est récupérée, ce qui conduit à des franges
de couleur au niveau des zones de contraste élevés et les bords de l’image. Pour les
applications de haute précision, lorsque l’utilisation d’informations de couleur devi-
ent importante, il est nécessaire de corriger ces défauts avec précision. Figure 1.1
montre l’effet de notre correction de l’aberration chromatique sur une image réelle.

D’une manière générale, l’aberration peut être classé en deux types: axiale et
latérale. La première se produit lorsque différentes longueurs d’onde se concentrent
à différentes distances de la lentille - en images numériques, il produit effet de flou
depuis canaux bleu et rouge sont vaporisé (en supposant que le canal vert est au
point). Un défaut latérale se produit lorsque les longueurs d’onde se concentrent
sur differénts points du plan focal et donc géométriques désalignements de plans
couleurs se produisent qui se manifeste sous forme de franges colorées autour des
zones à fort contraste, comme il est indiqué sur la Figure 1.1 (a).

Avant de procéder à la tâche, nous cherchons à définir une magnitude de correc-
tion de haute précision qui sera notre précision de but. Pour ce faire, une expérience
de perception visuelle a été réalisée pour les différents niveaux de désalignement,
en unités de pixels. Les tests ont indiqué que 0.1 pixel désalignement est une limite
lorsque aberration devient juste perceptible, tandis que désalignements de 0.3 pixel
et plus sont tout à fait perceptible.

Comme la plupart des autres approches, nous abordons le problème numérique-
ment, ce qui signifie se référant uniquement à l’aberration chromatique latérale;
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l’aide d’un seul coup l’image de modéle de l’étalonnage. La correction est formulé
comme un problème de gauchissement d’image, ce que veut réalignement des canaux
de couleur numérique. La principale différence avec les solutions existantes, c’est
que nous cherchons un modèle de correction plus générale que les différents types de
polynômes radiaux habituelles - ils ne peuvent pas également corriger la distorsion
pour tous les types de caméras. A son tour, le bidimensionnelle modèle de correc-
tion de polynôme choisi, associé à une détection précise des points clés de patron,
est capable de saisir la nature physique des canaux de couleurs non alignées, ce qui
conduit à une erreur résiduelle géométrique finale inférieure à 0.1 pixels, ce qui est
à la limite de perception par la vision humaine.

1.2 Extraction de caméra matrice

Compte tenu de la méthode d’étalonnage global par [ZHANG 2000], théorique-
ment, on peut prétendre que le calibrage de la caméra est un sujet fermé. Dans
le même temps, lors de l’étalonnage d’un appareil photo, la principale difficulté
réside dans la distorsion optique, sa correction est une étape nécessaire pour ob-
tenir des résultats de haute précision. L’approche de calibrage global visé mêle les
paramètres de distorsion avec les autres paramètres de la caméra et leur calcul est
détenu par minimisation simultanée. Toutefois, cela pourrait conduire à une com-
pensation d’erreur résiduelle de paramètres de distorsion et d’autres paramètres
de l’appareil photo qui réduiraient la stabilité de l’étalonnage, depuis la physique
de champ de distorsion ne seraient pas exploités correctement. En outre, la com-
pensation d’erreur ne peut être éliminé dans le cadre de méthodes globales, et par
conséquent, la compensation de distorsion doit être tenue séparément, comme une
étape préliminaire à toute nouvelle calibration.

La méthode récemment développée en s’appuyant sur la harpe d’étalonnage par
[TANG 2011] permet de calculer un champ de distorsion séparément des autres
paramètres. Son idée principale est basée sur la mesure de la rectitude des cordes
bien tendues, des images qui doivent être prises dans des orientations différentes. À
cet égard, elle se situe dans la catégorie des méthods fil à plomb. Bien qu’il nécessite
l’aide d’un modèle de calibrage supplémentaire, le compromis est que nous sommes
en mesure de contrôler l’ampleur des erreurs de distorsion résiduelle en plus d’avoir
distorsion détaché des autres paramètres de la caméra. Cette séparation devrait
également permettre produire des résultats plus fiables, car il résout le problème de
la compensation d’erreur résiduelle.

Une autre question que nous abordons, donné un image d’étalonnage compensé
de distorsion, est de savoir comment éliminer un biais en perspective. Puisque nous
traitons avec des patrons circulaires et des centres d’ellipse comme les points-clés
(car il est plus précis que l’utilisation de patrons carrés), les points de contrôle
détectés peuvent potentiellement être corrompues par le biais de perspective. Il
peut être décrit par la fait que l’image du centre de l’ellipse ne correspond pas au
centre de l’image d’ellipse. Par conséquent, nous essayons de compenser le biais
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de perspective en tenant compte plutôt cercle-ellipse transformation affine que la
transformation du point, puis on utilise la correspondance de points-clés détectés
avec des points-clés donné à la patron, donné la transformation affine conique.

Pour utiliser la transformation conique pour le calcul de la matrice d’étalonnage,
nous le faisons en intégrant la transformation affine conique dans l’étape de min-
imisation pour l’estimation de l’homographie. La fonction de transformation est
capable de faire correspondre le centre du cercle de la tendance avec le centre de
l’ellipse dans l’image. Par conséquent, la fonction de détection principal reste tou-
jours un centre de l’ellipse, il n’est pas nécessaire d’extraire d’ellipse contour. La
fonction mentionnée ci-dessus permet d’éliminer la distorsion en perspective, donc,
il produit des résultats plus précis pour l’estimation de matrice homographie, et
dans le contexte de l’extraction de la matrice de calibrage, il conduit à des résultats
plus stables.

1.3 Les chapitres de la thèse

Chapitre 3 montre un choix du patron d’étalonnage qui est représenté par un
plan 2D avec des cercles noirs imprimés sur elle, et aussi la façon de détecter les
points clés qui sont les centres des cercles. L’objectif est d’estimer avec précision
les points-clés et leurs positions relatives par rapport à un modèle donné, laissant
le processus entièrement automatique. La méthode de détection des points-cleès
s’avère être robuste contre le bruit de l’image et flou, et que les expériences ont
montré, la précision de détection reste à 0.05 pixels de la réalité de terrain.

Chapitre 4 montre une méthode robuste pour minimiser l’aberration chro-
matique latérale, la récupération de la perte de qualité d’image en utilisant une
seule image encerclée comme un patron. Différentes séries de tests et de mesures
sont utilisées pour valider l’algorithme. Pour l’évaluation de la performance, nous
avons utilisé deux données - synthétiques et réelles.

Chapitre 5 couvre le sujet de l’étalonnage précis de la caméra à l’aide des points
de contrôle circulaires. Il est obtenu en faisant référence à deux aspects. Tout
d’abord, la séparation des paramétres de distorsion de lentille provenant d’autres
paramétres de la camèra et le calcul du champ de déformation à l’avance sont
effectuées. Deuxièmement, la compensation du biais de perspective qui est sus-
ceptible de se produire lors de l’utilisation encerclé modèle est expliqué. Cela se
fait en intégrant transformation affine conique dans l’erreur de minimisation lors
du calcul de l’homographie, tandis que toutes les autres étapes de calibrage sont
laissées telles qu’elles sont utilisées dans la littérature. Nos deux expériences syn-
thétiques et réelles ont montré des résultats plus stables que l’état de l’art - méthode
d’étalonnage globale.
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Chapitre 6 tire quelques conclusions et expose les avantages et les limites des
méthodes utilisées.

1.4 Les contributions principales

• Description détaillée pour la détection de points-clés automatiquement et la
commande du patron encerclé qui est précis (moins de 0.05 pixels), même
pour les petites rayon du cercle.

• Un algorithme efficace pour corriger l’aberration chromatique latérale robuste
à travers la couleur des plans déformation de haute précision (largement sous-
pixel) réalignement des canaux de couleur. L’installation ne nécessite qu’une
configuration de disques noirs sur papier blanc et un seul cliché. Mesure
d’erreur est effectuée en termes de géométrie et de la couleur avec des résultats
quantitatifs sur des images réelles. L’examen de l’objectif de précision est
fournie en termes de perception visuelle humaine.

• La méthode de calibrage précis de la caméra avec l’aide de points de contrôle
circulaires. Le détachement des paramètres de distorsion se fait au moyen
de harpe d’étalonnage récemment développé [TANG 2011], puis distorsion
d’images compensées sont traités pour l’extraction de caméra matrice. La
compensation du biais de perspective est réalisée en intégrant la fonction de
transformation conique dans l’estimation de l’homographie.

• Mise en oeuvre de la méthode de correction de la distorsion optique dans la
langue C++, ainsi que des améliorations des formules pour des raisons de
simplicité et de gain en temps de calcul.





Chapter 2

Introduction

This thesis focuses on precision aspects of internal camera calibration, and it be-
longs to the research project CALLISTO (Calibration en vision stéréo par méthodes
statistiques) funded by ANR (Agence Nationale de la Recherche), whose final aim is
to reconstruct 3D scenes with high precision. For the dissertation two main calibra-
tion directions are chosen: correction of chromatic aberration and camera internal
parameters extraction.

The main reason why we refer to camera calibration in the context of high
precision 3D scenes is because it is the first step in a 3D reconstruction chain,
and if the calibration is not done accurately, it will ruin the following steps, no
matter how accurate they are; the error will be propagated, amplified or mixed
with the following errors. As a result, it will lead to an imprecise 3D model. While
it does not seem possible to directly improve the overall precision of the obtained
imprecise data, the proper way is to refer to each component separately and study
its precision. Besides, the camera calibration needs to be done one time, once the
camera settings are fixed.

When referring to the calibration problem, one question arises – whether or
not the topic can be considered complete and solved, or if there is more work
that can be done in the area. The question is not simple and depends on what is
considered as a valuable research contribution and also if current solution satisfies
the required outcomes. For example, the calibration methods and models that were
valid for past precision requirements, are becoming unsatisfying for new digital
cameras with higher resolution, which means the topic is not entirely closed. The
increasing sensor resolution also concerns the chromatic aberration problem. Visual
perceptual tests were performed in order to see that existing solutions are not so
effective anymore.

2.1 Chromatic aberration correction

The first part of the thesis is dedicated to the precise method for chromatic aber-
ration correction. Due to the more rapid development of the sensor technology in
comparison with the optical technology for imaging systems, the result quality loss
that occurs because of the lateral chromatic aberration is becoming more signific-
ant for the increased sensor resolution. We aim at finding new ways to overcome
resulting image quality limitations for the sake of higher performance and lighter
lens systems.
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(a) Test image crop,
uncorrected

(b) Test image crop,
corrected

Figure 2.1: Cropped and zoomed-in image from camera Canon EOS 40D, before (a)
and after (b) chromatic aberration correction by our method. Notice the attenuated
color fringes at edges between (a) and (b) images.

The main reason of the chromatic aberration is the physical phenomenon of
refraction. It is the cause why color channels focus slightly differently. As a result
of the aberration, the color channels are slightly misaligned when digital image is
retrieved, which leads to color fringes at the high contrast areas and image edges.
For high precision applications, when usage of color information becomes important,
it is necessary to accurately correct such defects. Figure 2.1 shows the effect of our
chromatic aberration correction on a real image.

Generally speaking, the aberration can be classified into two types: axial and
lateral. The former occurs when different wavelengths focus at different distances
from the lens - in digital images it produces blurring effect since blue and red
channels are defocused (assuming the green channel is in focus). A lateral defect
occurs when the wavelengths focus at different points on the focal plane and thus
geometrical color plane misalignments occur which manifests itself as colorful fringes
around high-contrast areas, as it is shown on Figure 2.1 (a).

Before proceeding to the task, we aim to define a magnitude of high precision
correction which will be our goal precision. For this, a visual perception experiment
was done for different misalignment levels, in pixel units. The tests stated that 0.1
pixel misalignment is a borderline when aberration becomes just-noticeable, while
misalignments of 0.3 pixel and higher are quite perceptible.

Like most other approaches, we address the problem digitally, which means
referring only to the lateral chromatic aberration; using a single shot of pattern
image for calibration. The correction is formulated as an image warping problem,
which means re-aligning color channels digitally. The main difference from existing
solutions is that we search for a more general correction model than the usual
different types of radial polynomials – they cannot equally correct the distortion
for all types of cameras. In turn, the chosen bivariate polynomial correction model,
combined with an accurate detection of pattern keypoints, is able to capture physical
nature of the misaligned color channels, leading to a final geometrical residual error
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of less than 0.1 pixels, which is at the limit of perception by human vision.

2.2 Camera matrix extraction

Considering the global calibration method by [ZHANG 2000], theoretically one can
claim that camera calibration is a closed topic. At the same time, when calibrating
a camera, the major difficulty lies in optical distortion; its correction is a necessary
step for high precision results. The mentioned global calibration approach mixes the
distortion parameters with other camera parameters and their calculation is held by
simultaneous minimization. However, this could potentially lead to residual error
compensation of distortion parameters and other camera parameters that would
decrease the calibration stability, since the physics of distortion field would not be
captured correctly. Moreover, the error compensation cannot be eliminated in the
framework of global methods, and therefore, the distortion compensation must be
held separately, as a preliminary step to any further calibration.

The recently developed method relying on the calibration harp by [TANG 2011]
allows calculating a distortion field separately from other parameters. Its main
idea is based on straightness measure of tightly stretched strings, pictures of which
must be taken in different orientations. In that respect, it lies in the category of
plumb-line methdods. While it requires using an additional calibration pattern, the
trade-off is that we are able to control the residual distortion error magnitude in
addition to having distortion detached from other camera parameters. This separ-
ation should also allow producing more reliable results since it solves the problem
of residual error compensation.

Another questions we address, given distortion compensated calibration image,
is how to eliminate a perspective bias. Since we deal with circular patterns and
ellipse centers as keypoints (as it is more precise than using square patterns), the
detected control points can potentially be corrupted by perspective bias. It can
be described by fact that image of the ellipse center does not correspond to the
center of the ellipse image. Therefore, we try to compensate for the perspective
bias by taking into account rather circle-ellipse affine transformation than point
transformation and then use correspondence of detected keypoints with pattern
keypoints given the affine conic transform.

In order to use the conic transform for the calibration matrix calculation, we
do it by incorporating the conic affine transformation into the minimization step
for homography estimation. The transformation function is able to match center of
the circle of the pattern with center of the ellipse in the image. Therefore, the main
detection feature still remains an ellipse center, there is no need for ellipse contour
extraction. The aforementioned function allows eliminating the perspective bias,
thus, it produces more precise results for homography matrix estimation, and in
the context of the calibration matrix extraction it leads to more stable results.
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2.3 The thesis chapter by chapter

Chapter 3 shows a choice of the calibration pattern which is represented by a
2D plane with printed black circles on it, and also how to detect the keypoints
which are the circles’ centers. The aim is to accurately estimate those keypoints
and their relative positions with respect to a given pattern, leaving the process fully
automatic. The method for keypoint detection is shown to be robust against image
noise and blur, and, as experiments showed, the detection precision stays within
0.05 pixels from the groundtruth.

Chapter 4 demonstrates a robust method to minimize the lateral chromatic ab-
erration, recovering the loss of image quality by using a single circled pattern image.
Different series of tests and measures are used to validate the algorithm. For the
performance evaluation, we used both synthetic and real data.

Chapter 5 covers the topic of the precise camera calibration using circular con-
trol points. It is achieved by referring to two aspects. First, separation of the
lens distortion parameters from other camera parameters and calculation of the
distortion field in advance are done. Second, the compensation for perspective bias
that is prone to occur when using circled pattern is explained. This is done by
incorporating conic affine transformation into minimization error when calculating
the homography, while all the other calibration steps are left as they are used in
the literature. Both our synthetic and real experiments demonstrated more stable
results than state-of-art global calibration method.

Chapter 6 draws some conclusions and exposes advantages and limitations of
the used methods.

Appendix A is mainly based on the work of [TANG 2011] and is a preliminary
part of calibration process described in Chapter 5. Some minor alterations were
incorporated and exposed in order to improve computational results.

2.4 Main contributions

• Detailed description for automatic keypoint detection and ordering of the
circled pattern which is precise (less than 0.05 pixels) even for small circle
radius.

• An effective algorithm to robustly correct lateral chromatic aberration
through color planes warping of high precision (largely sub-pixel) realignment
of color channels. The setup requires only a pattern of black discs on white pa-
per and a single snapshot. Error measurement is performed in both geometry
and color terms with quantitative results on real images. The examination of
the precision goal is provided in terms of human visual perception.



2.4. Main contributions 11

• The precise camera calibration method with using circular control points. The
detachment of distortion parameters is done by means of recently developed
calibration harp [TANG 2011], and then distortion-compensated images are
treated for camera matrix extraction. The compensation for the perspective
bias is carried out by incorporating the conic transform function into homo-
graphy estimation.

• Implementation of the optical distortion correction method in C++, as well
as improvements of the formulas for the sake of simplicity and gain in com-
putational time.





Chapter 3

Robust and precise feature
detection of a pattern plane

The aim of the chapter is to accurately estimate the keypoints from an image and
their relative positions with respect to a given pattern. The calibration pattern is
represented by a 2D plane with black circles printed on it. The process is fully
automatic and is robust against image noise and aliasing, leaving the detected
keypoints at deviation of average 0.05 pixels from the groundtruth.

Keywords. Precise keypoints, feature detection, pattern plane, circle center, el-
lipse center, keypoint ordering.
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3.1 Introduction

In the context of high precision camera calibration, we are interested in precise
allocation and detection of the keypoints which would ensure dense and consistent
field registrations, as well as robustness to noise and aliasing. The notion high preci-
sion often means the residual error between the camera and its obtained numerical
model is far smaller than a pixel size. For example, a calibration of lateral chro-
matic aberrations requires a correction model, residual of which is to stay within
0.1 pixels in order not to be visually perceptible (more details on this experiment
are given in the Chapter 4), therefore, our main goal will be to detect the keypoints
with deviation no more than 0.1 pixels from the groundtruth.

One of the most common types of keypoints are feature based interest points.
Such local image descriptors do not require any type of calibration pattern, and they
have quite a broad range of applications – from object recognition [LOWE 2004]
to image retrieval [NISTER 2006, SIVIC 2006], and similar. The most famous
local feature extractor is Scale-Invariant Feature Transform (SIFT) algorithm
[LOWE 1999], further developed into [LOWE 2004]. For the mentioned applica-
tions the precision of spatial position may appear less important. Often the relative
spatial layout of interest points are used together with a tolerance for large vari-
ations in the corresponding points relative position [SIVIC 2005].

An alternative to feature based interest points would be to pick the interest
points at random, but it will be unlikely to obtain precise spatial correspondence
between a sparse set of randomly picked points. The ability to detect correspond-
ing interest points, in a precise and repeatable manner, is a desirable property
for obtaining geometric scene structure. Therefore, when it concerns applications
of 3D reconstruction and camera calibration from interest points, it is of high
importance to have precise point correspondence [SNAVELY 2008, TORR 2000,
FURUKAWA 2010] which assumes using some kind of calibration pattern to en-
sure spatial consistency.

Different types of planar charts exist for the purpose of camera calibration as
sources of both 2D and 3D control points. Normally, these points are constructed
on a planar surface by creating some high contrast pattern. The pattern also fa-
cilitates the recovery of the control points projections on the image plane. The
most common pattern are: squares [WENG 1992, ZHANG 2000], chekerboards
[LUCCHESE 2002], circles [ASARI 1999, HEIKKILÄ 2000, KANNALA 2006].
Those became popular as they can be always manufactured to a sufficient pre-
cision, and their data points are recoverable through the use of standard image
processing techniques.

When choosing a plane calibration pattern, it is important to consider an aspect
for invariance to the potential bias from projective transformations and nonlinear
distortions. [MALLON 2007b] provides a comparative study on the use of planar
patterns in the generations of control points for camera calibration. There, a circled
pattern is compared to a checkerboard, and it is theoretically and experimentally
shown that the former can potentially be affected by bias sources. As a contrast,
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appropriate checkerboard pattern detection is shown to be bias free.
At the same time [MALLON 2007a] provides results for sub-pixel detection error

of the keypoints which are the intersections of a chessboard pattern. The extrac-
tion is done automatically using standard corner detector such as those described
by [LUCCHESE 2002, JAIN 1995] with sub-pixel refinement step of saddle points.
Those results expose an accuracy magnitude of about 0.1-0.3 pixels, depending on
the camera. Such precision result would not be sufficient for high precision calibra-
tion and could be potentially improved if we utilise higher precision detector of the
circled pattern with the condition of compensation for distortion (see Appendix A)
and perspective bias (refer to Chapter 5) beforehand.

Under perspective transformation circles are observed as ellipses, therefore our
main interest lies into ellipse center detection. One of the common ways to de-
tect ellipse is through Hough transform [PRINCEN 1992] - it is based on voting
system for some ellipse parameters using contribution of contour pixels; as an ex-
ample, [ÁLVAREZ LEÓN 2007] detect ellipses using Hough transform with para-
meter space reduction and a final Least-Square Minimization refinement. While
Hough transform is a good tool in applications like pattern recognition, it may not
be sufficient since it has its limitations like dependence on the results from edge
detector and might be less precise in noisy and blurry environments.

Other types of estimation of an ellipse rely on accurate extraction of the
contour points with subpixel precision and then fitting ellipse parameters on
the obtained set of points. Numerous methods exist for fitting ellipse para-
meters from a given set of contour points [GANDER 1994, KANATANI 1994,
FITZGIBBON 1995, CABRERA 1996, FITZGIBBON 1999, KANATANI 2006,
KANATANI 2011]. They differ from each other depending on their precision, ac-
curacy, robustness to outliers, etc. All those rely on a set of contour points that
are extracted beforehand. Nevertheless, extracting contour points usually sub-
sumes multiple stages including gradient estimation, non-maximum suppression,
thresholding, and subpixel estimation. Extracting contour points imposes making
a decision for each of those points based on neighbourhood pixels in the image. The
processing of low contrast images would be quite challenging where each contour
point can hardly be extracted along the ellipse, therefore, it is better to refer to
the information encoded in all pixels in the ellipse surrounding. By eliminating the
participation of contour points, the method would be greatly simplified and the
uncertainty on the recovered ellipse parameters will be assessed more closely to the
image data.

The current chapter presents a method for high precision keypoint detection for
the purpose of camera calibration which takes into account both geometrical and
color information. The method is based on defining intensity and affine parameters
that describe an ellipse, followed by minimization of those parameters so as to fit
the observed image of the ellipse and its surrounding pixels. No contour informa-
tion is necessary. It allows a detection of maximum accuracy 0.05 pixels, and, as
experiments show, it is resistant to noise and aliasing.

The rest of chapter is organized as follows: Section 3.2 gives a description of
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the method, Section 3.3 demonstrates a simple way how the ordering of keypoints
was performed, which is a necessary step for automatic camera matrix calibration.
Finally Section 3.4 includes synthetic experiments for detection precision against
noise and aliasing.

3.2 Sub-pixel keypoint detection

The calibration pattern is represented by disks and their keypoints are the centers.
A disk means a circle (or ellipse) filled with black color. Therefore, our interest
lies in the precise center detection of a disk, which has an elliptic form considering
a camera tilt with respect to the pattern plane normal. The precise ellipse center
detection is obtained by an adjustment of a parametric model simulating a CCD
response using an iterative optimization process. The parametric model takes into
account both color (intensity) and geometry aspects.

3.2.1 Geometrical model

A general affine transformation A:

X ′ = AX, (3.1)

which describes the relationship between model point X = (x, y) of the circular
patch and the image point X ′ = (x′, y′) of the corresponding elliptic patch can be
written as follows: x

′

y′

1

 =

 l1 cos θ l2 sin θ tu
−l1 sin θ l2 cos θ tv

0 0 1

 ·
xy

1

 (3.2)

In order to avoid color interpolation of the pixels on CCD matrix, the inverse
transformation A−1:

X = A−1X ′ (3.3)

is introduced since it allows to obtain a model point X having an image point X ′ as
it can be seen on Figure 3.1. For an elliptic patch with (tu, tv) representing its sub-
pixel center position, h1, h2 - elongation factors of the major and minor axes and θ
- an angle between the major axis and abscissa, the inverse transform is formulated
as: xy

1

 =

h1 cos θ −h2 sin θ 0
h1 sin θ h2 cos θ 0

0 0 1

 ·
x
′ − tu
y′ − tv

1

 (3.4)

Therefore, there are five parameters which describe the model geometrically and
which will be used in the minimization process:

• h1 and h2 are the elongation axes of the ellipse,

• θ is the inclination angle,
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centre peripherygradientFigure 3.1: Affine transformation A and its inverse A−1 for model point (x, y) and
its corresponding image point (x′, y′).
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Figure 3.2: The luminance transition model of parameter k.

• tu and tv are the coordinates of the ellipse centers; these are the two para-
meters that represent keypoint coordinates.

3.2.2 Intensity model

The model assumes constant intensity in the disk center and in the periphery with
a linear transition between both. For the given luminance levels L1 at the center of
the patch and L2 at its periphery, assuming the patch is darker than background
L1 < L2, the luminance transition is represented by three line segments as shown
on Figure 3.2 with the gradient part being linear with slope k. The distances − 1

k

and 1
k define the border of the center, gradient and periphery areas.

For each pixel point (x′, y′) there is a model point (x, y) obtained by (3.4) which
lies at distance dc =

√
x2 + y2 from model’s center for a circle with normalized

radius 1; if we place the origin at distance 1 from circle center as displayed on
Figure 3.2, the model point distance will be defined as d = dc − 1. The model
point has its corresponding normalized luminance level L̃(x′, y′) (normalized on the
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interval [L̃1 = −1, L̃2 = 1]) which is assigned depending on the interval:

L̃(x′, y′) =


−1, d ≤ − 1

k

kd, − 1
k < d < 1

k

1, d ≥ 1
k

(3.5)

The denormalization of L̃(x′, y′) is to be done:

L(x′, y′) = L1 + L̃(x′, y′) + 1
2 (L2 − L1) (3.6)

Therefore, there are three parameters which describe the color model and which
will be used in the minimization process:

• L1 - luminance level at the center area of the patch

• L2 - luminance level at the periphery

• k - slope which defines the transition from the center to periphery areas

3.2.3 Parametric model estimation through minimization

Levenberg-Marquardt algorithm (LMA) is chosen to minimize the sum of squared
differences of the gray levels between each pixel (x′, y′) of the elliptic patch in the
image I and corresponding point (x, y) obtained by (3.4) of the theoretical CCD
model with intensity L as in (3.6). The model is represented by a set of parameters
{h1, h2, θ, tu, tv, k, L1, L2} that comprises both geometry and color properties. The
following distance function is to be minimized by the LMA:

arg min
h1,h2,θ,tu,tv ,k,L1,L2

w∑
x′

h∑
y′

(I(x′, y′)− L(x′, y′))2. (3.7)

After the minimization process is terminated, among the set of obtained model
parameters, there is a sub-pixel center coordinate (tu, tv) which represents a key-
point.

3.2.3.1 Parameter initialization

Given three channels of the image, the very first step is to estimate initial position
of each disk and the size of its enclosing sub-image. This is done by proceeding:

Step 1. Binarization of each channel.

Step 2. Finding connected components of a black color for each binarized channel.

Step 3. Calculating moments for each component i:

(a) radii rix , riy ,
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(b) compactness measure Ci = 4πSi

P 2
i
, where Pi is a closed curve of the con-

nected component area Si,

(c) centroid (tiu , tiv ).

Step 4. Noise elimination by meeting the conditions:
min(rix , riy ) > 8
1− δ ≤ Ci ≤ 1 + δ, δ ∈ [0.2, 0.4]
Si ∈ {S}freq,

(3.8)

where {S}freq is a histogram area with most frequent connected component
sizes

As a result we obtain initial positions of each disk (tiu , tiv ) and its enclosing
sub-image with size wi = hi = ri

5
2 , where ri = 1

2(rix + riy ).
The initialization of other geometric parameters h1, h2 and θ is done with help

of principle component analysis. If we represent an ellipse by its covariance matrix

Cov =
[
(σx)2 σxy
σxy (σy)2

]
, (3.9)

where σx - one-sigma uncertainty in x direction, σy - in y direction and σxy - covari-
ance between x and y. The axes and their lengths are represented by eigenvectors
and eigenvalues accordingly. We are interested in eigenvalues in order to initialize
h1 and h2. Given matrix Cov, a characteristic equation can be written:

|Cov − λI| =
∣∣∣[(σx)2 σxy
σxy (σy)2

]
−
[
λ 0
0 λ

]∣∣∣ = 0. (3.10)

The determinant calculation will lead to a quadratic equation:

λ2 − ((σx)2 + (σy)2)λ+ (σx)2(σy)2 − (σxy)2 = 0, (3.11)

which has roots

λ1,2 =
(σx)2 + (σy)2 ±

√
((σx)2 + (σy)2)2 − 4((σxσy)2 − (σxy)2)

2 (3.12)

The lengths of the ellipse axes are square root of eigenvalues λ1, λ2 of covariance
matrix Cov and since parameters h1 and h2 represent semi-axes, we can initialize
them as

h1 =
√
λ1
2

h2 =
√
λ2
2

(3.13)
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The counter-clockwise rotation θ of the ellipse then can be deduced from the
first column of 3.10, which also means [cos θ sin θ]T , and therefore we can write

θ = atan2((σx)2 − λ1, σxy). (3.14)

The other model parameters are initialized: {k = 2, L1 = black∗, L2 = white∗},
where black∗, white∗ are global maximum and minimum intensities for the given
sub-image [wi × hi].

3.2.3.2 Error

The element of an error vector E = (e(0,0), e(0,1), · · · , e(w,h)) for a set of pixels of
the image with size w × h of the elliptic patch is given by:

e(x′,y′) = I(x′, y′)− L(x′, y′) (3.15)

3.2.3.3 Jacobian matrix

The Jacobian matrix is determined as a matrix of all first-order partial derivatives
of the vector function {λ1, λ2, θ, tu, tv, k, L1, L2} with respect to data vector. The
generic formulations for the geometry variables (not including k, L1, L2 variables)
for a given image pixel (x′, y′) are:

∂e(x′,y′)
∂•

= −∂L(x′, y′)
∂•

∂L(x′, y′)
∂•

= 1
2(L2 − L1)∂L̃(x′, y′)

∂•
∂L̃(x′, y′)

∂•
= k

∂d

∂•
,

(3.16)

where the formulas of partial derivatives ∂L̃(x′, y′)
∂•

for each variable are given only
for the gradient interval − 1

k < d < 1
k (since the derivatives will be zeros at periphery

and at the center areas, see (3.5)), and further on the derivatives are shown only
for this interval.

The derivatives for color variables k, L1, L2 are straightforward:

∂e(x′,y′)
∂•

= −∂L(x′, y′)
∂•

∂L(x′, y′)
∂k

= (L2 − L1)d2
∂L(x′, y′)
∂L1

= 1− L̃(x′, y′) + 1
2

∂L(x′, y′)
∂L2

= L̃(x′, y′) + 1
2

(3.17)
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Figure 3.3: Example of the pattern image.

The formulas of partial derivatives ∂d
∂•

for each geometric variable are:

∂d

∂•
= 1
d

(x∂x
∂•

+ y
∂y

∂•
)

∂x

∂λ1
= (x′ − tu) cos θ, ∂y

∂λ1
= (x′ − tu) sin θ

∂x

∂λ2
= −(y′ − tv) sin θ, ∂y

∂λ2
= (y′ − tv) cos θ

∂x

∂θ
= −(λ1(x′ − tu) sin θ + λ2(y′ − tv) cos θ), ∂y

∂θ
= (λ1(x′ − tu) cos θ − λ2(y′ − tv) sin θ)

∂x

∂tu
= −λ1 cos θ, ∂y

∂tu
= −λ1 sin θ

∂x

∂tv
= λ2 sin θ, ∂y

∂tv
= −λ2 cos θ

(3.18)
The resulting Jacobian matrix has the form:

J =


∂e(0,0)
∂λ1

∂e(0,0)
∂λ2

· · · ∂e(0,0)
∂L1

∂e(0,0)
∂L2

∂e(0,1)
∂λ1

∂e(0,1)
∂λ2

· · · ∂e(0,1)
∂L1

∂e(0,1)
∂L2... . . .

∂e(w,h)
∂λ1

∂e(w,h)
∂λ2

· · · ∂e(w,h)
∂L1

∂e(w,h)
∂L2

 (3.19)

3.3 Keypoint ordering

The algorithm is fully automatic and does not require any user interaction. We aim
at a set of very simple steps that help to order keypoints. The pattern sample is
displayed on Figure 3.3

In order to process the set of keypoints to the algorithm, it is important to order
them exactly same way as pattern keypoints are, for example from top to bottom
column-wise. Simple sorting techniques such as ordering according u and then v
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coordinate may not be efficient since we deal with the image of the pattern which
was rotated, translated and then projected into camera image. The simplest way
was to determine approximate homography Happ using match of corner keypoints
of the image and the pattern, and then order the rest of image keypoints with help
of Happ. Therefore, we are interested in selecting the four ellipses that are located
at the corners of the calibration pattern and then putting them in correspondence
with the corners of model pattern. If we are able to estimate this transformation,
then we can easily estimate the correspondence for the rest of the points. This is
carried out by means of homography.

The similar idea is usually applied in human-assisted semi-automatic environ-
ment where a user selects the four corners and the algorithm manages to do the
rest, for example, Matlab Calibration Toolbox [BOUGUET 2000]. Our goal is to
have fully automatic software.

The principle for determination of corners from a given set of keypoints is dis-
played in Figure 3.4. We followed these steps to order all the keypoints:

1. For each of the keypoint c (potentially corner) do:

• find its first three neighbours n1, n2 and n3 based on Euclidean distance;

• calculate the angles ∠n1cn2, ∠n1cn3, ∠n2cn3 and pick the maximum
∠max = ∠ni1cni2 with i1 and i2 corresponding keypoint indices that
satisfy maximum angle condition;

• if the angle is more than 180◦ then c is not a corner;

• otherwise for all the rest of the keypoints {ni}i=3,··· ,N , make sure they
are located within the maximum angle ∠ni1cni2 (within small tolerance
ε, for example, 2◦) and if this condition holds, c is a corner:

∠ni1cni2 > ∠nicni1 − ε
∠ni1cni2 > ∠nicni2 − ε

(3.20)

2. Sort the four corners by coordinate - firstly by u, then by v.

3. Calculate approximate homography Happ using correspondence of corner key-
points c1, c2, c3, c4, and corresponding pattern corner keypoint locations.

4. Sort all the keypoints same way as they are sorted for the pattern by calcu-
lating approximate location of the keypoint in image xapp = HappX and then
identifying the closest keypoint x to xapp.

3.4 Sub-pixel ellipse center detection accuracy

Experiments are performed to measure the ellipse center detection accuracy at
different ellipse sizes against noise and aliasing, and also against different angles
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n1 n2

n3c

Figure 3.4: Defining the corner keypoint: when the maximum angle ∠n1cn3 between
corner’s c first three neighbours n1, n2, n3 stays maximum for the rest of the
keypoints (within small tolerance) and at the same time less than 180◦.
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Figure 3.5: Digitizing of the pattern.

of view of the circle. The synthetic data was generated according a principle of
digitizing shown on Figure 3.5.

Synthetic disk (filled circle) 8-bit images were generated on a large image of size
W ×W pixels (W = 1000 for the first set and W = 2000 for the second), which was
blurred, downsampled and finally Gaussian noise was added. Subpixel disk center
location is used as ground truth and compared to detected disk center.

Each set includes four 8-bit images with a disk on each of a different radius
size. That is, an ellipse {x, y} is drawn with the fixed center (xc, yc), radius R
and rotation angle ϕ (fixed to 30◦) along z axis and changing angle of view θ as
described:

((x− xc) cosϕ− (y − yc) sinϕ)2

R2 + ((x− xc) sinϕ+ (y − yc) cosϕ)2

(R cos θ)2 ≤ 1,

(xc, yc) = (0.5W + δx, 0.5W + δy),

R = n
W

2 ,

(3.21)

where (δx, δy) are shifts from image center for x, y directions, and n =
[0.45, 0.6, 0.75, 0.9] is assigned so that to see if the ratio between image area and
disk area influences the detection accuracy.
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Figure 3.6: Keypoint detection precision performance for normal angle view θ = 0◦
with subsampling rate s = 20, original image resolution W and subsampled circle
radii Rs , pixels.

The ground-truth circle centers for each sub-sampled image are found:

(xg.t, yg.t) = (0.5W
s

+ δx
s
, 0.5W

s
+ δy

s
), (3.22)

with s being a downsampling rate (s = 20 for both image sets). Figure 3.6 and
Figure 3.7 show the performance of the algorithm against Gaussian noise level
(median error out of 100 iterations) and amount of aliasing for different disk radii
(the view angle θ is set to 0◦ on the first figure and 55◦ on the second). Similar
experiments were performed for other view angles, up to 70◦ and it was found that
error always has the same tendency as in shown figures.

3.5 Conclusion

The described algorithm allows automatic keypoint detection and ordering of the
circled pattern. From the graphs presented at experiment section it can be also
concluded:

1. In all the cases the average error is less than 0.05 pixels, even for small disk
radius (11 pixels). And considering the fact that ratio of the disk area and its
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2 4 6 8 10 12 14 16 18 20
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Blur (Std dev)

E
rr

or
 (

Pi
xe

ls
)

 

 

R/s=25
R/s=30
R/s=38
R/s=45

(d) Aliasing, W = 2000

Figure 3.7: Keypoint detection precision performance for θ = 55◦ angle view with
subsampling rate s = 20, original image resolution W and subsampled circle radii
R
s , pixels.
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enclosing image area has little impact on the precision detection, allows us to
pack more keypoints in a given pattern area.

2. The angle of view has little influence on precision even for large angles, which
means the detection stays robust even when pattern plane is viewed from a
large angle of view (here we don’t consider perspective bias which is a subject
in Chapter 5, but rather affine transform of the elliptic parameters).

3. As expected, the error increases linearly with noise level, but remains constant
under aliasing. This is important because in a Bayer pattern image, red and
blue channels are notoriously aliased. Figure 3.6 (b,d) and Figure 3.7 (b,d)
show that this does not affect the disk center detection.



Chapter 4

High-precision correction of
lateral chromatic aberration in

digital images

Nowadays digital image sensor technology continues to develop much faster than
optical technology for imaging systems. The result quality loss is due to lateral
chromatic aberration and it is becoming more significant with the increase of sensor
resolution. For the sake of higher performance and lighter lens systems, especially
in the field of computer vision, we aim to find new ways to overcome resulting image
quality limitations.

This chapter demonstrates a robust method to minimize the lateral chromatic
aberration, recovering the loss of image quality by using a single circled pattern
image. Different series of tests and measures are used to validate the algorithm.
For the performance evaluation we used both synthetic and real data.

The primary contribution of this work is an effective algorithm to robustly
correct lateral chromatic aberration through color planes warping. We aim at high
precision (largely sub-pixel) realignment of color channels. This is achieved thanks
to two ingredients: high precision keypoint detection, which in our case are circle
centers, and more general correction model than what is commonly used in the
literature, radial polynomial. The setup is quite easy to implement, requiring a
pattern of black disks on white paper and a single snapshot.

We perform the error measurements in terms of geometry and of color. Quantit-
ative results on real images show that our method allows alignment of average 0.05
pixel of color channels and residual color error divided by a factor 3 to 6. Finally,
the performance of the system is compared and analysed against three different
software programs in terms of geometrical misalignments.

Keywords Chromatic aberration, image warping, camera calibration,
polynomial model, image enhancement
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4.1 Introduction

Every optical system that uses lenses suffers from aberrations that occur due to
the refractive characteristics of the lenses [JÜRGEN 1995]. Loss in image accur-
acy because of a known set of aberrations can be classified as either monochro-
matic or chromatic types of aberration. They occur due to physical interaction of
light with materials, lens design constraints and manufacture limitations. The five
Seidel monochromatic aberrations include spherical aberration, comatic, astigmatic,
curvature of field and distortion [SEIDEL 1856]. The chromatic type of aberration
is independent from monochromatic one.

A type of distortion named Chromatic Aberration (CA) is inherent for any
optical system due to result of the different refractive indices of the lens medium
(typically some form of glass) for varying wavelength of the transmitted light, and
such phenomena is termed dispersion [NEWTON 1704] and explains prismatic be-
haviour. From aesthetic point of view, CA gives overall impression of poor quality
and definition, while from the view of computer vision application algorithms - may
reduce stability and precision for the application when color information matters
(i.e. deteriorating of details on the texture or edge areas). The main classification of
CA is two categories [SLAMA 1980]: Axial (or longitudinal) Chromatic Aberration
- ACA, and Lateral (or transverse) Chromatic Aberration - LCA.

The ACA occurs when different wavelengths focus at different distances from
the lens, i.e., different points on the optical axis as shown on Figure 4.1 (a). It
causes a failure of all the wavelengths to be focused at the same convergence point,
and as a result, as light strikes the sensor panel, out of focus rays contribute to a
circle of confusion, or bokeh. In digital images it manifests as a subtle coloured halo
around the boundary of an object, especially in the circumstances like lens widest
aperture setting. Such image artifacts might be decreased when the lens aperture
is stopped down or reduced due to the increase in depth of field which brings the
axially-misaligned focal points nearer. Many modern digital cameras, when in fully-
automatic mode, are able to balance the aperture size preventing significant spacial
frequency loss due to photon diffraction [MIELENZ 1999] and a shallow depth of
field, increasing focus selectivity and focus error as a side effect. Thanks to camera’s
automatic mode, ACA is nominally minimised to imperceptible levels.

The LCA happens when the wavelengths focus at different points on the fo-
cal plane and thus geometrical color plane misalignments occur as shown on Fig-
ure 4.1 (b). It is relative and non-linear displacement of the three color planes;
on the obtained digital images the channels are misaligned with respect to each
other. This source of degradation manifests itself as fringes of color at edges and
high contrast areas which leads to a perceived detail loss. Less perceptible impact
in lower-contrast areas reduces texture detail and generally tends to reduce the
perception that LCA compromises image quality.

An example of CA is shown on Figure 4.2. It can be seen that CA limits image
detail. Also the present CA has assymetric nature which means the type LCA is
the dominant aberration and attenuating quality. ACA occurs symmetrically to
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(a) Axial chromatic aberration (b) Lateral chromatic aberration

Figure 4.1: Occurence of axial (a) and lateral (b) chromatic aberrations.

Figure 4.2: Example of LCA presence in digital image crop taken by camera Sony
DSLR-A200 with focal length f = 24mm. The color channel misalignments are
noticeable due to LCA and are mostly highlighted in the regions of edges.

image feaure and thus much less significant. Based on this our main focus will be
LCA type of distortion.

Some work had been done in this field: some included optical and hardware
solutions, some only used digital manipulations to combat the problem. Optimal
lens design techniques such as [POWELL 1981, FARRAR 2000, MILLÁN 2006a,
MILLÁN 2006b, FANGA 2006] have been proposed to compensate the aberration
affect. These approaches alleviate CA by using multiple lenses with different optical
indices, i.e., the achromatic doublet [KINGSLAKE 1978], or by improving the lens
characteristics [MILLÁN 2006b]. Those corrections, however, have been effective
for only zones near the optical axis, and the hardware solutions increase the system
cost and can be only used in large cameras.

Another way to approach the problem is through modification of camera settings
(magnification, focus, sensor shifting) for each color channel so that to eliminate
the effects introduced by chromatic aberration, i.e., active lens system introduced
by [WILLSON 1991, WILLSON 1994a]. The purpose of the active lens control is
to get best focused image for each color component by slightly shifting the image
plane backward and forward for each color. The solution requires a priori know-
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ledge about magnification factor and the image plane shift degree [WILLSON 1991].
Such approach may not be practical since it requires taking three pictures for each
channel under different camera settings. The better alternative is to refer to a post
processing of a digital image which is less applicable for the correction of axial ab-
erration, but can perform well for the lateral one. The post processing not only
allows to save the high image quality by much cheaper cost, but also remains more
practical.

The algorithms that perform automatic compensation of both types of CA do
not require any a priori information and do the correction on the given image
directly. They are fast and practical for the purposes of art photography when
we only want to reduce the effects of CA in areas of interested (high contrast
areas, textures) for a selected image. One example is [KANG 2007] which corrects
CA from a single degraded image: it first models the whole process of the imaging
pipeline and then estimates every simplified step of the pipeline to correct both LCA
and ACA. Another example, [CHUNG 2010] suggests a fast and simple algorithm
for low-cost digital cameras or cellular phones with built-in cameras; its main idea
is to perform a correction so that to adjust color difference signals in areas where
they are greatly misaligned. While such method might be effective for photographic
purposes, it is not possible to integrate it if we aim for camera calibration where
some kind of a priory (i.e., calibration pattern) is necessary.

Given calibration pattern, [BOULT 1992] refers to the LCA and formulates
its compensation as an image warping problem which means digital manipula-
tion of each color channel so that to re-align them. The method is focused solely
on the warping problem and does not employ any aberration model, performing
the correction by interpolating the control points. [KOZUBEK 2000] shows how
to do the correction for both types of aberrations in the environment of fluores-
cent microscopy. However, this method as well as others that work for micro-
scopic devices [MANDERS 1997, SHI 2004, FREITAG 2005] can not be applied for
the camera imaging systems, therefore, our focus is solely into the model-based
warping methods that only deal with the correction of lateral type of aberration.
[MATSUOKA 2012] provides an evaluation of the chromatic aberration correction
methods based on calibration, all of which assume radial nature of the distortion
and thus employ different radial models for the correction, i.e., [REBIAI 1992,
KAUFMANN 2005, JOHNSON 2006, LUHMANN 2006, MALLON 2007a]. How-
ever, it is important to keep in mind that not all the cameras can be satisfactorily
corrected by the same radial model [TANG 2011]. Besides, they require estimation
of the center point of the aberration for accurate correction which is often different
from image center due to complexity of multi-lens system [WILLSON 1994b].

Therefore, our main objective is to achieve correction of LCA using a single
shot of a calibration pattern by typical camera imaging system using digital post-
processing steps. We want to address LCA by a generalized distortion model, and
we expect it to be robust and high-precision. In order to define a magnitude of high
precision correction, a visual perception experiment was done for different misalign-
ment levels (in pixel units). A synthetic disk (black filled circle) was generated on
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(a) d = 0.05 (b) d = 0.1 (c) d = 0.2 (d) d = 0.3 (e) d = 0.5 (f) d = 1

Figure 4.3: Visual perception tests for chromatic aberration on synthetic disk image
for different values of displacements d (in pixels). Note that a displacement value
of 0.1 pixel is just noticeable, while 0.3 pixel displacement is quite perceptible.

a large image with misalignment between channels introduced, then the image was
blurred in order to avoid aliasing, and downsampled. A part of the downsampled
image was cropped and zoomed-in in Figure 4.3. It can be noted that 0.1 pixel
misalignment is a borderline when aberration becomes just-noticeable, while mis-
alignments of 0.3 pixel and higher are quite perceptible.

Consequently, the primary objective is to develop a robust, generalized al-
gorithm which leaves final correction within the range of 0.1 pixels. Secondary
objectives are to develop some metrics to tangibly quantify corrected image quality
and demonstrate the quality improvement after CA correction.

This work demonstrates how the lateral chromatic aberration in digital images
can be modelled and corrected by a polynomial model which remains general for any
kind of distortion. The correction is achieved through image warping by realigning
the red and blue color planes with respect to a reference green plane. An important
role of the high precision correction plays a sub-pixel keypoint detection which is
described in Chapter 3 and also its dense field registration; one keypoint of the
calibration pattern is represented by a center of filled black circle (dics).

Further Section 4.2 demonstrates how the geometrical displacements that occur
between the keypoints of the color planes are modelled and corrected by a general
polynomial model. Section 4.3 exposes the result measurements of the lateral aber-
ration in terms of both color and geometry misalignments, as well as provides real
scene examples. Finally, Section 4.4 concludes.

4.2 Calibration and correction

Lateral chromatic aberration can be considered as geometrical distortion which oc-
curs with respect to color channels. Assuming the distortion field is smooth by
nature, the main idea is to model the distorted fields, normally red and blue chan-
nels, by polynomials for x and y directions, while keeping one as a reference (green).
By comparison with many other distortion models (radial, division, rational func-
tion), the polynomial model is general and can perfectly approximate the former
models as stated by [GROMPONE VON GIOI 2010, TANG 2011]. To achieve high
precision the degree 11 was chosen for both x and y, since it is the order when re-
sidual error stabilizes for the most of the images.

For a given calibration pattern image, the detected keypoints are represented
in pixel coordinates as (xf , yf ) for a certain color plane f which is either red (r),
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blue (b) or green (g). The lateral misalignments between the red (or blue) and
the green planes are corrected by identifying the parameters of polynomial pfx, pfy
approximating at best the equations

xgi = pfx(xfi, yfi)
ygi = pfy(xfi, yfi),

(4.1)

with the target colors f = r or f = b and i describing keypoint index.
The polynomial model pfx, pfy with orders m, n and polynomial coefficients{

px0 , px1 , · · · , px (m+1)(m+2)
2 −1

}
,
{
py0 , py1 , · · · , py (n+1)(n+2)

2 −1

}
can be expanded as:

xg = px0x
m
f + px1x

m−1
f yf + px2x

m−2
f y2

f + . . .+ pxmy
m
f + pxm+1x

m−1
f

+pxm+2x
m−2
f yf + . . .+ px2my

m−1
f + . . .+ px (m+1)(m+2)

2 −3
xf

+px (m+1)(m+2)
2 −2

yf + px (m+1)(m+2)
2 −1

yg = py0x
n
f + py1x

n−1
f yf + py2x

n−2
f y2

f + . . .+ pyny
n
f + pyn+1x

n−1
f

+pyn+2x
n−2
f yf + . . .+ py2ny

n−1
f + . . .+ py (n+1)(n+2)

2 −3
xf

+py (n+1)(n+2)
2 −2

yf + py (n+1)(n+2)
2 −1

(4.2)

The unknowns are the parameters of polynomials pfx and pfy. These are
(m+1)(m+2)

2 = 78 for degrees m = n = 11 for each polynomial. Our pattern is
composed of about 1000 disks (we already showed in Chapter 3 that we can pack
so many disks of small diameter on our pattern without deterioration of precision),
so there is no risk of overfitting. The main principle is based on how well we can
approach the reference field (xg, yg) by pfx(xf , yf ) and pfy(xf , yf ). For a number K
of keypoints (xfi, yfi), i = 1, · · · ,K distributed all over the image, the polynomial
coefficients are computed by minimizing the difference of displacements between
the reference and distorted channels:

E =
K∑
i=1

(pfx(xfi, yfi)− xgi)2 + (pfy(xfi, yfi)− ygi)2 (4.3)

The solution vector p of this least-square problem satisfies a linear system:

Ap = v (4.4)

with A the coefficient matrix built from the xfi, yfi, and p the unknown coefficient
vector. For favorable numerical conditioning of A, these pixel coordinates need to
be normalized between 0 and 1.

The optimal solution minimizing the norm ‖Ap − v‖ is p = (ATA)−1AT v. In
practice, the coefficient matrix A is ill-conditioned and can make the solution un-
stable. The following normalization is necessary in order to make the linear system
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more stable. A is multiplied by normalization matrices T1 and T2 so that the entries
of the normalized matrix Â do not vary a lot.

Âp̂ = T2AT1(T−1
1 p) = T2v (4.5)

chosen so that the entries of T2AT1 get closer to each other. The solution is p =
T1(ÂT Â)−1ÂTT2v.

By some simple computations, the linear system in Eq. (4.4) is explicitly written
as:

Ap =



xmr1 xm−1
r1 yr1 · · · yr1 1

xmr2 xm−1
r2 yr2 · · · yr2 1

... . . . 0
xmrM

xm−1
rM

yrM · · · yrM 1
xnr1 xn−1

r1 yr1 · · · yr1 1
xnr2 xn−1

r2 yr2 · · · yr2 1

0 ... . . .
xnrM

xn−1
rM

yrM · · · yrM 1





px0

px1
...

px (m+1)(m+2)
2 −1

py0

py1
...

py (n+1)(n+2)
2 −1



= v =



xg1

xg2
...

xgM

yg1

yg2
...

ygM


(4.6)

It can be seen that for polynomials of a high degree, i.e. 11, the entries of A
differ by a big ratio x11

ri
1 for x variable and y11

ri
1 for y variable, and this causes a

numerical instability of the linear system. The normalization matrices T1 and T2
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are used to lessen the instability in Eq. (4.5) and are computed as:

T1 =



1
xm

r1
0 0 0 0 0 0

0 1
xm−1

r1 yr1
· · ·

... . . . ...
1
xn

r1
. . . 0

0 · · · 0 1



T2 =



1 0 0 0 0 0 0
0 xm

r1
xm−1

r1 yr1
· · ·

... . . . ...
1

. . . 0
0 · · · 0 xnr1



(4.7)

When the calibration is done, it is now straightforward to build a corrected image
for any distorted image which was taken under the same fixed camera settings.
The polynomials pfx and pfy calculate the corrected pixel coordinates for each
distorted pixel coordinate (xf , yf ) as in Eq. (4.1), and then the corrected color
value is obtained by interpolation from the corrected coordinates.

4.3 Experiments

To evaluate the CA correction method we use two types of metrics: geometry and
color. Comparison to existing commercial software is done as well.

4.3.1 Chromatic aberration correction accuracy with reflex cam-
eras

To evaluate the correction method three types of images are used: calibration pat-
tern, test pattern and real images. Two types of calibration patterns are considered
in order to show the importance of having precise keypoints: with circles where each
keypoint is a center, and with noise where keypoints are detected using SIFT al-
gorithm. The circled pattern is printed on A3 format paper and there, 37×26 = 962
black disks are drawn of the radius 0.4cm and separation of 1.1cm between consec-
utive disks. The picture of calibration pattern is taken with chosen fixed settings,
after that a test image is taken of the same pattern. After the calibration is com-
plete, the correction method is applied to the test image to evaluate precision there;
after, some outdoor images were taken under the same camera settings as before in
order to demonstrate the image quality improvement.



36
Chapter 4. High-precision correction of lateral chromatic aberration in

digital images

Abbreviation EOS 5D EOS 40D A200
Camera Canon EOS 5D Canon EOS 40D Sony DSLR A200

Sensor size 35.8mm× 23.9mm 22.2mm× 14.8mm 23.6mm× 15.8mm
Pixel size

on the focal plane 8.2µm 5.7µm 6.05µm

Number of
recording pixels 5634 × 3752 3888 × 2592 3898 × 2616

Lens

Canon EF
24 − 70mm
f2.8 − f22

16 elements in 13 groups

Canon EFS
18 − 55mm
f3.5 − f5.6

11 elements in 9 groups

Sony DT
18 − 70mm
f3.5 − f5.6

11 elements in 9 groups

Table 4.1: Cameras specifications.

Figure 4.4: The Bayer arrangement of color filters on the pixel array of an image
sensor

4.3.1.1 Camera specifications

Three digital cameras with interchangeable lenses were used to capture the test
images. Their specifications are given in the Table 4.1.

4.3.1.2 Demosaicking

The demosaicking is performed so as to keep the original raw image resolution. The
camera’s sensor is overlaid with a color filter array, normally a Bayer filter which
consists of a mosaic of a 2× 2 matrix of red, blue, green and green filters as shown
in Figure 4.4. Normally, to reconstruct a full color image from the data collected
by a color filter array, a form of interpolation is needed to fill in the blanks for each
channel.

Considering the aberration correction algorithm, the main steps of demosaicking
are:

Step 1. RAW image is separated in its three channels.

Step 2. The green channel is kept at original resolution by averaging the four nearest
neighbours for each empty pixel.

Step 3. Blue and red channels are kept in aliased, half-dimension images.

Step 4. For all the channels the keypoint detection is performed.
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Step 5. The correction polynomials for red and blue images are obtained after
matching the keypoints green-blue and green-red geometrically (for this, the
red/blue keypoint coordinates are multiplied by 2 to be at the same resolution
as green keypoint coordinates).

Step 6. The corrected and zoomed-in images for blue and red are calculated by first
obtaining the correction coordinates, and then interpolating them from given
blue/red distorted images.

The crude demosaicking of the green channel (bilinear interpolation) creates an
aliased image (step 1). This may be true, but earlier it is already shown (refer to
Figure 3.6 (b,d)) that blurring does not affect the ellipse center detection precision.

4.3.1.3 Geometrical misalignments for a circled pattern

The color plane keypoint displacement RMSE and maximum distances (Euclidean)
before and after the correction are presented in Table 4.2. From the table it is seen
the significant reduction in the displacements. It can be noted that the residuals
are of similar magnitude as the sub-pixel keypoint detection, which emphasize the
importance of having precise keypoints.

Uncorrected Corrected
Cameras’ shots R/G B/G R/G B/G

EOS 5D
Calib f1 = 24mm
Test f1 = 24mm
Calib f2 = 70mm
Test f2 = 70mm

0.1917 (0.7632)
0.1659 (0.5818)
0.5547 (0.7720)
0.5321 (0.7864)

1.6061 (3.6154)
1.5129 (3.2057)
1.4087 (1.8920)
1.4140 (1.8044)

0.0291 (0.0889)
0.0492 (0.0880)
0.0292 (0.0800)
0.0352 (0.0917)

0.0249 (0.1323)
0.0551 (0.0904)
0.0291 (0.07511)
0.0331 (0.1024)

EOS 40D
Calib f1 = 18mm
Test f1 = 18mm
Calib f2 = 55mm
Test f2 = 55mm

0.6546 (0.9784)
0.6713 (0.9916)
0.4590 (0.8794)
0.4391 (0.8029)

1.4190 (3.3588)
1.4133 (3.2901)
1.5242 (2.4967)
1.5231 (2.5574)

0.0298 (0.1136)
0.0487 (0.1408)
0.0447 (0.1233)
0.0522 (0.1666)

0.0584 (0.1531)
0.0341 (0.0917)
0.0398 (0.0922)
0.0564 (0.1921)

A200
Calib f1 = 18mm
Test f1 = 18mm
Calib f2 = 70mm
Test f2 = 70mm

0.9106 (1.1422)
0.9127 (1.3381)
0.2502 (0.5382)
0.2627 (0.5521)

1.5371 (3.4125)
1.5371 (3.4092)
1.7066 (2.4355)
1.7184 (2.5051)

0.0344 (0.1037)
0.0504 (0.1356)
0.0492 (0.1249)
0.0495 (0.1845)

0.0373 (0.0882)
0.0490 (0.0916)
0.0429 (0.1502)
0.0624 (0.1890)

Table 4.2: Color plane keypoint Euclidean displacements in RMSE (maximum er-
ror) format in pixels before and after the calibration for three different cameras,
each with two different focal lengths. R/G and B/G correspond to red and blue
misalignments with reference to the green channel.

Further details on keypoint displacements are presented for one case, (camera
EOS 5D with f1 = 24mm) in Figure 4.5. From the histograms it can be seen that
error distribution decreases and stays within 0.05 pixels; and this numerical result
holds for the most of our tests. The field of geometrical displacements was built
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before and after the correction and is shown in Figure 4.6. It also demonstrates how
the character of the field had changed: before the correction it had radial nature,
after correction it is less structured.
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Figure 4.5: Histograms of Euclidean displacements of the keypoints: before the
correction (a,c) and after (b,d). The color of the graph corresponds to color of the
channel - (a,b) for red and (c,d) for blue.

4.3.1.4 Geometrical misalignments for a noise pattern using SIFT key-
points

In order to see the influence of keypoint detection precision on the correction accur-
acy, another type of calibration pattern was used in addition - noise pattern. The
keypoints were detected using standard Scale-Invariant Feature Transform (SIFT)
algorithm [LOWE 2004] which allowed to have around 9000 keypoints for each chan-
nel. The precision results are demonstrated for camera EOS 40D in Table 4.3. As
it can be seen the corrected precision is about 5-10 times larger than for circled
pattern tests, which means that it is not the number of keypoints that matters, but
the detection precision.
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Figure 4.6: Vector fields of Euclidean displacements of the keypoints: before the
correction (a,c) and after (b,d). The color of the arrows corresponds to color of the
channel - (a,b) for blue and (c,d) for red.

4.3.1.5 Geometrical misalignments comparison with existing software
corrections

Three software solutions were chosen to perform a comparison with our method:
DxO Optics Pro (noted as ’DxO’) [DxO ], Canon DPP (’DPP’) [CANON ] and
Jaliko lenstool (’JLT’) [DUNNE 2010]. The first two use lab-computed calibration
database for each camera and each lens, and perform correction based on the data-
base, with possibility of manual readjustment for each image. The CA correction
by JLT method is fully automatic and for any kind of camera (no database) but
requires several images. Cam 2 was chosen for this experiment and the keypoint
displacement results are shown in Figure 4.7 for different focal lengths. The results
demonstrate that only our method achieves precision where defects are not visible
anymore (see Figure 4.3): the mean always stays within 0.05 − 0.1 pixel while for
other methods the average remains around 0.4 pixels.

4.3.1.6 Color misalignments

To visualize the effect of chromatic aberration correction, color based 3D histogram
is built for the circled calibration image. In ideal case such histogram would consist
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Figure 4.7: Comparison of our method to other software for cam 2 and different fo-
cal lengths f , the comparison is in terms of mean (dark colored bars) and maximum
(light colored bars) misalignments for both red (positive axis) and blue (negative
axis) channels. (a) provides information on the initial uncorrected keypoint dis-
placements for the same focal lengths (notice the different scale).
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Uncorrected Corrected
Camera shots R/G B/G R/G B/G
EOS 40D

Calib f1 = 18mm
Test f1 = 18mm
Calib f2 = 55mm
Test f2 = 55mm

0.8909
0.9129
0.5129
0.4517

1.3388
1.3404
1.5359
1.5326

0.2115
0.2025
0.3801
0.3316

0.1697
0.1627
0.3695
0.3363

Table 4.3: Color plane keypoint Euclidean displacements RMSE for noise pattern
before and after the calibration for the camera EOS 40D with two different focal
lengths. R/G and B/G correspond to red and blue misalignments with reference to
the green channel.

of only two distinct spots: Rb = Gb = Bb = 0 (disks) and Rw = Gw = Bw = 255
(background). At the same time, an ideal case of the 3D color histogram for a
digitized image would be represented by an idealized gray line connecting black and
white spots: Ri = Gi = Bi, where i = [0, · · · , 255].

Consequently, it is expected that 3D color cloud of the calibration image would
lie along this gray line. If chromatic aberration is present, the color channels are
not aligned and so, occurring blue-red hues come out at significant distance from
the idealized gray line, thus creating a bulged 3D color cloud. Figure 4.8 shows
two color clouds built in RGB space and their corresponding calibration images
(close-ups only are shown) before and after the correction for the camera EOS 5D
at f1 = 24mm.

The shape of such color histograms can be captured with a 3D ellipsoid whose
axes are the eigenvectors of the covariance matrix of the point cloud, and their
lengths correspond to the eigenvalues.

For the point cloud which is defined as

X = {f(x)−m}x ⊂ <3, (4.8)

where the point index x = [1, · · · , N ] and m = 1
N

∑
x f(x) ⊆ <3 is the cloud’s

centroid, the 3D covariance matrix of the point cloud formed by the image pixels:

C = 1
N
XTX ⊆ <3×3. (4.9)

The orthogonal principal directions of the cloud are represented by eigenvectors
U ⊆ <3×3 and obtained with the eigen-decomposition of the symmetric covariance
matrix C so that

C = UV U ′, (4.10)

where V =

v1 0 0
0 v2 0
0 0 v3

 is a diagonal matrix with eigenvalues v1 ≥ v2 ≥ v3.
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(a) Color histogram,
uncorrected

(b) Color histogram,
corrected

(c) Calibration image,
uncorrected

(d) Calibration image,
corrected

Figure 4.8: 3D color clouds before the correction (a) and after (b) for the calibration
image and image’s close-ups before the correction (c) and after (d) taken by camera
EOS 5D at f1 = 24mm.
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Figure 4.9: The local gray line and idealized gray line. For every point x the local
gray line minimizes distance dx from this point to the line.

The first principal component corresponds to a line that passes through multi-
dimensional mean which is the local gray line. Normally the local gray line is not
aligned with idealized gray line due to illumination presence as shown in Figure 4.9.
The obtained local gray line (first component) minimizes the sum of squared dis-
tances D =

∑
x d

2
x of the points from the line. Each eigenvalue is the length of

principal axes, and thus is proportional to D which is correlated with each eigen-
vector.

To get a quantitative representation of the cloud X, we use statistics on the
distances dx from each point to the local gray line. However, not all the points are
subject for consideration. Figure 4.10 shows the frequency histogram for each color
pixel from the calibration image. Obviously, for the image with white background
and black disks on it there are a lot of pixels of whitish and blackish colors. At the
same time, red-blue hues which occurred as a result of chromatic aberration have
very little frequencies. Therefore, to give more significant statistical description of
the cloud point, we eliminate all the majority pixels. The distances of the remaining
points to the local gray line are used to get a quantitative measure:

S =

√∑
x d

2
x

N
(4.11)

The elimination of local black and white spots from point cloud X is done by
following:

Step 1. Calculate local centroids X̄b, X̄w for black and white areas by averaging the
coordinates of all the points lying below centroid (black) or above centroid
(white).

Step 2. Define the range ∆b,∆w where the majority points are located by calculating
variances σ2

b , σ
2
w for black and white areas, and multiply by some threshold

value, i.e. ∆ = 2σ.
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Figure 4.10: The color cloud is represented by frequency histogram: bigger spots
stand for higher frequency of the corresponding color.

Step 3. When collecting statistics on the point cloud, take into account only those
cloud points X that lie in the range far enough from the black and white
centroids: X̄b + ∆b < X < X̄w −∆w.

Assuming the gray line passes through any two points X(g)
1 , X(g)

2 , the distance
from a color point x to the gray line is expressed as:

d0 = |(x−X
(g)
1 )× (x−X(g)

2 )|
|X(g)

2 −X(g)
1 |

(4.12)

The calculation of points X(g)
1 , X(g)

2 is straightforward considering the point cloud
has a zero centroid (see eq.(4.8)) and knowing the eigenvector U1 which corresponds
to the largest eigenvalue v1 (from eq.(4.10)):

X(g)(t) = tU1, (4.13)

where any point on the line can be given by parameter t. It can also be noted
that local gray line can be obtained from calculated local black and white centroids
X̄b, X̄w since they would most likely to lie on it. There was no significant difference
between the results we obtained by using eigen-decomposition or local centroids.
Table 4.4 shows the RMSE and maximum distances for the calibration image and
three cameras. The color misalignments can be reduced upto 6 times, depending
on the camera. The plot of color error around two disks of the pattern image for
camera EOS 40D is shown on Figure 4.11 as gray level values (white is maximum,
black is zero). After correction, the error magnitude for chromatic aberration is
now comparable with noise level, as opposed to the plot before correction, where
noise is masked by the amplitude of color error.
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Camera Uncorrected,
Su(du,max)

Corrected,
Sc(dc,max)

Ratio,
Su
Sc

(du,max

dc,max
)

EOS 5D
Calib f1 = 24mm
Test f1 = 24mm
Calib f2 = 70mm
Test f2 = 70mm

41.54 (78.21)
39.53 (75.55)
36.18 (73.45)
29.87 (59.79)

6.91 (22.87)
8.26 (26.93)
5.50 (17.43)
5.46 (19.45)

6.01 (3.41)
4.78 (2.80)
6.57 (4.21)
5.46 (3.06)

EOS 40D
Calib f1 = 18mm
Test f1 = 18mm
Calib f2 = 55mm
Test f2 = 55mm

32.35 (66.07)
22.02 (46.97)
36.48 (78.73)
21.91 (50.81)

9.46 (34.08)
8.76 (27.55)
7.35 (31.32)
5.93 (19.29)

3.41 (1.93)
2.51 (1.70)
4.96 (2.51)
3.69 (2.63)

A200
Calib f1 = 18mm
Test f1 = 18mm
Calib f2 = 70mm
Test f2 = 70mm

28.32 (76.43)
19.99 (50.18)
28.51 (94.54)
13.08 (35.32)

7.09 (58.45)
5.75 (24.45)
7.22 (76.76)
7.10 (24.77)

3.99 (1.31)
3.47 (2.05)
3.94 (1.23)
1.84 (1.42)

Table 4.4: Table of quantitative error measures for color distribution: RMSE and
maximal distances from cloud point to the local gray line.

(a) Error distances, uncorrected (b) Error distances, corrected

Figure 4.11: Error distances (eq.4.11) to the local gray line for the calibration image
before the correction (a) and after (b) for camera EOS 40D.
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4.3.2 Visual improvement for real scenes

The fact that ellipse center precision is constant under the influence of blur (Fig-
ure 3.6 (b,d)) allows to take images of really far located objects like buildings by
using small size calibration patter (A3 format). For this purpose, it is necessary to
fix focal length and focus distance for farther distance and then take the calibration
image with those settings. Obviously, the disks on the pattern will be smoothed
out. But taken under presence of good illumination, their centers are detected with
the same sub-pixel accuracy. To see the improvement in image quality, a zoomed-in
crops of outdoor images are shown in Figure 4.12, Figure 4.13 and Figure 4.14. Red
and blue fringes can be seen in original images, they disappear after correction.

(a) Test image

(b) Test image crop,
uncorrected

(c) Test image crop,
corrected

Figure 4.12: Test image (a) and its crops before the correction (b) and after (c) for
camera EOS 5D.

4.3.3 Experiments with compact digital cameras

The compact cameras always output images in JPEG format. Even when using the
lossless type of compression, certain amount of information is still lost and can not
be restored. Even if two image are taken under the same camera settings, it is not
ensured that JPEG transformations applied to both will be identical due to different
compositions. We decided to try our correction method for three digital cameras
(Canon PowerShot SX100, Canon PowerShot A470 and Olimpus) on calibration
circled pattern and see what kind of result we will obtain. Figure 4.15 displays
cropped and zoomed in images before and after correction for the first compact
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(a) Test image

(b) Test image crop,
uncorrected

(c) Test image crop,
corrected

Figure 4.13: Test image (a) and its crops before the correction (b) and after (c) for
camera EOS 40D.

Canon camera. While the obtained geometrical misalignment were quite small
(0.01-0.02 pixels), as it can be seen, the corrected image still have color fringes
round the circle edge. However, the color is distributed around quite uniformly
which simply means that JPEG compression results in different circle sizes, so,
even if the disk centers are aligned along the channels, the aberration will take
place due to the different circle sizes. This observation holds for all the tested
compact cameras.

4.4 Conclusion

This chapter presents a high precision chromatic aberration correction method,
using a single snapshot of a pattern of black disks. Disks’ centers are used as
keypoints and aligned between different channels. A dense correction vector field is
then deduced by a general polynomial model which offers an alternative to existing
radial-based models since no assumption must be made on the nature of aberration.

The calibration technique is easy to use, it is practical and is based on a single
shot of a circled pattern. The correction is performed by re-sampling the originals
based on the obtained calibrated model, and resulting into no aberration, high qual-
ity images. Numerical results expose high-precision correction leaving the corrected
geometrical misalignments within 0.05 pixel range and improving the corrected color
misalignments in 3−6 times. Such magnitude of the result geometrical misalignment



48
Chapter 4. High-precision correction of lateral chromatic aberration in

digital images

(a) Test image

(b) Test image crop,
uncorrected

(c) Test image crop,
corrected

Figure 4.14: Test image (a) and its crops before the correction (b) and after (c) for
camera A200.

also demonstrates the absence of aberration in sense of human visual perception,
since it becomes visible at the magnitude of about 0.2 pixels. Real scenes examples
are provided and corrected, their visual results demonstrate the elimination of the
additional colors introduced by lateral chromatic aberration, thus producing quality
color images.
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(a) Image crop,
uncorrected

(b) Image crop,
corrected

Figure 4.15: Calibration image crops before (a) and after (b) the correction for
compact camera Canon PowerShot SX100.





Chapter 5

Camera matrix calibration
using circular control points

Abstract

The precise camera calibration using circular control points is achieved by, firstly,
separation the lens distortion parameters from other camera parameters and calcu-
lation of the distortion field in advance by using the calibration harp. Secondly, in
order to compensate for perspective bias which is prone to occur when using circled
pattern, we incorporate conic affine transformation into minimization error when
calculating the homography, and leave all the other calibration steps as they are
used in the literature. Such error function allows to compensate for the perspective
bias. Combined with precise keypoint detection, the approach showed to be more
stable than existing state-of-art global calibration method.

Keywords Camera calibration, camera intrinsics, perspective bias, distortion
bias, high precision calibration, planar homography, conic-based affine transforma-
tion.
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5.1 Introduction

Camera calibration is the process of finding the true parameters of a camera given
an image (or video), and it is a first step towards computational computer vision.
Although some information concerning the measuring of scenes can be obtained
by uncalibrated cameras [HARTLEY 1994], calibration is an essential step when
metric information is required.

During past decades a lot of work had been done on subject of camera
calibration for different kinds of applications – starting from photogrammetry
[BROWN 1971, FAIG 1975], and more recent in computer vision, for example,
dual space geometry based method [BOUGUET 1998a], flexible technique by
[ZHANG 2000], plumb-line method [DEVERNAY 2001], plane-based calibration
[STURM 1999, GURDJOS 2003], automatic calibration method by [JIANG 2005],
pattern-free method [HARTLEY 2007]. The software packages are provided as well:
calibration toolbox by [BOUGUET 1998b] and automatic bundle adjustment calib-
ration software [PIERROT DESEILLIGNY 2011]. All of the methods allow camera
calibration and 3D scene reconstruction with no or little human interaction.

Naturally, many works in camera calibration have focused especially on achiev-
ing high calibration accuracy and stability. These studies are mainly based on
high precision control points of either 2D or 3D nature, and the accurate detection
of their projections. The points are generally constructed on a planar surface by
means of some high contrast pattern. Linear and least-square techniques for calib-
ration are built upon [TSAI 1992] and [WENG 1992] who improve the calibration
accuracy by thoroughly modelling lens distortion and further optimising with other
parameters together.

For a real camera, an image of the calibration pattern is likely to be a subject
of two types of transformations: a projective transformation as a result of relative
3D position, and a nonlinear transformation due to various lens distortions. The
control point invariance to errors resulting from these two transformations is based
on combination of the pattern employed, and the detection method used. Therefore,
there exist two possible sources of bias in control point recovery which are named
[MALLON 2007b]: perspective bias and distortion bias. The main goal would be to
obtain bias free data, as this is clearly necessary for obtaining unbiased estimates
for calibration algorithms.

The most famous planar calibration techniques were presented by
[STURM 1999] and [ZHANG 2000]. They only require the camera to observe the
pattern shown at a few (at least three) different orientations to get a unique solution
up to scale factor. Either the pattern or camera are moved and the motion need not
to be known. The pattern can be printed on a laser printer and attached to planar
surface. The method places the world coordinate system on the calibration object
and thus require only arbitrary scaled 2D coordinates. While trying to eliminate
distortion bias during optimization, the mentioned works assume that the detected
image points have zero mean Gaussian distributions in order to correctly converge
to the optimal solution. However, it is not always the case. The bias does not have
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the same magnitude for all types of patterns.
[MALLON 2007b] show that detected control points obtained by using centroid

recovery principle, can potentially be corrupted by both perspective bias and dis-
tortion bias, with the likelihood of greater distortion bias magnitude in a typical
camera. They also show that the compensation of distortion bias from such circular
pattern points is not possible without knowing the distortion field. At the same
time, Chapter 3 shows that most precise keypoints can be obtained by using circular
points (conics), therefore we will proceed with them by aiming at how to eliminate
distortion and perspective bias.

Regarding the distortion bias, most common approaches mix distortion para-
meters with other camera parameters (both intrinsic and extrinsic) and optimize
them simultaneously. This could potentially lead to residual error compensation,
thus, decreasing calibration stability. This error compensation can not be elimin-
ated in the framework of global methods, and, therefore, compensation for distortion
correction must be held separately, as a preliminary step to any calibration. Ad-
ditionally, lens distortion introduces a nonlinear shape warping to the area of the
conic and so it is no longer a true conic with biased center. The recently proposed
calibration harp [TANG 2011] allows to solve distortion bias problem by compens-
ation of the lens distortion field separately. Its main idea is based on straightness
measure of stretched strings, pictures of which are taken in different orientations.
More details, some minor improvements and results on this step are presented in
Appendix A. Thanks to calibration harp, we can eliminate distortion bias from
calibration calculation before the main optimization.

When considering perspective bias, the calibration accuracy can be improved
by its correction, i.e. [HEIKKILÄ 2000] and [KANNALA 2006] which describe
calibration techniques with use of circular points. Or, it can be avoided by using
the projection of the conic contour, rather than its center [OUELLET 2008]. As an
example, variation of Zhang’s method is represented in [YANG 2000] where instead
of point features three or more conics are used to obtain homography matrix and
then deduce calibration parameters.

The main idea of elimination the perspective bias is based on the fact that the
projection of the center of a circle does not correspond to the center of the resulting
ellipse in the image. We compensate the perspective bias by taking into account
circle-ellipse affine transformation and correspondence of detected keypoints with
pattern keypoints. This is done by incorporating the conic affine transformation
into minimization step for homography calculation. The transformation function
matches center of the circle of the pattern with center of the ellipse in the image.
The main feature still remains a conic center, therefore, no need for conic contour
extraction, and the perspective bias is taken cared by the error function.

The Subsection 5.1.2 provides an overview and equations of the main calibra-
tion steps which are mainly based on the method of [ZHANG 2000], including the
homography estimation. The modelling of its error function is given in detail in
Section 5.2.
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Pictures of calibration harp

Correction polynomial

Correct pictures of calibration pattern

Lens 
distortion 
correction

Corrected pictures of calibration pattern

Homography with perspective bias compensation

Calibration matrix extraction
Intrinsics 

calculation

Figure 5.1: Camera calibration workflow: distortion parameters are calculated sep-
arately from other parameter.

5.1.1 Camera calibration workflow

Figure 5.1 demonstrates the sequence of main calibration steps. From there, it
can be clearly seen the distortion correction phase is performed separately. The
distortion compensation using calibration harp is explained in Appendix A.

5.1.2 Camera calibration basic steps and equations

We denote a 2D point as m = [u, v]T . A 3D point is denoted by M = [X,Y, Z]T .
We use x̃ to indicate the augmented vector by adding 1 as the last element, i.e.,
m̃ = [u, v, 1]T and M̃ = [X,Y, Z, 1]T . The camera model is usual pinhole and the
relationship between a 3D point M and its image projection m is given by

sm̃ = K
[
R t

]
M̃, (5.1)

where s is an arbitrary scale factor, (R, t) are the extrinsic parameters (rotation
and translation) which relates the world coordinate system to camera coordinate
system, and K is the intrinsic camera matrix given by

K =

α γ u0
0 β v0
0 0 1

 , (5.2)

with (u0, v0) being the coordinates of the principal point, α and β the scale factors
in image with respect to u and v axes, and γ the parameter describing the skewness
of the image axes.
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5.1.2.1 Homography between model plane and its image

The ith column of the rotation matrix R is denoted by ri. Assuming the model
plane is located at Z = 0, we can write (5.1) as

s

uv
1

 = K
[
r1 r2 t

] XY
1

 . (5.3)

Since Z is always equal to zero, the 3D pointM will be denoted asM = [X,Y ]T
and its corresponding M̃ = [X,Y, 1] (same holds for m and m̃). The relation
between model point M and image point m is described by homography H:

sm̃ = HM̃, (5.4)

or, written more precisely

s

uv
1

 = H

XY
1

 , (5.5)

with homography defined up to scale factor

H = K
[
r1 r2 t

]
. (5.6)

5.1.2.2 Estimation of the homography between the model plane and its
image

The Direct Linear Transform (DLT) algorithm is a simple algorithm used to solve
for the homography matrix H given sufficient number of point correspondences,
namely 4 (explained in chapter 4.1 of [HARTLEY 2004]).

We represent matrix H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 and by dividing the first two rows

of (5.5) by the third row, we get

−h11X − h12Y − h13 + (h31X + h32Y + h33)u = 0
−h21X − h22Y − h23 + (h31X + h32Y + h33)v = 0.

(5.7)

Eqs. (5.7) can be written in a matrix form as

Aih = 0,

where Ai =
[
−X −Y −1 0 0 0 uX uY u

0 0 0 −X −Y −1 vX vY v

]
and h =[

h11 h12 h13 h21 h22 h23 h31 h32 h33
]T

.
Each point correspondence provides 2 equations, therefore, 4 correspondences

are sufficient to solve for the 8 degrees of freedom of H. The only restrictions is that
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no 3 points can be collinear. Four 2× 9 Ai matrices (one for each correspondence)
are stacked on top of one another to get an 8× 9 matrix A, or if we deal with more
than four points, the dimension for A will be 2n × 9. The solution space for h is
right singular vector of A associated with smallest singular value.

In many cases more that 4 correspondences are used to ensure a more robust
solution. A single and exact solution is possible only if all of the correspondences
are exact, however, in practice there will always be some uncertainty (influence by
noise), so there will be no exact solution. The problem then is to solve for a vector
h that minimizes a chosen cost function.

Normalization. The DLT algorithm result presented above is dependent on the
origin and scale of the coordinate system in the image as shown in chapter 4.4 of
[HARTLEY 2004]. This is an undesirable property since it makes the algorithm
unstable. The reason for this non-invariance is in how the DLT method uses SVD
of A to obtain a solution to the over-determined set of equations Ah = 0 (explained
in detail by [HARTLEY 1997a]). If we deal with exact data and infinite precision,
the result is fine, but in the presence of noise the solution typically diverges from
the correct result.

In order to ensure the numerical accuracy of the solution, [HARTLEY 2004]
propose a normalization step. The main steps of DLT algorithm are then:

1. Compute a similarity transform T that takes points Mi to a new set of points
M ′i such that the centroid of the points M ′i is the coordinate origin and their
average distance from origin is

√
2.

2. Compute a similar transformation T ′ transforming points mi to m′i.

3. Apply the DLT agorithm from above using M ′i and m′i to obtain homography
matrix H ′

4. Set H = (T ′)−1H ′T .

Precise estimation: dealing with noise. The homography estimation al-
gorithm requires a set of correspondence as input. The real data always introduces
some noise, therefore, it is necessary to take this into account. The estimate of the
parameters is based on maximum likelihood criterion. If Mi and mi are the model
and image points respectively, then they should satisfy (5.4), but they do not for
real data because of the noise in extracted image points. If assume mi is corrup-
ted by Gaussian noise with mean 0 and covariance matrix Λmi , then maximum
likelihood estimation of H is obtained by minimizing the following functional∑

i

(mi − m̂i)TΛ−1
mi

(mi − m̂i), (5.8)

where in the literature m̂i is estimated as

m̂i = 1
h̄3
T
Mi

[
h̄1
T
Mi

h̄2
T
Mi

]
(5.9)
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with h̄i, the ith row of H. Later we will see that (5.9) cannot be applied for circled
pattern due to perspective bias, and it will be replaced by applying homography to
a conic, rather than to its center.

In practice it is assumed Λmi = σ2I for all i. This is reasonable if points are
extracted independently with the same procedure. In this case the problem becomes
a non-linear-least-square:

H = arg min
H

∑
i

‖mi − m̂i‖2 . (5.10)

The nonlinear minimization is conducted by using Levenberg-Marquardt Al-
gorithm [MARQUARDT 1963]. It requires an initial guess which is estimated by
DLT algorithm as shown at the beginning of this sub-section.

5.1.2.3 Constraints on the intrinsic parameters

If we write the homography column-wise as H =
[
h1 h2 h3

]
, 5.6 will be

[
h1 h2 h3

]
= λK

[
r1 r2 t

]
, (5.11)

where λ is an arbitrary scale. Using condition that r1 and r2 are orthonormal, we
get

hT1 K
−TK−1h2 = 0

hT1 K
−TK−1h1 = hT2 K

−TK−1h2.
(5.12)

Given one homography, these are two basic constraints on the intrinsic parameters.
Because a homography has 8 degrees of freedom and there are 6 extrinsic parameters
(3 for rotation and 3 for translation), we can only obtain 2 constraints on the
intrinsic parameters.

5.1.2.4 Solving camera calibration

Let

B = K−TK−1 =


1
α2 − γ

α2β
v0γ−u0β
α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β −γ(v0γ−u0β)

α2β2 − v0
β2

(v0γ−u0β)2

α2β2 + v2
0
β2 + 1

 (5.13)

The matrix B is symmetric and so defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (5.14)

If we note the ith column vector of H as hi = [h1i, h2i, h3i]T , then we can write

hTi Bhj = vTijb (5.15)
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with

vij = [h1ih1j , h1ih2j + h2ih1j , h2ih2j , h3ih1j + h1ih3j , h3ih2j + h2ih3j , h3ih3j ]T .
(5.16)

Then the two fundamental constraints (5.12), from a given homography, can
be rewritten as 2 homogeneous equations in b:[

vT12
(v11 − v22)T

]
b = 0. (5.17)

If n images of the model plane are observed, by stacking n such equations as5.17
we have

V b = 0, (5.18)

where V is a 2n×6 matrix. If n ≥ 3, then there will be in general a unique solution
b defined up to scale factor. In fact, the solution to (5.18) is well known as the
eigenvector of V TV associated with the smallest eigenvalue (or, the right singular
vector of V associated with the smallest singular value).

Extraction of intrinsic parameters from matrix B. Once b is estimated, one
can compute all the camera intrinsic parameters, the matrix K. The matrix B is
estimated up to a scale factor, i.e., B = λK−TK with λ an arbitrary scale. The
parameters are uniquely extracted as follows:

v0 = B12B13 −B11B23
B11B22 −B2

12

λ = B33 −
B2

13 + v0(B12B13 −B11B23)
B11

α =
√

λ

B11

β =
√

λB11
B11B22 −B2

12

γ = −B12α
2β

λ

u0 = γv0
β
− B13α

2

λ
.

(5.19)

Extraction of extrinsic parameters. After K is obtained, the extrinsic para-
meters for each image are from (5.6) computed as follows:

r1 = λK−1h1

r2 = λK−1h2

r3 = r1 × r2

t = λK−1h3

(5.20)

with λ = 1
‖K−1h1‖ = 1

‖K−1h2‖ .
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5.2 Incorporation of conic transform into homography
estimation as perspective bias compensation

When we take a photo of a circle in 3D, it becomes an ellipse in the projection
plane. Both circle and ellipse shapes can be generalized as conics. A general conic
is a curve which can be described by a second-degree equation on the plane. In
2D projective geometry all non-degenerate conics are equivalent under projective
transformations. The equation of conics in inhomogeneous coordinates is

s1x
2 + s2xy + s3y

2 + s4x+ s5y + s6 = 0 (5.21)

that is, a polynomial of degree 2. When using homogeneous coordinates and repla-
cing x→ x1

x3
, y → x2

x3
, we obtain

s1x
2
1 + s2x1x2 + s3x

2
2 + s4x1x3 + s5x2x3 + s6x

2
3 = 0. (5.22)

Using the notations for homogeneous coordinates M̃ = [X,Y, 1]T and setting X =
x1 and Y = x2, the matrix form of conics is

M̃TSM̃ = 0, (5.23)

where the conic coefficient matrix S is given by

S =

 s1 s2/2 s4/2
s2/2 s3 s5/2
s4/2 s5/2 s6

 . (5.24)

The conic coefficient matrix is always symmetric and matrix S is its homogeneous
representation.

Transformation of conics. Under a point transformation (5.4), (5.23) becomes

m̃TH−TSH−1m̃ = 0 (5.25)

so the transformed conic or image of conic S is the conic

H(S) = H−TSH−1. (5.26)

5.2.1 Center of conic’s image vs. image of conic’s center

Given (5.23) of a conic in homogeneous coordinates with S a 3×3 symmetric matrix,
let’s define its center by operator

C(S) = −S−1
2×2S3, (5.27)

with S2×2 the top left 2× 2 block of S and S3 the 2× 1 top part of its last column:

S =
(
S2×2 S3
ST3 λ

)
. (5.28)

For conic S we can compute its image H(S) as in (5.26) and now we wish to
compare image of conic center HC(S) and center of image conic CH(S). We will
see it will not be the same point and the difference will be quantified.
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Figure 5.2: View of pattern plane along an angle θ.

Affine transformation. Let’s take a specific case when we deal with large focal
length and so H is an affine transformation (h31 = h32 = 0 and h33 = 1); we will
have HC(S) coincide with CH(S). Indeed, we may write

H =
(
H2×2 H3

0T2 1

)
and H−1 =

(
H−1

2×2 −H−1
2×2H3

0T2 1

)
. (5.29)

We then get

H(S) =
(
H−T2×2S2×2H

−1
2×2 −H−T2×2S2×2H

−1
2×2H3 +H−T2×2S3

. . . . . .

)
(5.30)

and therefore

CH(S) = −(H−T2×2S2×2H
−1
2×2)−1(−H−T2×2S2×2H

−1
2×2H3 +H−T2×2S3)

= H3 −H2×2S
−1
2×2S3,

(5.31)

which equals HC(S).
At first order, the homography can be approximated by an affine transform, so

the difference we get is second order which is still needed to be quantified.

Transformation for change of viewpoint. Suppose the calibration pattern
is planar and the camera points at it from an angle θ ∈ [0, π/2) as on Fig. 5.2.
Take as origin of the world coordinate system the intersection O of the principal
ray of the camera with the pattern plane. Suppose also the camera has square
pixels. Take the v-axis of the image in the plane determined by the principal ray
and the normal vector to the pattern plane. We also take as origin in the image
the principal point. Let us write d the distance of the optical center to the pattern
plane along the principal ray.

In the front view at the same distance, we can write the projection matrix

P0 =

f f

1


1

1
1 d

 (5.32)
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and in the oblique view

P =

f f

1


1

cos θ − sin θ
sin θ cos θ d

 . (5.33)

Since the plane has equation z = 0, the homography between front view and oblique
view is

H = K

1
cos θ 0
sin θ d


1

1
1/d

K−1 ∼

1
cos θ
sin θ
f 1

 . (5.34)

Given a circle with centerM = (X Y )T and radius r in the front view, its matrix
representation is

S =

 1 0 −X
0 1 −Y
−X −Y ‖M‖2 − r2

 . (5.35)

After computations, we get

CH(S) = 1
(1 + Y sin θ

f )2 − r2 sin2 θ
f2

(
X(1 + Y sin θ

f )
Y cos θ(1 + Y sin θ

f )− r2 cos θ sin θ
f

)
, (5.36)

whereas

HC(S) = 1
1 + Y sin θ

f

(
X

Y cos θ

)
. (5.37)

Notice that the term 1 + Y sin θ
f vanishes for points in front view that map to

the line at infinity of the plane (horizon).

Numerical results. For small r, the distance is proportional to r2. If r = 0
(point), we get coinciding points, as for θ = 0. Distance in pixels between HC(S)
and CH(S) for different values of θ are displayed on Fig. 5.3.

5.2.2 Recovering homography by conic transform cost function

Considering (5.9), we can re-write it in the context of conic transformation, therefore
we get

[û, v̂, ŵ]T = HM̃i = HC(Si)

m̂i =
[
û
ŵ

v̂
ŵ

]T (5.38)

for the pattern point Mi which is a center of circle Si. The detected 2D keypoint
mi which corresponds to the center of projected circle is

mi = CH0(Si), (5.39)
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Figure 5.3: Difference in pixels between HC(S) and CH(S) for f = 4000, x = 0,
r = 20 as a function of y for different angles θ (in degrees).

where H0 is the ground truth homography. Therefore, (5.10) becomes

Hpoint = arg min
H

∑
i

‖CH0(Si)−HC(Si)‖2 . (5.40)

In order to compensate for perspective bias, we have to take into account conic
transform, that is to minimize with respect to center of projected circle, not to
projection of the circle center:

Hconic = arg min
H

∑
i

‖CH0(Si)− CH(Si)‖2 . (5.41)

As it can be seen, Hconic does not require conic contour extraction, but only the
operator which allows to extract conic center. In case of synthetic data, the per-
formance can be evaluated by error function

E = ‖H0C(Si)−HC(Si)‖2 . (5.42)

Levenberg-Marquardt algorithm is used to calculate the homography matrices.
For simplicity, each new estimate is calculated using finite-difference, not Jacobian.
The error function for conic based transform method is calculated as

ei =
√
‖mi − CH(Si)‖2. (5.43)

5.3 Experiments

5.3.1 Homography estimation precision

We aim to compare the performance of Hpoint (5.40) with Hconic (5.41) against
factors such as noise and view angle. To generate synthetic data, we use ground
truth homography obtained by (5.34) with f = 4000. The model plane is represen-
ted by circle pattern and it consists of 10× 14 circles, each of radius 20 pixels, and
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Figure 5.4: Comparison of two methods for homography estimation for different
levels of noise and view angles. Blue color stands for Hpoint and denotes a point-
based feature minimization; the red color graph is for Hconic – takes into account
conic affine transform. Note the increasing difference of final RMSE due to per-
spective bias for point method when the angle increases.

that gives us 140 keypoints in total. The pattern is always rotated over axis y on
a given angle view [0, · · · , 45]◦. No physical image is generated, we only deal with
keypoint coordinates which are obtained based on camera settings, for example, for
circle Si of the pattern, its projected image is H(Si), therefore, the extracted key-
point has coordinates CH(Si). Gaussian noise with 0 mean and standard deviation
0.5 pixels is added to the projected image keypoints CH(Si). For each noise level,
25 independent trials are performed and the results are displayed as an average.

Figure 5.4 shows a 3D comparison graph, where the error measure is a root
mean square of distance described by (5.42). From now on, we denote conic based
minimization as ’conic method’ and standard minimization as ’point method’. As
it can be seen from the graph, the conic method is invariant with respect to the
change of view angle, which indicates that it does not suffer from perspective bias;
on the contrary, the point method is prone to perpective bias.

In order to see the homography estimation performance for different camera
views, we generate synthetic data based on synthetic camera with following settings:
α = 1250, β = 900, γ = 1.09083, u0 = 255 and v0 = 255. The result image has
resolution of 512 × 512. The model plane is represented by circle pattern and it
consists of 10× 14 circles. The pattern size is set to 18cm× 25cm, and the radius
of each circle is 1

3 of the distance between consecutive circle centers. The camera
is set at three views: r1 = [20◦, 0, 0]T , t1 = [−9, 12.5, 50.0]T , r2 = [0, 20◦, 0]T , t2 =
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[−9,−12.5, 51.0]T , r3 = 1√
5 [−30◦,−30◦,−15◦]T , t3 = [−10.5,−12.5, 52.5]T . The

estimated homographies are compared to the ground truth which is obtained as in
(5.6). The noise level varies from 0 to 1 pixels. For each noise level, 25 independent
trials are performed, and the results are displayed as average in Figure 5.5. It can
be seen from the graph that homography matrix which takes into account conic
transform is closer to ground truth (smaller residual) since it allows compensation
for perspective bias.

5.3.2 Calibration matrix stability for synthetic data

Pattern and camera views synthesis The image resolution is set to 1296×864
pixels. The number of circles is 10× 14, each of radius 1cm, and consecutive circles
have 3cm separation between each other. The pattern has resolution 42cm× 30cm.
The synthetic camera has following parameters: α = 1250, β = 1250, γ = 1.09083,
u0 = 648, v0 = 432. For the high quality images, we firstly generate high resolution
pattern image and then subject it to the geometric displacement (all distortion
is eliminated), Gaussian blurring and then down-sampling to the image resolution.
Geometric image re-sampling is carried out by mapping from the transformed image
to the original pattern. This involves calculating for every pixel in the transformed
image, the corresponding pixel coordinate in the original image, which requires an
inverse mapping. The transformed image intensity is then calculated based on the
standard linear interpolation around the corresponding coordinate of the original
pattern.

Pattern positioning In order to test calibration matrix stability, we generated
5 sets of images, each set included 5 images (different views on the pattern). This
allows to extract 5 calibration matrices so that to see stability of its parameters
along the sets. The generated image views are simulated by using pseudo-randomly
generated homographies which consist of 3D rotation and translation whose values
are drawn randomly from a specific range. This range limit ensures that the trans-
formed image lies roughly within an image window. Meanwhile, there is always
variance of rotations and translation along the sets. The roation angles always lie
whithin the range [15◦,−45◦]. For the re-sampling of the transformed image, an
inverse of homography matrices is used.

K matrix stability To compare our method with state-of-art method, we chose
Software Package for Precise Camera Calibration [HIGUCHI 2012] which is built
upon Matlab Calibration Toolbox [BOUGUET 2000] with the difference that circle
pattern can be used for the calibration, plus some minor improvements of the ori-
ginal software. The generated images are treated as distortion free for both software.
Table 5.1 provides the standard deviation results for both methods (we denote state-
of-art method as ’SoA’). As we had set both noise and distortion to zero, we can
clearly see the improvement in calibration stability based on having more precise
homography matrices for our method.
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(a) Camera view 1
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(b) Camera view 2
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(c) Camera view 3

Figure 5.5: Comparison of homography precision for two methods and three camera
views (a), (b) and (c) against different noise levels.
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Parameter SoA ours

dev(α) 0.10 0.008
dev(β) 0.11 0.008
dev(u0) 0.02 0.006
dev(v0) 0.14 0.014

Table 5.1: Standard deviations of camera calibration parameters for five image sets
– comparison of the state-of-art method with ours. Any noise and distortion are
eliminated. Thanks to improved precision of homography calculation, we notice
less deviation for our method.

Deviation from camera center Calculated homography and camera matrix
allow to obtain 3D coordinates of the camera center. If the ground truth is known,
then it is possible to get an error measure in centimeters (the pattern unit for our
synthetic tests). For this, we extract rotation and translation parameters, using
homography matrix as described by (5.20). For the camera center ground truth
C0, it is easy to deduce from the ground truth rotation and translation by inverting
them as

C0 = −R−1
0 T0. (5.44)

For each method, we extract the R and T parameters from the homography, and
then we use eq (5.44) to calculate camera centers for the two methods, so as to
compare the magnitude of the deviation from the ground truth. The Euclidean
distances from C0 to the obtained centers for each camera view are displayed on
Figure 5.6: (a) is for the state-of-art method for each camera view against different
noise level, (b) is for our method for each camera view against the noise level, and
on (c) the average of each method is plotted one against another for different noise
level. As expected, the graphs show that our method has lower magnitude residual
than for the state-of-art global calibration method.

5.3.3 Calibration matrix stability for real data

The experiments for real data were performed for the Camera Canon EOS40D with
lens Canon EF 18-55mm. Several tests were performed – for different focal lengths.
For comparison we use same state-of-art software as in synthetic tests. In order to
treat the distortion for our method, it was necessary to use two different patterns
– calibration harp and circled pattern (the main workflow is shown in Figure 5.1).
The input images for state-of-art method remained the same as input images for our
method for the extraction of calibration matrix, but not distortion-compensated.
For each focal lengths we took 6 datasets, each contained 5 images of circled pattern
under different camera orientation. K matrix was extracted for each set and then
standard deviation was taken so as to measure the result stability. The comparison
of two method is shown in Table 5.2. As it can be seen from the table, our method
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(a) Software of [HIGUCHI 2012]
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(b) Our method software
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(c) Comparison of the mean values of the two methods

Figure 5.6: Euclidean distance from the ground truth optical center, in cm, to
the obtained center for [HIGUCHI 2012] (a), our method (b) for the used cameras
and their mean values for the two methods (c). Experiments are displayed against
different noise level introduced in the synthetic images.
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Parameter f18mm f27mm f55mm

SoA ours SoA ours SoA ours
dev(α) 0.583 0.245 2.394 1.727 8.810 2.668
dev(β) 0.547 0.175 2.360 1.721 7.644 2.641
dev(u0) 0.494 0.135 1.732 0.840 3.565 1.297
dev(v0) 0.787 0.332 1.273 0.935 2.845 1.314

Table 5.2: Standard deviations of the camera Canon EOS5D parameters for real
data – comparison state-of-art method (noted as ’SoA’) with ours (noted as ’ours’).

was able to achieve more stable results since deviation is smaller than for state-of-
art method. The results validate an assumption that separation of distortion from
other camera parameters help to avoid residual error compensation by leading to
more precise camera calibration.

5.4 Conclusion

In order to improve the precision of camera calibration, we first performed a detach-
ment of lens distortion from other camera parameters. As an advantage, it helps to
avoid residual error compensation which is inherent for global calibration methods
and which cannott be solved in its framework. As a disadvantage, it requires build-
ing and using of additional calibration pattern – named calibration harp for the
distortion calculation and only then standard circled pattern – for the camera cal-
ibration. However, after the distortion is calculated for the fixed camera settings,
we can treat the processed images as distortion-compensated, and this allows to
calculated other camera parameters separately from distortion; as well as using the
circled pattern which is prone to distortion bias, and, therefore, using high-precision
keypoint detector.

The second aspect that was addressed was a compensation of the perspective
bias for the circled pattern which was achieved by incorporation of conic affine
transformation into homography estimation. The function serves as a compensator
and at the same time it allows avoiding the use of conic contour detection, the main
feature still remains a conic centroid. Of course, this would not be possible without
advance distortion compensation, since distortion bias has much higher magnitude
than the perspective bias, and elimination is only possible if the distortion field is
known in advance, which is possible using calibration harp.

The numerical results for both undistorted synthetic and distorted real data
demonstrated that our method allows to get more stable results for camera calib-
ration parameters, meaning lesser magnitude of parameters deviations.



Chapter 6

Thesis conclusions

This thesis had studied precision issues for two problems in internal camera calibra-
tion: chromatic aberration correction and camera matrix extraction. Even though
it could seem both problems are quite fundamental, the precision aspects were not
studied as extensively.

A simple human perception experiment had stated that chromatic aberration in
images is not noticeable if the magnitude of color channel geometric misalignment
is less than 0.1 pixels. This analysis defined our goal precision for the geometrical
color channel misalignment. At the same time most of the existing approaches use
different types of radial polynomial to model the geometrical misalignments that is
not general enough and cannot provide satisfiable correction for all camera types.

For our method, we combine high-precision keypoint detection of the pattern
plane which was explained in Chapter 3 with the bivariate polynomial of degree
11 which serves as a correction model for color plane misalignment. Our method
proved to be the most effective among existing state-of-art software - as a result it
always leaves final geometric residual less than 0.1 pixels which was our precision
goal. The calibration technique itself is easy to use, it is practical and is based on
a single shot of circled pattern. It is performed by re-sampling the originals based
on the obtained calibrated model, and as a result it allows to obtain no aberration,
high quality images.

We also measured the result images in terms of color metric which is based on
the color distance from local gray line. It was found this distance may decrease 3-6
times, depending on the camera type.

Real scenes examples taken by three different reflex cameras are provided, cal-
ibrated and corrected, their visual results demonstrated the elimination of the color
artefacts introduced by lateral chromatic aberration.

Compact digital cameras which can only output images in JPEG format were
tested as well. Even though the final geometric misalignment was smaller than 0.1
pixels, the method was not efficient in terms of visual evaluation: the disk size for
calibration images taken by a compact camera was different for each color plane,
probably, due to compression, therefore, even if the disk centers are aligned, the
aberration will take place because of the different disk sizes. From this, we conclude
that high precision aberration correction is only possible for RAW images taken by
reflex cameras.

One of the future directions could be incorporation and evaluation the precision
of optical flow technique and compare it to the current method performance.
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Camera calibration is considered to have been solved since a long time. The lit-
erature shows a trend towards global camera calibration method from set of images
- when optical distortion model is estimated as its part, together with internal and
external camera parameters in a single minimization step. Even the precision and
stability of the extracted parameters had always been considered enough for prac-
tical applications, it was not possible to measure carefully the precision of each set
of parameters. Moreover, as it was explained, the main drawback of global camera
calibration method is a potential for error compensation.

The solution we used lies in separation of the distortion correction from the
camera calibration to avoid error compensation. For the optical distortion correc-
tion we used recently developed calibration harp, the main principle of which is
described in Appendix A with some minor improvements.

Another issue which was addressed is how to eliminate perspective bias when
using circular control points. It was achieved by incorporating of conic affine trans-
formation into homography estimation step which matches center of pattern circle
with center of image ellipse, while leaving other calibration steps as it is described
in the literature.

As our experiments showed, the conic transform function allows to obtain more
precise homography, thus, leading to more stable calibration results. Both synthetic
and real experiments showed more stable results for camera calibration which means
smaller deviation of camera parameters within several sets of images.

The limitation of the proposed method is that we have to deal with two different
calibration patterns which can lead to incremental error, while global calibration
requires only one pattern. However, as a result it allows us to directly process the
optical distortion before proceeding to camera calibration and thus avoid residual
error compensation.

As a future work, it would be interesting to expand experimental dataset (for
example, different reflex cameras), and also use a calibration pattern which is not
printed on paper and attached to the wall, but rather glued on aluminium sheet.
The later could allow to avoid having non-flat areas which are difficult to avoid
using a paper pattern.

Other unanswered questions remain, for example, how is it possible to assess
the distortion correction by using the circles calibration patter. One possible solu-
tion could lie in using calculated homographies. Another questions with regard to
compensation of parameter - if there is a way to quantify the occurred compensa-
tion. And the third important question - whether or not we achieved the limits for
precision.

If considering application future direction, the camera calibration is only one
part of the 3D reconstruction chain in high precision. After internal and external
camera parameters are extracted, the reconstructed 3D scene can be cross-validated
by registering several 3D point clouds reconstructed from different view images.
Such precision specification could be a preliminary step to perform 3D points mer-
ging. The precision of the obtained data can be compared with precision of the
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global calibration method vs. groundtruth data to check the precision gain using
non-global calibration method.





Appendix A

High-precision lens distortion
correction using calibration

harp

The content of this chapter is mainly based on the work of [TANG 2011] and is
a preliminary part of calibration process described in Chapter 5. Some minor
alterations were incorporated in order to improve results, additionally, the method
was implemented on C++ language.

Keywords Optical distortion, lens distortion, error compensation, plumb lines,
polynomial model.
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Appendix A. High-precision lens distortion correction using

calibration harp

A.1 Introduction

When we refer to a notion high precision distortion correction, it is assumed that
residual error between the camera and its obtained numerical model is far smal-
ler than a pixel size. The problem seems to be solved adequately by global
calibration methods, i.e. flexible pattern based method [ZHANG 2000], plumb-
line [DEVERNAY 2001], pattern-free [HARTLEY 2005], dual-spaced geometry
based method [BOUGUET 1998b, BOUGUET 1998a], automatic bundle adjust-
ment calibration software [PIERROT DESEILLIGNY 2011], as well as many oth-
ers [SLAMA 1980, TSAI 1992, WENG 1992, LAVEST 1998] that estimate internal
and external parameters simultaneously. For example, the [LAVEST 1998] method
is based on measurement the non-flatness of a pattern and results in a remarkably
small reprojection error - 0.02 pixels. For the computer vision goals this precision
would be sufficient. Yet, according to a measurement tool of lens distortion correc-
tion precision developed by [TANG 2011] which is based on plumb line concept as
distortion measure, the straightness criterion gives an RMSE as large as 0.2 pixels,
which is a contradiction to the obtained 0.02 pixels re-projection accuracy.

This inconsistency have a meaning that, in the global optimization process,
errors in the external and internal camera parameters are being compensated by
opposite errors in the distortion model. Therefore, an inaccurate distortion model
may pass undetected since it can not capture the real physical aspect of real lens
distortion. Such facts raise an objection to simultaneous estimation of the lens
distortion and camera parameters.

Separation of those parameters one from each other will not only allow to cap-
ture the distortion field more precisely, but will also perform more precise calib-
ration of external parameters like it was shown in Chapter 5 since it can be done
independently from distortion.

Let’s consider the common camera model

C = DKR[I| − T ] (A.1)

with D non linear operator for lens distortion, K calibration matrix, R camera
orientation matrix and vector T the camera optic center in a fixed world frame.
Given 3D point is first transformed in the camera-based frame by the translation T
then rotation R. After, it is projected into the image plane by K, followed by the
non-linear lens distortion D. According to this model, camera calibration consists
of two parts:

• D and K - internal parameters calibration

• R and T - external parameters calibration

The first parameters should remain constant once the camera is fixed in its config-
uration. But in the experiments [TANG 2011] they vary from one test to another,
even if the same camera settings were used. Thus, the internal calibration is not
always reusable for the other datasets. And this is a common drawback for many
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(a) The calibration harp (b) Close-up of calibration harp

Figure A.1: The calibration harp (a) which serves for measuring and correction of
lens distortion. (b) shows a close-up of the harp.

global camera calibration methods that calculate internal and external parameters
simultaneously. This is why it was decided to address the distortion correction
separately and, actually, as a preliminary step to any further calibration.

Let’s assume we are given non-parametric pattern-based method to achieve a
hight precision. For this purpose, a pattern would require a very flat non-deformable
surface with highly accurate patterns printed on it. [TANG 2011] showed that a
relatively small 100µm flatness error can nonetheless introduce a 0.3 pixels error
in distortion estimation. Fabrication of a sizeable (half meter or more is necessary
for camera calibration) very flat pattern, or event to validate their flatness, is a
quite difficult physical and technical task. This is why it is suggested a plumb
lines method [BROWN 1971] for which we can ensure some serious straightness by
tighten strings. A calibration harp [TANG 2011] as shown on Figure A.1 serves well
for this purpose - it is used as both correction and validation tool for lens distortion
problem.

The choice of good distortion model associated with the plumb-line method is as
well important: it must be able to capture different types of realistic lens distortions.
For this purpose, the polynomial model [KILPELÄ 1980] seems more adapted to
correct real distortion [TANG 2011] by linear approximation - whether it is complex
radial or non-radial, provided its degree is high enough. In addition, it is invari-
ant to any translation to the distortion center, therefore, it can be fixed anywhere
without being estimated. It is an advantage if compare to other models such as ra-
dial [BROWN 1971], rational [HARTLEY 1997b, MA 2004, CLAUS 2005], division
[FITZGOBBON 2001], FOV [DEVERNAY 2001].

The calibration procedure consists of taking photographs of different orienta-
tions to estimate the best coefficients of the polynomial model so that to correct the
lens distortion. The method is a direct non-parametric, non-iterative and model-
free. By non-parametric and model-free it means that the distortion model allows
for any diffeomorphism. The obtained precision compares favorably to the distortion
given by state-of-art global calibration and reaches RMSE of 0.02 pixels for calib-
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rated data. The rest of the appendix is organizes as follows: Section A.2 provides
an overview on the calibration method, giving more details on the minor simplific-
ations that were incorporated for the software implementation. The Chapter A.3
shows real data experiments and results that we obtained as a conjunction of the
experiments in Chapter 5.

A.2 The harp calibration method

A.2.1 Main equations

The main idea is to combine the advantage of plumb-line methods with the univer-
sality of polynomial approximation. The plumb-line method consists in correcting
the distorted points which are supposed to be on a straight line, by minimizing the
average squared distance from the corrected points to their corresponding regression
lines.

Polynomial model It has the form

x = b0x
p
d + b1x

p−1
d yd + b2x

p−2
d y2

d + · · ·+ bpy
p
d + bp+1x

p−1
d + bp+2x

p−2
d yd + · · ·

+b2y
p−1
d + · · ·+ b (p+1)(p+2)

2 −3xd + b (p+1)(p+2)
2 −2yd + b (p+1)(p+2)

2 −1

y = c0x
q
d + c1x

q−1
d yd + c2x

q−2
d y2

d + · · ·+ cqy
q
d + cq+1x

q−1
d + cq+2x

q−2
d yd + · · ·

+c2y
q−1
d + · · ·+ c (q+1)(q+2)

2 −3xd + c (q+1)(q+2)
2 −2yd + c (q+1)(q+2)

2 −1

(A.2)

with (x, y) undistorted point, and (xd, yd) distorted point. This polynomial ap-
proximation is translation invariant, and the origin is arbitrarily fixed at the image
center. The orders for the x and y components are respectively p and q. The num-
ber of parameters for x and y is respectively (p+1)(p+2)

2 and (q+1)(q+2)
2 . If orders are

set so that p = q = 3, such model is called bicubic.

Regression line. The integration of the polynomial model into the plumb-line
method is done through the calculation of the linear regression line. Given a set
of corrected points (xi, yi)i=1,··· ,N which are supposed to be on a line, at first we
compute the linear regression line which has a form

αxi + βyi − γ = 0 (A.3)

with α = sin θ, β = cos θ, tan 2θ = −2(Axy−AxAy)
Vxx−Vyy

, Ax = 1
N

∑N
i=1 xi, Ay =

1
N

∑N
i=1 yi, Axy = 1

N

∑N
i=1 xiyi, Vxx = 1

N

∑N
i=1(xi − Ax)2, Vyy = 1

N

∑N
i=1(yi − Ay)2,

and γ = Ax sin θ + Ay cos θ. The sum of squared distances from the points to
regression line is

∑N
i=1(αxi + βyi − γ)2.
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Measuring the straightness The straightness of a line is measured as the root-
mean-square (RMS) distance from its edge points to its global regression line. Con-
sidering (A.3), for G groups of lines, with Lg the numbers of lines in group g, and
Ngl the number of points of line l in a group g, a total sum of squared distance is

S =
G∑
g=1

Lgl∑
l=1

Ngl∑
i=1

(αgxgli + βgygli − γgl)2. (A.4)

After, the straight measure is computed as

RMSE =

√
S

N
, (A.5)

where N - the total number of points N =
∑G
g=1

∑Lg

l=1Ngl.

Minimization and linear estimation For the sake of conciseness, we assume
that we deal with a bicubic model with p = q = 3. Combining (A.2) and (A.4), the
energy S becomes

S =
G∑
g=1

Lgl∑
l=1

Ngl∑
i=1

(αg(b0x
3
dgli

+ · · ·+ b9) + βg(c0x
3
dgli

+ · · ·+ c9)− γgl)2. (A.6)

It is a non-linear problem to minimize the energy S with respect to the parameters
b0, · · · , b9, c0, · · · , c9. It is performed by an iterative Levenberg-Marquardt (LM)
algorithm with estimation the parameters of polynomials in increasing order, which
means that the algorithm starts estimating the parameters of a 3-order polynomial,
then the output is used to initialize the 4-order polynomial, and the process contin-
ues until 11-order (the choice of the polynomial degree is explained in experimental
section).

After non-linear minimization step, the parameters αg and βg are estimated,
therefore, we can iteratively refine the precision - since the problem becomes linear.
The line orientations are first initialized by the orientation of the regression lines.
By differentiating S with respect to each parameter, we obtain a linear system

At = 0 (A.7)

with t = (b0, · · · , b9, c0, · · · , c9, γ1l, · · · , γGLG
)T and the coefficient matrix

A =

AbAc
Aγ

 , (A.8)

which composed of 3 submatrices. The iteration is repeated until the result stabil-
izes, or the required precision is reached.

To obtain a unique non-trivial solution, we always set b7 = c8 = 1, b9 = c9 = 0
which fixes scale and translation to the solution. The minimized S can be changed
by the introduced scale, but this change is consistent of the distortion center and
b9, c9, b7 and c8 are fixed.
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Implementation and computational time It is straightforward to implement
the method with iterative LM minimization and then linear estimation. However,
we had encountered the problem of low computational time due to the calculation
of derivatives to each of the variable. A simplification of the formulas presented
below helped to solve this problem by reducing the time from more than a minute
to seconds. It is mainly based on extraction of the value for line inclination angle,
θ, as well as its sine and cosine based on the retrieved statistical values (average
and variance). This allows to simplify the minimization formula and get rid from
the calculation of γ coefficients.

A.2.2 A solution for the line angle θ

Let’s consider an individual line for which we aim to define an inclination angle.
The angle is defined as a slope of the regression line, the squared distances sum of
which we have to minimize

S = 1
2
∑
i

(xi sin θ + yi cos θ − γ)2 (A.9)

Taking partial derivatives to θ and γ yields

∂

∂θ
:
∑
i

(xi cos θ − yi sin θ)(xi sin θ + yi cos θ − γ) = 0

∂

∂γ
: −

∑
i

(xi sin θ + yi cos θ − γ) = 0
(A.10)

Therefore, we can formulate γ as

γ = x̄ sin θ + ȳ cos θ (A.11)

where x̄ = 1
N

∑
i xi and ȳ = 1

N

∑
i yi. After we can deduce the angle θ through

following steps using obtained equations:∑
i

(xi cos θ − yi sin θ)((xi − x̄) sin θ + (yi − ȳ) cos θ) = 0∑
i

xi(yi − ȳ) cos2 θ −
∑
i

yi(xi − x̄) sin2 θ + 〈
∑
i

xi(xi − x̄)−
∑
i

yi(yi − ȳ)〉 cos θ sin θ = 0

(A.12)

The double-angle formulas for sin and cos simplifies it to

(
∑
i

xiyi −Nx̄ȳ) cos 2θ + 1
2〈
∑
i

xi
2 −Nx̄2 −

∑
i

ȳi
2 +Nȳ2〉 sin 2θ = 0. (A.13)

By putting x̃i = xi − x̄ and ỹi = yi − ȳ, the derivative to θ from (A.10) can be
written as

∂

∂θ
:
∑
i

x̃iỹi cos 2θ + 1
2(
∑
i

x̃2
i −

∑
i

ỹ2
i ) sin 2θ = 0 (A.14)
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There are two possible solutions which we denote as θ0 and θ1 and which are
related as θ1 = θ0 + π

2 , but only one of them that provides a minimum will be of
the interest:

2θ0 = atan2(−2
∑
i

x̃iỹi,
∑
i

x̃2
i −

∑
i

ỹ2
i )

2θ1 = atan2(2
∑
i

x̃iỹi,−(
∑
i

x̃2
i −

∑
i

ỹ2
i ))

(A.15)

To define which of them is a solution, a second derivative to θ is taken:

∂2S

∂θ2 = −2
∑
i

x̃iỹi sin 2θ + (
∑
i

x̃2
i

∑
i

ỹ2
i ) cos 2θ

= k sin 2θ0 sin 2θ + k cos 2θ0 cos 2θ = k cos 2(θ − θ0)
(A.16)

where k is a normalization constant

k =
∣∣∣∣∣
( ∑

i x̃
2
i −

∑
i ỹ

2
i

−2
∑
i x̃iỹi

)∣∣∣∣∣ , (A.17)

which is always positive k ≥ 0.
From (A.16) we can write for θ = θ0 we get k(≥ 0)

for θ = θ1 we get − k(≤ 0)
(A.18)

The first solution for θ0 represents a minimum in which we are interested in,
since the (A.16) is a second derivative and the first solution of (A.15) is an according
concave-up. Thus, the only one solution for the line angle

θ = 1
2atan2(−2

∑
i

x̃iỹi,
∑
i

x̃2
i −

∑
i

ỹ2
i ) (A.19)

Moreover, by taking into consideration the above notations for x̃ and ỹ, as well
as the (A.11) for γ, now the squared distance sum to minimize, (A.9), will have a
simpler look of

S =
∑
i

(x̃i sin θ + ỹi cos θ)2 (A.20)

A.2.3 Simplified minimization for obtaining the polynomial coef-
ficients

For one line with number of points i = 1, · · · , N , given a set of distorted points
(xd,i, yd,i) and a set of corresponding corrected points (xi, yi) which are supposed
to lie on a linear regression line

αx̃i + βỹi = 0 (A.21)
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where x̃i = xi − x̄, ỹi = yi − ȳ with x̄ =
∑
xi
N

and ȳ =
∑
yi
N

; and α = sin θ,
β = cos θ. The previous subsection gives a description for obtaining an angle θ for

the selected line. We denote Vxx =
∑
x̃2
i

N
, Vyy =

∑
ỹ2
i

N
, Vxy =

∑
x̃iỹi
N

and Ax = x̄

and Ay = ȳ for further simplicity.
Supposing, we deal with degree-3 polynomial correction model which is repres-

ented as xi = b1xc,i
3 + b2xc,i

2yc,i + · · ·+ b10 + xc

yi = c1xc,i
3 + c2xc,i

2yc,i + · · ·+ c10 + yc
(A.22)

where xc,i = xd,i − xc
S

and yc,i = yd,i − yc
S

with (xc, yc) being a center of the image
and S a normalization factor.

The sum of squared distances from the points (xd,i, yd,i) of a line to the corres-
ponding regression line is presented as an equation (A.20).

Error Given a set of lines k = 1, · · · ,K, the error vector for LM algorithm is
E = (e1e2 · · · eK)T . The root mean square distance ek which represents an error for
one line k as in (A.20), is given by

ek =

√∑N
i=1(αx̃i + βỹi)2

N
(A.23)

In the above formula, we have to know what are the constants α and β for each
line which are sine and cosine of the angle θ. It is possible to avoid calculation of the
angle itself for simplicity and an advantage in running time by further expansion

ek =

√∑
N (α2x̃2

i + β2ỹ2
i + 2αβx̃iỹi)

N
(A.24)

From the first solution in (A.15), we can deduce the expressions for cosine and
sine of the angle 2θ:

cos 2θ = 1
cnorm

(
∑

x̃2
i −

∑
ỹ2
i ) = Vxx − V yy

cnorm

sin 2θ = − 2
cnorm

∑
x̃iỹi = − 2Vxy

cnorm
,

(A.25)

where cnorm =
√

(Vxx − Vyy)2 + 4V 2
xy is a normalization coefficient.

Applying formulas for double angles cos 2θ = 2 cos2 θ − 1 = 1− 2sin2θ, we can
get an expressions for each constant

α2 = sin2 θ = 1
2(1− cos2θ) = 1

2(1− Vxx − Vyy
cnorm

)

β2 = cos2 θ = 1
2(cos2θ + 1) = 1

2(1 + Vxx − Vyy
cnorm

)

αβ = sin θ cos θ = 1
2 sin 2θ = − Vxy

cnorm
.

(A.26)
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Therefore, using the above expressions, we can expand (A.24) into

ek =

√∑
(0.5(1− cos 2θ)x̃2

i + 0.5(cos 2θ + 1)ỹ2
i + sin 2θx̃iỹi)

N

=

√
1
2((1− Vxx − Vyy

cnorm
)Vxx + (1 + Vxx − Vyy

cnorm
)Vyy −

4V 2
xy

cnorm
) =

√
1
2〈Vxx + Vyy − cnorm〉

(A.27)

As a result

ek =
√

1
2
(
Vxx + Vyy −

√
(Vxx − Vyy)2 + 4V 2

xy

)
(A.28)

Jacobian The Jacobian matrix is determined as a matrix of all first-order par-
tial derivatives of the vector function which is unknown parameters in our case
(b1, b2, · · · , b10, c1, c2, · · · , c10). For a given line k the general formulation is ex-
pressed as

∂ek
∂•

= 1
4ek

∂Vxx
∂•

+ ∂Vyy
∂•
−

4Vxy ∂Vxy

∂• + (Vxx − Vyy)(∂Vxx
∂• −

∂Vyy

∂• )√
(Vxx − Vyy)2 + 4V 2

xy

 (A.29)

The partial derivatives ∂Vxx
∂• , ∂Vyy

∂• and ∂Vxy

∂• are calculated as follows:

∂Vxx
∂b1

= 1
N

∂
∑

(xi −Ax)2

∂b1
= 1
N

∑
2(xi −Ax)(∂xi

∂b1
− ∂Ax
∂b1

), · · · ,

∂Vyy
∂b1

= 1
N

∂
∑

(yi −Ay)2

∂b1
= 1
N

∑
2(yi −Ay)(

∂yi
∂b1
− ∂Ax
∂b1

), · · · ,

∂Vxy
∂b1

= ∂Axy
∂b1

−Ay
∂Ax
∂b1

, · · · , ∂Vxy
∂c1

= ∂Axy
∂c1

−Ax
∂Ay
∂c1

, · · · .

(A.30)

The partial derivatives ∂xi
∂• and ∂yi

∂• are:

∂xi
∂b1

= x3
c,i,

∂xi
∂b2

= x2
c,iyc,i, · · · ,

∂xi
∂c1

= 0, ∂xi
∂c2

= 0, · · · ,

∂yi
∂b1

= 0, ∂yi
∂b2

= 0, · · · , ∂yi
∂c1

= x3
c,i,

∂yi
∂c2

= x2
c,iyc,i, · · · .

(A.31)

So, we just need the partial derivatives of Axy, Ax and Ay with respect to the
unknown parameters b1, b2, · · · , b10, c1, c2, · · · , c10:
∂Axy
∂b1

= 1
N

∂
∑
xiyi

∂b1
= 1
N

∑
(∂xi
∂b1

yi + xi
∂yi
∂b1

), · · · ,

∂Ax
∂b1

= 1
N

∂
∑
xi

∂b1
= 1
N

∑ ∂xi
∂b1

, · · · , ∂Ay
∂b1

= 1
N

∂
∑
yi

∂b1
= 1
N

∑ ∂yi
∂b1

, · · · .
(A.32)

The result Jacobian matrix has a form of

J =


∂e1
∂b1

∂e1
∂b2

· · · ∂e1
∂c1

∂e1
∂c2

· · ·
∂e2
∂b1

∂e2
∂b2

· · · ∂e2
∂c1

∂e2
∂c2

· · ·
... . . .

 (A.33)
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In practice, xc = w
2 and yc = h

2 are chosen to be the center of the images,

b1 = 0, b2 = 0, · · · , b8 = 1, b9 = 0, b10 = 0.
c1 = 0, c2 = 0, · · · , c8 = 0, c9 = 1, c10 = 0.

(A.34)

b8, b9, b10, c8, c9, c10 are fixed as above and not estimated.

Denormalization As a final step, a normalization procedure must be performed:

b̃1 ← b1
S3 c̃1 ← c1

S3

b̃2 ← b2
S3 c̃2 ← c2

S3

b̃3 ← b3
S3 c̃3 ← c3

S3

b̃4 ← b4
S3 c̃4 ← c4

S3

b̃5 ← b5
S2 c̃5 ← c5

S2
...

...

(A.35)

So, for the new distorted point the correction model is expressed as:xi = b̃1(xc,i − xc)3 + b̃2xc,i − xc2(yc,i − yc) + · · ·+ xc

yi = c̃1(xc,i − xc)3 + c̃2xc,i − xc2(yc,i − yc) + · · ·+ yc
(A.36)

A.3 Experiments

A.3.1 Choice of polynomial degree

A synthetic test was performed to see how the degree of the polynomial influences
the obtained precision. We used 8 groups of lines with orientations θ as 10◦, 20◦, 30◦,
40◦, 50◦, 60◦, 70◦ and 80◦ to estimate the correction parameters by minimizing S
(see (A.20)). We also chose another independent group of lines with orientation 55◦
for verification. The ideal lines are plotted in an image with resolution 1761× 1174
pixels. The sampling step for each line is set to 30 pixels, and the number of samples
on each line is always more than 15. The step between each consecutive lines is 30
pixels as well. The ideal lines are distorted by some radial distortion with tangential
component, equation of which is given by

xd = x(k0 + k1r + k2r
2) + · · ·+ [p1(r2 + 2x2) + 2p2xy](1 + p3r

2) + s1r
2

yd = y(k0 + k1r + k2r
2) + · · ·+ [p2(r2 + 2y2) + 2p1xy](1 + p3r

2) + s2r
2,

(A.37)

where k0, k1, · · · are the radial distortion coefficients (k0 = 1.0, k1 = 1.0e − 4,
k2 = −2.0e − 7, k3 = −6.0e − 14); p1, p2, p3 - decentering distortion coefficients
(p1 = 4.0e−6, p2 = −2.0e−6), s1, s2 thin prism distortion coefficients (s1 = 3.0e−6,
s2 = 1.02−6). The correction results are shown in Table A.1. The residual stabilizes
and does not change much after degree 11 is achieved. It was also confirmed by our
real tests. And it is the reason why we always chose the degree 11 for calibration
of distortion, i.e., in Chapter 4.
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order p = q RMSE, in pixels, (A.5)
Calibration Test

3 0.6935 0.6239
4 0.6096 0.5312
5 0.2439 0.2093
6 0.2419 0.2064
7 0.1050 0.0879
8 0.1031 0.0870
9 0.0521 0.0512
10 0.0515 0.0509
11 0.0477 0.0449
12 0.0474 0.0444

Table A.1: Synthetic test of lines correction: the residual errors for polynomial de-
grees of 3 to 12 for different lines data - the ones used for minimization (’Calibration’
column) and independent measure (’Test’ column).

focal length distorted RMSE undistorted RMSE # images
f = 18mm 6.34 (23.20) 0.086 (0.57) 24
f = 27mm 1.39 (14.63) 0.044 (0.39) 29
f = 55mm 0.65 (4.26) 0.023 (0.11) 23

Table A.2: Straightness measure RMSE, (A.5) (in pixels) before and after the
optical distortion correction for different focal lengths (18mm, 27mm, 55mm) of
the camera Canon EOS5D; given in the format mean (max). The last column
indicates total number of images used for calibration.

A.3.2 Real data experiments

The real experiments were done with a reflex camera Canon EOS5D and EFS 18-
55mm lens. Three focal lengths were chosen f = 18mm, f = 27mm and f = 55mm
so that to have 3 different datasets. The RAW images were demosaicked same
way as it is described in Section 4.3 by leaving same resolution as the raw image
(3888×2592 pixels). In order to take different line orientations, the camera was set
on a tripod and then rotated from −90◦ to 90◦ in z plane with about 7◦ step, thus,
we obtained 20-30 images for each focal length.

We performed the calibration with participation of different number of images,
as well as with a verification images that were not used for calibration. Table A.2
provides correction results for each of three datasets given initial distortion measure;
we used all the available images for calibration for each dataset (more than 20 for
each). As it can be seen, the mean of corrected residual stays within 0.02-0.08
pixels, depending on the camera setting.

Table A.3 provides only results for the dataset taken with f = 18mm and
exposes correction results for test images against different number of images used
for minimization. It can be seen from the results that we do not really need the
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Image(-s) # calibration images
22 15 8

Calibration 0.086 (0.57) 0.075 (0.48) 0.064 (0.31)
Test 1 0.067 (0.28) 0.064 (0.32) 0.058 (0.27)
Test 2 0.082 (0.43) 0.084 (0.46) 0.087 (0.39)
Test 3 0.066 (0.20) 0.083 (0.26) 0.039 (0.12)

Table A.3: Straightness measure RMSE, (A.5) (in pixels) for the corrected test
images which did not take participation in minimization process for a dataset
f = 18mm of the camera Canon EOS5D; given in the format mean (max). The
’Calibration’ row shows mean and maximum result of the corrected calibration
images.

number of images for calibration to be large. From our experiments and also with
other datasets it was stated that most optimal number in sense of number-quality
is 8-10 images with the condition that they cover well enough all different line
orientations. The number of images 5-8 still provided meaningful results but were
less precise, while the number less than 5 was not able to ensure stable calibration
for the test images whose orientation did not participate in calibration process.

A.3.3 Measuring distortion correction of global calibration method

The calibration harp is also a tool to measure the optical distortion, since it holds
the properties that distortion-free camera projected straight lines always remain
straight.

After the calibration is performed for [BOUGUET 2000] software, we took the
obtained radial distortion model and applied it to the images of harp taken with
the same camera settings. However, the result corrected image did not seem to
be corrected, the lens distortion was not compensated successfully; it is possible to
visually observe the lines are not straight - see Figure A.2, therefore, we did not
even proceed to actually measuring the straightness RMSE.

Our conclusion is that the obtained radial model by [BOUGUET 2000] is not
able to capture the physical properties of the distortion field, and the high precision
calibration results are rather explained by an error compensations of the internal
and external parameters.

A.4 Conclusion

This section briefly describes the work done by [TANG 2011] which is a prelim-
inary step to a calibration process given in Chapter 5. The minor contributions
introduced: simplification of minimization function for the gain of computational
cost. The method is implemented in C++ language. Results for different focal
lengths and different number of calibration images are demonstrated. Depending
on the focal length, the corrected residual stays within 0.02-0.08 pixels, and the
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Figure A.2: A crop of undistorted image of lines calibration pattern by using global
calibration radial model of [BOUGUET 2000] software: note, the lines are not even
visually straight.

most optimal number of images for calibration is 8-10 with the condition it covers
all different line orientations. The calibration harp was also used as a measurement
tool for a global calibration method like [ZHANG 2000] and showed that correction
by an obtained radial polynomial is not efficient; and this supports the fact of error
compensation between internal and external parameters when calculating all the
parameters simultaneously.
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