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Introduction 1.Résumé

Dans ce chapitre d'introduction, nous présenterons le contexte de cette thèse sur l'analyse sémantique de données 3D dans le milieu urbain. Nous exposerons ensuite le projet TerraMobilita dans le cadre duquel elle a été développée. Les contributions principales seront annoncées ainsi que les publications scientiques associées.

Motivation

Current city maps contain information about roads, sidewalks, facades and urban objects such as lampposts, trac signs, bollards, trees, among others. Creating and updating these maps is very expensive and time consuming because it is manually carried out by topographers at non-mapped or non-updated locations. Nowadays, several mapping agencies (IGN, 2014b,a), public authorities (Paris, 2014;[START_REF] Casqy | Saint-Quentin-en-Yvelines communauté d'agglomération[END_REF] and private companies (PagesJaunes, 2007;[START_REF] Archivideo | Archivideo, from France in 3D to the 3D world[END_REF][START_REF] Cyclomedia | Cyclomedia: smart imagery solutions[END_REF][START_REF] Earthmine | Earthmine: complete solutions for 3D streel level imagery[END_REF]1Spatial, 2014;[START_REF] Geoautomation | GeoAutomation • Next Generation Surveying[END_REF]Google, 2014a,b;Trimble, 2014a;[START_REF] Earthmine | Earthmine: complete solutions for 3D streel level imagery[END_REF] begin to consider justiable adding 3D information to these urban maps.

Developing 3D maps opens a wide range of applications such as urban planning, cultural heritage documentation, virtual tourism, itinerary planning, marketing, navigation systems and video games. Additionally, in the perspective of a sustainable city and in the framework of new legislation about equality of rights for disabled persons, local authorities are required to execute diagnoses and public works in order to guarantee accessibility to public spaces: sidewalks, bike paths, bus stops, among others (LoiHandicap, 2005;UN, 2007). For these applications, 3D urban scannings are required.

Compared to the rst 3D scanning systems 30 years ago, current 3D laser scanners are cheaper, faster, more accurate and provide denser 3D point clouds. For example, depending on the acquisition system resolution, it is possible to get millions of points for a few meters of scanned street. A processing pipeline is required in order to create and update maps from 3D point clouds. It usually consists in transforming points into surfaces or geometric primitives for subsequent analysis. These analyses are usually carried out by manually assisted approaches, leading to time consuming procedures, unsuitable for large scale applications. Object extraction from urban scenes is dicult and tedious, and existing semi-automatic methods may not be suciently precise nor robust and exhaustive manual corrections are necessary. In that sense, automatic and accurate methods for 3D urban semantic analysis are required. This Ph.D. thesis is developed in the framework of TerraMobilita project, which aims at developing new automated methods for 3D urban cartography. Further details on this project are given in the following section.

TerraMobilita project

3D mapping of roads and urban public space, accessibility and soft mobility TerraMobilita project 1 aims at developing new automated processes to create and update 3D urban maps, with centimeter accuracy, using 3D laser scanning and imagery. Such 3D maps will be used to develop new services and applications for urban space, accessibility and soft mobility.

The project is certied by the clusters Cap Digital and Advancity and it has been selected for funding by FUI11 project call in 2011 and it will nish in 2015. The project brings together 8 partners (4 private companies, 3 public institutions, 1 association and 1 administrative manager), as shown in Figure 1.1 and listed below: 1Spatial (http://1spatial.com/fr/), project leader, TTS THALES (https://www.thalesgroup.com/en/worldwide/defence/training-simulation), 1 For further information on our contributions to TerraMobilita project, please visit: http://cmm.ensmp.fr/TerraMobilita/ 1 Introduction Trimble laser scanning (http://www.trimble.com/3d-laser-scanning/), Cityway (http://www.cityway.fr/), IGN (http://www.ign.fr/), ARMINES/MINES ParisTech -PSL Research University: CAOR -Center for robotics (http://caor-mines-paristech.fr/) CMM -Center for mathematical morphology (http://cmm.ensmp.fr/) CAS -Center for systems and control (http://cas.ensmp.fr/) Sciences Po (http://www.sciencespo.fr/), CEREMH (http://www.ceremh.org/), TecDev (http://www.tecdev.fr/), administrative management.

The Research and Development (R&D) consortium of the project is coordinated by the three ARMINES/MINES ParisTech laboratories. Thanks to several local authorities associated to the project, prototyping applications and experiments are carried out on three urban areas in France: Paris, Saint-Quentin-en-Yvelines and Lille.

TerraMobilita expected results are twofold: On the one hand, industrial solutions for acquisition, data processing and production of 3D maps of urban roads and public space. On the other hand, solutions for urban management and maintenance as well as applications and services for soft mobility and automatic accessibility diagnoses of the public space. Specic innovations are:

TerraMobilita project

To build complete urban 3D maps including 3D data and texture information from 3D point clouds and digital images.

To develop 3D processing algorithms that allow faster, easier, cheaper and more frequent map updates. To develop applications and services to manage and maintain public spaces, produce adaptive itineraries for soft mobility, and make automated accessibility diagnoses for dierent mobilities.

TerraMobilita project falls within the scope of INSPIRE Directive, which establishes a European spatial data infrastructure to ensure interoperability, dissemination, availability, use and reuse of geographic information in Europe (INSPIRE, 2007). Several commercial products and services, mainly Business to Business, will result from the project: Automated processing services of laser scanning data and digital imagery. 3D modeling and mapping tools for urban environments. 3D information services for management and maintenance of the public space, soft mobility, itinerary planning and accessibility diagnoses for disabled people. Some use cases of TerraMobilita project, directly related to this thesis, are presented below.

Use case AM1: Urban accessibility diagnosis for people with disabilities

TerraMobilita project responds to challenges of the sustainable city taking into account accessibility issues for soft mobility and persons with disabilities under the terms of French law 2005-102 (LoiHandicap, 2005) ) and United Nations convention (UN, 2007). Our aim is developing 3D maps identifying all potential barriers for a person with disabilities, declaring obstacles into a database and performing accessibility diagnoses of roads and public spaces. Such application will use 3D scannings in order to provide updated urban information, to automate accessibility diagnosis and to oer adaptive urban itineraries for dierent types of soft mobility. These services can be oered by a private company in the project or directly managed by local authorities 1.3.2 Use case EP1: Automatic parking statistics Dealing with cars has a particular interest in the framework of TerraMobilita project. The aim of this use case is the automation of parking statistics using 3D multiple daily scans of parking lots. Classically, parking statistics are manually carried out as follows: i) available parking lots are identied on a given urban zone. Dierent types of parking lots can be found (delivery, disabled parking place, paid, non-dedicated spaces, among others); ii) multiple daily surveys are manually done by operators taking note of license plates of parked cars; iii) parked cars are classied according to type of parking: resident people (parked during the night), short parking (parked less than 1 hour), working people (parked all the day). iv) nally, statistics are computed in order to analyze the user types and the occupancy rate of each parking lot.

In TerraMobilita project, we propose the following pipeline in order to evaluate the potential of an automatic method using 3D laser scanning data: i) segment parked cars on a surveyed zone; ii) compare cars parked in the same zone at dierent hours. This comparison is required to determine the occupancy duration of each parking slot. iii) nally, compute parking statistics and present results into a Geographical Information System (GIS).

Use case EP2: Degradation of urban furniture

Degradation of urban furniture is of great interest for local authorities. When a damage is reported in some urban object such as a trac light, a lamppost or a bollard, it is important to detect and to quantify the degradation in order to plan its reparation.

In the framework of TerraMobilita project, we propose the following work-ow to evaluate the potential of an automatic method using 3D laser scanning data: i) segment pole-like objects on a surveyed zone; ii) compare segmented objects with those reported in the 2D urban map. This comparison is required to determine the object presence or absence. iii) compute geometric features such as length, orientation and verticality of each pole-like object in order to evaluate its degradation. iv) nally, integrate results into a GIS for large-scale analysis.

1 Introduction

Contributions of this thesis

As aforementioned, semantic analyses from 3D data are required in order to create and update urban maps.

Such analyses are usually carried out by manually assisted approaches, leading to high time consuming rates, unsuitable for large scale applications. In that sense, this thesis introduces automatic methods for urban semantic analysis. Specically, we focus on a complete 3D urban analysis method including 6 main steps:

Filtering/preprocessing: since geo-referenced laser scanning data are aected by object reectance, object speed at the acquisition moment, GPS conditions, among others, it is necessary to apply a ltering/preprocessing step in order to reduce outliers, noise and redundant data.

Ground segmentation and accessibility analysis: dening a Digital Terrain Model (DTM) with extra features, such as access ramps geometry, is useful to establish the suitability of a path for a specic mobility type.

For example, high curbs should be avoided for a skater or a person in a wheelchair.

Facade segmentation: useful to characterize the front of a building and to dene public space boundaries.

Object detection: an object is considered as correctly detected if it is included in the list of object hypotheses, i.e. it has not been suppressed by any ltering/preprocessing method and it has not been included as part of the DTM.

Object segmentation: an object is considered as correctly segmented if it has been perfectly isolated as a single object, i.e. there is no under-segmentation, and each individual object is entirely inside of only one connected component, i.e. there is no over-segmentation.

Object classication: a semantic category is assigned to each segmented object. Each category represents an urban semantic entity. Depending on the application, several classes can be considered, e.g. pedestrians, lampposts, trac signs, benches, cars, garbage containers, bikes, among others. This separation is useful to produce detailed 3D urban maps, to dene the best itinerary for a specic mobility type, to produce parking areas maps and to compute parking statistics. This Ph.D. thesis, entitled Semantic analysis of 3D point clouds from urban environments: ground, facades, urban objects and accessibility, has been developed at MINES ParisTech in the Center for Mathematical Morphology (CMM) under the supervision of Dr. Beatriz Marcotegui Iturmendi. We aim at developing automatic methods to process 3D point clouds from urban laser scanning. Our methods are based on elevation images, mathematical morphology and supervised learning. Although the processing of 3D urban data has been underway for many years, automatic semantic analysis is still an active research problem. The development of accurate and fast algorithms in this domain is one of the main contributions of the present thesis.

Under previous TerraNumerica project [START_REF] Capdigital | Terra Numerica : La numérisation du patrimoine urbain[END_REF], several techniques to lter, segment and classify urban objects from 3D point clouds were developed. In the work by [START_REF] Hernández | Analyse morphologique d'images pour la modélisation d'environnements urbains[END_REF], accurate results were reported using 3D data from mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems. In particular, that work has been the starting point of this thesis. Current TerraMobilita project (CapDigital, 2014) brings new challenges related to very dense data, high resolution, new application domains (mobility and accessibility) and large-scale processing issues.

In the framework of the present thesis, several methods in the state of the art have been reviewed and their drawbacks have been pointed out. Additionally, more robust and accurate methods have been developed in order to analyze ground, facades, urban objects and accessibility. Our methods have been validated on several public databases in order to get comparative results with the state of the art. Moreover, our methods have been integrated into a large-scale production chain. In that sense, our results can be exported as 3D point clouds for visualization and modeling purposes and as shapeles for integration in any GIS.

Each chapter of the present manuscript has been written to be self-contained. This document is organized as follows.

Chapter 2 presents an overview on the dierent laser scanning technologies used in urban environments, in particular MLS and Stop & Go (S&G) mapping systems. Additionally, we present several public 3D databases in the state of the art as well as the acquisition systems and databases developed in the framework of TerraMobilita project.

Chapter 3 presents an overview on the dierent 3D data structures used to process and to visualize 3D data.

Several data structures have been proposed in the state of the art such as elevation images, triangulation, meshing, octrees and k-D trees. The choice of the best data structure is application dependent and it is possible 1.5 Associated publications to combine some of them to get better results in specic tasks such as visualization, ltering, segmentation and classication. In this thesis, most methods work on elevation images, thus their generation takes an important part of that chapter. Moreover, innovative pre-processing techniques are introduced.

In Chapter 4, we propose an automatic and robust method for urban accessibility diagnoses from 3D point clouds. In the rst part, our method segments ground and detects urban objects in order to build a 3D obstacle map useful for itinerary planing. In the second part, automatic methods for segmentation, reconnection and characterization of curbs and urban accessibility analysis are developed.

Chapter 5 proposes several automatic methods to segment facades from 3D point clouds. In our experiments, facades are the highest vertical objects on the urban scene and they appear as elongated structures on the elevation image. Thus, we propose several morphological methods based on geometric and geodesic attributes.

These methods are useful to segment facades without including objects connected to them such as motorcycles parked next to facades or pedestrians leaning on walls. Additionally, these methods have been proven to be useful in other industrial applications aiming at segmenting elongated objects, as presented in Chapter 7.

Chapter 6 presents a semantic analysis of 3D urban objects based on mathematical morphology and supervised learning. The focus is automatic detection, segmentation and classication of urban objects from 3D laser scanning data. Our automatic method generates object hypotheses as discontinuities on the ground, thus small and isolated regions are eliminated. Then, connected objects are segmented in order to assign a unique identier to each individual object. Finally, several geometrical and contextual features are computed for each object and classication is carried out using a support vector machine (SVM) approach.

Chapter 7 introduces several methodological contributions to mathematical morphology. We have developed powerful attribute-based operators useful in a wide range of applications such as: attribute controlled reconstruction, adaptive mathematical morphology, feature extraction, ltering and segmentation. Although, the natural application of these methods in the urban semantic analysis is the segmentation of elongated objects such as facades and curbs, we present other uses such as the segmentation of elongated cells in an industrial application.

Finally, Chapter 8 is devoted to discuss advantages and drawbacks of our proposed methods. Moreover, conclusions and perspectives for future works are presented.

Associated publications

Several contributions of this thesis have already been published in the following papers (sorted by year): (Serna et al., 2014a) : A. Serna, B. Marcotegui, E. Decencière, T. Baldeweck, A.-M. Pena, S. Brizion. Segmentation of elongated objects using attribute proles and area stability: application to melanocyte segmentation in engineered skin . Pattern Recognition Letters. Special Issue on Advances in Mathematical Morphology. Volume 47, October 2014, Pages 172-182. [START_REF] Vallet | TerraMobilita/iQmulus Urban Point Cloud Analysis Benchmark[END_REF] (Serna et al., 2014b) : A. Serna, B. Marcotegui, F. Goulette and J.-E. Deschaud. Paris-rue-Madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classication methods . In proceedings of ICPRAM2014: 3rd International Conference on Pattern Recognition and Methods. March 6-8, 2014, Angers (France). Pages 1-6. (Serna and Marcotegui, 2013b) 1 Introduction (Serna and Marcotegui, 2013a) : A. Serna, B. Marcotegui. Attribute controlled reconstruction and adaptive mathematical morphology . In proceedings of ISMM2013: 11th International Symposium on Mathematical Morphology. pp. 205-216. May 27-29, 2013, Uppsala, Sweden. (Serna et al., 2012) : A. Serna, J. Hernandez, B. Marcotegui. Adaptive Parameter Tuning for Morphological Segmentation of Building Facade Images . In proceedings of EUSIPCO2012: 20th European Signal Processing Conference, Bucharest, Rumania August 26-31, 2012. pp. 2268-2272, EURASIP 2012. (Serna and Marcotegui, 2012) 2 Laser scanning technology and 3D data in urban environments

Résumé

Dans ce chapitre, nous présenterons les technologies existantes dans le domaine de l'acquisition de données 3D. Nous exposerons les technologies utilisées dans le cadre de TerraMobilita. Ensuite, nous présenterons les diérentes bases de données 3D disponibles dans l'état de l'art, ainsi que, celles créées par les partenaires du projet et utilisées dans cette thèse.

Introduction

In the last 30 years, laser scanning technology has been ourishing as surveying technique for the acquisition of geospatial information in outdoor environments. A wide variety of solutions is commercially available, accompanied by many dedicated data acquisition, processing and visualization tools. Due to recent improvements in quality and productivity, this technology is successfully applied to 3D city modeling, digital terrain model generation, forest monitoring, documentation of cultural heritage, among others [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF].

The aim of this chapter is to give an overview on the dierent laser scanning technologies used in urban environments, in particular the mobile laser scanning (MLS) and Stop & Go (S&G) mapping systems. Besides, we present several public 3D databases in the state of the art as well as the acquisition systems and databases developed in the framework of TerraMobilita project.

Several contributions of this chapter have already been published. We have collaborated in the creation, annotation and publication of several 3D urban databases (Serna et al., 2014b;[START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] as well as in the denition of evaluation protocols using 2D and 3D manual annotations (Serna and Marcotegui, 2013b;[START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF].

This chapter is organized as follows. Section 2.3 discussed technologies used to acquire 3D urban data. Section 2.4 presents acquisition systems used in the framework of TerraMobilita. Section 2.5 describes the available datasets in the state of the art while Section 2.6 presents those acquired in the framework of TerraMobilita project. Finally, Section 2.7 concludes this chapter.

Laser scanning technology

In order to obtain exploitable 3D data from urban environments, an acquisition system has to face several issues such as resolution, precision in the localization, information management, processing time and storage capacity.

In general, there are three methods to acquire 3D urban data: i) passive methods, such as photogrammetry and stereoscopic vision, give the 3D location of specic points or features extracted from the scene. The point density of these methods depends on the texture of the scene [START_REF] Cramer | The DGPF test on digital aerial camera evaluation -overview and test design[END_REF][START_REF] Bulatov | Context-based urban terrain reconstruction from images and videos[END_REF][START_REF] Grigillo | Urban object extraction from digital surface model and digital aerial images[END_REF][START_REF] Gerke | Supervised and unsupervised MRF based 3D scene classication in multiple view airborne oblique images[END_REF]; ii) active methods, such as lasers and structured light, give denser data over all scanned surfaces (Goulette et al., 2006b;[START_REF] Lafarge | Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation[END_REF][START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF]; and, iii) hybrid methods, exploiting the complementarity between passive and active methods: laser scanning provides the accurate 3D geometry while photogrammetry provides the realistic texture [START_REF] Sevcik | Documentation of complex facades and city modelling through the combination of Laserscanning and photogrammetry[END_REF][START_REF] Beger | Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction[END_REF][START_REF] Gerke | Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classication[END_REF].

In this work, only laser acquisitions will be considered. Nowadays, LiDAR technology (light detection and ranging) has been prospering in the remote sensing community thanks to developments such as: Aerial Laser Scanning (ALS), useful for large scale buildings, roads and forests survey; Terrestrial Laser Scanning (TLS), for more detailed but slower urban surveys in outdoor and indoor environments; Mobile Laser Scanning (MLS), less precise than TLS but much more productive since the sensors are mounted on a vehicle; and more recently, Stop and Go (S&G) systems, easily transportable TLS systems making a trade o between precision and productivity. All these laser scanning technologies dier in terms of data capture mode, project size, scanning 2 Laser scanning technology and 3D data in urban environments mechanisms, point cloud density, acquisition time, accuracy and resolution. In general, the common aspects are the LiDAR principle and the geo-referencing using Global Positioning System (GPS) and Inertial Measurement Units (IMU).

ALS systems (Figure 2.1(a)) have been operating since the 70s and rst works reported precisions around 1 m. However, the rst operative applications appeared ten years later, in the 80s, thanks to developments in LiDAR, GPS and IMU technologies [START_REF] Arp | Mapping in tropical forests: a new approach using the Laser APR[END_REF][START_REF] Krabill | Airborne laser topographic mapping results[END_REF][START_REF] Lindengerber | Test results of laser proling for topographic terrain survey[END_REF]. The current accuracy of these systems is ±10 cm in the Z-axis and ±50 cm in the XY-plane [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF].

TLS systems (Figure 2.1(c)) have been operating since the 80s and have currently reached a level of maturity that enable a widespread deployment. It is possible to use several xed scanners in dierent locations and to register their individual scans in order to obtain dense and complete 3D point clouds of urban scenarios. TLS accuracy is the best one, less than 10 mm, compared with other laser scanning systems [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF]. However, acquisition is time consuming. For example, scanning a district or a whole city may take several weeks or even months.

MLS systems (Figure 2.1(b)) are more recent and are prospering due to new applications in urban environments. Indeed, they unlock the productivity problem. However, precision is lower and processing is more complex because laser and image devices must be geo-referenced to the position and orientation of the vehicle. Then, it is necessary to combine several technologies such as GPS, IMU, images, 3D point clouds and data fusion. These systems have centimeter accuracy under good GPS conditions. Recent developments include the VIAPOLIS prototype (Figure 2.2(c)), created by the National French Mapping Agency (IGN), which is a very light electric vehicle that scans from sidewalks, green spaces and open public spaces.

S&G systems (Figure 2.1(c)) are light-weight mobile systems oering a trade-o between productivity and accuracy. These systems are very useful for fast and accurate acquisitions over the sidewalks and in indoors scenarios. Currently, the accuracy of these systems is lower than 10 mm, i.e. the accuracy is comparable to that for TLS systems but the acquisition is up to 10 times faster (Trimble, 2014a).

All these systems contain a scanner unit, a global positioning system and an inertial measurement unit.

Besides, some of them simultaneously acquire images with digital cameras. The laser is able to record multiple echoes, their reectance strength (called also intensity) and additional attributes such as time stamp and echo width [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF]. Figure 2.1 illustrates the acquisition principle in aerial and mobile laser scanning systems.

TerraMobilita acquisition systems

In the framework of TerraMobilita 1 project, four acquisition systems, a S&G and three MLS, have been devel- oped, as shown in Figure 2.2. One of them, VIAPOLIS system, is a prototype and it is not fully operational yet. Details on the other three systems are presented below.

Stereopolis II

It is a MLS system developed by the National French Mapping Agency (IGN) [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF], shown in Figure 2.2(a). This system is equipped with a RIEGL VQ-250 laser sensor, generating up to 300,000 points per second with a centimeter resolution. This RIEGL sensor digitizes up to 100 scan lines per second, which gives a spatial sampling of 6 cm along the trajectory direction when the vehicle drives at 20 km/h. Table 2.1 presents the technical specications of RIEGL VQ-250 laser scanner. France. This dataset contains 21 million points acquired approximately in 1.5 minutes.

L3D2

It is a MLS system from the robotics laboratory (CAOR) at MINES ParisTech (Goulette et al., 2006b), shown in Figure 2.2(b). This system is equipped with a Velodyne HDL-32E, generating up to 700,000 points per second in a range of 70 meters with a centimeter resolution. In a velodyne sensor, several lasers are mounted on upper 1 TerraMobilita project: http://cmm.ensmp.fr/TerraMobilita/ 2.4 TerraMobilita acquisition systems and lower blocks of 32 lasers each and the entire unit spins, giving less precise but much denser point clouds than Riegl sensors [START_REF] Velodyne | The HDL-32E Velodyne LiDAR sensor[END_REF]. Table 2.2 presents the technical specications of Velodyne HDL-32E laser scanner. This dataset corresponds to a 80 m long street section and contains 10 million points.

2 Laser scanning technology and 3D data in urban environments 

Stop & Go Trimble TX8

It is a Stop & Go system developed by Trimble Laser Scanning (Trimble, 2014a), shown in Figure 2.2(d). This system uses Trimble TX8 scanner (Trimble, 2014c), allowing 3D spherical acquisitions up to 138 million points for a range of 120 m in less than 3 minutes. Using this system, one can capture detailed datasets at high speed while maintaining high accuracy over the entire range of the scan. Table 2.3 presents the technical specications of Trimble TX8 laser scanner. is not a general consensus about the best detection, segmentation and classication methods. This choice is application dependent. One of the main drawbacks is the lack of public databases allowing benchmarking.

In the literature, most available urban data consist in close-range images, aerial images, satellite images but a few laser datasets (ISPRS, 2013;[START_REF] Ign | IGN -Geospatial and Terrestrial Imagery[END_REF]. Moreover, manual annotations and automatic results are rarely found in available 3D repositories [START_REF] Nüchter | Robotic 3D Scan Repository[END_REF]CoE LaSR, 2013).

The three following state of the art databases are publicly available and they contain ground truth annotations.

They are described here and they will be used to benchmark our methods in the following chapters of this thesis.

Oakland database

Oakland dataset 2 [START_REF] Munoz | Onboard contextual classication of 3-D point clouds with learned high-order Markov Random Fields[END_REF] This dataset corresponds to a 80 m long street section and contains 10 million points. 

Paris-rue-Souot database

Paris-rue-Souot dataset 3 (Hernández and Marcotegui, 2009a) contains MLS data, acquired by IGN, from a 500 m long street in the 5 th Parisian district. Six classes have been annotated: facades, ground, cars, lampposts, pedestrians and others. This database has been created in the framework of TerraNumerica project 4 . It has been used before by Hernández and Marcotegui (2009c) and Serna and Marcotegui (2014) and it will be used later in Chapter 6 in order to benchmark our object classication method. 

Ohio database

Ohio dataset 5 [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF] is a combination of ALS and TLS data, acquired by Neptec Technologies Corp (?), in Ottawa city (Ohio, USA). It contains 26 tiles (100 × 100 meters each) with several objects such as buildings, trees, cars and lampposts. However, ground truth annotations only consist in a 2D labeled point in the center of each object. In that sense, segmentation results cannot be evaluated point by point. This database has been used before by several authors [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF][START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF]Serna and Marcotegui, 2014) and it will be used later in Chapter 6 in order to benchmark our object segmentation and classication methods. Table 2.5 presents available classes and number of objects by category in Ohio dataset. Figure 2.6(c)

shows a snapshot of this dataset. This database has been used before by several authors [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF][START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]Serna and Marcotegui, 2013b) and it will be used later in Chapter 4 in order to benchmark our curb segmentation method. Figure 2.6(d) shows a snapshot of this dataset.

TerraMobilita 3D databases

In the framework of TerraMobilita project, several databases have been developed in order to set up, test and benchmark semantic analysis methods working on 3D urban data. In this section, we present a description of these databases. For further information on these and other available 3D urban databases, the reader is encouraged to visit: http://cmm.ensmp.fr/~serna/downloads.html (oat32) reectance: backscattered intensity corrected for distance.

(uint32) id: containing a unique identier/label for each segmented object.

(uint32) class: containing the classication result for each segmented object. Two points having the same id must have the same class. The annotation is voluntarily very detailed aiming at producing a ground truth useful to a wide range of applications. For example, the pedestrian class has been separated in still pedestrians, fast pedestrians and pedestrians+something because all of them have dierent geometrical features. These subclasses may be gathered or eliminated according to the type of classication we want to evaluate.

It is noteworthy that the entire 3D point cloud has been segmented and classied, i.e. each point contains an id and a class. Thus, the point-wise evaluation of detection, segmentation and classication methods becomes possible.

TerraMobilita/iQmulus database

TerraMobilita/iQmulus database 8 [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] (oat32) X,Y,Z origin: Cartesian geo-referenced coordinates of the sensor.

2 Laser scanning technology and 3D data in urban environments (uint8) num_echo: number of the echo (to handle multiple echoes).

(uint32) id: containing a unique identier/label for each segmented object.

(uint32) class: containing the classication result for each segmented object. Two points having the same id must have the same class.

In this database, the entire 3D point cloud is segmented and classied, i.e. each point contains an id and a class. Thus, the point-wise evaluation of detection, segmentation and classication methods becomes possible.

Figure 2.9 presents one of the 3D point clouds of this database colored by the reectance, the object id and the object class.

In this contest, a hierarchy of semantic classes has been dened, as shown in Figure 2.10. The tree is voluntarily very detailed as the aim at producing a ground truth that can be useful to a wide range of methods.

The total number of available classes is 101.

Non-annotated TerraMobilita datasets

Other non annotated datasets have been acquired in the framework of TerraMobilita project. These databases have been acquired for specic aims inside the project (Section 1.3) such as the development of automatic methods for ground coating analysis, parking statistics, urban furniture change detection, documentation of cultural heritage, among others. In the future, some of these datasets will be annotated and made available to the scientic community. For further information the reader is encouraged to visit: http://cmm.ensmp.fr/~serna/downloads.html 2.6.3.1 MINES ParisTech acquisitions The total number of available classes is 101.

system. The laser intensity is coded as an integer value between 0 and 255. Osets have been subtracted from XY coordinates in order to avoid loss of information: X 0 = 650976.0 m and Y 0 = 6861466.0 m, respectively.

Additionally, a video has been recorded in order to make easier the human interpretation of the scene. For this purpose, the camera Garmin Elite Virb has been used. It has been positioned in the middle of the front windshield and it acquires 1920×1080 pixels at 30 frames per second. 

Conclusions

We have presented an overview on laser scanning technologies used to acquire 3D data in urban environments.

In particular, the mobile laser scanning (MLS) and the Stop & Go (S&G) mapping systems developed in the framework of TerraMobilita project have been described. We have also presented several public 3D databases in the state of the art as well as TerraMobilita databases used later in this thesis to benchmark our methods.

These databases are presented as lists of XYZ Cartesian geo-referenced points with additional features such as reectance, sensor position and ground truth annotations.

The main advantage of our annotated databases with respect to others found in the state of the art is that an id and a class are given for each 3D point. It allows the point-wise benchmarking of detection, segmentation and classication methods. In that sense, several evaluation methods have been developed in order to quantify segmentation quality and classication performance [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]. These evaluations will be presented in following chapters of this document.

In general, ground truth annotations are carried out in a manually assisted way, as it is the case of Paris-rue-Madame (Serna et al., 2014b) and TerraMobilita/iQmulus [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] databases. In these databases, manual annotation speed was approximately 50 m/h. In spite of good annotations quality, this process is time consuming, which makes manual methods unpractical for large scale applications. In a city like Paris, with 1700 km of streets, approximately 4 years will be required for a complete manual annotation. This is one of the main motivations for the development of automatic methods for 3D semantic analysis in urban environments. The contributions of this Ph.D. thesis on this topic will be presented in following chapters of this document.

In future works, other datasets acquired in the framework of TerraMobilita project will be annotated and made available to the scientic community. For further information the reader is encouraged to visit: http://cmm.ensmp.fr/~serna/downloads.html 3 3D data structures and preprocessing

Résumé

Dans ce chapitre, nous présenterons une révision de l'état de l'art sur les structures de données utilisées pour le traitement et la visualisation de nuages de points 3D. Ensuite, nous exposerons notre stratégie de traitement basée sur des images d'élévation ainsi que nos méthodes de pré-traitement et décomposition de la scène 3D par des images à diérentes élévations.

Introduction

When working on 3D applications, there are two main approaches: the rst one, called virtual reality, refers to the construction of articial models of real or imaginary objects for applications in video games, graphic design, industrial design, prototyping, among others. Generally, these scenarios are built using computer aided design (CAD) software and they are the result of the developer creativity and ability; the second approach, called virtualized reality, refers to the representation of real world objects using information acquired by a sensor. In general, this 3D information comes from cameras and laser sensors and it is commonly presented as a 3D point cloud.

Point clouds are delivered as long lists of (x, y, z) coordinates, possibly with attributes such as intensity, color, among others. Points are usually listed in scan line order, which is not suitable for ecient processing.

A suitable data structure is not only required to inspect and to visualize 3D information, but also to process it conveniently. For example in a (x, y, z) list, it is not possible to quickly determine the neighbors of a point within a given radius. Data structures such as elevation images, triangulation, meshing, octrees and k-D trees allow this kind of processing. Choosing the proper data structure is application dependent. It is possible to combine some of them to get better results in specic tasks such as visualization, ltering, segmentation and classication. In this chapter, we briey describe some 3D data structures proposed in the literature and discuss their advantages and drawbacks. For further information, we recommend to read the book by [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF].

In our work, most methods work on elevation images, thus their description takes an important part in this chapter. This chapter is organized as follows: Section 3.3 describes the commonly used data structures in the state of the art. Section 3.4 explains our processing based on elevation images. Section 3.6 presents preprocessing methods used to lter and interpolate elevation images. Finally, Section 3.7 concludes this chapter.

3.3 State of the art: 3D data structures

Triangulation

A triangulation is a 3D meshing using triangles connecting each point in the data space. In that sense, each node corresponds to a point in the dataset. In most instances, triangles are required to meet edge-to-edge and vertex-to-vertex, and dierent types of triangulation may be dened depending on the object and subdivision type.

Delaunay triangulation, so named after Boris Delaunay [START_REF] Delaunay | Sur la sphère vide[END_REF], has the property that no points are inside the circumscribed circle of each triangle. Besides, it also creates compact triangles with the largest minimum angle [START_REF] Okabe | Spatial tessellations. Concepts and applications of Voronoi diagrams[END_REF]. Within a triangulated point cloud, each triangle edge denes the neighborhood relationship between points, which is useful for image processing [START_REF] Jähne | Digital Image Processing[END_REF][START_REF] Gonzalez | Digital Image Processing, 3rd Edition[END_REF][START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Serra | Image analysis and mathematical morphology: theoretical advances[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF] and computer vision [START_REF] Parker | Algorithms for image processing and computer vision[END_REF] algorithms. The main drawback of this approach is that the triangulation is dened on a plane. For example, if XY plane is used, the points distribution on Z axis has no inuence on the triangulation. As a consequence, points that are close in XY plane and share a triangle edge, may not be close in the 3D space, as shown in Figure 3.1. Since Delaunay triangulation is still a 2D data structure, the presence of multiple surfaces above each other may generate incorrect edges between distant points.

3 3D data structures and preprocessing height has no inuence on the process. As a consequence, points that are close on the plane and share a triangle edge, may not be close in the 3D space, as it is the case of points n 0 , n 1 and n 2 .

Neural networks

Neural networks (NN) can be used to model 3D objects from unstructured point clouds. In general, a training step is required and two types of models can be obtained: i) volume models, as it is the case of multi-layer feedforward neural networks (MLFFNN). These networks are trained as classiers in order to get binary membership functions, where a positive response is obtained for each 3D point inside the object and a negative response is obtained otherwise. ii) surface models, as it is the case of self-organizing structures. These networks provide a surface with an implicit neighborhood relation represented by the connection between near neurons. This kind of modeling can be interpreted such as a meshing and it is more appropriate than MLFFNN for processing tasks [START_REF] Cretu | Neuralnetworkbased models of 3D objects for virtualized reality: a comparative study[END_REF].

The two most commonly used self-organizing structures are the self-organizing maps (SOM) [START_REF] Kohonen | Self-Organizing Maps, 3rd Edition[END_REF][START_REF] Kohonen | On the quantization error in SOM vs. VQ: a critical and systematic study[END_REF] and the neural gas networks [START_REF] Na | Research on kmeans clustering algorithm: an improved k-means clustering algorithm[END_REF]. The input space is clustered assigning neurons to specic regions of the space. The number of inputs of each neuron is equal to the dimension of the input space. Thus, synaptic weights are interpreted as locations in this space, i.e. the inputs of the network are the set of (x, y, z) coordinates of the 3D point cloud. Thus, each neuron is represented by a 3D weight vector m i ∈ 3 . These self-organizing networks are iteratively adapted using competitive training [START_REF] Martinetz | Neural-gas' network for vector quantization and its application to time-series prediction[END_REF][START_REF] Fritzke | A growing Neural Gas Network learns topologies[END_REF]. The model is asymptotically tted to the input points according to a density function, as shown in Figure 3.2. Each region is a group of close points assigned to a neuron. After training, two input vectors belonging to the same region should be represented by one or two nearby neurons in the representation space.

Figure 3.3 shows an example of 3D meshing using SOM and NGN. The main advantage of this method is the denition of neighborhood relations, useful in post-processing tasks. Besides, NN introduces an adaptive down-sampling of the point cloud since the number of neurons is usually much lower than the number of input points. However, the main drawback is the parameter selection and the high computational cost of the training.

Octrees

Octrees, rstly used in 3D graphics by [START_REF] Meagher | Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer[END_REF], are 3D data structures useful for spatial indexing, streaming and data compression. Starting with a 3D cell enclosing the entire data space as the root, each internal cell containing data is recursively subdivided into up to eight non-empty octants. Each octree region uses a regular binary subdivision over all dimensions. In this way, the location of each internal cell is implicitly dened by its level and position in the octree. An octree point shares the same features with the other points in the same subdivision, and the subdivision center is at an arbitrary position inside the cell. Thus, each octree region stores additional information about the split positions. A node in an octree is similar to a node in a binary tree, with the dierence that it has eight children instead of two. Additionally, each octree node contains [START_REF] Figueroa | Experiencias virtuales con piezas del Museo del Oro de Colombia[END_REF][START_REF] Serna | Modelado 3D de tumores cerebrales empleando endoneurosonografía y redes neuronales articiales[END_REF].

a key referring to their 3D coordinates. Figure 3.4 shows the recursive subdivision of a cube into octants. Note that the corresponding octree is not balanced. This is an advantage in terms of resolution since the level of detail of each branch is adapted according to the point density. However, it is a drawback in terms of computational cost because searching the neighbors of a given point depends on its location and the number of subdivisions on its branch. by [START_REF] Meagher | Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer[END_REF] and they are 3D data structures useful for spatial indexing, streaming and data compression. Image taken from Wikipedia, the free encyclopedia, 2012.

kd-trees

In contrast to octrees, k-D trees guarantee a fully balanced hierarchical data structure for datasets sampled from a k-dimensional manifold [START_REF] Bentley | Multidimensional binary search trees used for associative searching[END_REF]. A k-D tree is a k-dimensional binary tree useful for spatial indexing, streaming and data compression. Each node contains pointers to the left and right subtrees. All non-leaf nodes have an orthogonal plane that divides one of the dimensions. Points in the left subtree are below this plane and points in the right subtree are above. Each leaf node contains a pointer to the list of points located in the corresponding cell, dened by the intersection of half-spaces given by nodes in the part of the root node to the leaf node itself. Using this data structure it is possible to locate a point in a k-D tree with N points in an average time of O{log(N )}. Figure 3.5 illustrates the recursive division of a cube into eight leaf cells using a 3D-tree.

Projection to images

In the literature, several methods project 3D information onto a 2D grid in order to reduce the problem complexity and to speed up the computational processing. As each pixel of the projected grid contains depth information, it is called range image or depth map. This kind of 2.5D image has a long tradition in the scientic community [START_REF] Hoover | An explerimental comparison of range image segmentation algorithm[END_REF] and it is of great interest nowadays due to technological developments in remote sensing equipments such as Riegl, Velodyne and Kinect sensors. In general, dierent types of projections can be dened. [START_REF] Gorte | Planar feature extraction in terrestrial laser scans using gradient based range image segmentation[END_REF] projects TLS data to a plane from the sensor point of view. As a result, a panoramic range image is obtained. In a similar way, [START_REF] Zhu | Segmentation and classication of range image from an intelligent vehicle in urban environment[END_REF] generate range images in which rows represent the acquisition time of each laser scanline, columns represent the sequential order of measurement and pixel values code the distance from the sensor to the point. Another approach consists in projecting the 3D point cloud to an spheric coordinate system with origin in the laser location. This solution is called station view and is commonly used in commercial solutions such as Trimble

RealWorks (Trimble, 2014b).

When the range image plane corresponds to the ground plane (i.e. the horizontal plane), the depth information is related with the height of the objects in the scene. Such images represent a nadir view of the scene and are commonly called elevation images in the remote sensing community. This is the projection used by us and by other several authors in the state of the art (Hernández and Marcotegui, 2009c;[START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF][START_REF] Weinmann | Feature relevance assessment for the semantic interpretation of 3D point cloud data[END_REF]. This approach is specially adapted to segment ground and urban objects. Since there is no more splitting, the nal eight are called leaf cells. Image taken from Wikipedia, the free encyclopedia, 2012. 

Discussion

According to the state of the art, several data structures are available in order to visualize and process 3D data.

Several methods perform directly on the 3D point cloud, on a point by point basis. In general, these methods are the most expensive in computational terms [START_REF] Mallet | Analysis of Full-Waveform LiDAR data for classication of urban areas[END_REF][START_REF] Demantke | Dimensionality based scale selection in 3D LiDAR point clouds[END_REF][START_REF] Rutzinger | Tree modelling from mobile laser scanning data-sets[END_REF][START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF]. Slightly less expensive methods process the 3D point cloud on a strip by strip basis 3 3D data structures and preprocessing [START_REF] Owechko | Automatic recognition of diverse 3-D objects and analysis of large urban scenes using ground and aerial LiDAR sensors[END_REF][START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF][START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]. The main drawback is that intrinsic information between neighboring strips is missing. To solve this problem, a neighborhood relation can be dened using 3D data structures such as meshing [START_REF] Cretu | Neuralnetworkbased models of 3D objects for virtualized reality: a comparative study[END_REF][START_REF] Schnabel | Shape recognition in 3D point clouds[END_REF][START_REF] Serna | Modelado 3D de tumores cerebrales empleando endoneurosonografía y redes neuronales articiales[END_REF], voxelization [START_REF] Douillard | On the segmentation of 3D LIDAR point clouds[END_REF], tting primitives [START_REF] Owechko | Automatic recognition of diverse 3-D objects and analysis of large urban scenes using ground and aerial LiDAR sensors[END_REF]Poreba and Goulette, 2012b,a) and projection images [START_REF] Gorte | Planar feature extraction in terrestrial laser scans using gradient based range image segmentation[END_REF][START_REF] Kammel | Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[END_REF][START_REF] Ferguson | Detection, prediction, and avoidance of dynamic obstacles in urban environments[END_REF][START_REF] Hernández | Analyse morphologique d'images pour la modélisation d'environnements urbains[END_REF][START_REF] Zhu | Segmentation and classication of range image from an intelligent vehicle in urban environment[END_REF]Serna and Marcotegui, 2014). The selection of the appropriate data structure is application dependent and it should be a trade-o between performance and computational cost.

In this work, elevation images are the 3D data structure on which our methods are based on. 3D point clouds are projected to elevation images because they are convenient structures to visualize and to process data.

One can utilize all the large collection of existing image processing tools, in particular mathematical morphology [START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF]. Additionally, images can be processed quickly, implicitly dene neighborhood relationships and require less memory than 3D data.

The rest of this chapter is devoted to the image elevation generation and the preprocessing methods used to lter and interpolate elevation images.

3D processing using elevation images

In general, the idea of deriving elevation images from 3D point clouds is not new. In previous works [START_REF] Gorte | Planar feature extraction in terrestrial laser scans using gradient based range image segmentation[END_REF][START_REF] Kammel | Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[END_REF][START_REF] Ferguson | Detection, prediction, and avoidance of dynamic obstacles in urban environments[END_REF][START_REF] Zhu | Segmentation and classication of range image from an intelligent vehicle in urban environment[END_REF][START_REF] Niemeyer | Contextual classication of lidar data and building object detection in urban areas[END_REF], the authors used elevation images to process urban 3D data. In particular, the works by Hernández and Marcotegui (2009c) and [START_REF] Hernández | Analyse morphologique d'images pour la modélisation d'environnements urbains[END_REF] have been the starting point of this chapter. Their projection and interpolation methods (Sections 3.4.1 and 3.6.3) have been applied identically as in these works. Nevertheless, the projection by slices and the ltering methods are entirely original and constitute one of the main contributions of this chapter.

Several contributions of this chapter have already been published in Serna and Marcotegui (2013b).

Elevation image generation

Elevation images are 2.5D structures that contain height information at each pixel. They are generated by an orthographic projection to a virtual camera plane, i.e. the height is the distance from each 3D point to the projection plane. In general, the camera plane is chosen to coincide with the horizontal plane. The camera model P is a projective transformation from R 3 → N 2 , and it can be decomposed in three sequential transformations as follows:

Denition 3.4.1 Let M = (X, Y, Z) be a 3D point in R 3 and m = (u, v) a point in the image space N 2 . The camera model P is dened as the successive transformations:

(X, Y, Z) T -→(X c , Y c , Z c ) P -→(x, y) A -→(u, v) (3.1) [T ] = [Rot] t 0 T 1 
Rot: Rotation matrix t: translation vector

[P ] =   1 0 0 0 0 1 0 0 0 0 foc -1 0   foc: focal length [A] =   k x 0 c x 0 k y c y 0 0 1  
where, (c x , c y ) is the intersection point between the optical axis and the image plane, (k x , k y ) are the number of pixels per length unit, R w is the real world coordinate system, R c is the camera coordinate system with origin in the optical center, and R r is the projection plane coordinate system. The virtual camera is chosen such that:

3.4 3D processing using elevation images

The camera plane corresponds to the horizontal plane with normal vector - → n = (0, 0, 1) and crossing the lowest point in the point cloud (0, 0, z min ).

Rotation matrix [Rot] is equal to the identity.

The point cloud and the projection plane are centered on the gravity center of the point cloud. Thus, translation vector t is equal to the gravity center, and the intersection point (c x , c y )=(0,0).

The projection is orthographic. Thus, the projection axis is orthogonal to the projection plane and the projection center is located at the innity. It means, foc = ∞, x = X c and y = Y c .

According to these assumptions, the number of pixels per length unit (k x , k y ) are the only free parameters.

They have to be carefully chosen in order to avoid connectivity problems and loss of information. Additionally, this selection should imply a trade o between performance and computational cost. This parameter is discussed later in Section 3.4.2.

During projection, several points can be projected on the same pixel. Thus, four images are dened:

Maximal elevation image (f ), or simply elevation image, stores the maximal elevation (vertical distance from each 3D point to the projection plane) among all projected points on the same pixel. This image contains the surface of the scene from a nadir view.

Minimal elevation image (f min ), stores the minimal elevation among all projected points on the same pixel. This image generally contains the lowest objects and the ground.

Relative height image (f height = f -f min ), contains the dierence between maximal and minimal elevation images. This image allows to estimate the height of objects such as facades or lampposts, independently from the street slope. However, note that this image does not contain the complete object height information because the ground is not always visible.

Accumulation image (f acc ), stores the number of points projected on each pixel. This image is very useful to detect vertical high structures in the scene. However, a normalization is required as explained later in Section 3.6. image, where the minimal distance is stored for each pixel. Note that this image is particularly appropriate for analysis at the ground level since high objects such as trees do not appear on the image. Actually, this image is used for the accessibility analysis presented later in Chapter 4. Figure 3.7(c) presents the relative height image f height computed as the dierence between the maximal and minimal elevation images. Note that relative height on several points such as those on the car roofs is zero, because the ground is occluded and the maximal and minimal elevated points are the same. Figure 3.7(d) presents the accumulation image, dened as the number of points projected on the same pixel. Note that these two latter images (f height and f acc ) are very useful to detect vertical high structures such as facades and pole-like objects. This segmentation problem will be discussed later in Chapter 6.

In general, our processing steps are performed on images f and f min while other two images f height and f acc are used to support decisions during the analysis or to compute object features. Figure 3.8 presents two 3D point clouds and their corresponding elevation images for a test site in Paris, France.

Elevation images imply a reduction in the amount of data to be processed with respect to the 3D point cloud.

Moreover, neighborhood relationships are given on the image without any additional computing. In other words, we process an elevation image using image processing techniques, which is much faster than processing the 3D points directly. Additionally, at the end of the process, the semantic analysis results can be reprojected onto the 3D point cloud if the results should be visualized in 3D. An analysis on the elevation image size with respect to k parameter can be found in the following subsection.

Elevation image resolution

According to the assumptions made in Denition 3.4.1, the number of pixels per length unit (k x , k y ) are the only free parameters during the elevation image generation. In order to simplify this selection, we consider square pixels assuming k x = k y = k, where k has to be carefully chosen. On the one hand, if k is too small, ne details 3 3D data structures and preprocessing are not preserved because too many points would be projected on the same pixel. On the other hand, too large k presuppose connectivity problems and large image sizes, which implies high computational time that would no longer justify the use of elevation images instead of 3D point clouds. This parameter is the most critical in terms of quality vs. processing time since it determines the elevation image resolution. Let us introduce the problem of the processing time taking the image size into account.

Consider the two datasets of Figure 3.8, in the 6 th Parisian district. They contain MLS data from approximately 500 m of rue d'Assas and 300 m of rue Cassette in Paris, respectively. These data have been acquired

by Stereopolis II, a MLS system from IGN France [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF]. Table 3.1 presents some technical specications.

The elevation image size has a critical eect in the computation time: the bigger the image, the slower the 3 3D data structures and preprocessing In rue d'Assas site (Figure 3.8(a)), elevation image sizes are 1390×1988 pixels for k=5 pix/m and 5560×7950 pixels for k=20 pix/m. Note that its elevation image (Figure 3.8(b)) has many black pixels (no-data points) due to the diagonal street direction (South East-North Western). Only 27% of the pixels contains information.

Applying an appropriate rotation to the input point cloud can reduce the number of black pixels in the image projection. The aim is matching the principal axis of the point cloud with the X-axis (or Y-axis) of the elevation image. Another solution consists in dening a mask in order to ignore black pixels during the processing.

In rue Cassette site (Figure 3.8(c)), elevation image sizes are 389×1508 for k=5 pix/m and 1556×6031 for k=20 pix/m. In this case, the elevation image (Figure 3.8(d)) is better distributed due to the vertical street direction (South-North). In this case, 50% of the points contains information.

Processing for k=5 pix/m provides the fastest results, while processing for k=20 pix/m provides the most accurate ones. In the case of large scale applications, strict time constraints are not required. However, a tradeo between speed and accuracy is desired. As it will be demonstrated in the following chapters, our methods 3.5 Elevation images by slices are fast since their process time is comparable to the one required for the acquisition. One of the advantages of using elevation images is that 3D points are projected to an image and they are processed as a complete set using digital image processing techniques, preserving intrinsic neighboring information. Details about our processing methods will be discussed in the following chapters.

Elevation images by slices

One of the disadvantages processing 3D urban data using elevation images is that high objects may occlude lower objects located under them. For example, in Figure 3.10, the pedestrian in the right part (object 5 O)

does not appear on an elevation image because it is below a tree (object 6 O). This can be appreciated in a real scenario of Figure 3.14 in St. Sulpice square, where several cars and pedestrians do not appear in the elevation images due to high trees. To solve this problem, we propose a projection strategy using slices. Particularly, two slices are used: i) a lower slice, containing points between the ground level and a given height H slice in the vertical axis. This slice is built to contain most of urban objects; and, ii) an upper slice, containing points higher than H slice . This slice contains the highest objects such as facades, treetops, lampposts and o-ground objects.

In our experiments, H slice has been experimentally set to 3.5 m, i.e. obstacles for a walking pedestrian, as marked by the blue dotted line in Figure 3.10. This threshold can be modied in order to dene obstacles maps at dierent heights according to dierent types of mobility: children, persons using a wheelchair, etc. Note that in the case of a non-at surface, it is very important to segment the ground in order to adapt each slice to the ground curvature. Methods used to segment the ground will be discussed later in Chapter 4. This processing based on slices can be interpreted as an adaptive voxelization using surfaces parallel to the ground. On the one hand, voxel dimensions are determined by the image pixel size and the slice height. On the other hand, voxel position is determined by the ground. One of the main advantages is that each slice can be analyzed using image processing techniques not only in the 2D space, i.e. slice by slice, but also in the 3D space, i.e. keeping 3D neighborhood relation between neighboring slices. It is noteworthy that in the case of high objects such as trees, a part of the objects is in the lower slice while the other part is in the upper slice, 3 3D data structures and preprocessing neighborhood relation between slices is very important in order to retrieve objects separate during individual processing of each slice. In the case of more detailed analysis, several slices may be dened.

3.6 Image preprocessing

Image preprocessing

Before our semantic analysis, several preprocessing techniques to lter and to interpolate elevation images are applied. These techniques are presented in this chapter in order to avoid repetition each time they are used in the rest of this manuscript.

Filtering distant points

In the 3D point cloud, too distant points have two main drawbacks during the processing:

The rst one, common to all methods, is that they are not reliable since the sensor precision decreases as the distance. In general, data precision depends on the technical specications of the acquisition system, the distance from the sensor to the object, the object material and color, the angle of incidence of the beam, among others. In this preprocessing step, we are interested in the distance from the sensor to the object: the bigger the distance, the lower the precision. Thus, it is desirable to lter these distant points.

The second one, inherent to our processing strategy, is that too distant points may produce enormous projection images with big empty zones. In order to speed up our processing, these isolated points should be eliminated. Moreover, these points do not contain any useful information.

Using the trajectory information of the acquisition system, it is possible to compute the distance from each 3D point P i to the sensor at the acquisition moment. It is called the radius, and it is computed simply as the 3D Euclidean distance r i = (x i -xs i ) 2 + (y i -ys i ) 2 + (z i -zs i ) 2 , where x i , y i and z i stand for the 3D coordinates of the input point P i , and xs i , ys i and zs i stand for the sensor position at the acquisition moment.

In some datasets, this computation is not needed since the radius is given directly in the point cloud le, as it is the case of Stereopolis II system [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF].

In order to lter out distant points, a simple threshold is applied to the radius of each point. According to technical and practical issues explained before in Chapter 2, i.e. the maximum range of the laser, points farther than 50 m are not considered. Figure 3.12 shows the eect of ltering distant points in a 3D point cloud from rue d'Assas in Paris. Note that the elevation image computed from the ltered point cloud (Figure 3.12(b)) contains approximately 30 times less pixels than that computed from the original point cloud (Figure 3.12(a)).

Analyzing the histogram of Figure 3.12(c) and Figure 3.12(d), we can see that relevant information is kept in the ltered point cloud.

Filtering redundant points

When working with dense data, redundant information should be properly managed in order to get reliable results and to reduce processing time. The point cloud density depends on the sensor technical specications, the sensor-to-object distance and the vehicle trajectory/speed during the acquisition. With respect to the rst two cases, Riegl and Velodyne sensors have been used in our experiments and their technical specications have been summarized in Chapter 2. In the third case, when the vehicle goes slowly or when it stops, e.g. due to trac lights or trac jams, the point density increases since scan lines overlap, giving great values on the accumulation image.

In order to reduce redundant data, we propose a ltering strategy taking advantage of the way each acquisition prole is acquired. As aforementioned in Chapter 2, each spin of the laser sensor represents an acquisition prole.

Giving an identier to each individual prole, it is possible to determine overlapping proles. When two or more acquisition proles overlap, only the prole providing the maximal information is kept. This ltering is carried out pixel by pixel on the accumulation image, thus the result is a combination of segments from individual proles.

Let us explain this ltering strategy through the example of Figure 3.13. Consider the acquisition vehicle stopped during the interval [t 0 , t 2 ] due to a trac light and the three overlapping scan lines f t=t0 (x), f t=t1 (x) and f t=t2 (x), as shown in Figure 3.13(a), In order to lter out distant points, a simple threshold is applied to the radius of each point.

According to technical and practical issues, points farther than 50 m are not considered. Note that the elevation image computed from the ltered point cloud (a) contains approximately 30 times less pixels than that computed from the original point cloud (b). Analyzing their histograms (c) and (d), respectively, we can see that relevant information is kept in the ltered point cloud.

on crossing the laser beam, as shown in Figure 3.13(d). In order to lter out redundant information at each point, only the prole providing the maximum accumulation is taken into account, as shown in Figure 3.13(d).

This ltering led us also to dene a normalization of the accumulation image f acc , which contains more reliable information. O appear in some proles, then their accumulation f acc not only depends on the object geometry but also on the time spent by the pedestrians on crossing the laser beam, as shown in (d). In order to lter out redundant information at each point, only the prole providing the maximum accumulation is taken into account, as shown in (d). This ltering led us also to dene a normalization of the accumulation image f acc , which contains more reliable information.

Image interpolation

After projection to elevation images, an interpolation is required in order to ll holes caused by occlusions and missing scan lines. A morphological interpolation based on lling holes is chosen since this transformation does not create new regional maxima, it can ll holes of any size and no parameters are required. This is important in order to avoid false alarms in the object detection approach (explained later in Chapter 6).

In the most simple sense, a hole is a dark region (regional minimum) which is not connected to the image border and is surrounded by brighter pixels. The llholes transformation is implemented as the reconstruction by erosion (R f (f marker )) of image f from marker f marker , as shown in Figure 3.15. Marker f marker is set to the maximum image value everywhere except along the image border, where the original image value is kept.

Applying this transformation, each hole is lled with the lowest value in its boundary. Figure 3. 15(b) illustrates this denition on the 1D case. Note that a minimum in the left part of the signal is not a hole because it touches the border. In order to preserve original data, only pixels with no data are modied, while other pixels keep their original value. For further details on gray-scale reconstruction operators, the reader should refer to [START_REF] Soille | Automated basin delineation from digital elevation models using mathematical morphology[END_REF][START_REF] Vincent | Morphological grayscale reconstruction in image analysis: applications and ecient algorithms[END_REF].

Let us explain our interpolation method with an example. O. These holes are also lled at the ground level even if the ground is not the minimal surrounding value in this 1D prole. We assume that these holes can be lled at that level because the ground is not occluded by the pedestrians 2 O and 5 O in the previous or in the following proles. as the result of occlusions and faraway objects. This image has to be interpolated before processing. Note that almost all dark regions are touching the image border, so they would not be lled by a classical llholes transformation. To solve this problem, each isolated region is connected to its closest neighbor by the shortest 3 3D data structures and preprocessing path. Next, the articial boundaries for each inuence zone are dened using the maximal value on the elevation image, as shown in Figure 3.17(c). Then, the ll-holes transformation is applied in order to interpolate the image (Figure 3.17(d)). Finally, the maximal elevation value on the articial boundaries is replaced by the result of a morphological opening. Note that our methodology performs well on near objects. However, several false artifacts can appear when interpolating distant objects because there are not enough points. This can be easily corrected in the segmentation step eliminating objects for which the number of interpolated points (N interpolated ) is much higher than the number of acquired points (N acquired ). That leads us to dene the condence index C presented in Equation (3.2). This index is useful to characterize urban objects, as it will be shown later in the classication approach presented in Chapter 6. The distance from a point to the acquisition system could also be considered.

C = N acquired N acquired + N interpolated (3.2)
This interpolation is fast, interpolates holes of any size and is parameterless. However, one of the disadvantages is that holes are lled by at zones, i.e. all the pixels in the hole will have the same elevation after interpolation. Thus, it may not give realistic results in the case of steep terrains, as shown in Figure 3.10.

Conclusions

In order to process 3D urban data, we proposed the use of elevation images since they are convenient structures to visualize and to process data using all the large collection of image processing tools, specially mathematical morphology. Projecting 3D information to images implies a reduction in the amount of data to be processed with respect to the input 3D point cloud. Moreover, neighborhood relationships in the elevation image are intrinsically dened. In other words, we process an elevation image using image processing techniques, which is much faster than processing the 3D points directly.

During the projection, the number of pixels per length unit k is the only free parameter. It controls the elevation image size and it has to be carefully chosen. On the one hand, if k is too small, ne details are not preserved because too many points would be projected on the same pixel. On the other hand, too large k presuppose connectivity problems and large image sizes, which implies high computational time. This analysis leads us to prospect a multiscale approach where initial structures are detected at low scales using a fast approach (small k), and then a renement may be carried out in higher levels (large k) in order to get more accurate results.

Additionally, distant and isolated points in the 3D point cloud have a critical impact since they can unnecessarily increase the elevation image size. In order to lter out not reliable and distant points, a thresholding is applied to the radius of each point. If the distance from the laser to the 3D point is greater than 50 m, that point is not considered. In general, such distant points are located in road intersections and come from streets perpendicular to the vehicle trajectory. In a large scale application, it is supposed to have a complete survey of the urban scenario. Thus, perpendicular streets are supposed to be mapped later by the vehicle. Therefore, too distant points can be eliminated in a harmless way.

One of the disadvantages of processing 3D urban data using a single elevation image is that high objects such as trees may occlude objects below them. To solve this problem, we propose a projection strategy using slices.

In our experiments, we have dened two slices for obstacles lower than and higher than 3.5 m, respectively. This processing can be interpreted as an adaptive voxelization where the dimensions of each voxel are determined by the image pixel size and the slice height, and the voxel location is determined by the ground.

In general, several points can be projected on the same pixel. Then, an accumulation image is dened storing the number of points projected on each pixel. This information is very useful to detect vertical high structures in the scene. Moreover, it is useful to identify redundant information since overlapping scan lines give high accumulation values. Redundant information should be properly managed in order to get reliable results and to reduce processing time. In order to reduce redundant information, we propose a ltering strategy using the accumulation. When two or more acquisition proles overlap, only the prole providing the maximal quantity of information is kept. This ltering is carried out pixel by pixel on the accumulation image, thus the result is a composition of segments from individual proles.

In order to manage occlusions and connectivity problems due to missing scan lines, a morphological interpolation based on lling holes is applied. This transformation is fast, does not create new regional maxima, can ll holes of any size and does not require parameters. One of the disadvantages is that holes are lled by a 3.7 Conclusions at zone, i.e. all the pixels in the hole will have the same elevation after interpolation. This strategy may give non-realistic results in the case of steep terrain. Using several scans of the same zone, velodyne sensors and panoramic color images can help to reduce occlusion problems.

Although the idea of deriving elevation images from 3D point clouds is not new, the development of accurate and fast preprocessing algorithms is still an open problem in the scientic community. In particular, the works by Hernández and Marcotegui (2009c) and [START_REF] Hernández | Analyse morphologique d'images pour la modélisation d'environnements urbains[END_REF] have been the starting point of this thesis. Their projection and interpolation methods (Section 3.4.1 and Section 3.6.3) have been applied identically as in their works. Nevertheless, the projection by slices and the ltering methods proposed here are entirely original and constitute one of the main contributions of this chapter. 

Introduction

In general, large cities are built according to demographical and geographical constraints, architectural preferences and governmental budgets. Many places are not accessible for wheelchairs, skaters, segways, baby buggies, among others. Taking a short trip through the street can reveal an environment plagued with physical barriers, obstacles, narrow sidewalks and inappropriate ramp access, where wheelchair users bear the brunt.

Contrarily to the general idea, accessibility aects not only disabled persons but also old people, children and pregnant women, as shown in Figure 4.1. It is noteworthy that 46% of people is concerned by accessibility in urban areas. About 80 million people living in European Union (EU) have a mild to severe disability. Physical obstacles make them vulnerable to social exclusion, low employment and limited education level. In fact, mean poverty rate for those with disabilities is 70% higher than the average. In 2007, EU signed the United Nations convention on the rights of persons with disabilities (UN, 2007). The aim is allowing people with disabilities to go on their daily lives like everyone else and enjoy their rights as EU citizens. One of the strategies consists in ensuring physical access to buildings, roads, transportation, schools, housing, medical centers and workplaces.

In France according to Law 2005-102 1 , local authorities are required to guarantee accessibility to public spaces. Thus, it is very important to be able to make large scale accessibility diagnoses in urban environments in order to identify places requiring adaptation. An available manualassisted solution is Wheelmap [START_REF] Sozialhelden | wheelmap. SOZIALHELDEN e.V[END_REF].

Ground segmentation and accessibility analysis

It is an on-line service, based on Open Street Maps, aiming at tagging wheelchairaccessible places. It is a crowdsourcing project where everyone can collaborate by tagging public places according to accessibility for persons using wheelchairs. Other solutions include automatic 3D urban analysis techniques [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF]Hernández and Marcotegui, 2009c;[START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF][START_REF] Douillard | On the segmentation of 3D LIDAR point clouds[END_REF][START_REF] Rutzinger | Tree modelling from mobile laser scanning data-sets[END_REF]. However, automatic urban accessibility analysis is still an open problem.

Urban accessibility information can be integrated into navigation services as online maps [START_REF] Sozialhelden | wheelmap. SOZIALHELDEN e.V[END_REF], support systems using cell phones [START_REF] Rashid | Users Helping Users: User Generated Content to Assist Wheelchair Users in an Urban Environment[END_REF], collaborative social networks [START_REF] Menkens | EasyWheel -A Mobile Social Navigation and Support System for Wheelchair Users[END_REF], or even in automated wheelchairs and segways [START_REF] García | Proposal for an Ambient Assisted Wheelchair (A2W)[END_REF]. Including accessibility parameters in city maps allows to dene adaptive itineraries according to detailed and accurate information about barriers and obstacles in the public infrastructure.

As aforementioned in Chapter 1, our work is part of Cap Digital Business Cluster TerraMobilita project: 3D mapping of roads and urban public space, accessibility and soft-mobility. This project responds precisely to requests about 3D urban maps and softmobility applications. There are two general aims in this project: i) to develop new methods and tools to create and update urban maps using laser scanning and digital imagery.

ii) to develop innovative applications for softmobility itinerary planning.

The contribution of the present chapter is twofold: automatic ground segmentation and curb accessibility analysis.

In the rst part, our method segment ground, facades and objects in order to build 3D obstacle maps useful for itinerary planning. In particular, the work by Hernández and Marcotegui (2009a) has been the starting point of this chapter. Their segmentation method has been adapted in order to segment pavement (Section 4.4).

The second part is entirely original and constitute one of the main contributions of this chapter. It consists in developing automatic methods for segmentation, reconnection and characterization of curbs (Section 4.5) and urban accessibility analysis (Section 4.7). This constitutes one of the most attractive contributions of this thesis due to its social impact since urban accessibility aects not only disabled persons but also old people, children and pregnant women. In the framework of the United Nations convention on the rights of persons with disabilities, local authorities are required to guarantee accessibility in public spaces in order to reduce social exclusion, low employment and limited education of people concerned by accessibility. One of our publications on this topic (Serna and Marcotegui, 2013b) has been awarded with the U. V. Helava Award for the 2013 best paper in the International Society for Photogrammetry and Remote Sensing (ISPRS Journal volumes 75-86) http://www.isprs.org/society/awards/helava/2013.aspx.

For our experiments, 3D laser scanning data are acquired by Stereopolis II [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF] and L3D2 (Goulette et al., 2006a), two mobile laser scanning (MLS) systems from IGN France and MINES ParisTech, respectively. Additionally, a public database from Enschede (The Netherlands) is used to get quantitative results and to compare our methods with the state of the art. Technical details on TerraMobilita acquisition systems and Enschede database can be found in Section 2.4 and Section 2.5.4, respectively. This chapter is organized as follows. Section 4.3 reviews related works in the state of the art and establishes their dierences with respect to our work. Section 4.4 describes our ground segmentation method based on elevation images. Section 4.5 introduces our methods for curb segmentation and reconnection. Section 4.7 explains the accessibility analysis and presents an illustrative itinerary planning application. Section 4.8 presents quantitative results with respect to other databases available in the literature. Finally, Section 4.9 concludes this chapter.

Related work

Bab- [START_REF] Bab-Hadiashar | Range image segmentation using surface selection criterion[END_REF] propose a method to segment planar and curved surfaces in range images.

Their method consists in selecting the appropriate parametric model that minimizes strain energy of tted surfaces. The authors applied their methodology to indoor range images of the University of South Florida (USF) database [START_REF] Hoover | University of South Florida (USF) Range Image Database[END_REF]. This work can be extended in order to segment surfaces such as ground and facades on elevation images. Several works on the parametric model tting problem can be found in the literature [START_REF] Boyer | The Robust Sequential Estimator: a general approach and its application to surface organization in range data[END_REF][START_REF] Werghi | Modelling Objects Having Quadric Surfaces Incorporating Geometric Constraints[END_REF][START_REF] Marshall | Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy[END_REF][START_REF] Chaperon | Extracting cylinders in full 3D data using a random sampling method and the Gaussian image[END_REF]. The main drawback of these methods is that they involve the model selection problem which can be dierent for dierent images, are time consuming due to minimization procedures and may produce sub-segmentation. [START_REF] Ayres | Sidewalk potential trip points: A method for characterizing walkways[END_REF] present a method to characterize sidewalks based on ground elevation proles.

The aim is identifying unusual elevation changes and obstacles. The authors highlight the impact of elevation changes for pedestrians and softmobility users safety. They work on very precise data from streets in California.

Unfortunately, this is not suitable for large scale applications since data are acquired manually.

4.4 Ground segmentation Hernández and Marcotegui (2009a) use elevation images from 3D point clouds in order to extract quasiat zones on the ground and use them as markers for a constrained watershed [START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF]. Then, a region adjacency graph is used to determine the border between roads and sidewalks. This procedure fails in presence of access ramps, as shown in Figure 4.9(a). In that case, quasi-at zones merge roads and sidewalks and it is no longer possible to detect curbs. [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF] use Aerial Laser Scanning (ALS) data to detect curbstones. First, small height jumps at ground level are detected. Second, a smooth curve is tted to generate the separation between sidewalk and road. Finally, small gaps between nearby and collinear segments are closed. In unoccluded regions, this approach is robust to trac signs, cars and multiline roads. Good results are presented with respect to ground truth measurements. However, airborne laser resolution (20 points/m 2 ) is not precise enough to detect access ramps and low curbs. In fact, only curbstones of at least 10 cm height can be clearly detected. [START_REF] Denis | Towards road modelling from terrestrial laser points[END_REF] adapt the work by [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF] to MLS data in order to extract and model urban roads as 3D

surfaces. In that work, authors combine MLS data and road axes derived from aerial imagery. Ground points are extracted with an adapted surface growing method. Then, curbs are detected based on the elevation gradient on a strip-by-strip basis. Recently, [START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF] extended their methodology to denser (1000 points/m 2 ) MLS datasets. They improve the planimetric accuracy of curbstone locations tting a sigmoidal function to detected points, in a similar way to [START_REF] Siegemund | Curb Reconstruction using Conditional Random Fields[END_REF]. In such methods, although detection is performed directly on the 3D point cloud, it is made on a strip by strip basis, so intrinsic information between neighboring strips is missing. More recently, Serna and Marcotegui (2013b) solved this problem by processing all strips at the same time using elevation images. [START_REF] Valero | Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[END_REF] present an automatic road extraction methodology for high resolution imagery. This procedure can be extrapolated to curb detection since both problems have similar assumptions: curbs are thin and elongated paths, but not necessary straight, and present color dierences with respect to their neighborhood.

Their experimental results show accurate road extractions in terms of completeness and correctness. Some post processing has to be proposed in order to reconnect isolated segments due to occlusions and shadows. [START_REF] Gang | Procedural Modeling of Urban Road Network[END_REF] propose an approach to model urban road networks based on manual markers.

They use an interactive interface to mark sidewalks and roads on aerial images. Then, Bézier curves and polygons are used to model the road. This method is realistic and very fast to render, however manual marking is a time consuming task. Automatic detections and road network databases are needed for large scale modeling.

Hervieu and Soheilian (2013a,b) investigate the surface modeling of roadways and pavements from MLS data.

First, road border detection is considered. A system recognizing curbs and access ramps while reconstructing the missing information in case of occlusion is presented. A user interface scheme is also developed, providing an eective tool for semi-automatic processing of large amount of data. Then, based upon road edge information, road and pavement surfaces are reconstructed. The main drawback of this method is that manual intervention may be time-consuming. Automatic methods segmenting curbs can be introduced at the process input in order to improve both performance and speed.

With respect to other works reviewed in the state of the art, we aim at developing an automatic method for ground segmentation and curb accessibility diagnosis suitable for large scale applications. Our method is automatic using few constraints on 3D laser scanning data, creates an obstacle map segmenting objects and facades, denes the accessibility for each curb, and can manage reconnection problems due to access ramps and occlusions. A detailed description is presented in the following sections.

Ground segmentation

Ground segmentation is one of the most important steps in urban semantic analysis since it allows the creation of digital terrain models (DTM). In the case of accessibility diagnosis, ground segmentation is a critical step since curbs and obstacles are located on it.

Figure 4.2 shows our proposed methodology. First, input point cloud is mapped to elevation images and a morphological interpolation is applied, as explained before in Chapter 3. Second, the quasiat zones algorithm is used to segment the ground, including roads and sidewalks. Third, facades and objects are segmented using morphological transformations (details will be presented in Chapters 5 and 6) and the obstacle map is dened. Fourth, curb candidates are segmented using height and elongation criteria, and close curbs are reconnected using Bézier curves based on semantic information. Then, curb accessibility is dened according to international standards. Finally, the obstacle map and the accessibility information can be exported to a Geographical Information System (GIS) and used to dene adaptive itineraries according to dierent types of soft-mobility. using Bézier curves based on semantic information. Then, curb accessibility is dened according to international standards. Finally, the obstacle map and the accessibility information can be exported to a Geographical Information System (GIS) and used to dene adaptive itineraries according to dierent types of soft-mobility.

The quasi-at zones algorithm

Several methods found in the literature try to solve the ground segmentation problem tting horizontal planes to the 3D point cloud (Goulette et al., 2006a;[START_REF] Gorte | Planar feature extraction in terrestrial laser scans using gradient based range image segmentation[END_REF][START_REF] Schnabel | Shape recognition in 3D point clouds[END_REF][START_REF] Zhu | Segmentation and classication of range image from an intelligent vehicle in urban environment[END_REF][START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF]Poreba and Goulette, 2012b;[START_REF] Aijazi | Segmentation Based Classication of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation[END_REF]. The main drawback of these approaches is that they may fail in urban scenarios due to non-at roads, access ramps and speed humps.

To solve this problem, we propose a segmentation method taking advantage of the quasi-at character of the ground. In particular, the work by Hernández and Marcotegui (2009a) has been our starting point. Their segmentation method has been adapted in order to segment the ground. In the context of that work, their procedure may fail because the quasi-at, called also λ-at, zones algorithm is used to dene a mask containing ground and objects while ltering facades. Afterwards, objects are ltered out and a ground mask is generated.

In our method, we rstly lter out facades and objects. Thus, our ground segmentation method does not depend on the object detection result, providing more robust results. Moreover, we take advantage of the presence of access ramps to extract the complete ground mask merging roads and sidewalks. The method is as follows.

In order to segment the ground, the minimal elevation image f min is used because it contains the lowest projected point on each pixel, which is generally the ground. This image is interpolated using a morphological based method, presented in Chapter 3, in order to avoid connectivity problems. Then, the λ-at zones labeling algorithm is used. This algorithm was rstly introduced in image processing by [START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF] and was dened by [START_REF] Meyer | From connected operators to levelings[END_REF] V = [0, ..., R] the set of gray levels. Two neighboring pixels p, q belong to the same λat zone of f , if their dierence |f p -f q | is smaller than or equal to a given λ value.

The denition of λat zones is very useful in image partition, simplication and segmentation. However, it suers from the wellknown chaining eect of the single linkage clustering [START_REF] Duda | Pattern Classication, 2nd Edition[END_REF]. That is, if two distinct image objects are separated by one or more transitions going in steps having a graylevel dierence lower than λ, they will be merged in the same λat zone.

In our urban analysis based on elevation images, this approach allows to segment the ground in despite of its curvature and slope. Using Denition 4.4.1, ground fgr is obtained as the largest quasi-at zone on the interpolated minimal elevation image fmin . It is noteworthy that ground is not perfectly at, as shown in Figure 4.3(c), where each dierent color represents a dierent at-zone, i.e. a maximal connected component of constant graylevel [START_REF] Salembier | Flat zones ltering, connected operators and lters by reconstruction[END_REF].

Applying the quasi-at zones labeling algorithm, ground is extracted as the largest λat zone on fmin for a given λ parameter. Note that for λ = 1 cm (Figure 4.3(d)) several parts of the ground are missing while for λ = 50 cm (Figure 4.3(f )) the propagation is too permissive and several objects are reached by the propagation.

In our experiments, we set λ = 20 cm because it is usually high enough to merge roads and sidewalks (even if there are no access ramps) without merging objects.

Figure 4.4 presents a result of our ground segmentation method on a 3D point cloud from rue Cassette in Paris, France. Note that this approach correctly segments the ground in spite of its curvature and the presence of a speed hump.

Obstacle map generation

Once the ground is extracted, all remaining structures are considered as facades and objects. Discrimination between them is important because facades dene the public space boundary while urban objects dene the obstacle map required for itinerary planning. On the one hand, facades are the highest vertical objects on the urban scene and they appear as elongated structures on interpolated maximal elevation image f . Thus, they are segmented using morphological methods based on geometric and geodesic attributes. Facade segmentation is out of the scope of this chapter and it will be explained later in Chapter 5. Besides, several other works aiming at segmenting facades are available in the literature [START_REF] Boulaassal | Automatic segmentation of building facades using terrestrial laser data[END_REF][START_REF] Hammoudi | Contributions to the 3D city modeling[END_REF][START_REF] Rutzinger | Tree modelling from mobile laser scanning data-sets[END_REF]Poreba and Goulette, 2012b;Serna and Marcotegui, 2013a). On the other hand, urban objects appear as bumps and discontinuities on the ground on interpolated maximal elevation image f . Thus, they are segmented using morphological methods based on the tophat transformation by lling holes. Object segmentation is out of the scope of this chapter and it will be explained later in Chapter 6. Figure 4.5 presents the 3D obstacle map obtained from ground, facade and object segmentation results. Note that all objects are assumed static. However, classication techniques can be used in order to distinguish mobile objects (e.g. pedestrians) from static ones (e.g. parked cars). For further information on object segmentation and classication methods, the reader is encouraged to review the Chapter 6 of the present thesis.

Curb segmentation and reconnection

Curb segmentation is very important in urban analysis applications since it denes the edge between roads and sidewalks. Besides, curb geometry is used to dene the accessibility for a given type of mobility. Using the ground segmentation result, we propose a curb segmentation method based on the following geometrical hypothesis: curbs are elevation discontinuities dening the limit between roads and sidewalks, and they appear as elongated edges on ground image fgr . Our proposed method is as follows:

First, the morphological external gradient is computed as the arithmetic dierence between dilated ground image δ B ( fgr ) using a structuring element B and ground image fgr , as shown in Equation (4.1). In our experiments, a square structuring element of size 1 pixel is used. According to the spatial pixel size, which is an input parameter of our method discussed in Chapter 3, it corresponds to a dilation size between 5 and 10 cm. In order to avoid false alarms, gradients touching an interpolated zone are not considered.

ρ sup ( fgr ) = δ B ( fgr ) -fgr Structures with elevation gradient between 3 and 20 cm are considered as curb candidates. Then, an elongation thinning is applied in order to lter out noisy and non-elongated structures. Experimentally, a minimum elongation E min =10 has been dened in order to accept curbs. This threshold corresponds to the geodesic elongation of a curb of approximatively 1 m long and 0.08 m wide. We prefer geodesic measurements because curbs are usually not straight, so the Euclidean distance may sub-estimate their real length. For formal denitions and further details on the geodesic elongation, the reader is encouraged to read the Section 7.3.3 of this thesis.

Figure 4.6 illustrates the eect of varying threshold E min in our curb segmentation method. Note that E min =0 (Figure 4.6(b)) preserves all structures between 3 and 20 cm height, E min =5 (Figure 4.6(c)) does not take noise away and E min =20 (Figure 4.6(d)) removes some real curbs, those that are short due to occlusions.

Note that steps at building entrances are considered as curbs because their geometry hold our segmentation hypothesis. Their detection can be used to dene building accessibility. In the case that they should not be considered, a constraint of minimal distance d facade from the facade can be imposed. Note that this approach correctly segments the ground in spite of its curvature and the presence of a speed hump. those that are short due to occlusions. Note that steps at building entrances are considered as curbs because their geometry hold our segmentation hypothesis. Their detection can be used to dene building accessibility. In the case that they should not be considered, a constraint of minimal distance d facade from the facade can be imposed.

Curb reconnection

The main drawback of this segmentation process is the lack of connectivity between curbs due to access ramps, occlusions, missing scan lines and acquisition problems. Some solutions can be found in the literature: [START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF] close gaps between adjacent and co-linear curbs using lines; Shih and Cheng ( 2004) present an 4.5 Curb segmentation and reconnection approach based on adaptive mathematical morphology to link broken edges; and [START_REF] Talbot | Ecient complete and incomplete path openings and closings[END_REF] propose a more sophisticated solution incorporating incomplete path openings. Unfortunately, these solutions are not suitable since reconnections through access ramps are not always straight (Figure 4.9(a)) and height discontinuities of access ramps are close to the noise level (Figure 4.9(c)).

We propose a reconnection strategy based on quadratic Bézier curves. Two curbs closer than a given distance d min are reconnected tracing a Bézier curve between their geodesic extremities (Morard et al., 2011a). Segment orientations are used in order to dene Bézier curve parameters, as explained below.

A Bézier curve is a parametric path traced by function B(t), given points P 0 , P 1 , and P 2 , as shown in Equation (4.2). It departs from P 0 towards P 1 , then bends to arrive to P 2 . As a consequence, tangent lines in P 0 and P 2 both pass through P 1 . Thus, the user can control input and output angles of the curve. This is an important smooth constraint, because in our application, initial and nal angles of the reconnection should not change abruptly.

B(t) = (1 -t) 2 P 0 + 2(1 -t)tP 1 + t 2 P 2 , ∀t ∈ [0, 1] (4.2)
Conveniently, the reconnection process can be written as the problem to nd the three control points for a Bézier curve. Points P 0 and P 2 correspond to the geodesic extrema of curbs C 0 and C 2 to be reconnected. Thus, the problem is reduced to nd the control point P 1 . There are two types of reconnection using quadratic Bézier curves:

If the curbs to be reconnected are colinear, P 1 is put in the middle of the segment P 0 P 2 . Therefore, the three control points are colinear and the resulting reconnection is a straight line, as shown in Figure 4.7(a).

If the curbs to be reconnected are not colinear, P 1 is put in the intersection of the two projection lines from C 0 and C 2 . Therefore, the resulting reconnection is a parabolic segment, as shown in In our experiments, this parameter has been adapted with respect to urban occlusion conditions of each particular database, as it will be explained later in Section 4.8. Fourth, the rst n neighbors of each geodesic extremity are used to t a straight line dening the prolongation of each curb. In our experiments, n has been set according to the elevation image resolution in order to get 1 m, e.g. for an elevation image with k=10 pix/m the number of neighboring pixels is n=10. Fifth, the intersections of these prolongation lines give the position of control points P AB and P CB to t Bézier curves, as shown in Figure 4.9 illustrates this procedure in a real case. Note that the resulting curve is smooth and faithful to reality.

Curb reconnection in special cases

In order to improve curb reconnections and avoid false positives, semantic information has been taken into account in our method. The following special cases are considered:

1. Curbs closer than a given distance d facade from the facade are not used during reconnections because they generally correspond to building entrances. In our experiments, d facade has been set to 40 cm. This parameter is not critical since allowed sidewalks in urban environments should be at least 1.2 m width 2 .

After reconnection, these curbs can be reinserted in order to analyze building accessibility.

2. If the Euclidean distance between two curb extremities is greater than d min , no reconnection is allowed.

In our experiments, d min has been empirically set to 8 m, which corresponds approximatively to the occluded region produced by two parked cars. This parameter can be adapted according to urban occlusion conditions of each particular database, as it will be explained later in Section 4.8. if d(P 0 , P 1 ) > 2d(P 0 , P 2 ) or d(P 1 , P 2 ) > 2d(P 0 , P 2 ) then P 1 = (P 0 + P 2 )/2

If

(4.3)
4. If two curbs are parallel but not co-linear, then there is no intersection between their prolongation lines (mathematically, control point P 1 is at the innity). In that case, Bézier control point is placed in the middle of segment P 0 P 2 and the reconnection becomes straight, as shown in Equation (4.4):

if P 1 → ∞ then P 1 = (P 0 + P 2 )/2 (4.4) 5. In order to avoid false curb reconnections crossing the road, only reconnections on the same city block are allowed. For this, the city block segmentation method proposed in Section 5.6 is applied. The medial road axes can be used if available. They can be computed directly from the 3D point using the vehicle trajectory information, as shown in Figure 4.11(a), or can be obtained from external 2D maps, as shown in Figure 4.10.

6. One of the most common problems when scanning urban areas is the occlusion due to x and mobile objects. In particular, parked cars produce large occlusions on the sidewalk, which is a problem during curb segmentation. Figure 4.11 presents an urban test site with several parked cars on the left street side.

It is noteworthy that occluded regions restrict curb visibility. In order to solve this problem, semantic information about parked cars, obtained from our object classication method (Chapter 6), is used as follows: the morphological dilation of a parked car over its neighboring occluded region is used as a curb candidate, then the reconnection is allowed reducing the reconnection threshold to d min /2. In order to avoid false alarms, if an occluded region is closer than d facade to a facade, to a previously detected curb or to a medial road axis, it is not considered. 4 Ground segmentation and accessibility analysis 

Roads and sidewalks segmentation

While curbs dene the limit between roads and sidewalks, their explicit segmentation is important because it denes the available zone for vehicles and pedestrians, respectively.

In order to segment roads and sidewalks, a morphological segmentation process based on a constrained watershed is used. The process is shown in Figure 4.12 and is explained as follows: i) from previously segmented and reconnected curbs (Figure 4.12(b)), the distance function is computed. For each pixel, the distance function is dened as the distance from that pixel to the closest curb point. information about parked cars is used as follows: the morphological dilation of a parked car over its neighboring occluded region is used as a curb candidate, then the reconnection is allowed reducing the reconnection threshold to d min /2. In order to avoid false alarms, if an occluded region is closer than d facade to a facade, to a previously detected curb or to a medial road axis, it is not considered.

Accessibility analysis and itinerary planning

One of the aims of TerraMobilita project is planning itineraries for dierent types of mobility, including softmobility, as presented in Section 1.3. Therefore, curb characterization is a very important task because it determines the suitability of a path. For example, a sidewalk without access ramps may be appropriate for rollers but not for wheelchairs. Additionally, obstacles on the sidewalk represent physical barriers to free mobility. In our work, we dene the accessibility according to curbs geometry and obstacles on the street. In our opinion, the most critical case is the accessibility for wheelchair users, so our experiments are conducted in that sense. However, we can dene the accessibility according to any other type of softmobility since our method provides geometrical information of curbs and obstacles for each point.

A standard wheelchair is between 60 and 69 cm wide, therefore the minimum clear width of an access ramp is 91.5 cm between railings (ISO, 2008; ADA, 2010). Thus, curb accessibility is dened taking the following criteria into consideration:

Wheelchairaccessible: sidewalk access with one step maximum, wider than 1 m and not higher than 7cm.

Wheelchairaccessible curbs are marked in green.

Wheelchairinaccessible: otherwise. Wheelchairinaccessible curbs are marked in red.

The simple trac-light color code (green: accessible, red: non-accessible) is strongly inspired by international standards and is compatible with online maps such as Wheelmap [START_REF] Sozialhelden | wheelmap. SOZIALHELDEN e.V[END_REF]. Figure 4.13 illustrates two labeled 3D point clouds from two test sites in rue Cassette and rue Vaugirard in Paris, France. Note that curbs are correctly segmented and their accessibility dened for a person using a wheelchair.

A direct application consists in planning adaptive itineraries for dierent types of mobility. For example, dening the start and nal points of a journey, it is possible to suggest an adaptive itinerary according to obstacles on the ground and curb accessibility. Thus, the problem consists in nding a path that optimizes certain criteria (i.e., the shortest path). Figure 4.14 presents an example of an adaptive itinerary for a person using a wheelchair going from A to B. In this case, we assume that it implies a minimum passing space of 1 m, which is large enough for a standard wheelchair.

Note that this example is only illustrative, real applications for itinerary planning will be developed in the framework of TerraMobilita project. For this, it is necessary to export the obstacle map and the accessibility information into a Geographical Information System (GIS), where adaptive itineraries can be dened according to dierent types of soft-mobility. 

Results

In order to get qualitative and quantitative results, our methodology has been tested on two publicly available databases: TerraMobilita/iQmulus database (Section 2.6.2) and Enschede database (Section 2.5.4). In the rst case, our ground and obstacle map segmentation methods are evaluated point by point. In the second case, 2D manual annotations are used to evaluate our curb segmentation and reconnection approach.

Classical Precision (P ), Recall (R) and f mean = (2 × P × R)/(P + R) statistics are computed. Details are given in the following subsections. Our evaluation uses the hierarchy of semantic classes dened in TerraMobilita/iQmulus benchmark (Section 2.6.2). First, we classify the 3D point cloud in 3 main categories: surface (containing facades and ground), object and other. Moreover, we dene the unclassied category for non-annotated points in the GT. They are ambiguous points dicult to annotate, which correspond to 18.31 % of total number of 3D points in the 3 The manual annotated 3D point cloud is available at: http://data.ign.fr/benchmarks/UrbanAnalysis/download/Cassette_idclass.zip

The 3D point cloud processed by our method is available at: https://partage.mines-telecom.fr/public.php?service=files&t=294aed38d48c8ddd03a528069f1b2e51 dataset. This classication is important to evaluate our obstacle map generation method. Table 4.1 presents the confusion matrix and our classication results for these 4 categories.

Using our segmentation method, surfaces and objects are mainly correct with f mean equal to 96.03 % and 84.59 %, respectively. Note that the surface class includes facades and ground, which represents the largest structure in the scene with 75.82 % of total number of 3D points, while the object class represents 5.7 % of total number of 3D points. Figure 4.17(b) shows a typical segmentation error due to low facades wrongly detected as objects. The other class is not correctly classied by our method. However, it is not critical since it only represents 0.17 % of all 3D points in the scene. The unclassied class is not critical in the practical case since it mainly contains 3D points behind facades, therefore they do not aect urban mobility. The overall accuracy of our method is 92.65 %. 4.17 shows that small errors are due to the facade-ground junction, where some points may be wrongly assigned. The overall accuracy in this case is 98.26 %. These results prove the performance of our method. Enschede database contains approximatively 1000 m of MLS data with 2D manual annotations. Two manual ground truth data have been collected: i) roadside lines, corresponding to inaccessible curbs higher than 7 cm; and, ii) gap lines, corresponding to access ramps lower than 7 cm. We use the same evaluation strategy than [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF]; [START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]. Quantitative analysis is performed by comparison between automatic and manual extracted lines. As the amount of false alarms near real road lines is very low in this database, a buer around ground truth lines is taken. Automatic lines are labeled as true positives or false positives if they are located inside or outside the buer, respectively. A buer width of 50 cm is used (the same used by other authors in the same database). Two classical statistics are computed: recall (or completeness), dened as the length of the extracted lines inside the buer divided by the length of the reference lines; and precision (or correctness), dened as the length of the extracted lines inside the buer divided by the length of all extracted lines. database contains approximatively 1000 m of MLS data with 2D manual annotations. Two manual ground truth data have been collected: i) roadside lines, corresponding to inaccessible curbs higher than 7 cm; and, ii) gap lines, corresponding to access ramps lower than 7 cm. Quantitative analysis is performed by comparison between automatic and manual extracted lines. Automatic lines are labeled as true positives or false positives if they are located inside or outside an evaluation buer, respectively. A buer width of 50 cm is used (the same used by other authors in the same database).

Results

Results

Our results show that our method has good detection rates, is fast and presents few false alarms. On the one hand, precision is greater than 90% for all sites, which indicates that our method produces few false alarms, mainly due to low vegetation (Zones H and I in Figure 4.18(b)). Moreover, precision is up to 7 % better than other works reported in the literature on the same database. On the other hand, recalls in sites 2 and 3 are better than other works reported in the literature on the same database. However, test site 1 leads to a low recall because of polygonal curbstones in the middle of the road (Zones A and B in Figure 4. 18(a)). Since MLS data was acquired only from one side of the street, only one side of the polygons is visible. As aforementioned in Section 4.5, gradients touching an interpolated zone are not considered in order to avoid false alarms. As our original goal consists in detecting curbs delimiting the sidewalk, our method does not process polygonal curbstones in any special way, then the invisible part is not detected while scores published by [START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF] take these polygons into account. Fitting polygons can be a suitable solution and it will be evaluated in our future work. Another problem in site 1 is due to long access ramps that cannot be reconnected by our method. For example, zone C in Figure 4. 18(a) shows an access ramp lower than 3 cm and 45 m long.

Therefore, it is neither detected nor reconnected.

The presence of cars and other obstacles is the main problem in the detection procedure. In fact, several curbs Inspecting test sites, we found several inconsistent ground truth lines since they do not correspond to real curbs. For example, Figure 4.19(b) shows a straight detected curb (red) on the right side, while the ground truth (cyan) marks it as an extrusion. A photo from the scene (Figure 4.19(a)) demonstrates that automatic detection is correct in this case. Note that this is a Google Street View photo, taken another day, so parked cars are not the same. Other ground truth problems can be found in zones E, F and G in Figure 4. 18(b). In these cases, our method has been penalized in spite of these correct results. However, these annotation errors are rarely found, thus the comparison with the state of the art remains valid.

Note that our method is designed to detect elevation discontinuities on the ground, not only curbstones.

Therefore, stairs and steps at building entrances are detected as well (Figure 4.19). These structures are not errors, but they are not marked in ground truth data. Thus, they were not taken into account in the quantitative results in order to do a fair comparison. To automatically lter out these structures, a constraint of minimal distance (40 cm) from the facade was imposed. Photo taken from Google Street View, taken another day, so parked cars are not the same.

Processing was carried out on an Intel Core i7 CPU @2.93 GHz with 8 GB RAM. Note that our method takes less than 9 minutes to process the three test sites, which is 7 times faster than any other method running on the same database. [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF] reported 1 hour for the processing time. The conceptual dierence consists in the fact that they process the 3D point cloud on a strip by strip basis, while we project all 3D points to an elevation image and we process them as a complete set using digital image processing techniques.

For further analysis, Table 4.4 presents the individual recall results for each curb type. In general, occlusion aects all detection types. The best recall occurs for roadside lines, which are curbs higher than 7 cm. Long curb reconnections are not allowed and it is the reason of low recall in gap detection. The lowest recall is due to polygonal curbstones. As aforementioned, we only detect one side, then a special processing should be performed for this type of curbs.

4.9 Conclusions 

Conclusions

Urban accessibility aects not only disabled persons but also old people, children and pregnant women. In the framework of the United Nations convention on the rights of persons with disabilities, local authorities are required to guarantee accessibility to public spaces in order to reduce social exclusion, low employment and limited education of people concerned by accessibility. Thus, it is very important to be able to make large scale accessibility diagnoses in urban environments. In this chapter, we propose an automatic and robust method for urban accessibility diagnoses using semantic analysis methods on 3D point clouds.

Ground segmentation is one of the most important steps in urban semantic analysis since all the urban entities (facades, objects, etc.) are located on it. Contrariwise to classic methods found in the state of the art, our segmentation method takes advantage of the quasi-at character of the ground. Therefore, the quasi-at zones labeling algorithm has been used. It allows to segment the ground even in the presence of access ramps, speed humps and other nonat structures. Once the ground is extracted, all remaining structures are considered as facades and objects. Discrimination between them is important because facades delimit the public space while urban objects dene the obstacle map required for itinerary planning.

Our ground segmentation and obstacle map generation methods have been qualitatively and quantitatively tested on TerraMobilita/iQmulus database. Our results show that our method has good detection rates and presents few false alarms. The f mean reported for objects and surfaces detection is equal to 76.06 %. The main drawback is that low walls may be wrongly classied as objects. In the case of separation between ground and facades, f mean is equal to 98.26 %, which proves the eciency of our approaches. These small errors are due to the junction facade-ground, where some points may be wrongly assigned. A possible solution could include the analysis of normal vectors, as proposed by [START_REF] Deschaud | Traitements de nuages de points denses et modélisation 3D d'environnements par système mobile LiDAR/Caméra[END_REF], at the cost of increasing computational time.

Another drawback of the method is due to the ambiguity when classifying objects behind facades. However, this is not a critical step since those objects represent a small part of the point cloud and they do not aect urban accessibility.

Once the obstacle map is generated, curb segmentation is the next step in the urban analysis since it denes the edge between roads and sidewalks. This segmentation is important because it denes the available zone for vehicles and pedestrians, respectively. Additionally, curb geometry is used to dene the accessibility for a given type of mobility. Using the ground segmentation result, gradient information is used in order to detect elevation discontinuities on the ground. Then, curb candidates are selected, close curbs are reconnected using Bézier curves and characterization is carried out based on geometrical features. Finally, accessibility denition is based on international standards.

Our curb segmentation and reconnection methods have been tested on Enschede database. Our results show that our methods have good detection rates, are fast and present few false alarms. In fact, precision and recall results outperform other works reported in the literature on the same database. The main drawbacks are due to occlusions, long access ramps and polygonal curbstones. In order to solve these problems, several scans of the same zone (as those produced by velodyne sensors) can reduce the occlusion; using color gradients can be a suitable solution in order to detect low and long access ramps; and, as suggested by other works in the literature, a special strategy for the invisible parts of polygonal curbstones should be developed. Other problems are due to inconsistent ground truth annotations.

Finally, the obstacle map and the curb accessibility information are combined in order to generate adaptive itineraries for dierent types of urban mobility. In our opinion, the most critical case is the accessibility for wheelchair users, so our experiments have been conducted in that sense. However, we can dene the accessibility according to any other type of softmobility since our method provides geometrical information of curbs and obstacles for each point.

As perspective, velodyne data and color images can be used in order to distinguish static from mobile obstacles.

Moreover, velodyne and riegl sensors may be combined in order to reduce occlusions problems. 

Introduction

Building segmentation can be dened as the process of separating buildings from other objects such as natural and articial ground, vegetation and urban objects. First researches on automatic building extraction began in the 80s. They used aerial imagery and focused on the extraction of high-level 2D and 3D primitives from stereo images. Unfortunately, those methods may fail since linear primitives are dicult to extract and many of them may not correspond to meaningful geometric features.

In computer vision, elevation images were introduced as data structures allowing direct access to 3D geometric features. First elevation images were mostly acquired from small objects and scenes, using active systems.

During the 90s, airborne laser scanning (ALS) became widely available so elevation images of huge scenes and cities became possible. As aforementioned in Chapter 2, accuracy and point density have been improved since then and are still constantly improving. More recently, new acquisition systems such as terrestrial (TLS) and mobile laser scanning (MLS) have been developed, adding not only greater geometrical accuracy, but also facade scans, not visible from ALS [START_REF] Vosselman | Airborne and Terrestrial Laser Scanning[END_REF].

Although the processing of 3D urban data has been underway for many years, facade segmentation is still an open problem. Several contributions on this domain are proposed in the present chapter of this thesis.

Our processing begins with the ground segmentation method proposed in Chapter 4. Once the ground is segmented, all remaining structures are considered as facades and objects. Discrimination between them is important because facades delimit public space and urban objects dene the obstacle map required for itinerary planning. Using TLS and MLS data, only building front parts are visible, as shown in Figure 5.1. It is noteworthy that facades constitute the highest and longest vertical entities in the urban scene. In some cases, some artifacts inside buildings may be seen through doors and windows. In this thesis, we are not interested in those objects. In the framework of TerraMobilita project, several facade segmentation methods have been developed according to urban features and application domain.

This chapter is organized as follows. Section 5.3 reviews related works in the state of the art. Sections 5.4 and 5.5 introduce two dierent approaches to segment facades: with and without markers, respectively. Section 5.6 describes a method to segment city blocks taking advantage of the facade segmentation result. Finally, Section 5.8 concludes this chapter. Florida (USF) database [START_REF] Hoover | University of South Florida (USF) Range Image Database[END_REF]. Several works on the parametric model tting problem can be found in the literature [START_REF] Boyer | The Robust Sequential Estimator: a general approach and its application to surface organization in range data[END_REF][START_REF] Werghi | Modelling Objects Having Quadric Surfaces Incorporating Geometric Constraints[END_REF][START_REF] Marshall | Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy[END_REF][START_REF] Chaperon | Extracting cylinders in full 3D data using a random sampling method and the Gaussian image[END_REF][START_REF] Lari | An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data[END_REF]. Those works can be extended in order to segment surfaces such as ground and facades on elevation images. The main drawback is that they involve the model selection which can be dierent for dierent images, are time consuming due to minimization procedures and may produce under-segmentation. Other works aiming at segmenting facades are available in the literature [START_REF] Sevcik | Documentation of complex facades and city modelling through the combination of Laserscanning and photogrammetry[END_REF][START_REF] Rutzinger | Tree modelling from mobile laser scanning data-sets[END_REF]Poreba and Goulette, 2012b;Serna and Marcotegui, 2013a;[START_REF] Weinmann | Feature relevance assessment for the semantic interpretation of 3D point cloud data[END_REF][START_REF] Weinmann | Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features[END_REF]. Additionally, facade images can be used in order to enrich the segmentation [START_REF] Shao | ZuBuD -Zurich Building Database for Image Based recognition[END_REF]Hernández and Marcotegui, 2009b;[START_REF] Teboul | Segmentation of building facades using procedural shape priors[END_REF]Serna et al., 2012;[START_REF] Teeravech | Discovering repetitive patterns in facade images using a RANSAC style algorithm[END_REF].

Related work

Facade segmentation using facade markers

In order to segment facades, we propose a method using geometrical constraints in order to dene facade markers. Then, a reconstruction is applied from those markers in order to get the entire facade. Let us explain rst the facade marker extraction and later in Section 5.4.2 the reconstruction process.

Facade marker extraction

Interpolated relative height image fheight is appropriate in order to compute facade markers since it contains information about high and vertical urban structures, as shown in Figure 5. From the work by Hernández and Marcotegui (2009a), we reuse the two following geometric constraints on fheight in order to extract facade markers:

heightFacade, dening the minimal allowed facade height. In our experiments, this variable has been set to 3.5 m according to architectural characteristics of our databases. This threshold is illustrated in In addition, we propose a third constraint in order to eliminate round objects such as trees.

circularityFacade, dening the maximal allowed facade circularity (circularity of an object X is dened as the inverse of its elongation Circ(X) = 1/E(X)). In our experiments, this variable has been heuristically set to 1/3, which correspond to the circularity of an ellipse whose major axis is 12 times longer than the minor one. Remember that the circularity of a perfect circle is equal to 1. This threshold is illustrated in Figure 5.3(c). Note that non-elongated objects such as the two trees in the right street side have been eliminated.

Using these constraints, we extract facade markers as the union of connected components (CC) higher than heightFacade, longer than lengthFacade and less circular than circularityFacade, as established in Denition 5.4.1:

Denition 5.4.1 Let fheight be an interpolated relative height image fheight : D → V , with D ⊂ Z 2 the image domain and V = [0, ..., H] the set of gray levels mapping the pixel height. Let Th( fheight ) be the binary image containing the pixels higher than heightFacade:

Th( fheight ) = {p ∈ D| fheight (p) > heightFacade} (5.1)
Let C 1 , C 2 ,..., C n be the connected components of image Th( fheight ):

Th( fheight ) = n i=1 C i , i = j ⇒ C i ∩ C j = ∅ (5.2)
Then, facade markers Fmark of fheight are the connected components C i of image Th( fheight ) which are longer than lengthFacade and less circular than circularityFacade:

Fmark(Th( fheight )) = {C j |L(C j ) > lengthF acade ∧ Circ(C j ) < circularityF acade}; ∀j ∈ {1, ..., n} (5.3)

where L(C j ) and Circ(C j ) are respectively the geodesic diameter and the circularity of connected component C j . For further details on the geodesic elongation, the reader is encouraged to read the Section 7.3.3 of this thesis.

It is noteworthy that these three parameters (heightFacade, lengthFacade and circularityFacade ) are easy to tune since they have a physical meaning and depend on urban/architectural constraints. Figure 5.3 illustrates this marker selection process.

Due to specic requirements in some TerraMobilita datasets, several 3D point clouds were acquired with the laser system oriented to the ground. Therefore, structures higher than 2.5 m are out of the laser eld of view, as shown in Figure 5.4. This is a challenge for methods using height constraints since high wall parts are not visible.

To solve this problem, we propose a solution taking advantage of the acquisition cycle of the MLS sensor, as shown in Figure 5.5. In our conguration, the sensor spins scanning vertical lines starting from the top. Thus, the rst and the last point of each spin correspond to the highest point on the right and on the left street side, respectively. These highest points are usually located on the facade. Selecting these points is automatically carried out detecting sign changes in the angle of depression (computed using the sensor position) between consecutive points. Then, these markers are added to image Th( fheight ) and isolated points are ltered out using the same process as before: only markers longer than lengthFacade and less circular than circularityFacade are considered as facade markers. 

Facade reconstruction from markers

As aforementioned, facade markers only contain a facade part. Therefore, a reconstruction should be applied from those markers in order to retrieve the whole facade. With this purpose, we use a reconstruction constrained by the ground residue (our ground segmentation method has been previously presented in Section 4.4). Ground residue f c gr is computed as the dierence between the elevation image and the ground: f c gr = ffgr . Then, 5 Facade and city block segmentation Note that pixels behind facades have been included in the segmentation result. This method is fast and easy to implement. However, the main drawback is that objects connected to the facade, e.g. motorcycles parked next to the facade or pedestrians leaning on walls, are reconstructed as well. 

f c gr (p) -f c
gr (q) is smaller than or equal to a given λ value. For all x ∈ F mark ⊆ D, let Λ be the set of increasing regions containing marker pixel x. For all λ ∈ V and j = [1, ..., n -1], we dene A λ (F mark) ∈ Λ as the λat zone of image f c gr containing marker Fmark:

A λ (F mark) = {x} ∪ {q|∃℘ = (p 1 = x, ..., p n = q) such that | f c gr (p j ) -f c gr (p j+1 )| ≤ λ}; ∀x ∈ F mark (5.5) Let E(A λ (F mark)) be the geodesic elongation of λat zone A λ (F mark). For all λ i ∈ V and i = [0, ..., R],
we dene λ M as the value for which the elongation is maximum:

λ M = argmax λi∈V |E(A λi (F mark))| (5.6)
Then, we dene A λ M (F mark) as the attribute controlled reconstruction of the facade from marker Fmark.

Using this controlled reconstruction maximizing the geodesic elongation, it is possible to reconstruct the facade without merging adjacent objects. 

Discussion

Methods based on markers are robust to segment non-planar facades and facades with several architectural details and balconies, such as it is the case of Parisian buildings. Moreover, these methods are simple and fast since they are based on geometric constraints, easily translated into threshold values. In the case of low facades or when the laser sensor is oriented to the ground, additional markers corresponding to the highest points of each laser rotation are added. It is important to remind that markers only contain partial facades, therefore a reconstruction from markers is required in order to get the entire facade. In our case, the reconstruction is constrained to the ground residue.

5 Facade and city block segmentation First, we have proposed a reconstruction by dilation. The main problem is that objects touching the facade, such as motorcycles parked next to the facade or pedestrians leaning on a wall, are included in the segmentation result.

In order to solve this problem, we have proposed a more sophisticated solution using an attribute controlled reconstruction. Since facades appear as high and elongated vertical structures, the choice of the geodesic elongation is justied and very ecient in practice. Additionally, objects touching the facade usually fatten them. Thus, we keep the quasi-at propagation that maximizes the facade elongation. This method oers better results than the reconstruction by dilation, however it is slower. One solution to speed up the attribute controlled propagation consists in only considering a subset of all possible quasi-at zones propagations:

λ i = i × ∆λ; ∀i = [0, ..., int(R/∆λ)].
In our experiments, we have set ∆λ to 1.0 m since it oers a trade o between processing time and performance, allowing proper separation of connected objects such as parked motorcycles and leaning pedestrians.

The performance of methods based on markers strongly depends on the markers selection. A wrongly located marker may produce errors since it will reconstruct the corresponding object, even if it is not a facade. In our experiments, our marker selection method has proved to be ecient in many cases. However, objects such as tree alignments may produce false markers and then wrong segmentations, as shown in Figure 5.11. That is why we have proposed a more robust method without facade markers. Using such method, only the elongation and its evolution over the height decomposition of the scene are analyzed. This method is proved to produce the best results, as explained in the following section.

Facade segmentation without markers

In order to segment facades avoiding the use of markers, we propose a method based on threshold decomposition and attribute proles. This method will be revisited later in Section 7. (5.7)

Since this decomposition satises the inclusion property T t (I) ⊆ T t-1 (I), ∀t ∈ [1, ..., R -1], it is possible to build a tree, called the component tree, with level sets T t (I). Each branch of the tree represents the evolution of a single connected component X t . An attribute prole is the evolution of an attribute (e.g. area, perimeter, elongation, average graylevel, etc.) of the CC along a branch of the tree.

Figure 5.12 illustrates the threshold decomposition for a 1D function, its component tree and the attribute (width) proles for the two function maxima (p A and p B ). Events on this attribute prole are useful to segment objects [START_REF] Jones | Connected Filtering and Segmentation Using Component Trees[END_REF], extract features [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF][START_REF] Beucher | Numerical residues[END_REF]Morard et al., 2011b) and dene adaptive structuring elements (Serna and Marcotegui, 2013a). Now, let us extend this denition to the 3D case: Denition 5.5.2 Let P be a 3D point cloud containing a list of N points (x i , y i , z i ) ⊂ 3 , where i = [0, ..., N ].

Let M i = (x i , y i , z i ) be a 3D point in 3 and m i = (u i , v i ) a point in Z 2 in elevation image f , resulting from the image projection process explained in Section 3.4.1. A decomposition of P in horizontal slices can be obtained considering successive thresholds on the Z axis separated by a given height ∆z:

T Z t (P ) = {m i ∈ D | t∆z < z i < (t + 1)∆z}; ∀t = [0, ..., R -1]; ∀i = [0, ..., N ]
(5.8)

Contrarily to the 2D case, this decomposition does not satisfy any inclusion property. However, it is always possible to analyze the evolution of a single connected component X t over horizontal slices T Z t (P ). An attribute prole is the evolution of an attribute (e.g. number of points, density, average elevation, etc.) of a CC along the decomposition.

More adapted to our 3D urban data, let us to dene an adaptive decomposition using slices parallel to the ground. From Denition 5.5.2, we propose the following decomposition: V = [0, ..., R] the set of gray levels mapping the ground elevation, resulting from the ground segmentation process explained in Section 4.4. A decomposition of P using slices parallel to the ground can be obtained considering successive thresholds from the ground separated by a given height ∆z:

T gr t (P ) = {m i ∈ D | f gr (m i ) + t∆z < z i < f gr (m i ) + (t + 1)∆z}; ∀t = [0, ..., R -1]; ∀i = [0, ..., N ] (5.9)
This decomposition is equivalent to an adaptive voxelization, as shown in Figure 5.13. Dashed lines represent the slices parallel to the ground. For each slice, an occupancy grid is dened according to the elevation image pixel size 1/k, where k is the number of pixels per unit length (For further details, see Section 3.4.2). Each voxel is labeled full if there is at least one 3D point inside, or empty otherwise. Finally, these occupancy grids are stacked in a binary 3D image. For each slice, attributes are computed on each binary CC. We propose to segment facades using the maximal elongation image computed from the attribute prole of decomposition T gr t . With this aim, we compute the geodesic elongation E(X t ) for each CC on each slice parallel to the ground. Then, for each pixel m i , we store the maximal elongation over the whole decomposition:

E max (m i ) = max|E(X t (m i ))|; ∀X t ∈ T gr t ; ∀t ∈ [0, ..., R -1] 
(5.10) Such feature image is a partition of the space where each pixel contains information about elongation of its neighborhood. Then, it is useful in segmentation tasks where some prior shape knowledge is exploitable. This

City block segmentation

decomposition is used to segment facades while ltering out other structures, including objects connected to it.

The slice height has been set to ∆z = ∆λ = 1.0 m, since we are only interested in connected objects higher than 1.0 m (motorcycles, pedestrians, urban furniture, etc.). Additionally, it oers a trade o between processing time and performance, since only a few tens of slices are required to decompose an urban scenario with high buildings.

Figure 5.14 illustrates an example of facade segmentation using this approach. 

City block segmentation

A city block is the smallest area that is surrounded by streets. A wide variety of sizes and shapes can be found in urban environments. In general, it depends on historic, demographic and geographic constraints. For example, many pre-industrial cities tend to have irregular city blocks, while newer cities have usually much more regular arrangements (Wikipedia, 2014).

In our application, city blocks are considered as the biggest semantic entity in the urban environment. Their segmentation is useful for individual city block analysis, e.g. occluded curbs belonging to dierent city blocks should not be reconnected, as explained in Chapter 4. Additionally, each city block may be processed separately and their results joined at the end of the analysis, reducing memory requirements and allowing parallelization.

Once facades have been segmented on the elevation image, we compute the inuence zones (IZ) of each facade in order to dene city blocks. The IZ was one of the rst morphological operators applied to image segmentation. It was discovered in the 70s from the iterative application of basic operators such erosion and dilation [START_REF] Matheron | Random Sets and Integral Geometry[END_REF][START_REF] Serra | Mathematical Morphology and Its Applications to Image Processing[END_REF]. The IZ of a given CC is dened by the set of pixels of a binary image that are closer to this CC than to any other CC on the image. Let us introduce its formal denition:

Denition 5.6.1 Inuence zones (IZ). Let X be a binary image and K 1 , K 2 ,..., K n the CC of X. The inuence zone of K i is the set of pixels of image X which is closer to K i than any other CC of image X:

IZ(K i ) = {p|∀j ∈ {1, ..., n}, i = j ⇒ d(p, K i ) < d(p, K j )} (5.11)
It is noteworthy that this is an alternative denition of a Voronoi diagram [START_REF] Voronoi | Nouvelles applications des paramètres continus à la théorie des formes quadratiques[END_REF]. In practice, the IZ of a binary image is computed using a constrained watershed on the distance function of the binary image. Each color represents a dierent city block.
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Results

Our facade segmentation methods have been tested on TerraMobilita datasets in order to get qualitative and quantitative results. Two types of ground truth (GT) annotations are available:

5 Facade and city block segmentation The main problems appear in the left part: zone 1, where the side part of a bus has been wrongly detected as facade; and zone B, where bushes and vegetation over a low wall could not be separated.

These objects present a high elongation, they are then segmented as facades.

5 Facade and city block segmentation 2D lines indicating the separation between sidewalks and buildings. These 2D manual annotations are usually provided by local authorities. In our case, they have been obtained from Open Data Paris (ODParis http://opendata.paris.fr/), a project from Paris city hall (Mairie de Paris, in French) in order to make urban data available to the community. Evaluations using 2D lines are commonly used in the state of the art when 3D annotations are not available [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF][START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]Serna and Marcotegui, 2013b). These evaluations give an idea on the segmentation method performance.

However, results should be carefully interpreted since the evaluation is only carried out on the 2D space at the ground level, then performance segmenting 3D features such as inclined facades, architectural details and balconies cannot be directly evaluated.

3D point-wise annotations, i.e. a class is assigned to each 3D point. These point-wise annotations allow a global evaluation taking all facade points into account. In our opinion, this evaluation is the most appropriate, however complete 3D manual annotations are rarely available in the state of the art. In our experiments, we have used 3D annotations and evaluation methods developed in the framework of TerraMobilita/iQmulus benchmark (http://data.ign.fr/benchmarks/UrbanAnalysis/).

Evaluations using each type of GT annotation are presented in the two following subsections. GT lines on a 2D image. When 3D facade points are projected to a 2D plane, they are usually wider than a single line due to facade inclination, architectural details and balconies. Therefore, buers around GT lines and segmented facades are required in order to compute the evaluation.

Results

On the one hand, a segmented facade is labeled as true positive or false positive if it is located inside or outside a GT buer, respectively. On the other hand, a GT facade is labeled as segmented or missed if it is located inside or outside a segmented facade buer, respectively.

In our datasets, we consider that a buer width of 1.0 m is appropriate to quantify true positives without overestimating false positives, as shown in Figure 5.19. This buer-based evaluation is commonly used in other works reported in the literature [START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF][START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]; Serna and Marcotegui, 5.7 Results 2013b). The classic Precision (P), Recall (R) and f mean criteria are computed. Recall is dened as the number of GT pixels correctly segmented divided by the total number of GT pixels; Precision is dened as the number of true positive pixels divided by total number of segmented pixels (true positives + false positives); and f mean = 2P R/(P + R).

Table 5.2 presents a quantitative comparison between our facade segmentation methods. As aforementioned, these results should be carefully interpreted since the evaluation is only carried out on the 2D space at the ground level. Then, the performance segmenting inclined facades, facades with architectural details and balconies cannot be directly quantied. Method 1, based on reconstruction by dilation from markers, presents the highest Recall retrieving 100% of facades in the four test sites. However, this method presents also the highest number of false positives (Precision ranges between 13.6% and 45.1% for all test sites). As aforementioned, this method is based on iterative geodesic dilation, then any object touching the facade is segmented as part of it. This method is the fastest one and its use may be justied in an application with strict time constraints or if only a rough segmentation is required. For example, if we are only interested in dening the public space boundary (e.g. for a urban mobility application), all objects touching or behind the facade are not required to be segmented.

As aforementioned, the main problem of this method is that connected objects, such as motorcycles parked next to the facade or leaning pedestrians, are reconstructed in the facade mask. In order to solve this problem, we have proposed Method 2, based on attribute controlled reconstruction from markers. Since connected objects usually reduce the global facade elongation, this method oers better results than the rst one: Recall is higher than 97% for all test sites while Precision increases up to 73.2% and 87.8% in sites I and II, respectively. This method presents the best trade-o between performance and processing time.

In general, methods based on facade markers are strongly inuenced by the markers selection method. The main drawback is that bad located markers may produce errors reconstructing non-facade objects. In particular in site IV, marker-based methods fail segmenting the tree alignments in the street right side (Precision is 13.6% and 13.9% for methods 1 and 2, respectively). In order to avoid markers, we propose Method 3, a more robust segmentation method based on the maximal elongation image. This method is proved to produce the best results for all test sites: f mean equal to 80.9% and 92.8% for sites I and II. In spite of missing GT annotations, f mean is equal to 80.3% and 74.9% for sites III and IV, proving the performance of this method even in the presence of trees. The main drawback is that its implementation is slow, then it is not suitable for real-time applications. However, it remains possible for large scale applications, where time constraints are less strict.

Note that processing time is only a few tens of seconds for an acquisition of several hundreds of meters, using a non-optimized implementation.

Results: TerraMobilita/iQmulus database

TerraMobilita/iQmulus database [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] As aforementioned, our results are evaluated point-by-point using the TerraMobilita/iQmulus evaluation protocol [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]. First, we classify the 3D point cloud in 3 main categories: surface (containing facades and ground), object and other. Moreover, the unclassied category has been dened for non-annotated points in the GT, which are ambiguous points dicult to annotate. They correspond to 18.31 % of total number of points in the dataset. For example, consider the tree and the wall in zone C in Figure 5.24. These points have been manually marked as unclassied, then they have not been taken into account in the evaluation.

Table 5.3 presents the confusion matrix and our classication results for these 3 categories. This classication is useful to evaluate the ability of our method segmenting surfaces (facade and ground) while separating objects connected to them.

Using our method, the f mean for the surface class is equal to 96.03% while objects are correctly separated from them with f mean equal to 84.59 %. In this experiment, we are mainly interested in separating facades and ground from other structures such as connected objects. Note that the surface class includes facades and ground, which represent the biggest categories in the scene with 75.82 % of total 3D points, while the object class represents 5.7 % of total 3D points. The overall accuracy of our method considering these categories is 92.65 %.

Table 5.4 presents our segmentation results for the surface class. Note that our method correctly separates facades and ground giving f mean equal to 97.25 % and 98.72 %, respectively. Figure 5.25 shows that small errors are due to the facade-ground junction, where some points may be wrongly assigned. The overall accuracy 1 The manual annotated 3D point cloud is available at: http://data.ign.fr/benchmarks/UrbanAnalysis/download/Cassette_idclass.zip

The 3D point cloud processed by our method is available at: https://partage.mines-telecom.fr/public.php?service=files&t=294aed38d48c8ddd03a528069f1b2e51 

Conclusions

In this chapter, we have proposed automatic and robust approaches to segment facades from 3D point clouds.

Processing is carried out using elevation images and 3D decomposition, and the nal result can be reprojected onto the 3D point cloud for visualization or evaluation purposes.

Our methods are based on geometrical and geodesic constraints. Most parameters have been set heuristically and are related to urban and architectural constraints. Thus, they are intuitive to tune. The performance of our methods have been proved in our experiments on TerraMobilita databases using 2D and 3D ground truth annotations. Three approaches have been proposed: reconstruction by dilation from markers, attribute controlled reconstruction from markers and based on the maximal elongation image (without markers). Method based on reconstruction by dilation from markers is the fastest since it is based on simple thresholds and use

Conclusions

reconstructions constrained by the ground in order to get the entire facade. The main problem is that objects connected to the facade are reconstructed as well. In order to solve this problem, we have proposed an attribute controlled reconstruction using the geodesic elongation. Since connected objects usually appear at low heights and reduce the global facade elongation, this method oers better results than the rst one. In our experiments, we have used geometric and geodesic constraints in order to extract facade markers. In the case of low facades or when the laser sensor is oriented to the ground, additional markers based on the laser rotation have been added.

In general, methods based on facade markers are strongly inuenced by the markers extraction method. The main drawback is that bad located markers produce errors since they may reconstruct non-facade objects. For this reason, we have proposed a more robust method avoiding the use of facade markers. In such method, only the elongation and its evolution over the height decomposition of the scene are analyzed. This method is based on the maximal elongation image computed from 3D decomposition. It has been proved to produce the best results. However, its implementation is slower, then it is not suitable for real-time applications. Nevertheless, it remains suitable for large scale applications, where time constraints are less strict. Note that processing time is only a few tens of seconds for an acquisitions of several hundreds of meters, using a non-optimized implementation.

The selection of the best facade segmentation method remains application dependent. It should be a trade o between quality results and computational cost. In the case of a large-scale application, where time constraints are less strict, the most accurate method should be preferred.

Our approach is a research prototype, mainly based on Morph-M library (CMM, 2013), the image processing library of our laboratory. This library allows fast prototyping but it is not intended to be a fast library.

Currently, the optimization of our base operators (erosion, dilation, opening, reconstruction, watershed, and so on) is under development at CMM, to bring optimized operators for real time and/or big image developments.

Software (hierarchical queues, structuring elements decomposition, among others) and hardware (SIMD-Single Instruction Multiple Data and parallelization) optimizations are being integrated in SMIL library [START_REF] Faessel | SMIL: Simple Morphological Image Library[END_REF] and will be integrated in our future developments.

6 Semantic analysis of 3D urban objects We focus on a semantic analysis including detection, segmentation and classication of urban objects from 3D laser scanning data. In the scientic community several denitions can be found for these concepts. For the sake of clarity, let us dene them in the way they should be understood in the present chapter:

Detection: An object is considered to be correctly detected if it is included in the list of object hypotheses, i.e.

it has not been suppressed by any ltering method and it has not been included as part of the ground mask. Note that an object hypothesis may contain several connected objects or even contain only a part of an object. In the detection step, we are only interested in keeping all possible objects. This is important because in most works reported in the literature, non-detected objects cannot be recovered in subsequent algorithm steps.

Segmentation: An object is considered to be correctly segmented if it is correctly isolated as a single object, i.e. connected objects are correctly separated, there is no under-segmentation, and each individual object is entirely inside of one and only one connected component (CC), there is no over-segmentation. This is important because many algorithms based on clustering and connected lters can wrongly gather objects touching each other, e.g. motorcycles parked next to the facade, pedestrians walking together, cars closely parked to others, etc. In the segmentation step, a unique identier (id ) is assigned to each individual object.

Classication: In the classication step, a category (called also class ) is assigned to each segmented object.

Each class represents an urban semantic entity. Depending on the application, several classes can be dened: facade, ground, curbstone, pedestrian, car, lamppost, etc.

We propose an automatic semantic analysis of 3D urban objects based on elevation images, mathematical morphology and supervised learning. Our general workow is shown in Figure 6.1. The input is a 3D point cloud. The rst three steps are presented in other chapters of this thesis: i) the 3D point cloud is projected to elevation images (presented in Section 3.4); ii) a digital terrain model (DTM) is automatically created as a result of our ground segmentation method (explained in Section 4.4); iii) facades are automatically segmented as the highest vertical structures in the elevation image (explained in Chapter 5). Then, the following three steps consist in methods for automatic detection, segmentation and classication of urban objects, and constitute the contribution of the present chapter: iv) object hypotheses are generated as discontinuities on the ground, then small and isolated regions are eliminated; v) connected objects are segmented in order to assign a unique identier (id ) to each individual object; vi) several geometrical and contextual features are computed for each object and classication is carried out using a Support Vector machine (SVM) approach. the contribution of the present chapter: iv) object hypotheses are generated as discontinuities on the ground, then small and isolated regions are eliminated; v) connected objects are segmented in order to assign a unique identier (id ) to each individual object; vi) several geometrical and contextual features are computed for each object and classication is carried out using a Support

Vector machine (SVM) approach.

As a result of our semantic analysis, two images containing ids and classes of each individual object are created. If the result have to be displayed in 3D, id and class images can be reprojected onto the 3D point cloud. For this purpose, all 3D points projected on a given pixel take the id and the class from that pixel.

Having these pieces of information in two dierent images is useful in the case of connected objects belonging to the same class. For example, consider the alignment of parked cars shown in Figure 6.2. According to the class image (Figure 6.2(b)), it could be a long car parked in the right street side. However, the id image (Figure 6.2(a)) allows to count the number of parked cars together.

Detailed descriptions are presented in following subsections. Several contributions of this chapter have already been published in Serna and Marcotegui (2014).

This chapter is organized as follows. Section 6.3 reviews related works in the state of the art and discusses their dierences with respect to our proposed methods. Sections 6.4 to 6.6 respectively introduces our detection, segmentation and classication methods based on mathematical morphology and supervised learning.

Section 6.7 describes the evaluation protocol developed in the framework of TerraMobilita/iQmulus bench- mark. Section 6.8 presents quantitative and comparative results on several state of the art databases. Finally, Section 6.9 concludes this chapter.

Related work

Even though 3D acquisition systems have a high maturity level, 3D automatic analysis of urban areas is still an active research area. In the last years, several automatic solutions have been developed with dierent aims. Several methods project 3D information onto a 2D grid in order to reduce the problem complexity and to speed up the computational processing. As each pixel of the projected grid contains elevation information, it is called elevation image or digital elevation model. This kind of 2.5D image has a long tradition in the scientic community [START_REF] Hoover | An explerimental comparison of range image segmentation algorithm[END_REF]. Besides, it is of great interest nowadays due to technological developments in remote sensing equipment such as Riegl, Velodyne and Kinect sensors since 3D points can be projected to 2D grids for visualization and processing purposes. [START_REF] Gorte | Planar feature extraction in terrestrial laser scans using gradient based range image segmentation[END_REF] presents a method to segment planes on Terrestrial Laser Scanning (TLS) data using range 6 Semantic analysis of 3D urban objects images. The 3D point cloud is projected from the sensor point of view. As a result, a panoramic range image is obtained and plane estimations are done for each pixel on the image. Then, a region growing approach is performed in order to segment pixels belonging to the same plane. In a similar way, [START_REF] Zhu | Segmentation and classication of range image from an intelligent vehicle in urban environment[END_REF] project Mobile Laser Scanning (MLS) data to a panoramic range image in which rows represent the acquisition time of each laser scanline, columns represent the sequential order of measurement and pixel values code the distance from the sensor to the point. They propose a semantic analysis using graphs, SVM and decision trees. Hernández and Marcotegui (2009c) propose a method projecting MLS data to elevation images, i.e. a nadir view of the scene. Ground and objects are segmented using morphological transformations and objects are classied in four categories (cars, lampposts, pedestrians, and other) using SVM.

Since processing based on elevation images is both precise and fast, real-time applications such as automatic guided vehicles have been addressed. [START_REF] Kammel | Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[END_REF] and [START_REF] Ferguson | Detection, prediction, and avoidance of dynamic obstacles in urban environments[END_REF] have developed autonomous vehicles, for the DARPA Challenge 2007, able to drive through urban scenarios. They use o-line processed aerial images and 2D maps in order to determine road structure. Then, on-line laser scans are projected to elevation images and static and mobile obstacles are detected. [START_REF] Munoz | Onboard contextual classication of 3-D point clouds with learned high-order Markov Random Fields[END_REF], extending the work by [START_REF] Anguelov | Discriminative learning of Markov random elds for segmentation of 3D scan data[END_REF], propose High Order Markov Random Fields for onboard contextual classication.

In general, approaches for autonomous vehicles do not require high (centimeter) accuracy but high speed in order to detect and predict obstacles in real time. More accurate but slower methods process the 3D point cloud directly. These approaches are suitable for applications with high accuracy requirements but no strict time constraints. One of the major problems is the 3D neighborhood denition, which is not as trivial as it is in the 2D case using elevation images. [START_REF] Demantke | Dimensionality based scale selection in 3D LiDAR point clouds[END_REF] propose a method to adapt 3D neighborhood radius 6.4 Object detection based on local features. Radius selection is carried out optimizing local entropy. Then, dimensionality features are calculated on spherical neighborhoods in order to characterize lines (1D), planes (2D) and volumes (3D). [START_REF] Douillard | On the segmentation of 3D LIDAR point clouds[END_REF] present a set of 3D segmentation methods based on voxelization and meshing. Their algorithms are evaluated on manually labeled datasets and the best performance is achieved using clustering approaches.

Several authors develop hybrid methods exploiting the complementarity between passive and active 3D acquisition methods: laser scanning provides the accurate 3D geometry while photogrammetry provides the realistic texture. [START_REF] Sevcik | Documentation of complex facades and city modelling through the combination of Laserscanning and photogrammetry[END_REF] present a method based on laser scanning and photogrammetry for generating precise and detailed 3D city models. [START_REF] Beger | Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction[END_REF] use both high resolution images and airborne LiDAR data to generate 3D orthophotos with depth information. [START_REF] Gerke | Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classication[END_REF] combine Aerial Laser Scanning (ALS) and images for automatic scene classication.

Several complete semantic analysis frameworks can be also found in the literature. [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF] develop a set of algorithms to detect, segment, characterize and classify urban objects. Their method is evaluated on ALS/TLS data from Ohio (USA). Their pipeline is as follows: i) ground segmentation using graph cuts;

ii) object detection and segmentation using hierarchical clustering; iii) object characterization using geometrical and contextual descriptors; iv) object classication using SVM. Recently, [START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF] have improved this workow including spin images and implicit shape models. The major problems of these approaches are noise, sparse sampling and proximity between objects. Moreover, some prior knowledge about the object scale is required to set up thresholds. [START_REF] Schnabel | Shape recognition in 3D point clouds[END_REF] present a semantic system for 3D shape detection. Their algorithm consists in two main steps: i) a topology graph is built with primitive shapes extracted from the data;

ii) a search is carried out in order to detect characteristic subgraphs of semantic entities. The main drawback is the graph complexity when dealing with non-trivial objects. [START_REF] Weinmann | Feature relevance assessment for the semantic interpretation of 3D point cloud data[END_REF] propose a methodology for feature relevance assessment on 3D urban data. They propose a metric based on seven dierent feature selection strategies. Their results reveal that the use of the ve best-ranked features improves the classication accuracy and reduce processing time and memory consumption. [START_REF] Niemeyer | Contextual classication of lidar data and building object detection in urban areas[END_REF] address the problem of contextual classication on ALS data. In the framework of that work, no segmentation is performed and each 3D point is classied to one of seven categories using random forests and conditional random elds. After a feature analysis, the authors concluded that geometrical features, in particular the relative height, and contextual features are the most discriminant. [START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF] propose a framework to segment and classify urban objects from MLS data. That work starts with a rough classication into three large categories: ground, on-ground objects and o-ground objects. Then, based on geometrical attributes and topological relations, more detailed classes such as trac signs, trees, building walls and barriers are recognized. [START_REF] Owechko | Automatic recognition of diverse 3-D objects and analysis of large urban scenes using ground and aerial LiDAR sensors[END_REF] describe a similar pipeline: rst, a spatial cueing is applied in order to identify potential objects; then, statistical classiers based on decision trees are trained using geometrical and contextual features. Using such pipeline, there is barely any problem recognizing large at features such as ground, barriers and walls. However, there are some problems classifying pole-like objects such as trees, bollards and lampposts. Additionally, occlusions and point density distribution are critical. [START_REF] Mallet | Relevance assessment of full-waveform LiDAR data for urban area classication[END_REF] investigate the potential of full-waveform LiDAR data for urban areas classication. In that work, waveform features are used as input for an SVM classier. Their results show that echo amplitude and radiometric features are suitable to classify buildings, ground and vegetation. [START_REF] Rutzinger | Tree modelling from mobile laser scanning data-sets[END_REF] describe an automated work-ow to segment and to model trees from MLS data. First, the input point cloud is segmented into planar regions using the 3D Hough Transform and surface growing algorithms. Then, the remaining small segments are merged applying a connectivity analysis. Next, non-tree objects are removed from the analysis using statistical measures. Finally, trees are thinned using 3D alpha shapes [START_REF] Edelsbrunner | Three-dimensional alpha shapes[END_REF] and realistic 3D models are generated. [START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF] segment and model curbstones from ALS/MLS data. Their process is performed directly on the 3D point cloud, on a strip by strip basis, so intrinsic information between neighboring strips is missing. Recently, Serna and Marcotegui (2013b) solved this problem by processing all strips at the same time using elevation images.

Object detection

Our object detection method is based on mathematical morphology, inspired by Hernández and Marcotegui (2009a). They propose to detect urban objects using the top-hat by lling holes (THFH) followed by an area opening. In the rst step, THFH is an eective and parameterless way to extract objects that appear as bumps on the elevation image. However, it fails extracting objects touching the image border because they are not considered as bumps. In the second step, an area opening γ Amin [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF] is performed in order to lter out small and noisy structures. Area opening is a morphological lter that removes objects with an area smaller 6 Semantic analysis of 3D urban objects than a given threshold A min . This procedure is eective to get rid of noisy and isolated regions. However, it also removes thin objects such as poles. In general, pole-like objects have a small area when they are seen from a nadir point of view, so they are suppressed by this lter. In this section, we propose an object detection framework that solves these two problems.

In order to solve the drawbacks of THFH step, a twofold strategy is proposed. A structure is considered to be object candidate if at least one of the two following conditions is fullled: i) it has not been reached by the quasiat zones algorithm (presented in Section 4.4), i.e. it does not belong to ground mask fgr ; ii) it appears as a bump on interpolated elevation image f (presented in Section 3.6.3). Therefore, the rst set of object candidates is the ground residue, which is computed by the arithmetic dierence between the interpolated elevation image and the ground mask ( ffgr ). The second set of object candidates is extracted using transformation THFH( f ), as originally proposed by Hernández and Marcotegui (2009a). Then, the union of these two sets constitutes the complete collection of object candidates.

In order to solve the γ Amin drawbacks, the normalized accumulation image f acc is used (presented in Sec- tion 3.6.2). In general, vertical structures have high accumulation values. Thus, pole-like objects can be easily reinserted since their accumulation is higher than the accumulation for noisy objects.

Let us explain our detection method with an example. Figure 6 O. These holes are also lled at the ground level even if the ground is not the minimal surrounding value in this 1D prole. We assume that these holes can be lled at that level because the ground is not occluded by pedestrians 2

O and 5 O in the previous or in the following proles. In order to obtain the second set of object candidates, the prole is inverted and holes are lled using the morphological ll holes transformation, as shown in Figure 6. Figure 6.4 illustrates the detection process on real data. Note that all objects are detected by our method.

For a better understanding, facades are marked in a dierent color. In our experiments, facades are the highest vertical objects on the urban scene and they appear as elongated structures on interpolated maximal elevation image f . Thus, they are segmented using morphological methods based on geometric and geodesic attributes.

Facade segmentation methods have been introduced in Chapter 5.

Figure 6.5(a) illustrates the pole-like object reinsertion. Note that several pole-like objects are removed by an area opening lter at A min =0.1 m 2 . In Figure 6.5(b), objects with an accumulation higher than 10 points are reinserted (in red). Note that a tilted bollard (black) is not recovered because it has not enough accumulation.

A lower threshold can be used in order to retrieve this tilted bollard but at the risk of preserving other noisy structures.

6.4 Object detection Figure 6.4: Object detection using the top-hat by lling holes and the ground residue. Note that all objects are detected by our method. For a better understanding, facades are marked in a dierent color.

Facade segmentation methods have been introduced in Chapter 5.

Object segmentation

One of the main drawbacks processing 3D urban data using elevation images is that high objects may occlude lower objects located below them. For example, in Figure 6.6, the pedestrian in the right part does not appear on the elevation image because it is below a tree. To solve this problem, we propose a segmentation strategy using two slices, as previously introduced in Section 3.5:

1. a lower slice, containing points between the ground level and a given height H slice in the vertical axis.

This slice is built to contain most urban objects.

2. an upper slice, containing points higher than H slice . This slice contains the highest objects such as facades, treetops, lampposts and o-ground objects.

In our experiments, H slice has been experimentally set to 3.5 m, which is usually high enough to include all obstacles for urban mobility. This slice separation is marked with a blue dotted line in Figure 6.6. This threshold can be modied in order to dene obstacle maps at dierent heights according to dierent types of mobility: children, persons using a wheelchair, etc. Note that in the case of a non-horizontal or a non-at surface, it is very important to segment the ground in order to adapt each slice to be parallel to the terrain.

Methods used for ground segmentation have been previously discussed in Section 4.4. O) occlude lower objects below them such as pedestrians (object 5 O). In our experiments, H slice has been experimentally set to 3.5 m, which is usually high enough to include all obstacles for urban mobility. This slice separation is marked with a blue dotted line. This threshold can be modied in order to dene obstacle maps at dierent heights according to dierent types of mobility: children, persons using a wheelchair, etc. Note that in the case of a non-horizontal or a non-at surface, it is very important to segment the ground in order to adapt each slice to be parallel to the terrain.

6 Semantic analysis of 3D urban objects and upper slices (Figure 6.7(c)). Note that trees and objects occluded below them can be processed separately on these two images. That is why this processing based on slices is particularly adapted to urban environments.

After this slice denition, specic segmentation methods to analyze each slice have been developed, as explained later in Sections 6.5.1 and 6.5.2. Then, lower and upper results are integrated in order obtain coherent results, as presented in Section 6.5.3. After this slice denition, specic segmentation methods to analyze each slice have been developed, as explained later in Sections 6.5.1 and 6.5.2. Then, lower and upper results are integrated in order obtain coherent results, as presented in Section 6.5.3.

Object segmentation on the lower slice

Using our detection approach (introduced in Section 6.4), it is possible to have several objects, close to each other, merged into a single CC. For example, in the left part of Figure 6.6, a car (object 1 O) and a pedestrian (object 2 O) are detected in the same CC. Another example is shown in Figure 6.8(a), where several cars are merged into a single CC. In order to solve this problem, we apply the solution proposed by Hernández and Marcotegui (2009c): the number of connected objects in the same CC is equal to the number of signicant maxima on it. With the aim of preserving only the most signicant maxima, i.e. to get rid of maxima due to texture and noise on the upper part of the objects, a morphological h-Maxima lter is used [START_REF] Schmitt | A new mathematical morphological algorithm: r,h maxima and r,h minima. Application to X ray tomographs[END_REF]. The h-Maxima lter eliminates maxima whose relative height is less than or equal to a given threshold h, i.e. with a low local contrast. Using ltered maxima as markers, a constrained watershed on the elevation image is applied in order to segment connected objects. Figure 6.8 illustrates the performance of this segmentation.

The main drawback is when segmenting objects such as bikes, fences and lampposts with several arms. They may be over-segmented because they present more than one signicant maximum on the elevation image. For overcoming this problem, shape and contextual information may help to decide whether an object should be re-segmented. 

Object segmentation on the upper slice

Since the upper slice contains only the highest urban structures, we assume that only four kind of objects are found in this slice: facades, o-ground objects, trees and pole-like objects. Let us explain their segmentation process using the toy example of Figure 6.9. The 1D prole contains the following urban objects enumerated from 1

O to 5 O: 1 O facade, 2 O bird, 3 O lamppost, 4
O pedestrian, and 5 O tree. Note that this is only an illustrative example in the 2D case, real process is performed on 2.5D elevation image f . First, facades (object 1 O) are supposed to be previously segmented using one of the methods proposed in Chapter 5. Thus, they are extracted by simple comparison with the facade segmentation result.

Second, let us consider the case of objects which are not connected to the ground, as it is the case of the bird (object 2 O).

Denition 6.5.1 O-ground object. Let H slice be the height at which a 3D point cloud is divided into two slices parallel to the ground, as proposed in Section 6.5. Let f up min and f up be the minimal and maximal elevation images of the upper slice, respectively. By analogy, f low min and f low stands for the minimal and maximal elevation images of the lower slice, respectively. An object X in the upper slice is an o-ground object if it is not connected to any object in the lower slice, which can be determined evaluating the elevation values at the slices boundary.

Then, the set of o-ground objects f o-gr is dened as:

f o-gr = {X ∈ f up | min(f up min (X)) = H slice ∨ max(f low (X)) = H slice } (6.1)
6 Semantic analysis of 3D urban objects Figure 6.9: 1D example of object segmentation using two slices. This scenario contains the following objects:

1 O facade, 2 O bird, 3 O lamppost, 4
O pedestrian, and 5 O tree. Note that this is only an illustrative example in the 2D case, real process is performed on 2.5D elevation image f .

Finally, trees and pole-like objects are the only remaining objects in the upper slice, as it is the case of objects 3 O and 5 O. It is noteworthy that treetops are bigger than any pole-like object. Then, an area opening γ Atree [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF] is used with the aim of segmenting trees and pole-like objects. Then, we dene trees as objects bigger than a given threshold A tree . Figure 6.10 shows an experimental zone with several trees in St. Sulpice square in Paris, France. Figure 6.10(a) presents the complete elevation image while Figure 6.10(b) presents its upper slice. Figures 6.10(c) to 6.10(f ) present area thresholds (from 5 to 50 m 2 ) in order to segment trees.

In our experiments, we have noted that A tree =10 m 2 is enough to correctly segment trees while ltering out pole-like objects. However, this parameter can be intuitively tuned on any other database using some prior knowledge, i.e. type of pole-like objects, variety of trees, etc. In order to improve this segmentation process, features such as granulometry [START_REF] Matheron | Random Sets and Integral Geometry[END_REF], shape [START_REF] Breen | Attribute Openings, Thinnings, and Granulometries[END_REF] or dimensionality attributes [START_REF] Demantke | Dimensionality based scale selection in 3D LiDAR point clouds[END_REF]) may be used.

Integrating lower and upper slices

In order to obtain coherent results, lower and upper segmentation results should be integrated. As aforementioned, processing is independently carried out on each slice. Then, a connectivity should be dened in order to propagate results between slices.

Analyzing the elevation values at the slices boundary, as in Denition 6.5.1, it is possible to determine when an object in the upper slice is connected to another in the lower slice. Then, the propagation rules of Table 6.2 are applied to each CC. Segmented as tree Connected to the ground Upper and lower CC correspond to a tree and they should have the same id.

Segmented as pole-like Connected to the ground Upper and lower CC correspond to a pole-like object and they should have the same id.

Another possible but slower solution could consider an adaptive voxelization, as that proposed in Section 5.5.

Using such structure, 3D connectivity can be dened using 6-or 26-neighborhoods. Second Experimental zone (Z2) in the TerraMobilita/iQmulus database.

adaptive voxelization using slices parallel to the ground.

Object classication

Several classication methods have already been applied to 3D data in urban areas. In general, supervised classiers are preferred since they oer a higher performance. In addition to the feature vector, a set of labels associated to each training sample is required. This set is called the training dataset, which is used to estimate the parameters of the classier. An important underlying assumption is that the whole dataset has similar feature distribution with respect to the training dataset. This means that test and training datasets must have similar features in order to achieve a good performance. To prevent over-tting, several techniques such as bootstrapping or cross-validation can be used.

In our work, SVM is chosen because it has remarkable abilities to deal with both high-dimensional data and limited training sets, is easy to implement, uses a simple set of features as input, and produces accurate results in similar applications reported in the literature [START_REF] Mallet | Analysis of Full-Waveform LiDAR data for classication of urban areas[END_REF]Hernández and Marcotegui, 2009c;[START_REF] Alexander | Backscatter coecient as an attribute for the classication of full-waveform airborne laser scanning data in urban areas[END_REF][START_REF] Mountrakis | Support vector machines in remote sensing: A review[END_REF]. Other methods such as random forests and high order Markov models could also be suitable and they are known for providing similar performance [START_REF] Anguelov | Discriminative learning of Markov random elds for segmentation of 3D scan data[END_REF][START_REF] Mallet | Analysis of Full-Waveform LiDAR data for classication of urban areas[END_REF][START_REF] Munoz | Onboard contextual classication of 3-D point clouds with learned high-order Markov Random Fields[END_REF].

In order to build the feature vector, three set of features are used:

Geometrical features: object area and perimeter; bounding box area; mean axes length; maximum, Contextual features: Neighboring objects N neigh , dened as the number of regions touching the object, using 8-connectivity on the elevation image. This feature is very discriminant in the case of group of trees and cars parked next to each other; condence index C ind = n real /(n real + n interp ), where n real and n interp are the number of non-empty object pixels before and after interpolation, respectively. In general, occluded and far objects have a low condence index.

Intensity features: Average laser intensity over the object. This feature is used if available.

Color features: Average red, green and blue over the object. These features are used if available.

The reliability of these features depends on the acquisition system. Accurate and calibrated sensors contribute to compute accurate features and to get a good classication performance. Note that geometrical features can be adapted to any XYZ point cloud, taking into account the acquisition system resolution. In our experiments, geometrical features are computed in the international unit system (SI units).

Hierarchical classication

With the aim of reducing confusion between classes with similar features or with few examples in the database, we propose a hierarchical classication approach. Such idea comes directly from the study of biological perceptual systems [START_REF] Hubel | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] Poggio | Machine learning, machine vision, and the brain[END_REF], and it has been also applied in the remote sensing community [START_REF] Avci | A Hierarchical Classicaton of Landsat Tm Imagery for Landcover Mapping[END_REF][START_REF] Pu | Recognizing basic structures from mobile laser scanning data for road inventory studies[END_REF].

Our hierarchical classication begins using general classes, then it continues in a top-down approach until obtaining more detailed classes. First, data are separated in training and test subsets. The denition of the hierarchy of classiers is entirely carried out on the training dataset. This approach can be implemented as follows:

1. An analysis is carried out on the training dataset applying a global classication taking all available classes into account;

2. Training errors are computed using a k-fold cross-validation approach. In k-fold cross-validation, we rst divide the training set into k subsets of equal size. In our experiments, we have used k=10. Sequentially, 6.7 TerraMobilita/iQmulus evaluation protocol one subset is tested using the classier trained on the remaining k-1 subsets. Thus, each instance of the whole training set is predicted once.

3. Classical Precision P (train), Recall R(train) and f mean (train) = (2 × P (train) × R(train))/(P (train) + R(train)) statistics are computed in order to evaluate our training results. Classes with high confusion rates (f mean (train) lower than 80%) are identied. In general, these classes correspond to heterogeneous objects with few examples. These classes are gathered in more general new classes.

4. Using the whole training dataset, two kind of classiers are trained: the rst one is a classier trained with the well-distinguished original classes and the new general ones; the second one is a more specic classier used for each new general class aiming at obtaining more detailed classes.

5. The process can be iterated. In our experiments, only two levels of hierarchy have been used.

After training, the resulting classier is used to predict the test dataset. Precision P (test), Recall R(test) and f mean (test) results reported in Section 6.8 have been computed on the test dataset and reect the performances of our system on real operation conditions.

TerraMobilita/iQmulus evaluation protocol

In order to benchmark our methods, we have cooperated with the National French Mapping Agency (IGN) in the denition of an evaluation protocol in the framework of TerraMobilita/iQmulus benchmark [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]. We propose a very detailed semantic tree containing 101 classes, shown in Figure 6.12. Probably no existing method in the state of the art treats the whole problem. This is why the participants to the benchmark can choose to analyze the scene using any subtree of the tree. In this case, they simply apply the other class to the nodes that they do not wish to detail. The evaluation is performed accordingly and only the relevant metrics are given.

The benchmark does not aim at ranking the participants but at providing insights on the strengths and weaknesses of each method. We consider that the quality of a method is subjective and application dependent, and the results of this benchmark should only help a user choosing one approach depending on its own specic requirements. Quality of the results is evaluated at three levels: classication, detection and segmentation. Details are given below.

Classication quality

The classication quality is evaluated point-wise . The result of the evaluation is a confusion matrix for each node of the tree. Rows and lines are the classes from the ground truth (GT) and the evaluated method, respectively. Matrix values are the percentage of points for each corresponding class. All nodes from the semantic tree have an other class, so participants can classify into less classes than those given in the tree. For non root nodes, an additional category not in class is given for each point that were not correctly classied at a lower level.

Segmentation quality

The segmentation quality measures the capacity of the method to retrieve the objects present in the scene. Thus, it requires to choose a criterion to determine if an object from the GT has been correctly segmented or not. This biases the evaluation as this choice will impact the result. The proposed solution is to give the evaluation result for a varying threshold m on the minimum object overlap. In the benchmark, an object is dened by the subset of points with the same object identier. For a such subset S GT of the ground truth and S AR of the evaluated algorithm result, we validate S AR to be a correct segmentation of S GT (a match) i:

|S GT | |S GT ∪ S AR | > m and |S AR | |S GT ∪ S AR | > m (6.2)
where | • | denotes the cardinal (number of points) of a set. The standard Precision (P), Recall (R) and f mean are then functions of m, as shown in Equations (6.3) to (6.5):

P (m) =

number of segmented objects matched number of segmented objects (6.3) 6 Semantic analysis of 3D urban objects Figure 6.12: Hierarchy of semantic classes dened in the TerraMobilita/iQmulus benchmark. This class tree can be downloaded as an xml le from: http://data.ign.fr/benchmarks/UrbanAnalysis/ download/classes.xml. We propose a very detailed semantic tree containing 101 classes. Probably no existing method in the state of the art treats the whole problem. This is why the participants to the benchmark can choose to analyze the scene using any subtree of the tree. In this case, they simply apply the other class to the nodes that they do not wish to detail. The evaluation is performed accordingly and only the relevant metrics are given.

R(m) =

number of segmented objects matched number of GT objects (6.4)

f mean (m) = 2 × P (m) × R(m) P (m) + R(m) (6.5) 
P (m), R(m) and f mean (m) are evaluated for each object type at each level of the semantic tree and results are presented as two curves. These statistics are decreasing in m and this decay indicates the geometric quality of the segmentation: the slower the decay, the better the segmented quality.

When the threshold m is below 0.5, criterion (6.2) does not guarantee that objects are uniquely matched. When m < 1/n, n objects from the GT can be matched to a single object of the algorithm result (AR), or 6.8 Results the opposite. Thus, for m < 0.5 we also give the curves of over-segmentation (1-to-n) and under-segmentation (n-to-1) by averaging n over the matches dened in Equation (6.2). These curves indicate the topological quality of the segmentation.

Results

Our methodology is evaluated on four databases: TerraMobilita/iQmulus (Section 6.8.1), Paris-rue-Souot (Section 6.8.2), Ohio (Section 6.8.3) and Paris-rues-Vaugirard-Madame (Section 6.8.4) databases. As a general remark, our experiments demonstrate that almost all objects are retrieved by our detection approach. Then, segmentation is useful to separate connected objects such as pedestrians and cars. However, bikes and bushes may be over-segmented. Finally, classication is carried out in an straightforward but eective way using an SVM approach with geometrical and contextual features. In our experiments, spatial pixel size ranges from 0.01 m 2 (pw=10 cm width) to 0.04 m 2 (pw=20 cm width) according to acquisition conditions.

It is noteworthy that our algorithms were initially developed to process 3D databases from Paris (France) in the framework of TerraMobilita project. One of the main advantages of our method is that it can be easily generalized to other datasets without any major modication. This is underlined by the good results obtained on Ohio database (Section 6.8.3). Detailed results are presented below.

6.8.1 Results: TerraMobilita/iQmulus database TerraMobilita/iQmulus database [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] has been developed aiming at benchmarking semantic analysis methods working on 3D dense urban data. This database has been created in the framework of TerraMobilita project. It consists in 11 annotated 3D point clouds acquired by Stereopolis II system in the 6 th Parisian district in January 2013. Annotation has been carried out in a manually assisted way by MATIS laboratory at IGN. Further details on this database can be found in Section 2.6.2.

For this experiment, the le Cassette_idclass.ply has been used

1 . It contains 12 million points from a street section approximately 200 m long in rue Cassette in Paris, France. Manual annotations and point-wise evaluations have been independently carried out by IGN, using the evaluation protocol presented in Section 6.7.

Figure 6.13 illustrates results for each step of our processing on the lower slice. Figure 6.13(a) presents the interpolated elevation image. Figure 6.13(b) shows the object detection result making the separation between ground, facades and objects. Note that objects are not individualized yet. Figures 6.13(c) and 6.13(d) present our segmentation and classication results, respectively. Objects with the same label must have the same class.

Note that the main drawback is due to facades lower than H slice since most of them are wrongly segmented as objects and classied as cars (zone D in Figure 6.13). Other problems are due to wrongly interpolated regions behind facades, which are segmented as objects (zones A, B and C in Figure 6.13). However, this is not so critical since they can be easily eliminated using the condence index proposed in Section 6.6. As aforementioned, TerraMobilita/iQmulus evaluation protocol has been used to evaluate our results [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]. First, the 3D point cloud is classied in 3 main categories: surface (containing facades and ground), object and other. Moreover, unclassied category is dened for non-annotated points in the GT. They are ambiguous points dicult to annotate, e.g. points behind facades, which correspond to 18.31 % of total number of points in the dataset. For example, consider the tree alignment in zone E in Figure 6.14. The tree in the left part touch a low facade below it. In the GT, several points of this tree have been manually marked as unclassied. These points have not been taken into account in the evaluation.

Table 6.3 presents the confusion matrix and our classication results for these 3 categories.

Using our method, objects are correctly detected with f mean equal to 84.59 %. In this experiment, we are mainly interested in separating objects from other structures such as ground and facades. Note that surface class includes facades and ground, which represents the largest category in the scene with 75.82 % of total number of 3D points, while object class represents 5.7 % of total number of 3D points. The f mean for surface 1 The manual annotated 3D point cloud is available at: http://data.ign.fr/benchmarks/UrbanAnalysis/download/Cassette_idclass.zip

The 3D point cloud processed by our method is available at: https://partage.mines-telecom.fr/public.php?service=files&t=294aed38d48c8ddd03a528069f1b2e51

6 Semantic analysis of 3D urban objects In order to evaluate the segmentation quality for object class, we use a varying threshold m dening the minimum object overlap to validate a segmentation (as explained in Section 6.7.2). P(m), R(m) and f mean (m) are evaluated for each m value and results are presented in Figure 6.16(a). These functions are decreasing as m and their decay indicate the geometric quality of the segmentation. The total number of objects annotated in the GT is 189. According to our results, our segmentation method retrieves 142 objects (P(0.1)=75.13 %) for m=0.1, while 127 object are retrieved (P(0.9)=67.20 %) for m=0.9. The geometric quality of our segmentation is good since the performance decays slowly. For example, f mean (m) decays from 85.80 % to 76.74 % for m varying from 0.1 to 0.9. Note that in the range m=[0.1, 0.5] our performances are constant while in the range m=[0.5, 0.9] the f mean (m) decays less than 10%, proving the robustness of our segmentation.

The topological errors of the segmentation for object class is given in Figure 6.16(b). The (1-to-n) and (n-to-1) curves indicate the over-segmentation and under-segmentation errors, respectively. They depend on threshold m used for matching, as explained in Section 6.7.1. Low thresholds induce high topological errors (both underand over-segmentation). A threshold m = 0.5 is a good compromise for this method since precision/recall stay high (Figure 6.16(a)) while topological errors are not allowed (Equation (6.2)). Table 6.4 shows classication results for objects subtree considering 3 categories: static, dynamic and natural.

Using our method, dynamic and natural objects are correctly classied with f mean equal to 92.56 % and 95.49 %, respectively. Note that dynamic and natural classes represent the largest structures in the scene with 92.90 % of all 3D points in the subtree. The main drawback is due to static objects wrongly classied as dynamic, as it is the case of fences, barriers and low walls classied as cars. Other small errors are due to parking meters wrongly classied as pedestrians and bushes wrongly classied as cars. However, these errors are not critical since they represent only 7.10 % of total number of points in the subtree. The overall accuracy of our method classifying object subtree is 91.84 %. Table 6.4: Classication results for object subtree on TerraMobilita/iQmulus database. GT: ground truth, AR: automatic result. In the confusion matrix, results are presented as percentages with respect to the total number of points in the 3D point cloud (12 million points).

GT/AR unclassied static dynamic natural Sum

Recall Precision Figure 6.17 presents the segmentation quality for dynamic object class. The total number of dynamic objects annotated in the GT is 113. According to the results, our segmentation method correctly retrieves 97 dynamic objects (P(0.1)=85.84 %) for m=0.1, while 88 dynamic objects (P(0.9)=77.88 %) are retrieved for m=0.9. The geometric quality of our segmentation is good since the performance decays slowly. For example, f mean (m) decays from 92.38 % to 83.81 % for m varying from 0.1 to 0.9. Note that in the range m=[0.1, 0.5] our performances are constant, while in the range m=[0.5, 0.9] the f mean (m) decays less than 9%, which proves the robustness of our segmentation process.

For static objects subtree, 99.26 % of them correspond to punctual objects such as bollards, posts and trac lights. The poles reinsertion method proposed in Section 6.4 is particularly eective to retrieve this kind of objects. In our experiments, a f mean equal to 99.63 % is reported, proving the performance of our approach.

Figure 6.18 presents the segmentation quality for static objects node. The geometric quality of our segmentation is good since the performance decays slowly. For example, f mean (m) decays from 87.80 % to 78.05 % for m varying from 0.1 to 0.9. Note that in the range m=[0.1, 0.5] our performances are constant, while in the range m=[0.5, 0.9] the f mean (m) decays less than 10%, proving the robustness of our segmentation approach.

Table 6.5 presents classication results for dynamic objects subtree considering 3 categories: pedestrians, 2 wheeler and 4+ wheeler. Our overall accuracy is 99.34 %, which proves the good performance of our method.

4+ wheeler such as cars are correctly classied with f mean equal to 99.86 %. Note that 4+ wheeler class contains 97.20 % of all 3D points in dynamic object node. For pedestrians and 2 wheeler the f mean are equal to 83.87 % and 75.71 %, respectively. The main drawback is that motorcycles may be over-segmented (as explained in Section 6.5.1) and then wrongly classied as pedestrians. Another problem is due to pedestrians walking too close to high cars (e.g. vans or small trucks), which may not be correctly separated leading to under-segmentation problems.

Comparison with the state of the art

A recent publication by [START_REF] Vallet | TerraMobilita/iQmulus Urban Point Cloud Analysis Benchmark[END_REF] evaluates the current state of the art in urban scene analysis from MLS data. Results correspond to the TerraMobilita/iQmulus benchmark presented on July 8th, 2014 in Cardi (UK), in conjunction with SGPâ14. For practical reasons, the benchmark only consisted in one of the ten zones of the TerraMobillita/iQmulus database, the Cassette_idclass.ply le.

Figure 6.17: Segmentation quality for dynamic object class on the TerraMobilita/iQmulus database. The total number of dynamic objects annotated in the GT is 113. According to the results, our segmentation method correctly retrieves 97 dynamic objects (P(0.1)=85.84 %) for m=0.1, while 88 dynamic objects (P(0.9)=77.88 %) are retrieved for m=0.9. The geometric quality of our segmentation is good since the performance decays slowly. For example, f mean (m) decays from 92.38 % to 83.81 % for m varying from 0.1 to 0.9. Note that in the range m=[0.1, 0.5] our performances are constant, while in the range m=[0.5, 0.9] the f mean (m) decays less than 9%, which proves the robustness of our segmentation process. It is quite obvious from the results that the CMM method outperforms the KIT method in all aspects. The explanation is quite simple: the KIT method is a point based classication only using a local information (neighborhood analysis) to make its decision. As many classes are composed of objects a neighborhood base method fails to classify all the objects points in the correct object class.

This issue is discussed in [START_REF] Shapovalov | Non-associative Markov networks for 3D point cloud classication[END_REF]. The classication performances are quite high, but we have to keep in mind that the numbers are computed only on the points that were classied in the same class of the higher level (for instance, for mobile vs static object, we only count the point classied as objects in the Ground Truth and the Algorithm Result).

As aforementioned, the evaluation has been independently carried out by IGN. The reader is encouraged to review the publications by [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]; [START_REF] Vallet | TerraMobilita/iQmulus Urban Point Cloud Analysis Benchmark[END_REF] and to visit benchmark website: http: //data.ign.fr/benchmarks/UrbanAnalysis/.

Results

Figure 6.18: Segmentation quality for static object class on the TerraMobilita/iQmulus database. The geometric quality of our segmentation is good since the performance decays slowly. For example, f mean (m) decays from 87.80 % to 78.05 % for m varying from 0.1 to 0.9. Note that in the range m=[0.1, 0.5] our performances are constant, while in the range m=[0.5, 0.9] the f mean (m) decays less than 10%, proving the robustness of our segmentation approach.

6.8.2 Results: Paris-rue-Souot database

For this experiment, we use a manually annotated dataset from rue Souot, a street approximately 500 m long in the 5 th Parisian district. Acquisition was done by Stereopolis MLS system from IGN [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF], in the framework of TerraNumerica project [START_REF] Capdigital | Terra Numerica : La numérisation du patrimoine urbain[END_REF]. A typical scene is shown in Figure 6.19. It contains pedestrians, cars, lampposts, motorcycles, among others. This database was rstly used by Hernández and Marcotegui (2009c) to classify objects in four categories: cars, lampposts, pedestrians and other. However, their original annotation is no longer available. For the sake of comparison, we have manually annotated the database again 2 and managed to reproduce results consistent with those reported by the authors (shown in brackets in Table 6.6).

Data have been separated into two parts, training and test sets. This separation has been randomly done keeping 50% of the objects of each class in the training set and the rest in the test set. Color is not available in this database, thus only geometrical and contextual features have been used. In a rst attempt, a single SVM classier has been trained for all available categories. Training errors have been computed using 10-fold cross validation and high confusion rates were found between heterogeneous classes and classes with few examples, as shown in Figure 6.20(a). To overcome these problems, the hierarchical classication proposed in Section 6.6 is applied, as shown in Figure 6.20(b). The rst SVM classies well-discriminated objects (f mean (train) greater than 80%), while the second one is exclusively dedicated to classes with higher confusion rates (f mean (train) lower than 80%). Table 6.6 presents our classication results on the test set.

Our main contribution in the classication step is the use of contextual features and hierarchical SVM. With respect to Hernández and Marcotegui (2009c) work, classication results have been improved. On the one hand, cars and lamppost classication have the same maximal accuracy (100%) while the performance on the pedestrian class has been improved by about 15%. On the other hand, we use all available categories preserving the performance on cars and lampposts categories. The main problems appear with furniture and other classes because they are very heterogeneous. The same problem appears for trac lights and trash cans classes because there are not enough samples in the database (4 and 5 samples, respectively).

2 Paris-rue-Souot database is available at: http://cmm.ensmp.fr/~serna/downloads.html 6 Semantic analysis of 3D urban objects Ohio database has also been used by [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF] and [START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF] in order to evaluate their semantic analysis methods. This dataset is a combination of ALS and TLS data scanned in Ottawa city (Ohio, USA). It contains 26 tiles, 100 × 100 meters (approximately 4×10 6 points) each, as shown in Figure 6.21.

A typical scene contains trees, cars, lampposts, among others. The GT consists in a labeled point marking the center of each object and its class.

Since our method is sequential, i.e. the input of each processing step is the output of the previous one, its evaluation is carried out in the same way. First, the detection process is applied to the entire database. Second, detected objects are used as input for the segmentation step. Third, correctly segmented objects are separated in two subsets (train and test) in order to perform the classication. Let us to explain each processing step and The rst SVM classies welldiscriminated objects (f mean (train) greater than 80%), while the second one is exclusively dedicated to classes with higher confusion rates (f mean (train) lower than 80%). its evaluation.

Evaluation: Detection

In order to evaluate our detection approach, an object is considered to be correctly detected if its GT center is included in the object hypotheses mask (Subsection Section 6.4), i.e. it has not been suppressed by any preprocessing lter and it has not been wrongly merged with the ground. Note that an object hypothesis may contain several connected objects or only a partial object. In the detection step, we are interested in keeping as much objects as possible, avoiding false alarms. This is important because non detected objects cannot be recovered in the subsequent steps. Table 6.7 presents the percentage of retrieved objects in this database. Our detection method retrieves 98% of objects, which outperforms other methods reported in the literature (92% by [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF] and 96% by [START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF]). The number of false alarms cannot be estimated because many objects located on building roofs and in the forest are detected by our method (since they are real objects), but they have not been annotated in the database. Figure 6.22 shows the detection results on the 3D point cloud.

Evaluation: Segmentation

In order to evaluate our segmentation approach, an object is considered to be correctly segmented if it is isolated as a single object, i.e. connected objects are correctly separated (there is no under-segmentation) and each individual object is inside one and only one CC (there is no over-segmentation). However, an estimation of under-segmentation and over-segmentation errors cannot be done on Ohio database because it only contains a GT point for each object. In that sense, an object is considered to be correctly segmented if it is marked with one and only one GT point.

As shown in Table 6.7, our method segments correctly 76% of detected objects. Objects such as cars, lampposts, parking meters and signs are correctly segmented (Recall greater than 80%). The main problem comes from under-segmentation of connected objects such as light poles, posts and trees. Since this kind of clusters has only one maximum on the elevation image (the highest object), they are not correctly segmented by our method. Note that trees recall is 90%, which is considered as a satisfactory segmentation. However, trees represent approximately 34% of the objects in the database, which implies that under-segmented trees aect seriously the recall of other classes, in particular for classes with few objects.

Evaluation: Classication

For the classication experiments, segmented objects in the north quarter of the city (7 tiles, 458 objects) are used for training and the rest (19 tiles, 677 objects) for testing. Training and testing tiles are the same as in [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF], for comparison purposes. The number of objects per class on both training and test sets are detailed in Table 6.9.

Geometrical, contextual and color features (Subsection Section 6.6) are combined in this experiment in order to dene the best classication features. Classication performance obtained using dierent combinations of them is given in Table 6.8. The best overall accuracy (82%), dened as the ratio between the number of correctly classied objects and the total number of objects, is obtained combining geometrical and contextual features.

Detailed results are presented in Table 6.9. It is noteworthy that including color information degrades the classication accuracy. The reason is that in this database, color information is the result of overlapping ALS and TLS. During acquisitions, color sensors were not calibrated, thus their superposition is not perceptually coherent, as shown in Figure 6.23. In order to evaluate our detection approach, an object is considered to be correctly detected if its GT center is included in the object hypotheses mask, i.e. it has not been suppressed by any preprocessing lter and it has not been wrongly merged with the ground. Note that an object hypothesis may contain several connected objects or only a partial object. In the detection step, we are interested in keeping as much objects as possible, avoiding false alarms. This is important because non detected objects cannot be recovered in the subsequent steps.

Table 6.9 presents detailed classication results. Precision, Recall and f mean for each class are presented. In this experiment, classes with less than 5 objects, either in the training set or in the testing set, are not considered in the classication process. Therefore, only 6 categories have been used. It is noteworthy that cars, trees and posts are correctly classied. However, lampposts, lights and signs classication has lower performance.

For the sake of clarity, Table 6.10 shows the confusion matrix. Note that cars are correctly classied while lampposts, lights, posts, signs and trees are mixed up, which is comprehensible because they are pole-like objects.

In an attempt to solve confusion problems, the hierarchical classication approach (proposed in Section 6.6) has been studied. Lampposts, lights, posts and signs have been put together in a new class, while cars and trees 6 Semantic analysis of 3D urban objects and a second one is exclusively dedicated to classes with higher confusion rates. After our experiments, we have noted that this approach does not provide any global improvement in this database since f mean increases by 16%

for lampposts and lights, but it decreases by 15% for posts and signs. The conclusion here is that a hierarchical approach is not enough to solve confusion problems since objects are too similar. A possible solution is the use of other features which allow a clearer separation between classes. Ohio database has been chosen because it contains many dierent objects, it is large enough to exemplify a large-scale application, and comparison with the state of the art is possible since it has been used in other works [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF][START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF].

We present our results on 26 tiles. However, in the original publication by [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF] (the website containing the dataset is not longer available), they report 27 tiles. Therefore, the number of objects is not the same due to this missing tile. Additionally, some important dierences have been noticed with respect to the aforementioned authors: on the one hand, with respect to [START_REF] Velizhev | Implicit shape model for object detection in 3D point clouds[END_REF], they have only used 2 classes (cars and light poles), thus only a partial comparison can be done; on the other hand, with respect to 483 761 [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF], the main dierence comes from the fact that they do not consider trees nor bushes in their analysis. (2009) correctly classify 65% of the objects considered by their method. With respect to the segmentation method, results from Velizhev are not available and our accuracy (78%) is 8% lower than that reported by [START_REF] Golovinskiy | Shape-based recognition of 3D point clouds in urban environments[END_REF]. On the one hand, our major under-segmentation problem is due to clusters formed by trees and pole-like objects, where the highest object is the only signicant maximum. On the other hand, our major over-segmentation problem is when segmenting objects with several regional maxima such as trees.

To summarize, our sequential method correctly detects, segments and classies 99%×78%×82% = 64% of the annotated objects. With respect to computational time (last row in Table 6.12), our method is up to 10 times faster than the other two works. These three works use general-purpose machines and they are not specially optimized nor parallelized. The aim of this comparison is to give an idea to the reader about the computational time and the potential for large-scale or other time-constrained applications. One of the reasons of our faster processing is due to the use of elevation images and image processing algorithms since their computational cost is less expensive than direct 3D processing. Note that the typical speed of a MLS system is 30 km/h, which corresponds approximately to a covered area of 10,000 m 2 /minute on a 20 m wide street without considering stops nor trac lights. In this database, our processing speed is 10,000 m 2 /minute. This is a very fast o-line processing since acquisition and processing times are equal.

6.8 Results

Results: Paris-rues-Vaugirard-Madame database

Dealing with cars has a particular interest in the framework of TerraMobilita project since one of the applications consists in computing automatic parking statistics, as presented in Section 1.3. In order to evaluate the potential of an automatic method, several 3D point clouds of the same street section in Paris (rues Vaugirard and rue

Madame, approximately a 500 m long section) have been acquired at dierent hours. Acquisition was done by Stereopolis MLS system from IGN [START_REF] Paparoditis | Stereopolis II: A multipurpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology[END_REF]. Then, we apply our automatic methodology in order to detect, segment and classify cars. For the classication evaluation, urban objects were manually annotated. We use 2307 objects (129 cars and 2178 other ) as training set, and 970 objects (53 cars and 917 other ) as testing set. Note that a hierarchical classication is not applied since we are only interested in cars.

Color information is not available. Therefore, only geometrical and contextual features have been used. Table 6.13 presents our classication results using a binary SVM. The performance of our method is proved since 99.7% of the objects are correctly classied. Note that 5.4% of the cars have not been properly identied due to occlusion problems, as shown in Figure 6.24. Note that these cars are perpendicularly parked with respect to the acquisition trajectory, therefore only a part of them has been scanned. Note that this database contains a few number of mobile cars because only one laser scanner oriented to the right sidewalk has been used. In order to demonstrate that our method can be easily generalized, we have used a classier trained on Ohio dataset in order to classify cars on Paris-rues-Vaugirard-Madame database. A f mean equal to 90.0% has been obtained. This result is slightly lower than that reported in Table 6.13 (97.2%). However, the great advantage is that a new annotation may not be required when working with a new database.

Other experiments have been carried out using 3D data acquired by L3D2 system by MINES ParisTech (presented in Section 2.4.2) on the same test zone in Paris. At this point, our system is able to correctly extract cars and compute additional information such as geometric features, geographic position and GPS time at the acquisition moment. However, a comparison between cars parked in the same place at dierent moments is required to compute parking duration statistics. To avoid confusions between those cars, geometrical and color features can be used. Additionally, relative sensor precision between dierent acquisitions becomes a critical issue. In eciency terms, an automatic method seems to be suitable for this problem since the acquisition vehicle can go up to 20 times faster than a person. Additionally, the automatic processing takes only a few minutes and it is comparable to the acquisition time.

6.9 Conclusions

Conclusions

We propose an automatic and robust approach to detect, segment and classify urban objects from 3D point clouds. Processing is carried out using elevation images and the nal result can be exported to a GIS and reprojected onto the 3D point cloud for displaying and post-modeling purposes.

One of the main drawbacks processing 3D urban data using elevation images is that high objects may occlude lower objects located below them. That is why we propose a segmentation strategy using two slices. In the lower slice, objects are detected using a two-fold strategy considering both structures connected to the boundary of the scene as well as ground discontinuities. Then, a ltering step is performed in order to reduce noise but preserving thin vertical structures. Subsequent, connected objects are segmented assuming that the number of signicant maxima is equal to the number of connected objects. In the upper slice, a rule-based method has been proposed in order to segment facades, trees, poles and o-ground objects. Results from both slices are integrated based on connectivity on the slices boundary. Additionally, 3D connectivity and adaptive voxelization can be used as well.

It is obvious that processing two slices is more expensive than processing only one elevation image. Therefore, two slices are only used in databases containing several trees or other high objects occluding objects below them. In particular, this strategy has been successfully applied in the TerraMobilita/iQmulus database. Other databases such as Paris-rues-Vaugirard-Madame and Paris-rue-Souot do not contain trees in the public space, thus processing by slices has not been required. In the case of Ohio database, most trees correspond to a wood in the east side of the city, which has been acquired by ALS. Therefore, lower tree parts are not visible and processing by slices is not justied.

After segmentation, objects are classied in several categories using an SVM approach with geometrical and contextual features. Our geometrical features can be adapted to any XYZ point cloud. Thus, classication can be easily generalized, i.e. training on a database and testing on another one, as shown in Paris-rues-Vaugirard-Madame database. This is a signicant advantage because the model learned from a database can be applied to another one, even acquired by a dierent acquisition system, without the tedious manual annotation.

In the case of TerraMobilita/iQmulus dataset, we have proposed a protocol in order to evaluate classication, detection and segmentation quality. Additionally, benchmark results have proved that our method is accurate and overcomes other works reported in the literature using the same database. Our results on Ohio dataset show that our method retrieves 99% of the objects in the detection step, 78% of connected objects are correctly segmented, and 82% of correctly segmented ones are correctly classied using geometrical and contextual features. On Paris-rue-Souot dataset, our proposed hierarchical classication leads to an improvement of about 15% on pedestrian class with respect to previous works while preserving a good performance in other classes.

Moreover, new classes (not considered in previous works) have been taken into account. Other experiments have been also carried out on Paris-rues-Vaugirard-Madame datasets in order to exploit our classication results to compute automatic parking statistics.

Our method is proven to be robust to noise since small and isolated structures are eliminated using morphological lters. Additionally, it is fast because we project 3D points onto elevation images and we process them as a complete set using digital image processing techniques.

Even if our method presents good results and outperforms other state of the art methods, it is noteworthy that several improvements should be done before developing a mature application. Our main problem, common to all methods in the literature, is due to large occluded regions. Several scans of the same zone could reduce this problem. Some under-segmentation and over-segmentation problems have been also pointed out. A possible solution can include shape/texture analysis to help deciding whether an object should be re-segmented. Up to now, we have only used the spatial information available in the point cloud. However, additional features such as laser intensity and texture could improve our performance. Additionally, in the future we are planning to use Velodyne data in order to distinguish static from mobile obstacles and to reduce occlusion problems. 

Introduction

Local operators constitute powerful techniques in digital image processing. They are based on the neighborhood of each pixel, dened by a kernel. In general, such neighborhood is dened by a ball of radius r centered at the point to be processed. In the digital case, the kernel is reduced to the denition of a local neighborhood describing the connections between adjacent pixels. In Mathematical Morphology (MM), these kernels are called structuring elements (SE) and they are the basis of sophisticated nonlinear techniques for ltering, feature extraction, detection and segmentation [START_REF] Matheron | Random Sets and Integral Geometry[END_REF][START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Serra | Image analysis and mathematical morphology: theoretical advances[END_REF][START_REF] Serra | The Centre de Morphologie Mathématique: An overview[END_REF]. It has been shown

that adaptive approaches can lead to important improvements [START_REF] Lerallut | Image ltering using morphological amoebas[END_REF][START_REF] Maragos | Overview of adaptive morphology: Trends and perspectives[END_REF][START_REF] Pinoli | General Adaptive neighborhood mathematical morphology[END_REF][START_REF] Roerdink | Adaptivity and group invariance in mathematical morphology[END_REF][START_REF] Angulo | Morphological Bilateral Filtering and Spatially-Variant Adaptive Structuring Functions[END_REF].

In this chapter, several methodological contributions to mathematical morphology are presented. We have developed powerful attribute-based operators useful in a wide range of applications such as: attribute controlled reconstruction (Section 7.4), adaptive mathematical morphology (Section 7.5), feature extraction (Section 7.6), ltering and segmentation (Section 7.7). Besides, Chapter 5 presents an application to the semantic urban analysis on the segmentation of elongated facades. Several contributions of this chapter have already been published in Serna and Marcotegui (2013a); Serna et al. (2014a). Further details are given in the following sections.

This chapter is organized as follows. Section 7.3 revisits some basic concepts in MM: quasi-at zones, threshold decomposition and attribute proles. Section 7.4 denes our propagation controlled by the evolution of attributes. Section 7.5 presents an application to adaptive MM using input-adaptive SE. Section 7.6 proposes a feature extraction technique where input-adaptive SE are used to assess shape features on the image. Section 7.7 introduces a segmentation methodology based on the prole of a new attribute: the area-stable elongation. This methodology is successfully applied to segment elongated cells in uorescence multiphoton microscopy images of engineered skin. Finally, Section 7.8 concludes the chapter.

Background

Quasi-at zones

Connectivity relations naturally lead to partitions [START_REF] Serra | Connectivity on Complete Lattices[END_REF]. For example, the connectivity relation induced by the equality of gray-level divides the image into maximal connected components (CC) of constant graylevel, called at-zones [START_REF] Salembier | Flat zones ltering, connected operators and lters by reconstruction[END_REF]. In most cases, partition in at zones results in too many segments, as shown in the example of Figure 7.1(b). A less restrictive connectivity relation can be dened adding a threshold λ. It allows to connect adjacent pixels if their gray-level dierence does not exceed λ. This procedure, rstly introduced in image processing by [START_REF] Nagao | Region extraction and shape analysis in aerial photographs[END_REF], is called quasi-at (or λ-at) zones labeling and it is dened by [START_REF] Meyer | From connected operators to levelings[END_REF] 

Threshold decomposition and attribute prole

A gray-scale image can be represented as a stack of binary images using threshold decomposition [START_REF] Wendt | Stack lters[END_REF][START_REF] Maragos | Threshold superposition in morphological image analysis systems[END_REF] Since this decomposition satises the inclusion property T t (I) ⊆ T t-1 (I), ∀t ∈ [1, ..., R -1], it is possible to build a tree, called the component tree, with level sets T t (I). Each branch of the tree represents the evolution of a single connected component X t . An attribute prole is the evolution of an attribute (e.g. area, perimeter, elongation, average gray-level, etc.) of a given CC along a branch of the tree. Figure 7.2 illustrates the threshold decomposition for a 1D function, its component tree and the attribute (width) proles for the two function maxima (p A and p B ). Events on this attribute prole are useful to segment objects [START_REF] Jones | Connected Filtering and Segmentation Using Component Trees[END_REF], extract features [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF][START_REF] Beucher | Numerical residues[END_REF]Morard et al., 2011b) and dene adaptive structuring elements (Serna and Marcotegui, 2013a).

Attributes: Geodesic elongation

In general, there are two types of attributes: increasing and non-increasing [START_REF] Breen | Attribute Openings, Thinnings, and Granulometries[END_REF]. On the one hand, an attribute is increasing when its value is greater or equal to the attribute computed on any subset of the object, i.e. an increasing attribute computed on a node of the component tree is greater than or equal to the attribute computed on any child of the same node. The most common increasing attribute is the area, used to compute area openings [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF] and area stability [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF]. On the other hand, Events on this attribute prole are useful to segment objects (Jones, 1999), extract features [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF][START_REF] Beucher | Numerical residues[END_REF]Morard et al., 2011b) and dene adaptive structuring elements (Serna and Marcotegui, 2013a).

an attribute is non-increasing when the latter property does not hold. In general, shape attributes such as circularity, tortuousity, elongation, among others are non-increasing and scale-invariant.

In this thesis, we focus on geodesic elongation [START_REF] Lantuéjoul | Geodesic methods in quantitative image analysis[END_REF], simply called henceforth elongation. The elongation E(X t ) of an object X t is a shape descriptor useful to characterize long and thin structures. It is proportional to the ratio between square geodesic diameter L 2 (X t ) and object area S(X t ), as shown in Equation (7.2). The geodesic diameter L(X t ) = sup x∈Xt {l x (X t )} is the length of the longest geodesic arc of X t , i.e. the longest internal segment l x (X t ) connecting the two end points of X t [START_REF] Lantuéjoul | On the use of the geodesic metric in image analysis[END_REF]). Figure 7.3 illustrates the denition of the geodesic diameter. 

E(X t ) = π 4 L 2 (X t ) S(X t ) (7.2)
The longer and narrower the object, the higher the elongation. The lowest bound is reached with the disk, where E(disk) = 1. An example of elongation for binary objects is presented in Figure 7.4. The number on each object corresponds to its approximated elongation. An ecient implementation can be found in [START_REF] Morard | Ecient geodesic attribute thinnings based on the barycentric diameter[END_REF].

7 Attribute-based ltering and segmentation 

Attribute controlled reconstruction

As aforementioned, λ-at zones are very useful in image partition, simplication and segmentation. However, it suers from the well-known chaining eect of the single linkage clustering [START_REF] Duda | Pattern Classication, 2nd Edition[END_REF]. That is, if two distinct image objects are separated by one or more transitions going step by step having a gray-level dierence lower than λ, they will be merged in the same λ-at zone.

To illustrate this eect, consider the toy example of Figure 7.5. The image contains two dierent objects (black square on the left and gray square on the right) connected by a segment with gradual gray-level transitions. Several works try to restrict quasi-at zones growth in order to prevent merging dierent regions. [START_REF] Hambrusch | Parallel Algorithms for Gray-Scale Digitized Picture Component Labeling on a MeshConnected Computer[END_REF] propose a technique to limit the chaining eect by introducing an additional threshold that limits gray-level variation over the whole CC rather than just along connected paths. This relation is reexive and symmetric, but not necessarily transitive, so it does not always lead to an image partition in the denition domain. [START_REF] Soille | Constrained connectivity for hierarchical image decomposition and simplication[END_REF] reviews several approaches and proposes a constrained connectivity called (λ, ω, β)connectivity. In this approach, a succession of λ-at zones is built with increasing slope parameter λ (up to a maximum λ max ), none of which may have gray-level dierence greater than ω and connectivity index greater than β. This method has the advantage of providing a unique partition of the image domain, which is very dicult to achieve in any other way. This method was successfully applied to hierarchical image partition and simplication. Other solutions may include viscous propagations [START_REF] Meyer | Image segmentation based on viscous ooding simulation[END_REF][START_REF] Serra | Viscous Lattices[END_REF].

The main disadvantage of these approaches is the parameter tuning. With the aim of simplifying this selection, we propose an attribute controlled propagation based on increasing quasi-at zones. It consists in evaluating attribute changes during region growing in order to select the appropriate partition. For a given attribute, no additional size parameter is required. In that sense, our method takes advantage of prior knowledge and intrinsic information of the image in order to dene the best propagation.

The idea comes from the reconstruction of an object from a marker. Let us describe the problem with the (e) λ=4 (f ) λ=5

(g)

Figure 7.6: The idea of this propagation comes from the reconstruction of an object from a marker. Consider a marker on the upper left corner of (a) and its propagation by increasing λ-at zones using 4-connected neighborhood. The propagation begins with λ = 0 (a) and ends when propagation reaches the whole image at λ = 5 (f ). (g) presents the evolution of four attributes during this propagation: area S(X), elongation E(X), mean gray-level µ I (X) and standard deviation of gray-level σ I (X).

From the image segmentation point of view, the question is: when should propagation be stopped?. Obviously, the answer is application dependent. Intuitively, the evolution of an attribute could be useful to make the decision. For example, Figure 7.6(g) presents the evolution of four attributes: area S(X), elongation E(X), mean gray-level µ I (X) and standard deviation of gray-level σ I (X). We propose two criteria in order to stop the propagation:

Attribute rupture: select the propagation such that the attribute change between two consecutive λ is maximum.

Maximum attribute: select the propagation such that the attribute is maximum.

On the one hand, one can see between λ=3 and λ=4 that area increases up to 200% of its value (from 14 to 27 pixels). This great change is called an attribute rupture, and it can be a reason to stop the growing process.

Another example occurs between λ=4 and λ=5, where ruptures are identied on E(X), µ I (X) and σ I (X). On the other hand, the maximum elongation occurs at λ=4. Note that for increasing attributes (e.g. area) the maximum attribute value always corresponds to the propagation on the whole image. Therefore, selecting the maximum attribute is only reasonable in the case of non-increasing attributes (e.g. elongation).

Based on Denition 7.3.1, let us introduce formal denitions for the set of increasing λ-at zones: Note that elongated structures are preserved while non-elongated structures are merged with their neighborhood. Remaining small spurious regions may be ltered out using a simple area opening.

main comparative advantage is that parameter N is not required, because it is adapted for each pixel during the propagation from it. In that sense, we use non-constant size SE that depends on the image intrinsic information. This is specially useful when the image contains objects at dierent scales. Additionally, remember that our propagation is a connected operator since λ-at zones do not create new contours on the image. This is not true for REGSE, where region growing is forced to stop at N pixels. Feature images are useful to assess features and segment structures of a given shape. Compared to geodesic thinnings (Morard et al., 2011a), that uses geodesic elongation as our method does, our approach has the following advantages: i) our feature image contains information about all objects in the scene, while geodesic Compared with amoebas and other similar works, our method does not require any additional size parameter since the SE only depends on the attribute selection and the input image.

thinning must be computed every time in order to extract structures at dierent elongations; ii) our method, based on quasi-at zones, deals with bright, dark and intermediate gray level regions at the same time whereas geodesic thinning focuses only on bright objects.

Consider for example Figure 7.11(a), where the aim is segmenting as much elongated structures as possible. 

Attribute proles and area-stable elongation

Filtering techniques, aiming at removing noise while preserving as much as possible the desired information, are often essential prior to segmentation. Several works aiming at ltering and segmenting objects based on attribute proles can be found in the literature. [START_REF] Jones | Connected Filtering and Segmentation Using Component Trees[END_REF] proposes connected lters using attributes signatures, i.e. In this section, we propose a method to segment elongated objects based on the analysis of the attribute prole over the threshold decomposition of an image. We dene a new attribute, called area-stable elongation, that combines elongation and area stability. In our experiments, we analyze important events in the evolution of this attribute and we show its eciency in segmenting elongated objects while ltering out noisy structures. An application aiming at segmenting elongated cells (melanocytes) in multiphoton uorescence microscopy images of engineered skin is presented. Another application on the segmentation of facades from 3D urban data is detailed in Chapter 5.

Maximally Stable Extremal Regions (MSER)

The Maximally Stable Extremal Regions (MSER) method, proposed by [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF], is a well-known region detector. MSER are invariant to ane transformations of both intensity and image coordinates. They have a high repeatability and can be run in linear time with respect to the number of pixels in the image [START_REF] Nistér | Linear Time Maximally Stable Extremal Regions[END_REF]. However, the parameter selection remains its major drawback. Even when default parameters perform well in many applications, some heuristics need to be applied in order to yield appropriate regions. Moreover, MSER favors round regions, as proved by [START_REF] Kimmel | Are MSER Features Really Interesting[END_REF], making it unsuitable to detect irregular shapes such as elongated objects.

Forssen and Lowe (2007) compute SIFT descriptors on each MSER region in order to extract image features.

This approach is proven to be robust to illumination changes and nearby occlusions. They also proposed a pyramidal decomposition of the image in order to get scale invariability. The authors also suggested the use of MSER for image segmentation. [START_REF] Forssen | Maximally Stable Colour Regions for Recognition and Matching[END_REF] extends the MSER concept to color images and Litman et al.

(2012) dene stable volumetric features in deformable shapes.

Using threshold decomposition, the attribute prole (Section 7.3.2) can be used to characterize and to lter structures on the image. A simple but interesting attribute is the area S(X t ). When used to suppress small CC, it leads to the denition of area opening [START_REF] Vincent | Morphological area openings and closings for grey-scale images[END_REF]. Since S(X t ) is increasing, events in the area prole are analyzed instead of its global maximum. For example, great changes in area are probably related to the union of dierent objects while small ones are related to area stable regions, as those detected by the MSER method [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF].

The area stability Ψ(X t ) of the region X t is dened as the ratio between its area S(X t ) and its area variation dS(X t )/dt, as shown in Equation (7.5):

Ψ(X t ) = S(X t ) dS(X t )/dt (7.5)
A MSER is a connected component X t with maximal area stability. In the original proposition, every local maximum is detected. Thus it is possible to have nested regions and some heuristics are required to select only the most important peaks.

A new attribute: Area-stable elongation

Favoring regular (round) regions is one of the main limitations of MSER, as proved by [START_REF] Kimmel | Are MSER Features Really Interesting[END_REF]. Thus, it is not suitable to detect irregular shapes, as elongated objects. In order to detect elongated objects taking into account their area stability, we propose a new attribute Φ(X t ), called area-stable elongation. This attribute combines area stability Ψ(X t ) and elongation E(X t ), as dened in Equation (7.6):

Φ(X t ) = Ψ(X t )E(X t ) = S(X t ) dS(X t )/dt π 4 L 2 (X t ) S(X t ) = π 4 L 2 (X t ) dS(X t )/dt (7.6)
The area-stable elongation Φ(X t ) is ane-invariant since Ψ(X t ) and E(X t ) are preserved under ane transformation of intensity and image coordinates, as stated by [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] and [START_REF] Forssen | Shape Descriptors for Maximally Stable Extremal Regions[END_REF].

However, area-stable elongated regions are not invariant to blur. If blurring invariance is required, e.g. for a matching application, two solutions are possible, as proposed by [START_REF] Kimmel | Are MSER Features Really Interesting[END_REF]: i) weighting the stability function by the gradient magnitude along its boundary; ii) preprocessing the image with a deblurring lter.

The maxima of Φ(X t ) represent area stable regions with signicant elongation. We propose to build a feature image using the maximal area-stable elongation Φ(X t ), which implies: i) the feature image is a partition of the 7 Attribute-based ltering and segmentation space, useful for segmentation; and, ii) each pixel contains information about shape and area stability of its neighborhood, which can be exploitable using prior knowledge.

Let us explain this new attribute with a toy example. Consider the 9×9 image of Figure 7.12. For this example, we have approximated the euclidean distance on the 8-connectivity grid, i.e. the geodesic diameter of a pixel is equal to 1, the distance between horizontal and vertical neighbors is equal to 1, and the distance between diagonal neighbors is equal to √ 2. This toy image contains 4 gray-levels enumerated from t 0 to t 3 , and 6 CC enumerated from A to F. Figure 7.12(e) presents the component tree, where S(X), E(X), Ψ(X) and Φ(X) are the area, the elongation, the area stability and the area-stable elongation of a given component X, respectively. Note that the stability for the background (object A) is not dened since it is the root of the component tree. The component tree contains two branches. Supposing we aim at segmenting object C from the left branch, and object E+F from the right one. Let us analyze each case separately.

First, object C is an elongated object nested on a spurious elongated structure B. Analyzing the elongation prole, we can see that object B (E(X B )=6.10) is more elongated than object C (E(X C )=4.60), as shown in the maximal elongation image of Figure 7.12(b). However, the stability of region C (Ψ(X C )=2.43) is higher than that of region B (Ψ(X B )=1.27), as shown in Figure 7.12(c). Combining these two attributes, region C (Φ(X C )=11.18) has a higher area-stable elongation than region B (Φ(X B )=7.71), as shown in Figure 7.12(d).

Second, object E is an elongated object that includes another elongated object F. Analyzing the elongation prole, we can see that object E+F (E(X E )=8.43) is more elongated than the single object F (E(X F )=3.14), as shown in the maximal elongation image of Figure 7.12(b). Since their area stabilities are similar (Ψ(X E )=1.50 and Ψ(X F )=1.80, as shown in Figure 7.12(c)), the highest area-stable elongation is obtained for the union of these two objects (Φ(X E )=12.65), as shown in Figure 7. 12(d).

It is noteworthy that applying a simple threshold (e.g. Φ(X t ) ≥ 8) in the maximal area-stable elongation image (Figure 7.12(d)), objects C and E+F are correctly segmented, which is not possible on the original image (Figure 7.12(a)) nor on the other two feature images (Figures 7.12(b) and 7.12(c)).

Figure 7.13 illustrates the behavior of our method on a real DNA image. The goal is to segment the elongated and bright ber from the noisy background. Figure 7.13(b) shows the maximal elongation image, where objects of an elongated shape are highlighted. However, spurious objects can be merged at low levels resulting in CC with high feature value, such as the porous structure in the center of the image. The maximal area stability (Figure 7.13(c)) keeps also many noisy and non elongated structures in the background. Finally, Figure 7.13(d)

shows the area-stable elongation image, where most of noisy structures have been eliminated due to their low stability.

Application: segmentation of elongated cells

To illustrate the performance of our method, we apply it to segment elongated cells in multiphoton uorescence microscopy images. Images correspond to reconstructed skin used in cosmetic research in applications such as screening of de-pigmenting and pro-pigmenting agents (Figure 7. 14(a)). This model contains two types of cells: keratinocytes and melanocytes. The latter are dendritic cells, more elongated and brighter than keratinocytes.

An accurate segmentation of melanocytes becomes crucial in order to quantify the melanin in the skin. This value is used to assess the eciency of the cosmetic ingredient. Our goal here is to segment melanocytes, which appear as bright elongated structures.

Segmenting these images with standard methods may fail since melanocytes are low contrasted and noisy, as shown in Figure 7. 14(a). A rst simple solution may consist in applying automatic thresholding, e.g. Otsu method [START_REF] Otsu | A Threshold Selection Method from Gray-Level Histograms[END_REF]. However, it does not work because foreground and background gray-distributions overlap, as shown in the histogram of Figure 7.14(c). Thus, cells and background are not separable with a global threshold.

In this application, we propose a segmentation method using the component tree in order to solve the problem of low contrasted cells. Besides, the use of the area-stable elongation introduces shape prior knowledge and oers robustness to noise. In such a case, each cell can be segmented if it appears in the component tree, even

if its gray-level is much lower than that for other cells in the image. Moreover, thanks to prior knowledge about melanocyte shape, the result is improved, justifying the use of our proposed methodology.

In our experiments we have 8 manually annotated images of 511 × 511 pixels each. The spatial resolution is equal to 0.26 µm/pixel. The ground truth denition has been carried out by experts from L'Oréal Research and Innovation (Serna et al., 2014a). Classical Precision (P ), Recall (R) and f mean = (2 × P × R)/(P + R) statistics are computed in order to evaluate our results. The recall (or completeness) is dened as the number of correctly segmented pixels divided by the number of pixels marked in the ground truth. The precision (or 7.7 Attribute proles and area-stable elongation where S(X), E(X), Ψ(X) and Φ(X) are the area, the elongation, the area stability and the areastable elongation of a given component X, respectively. Note that the stability for the background (object A) is not dened since it is the root of the component tree. The component tree contains two branches. Supposing we aim at segmenting object C from the left branch, and object E+F from the right one.

correctness) is dened as the number of correctly segmented pixels divided by the total number of segmented pixels.

To exemplify our method, let us analyze the attribute prole for a single pixel belonging to a melanocyte, called seed pixel and marked with a red x in Figure 7. 15(a). Figure 7. 15(b) presents the ground truth provided by an expert. Figure 7. 15(c) shows four attribute proles: area S(X t ), elongation E(X t ), area stability Ψ(X t ) and area-stable elongation Φ(X t ). For visualization purposes, each attribute has been normalized dividing by its maximum value to be in the range [0, 1]. Additionally, the f mean is plotted in order to dene the best possible 7.7 Attribute proles and area-stable elongation Thus, cells and background are not separable with a global threshold. (c) Attribute proles. X t<15 is not considered because S(Xt) > 0.8 7.8 Conclusions processing is required in order to eliminate porous structures on the background. Most noisy regions are not area-stable, then the area-stable elongation Φ(X t ) appears suitable for the segmentation of this kind of objects, as shown in Figures 7.16(d) and 7.17(d). This example demonstrates the use of our area-stable elongation in order to enhance elongated objects with respect to a noisy background. Using this feature image, the melanocyte segmentation becomes an easy task.

(d) X t=42 (e) X t=34 (f ) X t=31 (g) X t=30 (h) X t=28 (i) X t=16
A simple three-fold segmentation algorithm is used for this purpose: i) characterization: a feature image is computed using the maximal area-stable elongation max{Φ(X t )}; ii) ltering small objects: in the feature image, small regions (smaller than 500 pixels) are eliminated using an area opening followed by an area closing.

This parameter is not critical since the smallest cell in the database is approximately 3000 pixels size; nally, iii) ltering objects with low attribute value: a simple threshold removes structures with low area-stable elongation. In our experiments we have used a threshold equal to 11 for all images. However, this parameter is not critical since several values produce similar results, as shown in the overall sensibility curve of Figure 7.18. It is noteworthy that thresholds between 7 and 16 produce an overall f mean over 70%.

Table 7.1 presents quantitative results and a comparison with respect to the classical MSER [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF]. MSER regions have been computed using the algorithm directly provided by the authors [START_REF] Mikolajczyk | A Comparison of Ane Region Detectors[END_REF]. The MSER parameters have been consistently set with those used by our method, i.e. the minimal MSER area has been set to 500 pixels and the threshold decomposition has been carried out for all gray-levels (one by one) stopping when the object area is greater than 75% of the whole image. Other MSER parameters such as relative area and relative margins have been kept to their default values 0.010 and false, respectively.

Setting up these two parameters is not intuitive and global improvements have not been obtained in our tests.

Using our method, this kind of parameters is not required, which is a clear advantage. MSER results may be also improved using some preprocessing step. However, it would require the setting up and the selection of the appropriate lter to do it. Another advantage of our method is that preprocessing is not used since the noise robustness is included in the area-stable elongation itself, as aforementioned in Section 7.7.2.

Table 7.1: Melanocyte segmentation: comparison with respect to MSER [START_REF] Mikolajczyk | A Comparison of Ane Region Detectors[END_REF]. In each column, numbers on the left correspond to the proposed method, and numbers between parentheses to MSER.

Image Precision % Recall % f mean % been wrongly merged with the background. Note that our method presents much better results than MSER for all images. As aforementioned, MSER favors round and regular regions. Thus, only a partial segmentation is possible. Actually, MSER corresponds in several cases to the cell nuclei.

Conclusions

In this chapter, several methodological contributions to mathematical morphology have been presented. We have developed powerful attribute-based operators useful in a wide range of applications such as attribute controlled reconstruction, adaptive mathematical morphology, feature extraction, ltering and segmentation.

First, we have presented a reconstruction controlled by the evolution of a given attribute. The idea comes from the propagation from markers over increasing quasi-at zones. We have shown that this method is a 7 Attribute-based ltering and segmentation connected operator since quasi-at zones do not create new contours in the image, and it is also auto-dual since bright, dark and intermediate gray level regions are processed at the same time. The natural application of this method is the segmentation of objects with a given attribute or shape. However, we have shown that its application domain is wider. For example, when this controlled propagation is computed for each pixel on a pilot image, input-adaptive SE can be dened and shape features can be assessed. The main advantage of our approach is that no size parameter is required in order to determine the appropriate region.

The main drawback is the chaining eect due to transition regions, i.e. paths with gradual transitions connect dierent regions of the image in the same λ-at zone. As consequence, the propagation can reach Therefore, we have proposed an extension of this method: the analysis of attribute proles on the image. For this analysis another connected hierarchical partition is used. Images are rstly represented as component trees using threshold decomposition. Then, the attribute prole is analyzed and important events are recorded. In particular, two well-known attributes are used: geodesic elongation and area. These two attributes have been combined to dene a new attribute: the area-stable elongation. The behavior of this new attribute in relation to noise, blur and geometrical distortions is discussed. The global maximum of this attribute is computed for each pixel of the input image and a feature image is built. Such image is a spatial partition where objects of interest can be easily extracted. This method can be interpreted as an extension of MSER favoring objects of a given shape. A dierence with the classical MSER is that only the global maximum of the attribute prole is chosen, thus only the most stable and elongated region is kept. This new attribute has been successfully used in a cosmetic application aiming at segmenting melanocytes cells that appear as bright and elongated structures in multiphoton images of engineered skin. Standard methods may fail because melanocytes are low contrasted and noisy. It has been proven that better segmentations are obtained providing a prior knowledge about cells shape. One of the method limitations, common to all methods based on threshold decomposition, is that it can only segment CC present in the component tree.

As general remark, the present chapter conrms the interest of attribute-based operators for image ltering and segmentation. In future works, other interesting attributes such as porosity and tortuousity will be studied.

Additionally, extensions to higher dimensional data (color, multi-spectral or 3D) will be analyzed. In such a case, other metrics should be used to dene quasi-at propagation rules and ordering in the component tree. 8 Conclusions and Perspectives

Résumé

Dans ce chapitre, nous présenterons les conclusions de cette thèse sur l'analyse sémantique de nuages de points 3D dans le milieu urbain. Nous exposerons les principales contributions de chaque chapitre ainsi que les perspectives à venir pour la recherche dans ce domaine.

Conclusions

Most important cities in the world have very detailed urban plans of streets and public spaces. These plans contain information about sidewalks, roads and urban furniture such as street lights, trac signs, trees, bus shelters, among others. Recently, multi-source information such as topographical surveying, crowd-sourcing, analysis from satellite images, urban photos, 3D point clouds, among others, is being integrated into Geographical Information Systems (GIS), simplifying the management of urban information. Nowadays, several local authorities, national mapping agencies and private companies are including 3D information in urban maps.

3D data open a wide range of applications such as urban planning, cultural heritage documentation, virtual tourism, itinerary planning, marketing, navigation systems, video games, itinerary planning for soft mobility, accessibility diagnoses, among others.

Recent technological advances make laser scanning an accurate and productive solution for the acquisition of 3D urban data required for those maps. Compared to the rst 3D scanning systems 30 years ago, current laser scanners are cheaper, faster and provide more accurate and denser 3D point clouds. For including such data into a 3D map, the usual pipeline includes transforming 3D points into surfaces or geometric primitives for subsequent analysis. These transformations are usually carried out by manually assisted approaches, leading to time consuming procedures, unsuitable for large scale applications. Manual object extraction from urban scenes is dicult and tedious, and existing semi-automatic methods may not be suciently precise nor robust, then exhaustive manual corrections are necessary. In that sense, automatic methods for semantic analysis of 3D urban data are required.

This Ph.D. thesis, entitled: Semantic analysis of 3D point clouds from urban environments: ground, facades, urban objects and accessibility, has been developed at MINES ParisTech in the Center for Mathematical Morphology (CMM) in Fontainebleau (France) under the supervision of Dr. Beatriz Marcotegui Iturmendi. We aim at developing automatic methods to process 3D point clouds from urban laser scanning. Our methods are based on elevation images, mathematical morphology and supervised learning. The development of accurate and fast algorithms in this domain is the main contribution of this thesis. We have focused on a complete 3D urban analysis method including six main steps: i) Filtering and preprocessing; ii) ground segmentation and accessibility analysis; iii) facade segmentation, iv) object detection; v) object segmentation; vi) object classication.

This thesis has been developed in the framework of TerraMobilita project: 3D mapping of roads and urban public space, accessibility and soft mobility (presented in Chapter 1). Then, our experiments have been conducted in agreement with project requirements and applications on urban mobility, accessibility analysis, and public space management. In that sense, we have also worked on the integration of our results into a large-scale production chain. Our results are exported as 3D point clouds for visualization and modeling purposes and as shapeles for integration in any GIS.

First, let us summarize and discuss the contributions of this thesis. Then, perspectives for future work will be presented.

Contributions of this thesis

Before studying methods for 3D semantic urban analysis, we have reviewed (in Chapter 2) the dierent laser scanning technologies used in urban environments. Additionally, we have presented public 3D databases in the 8.4 Perspectives in the facade mask. For overcoming such problem, we have proposed a second method based on attribute controlled reconstruction using geodesic elongation. Since connected objects usually appear at low height and reduce the global facade elongation, this method oers better results than the rst one. In general, methods based on facade markers are strongly inuenced by the markers extraction method. The main drawback is that bad located markers produce errors since they may reconstruct non-facade objects. For this reason, we have proposed a more robust method avoiding the use of facade markers. In this method, only the elongation and its evolution over the height decomposition of the scene are analyzed. This method is based on the maximal elongation image computed from 3D decomposition. This third method has proved to produce the best results, but its implementation is slower. However, it remains suitable for large-scale applications since processing takes only a few tens of seconds for an acquisition of several hundreds of meters, using a non-optimized implementation. The selection of the best facade segmentation method remains application dependent. It should be a trade o between quality results and computational cost. In the case of a large-scale application, where time constraints are less strict, the most accurate method should be preferred. Independently of the method, facade segmentation result is used to segment city blocks. City blocks are considered as the biggest semantic entities in the urban environment. Their segmentation is carried out using inuence zones. Each city block can be processed separately and each individual result joined at the end of the analysis, reducing memory requirements and allowing parallelization.

In Chapter 6, we have presented a semantic analysis of 3D urban objects based on mathematical morphology and supervised learning. The focus is automatic detection, segmentation and classication of urban objects from 3D laser scanning data. Our automatic method generates object hypotheses as discontinuities and bumps on the ground. Then, connected objects are segmented in order to assign a unique identier to each individual object.

Our method is proven to be robust to noise since small and isolated structures are eliminated using morphological lters. Our main under-and over-segmentation problems are due to parked motorcycles and pedestrians walking too close to cars, which may not be correctly separated. After segmentation, objects are classied in several categories using an SVM approach with geometrical and contextual features. Our geometrical features can be adapted to any XYZ point cloud. Thus, the classication can be easily generalized, i.e. training on a database and testing on another one (as presented in Section 6.8.4). This is a signicant advantage because the model learned from a database can be applied to another one, even acquired by a dierent acquisition system, without the tedious manual annotation. One of the main drawbacks processing 3D urban data using elevation images is that high objects may occlude lower objects located below them. That is why we propose an alternative segmentation strategy using two slices. In the lower slice, objects are processed as aforementioned, while in the upper slice, a rulebased method has been proposed in order to segment trees, poles and o-ground objects. It is obvious that processing two slices is more expensive than processing only one elevation image. Therefore, two slices are only used in databases containing several trees or other high objects occluding objects below them.

In particular, this strategy has been successfully applied in TerraMobilita/iQmulus database. Other databases such as Paris-rues-Vaugirard-Madame and Paris-rue-Souot do not contain trees, thus processing by slices has not been required. In the case of Ohio database, most trees are present in the east side of the city, which has been acquired by aerial laser scanning. In that case, lower tree parts are not visible and processing by slices is not justied.

Finally, we have presented in Chapter 7 several methodological contributions to mathematical morphology.

We have developed powerful attribute-based operators useful in a wide range of applications such as: attribute controlled reconstruction, adaptive mathematical morphology, feature extraction, ltering and segmentation.

The natural application of these methods in the urban semantic analysis is the segmentation of elongated objects such as curbs and facades, presented in Chapters 4 and 5, respectively. Additionally, we have presented other applications such as the segmentation of elongated cells in an industrial context. As general remark, this last contribution conrms the interest of attribute-based operators for image ltering and segmentation.

Perspectives

Our methods have been qualitative and quantitative tested in several databases from the state of the art (Ohio, Enschede and Paris-rue-Souot) and from TerraMobilita project (Paris-rue-Madame and TerraMobilita/iQmulus). Even if our methods have presented good results and have outperformed state of the art methods, it is noteworthy that several improvements should be done before developing a mature application.

Our main problem, common to all methods in the literature, is due to large occluded regions. Several scans of the same zone, as those produced by velodyne sensors, could reduce this problem.

Several under-and over-segmentation problems have been also pointed out. Up to now, we have only used the spatial information available in the point cloud. A possible solution can include shape/texture analysis to help deciding whether an object should be re-segmented. Moreover, additional features such as laser intensity and texture could improve performances in detection, segmentation and classication steps. In that sense, new tools need to be developed in order to deal with 3D textured data [START_REF] Angulo | Morphological Bilateral Filtering and Spatially-Variant Adaptive Structuring Functions[END_REF][START_REF] Angulo | Riemannian mathematical morphology[END_REF].

For example, we can dene a lter which output not only depends on the texture but also on the neighborhood depth. This tool, using the same philosophy of bilateral lters [START_REF] Paris | [END_REF], could be used to re-segment urban objects without merging information from background or other objects since they are at dierent depths and have dierent textures.

Our contributions to mathematical morphology have conrmed the interest of attribute-based operators in ltering and segmentation tasks. In future works, other interesting attributes such as porosity and tortuousity will be studied. Additionally, extensions to higher dimensional data (color, multi-spectral or 3D) will be analyzed. In such a case, other metrics should be used to dene quasi-at propagation rules and ordering in the component tree.

Our approaches have been implemented in a research prototype, mainly based on Morph-M library (CMM, 2013), the image processing library of the CMM. The library allows easy prototyping but it is not intended to be fast. In spite of this non-optimized implementation, our current methods are suitable for large-scale applications and are currently used by TerraMobilita project partners, as they are much faster than any manual-assisted method. For example, manual annotation speed was approximately 50 meters per hour in our Paris-rue-Madame (Serna et al., 2014b) and TerraMobilita/iQmulus [START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] databases. In a city like Paris, with 1700 km of streets, approximately 4 years will be required for a complete manual annotation. As it has been proved in this thesis, our processing takes only a few tens of seconds for an acquisition of several hundreds of meters, providing accurate results. Currently, the optimization of our base operators (erosion, dilation, opening, reconstruction, watershed, among others) is under development at CMM in order to bring optimized operators for real-time and big-data problems. Software (hierarchical queues,structuring elements decomposition, among others) and hardware (SIMD-Single Instruction Multiple Data and parallelization) optimizations are being integrated in SMIL library [START_REF] Faessel | SMIL: Simple Morphological Image Library[END_REF] and will be integrated in our future developments.

Analyse sémantique de nuages de points 3D dans le milieu urbain : sol, façades, objets urbains et accessibilité Résumé : Les plus grandes villes au monde disposent de plans 2D très détaillés des rues et des espaces publics. Ces plans contiennent des informations relatives aux routes, trottoirs, façades et objets urbains tels que, entre autres, les lampadaires, les panneaux de signalisation, les poteaux, et les arbres. De nos jours, certaines autorités locales, agences nationales de cartographie et sociétés privées commencent à adjoindre à leurs cartes de villes des informations en 3D, des choix de navigation et d'accessibilité. En comparaison des premiers systèmes de scanning en 3D d'il y a 30 ans, les scanners laser actuels sont moins chers, plus rapides et fournissent des nuages de points 3D plus précis et plus denses. L'analyse de ces données est difficile et laborieuse, et les méthodes semi-automatiques actuelles risquent de ne pas être suffisamment précises ni robustes. C'est en ce sens que des méthodes automatiques pour l'analyse urbaine sémantique en 3D sont nécessaires. Cette thèse constitue une contribution au domaine de l'analyse sémantique de nuages de points en 3D dans le cadre d'un environnement urbain. Nos méthodes sont basées sur les images d'élévation et elles illustrent l'efficacité de la morphologie mathématique pour développer une chaîne complète de traitement en 3D, incluant 6 étapes principales : i) filtrage et pré-traitement ; ii) segmentation du sol et analyse d'accessibilité ; iii) segmentation des façades ; iv) détection d'objets ; v) segmentation d'objets ; vi) classification d'objets. De plus, nous avons travaillé sur l'intégration de nos résultats dans une chaîne de production à grande échelle. Ainsi, ceux-ci ont été incorporés en tant que "shapefiles" aux Systèmes d'Information Géographique et exportés en tant que nuages de points 3D pour la visualisation et la modélisation.

Nos méthodes ont été testées d'un point de vue qualitatif et quantitatif sur plusieurs bases de données issues de l'état de l'art et du projet TerraMobilita. Nos résultats ont montré que nos méthodes s'avèrent précises, rapides et surpassent les travaux décrits par la littérature sur ces mêmes bases. Dans la conclusion, nous abordons également les perspectives de développement futur. These plans contain information about roads, sidewalks, facades and urban objects such as lampposts, traffic signs, bollards, trees, among others. Nowadays, several local authorities, national mapping agencies and private companies have began to consider justifiable including 3D information, navigation options and accessibility issues into urban maps. Compared to the first 3D scanning systems 30 years ago, current laser scanners are cheaper, faster and provide more accurate and denser 3D point clouds. Urban analysis from these data is difficult and tedious, and existing semi-automatic methods may not be sufficiently precise nor robust. In that sense, automatic methods for 3D urban semantic analysis are required. This thesis contributes to the field of semantic analysis of 3D point clouds from urban environments. Our methods are based on elevation images and illustrate how mathematical morphology can be exploited to develop a complete 3D processing chain including six main steps: i) filtering and preprocessing; ii) ground segmentation and accessibility analysis; iii) facade segmentation, iv) object detection; v) object segmentation; and, vi) object classification. Additionally, we have worked on the integration of our results into a large-scale production chain. In that sense, our results have been exported as 3D point clouds for visualization and modeling purposes and integrated as shapefiles into Geographical Information Systems (GIS).

Our methods have been qualitative and quantitative tested in several databases from the state of the art and from TerraMobilita project. Our results show that our methods are accurate, fast and outperform other works reported in the literature on the same databases. Conclusions and perspectives for future work are discussed as well.

Keywords: Mathematical Morphology, Image Processing, 3D Urban Analysis, Urban Accessibility, Semantic Analysis, Segmentation, Classification.
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 11 Figure 1.1: TerraMobilita project brings together 8 partners: 4 private companies (1Spatial, TTS THALES, Trimble Laser Scanning), 3 public institutions (Cityway, IGN, ARMINES/MINES ParisTech), 1 association (CEREMH), 1 administrative manager (Tecdev) and several local authorities from Paris, Saint-Quentin-en-Yvelines and Lille.
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 2 Figure 2.3 presents an example of a 3D dataset acquired by Stereopolis II at Saint Sulpice square in Paris,

  (a) Aerial laser scanning (ALS) (b) Mobile laser scanning (MLS) (c) Terrestrial laser scanning (TLS) and Stop & Go (S&G). Each color represent a single acquisition.
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 21 Figure 2.1: Example of acquisition using aerial (ALS), terrestrial (TLS), mobile (TLS) and Stop & Go (S&G) laser systems.
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 2 Figure 2.4 presents an example of a 3D dataset acquired by L3D2 system in rue Madame in Paris, France.

  Figure 2.2: MLS and Stop & Go acquisition systems used in the framework of TerraMobilita project.
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 2 Figure 2.5 presents an example of a 3D dataset acquired by S&G Trimble TX8 system at Republic square in Paris, France. This dataset contains 4,000 million points, 40 dierent scan locations were required and the acquisition time was 4 hours.
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 2 Figure 2.4: 3D point cloud from rue Madame in Paris, France. Acquired by L3D2 system by MINES ParisTech.

  (a) 3D point cloud from Republic square in Paris.

Figure 2

 2 Figure 2.5: 3D point cloud from Republic square in Paris, France. Acquired by S&G TX8 system by Trimble Laser Scanning. For this acquisition, 40 dierent scan locations were required for an acquisition time of 4 hours. This dataset contains 4,000 million points.

  Figure2.6: 3D urban databases in the state of the art. These databases are publicly available and they contain ground truth annotations. They are described here and they will be used to benchmark our methods in the following chapters of this thesis.
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 27 Figure 2.7: Orthophoto from rue Madame in Paris, France. Approximately a 160 m long street section. Data have been acquired by L3D2 system (Section 2.4.2) in February 2013. Orthophoto from IGN-Google Maps.
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 2 Figure 2.8 presents one of the 3D point clouds of this database colored by the reectance, the object id and the object class.7 Paris-rue-Madame database is available at: http://cmm.ensmp.fr/~serna/rueMadameDataset.html
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 2 Figure 2.8: Paris-rue-Madame dataset: GT_Madame1_2.ply manually annotated le. 3D point cloud colored by its available elds. For object id: each color represents a dierent object (some colors may look similar when displaying). For object class: facades (blue), ground (gray), cars (yellow), motorcycles (olive), trac signs (goldenrod), pedestrians (pink).

  has been developed aiming at benchmarking segmentation and classication methods working on 3D dense urban data. This database has been created in the framework of TerraMobilita project. It consists in 11 annotated test zones containing 30 million points each and 1 annotated training zone containing 12 million points. It has been acquired by Stereopolis II in Paris in January 2013. Annotation has been carried out in a manually assisted way by MATIS laboratory at IGN. The dataset is presented in PLY format with little endian encoding. All coordinates are geo-referenced (E,N,U) in Lambert 93 and altitude IGN1969 (grid RAF09) reference system. Osets have been subtracted from XY coordinates with the aim of increasing data precision: X 0 = 649000 m and Y 0 = 6840000 m, respectively. Each le contains the following attributes: (oat32) X,Y,Z: Cartesian geo-referenced coordinates in Lambert 93 system.

Figure 2 .

 2 Figure 2.11(a) presents an experimental zone approximately 2 km long in the 6 th Parisian district acquired byL3D2 system (Section 2.4.2) on June 17th, 2014. These data have been specially acquired for the development of an automatic system to compute parking statistics (use case EP1 in Section 1.3). For this, 3D acquisitions of the same parking zone have been carried out at 7 dierent moments in a day: 11:30 am, 12:30 pm, 1:30 pm, 2:30 pm, 4:00 pm, 6:00 pm and 7:00 pm, respectively. GPS and IMU data have been post-treated using the RTK basis. The trajectory of each acquisition is provided in an additional point cloud with constant Z = 38 m in order to simplify the comparison of vehicles parked between successive passages.

Figure 2

 2 Figure 2.9: TerraMobilita/iQmulus database: Cassette_idclass.ply manually annotated le. 3D point cloud colored by its available elds. For object id: each color represents a dierent object (some colors may look similar when displaying). For object class: facades (blue), road (gray), sidewalk (green), other ground (orange), curbs (red), cars (magenta), motorcycles (teal), trees (dark green), undened (dark gray).

Figure 2 .

 2 Figure 2.11 shows an example of this acquisition, a photo and its corresponding 3D point cloud, in rue Madame in Paris, France.

Figure 2 .

 2 Figure 2.11: Example of a non-annotated acquisition by L3D2 system, CAOR-MINES ParisTech. Experimental zone in the 6 th Parisian district, France. Map and itinerary taken from Google Maps.

Figure 2 . 12 :

 212 Figure 2.12: Two experimental zones in the 6 th Parisian district acquired by Stereopolis II system (Section 2.4.1) in 2012 and 2013, respectively. These data are used with the aim of developing and testing detection, segmentation and classication methods of urban objects. Points properties (origin, reectance, num_echo, etc.) are the same than in TerraMobilita/iQmulus database (Section 2.6.2).
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 2 Figure 2.13: Stop & Go Trimble TX8 acquisition to analyze ground coating and ground degradation.

Figure 2 . 14 :

 214 Figure 2.14: Stop & Go Trimble TX8 acquisition from Republic square in Paris, France.

Figure 2 . 15 :

 215 Figure 2.15: Stop & Go Trimble TX8 acquisition for urban furniture change detection and urban modeling.

  Figure 3.1: Example of Delaunay triangulation. Note that the triangulation is dened on a plane, thus point

3. 3

 3 Figure 3.2: Scheme of competitive training of self-organizing neural networks. X represents a 3D point of the input point cloud, and BMU is the closest neuron to X, called the best match unit. Note that the BMU neighbors are adapted iteratively.

Figure 3

 3 Figure 3.4: Octree: recursive subdivision of a cube into octants. Octrees have been rstly used in 3D graphics

  Figure 3.6 presents an example of a range image acquired by Microsoft Kinect sensor in an indoor environment. It is noteworthy that the depth information is coded in the gray-scale values: the brighter the pixel, the more distant the point.

3. 3

 3 Figure 3.5: Example of a 3D tree. The rst split (red) cuts the root cell (white) into two sub-cells, each of which is then split (green) into two sub-cells. Finally, each of those four is split (blue) into two sub-cells.

Figure 3 . 6 :

 36 Figure 3.6: Example of Kinect range image. In this case, the range image is the direct output of the Kinect sensor, thus no additional projection is required. Courtesy of Vincent Weistroer, Robotics Laboratory (CAOR), MINES ParisTech, 2012.

Figure 3 .

 3 Figure 3.7 shows an example of these four images in a test site in rue d'Assas in Paris. On the one hand, Figure 3.7(a) presents the maximal elevation image, note that the maximal distance is stored for each pixel. This corresponds to a nadir view of the urban scene. On the other hand, Figure 3.7(b) presents the minimal elevation

  Figure 3.7: 3D point cloud and elevation images for a test site in rue d'Assas in Paris, France. Data acquired by Stereopolis II, IGN©France. (a) maximal elevation image, containing the maximal distance for each pixel. This corresponds to a nadir view of the urban scene. (b) minimal elevation image, where the minimal distance is stored for each pixel. Note that this image is particularly appropriate for analysis at the ground level since high objects such as trees do not appear on the image. (c) relative height image, computed as the dierence between the maximal and minimal elevation images. (d) accumulation image, dened as the number of points projected on the same pixel.

  Figure 3.8: 3D point cloud and elevation image for two test sites in rue d'Assas and rue Cassette in Paris, France. Data acquired by Stereopolis II, IGN©France.

Figure 3 . 9 :

 39 Figure 3.9: Elevation image size for dierent k parameters (number of pixels per length unit) from 5 pix/m to 20 pix/m. The elevation image size has a critical eect in the computation time: the bigger the image, the slower the computation. It is noteworthy that the number of pixels increases as k 2 .

Figure 3 .O

 3 Figure 3.10: Projection by slices on the 1D case. The urban scene contains the following urban objects enumerated from 1 O to 6 O: 1 O car, 2 O pedestrian, 3 O noise, 4 O dog, 5 O pedestrian and 6 O tree. Note that processing by slices is useful to avoid that high objects such as trees (object 6 O) occlude lower

Figure 3 .

 3 Figure 3.11 shows an example of two slices in two experimental sites in the 6 th Parisian district. It is noteworthy that this processing based on slices is particularly adapted to urban environments.

  (a) St. Sulpice square: elevation image from the lower slice: points between the ground level and H slice . (b) St. Sulpice square: elevation image from the upper slice: points higher than H slice . (c) Rue d'Assas: lower slice elevation image: points between the ground level and H slice . (d) Rue d'Assas: upper slice elevation image: points higher than H slice .

Figure 3 .

 3 Figure 3.11: Generating elevation images by slices for two test sites in St. Sulpice square and rue d'Assas in Paris, France. Data acquired by Stereopolis II, IGN©France. In our experiments, H slice has been experimentally set to 3.5 m, i.e. obstacles for a walking pedestrian, as marked by the blue dotted line in Figure3.10. This threshold can be modied in order to dene obstacles maps at dierent heights according to dierent types of mobility: children, persons using a wheelchair, etc.

  Figure 3.13(b) and Figure 3.13(c). The urban scene contains the following urban objects enumerated from 1 the one hand, let us analyze the two x objects 1 O and 4 O. These objects appear in the three proles, then their accumulation f acc is three times the accumulation of an individual prole, as shown in Figure 3.13(d). On the other hand, let us analyze the two mobile objects 2 O and 3 O. These objects only appear in some proles, then their accumulation f acc not only depends on the object geometry but also on the time spent by the pedestrians 3 3D data structures and preprocessing (a) Elevation image from the original point cloud. Image size: 7523 × 4206 = 31.6×10 6 pixels (b) Elevation image after ltering distant points in the input point cloud. Image size: 1131 × 952 pixels = 1.1×10 6 pixels (c) Histogram of radius before ltering: radius ∈ (2.4, 453.9) m. Linear (blue) and Log (cyan) scale. (d) Histogram of radius after ltering: radius ∈ (2.4, 50.0) m. Linear (blue) and Log (cyan) scale.

Figure 3 . 12 :

 312 Figure 3.12: Distant points ltering. Test site: rue d'Assas, Paris. Acquired by Stereopolis II, IGN©France.

Figure 3 .

 3 Figure 3.14 shows an example of this phenomenon in a test site in St. Sulpice square in Paris. It is noteworthy that several misleading great accumulation values appear when the acquisition vehicle takes the turn around the square or when it stops.Figure 3.14(b) shows the maximal elevation image, while Figure 3.14(c) presents the labelling of each scan line in order to detect overlapping proles. Using this strategy, redundant information is ltered out and more reliable results are obtained, as shown in the accumulation image of Figure 3.14(e).

3. 6

 6 Figure 3.13: Filtering redundant information on overlapping proles. Consider the acquisition vehicle stopped during the interval [t 0 , t 2 ] due to a trac light and the three overlapping scan lines f t=t0 (x), f t=t1 (x) and f t=t2 (x), as shown in (a), (b) and (c). The urban scene contains the following urban objects enumerated from 1 O to 4 O: 1 O bollard, 2 O pedestrian, 3 O pedestrian and 4 O house facade. On the one hand, the two x objects 1 O and 4 O appear in the three proles, then their accumulation f acc is three times the accumulation of an individual prole, as shown in (d). On the other hand, the two mobile objects 2 O and 3O appear in some proles, then their accumulation f acc not only depends

Figure 3 . 14 :

 314 Figure 3.14: Filtering redundant information using the accumulation information. Test site in St. Sulpice square in Paris, France. Data acquired by Stereopolis II, IGN©France. It is noteworthy that several misleading great accumulation values appear when the acquisition vehicle takes the turn around the square or when it stops. (b) shows the maximal elevation image, while (c) presents the labeling of each scan line in order to detect overlapping proles. Using our ltering strategy, redundant information is ltered out and more reliable results are obtained (e).

3. 6

 6 Figure3.15: Fillholes transformation. In the most simple sense, a hole is a dark region (regional minimum) which is not connected to the image border and is surrounded by brighter pixels. The llholes transformation is implemented as the reconstruction by erosion (R f (f marker )) of image f from marker f marker . Marker f marker is set to the maximum image value everywhere except along the image border, where the original image value is kept. Applying this transformation, each hole is lled with the lowest value in its boundary. Note that a minimum in the left part of the signal is not a hole because it touches the border. In order to preserve original data, only pixels with no data are modied ( indicates nodata points), while other pixels keep their original value.

Figure 3 .

 3 Figure 3.16: Acquisition scheme and interpolation method on the 1D case. The urban prole contains the following seven urban objects: 1 O car, 2 O pedestrian, 3 O noisy structure, 4 O dog, 5 O pedestrian,

Figure 3 .

 3 Figure 3.17(a) exhibits an experimental scenario in St. Sulpice square in Paris.Figure 3.17(b) presents the

  Figure 3.17(a) exhibits an experimental scenario in St. Sulpice square in Paris.Figure 3.17(b) presents the elevation image f , where black pixels indicate no data. In the middle of the square, sparse points are obtained

  Figure 3.17: Image interpolation. (a) exhibits an experimental scenario in St. Sulpice square in Paris. (b)presents the elevation image f , where black pixels indicate no data. Note that almost all dark regions are touching the image border, so they would not be lled by a classical llholes transformation. To solve this problem, each isolated region is connected to its closest neighbor by the shortest path. Next, the articial boundaries for each inuence zone are dened using the maximal value on the elevation image, as shown in (c). Then, the ll-holes transformation is applied in order to interpolate the image (d). Finally, the maximal elevation value on the articial boundaries is replaced by the result of a morphological opening.
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 41 Figure 4.1: People concerned by accessibility in urban environments. Contrarily to the general idea, accessibility aects not only disabled persons but also old people, children and pregnant women. It is noteworthy that 46% of people is concerned by accessibility in urban areas.
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 42 Figure 4.2: Workow of our proposed urban accessibility analysis from 3D laser scanning data. First, input point cloud is mapped to elevation images and a morphological interpolation is applied, as explained before in Chapter 3. Second, the quasiat zones algorithm is used to segment the ground, including roads and sidewalks. Third, facades and objects are segmented using morphological transformations (details will be presented in Chapters 5 and 6) and the obstacle map is dened. Fourth, curb candidates are segmented using height and elongation criteria, and close curbs are reconnected

  as: Denition 4.4.1 Let f be a digital grayscale image f : D → V , with D ⊂ Z 2 the image domain and 4.5 Curb segmentation and reconnection

Figure 4 .

 4 Figure 4.3 shows an example of our ground segmentation method in a test site in St. Sulpice square in Paris, France.Figure 4.3(a) shows the minimal elevation image f min and Figure 4.3(b) the interpolated minimal elevation image fmin . It is noteworthy that ground is not perfectly at, as shown in Figure 4.3(c), where

  Figure 4.3: Ground segmentation: extraction of the largest quasi-at (called also λ-at) zone on interpolated minimal elevation image fmin . The λ parameter chosen for our experiments is 20 cm. Test site in St. Sulpice square in Paris, France. Stereopolis II, IGN©.

4. 5

 5 Curb segmentation and reconnection (a) 3D point cloud colored by the reectance. (b) Segmentation result: ground (gray), other (blue).

Figure 4

 4 Figure 4.4: Ground segmentation result on a test site in rue Cassette in Paris, France. Stereopolis II, IGN©.

  (a) Illustrative photo (b) 3D obstacle map: ground (gray), facades (blue) and objects (yellow).

Figure 4

 4 Figure 4.5: Obstacle map generation in a test site in rue Cassette in Paris, France. Stereopolis II, IGN©. The 3D obstacle map is obtained from ground, facade and object segmentation results. Note that all objects are assumed static. However, classication techniques can be used in order to distinguish mobile objects (e.g. pedestrians) from static ones (e.g. parked cars). For further information on object segmentation and classication methods, the reader is encouraged to review the Chapter 6 of the present thesis.

  Figure 4.7(b).

  Figure 4.7: Quadratic Bézier reconnection in straight and bent cases. (a) if the curbs to be reconnected are colinear, P 1 is put in the middle of the segment P 0 P 2 . Therefore, the resulting reconnection is a straight line. (b) if the curbs to be reconnected are not colinear, P 1 is put in the intersection of the two projection lines from C 0 and C 2 . Therefore, the resulting reconnection is a parabolic segment.

  Figure 4.8(b). Finally, quadratic Bézier reconnections R AB and R BC are shown in Figure 4.8(c).

  Figure 4.8: Toy example of curb reconnection using Bézier curves. (a) curbs to be reconnected (black) and their geodesic extremities (magenta); (b) control points dened by the intersection of prolongation lines (red); (c) reconnections using quadratic Bézier curves (gray).

4. 5

 5 Figure 4.9: Example of curb reconnection using Bézier curves. Test site in rue Vaugirard in Paris, France. Stereopolis II, IGN©.

  Figure 4.11(b) shows the result of this reconnection, where detected curbs are marked in red, curbs occluded by parked cars in magenta and curb reconnections in cyan. The result projected onto the 3D point cloud is shown in Figure 4.11(c).

Figure 4 .

 4 Figure 4.10: Road medial axes in the 6 th Parisian district. Information available from IGN France. This information is used in order to avoid false curb reconnections crossing the road, only reconnections on the same city block are allowed.

  Figure 4.12(c) shows the distance function while Figure4.12(d) shows its inverse. Note that no data pixels on the interpolated elevation image are not considered; ii) facades and road medial axes are used as markers for sidewalk and road, respectively (Figure4.12(e)); and, iii) a constrained watershed is applied to the inverted distance function. The result is the sidewalk and road segmentation, as shown in Figure4.12(f ). Note that border eects may appear if entire curbs or facades do not appear in the elevation image. In order to solve this problem, overlapping zones are recommended in a large scale application. In order to visualize the segmentation result in the 3D space, a reprojection onto the point cloud is shown in Figure4.17

  .

4. 7

 7 Accessibility analysis and itinerary planning (a) 3D point cloud colored by the angle information. (b) Curb reconnection using parked cars information. Detected curbs (red), occluded curbs (magenta), curb reconnections (cyan). (c) Classied point cloud. ground (gray), curbs (red), facades and objects (blue), other (brown).

Figure 4 .

 4 Figure 4.11: Curb reconnection using semantic information about vehicle trajectory and parked cars. Acquisition by IGN©France. This urban test site presents several parked cars on the left street side. It is noteworthy that occluded regions restrict curb visibility. In order to solve this problem, semantic

  (a) Interpolated elevation image. (b) Segmented (red) and reconnected (cyan) curbs. (c) Distance function from curbs. (d) Inverted distance function. (e) Markers: facades (green) and road medial axes (gray).(f ) Segmentation result: sidewalk (green) and road (gray).

Figure 4 . 12 :

 412 Figure 4.12: Roads and sidewalks segmentation using a constrained watershed approach. Acquisition by IGN©France. (a) presents the interpolated elevation image. From segmented and reconnected curbs (b), the distance function is computed (c). (d) shows the inverse distance function. Note that no data pixels on the interpolated elevation image are not considered. (e) facades and road medial axes are used as markers for sidewalk and road, respectively. Finally, a constrained watershed is applied to the inverted distance function. The result is the sidewalk and road segmentation, as shown in (f ).

  Figure 4.13: Curbs accessibility on two test sites in rue Cassette and rue Vaugirard in Paris, respectively. 3D labeled point clouds: facades (blue), urban objects (yellow), ground (gray), inaccessible curb (red), accessible curb (green). Acquisition by IGN©France.

  4.8.1 TerraMobilita/iQmulus database For this experiment, Cassette_idclass.ply le has been used 3 . It contains 12 million points from a street section approximatively 200 m long in rue Cassette in Paris, France. Manual annotations and point-wise evaluations have been independently carried out by the National French Mapping Agency (IGN).

Figure 4 .

 4 Figure 4.16(a) presents the input 3D point cloud colored by the laser intensity, while Figure 4.16(b) shows the 3D point cloud processed by our method. Ground appears in gray, facades in blue, and other objects in yellow.

Figure 4 . 14 :

 414 Figure 4.14: Example of an adaptive itinerary (black) for a person using a wheelchair going from A to B. We impose a minimum passing space of 1 m, which is large enough for a standard wheelchair. Nadir view of the scene: facades (blue), urban objects (yellow), ground (gray), inaccessible curb (red), accessible curb (green). Acquisition by IGN©France.
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 415 Figure 4.15: Obstacle map and accessibility information exported into a GIS. Curbs (orange), bollards (magenta), medial road axes (red), obstacle bounding box (blue).

  (a) 3D point cloud colored by the intensity information. (b) Classied point cloud. Ground (gray), facades (blue), objects and other (yellow).

Figure 4 .

 4 Figure 4.16: Ground segmentation and obstacle map denition. Test site in rue Cassette in Paris, France. Input le taken from TerraMobilita/iQmulus database. Acquired by Stereopolis II system, IGN©France.

Figure 4 .

 4 Figure 4.17: Some errors when segmenting ground, facades and objects. These are typical segmentation errors due to low facades wrongly detected as objects or the lower part of the facade has been wrongly segmented as ground.

Figure 4 .

 4 Figure 4.18 illustrates our automatic curb segmentation results in the three test sites. Results of precision, recall and processing time are given in Table 4.3. In order to simplify lines geometry, the wellknown Douglas and Peucker (1973) algorithm was used with 20 cm distance threshold.

  Figure 4.19: Inconsistent ground truth lines on Enschede dataset. Ground truth (cyan) presents an extrusion that does not correspond to the real curb. Detected curbs (red) and building entrances (green).

  Figure 5.1: 3D point clouds from two test sites in rue d'Assas in Paris, France. Stereopolis II, IGN©. Note that facades constitute the highest and longest vertical entities in the urban scene.

  [START_REF] Demantke | Dimensionality based scale selection in 3D LiDAR point clouds[END_REF] propose a method to adapt 3D neighborhood radius based on local features. Radius selection is carried out optimizing local entropy. Then, dimensionality features are calculated on spherical neighborhoods. These features can be useful to discriminate 1D structures such as pole-like objects, 2D structures such as ground or facades, and 3D volumetric structures such as trees and urban objects.Hernández and Marcotegui (2009c) assume that facades on the same street are aligned, which is veried in their Paris-rue-Souot database (Section 2.5.2). They use the Hough transform to detect the facade direction. Then, they analyze the prole of building heights in order to detect facades and city block separations. Hammoudi 5.4 Facade segmentation using facade markers (2011) presents a similar technique based on the Progressive Probabilistic Hough Transform in order to detect walls and windows. He assumes that building facades are mainly vertical, so it is possible to generate an accumulation image to compute the number of points projected on the same pixel.

  Figure 5.2: Interpolated elevation images from a test site in rue d'Assas in Paris, France. (a) and (b) show interpolated maximal f and interpolated minimal fmin elevation images, respectively. Note that interpolated relative height image fheight is appropriate to compute facade markers since it contains information about high and vertical urban structures, as shown in (c). Acquired by Stereopolis II, IGN©.

Figure 5

 5 Figure 5.3(a). Note that only the highest objects are preserved. lengthFacade, dening the minimal allowed facade length. In our experiments, this variable has been set to 5 m according to architectural characteristics of our databases. This threshold is illustrated in

Figure 5

 5 Figure5.3(b). Note that small objects such as lampposts and objects behind facades are not long enough and are then eliminated.

Figure 5 .

 5 Figure 5.6 illustrates facade marker extraction when the laser sensor is oriented to the ground.Figure 5.6(b)

  Figure 5.6 illustrates facade marker extraction when the laser sensor is oriented to the ground.Figure 5.6(b) presents the facade markers reprojected onto the 3D point cloud. The test site corresponds to a street section in rue Vaugirard in Paris, France.

Figure 5

 5 Figure 5.3: Facade marker extraction using geometrical constraints. It is noteworthy that these three parameters (heightFacade, lengthFacade and circularityFacade ) are easy to tune since they have a physical meaning and depend on urban/architectural constraints. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

  (a) 3D point cloud colored by the Z coordinate. (b) 3D point cloud colored by the Z coordinate.

Figure 5 . 4 :

 54 Figure 5.4: Example of 3D point clouds when laser is oriented to the ground. Therefore, structures higher than 2.5 m are out of the laser eld of view. This is a challenge for methods using height constraints since high wall parts are not visible. Test sites in rue Vaugirard in Paris, France. Stereopolis II, IGN©.
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 55 Figure 5.5: Mobile laser scanning (MLS) acquisition cycle. The rst and the last point are taken as facade markers. Test site in rue Souot in Paris, France. LARA-3D, CAOR-MINES ParisTech©.
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 565 Figure 5.6: Facade markers reprojected onto the 3D point cloud. During this acquisition, the laser sensor was oriented to the ground. Therefore, structures higher than 2.5 m are out of the laser eld of view. This is a challenge for methods using height constraints since high wall parts are not visible. Test site in rue Vaugirard in Paris, France. Stereopolis II, IGN©.

  (a) Interpolated max. elevation image f . (b) Interpolated relative height image fheight . (c) Facade markers Fmark. (d) Ground segmentation fgr. (e) Ground residue f c gr = ffgr.
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 57 Figure 5.7: Facade segmentation using reconstruction by dilation on the ground residue image from facade markers. Note that pixels behind facades have been included in the segmentation result. This method is fast and easy to implement. However, the main drawback is that objects connected to the facade, e.g. motorcycles parked next to the facade or pedestrians leaning on walls, are reconstructed as well. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

Figure 5 .

 5 Figure5.8 presents this segmentation result reprojected onto the 3D point cloud. Note that the reconstruction by dilation retrieves not only the entire facade but also other objects connected to it. For example, the store furniture, a pedestrian and a trac sign on the right sidewalk have been reconstructed as well.In order to solve the problem of objects touching the facade, we propose an attribute controlled reconstruction from facade markers. This procedure has been previously published inSerna and Marcotegui (2013a) and detailed in Section 7.4. It consists in appending nearby points with similar height until the maximization of an attribute on the segmented region. In our case, we use increasing propagations from facade markers over

Figure 5

 5 Figure 5.8: Facade segmentation result reprojected onto the 3D point cloud. Facade has been segmented using reconstruction by dilation on the ground residue image from facade markers. Note that this reconstruction retrieves not only the entire facade but also other objects connected to it. For example, the store furniture, a pedestrian and a trac sign on the right sidewalk have been reconstructed as well. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

  Figure 5.9 compares facade segmentation methods using reconstruction by dilation R δ f c gr (F mark) and attribute controlled reconstruction A λ M (F mark) from marker Fmark. It is noteworthy that the attribute controlled reconstruction does not reach objects connected to the facade nor objects behind them. Figure 5.10 presents the segmentation result using attribute controlled reconstruction reprojected onto the 3D point cloud. Compared to Figure 5.8, note that the store, the pedestrians and the trac sign have been correctly separated from the facade. Additionally, several objects such as wall lamps and objects behind facades have been correctly separated.

  (c) Attribute controlled reconstructionA λ M (F mark).

Figure 5

 5 Figure 5.9: Comparison of facade segmentation methods using reconstruction by dilation and attribute controlled reconstruction on the ground residue image. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

Figure 5 .

 5 Figure 5.10: Facade segmentation using attribute controlled reconstruction on the ground residue image. Note that using this attribute controlled reconstruction, the store, the pedestrians and the trac sign have been correctly separated from the facade. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

  3.2, where we propose a method to segment elongated objects on gray-scale images. Let us present its denition in the 2D case: Denition 5.5.1 Let I be a digital gray-scale image I : D → V , with D ⊂ Z 2 the image domain and V = [0, ..., R] the set of gray levels. A decomposition of I can be obtained considering successive thresholds: T t (I) = {p ∈ D|I(p) > t} ∀t = [0, ..., R -1]

5. 5

 5 Facade segmentation without markers (a) Elevation image. (b) Facade markers. Several incorrect markers have been detected due to tree alignments. (c) Facade segmentation using attribute controlled reconstruction.

Figure 5 .

 5 Figure 5.11: Errors in facade segmentation due to tree alignments wrongly extracted as facade markers. That is why we have proposed a more robust method without facade markers. Using such method, only the elongation and its evolution over the height decomposition of the scene are analyzed. This method is proved to produce the best results, as explained in the following section. Test site in St. Sulpice square in Paris, France. Stereopolis II, IGN©.

  Figure 5.12: (a) 1D threshold decomposition; (b) component tree; (c) attribute (width) prole for the two maxima (p A and p B ). Events on this attribute prole are useful to segment objects, extract features and dene adaptive structuring elements.

Figure 5 .

 5 Figure 5.13: Adaptive voxelization using slices parallel to the ground. Dashed lines represent slice divisions.For each slice, an occupancy grid is dened according to the elevation image pixel size 1/k, where k is the number of pixels per unit length. Each voxel is labeled full if there is at least one 3D point inside, or empty otherwise. Finally, these occupancy grids are stacked in a binary 3D image.For each slice, attributes are computed on each binary CC. This example contains ve objects: 1 O

  Figure 5.14 illustrates an example of facade segmentation using this approach.Figure 5.14(a) shows the elevation image.Figure 5.14(b) presents the elongation image computed from the threshold decomposition

  Figure 5.14(b) presents the elongation image computed from the threshold decomposition of the 3D point cloud. Figure5.14(c) presents the segmentation result applying a simple threshold on the elongation image. We dene elongFacade as the minimal elongation allowed for a facade. In our experiments, we have heuristically set elongFacade =20, which corresponds to the elongation of a rectangle whose length is 25 times longer than its width.

Figure 5 .

 5 Figure 5.15 presents another facade segmentation result on a test site in rue Bonaparte in Paris, France. With respect to Figure 5.11 most of facades are correctly segmented. The only problems appear in the left part: zone1, where the side part of a bus has been wrongly detected as facade; and zone B, where bushes and vegetation over a low wall could not be separated(Figure 5.15(d)). These objects present a high elongation, they are then segmented as facades.

Figure 5 .

 5 Figure 5.16 illustrates this city block segmentation. Figure 5.16(a) shows the elevation image.Figure 5.16(b)

  Figure 5.16 illustrates this city block segmentation.Figure 5.16(a) shows the elevation image.Figure 5.16(b)presents the binary image containing the facade segmentation result. Figure5.16(c) shows a morphological closing of size sepFacade in order to reconnect near facades belonging to the same city block, i.e. sepFacade stands for the minimal separation between city blocks. Figure5.16(d) shows the medial road axes useful to avoid dening city block crossing the street. This information is used if available and it can be obtained from the vehicle trajectory or from an external 2D map. Figure5.16(e) illustrates the distance function computed from facades. The distance function is constrained to be maximum on the medial road axes and on the no-data pixels. Finally, Figure5.16(f ) presents the IZ as the result of a constrained watershed on the distance function.

  Figures 5.17and 5.18 present two city block segmentation results reprojected onto the 3D point cloud. In those experiments, facades have been segmented using the image elongation based method (Section 5.5).

  Maximal elongation image computed from the 3D point cloud.(c) Facade segmentation using the maximal elongation image.

Figure 5 . 14 :

 514 Figure 5.14: Facade segmentation using the maximal elongation image. (a) shows the elevation image. (b) presents the elongation image computed from the threshold decomposition of the 3D point cloud. (c) presents the segmentation result applying a simple threshold on the elongation image.We dene elongFacade as the minimal elongation allowed for a facade. In our experiments, we have heuristically set elongFacade =20, which corresponds to the elongation of a rectangle whose length is 25 times longer than its width. Test site in rue Cassette in Paris, France. Stereopolis II, IGN©.

  Maximal elongation image computed from the 3D point cloud. (c) Facade segmentation using the maximal elongation image. Two segmentation errors have been found in zones A and B. (d) Facade segmentation error due to vegetation and bushes over a low wall. This is an unusual case presented in zone B in Figure 5.15(c).

Figure 5 . 15 :

 515 Figure 5.15: Facade segmentation using the maximal elongation image. Test site in rue Bonaparte in Paris, France. Stereopolis II, IGN©. With respect to g. 5.11 most of facades are correctly segmented.

  Medial road axes (used if available). (e) Distance function from facades (blue). No-data pixels and medial road axes are constrained to have the maximal distance. (f ) Inuence zones. Each color represents a dierent city block.

Figure 5 .

 5 Figure 5.16: City block segmentation using the inuence zones of the facade. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©. (a) shows the elevation image. (b) presents the binary image containing the facade segmentation result. (c) shows a morphological closing of size sepFacade in order to reconnect near facades belonging to the same city block. (d) shows the medial road axes useful to avoid dening city block crossing the street. (e) illustrates the distance function computed from facades. The distance function is constrained to be maximum on the medial road axes and on the no-data pixels. Finally, (f ) presents the result of a constrained watershed on the distance function. Each color represents a dierent city block.

  (a) Point cloud colored by the Z coordinate. (b) Point cloud colored by the laser intensity. (c) Facade segmentation using the elongation image (method without markers). Facade (blue) and other (gray).(d) City block segmentation. Each color represents a dierent city block.

Figure 5 .

 5 Figure 5.17: City block segmentation using the inuence zones of the facade. Reprojection onto the 3D point cloud. Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

Figure 5 . 18 :

 518 Figure 5.18: City block segmentation using the facades inuence zones. Reprojection onto the 3D point cloud. Test site in rue Bonaparte and St. Sulpice square in Paris, France. Stereopolis II, IGN©.

Figure 5 .

 5 Figure 5.19: Ground truth lines and 3D facade points projected onto the 2D plane. GT annotations have been obtained from ODParis and correspond to 2D lines indicating the separation between sidewalks and buildings. GT lines (red) and segmented facades (blue). Test site in rue d'Assas in Paris, France. Stereopolis II, IGN©.

Figures 5 .

 5 Figures 5.20 to 5.23 present the elevation images, the GT annotations and the segmentation results on the four test sites. It is noteworthy that several ground truth annotations are missing. For example, in site III (Figure 5.22(b)) several facades in the street left side are missing, while in site IV (Figure 5.23(b)) facades behind trees in the street right side have not been annotated. Therefore, several correct segmentations have been incorrectly labeled as false positives. As a result, the performance of our methods is sub-estimated in these two test sites. Let us analyze each method individually.

Figure 5 .

 5 Figure 5.21: Facade segmentation results for site II (TerMob2_LAMB93_0021.ply). (a) presents the elevation image, (b) the GT annotations and (c,d,e) the segmentation results using our three proposed methods.

Figure 5 .

 5 Figure 5.22: Facade segmentation results for site III (Cassette_idclass.ply). (a) presents the elevation image, (b) the GT annotations and (c,d,e) the segmentation results using our three proposed methods.

Figure 5 .

 5 Figure5.24 presents the facade segmentation result projected onto the 3D point cloud. In this experiment, only our method based on the maximal elongation image has been applied. As a general remark, errors of our segmentation method are due to an incomplete detected facade (zone A) and a tree alignment connected to a low wall (zone B).

Figure 5 .

 5 Figure 5.23: Facade segmentation results for site IV (Z2.ply). (a) presents the elevation image, (b) the GT annotations and (c,d,e) the segmentation results using our three proposed methods.

Figure 5 .

 5 Figure 5.24: Facade segmentation result using the maximal elongation image on Cassette_idclass.ply' le. Ground (gray), facades (blue). Input le taken from TerraMobilita/iQmulus database. Stereopolis II, IGN©. Errors are due to an incomplete detected facade (zone A) and a tree alignment connected to a low wall (zone B). Zone C corresponds to non-annotated points.

Figure 5 .

 5 Figure 5.25: Minor errors in the facadeground junction, where several 3D points have been wrongly assigned (between blue and green colors). Acquisition by IGN©France.

Figure 6 . 1 :

 61 Figure 6.1: Workow of our proposed semantic analysis from 3D laser scanning data. Dotted blue line indicates the contributions of the present chapter on the detection, segmentation and classication of urban objects. The input is a 3D point cloud. The rst three steps are presented in other chapters of this thesis: i) the 3D point cloud is projected to elevation images (presented in Section 3.4); ii) a digital terrain model (DTM) is automatically created as a result of our ground segmentation method (explained in Section 4.4); iii) facades are automatically segmented as the highest vertical structures in the elevation image (explained in Chapter 5). Then, the following three steps consist in methods for automatic detection, segmentation and classication of urban objects, and constitute

6. 3

 3 Related work (a) Object identier (id ). (b) Object class.

Figure 6

 6 Figure 6.2: ids and classes for an alignment of cars in Paris-rue-Madame dataset. For object id : each color represents a dierent object (some colors may look similar when displaying). For object class : facades (blue), ground (gray), cars (yellow), pedestrians (pink), urban furniture (cyan), trac signs (red). Data acquired by L3D2, MINES ParisTech©France.

Figure 6

 6 Figure 6.3(b) presents the rst set of object candidates obtained as the ground residue ( ffgr ). Note that almost all objects are retrieved. However, the dog in the middle of the sidewalk (object 4 O) is not detected because it is too low. Thus, it has been reached by the quasi-at zones propagation and it belongs to ground mask fgr .

  3(c). Then, transformation THFH( f )=Fill( f )-f consists in subtracting inverted image f from inverted lled image Fill( f ), as shown in Figure6.3(d). Note that this transformation detects correctly the dog in the middle of the sidewalk (object 4 O). However, the car in the left part (object 1 O) and the house in the right part (objects 6 O and 7 O) are not retrieved because they are touching the border, then they do not become holes in the inverted prole. Figure6.3(e) presents the complete set of object candidates, computed as the supremum between the two aforementioned sets of candidates: ( ffgr ) ∨ THFH( f ).

Figure 6

 6 Figure 6.3(f ) illustrates the eect of area opening γ Amin used to eliminate small and noisy structures. Note that the noisy structure in the middle of the sidewalk (object 3 O) has been correctly eliminated. However, the

  (a) Acquisition scheme and interpolated prole f . (b) In black: ground mask fgr. In red: rst set of object candidates ffgr (c) Inverted prole f and ll holes Fill( f ') (d) Second set of object candidate: THFH(f )=Fill( f ) -f (e) Complete set of object candidates: ( ffgr) ∨ THFH( f ) (f ) Area opening: γ A min (( ffgr) ∨ THFH( f )) (g) Objects mask fobj and ground mask fgr. Objects with signicant accumulation f acc are reinserted.

Figure 6 . 3 :6

 63 Figure 6.3: Detection method on a 1D prole. This urban scenario contains the following objects: 1 O car, 2 O

6. 5

 5 Object segmentation (a) Detected objects after area opening. (b) Reinserted poles (red) and a tilted bollard not retrieved (black).

Figure 6

 6 Figure 6.5: Pole reinsertion using accumulation. One of 10 bollards has not been reinserted because it is tilted, thus it has no enough accumulation. (a) several pole-like objects are removed by an area opening lter at A min =0.1 m 2 . (b) objects with an accumulation higher than 10 points are reinserted (in red). Note that a tilted bollard (black) is not recovered because it has not enough accumulation. A lower threshold can be used in order to retrieve this tilted bollard but at the risk of preserving other noisy structures. Test site rue Souot in Paris. Acquired by IGN©France.

Figure 6 . 6 :

 66 Figure 6.6: Slice denition in the 1D case. Note that processing by slices is useful to avoid that high objects such as trees (object 6

Figure 6

 6 Figure 6.7(a) shows an experimental site in rue d'Assas in Paris and its corresponding lower (Figure 6.7(b))

  Elevation image from the lower slice: points between the ground level and H slice . (c) Elevation image from the upper slice: points higher than H slice .

Figure 6 . 7 :

 67 Figure 6.7: Elevation images for lower and upper slices in a test site in rue d'Assas in Paris, France. Stereopolis II, IGN©. Note that trees and objects occluded below them can be processed separately on these two images. That is why this processing based on slices is particularly adapted to urban environments.

6. 5

 5 Figure 6.8: In order to segment connected objects we apply the solution proposed by Hernández and Marcotegui (2009c): the number of connected objects in the same CC is equal to the number of signicant maxima on it. With the aim of preserving only the most signicant maxima, a morphological h-Maxima lter is used. The h-Maxima lter eliminates maxima whose relative height is less than or equal to a given threshold h, i.e. with a low local contrast. Using ltered maxima as markers, a constrained watershed on the elevation image is applied in order to segment connected objects. (c) illustrates the performance of this segmentation. Each color represents a dierent object. Test site in rue Vaugirard in Paris. IGN©France.

Figure

  Figure 6.10: Tree segmentation using dierent area thresholds. It is noteworthy that treetops are bigger than any pole-like object. Then, an area opening is used with the aim of segmenting trees and pole-like objects. Then, we dene trees as objects bigger than a given threshold A tree . (a) presents the complete elevation image while (b) presents its upper slice. (c, d, e and f ) present area thresholds(from 5 to 50 m 2 ) in order to segment trees. In our experiments, we have noted that A tree =10 m 2 is enough to correctly segment trees while ltering out pole-like objects. However, this parameter can be intuitively tuned on any other database using some prior knowledge, i.e. type of pole-like objects, variety of trees, etc. Test site in St. Sulpice square in Paris, France. Stereopolis II, IGN©.

Figure 6 .

 6 Figure 6.11: Adaptive voxelization using quasi-at surfaces parallel to the ground. This example contains ve objects: 1 O facade, 2 O bird, 3 O lamppost, 4 O pedestrian, and 5 O tree. Using such structure, 3Dconnectivity can be dened using 6-or 26-neighborhoods.

Figure 6 .

 6 Figure 6.14 illustrates our segmentation and classication results on the upper slice.Figure 6.14(a) shows the elevation image. It is noteworthy that the upper slice only contains the highest urban structures such as facades, trees, poles and o-ground objects. Figures 6.14(b) and 6.14(c) show segmentation and classication results, respectively.

  (a) Interpolated elevation image. (b) Object detection result: ground (gray), facades (blue) and objects (yellow). (c) Object segmentation: each color represents a dierent object. (d) Object classication: facades (blue), cars (cyan), bollards (red), motorcycles (indigo), pedestrians (orange), road medial axes (magenta).

Figure 6 .

 6 Figure 6.13: Semantic analysis on the lower slice on the Cassette_idclass.ply le. (a) interpolated elevation image. (b) object detection. Note that objects are not individualized yet. (c and d) present our segmentation and classication results, respectively. Objects with the same label must have the same class. Note that the main drawback is due to facades lower than H slice wrongly segmented as objects and classied as cars (zone D). Other problems are due to wrongly interpolated regions behind facades, which are segmented as objects (zones A, B and C). Input le taken from TerraMobilita/iQmulus database. Acquired by IGN©France.

Figure 6 . 15 :

 615 Figure 6.15: Classication errors on TerraMobilita/iQmulus database. Facades (blue), sidewalk (green), road (gray), cars (pink), bollards (magenta), trees (white), pedestrians (indigo). Test zone in rue Cassette in Paris, France. Stereopolis II, IGN©.

  (a) Segmentation quality for object class. (b) Topological errors for object class.

Figure 6 .

 6 Figure 6.16: Segmentation quality and topological errors for object class on the TerraMobilita/iQmulus database.The (1-to-n) and (n-to-1) curves indicate the over-segmentation and under-segmentation errors, respectively. They depend on threshold m used for matching. Low thresholds induce high topological errors (both under-and over-segmentation). A threshold m = 0.5 is a good compromise for this method since precision/recall stay high (a) while topological errors are not allowed (b).

Figure 6 .

 6 Figure 6.19: Example of urban objects manually annotated in Paris-rue-Souot dataset. It contains pedestrians, cars, lampposts, motorcycles, among others. For the sake of comparison, we have manually annotated the database and results are shown inTable 6.6. Acquired by Stereopolis system, IGN

6. 8

 8 Figure 6.20: Hierarchical SVM classication on Paris-rue-Souot dataset.The rst SVM classies well-

Figure 6 .

 6 Figure 6.21: Ottawa city, Ohio (USA). The database contains 26 annotated tiles 100×100 meters each. A typical scene contains trees, cars, lampposts, among others. The GT consists in a labeled point marking the center of each object and its class. This database contains three types of tiles: training (blue), test (green) and non-annotated (black).

  Figure 6.22: Ohio database: object detection (yellow) and DTM generation (gray). In order to evaluate our

  Figure 6.23: Color and height information on Ohio database. It is noteworthy that including color information degrades the classication accuracy. The reason is that in this database, color information is the result of overlapping ALS and TLS. During acquisitions, color sensors were not calibrated, thus their superposition is not perceptually coherent.

  Figure 6.24: Classication errors due to occluded cars parked perpendicularly to the acquisition trajectory, therefore only a part of them has been scanned. Facade (blue), ground (gray), cars (green), trajectory (magenta), curbs (red), other (yellow). Point clouds taken from Paris-rues-Vaugirard-Madame database.

  Figure 6.25(a) shows classication result reprojected onto the 3D point cloud. Figure 6.25(b) presents results exported as shapeles to a GIS in order to visualize and compute parking statistics in an easier way. 6 Semantic analysis of 3D urban objects (a) Classication result reprojected onto the 3D point cloud: cars (red), ground (gray), other (yellow). This point cloud corresponds to a segment of rue Madame in Paris, France. L3D2, CAOR-MINES ParisTech©. (b) Classication results exported to a GIS. Cars detected in the rst passing (red), in the second (green), in both (orange).

Figure 6 .

 6 Figure 6.25: Classication results on a 3D data acquired by L3D2 system by MINES ParisTech in the rue Madame in Paris. (a) shows classication result reprojected onto the 3D point cloud. (b) presents results exported as shapeles to a GIS in order to visualize and compute parking statistics in an easier way.

  Figure 7.1: Example of at and quasi-at zones on a gray level image. Each color represents a segment in the partition. This is very useful for image partition, simplication and segmentation.

  as dened in Denition 7.3.2: Denition 7.3.2 Let I be a digital gray-scale image I : D → V , with D ⊂ Z 2 the image domain and V = [0, ..., R] the set of gray levels. A decomposition of I can be obtained considering successive thresholds: T t (I) = {p ∈ D|I(p) > t} ∀t = [0, ..., R -1] (7.1)

  Figure 7.2: (a) 1D threshold decomposition; (b) component tree; (c) attribute prole for a 1D function fromits two maxima (p A and p B ). Events on this attribute prole are useful to segment objects(Jones, 
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 73 Figure 7.3: Geodesic diameter L(X) denition. (a) Two paths between points x and y; (b) geodesic arc between these two points; (c) longest geodesic arc of object X, whose length is the geodesic diameter L(X); (d) generalized geodesic distance, longest geodesic arc. Image taken from Morard et al. (2013)

Figure 7 . 4 :

 74 Figure 7.4: Geodesic elongation for dierent binary objects. The elongation values have been approximated to get integer values. The longer and narrower the object, the higher the elongation. The lowest bound is reached with the disk, where E(disk) = 1. In this image, the number on each object corresponds to its approximated elongation. An ecient implementation can be found in Morard et al. (2013).

Figure 7

 7 Figure 7.5(b) shows the at-zones of the image while Figure 7.5(c) shows the quasi-at zones with a small λ value. Note that this propagation merges the two objects due to gradual gray-level transitions in the segment that connect them.

7. 4

 4 Attribute controlled reconstruction toy example of Figure 7.6. Consider a marker on the upper left corner of Figure 7.6(a) and its propagation by increasing λ-at zones using 4-connected neighborhood. The propagation begins with λ = 0 (Figure 7.6(a)) and ends when propagation reaches the whole image at λ = 5 (Figure 7.6(f )).

7. 5

 5 Adaptive mathematical morphology (a) 3D point cloud showing three motorcycles parked next to the facade. (b) Illustrative photo (c) Illustrative photo (d) Elevation image: facade markers (black) (e) Elevation image: facade reconstruction (black) (f ) Attribute evolution on the quasi-at zones (g) Segmented 3D point cloud. facades (blue), objects (green), ground (gray), vehicle trajectory (magenta).

Figure 7 . 7 :

 77 Figure 7.7: Segmentation of connected objects using controlled propagation from markers. (b and c) pictures helpful to understand the scene. (d) elevation image and the facade markers. (f ) shows the elongation evolution using increasing λ values. Reconstruction at λ=13 is selected, which corresponds to the maximum elongation. The reconstruction result is shown in (e) and (g).

Figure 7

 7 Figure 7.8: Input-adaptive SE using the maximum elongation. In this case, the input and the pilot image are the same. (c) illustrates the SE for two pixels in elongated (ber) and non-elongated (background) regions. (d) shows the result of an adaptive opening with respect to the classical one (b).

  Consider the two examples of Figure7.10. From each pixel, we compute the adaptive SE using a propagation controlled by the maximal elongation. Each pixel on the output image contains the maximal elongation of its respective adaptive SE. It is noteworthy that the highest values in the feature image correspond to the most elongated structures. Moreover, this operator is auto-dual since brighter and darker structures are processed at the same time. See for example Figure7.10(c), where several elongated vessels at dierent gray levels have been enhanced on the maximal elongation image(Figure 7.10(d)). If the user want to to favor a given gray level, the feature image can be weighted using the original input image.

7

  Attribute-based ltering and segmentation (a) Input image. White crosses indicate two seed pixels. (b) Classic median (c) Classic median: each color represents a at-zone. (d) Adaptive SE for the two seed pixels. (e) Adaptive median (f ) Adaptive median: each color represents a at-zone.

Figure 7

 7 Figure 7.9: Input-adaptive SE using the gray-level rupture. In this case, the input and the pilot image are the same. This is useful to dene SE containing pixels with similar gray-level. (d) shows the SE for two dierent pixels in the image. (e) presents the application of this adaptive SE as kernel for a nonlinear lter, the median lter. Note that homogeneous regions are smoothed and high contrasted structures are preserved, as proven by the number of at-zones of each ltered image (c) and (f ).

Figures 7 .

 7 Figures 7.11(c) and 7.11(d) present two geodesic thinnings at E(x)=11 and E(x)=20, respectively. Note that only bright objects have been extracted. Figures 7.11(e) and 7.11(f ) present two simple thresholds on the maximal elongation image (Figure 7.11(b)) at these same values. It is noteworthy that our proposed operator is more appropriate to this segmentation task since black, white and gray elongated structures can be detected. Moreover, our feature image (Figure 7.11(b)) contains information about the elongation of all objects in the scene, proving the usefulness of our transformation for segmentation and classication tasks.

7

  Attribute-based ltering and segmentation (a) Original image (b) Maximal elongation image by quasi-at zones. (c) Geodesic thinning at E(x)=11 (d) Geodesic thinning at E(x)=20 (e) Maximal elongation image. Threshold at E(x)=11 (f ) Maximal elongation image. Threshold at E(x)=20

Figure 7 .

 7 Figure 7.11: Segmentation of elongated structures at dierent thresholds using geodesic thinnings (Morard et al., 2011a) and thresholding on the maximal elongation image computed using quasi-at zones. It is noteworthy that our proposed operator is able to segment black, white and gray elongated structures. (c) and (d) present two geodesic thinnings at E(x)=11 and E(x)=20, respectively. Note that only bright objects have been extracted. (e) and (f ) present two simple thresholds on the maximal elongation image (b) at these same values. It is noteworthy that our proposed operator is more appropriate to this segmentation task since black, white and gray elongated structures can be detected. Moreover, our feature image (b) contains information about the elongation of all objects in the scene, proving the usefulness of our transformation for segmentation and classication tasks.

7. 7

 7 Attribute proles and area-stable elongation image segmentation.

Figure 7 . 12 :

 712 Figure 7.12: Toy example: maximal attributes images and component tree. For this example, we have approximated the euclidean distance on the 8-connectivity grid. This toy image contains 4 gray-levels enumerated from t 0 to t 3 , and 6 CC enumerated from A to F. (e) presents the component tree, where S(X), E(X), Ψ(X) and Φ(X) are the area, the elongation, the area stability and the areastable elongation of a given component X, respectively. Note that the stability for the background

  (a) 511 × 511 pixels (resolution 0.26 µm/pixel). (b) Ground truth (melanocytes) (c) Histogram of melanocytes and background.

Figure 7 . 14 :

 714 Figure 7.14: Foreground and background gray distributions on a multiphoton image of engineered skin containing keratinocytes and melanocytes. Segmenting these images with standard methods may fail since melanocytes are low contrasted and noisy, as shown in (a). A rst simple solution may consist in applying automatic thresholding, e.g. Otsu method[START_REF] Otsu | A Threshold Selection Method from Gray-Level Histograms[END_REF]. However, it does not work because foreground and background gray-distributions overlap, as shown in the histogram of (c).

Figures 7 .

 7 Figures 7.16 and 7.17 present two experimental results. Figures 7.16(a) and 7.17(a) show the two input images with their corresponding manual annotations in Figures 7.16(b) and 7.17(b). Figures 7.16(c) and 7.17(c) present the max{E(X t )} images. Note that all melanocytes present a signicant elongation, however some post

Figure 7 . 15 :

 715 Figure 7.15: Attribute proles for pixel marked with a red x in the input image. From (d) to (i): CC of X t containing pixel x, for dierent t values.

  Figures 7.19 and 7.20 present our experimental results showing the input image, the ground truth, the MSER result and our segmentation result. It is noteworthy melanocytes are correctly segmented by our method in most cases. Some problems are shown in Figure 7.19(c) where a clearly non-elongated melanocyte in the upper left part of the image has not been segmented, and in Figure 7.20(f ) where a low contrasted melanocyte has

  Figure7.16: Feature images using the global maximum in the attribute prole for the input image a. Note that all melanocytes present a signicant elongation, however some post processing is required in order to eliminate porous structures on the background. Most noisy regions are not area-stable, then the area-stable elongation Φ(X t ) appears suitable for the segmentation of this kind of objects, as shown in (d). This example demonstrates the use of our area-stable elongation in order to enhance elongated objects with respect to a noisy background. Using this feature image, the melanocyte segmentation becomes an easy task.

  Figure7.17: Feature images using the global maximum in the attribute prole for the input image b. Note that all melanocytes present a signicant elongation, however some post processing is required in order to eliminate porous structures on the background. Most noisy regions are not area-stable, then the area-stable elongation Φ(X t ) appears suitable for the segmentation of this kind of objects, as shown in (d). This example demonstrates the use of our area-stable elongation in order to enhance elongated objects with respect to a noisy background. Using this feature image, the melanocyte segmentation becomes an easy task.

Figure 7 . 18 :

 718 Figure 7.18: Overall sensibility curves: threshold to eliminate objects with low area-stable elongation. This parameter is not critical since several values produce similar results. It is noteworthy that thresholds between 7 and 16 produce an overall f mean over 70%. In our experiments we have used a threshold equal to 11 for all images.

  Figure 7.19: Segmentation of melanocytes using area-stable elongation. First row: input image; second row: ground truth; third row: MSER; fourth row: our segmentation result. Note that our method presents much better results than MSER for all images.

  Figure 7.20: Segmentation of melanocytes using area-stable elongation (continuation). First row: input image; second row: ground truth; third row: MSER; fourth row: our segmentation result. Note that our method presents much better results than MSER for all images.

  Mots clés : Morphologie Mathématique, Traitement d'Image, Analyse Urbaine en 3D, Accessibilité Urbaine, Analyse Sémantique, Segmentation, Classification.Semantic analysis of 3D point clouds from urban environments:ground, facades, urban objects and accessibility.Abstract: Most important cities in the world have very detailed 2D urban plans of streets and public spaces.

  

  

  

  

  

  

  

  

  

Table 2

 2 

	Scanning principle	rotating mirror
	Range principle	time of ight measurement
	Measurement rate	300 kHz
	Minimum Range	1.5 m
	Maximum range	75 m
	Laser wavelength	near infrared
	Vertical eld of View	360 degrees
	Angular accuracy	350 µrad
	Scan Speed	100 scans/sec
	Angular resolution	0.001 degrees
	Internal Sync Timer	GPS real-time stamping
	Accuracy	10 mm
	Precision	5 mm
	Number of points	300,000 points/sec
	Intensity resolution	16 bits

.1: Technical specications: RIEGL VQ-250 laser scanner used in Stereopolis II system.

Table 2

 2 

	Scanning principle	32 lasers on a rotating base
	Range principle	time of ight measurement
	Measurement rate	10 Hz
	Minimum Range	1 m
	Maximum range	80 m
	Laser wavelength	905 nm
	Horizontal eld of View	360 degrees
	Vertical eld of View	[-30.67, 10.67] degrees
	Scan Speed	10 scans/sec
	Angular resolution	1.33 degrees
	Internal Sync Timer	GPS real-time stamping
	Accuracy	2 cm
	Number of points	700,000 points/sec
	Intensity resolution	8 bits

.2: Technical specications: Velodyne HDL-32E laser scanner used in L3D2 system.

Table 2

 2 

	Scanning principle	Vertically rotating mirror on horizontally rotating base
	Range principle	Ultra-high speed time of ight
	Measurement rate	1 MHz
	Minimum range	0.6 m
	Maximum range	120 m
	Range noise	< 2 mm
	Laser wavelength	1.5 µm, invisible
	Horizontal eld of view	360 degrees
	Vertical eld of view	317 degrees
	Angular accuracy	80 µrad
	Scan duration	< 3 minutes
	Point spacing at 30 m	22.6 mm
	Mirror rotating speed	60 rps
	Number of points	1 Mpoints/sec (138 Mpoints in total)
	Intensity resolution	8 bits

.3: Technical specications: Trimble TX8 laser scanner used in the Stop & Go system.

Table 2

 2 

.4 presents available classes and number of objects by category in Paris-rue-Souot dataset.

Figure 2.6(b) shows a snapshot of this dataset.

Table 2 .

 2 4: Available classes and number of objects in Paris-rue-Souot database.

	Class Class name Samples
	1	Cars	27
	2	Lampposts	12
	3	Bollards	39
	4	Walls	12
	5	Fences	5
	6	Pedestrians	101
	7	Bikes	14
	8	Furniture	30
	9	Others	23
	10	Trac lights	4
	11	Panels	7
	12	Trash cans	5
		Total	279

3 Paris-rue-Souot database is available at: http://cmm.ensmp.fr/~serna/downloads.html 4 TerraNumerica project: http://cmm.ensmp.fr/TerraNumerica/terranumerica.html 2 Laser scanning technology and 3D data in urban environments

Table 2 .

 2 5: Available classes and number of objects in Ohio database.

	Class	Class name	Samples
	1	Ad cylinder	6
	2	Bush	29
	3	Car	240
	4	Dumpster	1
	5	Fire hydrant	19
	6	Flagpole	2
	7	Lamppost	146
	8	Light pole	62
	9	Mailing box	4
	10	Newspaper box	42
	11	Parking meter	10
	12	Post	377
	13	Recycle bin	6
	14	Sign	96
	15	Telephone booth	4
	16	Trac control box	8
	17	Trac light	42
	18	Trash can	19
	19	Tree	552
	20	Box transformer	2
		Total	1667
	2.5.4 Enschede database		

Enschede dataset 6

[START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]

) is a combination of ALS and MLS data, acquired by FLIMAP (?), from a residential neighborhood approximately 1 km long in Enschede city (The Netherlands). Ground truth annotation consists in 2D geo-referenced lines marking curbstones. A well-dened evaluation method is available using buers around each 2D line. The drawback of this dataset is that no other objects are annotated.

Table 2 .

 2 6: Available classes and number of objects in Paris-rue-Madame database.

	Class	Class name	Samples le 1_2 Samples le 1_3
	0	Background	7	35
	1	Facade	4	4
	2	Ground	1	1
	4	Cars	39	31
	7	Light poles	0	1
	9	Still pedestrians	3	7
	10	Motorcycles	23	9
	14	Trac signs	5	1
	15	Trash can	2	1
	19	Wall Light	6	1
	20	Balcony Plant	3	2
	21	Parking meter	1	1
	22	Fast pedestrian	2	2
	23	Wall Sign	1	3
	24	Pedestrian + something	1	0
	25	Noise	46	80
	26	Pot plant	0	4
		Total	144	183

(oat32) reectance: backscattered intensity corrected for distance.

Table 3 .

 3 1: TerraMobilita datasets from rue d'Assas and rue Cassette in Paris. IGN©France.

		rue d'Assas	rue Cassette
	Street length	500 m	300 m
	3D points	24 × 10 6 points 18 × 10 6 points
	Acquisition time	2'25	1'31
	Vehicle speed (average)	12.4 km/h	11.9 km/h
	computation. Figure 3.9 shows the elevation image size for dierent k values from 5 pix/m (20×20 cm 2 /pix)
	to 20 pix/m (5×5 cm 2 /pix). It is noteworthy that the number of pixels increases as k 2 .

Table 4 .

 4 1: Evaluation taking into account 4 main categories on TerraMobilita/iQmulus database. GT: ground truth, AR: Automatic result. In the confusion matrix, results are presented as percentages with respect to the total number of points in the 3D point cloud (12 million points).

	GT/AR	unclassied other surface object	Sum	Recall	Precision	f mean
	unclassied	-	-	-	-	18.31 %	-	-	-
	other	0.00 %	0.00 %	0.13 %	0.04 %	0.17 %	0.59 %	0.05 %	0.08 %
	surface	1.90 %	2.19 %	70.81 %	0.91 %	75.82 %	93.40 %	98.82 %	96.03 %
	object	0.09 %	0.02 %	0.72 %	4.88 %	5.70 %	85.49 %	83.72 %	84.59 %
	Sum	1.99 %	2.21 %	71.66 %	5.82 %	81.69 %	Overall accuracy: 92.65 %

Table

4

.2 presents our segmentation results for the surface class. Note that our method correctly separates facades and ground giving f mean equal to 97.25 % and 98.72 %, respectively. Figure

Table 4

 4 

	GT/AR	ground facade	Sum	Recall	Precision	f mean
	ground 30.77 % 0.01 % 30.78 % 99.96 % 94.69 % 97.25 %
	facade 1.73 % 67.49 % 69.22 % 97.51 % 99.98 % 98.72 %
	Sum	32.50 %	67.50 %	100.0 %	Overall accuracy: 98.26 %
	4.8.2 Enschede database				

.2: Evaluation taking into account only the surface class (facades and ground) on TerraMobilita/iQmulus database. GT: ground truth, AR: Automatic result. In the confusion matrix, results are presented as percentages with respect to the total number of points in the 3D point cloud (12 million points).

In order to benchmark our curb segmentation and reconnection methods with other state of the art methods, we use another publicly available database containing three test sites in Enschede, The Netherlands (Section 2.5.4). This database has been previously used by

[START_REF] Vosselman | Detection of curbstones in airborne laser scanning data[END_REF]

;

[START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF]

;

Serna and Marcotegui (2013b)

, thus comparison with the state of the art becomes possible.

Table 4 .

 4 3: Precision, recall and processing time for the three test sites at Enschede, The Netherlands. Between brackets the results obtained by[START_REF] Zhou | Mapping curbstones in airborne and mobile laser scanning data[END_REF] due to large occluded areas. For example, zone D in Figure4.18(c) shows a large occluded area due to cars on both sides of the street. Only short curb parts are detected between parked cars and they are not reconnected because the distance exceeds our reconnection threshold. For this database, reconnection threshold has been reduced to 2 m due to wrong reconnections in polygonal curbs in the middle of the road. Therefore, curb reconnections longer than 2 m are not allowed and this is the reason of low recall in curbs detection.

		Site 1	Site 2	Site 3
	Precision	95% (91%)	94% (92%)	91% (84%)
	Recall	65% (83%)	54% (53%)	60% (54%)
	Time	8.6 min (1 hour)
	are not detected			

Table 4 .

 4 4: Recall for each curb type on Enschede database.

		Site 1	Site 2	Site 3
	Roadside (Inaccessible)	82%	67%	64%
	Gaps (Accessible)	55%	48%	46%
	Polygonal curbstones	46%	45%	N/A

  TerraMobilita/iQmulus benchmark 2014 is still open 4 , thus other authors can submit their results in order to get comparisons with the state of the art. As aforementioned, the evaluation is independently carried out by the National French Mapping Agency (IGN). ce chapitre, nous présenterons des méthodes de segmentation automatique de façades à partir de données 3D issues d'un scanner mobile. Après une révision de l'état de l'art, nous présenterons une méthode de segmentation basée sur l'extraction de marqueurs de façades ainsi qu'une autre méthode basée sur le calcul de l'élongation géodésique. Ensuite, à partir des résultats de la segmentation de façade, nous exposerons une méthode automatique de segmentation d'îlots de bâtiments. Finalement, nous reporterons des résultats quantitatifs sur des bases de données disponibles dans la littérature.

	5 Facade and city block segmentation
	5.1 Résumé

4 TerraMobilita/iQmulus benchmark 2014: http://data.ign.fr/benchmarks/UrbanAnalysis/ [Last accessed: July 23, 2014.] Dans
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	GT/AR	unclassied other surface object	Sum	Recall	Precision	f mean
	unclassied	-		-		-		-		18.31 %	-	-	-
	other	0.00 %	0.00 %	0.13 %	0.04 %	0.17 %	0.59 %	0.05 %	0.08 %
	surface	1.90 %	2.19 %	70.81 %	0.91 %	75.82 %	93.40 %	98.82 %	96.03 %
	object	0.09 %	0.02 %	0.72 %	4.88 %	5.70 %	85.49 %	83.72 %	84.59 %
	Sum	1.99 %	2.21 %	71.66 %	5.82 %	81.69 %	Overall accuracy: 92.65 %
	in this case is 98.26 %. These results prove the performance of our method.
	Table 5.4: Evaluation taking into account only the surface class (facades and ground) on TerraMobilita/iQmulus
	database. GT: ground truth, AR: Automatic result. In the confusion matrix, results are presented
	as percentages with respect to the total number of points in the 3D point cloud (12 million points).
		GT/AR	ground facade	Sum	Recall	Precision	f mean
		ground 30.77 % 0.01 % 30.78 % 99.96 % 94.69 % 97.25 %
		facade 1.73 % 67.49 % 69.22 % 97.51 % 99.98 % 98.72 %
		Sum	32.50 %	67.50 %	100.0 %	Overall accuracy: 98.26 %

.3: Classication results for 3 general categories on TerraMobilita/iQmulus database. GT: ground truth, AR: automatic result. In the confusion matrix, results are presented as percentages with respect to the total number of points in the 3D point cloud (12 million points).

Table 6 .

 6 1 summarizes representative papers related to our work. Semantic analysis methods and performances reported on each paper are summed up in the table. Performance ranges from 58% to 95% but results are not comparable because they use dierent databases, consider dierent object classes, have dierent aims, use dierent data structures and process data in dierent ways. This table only oers an idea on each method performance. As a general remark, several authors use elevation images, clustering methods and supervised classiers. Further details are given below.

Table 6 .

 6 1: Comparison of detection, segmentation and classication methods in the state of the art (SVM: Support Vector Machines, P: Precision, R: Recall, OA: Overall accuracy). Colors indicate similar methods used by dierent authors.

	Authors	Semantic analysis methods			Number of classes	Accuracy
	Mallet et al.	Fullwaveform analysis, Mathematical morphol-	3 (buildings, ground, vegeta-	P=95.0%
	(2008)	ogy, SVM					tion)
	Golovinskiy	Elevation images, graphs, contextual analysis,	16 (cars, polelike objects,	P=58%,
	et al. (2009)	hierarchical clustering, SVM			trash cans, parking meters,	R=65%
							among others)
	Hernández and	Elevation images, mathematical morphology,	4 (cars, lampposts, pedestri-	P=86.21%
	Marcotegui	SVM, linear discriminant analysis			ans, other)
	(2009c)						
	Munoz et al.	Contextual analysis, clustering, high-order	5	(vegetation,	wires,	P=87.1%
	(2009)	Markov models				poles/trunks, load bear-
							ing, facades)
	Owechko et al.	3D strip by strip processing, decision trees	17 (Buildings, ground, cars,	P=70.0%
	(2010)						bollards, lampposts, trees,
							among others)
	Zhu et al. (2010) Elevation	images,	graphcuts,	SVM,	7 (buildings, bushes, cars,	P=89.6%
		decision trees				trees, pedestrians, bicycles,
							other)
	Demantke et al.	3D adaptive neighborhood, principal compo-	4 (lines, planes, volumes,	P=69.3%
	(2010)	nent analysis, decision trees , dimensionality	noise)
		features					
	Douillard et al.	Voxelization,	hierarchical	clustering,	16 (ground and several urban	P=89.0%
	(2011)	decision trees , RANSAC, clustering		objects)
	Rutzinger et al.	3D Hough transform, region growing, shape	2 (trees, non-tree)	P=93%,
	(2011)	models, 3D alpha shapes				R=86%
	Pu et al. (2011)	Geometrical	and	topological		analysis,	3 (poles, trees, other)	P=73.5%
		decision trees				
	Velizhev et al.	RANSAC, hierarchical clustering, spin images,	2 (cars, light poles)	P=69%,
	(2012)	implicit shape models					R=80%
	Weinmann et al.	Elevation images, 3D adaptive neighborhood,	5 (wire, pole/trunk, facade,	OA=93.3%
	(2013)	SVM, k-nearest neighbors, Naive Bayesian	ground and vegetation)
	Niemeyer et al.	3D point by point processing, random forests,	7 (grassland, road, ground	OA=83.4%
	(2014)	Markov random elds				roof, low vegetation, facade,
							at roof and trees)

  .3 illustrates a typical acquisition prole. Note that this is only an illustrative example in the 1D case. The process is performed on the entire 2.5D elevation image f .

	The urban prole contains the following urban objects enumerated from 1 O to 7 O: 1 O car, 2 O pedestrian, 3 O noisy structure, 4 O dog, 5 O pedestrian, 6 O house facade, and 7 O chimney. O and 3 O, and in the right part, between objects 5 O and
	6

The rst step consists in interpolating occluded zones using a ll holes transformation, as explained in Section 3.6.3. Figure 6.3(a) presents interpolated prole f . Using this transformation, each hole is lled with the minimal value surrounding the hole. For example, consider the hole in the left part, between objects 3 O and 4

O. This hole is lled at the ground level because in 2.5D it is connected to ground pixels. Additionally, consider the holes in the left part, between objects 2

Table 6 .

 6 2: Propagation rules for results from lower and upper slices.

	CC in the upper slice	CC in the lower slice	Procedure
	Segmented as facade	indierent			Upper and lower CC correspond to a facade and
						they should have the same id.
	Segmented as o-ground	Not	connected	to	the	Upper CC correspond to an o-ground object it
		ground			should have a unique id.

Table 6 .

 6 5: Classication results for dynamic object subtree on TerraMobilita/iQmulus database. GT: ground truth, AR: automatic result. In the confusion matrix, results are presented as percentages with respect to the total number of points in the 3D point cloud (12 million points).

	GT/AR	pedestrian 2 wheeler 4+ wheeler	Sum	Recall	Precision	f mean
	pedestrian	1.63 %	0.00 %	0.12 %	1.76 %	92.80 %	76.51 %	83.87 %
	2 wheeler	0.39 %	0.65 %	0.00 %	1.04 %	62.71 %	95.51 %	75.71 %
	4+ wheeler	0.11 %	0.03 %	97.06 %	97.20 %	99.86 %	99.87 %	99.86 %
	Sum	2.13 %	0.68 %	97.18 %	100.0 %	Overall accuracy: 99.34 %
	In the framework of that work, our method (called CMM method) is compared against that proposed by
	Weinmann et al. (2014) (called KIT method) and the authors discuss the benchmark results as follows:

Table 6 .

 6 Table 6.6. Acquired by Stereopolis system, IGN France. 6: Classication results on Paris-rue-Souot test set. In brackets results from Hernández and Mar-

	cotegui (2009c).				
	Class name Samples Precision (%) Recall (%) f mean (%)
	Cars	27	100 (100)	100 (100)	100 (100)
	Lampposts	12	100 (100)	100 (100)	100 (100)
	Bollards	39	89	100	94
	Walls	12	100	100	100
	Fences	5	100	100	100
	Pedestrians	101	86 (70)	84 (71)	85 (71)
	Bikes	14	100	54	70
	Furniture	30	67	67	67
	Other	23	50	100	66.6
	Trac lights	4	0	0	0
	Panels	7	100	100	100
	Trash cans	5	0	0	0
	6.8.3 Results: Ohio database				

Table 6 .

 6 7: Detection and segmentation results on Ohio dataset.

	Detection	Segmentation

Table 6

 6 

	.11 presents results gathering lampposts, lights, posts, and signs in a more general category called
	pole-like objects. With 3 classes, the overall accuracy rises up to 88%.
	6.8.3.4 Comparison with the state of the art

Table 6 .

 6 9: Classication results on Ohio database. Classes with less than 5 objects, either in the training set or in the testing set, are not considered. Pred: predicted, TP: true positives, P: Precision, R: Recall.

			Correctly segmented		Classication	
	Class Name	Train	Test	Pred TP	P	R	f mean
	1	Ad cylinder	2	3					
	2	bush	1	22					
	3	car	108	87	85	75	88%	86%	87%
	4	dumpster	1	0					
	5	Fire hydrant	3	10					
	6	agpole	1	1					
	7	Lamppost	33	84	78	51	65%	61%	63%
	8	Light pole	14	32	22	16	73%	50%	59%
	9	Mailing box	0	1					
	10	Newspaper box	0	5					
	11	Parking meter	10	0					
	12	post	132	76	85	66	78%	87%	82%
	13	Recycle bin	1	2					
	14	sign	34	45	44	33	75%	73%	74%
	15	Telephone booth	1	1					
	16	Trac control box	1	1					
	17	Trac light	4	30					
	18	Trash can	0	8					
	19	tree	137	353	363	317	87%	90%	89%
	20	Box transformer	0	0					
	Total (used classes)	458	677	677 558 82% 82% 82%
	Total (all objects)							

Table 6 .

 6 [START_REF] Serna | Attribute controlled reconstruction and adaptive mathematical morphology[END_REF] presents a quantitative comparison with the state of the art. Taking into account only 6 categories, the ones used during classication. Our detection method (accuracy equal to 99%) performs better than the Table6.10: Confusion matrix for classication in 6 classes on Ohio dataset.

	GT\Predict. Cars Lampposts Light Post Sign Tree Total
	Car	75	0		0	0	1	11	87
	Lamppost	1	51		1	11	1	19	84
	Light	0	6		16	0	0	10	32
	Post	0	3		1	66	2	4	76
	Sign	0	3		0	7	33	2	45
	Tree	9	15		4	1	7	317	353
	Total	85	78		22	85	44	363
	Table 6.11: Confusion matrix gathering lampposts, lights, posts, and signs in the same category. Results on
	Ohio dataset.							
	GT\Predict. Cars Pole-like Trees Total Precision Recall f mean
	Car	75	1	11	87		88%	86%	87%
	Pole-like	1	201	35	237		88%	85%	86%
	Trees	9	27	317	353		87%	90%	89%
	Total	85	229	363				
	other two reported in the literature. Our classication accuracy is equal to 82%, whereas Golovinskiy et al.

Table 6 .

 6 12: Summarized comparison with other methods reported in the literature on Ohio dataset. Percent values indicate the accuracy in each step of the semantic analysis.

		Golovinskiy et al.	Velizhev et al. (2012)	Serna and Marcotegui
		(2009)		(2014)
	Detection	92%	96%	99%
	Segmentation	86%	N/A	78%
	Classication	65%	67%	82%
	Overall accuracy			64%
	Computational time	7.3 min/tile	5 ∼ 10 min/tile	1 min/tile
		(3 GHz PC)	(4×2.4 GHz PC)	(4×2.4 GHz PC)

Table 6 .

 6 13: Car classication results on Paris-rues-Vaugirard-Madame database.

	Class name Precision Recall f mean
	Cars	100.0 %	94.6 %	97.2 %
	Other	99.7 %	100.0 %	99.9 %

  ce chapitre, nous présenterons des contributions à la morphologie mathématique dans le domaine des opérateurs basés sur des attributs. Nous montrerons certaines de leurs applications telles que la reconstruction, la morphologie adaptative, l'extraction de caractéristiques, le ltrage et la segmentation. Dans un premier temps, nous rappellerons des concepts basiques de la morphologie mathématique. Ensuite, nous exposerons une méthode de propagation contrôlée ainsi qu'une méthode de segmentation basée sur l'évolution d'attributs. Finalement, nous illustrerons par un exemple de segmentation des cellules allongées dans le cadre d'une application industrielle.

	7 Attribute-based ltering and segmentation
	7.1 Résumé
	The TerraMobilita/iQmulus benchmark 2014 is still open, thus other authors can submit their results in order
	to get comparisons with the state of the art. As aforementioned, evaluation is independently carried out by
	IGN 3 .

3 If you are interested in participate in the benchmark, please contact Dr. Bruno Vallet for details uploading results: http: //data.ign.fr/benchmarks/UrbanAnalysis/#Contact [Last accessed: July 23, 2014.] Dans

Available at: http://data.ign.fr/benchmarks/UrbanAnalysis/

Loi

2005-102 du 11 février 2005: Pour l'égalité des droits et des chances, la participation et la citoyenneté des personnes handicapées.

5 Facade and city block segmentation is not critical since it only represents 0.17 % of total number of 3D points in the scene. As aforementioned, unclassied class is not taken into account in the evaluation. Nevertheless, it is not critical in the practical case since it mainly contains 3D points behind facades, therefore they do not belong to the public space. The overall 7 Attribute-based ltering and segmentation Denition 7.4.1 For all x ∈ D, let Λ x be the set of increasing regions containing pixel x. For all λ ∈ V and j = [1, ..., n -1], we dene A x (λ) ∈ Λ x as the λ-at zone of image I containing x:

In this section, λ-at zones are arbitrarily used. However, this is not a restrictive choice since any other hierarchical partition can be used as well. Another application is presented later in Section 7.7, where a component tree is used.

Let us introduce formal denitions for attribute rupture and maximum attribute:

Denition 7.4.2 Let Γ(A x (λ)) be an attribute on the λ-at zone of image I containing pixel x. For all λ i ∈ V and i = [1, ..., n -1], we dene λ M and λ R as the values for which the maximum attribute and the attribute rupture appear, respectively:

In this controlled reconstruction, we only analyze one attribute at the same time. However, other statistics or combination of several attributes can be used as well, as it will be shown later in Section 7.7.2. Compared to other methods, the main advantages of our approach are: no size parameter is required in order to determine the adaptive region; it is a connected operator since the λ-at zones do not create new contours on the image [START_REF] Salembier | Flat zones ltering, connected operators and lters by reconstruction[END_REF][START_REF] Salembier | Connected operators[END_REF]; it is multi-scale since λ-at zones size is not restricted; and it is auto-dual since bright, dark and intermediate gray-level regions are processed at the same time.

To illustrate the performance of this attribute controlled reconstruction, an application on image segmentation is presented: controlled propagation from markers in order to segment connected objects in elevation images.

We present an automatic facade segmentation method developed as part of TerraMobilita project. For this purpose, a reconstruction controlled by elongation is applied.

It is noteworthy that facades are the highest and most elongated structures in the elevation image. Thus, a reconstruction controlled by elongation is applied. For this purpose, facade markers are dened based on height constraints. Let us concentrate on the reconstruction step since the marker selection is straightforward and it has been already explained in Chapter 5. We propose to apply a reconstruction from markers stopping when the elongation is maximum. With respect to other approaches in which a parameter should be selected, our method only requires selecting an attribute, then the appropriate propagation is automatically selected. This is useful when segmenting objects with similar attributes on large databases. For example, facades are always the most elongated structures. Then, if dierent λ parameters are required to segment facades on dierent images or even dierent facades on the same image, our method will adapt the parameter to the best possible value.

Adaptive mathematical morphology

When using MM, square SE are preferred in most practical applications. However, several works remark the usefulness and necessity of adapting algorithms according to intrinsic variability and prior knowledge of the image [START_REF] Maragos | Overview of adaptive morphology: Trends and perspectives[END_REF]. Adaptive SE are elegant processing techniques using non-xed kernels.

Such operators, rstly introduced by [START_REF] Gordon | Feature enhancement of lm mammograms using xed and adaptive neighborhoods[END_REF], vary their shape over the whole image taking into account local image features. [START_REF] Serra | Image analysis and mathematical morphology[END_REF] called them structuring functions and dened erosion and dilation with spatially-varying SE. In the literature, several works have been carried out with the aim of 7 Attribute-based ltering and segmentation exploiting image information in order to locally adapt SE shape and size. An overview on adaptive MM can be found in [START_REF] Maragos | Overview of adaptive morphology: Trends and perspectives[END_REF]. Most works focus on lters that privilege smoothing in homogeneous regions while preserving edges as well as possible. With this idea, [START_REF] Perona | Scale-space and edge detection using anisotropic diusion[END_REF] proposed anisotropic lters that inhibit diusion through strong gradients.

One of the rst works using adaptive SE is due to [START_REF] Beucher | Trac Spatial Measurements Using Video Image Processing[END_REF]. He developed a trac control application where the SE size depends on the perspective and varies linearly as the vertical position on the image on a video sequence. Later, [START_REF] Verly | Adaptive mathematical morphology for range imagery[END_REF] applied adaptive MM to range imagery to correct perspective distortions. Their approach consists in dening square SE such that their size depends on the distance between object and sensor. [START_REF] Shih | Adaptive mathematical morphology for edge linking[END_REF] used simple and fast adaptive dilations with elliptic SE that varies its size and orientation according to local properties. [START_REF] Talbot | Ecient complete and incomplete path openings and closings[END_REF] proposed a more sophisticated solution dening pixel connectivity by complete and incomplete paths. [START_REF] Pinoli | General Adaptive neighborhood mathematical morphology[END_REF] proposed a general adaptive neighborhood for MM as follows: given a criterion mapping h and a tolerance m > 0, at each point x an adaptive neighborhood is dened containing all points y such that |h(y) -h(x)| < m. Morard et al. (2011b) proposed adaptive SE based on a region growing process. These SE have a xed size but they adapt their shape by choosing recursively homogeneous pixels with respect to the seed pixel. [START_REF] Angulo | Morphological Bilateral Filtering and Spatially-Variant Adaptive Structuring Functions[END_REF] used the notion of counter-harmonic mean in order to propose bilateral lters which asymptotically correspond to spatially-variant morphological operators. More recently, [START_REF] Franchi | Spatially-variant area openings for reference-driven adaptive contour preserving ltering[END_REF] proposed a spatiallyvariant area opening in order to preserve contours according to a reference image. Its natural application domain is the video sequences. Among the dierent approaches in input-adaptive operators, morphological amoebas [START_REF] Lerallut | Image ltering using morphological amoebas[END_REF] appear as a promising solution. They adapt their shape according to a distance that depends on both the length and the gray-level dierences on a neighborhood. This distance is used to dene structuring elements N (x) = {y : d σ (x, y) ≤ r} for each pixel on the input image. Because the amoeba distance is an increasing attribute, increasing r leads to an inclusion property useful to dene operator pyramids [START_REF] Serra | Connected operators and pyramids[END_REF]. Note that all those works are applied to MM, however they are useful to any other local operator such as convolution or non-linear lters.

Actually, if a given morphological processing consists in successive operators (e.g. an opening is an erosion followed by the reciprocal dilation), the SE should be the same for all of them in order to preserve mathematical properties of morphological lters, as proved by [START_REF] Roerdink | Adaptivity and group invariance in mathematical morphology[END_REF]. Thus, adaptive SE are computed on a pilot image, the same for the whole process. This pilot image can be the original image or a ltered version of it in order to reduce noise impact in the SE shape.

In this section, we propose to use our attribute controlled propagation (introduced in Section 7.4) on a pilot image in order to dene input-adaptive SE for each pixel on the original image, similar to [START_REF] Lerallut | Image ltering using morphological amoebas[END_REF]; [START_REF] Grazzini | Adaptive Morphological Filtering Using Similarities Based on Geodesic Time[END_REF]. Such adaptive SE are useful to lter structures according to a given attribute.

For example, Figure 7.8 presents an opening with adaptive SE using the maximum elongation. Figure 7.8(c)

illustrates the SE for two pixels in elongated (ber) and non-elongated (background) regions. Figure 7.8(d)

compares the result of an adaptive opening with respect to the classical one (Figure 7.8(b)). Note that elongated structures are preserved while non-elongated structures are merged with their neighborhood. Remaining small spurious regions may be ltered out using a simple area opening.

Figure 7.9(d) presents another example using the gray-level rupture to stop the propagation. This is useful to dene SE containing pixels with similar gray-level. Figure 7.9(d) shows the SE for two dierent pixels in the image. Figure 7.9(e) presents the application of this adaptive SE as kernel for a non-linear lter, the median lter. Note that homogeneous regions are smoothed and high contrasted structures are preserved, as proven by the number of at-zones of each ltered image (Figures 7.9(c) and 7.9(f )). Compared with amoebas and other similar works, our method does not require any additional size parameter since the SE only depends on the attribute selection and the input image.

Feature Extraction

In this section, we present another application to extract features from an image based on the shape of the input-adaptive SE. To the authors knowledge, this idea was rstly presented by Morard et al. (2011b), who propose an approach using region growing structuring elements (REGSE). For each pixel on the image, they dene a neighborhood of N pixels minimizing a homogeneity function ρ(x) (e.g. gray-level dierence) between adjacent pixels. Then, they use the REGSE to compute shape features in the image. An advantage is that REGSE can follow any homogeneous structure, however it is not multi-scale because its size has to be exactly N pixels.

We propose a similar approach using our propagation method to dene adaptive SE (Section 7.5). The given gray level, the feature image can be weighted using the original input image.

the evolution of an attribute on the component tree. He has successfully applied his method to the segmentation of wood micro-graphs. [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF] introduce morphological proles using the derivative of the residues from openings and closings by reconstruction. Their method is well suited for images with low contrast and low resolution. However, the maximal residue may not be the best segmentation choice. Moreover, the computational cost increases when processing large and homogeneous images. [START_REF] Beucher | Numerical residues[END_REF] proposes the analysis of the residue through successive morphological operations. This evolution over each image pixel leads to interesting transformations such as ultimate openings and quasi-distance functions. [START_REF] Ouzounis | Dierential Area Proles: Decomposition Properties and Ecient Computation[END_REF] propose dierential area proles for ecient point-based multi-scale feature extraction in pattern analysis and Segmentation methods using threshold decomposition are based on the hypothesis that objects of interest exist at some level of the tree. In our example, the best possible segmentation corresponds to X t=34 , for which the highest f mean is obtained. Other good segmentations are in the range X t∈ [34,30] . The whole melanocyte is not retrieved for X t>34 and it is merged with other structures for X t<30 .

Let us analyze each attribute prole, starting with S(X t ). Based on prior knowledge about melanocytes size, attributes for t < 15 are not analyzed since they correspond to structures bigger than 75% of the whole image. Analyzing Ψ(X t ), its global maximum represents the most stable region X t=42 . This is an area-stable and round region but useless in such a case since it does not match the entire melanocyte. Another interesting attribute is E(X t ) since melanocytes are long and thin. Its global maximum corresponds to a CC merging three dierent objects X t=28 . From the area-stability point of view, this region is not stable because it is generated merging three dierent objects in a small range t ∈ [30,28]. Finally, the global maximum of the area-stable elongation Φ(X t ) appears at X t=34 , which is the best segmentation according to f mean .

8 Conclusions and Perspectives state of the art and we have found that few 3D urban databases are publicly available and manual annotations are rarely found in the literature. Therefore, as part of this thesis and in the framework of TerraMobilita project, we have collaborated in the creation, annotation and publication of several 3D urban databases 1 (Serna et al., 2014b;[START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF] as well as in the denition of evaluation protocols using 2D and 3D manual annotations (Serna and Marcotegui, 2013b;[START_REF] Brédif | TerraMobilita/iQmulus urban point cloud classication benchmark[END_REF]. Additionally, we have co-organized, in cooperation with the National French Mapping Agency (IGN), an international contest 2 aiming at benchmarking semantic analysis methods working on 3D dense urban data [START_REF] Vallet | TerraMobilita/iQmulus Urban Point Cloud Analysis Benchmark[END_REF].

3D datasets are delivered as long lists of (x, y, z) coordinates, possibly with attributes such as intensity, color, GPS time, among others. Points are usually listed in scan line order, which is not suitable for ecient processing.

A suitable data structure is not only required to inspect and to visualize 3D information, but also to process it conveniently. Several data structures such as elevation images, triangulation, meshing, octrees and k-D trees have been proposed in the state of the art. The choice of the best data structure is application dependent and it is possible to combine some of them to get better results in specic tasks such as visualization, ltering, segmentation and classication. In Chapter 3, an overview on these 3D data structures has been presented.

We have proposed the use of elevation images since they are convenient structures to visualize and to process data using all the large collection of image processing tools, in particular mathematical morphology. Projecting 3D information to images implies a reduction in the amount of data to be processed with respect to the input 3D point cloud. Besides, neighborhood relationships in the elevation image are easily computed. In general, processing an elevation image using image processing techniques is much faster than processing the 3D point cloud directly. Although the idea of deriving elevation images from 3D point clouds is not new, this thesis conrms their usefulness in the development of accurate and fast urban analysis methods.

From the processing point of view, ground segmentation is one of the most important steps in urban semantic analysis since all the urban entities are located on it. In Chapter 4, we have proposed a straightforward but robust method for accessibility analysis in urban environments. Ground is segmented using the quasi-at (denoted by the symbol λ-at) zones labeling algorithm, which allows to segment the ground even in the presence of access ramps, speed humps and other nonat structures (Hernández and Marcotegui, 2009a). Next, gradient information is used in order to detect elevation discontinuities on the ground. Then, curb candidates are selected, close curbs are reconnected using Bézier curves and semantic information. Finally, geometric characterization is carried out and accessibility is dened based on international standards. This constitutes one of the most attractive contributions of this thesis due to its social impact since urban accessibility aects not only disabled persons but also old people, children and pregnant women. In the framework of the United Nations convention on the rights of persons with disabilities, local authorities are required to guarantee accessibility in public spaces in order to reduce social exclusion, low employment and limited education of people concerned by accessibility. Thus, it is very important to be able to make large-scale accessibility diagnoses in urban environments. One of our publications on this topic (Serna and Marcotegui, 2013b) has been awarded with the U. V. Helava Award 3 for the 2013 best paper in the International Society for Photogrammetry and Remote Sensing (ISPRS Journal volumes 75-86). The Jury justied this award as follows:

This paper addresses the problem of detecting navigable routes for wheelchairs in urban areas based on curb detection from mobile laser scanner point clouds. A key scientic contribution noted by the Jury is a new method for providing continuity of extracted curb lines using Bézier curves. The Jury was impressed with the results and felt that the social impact of their very practically-focused research could be wide-reaching in society as the future demand for accessibility information will likely be very high.

Once the ground is segmented, all remaining structures are considered as facades and objects. Discrimination between them is important because facades delimit the end of public space while urban objects dene the obstacle map required for itinerary planning. In Chapter 5, we have proposed several automatic methods to segment facades. In our experiments, facades are high, vertical and elongated structures on the elevation image. Our facade segmentation methods are based on geometrical and geodesic constraints. Given the urban and architectural constraints of our databases, most of parameters have been set intuitively. Three facade segmentation approaches have been proposed: reconstruction by dilation from markers, attribute controlled reconstruction from markers, and segmentation based on the maximal elongation image (without markers). The method based on reconstruction by dilation is the fastest one since it is based on iterative geodesic dilations in order to get the entire facade. Its main problem is that objects connected to the facade are reconstructed 1 For further information, the reader is encouraged to visit: http://cmm.ensmp.fr/~serna/downloads.html 2 For further information, the reader is encouraged to visit: http://data.ign.fr/benchmarks/UrbanAnalysis/ 3 For further information, the reader is encouraged to visit: http://www.isprs.org/society/awards/helava/2013.aspx