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Résumé de la thése

Chapitre 1 : Introduction

Une baisse des prix et de la consommation énergétique ainsi que une miniaturisation
des composants ont entrainé une forte augmentation de 'utilisation de réseaux de capteurs.
De nouveaux outils mathématiques ont permis une nouvelle modélisation des réseaux de
capteurs : deux de ces outils sont ’analyse stochastique et la topologie algébrique. En
analyse stochastique, introduite dans les années 90 par Baccelli, le déploiement des réseaux
de mobiles et de capteurs est considéré comme un processus ponctuel de Poisson, a la
place du comportement déterministe utilisé auparavant. Dix ans plus tard, Ghrist a choisi
de modéliser la couverture des réseaux de capteurs comme un complexe simplicial. Par
conséquent, on pouvait appliquer des résultats de topologie algébrique a de tels réseaux.
Ces résultats ont permis le calcul explicite de 'homologie du complexe simplicial. Dong, il
a été possible de répondre & des questions pertinentes et non-triviales qui se posent dans
les réseaux de capteurs, chaque acteur n’ayant aucune connaissance du réseau autre que
son identifiant et ceux de ses voisins. De telles questions sont : "le réseau est-il connecté
7" "la région cible est-elle couverte 7", et "combien de composantes connexes et de trous
y a-t-il dans le réseau 7".

Cette theése est composée de deux parties. La premiére partie utilise I’analyse stochas-
tique pour fournir des bornes pour la probabilité de surcharge de différents systémes gréce
aux inégalités de concentration. Bien qu’ils soient généraux, nous appliquons ces résultats
a des réseaux sans-fil réels tels que le WiMax et le trafic utilisateur multi-classe dans un
systéme OFDMA. Dans la seconde partie, nous trouvons des liens entre la topologie de la
couverture dans un réseau de capteur et celle du complexe simplicial correspondant. Cette
analogie met en valeur de nouvelles facettes des certains objets mathématiques comme les
nombres de Betti, le nombre de k-simplexes, et la caractéristique d’Euler. Puis, nous util-
isons conjointement la topologie algébrique et I'analyse stochastique, en considérant que
les positions des capteurs sont une réalisation d’un processus ponctuel de Poisson. Nous en
déduisons les statistiques du nombre de k-simplexe et de la caractéristique d’Euler, ainsi
que des bornes supérieures pour la distribution des nombres de Betti, le tout en d dimen-
sions. Nous démontrons aussi que le nombre de k-simplexes converge vers une distribution
Gaussienne quand la densité de capteurs tend vers I'infini & une vitesse de convergence con-
nue. Enfin, nous nous limitons au cas unidimensionnel. Dans ce cas, le probléme devient
équivalent a résoudre une file M /M/1/1 préemptive. Nous obtenons ainsi des résultats an-
alytiques pour des quantités telles que la distribution du nombre de composantes connexes
et la probabilité de couverture totale.

Les capteurs et les réseaux de capteurs

Un capteur est un outil capable de balayer un domaine spatial et de transmettre un
signal permettant d’obtenir des informations. Les capteurs varient selon a leurs fonctions de
telle sorte que nous pouvons les utiliser pour récuperer des donnés sismiques, thermiques,
magnétiques, visuelles, acoustiques, etc. Un réseau de capteurs permet l'interpolation
d’informations ponctuelles d’un phénomeéne, obtenues par les capteurs vers des dimensions
plus grandes. La définition de la couverture d’un capteur dépend de sa fonction, mais elle
est essentiellement donnée par tous les points qui sont & une distance (pour une norme
quelconque) inférieure & une borne e.




Les outils mathématiques

Les deux outils mathématiques principaux utilisés dans la thése sont la topologie al-
gébrique et le processus ponctuel de Poisson. La topologie algébrique permet d’évaluer
la transition locale-globale : quelques informations globales telles quelles la connectiv-
ité, la couverture et la caractéristique d’Euler peuvent étre obtenues tout simplement par
I’échange d’informations parmi des capteurs proches les uns des autres, sans avoir besoin de
connaitre leurs positions, leurs orientations ou que l'information enregistrée par un capteur
soit transmise plus loin qu’a ses voisins les plus proches.

Le processus ponctuel de Poisson, depuis les années 1990, est la base des modéles
stochastiques pour les réseaux. Dans cette approche, la représentation physique du réseau
est préservée, mais les positions géographiques des capteurs ne sont plus modélées comme
s’elles étaient fixes, donc aucun déployment du réseau non-aléatoire ne nous est utile. Au
lieu de cela, cette méthode nous permet de prendre quelques caractéristiques importantes
pour le résau étant donné la densité de ces points. En outre, les processus ponctuels de
Poisson possédent le plus grand nombre de résultats parmi tous les processus ponctuels,
ce qui motive son usage pour la modélisation des noeuds des réseaux de capteurs.




Chapitre 2 : Le modéle stochastique

Le principal modéle stochastique utilisé dans cette thése est celui du processus ponctuel
de Poisson. A une filtration juste, ce processus peut étre vu comme une Martingale et ainsi
tous les outils du calcul de Malliavin peuvent étre directement utilisés. Les définitions et
les résultats les plus importants en déduits sont décrits a la suite.

Le processus ponctuel de poisson

Pour caractériser 'aléa du systéme, nous considérons que l'ensemble de points est

représenté par un processus de Poisson w & intensité A dans un espace Y. L’espace de
configurations sur Y, est I’ensemble des mesures de points simples et localement finis :

QY = {w =3 8(a) ¢ @)fZhCY, neNU {oo}}’
k=0

ot §(x) denote la mesure de Dirac en x € Y. Localement fini veut dire que w(K) < oo
quelque soit le compact K dans Y. Normalement, il convient d’identifier un élément w dans
QY avec I'ensemble qui correspond & son support, c’est-a-dire que > r_od(xk) est identifié
avec I'ensemble non-ordonné {x1, ---, w,}. Si A € B(Y), nous avons d(z)(A) = 1z, ca;
alors:

w(A) = 3 Ty e = / dw(x),

T Ew A

compte le nombre d’atomes contenus dans A.

Nous définissons E [F'(w)] comme 'espérance d’une fonction F' qui ne dépend que de w
étant donné que 'intensité de ce processus est A et Pyjw € Y] = E) [1[wey]]. Par analogie,
nous définissons V) [F(w)] et Covy [F(w),G(w)], de méme que A, = {(z1, - ,z,) €
Y™ | @ # x;,Vi # j}. Soit f(x1,---,xy,) une fonction mesurable F(w) est une variable
aléatoire donnée par :

F(w) = Z flxy, ooy = /AmA fz1, - yxy) dw(zy) -+ dw(xy,).

r;€wNAN1<i<n
wifj if i

Une proprieté bien connue du processus ponctuel de Poisson, la formule de Campbell,
établit que

Ey [F(w)] :/Af(:nl, e ) M) - dA(z).

Un processus ponctuel de Poisson marqué ayant les marque dépendantes de la position
tel quel la loi de probabilité de la marque Y, ne dépend que de la position X, a travers
d’un noyau K:

P(Y, € B|w) = K(X,, B), for any B C X.

Si K est un noyau de probabilité, c’est-a-dire que K (x, X) = 1 pour quelque soit x € RE,
alors W' est un processus de Poisson d’intensité K (z, dy) d\(z) sur RF x R™. Si f :
R* x R™ — R est une fonction non-négative mesurable, soit

F:/f dw' = > f(Xn, Vo).

Xn€Ew




Alors, nous pouvons utiliser un résultat équivalent a la formule de Campbell, pour les
processus ponctuels marqués :

BarlFl= [ fla K. dy) dia)

Pour un large ensemble de fonctions symetriques f, I'intégrale stochastique de Poisson
I,,(fn) est définie telle que :

In(fn)(w) :/A fa(@r,-- wn)(dw(zr) — dA(21)) - (dw(zn) = dA(zn))-

Cette définition nous permet de décomposer une fonction F' € L?(22¥, P) en une somme
d’intégrales stochastiques :

F=Ex[Fl+ ) In(fa)-
n=1

Nous utilisons trois opérateurs a partir de cette décomposition : le gradient Dy, 'opérateur
de Ornstein-Uhlenbeck L et son inverse L™'. Les définitions de ces opérateurs, dans des
cadres ou ils sont définis, sont les suivantes :

DiF = nly 1(fa(x1)),

n>1

LF =— in[n(fn),
n=1

L' F=-)" %In(fn).
n=1

Deux théorémes importants utilisés dans cette thése découlent des propriétés du calcul
de Malliavin. Le premier établit que si la fonction F' est telle que Ey [F] = 0 et Var(F') =1,
alors

dw (F, N(0,1)) < Ey H1 —/Y[DtF X DL ] dA(t)H
+/YEA IDFP DL F|| dxe).

L’autre, que si DiF' < K pour tous les t, K > 0 et [|[DF|| 1o r2(yvy) < 00, alors

T K
P(F-E\[F]>z) <exp | —=—log |1+ '
( Az @) ( 2K ( HDFHLO@(Q,L%Y))))

Ce résultat est aussi valable pour les processus ponctuels de Poisson marqués.




Chapitre 3 : Modéle de température d’interférence dans des réseaux de
radio cognitives

Dans ce chapitre nous nous proposons d’appliquer le modéle du Processus ponctuel
de Poisson dans une approche de la température d’interférence (interference temperature,
IT) pour l'usage du spectre de fréquence pour des réseaux de communication sans fil.
Dans cette approche, les utilisateurs secondaires (USs) peuvent utiliser les bandes des
utilisateurs primaires (UPs) tant que cela ne cause pas de dommages a la communication
de ces derniers.

Le modéle physique

Dans 'approche de I'IT, les utilisateurs secondaires traitent les autres USs, les UPs,
le bruit et déautres sources d’interférence comme dess interférence. Puis ils ajustent leur
puissance de transmission de telle sorte qu’il n’y ait pas de dommage pour les UPs. La
température d’interférence est donnée par :

Pf(fm B)
Ti(fe, B) = Y
ou 17 est estimée en Kelvin, Pr en Watts, la bande considérée est centrée a f. avec une
largeur de B, en Hertz et k est la constante de Boltzmann.
Sont présentés deux modéles différents d’I'T : le modéle idéal et le généralisé. Le premier
limite I'interférence des signaux des UPs, et dés lors la connaissance de 'activité des UPs
devient nécessaire. La relation suivante exprime ce modéle :

M; P
! <TL(fZ‘) V1<i<n,

Tr(fi, Bi) + "B, =

ol P est la puissance d’interférence moyenne des USs qui opérent avec la fréquence cen-
trale f. et avec largeur de bande B ; T, est la température limite établie et la constante
M; représente I'atténuation entre I’émetteur secondaire et le récepteur primaire. Pour le
modéle généralisé, I'activité des UPs n’est pas demandée, de telle sorte que le modéle peut
étre appliqué sur toute la largeur de bande, indépendament des positions des UPs. Nous
avons donc :

Tr(fe, B) + % <TL(fe)-

Le modéle utilisé pour 'atténuation de la puissance transmise est connu sous le nom de
path loss, et établit une diminution polynommiale des signaux par rapport a la distance de
la source. Ainsi, la puissance du signal dans une coordonnée y, compte tenu que le signal
a été transmi dans la coordonnée x a une puissance ju; est donnée par :

. To “
pj(m,y):mln gy Hoj m )

« étant le coefficient du path loss et rg une distance de référence.

La capacité moyenne des utilisateurs sécondaire

Les expressions pour l'approche de I'IT étant bien définies, nous pouvons appliquer
le processus ponctuel de Poisson pour placer les utilisateurs. Dans cette section, nous




calculons la capacité permise pour les utilisateurs secondaires lorsque la condition de ne pas
dommager les UPs n’est respectée que pour des quantités moyennes. La densité moyenne
des UPs est donnée par A1, celle des USs par Ay et celle des interféreurs est donnée par As.
Tout d’abord, nous obtenons la puissance maximale permise aux USs pour le cas idéal :

i a—2 TLkBZ' — )\3/1,371'04
it < (@2 |

)\271'04

Pour le cas généralisé, nous avons :

(a —2)TpkB — A3pusma — %Almwa

gen
My =

)\Qﬂ'a

Avec ces expressions, nous utilisons le théoréme de Shannon-Hartley, qui détermine la
limite de la capacité donné par :

C(x,y) = Blogy <1 + m> ,

pour avoir la capacité moyenne de communication des utilisateurs secondaires telle que
si la puissance transmise est égale a la puissance moyenne, les USs ne causeront pas de
dommage aux UPs :

2

2BK+ [In(1+ K) <R2 ) (2 >]

C = [ +h( = a)—h( =)l
R3n(2) [ 2Ka K« .

a

Dans ce résultat, nous avons :

E)[I(z)] 1o (%ul)\l + oA + M3)\3>

Pour le cas idéal, il suffit de remplacer o par ,ugd et pour le cas généralisé, nous remplagons
po par ud™". La fonction h est définie ainsi :

h(r,t)é/o In <1+wlt>$ dz.

Il est possible de trouver des expressions explicites pour h quand « est un entier positif.
La capacité total du réseau est donnée a partir de I’expression suivante :

Ligpe
Chotal = // C(xyy)Mll;RQ}] dyAsg dz.
D TR

Cela nous permet de trouver les capacités totales dans les deux cas, puisque

Ctotal = C)\QWRQ .

Une borne supérieure de la probabilité de dommage pour les UPs

La section précédente considérait que les puissances transmises par les USs étaient
tout le temps égales a leurs valeurs moyennes. Pourtant, si la distribution de la somme
d’interférences est approximativement symétrique, la restriction ne sera pas respectée dans
environ 50% des cas. Dans cette section, nous utilisons les inégalités de concentration pour




trouver une relation explicite entre la probabilité de dommage pour les UPs et la puissance
transmise par les USs.
En utilisant 'inégalité de concentration :

t t
P(F >t+mp) <exp <—259 (1+ j)) )
F

Si I'interférence totale est donné par la somme des interférences, il nous faut maintenant
utiliser la formule de Campbell afin de trouver mp and vp :

mgp = E)\ Z p2($z,0) +E)\ Z p3(l’z,0)] 5
TiEw2 TiEw3

ve = Ex| D p3(:,0)| +Ex | D p%(fﬂi,o)],
TiEw2 TiEw3

oll wy et ws sont des processus ponctuels de Poisson : ws représent le déploiment des
interféreurs et wy le déploiement des USs. Pour le cas idéal, nous obtenons alors :

am(paA + p3A3)
(a—2) ’

mp =

o = 207 (3N + p3)s)
e (2a — 2)

et
s = max(puz, p3).
Pour le cas généralisé, nous avons :

am(B A + pods + pshs)
(—2) ’

mpep =

2
2aw((%u1> A1+ p3Ae + p3X3)
(2a —2)

v =

et

B;

s = maX<BM17M27M3> .

La rélation entre la probabilité de dommage et la puissance transmise est donnée par

TL(fi)kBZ‘ —mpg

2s
(1 BB )y
vp

P(F > Tp(fi)kB;) < exp <_

Prenons le cas idéal quand pg > ps. Si nous définissons pd comme la puissance de
transmission telle que la probabilité de dommage pour les UPs est plus petite que ¢ et n




est le rapport entre la puissance de transmission et la puissance de transmission pour le
cas moyen qu’a été discuté auparavant, ,uéd, alors nous avons, pud = n,uéd. Rappelons aussi
que 7 est une fonction de ¢g. Donc

o [ 22m m(@) — 1 2(ac =11 =ng) Y.
= p(2<a—2> (@) 1(”(a—2> 700) ))

Le résultat ci-dessus est le plus important de ce chapitre, car il signifie que dés que g(n) est
une bijection, nous pouvons écrire 17 en fonction de ¢, et donc que nous pouvons obtenir la
puissance de transmission des USs a partir de la probabilité de dommage maximale pour
les UPs.
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Chapitre 4 : Une borne supérieure de la probabilité de perte dans un
systéme OFDMA

Nous présentons dans ce chapitre une autre application du processus ponctuel de Pois-
son afin de modéliser un systéme sans fil basé sur 'OFDMA (Orthogonal Frequency Division
Multiple Access). Tandis que I'I'T permet I'usage d’une méme partie du spectre aussi par
plusieurs utilisateurs, TOFDMA ne le permet pas. Dans ce dernier cas, le systéme dis-
tribue le spectre dynamiquement, de fagon & permettre le plus grand nombre d’utilisateurs
possible dans le réseau.

Le modéle physique considére que :

e La position de chaque utilisateur est indépendente de celles des autres et leurs posi-
tions sont distribuées identiquement ;

e Le temps d’arrivée entre deux demandes pour service consecutives dans le systéme
est distribué exponentialement ;

e Le temps de service pour chaque utilisateur est exponentialement distribué avec une
moyenne de 1/v ;

e La cellule C' du réseau est circulaire, elle a une antenne placée en son centre et son
rayon s’appelle R ;

e La densité superficielle de 'arrivée d’utilisateurs est constante.

Avec ces hypothéses, nous pouvons montrer que le processus ponctuel des utilisateurs actifs
(ceux qui communiquent) est, en équilibre, un processus ponctuel de Poisson.
Si le systéme posséde Ny sous-canaux, nous pouvons dire que la probabilité de perte

est donnée par :
Pows =P ([ 3 2 30)

de plus, N est le nombre de sous-canaux utilisés par un utilisateur placé a x, peut étre
exprimé ainsi :

Co

PKG
W log <1 + )
? (I +m)f=|

N(z) =

Dans cette expression, g est le gain de puissance dans le canal, Cj est la capacité demandée
par les utilisateurs, P; la puissance des signaux & la source, I l'interférence des autres
cellules, ~v le coefficient de path loss, n le bruit et W la largeur de bande de chaque sous-
canal.

Si, en plus, la perte de puissance d’un canal ne dépend que de la distance entre la
source et le récepteur, nous obtenons :

-1 N,
P (/N deOémN> < exp <—]\;}2N g((a )ZLVN mam>>’
max

e .
my = o J(RJZ' - R]z—l)

ou
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et

m .
UN = e 32(332' - RJQ'—1)-

Nous pouvons aussi considérer que G est aléatoire et si nous prenons S = 1/G, tel que

3 101ogyoy — p1)?
palo) = o o |-,

ot £ = 10/1n 10, nous avons le modéle d’interférence connu sous le nom de shadowing. Si
un utilisateur ne peut communiquer que lorsque le rapport signal-interférence est supérieur
& une constante (,,;,, le nombre maximal de sous-canaux est limité par

Co
Nmax = :
’VWIOgQ(l + Bmm)-‘

Le nombre de sous-canaux demandé par un utilisateur placé a x qui a un gain y est donné
par :

Co

N(z, y) =
W log, <1 +

P K >
nyllx||”

Par ailleurs, nous obtenons des résultats explicites en fonction des paramétres qui ont déja
été définis. Et, enfin, nous pouvons aussi considérer des différents besoins de capacité : par
exemple, une classe d’utilisateurs qui souhaitent envoyer des données (et qui a besoin d’une
capacité moins élevée) et une classe d’utilisateurs qui souhaitent télécharger des vidéos (et
qui a ainsi besoin d’une capacité plus élevée). Dans ce cas 1a, une classe j a besoin de
communiquer a une capacité Cj. Si Cp,q, = max; Cj, alors

Cmam -‘
w 10g2(1 + ﬂmzn) '

En plus, le nombre de sous-canaux demandé par un utilisateur & x est aussi une fonction
de j, et nous avons :

Nm[l(E — ’V

i
W log, (1 +

N(z, j,y) = PEK
nyllmll’y>

Le résultat le plus générique de ce chapitre (avec un gain aléatoire, et des classes d’utilisateurs
différentes) est le suivant :

_1 Nmam
P)\</N deamN>§eXp<—N;} g((a )Z}n >>,

M
m = Z/N(% Js YA (@)ps(y) dx dy,
j=1

ou
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et
M
0= [ N s uPA@s() do dy.
7j=1

Soit Np,,, le nombre de sous-canaux utilisé pour avoir une probabilité de perte Py, et
Np,,,, le nombre de sous-canaux utilisé pour avoir la probabilité de perte si nous simulons
le réseau. Sinous utilisons le résultats de ce chapitre, nous observons qu’a partir de la table
4.3, No,,, est approximativement 20% plus grand que N, , ce qui montre que l'usage de
la borne supérieure pour le projet du systéme est réalisable.
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Chapitre 5 : Topologie algébrique

La topologie algébrique est utilisée dans ce travail afin d’extraire certaines propriétés des
réseaux a partir d’informations données par des éléments discrets qui créent ces réseaux.
Les objects topologiques utilisés pour la modélisation des réseaux de capteurs sont les
complexes simpliciaux. Tandis que les graphes représentent des relations binaires, les
complexes simpliciaux représentent des relations d’ordre supérieur.

Etant donné un ensemble de points V', un k-simplexe est un sous-ensemble non-ordonné
{vo, v1, -+, v} otlw; € V et v; # vj pour tout i # j. Les faces du k-simplexe {vg, v1, -, vg}
sont définies comme tous les (k — 1)-simplexes de la forme {vg, ---, vj—1, Vjt1, -+, U}
ou 0 < j < k. Un complexe simplicial est une collection de simplexes fermée par rapport a
I'inclusion de faces, i.e., si {vg, v1, -+, Vg } est un k-simplexe, alors toutes leurs faces sont
inclues dans I'ensemble de (k — 1)-simplexes.

Etant donné U = (U,, v € T) une collection d’ensembles ouverts le complexe de
Cech de U appelé C (U) est le complexe simplicial abstrait ou k-simplexes correspondent a
(k + 1)-tuples d’éléments distincts de U qui n’ont pas d’intersection vide, c’est-a-dire que
{vo, v1, - -+, vi} est un k-simplexe si et seulement si ﬂfzo Uy, # 0.

On peut définir 'orientation d’un simplexe en définissant un ordre dans leurs sommets.
Un changement d’orientation correspond a un changement de signe des coefficients tel que

[’Uo,“‘,’l}i,“‘,'Uj,“‘,’l)k]:—[’l)07"'7’Uj7"'7’l)l‘7"','l)k].

Soit X un complexe simplicial. Pour chaque entier k, Cj(X) est 'espace vectoriel engendré
par 'ensemble de k-simplexes de X. L’opérateur appelé boundary map Oy est défini pour
étre une transformation linéaire 0y : C), — Cr_1 qui a comme domaine les éléments de la
base de C, par exemple [vg, - ,vg], via

k

Oilvo, -+ o] = D> (=) [vo, -+, vic1, vigr, -, vl
i=0

Cet opérateur permet la construction d’un complexe enchainé : une suite d’espaces
vectoriels et des transformations linéaires
0 0 0 o) 0
-8 O (X) =8 Cp(X) =5 Cpaa(X) -+ = Ci(X) 5 Co(X).
Il est possible de montrer que pour quel que soit k entier positif, k,
Ok 0 Oy1 = 0.

Nous définissons ker 0y comme le noyau de 9 sur Cy, (i.e., tous les cycles qui sont fermés),
im O comme I'image de O (i.e., les k— 1-simplexes qui sont déja des faces de k-simplexes).
Et si nous définissons

Zy, = ker 0 and By, = im0k 1,

cela induit que By C Zj.

L’homologie k-dimensionelle de X, Hy(X), est I'espace vectoriel quotient
_ Z(X)

By (X)

Hy(X)

et le k-éme nombre de Betti de X est sa dimension

Br = dim Hj, = dim Z;, — dim By,.
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L’invariant topologique nommé caractéristique d’Euler pour X, x(X), est un entier défini
par :

=0

Dans la these, si représente le nombre de k-simplexes dans un complexe simplicial X et il
est connu que :

1=0

Nous appelons aussi ']I‘Z le tore d-dimensionel de coté a.

Le complexe de Rips-Vietoris dans ']I‘g est défini de la fagon suivante : pour chaque
e > 0, le complexe de Rips-Vietoris de w, R.(w) est le complexe simplicial abstrait ou
chaque k-simplexe correspond & (k + 1)-tuples non-ordonnés de points dans w qui sont
deux & deux plus proche que €. Nous démontrons que pour un tore ']I‘Z et pour la norme
produit ds, Re(w) a le méme type d’homotopie que le complexe de Cech Cy(w). Nous

définissons aussi la fonction h(vy,--- ,v) comme étant :
h(vi, -+ vg) = hy(vr, -, ok)
= I twe-vicea
1<i<j<k

qui détermine si un ensemble de k points distincts ordonnés forment un (k — 1)-simplexe
(h=1) ounon (h=0).

Soit w € ']I‘g un ensemble de points qui forment le complexe simplicial C.(w). Les trois
propositions sont démontrées dans la these :

e Sii>d, Bi(w)=0;
e Il n’y a que deux valeurs possibles pour le d-éme nombre de Betti de C,(w) :

i) B4 =0, or
i) By =1.
Si g =1, on a aussi x(Ce(w)) = 0.
e Soit X un sous-ensemble compact de R* et 7 : X — Y o x; = ky; pour z; € X,

y; € Y et k une constante réelle positive. Appelons 7,w la mesure image de w par T,
ie., 7o @ QX — QY est Papplication

w:ié(wi) vers T*ié(k’xi).
i=1

i=1

L’application 7, : Q¥ — QY établit une relation de la mesure de Poisson A sur Q¥
vers la mesure de Poisson A, = A\/k? sur QY. En plus, si €, est la distance en YV
tel que deux points sont connectés, les homologies des deux complexes simpliciaux
Ce(w)weﬂl‘fa] et Ce. (T*w)T*weTfiak] sont égales pour quelque soit le k si A, = \/k? et

e = ke.
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Applications aux réseaux de capteurs

Le but de ce chapitre est d’arriver a faire le lien entre la topologie et les réseaux de
capteurs. Le nombre de k-simplexes montre par lui-méme des tendances dans les réseaux
: si deux réseaux ont les mémes parameétres, il est plus probable que celui qui a plus de
1-simplexes soit connecté. De la méme fagon, il est plus probable que celui qui a plus de
2-simplexes ait une couverture plus large que 'autre. D’une fagon plus sophistiquée, les
nombres de Betti mesurent directement le nombre de composants connexes (par (), le
nombre de trous en deux dimensions (par (1), le nombre de vides en trois dimensions (par
Bs), etc.

Nous avons aussi une interprétation de la caracteristique d’Euler : x = 0 est une
condition nécessaire pour que le tore soit couvert et 3; = 1 est une condition nécessaire et
suffisante. Cela nous permet aussi d’évaluer la couverture en [0, a]d (i.e., nous ne prenons
plus le tore), si nous faisons attention aux effets de bord. Par exemple, §; = 1 est une
condition suffisante pour la couverture de [e, a — €]?.
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Chapitre 6 : Les moments des k-simplexes et de la caractéristique d’Euler

Les résultats des chapitres 2 et 5 sont appliqués dans le chapitre 6. Dans le modéle
physique des réseaux de capteurs proposé, chaque capteur représente un point et posséde
un rayon de couverture €. Nous considérons aussi que les points sont ceux d’un processus
ponctuel de Poisson et que la norme utilisée pour vérifier si deux points sont proches I'un
de l'autre est la norme produit. En construisant le complexe de Cech a partir des points
et de €, nous avons, par conséquent, une représentation de la couverture du réseau par
un complexe simpliciel. Comme démontré dans le chapitre précédent, la couverture de ce
complexe est la méme que celle des unions des couvertures. Ce fait permet de substituer
un probléme algébrique & un probléme combinatoire. Finalement, nous supposons que ces
points tombent dans un tore de d dimensions, T%, de coté a, ce qui nous permet d’éviter
les effets de bord.

La méthode utilisée est la suivante : nous exprimons le nombre de k-simplexes (som-
mets, arrétes, triangles, tétrahédres, etc.) comme des intégrales itérées d’un processus de
Poisson. Les calculs des moyennes se réduisent aux calculs des intégrales déterministes
grace a formule de Campbell. En utilisant la définition de la caractéristique d’Euler, nous
pouvons également trouver son espérance. Pour les moments d’ordre supérieur, nous exp-
rimons le nombre de simplexes par une somme de chaos et & partir de cela, nous utilisons la
formule de multiplication de chaos. Nous avons aussi établi que la distribution du nombre
de sous-complexes dans un complexe simpliciel tend vers la Gaussienne, avec une vitesse

de convergence maximale de A~1/2

Premiers moments

Nous considérons toujours que € < a/6. Nous démontrons que Iespérance du nombre
de (k — 1)-simplexes, N(Ce(w)) (ou simplement Ny), est donnée par :

e (ak(20)F 1)

B\ [N = -

Il est possible aussi de trouver des expressions fermées pour No et N3 quand nous
utilisons la norme Euclidienne :

e E) [N pour le complexe de Rips-Vietoris ou celui de Cech :

222

E)\ [N2] = 2 )

e E) [N3] pour le complexe de Rips-Vietoris :

324
E,\[N3]=7T<7r—3l/§))\ae :

6 )
e E, [N3] pour le complexe de Cech :

20Nk a2 (re?)?
E\[N3] = e (ne)”
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Si nous utilisons la dépoissonisation, nous obtenons I'espérance du nombre de simplexes
E) [Ng] étant donné un nombre fixe de points N1 = n (quand le nombre de points est fixé,
nous appelons le processus ponctuel de processus ponctuel Binomial) :

n\ (2 d(k—1)
E[Nk\len]: (k)k (;) .

Considérons le polynomme de Bell, défini par :

Bn(z) = kzn::O {Z} ok,

ol n est un entier positif et est le nombre de Stirling du deuxiéme type. L’espérance

n
k
de la caractéristique d’Euler est donnée par :
a

DY e By (-A2)Y)

Ex[x] = (
Si nous utilisons encore la dépoissonisation dans ce résultat, ’espérance de y quand les
points font partie d’'un processus ponctuel Binomial est donnée par :

sy == (1) (),

k=0

Ensuite, nous démontrons deux théorémes qui nous permettent d’avoir des intuitions
par rapport au comportement des (. :

e La fonction (A — Ej [xCc(w)]) a exactement d racines réelles non-négatives. De plus,
entre deux racines consécutives et aprés la plus grande, il y a exactement un point
critique.

e Les nombres de Betti de la couverture convergent en probabilité vers les nombres de
Betti dans le tore quand A tend vers l'infini :

P (ﬁ <5¢(Cs) = 51’(?]1‘?(1]))) 2221,

1=0

A partir des propriétés obtenues pour 'espérance de la caractéristique d’Euler et basées
sur des simulations, nous conjecturons que, dans un complexe simpliciel aléatoire tel qu’il
est décrit dans ce chapitre, il y a toujours deux types de trous dominants en fonction de
A, eeta: B; et Biy1. Les autres nombres de Betti sont trés peu importants par rapport a
ceux qui sont dominants.

Nous appliquons aussi les inégalités de concentration afin de trouver un comportement
pour la queue de la distribution du nombre de composants connexes. Ce comportement
valable pour y > Aa? :

— A — A
P\ (Bo > y) <exp <_y210g <1 + (2yd_1)2)\>> :
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Les moments de deuxiéme ordre

Pour les moments d’ordre plus grand qu’un, nous utilisons les formules du calcul de
Malliavin. Pour cela, nous représentons Ny dans la fagcon suivante :

k
1 k )
N :72 k=i, doy ... do_, | .
E= <Z>)\ (/(Tg)ih(xb ,x) dag T )

=0

Si € < a/6 et si nous utilisons la formule de produit des chaos, la covariance entre le
nombre de (k — 1)-simplexes, N, et le nombre de (I — 1)-simplexes, N, pour | < k est
donnée par :

-1

1 crand ik —1+i)\*
Cov), [Nk’Nl]:;z'(kz—l—{—z)'(l—Z)'<A(26)d>k+ <2_6) <k+2+2(lT+1)> .

Il est possible de trouver la variance de Ny et N3 en prenant la norme euclidienne :

e Pour le Rips-Vietoris complexe :

VA [N2] = (2%)2 (g(4xe2)2 —|—7T2(4)\e2)3> :

e Pour le Rips-Vietoris complexe :

a T 7.‘-2 T
www%@fQM&6@—%ﬂ+uww«2—g—;f)

Rappelons aussi que nous pouvons obtenir ce résultat avec un nombre fixe de points, en
faisant la dépoissonisation.

Les variances et covariances des nombres de simplexes nous permettent aussi de trouver
la variance de la caractéristique d’Euler :

Vil = (&) S deaty
n=1

ol

PR d (~1)7*7 2(n —i)(n —j)\"*
a= > |2 2 (n—j)'(n—i)'(i+j—n)!<n+ 1+i+j—n>

j=[(n+1)/2] | i=n—j+1 ) ’

- 1 L 2= ) d
(n—j)!2(2j—n)!< +1+2j—n> ]

Nous avons trouvé I'expression simplifiée de la variance de la caractéristique d’Euler aprés

beaucoup d’algébrisme :

Viald=a (Ae‘”f - 4A266—4A6> :
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pourtant, nous n’arrivons pas a trouver des expressions de la variance de la caractéristique
d’Euler pour des dimensions plus grandes.

Enfin, nous appliquons des inégalités de concentration pour trouver une borne pour la
queue de la distribution de y :

Les moments de n-éme ordre

Pour simplifier les calculs, mais sans perte en généralité, nous choisissons k = 1/2e,
alors A, = A\(2€)¢, ¢, = 1/2 et ak = a/2¢. Nous calculons les moments centraux, définis
par N = N — Ni. De plus, nous disons que (;) =0sii<0ouj<0oui—j <0 pour i
et j des entiers positifs.

Avant de trouver le n-éme moment pour le cas le plus générique, nous montrons com-
ment utiliser la méthode pour le troisiéme moment. Soient Ci, Cy et Cgz trois simplexes
qui ont des sommets en commun. Pour L € P({1,2,3}), nous appélons my, le nombre de
sommets appartenant & la liste d’exactement L simplexes.

Alors M = mys3 + mis + mi3 + mog + mq + mo + mg est le nombre total de sommets
et J3 représente 'intégrale dans ces trois simplexes :

J3 = / / / hp hpohps dxy ... dapy.
Apy JApy JApg

p; étant le nombre de sommets du simplexe C; pour ¢ = 1,---,3, par exemple, p; =
mi23 + mig + mig + my, et 1, -+ ,xp étant les M sommets. De plus, J3(i,7,s,t) est
Iintégrale définie ci-dessus telle que

e mips=2t—i—7+sV0
e mo=1+j—s5—tVO0
e mig=1t—tV0

e mo3=7—tV0

e m =k—1VO0

e mo=k—j5V0

e m3=k—sVO0.

Avec ces définitions, nous pouvons obtenir le troisiéme moment centré du nombre de
(k — 1)-simplexes :

w ] 2 )OO s

Pour trouver une expression pour le n-éme moment, nous procédons de fagon de la
méme maniére. Soient Cy,---,C,, n simplexes qui partagent quelques sommets. Pour
L € P({1l,---,n}), nous appelons my le nombre de sommets appartenant a la liste
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d’exactement L simplexes. Donc M = ZLeP({l o)) ML est le nombre total de sommets
et J, représent 'intégrale dans ces n simplexes:

an/ / hpy - hp, dzy ... dzy
Apl AP’!L

p; étant le nombre de sommets du simplexe C; pour ¢ = 1,--- ,n, et x1,--- ,xy les M
sominets.
L’expression de la n-éme puissance en chaos des (k — 1)-simplexes est donnée par :

-y 2oy (T, )
< in 81y Sn—2 b1, tn_2 J j b
la(ojeafiy) ly(o;cafi;),

ou, pour j € {1,--- ,n—2}:

o 1<iy, - ,in <k,

o s > [mj1—mjal,

e mjy =iy 1sil<j<|[5]et S(j—|2])—1 sinon,

e mjo =i sil<j<[F] et S(j—|2]) sinomn,

® u; =myj1+mj2— S,

e AC{l,---,n},

e Sin si pair, alors a = s,_3 et b = 5,9,

e Sin si impair, alors a = s,_2 et b =1,

Avec ce résultat, aprés 'application du calcul de Malliavin, nous trouvons ’expression
du n-éme moment des (k — 1)-simplexes :

n[E]- £ 8 2 (1)

in S1,ySn—3 t1, ,tn—2

n—2

mj1\ [(Mj2 t; . .
Ht]'< t] )( t] ><uit> jn(ll, yln, S1, 00 757’L—37t17"' 7tn—2)-
j=1 J J J J

Pour j € {1,--- ,n —2}:

[} sian—B, stImjvl—

L] mj71 == i2j—1 sil §] § L%J et sZ(j—l_%J)—l sinon,
e mjo=ig;sil<j<[F] et S(j—|2]) sinomn,

e mj3=s5;s11<j7<n-3ets,_3sinon,

® Uj =My My — M3,

e si m est pair, alors ¢ = s,,_3 et
Sp—3 > |Mp_21 —

— Mp-3,2],

e sin est impair, alors ¢ = iy, et in > |My_21 — Mp_232].
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La convergence

Soient I' un sous-complexe simplicial arbitraire qui contient n points et C¢(w) le com-
plexe simplicial aléatoire généré par le processus ponctuel de Poisson w. Le nombre
d’occurrences de I' dans C¢(w) est défini comme Gr(w). Rappelons qu’avec cette con-
struction de complexe simplicial, un complexe simplicial I' apparait en C,(w) si les arrétes
de T" sont dans C,(w). L’ensemble d’arrétes de I', appelé par Jr, est un sous-ensemble de
{1, -+, n} x {1, ---, n}. Soit aussi

1
@, ) = I ieiei<a;

(ZJ)GJF
ou cr est le nombre de permutations de {z1, - -+, x,,} tel que
hr(xb T l'n) = hr(xa(l)7 B $a(n))a
et fY(xy, -+, x,) la symétrisation de h''(xq, --- , 2,). Alors, nous avons :

Gr= Y e a)= /f%l,--- ) dw(ar) -+ dw(an).
T, ,Tn €W A
@it fit] n
Avec cette définition, nous obtenons le théoréme de convergence le plus important de cette
section. Ce théoréme établi qu’il y a une constante cr telle que, pour A assez grand, la
distance de Wasserstein entre ' = SL=EACT] ot A/ (0,1) est donnée par :

v/ Var(Gr)

dyw (F,N(0,1)) < ﬁ




22

Chapitre 7 : Le cas unidimensionnel

Le chapitre précédent traite du probléme des réseaux de capteurs en d dimensions.
Bien que nous ayons trouvé plusieurs résultats, il y a quelques questions qui n’ont pas
été résolues, par exemple, celle de la moyenne du nombre de composants connexes. Nous
avons réalisé que ces questions pourraient étre résolues dans un cas plus restreint, quand
les points tombent sur une droite ou sur un cercle. Dans ces cas-1a, nous n’avons pas besoin
d’utiliser les outils de la topologie algébrique.

Formulation du probléme

Soit L > 0, nous supposons que le processus ponctuel de Poisson N d’intensité A est sur
[0, L]. Les atomes de N sont donnés par (X;, ¢ > 1). Donc, les variables aléatoires AX; =
X;+1 — X; sont i.i.d. et exponnentialment distribuées. Nous fixons € > 0. Nous disons que
deux points placés respectivement sur x et y, sont directement connectés chaque fois que
|z —y| < e. Pour i < j, deux points de N, nous disons que X; et X; sont indirectement
connectés si X; et X;,q1 sont directement connectés pour quelque soit I = ¢, ---, j — 1.
Un ensemble de points connectés, directement ot indirectement, est appelé un cluster, et
cluster complet est celui qui commence et finit dans [0, L]. La connectivité du réseau est
mesurée par le nombre de clusters.

Le nombre de points dans lintervalle [0,z] est défini par N, = >0 (1[x, <, La
variable aléatoire A; donnée par
X sii=1,
L inf{Xj : Xj > Ai—b Xj — Xj—l > 6} sit>1,

représente le début du i-éme cluster, appelé par C;. De la méme maniére, la fin d'un cluster
est définée par

FE;, = inf{Xj + € : Xj > Az‘,Xj—i-l — Xj > 6}.

Donc le i-éme cluster, C;, a un nombre de points donné par Ng, — N4,. Nous définissons
aussi la longueur B; de C; comme E; — A;. La longueur intercluster, D;, est la distance
entre la fin de C; et le début de C;1q, c’est-a-dire, D; = A;11 — E;, et AA; est la distance
entre les deux premiers points de deux clusters consécutifs, C; et C;11, donnée par AA; =
A1 — A; = By + D;. Le nombre de clusters complets est donné par [y, la distance entre
le début du premier cluster et le début du (i + 1)-éme cluster est définie comme étant
U, = 2221 AA;. Pour finir, nous définissons aussi AXy = Dy = X;. Nous avons trouvé
les distributions de toutes les variables aléatoires présentées ci-dessus, tout d’abord avec les
transformées de Laplace pour pouvoir aprés les inverser et ensuite trouver les expressions
analytiques.

Les transformées de laplace
Les trois transformées de Laplace les plus importantes sont celles qui suivent :
e La longueur du i-éme cluster B; :

A+s

1 .
A 56;\6886_’_1 ’

E [e_SBi} =
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e La distance AA; entre les deux premiers points de deux clusters consécutifs C; et

Ciy1 :
1

E —sAA; —FE —sB; E —sD;] :
) B R = L

e La distance entre le début du premier cluster et le début du (i + 1)-éme cluster

1

E [e_SU"] =
(%sesE + 1>n

Maintenant, nous définissons p,(L) = P(8y = z), ce qui signifie que, p,(L) est la
probabilité de lexistence d’exactement n cluster dans l'intervalle [0, L]. Compte tenu que
pour tout L € Ry, 0 < p,(L) <1, la transformée de Laplace par rapport a L

C{pn()}(s) = /0 ¥ ettt

est bien définie, nous pouvons la calculer en utilisant I'expression de E [e_SU"} :
ee)\ e€s

L{pn()}(s) = T
(%se“ + 1)

Nous avons aussi trouvé la transformée de Laplace du m-éme moment de 3y, M gg(L), qui
sera utilisée pour trouver la transformée inverse de L{py(-)}(s) :

LIMT()} (s) = ﬁ“—m <ﬁ> :

ou Liy(z), z,t € R, z < 1, est la fonction polylogarithmique qui a ¢ comme paramétre, et
qui esr définie par

NN
Liy(z) £ i
k=1

Les expressions analytiques

Dans cette section, nous inversons les tranformées de Laplace trouvées dans la derniére
section. D’abord, nous obtenons ’expression pour les moments de (5 :

m k
Mgg(L) = Z {T]:?L} (% - ]{7) <)\6€_5)‘>k 1[L/e>k]'
k=1

{ﬂk?} étant le nombre de Stirling du deuxiéme type. Nous utilisons donc ce résultat, donc,

pour trouver Iexpression de la distribution de £y, P(Gy = n) :

LL/e=n o\ '
PG = n) = — > ) (L — (n+ i)e)Ae™2)H,

|
2!
=0
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Cet inversion de la transformée de Laplace nous révéle un pair de transfomée entre les
domaines x et s donnée par :

lz/e]—n i
(=1

Lz>0) A S ae®
— ; T (x—(n+ Z)E)E & —(CLSQES T

Une fois que nous avons cette transformée, aprés 'usage de quelques proprietés fondamen-
tales de la transformée de Laplace, nous pouvons obtenir les distributions de By et de U,
respectivement fp, (z) et fu, (x) :

—e —e d
fB,(x) = |:)\€ )‘po(l‘ —€)+te )‘%po(:n — 6):| 1[x>g],

et
fu.(z) = )‘e_eApn—l(x - 6)1[x>5]7
ot pu(x) = P(fy = nlL = 2).

Nous pouvons aussi obtenir la probabilité que [0, L] soit entiérement couvert par les
capteurs. Soit Ry, ,(x) défini comme ci-dessous :

lo/e)-1 e (L e —
Roal@) = > | () ZO( I j{ D
=m 1=

Alors

P([0, L] soit couvert) = Ry 1(L) — e *“Ro1(L — ¢)
— G_AERL()(L) + G_ZAGRL()(L — 6).

Le probléme de connectivité des réseaux de capteurs aléatoires est donc entiérement
résolu: nous avons trouvé des expressions analytiques simples pour représenter les distri-
butions de Gy, B;, U,, de méme que nous avon trouvé la probabilité que toute la région soit
couverte, tout cela en fonction de L, €, Ao, i et t (nous rappelons que A = )\OLe_t/”).

Cas particuliers

Nous avons résolu le probléme de connectivité pour le cas ot nous avions un nombre de
clusters complets dans 'intervalle [0, L]. Nous pouvons aussi considérer deux cas légére-
ment différents. Dans le premier cas, nous comptons le nombre de clusters complets ou
incomplets dans un intervalle, que nous appelons /3. Nous obtenons 'expression suivante
pour cette quantité :

L+t
P(G) =n) = Z (—1)H+n <n> (G(i — 1) + G(3)), for n >0,
k
G(k) — ( 1)1: e—k/\ez [)‘(ke — L)]] e 1[T>ke]-
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Le deuxiéme cas particulier est celui ot les points sont distribués sur un cercle de rayon
L/2m et non plus sur une droite. Nous appelons x le nombre de clusters dans ce cercle
pour obtenir la distribution de x :

e~ LL/e]-n [(_1)1'

P(x=n)= e_’\Ll[n:()} + (1 —e ) o P
i=0

([L — (n + 1)) Ae” M)zl <L + (n +1) <% - e>>] .
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Chapitre 8 : Conclusion

La contribution la plus importante de la thése consiste en I'application simultanée de
résultats de la topologie algébrique et de 'analyse stochastique aux réseaux de capteurs.
Les outils du calcul de Malliavin ont été particuliérement utiles et la topologie a permis
la création d’un lien entre le probléme algébrique et le probléme vu d’une fagon combina-
toire. Nous avons pu utiliser des outils de la mathématique moderne pour traiter quelques
problémes ot 'usage des outils classiques a échoué. Nous remarquons aussi que nous avons
obtenu des résultats qui ont des applications a la fin de chaque chapitre.
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Abstract

Lower costs, lower power consumption, and hardware miniaturization have lead to a
great increase in the use of sensor networks. New mathematical tools have enabled the
conception of new models for sensor networks: two of these tools are stochastic analysis and
algebraic topology. In stochastic analysis, as introduced by Baccelli in the 90s, deployment
of mobiles and sensors in a nework is treated as a Poisson point process, instead of the
deterministic behavior that was used before. Ten years later, Ghrist has started modelling
the coverage of sensor networks as a simplicial complex. As a consequence, results of
algebraic topology can be applied to such networks.These results have enabled the explicit
computation of the homology of the simplicial complex. Therefore, it was possible to
answer relevant and non-trivial questions related to sensor networks, each sensor having
minimal information about the network (its identification number and the ones of his
neighbors). Examples of such questions are: "is the network completely connected?", "is
the target region covered?", and "how many connected components and holes are there in
this network?".

This thesis has two main parts. Part I uses stochastic anlysis to provide bounds for the
overload probability of different systems thanks to concentration inequalities. Although
the results are general, we apply them to real wireless network systems such as WiMax and
mutliclass user traffic in an OFDMA system. In part II, we find more connections between
the topology of the coverage of a sensor network and the topology of its corresponding sim-
plicial complex. These connections highlight new aspects of Betti numbers, the number
of k-simplices, and Euler characteristic. Then, we use algebraic topology in conjunction
with stochastic analysis, after assuming that the positions of the sensors are points of a
Poisson point process. As a consequence we obtain, in d dimensions, the statistics of the
number of k-simplices and of Euler characteristic, as well as upper bounds for the distribu-
tion of Betti numbers. We also prove that the number of k-simplices tends to a Gaussian
distribution as the density of sensors grows, and we specify the convergence rate. Finally,
we restrict ourselves to one dimension. In this case, the problem becomes equivalent to
solving a M/M/1/1 preemptive queue. We obtain analytical results for quantites such as
the distribution of the number of connected components and the probability of complete
coverage.
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Chapter 1

Introduction

1.1 Motivation: sensor networks

The importance of sensor networks grew tremendously in the last few decades in every
field where observation of the physical world is useful. Those systems have already been
inserted in a large range of sectors, and since the knowledge in electronics and communi-
cation technology is continuously expanding, it is expected that sensor networks will be an
integral part of our lives, more than the present-day personal computers [1, 18|.

The progressive miniaturization and the Moore law allow the development of low-cost,
low-power, multifunctional sensor nodes. These features enable the practical usage of
wireless sensor networks based on collaborative effort of a large number of nodes [1, 67,
72]. As a consequence of this development, we have today a very wide range of domains
of application, such as health monitoring, intelligent agriculture, environmental control,
telematics, and space exploration. Overview of these and other applications are included
in references [1, 31, 17, 68, 30, 98, 32|.

The conception of sensor networks requires, however, a multidisciplinary expertise that
motivates the research that goes beyond only the improvement of the performances of the
physical layer of the system. Dealing with sensor networks has to do with the integration
between the physical dimension of transmission (signal, coding), to share properly the
resources, to treat mechanisms that establish and maintain the connectivity and coverage
(topology) of the network, to face the dynamics of the sensors (positioning, mobility and
sensors default) and to model such systems. Moreover, these solutions must take into
account the constraints of limited resources and low consummation [37].

In view of these particular features, sensor networks require new paradigms for com-
munications: we need new tools (theories, heuristics, designs) conceived specifically for
them. The topology of the networks is one important subject studied in this thesis, which
includes connectivity and coverage. Loosely speaking, coverage describes how well sensors
in the network can monitor a geographical region. The connectivity evaluates how much
groups of sensors are disconnected among them.

Considering a variety of situations, it is possible to categorize three main scenarios:
those where it is possible to choose the position of each sensor, perhaps best described as
the 'computational geometry’, e.g. in [74, 81, 115, 122|, those where sensors are arbitrarily
deployed in the target region with the control of a central station (see [41, 22, 107]), and
those where the sensor locations are random in a decentralized system, which is analyzed,
for example, in [69].

The problem of the first scenario is that, in many cases, placing the sensors is impossible.
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Sometimes this impossibility comes from the fact that the cost of placing each sensor is too
high and sometimes the network has an inherent random behavior (like in the ad hoc case,
where users move). In addition, this policy cannot take into account the configuration of
the network in the case of failure of some sensor. The drawback of the second scenario is
a higher unit cost per sensor, since each one has to communicate with the central station.
Besides, the central station itself increases the cost of the whole system. Moreover, if
sensors are supposed to know their positions, an absolute positioning system has to be
included in each sensor, making their hardware even more complex and as such, more
expensive.

This has motivated us to investigate the third scenario: randomly located sensors, no
central station. Actually, if we can predict some characteristics of the topology of a random
network, the number of sensors (or, as well, the power supply of them) can be a priori
determined such that a given network may operate well with high probability. For instance,
we can choose the mean number of sensors such that, if they are randomly deployed, there
is more than 99% probability, for the network to be completely connected.

1.2 Topology of random geometric networks

The first studies concerning random points in a space with random pairwise relations
have been elaborated by Erdos and Rényi [28, 29| and Gilbert [43] in the late 50s. While
Erdos and Rényi assign an equal probability to all graphs with a specific number of edges, in
the first model of Gilbert every possible edge between nodes occurs to have an independent
probability p. Today, the model of Gilbert is called Bernoulli random graphs, or Erdds-
Rényi graphs due to their research on the model of Gilbert. Although the models used
by those authors are not equivalent, none of them considered the distance between nodes
in order to determinate whether two points are connected or not. This observation led to
name those graphs independent random graphs (IRG). The two different ways of approach
have in common that they regard the connectivity between two points as a key element.
By all means those models can be applied in telecommunications when the connexion does
not depend on the distance, for instance, optical networks. Besides this model can also
be applied to networks of power lines, computer networks, social links, business relations
between companies, to name a few. Those random graphs and many of their properties
were intensely studied [15, 2, 63].

The first model of random graphs where edges depend on the position of points, the
dependent random graphs (DRG), can be traced back to the work of Gilbert in 1961 [44].
In the model proposed by Gilbert, a pair of points is connected if this pair is separated
by a distance smaller than some constant R. The resulting graph is called a random
geometric graph (RGG). However, the dependence of points and edges of DRG’s represents
an important difficulty in comparison to IRG’s: in the geometric setting, if the vertex V;
is close to Vj, and Vj is close to Vi, then V; will be fairly close to Vj, that is, we do not
have independence between edges any longer. On the other hand, the model of IRG’s is
too unrealistic to be used in wireless communication systems and the recent development
of these systems has driven to intense researches of DRG’s since the 90s.

Some examples of DRG’s that are not RGG’s are the geometric Euclidean graphs [109,
121] and the proximity graphs, where each point is connected to its k nearest neighbors [120,
11, 114]. However, these models do not capture basic properties of wireless systems: the
conservation of energy imposes that the transmitted power decreases with the distance.
Also the presence of noise imposes a maximum separation between source and receiver,
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which drove to the use of RGG’s in recent works.

The cases of finite domains and infinite domains are treated differently. In the infinite-
space case, the study of RGG’s is known as percolation, where the object under study
is the formation of giant connected components or complete connectivity. Indeed, the
first RGG studied by Gilbert was about percolation (even if this name was not used,
the term percolation was used for the first time in 1957 by Simon Broadbent and John
Hammersley [16]), where he proved that such giant components exist although. Percolation
is an important branch of the modern probability theory and is intensively studied [51,
124, 125, 82, 80].

In finite domain, RGG’s are usually studied to derive asymptotic behavior for large
finite graphs. The first work dates back to Hafner [52]. Since then, there were several
works on this subject. In the 90s, applications of graph theory to probabilistic and sta-
tistical aspects of these graphs in one dimension were studied in the work of Godehardt
et al. [46, 47, 48, 57| and in the last decade we have [38, 39, 40, 55, 56|, to cite a few.
In higher dimensions, we have mathematical contributions from Appel and Russo [4, 5, 3|
and McDiarmid [78, 77|. The book of Penrose [96] is probably the most complete reference
about the asymptotics for large finite graphs, compiling and complementing a series of
works starting in 1995 [88, 89, 91, 92, 90, 93, 94, 95, 97].

Beyond the work of Gilbert, several other properties of RGG’s have been explored. One
of the most important property for wireless communications is the connectivity. There are
efforts made in order to find out if a graph is completely connected, but also in order to
count the number of components if there is more than one. This property was explored by
means of geometric tools until Silva, Ghrist and Muhammad, in [42, 41, 107|, introduced
the use of algebraic topology for models of geometric graphs. Although the authors do
not apply their idea at random realizations of points, their tools allow the local-to-global
transition, because it is possible to calculate the number of connected components, called
Bo, with only on a list of edges and points. It means that, to apply algebraic topology to
calculate fy, it is sufficient to label the points of the process. While a graph can be defined
by a list of points and edges, a simplicial complex, used by Ghrist et al., is a list of points,
edges, triangles, tetrahedrons and so on, which makes a graph to a particular case of a
simplicial complex. As one can expect, this generalization gives much more information
about the network. The first direct application is related to the coverage area in two or
three dimensions.

Coverage is another widely studied subject of random realizations. In the beginning,
it was not possible to point out the difference between the study of connectivity and cov-
erage, because the research was done over circles. Many authors considered problems of
covering a circle by a fixed number of arcs. In [116, 35, 24, 36, 108|, the authors considered
the covering when arcs have the same size. The works of Dvoretzki [25], Mandelbrot [75],
Shepp [104] and Siegel and Holst [105] regard this problem when arcs are not equal. The
last one provides an exact formula for the probability of covering the circle, thereby ex-
tending Stevens [110]. Intuitively, one can say that the models of these works in one
dimension are coverage problems, but in a point of view of topology, these papers deal
with connectivity (counting the number of non-covered gaps is the same than counting
the number of connected components). In more than one dimension, one of the early and
now classical coverage problems is the coverage of a sphere, proposed by Moran in [83] and
solved by Gilbert in [45]. Extensions to k dimensions usually consider the asymptotics for
models of fixed or Poisson distributed number of points like Hall in [53, 54|, Janson in [62]
and Stoyan [111]. In the case of a Poisson process, when the individual covered domain




34 1. INTRODUCTION

is of constant form with a Lebesgue measure A, the coverage is a simple problem, since
the probability p of covering an arbitrary point is given by p = 1 — e, where X is the
intensity of the process. A natural generalization of this case is to consider a fixed number
of points i.i.d. in the target region, which was studied by Roy et al. in [8, 103|. Other
properties regarding the coverage were analyzed, for instance, the k-coverage [70] which
studies the probability of a point being covered by k sensors, or the triangulation [73]| which
analyzes the probability of a point being inside some triangle formed by three points close
from each other.

The use of topological algebraic on realizations seems to be an ideal tool to deal with
the local-global transition, i.e. to obtain general aspects of coverage without knowing
the exact positions of the points, such as the number of holes in two dimensions, called
(1 or voids in three dimensions, called (32, which are important questions for wireless
networks that works using only geometry were not able to do. The main motivation
to the study of random geometric simplicial complexes was their application to wireless
networks given by the works [42, 41, 23, 84, 22, 107|. Other connected works with persistent
homology [27, 123, 26|, which is a way of tracking how the homology of a sequence of
spaces changes. At last, there are some works on random simplicial complexes that are
not geometric, but the only ones that deal directly with geometric complexes are those
from Kahle et al. |66, 65], where the asymptotic behavior of the number of holes and voids,
called Betti numbers, are found in some particular cases.

1.3 Overview of the Problem

A sensor is a device that scans a domain and returns a signal from which information
may be extracted. Sensors vary in scope, resolution and types such as seismic, low sampling,
rate magnetic, thermal, visual, infrared and acoustic, which are able to monitor a wide
variety of ambient conditions such as temperature, pressure, light, humidity, vehicular
movement, etc. Sensor nodes can be used for continuous sensing, event detection, event
identification, location sensing and local control of actuators. In this section we present
the way the functionality of the sensors is related to the interpretation of their coverage,
and then, we show some practical applications to illustrate the potential of those networks.

1.3.1 Coverage

The miniaturization of the sensors justifies the fact that they can be represented as
points in almost all applications in modern sensor networks. However, the concept of
coverage is not as clear and usually not well explained. Then we consider three different
situations to determinate coverage: one where sensors are supposed to communicate, one
where sensors are supposed to perform a remote control and the third one where sensors
monitor some conditions in their exact location. Depending on the function of the network,
sensors can have more than one kind of coverage at the same time.

Sensors communicating We first consider a sensor network where sensors upload /download
data to/from other sensors. Sensors have a power supply allowing them to transmit a
signal with a fixed power. It is well known that the transmitted power is attenuated
over distance, an attenuation called path loss. Besides, power is affected by environ-
mental conditions, a phenomenon modeled as shadowing. So the power received by
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Coverage for communication
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Transmitted power
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Figure 1.1: The black circles represent the positions of the sensors. The coverage radius
€ in function of P; under the effect of path loss only. Sensors cannot send data to their
sensors further than e.

a sensor is inferior to the one transmitted (except for rare events such as construc-
tive interference due to multipath, for example). On the other hand, sensors have
sensitivity, which means that they are able to identify correctly the signals with a
desirable probability (with a low bit error rate) as long as the signal to noise ration is
higher than some threshold, for instance, Ps. In this case, the coverage of a sensor is
defined as the whole region where others sensors can receive its signal with a power
higher than P;. In Fig. 1.1 we illustrated the coverage radius € in function of P
under the effect of path loss only.

Sensors monitoring conditions in their locations In this case, the sensor network is
supposed to approximate the real profile of the measured quantity based on typical
gradients of this one. This means that the coverage radius have to be chosen in order
to warrant that sensors separated from each other at most by this radius are still able
to fit or adjust with small errors. For instance, let us suppose that sensors measure
temperature and that a sensor network is supposed to detect when the temperature
exceeds some temperature T,.. In Fig. 1.2, we see an example of a likely profile of the
temperature gradient. In this case, we cannot choose a coverage radius €; like the one
in Fig. 1.2.a), since the sensor network could fail to detect the event of temperature
higher than T, in the monitored region. However, a smaller coverage radius es, like
in Fig. 1.2.b), would decrease considerably the probability of missing this event.

Sensors performing a remote control A large class of sensors is able to perform a
remote control, such as light and movement sensors. In this case, coverage depends
on the sensitivity of the receivers in the sensors, so, in order to be detected, the
monitored event occurs closer than some distance.
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Figure 1.2: In both figures, the black circles represent the positions of the sensors. a)
A choice of a coverage radius €; may not capture an undesirable event; b) A choice of a
smaller radius €5 increases the probability of capturing the event

1.4 Mathematical Tools

1.4.1 Algebraic topology

The tools we present in this section have been developed in the 1930s, but it was only
less than 10 years ago that they were applied to sensor networks, specifically in [41, 23, 12,
22, 107]. The major contribution of algebraic topology is contemplating the local-to-global
transition: global information of a sensor network such as connectivity, coverage and Euler
characteristic can be obtained by using the information on the neighborhood of each node
belonging to some sensor network. As a consequence, that global information is obtained
without knowing the coordinates of the nodes, localization, orientation capabilities or any
other information apart from their identities and the identities of close neighbors.

Roughly speaking, algebraic topology provides a way to associate to a given space X
a collection of algebraic objects which gauge the global features of X. In our case, those
global features are the called homology groups, H,(X), for k = 0,1,..., and to determinate
them, we use local objects built by simple oriented pieces, called simplices.

Given a set of points V', a k-simplex is an unordered subset {vg,v1,...,vr} where
v; € V and v; # v; for all ¢ # j. The faces of the k-simplex {vg,v1,...,v;} are defined as
all the (k — 1)-simplices of the form {vg,...,vj—1,vj41,...,v5} with 0 < j < k. In terms
of coverage in a network, a O-simplex represents a single sensor and a k-simplex represents
that the k + 1 points of this simplex are covering the convex hull containing those points
(see columns two and three in Fig. 1.3).

In the way that simplices were defined in this section, the Cech theorem establishes the
link between a sensor network and a simplicial complex, showing that the union of the indi-
vidual coverage of each sensor in the network and the simplicial complex obtained by these
sensors and their coverages are topologically equivalent. This theorem is a consequence of
the Nerve lemma [14, Theorem 10.7] and is seen in Chapter 5 of this thesis.

1.4.2 Poisson point processes

Since [9, 10|, Poisson point processes are the basis of stochastic-geometry modeling
of communication networks. This modeling consists of treating the given architecture
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Sensor network

Cech complex

Highest order simplices

representation representation
v1 A 0-simplex {v;}
v U2 An 1-simplice {v1,v9}
U1 V2
v A 2-simplex {v1,v9,v3}
v3
U1 V2
v Three 1-simplices {v1,v2},
{v1,v3} and {vg, v3}.
v3
V2
(N ‘ V3 A 3-simplex {vy,v9,v3,v4}
U1

Figure 1.3: Topological interpretations of sensor networks.

Each node v; represents a

sensor 5;. We can see that the topology of the coverage is the same as for the simplicial

complex
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Figure 1.4: Gradient operator D, in a Poisson process w.

of the network as random and analyzing it in a statistical way. In this approach, the
physical meaning of the network elements is preserved and reflected in the model, but their
geographical locations are no longer fixed but modeled by random points. Consequently,
any particular detailed pattern of locations is no longer of interest. Instead, the method
allows catching the essential spatial characteristics of the network performance through
the densities of these point processes.

Poisson point processes can model both static and dynamic systems. In the first case,
the communicating elements do not move although each one of them can be active or
inactive (a sensor can be inactive due to a flaw or, intentionally, due to some protocol for
instance) and it represents a network where there is no control over the deployment of each
element in the target region, so the number of elements and their positions are random.
In dynamic systems, the process represents a snapshot of the network. In some cases the
random number of users is overdimensioned under this hypothesis, since this system would
allow an arbitrarily large number of users in a system where resources, such as power or
bandwidth, are limited.

Moreover, among all studied point processes, the Poisson one has the largest arsenal of
results (see |20, 111]) and by using a proper filtration, the Poisson measure can be seen as a
martingale. As consequence, as showed in Chapter 6 of [99], it is possible to use Malliavin
calculus on such problems. The basic tools of Malliavin calculus consist in a gradient and
a divergence operator that are linked by integration by parts formula. Along this thesis,
the gradient operator D; will be used, and it can be defined by Dy(F') = F(wUy) — F(w)
of a given Poisson process w, and an example of D[ is given in Fig. 1.4. The stochastic
analysis of a Poisson process warrants also the chaos representation of a large family of
random variables F' depending on w € A as

=1
F=3 —In(fa),
n=0
where the multiple Poisson stochastic integral I,,(f,,), is defined in Chapter 2 as
In(fn)(w) = /A fa(@y, -+ an)(dw(zr) — dA(@1)) -+ (dw(zn) — dA(zn)).

The gradient operator can compute the function f,, as

fn(tl,...,tn) =E, [Dtl---DtnF]7 a.e. t1,...,tn € A.
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1.5 Thesis Outline and Contributions

Let us turn to the contents of this thesis. Chapter 2 starts with an elementary exposition
regarding the stochastic model of the positions of sensors/users. First some concepts of
stochastic geometry are presented in order to define a Poisson point process and some
properties such as the distribution of the number of point and the Campbell theorem. Then,
we present some definitions and results of Malliavin calculus that are used in the thesis.
Among the results of Malliavin calculus, we highlight the possibility of the decomposition
if a large family of random variables depending on a Poisson point process as the sum of
orthogonal chaos, each one being an It6 integral. If F' is a random variable depending on
the Poisson point process w, the nth chaos represents the contribution of every set of n
points on F. It also yields non-trivial results such as a concentration inequality used in
Chapters 3, 4 and 6, allowing to find limits for the distribution of some random variables.

Chapter 3 uses the Poisson point process and concentration inequalities as analytical
methods to apply to the interference temperature model. This model provides a way
to reallocate spectrum bands more efficiently, giving some bandwidth at low power to
opportunist users (the sensors) as long as they do not interfere the signal of licensed users
(or primary users). We consider the position of the sensors in a given protocol (in this case
WiMax) and we can use Campbell theorem to calculate how much power is available for
those sensors such that, in the average, primary users ignore their presence in the system.
However, the fact that this constraint is respected, on average, is not enough to design a
system. The useful quantity is the probability of a primary user suffering an outage due to
the fact that sensors use his bandwidth and it must be as low as possible. We are not able
to calculate this probability but we can find an upper bound for the outage probability, so
that we can design the transmitted power of the sensors such that the outage probability
is lower than some threshold.

In Chapter 4 we study how an OFDMA system can be designed by using the tools
presented in Chapter 2. An OFDMA system has a limited number of subchannels that
distribute to the users in a cell and this system is overloaded if, at some instant, the
demand of subchannels is larger than the number of available ones. Each user needs a
different number of subchannels, which is a function of the channel fading and the type
of service (data, voice, video, etc.). We aim to design the minimal number of subchannels
a central station can provide as a function of the density of users and their needs such
that the probability of overload of the system is low. This is done under reasonable
assumptions, by considering that users positions at a given instant are given by the points
of a Poisson process. This assumption overestimates the real number of users, since the
number of available subchannels restricts the number of users in real cases. Then we use
a the concentration inequality to obtain the main results.

In Chapter 5, we introduce the tools of topology. We make precise the idea of simplicial
complexes, homology and Betti numbers. To determine those quantities we define a linear
operator named boundary map and we use algebra. After defining these concepts, we show
some other results that allow us to give even more concrete links between the model of
simplicial complex in a torus and a sensor network.

It is mostly in Chapter 6 that we apply the tools of Chapters 5 and 2 and this is the
first work with random geometric complexes not considering the asymptotics. We consider,
as usual, that the deployment of the sensors is a Poisson point process in a d-torus. The
coverage radius of the sensors is deterministic given by e, which, as stated in Chapter
5, is enough to define a simplicial complex having the homotopy type and then, for our
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purposes, we can only use the complex, allowing us to apply other tools from algebraic
homology. Then we turn our attention to the number of simplices. We use the chaos
decomposition and the Campbell theorem to find expressions for the n-th moments of k-
simplices. The first three moments are explicitly found. We present a method to find the
other moments, and although there are no new difficulties, the calculation is too tedious
(we can have an idea comparing the complexity of the evaluation between the first and
the second moments, and between the second and the third moments). This result can
already tell information regarding the sensor network, but it is possible to go further and
to calculate explicitly the two first moments of Euler characteristic. Moreover, all those
results can be obtained for a fixed number of points by means of the Poisson transform (or
de-poissonization). The results of the Euler characteristic and concentration inequalities
allow us to infer some information related to the behavior of Betti numbers in d dimensions.
It is also investigated the behavior of the number of k-simplices for a high density of sensors
and we can show that this converges to a Gaussian distribution, which turns out to be an
interesting result: since we have calculated the mean and variance of this quantity, we
have a good approximation of its analytical distribution. Since we found also an upper
bound of the distance between the distribution of k-simplices and the Gaussian, we can
even estimate the error of this consideration.

Chapter 7 solves the problem of coverage and connectivity of sensor networks in one
dimension. This can be applied to networks where sensors are deployed over a privileged
dimension as well in queuing systems, since solving this problem is equivalent to evaluate
a M/D/1/1 preemptive queue. We obtain all aforementioned results for this case: for a
line segment or a circle, we find the distribution of the number of connected components
(and we call each connected component a cluster), the distribution of the size of clusters,
all the moments and the Laplace transform of those distributions. The mathematical tools
used in this chapter are quite simple and the results could have been obtained at least fifty
years ago. However, solving the problem in one dimension gives us hints and intuitions in
order to solve the problem in d dimensions.
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Part 1

Stochastic Geometry







43

Chapter 2

Stochastic Model

2.1 Introduction

In this chapter, we review the main facts used in this thesis concerning the stochastic
model. We give the definition of the Poisson measure on a space of configurations of a
metric space X. This allows us to characterize the randomness of the system by considering
that the set of points representing the sensors are modeled by a Poisson point process
w with intensity A in a Polish space Y. This characterization is important due to the
development of the theory of Poisson point process, giving us a large number of tools. From
the definition of such a measure, it is possible to express a random variable depending on the
random realization w as a sum of stochastic integrals and then to obtain the probabilistic
interpretation of the gradient D as a finite difference operator. Using this operator it is
possible to derive other results, such as a concentration inequality on the Poisson space.

2.2 Poisson point process

To characterize the randomness of the system, we consider that the set of points is
represented by a Poisson point process w with intensity A in a Polish space Y. The space
of configurations on Y, is the set of locally finite simple point measures (cf [99]):

@ = {a=S s - ofp v nenu e},
k=0

where d(x) denotes the Dirac measure at € Y. Simple measure means that w({z}) <1
for any z € Y. Locally finite means that w(K) < oo for any compact K of Y. It is often
convenient to identify an element w of QY with the set corresponding to its support, i.e.,
> ko d(zy) is identified with the unordered set {zi, ---, z,}. For A € B(Y'), we have

0(zx)(A) = L[ ea], sO

W(A) = 3 ppen = / dw(x),

TpEW A

counts the number of atoms in A. The configuration space QY is endowed with the vague
topology and its associated o-algebra denoted by FY . Since w is a Poisson point process
of intensity A:
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i) For any A with Lebesgue measure S(A), w(A) is a random variable of parameter

AS(A), ie.,

asea) (AS(A))E
P(w(A) =Fk) =e AS(A)%,

ii) For A" € B(Y), for any disjoints A, A’, the random variables w(A) and w(A’) are
independent.

In the thesis, we refer Ey [F(w)] as the mean of some function F' depending on w given
that the intensity of this process is A and Pylw € Y] = Ej [1j,ey]]. The definitions
of V) [F(w)] and Covy [F(w),G(w)] are straightforward. Define A,, = {(z1, -+ ,z,) €
Y™ | z; # x;,Vi # j}. Let f(x1,---,z,) be a measurable function and let F(w) be a
random variable given by

Fwy= > fla, -, a0) = / Flan, o an) dw(en) - dw(zy).
;€wNA1<i<n ANA,

A well known property of the Poisson point processes [20] states that
EA[FW) = [ flor, - 0) dNa)-- dh(z) (21)
A

The notion of point process can be extended to configurations in R¥ x X where X is
a subset of R"™. A configuration is then typically of the form {(x,, y,), n > 1} where
for each n > 1, x, € R* and vy, € X. We keep writing (Zn, yn) as a couple, though it
could be thought as an element of R¥*™, to stress the asymmetry between the spatial
coordinate x,, and the so-called mark, y,,. For a marked point process, we denote by w the
set of locations, i.e., w = {X,, n > 1} and by «’ the set of both locations and marks, i.e.,
W' ={(Xp, Y,), n > 1}. A marked point process with position dependent mark is one for
which the law of Y;,, the mark associated to the atom located at X,,, depends only on X,
through a kernel K:

P(Y, € B|w) = K(X,,, B), for any B C X.
If K is a probability kernel, i.e., if K(x, X) =1 for any = € R* then it is well known that

W' is a Poisson process of intensity K(x, dy) dA(z) on R* x R™. For f : RF x R™ — R
a measurable non-negative function, let

F:/f dw' = > f(Xn, Ya). (2.2)

Xn€Ew

We denote the mean of a function F' of marked Poisson point process with kernel K as
E) x [F]. The Laplace transform of F'is given by [111]:

By [eF] = exp (- / (1= =@ K (g, dy)dA(m)) (2.3)

As consequence, the Campbell formula can be extended.
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Theorem 2.1 Let w' be a marked Poisson process on RF x R™. Let \ be the intensity of
the underlying Poisson process and K the kernel of the position dependent marking. Then,

BawlFl= [ o) K &) i),
REkxR™
A real function f : Y™ — R is called symmetric if

f(wo(l)v T wo(n)) = f(xlv ) xn)

for all permutations o of &,,.The space of symmetric square integrable random variables
is denoted by L?(\)°". For f € L?(\)°", the multiple Poisson stochastic integral I,,(f,) is
then defined as

In(fn)(w) = /A fa(@ys--wn)(dw(zr) — dA(21)) - (dw(zn) = dA(zn))-
If f, € L2(\)°" and g,,, € L?(\)°™, the isometry formula

E) [In(fa)Im(gm)] = n!l[mzn]<fn79m>L2(/\)°“ (2.4)
holds true (see [99]). Furthermore, we have:

Theorem 2.2 Every random variable F € L*(QY, P) admits a (unique) Wiener-Poisson
decomposition of the type

F=Ex\[F]+ ) I.(fn),
n=1

where the series converges in L?(P) and, for each n > 1, the kernel f,, is an element of
L2(M\)°". Moreover, we have the isometry

[ F — Ex [F] H%?()\)On = Z”!an“%%&)on- (2.5)
n=1

For f, € L*(\)°" and g,,, € L*(\)°™, we define f, ®§€ Im, 0 <1 <k, to be the function:

(yl+17 3 Yns L1, me)

/yz I un)gmWis o Yk Thgts -+ 5 Tm) dA (Y1) ... dA(w). (2.6)

We denote by f, of,C Jm the symmetrization in n+m — k — [ variables of f, ®§C Im, 0 <1 <k.
This leads us to the next proposition, shown in [99]:

Proposition 2.3 For f, € L2(\)°" and g,, € L*(\)°™, we have

nAm

2(nAm)
In(fn)lm(gm) = Z In+m—s(hn,m,s)7
s=0

n\ /m 7 .
hn,m,s g Z<Z> (Z) (S—i) n 9; 9Im

$<2i<2(sAnAm)

where

belongs to L2(\)°"+m=3 0 < s < 2(m An).
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In what follows, given f € L?(\)°¢ (¢ > 2) and t € Y, we denote by f(x,t) the function on
Yq_l given by (wlv o qu—l) — f(xlv o 7xq—17t)-

Definition 2.1 Let Dom D be the set of random variables F € L?(P) admitting a chaotic
decomposition such that

o0
> qq!l| fal® < oo

n=1

Let D be defined by
D : DomD — L*(QY x Y, P x \),
such that

F=Ey\[F]+ 3 Iu(fa) — DF = > nlp-1(fal*,1)).

n>1 n>1
It is known, cf. [60], that we also have
DiF(w) = FlwU{t}) — F(w), dP x dt a.e..

Remark 2.1 It is possible to show that the expression of f, that appears in the chaos
expansion

— 1
F= Z Eln(fn)
n=0
can be expressed by using the gradient operator and we have:
fn(tly--- ,tn) =E, [Dtl DtnF], a.e. t1,...,t, € A.

This is analogous to the classical Taylor expansions for one or several variables, where
we have

OEDI=S
n=0 :

where the coeflicients a,, can be found:

o f
A
and we have the correspondence:
calculus on R stochastic analysis

f(z) F
f(0) E, [F]
o pr
ox™

an

%S 0) E, [D"F]

ox™
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Definition 2.2 The Ornstein-Uhlenbeck operator L is given by
[ee]
LF ==Y nl(fa),
n=1

whenever F' € Dom L, given by those F € L>P such that their chaotic expansion verifies

o0
> Q| fall? < 0.

n=1

Note that Ey [LF] = 0, by definition and (2.4).
Definition 2.3 For F € L*(P) such that Ey [F] = 0, we may define L™ by

P =-% %In(fn).
n=1

Combining Stein’s method and Malliavin calculus yields the following theorem, see [87]:

Theorem 2.4 Let F' € Dom D be such that Ey [F] =0 and Var(F) = 1. Then,
dw (F, N'(0,1)) < B, Hl - / [D,F x D,L~LF] d)\(t)H
Y

+/ E, [\DtFyz \DtL—lFﬂ ().
Y

Another result from the Malliavin calculus used in this work is the following one, quoted
from [99]:

Theorem 2.5 Let ' € Dom D be such that DF < K, a.s., for some K > 0 and
||DF||L°°(Q,L2(Y)) < 0. Then

T K
_ > ) < — ' '
P(F —Ey[F] > z) < exp ( 2K [ (1 i ||DF||Loom,L2<Y>>>> 7

We recall that if w is a marked Poisson process on R* x R™ of intensity A and kernel
K(x,y), then

mp =E) g [F] = /f(m) K(z,dy)\( dz)
and

vp = / |D,F(w) K(z,dy)|?X( dz).

2.3 Summary

In this chapter all the stochastic tools used throughout the thesis have been introduced.
First, we have presented the Poisson point process in a formal fashion in order to present
some properties and extend the definition to marked Poisson point processes. After, we
have introduced the notion of Malliavin calculus, which allows us to describe a large fam-
ily of the Poisson point process (those square-integrable ones) as the sum of chaos. As
consequence, we can apply results from [87] and concentrations inequalities from [99] to
find upper bounds for the distributions of random variables depending on a Poisson point
process.
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Chapter 3

Interference Temperature Model in
Cognitive Radio Networks

3.1 Introduction

This chapter proposes the utilization of the Poisson point process as a new analytical
method to be applied in the interference temperature (IT) approach. For this purpose,
we firstly develop a model for the RF environment. Afterwards, by the use of the Poisson
point process, we determine essential elements for the calculation of the achievable per-
link capacity and the total capacity of a secondary network following the ideal and the
generalized I'T models.

As long as new radio access technologies continue to appear, there are few spectrum
bands to be allocated due to inefficient fixed spectrum allocations. This phenomenon
obstructs the development of new wireless technology and communication services [64].
Moreover, spectrum occupancy measurements |79] evidence that fixed spectrum allocations
also result in low efficiency in spectrum utilization because a large portion of the spectrum
remains underutilized [33].

These observations have motivated the regulatory bodies to investigate different access
methods to overcome the above problems. As result, the use of Cognitive Radio technology
that allows Dynamic Spectrum Access (DSA) has emerged as a possible solution to solve the
low efficiency in spectrum utilization by allowing spectrum sharing. In such an approach,
Secondary Users (SUs) are allowed to dynamically access the unused spectrum in Primary
Users’ (PUs) bands, commonly referred as “spectrum holes".

In the last years, two different strategies of spectrum sharing have been identified. One
is through opportunistic spectrum access, known as “Overlay" and the other is through
the use of low power spread-spectrum, known as “Underlay" [21]. The Overlay approach is
based on avoidance of PUs through the use of spectrum sensing and adaptive allocation.
On the other hand in the Underlay approach, which is of interest in this chapter, the
transmission of SUs is allowed in PUs bands, if the transmission power is low enough that
it does not harm the PUs. As this approach imposes severe restrictions on transmitted
power levels, it requires operating over “ultra" wide bandwidths. Under this framework, in
November 2003, the concept of Interference Temperature (IT) was proposed by the Federal
Communications Commission (FCC), as another way to dynamically manage and allocate
spectrum resources [34]. The principal characteristic of the IT model, as an underlay
approach, is the fact that in this model SUs attempt to coexist with PUs meanwhile, in
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other proposals for DSA (i.e. overlay approaches), SUs try to avoid PU’s signals [113].

After conclude the mathematical analysis enlightened by the Poisson point process
model, we demonstrate the application of our model by a numerical example, in which
we consider the primary user as a Universal Mobile Telecommunications Service (UMTS)
network and the secondary user as an Ultra Wide Band (UWB) network. Finally, by the
use of Concentration Inequalities we determine an upper bound on the outage probability
of the primary network when the SUs transmit.

The rest of the chapter is organized as follows: Section 3.2 describes the ideal and the
generalized interference temperature models and the physical features of the system; In
Section 3.3, we present our model for the calculation of the SUs mean capacity and the nu-
merical analysis; Bounds of the outage probability of PU using Concentration Inequalities
are found in Section 3.4; Finally, in Section 3.5, we present our conclusions.

3.2 Physical Model

In the I'T model, SUs equipped with cognitive radio technology must firstly sense the
available spectrum band to compute the existing interference. In this approach, SUs treat
PUs, other SUs, interference, and noise all as interference. Afterwards, they must adjust
their transmission power to avoid raising the interference temperature above a predefined
threshold, which is assumed to be established by the FCC. This threshold represents the
maximum quantity of interference that a PU can tolerate. Therefore, SUs must guaran-
tee that the existing interference temperature, added to the interference caused by their
transmissions does not exceed the interference temperature limit (77) [113].

The Interference Temperature T7(f., B) is defined as:

1i(, B) = e ),
where T7(f., B) is estimated in Kelvin, the average interference power P is measured in
Watts, is centered at f., covers a bandwidth B measured in Hertz and k is the Boltzmann’s
constant.
In [113], two different interference temperature models were presented: the Ideal and
the Generalized. The ideal model tries to limit interference specifically to PUs signals.
Therefore, the priori knowledge of PUs activity is needed. This model can be written as:

M; P

T (fi, B;
1(fi, Bi) + 1B,

<Tp(fi) V1<i<nm,

where P is the average power of SUs operating with the center frequency f. and bandwidth
B. The band [f.—B/2, f.+B/2] overlaps n PUs signals, with respective frequencies f; and
bandwidth B;, T}, is the interference temperature limit. As the purpose of this model is
to restrict the interference received by PUs, the constant M; (with fractional value be-
tween 0 and 1) represents the attenuation between the primary receiver and the secondary
transmitter. This constant is assumed to be fixed by a regulatory body in [113].

For the generalized model, the priori knowledge of PUs activity is not required. So
this model can be applied in the entire bandwidth regardless the exact location of the PUs
signals. The interference temperature limit in the generalized model can be expressed as
following;:
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Figure 3.1: Example of a configuration with primary users, secondary users (transmitters
and receivers) and interferers.

T B)+ 2 <1y (1),

kB

Here B is the entire frequency range, and not just PUs frequency band. Since the param-
eters of the PUs receivers are unknown, the constraint is in terms of SUs transmitter’s
parameters [113].

We consider a system in which the position of users are given by Poisson point processes.
So the Poisson point process, w; on R?, with intensity (i.e., the mean number of users per
unity of area) \;, represents the positions of user of kind j. Moreover, their individual
transmission power is given by p;. We associate primary users to the index j = 1, secondary
users that are transmitting to j = 2 and interferers to j = 3. Besides, the marked Poisson
point process w) on R? x R? associates, for each point X; from ws another point Y;
uniformly distributed over a disc Dy(X;) of radius Rs centered at X;, in such way that Y;
is the position of the SU receiving the signal of a SU placed at Xj.

Let pj(x,y) be the received power experienced by a user located at y € R? with respect
to a transmitter of kind j at x € R?. We use the propagation power loss as the simplified
model for path loss being a function of distance, based on Hata’s model:

potean) =min (g () ). (31)

[z =y

where rg and « are positive constants. In this approximation « is the path loss coefficient
and we take ryp = 1, where rg is a reference distance from the antenna far field. Due the
strong attenuation as a function of distance, the existence of the noise and the sensibility
of the SUs, we assume that SUs are only able to communicate with some other ones closer
than a distance Rs. The total interference power experienced by a point x with respect of
all users of kind j is given by @Q;(x). We illustrate a possible realization of the model in
Fig. 3.1, representing all kinds of users. Note that, to each SU transmitting, it must exist
a SU receiving, which does not cause interference. Along this work, since Ry is considered
enough small to consider that a pair of SU’s (i.e. SU transmitter and SU receiver) causes
the same interference in the other users, so, in terms of interference, SU’s are considered
as a single point.
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3.3 Secondary User Mean Capacity

In this section, we consider that the constraint given by the temperature model holds
for the mean of the quantities, and then, based on the physical model we analyze the
mean capacity of the network. First, we proceed the calculations and then we present the
numerical results.

3.3.1 Calculations of the mean capacity

The mean total network capacity of the SUs is based on the mean per-link capacity and
the constraints of the I'T model. Therefore, taking into account the I'T model restrictions,
we develop the necessary expressions to estimate the mean capacity for the ideal and the
generalized I'T models. In order to achieve this, we consider the following lemma.

Lemma 3.1 Let w; be a Poisson point process with intensity measure A\ representing the
positions of active users of kind j over R? transmitting with a power pi. If Qj(x) is the
total interference power received experienced by a point x € R?, then

MG T

E\[Q;()] (a—2)

(3.2)

Proof: Given the invariance under translation of a stationary Poisson point process,
E) [Q;(z)] = E»[Q;(0)]. So, it suffices to use Eq. (2.1) for f(z) = p;(«,0) as defined in
Eq. (3.1):

Ey[Q;j(0)] = Ex|> pi(X;,0)

Xi€w

= / pj(x,0)A;(x) da
R2

2w poo ot
= )\j/ / min (,uj,,uj <1> > r dr df
0o Jo r

/J,j)\jﬂ'Oé
(a@—2)7

concluding the proof. I

For the ideal case, we must calculate the maximum allowed SUs Transmission Power
,ugd. As imposed in the physical model, the ideal interference temperature model attempt
to limit interference specifically to licensed signals. This means that the objective is to
guarantee that

Pi(fi,Bi) = M;P

< ).
kB; kB; — Tu(fi)

The left side of the equation represents the total temperature allowed to interferers with
respect to a primary user using the center frequency f;, placed at x;, and we can rewrite
it as

Q2(x) + Q3(x) < Tr(fi)kB;.
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To guarantee that this inequality holds at least for the mean of interferences, we take the
mean in both sides, use Lemma 3.1 and solve for ,uéd, resulting in the maximum allowed
transmission power to be used by secondary users:

i a—2 TLkBZ' — )\3/1,371'04
it < (@2 |

3.3
)\271'04 ( )

Now we calculate the maximum mean allowed SUs transmission power p§~" following
the generalized model. The main difference between the generalized and the ideal model is
that in the generalized model the priori knowledge of PUs activity is not required. Thus,
the generalized model is written as:

Pi(f., B) . MP
kB kB

S TL(fc)

As the parameters of the PUs receivers are unknown, the constraint is in terms of the
SUs transmitter’s parameters. Therefore, B is the entire frequency range, and not just
PUs frequency band. Again, since SUs treat PUs, other SUs, interference, and noise all as
interference, we notice that for the generalized model we take into account the power from
the others PUs (averaging the PUs power over the SUs bandwidth) and evaluate the 77,
over the entire frequency range B. If the analyzed primary user is placed at z € R?, then
we rewrite this condition as a function of @;’s:

20u(@) + @ola) + Qs(a) < TL(IRB.

Assuring that, in average, this inequality holds, we take the mean, apply Lemma 3.1 and
solving for u™, we obtain:

(a — 2)TLI€B — )\3/1,371'04 — %)\Wlﬂa.

gen

My =

4
AT (3:4)

Since we are interested in the calculation of the capacity using the Shannon-Hartley
theorem [61] the per-link capacity C(z,y) of a user at x € R? receiving a signal from a
user at y € R? such that ||z — y|| < Ry, is given by:

C(z,y) = Blog, <1 + 7]5?\(;’(2]) )

Where I(z) is the interference power caused by the interferers, other SUs and PUs at z,
given by

1) = 5 @u(x) + Qale) + Qs().

Since y is uniformly distributed around z, then z is uniformly distributed over y and the
mean capacity per link C'(x) in the disc is:

p2(,y) \ {{a—yl<Rre}
— [ Bl 1 d
¢@) / °g2< +EA[I(:B)]> 7R3
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By Lemma 3.1, E) [Q;(z)] does not depend on y, and pa(x, y) depends only on the distance
between z and y, so C(x) = C. Let us define

KA _ M2 pa(a = 2) :
E) [I(z)] T (%,ul)\l + oo + /L3)\3)

Then, we can rewrite C' as follows:

Ro 27 B
C= / / —5 logy (1 + K min(1,77%))) r dé dr- (3.5)
0 0 7'['R2

Defining b : Ry X (2,00) — R4 as follows

h(r,t) 2 /0 In <1 + %) r dz, (3.6)

we rewrite Eq. (3.5) as

2
2BKa [In(1+ K R 2
= nA+E) (B Y p (2, (3.7)
R3In(2) [ 2Ka Ko Ko
The capacity per-link in the ideal case, C*, is obtained taking pp = ,uéd, while the one

in the generalized case, C9°", results of taking puo = pg". It is possible to find analytical
expressions for h(r,t) when ¢ is an integer.

Lemma 3.2 Let 3, = 7(2n — 1) for n integer. For t an odd integer, the expression of
h(r,t) is given by:

t/2)
h(r,t) = —% Z (cos (%) In (%2 + %COS (%) + 1>

n=1

: Bn 2
2 En 1 1 1
+2sin <—6n> arctan _ e sin L ) + T In (1 + —t> ——In (l + —) .
t 1+ r2 COS(ﬁT") 2 r 2 r

If t/2 is odd, we obtain the following expression for h(r,t):

[t/4]
1 28, 12 (28,
h(r,t) = ~5 n§:1 (COS ( ; ) In <r4 + 3 €08 ( . > —1—1)

2 2 sin (20 2 1\ 1 1
—2sin <Bn> arctan L(tz; + " In (1 + t> + —In <1 + 2> ,
t 1+ rtcos(=2) 2 r 2 r

and if t/2 is even, then
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Proof: First we differentiate the right-hand terms with respect to r and after several
elementary but tedious manipulations we have:

Oh(r,t) 1
o =rln <1+ rt> .

Then, it suffices to use the Fundamental Theorem of Calculus on the right-hand term of
Eq. (3.6) to obtain that

0 T 1 1
E(/o 111(1—1—;)95 dx)-rln(l—i—ﬁ)-

So both sides of the equation differ at most by a constant. Since these two functions are
analytical at r = 0, it suffices to see that

0 1
h(O,t):/ ln<1+xt>x dz =0,
0

thus the proof is concluded. I
We can use this lemma to obtain expressions for two typical values of a.

Lemma 3.3 The expression of h(r,3) is given by:

1 r?2—r+1 \fﬂ 72 1 V3 (2r —1)
h(r,3)—4ln<r2+2r+1>+ 19 l ( 3>+2arctan<\/§>

and the expression of h(r,4) is the following one

h(r,4) = 2 7 !
(r,4) = arctanr —1—5 n 1+ﬁ )

Then, it is possible to calculate the mean total SUs capacity Cioiq in a secondary cell
of radius, R, defining a disc D. Using theorem 2.1 on the marked Poisson point process
wh, we obtain:

1 z
Ctotal - // C -T y Ll ;JEH;RZ}] dy)\g dz.

However, Eq. 3.7 shows that the inner integral does not depend on x, so we can rewrite
Eq. 3.8 as
Crotal = C/ Adx = C)\Q/ dz = C Ay R2. (3.8)
D D

Applying the po obtained by the temperature model, we obtain the total capacity of a

d gen gen
network, and we denote total for the ideal case, when po = p5*, and Cy,,; when g = 15

3.3.2 Numerical Analysis for the Mean Capacity of the Secondary Net-
work

In this section, we demonstrate the application of the equations developed previously.
We examine the achievable per-link capacity (C) of a secondary network and the total
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capacity (Cioqr) of this network under some typical situations. For this analysis, we con-
sider the primary user as a UMTS network and the secondary user as an UWB network,
WiMedia. We develop this analysis following the ideal and the generalized I'T models.

Concerning to UMTS or the primary network, we consider a primary user’s intensity
(A1) of 0.02 users per km?. This corresponds to 60 active mobile stations in a macro-cell
with radius equal to 30 km. According to [112], the transmission power (p;) of the UMTS
mobile stations is equal to 250 mW or 24dBm and the PUs bandwidth (B;) is 5 MHz.

For the secondary network or WiMedia, the bandwidth (B) is 528 MHz [118| and we
consider Ry = 10 m as the communication range of the secondary users (i.e. maximum dis-
tance between a secondary transmitter and a secondary receiver). This value corresponds
approximately to the range of the IEEE 802.15.3a specification using UWB. Depending on
the interference temperature model, the transmission power ps is defined as pi? or g
and the secondary user’s intensity (\2) is equal to 3 users per m?.

The IT model includes not only power from primary and secondary transmitters but
also the interference power of another source of interference which as been named as base
interference. However, to provide an upper bound on the achievable capacity by the sec-
ondary network, we consider environments with no interference (i.e. psz = 0). Finally,
the last parameter to complete the system is Interference Temperature Limit (77). This
parameter was set to 50000 K, same as other studies of the I'T model developed to quantify
the capacity achieved by the secondary network and the interference caused to the primary
network such as [113].

Considering these parameters for the ideal case we use Lemma 3.3 to obtain the SUs
capacity for « = 3 and a = 4. In the first case we obtain an average SUs transmission
power (pi?) of -99 dBm. With this SU power, the achievable per link capacity (C?) using
Eq. 3.7 is 5.8 Kbps. Therefore, the total achievable capacity (Ctigml) of the secondary
network present in a 100m radius secondary cell (R) is 545 Mbps. This value is obtained
using Eq. 3.8. In the case of a = 4, the average SUs transmission power is -97.37 dBm and
the achievable per-link capacity (C?) is 9.22 Kbps. Thus, the total achievable capacity
(Cid ) for the case o = 4 is 869 Mbps.

For the generalized model, in this scenario, the communication is not possible if we
consider the same parameters. To allow the transmission of SUs we must increase the
bandwidth (B) of the secondary network, which is in fact one of the characteristics of
WiMedia’s medium access control (MAC) layer [117]. The WiMedia mobile station incor-
porates a MAC layer providing multimedia Quality of Service (QoS) and a physical layer
based on multi-band orthogonal frequency-division multiplexing (MB-OFDM). This tech-
nology is well known to have robust link characteristics, meanwhile the multi-band aspect
allows spectrum flexibility and support different channel modes. WiMedia’s MAC layer
uses a bandwidth reservation system called Distributed Reservation Protocol (DRP). The
DRP provides a bandwidth reservation system that assures QoS support for multimedia
traffic. This ensures that the streaming media will continue to have the bandwidth it needs
once a reservation is established and without interference from other users [117]. Therefore
and in order to study the performance of the generalized model, the bandwidth (B) of the
secondary network was increased of 57 MHz. So, we increase the SUs bandwidth from 528
MHz (i.e. minimum channel bandwidth of WiMedia systems) to 585 MHz.

Considering the same parameters used for the ideal case, but now with a SUs bandwidth
(B) of 585 MHz, applying again Lemma 3.3 with a path loss exponent o = 3, we obtain
analytically an average SUs transmission power (u3”") of -104 dBm. With this SU power,
the achievable per link capacity (C9") using Eq. 3.7 is 2.22 Kbps. Therefore, the total
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Figure 3.2: Mean SU Per-link Capacity (Kbps) as a function of the path loss exponent («)

for the Ideal case with a secondary user’s intensity Ao equal to 3 users per m?.

achievable capacity (CfoetZl) using Eq. 3.8 of the secondary network present in a cell with 100
m radius (R) is 209 Mbps. In the case of o = 4, we obtain better performances compared
to the case a« = 3. The average SUs transmission power is -81.44 dBm and the achievable
per-link capacity (C9¢") is 297 Kbps. Thus, the total achievable capacity (Cyy,,) for the
case o = 4 is 2.79 Gbps.

In Figure 3.2, we analyze the performance of the achievable capacity (C??) as a function
of the path loss exponent (c). This figure presents the behavior of C' for typical values
of a. Therefore, we consider values from o« = 3 to & = 6. These path loss exponents are
used in relatively lossy environments (i.e. @ = 3) and in indoor environments (i.e. from «
=4 to a = 6).

To understand the behavior of C*® as a function of « plotted in Figure 3.2, we must
take into account two different effects: the transmission effect and the reception one. In
the transmission effect, with the increase of o, mobile users generate less interference and
hence, the available transmission power of the SUs (ui?) and the value of K also increase.
These results are justified by Lemma 3.1, Eq. 3.3 and Eq. 3.5. On the other hand, the
reception effect occurs due to the attenuation of the radio signal as it propagates through
space. Here, the received signal decreases with the increase of the path loss exponent. In
this case, the reception effect appears for values of «a higher than 6. With the SU total
per-link capacity ranging from 5.8 Kbps to 12.31 Kbps, from Figure 3.2, we can observe
that the ideal IT model is robust against the variation of path loss exponent («).

Now, using the parameters presented before, we analyze the behavior of the achievable
capacity obtained by the secondary network when the secondary users’ intensity (M) is
increased (i.e. when different load conditions are considered). Figure 3.3 presents the
achieved mean SU per-link capacity as a function of the secondary users’ intensity (A2)
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Figure 3.3: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (A2) for the ideal IT model with B = 528 MHz for the cases a=3 and a=4.

following the ideal IT model. As we can see in this figure, with the increase of the secondary
users’ intensity (\2) the allowable SUs transmission power (14) decrease and hence, the
achievable SUs capacity is diminished. These results can be verified in Eq. 3.5 and Eq. 3.5.
We also notice in this figure that the achievable per-link capacity in the case of a = 4
is slightly higher compared to the case a = 3. In the case of the achieved mean total
secondary network capacity (ngml) as a function of the secondary users’ intensity (\2),
the total SUs capacity remains almost constant for the ideal case with a = 3 and a = 4.
This behavior obey Eq. 3.8 presented in section 3.3.1.

Figure 3.4 and Figure 3.5 plot the achieved mean SU per-link capacity (C9¢") as a
function of the secondary users’ intensity (A2) for the generalized IT model. Here again,
in order to analyze the performance of the generalized model the SUs bandwidth (B) was
increased from 528 MHz to 585 MHz. In Figure 3.4 and Figure 3.5 we observe the same
behavior occurred for the ideal case plotted in Figure 3.3. This is that the achieved mean
SU per-link capacity is higher for the case a = 4 than for the case o = 3. These results are
justified by Lemma 3.1, Eq. 3.3, Eq. 3.4 and Eq. 3.5. These expressions states that with the
increase of a, MSs generate less interference and hence the available transmission power
of the SUs ,ugd or x5 and the value of K also increase. For the generalized approach, in
Figure 3.5 we notice that the maximum achievable mean SU per-link capacity for o = 4 is
1.74 Mbps, meanwhile the maximum capacity for @ = 3 in Figure 3.4 is only 13.5 Kbps.
In the case of the achieved mean total secondary network capacity (C")) as a function
of the secondary users’ intensity (Az2), the total SUs capacity remains almost constant for
the generalized case with a = 3 and a = 4.

In order to directly compare the performances in terms of mean SU per-link capacity
of the ideal and the generalized I'T models, we have set the SUs bandwidth B to 585 MHz
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Figure 3.4: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (A2) for the generalized IT model with B = 585 MHz for the case a = 3
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Figure 3.5: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (A2) for the generalized IT model with B = 585 MHz for the case a = 4.
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Figure 3.6: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (A\2) for the ideal and generalized IT models with B = 585 MHz for the case o
= 3.

for both approaches in Figure 3.6 and Figure 3.7. Figure 3.6 plots the mean SU per-link
capacity for the case a = 3 and Figure 3.7 for the case @ = 4. As we can see in Figure 3.6
the ideal model outperforms the generalized approach for the case a = 3. However, for a =
4 the generalized case obtains better performance due to the higher allowable transmission
power 5", This behavior can be verified in Eq. 3.4.

3.4 Upper bound of PU Outage Probability

The latter section considers the constraint given by the Interference Temperature model
with respect to the mean transmission power. However, if the distribution of the sum of
the interferences is roughly symmetric, about 50% of PUs are not guarenteed the maximum
allowed transmission power. This means that this averaged condition can only loosely gives
an idea of the effect of interference, but cannot predict how probable is the occurrence of
an outage of the PU network. Here, we use the concentration inequalities from Malliavin
calculus to find an upper bound probability Pk, of outage of a PU due the interference
caused by the SUs as a function of py. Therefore, the system can be designed, such that
the outage probability of the PUs is smaller than g = Pi,).
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Figure 3.7: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (A\2) for the ideal and generalized IT models with B = 585 MHz for the case o
= 4.

3.4.1 Calculations: Upper bound of PU Outage Probability

Using the I'T model and considering the ideal case, we want to find an upper bound
for the probability of the following event:

TL(f:)kBi = Y pa(wi,0)+ > pa(z:,0) £ F,
T;EW T, EwWs
where the primary user to be analyzed is placed at the origin.

Lemma 3.4 Let wy and wp be two independent Poisson point processes on R™ with in-
tensities g and Ag. Define G4 and Gp as follows:

Galwa) = > falX),

Xicwa

Gplwp) = Y fs(X),

X,Ewp

for fa and fp two non-negative measurable real-valued functions. Then, the random vari-
able

G =Ga(wa) +Gp(wp)

has the same distribution then the marked Poisson point process with intensity A = Aa+Ap
and kernel

KGea) = £a@6 (- 205 )+ o (- 220 ).




62 3. INTERFERENCE TEMPERATURE MODEL IN COGNITIVE RADIO NETWORKS

Proof: We use Eq. 2.3 to obtain

E)\ [e—sG} _ E)\ [e—S(GA—l-GB)] _ E)\ [e—SGA} E)\ [G_SGB]

~ exp <_ / (1 — e~sfal@) dAA(:c)>
X exp <— / (1 — e s/B@) d)\B(w)>

~ e <_ / (1— e*)K(z,dy) d(ha + A@(m)) :

which concludes the proof. N

Lemma 3.5 Let w be a marked Poisson point processes on R™ x R™ with intensity A and
kernel K(z,y) and define G as follows:

Gw) = > f(Xi,Y)),

X;€w

for f a non-negative measurable real-valued function. Then, fort € R"

DuG) = [ F(twK . dy)
Proof: The proof follows straightforwardly from the application of Definition 2.1 on
F(w). M
We set mp = E) [F] and
op & / D F(w) K(z, dy)\ da.

We obtain Pj,), via concentration inequalities, using Theorem 2.5

t
P(F >t+mp) <exp <——g (1 + t_s>> .
2s v

where g(z) = (14 z)In(1 + z) — . Using Lemmas 3.4 and 3.5, we obtain that

mgp = E)\ Z pQ(xia O) + E)\ Z p3(l’z,0)] 5
TiEwo TiEW3
v = B o] 1B S p§<xi,o>] ,
TiEw2 Ti€w3
and we use Lemma 3.1 to find mp:
A A
mprp = CWT(/,LQ 2 + K3 3) . (39)

(a—2)
To find vp, it suffices to use the same lemma exchanging o by 2a and p; by p?:

 2am (g + 113)3)
T (3.10)
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Since the function max(u;, puir~) is decreasing with respect to r,

s = max(pa, p3).
Assuming po > ps and taking T7(f;)kB; =t + mp, then

TL(fZ)]{IBZ —mg
212

I <1 N (TL(fz')k:Ji;— mF)M2>> Py (3.11)

P(F > Ty (fi)kB;) < exp <_

This inequality holds for mp < Tr(f;)kB;. The generic case is similar and it suffices to
define

F £ % Z p1(x;,0) + Z pa2(x;,0) + Z p3(x;,0),

T;Ewl T;EW T;EWs3
SO
— Om(%ﬂl)\l + poAa + p3A3)
F (O[ _ 2) )
and

2
2(17‘1’((%,&1) A1+ p3Ae + p3Xs)
v (20 — 2) ’

In the generic case, s is given by

B;
S =max | — K1, U2, R
BM1M2M3

and from here we apply Theorem 2.5.

3.4.2 Results: Upper bound of PU Outage Probability

In this section, we take into account a specific outage probability of PUs to design
the allowed transmission power for SUs following the ideal IT model. We use the same
parameters considered in Section 3.3.2 to compare this power with the results of that
section such that we can evaluate the trade-off of system reliability and capacity. Besides,
we set Ay = 3 users/m? and analyze the results for o = 3 and a = 4.

We define ud as the transmission power such that the outage probability of PUs is
smaller than ¢ in the ideal case and 7 as the fraction of this transmission power with
respect to pi! calculated in the previous section, i.e. ud = n(q)ubl. Since ¢(n) is a bijection
on (0,1), there exists a function 7(q). We denote also C'? as the mean capacity per link
of a SU in function of ¢. Setting A3 = 0, we can rewrite Eq. 3.11 as a function of these
variables to obtain:

o (22T m@ -1 2(e—1)1-n(g) )
- p<2(a—2) n(q) l<1+(04—2) n(q) >>

The function 7(q) is presented in Figures 3.8 and 3.9 for & = 3 and « = 4 respectively.




64 3. INTERFERENCE TEMPERATURE MODEL IN COGNITIVE RADIO NETWORKS

0.9

——n as a function of q for the Ideal case with 7‘2 =3anda=3
0.6 : : B

0.2 i

0.1 : : i

i i i i i i i i
0 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 3.8: Fraction of the transmission power (1) as a function of the outage probability
of the PUs (q) for the ideal case with o = 3.

0.8

——n as a function of q for the Ideal case with kz =3andoa =4
0.5 4

S 041 4

0.3 b

0.1f .

i i i i i i i i
0 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 3.9: Fraction of the transmission power (1) as a function of the outage probability
of the PUs (q) for the ideal case with o = 4.
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Figure 3.10: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (\g) for different values of the PUs outage probability following the ideal IT
model with B = 528 MHz for the case o = 3.

We can notice from Figure 3.8 and Figure 3.9, that in order to guarantee that the outage
probability of PUs remains between 1% and 5%, we must reduce the SUs transmission
power p4! between a 26% and a 22% respectively for the case a = 3 and between a 34%
and a 28% respectively for the case o = 4.

Now, using Figure 3.10 and Figure 3.11, we evaluate the achieved performance in terms
of mean SU per-link capacity for different values of the PUs outage probability following
the ideal IT model. Figure 3.10 plots the mean SU per-link capacity as a function of the
secondary users’ intensity (A2) for the case & = 3 and Figure 3.11 for the case o = 4. Both
figures show the achievable mean SU per-link capacity for 1%, 3% and 5% of the PUs outage
probability and also plots the original case without restriction on the SUs transmission
power ,uéd. As we can see in Figure 3.10 and Figure 3.11 with the increase of Ay, the
difference between the restricted cases and the non restricted case become shorter. This
means that in order to guarantee that the outage probability of PUs remains between 1%
and 5%, for a scenario with a large number of SUs, the restriction of the SUs transmission
power /ﬂéd does not lead to a significant reduction with respect to the mean SU per-link
capacity.

3.5 Summary

This chapter has proposed the utilization of the Poisson Point Process and concentra-
tion inequalities as new analytical methods to be applied in the Interference Temperature
model. These mathematical tools help us to evaluate, in a simple fashion, the achievable
capacity by a secondary network, the interference caused to the primary network and the
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Figure 3.11: Mean SU Per-link Capacity (Kbps) as a function of the secondary users’
intensity (\g) for different values of the PUs outage probability following the ideal IT
model with B = 528 MHz for the case o = 4.

outage probability of the primary network when the secondary network transmits. For this
purpose, we firstly developed the necessary expressions to estimate the mean base inter-
ference, the mean interference caused by other SUs and the mean interference caused by
active PUs. As we have seen through this chapter the equations developed by our model
remain quite simple. Using these results, we estimated the allowed SUs transmission power
to guarantee that the PUs activity will not be affected by the SUs transmission. The later
analysis was performed for the ideal and the generalized I'T models. Afterwards, using the
Shannon-Hartley theorem, we derived the expressions of the mean SU per-link capacity
and the total secondary network capacity. Finally, by the use of Concentration Inequalities
we determine an upper bound on the outage probability of the primary network.

In order to obtain numerical results using our expressions in a realistic scenario, we have
examined the achievable capacity of an UWB system, WiMedia, as a secondary network
and a UMTS network as the primary network. Our results show that for this scenario, the
secondary network achieves a limited performance in terms of capacity, compared to the
real capabilities of an UWB standard (e.g. IEEE 802.15.3a). However, these performances
can easily be improved if the secondary network operates with a larger channel bandwidth,
which is one of the characteristics of WiMedia’s MAC layer. Furthermore, we have demon-
strated that SUs communication is possible causing only minor damage to primary users
following the ideal and the generalized interference temperature model. Moreover, by the
use of Concentration Inequalities, we have established that in order to guarantee than
only 1% of the PUs is affected by the SUs transmission, it will only cost approximately
25% of the mean allowable SUs transmission power and 20% for a PUs outage probability
below 5%. In addition we have demonstrated that, for a scenario with a large number of
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secondary users, the restriction of the secondary users transmission power does not lead to
a significant reduction of the achievable per-link capacity of the secondary network.




68 3. INTERFERENCE TEMPERATURE MODEL IN COGNITIVE RADIO NETWORKS




69

Chapter 4

Upper bound of loss probability of
an OFDMA system

4.1 Introduction

In this chapter, we present another application of the Poisson point process modeling
a wireless system based on Orthogonal Frequency Division Multiple Access (OFDMA),
where future systems will widely rely. OFDMA can satisfy end user’s demands in terms
of throughput. It also fulfills operator’s requirements in terms of capacity for high data
rate services. Systems such as 802.16e and 3G-LTE (Third Generation Long Term Evo-
lution) already use OFDMA on the downlink. For the uplink, 802.16e has also adopted
OFDMA, while 3G-LTE uses SCFDMA (Single Carrier Frequency Division Multiple Ac-
cess). OFDMA can also be possibly combined with multiple antenna technology to improve
either quality or capacity of systems.

Dimensioning of OFDMA systems is then of the up-most importance for wireless
telecommunications industry. As usual, the model introduced in this contribution takes
into account the randomness of user locations and user traffic. It provides also an upper
bound of loss probability in terms of sub-channels.

This chapter first provides a short introduction to OFDMA air interfaces, by providing
some insights on sub-channel concepts and OFDMA jargon (see section 4.2). The dimen-
sioning analytical model is first developed for a deterministic wireless channel, taking only
into account the path-loss effect (cf. section 4.3). Section 4.4 analyses a more realistic
situation, where wireless channel also encompasses shadowing effects. Section 4.5 extends
the results to a multi class user traffic. The accuracy of analytical model is evaluated by
comparing them with simulation.

4.2 Introduction to OFDMA air interfaces

OFDM (Orthogonal Frequency Division Multiplex) is a multi carrier technique espe-
cially designed for high data rate services. It divides the spectrum in a large number
of frequency bands called sub-carriers that overlap partially in order to reduce spectrum
occupation. Overlapping is made possible because the different sub-carriers are made or-
thogonal to each other by choosing a sub-carrier spacing multiple of the inverse of the
OFDM symbol duration.

Each sub-carrier has a small bandwidth compared to the coherence bandwidth of the
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Figure 4.1: OFDMA sub-carrier allocation principle

channel in order to mitigate frequency selective fading. User data is then transmitted in
parallel on each sub carrier.

Systems such as ADSL (Asymmetric Digital Subscriber Line), digital audio broadcast-
ing (DAB) and digital video broadcasting (DVB-T) rely on OFDM modulation. Most
recently, power line systems (Home Plug) and WiMedia (short range communications)

have also adopted OFDM.

In OFDM systems, all available sub-carriers are affected to one user at a given time
for transmission. OFDMA extends OFDM by making it possible to share dynamically the
available sub-carriers between different users (see figure 4.1). In that sense, it can then be
seen as multiple access technique that both combines FDMA and TDMA features.

In practical systems, such as WiMAX or 3G-LTE, the sub-carriers are not allocated in-
dividually for implementation reasons mainly inherent to the scheduler design and physical
layer signaling. Several sub-carriers are then grouped in sub-channels according to different
strategies specific to each system. The unit of resource allocation is the sub-channel.

For example, in WiMAX, there are three modes available for building sub-channels: FUSC
(Fully Partial Usage of Sub-channels), PUSC (Partial Usage of Sub-Channels) and AMC
(Adaptive modulation and coding). In FUSC, sub-channels are made of sub-carriers spread
over all the frequency band. In AMC, the sub-carriers of a sub-channel are adjacent instead
of being uniformly distributed over the spectrum. FUSC provides an averaging effect on
quality that makes it more suitable for mobile application, while AMC is more adapted for
fixed users.

The sub-channel concept makes it easier to schedule radio resources. However, it be-
comes more difficult to assess channel quality as it is composed by different sub-carriers
that can possibly span over several timeslots. An extensive literature has addressed that
problem, and we will assume in the following, that whatever the sub-channelization scheme
adopted, it is possible to consider an equivalent single channel gain for all the sub-carriers
making part of a sub-channel (for example the average of channel gain computed on some
sub-carrier pilots). We also assume that subcarrier allocation to different sub-channels is
done slot by slot.
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Figure 4.2: OFDMA sub-channel principle

4.3 Upper Bound under a Deterministic Gain
We state the following assumptions:

Assumption 1 The position of each user is independent of the position of all other. The
users are indistinguishable, i.e., the positions are identically distributed.

Assumption 2 The time between two consecutive demands of users for service in the
system (or inter arrival time) is exponentially distributed.

We define p(x) as the surface density of inter arrival time in s~'m~2, constant in time.

Hence, for a region H C B, the mean inter arrival rate is h = fH p(z)dz in s™1.

Assumption 3 The service time for every user is exponentially distributed with mean 1/v.

Assumption 4 The cell C is circular, with radius R and with the antenna in the center.

Assumption 5 The channel gain depends only on the distance from the transmitting an-
tenna.

Assumption 6 The surface density of inter arrival time is constant.

These assumptions are commonly done to simplify the mathematical treatment and are
quite reasonable. If we show that the point process given by the location of the users is
a Poisson process, then it is sufficient to have the two first moments in order to apply
theorem 2.5 and then calculate an upper bound Pk, for the probability P, of loosing
communications due to a lack of sub-channels. To do this, we consider the following lemma:

Lemma 4.1 Considering assumptions 1, 2 and 3, the point process w of the active users
positions is, in equilibrium, a Poisson process with intensity d\(x) = p(x)v=! da

Proof: For a region H, in virtue of assumptions 2 and 3, the number of receiving (i.e.,
active) customers is the same as the number of customers in an M/M /oo queue with input
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rate h and mean service time v . It is known [100] that the distribution of the number of
users U in equilibrium is then

PU=u) = %e_h/y.
It follows that A(H)
ANH) :h/I/:/H@ dz.

Using assumption 1 concludes the proof. L
Without loss of generality, we consider the cell C has its antenna located at the origin.
We are looking at evaluating

onsszPA</N dwzzvo>,

where N (x) is defined by

Co

PKg ’
W log <1 + )
? (L +n)|=["

N(z) =

and g is the mean gain due to shadowing, Cj is the throughput requested by users, I is
the interference generated by outer cells and 7 the noise. We will not take into account
interference generated by outer cells, so I = 0. Note that, with respect to z, N is increasing
and piecewise constant. Let Rj, j =1, ---, Ny be the values such that N(xz) = j for
x € [Rj, Rj+1). We can determine them by

R PKg L/
T n(2€0/GW) — 1) '

According to Eq. (2.2) for a marked process, it is then clear that

Nmafr

E,\[/Ndw] /NdA —”"Z

We denote by my the last quantity. Moreover,

Nmaac

/NQd)\ Trij ).

We denote by vy the last quantity. We take Ny of the form amy, so that according to
Theorem 2.5:

P, </N dw > osz> < Pyyp(a)

where

Pauy(@) = exp ( UN g ((a - 1)mNNmam>> _

UN
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| o |15 ]16| 17 [18] 1.9 | 2 |
Py | 018 ] 0.1 ] 0.04 | 0.02 | 0.008 | 0.003
A [098]1.1|115] 13| 1.3 | 14

Table 4.1: Comparison between Py, and Fj,ss for deterministic gain.

It is then natural to verify how far this bound is from the exact value of the loss

probability in simple situations where simulation is available. We used here v = 2.8,
Co = 200 kb/s, W = 250 kHz and P,K/(n) = 1 x 10%. For the surface density of inter
arrival time we use p = 0.0006 min~'m~2 and the service time is 1/ = 1 min, so,

the mean number of users in the system is 7R?p/v = 18.85 users. If we consider the
shadowing with 0 = /10 dB and p = 6 dB, we can use the mean gain g, giving g = 1/12.
Thus, users in the cell boundary use 3 sub-channels, so Ny, = 3. For a varying from
1 to 2, which corresponds here to loss probabilities about 2% or 0.01%, we computed
A= 10g1o Psup/Ploss~

Though concentration inequalities are usually thought as almost optimal, the results
shown in Table 4.1 seem at first glance disappointing. Note though that the computation
of the bound is immediate whereas the simulation on a fast PC took several hours to get a
decent confidence interval. Note also that the error is about the same order of magnitude
as the error made when using a usual trick, which consists in replacing infinite buffers by
finite ones in Jackson networks (see |71]). The margin provided by the bounds may be
viewed as a protection against errors in the modeling or in the estimates of the parameters.

4.4 Upper Bound under a Random Gain

Let us determine now the upper bound probability Pi,, for Pj,ss without assumption 5
but holding all other assumptions of the preceding section. Lemma 4.1 still holds, since it
is a consequence of assumptions 1, 2 and 3. We also state two other natural assumptions:

Assumption 7 The random gain is totally described by the log-normal shadowing, with
mean 1 and standard deviation o, both in dB.

For a user at distance d from the origin, the gain is G = 1/S, where S follows a log-normal
distribution:

£ (10logyoy — p)?
psly) = o e [Ty |

where £ =10/ In 10.

Assumption 8 A user is able to receive the signal only if the signal-to-interference ratio
s above some constant Buyin.

This means, in particular, that the number of sub-carriers needed by a transmitting user
is surely bounded by

Co
Nmax = .
{Wlogz(l + ﬁmm)w

The situation is slightly different from that of Section 4.3, since the functional depends
on two random factors: positions and gains. Consider now that our configurations are
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of the form (z,s) where z € R? is still a position and s € R is a gain. Since gain and
positions are independent, we then have a Poisson process on R? of intensity measure
d\(z) ® ps(y) dy. Thus we want to evaluate an upper bound of

P,\</Ndw2N0>

where

Co

DK
W log <1 + )
? nyllz|”

N(I‘, y) =

According to Theorem 2.5, we must compute

my = / Nz, y)ps(y) dy dA(z)

and
VN = sup/]nyyF(w)Pps(y) dy d\(z) = /N2(w, y)ps(y) dy dA(x).
Let By = oo and f3; = 2Co/Wj) _ 1 forj=1,--+, Npaz — 1. For j=1,--+ | Npaz — 1, let
Aj = / Lylal <P /s, 3Ps(y) dy dz
CxR*
and Ag = 0.

Lemma 4.2 For j=1,--- , Npaz — 1,
Aj = mR*Q(a — (I R) + weX/ 25/ Q(C I R - 2/¢ — ),
where

10~y
ocln10’

1
aj = —(10logyo (R K/nf;) — n) and ¢ =
Proof: We can write
A= [ BSlel < ) ar

where §; = P,K/nf;. Remind that S is equal in distribution to exp(N (u,0?)€) with
¢ =1n(10)/10. Thus after a few manipulations, we get

R
A; :277/ r Qo — Clnr) dr,
0

where
u?

1 x
Qx) = E/_m exp(— 7) du.

The final result follows by a tedious but straightforward integration by parts. L
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Theorem 4.3 For any function § : R — R,

Nm(le 1
[ o0 wwsto) dy e 00) (As = Aj1) + 0(Nmaw) (RRE — A, 1).
7j=1
Proof: Since N can take only a finite number of values, we have

Nmaac

/9 (z, y))ps(y) dy dA(z =£ Z 0(j / (2, y), N(z,y)=j}Ps(y) dy dx.

CxR*

Now we see that

for j =1, , Nypaz — 1 and N(z, y) = Nppae when y|jz||” > Bx,..._1. The proof is thus
complete. O
We used the same set of values as for the simulation of Section 4.3 together with assump-
tions 8 and 7 with (,,;, = 0.2. Results of Table 4.2 show that the theoretical bound is
rather stable when gains become stochastic.

| o [15]16][ 17 18] 19 ] 2 |
Pyup [ 02]0.1]0.05]0.02 | 0.01 | 0.004
A J17]18] 21 [23[24] 26

Table 4.2: Comparison between Pk, and Pj,ss for random gain.

4.5 Multi class user traffic

4.5.1 Upper bound of loss probability

We consider in this section, M classes of users. Class j users request a throughput of
Cj. The configurations associated to each class are of the form (z,y), where x € R? is a
position, y € R is a gain. Since gain and positions are independent, we then have for each
class of users a Poisson process on R? of intensity measure \;(z) dz ® ps(y) dy, where
Aj(x) = pj(w)z/j_l and j is the user class.

For the sake of computational simplicity, we assume in the following, that p;(x) is
constant with respect to x but the theory is still valid unaltered otherwise. Furthermore
we consider that the random gain is totally described by the log-normal shadowing, with
mean p and standard deviation o, both in dB. For a user at distance d from the origin,
the gain is G = 1/5, where S follows a log-normal distribution as in section 4.4. We also
assume that a user is able to receive the signal only if the signal-to-interference ratio is
above some constant [3,,;,. This means, in particular, that the number of sub-channels
needed by a transmitting user of class j is surely bounded by

mar __ Cj
Nj B ’7W10g2(1 + ﬂmm)—‘ .

Without loss of generality, we consider the cell C' has its antenna located at the origin. We

are then looking at evaluating
P)\</NdeNo>,
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where

Cj

PK
Wlogy 1+ ———
nyllz|[?

N(z, j,y) =

The functional depends on two aleas: positions and gains. It has also an additional pa-
rameter that describes the class of the user.

Theorem 4.4 With the assumptions of this Section,

P, ( / N do > amN> < Po(a)

where

Pt = (27U

max

y — max
with Nypge = max; Nj ,

M
m = Z/N(m, J> YA (@)ps(y) de dy,
=1
and
M
v = Z/N(w, J, y)*Aj(2)ps(y) do dy.
j=1

Proof: Let A; be the intensity of the Poisson process representing class j customers
and A = ij\i 1 Aj. Let w be a Poisson process on R? of intensity A. Consider the probability
kernel

Aj()
Az)

Kz, {j}) =

For a configuration w = {z,, n > 1}, there is thus a sequence of marks {u,, n > 1},
u, € {1,--+, M} for all n > 1, corresponding to the position dependent marking ac-
cording to the kernel K. According to the properties of Poisson process, the process
wj = {xp,u, = j} is a Poisson process of intensity ;. Now add to each point of w,
an independent mark vy, corresponding to the random gain, distributed according to a
log-normal distribution. Denote by @ this point process which turns to be a Poisson pro-
cess since the marks are independent from the positions. From section 2, we know that
the process, the atoms of which are @ = (xy,,up,yn), is a Poisson process of intensity

> K {iH)A(@)ps(y) do dyd; -

- (@)
By | AU )| = Y [ fei) M @s) de dy
j=1

n>1 )

M
= Y [ s @) dr dy
=1
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We are thus in position to apply the Theorem 2.5 to the Poisson process w. The difference
operator in Definition 2.1, is here equal to

Dw»jva((’D) = F((‘_J U {$7jyy}) - F((’D)7

noting that max (D, ;,F(@)) = 4. That is to say, we look at the impact of adding a user
at position z, with class j and gain y. For F' = [ N dw, we obtain

Dy jyF (@) = N(z, j, y) < Nj".

Thus, inequality (2.7) holds with s = max; N,

M
my =3 [ N g o) (@ps(o) do
j=1
and

M
w=> / N(z, 4, 9)*\(2)ps(y) do dy.

[

Both m and v can be computed taking advantage of the fact that N is piecewise

constant (see section 4.4). Let Gy = oo and ;1 = 2Ci/WE) _ 1 for k=1,---, Njmaw — 1.
Fork=1,---, ijax—l, let

Ajk = / Lyl <P/ yps(y) dy dz
CxRt+
and Ag = 0. It can proved from results of section V that for kK =1,---, IV =1,

Ajp = TR*Q(aj g — (In R) + me?/CT25k/CQ(C I R — 2/¢ — a;),

where

1
Ak = ;(1010g10(PtK/775j,k) —p) and ¢ =
We finally obtain the following formula.

Theorem 4.5 For any function 0§ : R — R,

Naw—1

[0, wps(o) dy dr) = 3 OW)A = i) + BN — Agoa).
=1

4.5.2 Numerical application

In this section we will apply the upper bound calculated previously to the dimensioning
of sub-channels in a OFDMA system. We consider here a cell, where two classes of users are
competing to the access of available sub-channels. More precisely we consider here M = 2.
The capacities required by each class of user is fixed to C7 = 200 kb/s and Cy = 100kb/s
respectively. The path-loss exponent is fixed to v = 3.8 and the sub-channel bandwidth
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is equal to W = 250 kHz. We also consider P,K/n = 1 x 10'2. For the surface density of
inter arrival time we use p; = 0.0006 min~'m~2 and ps = 0.0006 min~'m~2. The service
times are 1/ = 1 min and 1/v5 = 0.5 min, so the mean number of users in the system is
TR?p; Jv1 = 18.85 for class 1 users and TR?po /vy = 9.425 for class 2 users. We consider
the shadowing with o = /10 dB and 1 =6 dB. We have also considered (3, = 0.2

We made « varying from 1.6 to 1.8, by steps of 0.05. This corresponds here to an upper
bound of loss probability varying between 0.0068 and 0.045 As the analytical expression
obtained in the previous section, is an upper bound of the real loss probability, applying it
to dimension an OFDMA cell will lead to an over dimensioning in terms of sub-channels.
We have computed the number of sub-channels Ny with the analytical expression of upper
bound of loss probability. We have computed by simulation the number of sub-channels
required if the upper bound probability is used as the loss probability to dimension the
System.

Results of table 4.3 show the over dimensioning is about 20% in terms of sub-channels.
We should note that the computation of the upper bound and associated Ny is immediate
whereas the simulation on a fast PC is more tedious to get a decent confidence interval.
The margin provided by the bounds may be viewed as a protection against errors in the
modeling or in the estimates of the parameters.

a 16 | 165 | 17 | 175 | 18
Pop 0.0445 | 0.0286 | 0.0180 | 0.0111 | 0.0068
No.., 452 | 467 | 48 | 495 | 50.9
No.., 38 39 | 404 | 416 | 428

Table 4.3: Difference in terms of sub-channels obtained by simulation and analytically.
No,,, is the number of sub-channels obtained with the analytical upper bound, whereas
No,,,, is the one obtained by simulation for the same loss probability value as Pgy,.

4.6 Summary

Using the concentration and deviation inequalities and the difference operator on Pois-
son space, we have calculated the upper bound probability of overloading the system by
high demand of sub-carriers, over path loss and shadow fading. To do this we have found
the first and second moment of the marked Poisson point process of users. It is possible to
find an upper bound for the overloading probability, even in a relatively complex system,
which is analytically computable in a very simple fashion. The method works for any
functional of the configurations, possibly enriched by marks, which depends only on the
positions of each user. It does not work for functionals involving relative distance between
two or more users. Actually, for such a functional F', there is no bound on D, F'(w) valid
for all z and w.
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Part 11

Algebraic Topology with random
Simplicial complexes
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Chapter 5

Algebraic Topology

5.1 Introduction

The two most important advantages of the network presented throughout this work are
that we do not need to have a central station nor to know the coordinates of the sensors.
The first advantage is given by the randomness of the system, and its model was presented
in Chapter 2. The second one comes from the topology of the network. The recent works
of Ghrist and his collaborators [41, 23] show how, in any dimension, algebraic topology
can be used to compute connectivity and coverage of a given configuration of sensors by
finding the homology of the network.

In this chapter we introduce some basic tools from algebraic topology. For further
reading on topology, see [58, 6, 85]. The main objective of this chapter is to create a
link between the physical concepts of an arbitrary sensor network and the its topological
representation.

5.2 Theory

Graphs can be generalized to more generic topological objects known as simplicial
complexes. While graphs model binary relations, simplicial complexes represent higher
order relations. Given a set of points V', a k-simplex is an unordered subset {vg, vy, -+, vk}
where v; € V and v; # v; for all @ # j. The faces of the k-simplex {vg, vi, --- , v} are
defined as all the (k—1)-simplices of the form {vg, - -+, vj—_1, vj41, -+, vp} with0 < j < k.
A simplicial complex is a collection of simplices which is closed with respect to the inclusion
of faces, i.e., if {vg, vy, -+, vi} is a k-simplex then all its faces are in the set of (k — 1)-
simplices.

Given U = (U,, v € ) a collection of open sets, the Cech complex of U denoted by
C(U), is the abstract simplicial complex whose k-simplices correspond to (k + 1)-tuples of
distinct elements of U that have non empty intersection, so {vg, vy, - -+, vi} is a k-simplex
if and only if ﬂf:o Uy, # 0.

One can define an orientation for a simplicial complex by defining an order on vertices.
A change in the orientation corresponds to a change in the sign of the coefficient as

[’Uo,“‘,’l}i,“‘,'l)j,“‘,’l)k]:—[7)07"'7’Uj7"'7’l)l'7"','l)k].

Let X be a simplicial complex. For each integer k, Cy(X) is the vector space spanned
by the set of oriented k-simplices of X. The boundary map 9y is defined to be the linear
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v1 V1
vy vy M
/\ + - M y
) vo ’U.O u.2 vo v2 Yo v2 Filled Empty
) +[v1, v2, v3]
[vo, v1] + [v1, v2] -2 [vo] — [v2] [vg, v1,v2] == [v1,v2] — [vg, v2] o —[vo,v2,v3)
+[vo, v1] [vo, v1,v2, v3] —

+[vo, v1, v3]

—[vo, v1, v2]
a) b) c)

Figure 5.1: Examples of boundary maps. In a) an applications over 1-simplices, in b) we
apply over a 2-simplex and in ¢) over a 3-simplex, turning a filled tetrahedron to an empty
one

transformations Jy : Cy — Cj_1 which acts on basis elements [vg, - - - , vg] via
k
k
Onvo, -+ 5 vr] = D _(=1)"[vo, -+, vic1, vis1, -, vel.
=0

Examples of such operations are given in Fig. 5.1.
This map gives rise to a chain complex: a sequence of vector spaces and linear trans-
formations

0 0
H O (X) 25 Cu(X) 2 Gea(X) - 25 Gr(X) 2 Go(X).
A simple lemma then asserts that for any integer k,

Ok 0 Oy1 = 0.

The demonstration of this lemma follows straightfowardly from the definition of 0. We
define ker Jy as the kernel of dy on Cj (i.e., all closed cycles), im Oy as the image of O
(i.e., the k — 1-simplices that are faces of k-simplices) and if we define

Zy, = ker O and By = im0y 1,

this induces that By, C Zj.

Cr+1 Ck Cr—1

Figure 5.2: A chain complex showing the sets Cj, Z; and Bj.

The k-dimensional homology of X, denoted Hy(X) is the quotient vector space,

 Zk(X)
- Bi(X)

H(X)
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and the k-th Betti number of X is its dimension:
B = dim Hj, = dim Z;, — dim By,.

The well known topological invariant named Euler characteristic for X, denoted by x(X),
is an integer defined by:

i=0
Denoting s as the number of k-simplices in a simplicial complex X, a well known theorem
states that the Euler characteristic is also given by:

i=0
The simplicial complexes we consider are of a special type. They can be considered as a
generalization of geometric random graphs.

Definition 5.1 The d-dimensional torus with with sides a is denoted by TZ.

Definition 5.2 Given w a finite set of points on the torus. For e > 0, we define Ue(w) =
{Ba.,. (v, €), v €w} and Cc(w) = C(Ue(w)), where By (v, 1) = {y € T, ||z — ylloo <7}

Theorem 5.1 Suppose € < a/4. Then C.(w) has the same homotopy type as U.(w). In
particular they have the same Betti numbers.

Proof:  This will follow from the so-called nerve lemma of Leray, as stated in [102,
Theorem 7.26| or [14, Theorem 10.7]. One only needs to check that any non-empty inter-
section of sets By__(v,€) is contractible.

Consider such a non-empty intersection, and let = be a point contained in it. Then,
since € < a/4, the ball By_(x, 4¢) can be identified with a cube in the Euclidean space.
Then each By__ (v, €) containing x is contained in By__(z,4€), hence also becomes a cube
with this identification, hence convex. Then the intersection of these convex sets is convex,
hence contractible. L

Definition 5.3 Let w be a finite set of points in T¢. For any e > 0, the Rips-Vietoris
compler of w, Re(w), is the abstract complex whose k-simplices correspond to unordered
(k + 1)-tuples of points in w which are pairwise within distance less than € of each other.

Lemma 5.2 For the torus ']I‘Z equipped with the product distance doo, Re(w) has the ho-
motopy type of the Cech complex Cac(w)

The proof is given in [41] in a slightly different context, but it is easy to check that it works
here as well. It must be pointed out that Cech and Rips-Vietoris simplicial complexes can
be defined similarly for any distance on T¢ but it is only for the product distance that the
homotopy type of both complexes coincides.

By Lemma 5.2, k points are forming a (k — 1)-simplex whenever they are two-by-two

closer than 2¢ from each other. We define along the thesis h(vy, -+ ,vy) as
h(’Ul,“' 7Uk) = hk‘(vla'“ 7Uk)
= I tww-viee (5.1)
1<i<j<k

which determines if a set of k distinct ordered points generates a (k — 1)-simplex.
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Proposition 5.3 Let w € ']I'g be a set of points, generating the simplicial complex Cc(w).
Then, if i > d, B;(w) = 0.

Proof: By Theorem 5.1, Cc(w) has the same homology as U (w). But U (w) is an
open manifold of dimension d, so its Betti numbers (3;(w) vanish for i > d, see for example
[50, Theorem 22.24]. L

Proposition 5.4 Let w € T¢ be a set of points, generating the simplicial complex Ce(w).
There are only two possible values for the d-th Betti number of Cc(w):

i) Ba =0, or
i) By =1.
If the second holds, then we also have x(Cc(w)) = 0.

Proof: By Theorem 5.1, C.(w) has the same homology as U(w). Now, U(w) is an
open submanifold of the torus, so there are only two possibilities:

i) U(w) is a strict open submanifold, hence non-compact
i) U (w) =T

In the first case, G4(w) = 0 by [50, Corollary 22.25|. In the second case C.(w) has same
homology as the torus, hence fg(w) =1 and x(w) = 0. 1

Proposition 5.5 Let X a compact subset of R and consider the map 7 : X — Y as
x; = ky; forx; € X, y; € Y and k a positive real constant. Denote by T,w the image
measure of w by T, i.e., T : QX — QY maps

w:ié(mi) to T*ié(k‘l'i).
=1 1=1

The application . : QX — QY maps the Poisson measure X on QX to the Poisson
measure Ar = M\ k® on QY. Moreover, if e, is the distance in'Y such that two points will
be connected, the homology of the two simplicial complexes C, (w)wesz] and Ce, (Tw),, erd

[ak]
are the same for any k if \r = \/k? and e, = ke.

Proof: A slightly changing on Propositions 6.1.7 and 6.1.8 of [99] is enough to show
that 7, maps the Poisson measure \ on 0¥ to the Poisson measure Ar = A/ k4 on QY.
Then, it suffices to realize that for z; € X and for y; € Y:

hay, o) = [ Leimei<zq
1<i<j<k
= H L ka;—ka || <2ke)»
1<i<j<k
hence
Wy ) = T Liw-gl<zes
1<i<j<k

which concludes the proof. L
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Figure 5.3: The relation between the coverage of a sensor network and its Cech complex.
In a) the individual coverages, in b) the network coverage and in c) the correspondent
simplicial complex

5.3 Applications to sensor networks

We aim to apply the definitions (k-simplexes, Euller’s characteristic and Betti’s num-
bers) and topological properties of the simplicial complexes to the connectivity and cov-
erage problems. In a very intuitive fashion, the number of k-simplices itself shows some
tendency in the network: if in two networks with identical number of sensors, one of them
has more 1-simplices than the other, this first one has a tendency to be more connected;
by the same reason, if a network has more 2-simplices than another one, the region on the
first case tends to be well covered.

In a more sofisticated way, Theorem 5.1 formalizes that, in order to determine coverage
of sensors, it suffices interpret them as Cech complexes, which is enough to applications that
need to determine only connectivity and coverage. In Fig. 5.3 we see an example a sensor
network seen as a simplicial complex: in a) we have the individual coverages, in b) we see
the network coverage and in ¢) we have the correspondent simplicial complex. Nonetheless,
sensors cannot provide it precisely in applications where they need to communicate with
a central station or data have to be passed through them, since communication amoung
them is always pairwise. The complex that represent this constraint is the Vietoris-Rips
one.

An intepretation to Euller’s characteristic is given by Proposition 5.4, where we see
that x = 0 is a necessary condition to have a complete coverage of the torus, and B3 =1
is a necessary and sufficient condition. This could in turn translate into conditions for
coverage in [0,a]? when considered as embedded in Euclidean space (i.e. not as a torus),
but then one needs to be careful about border effects. For example, one can say that

B4 = 1 is a sufficient condition for coverage of [e,a — €]%.

5.4 Summary

We have summarized in the chapter some concepts of algebraic topology to be used in
the next two chapters. First, we have defined the concept of simplicial complex, Betti’s
numbers and Euler characteristic. Then, seeing the space of k-simplices as a linear space,
it has been shown that the proper use of the linear operator named boundary map makes
it possible to calculate any of those Betti numbers. Moreover, we have stated and proved
some propositions that provide interpretations of sensor networks as a simplicial complex,
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establishing a relation between the simplices, Betti numbers and Euler characteristic to
sensors, connectivity and coverage.
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Chapter 6

Moments of £-Simplices and Euler
Characteristic

6.1 Introduction

We apply in this chapter, at the same time, the results of Chapters 2 and 5 to character-
ize a sensor network. The physical features are less in evidence with respect to Chapters 3
and 4 and, although these features are used to justify the mathematical model, we focus
almost absolutely in the application of tools of modern mathematics.

FEach sensor is represented by its location point with a coverage radius constant given by
€. The homology of the coverage of this sensor network, as shown in [41], can be represented
by a simplicial complex. This distance ¢, represents the distance that each sensor can
control some environmental information (such as temperature, pressure, presence of an
intruder, etc.) around them, but a different interpretation can be done if the sensors are
communicating among them. In this case, we suppose that sensors have a power supply
allowing them to transmit theirs ID’s and, at the same time, sensors have receivers that
can identify the transmitted ID’s of other sensors above a threshold power. The sensors,
knowing mutually the ID’s of the close neighbors, are considered connected, creating an
information network. The problem remains analogous as the previous one, except that
we substitute the coverage radius e by a communication one of €/2. We can see examples
of simplicial complexes representations given by sensors communicating among them or
monitoring a region in Fig. 6.1.

We consider also that sensors are points of a Poisson point processes. As usual, this
assumption reflects the fact that, due the lack of control of the sensors positioning, only
a random fraction of the available sensors will actually lie in the target region or some
sensors may shut down by running out of energy, moreover, the position of each sensor, a
priori, does not interact with the positions other sensors. Instead of using the Euclidean
norm, we use the maximum norm along this chapter. We consider this for three reasons:
this norm represents a superior and an inferior limits for the Euclidean norm (we can
inscribe and circumscribe a circle with two squares); due to the random interactions with
the environment (causing shadowing and fading), even the Euclidean norm cannot capture
with precision the real behavior of this kind of sensor networks, so we choose the norm
that allows us to simplify the calculations; as shown in Lemma 5.2, using the maximum
norm, the Cech complex become equal to the Rips-Vietoris complexes. Finally, we assume
that sensors lie over d-torus with sides a, T¢. This choice was motivated by three factors:
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1\ <
- )

a) b) c)

Figure 6.1: a) Sensors and their coverage; b) simplicial complex representation when sen-
sors are monitoring the region; ¢) simplicial complex representation when sensors are com-
municating among them.

[0,a] x [0, a) T2

" ®

Figure 6.2: Illustration of the coverage of a point and the region where points can lie, in
the 2 dimensional case

it avoids the border effects; using Proposition 5.4, it helps to determine weather or not
a sensor network in the d-box is completely covered; if € is small compared to a, the
calculations for all parameters in the d-torus are a good approximation for the [0, a]? box.
The coverage of a point and the region where points can lie in are illustrated in Fig. 6.1,
representing the case where a point is deployed over a plan.

A very few papers deal with the properties of some random simplicial complexes. The
most interesting one is [65] which has been followed by [66]. Though there are certain
similarities between the work presented in this chapter and that of Kahle, we would like to
point out the differences. In [65], the number of points is fixed and the positions are i.i.d.
random variables in the plane. It differs from a Poisson point process by the randomness of
the number of points. However, for our initial motivation, Poisson process fits better since
due to failures or movements, we don’t know at each time the number of sensors. Moreover,
Kahle is concerned with asymptotic regimes of the mean value of the Betti numbers. We
do give exact formulas for any moment of the number of simplices. In addition, by using
Malliavin calculus, we go further since we can evaluate the speed of convergence in the
CLT and give a concentration inequality to bound the distribution tail of the first Betti
number. On the other hand, [66] obtains results for some ranges of e, and particularly
for the subcritical range asymptotic behaviors are found for (i, including the mean, the
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variance and the distribution.

Our method goes as follows: We write the numbers of k-simplices (i.e. points, edges,
triangles, tetrahedron, etc.) as iterated integrals with respect to the underlying Poisson
process. Then, the computation of the means simply reduces to the computation of deter-
ministic iterated integrals thanks to Campbell formula. By using the definition of the Euler
characteristic as an alternating sum of the numbers of simplices, we find its expectation.
The point is that even if the summing index goes to infinity, there are so many cancel-
lations that the expectation of y depends only on the d-th power of the intensity of the
Poisson process where d is the dimension of the underlying space. Using the multiplication
formula of iterated integrals, one can reproduce the same line of thought for higher order
moments to the price of an increased complexity in the computations. We obtain closed
form formulas for the variance of the number of k-simplices and of the Euler character-
istic and series expansions for higher order moments. Using Stein’s method mixed with
Malliavin calculus, we generalize the results of [96] by proving a precise (i.e. with speed of
convergence) CLT for sub-complexes count. As it turns out, the speed of convergence is of
the order of A=1/2,

The chapter is organized in the following way: the calculations and analytical results for
the mean of simplices and Euler characteristics are presented in the Section 6.2; Section 6.3
presents the calculations for the variance and covariance of the number of simplices which
leads to an expression of the Euler characteristic; next, in Section 6.4, we use the strategies
calculations of the previous sections to find the third moment of k-simplices and then a
method to express the n-th moment is presented; in Section 6.5, a theorem showing the
convergence in law of the number of connected simplicial complex is proved.

6.2 First Moment

Consider that a Poisson point process w generates a Cech complex Ce(w), and, even
though the number of k-simplices, the Betti’s number and the Euler characteristic are
functions of C.(w), we denote them, respectively, Nigi1(Ce(w)) = Ngt1, Br(Ce(w)) = Bi
and x(Cc(w)) = x. In this section, we evaluate the mean of the number of k — 1-simplices,
E) [Ni] and the mean Euler characteristic, Ey [x].

Theorem 6.1 Let ¢ < a/6. Then, the mean number of (k — 1)-simplices Ni(C¢(w)) is
given by

)\k(akz(Qe)k_l)d'

BN = k!
Proof: If (u;1,- -+ ,u;q) represents the coordinates of a point v;, we can separate the
indicator function as follows:
d

1[||m—vj||<26] = H 1[{|ui’l—uj’l|<2e}U{\ui’l—uJ'71|>a—25}] :
=1

According to 5.1, the number of (k — 1)-simplices can be counted by the expression:
Nk:g Z h(“l,"' avk‘)‘

TovL, UpEw

vidkv if i#j
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Since w is a Poisson point process of intensity A, for a Borel sets A;, ¢ integer we have:

E, Z h(vy, -+, vg) :)\k/A /A h(vy, -+ ,vg) doy ... dog.
1 k

V1,V EW

ViV if i
Taking %h = f, A; = T? and defining
{lzi — ;| <2e} U{|z; — xj] > a — 2} = de(z4,25),

we have:
)\k
EA[Nk]:F/ / h(vl,“‘ ,’Uk) d’Ul... dvk
Vg Jm

)\k d a a
= i H/O e H l[de(ui,huj,z)] dugg ... dugy
=1

0 1<i<j<k
d
N gpa e
= / / H g, (22 1 ... dag (6.1)
' 0 0 1<i<j<k
)\k a a a k
=77 1 1 ‘
k! /0/0 [de(xp,x,_1)] /Oizkl__!n_,_l [de (5,5 m))]

m integrals

a k I
/(; H 1[d€(xi,a:1)] dxl oo dxk> . (6.2)

=2

Since 6e < a, the integration region is convex (see Fig. 6.3). Then, we can rewrite the

a) b)

Figure 6.3: a) Maximum cover in T, and ¢ = a/6. The red region shows the cover of a
point v, the blue region is the cover of v; and the green region is the cover of vs. b)
Maximum cover in the same conditions of a) when ¢ = a/5. In this case, we the three
covers intersect each other pairwise, but there is no intersection of the three covers.
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integral in Eq. (6.2) as

a a a k
/ / 1[de(xk7xkfl)] o / H 1[de(xi71‘1)] dry ... dog =
0o Jo 0 i
y Trp+2e¢  pmin(xg,rp_1)+2€ min(zy, - ,x2)+2€
// / / dwl... dxk. (6.3)
) T —2€ ax(zg,TK—_1) max(zy, - ,r2)—2€
Then, consider a subset of the integration region [0,a]? of Eq. (6.3), defined as Ay o ... k,
such that 1 > 21 > ... > x;. In this case, we can write the integral over A; o .. 1 as:

T +2€ min(zy, - ,x2)+2€
), —2€ max(x, - ,r2)—2€

“ $k+26 [L’k+26 [L’k+26
// / / dzq ... dzyg.
0 Tk Tp—1 2

For o € &y, we denote by A, the set A1) ... s(x)- Then,

J o=

ceSy,

Moreover, since the function A(zq, - -+, x)) is symmetric, we can exchange the integration
variables in the integral of Eq. (6.1) without changing its result. As a consequence, if
o€ Gy,

/ / H 1[d (wi,xj) ]dwl dxk —/ / H 1[d (z4,25) ]dwzl .o dxik.

1<i<j<k 1<i<j<k

Thus, we have

/ / H 1[d€(l'i,1'j)] d{L‘l d(L’k
0 0 1<i<j<k
Z / / H Yid, (w5, 2;)) iy - - dxy,

ey 1<i<j<k
= k' / / H 1[d (xl,x])] dxl d{E
1<i<j<k

:Bk+26 [L’k+26 [L’k+26
_k'// / / dwl...dwk.

Then, by the change of variables yp_; = (zp_; — x1)/2¢ for i = 1,k, we get:

Tp+2e  prp+2e T +2€
k"// / / dey ... dog =
a 1 1 1
(26)k_1k! / / / .. / dyp ... dyg_q1 dxg.
0 JO Jyr—1 Y2
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The integral in the right-handed term is evaluated substituting all y; for ¥/ — 1, so

(20) k! /0 /_01 /yo

k—1

0
/ dyi ... dy)_q doy =
Yo

(2¢)*kla = a(2)" k. (6.4)

(k—1)!
Finally, plug Eq. (6.4) into Eq. (6.2) to obtain:

Ne(ak(2€)F1)d

Ex [Ni] = x ,

and thus the proof is complete. N

Remark 6.1 The possibility of writing Ej [IVy] as Eq. (6.1) is due the fact that we use
the maximum norm. This simplifies the calculations since we can treat each component
individually. However, considering the Euclidean norm it is still possible to find a closed-
form expression for Ejy [No] and Ey [N3] for the Rips-Vietoris and the Cech complexes in
T2. For Ey [Ns], we have:

1 A2
E>\ [NQ] = §E Z h(wl,wg) = 7 /]I‘z /T2 h(xl,xg)dxgdwl.

T1,L2€

w
T1F£T2

Then, if b(x, ) is the ball centered at x and radius r. Then

A2 A2
E) [Ny = —/ / drodr) = = | wé’dxy,
2 T2 Jb(z1,€) 2 T2

SO

222

E) [No] = 5

We write Ey [N3], as

1 A3
E)\ [Ng] = ?E Z h(wl,wg,wg) = F /]1-2 /]1-2 /]1-2 h(wl,wg,wg)dxgdxgdwl

T1,T2,23€
w

T1#£X2,T27T3

Let R3 be the region where x3 can lie to form a two simplex. Figure 6.4 presents this
region. The surface of this region S(R3) in polar coordinates (r,6) is given by

S(R3) = 2e%arccos(r/(2€)) — /€2 — r2/4

3
E)\[Ng] = )\// /dl‘ldJTle‘g
6 Tg b(z1,e) / R3

% /06 2re?arccos <2L€> —r?ey /1 — ( : >2d7“

hence:




93

Figure 6.4: a) Region R3 b) Limit of the region R3

If we substitute u = r/(2¢), then:

27 \S(B 2 27 \S(B
E) [N3] = %()864 /2 u arccos(u) — u®V/1 — u2du = %()864(11 — 1)
0

where I; and I are well known integrals and after solving them we find:

3.2 4
E)\[NZ%]:W(W_—?)f) )\Cée

for the Rips complex-

We can proceed do the same calculations to obtain the mean of the mean number of
2-simplices on a Cech complex, defining carefully the region of integration.

20k a?(1e?)?

E, [N3] = for the Cech complex,

Corollary 6.2 Let € < a/6. Then, the mean number of (k — 1)-simplices Ny, given that

Ny =n is given by
n 2 d(k—1)
E[Ny|N; =n] = (k> k4 (;> ,

Proof: 'We use the depoissonization to obtain the mean of simplexes for a Binomial
process with n points, E [N;|N; = n], by means of the pair of Poisson transform:

zk—ia zne—z©a B #’k)' ,ifn >k,
o "l " 0 , otherwise.

Consider now the Bell’s polynomial By(x), defined as (see [13])

B =3 {1}

k=0

Z} is the Stirling number of the second kind. An

where n is an positive integer and {
equivalent definition of B,, can be:
2 kgl

B,(x)=¢" o

k=0
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Theorem 6.3 Let € < a/6. The mean of the Euler characteristic mean of the simplicial
complex Cc(w) is given by

a

Ex[x] = (*

) e (By(-A2e)).

Proof:  Since

then

8
8
\ =

Z Zk:

k=1 k=1

As E, [eM] < oo, we have Ey [— Y02 (—1)F Ny | = = 302 | (-1)*E,\ [Ni] and

Ex[x] = Ej —Z(—l)ka]
k=1
= = (-1)FE,[N]
k=1
_ _i(_l)kAk(ak(2e)k_l)d
N P k!
al i (=A(2e)H)F L (k + 1)4
- Qi = (k+1)!
ale )" L0 SN (—A(2€)) Rk
_ (2¢)
“(27 © 2 k!
k=0
a e (o
= (50) " (=Ba(=229")
The proof is thus complete. N
If we take d =1, d = 2 and d = 3, we obtain:
Ex [x] (Cﬁ(w))wéﬂ‘[a] = are %,
(262
BN (Col@)uerz, = @A™ (1= A(2¢)%),
a(26)3
B Ce@haers, = a2 (1=3X(20) + (A(20)")?).

Remark 6.2 For ¢ a positive real, Ej [x] is invariant under the transformation X' = \/c,
€ = ce and @’ = ca. Taking ¢ = 1/2¢, we obtain:

Hence, the mean depends actually only on a’ and \.
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Corollary 6.4 The mean of x in a Binomial process homogeneous with n points is given

by:
srani= £ (e 2 >

Proof: This is a consequence of Corollary 6.2. L
If we take d =1, d =2 and d = 3 and calling € = =£, we have:
E[x|Ni=n,d=1 = —-n(1- g)”—l ,
E[x|[Ni =n,d=2] = n(l—éz)"_2 (né® — 1),
E[xINi=nd=3 = —n(1-&)"" 02 308 +& +1).

The following result is well known.

Lemma 6.5 If By(x) is the Bell’s polynomial and for d > 1, the following relations are
valid:

%Bd(x) _ BCHTM—Bd(x),
@B = B,

According to these relations, it is routine to prove the following theorem.

Theorem 6.6 The function (A — Ey [xCc(w)]) has ezactly d non-negative real roots.
Moreover, between each consecutive roots and after the last one, there is exactly one critical
point.

We can see by the expression of Ey [x] that this quantity tends to 0 as A tends to
infinity. This convergence is due the fact that the Euler characteristic of the Cech complex
of the cover tends to the Euler characteristic of the d-Torus where the points are deployed.
This is shown in the following theorem.

Theorem 6.7 The Betti numbers of C(U) converge in probability to the Betti number of
the torus as \ goes to infinity:

A (ﬁ <5¢(Ce) ﬂZ(T[a])>> 2201,

1=0

Proof: Let n < €/2, by compactness of the torus, there exists a finite collection of
balls B of radius n covering ']I“[ja]. Since 1 < €/2, if x belongs to some ball B € B then

B C B(z, €), hence

M @(B) #0) € (Ulw) =T,).

Bes

Thus,

P, (Z/{E( ) # T[a]> <P, ( U (w(B) = 0)) < Kexp(—)\(27])d) Az ),

Bes
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Moreover, by the nerve lemma, as stated on [14, Theorem 10.7]:

(ue(w) = Tﬁq) C ﬁ (@‘(Cs) = ﬂi(Tﬁz])) ;

=0
and the result follows. O

Remark 6.3 From the properties obtained of the Euler characteristic mean and based
in some simulations, we conjuncture that, in a random simplicial complex as defined in
this chapter, there is always two main kinds of holes in this complex, §; and G;41. So,
for instance, consider Fig. 6.5 where points are placed in 5 dimensions. When A is small,
in average, the components are isolated from the others, so By > 0 and we do not have
other kinds of holes, so 3y is the dominating Betti number. If X is increased (which means,
in average, to increase the number of points), the components connect with each other,
decreasing 3y and some cycles appears, so §y and 3; are the dominating Betti numbers.
Increasing \ even more, the complex becomes completely connected and we have a large
number of cycles. For A even larger, those cycles begin to vanish and we have the first
voids. Then, we follow this reasoning until all the region is completely covered, so 05 = 1
and y = 0.

Domination regions of 3;, when d = 5 in function of A

—
o

- | Dominating G

1| W A
— ] 5o and 31
4 | 5
I A1 and 32
O B
[0 B2 and (33
O B
N ] B3 and 34
T O b

[]No dominance

o & AN o e o ®

'

—

[}
1

'
[
(V]

0 2 4 6 8 10 12 14 16

Figure 6.5: Behavior of y related to the regions of dominance of 3;. There are at most two
dominating Betti numbers

The following lemma is straightforward.

Lemma 6.8 Let k1, ko and ks be real positive constants and f : Rﬁ_ — R defined as

f(z,y) = exp <—k12];2m log (1 + W)) :

Then, for ki —x > 0, the function is strictly increasing with respect to x and with respect
toy.

Theorem 6.9 Fory > \a?, we have

— Aa — Aa
P\ (Bo > y) <exp <_y210g <1 + (23/(1_1)2)\)> :
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Proof:  To apply Theorem 2.5, we need to evaluate max (Do) and || Doz ,12(v))-
Since there are more points than connected components, Ey [By] < Ey [No] = Aa?. Ac-
cording to the definition of D, max(Dfy) is the maximum variation of 3y induced by the
addition of an arbitrary point. If this point is at a distance smaller than € from w, then
Dpy < 0, otherwise, DBy = 1, so max(Dfy) = 1. Besides, this added point can join at
most two connected components in each dimension, so in d dimensions it can join at most
2¢ connected component, which means that D3y ranges from —(2¢ — 1) to 1, and then

1D Bol| oo (,22(vy) < Amax [DFo[* = A(27 —1)2.

Using Lemma 6.8 and Theorem 2.5, we get:

— Aad — Aa?
Py(By > y) <exp <_y 5 log <1+(2yd_1)2)\>>7

for y > Aa? > Ey [Bo]. L

6.3 Second order moments

We use all the definitions of the previous section.

Lemma 6.10 We can rewrite Ni as

k
1 k -
N = = k=i T
K k:';(z))\ (/(Tg)ih(l‘b s xg) dry d$k>

Proof: We have that

h(z, - zr)( dw(zy) — A dxy) ... (dw(z;) — A dz) A dejpq .. A day
Ay

= Z(—l)](i,) A h(z1,- o) dw(z1) ... dw(@;)A dojig ... A dog.

=0 J

Thus, after some algebrism with the binomial factors, we have

%

E ()% ()

/ h(zy, - xp) dw(zr) ... dw(zj)A dzjpr. .. A dag,
i=0 j=0

Ay
1

= h(xlf” 7(L'k) dw(xl) d(,U((L'k) = Nk,
k' Ja,
concluding the proof. X

Definition 6.1 Let C; and Ca be two simplices with common vertices. For L € P({1,2}),
let us denote my, the number of vertices belonging exactly to the list L of simplices.

Then M = mio+ mq+me is the total number of vertices and Jo represents the integral
on these two simplices:

j2(m12a my, m2) — / / hm12+m1hm12+m2 d.fl?l . leZ‘M
Amlz+ml Amlz+m2

with x1,--- ,xp being the M wvertices.
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| |
w !
0Tmiy "7 T2 1
|

M e $m12+m1+1

Figure 6.6: Example of relative positions of the points

Lemma 6.11 Ford =1 and e = 1/2, we have

2m1m2
’ = == 6.5
Ja(myz, mi,mg) = mig + my +mg + g k1 (6.5)
Proof:  Let us split the integration domain of [J5 in two domains S; and Sy corre-
sponding to the cases:

1. All the vertices are connected with each other, thus there is only one simplex. The
integral on 57 is simply the number of points in the simplex: M = mjs + m1 + mo.

2. There are at least two vertices at distance d > 1, which leads to two simplices. By
symmetry we can choose to order the my, vertices for each L € P({1,2}) from lowest
to greatest or the opposite and choose which simplex is on which side of the axis.
Thus we have the integral on Sy equal to 2mqo!m!mo! A, with A an integral whose
calculation is detailed below.

We choose to enumerate the vertices of the simplexes such that:

® Ty, , Ty, are the miy common vertices.
® Tyl s Tmyat+m, are the my vertices of only Cj.
® Tyyotmy+1s > Ty are the myo vertices of only Cs.

Without loss of generality we can choose the origin to be x1. The vertices are now order
as described in Fig. 6.6:

-1 é xro — 1 S $m12+1 é $m12+2 S e S $m12+m1 S $m12+1 + 1 ) and

Tmio+l < Tmgotmai+1 — 1L STy Sxp—1 <o < Tt +1 < 1

Let us denote J,( = [ f(u) du then we write the composition Jéz)( ) =
fa fa fv) dv du. We also denote m =mj2 + 1 and n = mya + my + 1, then we have:

! 2 0 1 ! 1
A= [5G [ a0 W) [0 W) o dada,
0 x T

2_1 m+1
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We find that:
mig—2

(m12—2) _ Ty '
KW =

— 1
~In W) am) = =)

(ma—1) _ 1
Jl’n—l (1)($n) - (m2 - 1)'

Thus we have:

1 1 0
A = / zh2T 2/ —Zy, dz,y, dx
(mi2 — 2)(my — 1)!(mg — 1)! Jo 72 o1 ?
1

(m1 —1)!(mg — 1)l(m12 + 1)V

concluding the proof. ||

Theorem 6.12 Lete < a/6. Then, the covariance between the number of (k—1)-simplices,
Ng, and the number of (I — 1)-simplices, Ny, for | < k is given by

-1

1
Covx [Nk, NJ = >~ ik
i=0

—1l+1

=) F(A(2e)T)F+ (%)d <1<; i+ 2w>d . (6.6)

Proof: We want to evaluate Ey [(Ny — Ey [Ng])(N; — E) [/Vi])]. By Lemma 6.10, this

can be written as
!
L3 () p 3 (en ()]

=1

E)

where
f]”:/ h(Ub--- ,Un) duy ... dUn_j.
(Td)s

Using the isometry formula, given by Eq. (2.4), we have

Covy [Ny, Ni| = il Z < ) < >)\k+l g, [ ; (ff) I; (le)}
- kaé; <I;> <5> N E 1oy

1 —142i
Ao e (6)

I
-
I M |
o —_

Hence, we are reduced to compute

<f f>L2 O(J)—/ (/ vh(vl,---,vl) de+1--- dy;
(Tg) \/(Tg)

/ vh(Ul,"' ,Uk) de.H... dvk>)\dl}1...)\d1}j.
(Td)+=7




100 6. MOMENTS OF k-SIMPLICES AND EULER CHARACTERISTIC

Since a > €/6, we have

<fff]l'>1;2(>\)o(j> :/ A dUl/ h(0,v2, -+ ,vk)
[0,a]¢ ([0,a]4)k =1

x h(0,vg, -+ 05,00, s v_;) dup_j... v} dug... dvjp A oy A dog.
Moreover, if v; = (uj1, - ,u;q) and v, = (u},,--- ,u; ;) and we proceed to the following
substitutions:
w1 = 2ex; if 2 <1 <,
Uil = Zeyk_j lf] +1 < 1 < k,
wp; = 2ezif 1<i<l—j,

This results in a Jacobian (2¢)*T1=2"=1 and we recognize the integral to be exactly Jo(j, k —
J,1 — j) as defined in Definition 6.1. Thus, we have:

FFFD 2o = Nad(26) 7271 (o, b — 5,1 = )7
Finally, using Eq. (6.5) and Eq. (6.7) gives the result. L

Remark 6.4 It is possible to write Var(NNg) as Eq. (6.6) due the fact that we use the
maximum norm. This simplifies the calculations since we can treat each component indi-
vidually. However, considering the Euclidean norm it is still possible to find analytically
a closed-form expression for Var(Ny), but its calculation involves nasty integrals and a
generic term cannot be found. When we consider the Rips-Vietoris complex in T2, the

variance of the number of 1-simplices and 2-simplices are given by:
2
Vi, [No] = (;) (%(4)\62)2 + 7T2(4)\62)3> ,
€

and

Remark 6.5 In the same way that we explicit the mean of k£ simplexes in corollary 6.2
for a binomial point process with n points, variances, covariances, and Nth moments can
all be found since they can be written as a polynomial on A.

Since we have an expression for the variance of the number of k-simplices, it is possible
to calculate one for the Euler characteristic.

Theorem 6.13 Let € < a/6. Then, the variance of the Euler characteristic in a d torus
18:

Vil = (&) Sodeatr
n=1
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where
i< d (—1)i*d 2(n —i)(n — )\
DR LD (n— ) — i)l +j — n)! ("* 1+z’+j—n>

j=[(n+1)/2] i=n—j+1
_ L L 20—
(n—7)12(25 —n)! " 14+2j—n '

Proof: The variance of x is given by:

[ee] o0 2
Vilx] = Ey[(x—E\[x])’] =E\ (Z(—l)ka - Z(_l)kEA [M:])

L k=1
= E, (=1 (N; — Ex [Ni])(N; — Ex [V;])
=1 j=1
We remark that N; < , , so there is a constant ¢ such that

Ni N?
1,1 E) [eM]? < cc.

E) ZZ\N Ex [Ni))(N; — Ex [N <ZZ

=1 j=1 =1 j=1

Thus the alternating series converges absolutely allowing us to exchange the mean with
the sums and we can write

Valx] =D (=)' Y (=1 Covy [N;, Nj].
i=1 j=1
The result follows by Eq. (6.6) and some tedious but straightforward algebra. L

Lemma 6.14 Let n be a positive integer, then

EO(50)-G)-or

Proof:  We first simplify the expression:

>G5 -G -5 00

Jj=1 7=1

Then, applying hypergeometric functions, we solve the sum:

S0, )- o

7j=1
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Theorem 6.15 In one dimension, the expression of the variance of the Euler character-
1stic 1s:
Vilx] =a <)\e_2)‘5 — 4)\266_4)\6> .

Proof: If d =1, according to Theorem 6.13:

o0

_ ﬁ 1 n
Vil = 5 3 (63)
and we define

I (=1)"*n n
on = Z} 2 - —)li+j—n)! (-2 —n)|

j=[ i=n—j+1

and 3, = ¢, — a. It is well known that

Eer()-r(37)

=0

using Stiffel’s relation, we obtain:

=ty 5[OS ()

=0

ot 2 PO -0 (),
= ot 2 [(OGZ)-GIL) ()] oo

The identity (?) =(" j) allows us to write that

5 ()£ ()

J=[(n+1)/2] j=0

3 (1) = () 135 (1) =2 () meen

J=[(n+1)/2] i=

Since (g;;) =0 for j < {"T'H], we have
n

> OG5 -0 (C)-(550)

=[5 =

for n odd and

5 O0)-(50)
EOE -5
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for n even. According to Lemma 6.14, we get:

> O655)-62)

i=[(n+1)/2]

> (OIGSEL) -G = 1o () o

j=[(n+1)/2]

—1, n odd,

Then, we substitute these two last expressions in Eq. (6.9) to obtain

B o (1 =215y
an = (—1) W7

and thus

o0
E apa” = —xe " + 2we 2",
i=0

Proceeding along the same line, (3, is given by

_ n J (_1)i+j2(n —i)(n—j)
no j:%:“} 2i:rz§—;+1 (= =)(i+j—n+1)
2(n —j)?
(n—j)12(2j —n+1)!
_ n (—2 + 2n)l[n21] 2]_[1.22]
= (-1 < n—1! (- 2)!> )

and again we can simplify the power series Y ;o G,z
[e.9]
Z Bz = 2ze™" — 2(z 4 2%)e 2.
=0

Then, substituting «,, and /3, in Eq. (6.8) yields the result. L

Theorem 6.16 We have Dx < 2 and || Dx|| (o, 12(e)) < 00 and

P(x — ¥ > 1) < exp <—§10g <1 + Viﬁ])) .

Proof: In two dimensions, the Euler characteristic is:

X = Bo— 51+ Ba.

Therefore we can bound Dy by the variation of Gy — 31 added to the variation of B when
we add a vertex to a simplicial complex.

If we add a vertex on the torus, either the vertex is isolated or not. In the first case, it
forms a new connected component incrementing Gy by 1, and the number of holes that is
(1 is the same. Otherwise, as there is no new connected component, (3 is the same, but
the new vertex can at most fill a hole incrementing 3; by 1. Therefore, the variation of
Bo — [1 is at most 1.

Now, let us look at the variation of 32 when we add a vertex to a simplicial complex.
According to Proposition 5.3 is at most 1, showing that Dx < 2. Then, we use Eq. (2.7)
to complete the proof. L
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6.4 Nth order moments

For this section, without loss of generality, using Proposition 5.5, we can choose k =
1/2¢, 50 Ay = A(2€)¢, €, = 1/2 and ak = a/2e.

We are interested in the central moment, so we introduce the following notation for the
centralized number of (k — 1)-simplices: Ny = Ny, — Ng.

Finally, let us denote that (;) =0assoonasi<0orj<0Oori—j<O0foriandj
integers.

We extend the Definition 6.1 used in the second order moments calculations.

Definition 6.2 Let Ci, Co and C3 be three simplices with common vertices. For L €
P({1,2,3}), let us denote my, the number of vertices belonging exactly to the list L of
simplices.

Then M = mqo3 + mis + miz + me3 + m1 + mo + mg is the total number of vertices
and J3 represents the integral on these three simplices:

jg :/ / / hp1hp2hp3 dxl... dxM.
Apy JApy S Apg

with p; being the number of vertices of simplex C; for i = 1,---,3, for instance p1 =
mio3 + mio + miz + mq, and x1, -+ ,xp being the M vertices.

Definition 6.3 We denote J5(3, j, s,t) the integral defined above such that
e miog3 =2t—1—5+sVO0
e mo=1+7—s—tV0
e miz=1—1tVO0
e mo3=75—1tVO0
emi=k—1V0
e mo=k—j5V0
e mg=k—sVO0.
Theorem 6.17 The third moment of the number of (k — 1)-simplices is given by:
E, |:]/—\7];3:| = Z A3E=i=ig) <]:> <I;> <l;:> <1Z€> (‘i) (z +j i 6 t) J3(i,7,5,t),
05,5,
with s > |i — j].

Proof: From Lemma 6.10 , we know that the chaos decomposition of the number of
(k — 1)-simplices is given by

k

N = Li(f1) + -+ In(fx) = Zfz'(fz'),

with
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and
Then, we define

i+J—5NiNJ i j "
—t
Jigiti=s = z: “Q><J<¢+j_s_9 o s

==

and using the chaos expansion (cf Proposition 2.3), we get

Ne' = (L) + e+ L(fi)?

kook
= Li(f) i (f;) | ((fr) + -+ Te(fx))
=1 j=1
= Z Z I(giisjms) DL (f1) + - + Tu(fi)
=1 s=liji
i+j
= Z Z s(9igivi—s)Li(f1)-
i,5,l=1 s=li—jl|

According to (2.4), denoting u =i + j — s, we obtain:
—3 k i+jAk
EA |:Nk } - E)\ Z Z Is(gi,j,u)js(fs)
i,j=1s=|i—j|V1
k i+jNk
= > Y /gi7j7ufs)\s day ... dwg
1,j=1s=|i—j|V1
i+jANk  uNiNg

Z > ZW'O( )(ut_t>/(fio;tfj)fs dzy. .. dz

tj=1s=li—j|V1t=[%]

Then we recognize the integral defined in Definition 6.3:

ww]-3 5 5000

,J,=1s=|i—j|V1t=[F]
j3(i7j7 S, t)
Finally, relaxing the boundaries on the sums conclude the proof. ||

Definition 6.4 LetCy,--- ,C, ben simplices with some common vertices. For L € P({1,--- ,n}),
let us denote my, the number of vertices belonging exactly to the list L of simplices.

Then M = ZLGP({l,m,n}) my, is the total number of vertices and [J, represents the
integral on these n simplices:

Jn=/ / hp, . hp, doy ... dy.
A;Dl APn

with p; being the number of vertices of simplex C; fori=1,--- ,n, and x1,--- ,xp being
the M wvertices.
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Theorem 6.18 The expression of the n-th power of the number of (k — 1)-simplices is
given by:

-y ¥ ¥ Ht ("))
i1, yin S1r8n—2 t1, b2 t J b
Io(ojeafi;) Io(0;eafiy),  (6.10)
where for j € {1,--+ ,n— 2}:
o 1<iy, iy <k,
o sj > |myj1—mjal,
o mj1 =igj_1 if 1 <j< |5 and Sa(j—(2])-1 otherwise,
o myo =iz if 1 <j<[§] and Sa(j—2]) otherwise,
® uj =myj1+mjz —5;
e AC{l, - ,n},
o [fn is even, then a = sp,_3 and b = s,,_o,

e [fn is odd, then a = s,,_9 and b = i,.

Proof: The decomposition of the centralized number of (k — 1)-simplices is:
N k
Ne=nL(f0) + -+ Il fi) = D L(fi).
i=1

Now, we raise m to the n-th power:

k n
= (Z Ii(fi)) :
i=1

First, we consider the case where n is even, we can group the factors two by two:
_ k k k k
S POLAUSD SERTR) BN (b SARUA) SRATS
=1 in=1 in_1=1 in=1
We then use the chaos expansion of Proposition 2.3:

2(iNg) . .
S x aOO) e

$<2t<2(sNiNj)

el I 1 i ] t . Z+j s—t
O B PR 0 O[T RN e

s=li—j| i4j—5<2U<2(i4j—5)AiAS)
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Let us denote

i .7 3 Z+j s—t
= t!
=000 (s L)

so we can re-write, relaxing the boundaries on the sums:
Ii(fi)lj(fj) = Z le(gs)'
s=|i—j| t

Thus, we have:

-y Y Yheo Y Y Sh

11,02=1 51 >[i1 —i2| t1 in—1,in=1 sy, 5 >]in_1—in|tn/2

We go on grouping terms by 2 until we only have a product of 2 chaos left: First we made
n/2 chaos expansions, leading to n/2 sums with indexes s;, j =1,--- ,n/2. To reduce the
number of chaos to 2, we have to make other chaos expansions. For j > § + 1, the sum
indexed by s; represents the expansion of the chaos indexed S9(j—1)-1 and S9(j—1)-1- We
have 2 chaos remaining when j = 2(j — §) + 2, i.e. when j =n —2.

Moreover, there are as much sums indexed with ¢; as with s;, that is n — 2. Thus we
can write:

Nl? = Z Z Z Lo, (s, 5) s, (P, 5):
i1,y in =181, 8n—2 11, tn—2
With s; > |mj1 —mja| for j € {1,--- ,n — 2} if we denote:
e my =ig1if 1 <j <5 and Sa(j—2)-1 otherwise,
e mjo =iz if 1 <j <5 and So(j—1) otherwise.

Then, denoting u; = mj; +m;2 — s; and A the subset of {1,--- ,n} such that if j € A
then the chaos i; is expanded in the chaos s,_3, we have:

I5n73 (¢5n73 )Isnfz (¢5n72) -

n—2

ms1 m;2 t;
H t]‘( tj ) < tj > <uj i tj> IS’!L*S (OjGAfZ'j)Isn72 (o‘]ezfz])
j=1

The notation oje 4 f;; represents the product defined in Eq. (2.6) of the functions f;, for
j € A, but whom variables depend on all the 41, ,4,,81, -+ ,Sp_2, and t1,- -+ ,t,_9.
Now, if n is odd, we consider n — 1 which is even, therefore we have:

Nl? = Z Z Z Lo s (Psns) s, (D5, 5) Z (fin)

11, yin—1=1 81, ,Sp—3 11, ,ln—3 in=1
= : : z : : : Isn 2 qbsn 2) Zn(fhz)?
i1, yin=181,"",8Sp—21t1,,tn_2

with s; > |mj1 —mjo| for j € {1,--- ,n — 2} using the same notations for n — 1 instead
of n:
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o . . n—1 .

o my =ig1if 1 < j < "5+ and Sa(j—n1)-1 otherwise,
n—1 .

e mjo =i if 1 < j < 5= and Sy(j—n=1) otherwise.

And with u; = mj1 +mj2 — s;

mi1\ (mi2\ [t
ISTL 2 ¢5n 2 - H tj '< ] > < tj > <u i t> Isn72(oj€{17"')n_l}fij)7
J J J

concluding the proof. O

Theorem 6.19 The expression of the n-th moment of the number of (k — 1)-simplices is
given by:

W)= 2y oy e (I

Jin S1,7 Sn—3 t1, In—2

n—2

mj1\ [(Mj2 t; . .
Ht]'< t] )( t] ><uit> jn(Zb s ln, S1, 0 757’L—37t17"' 7tn—2)-
j=1 J J J J

With for j € {1,--- ,n —2}:
o if j<n—3,s; >|mj1 —mjo,
o my =igj_1if 1 <j< 5] and Sa(j—(2])-1 otherwise,
o myo =iy if 1 <j <[5 and Sa(j—|2]) otherwise,
o mj3=s;if1 <j<n-—3 and s,_3 otherwise,
® uj =M1+ My — My3,

o [fn is even, then ¢ = s,_3 and
Sp—3 > |Mp_21 — Mp_22| V |Mp_31 — My_32],

e Ifn is odd, then ¢ =i, and i, > |my,_21 —

Proof: The expression of the n-th power of the number of (k — 1)-simplices is given
in Eq. (6.10):

n—2
~ mi;q m; o t;
Nn: t' s Js J
-y Y T (e,
1 Z'n,—l 81, ySn—2 t1, tn—2 J:1 J J J J

Io(ojeafiy)Ib(ocafi;)-

If n is even, we have:

we v v (M) ()0

11, in=1 81, ,Sp—2 1, ,tn—2

ISnfS (O.jGAfZ'j )Isn72 (Ojerij )
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So let us focus on the only part of the equation that is likely to change when we take the
expected value, which we will denote:

K= Z Z L, _s(0jeafi;) s, o (0;cafi;)-

Sn—3 Sn—2
We then use the property of Eq. (2.4) and recognize the integral from Definition 6.4:

n

E)\ [K] = Z H)\k_lj <Z> )‘8n73\7n(7’17‘ ©t oy ln, S1, 7Sn—37t17 o 7tn—2)
J

Sn—3 \j=1

n
= Z)\nk-&-SnfS H)\—ZJ <Z> j’n(217"' sl ST, " ,Sn—37t17"' ’tn_2)7

Sn—3 j=1 J

with s,-3 > |mp_21 — Mp_22| V [Mp_31 — Mp_32]|.
Then for n odd we directly write:

K/ — Z Z Izn (OJGIfZ'j)ISnfz (Ojeffij)’

in Sn—2
. n -k
E)\ [K/] = Z)\nk—i_ln H)\_Zj <Z> jn(il7"' 7in7317"' 7Sn—37t17‘” 7tn—2)7
in j=1 J

with ,, € {\mn_ll — mn_272] V1, k}
The binomials with the i; allow us to relax the boundaries on the sums on 7;, concluding
the proof. L

6.5 Convergence

Let T be an arbitrary connected simplicial complex containing n points and C,(w) be
the random simplicial complex by the Poisson point process w. The number of occurrences
of I in C¢(w) is denoted as Gr(w). It must be noted that with our construction of the
simplicial complex, a complex I" appears in C¢(w) as soon as its edges are in C¢(w). The
set of edges of ', denoted by Jr is a subset of {1, --- , n} x {1, ---, n}. Let

~ 1
h([El, s {En) = g H 1[||xi—zj||§e]7
(Z'v.j)e‘]l"

where cp is the number of permutations of {z1, - -+, ,} such that
hr(xb ) J"n) = hr($0(1)7 ) $U(n))a

and let fY(x1, ---, ,,) be the symmetrization of i:f(wl, -+, p). Then, we have:

Gr — Ze fr(xlj...,xn):/fp(xl,...,xn) dw(z1)--- dw(an). (6.11)
T, ,TnEW A

T F T 1 fiF]
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Lemma 6.20 The random variable Gr has a chaos representation given by:
n
Gr =Y L(f]),
1=0
where flr 1s a bounded symmetric function given by

fl-r(l‘i_;_l, ety l‘n) = (?) )\n—z’ / fr(l‘l, tee ,l‘n) dl‘l e dl‘n_i, (6.12)
ani

foranyie{l, -, n}.

Proof: From (6.11), using the binomial expansion and some algebra, we obtain

GF:Z/ (ZL) / fF(w:b"' 7wn))\ dxl...)\dwn_i
Anfi

(dw(zp—it1) = A dop—it1) ... (dw(z,) — A dzy).

To conclude the proof, we note that, since the torus is a compact set and h! is bounded,
fiF is bounded. I

Lemma 6.21 For any I' connected simplicial complex containing n points, for \ large
enough,

E\) [Gr] < e\ and V) [Gr] < PA"71(\).
where PFQ"_l()\) is a polynomial on A of degree 2n — 1 depending on I.

Proof: Using Lemma 6.20 and the chaos properties, we obtain

E, [Gr] = )\"/ Yy, xp) dey ... dz, < A,
Ap

since fI' is bounded. Furthermore,

n

V, [Gr] = Zi!HfiFH%?(B,A)
i—1
2

:Zi!/ A"—CZ) /fr(ml,---,mn)dml...dmn_i Adzy ..\ da
=l A, Br—i

:ZZ')\2n_Z/ <TZ> / fr(:L'l’ ey l‘n) d:L'l d:L’n_Z d:L'l d:L’Z
1=1 ani

A
and since f is bounded, V [Gr] is a polynomial of degree 2n — 1. O
Lemma 6.22 For A large enough, if k > 1,
E) [(1e(1))?] < e,
and By [(I(1))?] is constant if k = 0.
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Proof: The proof is trivial for the case k = 0. If £ > 1, for ¢ < k we have

i1
/ dw(z1) ... dw(z;) = H(W(B) —7)s
A i
so we can rewrite I (1) as follows:
k k—i—1
=3 | (§) s T e -i)
=0 7=0

Thus, E) [(Zx(1))?] can be written as

E)[(Ii())?] =Ex |(@(B) =AS(B)* + Y ¢ w(B)(AS(B)Y |,

2<i+j<2k—1
where the ¢; ; are integer constants.
If we differentiate the k-th central moment
N ho-n ()
/ _ _ / A\
E[(N - X)"=> (r—X)e g

1=0

of a random variable NV distributed as Poisson with mean )\, with respect to A\’ we find
the following recurrence:

dE[(N — \)¥]

E[(N — )] =) ( o + kE[(N — X)’“*]) :

Hence, using induction we can show that E[(N — \)*] is a polynomial on \ with maximum
degree |k/2], for k > 1. Since Ej [w(B)"] is the Bell Polynomial of degree i on A, it follows
straightforwardly that the polynomial

E\ > cw(B)(AS(B)Y

2<i+j<2k—1
has degree at most 2k — 1, and the proof is thus complete. N

Definition 6.5 Let f;, g; and hy, be, respectively, functions of i-th, j-th and k-th chaos of
the Wiener-Poisson decomposition of some square integrable function of w. For 0 < s <
2(n A'm), we define

i\ (J _
fixs g5 = > | nl(n)(n) ion " Y-
$<2n<2(sNiNj)
For 0 <r <2((i+j—s)Ak), we abuse of the notation to write
hk *p (fn *g gm) = hk xp fn *s Gm-

Lemma 6.23 If |f,(z1, -+ ,xy,)| is bounded by a positive real c, then

Ey [I.(fn)?] < Ey [I.(1)?].
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Proof: We use the isometry formula given by Eq. (2.5), so

AMIn(F)?] = nllfallzzaen
= nl - ffl(xl,-u yTp)A dzy . A day,
< n!/ AXdey .. )\ day,
= E, [1,(1)%],
and the proof is complete. L

Theorem 6.24 Let F' = %?[GGF]F], then, for X\ large enough,

/BEA [|DFIPID, L F) A dt < )\1/2

Proof: Provided that Gr has n points, Lemma 6.20 shows that Gr = Y 1 I, (f}),
S0

DtF— ZIZ 1 >(< t

ﬁz

D,L7'F = L1 (fF(%,1))

WZ

Let us define

IE )
An—t

gi—-1 =

According to Eq. (6.12), we note that g; does not depend on A. Using the triangular
inequality, we have

n—1 P . .
B )\3n—3—z—j—k i1 +1
DFPIDLE < Y C DG, 7)1 (05) i)
i,5,k=0 V., [Gr]z

Then, we apply twice the chaos expansion and use again the triangular inequality to obtain:

—1 2(ing) 2((i+G—8)Ak) |3, _3_;_ J—k
\DFP|D L F| < Z Z Z A (Z+1)(J+1)

i,J,k=0 s=0 [GF]

|I¢+j+k—s—r(gi *r Jj Ks gk)|a

Since f; is bounded, g; is bounded as so g; *, gj *s gi for 4, j,k,r, s in the range of their
indexes above. We define

C(i7ja k‘,’l", 5) = Sup{gi *p gj *s gk}(Z + 1)(] + 1)7
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and we use Jensen’s inequality and Lemma 6.23 to write

E, [|D:F|*| DL F|]
n—1 2(iAj) 2((i+j—s)\k)

SO DY

i, k=0 s=0 =0 V. [Gr]

\3n—3—i—j—k )
————E [(Ligjsh—s—r(gi *r g5 %5 9r))°]
2

N

A\3n=3=imj=ke(j, j,k T, S)

N[

E [(Iisjrh-s—r(1))?]
i j k=0 s=0 —0 Vi [Gr]2 :

Using Lemmas 6.21 and 6.22 we obtain:

n—1 2(iAg) 2((i+j—s)Ak)

/ E,\[[DiFPIDLT R A < >0 Y Z (i, j, k,r,s) x
B ijk=0 s=0
)\Sn 3—i—j—k 1/2
B [Ty ) [ At
Vi [Gr]? B
)\3n—3
‘373/ A dt < 1/2,
[Gr]> A
concluding the proof. O
Theorem 6.25 Let
_ Gr—E,[Gr]
Var(Gr)
Then, when X is large enough
_ c
E)[|1 = (DF,DL7'F) 2 (0] < VL

for some constant c.

Proof: The expressions of DF and D;L~'F are given by

DtF— Izlfz*t

AT

and

D, L7'Z = Lio1(fi(x,1))

AT

The inner product (D;L~!F, Dy F) 2y is expressed by:

(D;L7'F, DiF) 200 = ﬁ/}g Z il 1 (fi(k, 1)) -1 (f5 (%, 1))\ dt.

ij=1
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Then,

(DL Z, Dy Z) 12z SN Z / i—1(fi(e, ) L1 (f(+, ) A dt

_ 2
—Vwm/%m®A&

1
i—1(fi(*,1)) t))A dt.
+ e ;; I RECICORTIE)
(m) (1,1)

Defining g; 1 as in Theorem 6.24 and using the chaos expansion, we get:

n

Hfl”%2 1
-1 _ (M) . 9
(DLTEDF)ee) = e * v, [GF];Z(Z—D!/ e, 0)] 220 A
n—1 2n 2i—
. 1 I 1—S 1 S 1 )\ dt
+ ;(Z-{- V)\ Gl“ / Z 2 g * g
n-l ‘ \2n—i—j—2 2(iNg)
+ ;Z:O(Hl e / Z Tivj—s(gi s i)\ dt.
Since
/ Hfl(*,t)”%Z()\))\ dt = / < ff(th.. Z 1, ))\ dtl )\ dt’i—l) )\ dt
B B \JBi-1
= fiz(tb s tie1, ))\ dt1... A dt;_1 A dt
B
- ||fz‘||L2(>\)7

and given the isometry formula

ValGr] = |Grl2q — Ex[Gr]
= >l fill 2z = ol = Y nllfill 2y
=0 =1

we have

n

Hfluiz(x) 1
V\[Gr] = V\[Gr]

i@—m/HM&m@mA&=l
i=2 B

Hence

n—1 2(ing)

(DL2, D7 >L2(A>—1+Z Z (i+1)
(w)#(l 1)87&2@ zf i=j

)\2n—z’—j—2
———— | Liii_s(gi*s gi)\ dt.
V)\ [GF] /B +7 (g g])

Let ¢(i, 7, s) be defined as

C(i7j’ 3) = Sup{gi *g g]}(l + 1)
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Then, we use the triangular inequality, Jensen’s inequality and Lemma 6.23 to obtain:

ML= (DFE,DL7'F)12|]

n—1 2(iNg) n—i—j—2
<Ey| Y Z (i+1)\/)\7Gr/ [ Livtj—s(gi *s 9;)\)\dt]
1,7=0
o sl 1 =g
— 2(iNg) . IMM—i— i —2
(i + 1)A2n—i= / .
< E Tinis(g; *s Gi 2 dt
(A 220 1=

IN

2(inj) 2n—1 2
A J 1/2
Z c(i, j, 8) ——Ex [(Iirj—s(1))?] / / A dt.
i,j=0 s=0 ValGrl B
(1) (11) 572 11 i
Finally, using Lemmas 6.22 and 6.21, there is a constant ¢ such that:
_ c

E, [|1 = (DF,DL7'F)p2(\] < Ve

for A large enough. O

Theorem 6.26 There exists a constant ¢ such that, for X\ large enough, the Wasserstein

: _ Gr—E,\[Gr] o .
distance between F' = o (G and N(0,1) is given by:

dw (FN(0,1) < /2

Proof: The proof comes straightforwardly from Theorem 3.1 as stated in [87]:
w(F,N(0,1)) <EX[[1 = (DF, DL™'F) 2] + / E, [|DFI*|D,L™'FI] A dt,
B

which we can use since f, is bounded, so F' € Dom D. We use theorems 6.24 and 6.25 in

the first and second terms, respectively.
[

Remark 6.6 We note that for any definition of il(xl, -+« , xy,) such that }Nz(wl, e Tp) > 1
this theorem will hold. This means that, as long as the formation of simplices depends
only on the positions of the points, the law of the number of connected components will
converge to a Gaussian law. For example, this cover the cases on R%, on d-torus, for Cech
complexes or Rips complexes.

6.6 Summary

In this chapter, we have obtained a way to find the n-th moment of the k-simplices in a
random simplicial complex from points of a Poisson and Binomial point process as vertices
in d dimensions. This is done by using the chaos expansion and evaluating some integrals.
We have seen that the expressions of such moments are very complex for moments of order
superior or equal to three, but the mean is expressed in a very simplified fashion and the
variance is given by the sum of k terms. The same method used to find the variance can
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be applied to find the covariance between the number of k-simplices and [-simplices and
its expression is given by a sum of the minimum of k£ and [ terms.

With respect to the Euler characteristic, we have calculated also a closed-form expres-
sion for its mean using the alternating sum of the mean of k-simplices, resulting in a Bell
polynomial over as a function of \(2¢)?. Moreover, we have found an infinite power series
to express its variance by using the covariance result. Then, we have simplified the vari-
ance of the Euler characteristic for d = 1 and we have simplified two terms over d 4+ 1 of
the variance in d dimensions. A concentration inequality has been used to find an upper
bound to the tail of the Euler characteristic distribution. We have also conjectured that
at most two kinds of holes are predominant.

Although we determine a way to find the n-th moment of Ng, their expressions are
too complex for n > 3 and so it is not possible to find their distributions. However, in
Section 6.5, we have used Theorem 3.1 as stated in [87] to determined an upper bound for
the distance between the distribution of N and the Gaussian one with mean Ey [IV;] and
variance Var(Ny). This result holds in any dimension for points deployed over any compact
set and actually the result holds not just for k-simplices, but for any kind of connected
graph.
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Chapter 7

One-dimensional Case

7.1 Introduction

The previous chapter considers sensors represented by a random configuration on d
dimensions. Although we can obtain important results concerning the moments and dis-
tributions of quantities such as the number of k-simplices and Euler characteristic, there
are some unanswered questions regarding the number of connected components and cov-
erage. Trying to answer those questions, we quickly realized that the dimension of the
ambient space played a key role. We then first began by the analysis of dimension 1, which
appeared to be the simplest situation. In this case, there is no need of algebraic topology
so we will not go further in the description of this line of thought even if it was our first
motivation.

In dimension 1, the only question of interest is that of the connexity but it can take
different forms. Imagine we are given [0,1] as a domain in which n points {z1, --- , z,}
are drawn. For a radius r, one can wonder whether [0, 1] C Uj=1,... n[z; — 7, i + 7] or one
can investigate whether [x; —r, x; + 7] N[z — 7, i1+ 7] # O foralli=1,--- ,n—1.
The second situation is less restrictive since we do not impose that the frontier of the
interval to be covered. Depending on the application we have in mind, both questions are
sensible. A slightly different but somehow close problem is that of the circle: Consider
now that the points are dispatched along a circle of unit perimeter C; and ask again
whether Cy C Uj=1, ... ,B(z;, ) where B(z, r) is the 2-dimensional ball of center = and
radius r. Several years ago, this problem has been thoroughly analyzed [106] and references
therein) for a fixed number of i.i.d. arcs over the circle. A closed form formula can be
given for the probability of coverage as a function of the number and of the common law
of the arcs length. Some variations of this problem have been investigated since, see for
instance [59]. More recently, in [70], algorithms are devised to determine whether a domain
can be protected from intrusion by a “belt” of sensors (namely a ring or the border of a
rectangle). There is no performance analysis in this work which is focused on algorithmic
solutions for this special problem of coverage. Still motivated by applications to sensor
networks, the paper [76] considers the situation where sensors are actually placed in a
plan, have a fixed radius of observation and analyses the connectivity of the trace of the
covered region over a line. The works of Kahle [66, 65] are actually hardly linked to our
results: the motivation is the same, studying the Betti numbers of some random simplicial
complexes but the results are only asymptotic and valid in dimension greater than 2.

Our main result is the distribution of the number of connected components for a Poisson
distribution of sensors in a bounded interval. We could not use the method of [106] since
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the number of gaps does not determine the connectivity of the domain. For instance, one
may have only one gap at the “beginning” which means that all the points are pairwise
within the threshold distance and thus that the network is connected or one may have only
one gap in the “middle” which means that there is a true hole of connectivity.

Actually, our method is very much related to queueing theory. Indeed, clusters, i.e.
sequence of neighboring points, are the strict analogous of busy periods — see Section 7.2.
As will appear below, our analysis turns down to be that of an M/D/1/1 queue with
preemption: When a customer arrives during a service, it preempts the server and, since
there is no buffer, the customer who was in service is removed from the queuing system.
This analogy led us to use standard tools of queueing theory: Laplace transform and
renewal processes — see for instance [7, 19]. This works perfectly and with a bit of calculus,
we can compute all the characteristics we are interested in. It is worthwhile to note that
a queueing model (namely the M/G/oc0) also appears in |76].

The paper is organized as follows: Section 2 presents the model and defines the relevant
quantities to be calculated. The calculations and analytical results are presented in Section
3. For our situation, we find results analogous to that of [106]. In section 4, two other
scenarios are presented, considering the number of incomplete clusters and clusters placed
in a circle. In Section 5, numerical examples are presented and analyzed.

7.2 Problem Formulation

Let L > 0, we assume that we are given a Poisson process, denoted by N, of intensity
Aon [0, L]. Let (Xj;, i > 1) be the atoms of N. We thus know that the random variables,
AX; = X;41 — X; are i.i.d. and exponentially distributed. We fix ¢ > 0. Two points,
located respectively at x and y, are said to be directly connected whenever |z — y| < e.
For i < j, two points of N, say X; and Xj, are indirectly connected if X; and X;,; are
directly connected for any [ =14, --- , j — 1. A set of points directly or indirectly connected
is called a cluster, a complete cluster is a cluster which begins and ends within [0, L]. The
connectivity of the whole network is measured by the number of clusters.

The number of points in the interval [0,z] is denoted by N, = >7% (1ix, <4 The
random variable A; given by

X ifi=1,
e lIlf{X] : Xj > Ai—17 Xj — Xj—l > 6} if i > 1,

represents the beginning of the i-th cluster, denoted by C;. In the same way, the end of
this same cluster, F;, is defined by

E;, = inf{Xj + € : Xj > Ai7Xj+1 — Xj > 6}.

So, the i-th cluster, Cj, has a number of points given by Ng, — N4,. We define the length
B; of C; as E; — A;. The intercluster size, D;, is the distance between the end of C; and
the beginning of C;11, which means that D; = A;11 — E; and AA; is the distance between
the first points of two consecutive clusters C;, given by AA; = A; 11 — A; = B; + D;.

Remark 7.1 With this set of assumptions and definitions, we can see our problem as an
M/D/1/1 preemptive queue, see Fig. 7.1. In this non-conservative system, the service
time is deterministic and given by e. When a customer arrives during a service, the served
customer is removed from the system and replaced by the arriving customer. Within this
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Remaining 17)27
service time 2131
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‘ L Xe X7
Aq EAp Ey A3 Time

Figure 7.1: Queueing representation of the proposed problem. A down arrow denotes that
user i starts to be served. An up arrow indicates that user i leaves the system without
have finished the service. A double up arrow ilustrates that the service of user ¢ finishes.
It is also shown the beginning and the end of the ith busy period, respectively, A; and FE;.

a4 =D N 4,
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Figure 7.2: Definitions of the relevant quantities of the network: distance between points,
distance between clusters, the size of clusters, the size interclusters, the beginning of clus-
ters and the end of clusters.

framework, a cluster corresponds to what is called a busy period, the intercluster size is
an idle time and A; + D; is the length of the i-th cycle.

The number of complete clusters in [0, L] corresponds to the number of connected
components (3y(L) (since in dimension 1, it coincides with the Euler characteristics of the
union of intervals, see [42]) of the network. The distance between the beginning of the
first cluster and the beginning of the (i 4 1)-th one is defined as U; = 22:1 AAg. We also
define AXg = Dg = X;. Figure 7.2 illustrates these definitions.

For the sake of completeness, we recall the essentials of Markov process theory needed
to go along, for further details we refer for instance to [19] and [7]. In what follows, for a
process X, (]—"tX , t >0) is the filtration generated by the sample-paths of X:

fgx =0{X(s), s > t}.

Definition 7.1 A process (X (t), t > 0) with values in a denumerable space E is said to
be Markov whenever

E) [F] (X (t + ) F* = Ex [F] (X (¢t + )X (1),

for any bounded function F from E to R, anyt >0 and s > 0.
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Equivalently, a process X is Markov if and only if given the present (i.e. given X (t)),
the past (i.e. the sample-path of X before time t) and the future (i.e. the sample-path of
X after time t) of the process are independent.

Definition 7.2 A random variable T with values in RY U {+oo} is an FX -stopping time
whenever for any t > 0, the event {1 <t} belongs to FiX.

The point is that (7.1) still holds when ¢ is replaced by a stopping time 7: Given X (1),
the past and the future of X are independent. X is then said to be strong Markov. This
property always holds for Markov processes with values in a denumerable space but is not
necessarily true for Markov processes with values in an arbitrary space.

From now on, the Markov process under consideration is N, the Poisson process of
intensity A over [0, L].

Lemma 7.1 For anyi > 1, A; and E; are stopping times.
Proof: Let us consider the filtration F}¥ = 0{N,,a < t}. For i = 1, we have
(A <ty e (X1 <tle {N,>1} e FN.
Thus, A; is a stopping time. For As, we have
n n
{Aa>tt e [ JsM=n|JqAX;>¢ | {AXk <}y pe R,
n>1 j=1 k=j+1

so As is also a stopping time. We proceed along the same line for others A; and as well
for E; to prove that they are stopping times. L
Since N is a (strong) Markov process, the next corollary is immediate.

Corollary 7.2 The set {B;, D;, i > 1} is a set of independent random variables. More-
over, D; is distributed as an exponential random variable with mean 1/\ and the random
variables {B;, i > 1} are i.i.d.

7.3 Calculations

Throughout this section, we find first the Laplace transforms of B;, AA;, U; and the
probability that there are n clusters in the interval. Then, we find the analytical expression
of those quantities by inverting their Laplace transform.

7.3.1 Laplace transforms

We find first the Laplace transform of the distribution of B;, the size of a cluster.
Corollary 7.3 The Laplace transform of the distribution of B;, is given by
A+s

1
A 55;6 ese L1

E[ePi] = (7.1)
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Proof: Since AXj is an exponentially distributed random variable,

E [e‘SAle[AXjSe]] = /0 et e Mdt
A
— 1— —(S—l-)\)e
54+ A ‘

and E [e_SAXJ' 1[AXj>e]] = ¢~*¢. By Corollary 7.2, since the B;’s are i.i.d, it suffices to

calculate E [G_SBl]. Hence, the Laplace transform of the distribution of B; is given by
[ee]
E [e_SBi} = ZE [e_‘(”Bl,NE1 = n}
n=1
00 n—1
= ) E e BTN a5 [T Liax,<q
n=1 j=1

n—1

[
hE

(B [e**11ax,<q))

<S i )\(1 _ e—(s—i-)\)e)) e SA e s€

E [e—sAXn l[AXn>e]] e~ %€

n=1

I
hE

n=0
A+s

1
X sere ese 4 1’
A

(7.2)

which concludes the proof. ||
From this result, we can immediately calculate the Laplace transform of the distri-
bution of AA;. Since AA; = B; + D;, we have E [e_SAAi] =E [e_S(BiJFDi)} and using

Corollary 7.2:
E [e—sAAi] —E [P E[e D] = (7.3)

1
e
If we turn our attention to the system seen as a queue, as a remark, this last result can lead
us to calculate the probability of the server is busy, or, equivalently, the loss probability,
since the interarrival time is exponentially distributed. Due to the fact that A; and F; are
stopping times, this probability is given by E [B;] /E[AA;], which can be obtained by:

: E |B; — HE e
P(Server is busy) = E [[AA]] = ZE [E_SAA]’] =0
v T ds “s=0
= 1 — 6_)\6.

The Laplace transform of another r.v., U, is found in the next corollary.

Corollary 7.4 The Laplace transform of the distribution of U, for n > 0 is given by

1

EleVn]=——— .
[ ] <%se“ + 1>n

(7.4)
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Proof: ~ We use Corollaries 7.2 and 7.3 to calculate the Laplace transform of the
distribution of Uy, since U, = > | (B; + D;):

E [e_SUn] — E [e_SUn] — E [6_5(222?(BZ+D1)):|
= =[[E[c*F] &[]
=1
1

-
(e—szese + 1)

for n > 0. L
Let us define p,(L) = P(By = z), i.e., p,(L) is the probability of having n clusters on
the interval [0, L]. Since for all L € Ry, 0 < p, (L) < 1, the Laplace transform with respect

to L,
C{pn()}(s) = /0 ¥ ettt

is well defined, and we are able to compute it with the expression of E [e_SU“]:

Theorem 7.5 Forn > 0, the Laplace transform of the function p,(L) is given by

65)\ e€S

L{pa()}(s) = & (e 1)

Proof: Let By = Bo(L) be the number of complete clusters on [0, L]. To calculate the
probability of {5y(L) = n}, we have to note that

(7.5)

{ﬂozn}@{{AX0<oo} ifn=0,

because the events in each side of the relation represent that there are more than (y clusters
in the interval [0, L]. We can see this condition illustrated in Fig. 7.3 for n > 1. For n = 0,
the additional case, {AXy > oo}, is trivial. Since {fy = n} and {Hy > n + 1} are disjoint

Up—1
By By . B By
I e — T
e — -, L
AXp Dy Dy,

Figure 7.3: Illustration of the condition equivalent to By > n.

events:

P(Bo>n) = P((Bo=n+1)U(B=n))
= P(fo=n+1)+P(B =n).
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Thus
P(f = 0) = 1 - P(AXp + By < L),
and
PGy =n)=P(AXo+Up_1+ B, <L) —-P(AXo+ Uy, + Byy1 < L). (7.6)
Let

v 2 AXo4+Up 1+ B, ifn>1
10 ifn=0"

the Laplace transform with respect to z, P(Y,, < z) can be calculated:

LIP(Ya < )}(s) — /OO (Yo < 2)e~*"dz

- / / dPy, (y)e **dx = / h < /y ooe‘“dw) dPy, (y)

_ /0 —sydPY ( ) — —E [ —sYn]

E [e—SAX()] E [G_SUnil] E [e—an]
1

2 — Y
(e—;ese“ + 1)

for n > 1, where we used Corollary 7.2 in the third line. For n = 0, the Laplace transform
is trivial and given by L{P(yo < -)}(s) = 1/s. Substituting Eq. (7.7) in the Laplace
transform of both sides of Eq. (7.6) yields:

L{pn()}(s) = L{PYn <)}s) = L{P(Yni1 < )}(s)

ee)\ e€s

= — n > 0.
. n+17 —
A (%sefs + 1>

The proof is thus complete. ||

s
1
s
1
s

(7.7)

Lemma 7.6 Let m be an positive integer. When e — 0, E [G]"] — E[N}"].

Proof:  Since lim,_,o P(AX; < z) = 0, for almost all N, for any non-negative integer

J, if X; > n, there exists n such that AX; > 7. If e < n, then fy(e) “2 Ny. Besides, since
Bo < Ny, it is well known that all the m-th moments of a random variable distributed as
Poisson converge. This means that, for any positive integer m, E [3]"] also exists and that
when € — 0, E [)'] = E[N}"]. L
Let Liy(2), z,t € R, z < 1, be the polylogarithm function with parameter ¢, defined by

Xk

For m a positive integer, consider the function of z

Mg (wb—>E (60" (x Zz pi(z > (7.8)
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and its Laplace transform given by:

L{ME ()} (s) = /0+ E [Bo(z)™] e *Lpp (x)da.
Corollary 7.7 Let a be defined as follows:

e
e
A
= ——se’.

A
The Laplace transform of the m-th moment of Bo(L) is:

a

CIMP())} (s) = ﬁ”‘m (ai 1) , (7.9)

which converges, provided that ﬁ < 1.

Proof: ~ Applying the Laplace transform of both sides of Eq. (7.8) and using its
linearity:

L{M ()} (s) =L {Z z‘mpx-)} (s) = > _(i"Li{pi()}(s)). (7.10)

i=1 i=1

where we can interchange the sum and the Laplace transform due to Lemma 7.6. Thus, it
is possible to find the Laplace transform of E [Gy(L)™]:

LOMEOYE) = Y LpON)

concluding the proof. I

7.3.2 Analytical expressions

Until this point, we have all the results we are interested in, but in a Laplace transform
form. In this section, we find a way to inverse every one of those transforms. We start
finding the moments of 3y and we define {7,3} as the Stirling number of the second kind [49].

Corollary 7.8 The m-th moment of the number of clusters on the interval [0, L] is given
by:

ML) :é{?} (% —k:)k <)\ee_6)‘>k1[L/e>k]. (7.11)

Proof: Using the following identity [119] valid for a positive integer m

m (=1 Rk 721'11
Li_p(2) = Z_: (1— Z){k+1 }’

k=0
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in the result of Corollary 7.7, we find that

m (1) {“];:11} (1+a)*

COGOND = 83—

k=0
1 & 1
= ; Z Ck,mﬁ7
k=0
where the coeficients ¢, ., are integers given by:

- Scma{m ()

=k

Using the following identity of Stirling numbers [101],
“ 1Vt m + 1 _
IR g
Jj=0

we find that cp,, = 0 for m a positive integer. So we can write the Laplace transform of
the moments as

—e)\)
L{Mg ()} Z Ck,m Sk—i—lekse (7.12)

and apply the inverse of the Laplace transform in both size of Eq. (7.12) to obtain:
_5)\>k
Mg (L) = Z Ck,m k+1ek35 (L)
1
—€eA -1
k,m (Ae ) £ {Sk—i-lekse} (L)

-y C’]fﬁ'm (L — ke)* <)\e_6)‘>k 11k (7.13)

I
Pjs

m m - Ck,m
Mg (L) = E[N['] = Z (LN 150

Hence, for any A > 0,

m

k (LA = Z{ }LA Liz>o,

k=1 =

Clkeom = {?Z}k' .

Thus, we have proved (7.11) for any positive integer m. L

which shows that
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Once we have an expression of the moments, we can find the Laplace transform of the
distribution of 3.

Theorem 7.9 The expression of P(By = n) with respect of n, L, A\ and € is given by:
LT )
. —Ae\n+1
P(By=n)= n! E F (L = (n+i)e)re )" (7.14)

1=0

Proof: With the expression of the moments of Gy found in Corollary 7.8, we can find
the Laplace transform of its distribution, given by

E %] = 1-sE 5] + 3 E 53] — ?E (561 +

Rearranging the terms of the right-side hand and substituting Mgg(L) by the result of
Eq. (7.11), we obtain:

B[eob] =3 ((2 ko ()" W]]g% v

k=0

But we can simplify this expression, since [101] gives

ff‘”{f{} ]i'(e _— (7.15)

|
=k

and we have
[ —sﬁo} kf: (L — ke)* ( >\€>k]—[L>ke] (e—sk_! nk
=0

We can then apply the inverse of Laplace to find the distribution of fy:

—— (—1)i<z‘

7! n

)5(/<: —n)(ke — LY <)\e"\6>k 11k

k=0 i=k
After some simple algebra, we find the expression of the probability of an interval containing

n complete clusters:

g T gy _
PGy =n) = n! > g (IL = (n + i) re™ )"+,

=0

concluding the proof. ||
With the explicit expression of P(3(z) = n) = p,(z), we can show a simple lemma.

Lemma 7.10 For x >0, p,(z) has the three following properties:
i) pn(x) is derivable;
it) limy 00 pp(x) = 0;

. dpn (x
iii) limy 00 pdm( ) 0.




127

Proof: Let j be a non-negative integer. The function is obviously derivable when
x/€ # j. Besides, we have

li I i O LI\

m pa(o)~ tim pa(o) = tm (o))

Since the right-hand term function of x is zero as well as its derivative for all j, the

function is also derivable when x/e = j, which proves i). Using the Final Value theorem

in the Laplace transform of p,(z) and its derivative, we show items ii) and iii). !
The expression of p,(x) gives us, indeed, a transform Laplace pair between the x and

s domains:

lz/e]—n i n-+i €s
Lz>0) 3 (—‘1) ((w_(nJri)e)l) " é(L (7.16)

n! = i! a asess +1)"+
We can use this relation to find the distributions of B; and U,.

Theorem 7.11 The distributions of B; and U, respectively fp,(x) and fy,(z) are

fB,(x) = {Ae‘dpo(ﬂc —e)+ fd%m(ﬂﬁ - 6)] Li>qs (7.17)

and
fUn (1‘) = )\B_GApn_l({E — 6)1[x>g], (7.18)

where the expressions of po(x — €) and %po(m — €) are straightforwardly obtained from
Eq. (7.14).

Proof:  According to Corollary 7.3:

, 1 (A+s)
- Bz —
E [e s ] - X e/\e se
TS@ + 1
ee)\ e€S ee)\ €S
— )\6_0\76)\76_68 + 8_6)\870\78_68
A £ gees 41 A e 41

= e P L {po(-)} (s) + e Pe L {po(-)} ().

Here, using the inverse Laplace transform established in Eq. (7.16) and remembering that
po(z™) = 0, we get an analytical expression for fp.(x), proving Eq. (7.17).

Proceeding in a similar fashion, we can find the distribution of U, by inverting its
Laplace transform given by Corollary 7.4:

1
n
<%se“ + 1>

€A €s
o )\e—e)\e € e—es
- n

A <§sees + 1>

= e e L{pna()} (9).

E[eU] =

Inverting this Laplace transform we prove Eq. (7.18). L
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We can also obtain the probability that the segment [0, L] is completely covered by the
sensors. To do this, we remember that the first point (if there is one) is capable to cover
the interval [X; — ¢, X1 + €]. This motivates the Theorem 7.12.

Theorem 7.12 Let R, »(x) be defined as follows:

Lefel 1 i+n SN (A[(1 = i)e — 2])d
R = 3 |() 20< (1= 9e=s)

Then,

P([0,L] is covered) = Ry 1(L) — e_)‘eRQl(L —€)
— G_AERL()(L) + 6_2>\6R170(L — 6). (7.19)

Proof: The condition of total coverage is the same as
{Vx € [0,L],3X; € [0, L]|x € [X1 — ¢, X1 + €]},
which means that:
{[0, L] is covered} < {B; > L — X1} N {X1 <¢€}.

Hence,
P ([0, L] is covered) = / P(By > L — X;| X, = 2)dPx, (z),
0
and since By and X7 are independent:

P([0, L] is covered) :/ fB, (W)Ae " dudz.
0 JL—=x

From this point we use Lemma 7.10 to solve some analytical integrals and to do some
algebra to obtain Eq. (7.19). !

Hence, we have explicit expressions, which are quite simple, to represent the distribu-
tions of Gy, B;, U, and the probability of total coverage as a function of L, €, A\g, 1 and
t (we remember that A = \gLe */#), so the problem of a random sensor network in one
dimension is completely solved.

7.4 Other Scenarios

Although we consider the problem of finding the number of complete clusters until this
point of the paper, the method can be used to calculate p, to other definitions for the
number of clusters. In this We consider particularly two other definitions: the number of
incomplete clusters and the number of clusters in a circle.
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7.4.1 Number of incomplete clusters

The major difference with Sec. 7.3 is that a cluster is counted as soon as one of the
point of the cluster is inside the interval [0, L]. So, for instance, in Fig. 7.3, we count
actually n + 1 incomplete clusters. We define 3 as the number of incomplete clusters on
an interval [0, L].

Theorem 7.13 Let G(k) be defined as

k

G(k) _ (_1)k e—k)\e Z [)‘(ke T L)]] - e—)\L 1[T>ke]
= 7
for k € Ny and G(—1) = e *E. Then
|[L/e]+1 ' ;
P(B)=n) = Z_: (—1)n (n) (G(i — 1) + G(7)), forn >0. (7.20)

Proof: The condition of 3 > n is slightly changed:

/ {AXo+Up1 <L} ifn>1,
{ﬂozn}@{{AX0<oo} ifn=0.

We define Y;, as

y. & AXg+U,—1 ifn>1
"0 if n=0.

Repeating the same calculations, we find the Laplace transform of P(3)(L) = n):

A €s

iAi Ae it >,

S ec €s

LR =i =4 (5se +1) (7.21)
R if n=0.

With this expression, following the lines of Lemma 7.6, we obtain:

ey e =5 {m ek (298

k=1

Then, we write:

GO S AN
A+ssk X1 X435 st \ A '

to find an expression with a well known Laplace transform inverse, and after inverting it,
we obtain:

[ =S {Z‘Ll} G(E). (7.22)

k=0
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Expanding the Laplace transform of the distribution of 3 in a Taylor serie and rearranging
terms, we get

E [e‘sﬁé] =1+ G(0) i (=s) {{} + iG(/ﬁ) i i {iii}

1l 1l
j=1 J: k=1 Jj=k J:

Now, we use the recurrence that Stirling numbers obey [101],

{ii}:{i}ﬂkﬂ){kil}, (7.23)
to apply in Eq. (7.15):

S - S2(( (i)

1
. T k T k+1
= —(e"—1)"+ H(e — 1)

obtaining:
E [e—sﬁé} 1+ i(G(k 1)+ GR)) (e — 1)k,
k=1

Inverting this expression for an non-negative integer n, we have the searched distribution.
[

7.4.2 Number of clusters in a circle

We investigate now the case where the points of the process are deployed over a cir-
cumference and we want to count the number of complete clusters, which corresponds to
calculate the Euler Characteristic of the total coverage, so we call this quantity y. Due to
the symmetry of the circumference , we can choose an arbitrary point to be the origin. If
it is given that there is at least one point on it, we can choose the origin to be at some
point of the process.

Theorem 7.14 The distribution of the Euler Characteristic, x, when the points are de-
ployed over a cirumference of length L is given by

P(X — Tl) — €_>\L1[n:0] —+ (1 — €_>\L) i'

e~ LL/e]—n [(_1)2‘
n!

=0

(IL = (n+ i) re= )yt (L +(n+i) G - e))] C(7.24)

forn > 0.

Proof: 1t is possible to establish a relation between the case in the line and the case
in the circle. If there are no points in the circle, of course x = 0. Otherwise, if there is
at least one point, we choose the origin at this point and we have the equivalence between
the events:

(U 1+ By < LYN{NL >0} ifn>1,
{in}@{{AXo<oo} 0= 0.
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Figure 7.4: Illustration of the condition equivalent to x > n. Since the coverage of the last
point on [0, L] overlaps the cluster with a point in zero, they are actually contained in the
same cluster

In Fig. 7.4 we present an example of this equivalence. We can define Y,, as

y 4 Up-1+ B, ifn>1
"1 0 if n =0,

to find the Laplace transform or P(x(L) = n):
A1+s ee)\ e€s

AA (%sefs + 1)n‘

Again, we can use the fact that the number of clusters is almost surely equal to the number
of points when € — 0 to obtain the moments of y:

E[X"=(1- e_AL))\e‘EAé [{ZL} ([L — keJre—N)r-1

s+ (3]

Expanding the Laplace transform in a Taylor serie and rearranging terms, as we did pre-
viously, yields

L{P(x() =n)}(s) = (1 —e*F) (7.25)
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Since

we can directly invert this Laplace transform, add the case where there are no points for
x = 0, and the theorem is proved. N

7.5 Examples

We consider some examples to illustrate the results of the paper. Here, the behavior
of the mean and the variance of §y as well as Pr(f3y = n) are presented.
From Eq. (7.11), we have that E [5y] is given by:

E [ﬂo] = (L — 6))\6_6)‘1[L>e].

This expression agrees with the intuition that there are three typical regions given a fixed
€. When A is much smaller than 1/€, the number of clusters is approximatively the number
of sensors, since the connections with few sensors will unlikely happen, which can be seen
from the fact that By — LA when A — 0. As we increase ), the mean number of direct
connections overcomes the mean number of sensors and, at some value of \, we expect that
Bo decreases, when adding a point is likely to connect disconnected clusters. We remark
that the maximum occurs exactely for e = 1/, i.e., when the mean distance between two
sensors equals the threshold distance for them to be connected. In this maximum, 3y takes
the value of (L/e—1)e~!. Finally, when ) is too large, all sensors tend to be connected and
there is only one cluster which even goes boyond L, so there are no complete clusters into
the interval [0, L]. This is trivial when we make A — oo in the last equation. Figure 7.5
shows this behavior when L =4 and € = 1.

— E[fo] in function of A

Figure 7.5: Variation of the mean number of clusters as a function of A when L = 4 and
e=1.

The variance can be obtained also by Eq. (7.11):

Var(fy) = (L — €)he™ g + (L — 26)A2e 2 1o9q — (L — €)*A2e 2 1oy,
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and under the condition that L > 2e:
Var(fo) = (L — €)he™ 4 €(3¢ — 2L)\2e 2N,
Fig. 7.6 shows a plot of Var(fy) as function of A for L =4 and ¢ = 1. We can expect that,

Var(fp) in function of A

Var (,g())
o
t

0.4

0.3

0.2

0.1

Figure 7.6: Behavior of the variance of the number of clusters as a function of A when
L=4ande=1.

when A is small compared to €, the plot should be approximatively linear, since there would
not be too much connections in the network and the variance of the number of clusters
should be close to the variance of the number of sensors given by AL. Since 3y tends almost
surely to 0 when A goes to infinity, Var(/3p) should also tend to 0 in this case. Those two
properties are observed in the plot. Besides, we find the critical points of this function,
and again, A = 1/e is one of them and at this value Var(8y) = (L/e)e™! + (3 —2L/e)e L.
The other two are the ones satisfiy the transcendant equation:

e N = _Lze |
2¢(2L — 3¢)
By using the second derivative, we realize that 1/e is actually a minimum. Besides, if
L < 2¢, there is just one critical point, a maximum, at A = 1/e.
The last example in the section is performed with the result obtained in Theorem 7.9.
We consider again L = 4 and € = 1 to obtain the following distributions:

P(x=0 = 1- 3he N + 2222 — 1/6)\38_3/\,

P(x=1) = 3xe —4X2e7 2 4 1/203¢7 3,
P(x=2) = 2\ 2 —1/20%e %,
P(x=3) = 1/6X% 3,

P(x>3) = 0.

Those expressions are simple and they have at most four terms, since L = 4e. We plot
these functions in Fig. 7.7. The critical points on those plots at A = 1/e are confirmed for
the fact that, as a function of A, for every n, P(x = n) can be represented as a sum

j .
Z Gij ()\e—ke)z
=0
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where the coeficients ¢; ; are constant in relation to A\. However, (Ae™€)" has a critical
point at A = 1/e for all ¢ > 0, so this should be also a critical point of P(x = n). If X is
small, we should expect that P(x = 0) is close to one, since it is likely to N have no points.
For this reason, in this region, P(x = n) for n > 0 is small. When A\ is large, we expect
to have very large clusters, likely to be larger than L, so it is unlikely to have a complete
cluster in the interval and, again, P(x = 0) approaches to the unity, while P(x = n) for
n > 0 become again small.

Pr(8y = n) in function of
1 T T T T

jeseveve
Sooo

0.8

Probability

Figure 7.7: Probabilities of connectivity, P(5y = n), for n = 0,1,2,3, as a function of A
when L =4 and € = 1.

7.6 Summary

In this chapter, we have obtained expressions that model a random sensor network in
a line. We have evaluated both the analytical expression and its Laplace transform of the
following quantities: the length of a cluster, the length of a sequence of consecutive clusters,
the distribution of the number of complete clusters, incomplete clusters and clusters on
a circumference, all the moments of those distributions and the probability of complete
coverage. The analytical solutions are simple since they involve only polynomial and
exponential functions; they are exact; and they take into account a large number of realistic
variables such as density of the network, lifetime of the sensors, power transmission and
reception sensitivity, all of this with a random deployment of sensors. Moreover, these
calculations solve also the queueing problem of the busy period of an M/D /oo and find
many parameters of a M/G/1/1 when the service time is distributed as c.
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Chapter 8

Concluding Discussion and Future
Works

In this thesis, we explored tools of stochastic analysis and algebraic topology applied
to sensor networks. We considered the usual modeling of the positions in a network as a
Poisson point process. Furthermore, we used stochastic analysis under the Poisson mea-
sures to characterize random variables as the sum of stochastic integrals and we applied
the gradient operator D, as well as the Ornstein-Uhlenbeck generator L and its inverse.
As regards algebraic topology, we took advantage of the fact that the topology of a sensor
network coverage is the same as that of its simplicial complex.

Stochastic analysis enabled us to find upper bound probabilities for various situations,
and we presented two of them throughout the thesis: the probability of opportunist users
in a cognitive system to damage licensed users and the probability for losing a user in an
OFDMA system because all subcarriers of the central station are already in use. In both
cases, the results can be used to design a system, since they are function of parameters
that can be found or controlled by the operator.

In the first case we consider the power constraint to be respected in order to avoid
outages of the licensed users. Then we found the maximum power allowed to opportunist
users in a WiMax network such that this the mean interference caused by them respects this
constraint. Then, we found out that the power allowed to these secondary users in order
to have low outage probabilities for primary ones is not much weaker than the averaged
one. So, for instance, the operator can control capacity of secondary users according
to the outage probability, or the opposite, the intensity of users can be controlled in a
region to ensure that users (primary and secondary ones) have a minimum QoS in their
communication. It is worth mentioning that the secondary users capacity is improved and
damage to primary ones is lessened when their intensity and bandwidth are increased,
which is a tendency of the next generation wireless networks.

In the second application, we found a relationship between the probability of overload-
ing the system, the density of active users and the number of available subchannels, thus
providing a large number of possibilities to design OFDMA systems. We also compare the
numerical results with simulations and note that the calculated number of subchannels
leads to an overload probability overestimated by about 20% of the simulated one. The
margin provided by the bounds may be viewed as a protection against errors in the mod-
eling or in the estimations of parameters. We should remark that, in both cases, we found
new analytical results for the very complex mathematical problems.
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The most important results from algebraic topology came from the interpretation of a
sensor network as a simplicial complex, which enables us to compute the Betti numbers
of the coverage of a sensor network. We showed that Betti numbers do not allow us
to determine if a region is completely covered, but we solved this problem if points lay
on a torus. In this case, the Euler characteristic also can provide valuable information
on coverage: if this quantity equals zero, probably the network is covered. We obtained
statistics on the number of k-simplices, such as its mean, variance, covariance and third
moment, and we provided a method to calculate the n-th moment. The results already show
some tendencies for the network, for instance if a network has a number of 1-simplices much
larger than the number of points, then probably this network is connected. We can think
about similar intuitive interpretations, but these statistics lead to more interesting results:
we can use them to determinate the mean and variance of the Euler characteristic and to
find bounds for the distribution of connectivity. We also proved that the distribution of the
number of k-simplices converges to a Gaussian distribution when the intensity of points A
tends to infinity, with a convergence rate of O(1/v/)). If we combine this convergence with
the statistics of first and second order, we have a good approximation for the distribution
of the number of k-simplices. With this result, a random Gaussian vector can represent
the joint distribution of the number of different simplices, since we have the correlation
between the number of any k-simplices and [-simplices.

In Chapter 7 we did not use a particular new method, but classical ones to solve the
M /M /1/1 preemptive queue which was not solved in the literature. This result corresponds
to the solution of the major problem of the thesis in one dimension: the arrival time
corresponds to the beginning of a cluster of sensors, the busy period corresponds to the
size of a cluster and the number of served users after a certain time corresponds to the
number of clusters in a line segment. We found all relevant parameters and we believe that
this example can give insights to cases in two or more dimensions.

The most important contribution of the thesis is to apply simultaneously results from
algebraic topology and from stochastic analysis on sensor networks. Although tools of
Malliavin calculus were more often used, topology has played a fundamental role since
the random variables and their relations came from concepts of topology. One of the
main purposes of this thesis was the use of modern mathematical tools in networks, which
was fulfilled. By using these tools, we could obtain results for problems with very hard
analytical treatment where classical tools have failed to solve. We remark that it was also
important to present concrete and applicable results in each chapter.

8.1 Future Works

Although the use of topology has been essential to the work, we used but a superfi-
cial layer of it. There are a lot of works in this domain and we believe that they soon
will be used in random networks (see, for instance [27, 86, 84|), especially the works of
persistent homology. We remember that we were not able to find relevant results for the
Betti numbers: we know how to compute them, but not how to treat them statistically.
A particularly intriguing question would be to find a closed-form expression for the Euler
characteristic (instead of the infinite power series representing it) in two dimensions, at
least. With respect to the deployment of the points, there are various different point pro-
cesses that could be used to represent the behavior of users, ranging from the randomness
of the density of user (as in a Cox process) to processes where the position of each user
depends on the position of other users (as in determinantal processes).
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