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Chapter 1
Introduction

Contexte

Le cancer peut se définir comme une croissance irrégulière de cellules qui se di-
visent et croissent tout en formant de manière non contrôlée des tumeurs ma-
lignes, rendant invalides certaines parties du corps avoisinantes. Le cancer du
cerveau est rare en comparaison avec d’autres maladies mortelles ou qui déclinent
la santé. Ceci dit, aux états-Unis seuls, plus de 18000 personnes se voient diagnos-
tiquées chaque année une tumeur cérébrale. Deux tiers d’entre eux décéderont
et les autres survivront avec de sévères restrictions fonctionnelles [Buzdar and
Freedman, 2007]. Ces statistiques s’appliquent pour le reste du monde, et c’est
pourquoi une abondance de recherches et développements a été menée sur ce
sujet. Cependant, la cure continue nous échapper. Dans cette thèse, nous util-
isons la modélisation mathématique combinée avec de l’imagerie médicale pour
décrire la progression de tumeurs cérébrales. Ce chapitre décrit la motivation de
ce travail de thèse et présente un plan de ce manuscrit.

Motivation

Les modèles de croissance de tumeurs basés sur l’équation de réaction-diffusion de
Fisher Kolmogorov (FK) ont montré des résultats convaincants dans la réplication
et la prédiction des motifs d’invasion des tumeurs cérébrales du type gliome. La
motivation principale de cette thèse était de proposer de nouveaux outils de traite-
ment et d’évaluation utilisant les formulations du modèle FK en combinaison avec
de l’imagerie médicale afin d’améliorer l’élaboration de stratégies thérapeutiques.
Cette thèse apporte la contribution de quatre chapitres destinés aborder cette
problématique. Dans cette étude doctorale, les questions suivantes ont été posées
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:

• Chapitre 2: Quels modèles de croissance de gliomes ont été proposés dans
le passé ?

• Chapitre 3: Pour produire des prédictions de croissance de tumeurs réalistes
en formulant le modèle par l’équation FK, est-il important d’utiliser un ITD
spécifique au patient, un ITD Atlas, ou bien pas de ITD du tout ?

• Chapitre 4: Est-il possible d’utiliser une formulation du modèle FK pour
estimer si un gliome est volumineux ou bien diffus après une résection
cérébrale pour améliorer l’élaboration de la stratégie thérapeutique ?

• Chapter 5: Est-il possible de faire un lien entre les métriques radiologiques
basées sur la taille avec la vitesse de croissance d’une tumeur estimée en
utilisant une formulation du modèle FK afin de déterminer si la maladie est
en progression ?

Organisation du manuscit

Chaque chapitre de cette thèse a répondu une question et contribue quantifier la
croissance des gliomes. Dans le chapitre 2, nous décrivons la maladie du gliome
et présentons une revue de l’état de l’art des modèles de simulation de croissance
de gliomes. Dans le chapitre 3, nous discutons l’importance du DTI du patient
dans la modélisation précise de la croissance du gliome en utilisant un modèle de
formulation FK. Dans le chapitre 4, nous proposons une méthode d’estimation
de l’infiltration du gliome après une résection cérébrale en utilisant un modèle
de formulation FK et l’ITD du patient. Dans le chapitre 5, nous évaluons la
maladie progressive du gliome mal différencié en utilisant les estimations de la
vitesse de croissance d’un modèle de formulation FK. Enfin, dans le chapitre 6,
nous décrivons notre principale contribution, ainsi que les perspectives.
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Introduction
� English translation

Context

Cancer can be defined as unregulated cell growth where cells divide and grow
uncontrollably forming malignant tumors and invade nearby parts of the body.
Brain cancer is rare in comparison with other life-declining and fatal diseases.
With this said, more than 18,000 persons are diagnosed with brain tumors in the
United States alone each year. Two thirds of them will die and the others will
survive with grave functional restrictions [Buzdar and Freedman, 2007]. These
statistics are similar for the rest of the world, which is why there has been an
abundance of research and development on this topic. However, the cure remains
elusive. In this thesis, we use mathematical modeling combined with medical im-
ages to describe brain tumor progression. This chapter describes what motivated
this thesis work and provides an outline to this manuscript.

Thesis Motivation

Tumor growth models based on the reaction-diffusion Fisher Kolmogorov (FK)
equation have shown convincing results in reproducing and predicting the invasion
patterns of glioma brain tumors. The main motivation behind this thesis was
to propose novel processing and evaluation tools, using FK model formulations
in combination with medical images, to aid in therapy planning. This thesis
contributes four chapters aimed to address this motivation. In this PhD research,
the following questions were asked:

• Chapter 2: What glioma growth models have been proposed in the past?

• Chapter 3: To produce realistic tumor growth predictions using a FK model
formulation, does it matter if one uses a patient specific DTI, an Atlas DTI,
or no DTI?

• Chapter 4: Is it possible to use a FK model formulation to estimate if a
glioma is bulky or diffuse after a brain resection to aid in therapy planning?

• Chapter 5: Is it possible to link size-based radiological metrics with a tu-
mor’s growth speed estimated using a FK model formulation to determine
progressive disease?
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Manuscript Organization

Each chapter in this thesis answered a question and contributes to quantifying
glioma growth. In Chapter 2, we describe the glioma disease and review the
state-of-the-art models to simulate glioma growth. In Chapter 3, we discuss the
importance of patient DTIs to accurately model glioma growth using a FK model
formulation. In Chapter 4, we propose a method, using a FK model formulation
and patient DTIs to estimate glioma infiltration after a brain resection. In Chap-
ter 5, we assess LGG progressive disease using tumor growth speed estimates
from a FK model formulation. Finally, in Chapter 6, we describe our main con-
tributions and perspectives.
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Chapter 2
Background and Tumor Growth
Modeling Review

Contents
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Glioma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Medical Imaging of Gliomas . . . . . . . . . . . . . . . . . 11

2.3 Tumor Modeling . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 In Silico Tumor Modeling . . . . . . . . . . . . . . . . . . 18

2.3.2 Multi-Scale Tumor Modeling . . . . . . . . . . . . . . . . 19

2.3.3 Image-based Tumor Modeling . . . . . . . . . . . . . . . . 21

2.3.4 Registration and Segmentation in Tumor Modeling . . . . 34

2.4 Perspectives and Further Directions . . . . . . . . . . . . 38

Based on a coauthored paper published in Optimal Control in Image Process-
ing [Menze et al., 2011a], which gives a good literature overview of tumor growth
modeling.

2.1 Context

In this thesis, we use mathematical modeling coupled with medical imaging to
define brain tumor progression and its implications. To understand how to model
brain tumors, it is necessary that we give some biological background first.
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2.2 Background

Figure 2.1: Axial cartoon view of the two brain tissue types.1

2.2 Background

The brain is the center of the nervous system and the most complex organ in
the body. The brain is essentially composed of two types of tissue: gray and
white matter as depicted in Figure 2.1. Gray matter consisting of neuronal cell
bodies, neuropil, capillaries, and glial cells (astroglia and oligodendrocytes) that
are responsible for controlling the brain’s activity. The brain uses 20% of all
oxygen taken in by the body and 95% of that goes specifically into the gray
matter [Miller et al., 1980]. The gray matter color, gray-brown, comes from
capillary blood vessels and neuronal cell bodies. White matter consists mostly
of glial cells and myelinated axons. It is the tissue that passes signals between
different areas of gray matter within the nervous system. An analogy of the
relationship between gray and white matter could be a computer network, where
gray matter can be thought of as the computers, and the white matter represents
the network cables connecting the computers together. The white matter gets its
color (pinkish white) from the fatty substance (myelin) that surrounds the nerve
fibers (axons). This myelin can be found in almost all long nerve fibers. It acts
as an electrical insulation and allows the signals to pass quickly from place to
place.

Glial cells, which are found in both white and gray matter, are among the few
neural cells capable of division and are the supporting cells of the nervous system
functioning to insulate, support, and maintain the neurons [Campbell, 1996].
The three types of glial cells are: astrocytes, oligodendrocytes, and microglia.
Astrocytes provide physical support and regulate the chemical environment for
neurons. They also encircle the capillaries contributing to the blood brain bar-

1ADAM. (2010). Gray and white matter of the brain. [Online; accessed 4-July-2013]. http:
//health.allrefer.com/pictures-images/gray-and-white-matter-of-the-brain.html
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2.2 Background

Figure 2.2: Types of glial cells: astrocytes, oligodendrocytes, and microglia2.

rier. Oligodendrocytes form the insulating myelin sheath surrounding the axon
of the neurons. Microglia contributes as the main immuno-surveillance compo-
nent of the central nervous system. A cartoon depiction of these cells is shown
in Figure 2.2.

Brain tissue can be further divided into lobes as can be seen in Figure 2.3. The
cerebral cortex is nearly symmetrical, where the left and right hemispheres are
approximate mirror images. Anatomists conventionally divide each hemisphere
into four lobes: the frontal lobe, parietal lobe, occipital lobe, and temporal lobe.
It is important to note that, in general, cancer tumor cells cannot travel from
one lobe to another. A brain segmentation (delineation of the brain), in glioma
modeling, must reflect these lobe separations for realistic simulations.

2.2.1 Glioma

Gliomas are a type of brain tumor that are diffuse and invade fastest along white
matter fiber tracks [Giese et al., 1996]. They make up 30% of all brain and central
nervous system tumors and 80% of all malignant brain tumors [Goodenberger
and Jenkins, 2012]. Gliomas get their name because they arise from glial cells.
They start in the spine, or most commonly in the brain [Mamelak and Jacoby,
2007]. Gliomas are histologically classified by grade according to theWorld Health
Organization (WHO) grading system. Table 2.1 explains this classification.

Low-Grade Gliomas: Low-grade gliomas (LGG) are slow proliferating tu-
mors, which are classified as grade I or II in the WHO grading system. LGGs

2Sajben, N. (2013). Rsd advisory- where chronic pain and depression collide. [Online;
accessed 4-July-2013]. http://rsdadvisory.com/category/glial-cell-activation/
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2.2 Background

Figure 2.3: Sagittal cartoon view of the brain with the lobes labeled (left)3.
Axial view of the labeled lobes (right)4. Note that these images are color coded
differently.

can further be categorized into two groups: “astroglial variants” (grade I) and
diffusely infiltrating LGGs (grade II). In this thesis, we will only focus on the
diffusely infiltrating LGGs since astroglial variants can be benign whereas dif-
fusely infiltrating LGGs are cancerous. All diffuse LGG are considered grade II
in the WHO classification system because of their mild to moderate nuclear pleo-
morphism without evidence of mitotic activity, vascular hyperplasia, or necrosis.
There are three different types of these diffusively infiltrating LGG: astrocytomas,
oligodendrogliomas, and mixed gliomas. These tumors characteristically spread
widely throughout the brain and typically progress to higher-graded glial tumors
and must invariably be treated with multiple modalities of therapy.

High-Grade Gliomas: High-grade gliomas (HGG) are tumors that proliferate
rapidly. They are classified as grade III or IV in the WHO grading system.
Anaplastic astrocytomas and glioblastoma multiforme grow rapidly and quickly
invade the brain in tentacles penetrating into the brain parenchyma. Most often
these gliomas are surrounded by edema. Grade IV gliomas are characterized
by creating extensive networks of blood vessels and having a necrotic core. Since
these tumors grow rapidly and the edema exerts pressure on the brain tissue, often

3Wikipedia (2011). Lobes of the brain. [Online; accessed 4-July-2013]. http://en.

wikipedia.org/wiki/File:Lobes_of_the_brain.jpg
4Norman, P. (2013). Healthy brain for life. [Online; accessed 4-July-2013]. http://www.

healthybrainforlife.com/images/brain/brain-lobes-color.gif/view
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2.2 Background

Grade Characteristics

Low-Grade - Slow proliferation
(I&II) - Cells look almost normal

- Infiltrative into normal brain parenchyma
- Progression to a high-grade glioma is almost inevitable

High-Grade - Rapid proliferation
(III&IV ) - Cells look abnormal

- Infiltrative into large areas of normal brain parenchyma
- Might have a necrotic core
- Forms new vascularization to support growth

Table 2.1: World Health Organization (WHO) Glioma Grade Characteristics

these tumors exhibit local mass effect (effect of a growing tumor that results in
secondary pathological consequences by pushing on surrounding tissue) [Wilson
and Berger., 1999; Deangelis, 2001].

2.2.2 Medical Imaging of Gliomas

Imaging plays a crucial role in the patient care of intracranial tumors. Magnetic
Resonance Imaging (MRI) has been the principal modality used to assess brain tu-
mors (grading and biology), make differential diagnoses, identify targeted biopsy
sites, assist in treatment planning, and evaluate treatment response without ex-
posing patients to ionizing radiation. MRI is a medical imaging technique used
in radiology to analyze the anatomy and function of the body in both health and
disease. MRI scanners use powerful magnetic fields and radio waves to construct
images of the body. MRI is more sensitive than Computed Tomography (CT) for
small tumors and offers better visualization of the posterior fossa. Additionally,
MRI provides good contrast between gray and white brain matter.

Imaging is used to evaluate changes in glioma size and enhancement pat-
tern, where advanced imaging techniques incorporate hemodynamic, cellular,
metabolic, and functional information [Bangiyev et al., 2014]. Advanced imaging
techniques include: diffusion-weighted imaging (DWI), positron emission tomog-
raphy (PET), functional magnetic resonance imaging (fMRI), MR spectroscopy
(MRS), dynamic susceptibility-contrast (DSC) imaging, and dynamic contrast-
enhanced imaging (DCE) to name a few. In this section, we will first describe
several MRI sequences, and then touch on the image-based indices (imaging
biomarkers), along with glioma treatment planning challenges. Following, we
will introduce population atlases for specific image types and segmentations of
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2.2 Background

certain brain areas.

MRI Sequences: The three main MRI protocols are anatomical, diffusion, and
functional.

Individual anatomical structures or pathologies can be shown by both T1 and
T2 weighted MRIs. T1 and T2 weighted images (also referred to as T1WI and
T2WI) are basic pulse sequences in MRI and demonstrate the differences in the T1
and T2 relaxation times of tissues. The T1 weighting depends on the longitudinal
relaxation of the net magnetization vector (NMV). T1 weighting has a tendency
to have short echo time (TE) and repetition time (TR) times. In contrast, the
T2 weighted relies upon the transverse relaxation of the NMV. T2 weighting
often has long TE and TR times. A scan is created by allowing each tissue to
return to its equilibrium state after proton excitation by the separate relaxation
techniques. T1 MRI image weighting is practical for assessing the cerebral cortex,
distinguishing fatty tissue, and for post-contrast imaging. T2 MRI weighting is
useful for recognizing edema, and exhibiting white matter lesions. There are two
sub-types of anatomical MRIs that are frequently used in glioma imaging: Fluid
Attenuated Inversion Recovery (FLAIR) and T1-gadolinium. FLAIR, which is a
type of T2, is an inversion-recovery pulse sequence utilized to nullify the signal
from fluids and is exploited in brain imaging to repress cerebrospinal fluid (CSF)
so as to display periventricular hyper-intense lesions. T1-gadolinium, which is
a type of T1, is used to show a tumor’s necrotic core using a common contrast
agent (gadolinium).

The diffusion process of molecules (mainly water) in vivo can be mapped
non-invasively using DWIs. In DWI, the intensity of each image voxel shows the
optimal estimate of the rate of water diffusion at that location. The hypothe-
sis supporting DWI is that findings may indicate early pathological change since
the mobility of water is powered by thermal agitation and extremely dependent
on its cellular environment. Diffusion tensor images (DTIs) can be created from
DWIs. Wu et al. [2007] showed that DTI-based functional neuronavigation (maps
of fractional anisotropy) in surgery contributes to maximal safe resection of cere-
bral gliomas with pyramidal tract involvement with more than seven months
of additional survival for high-grade glioma patients. Thereby decreasing post-
operative motor deficits for both HGGs and low-grade gliomas while increasing
high-quality survival for HGGs. In Chapters 3 and 4 we use DTIs within com-
putational models to simulate how tumors diffuse in white matter.

Functional MRIs (fMRI) are employed to appreciate how different parts of the
brain react to external stimuli. 3D parametric maps of the brain are constructed
using statistical methods indicating the regions of the cortex that demonstrates
notable changes in activity in response to a task. FMRI is used in behavioral and
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2.2 Background

cognitive research and in planning neurosurgery in eloquent areas of the brain.

Image-based Indices of MRI Sequences: There have been various image-
based indices established in FLAIR, T2-weighted MRI, T1-gadolinium, and DWI
for the quantification of brain tumor longitudinal growth and treatment response.

In practice, glioma progression is evaluated with combined clinical and radio-
logical assessment [Van den Bent et al., 2011]. In this thesis, we will focus on the
radiological assessment. Commonly, imaging is used to establish the diagnosis of
tumor progression in LGG phase 3 clinical trials and the outcome to treatment
of phase 2 trials [Van den Bent et al., 2011]. FLAIR MRIs produce the clearest
and most reproducible definition of WHO grade II glioma (LGG) margins of all
of the imaging modalities, where the precise relationship between these sequences
and the histological tumor margin has not been established [Bynevelt et al., 2001;
Pallud et al., 2010]. For HGGs, both FLAIR MRIs and T1-gadolinium are used.

Focusing on LGGs, FLAIR and T2-weighted images are used for measuring
tumor extent or response to therapy. However, FLAIR and T2-weighted have
limited sensitivity in noticing both response and progression in LGG [Van den
Bent et al., 2011]. An increase of about 2-5 mm in diameter per year [Mandon-
net et al., 2003] (see Figure 2.4) and a mean volume increase of about 15% per
year [Rees et al., 2009], which was studied in different cohorts, has been recorded
using FLAIR and T2-weighted images for LGG. In Chapter 5 four types of cri-
teria, which help oncologists determine the progression status of gliomas and de-
cide when therapy should be given, are compared in terms of progressive disease:
the Response Evaluation Criteria in Solid Tumors (RECIST) [Eisenhauer et al.,
2009], the Macdonald [Henson et al., 2008], the Response Assessment in Neuro-
Oncology (RANO) [Wen et al., 2010], and a volumetric-based criterion [Galanis
et al., 2006]. It should be noted that LGG are often irregularly shaped and grow
anisotropically, which results in poor reproducibility of area or volume estima-
tion based on linear measurements [Van den Bent et al., 2011]. The RECIST,
Macdonald, and RANO criteria are based on measuring diameters and as a result
have the down side to not taking into account i) irregularities in tumor shape,
ii) differences in growth speed in white and gray matter, iii) inter-observer vari-
ability, and iv) tumor volume. The volumetric criterion has only the first three
weaknesses. It is foreseen, in the near future by the RANO Working Group
that volumetric measures, new physiologic imaging techniques (perfusion imag-
ing, permeability imaging, diffusion imaging, magnetic resonance spectroscopy),
metabolic imaging, and other end points such as quality-of-life measures will be
further developed, validated, and incorporated into the RANO response criterion.

MRI interpretation can be subjective; a number of LGG clinical trials reported
low to no radiographic response despite significant clinical benefit, particularly
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Figure 2.4: Modeling of LGG growth rate. The mean linear tumor growth rates
of twenty-seven patients were 4mm/year5.

seizure reduction and prolonged disease control [Soffietti et al., 2010]. This brings
up the point that even after a patient has gone through a successful treatment,
there might be a residual T2-weighted abnormality that cannot be distinguished
from the tumor due to difficulties in MRI interpretation. This limitation has lead
to minor response classifications between stable disease and partial response for
LGG [Van den Bent et al., 2011]. In addition, there can also be local white matter
changes that are radiotherapy-induced (leukoencephalopathy or microangiopa-
thy) that also can be seen in T2-weighted or FLAIR images as increasing areas
of abnormal signal intensity. These white matter lesions increase the difficultly
for deciphering what hyper-intense FLAIR or T2-weighted voxels are malignant
glioma and which are non-malignant white matter lesions. In a future chapter
we will encounter this challenge during the segmentation of a glioma that has a
microangiopathy lesion touching it.

Regarding LGGs transformation to HGGs, conventional imaging with contrast-
enhanced CT or MRI is often insensitive to the earliest phases of malignant trans-
formation [Danchaivijitr et al., 2008]. Therefore, reliable discrimination between
patients who have already undergone malignant transformation with T1-weighted
MR images and so-called true LGG is poor [Van den Bent et al., 2011].

Image-based indices can also be found in DWIs. Quantitative DWI has been
suggested as an early indicator of early treatment response in high-grade gliomas
and transformed LGG, which usually contain regions of low apparent diffusion
coefficient [Moffat et al., 2006]. LGG apparent diffusion coefficient is often higher
than that of normal brain, yet there is sizable overlap in values [Van den Bent
et al., 2011].

Glioma Treatment Planning Challenges: Gliomas can be highly diffuse,
which makes them very difficult to treat. Experimental results suggest that

5Figure was published in [Mandonnet et al., 2003].
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glioma cells can be identified throughout the central nervous system (CNS) within
seven days of a tumor being implanted in a rat brain [Silbergeld and Chicoine,
1997]. Although there are solitary tumor cells throughout the CNS [Chicoine
and Silbergeld, 1995; Silbergeld and Chicoine, 1997], the locally dense solid tu-
mor rests where the cancerous tissue was originally implanted. This demonstrates
a potential shortcoming of therapy since most glioma treatments are targeted lo-
cally to the bulk mass when the action of the glioma growth is elsewhere. An
additional challenge is that not all of a glioma can be seen in MRIs. There have
been many assumptions made in research on this front and will be discussed later
in this thesis. Since gliomas are usually quite diffuse, it is even hard to decipher
the visible tumor boundary in MRIs. Angelini et al. [2007] points out that this
ambiguity is due to two factors. First, the enhancement appearance of the tumor
on MRIs depends on the degree of vascularization. Second, manual tracing of
tumors bears high variability.

It is because of these reasons that there is a controversy over the optimal
treatment strategy and clinical management for LGG gliomas. Early detection is
critical and today possible because of the routine use of MRIs. Patients have MRIs
taken even when having few or no symptoms and when have normal neurologic
function. Currently, physicians follow two different schools of thought on this:
i) the early intervention approach for possibly curing diffuse LGG since they
have slow growth and low histologic grade, ii) the “watchful waiting” approach
for favoring patient quality of life instead of time. This thesis highlights both
approaches. Chapter 4 features a method to aid physicians in follow-up treatment
planning after an early intervention (brain resection) and Chapter 5 presents the
growth speeds of nine patients who are undergoing the approach of “watchful
waiting”, where only two of the patients received any prior therapy before their
tumors were monitored without receiving additional therapy.

In regards to HGG patients, they are usually treated immediately or not
treated at all to preserve the patent’s quality of life.

Brain Atlases: Brain atlases are collections of reference information that have
been constructed to represent the brain’s i) structural, ii) functional, and iii)
diffusion organization. One use of these atlases is to be used in tumor growth
modeling. These brain atlases create a standardized reference coordinate system
in which individual brain maps can be transformed into one coordinate system
(registered) and contrasted. Talairach proposed one of the pioneering reference
systems, which later became the standard reference in brain mapping [Talairach
and Tournoux, 1988]. However, this atlas was created from one subject and
varied in slice thickness. In the nighties, the Surgical Planning Laboratory and
Montreal Neurological Institute (MNI) created one-subject atlases of improved

15



2.2 Background

Figure 2.5: MNI-ICBM-152 probabilistic atlas. Images from left to right: T1,
T2, and Proton Density weighted images; Gray Matter, White Matter and CSF
probability maps6.

resolution [Kikinis et al., 1996; Holmes et al., 1998].
Since one subject structural atlases were not representative of the population

and might introduce bias, population structural atlases were developed from a
group of scans that were registered and averaged. MNI and the Laboratory of
Neuro Imaging of UCLA created a structural atlas of 305 subjects (both male and
female around the age of 23 years old) [Collins et al., 1994]. All subject images
were registered to the Talairach space, image intensities normalized, and then
a voxel-wise averaging of intensities over all volumes was performed. Then, an
improved structural averaged atlases of 152 [Fonov et al., 2009, 2011] (depicted in
Figure 2.5) and 452 [Mazziotta et al., 2001] subjects were created. These atlases
had probabilistic versions that were created by segmenting the white matter,
gray matter, and CSF of the different subject’s tissues after registration. These
probabilistic atlases describe the spatial distribution of the tissue classes and
were created by averaging the labels across all the subjects. These probabilistic
population atlases can be thresholded into i) white matter, ii) gray matter, iii)
CSF regions that can be used in tumor growth modeling. The advantage to
using these segmentations over patient segmentations is it is difficult to segment
the white matter in the presence of a lesion and brain parenchyma (keeping the
sulci patterns and lobes separated) for individual patients, which is necessary for
simulating tumor growth. In this thesis, we use methods for registering white
matter and brain parenchyma atlas segmentations.

6Figure was published in [Fonov et al., 2011].
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For functional atlases, Lancaster et al. [2000] generated a 3D database of labels
for the 1988 Talairach atlas, which compared well with functional activation foci.

For diffusion atlases, Prastawa et al. [2009] averaged 75 subjects and Rohlfing
et al. [2010] 24 subjects to create population DTI atlases. Since patient DTIs
are not widely ordered in clinical practice and gliomas are hypothesized to grow
anisotropically fastest along white matter fiber tracts, the availability of a DTI
atlas is crucial. In this thesis, we show (in Chapter 3) that using a registered
DTI atlas is in many cases almost as good as using a patient DTI in simulating
tumor growth for an individual patient.

2.3 Tumor Modeling

Mathematical tumor growth models try to explain the complex dynamics of can-
cer progression as a function of biological processes, which are assumed or known
from prior experiments. Examples of such processes are the dynamics of indi-
vidual tumor cells, their interactions with each other, their interactions with the
surrounding tissue through mechanical or biochemical mechanisms or the gen-
eration, transport and allocation of substances relevant to specific biochemical
processes. There are three strategies that have been used to study tumor growth:

In vivo: Latin for “within the living,” is experimentation using a whole, living
organism in their normal intact state. In vivo is standardly used in animal testing
and clinical trials to observe the complete effects of an experiment on a living
subject.

In vitro: Latin for “in glass,” i.e., in a test tube or petri dish, refers to biological
experiments that are conducted using isolated components of an organism to
permit a more detailed or more convenient investigation than is possible with
whole organisms. In vitro allows an enormous level of simplification of the system
that is being studied, which allows the investigator to focus on a small number
of components. However, it can also be very difficult to extrapolate in vitro
experimental results back into the biology of the whole organism.

In silico modeling: Refers to experiments performed via computer simulation,
where one of the prime benefits is to be able to simulate a phenomena of interest
faster than can be observed in real time. In silico models, which use concepts
from systems biology, also address the ever-increasing volume of molecular data
in biomedicine and the availability of similarly inexpensive computational power
required to run larger and clinically applicable simulations. In addition, in silico
models have required strong interdisciplinary collaborations, which has brought
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computer scientists and biological scientists together to jointly examine biological
phenomena. Drawbacks include being able to inject a complete understanding
of molecular dynamics and cell biology into the in silico models, and available
computer processing power, which forces scientists to make large simplifying as-
sumptions to their models.

2.3.1 In Silico Tumor Modeling

In silico models have been used to address a multitude of questions such as
studying volumetric tumor growth dynamics, vascularization patterns, investi-
gating genetic instability, mutagenesis, and complexity of tumor-immune system
interactions using applications of game theory, scaling laws, fractals, and graph
theory [Deisboeck et al., 2008]. These in silico models can be classified as:

Continuous Models: These models describe variation as involving gradual
quantitative transitions without sudden changes or discontinuities. Examples of
these models aim at explaining the change in tumor cell density, chemo-attractant
diffusion, and kinetic molecular pathway networks with a set of differential equa-
tions [Deisboeck et al., 2008].

Discrete Models: These models use individual formulae that are fit to data
and are used to model events. Discrete cell population models describe processes
that happen on the single cell scale and initiate cell-cell interaction using cellular
automatatype computational machinery. A set of local integration rules among
neighboring nodes described the cellular automaton dynamics, where transition
and communication among grid points are decisions [Roose et al., 2007; Deisboeck
et al., 2008].

Hybrid Models: These models use both continuum and discrete techniques
combined where individual cells are treated discretely yet interact with other
continuum fields. In exclusively discrete models it is complicated to build in
interactions with diffusible chemicals. These are much simpler to deal with as
continuous models. An example of a hybrid model would be one that combines
phenomena at the single cell level with continuous equations for macro-molecular
transport and comprising coupled discrete and continuous equations. For instance
Ferreira Jr et al. [1998, 1999] used a two-dimensional hybrid cellular automaton
to model a population of cancer and normal cells.

Agent-based Models (ABM): These models are used for simulating the ac-
tions and interactions of independent decision-making entities (both individual
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Figure 2.6: Schematic illustration of the significantly relevant biological scales for
cancer modeling. Each scale represents a different spatial and temporal range,
and the methods for modeling these specific scales also differ. Multi-scale cancer
modeling necessitates a linkage between these distinct scales.7

or collective) called agents. Examples of agents would be clusters of cells, sin-
gle cells, protein(s), or gene(s). These agents follow a set of predetermined rules
where each agent can independently carry out a series of actions and make choices.
The purpose of ABM is to analyze the effects of actions and interactions of agents
on the whole system. These in silico models are used to solve specific questions
on one scale of interest. There has also been effort in the scientific community to
understand biological phenomena on many scales, with key pieces of information
transferring between the several scales. In the future, large multiscale models
are likely to be used by many researchers since researchers will venture to in-
tegrate detailed subcellular information to make predictions on the tumor scale
(see Figure 2.6).

2.3.2 Multi-Scale Tumor Modeling

Tumor evolution complexities arise at different spatial-temporal scales including
processes at the sub-cellular, cellular, and tissue levels. To date, a majority of
cancer research has centered around the identification and characterization of the
genetic and molecular properties of cancer cells. This is because cancer initiation
seems to depend on a series of genetic mutations that influence the intrinsic
cellular programs of the cancer cells. Additionally, tumors are heterogeneous

7This figure was copied from [Deisboeck et al., 2011]
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cellular entities whose growth depends on constantly changing microenvironments
and dynamical interactions among cancer cells. Therefore, a complete model
would include both micro- and macro-scales to study these phenomena. Since the
time and space scales of observation for biological experiments are often restricted
by experimental complexity, some scientists have proposed in silico multi-scale
tumor models. These researchers study cancer as a system disease to examine
how individual components interact to create a function and behavior of the
cancerous system as a whole. The different spatial-temporal scales of multi-scale
models include:

Atomic: Models at this scale are used to study the structure and dynamics of
proteins, peptides, and lipids.

Molecular: This scale is used to model protein population properties. Cell
signaling mechanisms are typically investigated at this scale. At this scale, or-
dinary differential equations (ODEs) are commonly used to portray biochemical
reactions to explore the potential for new therapeutic targets to combat cancer.

Microscopic: This scale includes tissues, multicellular, and cellular levels. Ex-
amples of microscopic phenomena are malignant transformations of normal cells,
associated alterations of cell-cell and cell-matrix dynamics, the heterogeneous tu-
mor environment, the element of tumor heterogeneity, and other factors such as
acidity or cell-specific promoter substances. These processes and factors are usu-
ally modeled using partial differential equations (PDEs) or ABM. Simulation run
time can increase substantially if individual cell interactions are investigated in
detail.

Macroscopic: At this scale the focus is on whole tumor dynamics such as
morphology, shape, extent of vascularization, and invasion with different envi-
ronmental conditions. PDEs are often used to consider cell responses to gradient
fields of various origins. Examples include the concentration of gradients of dif-
fusible or non-diffusible molecules as well as strain and stress gradients caused by
the growing of a tumor mass. In clinical applications, the primary source of infor-
mation comes from medical images. Image based tumor modeling describes the
average behavior of tumor cells, macroscopic effects, and general features at an
organ level, such as tumor invasion in white and gray matter, or the deformation
of the brain due to the mass effect of a tumor. The theoretical approach of multi-
scale models has increasingly been recognized to be able to simulate experimental
procedures, as well as optimize, and predict clinical therapies and their outcomes.
Additionally, multi-scale tumor modeling can be used to test and refine medical
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or biological hypotheses, such as was done by Jiang et al. [2005] and Benjamin
et al. [2006].

Jiang et al. [2005] used a multi-scale approach to model avascular tumor
growth spanning three distinct scales. At the cellular level, a lattice Monte Carlo
model described cellular dynamics, such as proliferation, adhesion, and viability.
At a subcellular level, the expression of proteins, which control the cell cycle, were
modeled using a Boolean network. At a extracellular level, the chemical dynamics,
such as nutrient, waste, growth promoter, and inhibitor concentrations, were
modeled by reaction-diffusion equations. The model parameters were derived
from spheroids using the mouse mammary tumor cells, EMT6/Ro. The model
compared well with experimental data (i.e., a spheroid with 0.08 mM O2 and 5.5
mM glucose in the medium).

Benjamin et al. [2006] also used a multi-scale approach. The 2-D framework
included a Boolean description of a relevant colorectal cancer genetic network, a
discrete model of the cell cycle, and a continuous macroscopic model of the tumor
growth and invasion. The cell cycle kinetic parameters used in this model were
taken from flow cytometric analysis of human colon cancer cells. The model’s ba-
sis is that the sensitivity to irradiation depends on the cell cycle phase and that
DNA damage is proportional to the radiation dose. Hypoxia and overpopula-
tion (anti-growth regulation signals) activate the SMAD/RAS and adenomatous
polyposis coli (APC) genes and hindered the proliferation through cell cycle reg-
ulation.

The idea of in silico multi-scale tumor models is very innovative. It solves spa-
cial and temporal problems that are encountered with lab experiments. However,
this modeling technique is still in an elementary stage in development since most
scientists have to use literature parameter values, which would not be specific
to a patient. Image-based tumor modeling, which is on the macro scale only,
relies on often routine images, and these models are able to be patient specific
(personalization).

2.3.3 Image-based Tumor Modeling

Image-based tumor mathematical models have been proposed in biological-cancer
research since the 1950’s. Murray [2002] elaborates on the early models proposed
that studied solid tumor growth and later diffusive tumor growth [Tracqui et al.,
1995b; Cruywagen et al., 1995; Woodward et al., 1996; Swanson et al., 2000].
Extensions of these models considered effects of treatments [Swanson et al., 2002,
2007]. In this section, we summarize recent works in imaged-based tumor mod-
eling.

In the diagnosis of brain tumors, extensive imaging protocols are routinely
used to evaluate therapeutic options or to monitor the state of the disease. This
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Figure 2.7: Segmentation of the 44 MR volumes of a glioma patient using lesion-
specific atlases for ten time points of a multimodal image volume. Notice that
some modalities are missing for certain time points – which is a common problem
in longitudinal studies. The tumor outlines are obtained using the latent atlas
approach by Riklin-Raviv et al. [2009, 2010].

gives rise to large numbers of multi-modal and multi-temporal image volumes
even in standard clinical settings (Figure 2.7), requiring new approaches for com-
prehensively integrating information of different image sources and different time
points. As all observations in these data sets arise from one underlying physiolog-
ical process – the tumor-induced change of the tissue – a patient-specific model
of tumor growth may provide new means for analyzing the acquired images and
evaluating patient’s options. The information available from an image observa-
tion, such as computed tomography scans, or magnetic resonance imaging, is
at a macroscopic scale – with typical spatial resolutions at the millimeter level.
Among the tumor-induced processes visible at this scale, two effects are most
prominent: changes in tissue properties resulting from the invasion of healthy tis-
sue by tumor cells, and the displacement of tissue resulting from tumor growth.
As a consequence, image-based tumor models can be grouped into two classes:
models that concentrate on the migration of tumor cells and their invasive pro-
cesses, and models that consider the mechanical mass effect of the lesion and
their imprint on surrounding tissues.

22



2.3 Tumor Modeling

2.3.3.1 Reaction-diffusion Models of Cell Invasion

The majority of all macroscopic tumor models use the reaction-diffusion formal-
ism [Murray, 2002], describing very generally the dynamics of tumor growth:

∂u

∂t
= ∇ · (D∇u)︸ ︷︷ ︸

Diffusion Term

+ R(u, t)︸ ︷︷ ︸
Reaction Term

, (2.1)

where u is the tumor cell density, ∂u/∂t is the differentiation operator with re-
spect to time, D is the diffusion tensor for tumor cells, which can be a function
of location x, and R(u, t) is the reaction term. This partial differential equa-
tion model changes the continuous tumor cell density u by two individual pro-
cesses: cell migration and cell proliferation. The first term on the right-hand
side, ∇ · (D∇u), describes the invasion of tumor cells as a diffusive flux along
the concentration gradient (Fick’s diffusion). This process is characterized by
the diffusion tensor D. The second term in the equation, R(u, t), describes the
cell proliferation, of tumor cells as a function of the current cell concentration.
Common population growth equations for this reaction term are exponential, lo-
gistic, and Gompertzian. Exponential growth models use R(u, t) = ρ · u and
are valid for low tumor cell concentrations, with ρ being the proliferation rate
that determines cell doubling. Logistic and Gompertian reaction terms represent
self-limiting growth, with R(u, t) = ρ · u · (1 − u) and R(u, t) = ρ · u ln(1/u),
respectively. In addition to the functional description on tumor cell evolution
governed by Equation 2.1, there are no-flux boundary conditions such as

η · (D∇u) = 0 (2.2)

that introduces additional structural information on the patient-specific shape
and geometry of the brain. These boundary conditions consider that tumor cells
will only migrate within white and gray matter tissues along normal directions
η of boundaries to other tissues. Tissue boundaries are derived from a preceding
tissue segmentation in a patient-specific manner.

An early study proposing to use a reaction-diffusion framework for modeling
tumor growth in patients with gliomas was Cruywagen et al. [1995]. They in-
cluded the effect of treatment as another, negative reaction term R(u, t) in Equa-
tion 2.1. In this model the invasion of tumor cells was assumed to be isotropic,
following a homogeneous diffusion, i.e., with D being a global tensor value. In
a subsequent study, and motivated by the experimental results of Giese et al.
[1996], Swanson et al. [2000] proposed to improve on this model by assuming
nonhomogeneous diffusion. To consider the differential motility of tumor cells in
gray and white matter, they replaced the diffusivity constant D by an isotropic
but nonhomogeneous diffusion coefficient D(x) that took different values depend-
ing the location of x. For x in white matter D(x) = dwI and for x in gray matter
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D(x) = dgI. I is a 3x3 identity matrix, and dw and dg are scalar coefficients,
where dw > dg acknowledges the observation that tumor cells move faster in
white matter. Extending the idea of Swanson et al. [2000], and refining on the
differential motility of tumor cells in different tissues, Clatz et al. [2005] and
later Jbabdi et al. [2005] proposed to use anisotropy to model the invasion mech-
anism of tumor cells. They modeled the diffusivity of tumor cells through an
anisotropic-nonhomogeneous diffusion. The assumption they made is that tumor
cells not only move faster in white matter, but also follow the white matter fiber
tracts in the brain. This idea followed the observation that tumor cells tend to
follow the preferred directions of water diffusion, which can be measured using
magnetic resonance diffusion tensor imaging (MR-DTI). These models were able
to consider the resulting anisotropy in white matter diffusion and to capture the
“spiky” and fingering patterns of tumors observed in the images. Both authors
evaluate their models qualitatively by comparing visible tumors in the magnetic
resonance images with the ones simulated with the model.

The Fisher Kolmogorov (FK) Model: The Fisher Kolmogorov (FK) equa-
tion is a type of reaction-diffusion model, which has been used extensively in
tumor growth modeling [Tracqui et al., 1995a; Murray, 2002; Swanson et al.,
2007; Clatz et al., 2005; Jbabdi et al., 2005; Konukoglu et al., 2009; Menze et al.,
2011a; Gooya et al., 2011a; Hogea et al., 2008; Stretton et al., 2013, 2012]. In
this thesis, we use the following formulation:

∂u

∂t
= ∇ · (D(x)∇u)︸ ︷︷ ︸

Diffusion Term

+ ρ · u · (1− u)︸ ︷︷ ︸
Logistic Reaction Term

; η∂ω · (D∇u) = 0︸ ︷︷ ︸
Boundary Condition

, (2.3)

where u is the tumor cell density, D is the diffusion tensor, ρ is the proliferation
rate, and η∂ω are the normal directions to the boundaries of the brain surface.
We used the tensor construction method, proposed by Clatz et al. [Clatz et al.,
2005], which uses global scaling on the DTI,

D(x) =

{
dgI if x is in gray matter
dwDwater if x is in white matter,

(2.4)

where D(x) is the inhomogeneous diffusion term, which takes into account that
tumor cells move faster along anisotropic white matter fiber tracts, estimated
by dwDwater, than in isotropic gray matter dgI. Dwater is the normalized water
diffusion tensor in the brain measured by the DTI. Dwater is normalized so that
the largest eigenvalue in white matter is one. In Figure 2.8, we show how different
values of dw significantly change the diffusion tensor (depicted as ellipsoids) in
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Diffusion Directions 

↑dw↓dw

dwDwater

Gray Matter 

Figure 2.8: Tumor Diffusion Tensor. The first two images depict using ellipsoids
the diffusivity tensor dwDwater for two different values of dw overlaid on a FLAIR
MRI. The third image shows with arrows the diffusion directions in white matter.

white matter. The use of a different tensor construction method would have
an impact on the shape of the DTI tensors that the model uses to define the
direction of tumor diffusion. Therefore, the predicted tumor shape would be
slightly different if another tensor construction method is used.

The Eikonal Approximation of the FK Model: Even though the FK model
in Equation 2.3 is well suited in predicting tumor cell density concentrations in
the brain, it is computationally very expensive for 3D simulations. Then, we show
an approximation of this reaction-diffusion model by a traveling time formulation
[Konukoglu, 2009] which we use to estimate the proliferation and diffusivity pa-
rameters of the model by minimizing the mismatch between a simulated tumor
and a real one extracted from MRIs. As presented in [Konukoglu, 2009] we can
approximate the reaction-diffusion model in Equation 2.3 by considering that for
large times the FK model with constant coefficients admits a traveling wave so-
lution in the infinite cylinder. In other words, when the change of u occurs in
only one direction, n, for extremely large times the solution of Equation 2.3 can
be formulated as

u(x, t) = u(n · x− vt) = u(ζ) as t → ∞, (2.5)

where v is the asymptotic speed of the wave front and ζ = (n · x − vt) is the
moving frame of the traveling wave. Then, by substituting Equation 2.5 into
Equation 2.3 and considering a constant diffusion tensor we get
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n′Dn
d2u

dζ2
+ v

du

dζ
+ ρu(1− u) = 0, (2.6)

which is a non-linear ordinary differential equation. In order to have admissible
solutions, the asymptotic speed v should depend on the diffusion tensor D, ρ,
and on the shape of the initial condition u(x, 0). When the initial condition has
a compact support the asymptotic speed of the traveling wave can be given as,
[Murray, 2002],

v = 2
√

ρn′Dn. (2.7)

However, there exist a transient behavior for the traveling wave speed while it
converges to the asymptotic speed in Equation 2.7. Ebert et al. studied this
convergence behavior and derived in [Ebert and van Saarloos, 2000] the following
analytical time-dependent representation of the traveling wave speed:

v(t) =
√
n′Dn

4tρ− 3

2t
√
ρ

. (2.8)

Now we can formulate the traveling time formulation for the tumor delineation.
Based on the concepts described in [Sethian, 1999], v(t) can be characterized as

|∇T | = 1

v(t)
=

(
2
√

ρn′Dn− 3

2T

√
n′Dn

ρ

)−1

, (2.9)

where T is an implicit time function such that it embeds the locations of the
tumor delineation as iso-time surfaces (T (x) is the function described as the time
when the tumor delineation passes over the point x). Thus, n can be written as
∇T/|∇T | resulting in the traveling wave formulation as

√
∇T TD∇T =

2
√
ρT

4ρT − 3
, (2.10)

where the equation has the Eikonal form (F
√
∇T TD∇T = 1 with F being a

general speed function). This equation by itself solely gives the relation of con-
secutive iso-time surfaces of T . In order to construct the solution everywhere in
the domain we require a Dirichlet type boundary condition, i.e., an initial surface
for which we know the T value. For the tumor growth modeling case, this surface
is given by the tumor delineation in the first image, i.e.,

T (x) = T1 ∀x ∈ Γ1, (2.11)
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where Γ1 is the tumor delineation established in the first image and T1 is the time
from the origination of the tumor to the acquisition of the first image. For the
asymptotic case, the traveling time formulation is given by

2
√

∇T TρD∇T = 1. (2.12)

Notice from Equation 2.12 that T1 is not needed for the asymptotic case and that
ρ and D appear in the product form and cannot be separated. The formulation
given in equations 2.10, and 2.11 is valid in the infinite cylinder where the evo-
lution is in one direction (in this situation, the traveling wave is a plane). In the
case of tumor growth, the delineation is curved and consequently its evolution
is not analogous to an evolution in the infinite cylinder. We can still implement
the formulation obtained in the infinite cylinder to more general cases in 3D by
assuming that within a voxel, the tumor delineation is planar and the model co-
efficients are constant. Then by starting from the initial tumor delineation and
sweeping the domain outwards we can construct the solution. Still, such a gener-
alization does not consider the effect of curvature in the more general evolutions.
Following the derivations of Keener and Sneyd [1998], Konukoglu [2009] proposed
the following Eikonal equation to describe the evolution of a tumor delineation
in 3D: (

4ρT − 3

2
√
ρT

−∇ · D∇T√
∇T TD∇T

)√
∇T TD∇T = 1, (2.13)

where ∇ · (D∇T/
√
∇T TD∇T ) is the effect of the curvature. In the derivation of

Equation 2.13 it is assumed that the surface is slightly curved, which requires the
effect of the curvature to be of a lower order than the term 2

√
ρ. However, the

value of the curvature might be higher in the general case due to the presence of
anisotropy in the diffusion process. Therefore, one needs to saturate the effect of
curvature to satisfy this assumption. Thus, adding saturation to the curvature
effect in Equation 2.13 we obtain the final formulation, which describes the evo-
lution of the tumor delineation in 3D based on the reaction-diffusion formalism:(

4ρT − 3

2
√
ρT

− 0.3
√
ρ(1− e−|Keff |/0.3√ρ)

)√
∇T TD∇T = 1, (2.14)

Keff = ∇ · D∇T√
∇T TD∇T

, (2.15)

T (x) = T1 ∀x ∈ Γ1, (2.16)

Notice that Equation 2.14 can become negative for low values of T due to the
fact that the approximation for the time convergence and curvature effects get
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worse for lower T values [Ebert and van Saarloos, 2000]. In order to overcome this
approximation error, Konukoglu [2009] prevented the speed function in Equation
2.14 to drop lower than 0.1

√
ρ, i.e.,

4ρT − 3

2
√
ρT

− 0.3
√
ρ(1− e−1|Keff |/0.3√ρ) ≥ 0.1

√
ρ, (2.17)

which serves as the minimum threshold for the speed of the tumor. In terms of
the speed of progression of the tumor deliniation, this limit can be written as

vmin = 0.1
√

ρnTDn, (2.18)

where n in the direction of the vector ∇T . As a result of this constraint we have
a growing tumor delineation at all times, consistent with the reaction-diffusion
model.

The Parameter Estimation Problem for the FK Model: For estimating
the parameters of the FK model for a given patient Konukoglu [2009] proposed to
use the Eikonal approximation in equations 2.14, 2.15, and 2.16 together with two
MRIs with tumor delineations at two different time points, a DTI, and a white
matter segmentation. Consider T1 and T2 to be the times from the origin of the
tumor to the acquisition of the first and second MRIs respectively, ΔT = T2−T1

to be the time between the MRIs, and Γ1 and Γ2 to be the real tumor delineations
extracted from these MRIs at times T1 and T2 respectively. Thus, the parameter
estimation problem was defined by Konukoglu [2009] as follows:

arg min
dw,dg ,ρ,T1

C = dist(Γ2,Γ2)
2 + (vmin|Tmin − T1|)2, (2.19)

where Γ2 = {x|T (x) = T1 +ΔT} is the simulated tumor delineation at T2 using
equations 2.14, 2.15, and 2.16. dist() is the symmetric distance between two sur-
faces normalized by the surface area. The second term of Equation 2.19 penalizes
|Tmin − T1|, where Tmin is calculated by running the traveling time formulation
backwards in time with Γ1 as an initial condition until the simulated delineation
collapses to a single point, which coincides with time zero (origin of the tumor).
As a result of this, in the minimization problem above, Tmin shall be equal to
T1 in order for the estimated parameters to be consistent with the size of Γ1.
vmin (the minimum allowable speed) is used to have consistent units in the cost
function of Equation 2.19 and defined by

vmin = 0.1
√
ρn′

maxD(xmin)nmax, (2.20)
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at point xmin, where 0.1 is the limiting factor (minimum threshold for the speed of
the tumor) and nmax is the principal eigenvector ofD(xmin) yielding the maximum
diffusion rate.

Konukoglu [2009] chose to use the unconstrained optimization method pro-
posed by Powell [2002] to solve Equation 2.19 and the Fast Marching method for
Eikonal equations in [Sethian, 1999] modified for anisotropy to solve equations
2.14, 2.15, and 2.16.

Infiltration Map Calculation: To perform simulations with the FK model in
Equation 2.3 we need the tumor cell density distribution in the brain. However,
MR images can only visualize tumors where cancerous cells are dense enough,
masking the low density infiltration. A common approach to overcome this prob-
lem is to take a constant margin around the visible boundary of a tumor. This
approach does not consider differential motility of tumor cells in white and gray
matter. Konukoglu [2009] proposed a new formulation based on the reaction-
diffusion FK model in Equation 2.3 to estimate tumor cell density distribution
beyond the visible part in an image. For this formulation, Konukoglu consid-
ered the traveling wave approximation of the reaction-diffusion equation given
by Equation 2.6 and assumed that at a moving frame point ζ∗ the value of the
tumor cell density u = u∗ is known (this corresponds to having the delineation
of a tumor and assuming it corresponds to an iso-density surface). Then, by
linearizing Equation 2.6 around ζ∗ and u∗ we get the following linear ODE:

n′Dn
d2u

dζ2
+ 2

√
ρn′Dn

du

dζ
+ ρ(1− 2u∗)u = 0, (2.21)

which has the following analytical solution:

u(ζ) = Ae−
√

ρ
n′Dn

(1−√
2u∗)ζ +Be−

√
ρ

n′Dn
(1+

√
2u∗)ζ . (2.22)

Notice from Equation 2.22 that the slope of the tumor cell density distribution
depends on the ratio between the proliferation and the diffusion rate (

√
ρ

n′Dn
).

Konukoglu et al. [2010a] extended the solution in Equation 2.22 to 3D obtaining
a static Hamilton-Jacobi equation, which constructs an approximation of the low
density infiltration of a tumor. Figure 2.9 shows the tail infiltration extents.
This method produces tumor tail estimation values outside the segmentation of
a tumor range from zero to tumor threshold of visibility (0.2 in this thesis).
Konukoglu et al. [2010a] proposed a constant cell density threshold of visibility
inside the contours of the tumor in order to not over estimate the size of a tumor.
Notice that as dw/ρ gets larger, the tumor becomes more infiltrative.
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dw
ρ
= 74mm2dw

ρ
=1mm2 dw

ρ
= 25mm2

Figure 2.9: The tail extrapolation estimates the invisible tumor tail based on
FK model parameters dw and ρ. The simulated tumor has maximum tumor cell
density value 1 and the model depicts the tumor cell density out to 0.001. One
can see the differences in tumor infiltration based on the ratio dw/ρ.

Joint Invasion and Displacement Models: Few approaches consider the
invasion of tumor cells or tissue water (“edema”), and the displacement of the
tissue resulting from the mass effect at the same time.

When introducing anisotropic nonhomogeneous diffusion for modeling tumor
cell invasion in [Clatz et al., 2005], Clatz et al. also considered tissue deformation
due to bulk tumor growth. In their model, brain tissue is modeled as a linear
viscoelastic material in a static equilibrium. Local pressure is caused by the mass
effect both from tumor growth and the invasive process. With this model, they
were able to simulate invasion and mass effect simultaneously.

Hogea et al. [2008] used an optimal control framework to model the brain
tissue as a piecewise linearly elastic material. The mass effect of tumor bulk and
its infiltration are captured by a reaction-diffusion-advection model. Diffusion
is isotropic as in [Cruywagen et al., 1995]. The mechanical coupling is via the
pressure field, which is a parameterized function of the tumor cell density. The
displacement is considered by complementing Equation 2.1 with an advection
term:

∂u

∂t
= ∇ · (D∇u) +∇(uv) +R(u, t), (2.23)

with tumor cell drift v. They also propose an adjoint-based, PDE-constrained
optimization formulation for estimating model parameters from displacements
visible in standard magnetic resonance images. They put forward two different
objective functionals, matching the spatiotemporal evolution of the normalized
tumor density u(x, t) and landmark registration. Hogea conducted 1D experi-
ments to show, for solving the optimization problem, the advantages of estimating
the gradient of the objective functional in terms of the adjoints. The advantages
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are that there is only one solution required of the adjoint system (per optimiza-
tion iteration) despite the number of inversion variables, and good scalability
with regards to the number of control variables.

Liu et al. [2014] also proposed a reaction-diffusion-advection model, which
used multimodal imaging data including dual-phase CT and FDG-PET. Their
proposed model is capable of integrating cancerous cell proliferation, infiltration,
metabolic rate, and extracellular matrix biomechanical response. They formalized
their inverse problem as a constrained optimization problem, using coupled PDEs,
to estimate the patient specific model parameters by fitting the model to the
observation. Finally, the optimal system is derived and solved by the Finite
Difference Method.

Modeling the Response to Therapy: A practical application to in silico
modeling is modeling glioma response to therapy, such as resection, chemotherapy,
drug delivery, and radiotherapy.

Generally, shortly after diagnosis, HGG are resected. LGG may or may not
be resected as a first order of treatment depending on the aggressiveness of the
approach of the treating physician. Woodward et al. [1996] was among the first
to model various extents of surgical resection regrowth on a virtual human brain.
Later, in a post mortem study, Swanson et al. [2007] investigated the effectiveness
of using different types of brain resections. However, their model was limited
to personalization using patient T1-gadolinium and T2 MRIs, without taking
into account the anisotropy in white matter fiber tracts visible in DTIs. In
addition, they ran their simulations on virtual controls instead of on patient
data. Primarily, their model did not estimate the tumors infiltration after the
resection. Estimating tumor infiltration is important since gliomas often reoccur
and it is important for a clinician to be able to assess if a tumor is bulky or diffuse.
If a tumor is bulky, a second resection or radiotherapy would be recommended,
but if a tumor is diffuse, chemotherapy would be the optimal treatment.

Tracqui et al. [1995b] and Swanson et al. [2002] proposed simple approaches
not for considering when to administer therapy, but for considering the effects
of therapy by using an additional reaction term in Equation 2.1. The extra
term of Tracqui in the 2D model was c(x,t), at location x and time t, which
characterized a tumor’s sensitivity to various chemotherapy regimes. The patient
had five cycles of six drugs for treatments that were given over 15 days and
repeated every 6-8 weeks (6-thioguanine, procarbazine, dibromodulcitol, CCNN,
5-fluorouracil, and hydroxyurea), and two cycles of cisplatin and neutron beam
irradiation. Tracqui et al. used a optimization algorithm which minimized the
error between simulated tumor area and glioma area on CT to establish the
best fit of the model’s six unknown parameters (two of them being cell-diffusion

31



2.3 Tumor Modeling

coefficients and proliferation rate). Good agreement with clinical data was shown
and Tracqui et al. showed that the emergence of a chemo-resistant tumor sub-
population was capable of causing treatment failure, which could appear at a
later stage during chemotherapy.

Swanson et al. [2002] included the effect of chemotherapy by using a nega-
tive reaction term R(u, t, x) in Equation 2.1, which is a function of both time and
space, considering the time of drug delivery and the possible spatial heterogeneity
of the drug efficacy. Notice that by using this model they considered the different
growth speeds in white and gray matter. They hypothesized that this hetero-
geneity may have an effect on chemotherapy delivery, affecting the efficiency of
treatment. They considered that glioma cell motility is higher in white matter
and that gray matter is more vascularized than white matter. This lead to their
assumption that glioma cells would stay in gray matter areas for longer times,
consequently being exposed to higher levels of chemotherapy for longer. Swanson
et al. tested this model using images of a high-grade glioma patient, whose tumor
was located in the fronto-parietal region of the brain. This work showed that for
this patient, who was treated with the receptor tyrosine kinase inhibitor imatinib
mesylate, the gray matter part of the tumor was most likely more reachable by
chemotherapy than the white matter areas. More importantly, Swanson et al.
showed that even though the total number of glioma cells had decreased, the
extent of invasion was not affected due to the mobility of tumor cells within the
white matter.

Ribba et al. [2012] developed a model of tumor growth inhibition that suc-
cessfully describes the time course of tumor size, which was measured as mean
tumor diameter (MTD), in patients with LGGs treated with chemotherapy or
radiotherapy. Their model does not use PDEs (no diffusion), but instead uses
ODEs and is able to predict the time of recurrence of tumors of patients under
chemotherapy. They used the longitudinal MTD data from 21 patients treated
with first-line procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vin-
cristine (PCV) chemotherapy to develop a model that incorporated tumor-specific
and treatment-related parameters that reflected the response of proliferative and
quiescent tumor tissue to treatment. The model was then employed to analyze
the longitudinal tumor size data in 24 patients treated with first-line temozolo-
mide (TMZ) chemotherapy and in 25 patients treated with first-line radiotherapy.
The model successfully described the MTD dynamics of LGG before, during, and
after PCV chemotherapy as well as successfully described the MTD dynamics in
LGG patients treated with TMZ chemotherapy or radiotherapy. These prelimi-
nary results indicate that their proposed model can predict treatment response
on the basis of pretreatment tumor size data.

Chakrabarty and Hanson [2005] proposed an approach of optimizing drug de-
livery to brain tumors through an optimal control framed problem by estimating
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distributed parameters. Chakrabarty’s goal was to minimize these tumor func-
tionals with respect to the drug input rate, also considering physical restriction
on the amount and costs of drugs that can be administered. This results in a
coupled system of equations with a forward state equation and a backward co-
state equation that are solved using a modified double-shot, forward-backward
method. They proposed an algorithm to decide the optimal drug delivery using
an optimal distribution of the drug about the initial tumor location, and they
tested their model in 1D.

Unkelbach et al. [2014] also used a reaction-diffusion type model for the im-
provement and automation of target volume delineation for glioblastoma. The
motivation of this work was that in current clinical practice a uniform margin
of about two centimetres is usually applied to account for tumor cell infiltration
that cannot be seen in imaging. Their model takes into account spatial growth
patterns of gliomas (heterogeneous tissue and anisotropic in white matter growth)
and anatomical barriers. They present a case study of a HGG located close to the
falx. The authors conclude that this approach is useful for tumors located close
to the falx and the corpus callosum. Also, that the key input to the model was
an accurate segmentation of the brain parenchyma, in particular the anatomical
barriers falx cerebri and tentorium cerebelli. In a later chapter, we propose a
method to register a neurosurgeon segmented brain segmentation that accounts
for all of the brain anatomical barriers, which was highlighted as critical in the
work of Unkelbach et al. [2014].

2.3.3.2 Coupled Bio-mechanical Models of Tissue Displacement

The reaction-diffusion formalism, equations 2.1 and 2.2, models tumor growth as
a reactive flow into a porous medium – with reactive tumor cells migrating into the
surrounding, sponge-like tissues. In this model, tumor cells replace or transform
healthy tissue, and the “mass effect” of newly generated cells are neglected. Bio-
mechanical models explicitly consider this mass effect by modeling the interaction
between a tumor and its surroundings, and the displacement of the healthy tissue
resulting from it. These models consist of two formal components: the tumor
growth and the mechanical characteristics of the whole brain. Approaches have
to make strong assumptions on the bio-mechanical properties of the brain, in
particular on the elasticity and viscosity of the tissue, and the character of the
mechanical coupling. A particular difficulty is in estimating parameters of the
model from image information.

Wasserman and Acharya [1996] modeled brain tissue as a linear elastic mate-
rial. The stress-strain relations are modeled by the generalized Hooke’s law, and
the amount of strain imposed on the tissue is proportional to the density of the
tissue. For tumor growth, they assume an exponential growth rate, i.e., a con-
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stant cell doubling increase. They couple tumor and tissue model by assuming
that pressure will be proportional to the volume of the neoplastic tissue.

Kyriacou et al. [1999] improved on this by modeling brain tissue as an incom-
pressible, hyper-elastic neo-Hookean material. Tumor growth is also modeled as
an exponential process imposing the same strain as in [Wasserman and Acharya,
1996]. They consider complex boundary conditions, and use their model to reg-
ister patients with tumor-induced deformation to standard tissue atlases.

Mohamed and Davatzikos [Mohamed and Davatzikos, 2005] propose to model
the brain tissue as an isotropic and homogeneous hyper-elastic material. They
assume an exponential tumor growth, considering the mass effect caused by the
edema surrounding the tumor. Pressure induced on the tissue by the tumor
and edema is proportional to the added volume. In [Hogea et al., 2006], Hogea
et al. reformulated the model with a level-set-based approach for the evolving
tumor aiming at a more efficient method. They point out the use of patient-
specific models with parameters estimated by solving an inverse problem.

Gevertz et al. [2008] incorporated the impact that organ-imposed physical
confinement and heterogeneity have on the tumor into their computational model.
They show that models need to have organ geometry and topology in order to
draw correct conclusions about tumor spread, shape, and size. They also show
that the impact that confinement has on the tumor growth is greater when the
tumor is growing close to the confining boundary. They conclude that tumor
models must consider shape, structure of the organ, and location of tumor within
the organ to accurately predict the tumors growth dynamics.

2.3.4 Registration and Segmentation in Tumor Modeling

A major field in medical image processing is three-dimensional segmentation for
localizing and quantitatively measuring anatomical structures of particular inter-
est. The accurate segmentation of normal and tumorous tissues is also of crucial
importance in personalizing tumor growth models. Here, generative models for
both physiology and image appearance of tumors may serve the purpose of pro-
viding realistic, “ground truth” data sets to evaluate segmentation approaches.

Many tools for image segmentation have evolved around registration meth-
ods. Consequently, tumor models have been used repeatedly to address problems
such as atlas-to-patient registration and segmentation in the presence of a lesion.
In these cases pathological changes require standard atlases to use non-linear
registration (see Section 2.2.2 Brain atlases), and using an appropriate tumor
modeling framework allows one to adapt generative image models with respect
to tissue displacements resulting from tumor growth. This increases the accuracy
of image registration in the presence of extensive lesions.
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Generative Tumor Models in Image Segmentation: Manual tumor seg-
mentations show a high variability between raters. Different approaches may be
used to infer a single, accurate segmentation from multiple tumor outlines [Kaster
et al., 2010]. This problem multiplies when multi-modal imaging sequences are
used and different tumor-induced changes become visible in the different modal-
ities, demanding for robust automated segmentation approaches. Examples for
such approaches are the level set-based segmentation by Riklin-Raviv et al. [2009,
2010] using a latent atlas prior for modeling the lesion (Figure 2.7), or the gen-
erative probabilistic model of both brain tissues and tumor segments by Menze
et al., amending the standard EM segmentation with a similar prior to obtain
tissue segmentations of both the healthy brain and the tumor outlines for every
modality at the same time [Menze et al., 2010]. Accurately segmenting tumors
in different modalities, however, remains a difficult task due to the high vari-
ability of tumor location, shape, and image texture. Tumor growth modeling
can be used to synthetically generate both realistic tumor images, for different
tumor types, tumor locations, in different modalities, and to provide quantitative
“ground truth” segmentations for evaluating different tumor segmentation strate-
gies, as in Kaster et al. [2010]. Warfield et al. [2004] also proposed a method to
assess the performance of automated image segmentation algorithm by a direct
comparison of human rater and algorithm performance.

Generating realistic appearing images has two components: it requires a model
of the tumor growth process, and an image appearance model describing the effect
of tumor growth on the image appearance, i.e., if and how tumor cells infiltrate
the surrounding tissues, and if and how actively proliferating areas, edema, and
necrosis change the observed MR signal intensities.

Rexilius et al. [2004] reports one of the first approaches for such a synthetic
image data generation. They use a basic tumor model with three compartments:
the active tumor, the necrotic tumor core, and the edema in the surrounding
tissue. The active tumor is manually drawn on the MR image of a healthy
subject. A radial displacement model is adapted to fit its size and model the
resulting displacement of the surrounding tissue, assuming linear elastic material
properties for gray and white matter. The image intensities in the active and
necrotic regions are modeled as Gaussian mixtures with predefined average and
variance. Edema is modeled in the white matter with the intensity fading with
increasing distance to the active tumor.

An approach for realistic MR images using a more sophisticated tumor growth
model and an improved image appearance model has been developed by Prastawa
et al. [2005]. It is based on the tumor growth model by Clatz et al. [2005]
with extensions considering the displacement and destruction of white matter
fibers in DTI-MRI, motivated by observations of Lu et al. [2003]. They also
model the dynamics of the contrast agent, its high-contrast accumulation in the
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cerebrospinal fluid, and in the active tumor regions. For edema and active tumor
regions, the image appearance is modified using characteristic image textures.

Geremia et al. [2013] proposed a new image generation method, where they
propose to use a detailed tumor growth model to synthesize labeled images that
can then be used to train an efficient data-driven machine learning tumor predic-
tor. Their MR image synthesis step produces images with both healthy tissues
and various tumoral tissue types. Their method used a large synthetic dataset
of 740 simulated cases for training and evaluation. In addition, they performed
a quantitative evaluation on 14 clinical cases diagnosed with LGGs, where the
method demonstrated tissue class accuracy comparable with the state-of-the-art,
is computationally more efficient, and has the ability to estimate tumor cell den-
sity as a latent variable underlying the multimodal image observations.

It should also be mentioned that there is a public database of tumor images
and a MICCAI challenge that used this database. Menze et al. [2014] reports the
set-up and results of the Multimodal Brain Tumor Image Segmentation (BRATS)
benchmark that was arranged together with the MICCAI 2012 and 2013 confer-
ences. Twenty state-of-the-art tumor segmentation algorithms were applied to a
set of 65 multi-contrast MR scans of low- and high-grade glioma patients, which
were manually annotated by up to four raters, and to 65 similar scans created
using tumor simulation software. This study showed a considerable disagree-
ment between the human raters in segmenting various tumor sub-regions (Dice
scores in the range 74-85%), demonstrating the difficulty of this task. Menze
et al. [2014] found that different algorithms worked best for different sub-regions
(reaching performance comparable to human inter-rater variability), but that no
single algorithm ranked in the top for all sub-regions concurrently.

Despite the effort to create automatic tumor segmentations, these segmenta-
tions are not satisfactory enough to be used in a clinical setting yet, or in tumor
growth modeling. Over the next decade, tumor segmentation algorithms will im-
prove and open doors to new ways of working for both clinicians, but also medical
image processors.

Generative Tumor Models in Image Registration: The registration of a
patient’s MRI with a large lesion to an anatomical atlas is a difficult task. An
essential idea in this process, essential for example in the task of tissue segmenta-
tion, is to separate standard inter-subject variation of brain anatomy – captured
in anatomical atlases, i.e., priors on the spatial distribution of the brain tissues
– from the patient-specific, tumor-induced deformations.

Kyriacou et al. [1999] proposed a pipeline for correcting tumor-induced modifi-
cations of the normal anatomy. They simulate the resection of the tumor allowing
images to be registered to a standard atlas and obtain a “tumor-free” image of
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the patient in a first step. Using these tumor-free images together with the real
observations, they estimate parameters of a simple tumor growth model in a sec-
ond step. The mass effect of the optimal tumor model is then used to modify
the standard atlas, and to perform the final atlas-to-patient registration with
subsequent segmentation.

Bach Cuadra et al. [2004] proposed an approach requiring manual user inter-
action for identifying landmarks in the atlas and patient images. The tumor
is modeled as a radial displacement on surrounding structures. The resulting
displacement field is considered in a non-linear registration using the “demons”
registration algorithm.

Mohamed et al. [2006] took a statistical approach jointly modeling normal
and tumor-induced variation. They extend the idea of using atlases for variability
between healthy subjects. They suggest decomposing the deformation field from
a non-linear registration into the natural variability between healthy subjects and
the tissue displacements resulting from tumor growth. The formation fields of the
normal brain are estimated from healthy subjects. Tumor growth is simulated
by generating a space of displacement fields that results in tumor variation. The
simulated tumor varies over different growth parameters, location and observed
extent of tumor and edema. Once the deformation field linking the atlas to the
subject and tumor growth parameters is found, the atlas is registered and the
tumor is grown in it. An extension has been proposed by Zacharaki et al. [2008].

Gooya et al. [2011a] proposed an approach to the problem of atlas registration
of brain images with gliomas. They used multi-parametric imaging modalities for
segmentations of various tissues, and then using supervised learning to compute
the posterior probability map of membership to each tissue class. By modeling
the tumor growth using the reaction-diffusion equation, similar maps were gen-
erated in the initially normal atlas. Deformable registration using a demons-like
algorithm was used to register the patient images with the atlas having the tu-
mor. Joint estimation of the simulated tumor parameters such as location, mass
effect and degree of infiltration, and the spatial transformation was achieved by
maximization of the log-likelihood of observation. An Expectation-Maximization
(EM) algorithm was used in a registration procedure to approximate the spatial
transformation and other parameters related to tumor simulation were optimized
through Asynchronous Parallel Pattern Search.

Gooya et al. [2012] also proposed a generative approach for simultaneously
registering a probabilistic atlas of a healthy population to brain MR scans showing
glioma and segmenting the acquisition scans into tumor and healthy tissue labels.
However, for this work, the method proposed does not require segmentations of
both brain images to initialize the registration process and accounts for edema.
The proposed method was based on the EM algorithm that incorporates a glioma
growth model for atlas seeding, a process which modifies the original atlas into one
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with tumor and edema adjusted to optimally match a given set of patient images.
The adjusted atlas is registered into the patient space and utilized for estimating
the posterior probabilities of different tissue labels. EM iteratively improves the
estimates of the posterior probabilities of tissue labels, the deformation field and
the tumor growth model parameters.

Bauer et al. [2011] presented an automatic method to segment brain tissues
from volumetric MRI brain tumor images. The method was based on non-rigid
registration of an average atlas in combination with a biomechanically justified
tumor growth model to simulate tumor induced soft-tissue deformations. The
tumor growth model, which is formulated as a mesh-free Markov Random Field
energy minimization problem, guarantees agreement between the atlas and the
patient image, prior to the registration step. Their method was non-parametric,
straightforward, and fast compared to other approaches with similar accuracy.

2.4 Perspectives and Further Directions

In this chapter we presented a general background on gliomas and on the state-
of-the-art in tumor modeling. We pointed out studies of specific relevance in
the design of these models. Most of the image-based approaches integrate image
information into basic reaction-diffusion models, with or without coupling the
tumor model and the displacement of the healthy tissues. These approaches are
closely coupled to image registration and segmentation tasks. Major difficulties
are in finding image descriptors that are consistent with the modeling framework
– or, vice versa, a modeling framework that is consistent with the available image
information – and in overcoming difficulties arising when approaches that showed
to be useful in one or two-dimensional examples are generalized to real clinical
image data in 3D.

Further directions may be in developing more complex models of tumor growth,
modeling nutrient, oxygen, and metabolite levels in the tumor, considering further
structural model components of brain anatomy, or phenomena at the microscopic
scale. Imaging modalities providing richer information than tumor outlines, such
as positron emission tomography (PET), magnetic resonance spectroscopic imag-
ing (MRSI) [Menze et al., 2006], diffusion contrast-enhanced MRI [Kelm et al.,
2009], functional-MRI (fMRI) [Langs et al., 2010], or other, even more specific
molecular imaging modalities may serve as the basis for such model extensions. A
large body of studies on personalized management of tumor therapy, potentially
to be used for such model extensions, is available from the field of theoretical
biology. Further work will be required to find straightforward approaches for as-
similating 3D image information into the bio-physical framework of those models.

In the coming years, clinicians are expecting reliable tumor models and seg-
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mentation algorithms at any scale. The macro scale would be of great benefit
to radiologists, oncologists, and neurosurgeons and if these models were image-
based they would integrate well into these physicians current workflow. In order
for these physicians to adopt these tools, they need to be confident that the mod-
els can produce accurate and repeatable results. This thesis is aimed at looking
into some of the questions that are currently blocking tumor-based models from
being used in treatment planning for glioma patients in clinics.
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Based on a conference paper with full proceedings published and orally pre-
sented at the 2013 ISBI conference [Stretton et al., 2013].
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3.1 Context

Tumor growth models based on the Fisher Kolmogorov (FK) reaction-diffusion
equation have shown convincing results in reproducing and predicting the invasion
patterns of glioma brain tumors. Diffusion tensor images (DTIs) were suggested
to model the anisotropic diffusion of tumor cells in the brain white matter. How-
ever, clinical patient-DTIs are expensive and often acquired with low resolution,
which compromises the accuracy of the tumor growth models. In this work, we
used the traveling time FK model formulation to describe the evolution of the
visible boundary of the tumor and investigate the impact of replacing a patient-
specific DTI by i) an isotropic diffusion map or ii) an anisotropic high-resolution
DTI atlas formed by averaging multiple patient DTIs. We quantify the impact of
replacing the patient-specific DTI using synthetic tumor growth simulations and
tumor evolution predictions on a clinical case.

3.2 Introduction

Gliomas are a type of malignant brain tumor with fast infiltration along white
matter fiber tracts. Modeling glioma growth is a complex task due to the infiltra-
tive nature of this disease, which makes low concentrations of tumors unobserv-
able in magnetic resonance images (MRIs). Several bio-physical computational
models have been proposed for describing the diffusive growth of these tumors
that cannot be completely seen in MRIs. Swanson et al. [Swanson et al., 2007]
proposed the use of tissue-based tumor cell motility, where their model included
different diffusivities in white and grey matter, but isotropic and homogeneous
within each. To improve the realism of the model, Clatz et al. [Clatz et al., 2005],
Jbabdi et al. [Jbabdi et al., 2005] constructed anisotropic non-homogeneous mod-
els within white matter based on patients DTIs. Unfortunately, patient specific
DTIs are not widely available because of the added cost and time for acquisi-
tion. Patient DTIs are difficult to acquire in a clinical routine since acquiring
them increases the total time a patient needs to stay inside a MRI machine,
which is difficult for elderly persons. Therefore, if a patient DTI is acquired, it
is usually of low quality (low-resolution and low signal-to-noise ratio) due to the
limited number of diffusion gradients and repetitions acquired. Although there
exist several sequences to accelerate DTI acquisitions, e.g., SENSE [Jaermann
et al., 2004], they are not systematically used in a clinical setting. In addition,
the white matter tracts on the patient DTIs are often disturbed inside the region
of the tumor and close to the boundary causing the image to be incomplete. It
is for this reason that Unkelbach et al. [2012] proposed to use Swanson’s model
without a DTI for radiotherapy planning. Alternatively, instead of relying on a
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patient-specific DTI (“Patient-DTI”), one may rely on an “Atlas-DTI”, which is
an average of 75 subject DTIs [Prastawa et al., 2009], or refrain from using a DTI
at all (“No-DTI”).

To date, there has been no analysis carried out to quantify whether the pa-
tient specific information on anisotropic tumor growth directions in Patient-DTIs
gives invaluable information in terms of tumor growth prediction. Thus, in this
work we provide a comparison among three modeling options to describe tu-
mor diffusivity: using a Patient-DTI, Atlas-DTI, and No-DTI. We compare these
three options and evaluate which method aids the traveling time FK model for-
mulation (described by equations 2.14, 2.15, and 2.16) in providing the most
accurate description of the tumor growth dynamics. This study also gives insight
into whether the tumor growth has directional preference (anisotropic growth) as
formulated in [Clatz et al., 2005; Jbabdi et al., 2005] or only obeys tissue based
differential motility as proposed in [Swanson et al., 2007]. This question is crucial
since most of the available patient data does not have patient specific DTIs. We
quantify the impact of replacing the patient DTI using synthetic tumor growth
simulations and tumor evolution predictions on a clinical case.

This chapter is organized as follows. In Section 3.3, we present three tumor
diffusivity construction options (Patient-DTI, Atlas-DTI, and No-DTI) that we
use within the traveling time FK model formulation to simulate tumor growth.
In Section 3.4, we present the results of synthetic data experiments to determine
the different simulated tumor contour shapes for the three diffusivity construc-
tion options. In Section 3.5, we show the results of an experiment on a clinical
case to quantify which of the three diffusivity construction options provides the
best tumor growth predictions. The discussion and conclusions are presented in
Section 3.6.

3.3 Diffusivity Tensor Constructions

Different diffusivity tensor (D(x) in Equation 2.3) constructions have been pro-
posed in the past. Some researchers [Swanson et al., 2007; Unkelbach et al., 2012]
have considered isotropic diffusivity and defined D(x) as dgI if x is in gray matter
and dwI if x is in white matter, where dg and dw are scalars (dg < dw) and I is
a three by three identity matrix. This representation is used in this chapter for
the No-DTI case, where the isotropic and homogeneous growth in white matter
is guided by a white matter segmentation (obtained by non-linearly registering
the MNI 152 atlas white matter segmentation to the patient images), see Fig-
ure 3.1(a). Other researchers [Clatz et al., 2005; Jbabdi et al., 2005; Menze et al.,
2011b; Konukoglu et al., 2009; Stretton et al., 2012] have examined anisotropic
diffusivity where D(x) is dgI if x is in gray matter and dwDwater if x is in white
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matter, where Dwater is the water diffusivity tensor obtained from a DTI normal-
ized using the maximum eigenvalue in white matter [Clatz et al., 2005]. These
Dwater based DTIs are used for the Patient-DTI and Atlas-DTI cases. Even
though Patient-DTIs represent better the patient’s white matter structure, they
also have the drawbacks of having less resolution and more noise. On the other
hand, Atlas-DTIs are less noisy as a result of the averaging caused by using mul-
tiple patients [Prastawa et al., 2009]. Figure 3.1 shows a comparison between a
Patient-DTI and an Atlas-DTI.

Figure 3.1: Diffusivity tensor constructions. The MNI 152 white matter seg-
mentation, depicted overlaid on a FLAIR MRI, is used to model regions where
a tumor grows isotropically for the No-DTI case (a). The Patient-DTI (b) and
Atlas-DTI (c) show the water diffusion tensor directions that are used to model
anisotropic tumor growth in white matter.

3.4 Synthetic Case

In this section we present the results of using the three diffusivity tensor op-
tions presented in Section 3.3 within the traveling time FK model formulation on
synthetic data.

3.4.1 Data

Our synthetic dataset consisted of three images from a healthy subject: a T1
MRI, a FLAIR MRI, and a Patient-DTI. In addition, we used an anisotropic
high-resolution DTI atlas formed by averaging DTIs of multiple patients, taken
from [Prastawa et al., 2009]. We rigidly registered all the subject images to the
Apparent Diffusion Coefficient (ADC) map of the Patient-DTI. To account for
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brain shape differences, the Atlas-DTI and the MNI 152 T1 were non-linearly
registered to the Patient-DTI and to the registered patient T1 MRI respectively.
The transformation of the registration of the MNI 152 T1 to the registered patient
T1 MRI was applied on the MNI 152 white matter mask, which was de facto
registered to the MNI 152 T1 [Fonov et al., 2009]. The FSL’s FAST [Zhang
et al., 2001] was used on the registered T1 image to find the brain parenchyma
mask (BM).

3.4.2 Method

The traveling time FK model formulation (equations 2.14, 2.15, and 2.16) with
the three different diffusivity tensors (Patient-DTI, Atlas-DTI, and No-DTI) was
used to simulate 120 synthetically grown tumor evolutions from single voxels at
randomly chosen locations. The method followed for each of these 120 simulations
is shown graphically in Figure 3.2, where the inputs to the simulation are a white
matter mask (WM), a brain parenchyma mask (BM), three types of diffusion
tensor images (Patient-DTI, Atlas-DTI, and No-DTI), and the proliferation rate
parameter ρ; the outputs include tumor delineations for the Patient-DTI (ΓP ),
the Atlas-DTI (ΓA), and the No-DTI (ΓN) options. Notice that the speeds related
to the three diffusivity tensors were not directly comparable since the Atlas- and
Patient-DTIs had much lower diffusion values in areas that were anisotropic, but
not the main directions of growth. Therefore, to provide a meaningful comparison,
tumor growths were stopped when the tumor volumes for the Atlas-DTI and No-
DTI options were the same as the ones obtained after a fixed day count for the
Patient-DTI. Furthermore, out of the 120 synthetically grown tumor evolutions
half were done using low resolution images (1mm× 1mm× 3mm) and the other
half using high resolution images (0.5mm × 0.5mm × 1.5mm). Note that the
low resolution images were still within American College of Radiology (ACR)
guidelines [American College of Radiology, 2013], which states that the maximum
slice thickness should be no greater than 5mm and an interslice gap should be
no greater than 2.5mm. In addition, for 120 tumor evolutions the FK model
parameters ρ, dw, and dg were varied to account for different glioma grades (high
grade glioma [HGG], low grade glioma [LGG], and very LGG). Table 3.1 shows
the values employed, which were the same values used in the work of Konukoglu
[2009].

3.4.3 Results

The results of the 120 synthetically grown tumor evolutions show that the shape
of the tumor for LGG and very LGG is not too sensitive to the type of diffusivity
tensor used; however, for HGG it was observed in some locations of the brain
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Figure 3.2: Synthetic experiments method. The inputs to the simulations are a
white matter mask WM , a brain parenchyma mask BM , three types of diffusion
tensor images (Patient-DTI, Atlas-DTI, and No-DTI), and the proliferation rate
parameter ρ, while the outputs include tumor delineations for the Patient-DTI
(ΓP ), the Atlas-DTI (ΓA), and the No-DTI (ΓN) options.

Table 3.1: Various Glioma Grades Parameters

Glioma dw dg ρ
Grade mm2/day mm2/day 1/day

HGG 0.5 0.25 0.009
LGG 0.25 0.01 0.012
Very LGG 0.1 0.005 0.024

that the Patient- and Atlas-DTI had good agreement between them, but did not
match the No-DTI case. Moreover, the resolution of the images seemed not to
affect the result of the simulations significantly.

Figure 3.3 displays two synthetically grown tumors developed in the occipital
lobes showing the differences in tumor growth patterns when the tumor contours
were thresholded at similar volumes. We chose to display HGG simulation results
since they show the most dramatic contour differences. Notice that similar tumor
shapes for the three diffusivity tensor constructions resulted for either high- or
low-resolution images.
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HGG in the right occipital lobe

HGG in the left occipital lobe

Figure 3.3: High-resolution synthetically grown tumors overlaid on a registered
T1 MRI. Displays the differences in tumor growth patterns when the tumor results
are thresholded at similar volumes. Notice that similar tumor shapes between
the high and low resolution images.
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Figure 3.4 shows another two synthetic tumor cases: in the frontal lobe and in
the corpus callosum. The shapes of the synthetic tumors look visibly similar for
the results of the Patient- and Atlas-DTI cases due to the fact that both simulate
anisotropic tumor growth in white matter where the speed of growth in each area
is dictated by the non-homogeneity of the DTI. As expected, the directional non-
homogeneity of the DTIs is slightly different between the Patient- and Atlas-DTIs
in very anisotropic regions, e.g., the area indicated by the white circle in the LGG
image. This difference is more significant in very anisotropic areas of the brain
like the corpus callosum when the tumor growth speed is high. Furthermore,
there is not too much visible difference between the tumor contour from No-DTI
option and the options that used a DTI in the tumor growth simulation.

LGG in the frontal lobe

HGG in the corpus callosum

Figure 3.4: High-resolution synthetically grown tumors overlaid on a regis-
tered FLAIR MRI. Atlas-DTI and No-DTI contours are compared to Patient-
DTI. The start seeds are the orange cross-hairs. Notice that the directional
non-homogeneity of the Patient- and Atlas-DTI are slightly different in very
anisotropic regions (pointed out by the white circle in the LGG image).
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3.5 Clinical Case

In this section we present the results of comparing the three diffusivity tensor con-
structions within the traveling time FK formulation using a clinical case. These
results include the estimation of the tumor growth speed, and the tumor contours
at future time points.

3.5.1 Data

We used a clinical data set of a LGG patient with five acquisition data points,
where the tumor was located in the supratentorial region of the brain. The
Patient-DTI, T1, and FLAIR MRIs were affinely registered to the resampled
baseline image of the patient (first FLAIR MRI acquisition), where the baseline
was resampled to 1×1×1mm3. The original baseline image resolution was 0.5×
0.5×6.5mm3, where it had a 5mm slice thickness and a 1.5mm interslice gap in the
z-direction. The Atlas-DTI was non-linearly registered to the registered Patient-
DTI, using a mask over the tumor to exclude the tumor area from the registration
since it could not be matched between the images. The tumor was manually
segmented in the original FLAIR MRI resolution and then the transformations
of the registrations of the FLAIR MRIs to the FLAIR baseline image were applied
on the tumor segmentations using shape based interpolation. The MNI 152 T1
was also registered to the registered patient T1 MRI and the transformation of
the registration of the MNI 152 T1 to the patient T1 MRI was applied on the
MNI 152 WM , which was de facto registered to the MNI 152 T1 [Fonov et al.,
2009]. FSL’s FAST [Zhang et al., 2001] was used on the registered patient T1
MRI to find the patient’s BM .

In Stretton et al. [2013], two additional patients were studied; however, the
data of those patients were lost and for that reason, they are no longer included
in this manuscript.

3.5.2 Method

The method consists of two main steps: personalization and prediction. Per-
sonalization consists of solving the parameter estimation problem in Equation
2.19 using tumor delineations at two different time points. The outputs of the
personalization step are the tumor growth parameters (ρ, dw, dg, and the time
from the time of appearance of the tumor) and the simulated delineation at the
second time point. The notation Personalize(T1,T2), used in the remainder of this
chapter, signifies for a given patient that the personalization was done between
delineations at the time points T1 and T2. Prediction consists of running the
traveling time FK formulation (equations 2.14, 2.15, and 2.16) for given tumor
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growth parameters between two time points, where the tumor delineation at the
first time point is given as an input. The output is the simulated delineation at
the second time point. The notation Predict(T3,T4) represents the application of
this prediction step between the time points T3 and T4. To calculate the accuracy
of each simulation (for either personalization or prediction), we compute the root
mean squared error (RMSE), defined as

RMSE =

√
dist(Γ,Γ)2, (3.1)

where Γ is the surface encompassing the tumor in the image taken at the second
acquisition date, and Γ is the tumor delineation simulated by the traveling time
approximation of the FK model at the second acquisition date, and dist( ) is the
symmetric distance between them, normalized by their surface area.

3.5.3 Results

In this section, we present the results of the personalization and prediction for one
patient using five image acquisition points and the three diffusivity tensor con-
struction options, i.e., Patient-DTI, Atlas-DTI, and No-DTI. Thus, we perform
for each of these tensors ten personalizations: Personalize(T1,T2), Personalize
(T1,T3), Personalize(T1,T4), Personalize(T1,T5), Personalize(T2,T3), Personalize
(T2,T4), Personalize(T3,T5), Personalize(T3,T4), Personalize(T3,T5), and Personal-
ize(T4,T5). From each one of these personalizations we perform nine predictions,
e.g., for Personalize(T1,T2), we did Predict(T1,T3), Predict(T1,T4), Predict(T1,T5),
Predict(T2,T3), Predict(T2,T4), Predict(T2,T5), Predict(T3,T4), Predict(T3,T5), and
Predict(T4,T5). This resulted in a total of ninety predictions for each one of the
diffusivity tensors. Figure 3.5 shows the acquisition timeline of our patient, where
Ti stands for the ith image acquisition time point, and the numbers in between
the acquisition times are the time intervals between images. This figure depicts
an example where the orange delineation shows the output of Personalize(T1,T2)
and the purple delineations depict different prediction results at time points T3,
T4, and T5.

Figure 3.5: Patient acquisition timeline with personalization and predictions.

Figure 3.6 shows the estimated tumor growth speed in white and gray matter
resulting from the ten personalizations, where on the horizontal axis are displayed
the ten time intervals used in the personalization. This plot shows that the
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estimated tumor growth speed in both white and gray matter did not change
much between the personalizations estimated using the Patient- and Atlas-DTI
options. However, for the No-DTI option, the white matter speed was slower
and showed more run-to-run variability than for the other two options. Table 3.2
shows the mean and the standard deviation of the estimated tumor growth speeds
for each of the DTI options in both white and gray matter. Notice that on average
the personalization runs using the No-DTI estimated slower growth speed in
white matter and a faster growth speed in gray matter than the personalization
runs using a DTI. Most importantly, notice that on average there was about
1mm/year difference between the white matter speed estimated using a DTI
and not using a DTI, and the worst case scenario was 3mm/year difference (see
Figure 3.6). Also, notice that the speed estimate standard deviations were all
under 1mm/year, where the No-DTI option had the highest standard deviation
in white matter and slowest in gray matter.
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Figure 3.6: Tumor growth speed estimated for white matter (diamond, cross,
circle) and gray matter (triangle, star, square) using the traveling time FK model
formulation with three different diffusivity tensor constructions (Patient-DTI,
Atlas-DTI, and No-DTI).

Table 3.2: Patient Tumor Growth Speed Estimation Statistics

DTI Options White Matter Gray Matter
used within Mean Std. Dev. Mean Std. Dev.
Equation 2.19 (mm/year) (mm/year) (mm/year) (mm/year)

Patient-DTI 7.23 0.11 0.55 0.14
Atlas-DTI 7.12 0.31 0.55 0.14
No-DTI 6.13 0.99 0.62 0.09
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Figure 3.7 shows the RMSE obtained in the personalization runs against the
time interval between the two time points being personalized. Notice in this plot
the upward RMSE value trend for personalization runs with larger time intervals.
This is an expected result for each of the DTI options independently because the
tumor of this patient had a finger-like pattern. However, it was interesting to see
no improvement in RMSE for the Patient-DTI case in comparison to the other
two DTI cases as the time interval became larger.
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Figure 3.7: RMSE of the personalization runs.

Figure 3.8 shows the RMSE differences of the personalization runs between
the Patient-DTI case and the Atlas- and No-DTI cases. Notice that most of the
personalization runs for the Patient-DTI case were more accurate, i.e., most of
data points in the plot are negative. However, the RMSE differences between
the different DTI options were less than 0.1mm. Table 3.3 shows the mean and
standard deviation of the points plotted in Figure 3.8, where the No-DTI case
had slightly worse performance than the Atlas-DTI case.
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Figure 3.8: RMSE differences of the personalization runs.
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Table 3.3: Patient Personalization RMSE Difference Statistics

RMSE Difference Cases Mean Std. Dev.
(mm) (mm)

Patient-DTI RMSE - Atlas-DTI RMSE −0.014 0.020
Patient-DTI RMSE - No-DTI RMSE −0.036 0.039

Figure 3.9 shows the RMSE obtained in the prediction runs against the time
interval of the prediction. As in the personalization case, notice in this plot
the upward RMSE value trend for prediction runs with larger time intervals.
Notice that there was also no improvement in RMSE for the Patient-DTI case in
comparison to the other two DTI cases as the time interval became larger.
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Figure 3.9: RMSE of the prediction runs.

Figure 3.10 shows the RMSE differences of the prediction runs between the
Patient-DTI case and the Atlas- and No-DTI cases. Notice that most of the
prediction runs for the Patient-DTI case were more accurate, i.e., most of data
points in the plot are negative. However, we can also observed that for larger time
intervals the No-DTI case had lower RMSE values than the Patient-DTI case. In
addition, we can observe that the RMSE differences were larger for larger time
intervals. Table 3.4 shows the mean and standard deviation of the points plotted
in Figure 3.10, where the No-DTI case showed more run-to-run variability than
the Atlas-DTI case, but a mean value closer to zero. However, we can conclude
that there is no significant difference among the DTI options in the tumor growth
predictions since the values of the mean and standard deviation in Table 3.4 are
relatively small with respect to the patient’s images resolution.
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Figure 3.10: RMSE differences of the prediction runs.

Table 3.4: Patient Prediction RMSE Difference Statistics

RMSE Difference Cases Mean Std. Dev.
(mm) (mm)

Patient-DTI RMSE - Atlas-DTI RMSE −0.086 0.178
Patient-DTI RMSE - No-DTI RMSE −0.066 0.325

Figure 3.11 shows prediction results for three time intervals of different du-
ration. Notice that for the time intervals of 85 days and 175 days, the Patient-
and Atlas-DTI prediction results were practically identical to the actual tumor
segmentation, i.e., the contour lines are sitting on top of each other, and the
No-DTI prediction was also very close, deviating only in a couple of regions, e.g.,
inside the red circle. For the time interval of 396 days we can observe from the
image that the three DTI options struggle to match the tumor segmentation in
a region where the tumor has a spiky finger-like shape. This result explains the
high RMSE values in Figure 3.9 for large time intervals. The image at 396 days
in Figure 3.11 also shows that the lower RMSE values for the No-DTI case ob-
served in Figure 3.10 for large time intervals were caused by having the No-DTI
delineation (blue line) closer to the finger-like pattern segmentation (yellow line)
than the Patient- and Atlas-DTI delineations. However, the shape of the tumor
was better matched in terms of shape by the Patient- and Atlas-DTI delineations
(blue and red lines). Therefore, even thought the RMSE values for the No-DTI
case were lower, the tumor segmentation was matched better by the Patient- and
Atlas-DTI delineations.
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Figure 3.11: Prediction results for three time intervals of different durations.

3.6 Discussion and Conclusions

Three options to model tumor diffusion in white matter within the traveling time
FK formulation were compared using both synthetic and clinical data. A future
study including the data of additional patients would improve the significance
of the study. The results of the preliminary study, published in [Stretton et al.,
2013], led to the same conclusions as were reached in this study even though the
preliminary study included the data of two additional patients. In this study, con-
sisting of one patient, it was found that the traveling time FK model formulation
is most accurate for each of the three DTI options when the prediction inter-
val is under 175 days. The resulting delineations of the Atlas- and Patient-DTI
matched the actual tumor contours slightly better, but not significantly, than the
No-DTI option. However, the prediction results of the No-DTI option for under
175 days time interval were also close to the actual tumor. Therefore, this chapter
suggests that a Patient-DTI (when available) is the best option to model tumor
cell diffusion in white matter within the FK framework since the results show
that tumor growth has directional preference (anisotropic growth) as formulated
in [Clatz et al., 2005; Jbabdi et al., 2005]. It was also found that not very much
accuracy is lost with the use of an Atlas-DTI, even though the Atlas-DTI has
a slightly different directional non-homogeneity than a Patient-DTI. This study
suggests that modeling glioma growth with tissue based differential motility (us-
ing the No-DTI option) as proposed in [Swanson et al., 2007] yields slightly less
precise results. However, refraining from using a DTI would be sufficient when
modeling LGGs.
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4.1 Context

As a result of medical protocols, most glioma patients are subject to resections
within a short period of time after tumor detection. Then, medical professionals
want to know what the best type of follow-up treatment would be for a partic-
ular patient, i.e., chemotherapy for diffuse tumors or a second resection after a
given amount of time for bulky tumors. Recent mathematical models to simulate
brain tumors, especially gliomas, have shown promising results in predicting tu-
mor growth and tumor cell infiltration. In this chapter, we proposed a thorough
method to leverage glioma growth models on post-operative cases showing brain
distortions to estimate the tumor infiltration maps after surgery. Our method
builds on a reaction-diffusion formulation of the tumor growth process to esti-
mate tumor cell infiltration beyond its visible boundaries in MRIs after a surgical
resection. There are two main challenges involved with estimating glioma infil-
tration directly after surgery. First, there is substantial brain parenchyma and
CSF movement after surgery causing simulation post surgery to be very chal-
lenging (no brain parenchyma alignment). Second, it is difficult to obtain quality
tumor segmentations because the tumor segmentations after surgery may not
be complete since there is a potential for blood and scar tissue to be confused
with tumor. It is only after several scans that a neurosurgeon can tell the differ-
ence between these hyper-intense signals on MRIs and therefore a neurosurgeon
will generally under-segment a tumor in scans taken within a few months after
surgery. We tried to address the first challenge in our method with the use of
a non-linear registration algorithm that compensates for the brain parenchyma
and CSF movement. Our method addresses the second challenge by combining
two infiltration maps, where one was simulated from a pre-operative image and
one estimated from a post-operative image. We use two patients’ data to demon-
strate the effectiveness of the proposed method. For one patient, we successfully
apply the method at four time points after surgery (from 172 to 458 days) that
when thresholded at 20% cell density match neurosurgeon’s tumor segmentations
(Dice coefficient > 0.7). For the other patient, severe mass effects cause lower
effectiveness of the method soon after surgery; however, the method is able to find
an infiltration map at 344 days after surgery that when thresholded at 20% cell
density matches a neurosurgeon’s tumor segmentation (Dice coefficient = 0.9).
We believe that our proposed method could potentially help clinicians anticipate
tumor regrowth and better characterize the radiological non-visible infiltrative
extent of a tumor to plan therapy.
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4.2 Introduction

Glioma surgical resection has shown to be a critical therapeutic modality and is
usually the first type of therapy given to patients soon after diagnosis. Brain re-
sections are not only used to control symptoms, e.g., seizures, and relieve cranial
pressure that causes neurological defect, but also to refine the diagnosis. Ana-
lyzing a resected lesion allows an oncologist to define the tumor grade and to
identify the genetic profile. Resections are part of a standard treatment that has
demonstrated increased patient survival time [Sanai and Berger, 2008]. However,
gliomas are a diffuse, infiltrative, and resilient form of brain cancer. That is why
most low-grade glioma patients have a tumor reoccurrence after the first tumor
resection. Indeed, low tumor cell density regions, invisible in MRIs, proliferate
and cause reoccurrence [Gerin et al., 2013; Pallud et al., 2010] (see Figure 4.1).
Treatment then includes a second surgery or chemotherapy depending on the dif-
fusivity of the tumor: surgery should be preferred for a tumor without a large
non-visible extent (referred to as a “bulky” tumor), whereas, chemotherapy is
applied to highly diffuse and invasive tumors.

The Fisher Kolmogorov (FK) model (Equation 2.3) is a well-acknowledged
standard for modeling glioma growth. There have been many scientists who
have incrementally improved this model since the pioneering 2-D work of Murray
and Alvord in the nineties, leading to more realistic brain tumor growth simula-
tions [Burgess et al., 1997; Tracqui et al., 1995b; Woodward et al., 1996]. Swanson
et al. [2000] extended the model to include the heterogeneity of brain tissue on
synthetic data modeling isotropic spatial diffusion. Then, Clatz et al. [2005] and
Jbabdi et al. [2005] proposed treating the 3-D spatial diffusion coefficient as a
tensor using DTI construction methods that estimated the tumor cell diffusion in
white matter. Later, in a post mortem study, Swanson et al. [2007] investigated
the effectiveness of using different types of brain resections, where their simula-
tions were run on virtual controls (not patient data). Their model was limited to
personalization using patient T1 Gad and T2 MRIs, without taking into account
the anisotropy in white matter fiber tracts visible in DTIs. Additionally, their
model did not estimate tumors’ infiltrative extents before and after a resection.
Konukoglu et al. [2010a] and Cobzas et al. [2009] created methods to calculate
infiltration maps to approximate tumor invasion margins for radiotherapy treat-
ment from a single MRI of any given patient; however, these methods require
the FK model parameters: diffusion in white matter (dw) and proliferation rate
(ρ). Konukoglu et al. [2009] defined a method to find the tumor growth velocity
(v = 2

√
dwρ) from a MRI, where dw and ρ appear as a product. In this chapter

we address the problem of separating the parameters ρ and dw from the tumor
growth velocity estimate v of Konukoglu et al. [2009] by estimating the quotient
dw/ρ. Then, we used these parameters with the method of Konukoglu et al.
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Figure 4.1: Cartoon of the tumor re-growth process after resection.

[2010a] to find the infiltration maps from pre- and post-operative MRIs.
The two challenges in estimating tumor infiltration maps using pre- and post-

operative images, which this chapter addresses, are: i) brain parenchyma and
CSF movement after surgery, and ii) the difficulty in obtaining quality tumor
segmentations. To the best of our knowledge, estimating tumor infiltration after
a brain tumor resection, using patient data and a DTI, has not been tackled
before. Preliminary results were published in [Stretton et al., 2012], which we
extend in this chapter with an improved non-linear registration technique and a
more refined methodology.

This chapter is organized as follows. In Section 4.3 we detail a novel method-
ology to predict glioma reoccurrence after surgical resection. In Section 4.4, we
describe the patient data that were used to illustrate how the proposed method
works. In Section 4.5, we present the results of our experiments to validate our
method, which shows that this method is feasible. The discussion is presented in
Section 4.6. Conclusions and perspectives are presented in Section 4.7.

4.3 Method

In this section, we present a method to estimate glioma reoccurrence development
after a brain resection. Figure 4.2 shows the main steps of this method, which
requires as inputs patient and atlas images. The output of the method is a
predicted tumor infiltration map at a future time after surgery, which tells us
if a tumor is bulky or diffuse. In Figure 4.2 and in the rest of this chapter the
variable T represents the time from the origin of the tumor, where the negative
subindices indicate time points before surgery and the positive subindices indicate
time points after surgery.
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ρwdv 2=

Figure 4.2: Graphical representation of a method to estimate glioma infiltration
after a brain resection. This method requires as inputs patient and atlas images,
and produces as output a tumor infiltration map at a future time after surgery.
There are three steps in the method: image pre-processing, estimation of tumor
growth speed, and estimation of tumor infiltration. The variable T represents
the time from the initial appearance of the tumor, where the negative subindices
indicate time points before surgery and the positive subindices indicate time
points after surgery.

Assumptions: We make the following assumptions in this work, which are
deemed reasonable by our collaborating neurosurgeon:

• We chose the tumor cell density threshold of visibility value as 20% be-
cause it is an intermediate value in literature for T2 MRIs, which includes
FLAIR (the imaging modality that shows the most glioma tumor cell den-
sity threshold of visibility extents). Tracqui et al. [1995a] proposed 40%
maximal tumor cell density to be visible in T2 MRIs, Konukoglu et al.
[2009] used Tracqui’s value, and Swanson et al. [2007] used a 18% value.
Menze et al. [2011b] suggested the minimal tumor cell density that is visible
in FLAIR MRIs to be 9.5%.
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• Gliomas, scar tissue, and edema appear as hyper-intense voxels in FLAIR
MRIs making difficult to distinguish one from the other, especially in im-
ages soon after surgery. When a neurosurgeon segments a tumor, he/ she
segments conservatively and includes only what is known to be tumor in
his/ her segmentation. We assume that the neurosurgeon would not over
segment a tumor.

• Sometimes, before surgery, patients suffer from generalized seizures. This
makes the enhanced region, which we assume is tumor, to swell with edema
that makes the tumor look larger than it is. Therefore, if we know a patient
has had a generalized seizure close to the date of an MRI acquisition, we
choose not to include this MRI time point in our study.

• Tumor cells diffuse in the same way after surgery as before surgery. In our
method, we use a before surgery DTI.

• A low-grade glioma grows with the same velocity before and after surgery [Man-
donnet et al., 2010].

• Tumors diffuse in gray matter isotropically [Clatz et al., 2005; Jbabdi et al.,
2005; Swanson et al., 2007; Konukoglu et al., 2009; Stretton et al., 2012;
Menze et al., 2011a].

• In Step III of our method (see Figure 4.2), the ratio dw/dg is assumed to
be 10 because it is an intermediate value of the ones encountered in the
literature. Konukoglu [2009] chose values for dw/dg to be between 4− 375.
Swanson et al. [2000] fixed dw/dg = 5 and later said that dw/dg could range
from 2− 100 [Swanson et al., 2003; Swanson, 1999].

In the following sections, the three steps of our method depicted in Figure 4.2
are described in detail.

4.3.1 Step I: Image Pre-processing

The first step of our method, Image Pre-processing, consists of several intricate
segmentation and registration operations (see Figure 4.3). Inputs are images
from an atlas (MNI 152 [Fonov et al., 2009]) and from a patient at different
time points before and after surgery (T−2, T−1, T1, and TN). After surgery, the
brain parenchyma shifts position and continues shifting even a year after. There-
fore, in order to compare the MRIs of a resection patient, both between pre- and
post-operative images and between consecutive post-operative images, we decided
to register all patient MRIs and segmentations to the baseline MRI FLAIR−1.
The registered outputs of Step I include a white matter mask before surgery
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(WM−1), a brain parenchyma mask before and after surgery (BM−1 and BMN),
a diffusion tensor image before surgery (DTI−1), two tumor segmentations be-
fore surgery (Tumor−2 and Tumor−1), two tumor segmentation after surgery
(Tumor1 and TumorN), and a resection cavity mask after surgery (Cavity1). We
will first present the non-linear registration algorithm used and then describe how
we achieved the registrations of the WM−1, BM−1 & BMN segmentations, the
DTI, and the tumor & cavity segmentations.

Non-linear Registration: The most important part of our registration pipeline
is the method used for non-linear registration of the images, where there exists no
one-to-one correspondence between both images due to the tumor resection. The
non-linear deformation between the pre-operative images and the post-operative
images can be seen with the ventricles swelling and brain tissue shifting position
after surgery. The idea of the non-linear registration algorithm employed is to
model pathological regions with zero confidence using local deformations instead
of global ones. We employed the framework proposed by Lorenzi [2012], which
extends the diffeomorphic demons algorithm [Vercauteren et al., 2009] by imple-
menting the local correlation coefficient as a similarity measure, to robustly reg-
ister the images with respect to bias fields and differences in image histograms.
The algorithm was adapted in order to account for the areas that cannot be
matched between the images, i.e., resection cavity, by excluding the mask volume
from the registration. However, this algorithm cannot account for shifting un-
der the resection cavity mask. This method is symmetric and therefore, we can
recover the original image with the transformation found in this step and apply
this transformation on the infiltration map estimated in Step III.

Brain Parenchyma and White Matter Masks: The BM−1 and BMN are
used to define the no flux boundary conditions of the brain for modeling, i.e., tu-
mor cells cannot leave this mask. TheWM−1 marks out the inhomogeneous tissue
boundaries used in tumor growth model simulations at later steps in our method.
These binary masks were segmented using a series of steps shown graphically in
Figure 4.3 and explained further in order of occurrence as follows:

• Resample the baseline image FLAIR−1 and Tumor−1 to a voxel size of
1× 1× 1mm3.

• Skull-strip the patient T1−1 and FLAIR−1 images using the method de-
scribed in [Smith, 2002]. Then, register the skull-stripped T1−1 to the
skull-stripped FLAIR−1 using a rigid 8 registration algorithm.

8Rigid registration has 6 degrees of freedom: 3 parameters for the rotation and 3 parameters
for the translation.

63



4.3 Method

• Affinely and non-linear register the patient T1−1 image to the baseline MRI
FLAIR−1 (see Tumor and Cavity Segmentations) and then skull-strip it.
Its new name is NL Registered T1N .

• Non-linear register the patient TumorN and Cavity1 to the baseline MRI
(see Tumor and Cavity Segmentations).

• Affinely 9 register the skull-stripped atlas T1 [Fonov et al., 2009] to the
Registered Patient T1−1 and NL Registered T1N images. Apply the re-

Figure 4.3: Step I: Image Pre-processing. The objective of this step is to register
all images to a common baseline image (FLAIR−1). Inputs are images from
an atlas (MNI 152), a neurosurgeon’s CSF segmentation, and from a patient
at different time points before and after surgery (T−2, T−1, T1, and TN). The
registered outputs of Step I include a white matter mask before surgery (WM−1),
a brain parenchyma mask before and after surgery (BM−1 and BMN), a diffusion
tensor image before surgery (DTI−1), two tumor segmentations before surgery
(Tumor−2 and Tumor−1), two tumor segmentations after surgery (Tumor1 and
TumorN), and a resection cavity mask after surgery (Cavity1).
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sulting transformations to the original atlas T1 to obtain registered images
with skulls present in the images. Then, using the resampled Tumor−1 as a
mask, non-linearly register the atlas T1 [Fonov et al., 2009] (with skull) to
the Registered Patient T1−1 (with skull) to obtain a non-linear transforma-
tion. In the same way, non-linear register the atlas T1 to the NL Registered
T1N , using a mask (TumorN and Cavity1), to obtain another non-linear
transformation.

• Apply the non-linear transformations found from registering the T1s on the
atlas WM and CSF probability maps that are de facto registered to the
atlas T1 [Fonov et al., 2009].

• Threshold the probability maps (WM > 0.58 & CSF > 0.17) according
to the values specified by our collaborating neurosurgeon. In this step, the
WM mask (WM−1) is found.

• Combine each of the atlas registered CSF segmentations with a very accu-
rate neurosurgeon segmented CSF segmentation (see Appendix B).

• Apply a thinning algorithm [Pudney, 1998; Bertrand and Malandain, 1994]
to these CSF segmentations so that they will not be too thick.

• Use FSL’s FAST [Zhang et al., 2001] on the registered patient T1−1 and
T1N images to find the patient’s brain parenchyma segmentations, which
do not have all of the sulci patterns distinguished, and then subtract out
the registered thinned CSF segmentations to obtain patient registered brain
parenchyma masks (BM−1 and BMN) with correct representations of the
patient’s sulci patterns.

Another method of obtaining aWM is by thresholding the fractional anisotropy
(FA) map of a DTI. The WM segmentation method proposed in this section is
superior to thresholding a FA map, as was done in[Konukoglu et al., 2010b], for
two reasons. First, our method can be part of a streamline standard procedure
that can be executed in the same way for every patient. Second, our method,
which produces similar results to what the WM would look like before the tumor
started growing, can show white matter fiber tracts surrounding the tumor since
it is based on a registered atlas. In contrast, the FA map is based on a DTI
where the white matter fiber tracts that are visible in DTIs are often disturbed
or destroyed with tumor growth. Finally, another method that could have been
used for performing a brain parenchyma segmentation was proposed by Baillard

9Affine registration has 12 degrees of freedom: 3 for the rotation, 3 for the translation, 3
for the scaling, and 3 for the shearing.
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et al. [2001], who suggested a method for segmenting the brain from volumetric
MRIs, which integrates 3D segmentation and registration processes. However,
there is no mention of the method being able to define sulci patters or separate
brain lobes.

DTI: For the registration of the DTI, our method requires several steps. First,
the fractional anisotropy (FA) map is created from the DTI−1. Second, affinely
register the FA−1 to the FLAIR−1 to obtain the registration transformation.
Then, this transformation is applied on the unregistered DTI−1.

Tumor and Cavity Segmentations: There were three pipelines for register-
ing the tumor segmentations: i) Tumor−2, ii) Tumor−1, iii) Tumor1, Cavity1,
and TumorN . For the registration of Tumor−2, the FLAIR−2 is rigidly registered
to the resampled baseline FLAIR−1, where both images are first skull-stripped
using the method described in Smith [2002]. The transformation found in this
registration is applied to the tumor segmentation Tumor−2 that the neurosur-
geon segmented from the unregistered FLAIR−2. The image resampling method
used to apply the transformation is shape-based interpolation, which accounts for
the large anisotropy in the voxels. For the registration of Tumor−1, the original
Tumor−1 image is resampled in the same way as the baseline FLAIR−1. For
the registration of Tumor1, Cavity1, and TumorN , the skull-stripped FLAIR1

and FLAIRN are affinely registered to the skull-stripped resampled baseline
FLAIR−1. The resulting transformations are applied to the original FLAIR1

and FLAIRN to obtain registered images with skull present in the images. Then,
the affine transformation (from the affine registration of FLAIR1) is applied to
the Cavity1. There was no need for a neurosurgeon to segment CavityN , which
would have been time consuming, since the BMN was made with the cavity ex-
cluded. Then, the affinely registered FLAIR1 and FLAIRN (with skulls) are
non-linearly registered to the resampled FLAIR−1 using the Cavity1 as a mask.
Finally, the transformations (deformation fields and transformation matrices) are
applied to register Tumor1, Cavity1, and TumorN , which the neurosurgeon seg-
mented from the unregistered FLAIR1 and FLAIRN .

4.3.2 Step II: Estimation of Tumor Growth Speed

Step II of our method in Figure 4.2 uses the registered images of Step I at times
T−2 and T−1 (Tumor−2, Tumor−1, WM−1, and BM−1, and DTI−1), since we are
more confident in the tumor segmentations before surgery than just after surgery,
to find the tumor growth parameters dw and ρ using a Simplex minimization al-
gorithm [Lagarias et al., 1998; Nelder and Mead, 1965] that solves an extension of
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the parameter estimation problem in Equation 2.19. Konukoglu [2009] performed
the parameter estimation in Equation 2.19 for relatively small tumors; however,
when applied to larger tumors we observed that the resulted simulated tumors
had toroidal shapes. To overcome this problem, we modified the cost function
in Equation 2.19 to take into account the volumetric mismatch between the seg-
mented tumor and the simulated tumor. Thus, in our method we extended the
parameter estimation problem definition as follows:

arg min
dw,dg ,ρ,T−2

C = dist(Tumor−1, Tumor−1)
2 + (vmin|Tmin − T−2|)2

+ ζ

(
1− 2(V−1 ∩ V−1)

V−1 + V−1

)2

, (4.1)

where V−1 is the volume of the real tumor extracted from the MRI before surgery,
V−1 is the volume of the simulated tumor using the traveling time formulation

in equations 2.14, 2.15, and 2.16 at time T−1. The term 2(V−1∩V−1)

V−1+V−1
is known as

the Dice coefficient (see Figure 4.4) and ζ is a scalar weighting factor. The Dice
coefficient is used together with Specificity and Sensitivity (see Figure 4.4) to
evaluate the matching quality between simulated and segmented tumor volumes.
Specificity is a metric of false positive tumor estimations, i.e., it measures how
much of the simulated tumor does not belong to the segmented tumor. On
the contrary, sensitivity is a metric of false negative tumor estimations , i.e., it
measures how much of the segmented tumor was not estimated by the simulated
tumor. The Dice coefficient accounts for both scenarios and that is the reason for
choosing it for the cost function of Equation 4.1. We chose to use the Simplex
method instead of the Powell method [Nelder and Mead, 1965], which was used
in [Konukoglu, 2009], because the Simplex method is more robust to noise and
it does not rely on smooth functionals. Consequently, the Simplex method can
work on functions that are not locally smooth such as experimental data points,
as long as they show a large-scale bell-shape behavior. An important property of
the Simplex method is that it converges even when the initial simplex straddles
two or more valleys, a property that is not shared by the Powell method.

The procedure within Step II is graphically shown in Figure 4.5 and goes as
follows:

• The traveling time formulation of the FKmodel, described in equations 2.14,
2.15, and 2.16, is used to simulate the tumor growing from T−2 to T−1.

• The cost function C is calculated (see Equation 4.1).
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Figure 4.4: Dice coefficient, Sensitivity, and Specificity definitions between seg-
mented and simulated tumor volumes, represented by V and V respectively. The
Dice coefficient ranges from zero to one, where one means that the simulated and
segmented tumors match volumetrically.

• The Simplex algorithm checks if the algorithm has converged. If it has, the
program exits.

• If the algorithm has not converged, the Simplex algorithm chooses a new
set of parameters to evaluate and the procedure runs again.

In [Konukoglu, 2009], it was found that dw and ρ cannot be estimated separately
with the minimization method described in Section 2.3.3, but the product dwρ
can be estimated. This product is essentially the asymptotic tumor growth speed
v = 2

√
dwρ. Therefore, we consider the tumor growth speed v as the output of

the Step II of our method and not dw and ρ individually.

4.3.3 Step III: Estimation of Tumor Infiltration

In order to estimate an infiltration map at a future time after surgery (TN) it is
important for Step III of our method in Figure 4.2 to determine which invisibility
index (dw/ρ) matches each particular patient’s data using the T−1, T1, and TN

FLAIR MRIs. Separating these parameters is important because different values
of dw and ρ, for the same tumor growth velocity v = 2

√
dwρ, produce different

tumor shapes [Konukoglu et al., 2009]. If the value of dw/ρ is low, the tumor is
said to be bulky; whereas if the value of dw/ρ is high, the tumor is said to be
diffuse (see Figure 2.9). Figure 4.6 depicts the relationship between v and dw/ρ.
Then, to find dw/ρ we created an algorithm that sweeps through the physically
feasible values of dw/ρ while keeping the tumor growth speed v, found in Step
II, constant, where the range of values were proposed by Harpold et al. [Harpold
et al., 2007]. In other words, once v is estimated from the parameters dw and
ρ obtained from Step II, we move down the dotted red line of Figure 4.6 trying
different values of dw/ρ to find the best result in terms of Dice coefficient between
simulation and real tumor delineation. Figure 4.7 illustrates how the internal
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dw,dg,ρ,T−2

dw,dg,ρ,T−2

ρwdv 2=

Figure 4.5: Step II: Estimation of Tumor Growth Speed. The objective of this
step is to estimate the asymptotic tumor growth speed (v = 2

√
dwρ) based on

the FK model parameters: diffusivity in white matter (dw) and proliferation rate
(ρ). The inputs are the registered patient images from Step I at the pre-operative
times T−2 and T−1.

steps of Step III were iteratively executed. The inputs to Step III are the tumor
growth speed v = 2

√
dwρ estimated in Step II, and the images at times T−1, T1,

and TN that were registered in Step I. The output of Step III is the infiltration
map at TN (InfiltrationN). The internal steps of Step III are further detailed in
order of occurrence as follows:

• Calculate the Tensor−1 by using the Clatz tensor construction method pro-
posed in [Clatz et al., 2005] (Equation 2.4). The inputs to this operation
are dw, dg, WM−1, and DTI−1.

• Calculate the infiltration maps at times T−1 and T1 (Infiltration−1 and
Infiltration1), which are approximations of the initial tumor densities
at times T−1 and T1, using the “Infiltration Map Calculation” approach,
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Figure 4.6: Relationship between the invisibility index (dw/ρ) and the asymptotic
tumor growth speed (v = 2

√
dwρ) using log-log coordinates. The red dotted line is

a visual representation of our sweeping method, where we cycle through different
values of dw/ρ while keeping the speed v constant. 10

described in Section 2.3.3. The inputs are Tensor−1, the segmentations
Tumor−1 and Tumor1, the brain parenchymas BM−1 and BM1, and the
parameter ρ. Notice in Figure 4.7 that there are two different blocks for the
Infiltration−1 and Infiltration1 calculations.

• Use the resection cavity segmentation (Cavity1) that was segmented from
the FLAIR1 MRI to remove the voxels from Infiltration−1 map and the
BM−1 that were removed in the resection.

• Run the FK model simulation [McCorquodale et al., 2001] (equations 2.3
and 2.4), from T−1 to T1, where the inputs are Infiltration−1 and BM−1

without Cavity1, Tensors−1, and ρ. The output of this operation is the
simulated tumor infiltration at time T1 (Infiltration1).

• Combine the infiltration maps Infiltration1 and the Infiltration1, where
the highest values for each voxel in either map are chosen to create the
combined map (Combined Infiltration1).

• Run the FK model simulation from T1 to TN using Combined Infiltration1,
Tensor−1, BMN , and ρ. This produces a simulated tumor infiltration at

10This annotated plot was taken from [Harpold et al., 2007].
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Figure 4.7: Step III: Estimation of Tumor Infiltration. This step takes the tumor
growth speed v =

√
dwρ found in Step II, and the images at times T−1, T1, and

TN as inputs. It sweeps through the physically feasible dw/ρ range (changing
them at each iteration) and outputs a tumor infiltration map at time TN .

time TN (InfiltrationN).

• Threshold InfiltrationN at 20% cell density to produce the tumor delin-
eation TumorN .

• Calculate the Dice coefficient between the simulated delineation TumorN
and the neurosurgeon segmentation TumorN .

• Check if the sweep is complete. If it is, exit loop and chose the InfiltrationN

that produced the max Dice coefficient.

• If the sweep is not complete, update parameters and run the sweep algo-
rithm again.
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4.4 Data

We applied the method described in Section 4.3 to twoWorld Health Organization
grade II glioma patient data sets treated at Hôpital Lariboisière in Paris, where
both patients experienced brain tumor resections. The first patient (Patient 1)
had a tumor that was located in the frontal lobe only. This patient presented a
generalized seizure the day before the first MRI, causing the tumor to possibly
have appeared larger than it really was in the first image. A complete resection
was performed and a reoccurrence of the tumor was observed 74 days later. This
patient’s tumor progress was followed for a little over a year before a second
resection was performed. The second patient (Patient 2) had a tumor located in
the insular, temporal, and frontal lobes. This patient’s tumor was progressing
and under observation for a year after the first brain resection. Both patients
gave informed consent to use their data sets and for the first time these data
sets are being used in a research study. These patients’ MRI acquisition dates,
tumor volumes, type of MRIs, and orientations of segmentation are recorded in
Table 4.1. Notice that there were more time points than required for the proposed
method. We included these time points for analysis and validation purposes.
The voxel size of the MRIs in our case study ranged from 0.9× 0.46× 0.46mm3

to 0.5 × 0.5 × 5.0mm3. Our collaborating neurosurgeon manually segmented all
patient tumors and Patient 1 cavity in the axial orientation from the original MRI
resolution using the OsiriX tool [Rosset et al., 2004]. These segmentations were
converted into a nifty file format (which can be read by Matlab) using the method
described in [Angelini et al., 2012; Schmitt et al., 2013]. For Patient 2, the first
follow-up image after surgery was discounted (85 days after surgery) because it
was right on the border of adherence to the American College of Radiology (ACR)
guidelines [American College of Radiology, 2013], which states that the maximum
slice thickness should be no greater than 5mm and an interslice gap should be no
greater than 2.5mm. For this FLAIR, the voxel size was 0.9×0.9×5.0mm3 with
interslice gap of 1mm. Figure 4.8 shows the patients’ tumor volume evolution
and the mean tumor diameter (MTD) calculated using the segmentations of our
collaborating neurosurgeon, where the zero days date corresponds to the date of
the tumor resection. MTD is used by the medical community [Mandonnet et al.,
2013] to evaluate the size of a tumor based on its volume V and it is defined as

MTD = (2V )1/3. (4.2)

Data Challenges: There were four main challenges encountered with these
patient’s data. Two of the challenges can only be highlighted, but not solved.
For the other two we created rules to foster coherency between the tumor seg-
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Patients’ Data Sets

Patient 1 Patient 2
Time Date Volume Image Orien- Date Volume Image Orien-

(days) (mm3) Type tation (days) (mm3) Type tation

T−3 -643 55681 FLAIR Coronal
T−2 -49 17961 FLAIR Axial -468 67968 FLAIR Axial
T−1 -1 17961 FLAIR Axial -11 94370 FLAIR Axial

Surgery (Day 0)
T1 +74 1422 FLAIR Axial +221 22586 FLAIR Coronal
T2 +172 4317 FLAIR Axial +344 30564 FLAIR Coronal
T3 +211 8705 FLAIR Axial
T4 +267 11537 FLAIR Axial
T5 +348 15374 FLAIR Axial

Table 4.1: Patient MRI acquisition dates (in days from the surgery), tumor vol-
umes (segmented by neurosurgeon), type of MRI, and orientations of acquisitions.
The red font highlights the MRI that was used as the baseline image for the reg-
istrations. The blue strike-through displays the MRI that could not be used in
our study because the patient had a generalized seizure the day before imaging.

mentations throughout the patients’ sequential imaging timelines. First, many
of the FLAIRs were interlaced together when acquired causing a one to two
voxel toggle shift between each z-slice. This introduced extra error into the tu-
mor segmentations. Second, in clinical practice there is not a standard way of
collecting or reviewing data because a clinician will segment a tumor’s progress
in the orientation that best shows the tumor and the type of MRI sequence can
change from one study to another. For example, at some time points axial FLAIR
MRIs, where the original MRI z-slices were sparsely sampled, were acquired and
a tumor was segmented in the axial orientation. At other time points, sagittal
FLAIR MRIs, where the original MRI x-slices were sparsely sampled, were or-
dered and segmented in the coronal direction. This registration challenge, along
with no standard naming convention for the MRIs, creates a difficulty for au-
tomating the registration process with clinical data in the future. Third, manual
tumor segmentation is subjective and has inter- and intra-expert segmentation
variability. If a tumor is chronologically segmented at several time points, the
follow-up registered segmentations may or may not include the same voxels that
were included in the segmentation of the first time point. To account for this,
since our method is not able to account for tumors that decrease in size and with
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Figure 4.8: Patients’ tumor volume evolution (left) and mean tumor diameter
(MTD) (right) calculated using the segmentations of our collaborating neurosur-
geon. The zero days date corresponds to the date of the surgery.

agreement from our collaborating neurosurgeon, we made Rule #1: Once a voxel
has been marked as tumor, it will remain as tumor in follow-up segmentations
as long as the updated segmentations agree with the hyper-intense voxels of the
corresponding FLAIR MRIs. If this step is not taken, the minimization in Step II
will not converge, in which case it will not be possible to find the tumor growth
speed. This requirement held true for all of the segmentations in this study.
Fourth, since the post-operative tumor and resection cavity segmentations in our
method were done manually, the borders between the two will not always touch
in the areas that they should have and overlapped in areas that they should not.
We propose to account for when they overlap by making Rule #2: If a voxel is
marked as both a tumor segmentation at T1 and a resection cavity at T1, the
resection cavity voxel is relabeled as a tumor segmentation at T1. The overlap
between resection cavity and tumor were never more than two voxels for Patient
1 and not relevant for Patient 2 (see Section 4.5.1). Therefore, for these patient
cases Rule #2 could have been omitted.

4.5 Results

In this section, we show the results of using the data of the two patients presented
in the previous section to evaluate the proposed method in Figure 4.2 to obtain
an infiltration map at a future time after the tumor resection.

4.5.1 Image Pre-processing Results

In Figure 4.9 we show, for each patient, the quality of the registrations performed
in Step I of our method (see Figure 4.3). To demonstrate that the non-linear reg-
istration after surgery was successful on the FLAIR MRIs, meaning that the brain
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Figure 4.9: Image pre-processing results, where the top images (per patient) were
affinely registered and the bottom images were non-linear registered. Notice that
after surgery the non-linearly registered tissue was in the same orientation as the
before surgery, this includes the ventricles going from swollen to not swollen. The
orange arrows indicate the change in the size of the putamen.
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Figure 4.10: Patient 1 resection cavity movement shown by five post-operative
non-linearly registered FLAIR MRIs. The cross hairs show the same coordinates
in each image. FLAIR3 and FLAIR4 have some CSF artifacts in the resection
cavity that can be ignored according to our collaborating neurosurgeon.

parenchyma was aligned after surgery to the images before surgery, we compared,
for both patients, the non-linear registrations against their respective affine reg-
istrations. For Patient 1, notice that in the post-operative affine registrations the
ventricles are swollen, while in the non-linear registrations the brain parenchyma
before and after surgery is well aligned with the FLAIR images (see the red and
blue delineations in Figure 4.9). This alignment outside the mask of the resection
cavity confirms the success of the registration and makes modeling tumor pro-
gression after a brain resection possible. For Patient 2, the images after surgery
are also successfully registered to the baseline image at T−1; however, the tumor
at T−1 does not seem to match the tumor, CSF, and brain parenchyma at time
T1. This was caused by a very large mass effect before surgery and brain shift af-
ter surgery. Thus, Figure 4.9 shows that even though the non-linear registrations
accounted for brain shifts inside the brain parenchyma mask, it could not account
for brain shifts inside the resection cavity. This issue is shown for Patient 1 in
Figure 4.10 and for Patient 2 in Figure 4.11. Notice for Patient 1 in Figure 4.10
that the cavity moved from the first FLAIR image taken at T1 to the last one at
T5, shown with the cross-hairs. Since this shift was not large and Tumor−1 did
not overlap Tumor1 (see Figure 4.9), this brain shift did not effect the results for
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Figure 4.11: Patient 2 severe brain shift after surgery. The before surgery tumor
segmentation is much larger than the after surgery tumor cavity and leftover
tumor. This is an artifact of the significantly displaced tissue before surgery. After
surgery, the squished tissue tried to return to its normal position and applied a
lateral push towards the cavity.

Patient 1. For Patient 2, we observed in Figure 4.11 that the brain shift inside
the resection cavity was very large. The tumor caused large mass effects in other
parts of the brain, which moved when the tumor was removed. In Figure 4.9,
the orange arrows show the mass effect in the depth of the insula. The putamen
was significantly displaced (towards the midline) and squished before surgery, as
can be seen with the image at T−1. After surgery, it returned to its normal size;
however, because of ventricular enlargement, it was pushed a little bit more lat-
erally than the healthy normal position. Figure 4.11 shows this lateral push with
an orange arrow. The non-linear registration was not able to displace the CSF of
the resection from the ventricle enlargement to the outside of the brain. Instead,
the non-linear registration stretched the putamen, seen Figure 4.9. Therefore, we
are not able to model tumor growth between the before surgery images and the
after surgery images, which means that we are not able to combine the infiltra-
tion maps of before and after surgery in Step III of our method on Patient 2. In
conclusion, we found from this image pre-processing results that our method is
applicable when the brain mass effect is not too severe before surgery and the
brain parenchyma shift is small after surgery.
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4.5.2 Estimation of Tumor Growth Speed Results

In this section we present the results of applying Step II of our method (Fig-
ure 4.5) to the registered images of both patients, obtained in Step I (Figure 4.3).
For Patient 1, Step II was applied to images after surgery (time points T1 and
T2) instead of images before surgery as the method indicates. The reason for
this was that it was not possible to obtain a good tumor segmentation from the
FLAIR images at T−2 since Patient 1 had suffered from seizures just before this
image was taken. For Patient 2, we were able to use pre-operative images from
three time points (T−1, T−2, and T−3). For both patients the Simplex algorithm
was able to converge to a solution of the parameter estimation problem in Equa-
tion 4.1. In Figure 4.12 we show the minimization results for Patient 2 using the
tumor segmentations at time points T−2 and T−1. To compare the asymptotic
tumor growth speed (v = 2

√
dwρ), resulting from the time-dependent parame-

ter estimation optimization, to manual calculations of speed we define, based on
Equation 2.8, the average growth rate between two time points Ti (time from
origin of the tumor to ith tumor segmentation) and Tj (time from origin of the
tumor to jth tumor segmentation) as

v =
1

2

(√
dw

4Tiρ− 3

2Ti
√
ρ

+
√
dw

4Tjρ− 3

2Tj
√
ρ

)
. (4.3)

To compare our results with those found by the medical community, we define the
tumor growth rate (GR) based on MTD (see Equation 4.2) between two images
at times Ti and Tj (Tj > Ti) as

GR =
MTDj −MTDi

Tj − Ti

. (4.4)

Table 4.2 displays the comparison among the tumor growth speeds v, v̄, and GR.
Notice that the GR and v were similar in value for Patient 1; however, for Patient
2, there was a big difference between them. We attribute this to the fact that the
tumor shape of Patient 2 was very irregular making the spherical assumption the
cause of the errors in the calculation of GR. We can also see from Table 4.2 that
the Dice coefficient found for Patient 1 was lower than the ones from Patent 2.
This was expected due to the use of post-operative images for Patient 1, which
were very difficult to segment because of the presence of scar tissue in the images.
It is worth noticing the agreement of the tumor growth speed estimates of Patient
2 between the time intervals [T−3-T−2] and [T−2-T−1], which gives more confidence
to our speed estimates.

Algorithm Runtime: The runtime of the minimization algorithm is about
twenty minutes, which is similar to the runtime of minimization proposed by
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[Konukoglu, 2009]. The tests were performed on a Mac Desktop with a 2 x
3.2GHz Quad-Core Intel Xeon processor with 16GB of memory.

Estimated Tumor Growth Speed

Patient Time GR v v Dice
# Interval (mm/yr) (mm/yr) (mm/yr) coeff.

1 [T1-T2] 24 23 25 0.7
2 [T−3-T−2] 5 15 16 0.9
2 [T−2-T−1] 5 15 16 0.9

Table 4.2: Comparison of the tumor growth speed estimates for Patient 1 and
Patient 2 using different time intervals.

4.5.3 Estimation of Tumor Infiltration Results

In this section we present the results of performing Step III of the method, graph-
ically described in Figure 4.7. First, we present the results by patient, and then
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Figure 4.12: Minimization results of the parameter estimation problem in Equa-
tion 4.1 for Patient 2 using tumor segmentations at T−1 and T−2 time points.
The plot on the left shows the minimization of the cost function value (C in
Equation 4.1) as the iterations of the Simplex algorithm progress. The plot on
the right shows how the Dice coefficient increases as the number of evaluations
increases. In the Simplex algorithm there are several evaluations per iteration.
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report the algorithm runtime.

Patient 1: Step III was successfully performed on Patient 1. Figure 4.13 shows
the sweeping results for the time interval [T1-T2]. The red boxes show the in-
visibility index dw/ρ that resulted in the maximum Dice coefficient at T2, i.e.,
dw/ρ = 4mm2 achieved the maximum Dice coefficient of 0.7. Figure 4.13 also
shows how the Dice coefficient resolved the trade-off between Specificity and Sen-
sitivity. In Table 4.3 we can see that the sweep between the time intervals [T1-T5]
had a higher Dice coefficient than the sweep between [T1-T2]. This accuracy dif-
ference can be attributed to the possible segmentation inaccuracies in FLAIR2.
Due to our method of combining the infiltration maps at T−1 and T1, the tu-
mor segmentation at T1 does not have as much uncertainty as the one at T2. In
FLAIR5, the neurosurgeon was able to distinguish between other hyper-intense
artifacts and delineate the tumor. Notice that the optimal value of dw/ρ was only
1mm2 different between the two time intervals. Therefore, we can say that the
tumor of Patient 1 was bulky according to our method. To further validate Step
III, we used the dw/ρ = 4mm2 with the combined infiltration map and ran the
FK reaction diffusion equation for the time intervals [T1-T2], [T1-T3], [T1-T4], and
[T1-T5]. Table 4.4 shows these recorded Dice coefficient values after thresholding
the found infiltration maps at 20% cell density. Notice that from time T3 on, the
neurosurgeon was able to easily identify in the FLAIR images what was tumor
and what was not. Finally, Figure 4.14 shows three sequential tumor infiltrations
maps, which used dw/ρ = 4mm2 invisibility index. The top images show the un-
annotated non-linearly registered MRI FLAIRs for the same time points as the
bottom images. The annotated image at T−1 includes the infiltration map from
time T−1, while the image at T1 includes the combined infiltration map (see Fig-
ure 4.7). The image at T5 is the result of using the combined infiltration map and
running the FK reaction diffusion model simulation from T1 to T5. The estimated
visible tumor (20% infiltration mark shown with light blue line in Figure 4.14)
matched the neurosurgeon’s tumor segmentation (red line) for the T5 time point
reasonably well (Dice coefficient was 0.9, see Table 4.4). The black arrows show
the directions of the tensors, which will be the fastest direction of growth. The
tumor was very bulky so we showed the estimated infiltration until 0.001%.

Patient 2: Step III could not be successfully performed on Patient 2 due to
the large amount of brain shifting after surgery and the large mass effect that
this patient was burdened with before surgery. Therefore, it was not possible to
use a combined infiltration map at time T1. Thus, the infiltration was calculated
using only post-operative images. However, to get good infiltration maps, the
images needed to be from much later time points than in the case of Patient 1
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Figure 4.13: Results of sweeping through the physically feasible ranges of dw/ρ
while keeping v constant for Patient 1 between T1 and T2, where the infiltration
map used was a combination of the simulated map from T−1 to T1 with the
infiltration map of T1. Notice the maximum Dice coefficient highlighted in each
plot with red boxes. It can be seen that the Dice coefficient resolved the trade-off
between Specificity and Sensitivity.

Patient 1: Sweep Through dw/ρ, v constant

Time dw/ρ dw/ρ Dice
Interval range optimal coefficient

(mm2) (mm2)

T1-T2 [0-34] 4 0.7
T1-T5 [0-34] 5 0.9

Table 4.3: Results of sweeping through the feasible range of dw/ρ, while keeping
v constant, for Patient 1 with different time intervals.

(+221 days vs +74 days after surgery). The rest of the operations of Step III
were followed as outlined in Figure 4.7. Figure 4.15 shows the sweeping results
for the time interval [T1−T2]. The red boxes show the invisibility index dw/ρ that
resulted in the maximum Dice coefficient at T2, i.e., dw/ρ = 22mm2 achieved the
maximum Dice coefficient of 0.9. Figure 4.15 also shows how the Dice coefficient
resolved the trade-off between Specificity and Sensitivity. Figure 4.16 shows the
infiltrations maps, which used dw/ρ = 22mm2 invisibility index. The top images
show the un-annotated non-linearly registered MRI FLAIRs for the same time
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Patient 1: Tumor Development After Resection

Time Intervals [T1-T2] [T1-T3] [T1-T4] [T1-T5]

Dice coefficient 0.7 0.9 0.9 0.9

Table 4.4: Tumor development after resection of Patient 1 for different time inter-
vals. Displayed are the Dice coefficients, between the threshold of the simulated
tumor, which used dw/ρ = 4mm2, and the neurosurgeon’s tumor segmentations.

Figure 4.14: Infiltration maps for Patient 1 overlaid on the non-linearly registered
FLAIR MRIs. From left to right: the infiltration map for T−1, the combined infil-
tration map for T1, and the tumor infiltration estimation at T5. The black arrows
represent the registered diffusion tensor directions. The white arrows indicate
the hyper-intense voxels that were not identified as tumor by the neurosurgeon
at time T1, but that the combined infiltration map included.
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points as the bottom images. The annotated image at T−1 includes the infiltration
map from time T−1, and the image at T1 includes only the infiltration map from
time T1. The image at T2 is the result of using the infiltration map at T1 and
running the FK reaction diffusion model simulation from T1 to T2. The estimated
visible tumor (20% infiltration mark) shown with light blue line in Figure 4.16
matched the neurosurgeon’s tumor segmentation (red line) for the T2 time point
reasonably well (Dice coefficient = 0.9). The tumor was diffuse so we showed the
estimated infiltration until 5%.

Algorithm Runtime: This entire process took on average 24 minutes per dw/ρ
combination (19 images printed out per test). The tests were performed on a
MacBook Pro with a 2.2 GHz Intel Core i7 processor with 8 GB of memory.

0 10 20 30 40 50 60 70 80
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

E r r o r R a t e

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.9935

0.994

0.9945

0.995

0.9955

0.996

0.9965

0.997

0.9975

0.998
Sen s i t i v i t y v s Sp ec i fi c i t y

S
p
e
c
ifi

c
it

y

P r e c i s i o n v s A ccu r a cy

Figure 4.15: Results of sweeping through the physically feasible ranges of dw/ρ
while keeping v constant for Patient 2 between T1 and T2, where the infiltration
map used was from time T1. Notice the maximum Dice coefficient highlighted in
each plot with red boxes. It can be seen that the Dice coefficient resolved the
trade-off between Specificity and Sensitivity.

4.6 Discussion

There are two main challenges to estimate infiltration maps after tumor resections
that our proposed method was able to address: i) brain parenchyma and CSF
shifts after surgery, and ii) the quality of the tumor segmentations.

For the brain parenchyma and CSF shifts after surgery, the non-linear reg-
istration was able to put all images into the orientation before surgery, but the
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Figure 4.16: Infiltration maps for Patient 2 overlaid on the non-linearly registered
FLAIR MRIs. From left to right: the infiltration map for T−1, the infiltration
map for T1, and the tumor infiltration estimation at T2.

non-linear registration algorithm could not totally account for the brain shifts
under the cavity mask and could not rearrange the position of CSF in the brain.
However, the use of a brain parenchyma mask at TN instead of T1 in our method
made these effects less severe. For instance, for Patient 1, when we used the brain
mask at T5 in Step III, we were able to model the evolution of the tumor quite
well (Dice coefficient between simulation and segmented tumor equal to 0.9, see
Table 4.3). Yet, if we use the brain mask at T1 we could only achieve a Dice co-
efficient of 0.5 (see Figure 4.17) since we could not account for 22% of the tumor
that was under the brain mask at T1. For Patient 2, there was a very large mass
effect in the pre-operative images that caused a large redistribution of CSF and
brain matter in the post-operative images. The non-linear registration was able
to put the post-operative images into the pre-operative orientation, allowing us
to model tumor evolution; however, it could not redistribute the locations of the
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CSF after surgery. Therefore, after the non-linear registration, the structures in
the post-operative images did not correspond to the exact same locations in the
pre-operative images, preventing us from combining the infiltration maps at times
T−1 and T1 in Step III. To overcome this problem, instead of using a combined
infiltration map in Step III we used the infiltration map at T1 that corresponded
to 221 days after surgery. With this infiltration map we were able to successfully
estimate the infiltration map at T2 (344 days after surgery). This result showed
that large mass effects have an impact on how early the method can estimate in-
filtration maps after surgery. Notice, that for Patient 1 we were able to estimate
infiltration maps 172 days after surgery while for Patient 2 we did it for 344 days
after surgery.

Regarding the quality of the segmentations, when a glioma is diffuse it is
very hard to segment and it is unclear in FLAIR MRIs whether a hyper-intense
voxel is tumor, scar tissue, or blood after surgery. It is only after several scans
that a neurosurgeon can tell the difference between these hyper-intense signals
on MRIs and therefore a neurosurgeon will generally under-segment a tumor in
scans taken within a few months after surgery. In Figure 4.14, we show a white
arrow pointing to a hyper-intense set of voxels that a neurosurgeon was unsure
if they were tumor or not, so he did not include them in his tumor segmentation
at T1 (red delineations). Notice that the combined infiltration map (yellow map)
includes this area at time T1 and that the neurosurgeon includes this area in his
tumor segmentation at time T5; this shows that the combined infiltration map
was able to account for the non-segmented regions at T1.

4.7 Conclusion and Perspectives

In the cancer-modeling field, estimating glioma infiltration after surgery is of
great importance since as a result of medical protocols, most glioma patients are
subject to resections within a short period of time after tumor detection. Then,
medical professionals want to know what the best type of follow-up treatment
would be for a particular patient, i.e., chemotherapy for diffuse tumors or re-
section for bulky tumors. There are two main challenges involved in estimating
glioma infiltration directly after surgery: i) there is substantial brain parenchyma
and CSF movement after surgery, and ii) the tumor segmentations after surgery
may not be complete since there is a potential for blood and scar tissue to be
confused with tumor. We addressed the first challenge with the use of a non-
linear registration algorithm, and our method resolved the second challenge by
using a combined infiltration map, i.e., combination of tumor infiltration maps
from before and after surgery. We used two patients’ data, with different tu-
mor locations and invasiveness to demonstrate the effectiveness of the proposed

85



4.7 Conclusion and Perspectives

0 10 20 30 40 50
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Figure 4.17: Sweeping through the values of dw/ρ using the brain mask of time T1.
A combined infiltration map was used to grow the tumor simulation forward to
the last time point T5, using the brain parenchyma segmentation of T1. However,
we could not account for 22% of the tumor that was under the brain mask at T1.

method. For one patient, we successfully applied the method at four time points
after surgery (from 172 to 458 days) that when thresholded at 20% cell den-
sity match neurosurgeon’s tumor segmentations (Dice coefficient > 0.7). For the
other patient, severe mass effects caused a lower effectiveness of the method soon
after surgery; however, the method was able to find an infiltration map at 344
days after surgery that when thresholded at 20% cell density matched a neurosur-
geon’s tumor segmentation (Dice coefficient = 0.9). We think that in subsequent
studies data of more patients shall be used to improve the proposed method and
increase the confidence on its effectiveness. In addition, we believe that the post-
operative brain and CSF shifts could be further compensated in future works by
using mechanical models, such as the one proposed by Clatz et al. [2005]. Finally,
we would like to highlight in the following list the novel contributions attained
during the development of the proposed method to estimate tumor infiltration
after surgery resection:

• We developed a novel registration framework to register post-operative MR
images following tumor resection and segmentations to pre-operative MR
images and segmentations (Step I).

• We defined a novel registration framework to register a reference brain mask
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to a patient T1 image while preserving the CSF sulci barriers (Step I).

• We applied a combination of a non-linear registration algorithm (Step I), a
FK model traveling time formulation (Step II), an infiltration map calcula-
tion (Step III), and a FK model reaction-diffusion simulation (Step III).

• We added the Dice coefficient into the cost function used to find the FK
model parameters (see Equation 4.1 in Step II).

• We utilized a Simplex optimization algorithm to find the FK model param-
eters (Step II).

• We combined pre- and post-operative infiltration maps to compensate for
incomplete segmentations soon after surgery (Step III).

• We swept through dw/ρ to identify the infiltration characteristics of a
glioma, i.e., bulky or diffuse (Step III).

In summary, we hope that this work can be used by the medical and image
processing community and that this topic continues to receive attention so that
in the near future a tool will become available for clinicians to estimate tumor
infiltration after brain resection to aid them in their therapy planning.
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Chapter 5
Assessing LGG Progressive Disease using
Growth Speed Estimates from a Fisher
Kolmogorov Model Formulation
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Based on a paper that was submitted to the Journal of Computerized Medical
Imaging and Graphics.

5.1 Context

Progressive disease (PD) for low-grade glimoas (LGG) is reached when radio-
logical evidence of malignant transformation of a lesion or clinical deterioration
not attributed to other causes apart from the tumor occurs. There have been
many studies in the literature to correlate PD of brain tumors to different met-
rics of tumor size change, based either in tumor diameters (one-dimensional),
tumor areas (two-dimensional), or tumor volumes (three-dimensional). However,
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for LGG captured on FLAIR/T2 MRIs, there is substantial amount of debate on
selecting a definite threshold on these size-based metrics to determine PD and it
is still an open item for the Response Assessment in Neuro-Oncology (RANO)
Working Group. In this chapter we propose to use model-based tumor growth
speed estimates as an alternative metric to determine PD since one can antici-
pate future growth based on growth speed. Manual tumor growth speed methods
have already been used by physicians to determine the aggressiveness of tumors.
However, these manual calculations suffer from large inter-rater variability and in-
accuracies. To address this we introduce a tumor growth speed formulation based
on the Fisher Kolmogorov (FK) model, which promises to be more accurate since
it takes into consideration irregularities in tumor shape, differences in growth
speed between gray matter and white matter, and volumetric changes. Thus, in
this chapter we propose an approach to assess PD of LGG using tumor growth
speed estimates from a FK formulation. Using FLAIR MRIs of nine patients we
compare the PD estimates of the proposed approach to i) the ones calculated
using manual tumor growth speed estimates and ii) the ones calculated using a
set of well established size-based criteria (RECIST, Macdonald, and RANO). We
conclude from our comparison results that our proposed approach is promising
for assessing PD of LGG from a limited number of MRI scans and worthy of
further research.

5.2 Introduction

Low-grade gliomas (LGG) are a type of malignant and very diffuse brain tumor
that invades the fastest along white matter fiber tracts with dynamic and spatial
features that vary widely between patients. For decades, a mainstay of treatment
for diffuse LGG patients has been radiotherapy [Buzdar and Freedman, 2007].
However, there is a controversy as to when to give radiotherapy since it is un-
known if immediate or delayed radiotherapy offers any advantage. Some radiation
oncologists follow the approach of “watchful waiting” for the well-differentiated
grade II astrocytomas (not anaplastic) and reserve radiotherapy for tumors that
progress to a higher-grade malignancy, which are undifferentiated or anaplas-
tic, to allow the patient to have a higher quality of life for a longer time. The
main argument in favor of this approach is that radiation is more effective in
proliferative cells [Buzdar and Freedman, 2007] and it is not possible to repeat
radiation indefinitely since there is a maximum cumulative dose a patient can
tolerate. Other radiation oncologists prefer to immediately initiate radiotherapy
on the hypothesis that early intervention eradicates the most proliferative and
aggressive cells at the earliest stages, thereby reducing the population of cells
most likely to progress to a higher grade. In the end, both groups of radiation
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Table 5.1: Comparison of Measurement Methods for Progressive Disease (PD).

Imaging RECIST Macdonald RANO Volumetric
Modality (1D) (2D) (2D) (3D)

T1-gad ≥ 20% increase
in sum of
maximal
diameters;
confirm at 4

weeks

≥ 25% increase
in product of
orthogonal
diameters;
confirm at 4

weeks

≥ 25% increase
in product of
orthogonal
diameters;
confirm at 4

weeks

≥ 40%
increase in
volume

T2/FLAIR ≥ 20% increase
in sum of
maximal
diameters;
confirm at 4

weeks

N/A Significant
increase

≥ 40%
increase in
volume

oncologists want to know the best time to start radiotherapy.
There have been several proposed types of criteria to help oncologists distin-

guish the progression status of gliomas and decide when therapy should be given.
Table 5.1 compares, in terms of progressive disease (PD), four of these criteria:
the Response Evaluation Criteria in Solid Tumors (RECIST) [Eisenhauer et al.,
2009], the Macdonald [Henson et al., 2008], the Response Assessment in Neuro-
Oncology (RANO) [Wen et al., 2010], and a volumetric-based criterion [Galanis
et al., 2006].

For the RECIST, PD is measured in one-dimension (1D) and requires either
i) an increase of 20% or more in the longest diameter (d in Figure 5.1) of a solid
tumor, which must be confirmed four weeks later, or ii) the appearance of new
lesions. If there are multiple lesions, the longest diameter measurements of the
lesions are summed. The minimal measurable lesion diameter is either 10mm or
two times the imaging section thickness in order to reduce the variability in section
selection and volume averaging between clinical studies. This criterion accepts
different types of MRIs in which the tumor growth is measured. In addition, the
RECIST has not been validated as a method for assessing time-to-progression
(TTP ) in brain tumors [Warren et al., 2001], which is defined as the time from
a patient’s first set of MRI scans to the time a patient reaches PD. It has also
not been widely used in brain tumor clinical trials due to the historic use of 2D
measurements.

The Macdonald criterion uses a two-dimensional (2D) metric that is applied
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Figure 5.1: Diameter-based measurements on a single-axial section used for the
evaluation of tumor size on serial MR image studies. d is the maximum tumor
diameter among all the axial slices of a lesion and o is the maximum diameter
orthogonal to d within the same axial slice. The RECIST criterion uses d to
determine the progressive state of the lesion (1D-based) while the Macdonald
and RANO criterions use the product d ∗ o (2D-based).

in many high-grade glioma clinical trials to determine disease progression. This
metric is defined as the maximal enhancing tumor diameter on a single axial
gadolinium-enhanced T1-weighted slice (d in Figure 5.1) multiplied by the largest
perpendicular diameter on that same slice (o in Figure 5.1). For multiple lesions,
this product is summed. For each patient scan this metric is re-calculated and
PD is defined when its value increases more than 25% from a patient’s first scan
or smallest measurement.

The RANO is a 2D criterion that measures tumors size in the same way as
the Macdonald criterion except that T2 and FLAIR imaging can also be used
to determine PD. This is important since FLAIR MRIs produce the clearest
and most reproducible definition of World Health Organization (WHO) grade II
glioma (LGG) margins [Bynevelt et al., 2001; Pallud et al., 2010]. The down
side of using FLAIR and T2 imaging is that it can be difficult to differentiate
increased T2 or FLAIR signal from radiation effects, decreased corticosteroid
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dosing, demyelination, ischemic injury, infection, seizures, postoperative changes,
and other treatment effects. Therefore, the RANO Working Group believes that
it is not possible at present, given the limitations of current technology, to put
a precise percentage of tumor increase to define PD when using T2 or FLAIR
MRIs.

The volumetric criterion is a three-dimensional (3D) measurement that simply
includes all voxels inside of a 3D tumor segmentation. This metric has been
compared to the current 1D and 2D measurements [Galanis et al., 2006; Shah
et al., 2006; Warren et al., 2001]. For each patient scan this metric is re-calculated
and PD is defined when its value increases more than 40% from a patient’s first
scan or smallest measurement. The added value of using a volumetric criterion is
yet to be determined and is a current area of investigation [Galanis et al., 2006].

The RECIST, Macdonald, and RANO criteria are based on measuring diame-
ters and as a result have the down side to not taking into account i) irregularities
in tumor shape, ii) differences in growth speed in white and gray matter, iii) inter-
observer variability, and iv) tumor volume. The volumetric criterion has only the
first three weaknesses. In [Therasse et al., 2006] it was reported that four sepa-
rate studies, with a total of 204 patients, had a high concordance between manual
1D (RECIST), 2D (WHO: 25% increase in product) and 3D (volumetric) mea-
surements for detecting responses in brain tumors. However, in [Therasse et al.,
2006] it was also indicated that the results of assessing disease progression were
less uniform among the different dimensional criteria. It is foreseen, in the near
future by the RANO Working Group that volumetric measures, new physiologic
imaging techniques (perfusion imaging, permeability imaging, diffusion imaging,
magnetic resonance spectroscopy), metabolic imaging, and other end points such
as quality-of-life measures will be further developed, validated, and incorporated
into the RANO response criterion.

Biophysical models have been proposed to model glioma growth speed and
predict future tumor expansion, taking into account the irregularities in tu-
mor shape, volume, and tissue growth speed differences [Tracqui, 2009]. The
Fisher Kolmogorov (FK) model is a well accepted standard for modeling glioma
growth [Murray, 2002; Konukoglu et al., 2009; Menze et al., 2011a; Gooya et al.,
2011a; Hogea et al., 2008; Stretton et al., 2013]. This model was first proposed
in 2D [Burgess et al., 1997; Tracqui et al., 1995b; Woodward et al., 1996], and
then evolved to 3D [Clatz et al., 2005; Jbabdi et al., 2005]. Swanson et al. [Swan-
son et al., 2000] extended the 2D model to include the heterogeneity of brain
tissue on synthetic data modeling isotropic spatial diffusion. Then, Konukoglu et
al. [Konukoglu et al., 2009] proposed a method to estimate the tumor growth pa-
rameters for specific patients (personalization) and estimate the tumor’s growth
speed using both time-dependent and asymptotic growth speed formulations.

A future goal would be to use these biophysical models in a clinical setting

93



5.3 Methods

to help radiation oncologists decide when to start therapy on LGG patients.
However, we need to take incremental steps in order to have these mathematical
tools adopted by clinicians. To the best of our knowledge, this chapter acts as
a first step towards this goal by comparing various manual measures of glioma
tumor growth speed with a biophysical model, proposing a weighted tumor growth
speed based on the white matter segmentation of a patient, and proposing to use
speed as an additional new parameter to indicate the aggressiveness of a tumor
and to predict TTP , which could be helpful in determining when to treat a
patient.

This chapter is organized as follows. In Section 5.3, the methods used for this
comparison are presented. In Section 5.4, the data and pre-processing techniques
are examined. In Section 5.5, the results are presented and in Section 5.6, the
results are discussed. Finally, in Section 5.7 we conclude about our findings from
this study.

5.3 Methods

In this section we present three manual methods for calculating tumor growth
speed, use the results from the FK model parameter estimation to calculate tumor
growth speeds, present an inter-expert tumor segmentation variability measure,
and propose a novel Time-To-Progression calculation based on tumor growth
speed.

Manual Tumor Growth Speed Calculations: Three methods for calculat-
ing radial tumor growth speed from MRI scans at two different time points are
presented: a 1D-based, a 2D-based, and a 3D-based. For the 1D-based calcula-
tion, the radial tumor growth speed is defined as

v1D =
d2 − d1
2δt

, (5.1)

where d is the maximum tumor diameter among all the axial slices of a lesion (see
Figure 5.1), the sub-indices indicate the MRI scan time points, and δt denotes the
time in between the two MRI scans. For the 2D-based calculation, the maximum
tumor diameter and the orthogonal diameter (d and o in Figure 5.1 respectively)
are considered. To get a radial distance measurement, the area of an ellipse,
calculated using d and o, is equated to the area of a circle, and then the radii
of the correspondent circles at the two different MRI scan time points is used to
calculate the 2D-based tumor growth speed (v2D). Thus, it follows that

v2D =

√
d2o2 −

√
d1o1

2δt
. (5.2)
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The 3D-based tumor radial growth speed calculation is given by

v3D =

3

√
V2

3
4π

− 3

√
V1

3
4π

δt
, (5.3)

where V1 and V2 represent the volumes at the first an second MRI acquisition
time points respectively. Notice that it is assumed that the tumor is formed in
homogeneous and isotropic tissue in all of these manual speed calculations.

Tumor Growth Speed Calculations based on the FK Model: From the
results of the parameter estimation problem of the FK Model in Equation 2.19
we calculated the average growth rate, in white matter, between two time points
(T1 and T2) by using the time-dependent speed formulation of Equation 2.8 as
follows:

vw TD =
1

2

(√
dw

4T1ρ− 3

2T1
√
ρ

+
√
dw

4T2ρ− 3

2T2
√
ρ

)
, (5.4)

and in gray matter by

vg TD =
1

2

(√
dg

4T1ρ− 3

2T1
√
ρ

+
√

dg
4T2ρ− 3

2T2
√
ρ

)
. (5.5)

Since the white matter segmentation mask is available in our model, then it is
also possible to calculate a weighted tumor growth speed based on the percentage
of the tumor in either white matter or gray matter, i.e.,

vweighted TD = (vw TD)
α(vg TD)

1−α, (5.6)

where α is the percentage of the tumor in white matter. To the best of our
knowledge using a weighted average to estimate tumor growth speed has not
been proposed before.

Using the same estimated parameters we calculate the asymptotic speed of
growth, which is not unique for ρ and dw,g separately [Konukoglu et al., 2009;
Stretton et al., 2012], in white matter by

vw A = 2
√

dwρ, (5.7)

and in gray matter by
vg A = 2

√
dgρ, (5.8)

and weighted in both white and gray matter by

vweighted A = (vw A)
α(vg A)

1−α. (5.9)
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To calculate the simulation error of our model, we compute the root mean
squared error (RMSE), defined as

RMSE =

√
dist(Γ2,Γ2)2, (5.10)

where dist() is the symmetric distance separating the simulated and segmented
surfaces normalized by the surface area of the surfaces. Γ2 is the surface encom-
passing the tumor in the image taken at the second acquisition date (T2), and
Γ2 is the tumor delineation simulated by the traveling-time approximation of the
FK model at acquisition time T2 (equations 2.14, 2.15, and 2.16). To account for
the size of a tumor in the error calculation, we scaled the error using the tumor
volume at T2 as follows

ε =
RMSE

3
√
V2

, (5.11)

where V2 is the volume of the tumor segmentation at the second time point.
For comparing manual speed calculations with model-based speeds one should

consider that the confidence on the computation depends on the scaled minimiza-
tion error ε in Equation 5.11 and the time in between images for manual speed
calculations (δt in equations 5.1, 5.2, and 5.3). Table 5.2 shows the roles of these
elements in our confidence of the speed comparison. Notice that if the time dif-
ferences between the images of the manual speed calculations are high and the
scaled error of our model is low, a good confidence on our speed comparison
(manual vs. model) can be concluded. When both the time in between the man-
ual calculations are high and our model’s scaled error calculation is high, or both
the time in between the manual calculations is low and our model’s scaled error
calculation is low, we cannot conclude whether the speed comparison would be
good since ε/δt is a relative measurement. However, if the time in between the
manual calculations is low and our model’s scaled error calculation is high, our
confidence in a good comparison is low.

Table 5.2: Speed Comparison Confidence Criteria

Manual Speed Comparison
δt ε ε/δt Confidence

↑ ↓ ↓ ↑
↑ ↑ ? ?
↓ ↓ ? ?
↓ ↑ ↑ ↓
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Inter-Expert Segmentation Error: A radiologist and an expert performed
the segmentations used for the speed estimations in this chapter. The radiologist’s
manual segmentations included all imaging acquisitions for each patient. The
expert’s segmentations included only two time points and were used with the
time-dependent FK speed formulation to find vw TD and vg TD.

The expert segmented the patients’ tumors using a level-set segmenter im-
plemented in ITK-SNAP [Yushkevich et al., 2006], where two of the patients’
segmentations needed to be manually corrected. For all patient tumor segmenta-
tions, we removed any voxels that went outside of the brain parenchyma segmen-
tation to ensure that the boundary conditions of the time-dependent model were
respected and visually inspected the tumor segmentations to ensure accuracy.

We calculated the relative differences in volume and maximum diameter be-
tween the two specialists’ segmentations to document the segmentation variability
and to validate if the level-set segmenter produced reasonable segmentations. For
the volume, we have

δVseg =

∣∣∣∣(VE − VR)

VR

∣∣∣∣ , (5.12)

where VE is the tumor volume segmented by the expert and VR is the tumor
volume segmented by the radiologist. For the maximum diameter, we have

δdseg =

∣∣∣∣(dE − dR)

dR

∣∣∣∣ , (5.13)

where the dE is the maximum diameter of a tumor on an axial slice measured by
the expert and dR is the maximum diameter of a tumor on an axial slice measured
by the radiologist.

Time-To-Progression Calculations: The TTP calculations based on the 1D
RECIST, the 2D RANO, and the 3D volumetric criteria considered in this chapter
are given by

TTP1D = T2 − T1 when d2 − d1 ≥ 0.2d1, (5.14)

TTP2D = T2 − T1 when d2o2 − d1o1 ≥ 0.25d1o1, and (5.15)

TTP3D = T2 − T1 when V2 − V1 ≥ 0.4V1, (5.16)
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where T , d, o, and V represent, for two different FLAIR scans indicated by the
sub-indices, the time points, maximum tumor diameter, orthogonal maximum
tumor diameter, and the tumor volume respectively. Our collaborating radiologist
choose to set the 2D RANO threshold at 0.25, consistent with the threshold given
for the T1-gad MRIs, since the RANO criteria does not state an exact signal
percentage increase to define PD using FLAIR MRI.

In order to use tumor growth speed estimates (either manual or model-based)
to predict TTP we consider the tumor growth speed when the 1D RECIST criteria
is satisfied (d2 − d1 = 0.2d1) to be

v =
d2 − d1
2TTP

=
0.2d1
2TTP

=
0.2r1
TTP

, (5.17)

where the radius of the tumor at the first scan (r1) is extracted from the tumor
volume also at the first scan (V1) assuming a spherical tumor shape, i.e., r1 =
3

√
3V1

4π
. Then we have that TTP based on a tumor growth speed v is given by

TTPv =
0.2 3

√
3V1

4π

v
. (5.18)

If we consider from the model white matter speed (vw), then an earlier TTP
will be found than if we consider the gray matter speed (vg). The “true” TTP
shall be within the white matter speed estimate (TTPvw) and the gray matter
speed estimate (TTPvg), i.e., “true” TTP ∈ [TTPvw TTPvg ]. Having this interval
in the prediction of TTP could be beneficial to the radiologist when deciding be-
tween a “watchful waiting” approach or a more aggressive approach. In addition,
a TTP based on a weighted speed, i.e., vweightedA , could be calculated to get a
more precise prediction. Furthermore, the scaled model error ε in Equation 5.11
could also be regarded as a confidence indicator for these TTP predictions. Thus,
we considered that this novel proposed TTP calculation based on a biophysical
model where heterogeneous tissue is accounted for and volumetric changes are
considered will bring better predictions of PD to the radiation oncologist because
these predictions will contain not only a TTP value, but also a worse-case-best-
case interval of TTP values with a confidence indicator.

5.4 Data

The data was acquired as part of an unpublished study from the Heidelberg
German Cancer Research Center (DKFZ) on the radiological follow-up of patients
with astrocytoma grade II, approved by the local ethics board. All nine patients
had given informed consent to participate in this study.
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Description of Patient Data: The grade of the tumors were determined by
surgical biopsies for all, but one patient (Patient 9). MRI sequences FLAIR and
T1 after applications of gadolinium contrast agents were used to monitor the
patients; however, only FLAIRs were used to calculate tumor growth speed. We
had anywhere from 4 to 16 scan dates for each patient who only had one glioma
each. There were no resections or records of therapy applied among these patients
during the observation time captured in this study, except for patients 3 and 6,
who had partial resections and completed radiation therapy before entering the
study.

Pre-Processing: In order for the simulations to be run using the mathematical
model, the patients images needed to be pre-processed. The MRIs of each patient
were rigidly registered (using FSL FAST [Jenkinson and Smith, 2001; Jenkinson
et al., 2002]) to the highest resolution MRI in their longitudinal sequence and
interpolated to 1 × 1 × 1mm3. Note that none of these patients suffered from a
tumor mass-effect. The white matter and brain parenchyma were registered and
segmented the same way as described in Section 4.4. Some patients did not reach
TTP using one or all of the metrics (equations 5.14, 5.15, and/or 5.16) because
they switched hospitals for care or passed away.

5.5 Results

In this section we present the results of using the patients data of Section 5.4
in combination with the FK formulation to estimate tumor growth speeds and
predict TTP . The results of the nine patients studied are compared to manual
calculations of tumor growth speeds and to PD estimates using 1D, 2D, and 3D
size-based criteria. Before presenting these comparisons we first discuss three
items that have an effect on the FK formulation speed estimates accuracy: i)
algorithm repeatability, ii) segmentation variability, and iii) error correlation on
tumor volume.

To assess the algorithm repeatability, we ran the FK formulation for Patient
6 eight times with input parameters varied by the standard deviations listed in
Table 5.3. The algorithm produced speed estimates with a standard deviation
of less than 0.5mm/year. Thus, in the rest of this chapter 0.5mm/year will be
considered as the accuracy level of the FK formulation estimates.

For the segmentations variability, we use equations 5.12 and 5.13 to compare
the segmentations of both specialists. It was found that the expert and radiol-
ogist segmentations agreed in volume on every patient except Patient 2. The
average δVseg of all patients, but Patient 2, was 30% for both time points. The
segmentation of the radiologist for Patient 2 was 5.5 times smaller than the one

99



5.5 Results

Table 5.3: Repeatability of the FK formulation speed estimates (Patient 6 data)

Parameter Inputs Standard Deviation

dw 1.36 mm2/year
dg 0.73 mm2/year
ρ 2.73E−06 1/year
T0 1278 days

Output Standard Deviation

vwA
0.4 mm/year

vgA 0.5 mm/year
vweightedA 0.5 mm/year

from the expert for the first time point and 22 times smaller for the second one.
The reason for this difference was that the expert included some microangiopathy
hyper-intense areas around the tumor, which could not be distinguished from the
tumor without significant medical knowledge. However, the average δdseg of all
patients (including Patient 2) for both time points was 17%. Therefore, with the
exception of Patient 2, the segmentations made by the expert using ITK-Snap
were similar to the segmentations made by the radiologist.

For the FK formulation error correlation to the tumor volume we plot in
Figure 5.2 the cubic root of the patients tumor volumes at the second image
against their RMSE (see Equation 5.10). It is not surprising that as the tumor
volume increased, so did the error since the larger a tumor is, the more difficult
it is to match the entire tumor shape using the minimization algorithm. The
two patients with the largest error (patients 2 and 4) also had difficult images
to segment, where Patient 2 had a white matter lesion (microangiopathy) and
Patient 4 had a poor quality second image.

For the comparison of the tumor growth estimates between the model and
the manual calculations we considered two cases: i) time-dependent speed calcu-
lations and ii) asymptotic speed calculations.

For the time-dependent speed calculations, two early time points MRI scans
were used by the model (equations 5.4, 5.5, and 5.6) and the manual calculations
(equations 5.1, 5.2, and 5.3) to estimate the tumor growth speed between these
two time points. In Figure 5.3, the model speed estimations are compared with
the manual speed calculations by stacking four different plots on top of each other
to give a complete picture of this complex comparison. The top plot compares
the radial tumor speed by patient, where the plot is blown up in the right-hand
corner to display more clearly the tumor speed estimates of the patients with
slower growing tumors (patients 5-9). Notice that vw TD was always larger than
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Figure 5.2: RMSE compared with cube-root of the volume (second time point of
speed comparison segmented by expert). The numbers in the plot indicate the
patient numbers.

vg TD as suggested in literature. The values that we found for dw/dg were between
1-131, where the average value was 33. The second plot from the top displays the
time interval (δt) between the baseline image and the second image that the speed
was calculated from, where the time differences of the manual calculations made
by the radiologist are in blue and the model and experts’ ones are in pink. For
patients 1 and 5, different baseline images were used for the segmentations made
by the expert and the radiologist, but the same second image was used. The third
plot shows the model error scaled by volume (ε in Equation 5.11). The fourth
plot is a combination of the second and third plot that can be used to indicate
the confidence of our comparison between the model and the manual calculations
(see Table 5.2). Patients 3, 4, 5, 7, and 9 had lower values of ε/δt than patients
1, 2, 6, and 8. This would imply that for the former group of patients the match
between the model and the manual speed estimates was better than for the later.
This is actually the case for most of them. The only exceptions are patients 1
and 3. For Patient 1 the matching between model and manual calculations was
good even thought the value of ε/δt was larger. This is explained by the fact that
the tumor growth speed for Patient 1 was much larger than the other patients
making the manual speed calculations less sensitive to a small value of δt. For
Patient 3, two out of the six manual calculations did not match with the model
estimates. Since these two manual calculations had a very large negative value,
which was not physically possible, we concluded that their segmentations were
erroneous. The main result of the comparisons in Figure 5.3 is that the speeds of
the biophysical model compare well with the manual speed calculations for small
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Figure 5.3: Comparison of the time-dependent model speed estimations with the
manual speed calculations between the first and second image acquisition dates.
The top plot compares the radial tumor growth speed by patient. The second
plot displays the time in between speed measurements δt. The third plot shows
the scaled model error ε, and the fourth plot of ε/δt exhibits our confidence on
the comparison between the model and the manual speed estimations.
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values of ε/δt.
For the asymptotic speed calculations the model used two early time point

MRI scans in combination with equations 5.7, 5.8, and 5.9 while the manual
calculations used the first and the last possible time point MRIs with equa-
tions 5.1, 5.2, and 5.3. In Figure 5.4 the manual and the model asymptotic
speed estimates are compared. The second plot from the top displays the time
in between the asymptotic speed calculations for the manual methods (blue) and
the model (pink). The third and fourth plots are calculated in the same way as in
Figure 5.3. Notice that, as expected, there is a tighter match between the model
and the manual calculations for patients 3, 5, 7, and 9, resulting from a lower ε/δt.
Patient 1 also have a good match between the manual and the model regardless of
the lower ε/δt value, which was caused by a larger tumor growth speed (explained
already in the time-dependent case). Thus, we can conclude from Figure 5.4 that
the FK formulation was good at predicting asymptotic tumor growth speed from
two early MRI scans.

In Figure 5.5 we display the speed changes over time for patients 2, 3, and 4.
These patients were chosen for plotting since they had quite substantial amount
of variability in the manual measurements displayed in Figure 5.3. Still using
equations 5.1, 5.2, and 5.3 for the manual calculations, we estimated the speed
for each time point using the baseline image and images at follow-up time points,
which allowed us to see the speed progression in time of the tumors. Observe that
vweighted TD was in between the range of manual speed calculations for patients 2
and 4 for the tumor speed between the first two time points. Patient 3 had to two
miss-calculations (1D & 2D) for the speed between the first two time points since
they were negative and the rest of the time points showed positive tumor growth
speed. In addition, notice that vweighted A better predicted these patients’ tumor
growth speeds for larger time points and that the standard deviation between the
three different manual calculations was larger for short time periods and became
smaller for longer time periods.

Figure 5.6 presents the white matter tumor growth speeds of these nine pa-
tients on a loglog plot for the purpose of comparing with Harpold et al. [Harpold
et al., 2007]. Notice that the speed in white matter represents the upper bound-
ary of our model’s speed estimates. In the research of Harpold et al., they said
that a velocity of more than 10 mm/year indicates a high-grade glioma. The pa-
tients in this study have been surgically assessed as harboring low-grade gliomas,
yet some of their radial growth speeds are above 10mm/year. The model that
we used (Equation 2.19 from [Konukoglu et al., 2010b]) cannot find dw and ρ
separately such that dw/ρ can be calculated. The method of Chapter 4 was not
repeated in this chapter; therefore, in this chapter the problem of separating the
product dwρ is not addressed. Hence, the invisibility measurements are not valid
from this plot, since only speed can be calculated from Equation 2.19. Notice
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Figure 5.4: Comparison of manual vs. model asymptotic speed calculations to
visualize the predictive nature of the biophysical model, where the manual calcu-
lations used the baseline and the tumor segmentation (by the radiologist) of the
last possible sequential image for each patient before therapy was applied. The
model’s asymptotic speed estimates used only the first two images. The top plot
compares the radial tumor growth speed by patient. The second plot displays the
time in between speed measurements δt. The third plot shows the scaled model
error ε, and the fourth plot exhibits our confidence of the comparison between
the model and the manual speed estimates (ε/δt).
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Figure 5.5: Comparison of speed measurements between manual and model-based
estimates. The manual calculations of speed were calculated using the baseline
image and later longitudinal images for each scan date. The model calculations
used only the first two images (Asymptotic and Time-Dependent).

also that there are essentially two ρ values in this plot which remain basically
consistent from simulation initialization.

From the asymptotic speed estimates of the model (vw A, vg A, and vweighted A)
we predict TTP using Equation 5.18. In Figure 5.7 we show the comparison of the
TTP model predictions (pink markers) with the retrospective calculations of TTP
(black lines) for 1D RECIST, 2D RANO, and 3D Volumetric (equations 5.14, 5.15,
and 5.16). The solid lines in Figure 5.7 indicate that TTP was reached for that
metric while the dotted lines indicate the last time point without reaching TTP .
Therefore, we expect, for a good match, to have the model TTP predictions
(pink markers) below the solid lines and above the dotted lines or at least to have
the solid and dotted lines within the interval [TTPvw A

TTPvg A
]. Notice that

three out of nine patients reached TTP with the 1D RECIST metric, six out of
nine with the 2D RANO metric, and one out of nine with the 3D Volumetric
metric. This result agrees with the results of Galanis et al. [2006], where the 2D
RANO metric was the most sensitive to estimate progressive disease and the 3D
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Invisibility vs. Time-dependent Velocity
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Figure 5.6: Log-log plot of white matter speed estimates. These speed estimates
represent the white matter tumor growth speed for these patients. Average speed
of a LGG is 2mm/year radially. This model, which did not use the method from
Chapter 4, could not solve for dwρ separately (in the speed formulation); therefore,
only the v can be trusted from this plot and not the invisibility amount.

Volumetric metric was the least sensitive. The tumor shape is the main reason
for these discrepancies among the 1D, 2D and 3D TTP metrics. For instance,
Patient 3 in our study had a finger-like tumor cross section (see Figure 5.8) that
resulted in reaching TTP1D and TTP2D before TTP3D. For Patient 5, the rounded
shape of the tumor cross section (see Figure 5.9) caused reaching TTP2D earlier
than TTP1D and TTP3D. Regarding the TTP model predications in Figure 5.7,
we have that for Patient 1, the TTP measures matched with the same date
(TTP1D = TTP2D = TTP1D), and the predictions of the model were under the
solid lines, which means that the model had an accurate prediction of TTP . For
Patient 2, the model TTP prediction only matched the 1D RECIST (TTP1D)
measure but showed to be closed to the 2D RANO (TTP2D) measure. The
mismatch of Patient 2 for the 3D case is explained as the result of large δVseg,
discussed previously in the segmentations variability analysis. For patients 3, 4,
5, and 6, at least two out of the three retrospective measures agreed with the
TTP model predictions. For patients 7, 8, and 9, the predicted TTPvweighted

were
above the dotted lines for the three measures. Thus, the main result is that the
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Figure 5.7: Comparison of the TTP model predictions (pink markers) with the
retrospective calculations of TTP (black lines) for 1D RECIST, 2D RANO, and
3D Volumetric (equations 5.14, 5.15, and 5.16). The solid lines indicate that TTP
was reached for that metric while the dotted lines indicate the last time point
without reaching TTP . For a good match, the model TTP predictions (pink
markers) should be below the solid lines and above the dotted lines or at least
the solid and dotted lines should be within the interval [TTPvw A

TTPvg A
].

predictive model estimates of TTP , which used only two patient scans, compared
well with the manual retrospective calculations, especially for the 1D RECIST
and 2D RANO criteria.

Finally, in Table 5.4 we compare the model predicted TTPvweighted A
from Fig-

ure 5.7 with a predicted TTP using manually calculated tumor growth speeds
from the radiologist segmentations in 1D (v1D in Equation 5.1) and Equation 5.18,
i.e., TTPv1D . Notice that the second column in Table 5.4 contains either the in-
terval within which TTP was reached or a single value indicating the last time
point when TTP was evaluated. Only the first two acquisition images of each
patient were used to estimate both TTPv1D and TTPvweighted A

. The red strikeouts
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Figure 5.8: Patient 3 reached TTP1D and TTP2D at 396 days but did not reach
TTP3D. The red delineation is the first MRI scan and the blue delineation is
the scan when TTP1D and TTP2D were reached. The large finger-like pattern
resulted in the 1D RECIST and 2D RANO metrics being more sensitive than the
3D Volumetric metric.

Figure 5.9: Patient 5 reached TTP2D = 1154 days, but did not reach TTP1D or
TTP3D. The rounded shape of the tumor cross section resulted on the 2D RANO
metric being more sensitive than the 1D RECIST and 3D Volumetric metrics.
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Manual and Model TTP Predictions in 1D

Retrospectively Radiologist Model
Calculated Predicted Predicted

Patient TTP Interval in 1D TTPv1D TTPvweighted A

No. (days) (days) (days)

1 [1 92] 58 47
2 [92 184] 60 149
3 [221 396] 328 260
4 [315) 174 188
5 [1154) 961 704
6 [189) 78 637
7 [724) undefined 1171
8 [112) -1046 159
9 [915) 2428 1248

Table 5.4: Manual and model predictions of TTP in 1D using Equation 5.18. The
manual predictions used manual tumor growth estimates in 1D (v1D) from the
radiologist segmentations (Equation 5.1). The model predictions used vweighted A.
Both TTPv1D and TTPvweighted A

were estimated using only the first two acquisition
images of each patient. The red strikeouts represent the patients where the
predicted TTP did not fall within the interval of column two. Notice that the
TTPv1D was correct for only three of the patients while TTPvweighted A

produced
reasonable results for seven of the patients.

represent the patients where the predicted TTP did not fall within the interval
of column two. Notice that the TTPv1D was correct for only three of the patients
while TTPvweighted A

produced reasonable results for seven of the patients. There-
fore, the model was more accurate at predicting PD than the manual predictions
from the radiologist segmentations.

5.6 Discussion

There are three main points of discussion: i) image quality, ii) model limitations,
and iii) usefulness of the heterogonous tissue time-dependent speed model.

Image quality was a challenge in this study since the quality of the images
and/or tumor segmentations had a direct impact on the quality of the estimated
tumor speeds. The voxel size of the original MRIs were 5− 6mm in z-direction,
which led to i) inaccuracies in tumor measurements and segmentations, and ii)
a substantial amount of interpolation when making the voxels isotropic (1× 1×
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1mm3). This led to tumor segmentation variability, on top of the inherent inter-
and intra-expert variability since tumor segmentation is quite a subjective task.
Negative radial speed on Figures 5.3, 5.4, and 5.5 point to either i) difficultly
in deciphering what is tumor for tumor segmentations, since the patients were
not undergoing therapy, or ii) that there was a loss in tumor cells, or iii) a false
remission [Galanis et al., 2006].

In terms of model limitations we have that the model accuracy is contingent
on the quality of the tumor segmentations, which depend mainly on the imaging
modality used, e.g., in FLAIR, hyper-intense signals do not necessarily represent
tumor. In addition, it is time consuming to segment tumors and there is inter-
and intra-expert segmentation variability. Thus, we believe that automatic tu-
mor segmentation tools that consistently measure tumors in an objective way
can overcome these limitations. In 2012, there was a Multimodal Brain Tumor
Segmentation Challenge (BRATS) [Menze et al., 2014] where several promising
methods were proposed that will hopefully develop into reliable clinical solutions
in the upcoming years.

In this chapter we show that our heterogonous tissue time-dependent speed
model i) estimates tumor growth speed that matches well with manual calcula-
tions between two images (Figure 5.3), and ii) predicts future tumor speed which
also match well with manual estimations (figures 5.4, and 5.5). We presented ε/δt
that is a measure to exhibit our confidence of the radial speed model rage [vgTD

vwTD
] and [vgA vwA

] with manual calculation range matching. Our study shows
that when ε/δt is low, the manual calculation range and the model speed calcu-
lation range are similar. The combined speed estimate vweightedTD

and vweightedA

produced the model’s best speed estimate since it takes into account both white
and gray brain matter. Results demonstrated that this speed estimates generally
rested in the middle of the manual estimations. Then, we showed that using the
asymptotic speed estimates, we could i) predict TTP dates that match the retro-
spectively calculated TTP (Figure 5.7), and ii) predict TTP better than manual
TTP predictions (Table 5.4). It is evident from Figure 5.7 that TTP can be dif-
ferent depending on which measurement is used (1D, 2D, 3D, or another type of
measurement) since all of these measurements show a different trait of a tumor.
In contrast to using TTP as a retrospective measure in LGG PD analysis, our ap-
proach predicts TTP which could be used proactively by physicians in treatment
planning. Since the speed estimates also produce an error measurement ε, if the
segmentation was not good, this error measure would be high and therefore one
should not trust the model’s results. When a patient reaches progressive disease,
the “watchful waiting” is over and the tumor has to be surgically resected if pos-
sible by any means. Therefore, it is important to know when a patient reaches
or will reach TTP . The fact that radiologists use different metrics for calcu-
lating TTP highlights the challenges facing clinical radiologists in determining
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progression and the need for more robust tools.

5.7 Conclusion and Perspectives

In this chapter we proposed an approach to assess PD of LGG using tumor growth
speed estimates from an asymptotic FK formulation. We compared the PD esti-
mates of nine patients of the proposed approach to i) the ones computed using
1D, 2D, and 3D manual tumor growth speed estimates and ii) the ones calcu-
lated using a set of well established size-based criteria (RECIST, Macdonald, and
RANO). We showed with the data of nine patients that our heterogonous tissue
time-dependent speed model, which used only two patient scans, i) estimates tu-
mor growth speed that matches well with 1D, 2D, and 3D manual calculations
between two images, and ii) predicts future tumor speed which also match well
with manual calculations. Then, we showed that using the asymptotic speed es-
timates we could i) predict TTP dates that match the retrospectively calculated
TTP , and ii) predict TTP better than manual TTP predictions. In addition,
we proposed i) a way of calculating confidence in the speed estimations of the
model and ii) a weighted average of the speed in white matter and gray matter.
Finally, the predictive model estimates of TTP compared well with the manual
retrospective calculations, especially for the 1D RECIST and 2D RANO criteria.
We conclude from the results of this comparison, although we did not have a
statistically significant number of patients in our study, that the heterogeneous
tissue time-dependent speed model may better assess PD of LGG when a limited
number of MRI scans are available than the manual calculations. With these
results, we can deduce that using a heterogeneous tissue tumor growth model on
serial patient MRIs can generate useful speed estimates that radiation oncologists
could use in the future for individual patients’ therapy planning.

There are several possible extensions of this study that should be carried
out in the future. First, a statistically significant number of patients should be
studied to confirm the results of this study. Second, it should be studied the
root-causes of LGG tumor growth speed changes in time that could be attributed
to i) segmentation variation, ii) image quality, iii) LLG to HGG transition, and
iv) effects of treatment (if used). It would also be interesting to see how these
speed changes affect a patient’s predicted TTP .
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Chapter 6
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Contents
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Importance de l’IDT du patient dans la modlisation de la
croissance du gliome . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Estimation de l’infiltration aprs une rsection . . . . . . . 115

6.1.3 Constatation de la maladie volutive du gliome bien diffrenci
en utilisant les estimation de la vitesse de croissance . . . 116

6.1.4 Revue sur le gliomes et la modlisation de tumeurs . . . . 117

6.1.5 Estimation de paramtres et localisation de la source . . . 117

6.1.6 Segmentation valide par un expert de liquide cphalo-rachidien
dans un atlas MNI . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Les modles de croissance de gliomes . . . . . . . . . . . . 119

6.2.2 Entres du modle . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.3 Validation et automation . . . . . . . . . . . . . . . . . . 122

6.2.4 Planification de thrapie . . . . . . . . . . . . . . . . . . . 123

6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Contributions

Cette thèse se concentre sur la proposition de nouveaux outils de traitement et
d’évaluation pour améliorer l’élaboration de la stratégie thérapeutique en utilisant
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différentes formulations du modèle Fisher Kolmogorov (FK) en combinaison avec
de l’imagerie médicale.

6.1.1 Importance de l’IDT du patient dans la modélisation

de la croissance du gliome

L’imagerie du tenseur de diffusion (IDT) a été suggérée afin de modéliser la
diffusion anisotrope de cellules de la tumeur dans la matière blanche du cerveau.
Cependant, les IDT spécifiques au patient sont chères et souvent prises basse
résolution, ce qui compromet la précision les résultats du modèle de croissance
de la tumeur. Nous avons utilisé une formulation FK pour décrire l’évolution du
contour visible de la tumeur afin d’investiguer l’impact du remplacement de l’IDT
spécifique au patient (option patient-IDT) par i) une carte de diffusion isotrope
(option sans-IDT) ou bien ii) un IDT atlas anisotrope haute résolution formé par
la moyenne des IDT de plusieurs patients (option atlas-IDT). Nous avons comparé
des trois options d’IDTs en utilisant d’un cté des données synthétisées, et de
l’autre – des données cliniques. Une étude future incluant des données de patients
additionnels permettrait d’améliorer la portée de l’étude. Dans cette étude qui
consiste d’un patient, il a été trouvé que la formulation du modèle FK en temps
de déplacement est la plus précise pour chacune des trois options d’IDT lorsque
l’intervalle de prédiction est inférieur 175 jours. Les délimitations résultantes
de l’IDT atlas et patient ont correspondu avec les contours de la tumeur réelle
légèrement mieux que celles de l’option sans-IDT. Cependant, les résultats des
prédictions de l’option sans-IDT pour un intervalle temporel inférieur 175 jours
étaient également proches de la tumeur réelle. Par conséquent, le chapitre 3
suggère que l’IDT patient (lorsque celui-ci est disponible) est la meilleure option
pour modéliser la diffusion de cellules tumorales dans la matière blanche dans la
plateforme du modèle FK puisque les résultats montrent que la croissance de la
tumeur possède une préférence directionnelle (croissance anisotrope), comme il a
été formulé dans [Clatz et al., 2005; Jbabdi et al., 2005]. Il a également été trouvé
que seulement peu de précision est perdue en utilisant un IDT atlas, bien que
l’IDT atlas ait une non-homogénéité directionnelle légèrement différente de celle
de l’IDT du patient. Cette étude suggère que la modélisation de la croissance du
gliome motilité différentielle basée sur le tissu (avec l’option sans-IDT), comme
proposé dans [Swanson et al., 2007] produit des résultats légèrement moins précis.
Cependant, s’abstenir d’utiliser une IDT serait suffisant dans la modélisation de
gliomes bien différenciés. Par conséquent, chacune des trois options peut être
utilisée avec une formalisation FK pour modéliser la croissance du gliome dans
le but de la planification de thérapies.

114



6.1 Contributions

Le chapitre 3 est une version étendue de l’article de conférence publié et
présenté oralement [Stretton et al., 2013].

6.1.2 Estimation de l’infiltration après une résection

Le chapitre 4, notre connaissance, est un premier essai pour estimer l’infiltration
de la tumeur après une résection. Dans le domaine de la modélisation de can-
cers, estimer la croissance du gliome après une intervention chirurgicale est d’une
grande importance puisque, suite au protocoles médicaux, la plupart des pa-
tients atteints de gliome sont sujets des résections dans une courte période
après la détection de la tumeur. Ensuite, les médecins ont besoin de savoir
quel est le type de traitement de suivi le mieux adapté chaque patient, c’est-
-dire la chimiothérapie pour les tumeurs diffuses, ou bien la résection pour les
tumeurs agglomérées. Il y a deux défis principaux impliqués dans l’estimation de
l’infiltration du gliome immédiatement après une intervention chirurgicale : i) le
cerveau présente d’importants parenchymes et un mouvement du liquide céphalo-
rachidien après la chirurgie, et ii) la segmentation de la tumeur après la chirurgie
pourrait être incomplète puisqu’il peut être difficile de distinguer la tumeur du
sang et du tissu cicatriciel. Nous avons appréhendé le premier défi en utilisant
un algorithme de recalage non linéaire, et nous avons résolu le deuxième défi par
l’utilisation, faisant partie d’une nouvelle méthodologie, d’une carte d’infiltration
combinée, c’est--dire une combinaison des cartes d’infiltration de la tumeur avant
et après l’intervention chirurgicale. Par conséquent, la contribution principale du
chapitre 4 était une méthodologie inédite pour estimer les régions de densité de
cellules tumorales invisibles après une résection.

En outre, nous voudrions souligner dans la liste suivante les contributions
novatrices atteintes lors du développement de la méthode proposée pour estimer
l’infiltration de la tumeur après une résection chirurgicale :

• Nous avons développé une plateforme d’enregistrement novatrice pour en-
registrer les IRM post-opératoires suivant une résection de la tumeur et les
segmentations pré-opératoires d’IRMs.

• Nous avons développé une plateforme d’enregistrement novatrice pour en-
registrer un masque de référence du cerveau pour une image T1 d’un patient
tout en préservant les sillons du liquide céphalo-rachidien.

• Nous avons appliqué une combinaison d’un algorithme recalage non linéaire,
d’une formulation du modèle FK temps de déplacement, d’un calcul de
carte d’infiltration, et d’une simulation d’un modèle FK réaction-diffusion.
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• Nous avons ajouté le coefficient Dice la fonction de cot utilisée pour déterminer
les paramètres du modèle FK.

• Nous avons utilisé un algorithme d’optimisation Simplexe pour déterminer
les paramètres du modèle FK.

• Nous avons combiné des cartes d’infiltration pré- et post-opératoires pour
compenser la segmentation incomplète suivant la chirurgie.

• Nous avons balayé dw/ρ pour identifier les caractéristiques d’infiltration
d’un gliome, c’est--dire aggloméré ou diffus.

En résumé, ce travail a proposé une nouvelle manière pour les cliniciens
d’estimer l’infiltration de la tumeur après une résection cérébrale afin de les aider
dans la planification thérapeutique.

Le chapitre 4 est la version longue de l’article [Stretton et al., 2012] publié
et oralement présenté une conférence. Ce travail a été soumis au Journal of
Frontiers in Oncology.

6.1.3 Constatation de la maladie évolutive du gliome bien

différencié en utilisant les estimation de la vitesse de

croissance

Dans le chapitre 5 nous avons proposé une approche afin de constater la maladie
évolutive (ME) du gliome bien différencié (GBD) en utilisant les estimations
de la vitesse de croissance obtenues d’une formulation FK asymptotique. Nous
avons comparé les estimations des ME de neuf patients obtenues en utilisant
l’approche proposée i) celles calculées en utilisant les estimations de vitesse de
croissance manuelles 1D, 2D et 3D et ii) celles calculées en utilisant un ensemble
de critères basés sur la taille bien établis (RECIST, Macdonald et RANO). Nous
avons montré sur les données de neuf patients que notre modèle de vitesse tissu
hétérogène lié au temps, basé seulement sur deux scanners de patients, i) produit
une estimation de la vitesse de croissance qui correspond bien aux vitesses 1D, 2D
et 3D de croissance de tumeurs calculées manuellement entre deux images, et ii)
prédit des vitesses de croissance futures qui correspondent également aux calculs
manuels. Ensuite, nous avons montré qu’en utilisant les estimations de vitesse
asymptotiques, nous pouvions i) prévoir les dates du temps jusqu’ progression
(TTP ) qui on correspondu en rétrospective aux TTP calculés, et ii) prévoir le
TTP mieux que les prédictions du TTP manuelles. En outre, nous avons proposé
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i) une manière d’estimer la confidence en les estimations de vitesse du modèle et
ii) une moyenne pondérée de la vitesse dans la matière blanche et grise. Enfin, les
estimations de TTP prédictives du modèle ont bien correspondu avec les calculs
rétrospectifs manuels, surtout pour les critères 1D RECIST et 2D RANO. Les
résultats de cette comparaison nous permettent de conclure, bien que nous n’ayons
pas eu dans cette étude un nombre de patients statistiquement significatif, que le
modèle de vitesse tissu hétérogène et dépendant du temps permet de constater
la ME du GBD mieux lorsqu’un nombre limité de scanners sont disponibles que
le calcul manuel. Avec ces résultats, nous pouvons déduire qu’utiliser le modèle
de vitesse de croissance tissu hétérogène et dépendant du temps sur des IRM en
série du patient peut générer des estimations de vitesse utiles que les oncologues
pourraient utiliser dans le futur pour la planification de thérapies individuelles.

Cette contribution a été soumise au Journal of Computerized Medical Imaging
and Graphics.

6.1.4 Revue sur le gliomes et la modélisation de tumeurs

Nous avons fourni une présentation de fond sur la maladie du gliome, les pro-
tocoles d’IRM pour cette maladie, les indices basés sur images pour ces multi-
protocoles, les défis du traitement des gliomes, et les atlas d’IRM cérébrales pour
ces modalités. Puis, nous décrivons différentes stratégies de modélisation de
tumeurs (in vivo, in vitro et in silico), différents types de modèles de tumeurs
(continus, discrets, hybrides et basés agent) et différentes échelles de modèles
de tumeurs (atomiques, moléculaires, microscopiques et macroscopiques). En-
suite, nous avec passé en revue les travaux réalisés dans les modèles de vitesse de
croissance de tumeurs de l’état de l’art, en commenant par les modèles généraux
réaction-diffusion pour l’invasion cellulaire, puis le modèle de réaction-diffusion
plus spécifique FK. Par la suite, nous avons discuté sur les modèles de déplacement
Eikonal, et enfin, les rles de ces modèles dans la modélisation de la réponse de
gliomes aux traitements. Enfin, nous avons revu les modèles de tumeur génératifs
dans la segmentation d’images et l’enregistrement qui ont été proposés. Ce travail
contribue aux connaissances générales pour la communauté de modélisation de
tumeurs.

Le chapitre 2 est une version étendue de l’article en co-auteur qui a été publié
dans [Menze et al., 2011a].
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6.1.5 Estimation de paramètres et localisation de la source

Cet travail est le résultat d’une collaboration avec Rekik et al. [Rekik et al.,
2012] et suit le sujet principal de cette thèse. Dans ce travail, une méthode est
décrite qui fournit deux principales caractéristiques spécifiques au patient d’une
tumeur en utilisant une IRM un seul point temporel donné : la localisation de
sa source et un indice quantifiant l’irrégularité de sa forme. L’approche proposée
est macro-échelle et a été évaluée en utilisant des données synthétiques, ainsi
que les données GBD de quatre patients. Ce modèle a produit des prédictions
prometteuses du comportement spatial des tumeurs en partant de l’estimation
des deux paramètres.

Ce travail se trouve dans l’annexe A et a été publié dans le journal Computer
Vision and Image Understanding [Rekik et al., 2012].

6.1.6 Segmentation validée par un expert de liquide céphalo-

rachidien dans un atlas MNI

Ce travail est le résultat d’une collaboration avec Aymeric Amelot et Emmanuel
Mondonnet. Il est reconnu dans la communauté de modélisation d’imagerie
médicale qu’une segmentation précise de parenchyme cérébral est essentielle pour
une modélisation réaliste de croissance de gliome. Nous montrons une précisions
accrue dans notre segmentation de parenchyme cérébral dans les résultats de sim-
ulation FK, o les tumeurs synthétiques n’ont pas cr entre les lobes. Ce travail
est extrêmement important pour la modélisation de croissance de tumeurs avec
le but d’aider la planification thérapeutique.

Ce travail peut être trouvé dans l’appendice B et a été accepté dans le Journal
of Neuro-Oncology.

6.2 Perspectives

L’utilisation de modèles mathématiques dans la planification de thérapies dans la
malade du gliome présente un futur tout fait prometteur. Cependant, les modèles
actuels de croissance de gliomes et la qualité de leur données d’entrées doivent être
améliorés pour que ces modèles aient une réelle valeur dans la pratique clinique.
Après avoir apporté ces améliorations, ces modèles ont besoin d’être validés et
chaque composant de leur processus doit être automatisé. Une fois ces modèles
et les méthodes de génération de données entrée matures, ces modèles ont besoin
d’être intégrés dans un module d’aide la décision pour l’oncologie qui puisse être
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largement utilisé dans les cliniques. Les résultats de ce module doivent être faciles
et rapides interpréter. Ce module devrait être configurable afin de répondre aux
besoins spécifiques de différentes spécialités : la radiologie, la radio oncologie,
l’oncologie et la neuro-chirurgie.

6.2.1 Les modèles de croissance de gliomes

Dans cette thèse, deux modèles différents ont été utilisés pour modéliser la crois-
sance des gliomes : la formulation de réaction-diffusion FK et le modèle déplacement
temporel FK. Ces deux approches présentent des améliorations potentielles qui
pourraient être apportées par de futures recherches. La formulation FK modélise
des densités de cellules tumorales invisibles dans les IRM. La validation des
résultats du modèle pourrait être comparée la densité de cellules du gliome
obtenue par une biopsie du gliome ou bien une résection. En alternative, le seuil
de visibilité du gliome pourrait être quantifié en utilisant des échantillons de tissu
et des IRM d’un cerveau animal. Au mieux de nos connaissances, ceci n’a pas été
poursuivi. L’effet de masse n’a pas non plus été pris en compte avec les modèles
FK déplacement temporel, et pourrait l’être dans le futur.

L’un des aspects les plus importants des formulations actuelles des modèles
réaction-diffusion FK est que les paramètres du modèles peuvent être person-
nalisés pour chaque patient (équation 2.19). Cependant, des personalisations
plus robustes pourraient être appliquées pour améliorer la précision. Dans le
chapitre 4, nous avons proposé l’utilisation de la méthode du simplexe afin d’ajouter
un nouveau terme de personalisation (équation 4.1) qui empêche une tumeur
simulée de se transformer en tore. Ce nouveau terme implique le coefficient de
Dice, cependant, dans le futur, les médecins pourraient vouloir contrler le compro-
mis entre les fausses positives et les fausses négatives. Pour aborder ce problème,
une possibilité est de modifier le nouveau terme en un facteur pondéré par la sen-
sibilité et la spécificité au lieu d’utiliser un coefficient de Dice. De cette manière,
il serait possible pour un médecin de pénaliser lourdement les fausses positives,
qui posent un risque plus grand dans la planification de thérapies que les fausses
négatives.

Ni le modèle réaction-diffusion FK, ni le modèle FK déplacements temporels
ont été testés sur un grand nombre de patients et, au mieux de notre connaissance,
aucune analyse détaillée de la sensibilité aux paramètres (basée sur des données
patient) n’a été menée. Il est envisageable que la forme, la taille, l’aire dans le
cerveau et la vitesse de croissance d’une tumeur peuvent influencer les résultats de
la simulation. Par conséquent, ceci est une autre direction de recherche logique.

L’un des sujets principaux du chapitre 4 était d’estimer la diffusivité d’un
gliome bien différencié pour des patients individuels. Après avoir trouvé qu’une
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approche itérative fournit des résultats prometteurs, l’étape suivante serait d’essayer
d’améliorer ces résultats, en particulier la vitesse et l’incertitude des paramètres
d’entrée, et d’incorporer de nouvelles technologies d’imagerie qui deviendront
disponibles dans les prochaines années. Nous allons évoquer quelques manières
d’améliorer l’estimation de la diffusivité d’un gliome bien différencié pour des pa-
tients individuels. D’abord, une chane de Markov Monte Carlo pourrait améliorer
la vitesse des modèles FK avec des distributions de probabilités sur la confi-
dence des résultats. Cette méthode utilise des distributions pour les paramètres
sur lesquels il existe une incertitude (segmentation de la matière blanche due
l’enregistrement, segmentations tumorales, etc.). En utilisant un modèle proba-
biliste au lieu d’un modèle déterministe, une partie de l’incertitude due l’enregistrement
pourrait être prise en compte. Ceci serait une prochaine étape logique essayer
puisque tous les paramètres d’entrée ont des limitations de précision. Deuxièmement,
l’on pourrait également aborder le problème de l’estimation de la diffusivité
d’un gliome en utilisant un modèle multi-échelle, o les données de la biopsie
détermineraient les valeurs de ρ, qui pourraient être différentes dans différentes
zones de la tumeur une micro échelle, et la macro échelle pourrait utiliser le
modèle FK déplacements temporels. Il y a trois principaux défis utiliser des
données de biopsies pour la modélisation : i) l’étiquetage du site dont la biopsie est
issue, ii) la consistence du parenchyme cérébral et iii) les biopsies qui fournissent
des informations locales sur la densité de cellules tumorales. Premièrement, le défi
dans l’utilisation de données de biopsies est qu’actuellement les neuro-chirurgiens
et pathologistes ne connaissent pas la localisation exacte d’o a été prélevée la
biopsie. Ce n’est pas actuellement inclus dans la procédure pour les neuro-
chirurgiens d’étiqueter les biopsies avec la zone de la tumeur d’o elles ont été
prélevées (même sans parler de coordonnées exactes). Par conséquent, si quatre
biopsies sont prélevées sur un même individu, le pathologiste ne saura pas de
quelle zone de la tumeur chaque biopsie provient. Deuxièmement, la consistence
du tissu cérébral n’est pas rigide par nature. Le Dr Lyons, président de la di-
vision de chirurgie neurologique de la clinique Mayo en Arizona (USA), a décrit
le tissu cérébral comme ayant la même flexibilité qu’un yaourt ; par conséquent,
il est très difficile de savoir précisément d’o une biopsie a été prélevée, moins
de laisser un marqueur métallique sur le site de la biopsie. Troisièmement, les
biopsies fournissent de l’information locale, et non globale. Dans le futur, ceci
pourrait changer avec l’introduction de nouvelles technologies. Une fois la lo-
calisation des sites de biopsies connue, un modèle multi-échelle pourrait utiliser
cette information. Enfin, des méthodes double seuil pourrait être utilisées pour
déterminer la diffusivité d’un gliome. Pour les gliomes mal différenciés, les con-
tours d’images T1-gadolinium et FLAIR pourraient être utilisés en tant que les
deux seuils. Cependant, pour les gliomes bien différenciés, seuls les FLAIRs sont
utilisés pour déterminer l’ampleur de la tumeur. Des cartes P et Q, qui sont deux
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seuils qui pourraient être obtenus d’une IDT, affichent des niveaux d’infiltration
différents de la tumeur. Cette méthode a été proposée dans [Price et al., 2006,
2007]. Malheureusement, nous n’avons pas pu reproduire ces résultats sur nos
données patient. Par conséquent, la méthode des cartes P et Q ne fonctionne pas
chez tous les patients, mais parait être une idée prometteuse ; ainsi elle devrait
donc être explorée dans de futures recherches. Dans le futur de la modélisation de
gliomes bien différenciés, les images PET pourraient également fournir le second
seuil, l o le FLAIR fournit le premier seuil.

6.2.2 Entrées du modèle

Les entrées du modèles qui ont eu un impact crucial sur l’exactitude des résultats
du modèle sont les suivants : i) les segmentations tumorales et ii) le masque du
parenchyme cérébral.

Les segmentations de tumeurs présentent plusieurs grands défis. Premièrement,
les segmentations tumorales présentent une variabilité inter- et intra-expert puisque
la plupart des bords de tumeurs sont flous / estompés sur les IRM. Deuxièmement,
ceci n’aide pas que voxels IRM hyper-intenses ne représentent pas nécessairement
la tumeur, en particulier pour les IRM FLAIR, qui sont la norme pour constater
la progression de gliomes bien différenciés. Les voxels hyper-intenses pourraient
également représenter un dème supplémentaire provenant de crises, du sang,
de la cicatrisation, ou bien des lésions de la matière blanche. Par conséquent,
la taille réelle de la tumeur est très difficile déterminer de manière certaine.
Troisièmement, les protocoles d’image ne sont pas standard, ce qui affecte la
qualité des enregistrements. Parfois, un patient commence par avoir acquisi-
tions axiales, puis il passe au sagittal. Souvent, le z-espacement des IRM change
d’un scan l’autre. En outre, chaque scanner produit des images légèrement
différentes, et les patients n’ont pas nécessairement leurs images séquentielles
prises avec le même scanner. Un autre point prendre en compte avec les proto-
coles d’imagerie est qu’un technicien a la liberté de nommer les IRM. Il n’existe
actuellement aucune convention de nommage, ce qui pose des problèmes pour
l’enregistrement d’un grand ensemble de données patient. Quatrièmement, par-
fois l’imagerie présente des tranées dues des mouvements du patient.

Voici quelques faons de faire face aux défis de la segmentation de tumeurs.
Tout d’abord, l’utilisation d’un outil de segmentation automatique de tumeurs
qui exécuterait la segmentation de la même manière chaque fois permettrait
d’améliorer la vitesse et la précision de la segmentation de tumeurs. Dans le
workshop BRATS [Menze et al., 2014], plusieurs segmentations tumorales au-
tomatisés ont été présentés et avaient l’air prometteur. Espérons que la précision
de ces méthodes va augmenter dans les années venir. Le vrai défi dans la seg-
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mentation automatique de tumeurs sera de distinguer les tumeurs des lésions de
la matière blanche, qui se ressemblent dans les IRM FLAIR. Deuxièmement, la
technologie IRM pourrait également s’améliorer dans les années venir, comme
l’a envisagé le groupe de travail RANO. Troisièmement, rigidifier les protocoles
par des paramétrages systématiques des scanners IRM pourrait être une solu-
tion viable. Quatrièmement, améliorer la relaxation des patients pourrait réduire
leurs mouvements et accrotre leur coopération. Ceci a déj été proposé par Philips
(Philips Ambient Lighting MR) [Philips, 2010] en utilisant la lumière ambiante
et pourra être vu dans de nombreux hpitaux dans les années venir.

En ce qui concerne l’acquisition d’un masque du parenchyme cérébral correct,
c’est--dire qui a les lobes séparés et les modèles de sillons définis, c’est également
un grand défi [Unkelbach et al., 2014]. Il ne suffit pas de simplement utiliser
des algorithmes de segmentation, comme Bet2 du FLS, ou d’utiliser un atlas
enregistré, tel que le MNI 152, pour estimer un masque du parenchyme cérébral
utiliser dans la modélisation de la croissance de gliome puisque ces masques ne
séparent pas complètement les lobes du cerveau et les motifs des sillons, ce qui
est crucial pour la modélisation précise de la croissance tumorale. Dans l’annexe
B, nous avons cré un masque du cerveau en combinant des cartes de matière
grise et blanche seuillées de l’atlas MNI 152. Dr Amelot, un neurochirurgien qui
a collaboré sur ce travail, a segmenté les motifs du LCR de ce masque et ensuite
nous avons soustrait cette segmentation du LCR au masque du cerveau. Pour
créer un masque du cerveau enregistré d’un patient qui a les lobes séparés, on
pourrait soit i) enregistrer les images du patient dans l’espace de l’atlas MNI
152 et utiliser ce masque amélioré du cerveau pour faire tourner les simulations,
ou bien ii) enregistrer le masque du cerveau (de la manière proposée dans le
chapitre 4) l’espace patient. L’inconvénient du premier procédé est qu’il pourrait
y avoir des déformations de la tumeur du patient lorsque la transformation inverse
est appliquée aux résultats de simulation. L’inconvénient de la dernière méthode
est que les motifs de sillons pourraient ne pas être l’endroit exact du patient
puisque le masque atlas a été enregistré un patient, mais décalés de quelques
voxels, ce qui aura une incidence sur les conditions aux limites de la simulation
et, finalement, sur les résultats de simulation. Une étude devrait être réalisée
dans les travaux futurs afin d’analyser l’approche qui pourrait être la mieux pour
résoudre ce problème.

6.2.3 Validation et automation

Une orientation future serait de valider la formulation FK sur plus de patients en
utilisant les processus que nous avons proposé. Pour qu’un modèle biophysique
soit adopté dans la pratique médicale, il doit être: i) fiable, ii) répondre des
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questions médicales spécifiques, iii) rapide, et iv) de préférence ne pas ajouter des
étapes supplémentaires dans le flux de travail des cliniciens. Pour atteindre ce
but, on aurait besoin de travailler en étroite collaboration avec les cliniciens afin
d’examiner les résultats du modèle et de trouver des lacunes. De ces résultats et
de l’affinage continu des exigences de l’outil avec des cliniciens, le modèle peut
être amélioré de manière itérative et, en fin de compte, validé. Ensuite, il serait
important pour une équipe de développement logiciel d’automatiser toutes les
étapes de pré- et post-traitement. Lorsque ceci sera réalisé, il sera possible pour
ce modèle un jour de devenir un produit de d’être utilisé dans un environnement
clinique.

6.2.4 Planification de thérapie

La formulation FK réaction-diffusion du modèle pourrait être améliorée pour
gérer la planification de la chirurgie. Si la formulation du modèle FK réaction-
diffusion était inscrite sur un atlas fonctionnel, le modèle pourrait marquer cer-
taines régions fonctionnelles que la tumeur atteindrait et donnerait une estimation
quant la date laquelle la tumeur atteindrait ces régions fonctionnelles. Par ex-
emple, les gliomes qui sont situés dans la région motrice du pied du cerveau sont
difficiles et dangereux opérer. Par conséquent, il serait utile d’avoir un modèle
de marqueur du moment o une tumeur atteindrait la zone du cerveau régissant
les pieds.

Il serait également intéressant de combiner le modèle avec des fIRMs pour
voir quelles régions fonctionnelles sont touchées par la progression tumorale un
moment précis dans le temps. Cette information serait importante pour la plan-
ification de la thérapie et pour décider quel moment appliquer le traitement si
l’attente vigilante est appliquée.

Dans l’avenir, la technologie d’IRM va s’améliorer, permettant l’amélioration
de l’exactitude de toutes les étapes de notre processus. En outre, un meilleur en-
registrement non-linéaire, des méthodes de segmentation automatique améliorées,
et un modèle mécanique sera élaboré, qui pourra également améliorer la précision
de nos méthodes proposées dans les chapitres 4 et 5 de cette thèse, et amener les
formulations du modèle FK réaction-diffusion plus près d’être utilisées dans la
planification de la thérapie de gliome.

6.2.5 Conclusion

Dans ce travail de thèse, nous avons détaillé d’importants progrès dans la modélisation
des gliomes bio-médicale spécifique au patient. Les résultats obtenus sont promet-
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teurs et nous espérons que, après de futurs développements, les formulations de
modèles de réaction-diffusion Fisher Kolmogorov avec personnalisations pour-
raient être utilisés dans la pratique médicale. Pourtant, d’avantage de recherche
est nécessaire pour faire face aux problèmes qui sont présents chaque étape dans
le processus de modélisation, par exemple, la segmentation, l’enregistrement, la
modélisation, etc., avant que ce modèle ne soit prêt être validé grande échelle
et, plus tard ,adopté dans les hpitaux.
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Contributions and Perspectives
� English translation

Contributions

This thesis focuses on proposing novel processing and evaluation tools to aid in
therapy planning using different Fisher Kolmogorov (FK) model formulations in
combination with medical images.

Importance of Patient DTI to Model Glioma Growth

Diffusion tensor images (DTIs) have been suggested to model the anisotropic dif-
fusion of tumor cells in brain white matter. However, patient specific DTIs are
expensive and often acquired with low resolution, which compromises the accu-
racy of the tumor growth models’ results. We used a FK formulation to describe
the evolution of the visible boundary of the tumor to investigate the impact of
replacing a patient specific DTI (Patient-DTI option) by i) an isotropic diffusion
map (No-DTI option) or ii) an anisotropic high-resolution DTI atlas formed by
averaging the DTIs of multiple patients (Atlas-DTI option). We compared these
three DTI options using both synthetic and clinical data. A future study includ-
ing the data of additional patients would improve the significance of the study.
In this study, consisting of one patient, it was found that the traveling time FK
model formulation is most accurate for each of the three DTI options when the
prediction interval is under 175 days. The resulting delineations of the Atlas- and
Patient-DTI matched the actual tumor contours slightly better than the No-DTI
option. However, the prediction results of the No-DTI option for under 175 days
time interval were also close to the actual tumor. Therefore, Chapter 3 hints
that a Patient-DTI (when available) is the best option to model tumor cell diffu-
sion in white matter within the FK framework since the results show that tumor
growth has directional preference (anisotropic growth) as formulated in [Clatz
et al., 2005; Jbabdi et al., 2005]. It was also found that not very much accuracy
is lost with the use of an Atlas-DTI, even though the Atlas-DTI has a slightly
different directional non-homogeneity than a Patient-DTI. This study suggests
that modeling glioma growth with tissue based differential motility (using the
No-DTI option) as proposed in [Swanson et al., 2007] yields slightly less precise
results. However, refraining from using a DTI would be sufficient when modeling
LGGs. Therefore, any of the DTI options can be used with a FK formalization
to model glioma growth for the purpose of therapy planning.
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Chapter 3 is the extended version of the published and orally presented con-
ference paper [Stretton et al., 2013].

Infiltration Estimation after a Resection

Chapter 4, to the best of our knowledge, acts as a first attempt to estimate tumor
infiltration after a brain resection. In the cancer-modeling field, estimating glioma
growth after surgery is of great importance since, as a result of medical proto-
cols, most glioma patients are subject to resections within a short period of time
after tumor detection. Then, medical professionals want to know what the best
type of follow-up treatment would be for a particular patient, i.e., chemotherapy
for diffuse tumors or resection for bulky tumors. There are two main challenges
involved in estimating glioma infiltration directly after surgery: i) there is sub-
stantial brain parenchyma and CSF movement after surgery, and ii) the tumor
segmentations after surgery may not be complete since there is a potential for
blood and scar tissue to be confused with tumor. We addressed the first challenge
with the use of a non-linear registration algorithm, and resolved the second chal-
lenge by using, as part of a new methodology, a combined infiltration map, i.e.,
combination of tumor infiltration maps from before and after surgery. Therefore,
the main contribution of Chapter 4 was a novel methodology to estimate the
invisible tumor cell density regions after a resection.

In addition, we would like to highlight in the following list the novel contribu-
tions attained during the development of the proposed method to estimate tumor
infiltration after surgical resection:

• We developed a novel registration framework to register post-operative MR
images following tumor resection and segmentations to pre-operative MR
images and segmentations.

• We defined a novel registration framework to register a reference brain mask
to a patient T1 image while preserving the CSF sulci barriers.

• We applied a combination of a non-linear registration algorithm, a FK
model traveling time formulation, an infiltration map calculation, and a
FK model reaction-diffusion simulation.

• We added the Dice coefficient into the cost function used to find the FK
model parameters.

• We utilized a Simplex optimization algorithm to find the FK model param-
eters.
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• We combined pre- and post-operative infiltration maps to compensate for
incomplete segmentations soon after surgery.

• We swept through dw/ρ to identify the infiltration characteristics of a
glioma, i.e., bulky or diffuse.

In summary, this work proposed a new way for clinicians to estimate tumor
infiltration after brain resection to aid them in their therapy planning.

Chapter 4 is the extended version of the published and orally presented con-
ference paper [Stretton et al., 2012]. This work was submitted to the Journal of
Frontiers in Oncology.

Assessing LGG PD using Growth Speed Estimates

In Chapter 5 we proposed an approach to assess progressive disease (PD) of LGGs
using tumor growth speed estimates from an asymptotic FK formulation. We
compared the PD estimates of nine patients using the proposed approach to i) the
ones computed using 1D, 2D, and 3D manual tumor growth speed estimates and
ii) the ones calculated using a set of well established size-based criteria (RECIST,
Macdonald, and RANO). We showed with the data of nine patients that our
heterogonous tissue time-dependent speed model, which used only two patient
scans, i) estimates tumor growth speed that matches well with 1D, 2D, and 3D
manual tumor growth speeds between two images, and ii) predicts future tumor
speed which also match well with manual calculations. Then, we showed that
using the asymptotic speed estimates we could i) predict TTP dates that match
the retrospectively calculated TTP , and ii) predict TTP better than manual
TTP predictions. In addition, we proposed i) a way of estimating the confidence
in the speed estimations of the model and ii) a weighted average of the speed in
white matter and gray matter. Finally, the predictive model estimates of TTP
compared well with the manual retrospective calculations, especially for the 1D
RECIST and 2D RANO criteria. We conclude from the results of this comparison,
although we did not have a statistically significant number of patients in our study,
that the heterogeneous tissue time-dependent speed model may better assess PD
of LGG when a limited number of MRI scans are available than the manual
calculations. With these results, we can deduce that using a heterogeneous tissue
tumor growth model on serial patient MRIs can generate useful speed estimates
that radiation oncologists could use in the future for individual patients’ therapy
planning.

This contribution was submitted to the Journal of Computerized Medical Imag-
ing and Graphics.
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Review on Gliomas and Tumor Modeling

We presented background information on the glioma disease, MRI multi-protocols
for gliomas, image-based indices for the multi-protocols, glioma treatment chal-
lenges, and population brain atlases of MRI modalities. Then, we describe differ-
ent tumor modeling strategies (in vivo, in vitro, and in silico), tumor modeling
types (continuous, discrete, hybrid, and agent-based), and tumor modeling scales
(atomic, molecular, microscopic, macroscopic). Next, we reviewed work done
on the state-of-the-art tumor growth models starting with the general reaction-
diffusion model of cell invasion and then the more specific FK reaction-diffusion
model. Following, we discussed the Eikonal approximation of the FK reaction-
diffusion model, the parameter estimation problem for the FK model, then, the
infiltration map calculation. Next, we describe coupled bio-mechanical models
of tissue displacement, joint invasion and displacement models, and lastly, these
models role in modeling glioma response to therapy. Finally, we review generative
tumor models in image segmentation and registration that have been proposed.
This work contributes to the general knowledge of the tumor modeling commu-
nity.

Chapter 2 is an extended version of a coauthored paper that was published
in [Menze et al., 2011a].

Parameters Estimation and Source Localization

This work came from a collaboration with Rekik et al. [Rekik et al., 2012] and
follows the main focus of this thesis. In this work, a method is described that
provides two main patient-specific spatial characteristics of a tumor using one
MRI at a single time point: its source location and an index quantifying the ir-
regularity of its shape. The proposed macro-scale approach was evaluated using
synthetic data and four LGG patients. This model produced promising predic-
tions of tumor spatial behavior from the estimation of both parameters.

This work can be found in Appendix A and was published in the journal of
Computer Vision and Image Understanding [Rekik et al., 2012].

Expert-validated CSF segmentation of MNI Atlas

This work came from a collaboration with Aymeric Amelot and Emmanuel Mon-
donnet. It is well known throughout the medical image modeling community that
an accurate brain parenchyma segmentation is essential for realistic glioma growth
modeling. We created and show improved accuracy with our brain parenchyma
segmentation in FK formulation simulation results, where the synthetic tumors
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grown did not grow between lobes. This work is extremely important for modeling
tumor growth with the purpose to aid in therapy planning.

This work can be found in Appendix B and was accepted the Journal of Neuro-
Oncology.

Perspectives

Using mathematical models in glioma therapy planning has a very promising
future. However, the current glioma growth models and the quality of their
inputs need to be improved for these models to add value in clinical practice.
After these improvements have been made, the models need to be validated and
every component of their process needs to be automated. Once these models and
the methods to generate inputs are mature, the model needs to be integrated
into an oncology clinical decision support module to be used widely in clinics,
where the module results would be fast and easily interpretable. The module
would need to be configurable to answer the specific questions in the areas of
progression and therapy planning of several different specialties: radiology, radio
oncology, oncology, and neurosurgery.

Glioma Growth Models

In this thesis, two different models were used to model glioma growth: the
reaction-diffusion FK model formulation and the traveling time FK model formu-
lation. Both of these models have possible improvements that could be addressed
in future research. The FK formulation models tumor cell densities that cannot
be seen in MRIs. Validation of the model’s results could be compared with a
glioma’s tumor cell density quantified using a glioma biopsy or resection. Or, the
glioma threshold of visibility could be quantified with an animal’s brain using
both tissue samples and MR images. To the best of our knowledge, this has not
been pursued. Mass-effect has also not been taken into account with the traveling
time FK model formulation and could be in future models.

One of the most important aspects of the current reaction-diffusion FK model
formulations is that the model parameters can be personalized to a specific patient
(Equation 2.19). However, more robust personalizations could be used to improve
the accuracy of the personalizations. In Chapter 4, we proposed to use the
Simplex method and add a new term to the personalization (Equation 4.1), which
prevents a simulated tumor from becoming a toroid. The new term involves the
Dice coefficient, however, in the future, physicians might want more control over
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the trade-off between false positives and false negatives being considered in the
personalization. To address this, one possibility is to change the new term to
be a weighting factor on sensitivity and specificity instead of using the Dice
coefficient. In this way, it would be possible for a physician to penalize heavily
for false positives, which pose more risk to the patient in therapy planning then
false negatives do.

Neither the reaction-diffusion FK nor the traveling time FK model formu-
lations have been tested on a large number of patients and to the best of our
knowledge a detailed sensitivity analysis on the parameters (using patient data)
has not been done. One could imagine that tumor shape, size, area of the brain,
and speed could have effects on the simulation results. Therefore, this is another
logical next step.

One of the main focuses of Chapter 4 was to estimate the diffusivity of a
low-grade glioma for individual patients. After finding that an iterative approach
yields promising results, the next step would be to try to improve these results,
mainly speed, uncertainty of input parameters, and incorporating new imaging
technologies that will become available in the upcoming years. We will mention
a few ways of improving the estimate of diffusivity of a low-grade glioma for indi-
vidual patients. First, a Markov Chain Monte Carlo formulation would provide
speed improvements to the FK model with probability distributions on the con-
fidence of the results. This method uses distributions for the parameters we are
unsure about (white matter segmentation due to registration, tumor segmenta-
tions, etc.). By using a probabilistic model instead of a deterministic one, some
of the uncertainty due to registration can be taken into account. This would be
a logical next method to try since all of the input parameters of the model have
accuracy limitations. Second, one could also address the problem of estimating
the diffusivity of a glioma by using a multi-scale model, where biopsy data de-
termines the values of ρ, which would be different in different areas of the tumor
at the micro-scale, and the macro-scale could use the traveling time FK model
formulation. There are three main challenges associated with using biopsy data
in modeling: i) labeling from which site a biopsy is from, ii) consistency of the
brain parenchyma, and iii) biopsies providing local tumor cell density informa-
tion. First, the challenge with using biopsy data is that currently neurosurgeons
and pathologists do not know the exact location of where a biopsy was taken
from. It is not currently in the procedure for neurosurgeons to label the biopsies
with which area of the tumor they took the biopsy from (even if it is not an exact
coordinate). Therefore, if four biopsies are taken from the same individual, a
pathologist will not know from which area of the tumor the biopsies were sam-
pled. Second, the consistency of the brain tissue is not rigid in nature. Dr. Lyons,
Chair of Neurological Surgery at Mayo Clinic in Arizona, described brain tissue
as having the same flexibility as yogurt; therefore, it is very difficult to precisely
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know where a biopsy was taken from unless one leaves a metal clip where the
biopsy site was. Third, biopsies provide local and not global information. In the
future, this could change with the introduction of new technology. Once we know
the location of the biopsy sites, a multi-scale model could utilize this information.
Lastly, two-threshold methods could be used to find the diffusivity of a glioma.
For high-grade gliomas T1-gadolinium and FLAIR image contours can be used as
the two-thresholds. However, for low-grades only FLAIRs are used to determine
the tumor extent. P and Q maps, which are two thresholds that can be obtained
from a DTI display different levels of tumor infiltration. This method was pro-
posed in [Price et al., 2006, 2007]. Unfortunately, we were not able to reproduce
these results using our patient data. Therefore, the P and Q map method does
not work with all patient data cases, but sounds like a promising idea and there-
fore should be explored in future research. In the future of low-grade glioma
modeling, PET imaging could also provide the second threshold, where FLAIR
provides the first threshold.

Model Inputs

The model inputs that had a crucial effect on the accuracy of the model results
were: i) the tumor segmentations and ii) the brain parenchyma mask.

Tumor segmentations had several large challenges. First, tumor segmentations
have inter- and intra-expert segmentation variability since most tumor boundaries
are fuzzy/blurred in MRIs. Second, it also does not help that MRI hyper-intense
voxels do not necessarily represent tumor, especially for FLAIR MRIs, which are
standard for assessing low-grade glioma progression. Hyper-intense voxels could
also represent extra edema from seizures, blood, scaring, or white matter lesions.
Therefore, the actual tumor size is very difficult to actually determine. Third,
image protocols are not standard which affects the quality of the registrations.
Sometimes a patient starts off by having axial acquisitions, and then this changes
to sagittal. Often times the z-spacing of the MRIs changes from scan to scan.
In addition, each scanner produces slightly different images, and patients do not
necessarily have their sequential images taken with the same scanner. Another
point to make with imaging protocols is that a technician has the freedom of
naming MRIs. There is currently no naming convention in place, which poses
challenges for registering a large set of patient data. Fourth, sometimes imaging
has streaks from the patient moving.

Some ways to cope with the tumor segmentation challenges could be the
following. First, the use of an automatic tumor segmentation tool that would
segment a tumor the same way each time would improve the speed and accuracy
of tumor segmenting. In the BRATS [Menze et al., 2014] workshop several au-
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tomated tumor segmentations were presented that looked promising. Hopefully
these methods will increase in accuracy in the upcoming years. The true chal-
lenge in automatic tumor segmentation will be to separate tumors from white
matter lesions, which look the same in FLAIR MRIs. Second, hopefully MRI
technology also improves in the upcoming years as the RANO Working Group
has envisioned. Third, influencing protocols through MRI scanner settings could
be a viable solution. Fourth, relaxing patients, which will hopefully cut down on
patient movement and increase patient cooperation, through ambient light has
already been proposed by Philips (Philips Ambient Lighting MR) [Philips, 2010]
and may be seen in many hospitals in the upcoming years.

Regarding having a correct brain parenchyma mask, which has the lobes sep-
arated and the sulci patterns defined, is also a large challenge [Unkelbach et al.,
2014]. It is not enough to simply use segmentation algorithms, such as Bet2
from FLS, or use a registered atlas, such as the MNI 152, to estimate a brain
parenchyma mask to use in glioma growth modeling since these masks do not
completely separate brain lobes and sulci patterns, which is crucial for accurate
tumor growth modeling. In Appendix B, we created a brain mask from com-
bining the thresholded white and gray matter maps from the MNI 152 Atlas.
Dr. Amelot, a collaborating neurosurgeon, segmented the CSF patterns from
this mask and then we subtracted this CSF segmentation from the brain mask.
To create a registered brain mask of a patient case that has the lobes separated,
one could either i) register the patient images to the MNI 152 Atlas space and
use this improved brain mask to run their simulations, or ii) register the brain
mask (in the way proposed in Chapter 4) to the patient space. The drawback
of the former method is that there might be deformations to the tumor of the
patient when the inverse transformation is applied to the simulation results. The
drawback to the latter method is that the sulci patterns might not be in the
exact location of the patient since the atlas mask was registered to a patient,
but a couple voxels off, which will affect the simulation boundary conditions and
ultimately the simulation results. There should be a study done in future work
to analyze which approach might be better to address this problem.

Validation and Automation

A future direction would be to validate the FK formulation on more patients using
the processes that we proposed. In order for a biophysical model to be adopted in
medical practice, it has to be: i) reliable, ii) answer specific medical questions, iii)
fast, and iv) preferably not add extra steps to clinicians workflow. To accomplish
this end, one would need to work closely with clinicians to scrutinize the results of
the model and find shortcomings. From these findings and continuously refining
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tool requirements with clinicians, the model can iteratively be improved and
ultimately validated. Next, it would be important for a software team to automate
all of the pre- and post-processing steps. When this is accomplished, it will be
possible for this model to be productized and one day be used within a clinical
environment.

Therapy Planning

A reaction-diffusion FK model formulation could be improved to handle surgery
planning. If reaction-diffusion FK model formulation would be registered with a
functionality atlas, the model could flag certain functional areas that the tumor
would reach and would give an estimate as to when the tumor would reach these
functional areas. For example, gliomas that are located in the foot motor region
of the brain are difficult and risky to operate on. Therefore, it would be helpful
to have a model to flag when a tumor would reach the foot area of the brain.

It would also be interesting to combine the model with fMRIs to see what
functional areas are being affected with tumor progression at a particular moment
in time. This information would be important for therapy planning and deciding
when to apply therapy if the watchful waiting approach is being applied.

In the future, MRI technology will improve, allowing the accuracy of all of
the steps in our process to improve as well. In addition, better non-linear reg-
istration, improved automatic segmentation methods, and a mechanical model
will be developed, which will also ameliorate the accuracy of our proposed meth-
ods in chapters 4 and 5 of this thesis, and bring reaction-diffusion FK model
formulations closer to being used in glioma therapy planning.

Conclusion

In this PhD work, we have detailed important advancements in patient-specific
bio-medical modeling of gliomas. The obtained results are promising and we
hope that, after future development, reaction-diffusion Fisher Kolmogorov model
formulations with personalizations could be used in medical practice. Still, more
research is needed to face the issues that are present at every step in the modeling
process, e.g., segmentation, registration, modeling, etc., before this model is ready
to be validated on a large scale and later adopted in hospitals.
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Stretton, Hervé Delingette, and Nicholas Ayache. Tumor Growth Parame-
ters Estimation and Source Localization From a Unique Time Point: Appli-
cation to Low-grade Gliomas. Computer Vision and Image Understanding,
117(3):238-249, 2013.

• This paper was submitted to the Journal of Frontiers in Oncology and pro-
poses a way to estimate the tumor infiltration after a surgical brain resec-
tion.

134



6.2 Perspectives

Erin Stretton, Emmanuel Mandonnet, Hervé Delingette, and Nicholas
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Appendix A
Tumor Parameters Estimation and

Source Localization

Based on a fruitful collaboration carried out during the time of the PhD, which
ties in with the main goal of this thesis. This chapter was published in the Journal
of Computer Vision and Image Understanding [Rekik et al., 2012].

A.1 Context

Coupling time series of MR Images with reaction-diffusion-based models has pro-
vided interesting ways to better understand the proliferative-invasive aspect of
glial cells in tumors. In this paper, we address a different formulation of the
inverse problem: from a single time point image of a non-swollen brain tumor,
estimate the tumor source location and the diffusivity ratio between white and
grey matter, while exploring the possibility to predict the further extent of the
observed tumor at later time points in low-grade gliomas. The synthetic and
clinical results show the stability of the located source and its varying distance
from the tumor barycenter and how the estimated ratio controls the spikiness of
the tumor.
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A.2 Introduction

Brain gliomas represent about 50% of all primary brain tumors [Tovi, 1993] and
can be classified according to their grade of malignancy. Low grade gliomas
(LGG) are slow invaders of brain tissue as they keep growing for many years,
presenting one of the most controversial decision treatment areas. High grade
gliomas (HGG) remain unfortunately incurable with an average life expectancy
of one year after its discovery, eventually creating symptoms due to an increase
of the intracranial pressure or swelling around the tumor. The diagnosis of brain
gliomas includes the analysis of various MRI sequences of the brain which partially
reveal the tumor invasion. Based on those images and other clinical information,
neurologists try to determine the grade of the gliomas and to estimate their
current and further spatial extent and if possible their source location.

For more than a decade, mathematical models of brain tumors have been
devised to help clinicians answer these questions. Microscopic models study the
cellular mechanisms [Bearer et al., 2009; Frieboes et al., 2007; Sanga et al., 2007;
Wang et al., 2009] that explain the growth dynamics of gliomas at a microscopic
scale. On the other hand, macroscopic models pioneered by Murray [Murray,
2002] describe the evolution of tumor cell density. However, those quantities can-
not be directly observed in clinical medical images, but it is commonly assumed
that visible tumor boundaries correspond to an isovalue of this density. More re-
alistic reaction-diffusion models have been proposed by Swanson et al. [Swanson
et al., 2000] based on the fact that tumor cells migrate faster on white matter
fibre tracts myelin sheaths [Giese et al., 1996]. They have been further refined
by Jbabdi et al. [Jbabdi et al., 2005] and Clatz et al. [Clatz et al., 2005] by
considering an anisotropic diffusion in the white matter whose diffusion tensor is
estimated from those acquired in DT-MRI.

A key issue for those models to answer clinical questions is their personal-
ization, i.e. the estimation of some patient-specific parameters from medical
images. The main parameters to be identified based on reaction-diffusion models
were pointed out in [Angelini et al., 2007] as a combination of tumor diffusion
tensors in white and grey matter, its proliferation rate, its initial point and its
initial time. Several authors have estimated patient-specific parameters manually
[Clatz et al., 2005] or through major model simplifications [Swanson et al., 2003].
Colin et al. in [Colin et al., 2012] used a reduced model based on Proper Orthog-
onal Decomposition (POD) in order to identify growth parameters of pulmonary
nodules in CT images. Konukoglu et al. [Konukoglu et al., 2007b,a, 2009] have
proposed an approach to automatically and accurately personalize brain tumor
models. They first remarked that given time series of brain MR images, only the
motion of a tumor front can be observed and therefore only the three following
parameters can be recovered : diffusivity in the white dw and grey matter dg as
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well as the initial time T0. Furthermore, since the tumor cell density are only
observed in MR images through visible tumor boundaries corresponding to an
isovalue, the reaction-diffusion equations can be advantageously replaced by an
Anisotropic Eikonal Equation (AEE) [Konukoglu et al., 2009] which models the
time at which a tumor front reaches a given point. By minimizing the distance
between the segmented tumor and the simulated one, they were able to estimate
uniquely those three parameters and test the prediction of future tumor evolution
from at least a pair of images.

In this paper, we tackle a slightly different problem than the one approached
by previous authors. Instead of estimating the speed of tumor growth from a time
series of images, we aim at characterizing the nature of the glioma, more precisely
LGG, from a single MR image. Indeed, we hypothesized that the tumor shape is
dependent on the proliferating or infiltrating nature of the tumor. Contrary to
HGG where the presence of brain edema is common and usually associated with
tumor malignancy, LGG are slowly growing tumors with a minimal surrounding
edema [Deangelis, 2001; Kaal and Vecht, 2004; Whittle, 2004]. Since our method-
ology main focus is on LGG, we will not consider the edema-induced mass effect
in our further formulation of the tumor growth model. Therefore, the anatomical
boundaries such as the ventricles’ will remain static as the tumor grows.

Given a segmented brain glioma from an MR image, we solve an inverse prob-
lem in order to estimate the diffusivity ratio dw/dg and the tumor source position.
By localizing the tumor source and estimating the invaded tissue characteristic
using this ratio dw/dg our objective is to provide clinicians with new indices that
can be used for diagnosis from the first acquired MR images, combined with a
subsequent prediction of tumor invasive margins as it grows from the initially
observed boundary. This additional information may help in surgical and/or
radio-therapeutic treatment planning especially when it comes to determining
the margins for applying the therapy. The problem of tumor seed localization
was recently raised in [Gooya et al., 2011a], where a reaction-diffusion based joint
estimation of tumor evolution parameters was addressed within a multimodal
deformable registration framework. This approach focuses on the MR image reg-
istration with an atlas providing the estimation of the initial seed location as
a by-product. Later on, this approach was extended into a joint segmentation
and deformable registration as multi-channel tumor images were implanted in
a healthy atlas to reconstruct a statistical atlas of gliomas [Gooya et al., 2012,
2011b]. These recent publications targeting a localization of tumor seed and a
quantification of the strength of its mass effect and its white matter diffusion
coefficient required the us.epse of a normal atlas. In this paper, we investigate
a different problem from registration or segmentation in low-grade gliomas. Our
approach addresses a spatio-temporal tumor evolution with the estimation of the
diffusivity ratio and the position of its source. Moreover, thanks to our personal-
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ized model, we have the opportunity to produce a predictive sequence of images
showing the tumor potential evolution.

Additionally, after solving the inverse problem, we analyze the location of
tumor sources, and their stability over time. Also, the relationship between the
tumor source and tumor barycenter is evaluated since both locations have been
assumed to match in past studies [Laigle-Donadey et al., 2004; Drabycz et al.,
2010; Anderson, 2005; Sottoriva et al., 2010; Kansal et al., 2000]. Finally, knowing
the diffusivity ratio dw/dg and the tumor source from a single image, we evalu-
ate whether this information gives insights into predicting further tumor shape
evolution in two distinct cases of low-grade gliomas.

A.3 Material and Method

A.3.1 MR Glioma images

In this work, we assume that for a given patient, one MR FLAIR image of the
brain has been acquired, showing visible boundaries of glioma cells. We also
assume that a Diffusion Tensor MR Image (DT-MRI) is also available and ac-
quired at the same time as the FLAIR image. While FLAIR images are acquired
in routine on patients with brain tumors, this is unfortunately not the case for
DT-MRI. The extent of the tumor has been manually segmented in FLAIR im-
ages. Similarly, brain masks have been manually delineated on those images from
which brain ventricles have been removed by a simple thresholding of the signal.
Also white matter regions have been isolated by thresholding the voxels with the
largest eigenvalue in the DT-MRI.

Objective: From the segmented tumor in the FLAIR image, our objective
is to provide a quantitative analysis of the tumor shape which is not simply
based on geometry (spheroid vs star-shaped) but based on simple biophysics
growth principles. Indeed, two quantities are estimated in this analysis: the
tumor source position and the diffusivity ratio between white matter and grey
matter. This information may provide additional hints about the nature and the
future progression of the tumor.

Data issues: Collecting LGG data with DT-MRIs is not a very straightforward
task since diffusion MR is a quite recent technology [Young, 2007], rarely used
in the common clinical practice and furthermore acquired DT-MRI may have
various anomalies like black holes, low resolution and signal distortion. This
is particularly true around any tumor lesion. This lack of information may be
compensated by assuming the symmetry of the brain. For this, we perform a
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symmetrization process to “reinitialize” the region where the tumor grew and
induced a diffusion signal distortion. Hence, for a proper simulation of tumor
growth, we have corrected the tensor field by making the hypothesis that the DT
MRI was originally symmetric with respect to the mid-sagittal plane. Thus the
DT-MRI voxels corresponding to the largest extent of the tumor have been mod-
ified by symmetrizing and copying the voxels from the healthy brain hemisphere.
However, this symmetrization process is prone to the following difficulties:

a- the DT MRI is asymmetric especially in white matter where about 50% of
the contralateral tumor volume has zero Fractional Anisotropy (FA) values, while
in the corresponding affected region where the tumor grew, the diffusion signal
exists with a remarkable distortion (see Fig A.1-a where the FA tumor map is
darker than the contralateral part with a significant absence of symmetry).

b- even with a reliable DT-MRI symmetry, about 50% of the contralateral non-
pathological symmetric volume to the tumor volume has no DT (i.e FA) signal.
In Fig A.2-a, the presence of large black hole in the FA signal in the contralateral
part to the tumor invasion area presents a major barrier to diffusion tensor-guided
glioma evolution simulation. To cope with this DT signal-missing problem, an
interpolation algorithm based on isotropic diffusion (solving the heat equation)
was applied to estimate the missing tensors from neighboring regions. This is
done by applying a Gaussian convolution separately on the six components of
the diffusion tensors.

Dataset: By excluding LGG cases with completely distorted or missing DTI,
we succeeded to include four LGG patients. The first case, a.k.a patient A, has
developed a second grade astrocytoma classified as a low-grade glioma. Four suc-
cessive time points of T2 flair MR images with a resolution of 0.99×1×2.16 mm3

were acquired and visible tumor boundaries were manually delineated by an ex-
pert. A DT-MRI image was also acquired at the first acquisition time point. As
expected, the white matter fiber tracts are perturbed by the tumor growth and
the DT-MRI signal near the tumor does not capture the original diffusion tensors
of the brain at the onset of the disease. Therefore, we used the symmetrization
process to reset the affected area to non-pathologically spatially deviated tensors
(see Fig A.3 where the white matter diffusion tracts were beautifully recovered).

The second case, a.k.a patient B, suffers from a low-grade glioma and four MR
images were acquired at distinct time points with a resolution of 0.89 × 0.97 ×
0.97 mm3. Only one DT-MRI was acquired during the initial scanning process
and the tumor region of the DT-MRI has been symmetrized similarly to patient
A. In addition, the DT-MRI includes small holes in the opposite region to the
tumor that were successfully interpolated.

The third case, a.k.a patient C, with LGG has three acquisition timepoints
with a resolution of 2× 2× 2 mm3. In this particular case, displayed in Fig A.1,
we encountered difficulty (-a-) where the DT-MRI is not fully symmetric.
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The fourth case, a.k.a patient D, with a resolution of 2× 2× 2 mm3 was not
symmetrized due to the large holes in the symmetric region to the tumor as show
in Fig A.2-a. Therefore, we interpolated the holes in the affected tissue without
the symmetrization process.

A.3.2 Tumor Growth Modeling : from reaction-diffusion

to Eikonal equations

Glial cells dynamics are essentially governed by two biological phenomena : pro-
liferation and invasion. They can be jointly modeled by a reaction-diffusion equa-
tion which describes the change over time of the normalized tumor cell density
u: {

∂u
∂t

= ∇. (D(x)∇u) + ρu(1− u)
D ∇u. n∂Ω = 0

(A.1)

where ρ is the proliferation rate, D the local diffusion tensor, and n∂Ω is the
normal vector at the domain boundary surface ∂Ω. In the first equation, the
proliferation of tumor cells follows a logistic growth parameterized by ρ whereas
the tumor infiltration into neighboring neural fibers is captured by an anisotropic
diffusion parameterized by D. The second equation indicates that there is no flux
of tumor cells outside the domain Ω.

The diffusion tensor is a definite positive and symmetric 3× 3 matrix whose
value may be linked to Diffusion Tensor MRI (DT-MRI) [Jbabdi et al., 2005]. In-
deed, it characterizes the motility of tumor cells that is considered to be isotropic
in grey matter but anisotropic in white matter. More precisely, the tumor diffu-
sion tensor (TDT) may be written as D(x) = dgI3 in grey matter, where dg is
the diffusivity coefficient.

In white matter, there are several approaches to link the TDT D(x) with
the DT-MRI signal Dwater(x). Clatz et al. [Clatz et al., 2005] proposed to have
D(x) proportional to Dwater(x) whereas Jbabdi et al. [Jbabdi et al., 2005] have
introduced a formulation which takes into account the possible equality of the
two largest eigenvalues corresponding to a possible fiber crossing. Due to high
anisotropies of Dwater(x) in most parts of the white matter, these two approaches
lead however to diffusivities that are much lower than dg in the directions or-
thogonal to the fibers, which is questionable. Furthermore, the high ratios of
anisotropy encountered in those two expressions also lead to large computational
times.

In this paper, we propose to use the following white matter tumor diffusion
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tensor:
D(x) = V(x)[diag(e1(x)dw, dg, dg)]V(x)T (A.2)

where dw is the white matter diffusivity coefficient, V(x) represents the matrix
of sorted eigenvectors of Dwater(x) and e1(x), is the normalized largest eigenvalue
(between 0 and 1) ofDwater(x). With this choice, tensors have a non-homogeneous
anisotropy ratio which is always less than dw/dg but is maximized at the center
of the white matter fibers and continuously decreases towards their boundaries.
By simply dividing the duration of tumor evolution simulation of its propagating
front using our adopted diffusion tensor A.2 by the simulation duration as we used
the diffusion tensor formulas presented in [Jbabdi et al., 2005] (we precisely refer
the reader to formulas A11 and A12), we have noticed that our choice speeds-up
the computational time by a factor of 200 without any significant differences in
performance. In fact, the use of a more nonlinear (more anisotropic) diffusion
tensor field increases the computational time of the solution as the characteristic
direction of the recursive anisotropic fast marching algorithm used to solve the
AEE A.5 becomes harder to find. This also may be explained by the fact that
below a certain anisotropy ratio, the difference in tumor growth simulation is
hardly noticeable.

The reaction-diffusion equation (A.1) is not practical when dealing with clin-
ical images. Indeed, in MR images tumor cell density u cannot be observed but
the visible tumor boundary can. Hence, a front motion approximation for the
reaction-diffusion equation was introduced by Konukoglu et al. [Konukoglu et al.,
2009] assuming that the visible contour is associated with iso-density contour
u = 0.4 [Tracqui et al., 1995b]. They introduced an Anisotropic Eikonal Equa-
tion (AEE) describing the time T (x) at which the evolving tumor front passes
through the location x. In its simplest form, the AEE writes as:

F
√
∇T TD∇T = 1 with F = 2

√
ρ (A.3)

where T stands for the transposition operator.
However, they noticed that such approximation of equation A.1 was too sim-

plistic and then proposed to account for the fact that the tumor front speed
increases over time to reach an asymptotic value equal to 2

√
ρ nTDn where n

is the normal direction of the front. Here, the definition of an “asymptotic be-
havior” implies that we look at tumors way of growing, regardless of their size,
at larger times. In our case, in both LGG patients, the last acquired timepoint
represents our scale of “larger times”, around which we can assume an asymp-
totic behavior of the tumor front speed. In other words, at the asymptotic stage,
the behavior of the tumor that we are interested in understanding and poten-
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tially predicting is at later times and not during the initial growth stage where
the tumor is presumably small and sphere-like. Therefore, the asymptotic speed
hypothesis doesn’t apply as small tumors proliferation-invasion kicks off. Before
reaching the asymptotic stage, a dynamic formula of the time-evolving speed of
the propagating tumor front was introduced in [Konukoglu et al., 2009] as the
tumor growth simulation modelling became more realistic and less simplistic:

F =
4ρT − 3

2
√
ρT

(A.4)

Furthermore, the front curvature κeff (x) also plays a role in the front speed as
the front slows at high curvature points. This is especially important at the early
stage of the tumor growth when the front is similar to a small sphere. In this
setting, the speed term is :

F =
4ρT − 3

2
√
ρT

− 0.3
√
ρ
(
1− e−|κeff |/0.3√ρ

)
(A.5)

This last formulation is no longer a Hamilton-Jacobi equation due to the second-
order curvature term and therefore cannot be solved by fast sweeping methods
such as the Anisotropic Fast Marching (AFM) [Konukoglu et al., 2007b]. How-
ever, a multi-pass approach was proposed [Konukoglu et al., 2009] to solve effi-
ciently this equation by applying several times the AFM method while estimating
the curvature front from previous iterations. The AFM method is recursive and
the larger the tensor anisotropy the more iterations are needed to compute the
characteristic direction of equation (A.5). Our white matter TDT of equation
(A.2) limits the anisotropy ratio and therefore leads to reasonable computational
times (typically few minutes for a tumor growth from a seed point).

A.3.3 Parameter estimation problem from a unique MR

image

Based on the previously exposed mathematical model, we can simulate the growth
of a glioma given its initial source S(x) for which we assume that T (S(x)) =
0. From this boundary condition and the knowledge of diffusivity dw, dg and
proliferation rate ρ we can compute the time T (x) at which the visible tumor
front reaches a given point. The isocontours of the field T (x) correspond to the
successive shapes of the visible tumor boundary over time as shown in Fig A.4.
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The speed on the front is not constant but its asymptotic value is 2
√

ρdg in grey
matter and 2

√
ρdw in white matter.

In this paper, we are interested in solving the following inverse problem: given
a visible tumor boundary SSeg in an MR image, can we extract the growth pa-
rameters S(x), dw, dg, ρ, TObs that best explain the observed tumor boundary. The
duration TObs between the onset of the tumor and the MR image acquisition is
indeed also unknown.

Based on [Konukoglu et al., 2009], it has been already established that several
combinations of ρ, dw, dg lead to the same front speed and therefore the same
tumor growth simulations. Therefore, it is sufficient in this inverse problem to
consider a fixed value of the proliferation rate ρ corresponding to the tumor grade
and to estimate the remaining parameters. However, unlike [Konukoglu et al.,
2007a, 2009] this problem can be further simplified by realizing that the front
speed cannot be estimated since TObs is unknown. If one multiplies the diffusivities
by a scale factor α then one obtains the same isocontours for a propagation time
divided by

√
α1. This means that the simulated tumor isocontours do not depend

on that absolute value of dg and dw but on the diffusivity ratio:

r =
dw
dg

In the remainder, we will show that this ratio is related to the spikiness of the
tumor.

Therefore a simple sensitivity analysis has led to conclusion that solving the
inverse tumor growth problem only depends on the following 2 parameters: the
source location S(x) and the spikiness index r. Here, the “spikiness index”
represents a biology-driven estimated measure which quantifies the tortuousness
of the boundary of the tumor as displayed on MR axial slices (see Figure A.4-A),
an index related to the frequency at which the tumor shape bends and twists.
We consider that {S(x), r} appropriately characterize well a tumor extent if its
visible boundary in MRI, SSeg, is an isocontour of the simulated tumor growth
initiated at S(x) with diffusivity ratios equal to r. Therefore, we propose to
estimate the patient specific parameters by minimizing the following criterion:

Cρ(S(x, y, z), r) =
1

NT

√√√√ ∑
x∈SSeg

(T (x)− T )2 (A.6)

1This is not strictly true if one uses the speed term F taking into account the transient
speed as in Equation A.4 or A.5. However, the difference in simulations due to the absolute
value of the diffusivities was found to be negligeable.
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with

T =
1

N

∑
x∈SSeg

T (x) (A.7)

where N is the number of points belonging to the manually delineated tumor
boundary SSeg. In these equations, T and Cρ are respectively the mean time value
and time standard deviation computed over the tumor boundary. Our motivation
to use this criterion to get good estimates of our unknowns (S(x, y, z), r) derives
from the fact that a tumor boundary (propagating front) is simultaneously defined
as an isotime and an isosurface. Thus, to quantify how good is the estimation
of the parameters guiding the spatio-temporal evolution of the tumor shape,
we need to quantify how closely the simulated isosurface matches the observed
one (manually delineated boundary). From a time perspective, this also implies
that when measuring the time T at every point x of the manually delineated
tumor isotime boundary, its value T (x) will be constant in the best case scenario
where the simulated tumor front exactly matches the observed tumor boundary.
Therefore, minimizing the time standard variation criterion Cρ over the delineated
tumor boundary SSeg will guide the algorithm towards a better estimation of the
two key parameters driving the invasive tumor front into fitting the successive
MR observed boundaries. Note that Cρ is normalized by T because the criterion
should be made independent of the tumor front speed and therefore the mean
time T .

In order to efficiently minimize the previously outlined criterion, we use the
multidimensional unconstrained minimization algorithm without gradient intro-
duced by Powell in [Powell, 2009]. This algorithm suits our case since our pa-
rameters are bounded in both biological and geometrical spaces. Moreover, the
derivative of minimization criterion Cρ is not easy to compute. To better study the
convergence of this algorithm and evaluate its outcome, 15 tests were performed
using synthetic tumors. Further evaluation of this method was then studied using
real data: two patients with LGG.

A.3.4 Synthetic Data: synthetic tumor generation pro-

cess

In order to validate our parameter estimation, we propose to produce synthetic tu-
mor MR images, where the initial tumor location and diffusivity ratio are known.
The procedure of generating synthetic tumors relies on choosing a seed point
S0 in either white or grey matter and the proliferation rate ρ to one of the fol-
lowing values 0.008, 0.012, 0.024/day. The tumor front propagation is simulated
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with a white matter diffusion rate dw and grey matter diffusion rate dg whose
ratio varies between 1 and 100 (considered to be a biologically valid range) using
equation (A.5). The growth simulation is stopped at a specified time TObs thus
leading to a time distance map as seen in Fig A.4. Different synthetic tumors
were created at different anatomical locations with different sizes and asymptotic
speeds of growth in both white and grey matter.

A.4 Results

A.4.1 Convexity of the minimization function: a conver-

gence study

To check the convergence of the Powell minimization algorithm to the initially set
parameters, we study the convexity of the minimization criterion C (see Equa-
tion (A.6)) for the four scalar parameters [Sx, Sy, Sz, r], writing separately the
coordinates of the tumor source location. We proceed by alternatively fixing
some parameters to their ground truth values and optimizing the remaining ones
with the proposed minimization process. In Fig A.5, we can clearly see the con-
vexity of the minimization surface plotted after setting the diffusivity ratio r and
one of the source coordinates to their right values.

The convexity of the minimization criterion Cρ was successfully checked also
when optimizing three parameters and setting the fourth one at its true value.
The fact that the minimization criterion appears to be convex at the vicinity
of the ground truth parameters is reassuring about the observability of the four
parameters. However, the functional may still have local minima and practical
optimization results will be discussed in the next sections.

A.4.2 Synthetic data

We evaluated our method on 15 synthetically generated tumors with a diffusivity
ratio ranging from 1 to 100. The algorithm succeeded to identify the original
tumor source with a mean error of 0.42mm and a standard deviation of 0.36mm.
Moreover, it always converges to the real diffusivity ratio dw/dgwith a mean error
equal to 0.18 and a standard deviation of 0.06.

Furthermore, we use this synthetic data to provide a better understanding
of the diffusivity ratio r. The first row of Fig A.6 shows how the shape of the
tumor boundary can switch from “sphere-like”to “star-like”as the diffusivity ratio
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value jumps from 1 to 50. Although the displayed tumors in the third row are of
different sizes, the correlation between tumors’ shape spikiness and the value of
the diffusivity ratio r ∈ [1− 100] is clear.

Besides, we also notice from the second row of Fig A.6 similar tumor contours
in terms of spikiness and irregularity when fixing the diffusivity ratio at the same
value and varying the location of the initial tumor seed. This confirms that the
diffusivity ratio value r controls the spikiness of tumor shape.

A.4.3 Clinical data

A.4.3.1 Evaluation criteria

In clinical data, no ground truth values of the parameters are available and there-
fore additional criteria must be introduced in order to assess the quality of the
parameter estimation.

After the optimization of criterion A.6, we extract the simulated isocontour
which is closest from the visible tumor boundary in MRI. Computing symmetric
distances between the two surfaces provides a quantitative information about how
well the tumor shape can be explained by the proposed tumor growth model. We
detail below the proposed approach.

We extract the closest isocontour defined by time ˆTObs by optimizing
CisoT ime(50%)(T ):

ˆTObs = min
T

CisoT ime(50%)(T ) (A.8)

The criterion CisoT ime(50%)(T ) is defined as the median symmetric distance be-
tween the visible tumour boundary SSeg and the isosurface ŜisoT ime at time T .

More precisely, for each voxel of ŜisoT ime (resp. SSeg) its closest distance from

SSeg (resp. ŜisoT ime) is computed through a distance map and added to a list.
The median value of that list is then taken as CisoT ime(50%)(T ). The optimiza-
tion of the functional is done with the Powell algorithm [Powell, 2009] already
used for solving the general inverse problem and requiring few estimations of the
functional. The range of time value for the optimization is constrained to be in
the range [T − δ;T − δ] where δ is the standard deviation:

δ =

√√√√ ∑
x∈SSeg

(T (x)− T )2

N

We also compute other robust distance criteria CisoT ime(y%)(T ) by taking the y%
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quantile of the symmetric distances.
Once the closest isochrone surface ŜisoT ime is estimated, we define the sym-

metric distance between (S, ŜisoT ime) as the first evaluation criterion:

CsymDist(SSeg, ŜisoT ime) =
1

|SSeg|+ |ŜisoT ime|⎡
⎣ ∑
x∈SSeg

min d(x, ŜisoT ime) +
∑

x∈ŜisoTime

min d(x, SSeg)

⎤
⎦ (A.9)

where d denotes the closest Euclidean distance between a point and a surface.
We can also measure the similarity between the visible tumor volume Vseg and

the simulated tumor volume VisoT ime:

Coverlap(Vseg, VisoT ime) =
Vseg ∩ VisoT ime

0.5 (Vseg + VisoT ime)
(A.10)

A.4.3.2 Study of Patient A

For patient studies, we take advantage of the fact that several FLAIR MR images
are available for different time points. We first check the stability of source
locations for the M time points per patient and correlate the spikiness index with
the observed tumor evolution. To estimate the two target parameters [S(x), r],
the proliferation rate was fixed to 0.012/day. Table A.1 represents the outcome
of the estimation method for the four time points (t1, t2, t3, t4) of Patient A.

t1 t2 t3 t4
S(x) (120, 111, 31) (120, 111, 31) (122, 115, 30) (121, 116, 30)

d(G,S) in mm 2.00 1.73 1.42 5.38
r 41.98 40.47 40.58 41.38

Table A.1: Outcome of the minimization algorithm of Patient A which was sep-
arately computed at four time points. The distance d denotes the Euclidean
distance between the tumor barycenter G and its estimated source S.

We can clearly observe in Table A.1 the stability of the tumor source location
and the fact that for the first 3 time points this location is very close to the
tumor barycenter since the Euclidean distance between them d(G,S) ranges from
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CsymDist in mm Coverlap in %
(PatientA, t2) 1.97 85.63
(PatientA, t3) 1.79 87.76
(PatientA, t4) 1.74 88.04
(PatientB, t2) 1.53 82.20
(PatientB, t3) 1.48 84.79
(PatientB, t4) 1.13 88.02

Table A.2: Prediction evaluation based on the error measures CsymDist and Coverlap

computed for Patient A and B to predict the evolution of the tumor at specific
time points ti using the minimization outcome of the previous time ti−1.

1.42mm to 2mm. Nonetheless, for the fourth time point, the estimated tumor
source distance from its barycenter is 5.38mm. Moreover, the diffusion rate r is
mainly constant. In fact, patient A showed a very slow and quasi-static evolution
of the tumor boundary between the second and the third acquisition timepoints.
Our simulation model depicts this static evolution behavior as the corresponding
estimated spikiness index r shown in Table A.1 remains quasi-static (r = 40.47 at
t2 and 40.58 at t3), which is in line with the identical appearance of the estimated
tumor red boundaries shown in the first and second rows of Figure A.7. However,
it is worth noting that the algorithm failed to catch the tiny bump that appeared
in the tumor boundary at t3 (see first column, row 1 and 2 in Figure A.7).
This can be explained by the fact that the algorithm is based on a mean error
minimization process, which therefore accounts for a mean morphological change
in tumor shape over all the axial slices included in the tumor volume.

Second, we study the possibility to predict further spatial tumor boundaries
evolution based on parameter evaluation. More precisely, after estimating patient
specific parameters at time ti, we run a forward simulation using those estimated
parameters trying to predict the tumor invasion process as time evolves. We then
proceed by estimating the closest predicted isocontour from the observed tumor
boundary at time ti+k as described in sectionA.4.3.1. Fig A.8 and Table A.2
display the outcomes of the evaluation criteria for every time point.

We notice a limited discrepancy between the observed contour at time point ti
and the predicted one at ti+1 since the symmetric distance between these contours
CsymDist ranges from 1.74 mm to 1.97 mm. Moreover the median distance error
CisoT ime(50%) ranges from 1.44 mm to 1.68 mm and the volume overlap Coverlap

between the real tumor volume and the extracted one ranges from 85.63% to
88.04%. It is remarkable that the estimated parameters at a specific time point
ti captures the tumor spatial evolution at the successive time point ti+1. As high-
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t1 t2 t3 t4
S(x) (34, 145, 117) (35, 141, 117) (34, 141, 118) (34, 140, 119)

d(G,S) in mm 5.09 5.47 5.09 4.24
r 6.45 37.15 30.12 47.70

Table A.3: Outcome of the minimization algorithm of Patient B separately com-
puted at four time points.

lighted in Fig A.8, the estimated-parameters based prediction shows promising
results.

A.4.3.3 Study of Patient B

The parameter estimation outcome for Patient B at its four time points is sum-
marized in Table A.3. The obtained results confirm the stability of the tumor
source location. At every time point, the distance between the tumor barycenter
and the located source exceeds 4 mm, meaning that the tumor source may not
be close to its barycenter. Unlike Patient A, the spikiness index value r increases
as time evolves as it can also assessed visually in Fig A.9.

Despite the poor signal quality of the DT-MRI, the evaluation criteria confirm
that the estimated parameters were adequate to spatially predict the tumor front
propagation. In fact, the symmetric distance CsymDist between the real front
observed at ti and the extracted one at ti+1 ranges from 1.13 mm to 1.53 mm. The
volume overlap Coverlap ranges from 82.20% to 88.02% (Table A.2). The median
distance error CisoT ime(50%) ranges from 0.92 mm to 1.16 mm (Fig A.8). Fig A.10
shows that the algorithm succeeded to spatially capture the geometric behavior
of the evolving tumor. However, the maximum distance error CisoT ime(100%)
reaches high values ranging from 7.10 mm to 11.97 mm. These outliers are related
to the interpolated holes in the DT-MRI where the simulated propagating front
fails to capture the real tumor invasion process.

A.4.3.4 Study of Patients C and D

In both patient C and D, the estimated source remained stable from the first
timepoint to the third one as the distance between the successively estimated
sources d(St1 , St2) and d(St1 , St3) did not reach a value over 1.42mm. The esti-
mated diffusivity ratio for Patient C remained constant as time evolves (r = 7.92),
a spikiness value in concordance with the round shape of the tumor boundary
and its very slow evolution between t1 and t3 as shown in Fig A.11. The spatial
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disparity between the estimated source and the barycenter did not exceed 1.8mm.
For Patient D, the estimated diffusivity ratio varied from rt1 = 20 to rt2 = 16.2
then increased to rt3 = 23.8. The successively estimated high diffusivity ratios
are in line with the tumor boundary spikiness shown in Fig A.2-b. The com-
puted distance between the estimated source and the tumor barycenter varied
from 1.42mm at t1 to 3mm at both t2 and t3.

A.5 Discussion

The patient-specific parameter estimation method presented in this paper uses
two main ingredients: the traveling front approximation presented by Konukoglu
et al. [Konukoglu et al., 2009] transformed into the AEE and the Powell minimiza-
tion algorithm. We have shown using a limited number of LGG cases that our
approach could provide clinicians with two fundamental tumor dynamics charac-
teristics: the spatial position of tumor seed point and its diffusivity ratio. Our
optimization approach has been successfully evaluated on synthetic data where
ground truth is available.

At this point, we have noticed the quasi-stability of the located source in both
clinical cases, which is reassuring. Another key finding is related to the distance
between the located source point and tumor barycenter. For Patient B, this
distance ranges from 4.24mm to 5.47mm and for the 15 synthetically generated
tumors, computed distance ranges from 1.42mm to over 13mm. The disparity be-
tween the computed source and its barycenter maybe explained by the spikiness
index. Indeed, it is intuitive that “sphere-like” tumors have a source which might
be very close to its barycenter but “star-like” tumors or spiky tumors are prone
to greater disparities. In the latter case, the barycenter may even end-up out-
side the tumor shape. This outcome contradicts the assumption that the tumor
source is its barycenter as assumed in some studies as in [Laigle-Donadey et al.,
2004] (tumor classification process based on the correlation between its located
barycenter and molecular profile ), in [Drabycz et al., 2010] (MGMT gene methy-
lation status prediction study in glioblastomas) and in [Anderson, 2005; Sottoriva
et al., 2010; Kansal et al., 2000] (tumor growth simulation using cancerous cell
concentration gradient computed from the center of tumor mass). Therefore, tu-
mor barycenter-derived conclusions may not seem fully reliable and could cloud
the true biological phenomena influencing tumor growth patterns. Furthermore,
as noticed in Table A.1, the source-to-barycenter distance ranging from 1 to 5mm
in a tumor of 10mm-size demonstrates that choosing the barycenter as a source
estimator leads to a large bias.

In Patient A, there is a jump of the source-barycenter distance value from
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1.42mm to 5.38mm. This may be explained by a recent study from Bohman et
al. [Bohman et al., 2010] aiming at a better understanding of glioma ontogeny
(development from earlier stage) within the complexity of brain anatomy. In fact,
Bohman et al. concluded that as the tumor grows, its boundary approaches the
ventricles and the closer its “seed position ” is to the ventricles, the larger the
tumor would be. This conclusion agrees with our observation in Fig A.7 where
the tumor boundary becomes more distorted as it seems to be more “pulled”
towards the left lateral ventricle. Note that while Bohman et al. use a basic
geometric method to estimate the tumor barycenter, it mentions a discrepancy
between barycenter and tumor source ranging between 1.25 mm and 15 mm.
This is in agreement with our synthetic study and we hope that this work could
provide a better understanding of tumor ontogeny.

According to our study, the tumor shape irregularities seems to be well cor-
related with the diffusivity ratio r. Setting the spikiness index leads to similar
irregular tumor contours up to the geometry of their neighboring brain structures
(presence of the ventricles for instance). As a matter of fact, the quasi-stability of
this ratio for Patient A is justified by the quasi-stability of its shape over time. Its
high values ranging from 40.5 to 42 agrees with its “V-like” irregularity (Fig A.7).
On the other hand, for Patient B, this ratio raises from 6.45 to 47.70 as its shape
evolves from a “sphere-like” to a “star-like” (Fig A.9). Interestingly, in a recent
paper [Stretton et al., 2012], a different ratio (dw/ρ) was used to quantify the
diffusivity of the tumor boundary where a low white matter diffusivity rate over
proliferation ratio indicates a not very infiltrative glioma (bulky), whereas high
ratio defines diffuse tumor. The main objective was to determine whether the
tumor recurrence is a bulky or diffuse-type recurring tumor. We believe that
a comparison between both of these ratios (dw/dg and dw/ρ) in future research
works will be a valuable step in determining the patient-specific factors guiding
tumor growth.

For patients C and D, which had DT-MRI anomalies as shown in (Fig A.1
and A.2), our method proved its robustness as the estimated tumor source re-
mained stable as time evolved. The symmetrization process induced a tremen-
dous loss in white matter anisotropy as most of the fibers along which the tumor
originally grew disappeared as demonstrated in (Fig A.1) through FA histograms
comparison. Nevertheless, the algorithm converged to a low diffusivity ratio value
(r = 7.92). That was visually proven to be in concordance with the tumor “round-
ness” (Fig A.11) and also remained constant throughout time, a fact in correlation
with the very slow and slightly unchanged tumor boundary from t1 to t3. The
Euclidean distance between the estimated tumor source and its barycenter did
not go over 2mm, which was quite expected when noticing the roundness of the
tumor shape.

Patient D did not undergo the symmetrization process because of the large
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holes in the symmetric region to tumor segmented tissue (Fig A.2-a) and the
original diffusion fibers distorted by tumor growth were used. Depite this, the
estimated source remained stable with 1mm spatial variation along z-axis. Its
spatial disparity to the barycenter reaching a value of 3mm highlights that the
increase of the tortuosity of the tumor quantified by the estimated diffusivity ratio
implies an increase in the distance between the tumor barycenter and its original
source (as in Patient B where it reached 5.47mm). Since a good estimation
of the spikiness index is tied to the good quality of the acquired DT-MRI, the
unexpected drop in r value from rt1 = 20 to rt2 = 16.2 can be explained by the
major tumor-infiltration derived anomalies of the reconstructed diffusion tensors
and also the interpolation of the small holes therein.Both of these cases, who had
various DTI anomalies as previously pointed out in Section 2.1, demonstrated
a good performance when estimating a stable tumor source and also capturing
the spikiness of its shape through the estimated diffusivity ratio. However, the
prediction step was overlooked since it strongly requires a very good quality of
the symmetric DTI to the affected invaded tissue.

Relying on key biological tissue characteristic (diffusivity in white and grey
matters), our estimation of the tumor source location and diffusivity rate (or
spikiness index) also showed a promising prediction of the further spatial prop-
agation of the glioma boundary as time evolves. The good prediction in both
LGG cases presented in Table A.2 and Fig A.7 gives confidence to the estimated
tumor source and its diffusivity ratio. However, this spatial prediction was not
based on a simulation from the tumor origin but from the tumor boundary at a
previous time point using the estimated spikiness index. This is to avoid error
accumulation leading to a weak prediction. Although, the diffusion ratio reflects
a “snapshot-in-time”, it remarkably reflected the rate-of progression of glioma
and specified a quantifying measure of the spikiness of its shape.

DT-MRI serves as the basis for several reaction-diffusion based models to
extrapolate glioma invasion margins for radiation [Konukoglu et al., 2010a] and
after resection [Stretton et al., 2012] using at least two acquired time points.
Although validated using two LGG cases, the predictive power of our model based
on a single time point is worth investigating to give some hints to neurosurgeons
about the brain tissue to-be-invaded by the tumor as time evolves. Furthermore,
being successively evaluated on one healthy patient and one LGG patient, both of
these studies confirm that the use of DT-MRI based methodologies is constrained
to a good quality of the diffusion signal and limited as the number of recruited
patients remarkably drops due to this constraint. Including DT-MRI acquisitions
in a standardized brain tumor imaging protocol will increase the number of the
recruited patients and allow a thorough validation of these models.
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A.6 Conclusion

Going beyond the initial tumor radial expansion model without taking into ac-
count the tumor boundary irregularities ([Bohman et al., 2010], [Mandonnet et al.,
2003], [Harpold et al., 2007]), we have introduced a new method to estimate tumor
growth parameter within a traveling front propagation framework. The described
method provides two main patient-specific spatial characteristics of a tumor us-
ing one clinical image at a single time point: its source location and an index
quantifying the irregularity of its shape. The proposed macro-scale approach was
evaluated using synthetic data and four patients with LGG. As a consequence
of the estimation of both parameters, a promising prediction of tumor spatial
behavior was pointed out.

Some aspects of this work may be subject to improvements. For instance,
a sensitivity analysis of the proposed method to the choice of tumor diffusion
tensor in white matter is needed. Our proposed formulation leads to efficient
computations, but a quantitative evaluation from experimental datasets should
help refining the approach. Also, the white matter and brain mask segmentations
could be improved by using state-of-the-art image classification tools on high
resolution T1 MRI for instance.

Future steps include the application of the proposed method on high-grade
gliomas and on a large database of glioma patients advancing a better validation of
the predictive power previously highlighted. This could also lead to a statistical
study of the correlation between the tumor source location, its grade and its
diffusivity ratio. Thus, we could check whether lower spikiness index values are
obtained for HGG since they appear to have less spiky and irregular shapes
than LGG. Including the mass effect when addressing HGG growth will be a
necessary step to include in the presented methodology. Hopefully, the coupling of
mathematical models with clinical images should lead to a better understanding
of tumor growth and to useful computational tools for diagnosis and therapy
planning.
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Figure A.1: Data encountered problems (Patient C): fractional anisotropy (FA)
asymmetry. (a): Non-symmetrized FA color map shows the dramatic diffusion
signal distortion as the region where the tumor grew seems darker than the un-
affected brain tissue. (b): Non-symmetrized FA color map overlayed on glioma
segmentation. (d) Symmetrized FA color map overlayed on glioma segmentation.
A preliminary visual comparison between (b) and (d) clearly shows that when
symmetrizing the diffusion tensor image and therefore the driven FA map, there
is a tremendous loss in white matter anisotropy as most of the fibers along which
the tumor originally grew disappear. The comparison of FA histograms only
computed in the segmented tumor region (c) and (d) successively correspond-
ing to (b) and (d) tumor figures demonstrates the anisotropy bias introduced by
symmetrization process in this case.
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Figure A.2: Data encountered problems (Patient D): large black holes in the DTI.
(a) Tumor segmentation in red is overlayed on the fractional anisotropy map, a
measure derived from Diffusion Tensor Imaging. The significantly missing diffu-
sion signal in the contralateral region to tumor segmented tissue prohibited our
proceeding to the symmetrization process and therefore we used for our estima-
tion the affected tissue tensors by tumor infiltration. (b) The tumor boundary is
drawn on the FLAIR image at the first and second time points in light and dark
blue (in this slice they are identical) and at the third time point in red.
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Figure A.3: Two axial slices of the first included patient (Patient A) where the
manually segmented glioma (in white) is visualized on the diffusion tensor MR
image. The symmetrization process in this case led to reliably recovered infiltra-
tion fiber tracts where the simulation of tumor growth starting from a seed point
is legitimate.
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Figure A.4: Simulation from a source point of the iso-time contours representing
the tumor invasion process with a diffusivity ratio dw/dg equal to 25. The syn-
thetic tumor displayed in red is created by thresholding the time distance map at
T = TObs. (A) represents the axial slice, (B) coronal slice and (C) sagittal slice.

Figure A.5: The minimization surface after fixing r and Sz. The x axis of this
3D plot represents x coordinate of tumor source and the y axis represents its y
coordinate.
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Figure A.6: Synthetic tumors generated at different locations with different dif-
fusivity ratios and observation times. First row: At a fixed source location, two
iso-time contours with the same observation time (TObs = 900days) are respec-
tively colored in red for a diffusivity ratio (r = 1) and in light blue (r = 50). The
darker blue contour represents the tumor further spatial invasion with (r = 50)
and (Tf = 1200days). Second row: 3 synthetic tumors are generated using the
same observation time value TObs and the same diffusivity ratio (r = 25) for 3
different source locations. Third row: At the same fixed location, five iso-time
contours with the same observation time are colored in red (r = 1), in blue
(r = 10), in green (r = 50) and in yellow (r = 100).

159



A.7 Acknowledgments

Figure A.7: Different axial slices of Patient A showing the discrepancy between
the real boundary and the estimated one at 3 different successive time points.
First row: using the algorithm outcome at t1, we spatially determine the tumor
evolution at t2. The blue contour represents the manually delineated tumor at
the second time point and the red one is the extracted iso-time surface ŜisoT ime.
Second row: using the algorithm outcome at t2, we predict the tumor evolution
at t3. Tumor boundary at t3 is colored in blue and the estimated one in red.
Third row: using the algorithm outcome at t3, we predict the tumor evolution at
t4. Same colors are used to show the similarity between the estimated and the
ground-truth tumor contours.
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Figure A.8: Evaluation curves plotted using the distance error measure
CisoT ime(y%) for y ∈ (50, 90, 100). For each patient (A or B), we try the pre-
dict the evolution at a successive time point (A/B, ti) based on the estimated
parameters at the previous one.

Figure A.9: Four different axial slices of Patient B showing the remarkable tumor
boundary spikiness evolution from the initial time point t1 to the final one t4.
Tumor contours at successive time points are respectively colored in: dark blue
for t1, light blue for t2, dark red for t3 and light red for t4.
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Figure A.10: Four different axial slices of Patient B illustrating the prediction
of the tumor evolution based on two different time points. Using the algorithm
outcome at t2, the tumor front is predicted at the next time point t3. The red
contour represent the predicted tumor boundary and the blue one represents the
ground truth or the real tumor boundary.

Figure A.11: Patient C: three different axial slices of the manually segmented
tumor boundary at t1 in dark blue, at t2 in dark blue and at t3 in red.
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Appendix B
Expert-validated CSF segmentation of

MNI atlas enhances accuracy of virtual

glioma growth patterns

Based on a clinically oriented collaboration carried out during the time of the
PhD, which ties in with the main goal of this thesis. This chapter accepted in
the Journal of Neuro-Oncology.

B.1 Context

Biomathematical modeling of glioma growth has been developed to optimize
treatments delivery and to evaluate their efficacy. Simulations currently make
use of anatomical knowledge from standard MRI atlases. For example, cere-
brospinal fluid (CSF) spaces are obtained by automatic thresholding of the MNI
probability atlas, leading to an approximate representation of real anatomy. To
correct such inaccuracies, an expert-revised CSF segmentation map of the MNI
atlas was built. Several virtual glioma growth patterns of different locations were
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generated, with and without using the expert-revised version of the MNI atlas.
The adequacy between virtual and radiologically observed growth patterns was
clearly higher when simulations were based on the expert-revised atlas. This work
emphasizes the need for close collaboration between clinicians and researchers in
the field of brain tumor modeling.

B.2 Introduction

Gliomas are brain tumors that remain incurable despite recent advances in treat-
ments that combine surgery, chemotherapy and radiation therapy. Their diffuse
behavior, resulting in an invasion of normal appearing parenchyma peripheral to
the bulk lesion, is a major cause of treatment failure.

Biomathematical modeling of these tumors has been developed over the past
two decades. The hope is that in silico tumor growth models could help to
optimize treatments delivery [Bondiau et al., 2011; Corwin et al., 2013; Ribba
et al., 2012; Rockne et al., 2009] and to evaluate their efficacy [Wang et al.,
2009; Mandonnet, 2011; Neal et al., 2013]. Such clinical applications require
patient-specific inputs, obtained for example from pre-treatment sequential MRIs.
Simulations are either performed in the patient MRI space [Stretton et al., 2012]
onto which anatomical knowledge of atlases can be matched (to obtain brain
parenchyma segmentation and create white and gray matter segmentations), or
in a reference space - usually the MNI atlas [Fonov et al., 2009] - onto which all
patient images are registered. Hence accurate anatomical atlases are needed in
both cases.

Advances have been made in integrating a more precise anatomy in the at-
las. Whereas the very first templates in the nineties were built from a 2D CT
scan [Woodward et al., 1996; Cruywagen et al., 1995; Tracqui et al., 1995b], just
outlining the brain surface and the ventricles, more recent works are based on
3D-MRI atlases of CSF, grey matter and white matter [Swanson et al., 2000], and
eventually including detailed white matter architecture via DTI sequences [Jbabdi
et al., 2005; Clatz et al., 2005; Stretton et al., 2012, 2013]. CSF spaces are of
utmost importance for achieving realistic glioma growth patterns, as they consti-
tute anatomical barriers that cannot be crossed by tumor cells (a statement that
is implemented in the model by no flux boundary conditions). The segmentation
of CSF delineation is commonly obtained by an automated thresholding of the at-
las, without any expert validation of its anatomical accuracy. For example, it has
been previously shown that current templates contain unphysiological bridges of
brain matter between frontal and temporal operculum, which should normally be
separated by the subarachnoid spaces of the sylvian fissure [Jbabdi et al., 2005].
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As a consequence, the virtual tumor can grow directly from one operculum to the
other, resulting in unrealistic growth patterns as compared to clinically reported
ones [Mandonnet et al., 2006].

In this paper, we build an expert-revised CSF segmentation map of the MNI
reference brain. We then propose to analyze how these corrections influence
tumor growth patterns, by comparing simulations obtained using the native and
corrected templates.

B.3 Data

The MNI 152 T1 MRI, gray matter probability map, and white matter probability
map are de facto registered [Fonov et al., 2009] and are all downloadable from the
MNI website. The MNI 152 brain segmentation was created from the threshold
gray and white matter MNI 152 probability maps (process described in following
section). A neurosurgeon (A. Amelot) segmented the missing sulci patterns from
the T1 image to refine this baseline brain parenchyma mask (BM), creating an
improved BM. For the simulations in the Experiment section, the data inputs
were the white matter segmentation (WM), which was segmented from the white
matter probability map, and either the MNI 152 original brain segmentation or
the improved brain segmentation (see below).

B.4 Method

In this section, we describe the preprocessing of the data and the model used to
simulate tumor growth.

Preprocessing of Data: The WM, gray matter segmentation (GM), original
MNI 152 BM and improved BM were created with the following steps.

The WM and GM mark out the inhomogeneous tissue boundaries of the brain
and the CSF segmentation marks out where brain tissue is not. The WM was
achieved by thresholding the MNI 152 white matter probability map or a proba-
bility > 0.58. The GM was estimated by thresholding the MNI 152 gray matter
probability map for a probability > 0.42 and the CSF segmentation was achieved
by thresholding the MNI 152 CSF probability map for probability > 0.17. These
threshold values depict the most accurate account for where the white and gray
matter and CSF are according to a neurosurgeon (E. Mandonnet).
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The original MNI 152 BM was created by combining the WM and GM seg-
mentations and removing all voxels that were marked as CSF by the CSF seg-
mentation.

It took several steps to enhance the original MNI 152 BM. First, we deter-
mined where the original MNI 152 BM was imperfect by visually inspecting each
slice along the three dimensions (axial, coronal, and sagittal). In this scan, we
studied all sulci, gyrus, and cerebral lobes. Second, we created an improved CSF
segmentation manually by redrawing, using Slicer [Fedorov et al., 2012], all of
the subarachnoid spaces physiologically present that were lacking in the original
MNI 152 BM (Figure B.1 ).

Third, we used the improved CSF segmentation to identify additional voxels
in the original MNI 152 BM to be marked as CSF instead of brain.

Simulation Model: The traveling time FK model formulation in 3D described
in Chapter 2 by equations 2.14, 2.15, and 2.16 was chosen as the simulation model
for our experiments.

Figure B.1: MNI 152 original BM vs improved BM. Left, the MNI 152 original
BM is displayed. Right, the improved BM is shown with the changes highlighted
by red circles.
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B.5 Experiment

We performed a comparison between MNI original BM and improved BM us-
ing synthetic tumor simulations. Using the traveling time formulation in equa-
tions 2.14, 2.15, and 2.16, we simulated three synthetic tumor evolutions us-
ing both the BMs within the simulations. Each simulation was started from a
voxel with a asymptotic tumor growth speed (v = 2

√
dwρ) of v = 24 mm/year,

ρ = 6 1/year, dw = 24 mm2/year, T0 = 1 day (tumor age), and dg = dw/10
mm2/year [Konukoglu, 2009; Swanson et al., 2003; Swanson, 1999].

B.6 Results

A total of 111963 voxels have been redefined as CSF by the expert, representing
2% of the total number of brain voxels. Despite that this ratio is very small, we
show now the importance of these corrections by comparing the growth patterns
obtained with simulations using the baseline BM (original MNI 152) versus the
improved BM for 4 different starting points.

We first selected a starting point in the deep white matter of the anterior
middle frontal gyrus (see Figure B.2). In this situation, there was no signifi-
cant difference in the growth patterns between baseline BM and improved BM
simulations.

In Figure B.3, the tumor starting point was chosen in the right frontal opercu-
lum, pars triangularis of the right inferior frontal gyrus. When using the original
MNI 152 BM, the tumor invaded the right insula in the first year of tumor growth,
whereas the insula remained free of tumor after two years of growth when using
our improved BM. This latter tumor growth pattern better depicts what is ob-
served on a real patient (see Figure B.3). Figure B.4 illustrates tumor growth in
the right temporal lobe. The starting point of the simulated tumor was set in
the superior temporal gyrus. As seen in the coronal section on the original BM,
the virtual tumor started to invade the middle temporal gyrus during the first
year of tumor growth, as tumor cells could find a way to go through the superior
temporal sulcus. The simulated tumor using the improved BM clearly shows no
tumor invasion of the middle temporal gyrus and the growth remained confined
to the superior temporal gyrus as observed on a real patient (see Figure B.4).

168



B.7 Discussion

Figure B.2: Comparison between MNI 152 original BM and improved BM using
synthetic tumor simulation #1. The BMs are the background of each image. Left
images show the location in the BM where this synthetic tumor was simulated.
On the right bottom is displayed a time map (shown for 1 and 1.5 years) for
this synthetic tumor that was started from a single voxel (red). Notice that the
simulations run using the original MNI 152 BM and improved MNI 152 BM are
the same for a tumor growing in the white matter of anterior middle frontal gyrus
(2 cm lateral to the frontal horn).

B.7 Discussion

Computational modeling of glioma growth has recently emerged as an active field
of biomathematics. The aim is to built a patient-specific virtual tumor, whose
evolution is as close as possible to the real patient tumor. On this perfect vir-
tual copy, several treatment sequences could be simulated, helping to select the
optimal regimen. However, there is currently a huge gap between advances in
numerical simulations and their effective use in clinical practice, and actually,
very few studies attempted to evalute the veracity of virtual glioma growth pat-
terns [Jbabdi et al., 2005; Konukoglu et al., 2010a].

In this paper, we showed the difference in simulated growth patterns when
using two different templates of segmented CSF spaces, obtained from a baseline
and an expert-revised version of the MNI 152 atlas. The mismatch between real
and simulated tumors was minimal when using the expert-revised template. This
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Figure B.3: Left: Comparison between MNI 152 original BM and improved BM
using synthetic tumor simulation #2. The BMs are the background of each
image. Left images show the location in the BM where this synthetic tumor was
simulated. On the right top is displayed a time map (shown for 1, 1.5, and 2
years) for this synthetic tumor that was started from a single voxel (red). A red
circle is drawn around an area where the synthetic tumor grew because the MNI
152 original BM (background) was incorrect. Right is displayed the simulation
which used the improved BM where this synthetic tumor did not grow across the
sylvian fissure incorrectly. Right: Patient #1 had a tumor in the same place as
where the synthetic simulation #2 was grown. This demonstrates the importance
of the improved BM as there was indeed no tumor growth into the insular and
superior temporal gyrus (red arrows).

result emphasizes that detailed anatomy has to be taken into account in compu-
tational models. Here, anatomical inaccuracies of sulcal anatomy in the baseline
template allow virtual glioma cells to cross a sulcus - that should normally not be
crossed by real glioma cells - leading to unrealistic shapes of simulated tumors.
Of course, the difference is especially great for tumors with a starting point close
to important sulci. Our results reinforce the idea that glioma simulations cannot
be purely be based on patient images and require anatomical information from
atlases. It is indeed unrealistic to perform manual segmentation of CSF spaces
for each patient case. The simplest way to overcome this issue is to register all
patient images in the reference space, perform the simulations in the reference
space, and project the results back to the patient space. However, this approach
might not always produce good results due to a possible non-correspondence be-
tween the patient and atlas geometries. The reverse method of registering the
atlas onto the patient space is an alternative, but it carriers the risk of recreating
artificial bridges of gray matter between the two flanks of sulci. Hence this paper
has important consequences regarding the elaboration of an efficient pipeline for
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Figure B.4: Left: Comparison between MNI 152 original BM and improved BM
using synthetic tumor simulation #3. The BMs are the background of each
image. Left images show the location in the BM where this synthetic tumor
was simulated. On the right bottom is displayed a time map (shown for 1,
1.5, and 2 years) for this synthetic tumor that was started from a single voxel
(red). A red circle is drawn around an area where the synthetic tumor grew
because the MNI 152 original BM (background) was incorrect. Right is displayed
the simulation which used the improved BM where the synthetic tumor did not
grow across the sulci incorrectly. Right: Patient #2 had a tumor in the same
place as where the synthetic simulation #3 was grown. This demonstrates the
importance of the improved BM in the superior temporal gyrus, as the tumor
growth remained confined to the superior temporal gyrus, with no growth across
the superior temporal sulcus and sylvan fissure (red arrows).

patient-specific tumor growth simulations. Moreover, previous works that did not
make use of an expert-revised segmentation of CSF spaces could be of limited
value. For example, it has been proposed to use the proliferation-diffusion model
to determine the starting point of a patient glioma [Konukoglu et al., 2010b].
The starting point is indeed key information that can be used to find spatially
distinct clusters of glioma [Konukoglu et al., 2010a] arising from different cells
of origin, with distinct patterns of recurrence and prognosis [Lim et al., 2007;
Bohman et al., 2010]. This paper shows that infering tumor starting points by
solving the inverse problem of the proliferation-diffusion equation is meaningless
if the CSF template has not been carefully designed to take into account precise
sulcal anatomy.
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B.8 Conclusion

We have shown the importance of using expert-revised templates when dealing
with glioma computational simulations. We invite researchers to make use of the
presented map of CSF spaces in their simulations of tumor growth, or to give
in the methods section how their CSF segmentation was obtained. Clinicians
will not trust biomathematical models predictions unless anatomical knowledge
is adequately incorporated in the modeling processes.
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Simulation de modèles personnalisés de gliomes pour
la planification de thérapies 

Les modèles de croissance tumorale fondés sur l'équation de réaction-diffusion Fisher 
Kolmogorov (FK) ont montré des résultats probants dans la reproduction et la prédiction de  
l'invasion de cellules tumorales du cerveau pour les gliomes. Dans cette thèse, nous utilisons 
différentes formulations du modèle FK pour i) évaluer la nécessité de l’imagerie de diffusion 
pour construire des modèles spécifiques de gliomes de bas grade ii) l'étude de l'infiltration de 
cellules tumorales après une résection chirurgicale de la tumeur, et iii) définir une métrique pour 
quantifier l’évolution de Gliomes de Bas Grade (GBG). 

L'imagerie en tenseur de diffusion (ITD) a été suggérée pour modéliser la diffusion anisotrope 
des cellules tumorales dans la matière blanche du cerveau. Toutefois, les ITD sont coûteuses et 
souvent acquises en basse résolution, ce qui impacte la précision des résultats des modèles de 
croissance tumorale. Nous avons utilisé une formulation FK pour décrire l'évolution de la 
frontière visible de la tumeur pour étudier l'impact du remplacement de l'ITD patient par i) une 
hypothèse de diffusion isotrope ou ii) une ITD de reférence anisotrope en haute résolution 
formée par la moyenne des ITD de plusieurs patients. Nous quantifions l'impact du 
remplacement de l'ITD acquise sur un patient à aide de simulations de croissance tumorales 
synthétiques et des prévisions d'évolution de la tumeur d'un cas clinique. Cette étude suggère 
que la modélisation de la croissance du gliome à base de motilité différentielle de tissus 
(n'utilisant pas d'ITD) donne des résultats un peu moins précis qu'à l'aide d'une ITD. 
Cependant, s'abstenir d'utiliser une ITD serait suffisant lors de la modélisation de gliomes de 
bas grade. Par conséquent, toutes ces options d'ITD sont valides à utiliser dans une formulation 
FK pour modéliser la croissance de gliomes de bas grade dans le but d'aider les cliniciens dans 
la planification du traitement. 

Après la résection d’une tumeur cérébrale, les professionnels de santé veulent savoir quel 
serait le meilleur traitement de suivi pour chaque patient particulier, c'est à dire, une 
chimiothérapie pour des tumeurs diffuses ou bien une deuxième résection après un laps de 
temps donné pour les tumeurs massives. Nous proposons une méthode pour tirer profit de 
modèles de croissance de gliome FK sur les cas post-opératoires montrant des distorsions du 
cerveau pour estimer l'infiltration des cellules tumorales au-delà des frontières visibles dans les 
IRM FLAIR. Notre méthode répond à deux défis de modélisation: i) le défi du mouvement du 
parenchyme cérébral après la chirurgie avec une technique de recalage non-linéaire et ii) le défi 
de la segmentation incomplète de la tumeur post-opératoire en combinant deux cartes 
d'infiltration : une ayant été simulée à partir d'une image pré-opératoire et une estimée à partir 
d'une image post-opératoire. Nous avons utilisé les données de deux patients ayant des 
gliomes de bas grade afin de démontrer l'efficacité de la méthode proposée. Nous croyons que 
notre méthode pourrait aider les cliniciens à anticiper la récurrence de la tumeur après une 
résection et à mieux caractériser l’étendue de l'infiltration non visible par la radiologie pour 
planifier la thérapie. 

Pour les gliomes de bas grade visibles par une IRM FLAIR/T2, il y  a un débat important au sein 
du groupe de travail RANO (Response Assessment in Neuro-Oncology) sur la sélection d'un 
seuil pertinent des métriques basées sur l’évolution de la taille de la tumeur pour déterminer si 
la maladie est évolutive (ME). Nous proposons une approche pour évaluer la ME du GBG en 
utilisant des estimations de la vitesse de croissance de la tumeur à partir d'une formulation FK 
qui prend en compte les irrégularités de forme de la tumeur, les différences de vitesse de 
croissance entre la matière grise et la matière blanche, et les changements volumétriques. En 
utilisant les IRM FLAIR de neuf patients, nous comparons les estimations de ME de notre 
approche proposée avec i) celles calculées en utilisant les estimations manuel de la vitesse de 
croissance tumorales 1D, 2D et 3D et ii) celles calculées en utilisant un ensemble bien établi de 
critères basés sur la taille (critères RECIST, Macdonald et RANO). Nous concluons des 
résultats de notre comparaison que notre approche est prometteuse pour évaluer la ME du 
GBG à partir d'un nombre limité d'examens par IRM. On peut espérer que les estimations de 
vitesse de croissance de la tumeur de ce modèle pourraient un jour être utilisées comme un 
autre biomarqueur dans la planification de la thérapie clinique. 

: Modélisation de Tumeur Cérébrale ; Modélisation de Gliome ; Modèlisation 
numérique; Patient-Spécifique ; Imagerie Médicale ; Modèle de Fisher 
Kolmogorov   


