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Thèse

présentée en vue de l’obtention du grade de
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Je remercie Lars Grüne, et avec lui tous les membres de l’équipe de l’Université de
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ii



Contents

1 Introduction 1

1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main contributions and perspectives . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Optimal control theory and backward reachability . . . . . . . . . 3

1.2.2 Asymptotic controllability under state constraints . . . . . . . . . 7

1.2.3 Ergodic control and state constraints . . . . . . . . . . . . . . . . . 9

1.2.4 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Stochastic optimal control problems . . . . . . . . . . . . . . . . . . . . . 13

2.2 On the existence of optimal controls . . . . . . . . . . . . . . . . . . . . . 15

2.3 Dynamic Programming for stochastic optimal control problems . . . . . . 16

2.4 Characterization via Viscosity Solutions Theory . . . . . . . . . . . . . . . 17

2.5 Viable and invariant sets of state constraints . . . . . . . . . . . . . . . . 21

3 Reachability analysis under state-constraints 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 On stochastic reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Level set approach for state constrained stochastic reachability . . . . . . 25

3.4 Stochastic optimal control problem with a maximum cost . . . . . . . . . 29

3.4.1 Link with lookback options in finance . . . . . . . . . . . . . . . . 31

3.5 The Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . . . . . 32

3.5.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . . . . 33

3.5.3 Comparison principle . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Numerical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 A general convergence result . . . . . . . . . . . . . . . . . . . . . 38

3.6.2 A semi-Lagrangian scheme . . . . . . . . . . . . . . . . . . . . . . 41

3.6.3 Convergence of the SL scheme . . . . . . . . . . . . . . . . . . . . 43

3.7 Error bounds for the semi-Lagrangian scheme . . . . . . . . . . . . . . . . 45

3.7.1 The rate of convergence for the semi-discrete scheme . . . . . . . . 46

3.7.2 The fully discrete scheme . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Appendix: A result of existence of optimal controls . . . . . . . . . . . . . 52

3.10 Appendix: On the proof of the Comparison Principle . . . . . . . . . . . . 55

iii



4 Zubov’s method for controlled diffusions with state constraints 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Some results on the domain DT ,K . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 The level set function v . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 The PDE characterization of DT ,K . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Comparison principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Comparison principle for obstacle problems with Dirichlet-Neumann
boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 New approach for state constrained stochastic optimal control prob-
lems 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 The associated reachability problem . . . . . . . . . . . . . . . . . . . . . 98
5.4 The level set approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 The HJB equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Comparison Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7 The uncontrolled case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 An application to the electricity market . . . . . . . . . . . . . . . . . . . 118
5.9 Appendix: A result of existence of optimal controls . . . . . . . . . . . . . 119

6 Ergodic state constrained stochastic optimal control problems 123
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 The HJB equation for λ fixed . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4 Solution of the ergodic problem . . . . . . . . . . . . . . . . . . . . . . . . 128

iv



Abbreviations

DPP Dynamic Programming Principle
HJ Hamilton-Jacobi
HJB Hamilton-Jacobi-Bellman
USC upper semi-continuous
LSC lower semi-continuous

Notation

Rn the Euclidean n-dimensional space
Rn×m space of (n×m) real matrices
Sn space of symmetric matrices in Rn×n
Ω space of the realizations ω
(Ω,F ,P) probability space
B(·) Brownian motion
{Ft}t≥0 filtration
{Ft}t≥0 filtration generated by the Brownian motion
B(x, r) ball of center x and radius r
dD(·) Euclidean distance function to the set D (with sign)
d+
D

(·) positive Euclidean distance function to the set D
USC(D) the set of upper semi-continuous functions defined on D
LSC(D) set of lower semi-continuous functions defined on D
J 2,+,J 2,− semijets
P1,2,+,P1,2,− parabolic semijets
Dϕ gradient
D2ϕ Hessian matrix

v





Chapter 1

General introduction and main
contribution

1.1 General introduction

The purpose of this thesis is to study some control problems in presence of state con-
straints via the Hamilton-Jacobi-Bellman approach.

The usual objective of control theory is to influence the behavior of a system in order
to attain some desired goals: minimize/maximize a cost, reach a target, stabilize the
system, etc. For a given controlled system, governed by ordinary or stochastic differential
equations, it is natural, for modeling purposes, to restrict the state space taking into
account the presence of state constraints. In this case, the controller is allowed to act
only by means of those control inputs that satisfy such constraints. These controls are
called the admissible controls.
The aim of the present work is to analyze some stochastic control problem from the
theoretical and computational point of view and to use the tools of optimal control
theory to establish a general framework for dealing with the presence of state constraints.

Optimal control is a branch of the control theory strictly related with optimization.
For this kind of problems the aim is to find a control strategy such that a certain
optimality criterion is achieved. This criterion is usually expressed by a cost, that is a
functional depending on the choice of the control input.

The systematic study of deterministic optimal control problems received a significant
improvement starting from the 50’s, strongly motivated from the growing interest at that
time for aerospace engineering. The field of stochastic optimal control was developed
since the 70’s for applications related to finance. In 1971 Robert C. Merton [142] was
the first to use stochastic control for studying portfolio optimization for “risky” and
“riskless” assets. A fundamental contribution in this field was also the introduction of
the financial model formulated by Fischer Black and Myron Scholes in [44].

Two main approaches can be found in literature for dealing with optimal control
problems: the Pontryagin Maximum Principle approach and the Dynamic Programming
approach. The Pontryagin Maximum Principle, formulated in 1956 by the Russian
mathematician Lev Semenovich Pontryagin and his school [152], provides a general set
of necessary conditions for the optimality of a strategy and it tapes its roots in the
method of Lagrange multipliers applied in constrained optimization.
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Introduction Chapter 1

For the results provided in this thesis, we will follow the Dynamic Programming approach
developed in the 50’s by Richard Bellman [40]. In this method a central role is played by
the value function, that is the optimal value of the optimization problem. At the basis
of the approach there is the Bellman’s principle of Optimality:

An optimal policy has the property that no matter what the previous decision (i.e.,
controls) have been, the remaining decisions must constitute an optimal policy with
regard to the state resulting from those previous decisions.
(Bellman, Dynamic Programming, 1957)

This principle essentially contains the information on the procedure to follow for re-
cursively solving a complex optimal control problem by its decomposition in simpler
subproblems.
In mathematical language, the property of the optimal control problem described by the
Bellman’s principle is expressed by the fact that the value function satisfies a particular
functional inequality, the Dynamic Programming Principle.

Starting from this functional equation and under suitable regularity assumptions, it
can be proved that the value function satisfies a special kind of nonlinear partial differ-
ential equation called the Hamilton-Jacobi-Bellman (HJB) equation. A first order equa-
tion is typically obtained for optimal control problems set in a deterministic framework,
whereas second order equations arise in the stochastic case. The high nonlinearity of the
problem requires to consider weak notions of solutions. A breakthrough in this direction
was the introduction in the early 80’s of the notion of viscosity solution by Michael G.
Crandall and Pierre-Louis Lions [86]. In [132] and [133] Lions characterized the value
function associated with optimal control problems for controlled diffusion processes as
the unique continuous viscosity solution of a second order HJB equation. It turned
out that viscosity solutions theory is the suitable framework for providing existence and
uniqueness for a wider class of nonlinear equations: the Hamilton-Jacobi (HJ) equations.
This is also a very convenient context for analyzing the numerical methods related to
such nonlinear equations. In the later years a wide literature was produces on the subject
providing different existence and uniqueness results (see [110, 83, 113, 109, 111, 116]).
When state constraints are taken into account the characterization of the value function
as the viscosity solution of an HJB equation becomes much more complicated and, in
absence of further assumption, uniqueness cannot in general be proved. We mention the
works of Soner [160, 161], Frankowska et al. [101, 100], Katsolulakis [117], Barles and
Rouy [35], Bouchard and Nutz [62] and many others for the discussion of the suitable
sets of assumptions to be considered.

This thesis has the objective of exploiting the technical tools coming from viscosity
theory for HJB equations in order to develop new ideas for facing the presence of state
constraints. We can summarize the philosophy of the main contribution of the thesis
as follows: once the state constrained control problem is stated in its most generality, a
more or less classical unconstrained optimal control problem is introduced. For a suitable
definition of such a problem, the issues related to the presence of state constraints
are in some sense eluded and the theoretical analysis is developed around this new
“auxiliary” unconstrained optimal control problem. In a significant part of the thesis,
represented essentially by Chapters 3 and 5, this goal is attained making use of the
existing link between optimal control and reachability. On one hand, state constrained
reachability problems are connected to the solution of unconstrained optimal control
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Chapter 1 Main contributions and perspectives

problems. On the other hand any state constrained optimal control problem is translated
in a reachability one establishing, in this way, a sort of equivalence result between state
constrained and unconstrained optimal control theory. In Chapter 4, generalizing the
so-called Zubov method, the controllability properties of a stochastic system under state
constraints are investigated by the introduction of a convenient unconstrained optimal
control problem. Extending the arguments presented in Chapter 3, optimal control
theory can also be used to analyze the viability properties of a given domain. This will
be applied, in Chapter 6, for studying a very particular class of ergodic optimal control
problems.

1.2 Main contributions and perspectives

Along all the thesis, for a given filtered probability space (Ω,F , {Ft}t≥0,P) with a Brow-
nian motion B(·), the dynamics we will consider is a system of controlled stochastic
differential equations (SDE) of the following form{

dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s)
X(t) = x,

where t ≥ 0 and u denotes the control. For any choice of the control u and the initial time
and space (t, x), we will denote by Xu

t,x(·) the unique solution of the previous equation.
In some case the initial time t = 0 is fixed and the corresponding trajectory is simply
denoted by Xu

x (·).

1.2.1 Optimal control theory and backward reachability

A first important contribution of the thesis is to deeply investigate the link between op-
timal control problems and backward reachability. This will be strongly used in Chapters
3 and 5.
A stochastic reachability problem is a particular control problem where the controller
aims to steer the state of the system towards a given target T . Given a fixed time
horizon T ≥ 0, this requirement can be expressed by the following relation:

Xu
t,x(T ) ∈ T for some choice of the control u.

Analogously, for a given set K, a state constrained requirement can be enunciated by:

Xu
t,x(s) ∈ K, ∀s ∈ [t, T ].

Working in a stochastic framework it is necessary to specify in which sense the previous
condition has to be satisfied (with non-zero probability? With probability one? With
probability grater then a certain value?). In this part of the thesis the requirements are
considered in the strongest sense, that is with probability one or, as we will say, almost
surely (a.s.).
Our research aims to establish a sort of duality result between the following two kinds
of problems:

Minimize a cost J(t, x, u)
over all the admissible trajectories

Xu
t,x,(·) of the system;

Find the starting point x :
Xu
t,x(T ) ∈ T

and
Xu
t,x(s) ∈ K, ∀s ∈ [t, T ].

3
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In the deterministic case this kind of result is nowadays well known. It has been
shown in [2] and [79] that the epigraph of the value function associated with finite
horizon (T < ∞) optimal control problems can be seen as a backward reachable set
for which the target is represented by the epigraph of the terminal cost function. In
[16] and [78] similar results have been obtained respectively for infinite horizon and
minimal time problems, obtaining a description of the epigraph of the associated value
functions by means of the viability properties of the system. We point out that, using
the typical vocabulary coming from viability theory, the concept of state constrained
backward reachability is given by the notion of viability kernel and capture basin [11].
On the other hand a generalization of the so-called level set approach [147] has been
used in [47, 121, 122, 98] for characterizing the backward reachable set as a level set of
the value function associated with a suitable optimal control problem.

The formulation of optimal control problems by means of reachability notions has
fundamental advantages in the treatment of state constraints. As shortly mentioned
in the previous general introduction, when state constraints are taken into account,
the application of the Dynamic Programming techniques requires that some additional
“compatibility assumptions” between the dynamics and the set of state constraints are
satisfied. These assumptions are necessary for proving uniqueness results for the HJB
equation associated to state constrained problems and they have the role of supplying
the lack of information on the boundary of the state constraints due to the fact that
here only the super-solution property holds.
For what concerns the deterministic framework, their earliest introduction goes back to
the works of Soner [160] and [161] where appeared for the first time the so-called “inward
pointing conditions”. Formulated for an autonomous deterministic dynamics, i.e. σ ≡ 0
and b(t, x, u) = b(x, u), the Soner’s conditions can be stated as follows:

inf
u∈U

n(x) · b(x, u) < 0 for any x ∈ ∂K,

where U is the set of control values and n denotes the exterior normal vector. From the
geometrical point of view this condition says that at each point on the boundary of the
state constraints there exists at least one vector field that points inside the constraint.
Later extension and discussion on more or less restrictive sets of assumptions can be
found for instance in [77, 112, 101, 100, 168, 136, 143]. In the stochastic case a first
extension of the controllability conditions was proposed by Katsoulakis in [117]. Other
contributions are [35, 114, 62] (more references will be given in Chapter 5). Roughly
speaking, in the stochastic setting the typical idea is to “complete” the Soner-type
condition with some degeneracy assumption on the diffusion term σ.
However, also remaining in the deterministic context, this kind of conditions may fail
even for very simple cases, as the following example aims to show.

Example 1.2.1. Consider a one dimensional mechanical system governed by the following
Newton’s law

ẍ = f(x, ẋ, u).

With the usual change of variables y1 = x and y2 = ẋ, the dynamics can be rewritten
as a 2-dimensional first order system with respect to the new state y ≡ (y1, y2) and one
has

ẏ = b(y, u) :=

(
y2

f(y1, y2, u)

)
.

4
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Any boundedness requirement on the state and the velocity of the form x ∈ [−M,M ]
and ẋ ∈ [−R,R], is expressed by the following state constraints on the variable y:

y ∈ K := [−M,M ]× [−R,R].

In this case, at each boundary point such that y1 = M (similar arguments hold for
y1 = −M) one has

n(M,y2) · b((M,y2), u) = y2

for any control u ∈ U and any y2 ∈ (−R,R). Hence, the inward pointing condition
fails as soon as y2 ≥ 0. In particular when y1 = ±M the inner product above does not
depend at all on the control, so every assumption of this form would fail.

The reformulation of optimal control problems by means of reachability has the
advantage of allowing to deal with state constraints even when the compatibility condi-
tions are not satisfied. In the deterministic case, this fact has been well pointed out in
[2, 16, 47, 78, 79].
In [16, 78, 79] once established that the epigraph of the value function is a suitable
viability kernel, its values are computed by using the tools developed in [158]. In [2]
the backward reachability problem characterizing the epigraph of the value function is
solved by a level set method and the state constraints are managed without any further
assumption by an exact penalization technique.

The contribution of this thesis is to extend this ideas to the stochastic setting.
In Chapter 3 we will discuss the application of the level set approach for solving state
constrained reachability problems in the stochastic case. We will show in Proposition
3.3.2 and Remark 3.3.4 that a state constrained backward reachable set can be charac-
terized as the zero level set of two value functions associated with two different optimal
control problems: a classical optimal control problem with integral cost and an optimal
control problem with maximum cost. Motivated by the promising results obtained for
deterministic systems in [2] and [47], we provide a complete analysis for the second one
taking into account the general class of optimal control problems associated with the
cost

J(t, x, u) = E
[
ψ

(
Xu
t,x(T ), max

s∈[t,T ]
g(Xu

t,x(s))

)]
.

In this case, as already pointed out in [29, 37], the application of the dynamic program-
ming techniques requires the introduction of an auxiliary variable y ∈ R, so that the
optimal control problem object of our study will be

ϑ(t, x, y) = inf
u∈U

E
[
ψ

(
Xu
t,x(T ), max

s∈[t,T ]
g(Xu

t,x(s)) ∨ y
)]

,

where a∨ b := max(a, b). This leads us to the study of second order HJB equations with
oblique derivative boundary conditions of the following form

−∂tϑ+H(t, x,Dϑ,D2ϑ) = 0 t ∈ [0, T ), y > g(x)
−∂yϑ = 0 t ∈ [0, T ), y = g(x)
ϑ(T, x, y) = ψ(x, y) y ≥ g(x).

By Theorems 3.5.2 and 3.5.4, ϑ is characterized as the unique viscosity solution of such
equation. The numerical aspects are investigated. A general algorithm is described and
a convergence result proved, generalizing in this way the results obtained in [30] for the

5
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particular case g(x) = |x|. Another important content of this chapter is the presentation
of error estimates for a semi-Lagrangian scheme. Considered at a first stage only the
discretization in time given by h = T/N , the scheme is recursively defined by

V (tN , x, y) = ψ(x, g(x) ∨ y)

V (tn−1, x, y) = Ψ[V ](tn, x, y ∨ g(x)) for n = N, . . . , 1

where, denoted by p the dimension of the Brownian motion and by {σ1, . . . , σp} the
column vectors of the diffusion matrix σ, the operator Ψ is given by

Ψ[V ](t, x, y) := min
u∈U

1

2p

2p∑
k=1

V
(
t, x+ hb(t, x, u) +

√
hp(−1)kσbk+1

2
c(t, x, u), y

)
.

The error estimates for the fully discrete scheme presented in Theorem 3.7.6 represent a
first attempt to apply the technique of the “shaking coefficients” introduced by Krylov in
[119] and [120] (see also the works of Barles and Jakobsen [31, 32, 33]) to HJB equations
with derivative boundary conditions. Finally, in the last part of the chapter numerical
tests are proposed and the methods discussed are applied for solving state constrained
backward reachability problems by the level set approach.
In Chapter 5 the reversed link is investigated. We start from a state constrained optimal
control problem

v(t, x) = inf
u∈U

{
E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds

]
:

Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
.

Applying the techniques described by Bouchard and Dang in [58] for the unconstrained
case, the epigraph of the value function v is characterized by means of the following state
constrained reachability problem in an augmented state and control space:

Find (x, z) : (Xu
t,x(T ), Zu,αt,x,z(T )) ∈ Epigraph(ψ)

and

Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

for some control u ∈ U , α ∈ A,

for a suitable definition of the process Zu,αt,x,z(·). At this point the study developed in
Chapter 3 can be used and in Theorem 5.4.3 the epigraph of the value function v is
characterized as the zero level set of a function

w(t, x, z) = inf
(u,α)∈U×A

E
[

max(ψ(Xu
t,x(T ))− Zα,ut,x,z(T ), 0) +

∫ T

t
gK(Xu

t,x(s))ds

]
.

The advantage of this procedure is that now the dynamic programming techniques are
only applied on this “auxiliary” unconstrained optimal control problem. The technical
difficulties of the chapter arise from the unboundedness of the controls α ∈ A. This will
result in the unboundedness of the Hamiltonian associated with w and in the necessity
of finding a new well posed formulation of the HJB equation. Developing the techniques
used in [64], Theorem 5.5.6, together with the comparison principle stated by Theorem
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5.6.1, finally characterizes the value function w as the unique viscosity solution of the
following generalized HJB equation

sup
u∈U,ξ∈Rp+1

‖ξ‖=1

{
ξTHu(t, x, ∂tw,Dw,D

2w)ξ

}
= 0 t ∈ [0, T ), x ∈ Rd, z > 0

w(t, x, 0) = w0(t, x) t ∈ [0, T ), x ∈ Rd
w(T, x, z) = ψ(x)− z x ∈ Rd, z ≥ 0

for a suitable definition of a symmetric matrix Hu.

1.2.2 Asymptotic controllability under state constraints

The 4th chapter of the thesis concerns the study of the controllability properties of a
stochastic system. In the present case, the notion of controllability is strictly connected
with the stability properties. A dynamical system governed by an ordinary differential
equation is said stable at a certain equilibrium point xE if all the trajectories starting
in a sufficiently small neighborhood of xE remain forever close to xE . A system is (lo-
cally) asymptotically stable if it is stable and, moreover, all the solutions starting near
xE converge to xE . In the stochastic setting we will talk about stability in probability if
the system satisfies the stability requirement with a certain probability. If the stochas-
tic trajectories starting in a suitable neighborhood of the equilibrium xE are stable and
converge to xE with probability one, the system is said almost surely asymptotically sta-
ble. In the controlled case the existence of a control guaranteeing the stability property
is characterized by the notion of controllability. In the study of stability for nonlinear
systems, a fundamental contribution is represented by the work of Alexander Lyapunov
at the end of the 19th century. In his original work [137] of 1892, Lyapunov proposed
two methods for proving the stability of deterministic nonlinear systems. In particular,
the second method he presented relates the stability of the system with the existence
of a suitable function, nowadays called a “Lyapunov function”, satisfying a certain set
of assumptions. In control theory this approach has been generalized thanks to the in-
troduction of “Control-Lyapunov functions”. Let be xE = 0 an equilibrium point for a
controlled system in Rd

ẋ = b(x, u).

A Control-Lyapunov function is a continuously differentiable function V : Rd → R such
that:

• V(0)=0;

• there exists δ > 0 such that for any x 6= 0 with |x| ≤ δ one has V (x) > 0 and
DV (x) · b(x, u) ≤ 0 for some control u.

For the definition of non smooth control Lyapunov functions we may refer to [164, 165,
82, 155]. The second method of Lyapunov has been widely studied starting from the
60’s [173, 105, 140, 123, 106, 125, 126] and it still represents one of the most used tools
for studying stability.

Finding constructive procedures for defining Lyapunov functions represents an im-
portant domain of research in this field. An important result in this direction was
obtained by Zubov in [174]. In this work the author proved that, for a suitable defini-
tion of a scalar function f , a Lyapunov function for the dynamical system defined above

7
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is given by the solution V of a particular kind of partial differential equation, called the
Zubov equation:

DV (x) · b(x) = −f(x)(1− V (x))
√

1 + ‖b(x)‖2.

In particular Zubov proved that the domain of attraction of an asymptotically stable
equilibrium xE , defined by the states that converge to xE , coincides with the set of points
x such that V (x) < 1.
In the later years this method has been successfully applied in many contexts [1, 103, 118]
and it has been generalized for dealing with different kind of systems, including control
and stochastic systems [22, 105, 70, 72, 73, 69, 71, 67]. In particular the latter references
establish a link between the Zubov method and optimal control theory. This link is
based on the observation that Zubov’s equation is a particular kind of HJB equation
and it is thus naturally associated with an optimal control problem. The fact of looking
at the Zubov method in the HJ framework has also the advantage of allowing the use of
the available results in viscosity theory for dealing with the cases where the existence of
smooth solutions cannot be guaranteed.

In particular, in [67], given a system of controlled stochastic differential equations,
the Zubov method is used to characterize the following set

x ∈ Rd : for some choice of the control u

Xu
x (t) converges to the equilibrium

with positive probability.

This set is called the domain of null-controllability for an asymptotically stable equilib-
rium point (or, more generally, for a set T replacing the equilibrium). It is proved in
that paper that, for a suitable choice of a scalar function f , such domain corresponds
to the set of points where the unique bounded viscosity solution of the second order
problem{

sup
u∈U

{
− f(x, u)(1− V )−DV · b(x, u)− 1

2Tr[σσ
T (x, u)D2V ]

}
= 0 x ∈ Rd \ T

V (x) = 0 x ∈ T

is strictly lower then one. The contribution given by this thesis is to introduce in this
study the presence of state constraints, asking not only that the trajectories converge
to T but also that they respect a prescribed constraint on the state. In other words we
will be interested in the characterization and computation of the set of points

x ∈ Rd : for some choice of the control u

Xu
x (t) converges to the equilibrium

and Xu
x (t) ∈ K, ∀t ≥ 0

with positive probability.

In the deterministic case, the presence of state constraints has been considered in [104].
Partially inspired by this work, we will consider a stochastic optimal control problem of
the form

v(x) = inf
u∈U

{
1 + E

[
sup
t≥0

(
− e−

∫ t
0 f(Xu

x (s),u(s))ds−h(Xu
x (t))

)]}
and we will prove in Theorem 4.4.1 that for suitable choices of the functions f and h the
domain of asymptotic controllability coincides with the set of points such that v(x) < 1.

8
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As already pointed out by the study developed in Chapter 3, dealing with maximum costs
in the stochastic setting implies the necessity of introducing an auxiliary scalar variable
y and leads to boundary problems with oblique derivatives conditions. We will prove in
Theorem 4.5.4 that the value function ϑ associated with the auxiliary optimal control in
dimension d+ 1, is a viscosity solution of the following Zubov-type HJB equation with
mixed boundary conditions:

sup
u∈U

{
− f(x, u)(1− ϑ)−Dϑ · b̃(x, y, u) x ∈ Rd,−e−h(x) < y < 0

−1
2Tr[σσ

T (x, u)D2
xϑ]

}
= 0

ϑ(x, 0) = 1 x ∈ Rd
−∂yϑ = 0 x ∈ Rd, y = −e−h(x).

Despite of the analogies with the problem studied in Chapter 3, the particular feature
of Zubov-type equations requires the use of particular tools. Indeed, because of the
degeneracy of f near T , new technical difficulties typical of this kind of equations arise
for proving uniqueness results. In particular such a result cannot be proved by standard
comparison arguments and the uniqueness statement of Corollary 4.6.5 will be obtained
applying sub- and super-optimality principles.

1.2.3 Ergodic control and state constraints

In the last part of the thesis we present some preliminary results concerning the study
of ergodic stochastic control problems in presence of state constraints.

Ergodic theory is devoted to the study of the long time behavior of dynamical sys-
tems. The type of information that is typically looked for is some result that relates
the time average of a function along the trajectories only with its space average. More
precisely, a deterministic dynamical system{

ẋ = b(x)
x(0) = x0

is said ergodic if there exists an invariant measure µ (that is a measure such that
µ(Φt(A)) = µ(A), where Φt is the flux of the dynamical system) such that for any
locally integrable function f

lim
T→+∞

1

T

∫ T

0
f(x(t))dt =

∫
f(z)dµ(z)

for any initial data x0. We can extend the previous property to the stochastic case
requiring that

lim
T→+∞

1

T
E
[ ∫ T

0
f(X(t))dt

]
=

∫
f(z)dµ(z).

We say that a stochastic process Xx(·) with law p(y, t) := P(Xx(t) ∈ dy) is ergodic in
law if

lim
t→+∞

p(·, t) = p̄(·)

for some function p̄ independent on the initial distribution p0 = p(·, 0). Roughly speak-
ing, this kind of properties say that no matter how the initial distribution is, after some
time the system stabilizes “forgetting” its initial state.

9
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In the case of optimal control problems over a long time period, the fact of minimizing
a long-run average cost can be more suitable to answer to the desire of minimizing the
performance on a long term and average basis. The study of ergodic control problems
dates back to the late 50’s. For what concerns the continuous case, among the first
contributions we find [130, 169, 157]. Considered a certain criterion of performance J
in the time interval [0, T ], studying the ergodic control problem means to study the
minimization of the long-run average cost

lim
T→+∞

1

T
J(T, x, u).

This kind of problems has been widely investigated in [6, 53, 54, 77, 76, 75, 7, 8, 156, 157,
151]. For our study we will make use of purely PDE techniques, analyzing the ergodicity
of the problem by the ergodic properties of HJB equations. Denoted by v(T, ·) the
optimal value obtained minimizing over the set of controls U the quantity J(T, ·, u), it
is in fact well-known that v(T, ·) can be characterized as the unique viscosity solution of
a second order (first order in the deterministic case) HJB equation of the form

∂tv +H(x,Dv,D2v) = 0, t ∈ (0, T ].

In order to be able to pass to the limit for T going to +∞ in this equation, the main result
we aim to prove is the uniform convergence of 1

T v(T, ·) and v(T, ·)−v(T, 0) to a constant
and to a function respectively. By using classical Abelian-Tauberian theorems, it is
possible to prove that the convergence of 1

T J(T, ·, u) is equivalent to the convergence of
the quantity λJλ(·, u) for λ going to 0, where Jλ(·, u) is the cost functional for an infinite
horizon problem with discount factor λ > 0. Thanks to this observation in our study we
directly considered this second case.

The main contribution given in Chapter 6 of the present thesis is to identify a partic-
ular class of ergodic problems that can be solved also taking into account the presence
of state constraints. The state constrained ergodic problems studied in literature can be
divided in three groups:

• the dynamics is periodic, that is the trajectories are constrained on a torus;

• the trajectories are reflected on the boundary of the state constraints;

• the presence of state constraints really act on the problem restricting the set of
the admissible trajectories.

An overview of these three cases is presented in [77] for deterministic control systems.
In the stochastic setting a study of the periodic case is given in [9, 4], whereas for
the reflected dynamics, leading to HJB equations with Neumann boundary conditions,
we may refer to [66, 52, 28, 43]. The third case with singular boundary conditions
is considered in [131]. When the value function is the viscosity solution of the state
constrained HJB equation{

λv +H(x,Dv,D2v) = 0 in int(K)
λv +H(x,Dv,D2v) ≥ 0 in ∂K.

no results seem to be available at the moment. For this reason, we started studying the
problem in a simplified setting assuming the invariance of the set of state constraints K
with respect to our dynamics. This is formalized by the following hypothesis:

Xu
x (t) ∈ K, ∀t ≥ 0 a.s. for any control u ∈ U .

10
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Differently from what usually happens dealing with state constraints, for which only
the super-solution property holds on the boundary, this assumption allows to prove that
the value function v

λ
solves an HJB equation in the whole domain K. In this way, the

analysis of the optimal control problem for λ fixed is much more simple. However even in
this simplified framework the ergodic problem cannot be solved by the direct application
of the techniques available in literature.
For this reason we introduce some further assumptions that provide at least a first
suitable setting for solving the problem. In Theorem 6.4.2 the uniform convergence of
λv

λ
and v

λ
− v

λ
(0) is proved under the following asymptotic flatness requirement:

there exist C1 ≥ 0, C2 > 0 : for any u ∈ U , x, y ∈ K, t ≥ 0

E
[
|Xu

x (t)−Xu
y (t)|

]
≤ C1e

−C2t|x− y|.

This condition, appearing for the first time in [38] for studying ergodic control problems
in the whole space, it is used to control the long time behavior of the stochastic trajec-
tories. Denoted respectively by Λ and χ the constant and the function uniform limit of
λv

λ
and v

λ
(·)− v

λ
(0), by classical stability results for HJB equations we show that they

solve the so-called cell problem

Λ +H(x,Dχ,D2χ) = 0 in K.

Adding to this framework the following finiteness property of the trajectories

sup
t≥0

sup
x∈C

sup
u∈U

E
[
|Xu

x (t)|
]
<∞, for any compact set C ⊆ K

we finally prove in Theorem 6.4.3 that Λ is actually the unique constant that guarantees
the existence of a viscosity solution for the limit HJB in a suitable class of functions.

1.2.4 Conclusions and perspectives

In this thesis we studied different stochastic control problems, proposing new solutions
for facing the presence of state constraints.

Exploiting the link between optimal control and backward reachability we were able
to deal with state constrained optimal control problems without making any control-
lability assumption on the dynamics. This was possible extending to the stochastic
framework the level set method that has as the main advantage that one of allowing a
particularly convenient treatment of the state constraints.
We analyzed the controllability (in probability) properties of stochastic diffusion sys-
tems. Generalizing the method of Zubov, we obtained a PDE characterization of the
domain of asymptotic controllability with positive probability for a given system taking
also into account the possible presence of state constraints.
In the last part of the thesis we dealt with state constrained stochastic ergodic problems
finding out a suitable framework for proving the ergodicity of the problem.

This study leaded us to consider from the theoretical point of view different problems.
We studied optimal control with maximum cost, for which we analyzed the numerical
aspects and provided new error estimates. We dealt with the presence of unbounded

11
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controls obtaining a compactified characterization in terms of a generalized HJB equa-
tion.

On one hand this research opens the way to further developments in the field of
applications since our main results, stated for general settings, can be adapted and
tested on a wide class of problems representing a possible alternative to the commonly
used techniques.
On the other hand the investigations carried out for the theoretical developments of our
tools may contribute to enrich the existing literature on different subjects.
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Chapter 2

Background

In this chapter we recall some classical results on stochastic optimal control problems
and the associated Hamilton-Jacobi approach.

By the use of the Bellman’s dynamic programming techniques the study of optimal
control problems can be linked with the solution of a particular class of nonlinear partial
differential equations: the Hamilton-Jacobi-Bellman equations. In particular first or-
der equations are obtained dealing with deterministic control systems and second order
equations appear in the stochastic case. In many situations the existence of classical
solutions is not guaranteed. The suitable context for developing a complete existence
and uniqueness theory turned out to be the viscosity solutions framework, introduced
by Crandall and Lions in the early 80s.

The chapter is organized as follows. We start introducing a general formulation for
stochastic optimal control problems with finite or infinite time horizon. The questions
concerning the existence of optimal controls are addressed in Section 2.2. In Section 2.3
the Bellman’s Dynamic Programming Principle is stated and its differential version, the
Hamilton-Jacobi-Bellman equation, provided. The main definitions and tools in viscosity
theory are given in Section 2.4 for the more general class of Hamilton-Jacobi equations.
The invariance and viability aspects related to the presence of state constraints are
presented in Section 2.5.

2.1 Stochastic optimal control problems

Let (Ω,F ,P) be a given probability space, with a filtration {Ft}t≥0 satisfying the
canonical assumptions (F0 contains all the negligible sets, it is right-continuous, i.e
Ft = Ft+ :=

⋂
s>tFs and it is left-continuous, i.e Ft = Ft− := σ(

⋃
s<tFs)) and let B(·)

be a p-dimensional Brownian motion adapted to {Ft}t≥0. We consider the following
dynamics given by a system of controlled stochastic differential equations (SDEs) in Rd:

(2.1.1)

{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s) s ∈ (t, T )
X(t) = x.

The elements that define a control system are: the horizon T ∈ [0,+∞], the initial time
t ∈ [0, T ], the initial condition x ∈ Rd, the drift b : [0, T ] × Rd × U → Rd, the volatility
σ : [0, T ] × Rd × U → Rd×p and the control processes u ∈ U , the set of progressively
measurable processes taking almost surely (a.s.) values in U ⊆ Rm.

13
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We consider the following assumptions on U, b and σ:

U ⊂ Rm is a compact set ;(HU )


(i) b(·, ·, ·) is continuous on [0, T ]× Rd × U ;

(ii) ∃Lb ≥ 0 such that ∀x, y ∈ Rd, t ∈ [0, T ], u ∈ U :

|b(t, x, u)− b(t, y, u)| ≤ Lb|x− y|;
(Hb)


(i) σ(·, ·, ·) is continuous on [0, T ]× Rd × U ;

(ii) ∃Lσ ≥ 0 such that ∀x, y ∈ Rd, t ∈ [0, T ], u ∈ U :

|σ(t, x, u)− σ(t, y, u)| ≤ Lσ|x− y|.
(Hσ)

It is well known (see for instance [170, Theorem 3.1]) that under these assumptions for
any (t, x) ∈ [0, T ] × Rd, u ∈ U there exists a unique solution to (2.1.1). We will denote
this solution by Xu

t,x(·). It satisfies almost surely

Xu
t,x(·) = x+

∫ ·
t
b(s,Xu

t,x(s), u(s))ds+

∫ ·
t
σ(s,Xu

t,x(s), u(s))dB(s).

In the case of autonomous systems we will fix t = 0 and the solution of (2.1.1) will be
denoted by Xu

x (·).
We recall the following classical result in SDEs theory (see again [170, Theorem 2.4],

for instance):

Proposition 2.1.1. Under assumptions (HU ),(Hb) and (Hσ), there exists a unique
{Ft}-adapted process Xu

t,x(·) strong solution of (2.1.1). Moreover, let T < +∞, there
exists a constant C > 0 (depending on T, Lb and Lσ), such that for any u ∈ U , 0 ≤ t ≤
t′ ≤ T and x, x′ ∈ Rd

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t,x′(θ)
∣∣2] ≤ C|x− x′|2,(2.1.2a)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t′,x(θ)
∣∣2] ≤ C(1 + |x|2) |t− t′|,(2.1.2b)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)− x

∣∣2] ≤ C(1 + |x|2) |t− t′|.(2.1.2c)

A general optimal control problem is characterized by a distributed cost ` : [0, T ] ×
Rd × U → R, a terminal cost ψ : Rd → R and a discount factor λ ≥ 0 and it is defined
by

inf
u∈U

E
[ ∫ T

t
e−λs`(s,Xu

t,x(s), u(s))ds+ e−λTψ(Xu
t,x(T ))

]
.(2.1.3)

We will consider the following assumptions:
(i) `(·, ·, ·) is continuous on [0, T ]× Rd × U ;

(ii) ∃L` ≥ 0 such that ∀x, y ∈ Rd, t ∈ [0, T ], u ∈ U :

|`(t, x, u)− `(t, y, u)| ≤ L`|x− y|.
(H`)
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ψ is a Lipschitz continuous function.(Hψ)

The value function is the map, denoted by v in this chapter, that associates to any
t ∈ [0, T ] and x ∈ Rd the optimal value in (2.1.3). If T < +∞ we will consider λ = 0 and
(2.1.3) is called a finite horizon optimal control problem. We will say that the problem
is in a “Mayer form” if ` ≡ 0 and, otherwise, that it is a “Bolza problem”. If T = +∞,
then we take λ > 0 and ψ ≡ 0 and we deal with an infinite horizon optimal control
problem. For infinite horizon problems we will only consider the autonomous case, so
the value function will depend only on the initial state x. On the basis of what we said
one has

• Finite horizon problem (T <∞, λ = 0) :

v(t, x) = inf
u∈U

E
[ ∫ T

t
`(s,Xu

t,x(s), u(s))ds+ ψ(Xu
t,x(T ))

]
(Bolza)(2.1.4)

v(t, x) = inf
u∈U

E
[
ψ(Xu

t,x(T ))

]
(Mayer)(2.1.5)

• Infinite horizon problem (ψ ≡ 0, λ > 0) :

v(x) = inf
u∈U

E
[ ∫ +∞

t
e−λs`(Xu

t,x(s), u(s))ds

]
.

Remark 2.1.2. It is easy to show that, by adding a state variable following the dynamics
given by the running cost, any finite horizon problem can be transformed in a Mayer’s
type problem ([170, Remark 3.2.(iii)]).

2.2 On the existence of optimal controls

The definition of optimal control problems given in the previous section is referred in
literature with the name of “strong formulation”. In this case the probability space
and the filtration are fixed at the beginning and a control is a progressively measurable
process with respect to this filtration.
On the other hand it is also possible to give a “weak formulation” of the general op-
timal control problem (2.1.3) allowing to change the probability space. If such a weak
formulation is considered, a control is given by a 6-tuple

π ≡ (Ωπ ,Fπ , {Fπ,t}t≥0,Pπ ,Bπ(·), uπ(·))

such that

• (Ωπ ,Fπ , {Ft,π}t≥0,Pπ) is a filtered probability space ;

• Bπ(·) is a p-dimensional Brownian motion;

• uπ(·) is a progressively measurable process with respect to {Fπ,t}t≥0 taking value
in U ⊆ Rm.

We will denote by Π the set of the 6-tuples π satisfying these assumptions. Under this
formulation the optimal control problems we aim to solve is

inf
π∈Π

Eπ
[ ∫ T

t
e−λs`(s,Xu

t,x(s), u(s))ds+ e−λTψ(Xu
t,x(T ))

]
(2.2.1)
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where Eπ denotes the expectation with respect to the probability measure Pπ .
An important issue in optimal control theory is to prove the existence of optimal

controls for problems (2.1.3) and (2.2.1). In the deterministic case (σ(x, u) ≡ 0) the
existence of optimal controls can be proved by compactness arguments under some con-
vexity assumptions that enable to apply the Filippov measurable selection theorem (see
for instance [81, Theorem 23.2]). In the stochastic framework and under a strong for-
mulation of the optimal control problem it is in general not possible to apply similar
techniques because of the lack of a compact structure on the set of stochastic trajecto-
ries. A special case occurs when the drift b and the volatility σ are linear functions of
the state and the control variable. In this case, the particular structure of the problem,
allows to rigorously prove an existence result that we state below as presented in [172,
Chapter II Theorem 5.2]. In the next chapters of the thesis some easy applications of
this result will be discussed (see Chapter 3, Theorem 3.9.2 and Chapter 5, Theorem
5.9.2).
Let us consider the following stochastic linear controlled system

(2.2.2)

{
dX(t) = (AX(t) +Bu(t))dt+ (CX(t) +Du(t))dB(t) t ∈ (0, T )
X(0) = x.

where A,B,C and D are matrices of suitable sizes and B(·) is a one-dimensional Brow-
nian motion. The finite horizon Bolza problem (2.1.4) is considered (with t = 0 and `
independent of t).

Theorem 2.2.1. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space and Xu
x (·) be the

solution of (2.2.2) associated to u(·) ∈ L2(0, T ;U) (with U ⊆ Rm). Let us assume that
the functions ` and ψ and the set U of control values are convex. If problem (2.1.4)
is finite and either U is compact or U is closed and `(x, u) ≥ C1|u|2 − C2, ψ(x) ≥
−C2,∀(x, u) ∈ Rd × U for some constants C1 and C2, then (2.1.4) admits an optimal
control.

In the general case of stochastic nonlinear control systems, it was pointed out by
several authors that the most suitable framework for proving existence is the weak one
(see [94, 107, 41, 127]). The result we report below take into account this more general
setting under the assumption (HU ) of compactness of the set of control values. Gener-
alizations of this result to the case of unbounded controls have been proposed in [107]
and [135]. One has the following result ([172, Chapter II, Theorem 5.3]):

Theorem 2.2.2. Let assumptions (HU ),(Hb),(Hσ),(Hψ) and (H`) be satisfied. Let us
also assume that for every t ∈ [0, T ], x ∈ Rd

(b, σσT , `)(t, x, U) :=
{

(bi(t, x, u), (σσT )ij(t, x, u), `(t, x, u)),

i = 1, . . . , d, j = 1, . . . , p, u ∈ U
}

is a convex set. The weak formulation of problem (2.1.4) is taken into account. If such
a problem is finite, then it admits an optimal control in Π.

2.3 Dynamic Programming approach for stochastic opti-
mal control problems

The main idea of the dynamic programming approach is that the value function v satisfies
a functional equation, that is called the Dynamic Programming Principle (DPP). It can
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be stated as follows

Theorem 2.3.1 (DPP). Assume (HU ),(Hb),(Hσ),(H`) and (Hψ). Then :

(i) Finite horizon Bolza problem: for any (t, x) ∈ [0, T )×Rd and for any {Ft}-stopping
time θ with values in [t, T ]

v(t, x) = inf
u∈U

E
[
v(θ,Xu

t,x(θ)) +

∫ θ

t
`(s,Xu

t,x(s), u(s))ds

]

(ii) Infinite horizon problem: for any x ∈ Rd and for any {Ft}-stopping time θ ≥ 0

v(x) = inf
u∈U

E
[
e−λθv(Xu

x (θ)) +

∫ θ

0
e−λt`(Xu

x (t), u(t))dt

]
.

If v is two times differentiable, by using the Itô formula it is possible to prove that
v is a solution of the following equation:

• Finite horizon problem:

(2.3.1)

{
−∂tv(t, x) +H(t, x,Dxv,D

2
xv) = 0 t ∈ [0, T ), x ∈ Rd

v(T, x) = ψ(x) x ∈ Rd

• Infinite horizon problem:

(2.3.2) λv(x) +H(x,Dv,D2v) = 0 x ∈ Rd

where we denoted by Dv and D2v respectively the gradient and the Hessian matrix of
v. The function H : [0, T ] × Rd × Rd × Sd → R (with Sd we denote the set of d × d
symmetric matrices), namely the Hamiltonian of the system, is defined by

H(t, x, p,Q) := sup
u∈U

{
− b(t, x, u) · p− 1

2
Tr[σσT (t, x, u)Q]− `(t, x, u)

}
for any t ∈ [0, T ], x, p ∈ Rd and Q ∈ Sd (the definition for the autonomous case follows
trivially). We point out that for deterministic control system, corresponding to the case
σ ≡ 0, equations (2.3.1) and (2.3.2) reduce to first order equations. Because of the pos-
sible degeneracy of the volatility σ, the existence of smooth solutions to equation (2.3.1)
(or (2.3.2)) cannot be guaranteed and for this reason solutions have to be considered in
some weak sense.

2.4 Characterization via Viscosity Solutions Theory

The suitable framework for dealing with equations (2.3.2) and (2.3.1) is the viscosity
solutions theory. This theory provides existence and uniqueness for a more general class
of fully nonlinear equations, known with the name of Hamilton-Jacobi (HJ) equations,
that can be written in following form

(2.4.1) F (x, v,Dv,D2v) = 0, x ∈ D

where D is an open set in Rd.
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Remark 2.4.1. It is clear that equations (2.3.1) and (2.3.2), that we refer with the name
of Hamilton-Jacobi-Bellman (HJB) equations, can be included in the general formulation
(2.4.1). Indeed equation (2.3.2) corresponds to the case D = Rd and

F (x, r, p,Q) := λr +H(x, p,Q)

and the time dependent case of equation (2.3.1) to D = (0, T )× Rd and

F ((t, x), r, (p1, p), Q) := −p1 +H(t, x, p, (Qij)i,j≥2
).

In what follows the abbreviation USC (resp. LSC) stands for upper semi-continuous
(resp. lower semi-continuous).

Definition 2.4.2 (Viscosity solutions). An USC (resp. LSC) function v on D is a
viscosity sub-solution (resp. super-solution) of (2.4.1), if for each function ϕ ∈ C2(D),
at each maximum (resp. minimum) point x of v − ϕ the following inequalities hold

F (x, ϕ,Dϕ,D2ϕ) ≤ 0 on D

(resp.
F (x, ϕ,Dϕ,D2ϕ) ≥ 0 on D).

Finally a continuous function v is a viscosity solution of (2.4.1) if it is both a sub- and
super-solution.

Viscosity solutions were introduced, in the nowadays formulation, by Crandall and
Lions in 1983 in their famous paper [86] (see also [85] and [97, 96] for earlier contribu-
tions). Even if the main definitions given in this paper can be extended to the second
order case, only first order equations are taken into account. In the same year Lions in
[132] and [133] characterizes the value function associated to optimal control problems
for controlled diffusion (as (2.1.3)) as the unique continuous viscosity solution of a second
order HJB equation. However the uniqueness result presented in these papers is based
on ad hoc arguments strictly connected with the particular form of the equation.

In the general case uniqueness is obtained as a consequence of some comparison result
between sub- and super-solutions, that establishes that for any sub-solution v and any
super-solution v

v(x) ≤ v(x) on D.

Therefore uniqueness follows from the fact that a solution v is at the same time a sub-
and a super-solution. The classical method for proving comparison results for first order
equations (σ ≡ 0), is based on the doubling variable technique (see [86] for instance). It
consists in the definition of the following family of auxiliary functions

Φε(x, y) := v(x)− v(y)− |x− y|
2

ε
, ε > 0.

Given some maximum point (xε, yε) for Φε the result is proved considering x→ v(yε) +
|x−yε|2

ε and y → v(xε)− |xε−y|
2

ε as test functions for v(x) and v(y) respectively. However
the same technique does not apply to the second order equations, since the information
given by these test functions on the second order derivatives is not sufficient to get the
result. For several years no uniqueness results were available for fully nonlinear second
order equations in the general form (2.4.1). A first important achievement in this di-
rection was obtained in 1988 by Jensen, who provided in [115] a comparison principle
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for a family of equations (2.4.1) independent of x using “supconvolution” and “infcon-
volution” approximations. In the later years a wider class of problems was taken into
account including also boundary value problems. We mention, among the main contri-
butions [110, 83, 113, 109, 111, 116]. In this framework it turned out to be particularly
useful to introduce another equivalent definition of viscosity solution making use of the
concept of semijets.

Definition 2.4.3 (Semijets). Let v be an USC function. The superjet of v at some
point x is

J 2,+v(x) :=
{

(p,X) ∈ Rd × Sd :

v(y) ≤ v(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o‖x− y‖2

}
.

We also define its closure

J 2,+
v(x) :=

{
(p,X) ∈ Rd × Sd :

∃xn → x,∃(pn, Xn) ∈ J 2,+v(xn) s.t. (pn, Xn)→ (p,X)
}
.

Analogously for a LSC function v we define the subjet

J 2,−v(x) :=
{

(p,X) ∈ Rd × Sd :

v(y) ≥ v(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o‖x− y‖2

}
and its closure

J 2,−
v(x) :=

{
(p,X) ∈ Rd × Sd :

∃xn → x,∃(pn, Xn) ∈ J 2,−v(xn) s.t. (pn, Xn)→ (p,X)
}
.

It is easy to observe that J 2,+v(x) = −J 2,−(−v(x)). Essentially these objects extend
to the second order case the notion, largely used in nonsmooth analysis, of sub and super
differential leading to a definition of Dv and D2v in the nonsmooth case. We can consider
the following definition of viscosity solution

Definition 2.4.4. An USC (resp. LSC) function v on D is a viscosity sub-solution (resp.
super-solution) of (2.4.1) if

F (x, v, p,X) ≤ 0 for any x ∈ D, (p,X) ∈ J 2,+
v(x)

(resp.

F (x, v, p,X) ≥ 0 for any x ∈ D, (p,X) ∈ J 2,−
v(x)).

Finally a continuous function v is a viscosity solution of (2.4.1) if it is both a sub- and
super-solution.

Equivalence between Definitions 2.4.2 and 2.4.4 can be shown (see, for instance,
[172, Proposition 5.6]). We also report here a key result that is often very useful for
proving comparison results: the so-called “Crandall-Ishii lemma”. It avoids the explicit
regularization by convolution of the solutions. We give the statement of the result in its
most general formulation as given in [84, Theorem 3.2]:
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Lemma 2.4.5 (Crandall-Ishii lemma). Let Di be a locally compact subset of Rdi for
i = 1, . . . , k, D := D1 × . . . ×Dk ⊆ Rd (d = d1 + . . . + dk), vi ∈ USC(Di) and ϕ be a
twice continuously differentiable function in a neighborhood of D. Set

v(x) := v1(x1) + . . .+ vk(xk)

for x ≡ (x1, . . . , xk) ∈ D and suppose that x̂ ∈ D is a local maximum point for v − ϕ.
Then for any α > 0 there exists Xi ∈ Sdi such that

(Dxi
ϕ(x̂), Xi) ∈ J

2,+
vi(x̂i), for i = 1, . . . , k

and the following matrix inequalities hold

−
(

1

α
+ ‖D2ϕ(x̂)‖

)
Id ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ D2ϕ(x̂) + α(D2ϕ(x̂))2

(where for a matrix A ∈ Sd we define ‖A‖ := sup{|Aξ · ξ| : |ξ| ≤ 1}).

For the special case of parabolic HJ equations will be also useful to introduce the
parabolic semijets:

Definition 2.4.6 (Parabolic semijets). Let v : [0, T ] × D → R an USC function. The
parabolic superjet of v at some point (t, x) is

P1,2,+v(t, x) :=
{

(a, p,X) ∈ R× Rd × Sd :

v(s, y) ≤ v(t, x) + a(s− t) + p · (y − x) +
1

2
X(y − x) · (y − x)

+ o(|s− t|+ ‖x− y‖2)
}
.

Let v : [0, T ]×D → R a LSC function. The parabolic subjet of v at some point (t, x) is

P1,2,−v(t, x) :=
{

(a, p,X) ∈ R× Rd × Sd :

v(s, y) ≥ v(t, x) + a(s− t) + p · (y − x) +
1

2
X(y − x) · (y − x)

+ o(|s− t|+ ‖x− y‖2)
}
.

The closures P1,2,+
v(t, x),P1,2,−

v(t, x) of these sets are defined as done in the elliptic
case.
We also state below the parabolic version of the Crandall-Ishii lemma [84, Theorem 8.3]:

Lemma 2.4.7 (Crandall-Ishii lemma, parabolic version). Let Di be a locally compact
subset of Rdi for i = 1, . . . , k, D := D1 × . . . × Dk ⊆ Rd (d = d1 + . . . + dk) and
vi ∈ USC((0, T ) × Di). Let ϕ be defined on an open neighborhood of (0, T ) × D, once
continuously differentiable in t and twice continuously differentiable in x = (x1, . . . , xk).
Set

v(t, x) := v1(t, x1) + . . .+ vk(t, xk)

and suppose that (t̂, x̂) ∈ (0, T ) × D is a local maximum point for v − ϕ. Assume
moreover that there is an r > 0 such that for every M > 0 there is a C such that for
every i = 1, · · · , k

ai ≤ C whenever (ai, pi, Xi) ∈ P
1,2,+

vi(t̂, x̂i),

|xi − x̂i|+ |t− t̂| ≤ r and |vi(t, xi)|+ |pi|+ ‖Xi‖ ≤M.
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Then for any α > 0 there exist ai ∈ R, Xi ∈ Sdi such that

(ai, Dxi
ϕ(t̂, x̂), Xi) ∈ P

1,2,+
vi(t̂, x̂i), for i = 1, . . . , k

a1 + . . .+ ak = ∂tϕ(t̂, x̂)

and the following matrix inequalities hold

−
(

1

α
+ ‖D2

xϕ(t̂, x̂)‖
)
Id ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ D2
xϕ(t̂, x̂) + α(D2

xϕ(t̂, x̂))2.

We refer to [84] and the many references therein for a very useful survey containing
a wide choice of comparison results.

2.5 Viable and invariant sets of state constraints

As mentioned in the introduction, the aim of this thesis is to address different issues
that arise dealing with stochastic control systems in presence of state constraints. In
the stochastic setting the concept of state constraint can be considered in different ways
(probability constraints, almost sure constraints, constraints in expectation). In this
section we only take into account the strongest request, that is that the constraints
are satisfied almost surely. Considering state constrained problems, two fundamental
concepts are those of viability and invariance.

Let K be a nonempty set in Rd. We consider here the autonomous version of the
control system (2.1.1)

(2.5.1)

{
dX(t) = b(X(t), u(t))ds+ σ(X(t), u(t))dB(t) t > 0
X(0) = x

and we denote by Xu
x (·) the trajectory starting at point x and associated to the control

u ∈ U . Roughly speaking we will say that K is viable if for all the initial states x ∈ K
there exists at least one trajectory that remains in K for all t ≥ 0 almost surely. The
set K is invariant if all the trajectories starting in K remain in K forever in K almost
surely. Clearly every invariant set is also viable. One has:

Definition 2.5.1. A nonempty set K is said to be viable for the controlled stochastic
differential equation (2.5.1) if

∀x ∈ K, there exists u ∈ U : Xu
x (t) ∈ K, ∀t ≥ 0 a.s. .

K is said to be invariant if for any x ∈ K one has

Xu
x (t) ∈ K, ∀t ≥ 0 a.s. , ∀u ∈ U .

Dealing with state constrained optimal control problems the aim is to minimize (or
maximize) some cost functional over the set of control strategies U asking at the same
time that some state constraints is satisfied. This naturally restricts the set of admissible
controls to the set of the controls u ∈ U such that the constraints are satisfied. In
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particular for the case of state constraints that are required to be satisfied almost surely,
the set of admissible controls for a certain point x ∈ K becomes

UK(x) :=
{
u ∈ U : Xu

x (t) ∈ K,∀t ≥ 0 a.s.
}
.

It is clear that this set will be empty at some point x ∈ K if the set K is not viable. On
the other hand we will have UK(x) = U for any x ∈ K if K is invariant.

There is a wide literature concerning the characterization of viable and invariant
sets. In the deterministic case, σ ≡ 0, the first reference is the work of Nagumo [146]
for uncontrolled systems of ordinary differential equations. Classical references in the
framework of control systems and differential inclusions are [17, 18]. Sufficient conditions
for invariance of closed sets in the case of uncontrolled diffusions, σ 6≡ 0, were firstly
given in the book of Friedman [102] (observe that in the uncontrolled case the concept
of viability and invariance coincide). In the later years this kind of results have been
extended, by the use of different techniques, to characterize the invariance and viability
properties of controlled diffusions (we may refer to [65, 25, 31, 13, 19] and [14]). We
report below a characterization of invariant and viable closed sets in Rd based on the
notion of second order normal cone.

Definition 2.5.2. Let K ⊂ Rd a closed set. The second order normal cone at some
point x ∈ K is

N 2
K(x) :=

{
(p,X) ∈ Rd × Sd : for K 3 y → x

p · (y − x) +
1

2
(y − x) ·X(y − x) ≥ o(|y − x|2)

}
.

Theorem 2.5.3. Let assumptions (Hb),(Hσ) and (HU ) be satisfied and let K ⊆ Rd be
a closed set. The set K is invariant for the system (2.5.1) if and only if for any x ∈ ∂K
and (p,X) ∈ N 2

K(x), it holds:

b(x, u) · p+
1

2
Tr[σσT (x, u)X] ≥ 0, ∀u ∈ U.(2.5.2)

Let us assume, in addition, that the set {(b, σσT )(t, x, U)} is convex. Then the set K is
viable if and only if for any x ∈ ∂K and (p,X) ∈ N 2

K(x)

∃u ∈ U : b(x, u) · p+
1

2
Tr[σσT (x, u)X] ≥ 0.(2.5.3)

We refer to [25] (for the invariance property) and to [26] (for the viability property).
We stress here that although questions concerning the viability properties of the

sets naturally arise dealing with state constraints, it is not in the aims of this thesis
to investigate such properties. With the exception of Chapter 6, where for technical
reasons we will restrict the problem in an invariant domain, the tools we develop work
in the same way independently of the viability properties satisfied by the set of state
constraints. By the way this kind of properties can be easily derived by the outcome of
our results.
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Chapter 3

Reachability analysis under
state-constraints

Related publications:

O. Bokanowski, A. Picarelli and H. Zidani, Dynamic Programming and Error Esti-
mates for Stochastic Control Problems with Maximum Cost, Appl. Math. Optim., DOI:
10.1007/s00245-014-9255-3 (2014), pp. 1-39

O. Bokanowski, A. Picarelli, Reachablity for state constrained stochastic control prob-
lems, 3 pages extended abstract, Proceedings of the 20th MTNS conference, Melbourne,
Australia, 9-13 July 2012.

3.1 Introduction

In this chapter we deal with the characterization and computation of the backward
reachable set for a system of controlled diffusions in presence of state constraints. Let
T ⊆ Rd be a target set and let K ⊆ Rd be a set of state constraints. Let T ∈ [0,+∞)
be a fixed time horizon. As in the previous chapter, Xu

t,x(·) denotes the solution of a
system of controlled stochastic differential equations associated with the control u ∈ U ,
starting at time t from the position x ∈ Rd.

We aim to characterize the set of all the initial points x ∈ Rd from which it is
almost surely possible to reach the target T at the final instant T , satisfying the state
constraints in the whole interval [t, T ]. The set of such points will be called the state
constrained backward reachable set and it will be denoted by RT ,Kt , i.e.

RT ,Kt :=

{
x ∈ Rd : ∃u ∈ U such that(
Xu
t,x(T ) ∈ T and Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

}
.

Because of their importance in applications ranging from engineering to biology and eco-
nomics, questions of reachability have been studied extensively in the control literature
(see [47, 121, 139, 138, 162, 16]). Stochastic target problems arising in finance have been
also analyzed in [163, 61, 56] where, by establishing a geometric dynamic programming
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principle, it is proved that a partial differential equation (the analogue of the Hamilton-
Jacobi-Bellman equation for this problem) is satisfied by the reachable sets.
Here, we suggest to characterize the reachable sets by using a level set method (see [147]
for its earlier introduction). At the basis of this approach there is the idea of looking
at the set RT ,Kt as a level set of a continuous function that can be characterized as the
unique solution, in some sense, of a partial differential equation. Recently, the level set
approach has been extended to deal with general deterministic optimal control problems
in presence of state constraints, see for example [47, 2]. Applying this method we will
see in Section 3.2 the interest of dealing with stochastic optimal control problems in the
following “maximum form”:

(3.1.1) inf
u∈U

E
[
ψ

(
Xu
t,x(T ), max

s∈[t,T ]
g(Xu

t,x(s))

)]
.

This problems also arise from the study of some path-dependent options in finance
(lookback options) and, motivated by this application, they have been studied in [29,
37, 30]. For this reason, starting from Section 3.4 the chapter is focused on the study of
stochastic optimal control problems in the general form (3.1.1). Particular attention will
be devoted to the numerical aspects including convergence analysis and error estimates.

The chapter is organized as follows: Section 3.2 is devoted to a general discussion
on stochastic reachability problems, presenting a short overview of the main references
available in literature. Section 3.3 explains how the level set approach can be applied
to stochastic state constrained reachability problems. In particular it will be shown
how it is possible to connect a state constrained reachability problem to an optimal
control problem of the form (3.1.1). Stochastic optimal control problems with cost
depending on a maximum will be presented in Section 3.4. Section 3.5 is devoted to
the characterization of the value function associated with this kind of problems by the
suitable HJB equation. In Section 3.6 the numerical approximation is discussed and
a general convergence result is provided. The semi-Lagrangian scheme is presented in
Section 3.6.2 and the properties of this scheme are investigated. In Section 3.7 error
estimates for a semi-Lagrangian scheme are presented. Finally some numerical tests are
presented in Section 3.8 to analyze the relevance of the proposed scheme.

3.2 On stochastic reachability

Before extensively discuss the application of the level set approach for solving reachability
problems we briefly present in this section some of the main contributions to the study
of this kind of problems available in literature.
An important part of literature is due to the works of Soner, Touzi, Bouchard et al. (see
[163, 162, 56, 61]). At a first stage the authors were interested in the characterization of
the value function ζΦ solution of the following particular optimal control problem

ζΦ(t, x) := inf

{
z ∈ R : ∃u ∈ U such that Zut,x,z(T ) ≥ Φ(Xu

t,x(T )) a.s.

}
(3.2.1)

where the process (Xu
t,x(·), Zut,x,z(·)) in Rd × R solves a SDE of the following form:

dX(s) = bX (s,X(s), u(s))ds+ σX (s,X(s), u(s))dB(s)
dZ(s) = bZ (s,X(s), Z(s), u(s))ds+ σZ (s,X(s), Z(s), u(s))dB(s)
(X(t), Z(t)) = (x, z) ∈ Rd+1.

(3.2.2)
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It is clear that the characterization of ζΦ is closely related to the solution of a particular
reachability problem (as defined in the previous section) where the target T is given
by the epigraph of the function Φ. The study of this kind of problems was originally
motivated by applications in finance. Indeed for some particular choice of the coefficients
bX , σX , bZ , σZ , (3.2.1) is a super-replication problem (see [88, 95, 90, 89] for instance)
where the value function ζΦ represents the minimal initial capital which allows, for
a suitable choice of the strategy u ∈ U , to hedge the contingent claim given by the
payoff Φ(Xu

t,x(T )). In [163] is obtained a characterization of the value function ζΦ as
a discontinuous solution of a particular HJB equation by proving that ζΦ satisfies the
following non classical geometric DPP:

ζΦ(t, x) = inf

{
z ∈ R : ∃u ∈ U such that Zut,x,z(T ) ≥ ζΦ(θ,Xu

t,x(θ))

}
for any [t, T ]-valued stopping time θ (see also [159]). In [56] this kind of approach is
generalized taking into account also mixed diffusion processes.
It is important to remark that stochastic target problems as (3.2.1) are also closely
related to the theory of forward-backward SDEs (see for instance [5, 148, 149, 89]). We
can in fact see (3.2.1) as the problem of finding (X(·), Z(·), u) with the minimal Z(0) such
that u ∈ U , X(0) = x is fixed and (X(·), Z(·)) is solution of a forward-backward SDE
(in particular X will be associated to the forward component and Z to the backward
part). See for more details [89].

General stochastic target problems (i.e. target problems where T has not the form of
an epigraph) are finally considered in [162]. In this case the authors modify the geometric
techniques developed in the previous cases in order to deal with the characterization of
the set

RTt :=

{
x ∈ Rd : ∃u ∈ U such that Xu

t,x(T ) ∈ T a.s.

}
(it coincides exactly with the definition of the backward reachable set we gave in the
introduction in absence of state constraints). For any stopping time θ taking values in
[t, T ], the geometric DPP satisfied by RTt takes the form

RTt =

{
x ∈ Rd : ∃u ∈ U such that Xu

t,x(θ) ∈ RTθ a.s.

}
.

We conclude the section mentioning that target problems, with or without state con-
straints, can also be studied in the framework of the viability theory. The state con-
strained backward reachable set RT ,K0 coincides in fact with what, in the context of
deterministic viability, is called the T -exact capture basin (see [21, Definition 4.3.1]).
We refer to [21] and the references therein for the main results in the deterministic
framework. In the case of diffusion processes we may refer to [14] and [20].

3.3 The level set approach for state constrained stochastic
reachability problems

Let (Ω,F ,P) be a probability space supporting a càdlàg process Z with values in Rd
(d ≥ 1) and independent increments. Given the time horizon T > 0, we denote by
F := {Ft}0≤t≤T the completion of the natural filtration induced by Z, assuming that F0

is trivial and FT = F . Let Ft := {F ts}s≥0 be the completion with the null sets of F of
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the sigma-algebra generated by the increments (Zr − Zt) for t ≤ r ≤ s ∨ t. We define
an F-Brownian motion B(·) in Rp (with p ≥ 1). Let 0 ≤ t ≤ T , the following system of
controlled SDEs in Rd is considered

(3.3.1)

{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s) s ∈ (t, T )
X(t) = x.

where u ∈ U set of F-progressively measurable processes with values in U ⊂ Rm (m ≥ 1).
Along the whole chapter the set U is assumed to be compact (i.e. (HU ) is satisfied). We
also recall that under assumptions (Hb) and (Hσ) on the dynamics, denoted by Xu

t,x(·)
the strong solution of (3.3.1) associated with the control u ∈ U , the classical estimates
of Proposition 2.1.1 hold.

Let T ⊆ Rd be a target set and K ⊆ Rd a set of state constraints such that

T ⊆ Rd is a nonempty and closed set.(HT )

K ⊆ Rd is a nonempty and closed set.(HK)

As mentioned in the introduction we aim to characterize and compute the state
constrained backward reachable set

RT ,Kt :=

{
x ∈ Rd : ∃u ∈ U such that(3.3.2) (
Xu
t,x(T ) ∈ T and Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

}
.

In what follows we will apply a “level set” approach. The bases of this approach were
introduced by Osher and Sethian in [147] for fronts propagation problems in a determin-
istic framework. The main idea contained in this work is that it is possible to describe
a curve, the curve representing the front in that case, as a level set of a suitable con-
tinuous function. Thanks to this observation, in [147] the propagation of the front is
described by the 0-level set of a function that is characterized as the unique solution of
an evolutionary PDE. In the deterministic framework (the case σ ≡ 0) the same idea has
been applied with success by many authors in the later years. Among them we mention
[98] for rendez-vous problems and [138, 139] for minimum time problems. We are in
particular interested in state constrained reachability problems and in this case the level
set method has been applied in [47] and [121].

We start with a short discussion on the application of the level set approach for
solving stochastic (σ 6≡ 0) reachability problems in the unconstrained case K = Rd. Let
us define a function gT such that

gT : Rd → R is a Lipschitz continuous fuction,(HgT
)

gT (x) ≥ 0 and gT (x) = 0⇔ x ∈ T .

We consider the following stochastic optimal control problem:

(3.3.3) vT (t, x) := inf
u∈U

E
[
gT (Xu

t,x(T ))

]
.

It is not difficult to prove that, as soon as the infimum in (3.3.3) is attained, one has
RT ,Kt = {x ∈ Rd : vT (x) = 0}. We will call vT the level set function. Problem (3.3.3)
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Chapter 3 Level set approach for state constrained stochastic reachability

is a stochastic optimal control problem in a classical Mayer form, then all the results
mentioned in Chapter 2 apply and vT can be characterized as the unique viscosity
solution of an HJB of the form (2.3.1). By the use of the available numerical methods
for HJB equations, vT can therefore be computed and, looking at its 0-level set, a
numerical approximation of the backward reachable set is then obtained.
When state constraints are taken into account, that is if K ⊂ Rd, the suitable level set
function to be considered is given by the following state constrained optimal control
problem

vT ,K(t, x) : inf
u∈U

{
E
[
gT (Xu

t,x(T ))

]
: Xu

t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

}
.(3.3.4)

In absence of compatibility assumption between the dynamics and the set of state con-
straints, the characterization of the value function as the solution of the state constrained
HJB equation becomes more complicated. We remand to Chapter 5 and the references
therein for a more detailed discussion on this subject and for a presentation of the ex-
isting literature.
In order to overcome these difficulties and to avoid to deal with state constrained op-
timal control problems, in what follows we adapt the approach proposed in [47] to the
stochastic context. The main idea is to manage the state constraints introducing an
exact penalization term directly in the definition of the level set function. With this
purpose we introduce another function gK such that

gK : Rd → R is a Lipschitz continuous fuction,(HgK
)

gK(x) ≥ 0 and gK(x) = 0⇔ x ∈ K.

Remark 3.3.1. We can observe that under assumptions (HT ),(HK) it is always possible
to find functions gT and gK satisfying (HgT

) and (HgK
). Indeed it is sufficient to define

gT (x) := d+
T (x) and gK(X) := d+

K (x)

where d+
T and d+

K denote the positive Euclidean distance functions to the sets T and K
respectively.

Let us consider the following optimal control problem in a “maximum form”:

(3.3.5) wT ,K(t, x) := inf
u∈U

E
[
gT (Xu

t,x(T )) ∨ max
s∈[t,T ]

gK(Xu
t,x(s))

]
.

We have the following result

Proposition 3.3.2. Let assumptions (Hb),(Hσ),(HT ),(HK),(HgT
) and (HgK

) be satis-
fied and let the infimum in (3.3.5) be attained. Then for any t ∈ [0, T ]

x ∈ RT ,Kt ⇔ wT ,K(t, x) = 0.

Proof. On one hand, from the definition of RT ,Kt and assumptions (HgT
), (HgK

) it

follows that if x ∈ RT ,Kt there exists u ∈ U such that(
gT (Xu

t,x(T )) = 0 and gK(Xu
t,x(s)) = 0, ∀s ∈ [t, T ]

)
a.s. .

27



Reachability analysis under state-constraints Chapter 3

Hence

gT (Xu
t,x(T )) ∨ max

s∈[t,T ]
gK(Xu

t,x(s)) = 0, a.s.

and, observing also that wT ,K is always positive, we get wT ,K(t, x) = 0.
On the other hand let us assume that wT ,K(t, x) = 0. Since, by hypothesis, the infimum
in (3.3.5) is attained for some control ū ∈ U , we have that for such a control

E
[
gT (X ū

t,x(T )) ∨ max
s∈[t,T ]

gK(X ū
t,x(s))

]
= 0.

Because of the non negativity of the process inside the expectation, it follows that

gT (X ū
t,x(T )) ∨ max

s∈[t,T ]
gK(X ū

t,x(s)) = 0 a.s.

and then, thanks again to assumptions (HgT
) and (HgK

), we can conclude that(
Xu
t,x(T ) ∈ T and Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s. ,

that is x ∈ RT ,Kt .

Remark 3.3.3. As pointed out by the proof above, the existence of an optimal control
for problem (3.3.5) plays an important role for proving the second implication. It is
nowadays well known (see Section 2.2 in Chapter 2) that a sufficient condition that
guarantees such a property (if a weak formulation of the optimal control problem is
considered) is the following

{(b, σσT )(t, x, u), u ∈ U} is a convex set .

An existence result under strong formulation, for the case of a linear dynamics, will be
discussed in Section 3.9 at the end of the chapter. In absence of the existence assumption
the backward reachable set is not closed. In this case, choosing gT = d+

T and gK = d+
K

the 0-level set of wT ,K is associated with the following weaker notion of state constrained
backward reachable set:

R̃T ,Kt :=

{
x ∈ Rd : ∀ε > 0, ∃uε ∈ U such that

E[d+
T (Xuε

t,x(T ))] ≤ ε and E[ max
s∈[t,T ]

d+
K (Xuε

t,x(s))] ≤ ε
}

=

{
x ∈ Rd : ∀ε > 0, ∃uε ∈ U , E[d+

T (Xuε
t,x(T )) ∨ max

s∈[t,T ]
d+
K (Xuε

t,x(s))] ≤ ε
}
,

where the second characterization of R̃T ,Kt is easily deduced from the following inequal-
ities:

E
[
d+
T (Xuε

t,x(T ))

]
∨ E
[

max
s∈[t,T ]

d+
K (Xuε

t,x(s))

]
≤ E

[
d+
T (Xuε

t,x(T )) ∨ max
s∈[t,T ]

d+
K (Xuε

t,x(s))

]
≤ E

[
d+
T (Xuε

t,x(T ))

]
+ E

[
max
s∈[t,T ]

d+
K (Xuε

t,x(s))

]
.
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Chapter 3 Stochastic optimal control problem with a maximum cost

The main advantage of reformulating the state constrained reachability problem us-
ing (3.3.5) is that the presence of state constraints does not represent a problem any
more. In fact (3.3.5) is an unconstrained optimal control problem, i.e. the infimum is
taken over the whole set of controls U , and the state constraints only appear in the
exact penalization term “maxs∈[t,T ] gK(Xu

t,x(s))”. The term “exact” emphasizes the dif-
ference with the usual penalty method used in optimization, where the solution of the
constrained problem is obtained as result of a limit procedure.

Remark 3.3.4. The choice of the level set function wT ,K is not, of course, the unique to
guarantee the equivalence in Proposition 3.3.2. Indeed another possible choice is

w̃T ,K(t, x) := inf
u∈U

E
[
gT (Xu

t,x(T )) +

∫ T

t
gK(Xu

t,x(s))ds

]
.

From the theoretical point of view the study of this optimal control problem is easier.
It is in fact an unconstrained optimal control problem in a standard Bolza form and by
classical dynamic programming arguments (see Chapter 2) w̃T ,K can be characterized as
the unique viscosity solution of the following HJB equation:{

−∂tw +H(t, x,Dxw,D
2
xw) = 0 t ∈ [0, T ), x ∈ Rd

w(T, x) = gT (x) x ∈ Rd

with

H(t, x, p,Q) := sup
u∈U

{
− b(t, x, u) · p− 1

2
Tr[σσT (t, x, u)Q]

}
− gK(x).

By the way it has been shown in the deterministic case that the “maximum problem”
(3.3.5) leads to better numerical results (we refer to [46] for a discussion on this fact). For
this reason in what follows our aim will be to propose a complete study of the extension
to the stochastic setting of the approach based on the “maximum exact penalization”.

Remark 3.3.5. We point out that in the application of the level set approach no further
difficulties arise taking into account the case of moving targets and constraints. Indeed,
in order to include also this case in our model it will be sufficient to consider functions
gT and gK depending on t and the level set function wT ,K (resp. w̃T ,K) would be

wT ,K(t, x) = inf
u∈U

E
[
gT (Xu

t,x(T ), T ) ∨ max
s∈[t,T ]

gK(Xu
t,x(s), s)

]
(

resp. w̃T ,K(t, x) := inf
u∈U

E
[
gT (Xu

t,x(T ), T ) +

∫ T

t
gK(Xu

t,x(s), s)ds

])
.

In conclusion, in view of Proposition 3.3.2 the reachable setRT ,Kt can be characterized
by means of the value function of a control problem with supremum cost in the form of
(3.1.1), with functions g and ψ defined by: g(x) := gK(x) and ψ(x, y) := gT (x) ∨ y. For
this reason in the rest of the chapter we will deal with the general formulation (3.1.1),
coming back to the reachability problem in Section 3.8.

3.4 Stochastic optimal control problem with a maximum
cost

As said in the previous section, we are now interested in stochastic optimal control
problems with a cost function of the form

J(t, x, u) = E
[
ψ

(
Xu
t,x(T ), max

s∈[t,T ]
g(Xu

t,x(s))

)]
,(3.4.1)
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where ψ : Rd+1 → R and g : Rd → R are two functions satisfying:

ψ is a bounded and Lipschitz continuous function;(H ′ψ)

g is a Lipschitz continuous function.(Hg)

We denote by Lψ and Lg their Lipschitz constants. The value function associated with
the cost (3.4.1) is defined by

v(t, x) = inf
u∈U

J(t, x, u).

In the sequel, for any function ϕ defined from some set Q ⊂ (0,∞) × Rd into either
R,Rd or some space of matrices, we set

[ϕ]1 := sup
(t,x)6=(s,y)

|ϕ(t, x)− ϕ(s, y)|
(|x− y|+ |t− s|1/2)

,

and

|ϕ|1 := ‖ϕ‖∞ + [ϕ]1.

The following assumptions on the coefficients b and σ will be required:
(i) σ(·, ·, ·), b(·, ·, ·) are continuous on [0, T ]× Rd × U ;

(ii) ∃Mb,Mσ ≥ 0 independent on u ∈ U such that

|b(·, ·, u)|1 ≤Mb, |σ(·, ·, u)|1 ≤Mσ, ∀u ∈ U
(H ′b,σ)

Under assumptions (H ′b,σ), (H ′ψ) and (Hg), v is a Lipschitz continuous function in x

and a 1
2 -Hölder continuous function in t (by the same arguments as in Proposition 3.4.1

below).

The main contributions to the study of this kind of problems can be found in [29]
and [37] (see also [108] for the stationary case in the framework of classical solutions). In
these works the dynamic programming techniques are applied on the Lp-approximation
of the L∞-cost functional in (3.4.1), using the approximation:

a ∨ b ' (ap + bp)
1
p (for p→∞),

for any a, b ≥ 0, where a∨ b := max(a, b). Then the HJ characterization for the original
“maximum problem” is obtained as limit for p→∞. A fundamental hypothesis in order
to apply this approach is the positivity of the functions involved. In our work, a direct
derivation of a Dynamic Programming Principle gives an alternative and natural way
for dealing with the running maximum cost problems under less restrictive assumptions.
By this way, the optimal control problem associated to the cost functional (3.4.1) is
connected to the solution of a HJB equation with oblique derivative boundary conditions.
Here, the boundary conditions have to be understood in the viscosity sense (see [109]).

In order to characterize the function v as solution of an HJB equation the main tool
is the well-known optimality principle (see Section 2.3). The particular non-Markovian
structure of the cost functional (3.4.1) prohibits the direct use of the standard techniques.
To avoid this difficulty it is classical to reformulate the problem by adding a new variable
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Chapter 3 Stochastic optimal control problem with a maximum cost

y ∈ R that, roughly speaking, keeps the information of the running maximum. For this
reason, we introduce an auxiliary value function ϑ defined on [0, T ]× Rd × R by:

(3.4.2) ϑ(t, x, y) := inf
u∈U

E
[
ψ

(
Xu
t,x(T ), max

s∈[t,T ]
g(Xu

t,x(s)) ∨ y
)]

.

The following property holds:

(3.4.3) ϑ(t, x, g(x)) = v(t, x),

so from now on, we will only work with the value function ϑ since the value of v can be
obtained by (3.4.3) .

Proposition 3.4.1. Under assumptions (H ′b,σ),(Hg) and (H ′ψ), ϑ is a Lipschitz contin-

uous function in (x, y) uniformly with respect to t, and a 1
2 -Hölder continuous function

in t. More precisely, there exists Lϑ > 0 (Lϑ depends only on Mb,Mσ, Lψ, Lg and T )
such that:

|ϑ(t, x, y)− ϑ(t′, x′, y′)| ≤ Lϑ(|x− x′|+ |y − y′|+ (1 + |x|)|t− t′|1/2),

for all (x, y), (x′, y′) ∈ Rd+1 and for any t ≤ t′ ∈ [0, T ].

Proof. Let be t ≤ t′ ≤ T and x, x′ ∈ Rd. Notice that the following property holds for
the maximum

|(a ∨ b)− (c ∨ d)| ≤ |a− c| ∨ |b− d| .

Then, the inequalities (2.1.2) yield to:

∣∣ϑ(t, x, y)− ϑ(t, x′, y)
∣∣ ≤ Ksup

u∈U
E

[
sup
s∈[t,T ]

∣∣Xu
t,x(s)−Xu

t,x′(s)
∣∣] ≤ KC|x− x′|

where K := Lψ(Lg + 1) and C is the constant appearing in Proposition 2.1.1. In a
similar way, we obtain

∣∣ϑ(t, x, y)− ϑ(t′, x, y)
∣∣ ≤ Lψsup

u∈U
E

[∣∣Xu
t,x(T )−Xu

t′,x(T )
∣∣+ Lg sup

s∈[t,t′]

∣∣Xu
t,x(s)− x

∣∣+
+ Lg sup

s∈[t′,T ]

∣∣∣Xu
t′,x(s)−Xu

t′,Xu
t,x(t′)(s)

∣∣∣]
≤ K ′(1 + |x|)

∣∣t− t′∣∣1/2
for a positive constant K ′ > 0 that depends only on Lψ, Lg and C. The Lψ-Lipschitz
behavior in the variable y is immediate. We conclude then the result with Lϑ = K ∨
K ′ ∨ Lψ.

3.4.1 Link with lookback options in finance

Another interest for computing expectation of supremum cost functionals is the study
of lookback options in Finance. The value of such an option is typically of the form

E
[
e−

∫ T
t r(s)dsψ

(
Xt,x(T ), max

s∈[t,T ]
g(Xt,x(s))

)]
,
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where Xt,x(·) (the “asset”) is a solution of a one-dimensional SDE (3.3.1), g(x) = x,
r(·) is the interest rate, and ψ is the payoff function. Here the option value depends
not only on the value of the asset at time T but also on all the values taken between
times t and T . A detailed description of this model can be found in [171]. Typical payoff
functions are ψ(x, y) = y−x (lookback floating strike put), ψ(x, y) = max(y−E, 0) (fixed
strike lookback call), ψ(x, y) = max(min(y,E) − x, 0) (lookback limited-risk put), etc.,
see [171, 30] (see also [29] for other examples and related american lookback options).

3.5 The Hamilton-Jacobi-Bellman equation

The aim of this section is to characterize the value function ϑ defined by (3.4.2) as the
unique viscosity solution of an HJB equation. Stochastic optimal control problems with
running maximum cost in the viscosity solutions framework have been studied in [29, 37].
The arguments developed in that papers are based on the approximation technique of the
L∞-norm. Here, we derive the HJB equation directly without using any approximation.
In all the sequel, we will use the abbreviation a.e. for almost every.

3.5.1 Dynamic Programming

Let us start defining the process

(3.5.1) Y u
t,x,y(·) := max

s∈[t,·]
g(Xu

t,x(s)) ∨ y.

The optimal control problem (3.4.2) can be re-written as

(3.5.2) ϑ(t, x, y) := inf
u∈U

E
[
ψ
(
Xu
t,x(T ), Y u

t,x,y(T )
)]
.

We point out that that (3.5.2) can be seen as a Mayer’s problem in the augmented state
space.

In order to characterize ϑ as a solution of an HJB equation the first step is to obtain
a Bellman’s principle. It is stated in the following theorem:

Theorem 3.5.1 (DPP). Under hypothesis (H ′b,σ),(H ′ψ) and (Hg), for all (t, x) ∈ [0, T )×
Rd and all family of Ft-stopping times {θu, u ∈ U} with values in [t, T ]:

(3.5.3) ϑ(t, x, y) = inf
u∈U

E
[
ϑ
(
θu, Xu

t,x(θu), Y u
t,x,y(θ

u)
)]
.

A proof of Theorem 3.5.1 can be obtained by adapting the same arguments devel-
oped by Bouchard and Touzi in [63], thanks to the fact that the couple of variables
(Xu

t,x(·), Y u
t,x,y(·)) satisfies the following fundamental property

(
Xu
t,x(s)

Y u
t,x,y(s)

)
=

(
Xu
θ,Xu

t,x(θ)(s)

Y u
θ,Xu

t,x(θ),Y ut,x,y(θ)(s)

)
a.s.

for any stopping time θ with t ≤ θ ≤ s ≤ T . In our case the proof is even simpler than
the one of [63] thanks to the uniform continuity of ϑ (Proposition 3.4.1).
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3.5.2 Hamilton-Jacobi-Bellman equation

Theorem 3.5.1 is the main tool for proving next result that characterizes ϑ as a solution,
in viscosity sense, of a HJB equation with oblique derivative boundary conditions. Set

(3.5.4) D :=
{

(x, y) ∈ Rd+1 : y ≥ g(x)
}

= Epigraph(g),

where D is the interior of D.

Theorem 3.5.2. Under assumptions (H ′b,σ),(H ′ψ) and (Hg), ϑ is a continuous bounded
viscosity solution of the following HJB equation

−∂tϑ+H(t, x,Dxϑ,D
2
xϑ) = 0 in [0, T )×D(3.5.5a)

−∂yϑ = 0 on [0, T )× ∂D(3.5.5b)

ϑ(T, x, y) = ψ(x, y) in D(3.5.5c)

with

(3.5.6) H(t, x, p,Q) := sup
u∈U

{
−b(t, x, u)p− 1

2
Tr[σσT ](t, x, u)Q

}
.

Before starting the proof we recall the definition of viscosity solution for problem (3.5.5)
(see [84] and the references therein for a complete discussion on weak boundary condi-
tions).

Definition 3.5.3. An USC (resp. LSC) function ϑ on [0, T ] × D is a viscosity sub-
solution (resp. super-solution) of (3.5.5), if for each function ϕ ∈ C1,2([0, T ] × D), at
each maximum (resp. minimum) point (t, x, y) of ϑ− ϕ the following inequalities hold

−∂tϕ+H(t, x,Dxϕ,D
2
xϕ) ≤ 0 in [0, T )×D

min
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ),−∂yϕ

)
≤ 0 on [0, T )× ∂D

min
(
ϑ− ψ,−∂tϕ+H(t, x,Dxϕ,D

2
xϕ),−∂yϕ

)
≤ 0 on {T} × ∂D

min
(
ϑ− ψ,−∂tϕ+H(t, x,Dxϕ,D

2
xϕ)
)
≤ 0 on {T} ×D.

(resp. 
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ) ≥ 0 in [0, T )×D

max
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ),−∂yϕ

)
≥ 0 on [0, T )× ∂D

max
(
ϑ− ψ,−∂tϕ+H(t, x,Dxϕ,D

2
xϕ),−∂yϕ

)
≥ 0 on {T} × ∂D

max
(
ϑ− ψ,−∂tϕ+H(t, x,Dxϕ,D

2
xϕ)
)
≥ 0 on {T} ×D).

Finally a continuous function ϑ is a viscosity solution of (3.5.5) if it is both a sub-
and a super-solution.

Proof of Theorem 3.5.2. First, from the definition of ϑ and thanks to its regularity (see
Proposition 3.4.1), we obtain easily that ϑ(T, x, y) = ψ(x, y).

Now, we check that ϑ is a viscosity sub-solution. Let ϕ ∈ C1,2([0, T ]×D) such that
ϑ − ϕ attains a maximum at point (t̄, x̄, ȳ) ∈ [0, T ) ×D. Without loss of generality we
can always assume that (t̄, x̄, ȳ) is a strict local maximum point (let us say in a ball of
radius r > 0 centered in (t̄, x̄, ȳ)) and ϑ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). Thanks to Theorem 3.5.1,
for any u ∈ U and for any sufficiently small stopping time θ = θu, we have:

ϕ(t̄, x̄, ȳ) = ϑ(t̄, x̄, ȳ) ≤ E
[
ϑ
(
θ,Xu

t̄,x̄(θ), Y u
t̄,x̄,ȳ(θ)

)]
≤ E

[
ϕ
(
θ,Xu

t̄,x̄(θ), Y u
t̄,x̄,ȳ(θ)

)]
.(3.5.7)
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Two cases will be considered depending on if the point (x̄, ȳ) belongs or not to the
boundary of D.

— Case 1: g(x̄) < ȳ. Consider a constant control u(s) ≡ u ∈ U . From the continuity
of g and the a.s. continuity of the sample paths it follows that, for a.e. ω ∈ Ω, there
exists s̄(ω) > t̄ such that g(Xu

t̄,x̄(s)) < ȳ if s ∈ [t̄, s̄(ω)). Let be h > 0, and let θ̄ be a the

following stopping time:

(3.5.8) θ̄ := inf
{
s > t̄|(Xu

t̄,x̄(s), Y ut̄,x̄,ȳ(s)) /∈ B((x̄, ȳ), r)
}
∧ (t̄+ h) ∧ inf

{
s > t̄|g(Xu

t̄,x̄(s)) ≥ ȳ
}
,

(here and in the sequel B(x, r) denotes the ball of radius r > 0 centered at x). One can
easily observe that a.s. Y u

t̄,x̄,ȳ(θ̄) = ȳ, then by (3.5.7)

ϕ(t̄, x̄, ȳ) ≤ E
[
ϕ
(
θ̄, Xu

t̄,x̄(θ̄), ȳ
)]

∀u ∈ U.

By applying the Ito’s formula, and thanks to the smoothness of ϕ, we get:

E
[ ∫ θ̄

t̄
−∂tϕ(s,Xu

t̄,x̄(s), ȳ)− b(s,Xu
t̄,x̄(s), u)Dxϕ(s,Xu

t̄,x̄(s), ȳ)

− 1

2
Tr[σσT (s,Xu

t̄,x̄(s), u)D2
xϕ(s,Xu

t̄,x̄(s), ȳ)]ds

]
≤ 0.

Note that the stopping times

inf
{
s > t̄|(Xu

t̄,x̄(s), Y u
t̄,x̄,ȳ(s)) /∈ Br(x̄, ȳ)

}
and inf

{
s > t̄ | g(Xu

t̄,x̄(s)) ≥ ȳ
}

are a.s. strictly greater than t̄, then for h sufficiently small in (3.5.8) one obtains θ̄ = t̄+h.
One has

E
[

1

h

∫ θ̄

t̄
−∂tϕ(s,Xu

t̄,x̄(s), ȳ)− b(s,Xu
t̄,x̄(s), u)Dxϕ(s,Xu

t̄,x̄(s), ȳ)

− 1

2
Tr[σσT (s,Xu

t̄,x̄(s), u)D2
xϕ(s,Xu

t̄,x̄(s), ȳ)]ds

]
≤ 0.

By the dominate convergence theorem and the mean value theorem, letting h going to
0, it follows

−∂tϕ(t̄, x̄, ȳ)− b(t̄, x̄, u)Dxϕ(t̄, x̄, ȳ)− 1

2
Tr[σσT (t̄, x̄, u)D2

xϕ(t̄, x̄, ȳ)] ≤ 0, ∀u ∈ U,

and finally:

−∂tϕ(t̄, x̄, ȳ) + sup
u∈U

{
−b(t̄, x̄, u)Dxϕ(t̄, x̄, ȳ)− 1

2
Tr[σσT (t̄, x̄, u)D2

xϕ(t̄, x̄, ȳ)]

}
≤ 0.

— Case 2: g(x̄) = ȳ. Assume that −∂yϕ(t̄, x̄, ȳ) > 0, otherwise the conclusion is
straightforward. Consider a constant control u(s) ≡ u ∈ U . Thanks to the continuity of
the sample paths and the smoothness of ϕ, for a.e. ω there is a time s̄(ω) > t̄ and η > 0
such that:

ϕ(s,Xu
t̄,x̄(s), y) ≤ ϕ(s,Xu

t̄,x̄(s), ȳ) ∀s ∈ [t̄, s̄], y ∈ [ȳ, ȳ + η).
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Let θ̄ be the stopping time given by:

θ̄ := inf
{
s > t̄|(Xu

t̄,x̄(s), Y u
t̄,x̄,ȳ(s)) /∈ B((x̄, ȳ), r)

}
∧ inf

{
s > t̄|g(Xu

t̄,x̄(s)) /∈ [ȳ, ȳ + η)
}

∧ inf
{
s > t̄|∂yϕ(s,Xu

t̄,x̄(s), ȳ) ≥ 0
}
∧ (t̄+ h) .

By (3.5.7) one has

ϕ(t̄, x̄, ȳ) ≤ E
[
ϕ
(
θ̄, Xu

t̄,x̄(θ̄), ȳ
)]
,

which implies (as we have seen for Case 1):

−∂tϕ(t̄, x̄, ȳ) + sup
u∈U

{
−b(t̄, x̄, u)Dϕ(t̄, x̄, ȳ)− 1

2
Tr[σσT (t̄, x̄, u)D2ϕ(t̄, x̄, ȳ)]

}
≤ 0.

In conclusion at point (t̄, x̄, ȳ) ∈ [0, T )× ∂D one has

min

(
−∂tϕ+ sup

u∈U

{
−b(t̄, x̄, u)Dϕ− 1

2
Tr[σσT ](t̄, x̄, u)D2ϕ

}
,−∂yϕ

)
≤ 0,

and ϑ is a viscosity sub-solution of equation (3.5.5).

It remains to prove that ϑ is a viscosity super-solution of (3.5.5). Let ϕ ∈ C1,2([0, T ]×
D) be such that ϑ−ϕ attains a minimum at point (t̄, x̄, ȳ) ∈ [0, T )×D. Without loss of
generality we can always assume that (t̄, x̄, ȳ) is a strict local minimum point in a ball
B((t̄, x̄, ȳ), r) and ϑ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ). We consider again the two cases:
— Case 1: g(x̄) < ȳ. We assume by contradiction that

−∂tϕ(t̄, x̄, ȳ) +H(t̄, x̄, Dxϕ(t̄, x̄, ȳ), D2
xϕ(t̄, x̄, ȳ)) < 0.

By using continuity arguments we can also state that

(3.5.9) − ∂tϕ(·, ·, ȳ) +H(·, ·, Dxϕ(·, ·, ȳ), D2
xϕ(·, ·, ȳ)) ≤ 0

in a neighborhood B((t̄, x̄), r1) of (t̄, x̄) for some r1 > 0. Moreover, thanks to the
continuity of g, if ȳ − g(x̄) =: ρ > 0 we can define r2 > 0 such that

max
x∈B(x̄,r2)

g(x)− g(x̄) ≤ ρ

2

and we have

max
x∈B(x̄,r2)

g(x) ∨ ȳ = ȳ.

For any u ∈ U we define the stopping time θ̄u as the first exit time of the process
(s,Xu

t̄,x̄(s)) from the ball B((t̄, x̄), R) for R := min(r, r1, r2) > 0. The continuity of

the sample paths implies that (θ̄u, Xu
t̄,x̄(θ̄u)) ∈ ∂B((t̄, x̄), R) a.s.. Being (t̄, x̄, ȳ) a strict

minimum point on has

min
∂B((t̄,x̄),R)

(ϑ− ϕ) =: η > 0

and then a.s.

ϑ(θ̄u, Xu
t̄,x̄(θ̄u), ȳ) ≥ ϕ(θ̄u, Xu

t̄,x̄(θ̄u), ȳ) + η.
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Applying the Ito’s formula and taking the expectation we get

ϕ(t̄, x̄, ȳ)− E
[
ϕ(θ̄u, Xu

t̄,x̄(θ̄u), ȳ)

]
= E

[ ∫ θ̄u

t̄
−∂tϕ(s,Xu

t̄,x̄(s), ȳ)− b(s,Xu
t̄,x̄(s), u(s))Dxϕ(s,Xu

t̄,x̄(s), ȳ)

− 1

2
Tr[σσT (s,Xu

t̄,x̄(s), u(s))D2
xϕ(s,Xu

t̄,x̄(s), ȳ)]ds

]
≤ 0

(3.5.10)

that leads to

ϑ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ) ≤ E
[
ϕ(θ̄u, Xu

t̄,x̄(θ̄u), ȳ)
]
≤ E

[
ϑ(θ̄u, Xu

t̄,x̄(θ̄u), ȳ)
]
− η

= E
[
ϑ(θ̄u, Xu

t̄,x̄(θ̄u), Y u
t̄,x̄,ȳ(θ̄

u)
]
− η.

Since η does not depends on u and u is arbitrary, this contradicts Theorem 3.5.1.
— Case 2: g(x̄) = ȳ. Assume by contradiction that

−∂yϕ(t̄, x̄, ȳ) < 0 and − ∂tϕ(t̄, x̄, ȳ) +H(t̄, x̄, Dxϕ(t̄, x̄, ȳ), D2
xϕ(t̄, x̄, ȳ)) < 0.

We can again define r1 > 0 such that (3.5.9) is satisfied in B((t̄, x̄), r1). Moreover there
exists r̃2 > 0 such that

ϕ(s, ξ, ζ) ≤ ϕ(s, ξ, ζ ′)

for any (s, ξ, ζ), (s, ξ, ζ ′) ∈ B((t̄, x̄, ȳ), r̃2) such that ζ ≤ ζ ′. For any u ∈ U we define the
stopping time θ̄u as the first exit time of the process (s,Xu

t̄,x̄(s), Y u
t̄,x̄,ȳ(s)) from the ball

B((t̄, x̄, ȳ), R̃) for R̃ := min(r, r1, r̃2) > 0. As for Case 1, we can still say that a.s.

ϑ(θ̄u, Xu
t̄,x̄(θ̄u), Y u

t̄,x̄,ȳ(θ̄
u)) ≥ ϕ(θ̄u, Xu

t̄,x̄(θ̄u), Y u
t̄,x̄,ȳ(θ̄

u)) + η′.

for some η′ > 0 not depending on u. Therefore by using (3.5.10) and by observing that
Y u
t̄,x̄,ȳ(s) ≥ ȳ for any s ≥ 0, we get

ϑ(t̄, x̄, ȳ) = ϕ(t̄, x̄, ȳ) ≤ E
[
ϕ(θ̄u, Xu

t̄,x̄(θ̄u), ȳ)
]
≤ E

[
ϕ(θ̄u, Xu

t̄,x̄(θ̄u), Y u
t̄,x̄,ȳ(θ̄

u))
]

≤ E
[
ϑ(θ̄u, Xu

t̄,x̄(θ̄u), Y u
t̄,x̄,ȳ(θ̄

u)
]
− η′,

the yields again to a contradiction of Theorem 3.5.1.

3.5.3 Comparison principle

The section is concluded with a comparison principle for equation (3.5.5). There is a
large literature dealing with Neumann-type or oblique derivative boundary conditions.
We refer to [134, 34] for the first order case and to [113, 111] for second order equations.
For dealing with this kind of problems some regularity assumption on the domain D is
often required. In our case the definition of D is strictly connected with the choice of
the function g that is, without further hypothesis, only Lipschitz continuous. The result
below has the advantage of taking into account also this non smooth case.

Theorem 3.5.4. Assume that (H ′b,σ), (H ′ψ) and (Hg) are satisfied. Let ϑ (resp. ϑ) be
an USC (resp. LSC) bounded viscosity sub-solution (resp. super-solution) of (3.5.5).
Then ϑ ≤ ϑ on [0, T ]×D.
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Such a comparison principle is proved in [93] and [57] for respectively elliptic and
parabolic equations in bounded domains. The arguments extend the ones used in [113,
111] for the case when the domain D has a smooth boundary. We give the main steps of
the proof in Section 3.10. Assertions of Theorems 3.5.2 and 3.5.4 lead to the following
result:

Corollary 3.5.5. Under assumptions (H ′b,σ), (H ′ψ) and (Hg), the value function ϑ is

the unique continuous bounded viscosity solution of equation (3.5.5) on [0, T ]×D.

The uniqueness result is stated on D, which means that the solution to the HJB
equation coincides with the value function ϑ on [0, T ] × D. Then ϑ is extended in a
unique way on [0, T ]× Rd × R by: ϑ(t, x, y) = ϑ(t, x, y ∨ g(x)).

3.6 Numerical approximation

We pass now to discuss the numerical aspects. First, we focus on general approxima-
tion schemes for HJB equations with oblique derivative boundary conditions as (3.5.5).
Then, a convergence result is proved by using the general framework of Barles-Souganidis
[36] based on the monotonicity, stability, consistency of the scheme (a precise definition
of these notions, in the case of HJB equations with oblique derivative boundary condi-
tion, is given in section 3.6.1). Secondly, we focus on the fully discrete semi-Lagrangian
scheme and we study some properties of the numerical approximation. Semi-Lagrangian
schemes for second order HJB equations (in the general form of Markov chain approx-
imations) have been first considered in the book [128]. In the framework of viscosity
solutions, semi-Lagrangian schemes for first order HJB equations have been studied in
[74]. Extensions to the second order case can be found in [141, 68, 87, 92]. In our
context, the numerical scheme that will be studied couples the classical semi-Lagrangian
scheme with an additional projection step on the boundary. For this particular scheme,
we derive in the next section a rate of convergence, generalizing in this way the results
already known for general HJB equations without boundary conditions.

Let N ≥ 1 be an integer (number of time steps), and let

h :=
T

N
, and tn := nh,

for n = 0, . . . , N . Let ∆x = (∆x1, . . . ,∆xd) ∈ (R∗+)d be a mesh step in Rd, ∆y > 0 be a
mesh step in R, and ρ := (h,∆x,∆y) be a set of mesh steps (in time and space).

For a given ρ, consider the corresponding space grid

Gρ :=
{

(xi, yj) = (i∆x, j∆y), for (i, j) ∈ Zd × Z
}
.

where for i ∈ Zd, i∆x := (i1∆x1, · · · , iN∆xN ). For any x ∈ Rd, let jx ∈ Z be the upper

integer part of g(x)
∆y , i.e,

jx := min
{
j ∈ Z, j∆y ≥ g(x)

}
.

Consider a projection operator (along the direction ey) ΠGρ defined as follows:

ΠGρ(Φ)(tn, xi, yj) :=

{
Φ(tn, xi, yj), ∀j ≥ jxi , i ∈ Zd,
Φ(tn, xi, yjxi ), ∀j < jxi , i ∈ Zd,
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for any Φ ∈ C([0, T ]× Rd × R,R).

We aim at computing an approximation Wn
i,j of the value function

ϑ(tn, xi, yj), on the grid Gρ. By W ρ, we will denote the interpolation of the values Wn
i,j

at (tn, xi, yj). The values Wn
i,j are defined recusively as follows:

General scheme (GS)
1) Define WN

i,j := ψ(xi, yj ∨ g(xi)),∀i, j.

2) For n = N, . . . , 1, the value Wn−1
i,j is obtained as solution of:

Sρ(tn−1, xi, yj ,W
n−1
i,j ,ΠGρ(W ρ)) = 0, ∀i, j with g(xi) ≤ yj ,(3.6.1)

Wn−1
i,j := Wn−1

i,jxi
, ∀i, j with g(xi) > yj ,(3.6.2)

where Sρ : [0, T ]×D × R× C([0, T ]× Rd × R,R)→ R is a scheme operator.

Typical operator Sρ can be obtained by using an explicit or implicit finite difference
method on (3.5.5a) (see [51, 50, 129]), or a semi-Lagrangian (SL) scheme ([141, 68, 92]).
In (3.6.1), the value of Wn−1

i,j may depend on the whole function W ρ (i.e., all the values

W k
i,j for k = 0, · · · , N). Of course, in case of an explicit time discretization, the step

(3.6.1) could be re-written as:

Sρ(tn−1, xi, yj ,W
n−1
i,j ,ΠGρ(W ρ(tn, ·, ·))) = 0, ∀i, j with g(xi) ≤ yj .

However, the formulation (3.6.1) is more general and includes different kind of time-
discretization like Euler implicit scheme or θ-methods.

The main idea of the numerical method described here above is to mix the use of
a standard scheme for (3.5.5a), together with a “projection step” on ∂D in order to
approximate the homogeneous oblique derivative boundary condition (3.5.5b). Let us
point out that a similar method was introduced in [30] for the case g(x) ≡ |x|. However,
the general case with possibly nonlinear function g requires some further attention on
the boundary.

3.6.1 A general convergence result

In this part we closely follow the arguments of Barles and Souganidis [36], using con-
sistency, stability and monotonicity arguments. For this, we assume that the following
hypotheses are considered:

(HS ) (stability) For any ρ, there exists a solution W ρ such that

|W ρ(t, x, y)| ≤M, on [0, T ]×D;

for some positive constant M independent on ρ;

(HC ) (consistency) The scheme Sρ is consistent with respect to equation (3.5.5a) in
[0, T ]×D, that is, for all (t, x, y) ∈ [0, T ]×D and for every Φ ∈ C1,2([0, T ]×D),

lim
ρ→0

[0,T ]×D3(s,ξ,γ)→(t,x,y)
ζ→0

Sρ(s, ξ, γ,Φ(s, ξ, γ)+ζ,Φ +ζ) = −∂tΦ+H(t, x,DxΦ, D2
xΦ).
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(HM ) (monotonicity) For any ρ, for r ∈ R, (t, x, y) ∈ [0, T ]×D, Sρ(t, x, y, r,Φ) depends
only on the values of Φ in a neighborhood Bη(ρ)(t, x, y) of (t, x, y), with η(ρ) ≥ 0

such that η(ρ)
ρ→0−→ 0. Moreover, for any Φ1,Φ2 functions on [0, T ]× Rd × R→ R,

such that Φ1 ≥ Φ2 on Bη(ρ)((t, x, y)), it holds:

Sρ(t, x, y, r,Φ1) ≤ Sρ(t, x, y, r,Φ2).

Let us point out that the monotonicity and the consistency are required here only
for the operator scheme Sρ that corresponds to the discretization of the equation −∂tϑ+
H(t, x,Dϑ,D2ϑ) = 0.

Notice also that the monotonicity assumption (HM ) is slightly different from the
classical one usualy required for general HJB equations. The reason for this comes from
the fact that the operator scheme Sρ is defined on D and may use some values of the
function W ρ outside the domain D that are obtained by oblique projection through the
projection step. Our monotonicity assumption requires local dependency on the values of
Φ in a neighborhood of the point under consideration, then a comparison of the scheme
values is requested for any two functions Φ1 and Φ2 such that Φ1 ≥ Φ2 only on this
neighborhood. The proof of Theorem 3.6.1 highlights what this requirement is needed
for.

In the next section, we will check that assumptions (HS ),(HC ) and (HM ) are well
satisfied by the semi-Lagrangian scheme. Now, we state the convergence result for any
general scheme satisfying (HS ),(HC ) and (HM ).

Theorem 3.6.1. Assume (H ′b,σ), (H ′ψ) and (Hg). Let Sρ be a scheme satisfying (HS ),(HC )
and (HM ). Then, when ρ tends to 0, W ρ converges to the unique viscosity solution of
(3.5.5) uniformly on each compact subset of [0, T ]×D.

Proof. Let us define

W (t, x, y) := lim sup
[0,T ]×D3(s,ξ,γ)→(t,x,y)

ρ→0

W ρ(s, ξ, γ)

and W (t, x, y) := lim inf
[0,T ]×D3(s,ξ,γ)→(t,x,y)

ρ→0

W ρ(s, ξ, γ).

We start by proving that W is a viscosity sub-solution of equation (3.5.5) (the proof
that W is a viscosity super-solution is analogous).

Let ϕ be in C1,2([0, T ] × D) and let (t̄, x̄, ȳ) be a local maximum point for W − ϕ
on [0, T ] × D. Without loss of generality we can assume that (t̄, x̄, ȳ) is a strict local
maximum in the restricted ball Br := B((t̄, x̄, ȳ), r) ∩ ([0, T ]×D) for a certain r > 0,

(W − ϕ)(t̄, x̄, ȳ) = max
Br

(W − ϕ) = 0,

and ϕ ≥ 2 supρ ‖W ρ‖∞ outside the ball B((t̄, x̄, ȳ), r).

We first assume that t̄ ∈ (0, T ). Then we claim that:

−∂tϕ+H(t̄, x̄, Dxϕ,D
2
xϕ)≤ 0 if (x̄, ȳ) ∈ D,(3.6.3a)

or min
(
−∂tϕ+H(t̄, x̄, Dxϕ,D

2
xϕ),−∂yϕ

)
≤ 0 if (x̄, ȳ) ∈∂D.(3.6.3b)
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Following [84], there exists a sequence of mesh steps ρk and a sequence (tk−1, xk, yk) in
(0, T )×D such that: ρk→0 and (tk−1, xk, yk)→(t̄, x̄, ȳ) as k→+∞, and (tk−1, xk, yk) is a
global maximum point of W ρk−ϕ, with

(W ρk − ϕ)(tk−1, xk, yk) = max
[0,T ]×D

(W ρk − ϕ) = δk
k→∞−→ 0(3.6.4)

and

W ρk(tk−1, xk, yk)
k→∞−→ W (t̄, x̄, ȳ).

- Case 1: assume that ȳ > g(x̄). Thus, (x̄, ȳ) is in the open set D and for k large
enough, (xk, yk) ∈ D. By continuity of g, y > g(x) in B((tk−1, xk, yk), η(ρk)) for ρk small
enough. Therefore ΠGρ(W ρk) = W ρk ≤ ϕ+ δk on B((tk−1, xk, yk), η(ρk)). On the other
hand, W ρk(tk−1, xk, yk) = ϕ(tk−1, xk, yk) + δk. Hence, thanks to the monotonicity of the
scheme, it follows

0 = Sρk(tk−1, xk, yk,W
ρk(tk−1, xk, yk),Π

Gρ(W ρk))

≥ Sρk(tk−1, xk, yk, ϕ(tk−1, xk, yk) + δk, ϕ+ δk).

Using the consistency of the scheme, we obtain in the limit when ρk → 0,

−∂tϕ+H(t̄, x̄, Dxϕ,D
2
xϕ) ≤ 0.(3.6.5)

We conclude that (3.6.3a) is satisfied when (x̄, ȳ) ∈ D.

- Case 2: when ȳ = g(x̄), (xk, yk) can be also on ∂D and the scheme may involve
values Wn

k` on some points (xk, y`) that are not in D. Here, we need to consider two
sub-cases.

- Sub-Case 2.1: if −∂yϕ(t̄, x̄, ȳ) ≤ 0, then (3.6.3b) holds.

- Sub-Case 2.2: if −∂yϕ(t̄, x̄, ȳ) > 0, then there exists a neighborhood V of (t̄, x̄, ȳ)
where ∂yϕ(t, x, y) is well defined, and −∂yϕ(t, x, y) > 0 for every (t, x, y) ∈ V. Therefore,

y ≤ y′ =⇒ ϕ(t, x, y) ≥ ϕ(t, x, y′) ∀(t, x, y), (t, x, y′) ∈ V.(3.6.6)

For k large enough, B((tk−1, xk, yk), η(ρk)) ⊂ V.
Let (t, x, y) ∈ B((tk−1, xk, yk), η(ρk)). If y ≥ g(x), then

ΠGρ(W ρk(t, x, y)) = W ρk(t, x, y) ≤ ϕ(t, x, y) + δk.(3.6.7)

Otherwise if y < g(x), ΠGρ(W ρk(t, x, y)) = W ρk(t, x, yjx), and we have

ΠGρ(W ρk(t, x, y)) = W ρk(t, x, yjx)

≤ ϕ(t, x, yjx) + δk (by using (3.6.4))(3.6.8)

≤ ϕ(t, x, y) + δk (by using (3.6.6))(3.6.9)

(for (3.6.9) we also used the continuity of g that ensures that for k big enough (t, x, yjx)
still lays in V). We conclude ΠGρ(W ρk) ≤ ϕ + δk on B((tk−1, xk, yk), η(ρk)). Thus by
monotonicity (HM ), we get

0 = Sρk(tk−1, xk, yk,W
ρk(tk−1, xk, yk),Π

Gρ(W ρk))

≥ Sρk(tk−1, xk, yk, ϕ(tk−1, xk, yk) + δk, ϕ+ δk).
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Using the consistency of the scheme, when ρk → 0, we get

−∂tϕ+H(t̄, x̄, Dxϕ,D
2
xϕ) ≤ 0.(3.6.10)

As conclusion for case 2, (3.6.3b) is satisfied when (x̄, ȳ) ∈ ∂D.

Similar arguments can be used in order to treat the case t̄ = T (classical arguments
enable to treat also the case of the boundary t̄ = 0). We conclude that W is a viscosity
sub-solution of the equation (3.5.5).

As already mentioned, we can also show that W is a super-solution. Then by the
comparison principle on [0, T ] × D (Theorem 3.5.4), the inequality W ≥ W holds on
[0, T ] ×D. Furthermore since the reverse inequality W ≤ W is always true, we deduce
that W = W = ϑ on [0, T ]×D. Hence the convergence result is proved.

3.6.2 A semi-Lagrangian scheme

We first introduce some new notations: for any u ∈ U , the drift b(·, ·, u) (resp. volatility
σ(·, ·, u)) will be simply denoted by bu (resp. σu).

Consider the operator Ψ : C(Rd+1)→ C([0, T ]× Rd+1) defined by:

Ψ(φ)(t, x, y) = min
u∈U

1

2p

2p∑
k=1

[
φ
]
x

(
x+hbu(t, x)+

√
hp(−1)kσubk+1

2
c(t, x), y

)
(3.6.11)

where (σuk )k=1,...,p are the column vectors of σu, and bqc denotes the integer part of q.
The notation [·] ≡ [·]x stands for a monotone, P1 interpolation operator on the x-grid
(xi), satisfying for every Lipschitz continuous function φ (with Lipschitz constant Lφ):

(i) [φ]x(xi) = φ(xi), ∀i,
(ii) |[φ]x(x)− φ(x)| ≤ Lφ|∆x|,
(iii) |[φ]x(x)− φ(x)| ≤ C|∆x|2‖D2

xφ‖∞ if φ ∈ C2(Rd),
(iv) for any functions φ1, φ2 : Rd → R, φ1 ≤ φ2 ⇒ [φ1]x ≤ [φ2]x.

(3.6.12)

The operator Ψ corresponds to a discretization of the equation (3.5.5a) by a semi-
Lagrangian scheme (see [141, 68, 92]). Now, define an approximation method for the
system (3.5.5) as follows:

Fully discrete scheme (FDS)

1) Initialization step: for all i, j, set WN
i,j = ψ(xi, yj ∨ g(xi)).

2) For n = N, . . . , 1:

- Step 1 Compute W
n− 1

2
i,j = Ψ(Wn

·,·)(tn, xi, yj), for all i, j (here Wn
·,· denotes the values

{Wn
i,j | i, j ∈ Zd × Z});

- Step 2 Compute Wn−1
i,j = ΠG

ρ
(Wn− 1

2 ), for all i, j.

The FDS scheme is a particular GS method, with the following formula for the operator
Sρ:

Sρ(t− h, x, y, r,Φ) :=
1

h

{
r −ΠG

ρ
(Ψ(Φ)(t, x, y))

}
.(3.6.13)
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Remark 3.6.2. We point out that in the FDS, for j such that yj < g(xi), the projection
step fixes the value of Wn−1

i,j as Wn−1
i,jxi

. Of course, other alternatives could be considered,

for instance, one could consider the scheme:
1) Initialization step: for n = N , for all i, j, set W̃N

i,j = ψ(xi, yj ∨ g(xi)).

2) For n = N, . . . , 1, W̃n−1
i,j = Ψ̃(W̃n

·,·)(tn, xi, yj), for all i, j, where

Ψ̃(φ)(t, x, y)=min
u∈U

1

2p

2p∑
k=1

[
φ
]
x,y

(
x+hbu(t,x)+

√
hp(−1)kσubk+1

2
c(t,x), y ∨ g(x)

)
,

with [·]x,y standing for an interpolation in both variables x and y.
All the convergence results stated in the sequel also hold for this new scheme.

In the next subsection, we will study some properties of the approximated solution
W ρ. Before this, we define also the following semi-discrete scheme where we consider
only a time-discretization:

Semi-discrete scheme (SDS)

1) For n = N , for every (x, y) ∈ Rd+1, set V N (x, y) = ψ(x, y ∨ g(x)).

2) For n = N, . . . , 1, define V n−1 as the function defined by:

V n−1(x, y) = Ψ0(V n)(tn, x, y ∨ g(x)),(3.6.14)

where, Ψ0 is defined from C(Rd+1) into C([0, T ]× Rd+1) by:

Ψ0(φ)(t, x, y) := min
u∈U

1

2p

2p∑
k=1

φ
(
x+ hbu(t, x) + (−1)k

√
hpσubk+1

2
c(t, x), y

)
.

Unlike the fully discrete scheme, no interpolation step is required in the SDS. Straight-
forward calculations lead to the following consistency estimate, for any φ ∈ C2,4((0, T )×
Rd × R): ∣∣∣∣1h(φ(t− h, x, y)−Ψ0(φ)(t, x, y))−

(
− ∂tφ+H(t, x,Dxφ,D

2
xφ)

)∣∣∣∣(3.6.15)

≤ K1max
u∈U

(
‖∂2

ttφ‖∞ + |bu(t, x)|2‖D2
xφ‖∞ + |bu(t, x)||σu(t, x)|2‖D3

xφ‖∞

+ |σu(t, x)|4‖D4
xφ‖∞

)
h,

for any (x, y) ∈ Rd, with K1 a positive constant independent of φ. Moreover, Ψ and Ψ0

satisfy the following properties :

Lemma 3.6.3. For every φ1, φ2 ∈ C([0, T ]× Rd × R), we have:

(i) (Ψ0(φ1)−Ψ0(φ2))+ ≤ ‖(φ1 − φ2)+‖;

(ii) ‖Ψφ1 −Ψφ2‖∞ ≤ ‖φ1 − φ2‖∞;

(iii) ‖Ψ0φ1 −Ψ0φ2‖∞ ≤ ‖φ1 − φ2‖∞;

(iv) for any Lipschitz continuous function φ on Rd×R, ‖Ψφ−Ψ0φ‖∞ ≤ Lφ|∆x|, where
Lφ is a Lipschitz constant of φ.

Notice that assertion (i) corresponds to a discrete comparison principle. The proof
of the lemma is straightforward and will be omitted.
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3.6.3 Convergence of the SL scheme

The aim of this subsection is to prove a convergence result for the scheme FDS.

Theorem 3.6.4. Let assumptions (H ′b,σ), (H ′ψ) and (Hg) be satisfied. Let W ρ be defined
by the fully discrete scheme. Assume also that

|∆x|2

h
→ 0.

Then the FDS is convergent, i.e. W ρ converges towards ϑ, as ρ tends to 0, uniformly
on each compact set of [0, T ]×D.

Proof. Being ψ a bounded function, the stability of the scheme follows by ‖Wn‖∞ ≤
‖ψ‖∞. Moreover, the consistency of the scheme comes from the estimates (3.6.15),(3.6.12)

and by using that |∆x|
2

h → 0. Also, the monotonicity property (as defined in (HM )) is de-
duced from the monotonicity of the interpolations and the monotonicity of the operator
Ψ0.

In consequence, the convergence result follows from Theorem 3.6.1.

We conclude the section with some further results on the semi-discrete scheme.

Proposition 3.6.5. If assumptions (H ′b,σ), (H ′ψ) and (Hg) are satisfied, the solution V

of the semi-discrete scheme is Lipschitz continuous in (x, y) and 1
2 -Hölder continuous in

t: there exists a constant LV ≥ 0, for every 0 ≤ n,m ≤ N , and every (x1, y1), (x2, y2) ∈
Rd+1 such that

|V n(x2, y2)− V m(x1, y1)| ≤ LV
(
|x2 − x1|+ |y2 − y1|+ (1 + |x1|)|tn − tm|1/2

)
.

Proof. Let (ξn, ξn+1, . . . , ξN−1), be independent random variables, with values in {0, . . . , 2p},
and such that P(ξn = k) = 1

2p , ∀k = 1, . . . , 2p.
Let u = (un, un+1, . . . , uN−1) denotes a sequence of controls, with ui ∈ U , and let

Znk = Zn,x,uk , n ≤ k ≤ N , be the random walk such that:{
Znn = x,

Znk+1 = Znk + hbuk(tk+1, Z
n
k ) +

√
hσ̄uk

ξk
(tk+1, Z

n
k ), k ≥ n(3.6.16)

where the notation σ̄uk (t, x) := (−1)k
√
pσubk+1

2
c(t, x) is used. Notice that Zn,x,uk depends

only on the controls (un, . . . , uk−1). Direct calculations lead to the following expressions:

V n(x, y) = min
un∈U

1

2p

2p∑
k=1

V n+1

(
x+ hbun(tn+1, x) +

√
hσ̄unk (tn, x), y ∨ g(x)

)
= min
un∈U

E
[
V n+1

(
Zn,x,un+1 , y ∨ g(x)

)]
,

and, in the same way,

V n(x, y) = min
un∈U

E
[

min
un+1∈U

E
[
V n+2(Z

n+1,Zn,x,un+1 ,u

n+2 , y ∨ g(x) ∨ g(Zn,x,un+1 ))
]]
,

= min
un∈U

E
[

min
un+1∈U

E
[
V n+2(Zn,x,un+2 , y ∨ g(x) ∨ g(Zn,x,un+1 ))

]]
,
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and so on, and finally (also using V N (x, y) ≡ ψ(x, y ∨ g(x))):

V n(x, y) =min
un

E
[
min
un+1

E
[
· · ·min

uN−1

E
[
V N
(
Zn,x,uN , y∨ max

i=n,...,N−1
g(Zn,x,ui )

)]]
· · ·
]

=min
un

E
[
min
un+1

E
[
· · ·min

uN−1

E
[
ψ
(
Zn,x,uN , y ∨ max

i=n,...,N
g(Zn,x,ui )

)]]
· · ·
]
.

Then, we have the equivalent representation formula:

V n(x, y) = min
u=(un,...,uN−1)

E
[
ψ(Zn,x,uN , y ∨ max

i=n,...,N
g(Zn,x,ui ))

]
.(3.6.17)

By using |(x2 ∨ y2)− (x1 ∨ y1)| ≤ |x1 − x2| ∨ |y1 − y2| ≤ |x1 − x2|+ |y1 − y2|, we obtain:

|V n(x2, y2)− V n(x1, y1)|

≤Lψmax
u

E
[
|Zn,x2,u
N −Zn,x1,u

N |+ Lg max
n≤i≤N

|Zn,x2,u
i −Zn,x1,u

i |+Lg|y2 − y1|
]

≤ Lψ(Lg + 1)

(
max
u

E
[

max
n≤i≤N

|Zn,x2,u
i − Zn,x1,u

i |
]

+ |y2 − y1|
)
,(3.6.18)

where max
u

denotes the maximum over (un, un+1, . . . , uN−1) ∈ UN−n. By (H ′b,σ), there

exists a constant C1 ≥ 0, that depends only on (T,Mσ,Mb), such that for every 0 ≤
m,n ≤ N and every x, x1, x2 ∈ Rd, the following classical estimates hold:

E
[

max
n≤i≤N

∣∣Zn,x2,u
i − Zn,x1,u

i

∣∣] ≤ C1|x2 − x1|(3.6.19a)

E
[

max
0≤i≤p

∣∣Zn,x,um+i − Z
n,x,u
m

∣∣] ≤ C1|tm+p − tm|1/2(1 + |x|).(3.6.19b)

Combining (3.6.18) and (3.6.19a), for n = m, the Lipschitz property follows:

|V n(x1, y1)− V n(x2, y2)| ≤ Lψ(Lg + 1)(C1|x2 − x1|+ |y2 − y1|).

On the other hand, for 0 ≤ n ≤ m ≤ N by using again (3.6.17) we have:

|V m(x, y)− V n(x, y)| ≤ C max
u

E
[∣∣ max

n≤i≤N
Zn,x,ui − max

m≤i≤N
Zm,x,ui

∣∣].(3.6.20)

for some constant C. Therefore, since Zm,x,um = x:

|V m(x, y)− V n(x, y)| ≤ C max
u

E
[∣∣ max

n≤i≤m
Zn,x,ui − x

∣∣](3.6.21)

+C max
u

E
[∣∣ max

m+1≤i≤N
Zn,x,ui − max

m+1≤i≤N
Zm,x,ui

∣∣].(3.6.22)

The right term of (3.6.21) is bounded by C(1 + |x|)|tm − tn|1/2. In order to bound

(3.6.22), by using that Zn,x,ui = Zm,Z
n,x,u
m ,u

i (∀i ≥ m) and (3.6.19a) the following estimate
is obtained:

E
[∣∣ max

m+1≤i≤N
Zm,Z

n,x,u
m ,u

i − max
m+1≤i≤N

Zm,x,ui

∣∣] ≤ C1E
[
Zn,x,um − x

]
≤ C2

1 (1 + |x|)|tm − tn|1/2.
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Hence it holds, for some constant C,

|V n(x, y)− V m(x, y)| ≤ C(1 + |x|)|tm − tn|1/2.

Together with the Lipschitz property the desired result follows.

Remark 3.6.6. It is not clear whether the solution W ρ obtained by the fully discrete
scheme satisfies a Lipschitz continuity property or not. The main difficulty is that a
representation formula as (3.6.17) is not guaranteed for W ρ.

Proposition 3.6.7. If assumptions (H ′b,σ),(H ′ψ) and (Hg) are satisfied, there exists a
constant C > 0 independent of ρ such that, ∀n = 0, . . . , N :

‖Wn − V n‖∞ ≤ C
|(∆x,∆y)|

h
.(3.6.23)

Proof. Consider the operator Π : C(Rd × R) → C(Rd × R) defined by Πφ(x, y) =
φ(x, y ∨ g(x)). With this notation, we have V n−1 = Π(Ψ0(V n)). On the other hand,
Wn−1
ij = ΠG

ρ
(Ψ(Wn)(tn, xi, yj)). Therefore, by using Lemma 3.6.3, we get:

‖Wn−1−V n−1‖∞ ≤ ‖ΠG
ρ
(Ψ(Wn))−Π(Ψ0(V n))‖∞

≤ ‖ΠGρ(Ψ(Wn))−ΠG
ρ
(Ψ0(V n))‖∞ + ‖ΠGρ(Ψ0(V n))−Π(Ψ0(V n))‖∞

≤ ‖Ψ(Wn)−Ψ0(V n)‖∞ + ‖ΠGρ(Ψ0(V n))−Π(Ψ0(V n))‖∞
≤ ‖Ψ(Wn)−Ψ(V n)‖∞ + ‖Ψ(V n)−Ψ0(V n)‖∞ + LV ∆y

≤ ‖Wn−V n‖∞ + LV |∆x|+ LV ∆y.

By recursion, it follows:

‖Wn−V n‖∞ ≤ ‖WN−V N‖∞ + nLV (|∆x|+ ∆y).

Since V N (x, y) = ψ(x, y ∨ g(x)) on Rd+1, WN is an interpolation of V N on the grid Gρ
and n ≤ T

h , we obtain the desired result.

3.7 Error bounds for the semi-Lagrangian scheme

In this section we aim to give an error bound for the fully discrete scheme FDS, as well
as the semi-discrete SL scheme (3.6.14).

The error estimates theory is based on some technique of “shaking coefficients” and
regularization introduced by Krylov in [119, 120] and studied later by many authors
[31, 32, 33, 48, 49, 92]. The main idea consists of regularizing the exact solution ϑ in
order to obtain a smooth sub-solution ϑε (for an approximation parameter ε > 0) to
the equation (3.5.5), then the upper-bound error estimate can be obtained by using the
consistency estimate (3.6.15). The regularization procedure takes advantage from the
fact that the exact solution ϑ is Hölder continuous, which enables to obtain an estimate
of |ϑ − ϑε|∞ of order O(ε). The lower bound is obtained by similar arguments, but in
this case we need to build a smooth sub-solution to the discrete equation. For this, a
regularization of the numerical solution will be considered. However, as noticed earlier
(Remark 3.6.6), it is not clear if the solution W ρ of the fully discrete scheme is Hölder
continuous or not, and then it is not clear how to build directly a regularization W ρ

ε (with
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regularization parameter ε) with an error |W ρ −W ρ
ε | of order O(ε). For this reason, we

will start by deriving an error estimate between the solution ϑ and the solution V of the
semi-discrete scheme SDS, using the fact that V has Hölder continuity properties. Then
the estimates for the FDS are derived as a consequence of Lemma 3.6.7.

For the regularization procedure, consider a smooth function µ : Rd+2 → R, with
µ ≥ 0, supported in (0, 1) × B1(0), with

∫
R
∫
Rd µ(s, x) dxds = 1, and define µε as the

following sequence of mollifiers:

µε(t, x, y) :=
1

εd+3
µ(

t

ε2
,
x

ε
,
y

ε
) in R× Rd+1.

3.7.1 The rate of convergence for the semi-discrete scheme

For any ε > 0, let E be the set of progressively measurable processes (α, χ) valued in
[−ε2, 0]×B(0, ε) ⊂ R× Rd that is,

E :=
{

prog. meas. process (α, χ) valued in E
}
,

where E :=
{

(a, e) ∈ R× Rd, −ε2 ≤ a ≤ 0, |e| ≤ ε
}
.

On other hand, let M := 2
√

1 + L2
g and introduce gε : Rd → R defined by

gε(x) := g(x)−M ε.(3.7.1)

Finally, let us denote by Dε the set defined as follows:

Dε :=
{

(x, y) ∈ Rd+1, y > gε(x)
}
.

Remark 3.7.1. The choice of gε is such that the following property holds:

(x, y) ∈ D =⇒ (x− e1, y − e2) ∈ Dε ∀ (e1, e2) ∈ Rd+1, |(e1, e2)| ≤ ε.

Upper bound

Now, we start by introducing a perturbed control problem (with “shaking coefficients”).
For any ε > 0, consider the following value function

wε(t, x, y) := inf
u∈U ,

(α,χ)∈E

E
[
ψ

(
X
u,(α,χ)
t,x (T ), max

s∈[t,T ]
gε(X

u,(α,χ)
t,x (s)) ∨ y

)]
,(3.7.2)

where X
u,(α,χ)
t,x (·) is the solution of the perturbed system of SDEs

(3.7.3)

{
dX(s)=b(s+ α(s),X(s) + χ(s),u(s))ds+σ(s+ α(s),X(s)+χ(s),u(s))dB(s)
X(t) = x.

Remark 3.7.2. The functions σ and b are only defined for times t ∈ [0, T ], but they can
be extended to times [−2ε2, T + 2ε2] in such a way that assumption (H ′b,σ) still holds.

Proposition 3.7.3. Under assumptions (H ′b,σ),(H ′ψ) and (Hg) (extending eventually b
and σ as prescribed in Remark 3.7.2), the following holds:
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(i) wε is a Lipschitz continuous function in x and y and a 1
2 -Hölder continuous func-

tion in t. More precisely, for t,≤ t′ ∈ [0, T ], x, x′ ∈ Rd and y, y′ ∈ R, we have:

|wε(t, x, y)− wε(t′, x′, y′)| ≤ Lϑ(|x− x′|+ |y − y′|+ (1 + |x|)|t− t′|1/2).

(ii) |ϑ(t, x, y)− wε(t, x, y)| ≤ Cε on [0, T ]×D, where the constant C only depends on
T and the Lipschitz constants of b, σ, g and ψ.

Proof. The Lipschitz and Hölder continuity follows by the same arguments as in Propo-
sition 3.4.1. Thanks to the Lipschitz continuity of ψ and g and the choice of gε one
has

|ϑ(t, x, y)− wε(t, x, y)| ≤ K
(

sup
u∈U ,

(α,χ)∈E

E

[
sup
s∈[t,T ]

∣∣∣Xu
t,x(s)−Xu,(α,χ)

t,x (s)
∣∣∣]+M ε

)

and the result is obtained by classical estimates thanks to the hypothesis on b and σ.

Theorem 3.7.4. Let assumptions (H ′b,σ),(H ′ψ) and (Hg) be satisfied. There exists a
constant C ≥ 0 such that

ϑ(tn, x, y)− V n(x, y) ≤ C h1/4,

for all n ≥ 0 (with nh ≤ T ) and (x, y) ∈ D.

Proof. We split the proof into three steps:

- Step 1. Let (ã, (ẽ1, ẽ2)) ∈ R × Rd+1 be such that −ε2 ≤ ã ≤ 0 and |(ẽ1, ẽ2)| ≤ ε.
Let (t̄, x̄, ȳ) ∈ (0, T )×D, and define for ν > 0:

Iν(t̄, x̄, ȳ) :=
{

(t, x, y)|t ∈ [t̄− ν2, t̄], (x, y) ∈ Bν(x̄, ȳ)
}
.

We claim that wε(· − ã, · − ẽ1, · − ẽ2) is a viscosity sub-solution of

(3.7.4) − ∂tϑ+H(t, x,Dxϑ,D
2
xϑ) ≤ 0 on Iε(t̄, x̄, ȳ).

To prove this claim, we notice first that Iε(t̄, x̄, ȳ) ⊂ Dε. Moreover, from Theorem 3.5.2,
for any ε > 0, wε is a viscosity solution of the following equation

(3.7.5)


−∂twε + sup

(a,e)∈E
H(t+ a, x+ e,Dxw

ε, D2
xw

ε) = 0 (−2ε2, T )×Dε,

−∂ywε = 0 (−2ε2, T )× ∂Dε,

wε(T, x, y) = ψ(x, (g(x)−Mε) ∨ y).

Let ϕ ∈ C2,4([−2ε2, T ] × Dε) be such that wε(· − ã, · − ẽ1, · − ẽ2) − ϕ achieves a local
maximum at (t̃, x̃, ỹ) on Iε(t̄, x̄, ȳ). Clearly (t̃− ã, x̃− ẽ1, ỹ − ẽ2) is also a local maximum
of wε − ϕ(· + ã, · + ẽ1, · + ẽ2) on I2ε (and I2ε ⊂ Dε). Since wε is a viscosity solution of
equation (3.7.5), we obtain:

−∂tϕ(t̃, x̃, ỹ) + sup
(a,e1)∈E

H(t̃− ã+ a, x̃− ẽ1 + e1, Dxϕ,D
2
xϕ) ≤ 0.

Taking (a, e1) = (ã, ẽ1), we get the result.
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- Step 2. Define following mollification wε:

wε(t, x, y) := (wε ∗ µε)(t, x, y)=

∫
|(e1,e2)|≤ε
−ε2≤a≤0

wε(t− a, x− e1, y − e2)µ(a, e1, e2)dade.

We recall the following properties of the mollifiers:

(3.7.6) |wε(t, x, y)− wε(t, x, y)| ≤ [wε]1ε,

with [wε]1 ≤ CLϑ, C ≥ 0. Moreover, for any i ≥ 1 or j ≥ 1,

‖Di
xwε‖∞ ≤ CLϑ ε1−i, ‖Dj

twε‖∞ ≤ CLϑ ε1−2j(3.7.7)

(where Di
x denotes the i-th derivative with respect to x, and Dj

t the j-th derivative with
respect to t). Since wε is a limit of convex combinations of wε(· − ã, · − ẽ1, · − ẽ2), then
wε satisfies in the viscosity sense

−∂twε +H(t, x,Dxwε, D
2
xwε) ≤ 0 in (0, T )×D.(3.7.8)

Taking into account that wε is in C∞([0, T ] × Rd+1), we conclude that (3.7.8) holds in
classical sense on [0, T ]×D. From the consistency estimate (3.6.15) along with (3.7.8)
and by assumption (H ′b,σ), we get:

wε(tn−1, x, y)−Ψ0(wε)(tn, x, y) ≤ C
h2

ε3
.

Combining these bounds with Lemma 3.6.3, we get

wε(tn−1, x, y)− V n−1(x, y) ≤ Ψ0(wε)(tn, x, y)−Ψ0(V n)(x, y) + C
h2

ε3

≤ ‖
(
wε(tn, ·)− V n

)
+
‖∞ + C

h2

ε3
.

Therefore, by recursion, it comes

‖(wε(tn, ·)− V n)+‖∞ ≤ ‖(wε(0, ·)− V N ))+‖∞ + CT
h

ε3
.(3.7.9)

- Step 3. By Proposition 3.7.3 together with the inequalities (3.7.6) and (3.7.9), we
obtain for n ≥ 0,

‖(ϑ(tn, ·)− V n)+‖∞ ≤ Cε+ CT
h

ε3
, n ≥ 0.

The choice ε4 = h leads to (for n ≥ 0):

‖(ϑ(tn, ·)− V n)+‖∞ ≤ C h1/4,

which concludes the proof.
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Lower bound

For obtaining the lower bound we will apply exactly the same techniques as used for
the upper bound, reversing the role of the equation and the scheme. The key point is
that the solution V of the semi-discrete scheme SDS is Lipschitz continuous. Then it
is possible to use the techniques of “shaking coefficients” and regularization to build a
smooth sub-solution Vε satisfying ‖V n

ε − V n‖∞ ≤ Cε and

V n−1
ε (x, y)−Ψ0(V n

ε )(tn, x, y ∨ g(x)) ≤ 0 in [0, T ]× Rd × R.

Then by consistency estimate and comparison principle, we conclude the following result:

Theorem 3.7.5. Let assumptions (H ′b,σ),(H ′ψ) and (Hg) be satisfied. There exists a
constant C > 0 such that

ϑ(tn, x, y)− V n(x, y) ≥ −C h1/4

for all n ≥ 0 (with Nh ≤ T ) and (x, y) ∈ D.

3.7.2 The fully discrete scheme

The section is concluded with the following theorem that provides error estimates for the
fully discrete semi-Lagrangian scheme. The result is a simple consequence of Theorems
3.7.4, 3.7.5 and Lemma 3.6.7.

Theorem 3.7.6. Let assumptions (H ′b,σ),(H ′ψ) and (Hg) be satisfied. If W is the so-
lution of the fully-discrete scheme (3.6.13) , there exists a constant C > 0 independent
from n = 0, . . . , N such that

‖Wn − ϑ(tn, ·)‖∞ ≤ C
(
h1/4 +

|(∆x,∆y)|
h

)
.

Proof. The result follows by using

‖Wn − ϑ(tn, ·)‖∞ ≤ ‖Wn − V n‖∞ + ‖V n − ϑ(tn, ·)‖∞.

and thanks to Theorems 3.7.4, 3.7.5 and to Lemma 3.6.7.

3.8 Numerical tests

In this section we present some numerical results for reachability problems in presence
of state constraints (as in Sections 3.3 and 3.2). The dynamics is given by the following
controlled SDE in R2:

(3.8.1)

 dX(s) = u(s)

(
1
0

)
ds+ u(s)σ(X(s))dB(s), s ≥ t,

X(t) = x

where B is a one-dimensional Brownian motion (p = 1), U = [0, 1] ⊂ R and the function
σ(x) ∈ R2 will vary depending on the example. The target set is

T =
{
x ≡ (x1, x2) ∈ R2, 0 ≤ x1 ≤ 0.4, |x2| ≤ 0.5

}
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and the set of state constraints is

K = R2 \
{
x ≡ (x1, x2) ∈ R2, −0.4 < x1 < −0.2, |x2| < 0.1

}
.

Given a final time T , the aim is to approximate the set RT ,Kt defined by (3.3.2), for
t = 0. Starting by the level set function wT ,K the following auxiliary value function is
introduced:

ϑT ,K(t, x, y) = inf
u∈U

E
[
d+
T (Xu

t,x(T )) ∨ max
s∈[t,T ]

d+
K (Xu

t,x(s)) ∨ y
]
.

The characterization of the backward reachable set is given by

(3.8.2) x ∈ RT ,Kt ⇔ ϑT ,K(t, x, 0) = 0.

In all the following tests, t = 0, T = 0.5 are fixed and the computational domain for
(x1, x2, y) is

(x1, x2, y) ∈ Ω = [−1, 1]× [−1, 1]× [0, 1].

The numerical scheme implemented is the semi-Lagrangian scheme (FDS). We denote
by Nt the number of time-steps, Nx1 = Nx2 and Ny are the number of mesh steps for
the space variables (x1, x2, y), and

h :=
T

Nt
, ∆xi =

2

Nxi

, ∆y =
1

Ny
.

Different simulations show that the results are not very sensitive to the step dis-
cretization of the variable y. Unless otherwise precised, we set Ny = 10. For all tests,
since u ∈ [0, 1] and because the dynamics depends linearly on the control u it is sufficient
to take only two controls (Nu = 2), e.g., u ∈ {0, 1} for the discretization of the control
variable.

The different figures (see e.g. Figure 3.1) represent points in the (x1, x2) plane. The
obstacle is represented in black, and the target in dark grey. Then, an arbitrary non
negative threshold ε := 10−5 is choosen, and our approximation of the reachable set is
given by

RT ,Kt (ε) :=

{
(x1, x2) ∈ R2, ϑT ,K(0, (x1, x2), ε) ≤ ε

}
(3.8.3)

(plotted in green).

Remark 3.8.1. This procedure is not very sensitive to the choice of ε in the range 10−2−
10−6.

Remark 3.8.2. We have also tested the scheme of Remark 3.6.2 and similar results have
been obtained.

Test 1. In this test, there is no diffusion, that is:

σ(x) :=

(
0
0

)
.

Figure 3.1(a) shows the approximation obtained using (Nx1 , Nx2 , Nt) = (800, 800, 200)
(and the represented level set is 10−5).
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(a) (b)

Figure 3.1: (a): Test 1, no diffusion, and (b): Test 2, with diffusion.

The boundary of RT ,Kt (resp. RT ,Kt (ε)) is also represented by a black doted line
(resp. red line). The result perfectly matches the expected solution.

Test 2. In this test a non-zero volatility is considered:

σ(x) :=

(
0
5

)
In that case the backward reachable set reduces to the target set, see Figure 3.1(b). In
fact for any point outside the target, as soon as u 6= 0, even if the drift steers the system
in the direction of the target, there is always a non-zero probability to go to far way in
the x2 orthogonal direction and therefore to not reach it.

Test 3. In this test the volatility is now given by

σ(x) = 5 d+
Θ(x)

(
0
1

)
where d+

Θ denotes the positive distance function to the set

Θ :=
{

(x1, x2), |x2| ≥ 0.3
}
.

Hence for any point (x1, x2), if |x2| ≥ 0.3 the volatility vanishes. According to the drift
term, the target is finally reached, see Figure 3.2. This Figure shows the approximation
of R̃T ,Kt for three different meshes. It also shows how the scheme converges. Notice that
the points which are immediately above or below the obstacle are not in the reachable
set since in presence of diffusion the state constraint will be violated with a non-zero
probability.

Also, in Table 3.1, various error norms are given to study the convergence of the
scheme. For a given n ≥ 1 we have chosen

Nx1 = Nx2 = n, Nt = n/4 and Ny = n/4.
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Figure 3.2: (Test 3) Vertical diffusion, using (Nx1 , Nx2 , Nt) = (n, n, n/4), for n ∈
{200, 400, 800}.

Table 3.1: Test 3, convergence table.

n L∞-error order L1-error order L2-error order

10 0.46582 - 0.02526 - 0.07115 -
20 0.16633 1.48 0.00345 2.87 0.01979 1.84
40 0.06746 1.30 0.00111 1.63 0.00668 1.56
80 0.02500 1.43 0.00024 2.20 0.00194 1.78

Errors have been computed by taking n = 160 for the reference value, and a convergence
of order greater than one is observed in this simple example (better than the expected
order of convergence).

Test 4 (oblique diffusion) In this test the coefficient σ is now given by

(3.8.4) σ(x) = 5 d+
Θ(x)

(
1
1

)
In Figure 3.3 we have plotted the results obtained with three different meshes, using

(Nx1 , Nx2 , Nt) = (n, n, n/4) for n ∈ {100, 200, 400}. Although the first computation
plotted in Figure 3.3 (left, with n = 100) is not very accurate, the other computations
(with n = 200 and n = 400) clearly show the good convergence of the scheme.

3.9 Appendix: A result of existence of optimal controls for
linear stochastic differential equations

At the basis of the approach presented in Section 3.2 there is the equivalence

(3.9.1) x ∈ RT ,Kt ⇔ vT ,K(t, x) ≤ 0,

that permits to characterize RT ,Kt as the 0-level set of the value function

vT ,K(t, x) = inf
u∈U

E
[
gT (Xu

t,x(T )) ∨ max
s∈[t,T ]

gK(Xu
t,x(s))

]
.(3.9.2)
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Figure 3.3: (Test 4) Oblique diffusion. using (Nx1 , Nx2 , Nt) = (n, n, n/4) for n ∈
{100, 200, 400}.

It was already pointed out in Section 3.3 the necessity of the existence of an optimal
control for (3.9.2) in order to prove this equivalence. For this reason we aim here to
provide an existence result for optimal control problem with a cost of the form

J(t, x, u) := E
[
ψ(Xu

t,x(T )) ∨ max
s∈[t,T ]

g(Xu
t,x(s))

]
.(3.9.3)

in the case of systems governed by linear equations. The proof of the result is a simple
adaptation to the cost functional (3.9.3) of the arguments given in [172, Theorem 5.2,
Chapter II] that we report below for completeness. We will work in the following setting:

(i) B is a one-dimensional Brownian motion, that is p = 1;

(ii) b, σ : [0, T ]× Rd × U → Rd are given by:

b(t, x, u) = A(t)x+B(t)u,

σ(t, x, u) = C(t)x+D(t)u

where A,B,C and D are L∞continuous functions

with value in matrix spaces of suitable sizes.

(E1)

Let us also consider the following convexity assumptions:

U ⊂ Rm is a convex and compact set;(E2)

gT and gK are Lipscitz and convex functions.(E3)

Remark 3.9.1. In the study of the reachability analysis, a typical choice for the functions
ψ and g is ψ = d+

T and g = d+
K (Remark 3.3.1). In this case, if T and K are nonempty

closed and convex sets, assumption (E3) is automatically satisfied.

Theorem 3.9.2 (Existence of optimal control). Consider assumptions (E1)-(E3). Then
for any t ∈ [0, T ], x ∈ Rd such that

v(t, x) = inf
u∈U

J(t, x, u)

is finite, there exists an optimal control.
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Proof. Let us consider a minimizing sequence of controls (uj)j≥1 such that

v(t, x) = lim
j→∞

J(t, x, uj).

Thanks to the compactness of the set U , there exists a constant C > 0 such that

E[

∫ T

t
|uj(s)|2ds] ≤ C

so
uj(·) ⇀ ū(·) weakly in L2

F -norm.

From Mazur’s lemma, there exists a convex combination

ũj =
∑
i≥1

λijui+j , λij ≥ 0,
∑
i≥1

λij = 1,

such that
ũj(·) −→ ū(·) strongly in L2

F -norm.

Thanks to convexity and closure of U we have that ũj(s) and ū(s) still belong to U for
every s ∈ [t, T ].
From the linearity of our problem we can also state that

X
ũj
t,x(·) =

∑
i≥1

λijX
ui+j
t,x (·)

Moreover with standard passages we can show that if Xu
t,x(·) and Xν

t,x(·) are the strong
solutions respectively associated to the controls u and ν then there exists a constant
C > 0 such that

(3.9.4) E
[

sup
s∈[t,T ]

|Xu
t,x(s)−Xν

t,x(s)|2
]
≤ C ‖u− ν‖L2

F
.

Then
X
ũj
t,x(·) −→ X ū

t,x(·) strongly in C([0, T ],Rd).
In what follows we will make use of the following two properties:

(i) max
(

lim
n→∞

an, lim
n→∞

bn

)
≤ lim

n→∞
max(an, bn) ;

(ii) max

(∑
n
λnxn,

∑
n
λnyn

)
≤
∑
n
λn max(xn, yn), for any λn ≥ 0, ∀n ∈ N.

Recalling that by assumption ψ and g are convex functions we have that for any ε > 0
there is j̄ = j̄(ε) such that for any j > j̄

J(t, x, ū)

= E
[
ψ(X

ũj
t,x(T )) ∨ max

s∈[t,T ]
g(X

ũj
t,x(s))

]
+ ε

≤ E
[(∑

i≥1

λijψ(X
ui+j
t,x (T ))

)
∨
(

max
s∈[t,T ]

∑
i≥1

λijg(X
ui+j
t,x (s))

)]
+ ε

≤ E
[∑
i≥1

λij

(
ψ(X

ui+j
t,x (T )) ∨ max

s∈[t,T ]
g(X

ui+j
t,x (s))

)]
+ ε

≤ v(t, x) + 2ε.

Thanks to the fact that ε is arbitrary we can finally conclude that ū ∈ U is optimal.
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3.10 Appendix: On the proof of the Comparison principle

In this section we provide an extension of the comparison result in [93] to parabolic
equations in possibly unbounded domains. Let us denote by ek the k-th vector of the
canonical basis of Rn (n ≥ 2). We will consider a general HJ equation with oblique
derivative boundary condition in the direction −en:

(3.10.1)


−∂tw +H(t, x,Dw,D2w) = 0 (0, T )×D
−∂xnw = 0 (0, T )× ∂D
w(T, x) = w0(x) D

where D ⊆ Rn, H : [0, T ] × Rn × Rn × Sn → R and w0 : Rn → R satisfy the following
properties: direction

D is a locally compact set and ∃η > 0 such that(P1) ⋃
0≤t≤η

B(x− ten, tη) ⊂ DC , ∀x ∈ ∂D,

⋃
0≤t≤η

B(x+ ten, tη) ⊂ D, ∀x ∈ ∂D;

H ∈ C(R×D × Rn × Sn) and there is a neighborhood O(∂D)(P2)

of ∂D in D and a function ω1 ∈ C([0,∞]) satisfying ω1(0) = 0

such that ∀t ∈ [0, T ), x ∈ O(∂D), p, q ∈ Rn, X, Y ∈ Sn :

|H(t, x, p,X)−H(t, x, q, Y )| ≤ ω1(|p− q|+ ‖X − Y ‖);

There is a function ω2 ∈ C([0,∞]) satisfying ω2(0) = 0 such that(P3)

H(t, y, p,−Y )−H(t, x, p,X) ≤ ω2(α |x− y|2 + |x− y| (|p|+ 1))

∀α ≥ 1, t ∈ [0, T ), x, y ∈ D, p ∈ Rn, X, Y ∈ Sn such that

−α
(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ α

(
I −I
−I I

)
.

Equation (3.5.5) is a particular case of (3.10.1), with n = d + 1, D ≡ Epigraph(g)
and H given by (3.5.6). Under assumption (Hg) the set defined by D = Epigraph(g)

satisfies the property (P1), with η := 1/
√

1 + L2
g. The properties (P2)-(P3) are also

satisfied under (H ′b,σ).

In the sequel we will use the concept of parabolic semijet as defined in Chapter 2,
Definition 2.4.6.

Theorem 3.10.1. Assume (P1)-(P3) hold. Let w (resp. w) be a bounded USC viscosity
sub-solution (resp. a bounded LSC viscosity super-solution) of (3.10.1). Then w ≤ w on
(0, T ]×D.

Before starting the proof we state some important preliminary results.

Lemma 3.10.2. Let (P1) be satisfied for some η ∈ (0, 1). Let us consider the open cone
Γ :=

⋃
t>0B(−ten, tη)◦. There exists a family {wε}ε>0 of C2 functions on Rn ×Rn and
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positive constants θ, C such that

wε(x, x) ≤ ε(3.10.2)

wε(x, y) ≥ θ
|x− y|2

ε
(3.10.3)

−〈Dxwε(x, y), en〉 ≥ −C |x− y|
2

ε
if y − x /∈ Γ(3.10.4)

−〈Dywε(x, y), en〉 ≥ 0 if x− y /∈ Γ(3.10.5)

|Dywε(x, y)| ≤ C
|x− y|
ε

,(3.10.6)

|Dxwε(x, y) +Dywε(x, y)| ≤ C
|x− y|2

ε
(3.10.7)

and

(3.10.8) D2wε(x, y) ≤ C
{

1

ε

(
I −I
−I I

)
+
|x− y|2

ε
I2n

}
for ε > 0 and x, y ∈ Rn.

Proof. The result is presented in [93, Theorem 4.1].

Lemma 3.10.3. If (P1) holds, then there exists h ∈ C2(D) such that:

h ≥ 0 on D, h = 0 in D \ O(∂D)

(where O(∂D) is a neighborhood of ∂D as in property (P2)) and

−∂xnh(x) ≥ 1 ∀x ∈ ∂D.

Moreover there exists M ≥ 0 such that

max
D

(|Dh|, ‖D2h‖) ≤M.

Proof. Let us consider a point z ∈ ∂D. By hypothesis (P1) there exists 0 < δ < 1 such
that ⋃

t≥0

B(x− ten, tδ) ∩B(z, δ) ⊂ DC ;

⋃
t≥0

B(x+ ten, tδ) ∩B(z, δ) ⊂ D.

We can clearly assume that δ is small enough to have B(z, δ) ∩D ⊂ O(∂D).
We define the hyperplane affine:

Hz := z + {x ∈ Rn : xn = 0} .

Let be given a function ζ0 ∈ C2(Hz) with ζ0(z) = 1, ζ0 ≥ 0 and supp ζ0 ⊂ B(z, δ2/4)∩
Hz. We define

ζ(x) := ζ0(x1, . . . , xn)
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solution of the following Cauchy problem:

(3.10.9)

{
∂xnζ = 0,
ζ|Hz = ζ0.

One has

supp ζ ⊂
⋃
t∈R

B(z − ten,
δ2

3
).

By a geometric consideration we see that there is a small ε > 0 such that⋃
t∈R

B(z − ten,
δ2

3
) ∩B(z, δ) \B(z, δ − ε) ⊂

⋃
t∈R

B(z − ten, tδ)◦.

Therefore

∂D ∩ supp ζ \B(z, δ − ε) = ∅.(3.10.10)

We choose now a C2 function ξ ∈ C2
0 (B(z, δ)◦) so that ξ(x) = 1 for x ∈ B(z, δ − ε) and

ξ ≥ 0. Let
vz(x) := ζ(x)ξ(x) for x ∈ B(z, δ)◦.

We have that vz ∈ C2
0 (B(z, δ)◦), vz ≥ 0 and

∂xnvz(x) = ∂xn(ζ(x)ξ(x)) = ξ(x)∂xnζ(x) + ζ(x)∂xnξ(x) = 0

if x ∈ ∂D, because ζ is solution of (3.10.9) and moreover ζ(x) = 0 if x ∈ ∂D \B(z, δ−ε)
for (3.10.10).
Define now wz ∈ C2(B(z, δ))

wz(x) := zn − xn + C

with C is a positive constant such that wz ≥ 0.
Setting

hz(x) := vz(x)wz(x) for x ∈ B(z, δ)◦

we find that hz ∈ C2(B(z, δ)◦), hz ≥ 0 on B(z, δ)◦,

−∂xnhz(z) = −∂xn(vzwz)(z)

= −wz(z)∂xnvz(z)− vz(z)∂xnwz(z)
= 0 + vz(z) = 1

because vz(z) = ζ0(z)ξ(z) = 1. Moreover

−∂xnhz(x) = −wz(x)∂xnvz(x) + vz(x) = vz(x) ≥ 0

for x ∈ B(z, δ)◦ and −∂xnhz(x) = 0 on ∂B(z, δ). We can also observe that the derivatives
of hz are bounded (with a bound depending only on δ). The desired function h can be
obtained extending this local construction to the whole boundary of D. In fact there
exists δ1/2 > 0 such that

−∂xnhz(x) ≥ 1

2
, ∀x ∈ B(z, δ1/2) ∩ ∂D.

Hence, it is possible to cover ∂D with a sequence of balls B(zi, δ) choosing the points
zi ∈ ∂D, i ∈ Z such that

h(x) :=
∑
i∈Z

2hzi(x)

satisfies the desired properties.
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Proof of Theorem 3.10.1. We will prove the theorem for w and w sub- and super-solution
of (3.10.1) with boundary condition respectively replaced by −∂xnw+α and −∂xnw−α
for a certain α > 0. It means that on (0, T )× ∂D, w and w satisfy

min (−pn + α , −a+H(t, x, p,X)) ≤ 0 ∀(a, p,X) ∈ P1,2,+
w(t, x)(3.10.11)

max (−qn − α , −b+H(t, y, q, Y )) ≥ 0 ∀(b, q, Y ) ∈ P1,2,−
w(t, y).(3.10.12)

We observe that it is always possible to consider a sub-solution wγ such that{
lim
t→0

wγ(t, x) = −∞
−∂t(wγ) +H(t, x,Dwγ , D

2wγ) ≤ −c < 0

defining, for instance, wγ(t, x) := w(t, x) − γ
t . The desired comparison result is then

obtained as a limit for γ → 0. For simplicity we will still denote w such a sub-solution.
Given β > 0, let us define Mβ := sup

(t,x)∈(0,T ]×D

(
w(t, x)− w(t, x)− 2β(1 + |x|2)

)
. The

boundedness of w and w implies that there exists (s, z) := (s
β
, z

β
) ∈ (0, T ] × D such

that
Mβ = w(s, z)− w(s, z)− 2β(1 + |z|2).

If there exists a sequence βk such that Mβk ≤ 0, since w(t, x)−w(t, x) ≤ 2βk(1 + |x|2) +
Mβk , for every (t, x) ∈ (0, T ]×D, we would have as βk goes to zero that w(t, x) ≤ w(t, x)
on (0, T ]×D. So from now on we will assume that β is small enough such that Mβ > 0
and we will show a contradiction. A first consequence is that, thanks to the boundedness
of w and w (let us say that |w|, |w| ≤M), one has β|z|2 ≤ 2M and then

β|z| → 0 as β → 0.

Moreover, applying standard comparison arguments we can also assume that z ∈ ∂D.
Thanks to (P1), if z ∈ ∂D, there exists δ ∈ (0, 1

2) such that B(x − ten, tδ) ⊂ DC for
x ∈ B(z, δ) ∩ ∂D, t ∈ (0, 2δ]. Set Γ :=

⋃
t>0
B(−ten, tδ)◦. It comes that

(3.10.13) y − x /∈ Γ, if x ∈ ∂D ∩B(z, δ)◦, y ∈ D ∩B(z, δ)◦.

In what follows we will restrict our attention to the events on the set B(z, δ) ∩D.
Thanks to Lemma 3.10.2 we can define

Φ(t, x, y) := w(t, x)− w(t, y)− α|x− z|2 − wε(x, y)− β(1 + |x|2)− β(1 + |y|2)− |t− s|2

and thanks to the boundedness and the semicontinuity of w and w we can state that
there exists (t̄, x̄, ȳ) := (t̄ε,α , x̄ε,α , ȳε,α) ∈ [0, T ) ×D ×D maximum point for Φ. Thanks
to (3.10.2) and (3.10.3) the following inequalities hold

Mβ − ε ≤ Φ(s, z, z) ≤ Φ(t̄, x̄, ȳ)

(3.10.14)

≤ w(t̄, x̄)− w(t̄, ȳ)− α|x̄− z|2 − θ |x̄− ȳ|
2

ε
− β(1 + |x̄|2)− β(1 + |ȳ|2)− |t̄− s|2

and by classical arguments (see [84, Proposition 3.7]), extracting a subsequence if nec-
essary, we can conclude that as ε→ 0 one has

|x̄− ȳ|2

ε
−→ 0 and x̄, ȳ −→ z, t̄→ s.

58



Chapter 3 Appendix: On the proof of the Comparison Principle

We will take ε small enough such that x̄, ȳ ∈ B(z, δ).
If t̄ = T :

Mβ − ε ≤ Φ(T, x̄, ȳ) ≤ w0(x̄)− w0(ȳ)

so since the right-hand term in the inequality tends to zero for ε→ 0 and limε→0 (Mβ − ε) >
0, we can also assume that t̄ < T for ε small enough.
Let us define

v(t, x) := w(t, x)− α|x− z|2 − β(1 + |x|2)− |t− s|2

v(t, x) := w(t, x) + β(1 + |x|2).

Since (t̄, x̄, ȳ) is a maximum point for Φ and property (3.10.8) holds, for x and y suffi-
ciently close to x̄ and ȳ, we have the following inequalities

v(t, x)− v(t, y)

≤ v(t̄, x̄)− v(t̄, ȳ) + wε(x, y)− wε(x̄, ȳ)

≤ v(t̄, x̄)− v(t̄, ȳ) + p · (x− x̄) + q · (y − ȳ)+

+
1

2
D2wε(x̄, ȳ)

(
x− x̄
y − ȳ

)
,

(
x− x̄
y − ȳ

)
+O(|x− x̄|3 + |y − ȳ|3)

≤ v(t̄, x̄)− v(t̄, ȳ) + p · (x− x̄) + q · (y − ȳ)

+
C

2

{
1

ε

〈(
I −I
−I I

)(
x− x̄
y − ȳ

)
,

(
x− x̄
y − ȳ

)〉
+

〈(
I 0
0 I

)(
x− x̄
y − ȳ

)
,

(
x− x̄
y − ȳ

)〉}
+O(|x− x̄|3 + |y − ȳ|3)

≤ v(t̄, x̄)− v(t̄, ȳ) + p · (x− x̄) + q · (y − ȳ)+

+
C

2

{
1

ε
|(x− x̄)− (y − ȳ)|2 + λ|x− x̄|2 + λ|y − ȳ|2

}
,

with p = Dxwε(x̄, ȳ), q = Dywε(x̄, ȳ) and λ = |x̄−ȳ|2
ε + ε.

As a consequence of the Crandall-Ishii Lemma (Chapter 2, Lemma 2.4.7) it follows that
there exist X̃, Ỹ ∈ Sn and a, b ∈ R such that

(3.10.15) − C

ε
I2n ≤

(
X̃ − CλI 0

0 Ỹ − CλI

)
≤ C

ε

(
I −I
−I I

)

(3.10.16) a+ b = 0

and

(a,Dxwε(x̄, ȳ), X̃) ∈ P1,2,+
v(t̄, x̄) (−b,−Dywε(x̄, ȳ),−Ỹ ) ∈ P1,2,−

v(t̄, ȳ).

Recalling the definition of v and v one has

(a+ 2(t̄− s), Dxwε(x̄, ȳ) + 2α(x̄− z) + 2βx̄, X̃ + 2αI + 2βI) ∈ P1,2,+
w(t̄, x̄)

and

(−b,−Dywε(x̄, ȳ)− 2βȳ,−Ỹ − 2βI) ∈ P1,2,−
w(t̄, ȳ),
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so just setting X := X̃ + 2βI and Y := Y + 2βI we get

(a+ 2(t̄− s), Dxwε(x̄, ȳ) + 2α(x̄− z) + 2βx̄,X + 2αI) ∈ P1,2,+
w(t̄, x̄)

and
(−b,−Dywε(x̄, ȳ)− 2βȳ,−Y ) ∈ P1,2,−

w(t̄, ȳ),

with

(3.10.17) − C

ε
I2n ≤

(
X − CλI − 2βI 0

0 Y − CλI − 2βI

)
≤ C

ε

(
I −I
−I I

)
.

Let us assume that

−〈Dxwε(x̄, ȳ) + 2α(x̄− z) + 2βx̄, en〉+ α > 0(3.10.18)

−〈−Dywε(x̄, ȳ)− 2βȳ, en〉 − α < 0,(3.10.19)

then by the definition of viscosity sub- and super-solution of (3.10.1) we get

−a− 2(t̄− s) +H(t̄, x̄, Dxwε(x̄, ȳ) + 2α(x̄− z) + 2βx̄,X + 2αI) < −c < 0

and
b+H(t̄, ȳ,−Dywε(x̄, ȳ)− 2βȳ,−Y ) ≥ 0

and from (P2),(P3), (3.10.16) and (3.10.17), it follows

c ≤ (a+ b) + 2(t̄− s) +H(t̄, ȳ,−Dywε(x̄, ȳ)− 2βȳ,−Y )

−H(t̄, x̄, Dxwε(x̄, ȳ) + 2α(x̄− z) + 2βx̄,X + 2αI)

≤ H(t̄, ȳ,−Dywε,−Y + CλI + 2βI)−H(t̄, x̄,−Dywε, X − CλI − 2βI)

+ 2|t̄− s|+ ω1(|Dxwε +Dywε|+ 2α+ Cλ+ 2β(2 + |x̄|+ |ȳ|) + 2α|x̄− z|)
≤ ω1(|Dxwε +Dywε|+ 2α+ Cλ+ 2β(2 + |x̄|+ |ȳ|) + 2α|x̄− z|)+

+ ω2(C
|x̄− ȳ|2

ε
+ |x̄− ȳ|(2β|ȳ|+ 1)) + 2|t̄− s|.

By taking the limit for ε→ 0 we get

c ≤ ω1(2α+ 4β(1 + |z|))

and for α and β small enough we obtain the desired contradiction.
In order to prove (3.10.18) and (3.10.19) we proceed as in [93]. In fact for ε and β
sufficiently small

− 〈Dxwε(x̄, ȳ), en〉 ≥ −
α

2
⇒ −〈Dxwε(x̄, ȳ), en〉 − 2α(x̄n − zn)− 2βx̄n + α > 0

− 〈Dywε(x̄, ȳ), en〉 ≥ −
α

2
⇒ 〈Dywε(x̄, ȳ), en〉+ 2βȳn − α < 0,

then thanks to (3.10.4) and (3.10.5), (3.10.18) and (3.10.19) are finally obtained for ε
small enough.
In order to conclude the proof we need to argue how it is possible to modify our boundary
conditions.
Let us assume that w and w are respectively viscosity sub- and super-solution of the
original problem. Thanks to Lemma 3.10.3 we can define

wα(t, x) := w(t, x)− αh(x)− C(T − t)
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and
wα(t, x) := w(t, x) + αh(x) + C(T − t).

Let (a, p,X) ∈ P1,2,+
wα(t, x) and (b, q, Y ) ∈ P1,2,−

wα(t, x). By using (P2), one has

− a+H(t, x, p,X) ≤ −a+ C +H(t, x, p+ αDh,X + αD2h)− C + ω1(αM),(3.10.20)

− b+H(t, x, q, Y ) ≥ −b− C +H(t, x, q − αDh, Y − αD2h) + C − ω1(αM)(3.10.21)

where M := maxD(|Dh|+ ‖D2h‖) and for any x ∈ ∂D

−〈p, en〉 = −〈p+ αDh(x), en〉+ α∂xnh(x)(3.10.22)

≤ 〈p+ αDh(x), en〉 − α
−〈q, en〉 ≥ − 〈q − αDh(x), en〉+ α.(3.10.23)

Observing that

P1,2,+
w(t, x) = P1,2,+

wα(t, x) +
(
−C,αDh, αD2h

)
P1,2,−

w(t, x) = P1,2,−
wα(t, x)−

(
−C,αDh, αD2h

)
one has (

a− C, p+ αDh(x), X + αD2h(x)
)
∈ P1,2,+

w(x)(
b+ C, q − αDh(x), Y − αD2h(x)

)
∈ P1,2,−

w(x)

then, by the definition of viscosity sub- and super-solution{
−a+ C +H(t, x, p+ αDh,X + αD2h) ≤ 0 on D
min

(
−〈p+ αDh(x), en〉 ,−a+ C +H(t, x, p+ αDh,X + αD2h)

)
≤ 0 on ∂D

and {
−b− C +H(t, x, q − αDh, Y − αD2h) ≥ 0 on D
max

(
−〈q − αDh(x), en〉 ,−b− C +H(t, x, q − αDh, Y − αD2h)

)
≥ 0 on ∂D.

For α small enough, taking C = w1(αM), we can finally conclude by inequalities
(3.10.20),(3.10.22) and (3.10.21),(3.10.23) that{

−a+H(t, x, p,X) ≤ 0 on D
min (−pn + α,−a+H(t, x, p,X)) ≤ 0 on ∂D

and {
b+H(t, x, q, Y ) ≥ 0 on D
max (−qn − α, b+H(t, x, q, Y )) ≥ 0 on ∂D.

In other words for α small enough wα and wα are respectively sub- and super-solution
of (3.10.1) with boundary conditions −∂xnwα + α and −∂xnwα − α and since wα → w
and wα → w as α goes to 0, we are allowed to prove the comparison theorem for them
instead of w and w.
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Chapter 4

Zubov’s method for controlled
diffusions with state constraints

Publications of this chapter:

L. Grüne and A. Picarelli, Zubov’s method for controlled diffusions with state constraints,
submitted to NoDEA, January 2015.

4.1 Introduction

In this chapter we aim to study the asymptotic controllability property of controlled
stochastic systems in presence of state constraints.

The basic problem in this context is the existence of a control strategy that asymp-
totically steers the system to a certain target set with positive probability. In the un-
controlled framework, the idea, due to Lyapunov, of linking the stability properties of
a system with the existence of a continuous function (in the nowadays literature called
a “Lyapunov function”) that decreases along the trajectories of the system, represents
a fundamental tool for the study of this kind of problems. In his seminal thesis [137],
Lyapunov proved that the existence of such a function is a sufficient condition for the
asymptotic stability around a point of equilibrium of a dynamical system

ẋ = b(x), x(t) ∈ Rd, t ≥ 0.(4.1.1)

This theory was further developed in the later years, see [105, 140, 123], and also also the
converse property was established. Since the 60s, Lyapunov’s method was extended to
stochastic diffusion processes. The main contributions in this framework come from [106,
125, 124, 126], where the concepts of stability and asymptotic stability in probability, as
well as the stronger concept of almost sure stability, are introduced.

An important domain of research concerns the developments of constructive proce-
dure for the definition of Lyapunov functions. In the deterministic case an important
result was obtained by Zubov in [174]. In this work the domain attraction of an equi-
librium point xE ∈ Rd for the system (4.1.1), i.e. the set of initial points that are
asymptotically attracted by xE , is characterized by using the solution ϑ of the following
first order equation{

Dϑ(x)b(x) = −f(x)(1− ϑ(x))
√

1 + ‖b(x)‖2 x ∈ Rd \ {xE}
ϑ(xE ) = 0,

(4.1.2)
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for a suitable choice of a scalar function f (see [174] and [105]). Equation (4.1.2) is
referred to in the literature as Zubov equation. In particular what is proved in [174] is
that the domain of attraction coincides with the set of points x ∈ Rd such that ϑ(x) < 1.
Further developments and applications of this method can be found in [22, 105, 1, 103,
118, 70].

More recently, this kind of approach has been applied to more general systems,
included control systems, thanks also to the advances of the viscosity solution theory
that allow to consider merely continuous solutions of fully nonlinear PDE’s. While for
systems of ordinary differential equations the property of interest is stability, for systems
that involve controls, the interest lies on “controllability”, i.e. on the existence of a
control such that the associated trajectory asymptotically reaches the target represented
by the equilibrium point (see [10, 164]). The case of deterministic control systems was
considered in [72]. Here, through the formulation of a suitable optimal control problem,
it is proved that the domain of attraction can be characterized by the solution of a
nonlinear PDE (that we can consider as a generalized Zubov equation) which turns out
to be a particular kind of HJB equation. In this case the existence of smooth solutions
is not guaranteed and therefore the equation is considered in the viscosity sense. The
state constrained case, where we aim to steer the system to the target satisfying at the
same time some constraints on the state, has been treated in [104].

The Zubov method has been extended to the stochastic setting in [73] and [69] taking
into account diffusion processes. The controlled case was later considered in [71] and [67].
In this last paper, under some property of local exponential stabilizability in probability
of the target set (that weakens the “almost sure” stabilizability assumption made in
[71] and [73]), the set of points x ∈ Rd that can be asymptotically steered with positive
probability towards the target, is characterized by means of the unique viscosity solution
with value zero on the target of the following equation

sup
u∈U

{
− f(x, u)(1− ϑ(x))−Dϑ(x)b(x, u)

1

2
Tr[σσT (x, u)D2ϑ(x)]

}
= 0.

In this chapter we aim to add state constraints in this framework, trying to exploit the
ideas proposed in [104]. By the way the results in terms of PDE characterization of the
domain of attraction will be very different. In [104] the state constrained controllability
is characterized by the solution of an obstacle problem, whereas in our case we will deal
with a mixed Dirichlet-Neumann boundary problem (see Section 4.5).

The chapter is organized as follows: in Section 4.2 we introduce the setting and
the main assumptions. Section 4.3 is devoted to the study of some properties of the
domain of attraction. In Section 4.4 is defined our level set function v as the value
function associated with an optimal control problem with a maximum cost and the
domain of attraction is characterized as a sub-level set of v. In Section 4.5 the domain of
attraction is characterized by the viscosity solution of second order nonlinear PDE with
mixed Dirichlet-Neumann boundary conditions. A comparison principle for bounded
viscosity sub- and super-solution of this problem is provided in Section 4.6.

4.2 Setting

Let (Ω,F , {F}t≥0,P) be a filtered probability space supporting a p-dimensional Brownian
motion B(·), where {Ft}t≥0 denotes the P-augmentation of the filtration generated by B.
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We consider the following system of autonomous SDE’s in Rd (d ≥ 1){
dX(t) = b(X(t), u(t))dt+ σ(X(t), u(t))dB(t) t > 0, x ∈ Rd,
X(0) = x

(4.2.1)

where u ∈ U , and U denotes the set of the {Ft}-progressively measurable processes taking
values in a compact set U ⊂ Rm (that is we will work under the assumption (HU )).

Under the classical assumptions (Hb) and (Hσ) (with b and σ independent of t in
this case), we will denote by Xu

x (·) the unique strong solution of (4.2.1) associated with
the control u ∈ U and the initial position x ∈ Rd. By T ⊂ Rd we denote a compact
target set for the system, i.e., a set towards which we want to asymptotically drive the
trajectories. The set K ⊆ Rd represents the state constraints for system (4.2.1), i.e., the
open set where we want to maintain the state Xx(t) with a positive probability for all
t ≥ 0, cf. the definition of the set DT ,K below. We impose the following assumptions on
the target and the set of state constraints:

(i) T is a nonempty and compact set;

(ii) T is viable for (4.2.1) : ∀x ∈ T there is u ∈ U such that

Xu
x (t) ∈ T ∀t ≥ 0 a.s.;

(iii) T is locally exponentially stabilizable in probability:

there exist positive constants r, λ such that for every

ε > 0,∃Cε > 0 such that ∀x ∈ Tr there is u ∈ U such that

P
[
sup
t≥0

d+
T (Xu

x (t))eλt ≤ Cεd+
T (x) and Xu

x (t) ∈ K ∀t ≥ 0

]
≥ 1− ε.

(H ′T )

K is an open set in Rd.(H ′K)

For necessary and sufficient conditions for the viability of T we remand to Section 2.5 in
Chapter 2 and the references therein. For simplicity we assume that T ⊂ K. Note that
this implies that for r small enough one has Tr := {x ∈ Rd : d+

T (x) ≤ r} ⊂ K, where, as
in the previous chapters d+

T (·) denotes the positive Euclidean distance to T .

Remark 4.2.1. We point out that assumption (H ′T ) implies that for any x ∈ Tr

sup
u∈U

P
[

lim
t→+∞

d+
T (Xu

x (t)) = 0 and Xu
x (t) ∈ K ∀t≥ 0

]
= 1.

Indeed, for any ε > 0 and for suitable positive constants λ and Cε, the local exponentially
stabilizability implies the existence of a control u ∈ U such that

(1− ε) ≤ P
[
sup
t≥0

d+
T (Xu

x (t), T )eλt ≤ Cεd+
T (x) and Xu

x (t) ∈ K ∀t ≥ 0

]
≤ P

[
lim

t→+∞
d+
T (Xu

x (t)) = 0 and Xu
x (t) ∈ K ∀t ≥ 0

]
,

and the result follows by the arbitrariness of ε. We also note that without loss of
generality we may assume that r > 0 is so small that Tr ⊂ K.
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Aim of this chapter is to characterize the set DT ,K of initial states x ∈ Rd which can
be driven by an admissible control to the target T with positive probability:

DT ,K :=

{
x ∈ Rd : ∃u ∈ U s.t.

P
[

lim
t→+∞

d+
T (Xu

x (t)) = 0 and Xu
x (t) ∈ K ∀t ≥ 0

]
> 0

}
=

{
x ∈ Rd : sup

u∈U
P
[

lim
t→+∞

d+
T (Xu

x (t)) = 0 and Xu
x (t) ∈ K ∀t ≥ 0

]
> 0

}
.

The set DT ,K is called the domain of asymptotic controllability (with positive probability)
of T .

4.3 Some results on the domain DT ,K

For any x ∈ Rd and u ∈ U we introduce the random hitting time τ(x, u) as the first time
instant when the trajectory starting at point x and driven by the control u hits the set
Tr, that is for any ω ∈ Ω

(4.3.1) τ(x, u)(ω) := inf
{
t ≥ 0 : Xu

x (t)(ω) ∈ Tr
}
.

Remark 4.3.1. We will assume that the set of admissible control laws U satisfies the
stability under concatenation and stability under measurable selection properties. The
set U satisfies the condition of stability under concatenation if for any stopping time τ
and any two control processes u1, u2 ∈ U the τ -concatenation of u1 and u2, defined by

u1⊕τu2(ω, t) :=

{
u1(ω, t) if t ≤ τ
u2(ω, t− τ) otherwise,

is an admissible control. For the condition of stability under measurable selection we
require that for all stopping times τ and all maps Φ : Ω → U , measurable with respect
to the corresponding σ-algebras, there exists a ν ∈ U such that

Φ(ω)(t) = ν(t) for Leb× P-almost all (t, ω) such that t ≥ τ(ω).

These two properties guarantee the validity of the Dynamic Programming Principle,
Lemma 4.5.1, under standard regularity assumptions on the coefficients of the problem
(see [107]). In our context, such properties also play another important role in ensuring
the controllability of the system. Indeed, for every y ∈ Tr the exponential stabilizability
property guarantees the existence of a control uy ∈ U such that (H ′T )(iii) holds. Intu-
itively, this means that once a path associated with a control u hits the boundary of Tr at
time τ := τ(x, u), we can control it to T by switching to the process uX(τ) := uXu

x (τ(x,u)).
However, this construction is only possible if the process

(4.3.2) ū(t) = u(t)1{t≤τ} +

(
u(t)1{τ=+∞} + uX(τ)(t− τ)1{τ<∞}

)
1{t>τ}

belongs to U and, in general, this cannot be guaranteed in our framework. As a remedy
the following construction can be used. Let us define the map

Φ̄ : ω 7→
{
uXu

x (τ(x,u))(·) if ω ∈ {ω ∈ Ω : τ(x, u)(ω) < +∞}
u(·) otherwise.
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We can observe that {ω ∈ Ω : τ(x, u)(ω) < +∞} is Fτ -measurable and then the map Φ̄
is measurable from (Ω,Fτ ) to (U ,B(U)) so, if stability under measurable selection holds,
there exists ν ∈ U such that

Φ̄(ω)(t) = ν(t) for Leb× P-almost all (t, ω) such that t ≥ τ(x, u)(ω).

Under the assumption of stability under concatenation, we also have that the control
u ⊕τ(x,u) ν belongs to U , so that it can be finally used to steer the system to T . With
a slight abuse of notation we will still denote in the chapter such a control by means
of expression (4.3.2), but the reader should always keep in mind this construction. For
a discussion of existence results for control laws satisfying the stability properties just
described we refer to [67, Section 2]

Our goal is now to establish a relation between the set DT ,K and the hitting time
τ(x, u). To this end, we start with the following preliminary result. Therein and in the
rest of the chapter we use the notation Xu

τ := Xu
x (τ(x, u)).

Lemma 4.3.2. Let assumptions (Hb),(Hσ),(H ′T ) and (H ′K) be satisfied. Then for the
hitting time τ(x, u) from (4.3.1) there exist positive constants λ,C such that

sup
u∈U

P
[
τ(x, u) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, u)]

]
> 0

⇒ sup
u∈U

P
[
τ(x, u) < +∞, Xu

x (t) ∈ K ∀t ≥ 0 and sup
t≥0

d+
T (X

u(τ(x,u)+·)
Xu
τ

(t))eλt ≤ C
]
> 0.

Proof. The statement is proved using the exponential stabilizability assumption. By
assumption there exists ν ∈ U such that

P
[
τ(x, ν) < +∞ and Xν

x(t) ∈ K ∀t ∈ [0, τ(x, ν)]

]
> 0.

Moreover, thanks to assumption (H ′T )-(iii), constants λ,C > 0 can be found such that
for any y ∈ Tr , there is uy ∈ U with

P
[

sup
t≥0

d+
T (X

uy
y (t))eλt ≤ C and X

uy
y (t) ∈ K ∀t ≥ 0

]
≥ 1

2
.

Therefore, abbreviating τ = τ(x, ν) = τ(x, ν̄) and defining the control

ν̄(t) := ν(t)1{t≤τ} +

(
ν(t)1{τ=+∞} + u

Xντ
(t− τ)1{τ<∞}

)
1{t>τ},
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see Remark 4.3.1, one obtains

P
[
τ(x, ν̄) < +∞, X ν̄

x(t) ∈ K ∀t ≥ 0 and sup
t≥0

d+
T (X

ν̄(τ+·)
X ν̄
τ

(t))eλt ≤ C
]

= P
[
τ(x, ν̄) < +∞, X ν̄

x(t) ∈ K ∀t ∈ [0, τ(x, ν̄)], X
ν̄(τ+·)
X ν̄
τ

(t) ∈ K ∀t ≥ 0

and sup
t≥0

d+
T (X

ν̄(τ+·)
X ν̄
τ

(t))eλt ≤ C
]

=

∫ +∞

0

∫
d+
T (y)=r

P
[
X
uy
y (t) ∈ K ∀t ≥ 0 and sup

t≥0
d+
T (X

uy
y (t))eλt ≤ C

∣∣∣∣Xν
s = y

]
· P
[
Xν
τ = dy, τ(x, ν) = ds and Xν

x(t) ∈ K ∀t ∈ [0, τ(x, ν)]

]
≥ 1

2

∫ +∞

0

∫
d+
T (y)=r

P
[
Xν
τ = dy, τ(x, ν) = ds and Xν

x(t) ∈ K ∀t ∈ [0, τ(x, ν)]

]
=

1

2
P
[
τ(x, ν) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, ν)]

]
> 0.

Thanks to the previous result, the following alternative characterization of DT ,K is
obtained.

Proposition 4.3.3. Let assumptions (Hb),(Hσ),(H ′T ) and (H ′K) be satisfied. Then

DT ,K =

{
x ∈ Rd : sup

u∈U
P
[
τ(x, u) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, u)]

]
> 0

}
.

Proof. The “⊆” inclusion is immediate since for every u ∈ U one has{
ω ∈ Ω : lim

t→+∞
d+
T (Xu

x (t)) = 0 and Xu
x (t) ∈ K ∀t ≥ 0

}
⊆
{
ω ∈ Ω : τ(x, u) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, u)]

}
.

For the converse inclusion, consider x ∈ Rd with

sup
u∈U

P
[
τ(x, u) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, u)]

]
> 0.

Then, Lemma 4.3.2 yields

sup
u∈U

P
[
τ(x, u) < +∞, Xu

x (t) ∈ K ∀t ≥ 0 and sup
t≥0

d+
T (X

u(τ(x,u)+·)
Xu
τ

(t))eλt ≤ C
]
> 0

which immediately implies

sup
u∈U

P
[
Xu
x (t) ∈ K ∀t ≥ 0 and lim

t→∞
d+
T (X

u(τ(x,u)+·)
Xu
τ

(t)) = 0

]
> 0

and thus x ∈ DT ,K.
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One also has

Proposition 4.3.4. Assume assumptions (Hb),(Hσ),(H ′T ) and (H ′K) be satisfied. Then
DT ,K is an open set.

Proof. Let us start observing that for any x ∈ DT ,K, there is a time T > 0 and a control
ν ∈ U such that

P
[
d+
T (Xν

x(T )) ≤ r

2
and Xν

x(t) ∈ K ∀t ≥ 0

]
=: η > 0.

Thanks to assumptions (Hb) and (Hσ), one has that for any ε > 0

lim
|x−y|→0

P
[

sup
s∈[0,T ]

∣∣Xν
x(t)−Xν

y (t)
∣∣ > ε

]
= 0,

therefore we can find δη > 0 such that for any x, y such that |x− y| ≤ δη

P
[

sup
s∈[0,T ]

∣∣Xν
x(t)−Xν

y (t)
∣∣ > ε

]
≤ η

2
.

It follows that for any fixed ε > 0 if y ∈ B(x, δη), the set Ω1 ⊂ F defined by

Ω1 :=

{
ω ∈ Ω : d+

T (Xν
x(T )(ω)) ≤ r

2
, Xν

x(t)(ω) ∈ K ∀t ≥ 0

and sup
s∈[0,T ]

∣∣Xν
x(t)−Xν

y (t)
∣∣(ω) ≤ ε

}
satisfies

P[Ω1]

= P
[{
d+
T (X ū

x (T )) ≤ r

2
, X ū

x (t) ∈ K ∀t ≥ 0
}
∩
{

sup
s∈[0,T ]

∣∣X ū
x (t)−X ū

y (t)
∣∣ ≤ ε}]

= 1− P
[{
d+
T (Xν

x(T )) ≤ r

2
, Xν

x(t) ∈ K ∀t ≥ 0
}C
∪
{

sup
s∈[0,T ]

∣∣Xν
x(t)−Xν

y (t)
∣∣ > ε

}]
≥ 1− P

[{
d+
T (Xν

x(T )) ≤ r

2
, Xν

x(t) ∈ K ∀t ≥ 0
}C]

− P
[

sup
s∈[0,T ]

∣∣Xν
x(t)−Xν

y (t)
∣∣ > ε

]
≥ 1− 1 + η − η

2
=
η

2
> 0.

For any ω ∈ Ω1, since Xν
x(t) ∈ K,∀t ≥ 0 and K is an open set one has

δ(x, ν)(ω) := inf
t∈[0,T ]

d+

KC
(Xν

x(t))(ω) > 0.

and
sup
t∈[0,T ]

|Xν
x(t)−Xν

y (t)|(ω) < δ(x, ν)(ω)⇒ Xν
y (t)(ω) ∈ K, ∀t ∈ [0, T ].

Furthermore it is also possible to prove that there exist M > 0 and Ω̃1 ⊆ Ω1 with
P[Ω̃1] > 0 such that

(4.3.3) ∀ω ∈ Ω̃1 δ(x, ν)(ω) > M.
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Indeed defined

Bn :=

{
ω ∈ Ω1 : δ(x, ν)(ω) ∈ [

1

n+ 1
,

1

n
)

}
one has

0 < P[Ω1] = P[
⋃
n≥0

Bn] =
∑
n≥0

P[Bn].

It means that there exists n̄ ∈ N such that P[Bn̄] > 0 and defined

Ω̃1 :=

{
ω ∈ Ω1 : δ(x, ν)(ω) ≥ 1

n̄+ 1

}
we have P[Ω̃1] ≥ P[Bn̄] > 0. We have now all the elements necessary for concluding the
proof. Taking ε ≤ min{M/2, r/2} we have that for any ω ∈ Ω̃1

Xν
y (t)(ω) ∈ K,∀t ∈ [0, T ]

and
d+
T (Xν

y (T ))(ω) ≤ d+
T (Xν

x(T ))(ω) + |Xν
x(T )−Xν

y (T )|(ω) ≤ r

2
+ ε ≤ r

that is τ(y, ν)(ω) ≤ T .
In conclusion we have proved that there exists a control ν ∈ U such that for any y ∈
B(x, δη)

P
[
τ(y, ν) < +∞ and Xν

y (t) ∈ K ∀t ∈ [0, τ(y, ν)]

]
> 0,

that means y ∈ DT ,K.

4.4 The level set function v

Similarly to what we did in Chapter 3 for characterizing the backward reachable set
RT ,Kt , we are now going to define a function v that we will use in order to characterize
the domainDT ,K as a sub-level set. Let us start introducing two functions f : Rd×U → R
and h : Rd → [0,+∞] such that

(i) f(·, ·) is continuous on Rd × U ;

(ii) there exist constants Lf , Mf and f0 > 0 such that

|f(x, u)− f(x′, u)| ≤ Lf |x− x′|;
f(x, u) ≤Mf ;

f ≥ 0 and f(x, u) = 0⇔ x ∈ T ;

inf
u∈U

f(x, u) ≥ f0 > 0, ∀x ∈ Rd \ Tr
for any x, x′ ∈ Rd, u ∈ U and T , Tr from (H ′T ).

(Hf )



h is a locally Lipschitz continuous function in K such that ;

(i) h(x) = +∞⇔ x /∈ K;

h(xn)→ +∞, ∀xn → x /∈ K;

h(x) = 0, ∀x ∈ T ;

(ii) there exists a constant Lh ≥ 0 such that∣∣∣e−h(x) − e−h(x′)
∣∣∣ ≤ Lh|x− x′|

for any x, x′ ∈ Rd.

(Hh)
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Let the function v : Rd → [0, 1] be defined by:

(4.4.1) v(x) := inf
u∈U

{
1 + E

[
sup
t≥0

(
− e−

∫ t
0 f(Xu

x (s),u(s))ds−h(Xu
x (t))

)]}
.

We will now show that the function v can be used in order to characterize the domain
of controllability DT ,K. In particular, we are going to prove that DT ,K consists of the
set of points x where v is strictly lower than one.

Theorem 4.4.1. Let assumptions (Hb),(Hσ),(H ′T ),(H ′K),(Hf ) and (Hh) be satisfied,
then

x ∈ DT ,K ⇔ v(x) < 1.

Proof. “⇐” We show v(x) = 1 for every x /∈ DT ,K. If x /∈ DT ,K then Proposition 4.3.3
implies

sup
u∈U

P
[
τ(x, u) < +∞ and Xu

x (t) ∈ K ∀t ∈ [0, τ(x, u)]

]
= 0.

This means that for any control u ∈ U and almost every realization ω ∈ Ω

τ(x, u)(ω) = +∞ or ∃t̄ ∈ [0, τ(x, u)(ω)] : Xu
x (t̄)(ω) /∈ K.

On the one hand, if τ(x, u)(ω) = +∞, 6 ∃t such that Xu
x (t)(ω) ∈ Tr. By assumption (Hf )

it follows that
f(Xu

x (t), u(t))(ω) > f0, ∀t ≥ 0

with f0 > 0, that is

exp
{
−
∫ t

0
f(Xu

x (s), u(s))ds− h(Xu
x (t))

}
(ω) ≤ exp

{
− f0t− h(Xu

x (t))
}

(ω) ∀t ≥ 0.

On the other hand, ifXu
x (t̄)(ω) /∈ K for a certain t̄ ∈ [0, τ(x, u)(ω)], one has h(Xu

x (t̄))(ω) =
+∞. In both cases, for every u ∈ U the argument of the expectation in (4.4.1) almost
surely has the value 0, implying

1 + E
[
sup
t≥0

(
− e−

∫ t
0 f(Xu

x (s),u(s))ds−h(Xu
x (t))

)]
= 1

for every u ∈ U from which v(x) = 1 follows by the definition of v.

“⇒” We will prove that supu∈U E[inft≥0 e−
∫ t
0 f(Xu

x (s),u(s))ds−h(Xu
x (t))] > 0 for every

x ∈ DT ,K. Let us start observing that, since there exists a control ν ∈ U such that

P
[
τ(x, ν) < +∞ and Xν

x(t) ∈ K ∀t ∈ [0, τ(x, ν)]

]
> 0,

then there exist T,M > 0 large enough such that for

Ωu
1 :=

{
ω ∈ Ω : τ(x, u) < T and max

t∈[0,τ(x,u)]
h(Xu

x (t)) ≤M
}

one has δ := supu∈U P[Ωu
1 ] > 0. Indeed, defining

Ω∞ :=

{
ω ∈ Ω : τ(x, ν) < +∞ and Xν

x(t) ∈ K ∀t ∈ [0, τ(x, ν)]

}
=

{
ω ∈ Ω : τ(x, ν) < +∞ and h(Xu

x (t)) <∞ ∀t ∈ [0, τ(x, ν)]

}
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and

Ωn :=

{
ω ∈ Ω : τ(x, u) < n and max

t∈[0,τ(x,u)]
h(Xu

x (t)) ≤ n
}

one has

0 < P[Ω∞] = P[
⋃
n≥0

Ωn] ≤
∑
n≥0

P[Ωn].

Hence, there exists n̄ ∈ N such that P[Ωn̄] > 0 and thus supu∈U P[Ωu
1 ] > 0 for T = M =

n̄.

Moreover, thanks to the assumption of local exponential stabilizability in probability,
there exist constants λ,C > 0 such that for any y ∈ Tr

sup
u∈U

P[Auy ] ≥ 1− δ

2

for Auy :=

{
ω ∈ Ω : supt≥0 d+

T (Xu
y (t))eλt ≤ C and Xu

y (t) ∈ K ∀t ≥ 0

}
.

In what follows we will denote by τ = τ(x, u) the hitting time (4.3.1) if no ambiguity
arises. For any u ∈ U one has (recall that f ≥ 0):

E
[

inf
t≥0

exp
{
−
∫ t

0
f(Xu

x (ξ), u(ξ))dξ − h(Xu
x (t))

}]
≥ E

[
exp

{
−
∫ +∞

0
f(Xu

x (ξ), u(ξ))dξ − max
ξ∈[0,+∞)

h(Xu
x (ξ))

}]
≥
∫

Ωu1

exp
{
−
∫ +∞

0
f(Xu

x (ξ), u(ξ))dξ − max
ξ∈[0,+∞)

h(Xu
x (ξ))

}
dP

≥
∫

Ωu1

exp
{
−
∫ τ

0
f(Xu

x (ξ), u(ξ))dξ −
∫ +∞

τ
f(Xu

x (ξ), u(ξ))dξ

− max
ξ∈[0,τ ]

h(Xu
x (ξ)) ∨ max

ξ∈[τ,+∞)
h(Xu

x (ξ))
}
dP

≥ e−MfT−M
∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[

exp
{
−
∫ +∞

τ
f(Xu

x (ξ), u(ξ))dξ − max
ξ∈[τ,+∞)

h(Xu
x (ξ))

}∣∣∣∣ Xu
τ =y, τ=s, τ<T,

max
ξ∈[0,τ ]

h(Xu
x (ξ))≤M

]
≥ e−MfT−M

∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[

exp
{
−
∫ +∞

0
f(Xu(s+·)

y (ξ), u(s+ ξ))dξ − max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

}∣∣∣∣Xu
s = y

]
.
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Therefore, applying the Lipschitz continuity of g and h, one has

e−MfT−M sup
u∈U

∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[

exp
{
−
∫ +∞

0
f(Xu(s+·)

y (ξ), u(s+ ξ))dξ − max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

}∣∣∣∣Xu
s = y

]
≥ e−MfT−M sup

u∈U

∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[
χ
Auy

exp
{
−
∫ +∞

0
f(Xu(s+·)

y (ξ), u(s+ ξ))dξ − max
ξ∈[0,+∞)

h(Xu(s+·)
y (ξ))

}∣∣∣∣Xu
s = y

]
≥ e−MfT−M sup

u∈U

∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[
χ
Auy

exp
{
− Lf

∫ +∞

0
d+
T (Xu(s+·)

y (ξ))dξ − max
ξ∈[0,+∞)

Ld+
T (Xu(s+·)

y (ξ), T )
}∣∣∣∣Xu

s = y

]
≥ e−MfT−M sup

u∈U

∫ T

0

∫
d+
T (y)=r

P
[
Xu
τ = dy, τ = ds, τ < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

· E
[
χ
Auy

exp
{
− Lf

∫ +∞

0
Ce−λξdξ − max

ξ∈[0,+∞)
LCe−λξ

}∣∣∣∣Xu
s = y

]
≥ e−MfT e−Me−

CLf
λ e−LC sup

u∈U

∫ T

0

∫
y∈Tr

E
[
χ
Auy

∣∣∣∣Xu
s = y

]
· P
[
Xu
τ = dy, τ = ds, τ(x, u) < T, max

ξ∈[0,τ ]
h(Xu

x (ξ)) ≤M
]

= e−MfT e−Me−
CLf
λ e−LC sup

u∈U
P
[
Ωu

1 ∩AuXu
τ

]
> 0

where for the last inequality we used the fact that (thanks again to the arguments in
Remark 4.3.1) one has supu∈U P[Ωu

1 ∩AuXu
τ
] > 0.

Remark 4.4.2. The definition of the function v is based on a similar construction used
in [104] for a deterministic controlled setting. That paper shows that in the determinis-
tic setting the domain of controllability can alternatively be characterized by a second
function, whose definition, translated to the stochastic framework, would be

(4.4.2) V (x) = inf
u∈U

E
[
sup
t≥0

∫ t

0
f(Xu

x (s), u(s))ds+ h(Xu
x (t))

]
.

A little computation using Jensen’s inequality shows the relation{
x ∈ Rd : V (x) < +∞

}
⊆
{
x ∈ Rd : v(x) < 1

}
.

Since, however, it is not clear whether the opposite inclusion holds in the stochastic
setting, we will exclusively work with v in the remainder of this chapter.

4.5 The PDE characterization of DT ,K

After having shown that DT ,K can be expressed as a sub-level set of v, we now proceed
to the second main result of the chapter, the PDE characterization of v and thus of
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DT ,K. In order to derive the PDE which is solves by v, we need to establish a dynamic
programming principle for v. However, as already pointed out in Chapter 3 Section
3.5, the presence of the supremum inside the expectation in the definition of v prohibits
the direct use of the standard dynamic programming techniques. In fact, exactly as
for the value function associated with the cost (3.4.1) in Section 3.5, v does not satisfy
a fundamental concatenation property that is usually the main tool necessary for the
derivation of the associated partial differential equation. To avoid this difficulty, we
follow the classical approach, exploited also in Section 3.5, to reformulate the problem
by adding the auxiliary variable y ∈ R that keeps track of the running maximum. For
this reason we introduce the function ϑ : Rd × [−1, 0]→ [0, 1] defined as follows:

(4.5.1) ϑ(x, y) := inf
u∈U

{
1 + E

[
sup
t≥0

(
−e−

∫ t
0 f(Xu

x (s),u(s))ds−h(Xu
x (t))

)
∨ y
]}
.

We point out that

ϑ(x,−1) = v(x) ∀x ∈ Rd,

therefore ϑ can still be used for characterizing the set DT ,K and one has

(4.5.2) DT ,K =

{
x ∈ Rd : ϑ(x,−1) < 1

}
.

Furthermore, it follows from Theorem 4.4.1 that

(4.5.3) ϑ(x, y) =

{
1 + y on T × [−1, 0]
1 on (DT ,K)C × [−1, 0].

In what follows we will also denote

F (t, x, u) :=

∫ t

0
f(Xu

x (s), u(s))ds,

so that using this notation the function ϑ reads

ϑ(x, y) = inf
u∈U

{
1 + E

[
sup
t≥0

(
−e−F (t,x,u)−h(Xu

x (t))
)
∨ y
]}
.

For the new state variable y we can define the following “maximum dynamics”:

(4.5.4) Y u
x,y(·) := eF (·,x,u)

(
y ∨ sup

t∈[0,· ]
(−e−F (t,x,u)−h(Xu

x (t)))

)

We remark that Y u
x,y(t) ∈ [−1, 0] for any u ∈ U , t ≥ 0 and (x, y) ∈ Rd × [−1, 0].

Moreover one has

(4.5.5) 1 + y ≤ ϑ(x, y) ≤ 1, ∀x ∈ Rd, y ∈ [−1, 0].

We are now able to prove a DPP for the function ϑ. Since no information is available
at the moment on the regularity of ϑ, we state the weak version of the DPP presented in
[63] involving the semi-continuous envelopes of ϑ. Let us denote by ϑ∗ and ϑ∗ respectively
the upper and lower semi-continuous envelope of ϑ. One has:
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Lemma 4.5.1. Let assumptions (Hb),(Hσ),(Hf ) and (Hh) be satisfied. Then for any
finite stopping time θ ≥ 0 measurable with respect to the filtration, one has

inf
u∈U

E
[
e−F (θ,x,u)ϑ∗(X

u
x (θ), Y ux,y(θ))) +

∫ θ

0

f(Xx(s), u(s))e−F (s,x,u)ds

]
≤ ϑ(x, y) ≤ inf

u∈U
E
[
e−F (θ,x,u)ϑ∗(Xu

x (θ), Y ux,y(θ))) +

∫ θ

0

f(Xu
x (s), u(s))e−F (s,x,u)ds

]
.

For a rigorous proof of this result we refer to [63]. Here, we only show the main steps
that lead to our formulation of the DPP in the non-controlled and continuous case.

Sketch of the proof of Lemma 4.5.1. For any finite stopping time θ ≥ 0 one has

ϑ(x, y)− 1

= E
[
sup
t≥0

(
− e−F (t,x)−h(Xx(t))

)
∨ y
]

= E
[
sup
t≥θ

(
− e−F (t,x)−h(Xx(t))

)
∨ sup
t∈[0,θ]

(
− e−F (t,x)−h(Xx(t))

)
∨ y
]

= E
[
e−F (θ,x)sup

t≥θ

(
− e−

∫ t
θ f(Xx(s))ds−h(Xx(t))

)
∨ sup
t∈[0,θ]

(
− e−F (t,x)−h(Xx(t))

)
∨ y
]

= E
[
e−F (θ,x)

{
sup
t≥θ

(
− e−

∫ t
θ f(Xx(s))ds−h(Xx(t))

)
∨ Yx,y(θ)

}]
where the property of the maximum (a · b) ∨ c = a · (b ∨ c

a), ∀a, b, c ∈ R, a > 0, is used.
Applying now the tower property of the expectation one obtains

ϑ(x, y)

= 1 + E
[
E
[
e−F (θ,x)

{
sup
t≥0

(
− e−F (t,Xx(θ))−h(XXx(θ)(t))

)
∨ Yx,y(θ)

} ∣∣∣∣ Fθ] ]
= 1 + E

[
e−F (θ,x)E

[
sup
t≥0

(
− e−F (t,Xx(θ))−h(XXx(θ)(t))

)
∨ Yx,y(θ)

∣∣∣∣ Fθ] ]
= 1 + E

[
e−F (θ,x)

(
ϑ(Xx(θ), Yx,y(θ))− 1

)]
and the result just follows observing that 1− e−F (θ,x) =

∫ θ
0 f(Xx(s))e−F (s,x)ds.

Using the DPP from Lemma 4.5.1, we can now show that ϑ is actually continuous.

Proposition 4.5.2. Let assumptions (Hb),(Hσ),(H ′T ),(H ′K),(Hf ) and (Hh) be satisfied.
Then the function ϑ from (4.5.1) is continuous in Rd+1.

Proof. The continuity with respect to y is trivial and one has

|ϑ(x, y)− ϑ(x, y′)| ≤ |y − y′|.

For what concerns the continuity with respect to x, in (DT ,K)C and T there is nothing
to prove thanks to (4.5.3).

We start by proving the continuity at the boundary of T . Let x0 ∈ ∂T . We aim to
prove that for any ε there exists δ > 0 such that for x ∈ B(x0, δ) one has

(4.5.6) ϑ(x, y)− ϑ(x0, y) =ϑ(x, y)− (1 + y) ≤ ε.
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For δ> 0 small enough we can assume that B(x0, δ) ⊂ Tr. Hence, for this choice of δ
there exists λ > 0 such that for any ε > 0 there exists a constant Cε and a control ν
such that one has

P[ACx ] ≤ ε

2

for Ax :=

{
ω ∈ Ω : sup

t≥0
d+
T (Xν

x(t))eλt ≤ Cεd+
T (x) and Xν

x(t) ∈ K ∀t ≥ 0

}
.

From the definition of ϑ and the monotonicity of the exponential one has

ϑ(x, y)− (1 + y)

= ϑ(x, y)−
(
1 + (−1) ∨ y

)
≤ E

[
sup
t≥0

(−e−F (t,x,ν)−h(Xν
x (t))) ∨ y −

(
(−1) ∨ y

)]
≤ E

[
1 + sup

t≥0
(−e−F (t,x,ν)−h(Xν

x (t)))

]
= E

[
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
}]

=

∫
Ax

(
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
})

dP

+

∫
ACx

(
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
})

dP

≤
∫
Ax

(
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
})

dP +
ε

2

for every T > 0. Therefore in order to conclude (4.5.6) it will be sufficient to estimate
the integral taking into account the events in Ax.

For sufficiently small δ > 0 we obtain Cεd
+
T (x) < r and thus Xν

x(t, ω) ∈ Tr for all
ω ∈ Ax, all t ≥ 0 and all x ∈ B(x0, δ). Thus, since Tr is a compact subset of C, the
function h is Lipschitz with constant L along all these trajectories. Since f is Lipschitz,
too, and since f(ξ, u) = h(ξ) = 0 ∀ξ ∈ T , u ∈ U , for any t ≥ 0 one has

f(Xν
x(t), ν(t)) ≤ Lfd+

T (Xν
x(t)) and h(Xν

x(t)) ≤ Ld+
T (Xν

x(t)).

Using these inequalities and the definition of Ax, we obtain∫
Ax

(
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
})

dP

≤
∫
Ax

(
1− exp

{
−
∫ +∞

0
f(Xν

x(t), ν(t))dt− sup
t≥0

h(Xν
x(t)))

})
dP

≤
∫
Ax

(
1− exp

{
−
∫ +∞

0
Lfd

+
T (Xν

x(t))dt− sup
t≥0

Ld+
T (Xν

x(t))
})

dP

≤
∫
Ax

(
1− exp

{
−
∫ +∞

0
LfCεd

+
T (x)e−λtdt− sup

t≥0
LCεd

+
T (x)e−λt

})
dP

≤
∫
Ax

1− e−(Lf/λ+L)CεδdP ≤ 1− e−(Lf/λ+L)Cεδ.
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Now, choosing δ > 0 such that(
Lf
λ

+ L

)
Cεδ ≤ − ln(1− ε/2)

, we have

1− e−(Lf/λ+L)Cεδ ≤ ε/2

and thus

ϑ(x, y)− (1 + y) ≤
∫
Ax

(
1− exp

{
− sup

t≥0
(F (t, x, ν) + h(Xν

x(t)))
})

dP +
ε

2
≤ ε,

for any x with d+
T (x) < δ, which proves (4.5.6) and thus continuity at ∂T .

The proof of the theorem is concluded proving the continuity in Rd\T . We point out
that we already know that ϑ(x, y) = 1 + y in (DT ,K)C , however the proof that follows
is independent of whether x ∈ DT ,K or not. Let x ∈ DT ,K \ T and ξ ∈ B(x, δ). From
the DPP (Lemma 4.5.1), for any y ∈ [−1, 0] and any finite stopping time θ, there exists
a control ν = νε ∈ U such that

ϑ(ξ, y)− ϑ(x, y) ≤ E
[
e−F (θ,ξ,ν)ϑ∗(Xν

ξ (θ), Y ν
ξ,y(θ))− e−F (θ,ξ,ν)

− e−F (θ,x,ν)ϑ∗(X
ν
x(θ), Y ν

x,y(θ)) + e−F (θ,x,ν)

]
+
ε

4
.

In order to prove the result we will use the continuity at T we proved above. We
can in fact state that for any ε > 0 there exists ηε > 0 such that

ϑ∗(z, y) ≤ 1 + y +
ε

4
if d+

T (z) ≤ ηε.

Let T ≥ − ln(ε/4)
f∗ and 0 <R ≤ ε/4

Lh+LfT
where f∗ := inf{x:d+

T (x)≥ηε/2} f(x, ν) > 0 and Lh,

Lf are, respectively, the Lipschitz constant of e−h(x) and f . Denoting

E :=

{
ω ∈ Ω : sup

t∈[0,T ]
|Xν

x(t)−Xν
ξ (t)| ≥ R

}
,

under assumptions (Hb) and (Hσ) we can choose δ sufficiently small such that P[E] ≤ ε
8 .

Then (recalling that ϑ∗, ϑ∗ ∈ [0, 1]), we have∫
E

(
e−F (θ,ξ,ν)ϑ∗(Xν

ξ (θ), Y ν
ξ,y(θ))− e−F (θ,ξ,ν)

− e−F (θ,x,ν)ϑ∗(X
ν
x(θ), Y ν

x,y(θ)) + e−F (θ,x,ν)

)
dP

≤
∫
E

(
e−F (θ,x,ν) + e−F (θ,ξ,ν)

)
dP ≤ 2P[E] ≤ ε

4
.

(4.5.7)

Let us now define the stopping time

θ̄ := inf

{
t ≥ 0 : d+

T (Xν
x(t)) ≤ ηε

}
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with the convention that θ̄(ω) = T if d+
T (Xν

x(t)(ω)) > ηε, ∀t ∈ [0, T ] (this ensures the
finiteness of the stopping time needed for the DPP). Thanks to (4.5.7) (which holds for
an arbitrary stopping time), we can write

E
[
e−F (θ̄,ξ,ν)ϑ∗(Xν

ξ (θ̄), Y ν
ξ,y(θ̄))− e−F (θ̄,ξ,ν) − e−F (θ̄,x,ν)ϑ∗(X

ν
x(θ̄), Y ν

x,y(θ̄)) + e−F (θ̄,x,ν)

]
≤ ε

4
+

∫
EC

. . . =
ε

4
+

∫
EC∩{θ̄<T}

. . .+

∫
EC∩{θ̄=T}

. . .

and we will provide estimates separately for the last two integrals.
In EC ∩ {θ̄ = T}, using again ϑ∗, ϑ

∗ ∈ [0, 1], we get

∫
EC∩{θ̄=T}

(
e−F (T,ξ,ν)ϑ∗(Xν

ξ (T ), Y ν
ξ,y(T ))− e−F (T,ξ,ν)

− e−F (T,x,ν)ϑ∗(X
ν
x(T ), Y ν

x,y(T )) + e−F (T,x,ν)

)
dP

≤
∫
EC∩{θ̄=T}

e−F (T,x,ν)dP ≤ e−f∗T ≤ ε

4

thanks to the choice of T .

In EC ∩ {θ̄ < T} we have

∫
EC∩{θ̄<T}

(
e−F (θ̄,ξ,ν)ϑ∗(Xν

ξ (θ̄), Y ν
ξ,y(θ̄))− e−F (θ̄,ξ,ν)

− e−F (θ̄,x,ν)ϑ∗(X
ν
x(θ̄), Y ν

x,y(θ̄)) + e−F (θ̄,x,ν)

)
dP

≤
∫
EC∩{θ̄<T}

(
e−F (θ̄,ξ,ν)

(
1 + Y ν

ξ,y(θ̄) +
ε

4

)
− e−F (θ̄,ξ,ν)

− e−F (θ̄,x,ν)
(
1 + Y ν

x,y(θ̄)
)

+ e−F (θ̄,x,ν)

)
dP

=

∫
EC∩{θ̄<T}

(
e−F (θ̄,ξ,ν)Y ν

ξ,y(θ̄)− e−F (θ̄,x,ν)Y ν
x,y(θ̄)

)
dP +

ε

4

where we used the fact that, in virtue of (4.5.5), ϑ∗(x, y) ≥ 1+y. Recalling the definition
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of the variable Y (·) given by (4.5.4) and because of assumptions (Hf ) and (Hh), we have∫
EC∩{θ̄<T}

(
e−F (θ̄,ξ,ν)Y ν

ξ,y(θ̄)− e−F (θ̄,x,ν)Y ν
x,y(θ̄)

)
dP

=

∫
EC∩{θ̄<T}

(
sup
t∈[0,θ̄]

(−e−F (t,ξ,ν)−h(Xν
ξ (t))) ∨ y − sup

t∈[0,θ̄]

(−e−F (t,x,ν)−h(Xν
x (t))) ∨ y

)
dP

≤
∫
EC∩{θ̄<T}

(
sup
t∈[0,θ̄]

|e−F (t,ξ,ν)−h(Xν
ξ (t)) − e−F (t,x,ν)−h(Xν

x (t))|
)
dP

≤
∫
EC∩{θ̄<T}

(
sup
t∈[0,θ̄]

e−F (t,ξ,ν)|e−h(Xν
ξ (t)) − e−h(Xν

x (t))|

+ sup
t∈[0,θ̄]

e−h(Xν
ξ (t))|e−F (t,ξ,ν) − e−F (t,x,ν)|

)
dP

≤
∫
EC∩{θ̄<T}

(
sup
t∈[0,θ̄]

|e−h(Xν
ξ (t)) − e−h(Xν

x (t))|+ sup
t∈[0,τ ]

|e−F (t,ξ,ν) − e−F (t,x,ν)|
)
dP

≤ (Lh + LfT )

∫
EC∩{θ̄<T}

(
sup
t∈[0,T ]

|Xν
ξ (t)−Xν

x(t)|
)
dP ≤ ε

4

thanks to the choice of R.

Thanks to Lemma 4.5.1 and the continuity of ϑ, we can finally characterize ϑ as a
solution, in the viscosity sense, of a second order Hamilton-Jacobi-Bellman equation. To
this end, we define the open domain O ⊂ Rd × [−1, 0] by

O =

{
(x, y) ∈ Rd+1 : −e−h(x) < y < 0

}
and the following two components of its boundary

∂1O :=

{
(x, y) ∈ O : y = 0

}
∂2O :=

{
(x, y) ∈ O : y = −e−h(x), y < 0

}
.

Remark 4.5.3. We point out that thanks to the relation

ϑ(x, y) = ϑ(x,−e−h(x)) ∀y ≤ −e−h(x)

it is sufficient to determine the values of ϑ in O in order to characterize ϑ in the whole
domain of definition Rd × [−1, 0]. We also remark that ϑ(x, 0) = 1 for any x ∈ Rd.
Moreover if the assumption of boundedness of K holds, O is bounded too.

Let us consider the following Hamiltonian H : Rd × R× R× Rd × R× Sd → R,

H(x, y, r, p, q,Q) :=sup
u∈U

{
f(x, u)(r − 1)− p · b(x, u)− 1

2
Tr[σσT (x, u)Q]− q f(x, u)y

}
.(4.5.8)

The following theorem holds.

Theorem 4.5.4. Let assumptions (Hb),(Hσ),(H ′T ),(H ′K),(Hf ) and (Hh) be satisfied.
Then ϑ is a continuous viscosity solution of

(4.5.9)


H(x, y, ϑ,Dxϑ, ∂yϑ,D

2
xϑ) = 0 in O

ϑ = 1 on ∂1O
−∂yϑ = 0 on ∂2O.
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We refer to [84, Definition 7.4] (see also Definition 3.5.3 in Chapter 3) for the defini-
tion of a viscosity solution for equation (4.5.9). It is in fact well-known that boundary
conditions may have to be considered in a weak sense in order to obtain existence of a
solution. It means that for the viscosity sub-solution (resp. super-solution) of equation
(4.5.9), we will ask that on the boundary ∂2O the inequality

min
(
H(x, y, ϑ,Dxϑ, ∂yϑ,D

2
xϑ),−∂yϑ

)
≤ 0(

resp. max
(
H(x, y, ϑ,Dxϑ, ∂yϑ,D

2
xϑ),−∂yϑ

)
≥ 0

)
holds in the viscosity sense. In contrast, the condition on ∂1O is assumed in the strong
sense.
The proof that follows makes use of the same arguments used in the proof of Theorem
3.5.2 in Chapter 3.

Proof of Theorem 4.5.4. The boundary condition on ∂1O follows directly by the defini-
tion of ϑ. Let us start proving the sub-solution property.

Let be ϕ ∈ C2,1(O) such that ϑ− ϕ attains a maximum at point (x̄, ȳ) ∈ O and let
us assume ȳ < 0. We need to show

(4.5.10) H(x̄, ȳ, ϑ(x̄, ȳ), Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ), D2
xϕ(x̄, ȳ)) ≤ 0

if (x̄, ȳ) /∈ ∂2O and

(4.5.11) min
(
H(x̄, ȳ, ϑ(x̄, ȳ), Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ), D2

xϕ(x̄, ȳ)),−∂yϕ(x̄, ȳ)
)
≤ 0

if (x̄, ȳ) ∈ ∂2O.

Without loss of generality we can always assume that (x̄, ȳ) is a strict local maximum
point (let us say in a ball of radius r) and that ϑ(x̄, ȳ) = ϕ(x̄, ȳ). Using continuity
arguments, for any u ∈ U and for almost every ω ∈ Ω we can find θ := θu small enough
such that

(Xu
x̄ (θ) , Y u

x̄,ȳ(θ))(ω) ∈ B((x̄, ȳ), r).

Let us in particular consider a constant control u(t) ≡ u ∈ U . Thanks to Lemma 4.5.1
one has

(4.5.12) ϕ(x̄, ȳ) ≤ E
[
e−F (θ,x̄,u)ϕ(Xu

x̄ (θ), Y ux̄,ȳ(θ)) +

∫ θ

0

f(Xu
x̄ (s), u)e−F (s,x̄,u)ds

]
.

We now take into account two different cases, depending on whether or not we are in
∂2O.

— Case 1: ȳ > −e−h(x̄). In this case (since we are inside O) for almost every ω ∈ Ω,
taking the stopping time θ(ω) small enough, we can say

eF (θ,x̄,u)(ȳ ∨ sup
t∈[0,θ]

(−e−F (t,x̄,u)−h(Xu
x̄ (t))))(ω) = (eF (θ,x̄,u)ȳ)(ω).

Therefore from (4.5.12), for this choice of the stopping time θ, for any u ∈ U we obtain

(4.5.13) E
[
ϕ(x̄, ȳ)− e−F (θ,x̄,u)ϕ(Xu

x̄ (θ), eF (θ,x̄,u)ȳ) +

∫ θ

0

f(Xu
x̄ (s), u)e−F (s,x̄,u)ds

]
≤ 0
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which yields

E
[ ∫ θ

0
−d
(
e−F (s,x̄,u)ϕ(Xu

x̄ (s), eF (s,x̄,u)ȳ)

)
+ f(Xu

x̄ (s), u)e−F (s,x̄,u)ds

]
≤ 0.

Applying the Ito’s formula we have

d

(
e−F (s,x̄,u)ϕ(Xu

x̄ (s), eF (s,x̄,u)ȳ)

)
= e−F (s,x̄,u)

{
− f(Xu

x̄ (s), u)ϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ)

+Dxϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ) · dXu

x̄ (s) + ∂yϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ) f(Xu

x̄ (s), u)ȳ

+
1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eF (s,x̄,u)ȳ)]

}
.

Then, replacing the stopping time θ by θh := θ ∧ h we get

E
[

1

h

∫ θh

0
e−F (s,x̄,u)

{
− f(Xu

x̄ (s), u)ϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ)

+Dxϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ) · b(Xu

x̄ (s), u) + ∂yϕ(Xu
x̄ (s), eF (s,x̄,u)ȳ) f(Xu

x̄ (s), u)ȳ

+
1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eF (s,x̄,u)ȳ)]

}
ds

]
≤ 0.

Letting h → 0 and observing that for ω fixed θh=h holds for h > 0 sufficiently small,
we can apply the mean value theorem inside the integral for any fixed ω. In this way,
applying also the dominated convergence theorem, we finally obtain at (x̄, ȳ)

f(x̄, u)(ϕ− 1)−Dxϕ · b(x̄, u)− 1

2
Tr[σσT (x̄, u)D2

xϕ]− ∂yϕf(x̄, u)ȳ ≤ 0 ∀u ∈ U

and then thanks to the arbitrariness of u

H(x̄, ȳ, ϕ(x̄, ȳ), Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ), D2
xϕ(x̄, ȳ)) ≤ 0,

i.e., (4.5.10).
— Case 2: ȳ = −e−h(x̄). If −∂yϕ(x̄, ȳ) ≤ 0, then (4.5.11) holds. Hence, let us assume

that
−∂yϕ(x̄, ȳ) > 0.

This means that in a neighborhood of (x̄, ȳ)

ϕ(x, y1) ≥ ϕ(x, y2) if y1 ≤ y2.

For almost every ω ∈ Ω and for θ(ω) small enough, the point(
Xu
x̄ (θ) , eF (θ,x̄,u)(ȳ ∨ sup

t∈[0,θ]
(−e−F (t,x̄,u)−h(Xu

x̄ (t))))

)
is in this neighborhood. Because of

Y u
x̄,ȳ(θ) = eF (θ,x̄,u)

(
ȳ ∨ sup

t∈[0,θ]
(−e−F (t,x̄,u)−h(Xu

x̄ (t)))

)
≥ eF (θ,x̄,u)ȳ
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we obtain for any u ∈ U

ϕ(x̄, ȳ)

≤ E
[
e−F (θ,x̄,u)

{
ϕ(Xu

x̄ (θ), Y u
x̄,ȳ(θ)) +

∫ θ

0
f(Xu

x̄ (s), u)e−F (s,x̄,u)ds

}]
≤ E

[
e−F (θ,x̄,u)

{
ϕ(Xu

x̄ (θ), eF (θ,x̄,u)ȳ) +

∫ θ

0
f(Xu

x̄ (s), u)e−F (s,x̄,u)ds

}]
from which we have again (4.5.13) and thus

H(x̄, ȳ, ϕ(x̄, ȳ), Dxϕ(x̄, ȳ), ∂yϕ(x̄, ȳ), D2
xϕ(x̄, ȳ)) ≤ 0,

implying (4.5.11).
For proving the super-solution property let us assume that ϑ − ϕ attains a strict

maximum in (x̄, ȳ). Starting again from the DPP and taking the stopping time θ small
enough one has

ϕ(x̄, ȳ) ≥ inf
u∈U

E
[
e−F (θ,x̄,u)ϕ(Xu

x̄ (θ), Y ux̄,ȳ(θ)) +

∫ θ

0

f(Xu
x̄ (s), u)e−F (s,x̄,u)ds

]
.

If either ȳ > −e−h(x̄) or ȳ = −e−h(x̄) and −∂yϕ(x̄, ȳ) < 0 we get, for θ small enough

ϕ(x̄, ȳ) ≥ inf
u∈U

E
[
e−F (θ,x̄,u)ϕ(Xu

x̄ (θ), eF (θ,x̄,u)ȳ) +

∫ θ

0

f(Xu
x̄ (s), u)e−F (s,x̄,u)ds

]
and the desired property can be obtained by standard passages, with the usual modifi-
cations required for proving the super-solution inequality.

4.6 Comparison principle

After having shown that ϑ solves equation (4.5.9), we now consider the uniqueness
question. As usual in viscosity solution theory, we establish uniqueness in form of a
comparison principle between USC sub-solutions and LSC super-solutions. In proving
such a comparison principle, some additional difficulties arise because of the degeneracy
of f near T . In order to overcome this difficulty we will show that for any super-solution
(resp. sub-solution) a super-optimality (resp. sub-optimality) principle holds and then
we will use this result for proving the comparison principle by a direct calculation. The
proof of the optimality principles given here adapts the techniques in presented in [23,
Theorem 2.32] to the particular case of the second order boundary value problem (4.5.9).

Let us start with a preliminary result. We can in fact prove that, thanks to assump-
tion (Hh)-(ii), together with (Hb),(Hσ) and (Hf ), for any control u ∈ U and T ≥ 0,
aside from the standard estimation for the process Xu

x (·)

(4.6.1) E
[

sup
t∈[0,T ]

∣∣Xu
x (t)− x

∣∣2] ≤ CeCT (1 + |x|2)T

(see Proposition 2.1.1, Chapter 2) the following inequalities also holds for Yx,y(·): if
(x, y) ∈ O, then

(4.6.2) E
[

sup
t∈[0,T ]

∣∣Y u
x,y(t)− y

∣∣2] ≤ CeCT(|1− eMfT |2 + e2MfT (1 + |x|2)T

)
where C is a constant depending only on the Lipschitz constants of b and σ, and Mf

denotes the bound of the function f . We prove the following result for a later use.
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Lemma 4.6.1. For any ε > 0, T ≥ 0 and (x, y) ∈ O one has

sup
u∈U

P
[

sup
t∈[0,T ]

|(Xu
x (t), Y u

x,y(t))− (x, y)| > ε

]
≤
CT,x
ε2

for CT,x := CeCT (1 + e2MfT )(T + |1− eMfT |2)(1 + |x|2).

Proof. The result is a consequence of Doob’s inequality applied to the sub-martingale
Mt := sups∈[0,t](|X(s) − x| + |Y (s) − y|) and of inequalities (4.6.1) and (4.6.2). Indeed
for any u ∈ U one has:

P
[

sup
t∈[0,T ]

|(Xu
x (t), Y u

x,y(t))− (x, y)| > ε

]
≤ P

[
sup
t∈[0,T ]

(|Xu
x (t)− x|+ |Y u

x,y(t)− y|) > ε

]
≤ 1

ε2
E
[(

sup
t∈[0,T ]

|Xu
x (t)− x|+ |Y u

x,y(t))− y|
)2]

≤ 2

ε2
E
[

sup
t∈[0,T ]

|Xu
x (t)− x|2 + sup

t∈[0,T ]
|Y u
x,y(t))− y|2

]
≤ CeCT

ε2

(
(1 + e2MfT )T (1 + |x|2) + |1− eMfT |2

)
where C is the constant appearing in (4.6.1) and (4.6.2). This shows the claim.

Let us define the domain

Oδ :=

{
(x, y) ∈ O : d+

T (x) > δ, y < −δ
}

and the associated exit time for the process (Xu
x (t), Y u

x,y(t))

τuδ := inf

{
t ≥ 0 : (Xu

x (t), Y u
x,y(t)) /∈ Oδ

}
.

Theorem 4.6.2. Let ϑ ∈ USC(O) be a bounded viscosity sub-solution to equation (4.5.9)
such that

ϑ(x, y) = 1 on ∂1O.

Then ϑ satisfies

ϑ(x, y) ≤ inf
u∈U

E
[
e−F (τuδ (t),x,u)ϑ(Xu

x (τuδ (t)), Y u
x,y(τ

u
δ (t)))(4.6.3)

+

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
for any (x, y) ∈ Oδ, t ≥ 0, where τuδ (t) := min(t, τuδ ) and τuδ denotes the exit time of the
process (Xu

x (·), Y u
x,y(·)) from the domain Oδ.
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Proof. Let us start observing that since ϑ is upper semi-continuous we can write for any
(x, y) ∈ O

(4.6.4) ϑ(x, y) = inf
k≥0

Vk(x, y)

where {Vk}k≥0 is a decreasing sequence of bounded continuous functions. Let us consider
for k ≥ 0 the following evolutionary obstacle problem

(4.6.5)


max

(
∂tV +H(x, y, V,DxV, ∂yV,D

2
xV ) , V − Vk

)
= 0 (0, t]×O

V (t, x, y) = 1 (0, t]× ∂1O
−∂yV (t, x, y) = 0 (0, t]× ∂2O
V (0, x, y) = Vk(x, y) O.

It is immediate to verify that ϑ is a bounded viscosity sub-solution of this problem for
any k ≥ 0 and t ≥ 0. For t ≥ 0, we now define the following function

Lk(t, x, y) :=


inf
u∈U

E
[
e−F (τuδ (t),x,u)Vk(X

u
x (τuδ (t)), Y u

x,y(τ
u
δ (t))) Oδ

+
∫ τuδ (t)

0 f(Xu
x (s), u(s))e−F (s,x,u)ds

]
Vk(x, y) O \ Oδ.

We are going to prove that the lower semi-continuous envelop of Lk is a viscosity super-
solution of the obstacle problem (4.6.5).
Let us start proving that Lk is continuous in t = 0. Of course, we only need to prove
the result in Oδ. Noting that Lk(0, x, y) = Vk(x, y) for any u ∈ U and (x, y) ∈ Oδ, one
has for any (ξ, η) ∈ Oδ

∣∣∣∣E[e−F (τuδ (t),ξ,u)Vk(X
u
ξ (τuδ (t)), Y u

ξ,η(τ
u
δ (t)))

+

∫ τuδ (t)

0
f(Xu

ξ (s), u(s))e−F (s,ξ,u)ds

]
− Lk(0, x, y)

∣∣∣∣
≤ E

[
|e−F (τuδ (t),ξ,u)Vk(X

u
ξ (τuδ (t)), Y u

ξ,η(τ
u
δ (t)))− Vk(x, y)|

]
+Mf t

≤ E
[
e−F (τuδ (t),ξ,u)|Vk(Xu

ξ (τuδ (t)), Y u
ξ,η(τ

u
δ (t)))− Vk(x, y)|

]
+ E

[
|Vk(x, y)|

(
1− e−F (τuδ (t),ξ,u)

)]
+Mf t
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≤ E
[
|Vk(Xu

ξ (τuδ (t)), Y u
ξ,η(τ

u
δ (t)))− Vk(ξ, η)|

]
+ |Vk(ξ, η)− Vk(x, y)|

+ C
(

1− e−Mf t
)

+Mf t.

Thanks to the continuity of Vk, there exists δε such that

|Vk(x, y)− Vk(ξ, η)| ≤ ε

4

for any (ξ, η) ∈ B((x, y), δε). Therefore if we define the set

E :=

{
ω ∈ Ω : |

(
Xu
ξ (τuδ (t)), Y u

ξ,η(τ
u
δ (t))

)
− (ξ, η)| > δε

}
we obtain ∫

EC
|Vk(Xu

ξ (τuδ (t)), Y u
ξ,η(τ

u
δ (t)))− Vk(ξ, η)|dP ≤ ε

4
.

Moreover, thanks to the boundedness of Vk we get∫
E
|Vk(Xu

ξ (τuδ (t)), Y u
ξ,η(τ

u
δ (t)))− Vk(ξ, η)|dP ≤ 2MP[E].

Using the result in Lemma 4.6.1 we can state that there exists a constant C such that

P[E] ≤ CeCt

δ2
ε

(1 + e2Mf t)(t+ |1− eMf t|2)(1 + |ξ|2).

Therefore, there exists tε > 0 such that for t < tε

2MP[E] + C
(

1− e−Mf t
)

+Mf t ≤
ε

2
.

In conclusion we have proved that for any ε > 0, if t < tε and |(x, y)− (ξ, η)| < δε

|Lk(t, ξ, η)− Lk(0, x, y)| ≤ ε

which proves continuity of Lk in t = 0.
Denoting by Lk∗ the lower semi-continuous envelope of Lk, it is possible to prove that

the following DPP holds (see [27, Theorem 4.3]):

inf
u∈U

E
[ ∫ τuδ (θ)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds+ 1{θ≥τuδ }Vk(X
u
x (τuδ ), Y u

x,y(τ
u
δ ))eF (τuδ ,x,u)

+ 1{θ<τuδ }L
k
∗(t− θ,Xu

x (θ), Y u
x,y(θ))e

F (θ,x,u)

]
≤ Lk(t, x, y).

for any stopping time 0 ≤ θ ≤ t.
Thanks to this result, applying the standard dynamic programming arguments (see

for instance the proof given in [27]) and recalling that Lk(t, x, y) = Vk(x, y) in O\Oδ, one
has that Lk∗ is a viscosity super-solution of (4.6.5) in O. We point out that, because of
the continuity of Lk∗ in t = 0 and y = 0, the initial condition and the boundary condition
on ∂1O are satisfied in the strong sense.

We will prove in Section 4.6.1 that for equation (4.6.5) a comparison principle for
semi-continuous viscosity sub- and super-solution holds. It can be obtained by the
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arguments in [93] adapted to the parabolic case (see also Section 3.10 in Chapter 3). The
necessity of using such a result instead of a more classical comparison principle for fully
nonlinear second order elliptic equations with oblique derivative boundary conditions, as
that one presented for instance in [84] (see also the references therein), comes from the
lack of regularity of the domain O. Since the key arguments of the proof in [93] easily
extend to our context, in Section 4.6.1 we will only give a sketch of the proof. Applying
Theorem 4.6.6, we obtain for any (t, x, y) ∈ [0,+∞)×Oδ

ϑ(x, y) ≤ Lk∗(t, x, y),

which leads to

ϑ(x, y) ≤ E
[
e−F (τuδ (t),x,u)Vk(X

u
x (τuδ (t)), Y u

x,y(τ
u
δ (t)))

+

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
∀u ∈ U .

It remains to pass to the limit for k → +∞. Recalling expression (4.6.4) for ϑ we have

ϑ(x, y) = lim sup
k→+∞

Vk(x, y)

and then for any u ∈ U

ϑ(x, y)

≤ lim sup
k→+∞

E
[
e−F (τuδ (t),x,u)Vk(X

u
x (τuδ (t)), Y u

x,y(τ
u
δ (t)))

+

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
≤ E

[
lim sup
k→+∞

e−F (τuδ (t),x,u)Vk(X
u
x (τuδ (t)), Y u

x,y(τ
u
δ (t)))

+

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
= E

[
e−F (τuδ (t),x,u)ϑ(Xu

x (τuδ (t)), Y u
x,y(τ

u
δ (t))) +

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
where for the second inequality we used Fatou’s lemma, thanks to the boundedness of
the functions Vk. Hence, the desired result is obtained thanks to the arbitrariness of
u ∈ U .

The same techniques can be applied in order to prove the super-optimality principle
for LSC super-solutions. In this case, however, compactness assumption on the dynamics
(considering weak solutions of the SDE) are necessary in order to guarantee the last
passage to the limit (see [80]). The version of the super-optimality principle we state
below avoids this kind of assumption by taking into account only continuous super-
solutions.
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Theorem 4.6.3. Let ϑ ∈ C(O) be a bounded viscosity super-solution to equation (4.5.9).
Then for any (x, y) ∈ Oδ and t ≥ 0

ϑ(x, y) ≥ inf
u∈U

E
[
e−F (τuδ (t),x,u)ϑ(Xu

x (τuδ (t)), Y u
x,y(τ

u
δ (t)))(4.6.6)

+

∫ τuδ (t)

0
f(Xu

x (s), u(s))e−F (s,x,u)ds

]
.

Proof. Let us consider the following evolutionary obstacle problem:
min

(
∂tV +H(x, y, V,DxV, ∂yV,D

2
xV ) , V − ϑ

)
= 0 (0, t]×O

V (t, x, y) = 1 (0, t]× ∂1O
−∂yV (t, x, y) = 0 (0, t]× ∂2O
V (0, x, y) = ϑ(x, y) O.

(4.6.7)

We can easily observe that ϑ is a viscosity super-solution to (4.6.7). In what follows, we
build a viscosity sub-solution for problem (4.6.7). Let W : O → R be defined by

W (t, x, y) :=


inf
u∈U

E
[
e−F (τuδ (t),x,u)ϑ(Xx(τδ(t)), Yx,y(τδ(t))) in Oδ

+
∫ τuδ (t)

0 f(Xu
x (s), u(s))e−F (s,x,u)ds

]
ϑ(x, y) in O \ Oδ

Let us consider its upper semi-continuous envelope W ∗. By similar arguments as in
Theorem 4.6.2 we can prove that W ∗ is a viscosity sub-solution to (4.6.7). Indeed, the
continuity with respect to time in t = 0 can be prove as in Theorem 4.6.2. Moreover, the
boundary condition on ∂1O is satisfied in the strong sense thanks to the continuity of
ϑ. Therefore, applying the comparison principle Theorem 4.6.6 between sub and super
solutions to (4.6.7) we get

ϑ(x, y) ≥W ∗(t, x, y).

This yields

ϑ(x, y) ≥ inf
u∈U

E
[
e−F (τuδ (t),x,u)ϑ(Xu

x (τuδ (t)), Y u
x,y(τ

u
δ (t)))

+

∫ τuδ (t)

0
f(Xu

x (s))e−F (s,x,u)ds

]
for any t ≥ 0, (x, y) ∈ Oδ.

The super-optimality principle from Theorem 4.6.3 and the sub-optimality principle
from Theorem 4.6.2 are finally used in the next theorem in order to establish the desired
comparison result.

Theorem 4.6.4. Let ϑ ∈ USC(O) and ϑ ∈ C(O) be a bounded viscosity sub- and
super-solution to equation (4.5.9), respectively. Let us also assume that

ϑ(x, y) ≤ 1 + y ≤ ϑ(x, y) on {(x, y) ∈ O : x ∈ T }(4.6.8)

and

ϑ(x, 0) = ϑ(x, 0) = 1 ∀x ∈ O.(4.6.9)

Then ϑ(x, y) ≤ ϑ(x, y) for any (x, y) ∈ O.
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Proof. Clearly, if x ∈ T there is nothing to prove. Thanks to inequalities (4.6.6) and
(4.6.3), for any (x, y) ∈ Oδ and T ≥ 0 we have

ϑ(x, y)− ϑ(x, y)

≤ sup
u∈U

E
[
e−F (τuδ (T ),x,u)

(
ϑ(Xu

x (τuδ (T )), Y u
x,y(τ

u
δ (T )))− ϑ(Xu

x (τuδ (T )), Y u
x,y(τ

u
δ (T )))

)]
= sup

u∈U

{∫
τuδ ≤T

e−F (τδ,x,u)

(
ϑ(Xu

x (τuδ ), Y u
x,y(τ

u
δ ))− ϑ(Xu

x (τuδ ), Y u
x,y(τ

u
δ ))

)
dP

+

∫
τuδ >T

e−F (T,x,u)

(
ϑ(Xu

x (T ), Y u
x,y(T ))− ϑ(Xu

x (T ), Y u
x,y(T ))

)
dP
}

We will study these two integrals separately. Thanks to the (semi-)continuity of ϑ and
ϑ and conditions (4.6.8) and (4.6.9), for any ε > 0 it is possible to find δε small enough
such that

ϑ(x, y) ≤ 1 + y +
ε

2
, ϑ(x, y) ≥ 1 + y − ε

2
if d+

T (x) ≤ δε

and
ϑ(x, y) ≤ 1 +

ε

2
, ϑ(x, y) ≥ 1− ε

2
if y ≥ −δε.

Recalling that τuδ is the exit time from the domain Oδ, we have that for any u ∈ U either
Y u
x,y(τ

u
δ ) = −δ or d(Xu

x (τuδ ), T ) = δ. For both these cases, choosing δ small enough, for
the first integral we find∫

τuδ ≤T
e−F (τuδ ,x,u)

(
ϑ(Xu

x (τuδ ), Y u
x,y(τ

u
δ ))− ϑ(Xu

x (τuδ ), Y u
x,y(τ

u
δ ))

)
dP

≤ ε P[τuδ ≤ T ] ≤ ε.

For the second integral we can use the boundedness of ϑ and ϑ. Denoting by M a bound
for these functions, we obtain for any u ∈ U∫

τuδ >T
e−F (T,x,u)

(
ϑ(Xu

x (T ), Y u
x,y(T ))− ϑ(Xu

x (T ), Y u
x,y(T ))

)
dP

≤ 2M

∫
τuδ >T

e−F (T,x,u)dP.

If we define
f∗ := inf

{
f(x, u)

∣∣ x ∈ R : d+
T (x) > δ, u ∈ U

}
> 0

we finally obtain for T large enough

ϑ(x, y)− ϑ(x, y) ≤ ε+ e−f
∗T = 2ε

for any (x, y) ∈ Oδ and the result is obtained thanks to the arbitrariness of ε.
Finally. we obtain the desired comparison principle in the whole domainO by sending

δ → 0, thanks to the upper semi-continuity of the function ϑ− ϑ.

An immediate consequence of this theorem and Theorem 4.5.4 is the following exis-
tence and uniqueness result.

Corollary 4.6.5. Let assumptions (Hb),(Hσ),(H ′T ),(H ′K),(Hf ) and (Hh) be satisfied.
Then ϑ from (4.5.1) is the unique bounded and continuous viscosity solution to equation
(4.5.9) such that ϑ(x, y) = 1 + y if x ∈ T and ϑ(x, 0) = 1 for any x ∈ Rd.
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4.6.1 Comparison principle for obstacle problems with Dirichlet-Neumann
boundary conditions

In this section we will give a proof of a comparison principle for the obstacle problems
(4.6.5) and (4.6.7). Before stating the result and starting its proof we introduce a more
compact notation. Let us start defining

b̃(x, y, u) :=

(
b(x, u)
yf(x, u)

)
∈ Rd+1 and σ̃(x, y, u) :=

(
σ(x, u)
0 . . . 0

)
∈ R(d+1)×p.

In what follow we will directly denote with x the variable in the augmented state space
Rn for n := d + 1, that is x ≡ (x, y) ∈ Rn. Using this notation we can write the
Hamiltonian H in (4.5.8) in the compact form

H(x, r, q,Q) := sup
u∈U

{
− q · b̃(x, u)− 1

2
Tr[σ̃σ̃T (x, u)Q] + f(x, u)(r − 1)

}
.

The boundary value problem we deal with is the following
min

(
∂tV +H(x, V,DV,D2V ) , V − ψ

)
= 0 (0, T )×O

V (t, x) = 1 (0, T )× ∂1O
−∂xnV (t, x) = 0 (0, T )× ∂2O
V (0, x) = ψ(x) O

(4.6.10)

(where ∂xn denotes the partial derivative with respect to the n-th space variable and
ψ(x) = 1 on ∂1O). We recall that the boundary conditions in t = 0 and ∂1O are
considered in the strong sense, that is for any viscosity sub-solution V (resp. super-
solution V ) one has

V (0, x) ≤ ψ(x) (resp. V (0, x) ≥ ψ(x)) on O

and
V (t, x) ≤ 1 (resp. V (t, x) ≥ 1) on (0, T )× ∂1O.

We also recall that on the boundary ∂2O the following weak conditions

min

(
min

(
∂tV +H(x, V ,DV ,D2V ), V − ψ

)
, −∂xnV

)
≤ 0

max

(
min

(
∂tV +H(x, V ,DV ,D2V ), V − ψ

)
, −∂xnV

)
≥ 0

are considered, in the viscosity sense, respectively, for sub- and super-solutions.
In the sequel we will denote by | · |n−1 the norm restricted to the first n− 1 components
of the vector, that is:

|x|n−1 := |(x1, . . . , xn−1)|, ∀x ∈ Rn.

Theorem 4.6.6. Assume (Hb),(Hσ),(Hf ),(Hh),(H ′K) and ψ ∈ C(O). Let V ∈ USC([0, T ]×
O) and V ∈ LSC([0, T ]×O) be respectively a bounded viscosity sub- and super- solution
to (4.6.10). Then for any x ∈ O and t ∈ [0, T )

V (t, x) ≤ V (t, x).
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Since the main arguments of the proof can be found in [93, Theorem 2.1] (some of
them are also reported in Section 3.10, Chapter 3), below we only report the main lines.

Sketch of the proof of Theorem 4.6.6. Recalling that the boundary ∂2O is defined by the
function −e−h(x1,...,xn−1), thanks to the Lipschitz assumption (Hh)-(ii), we can easily
observe that taking µ := 1/

√
1+L2

h, where Lh is the Lipschitz constant appearing in
(Hh)-(ii), for any z ∈ ∂2O one has⋃

0≤ξ≤µ
B(z − ξ, ξµ) ⊂ OC .(4.6.11)

This corresponds to condition (2.9) in [93] and by the same arguments as in Lemma
3.10.3, Chapter 3 the existence of a function ζ ∈ C2(O) follows such that ζ ≥ 0 on O,
−∂xnζ ≥ 1 on ∂2O and |Dζ|, ‖D2ζ‖ ≤ Kζ for some constant Kζ ≥ 0.

Let us define for δ, ρ, β > 0

V
δ,ρ,β

(t, x) := V (t, x)− δe−ρT ζ(x)− β

T − t
and

V
δ,ρ,β

(t, x) := V (t, x) + δe−ρT ζ(x) +
β

T − t
.

One has
V δ,ρ,β

t→T−→ −∞ and V δ,ρ,β
t→T−→ +∞.

It is possible to verify that V
δ,ρ,β

(resp. V
δ,ρ,β

) is a sub-solution (resp. super-solution)
of an obstacle problem with the following modified boundary conditions on ∂2O:

−∂xnV + δe−ρT ≤ 0
(
resp. − ∂xnV − δe−ρT ≥ 0

)
.(4.6.12)

Moreover, thanks to the positivity of ζ, one has

V
δ,ρ,β
≤ V and V

δ,ρ,β
≥ V ,

so the boundary conditions for t = 0 and y = 0 in (4.6.7) are trivially satisfied. By using
the non negativity of f and the linear growth of b̃ and σ̃, in O one has

H(x, V
δ,ρ,β

, DV
δ,ρ,β

, D2V
δ,ρ,β

)−H(x, V ,DV ,D2V )

≤ H(x, V ,DV
δ,ρ,β

, D2V
δ,ρ,β

)−H(x, V ,DV ,D2V )

≤ sup
u∈U

∣∣b̃(x, u) · δe−ρTDζ +
1

2
Tr[σ̃σ̃T (x, u)(δe−ρTD2ζ)]

∣∣
≤ C1δe

−ρT (1 + |x|2
n−1

),

where C1 only depends on Kζ and the Lipschitz constants of b and σ. Then if

min

(
∂tV +H(x, V ,DV ,D2V ) , V − ψ(x)

)
≤ 0

for some x ∈ O ∪ ∂2O one obtains

min

(
∂tV δ,ρ,β

+H(x, V
δ,ρ,β

, DV
δ,ρ,β

, D2V
δ,ρ,β

) +
β

T 2
− C1δe

−ρT (1 + |x|2
n−1

) ,

V
δ,ρ,β

+
β

T
− ψ(x)

)
≤ min

(
∂tV +H(x, V ,DV ,D2V ) , V − ψ(x)

)
≤ 0.
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The analogous result can be proved for the super-solution V
δ,ρ,β

.
Our goal is now to prove the inequality

(4.6.13) V
δ,ρ,β

(t, x) ≤ V
δ,ρ,β

(t, x) + 2C1δe
−ρ(T−t)(1 + |x|2

n−1
)

for all δ, ρ, β > 0. By virtue of the definition of V
δ,ρ,β

and V
δ,ρ,β

, this implies the claim
of the theorem by letting δ, β → 0.

In order to prove (4.6.13), we consider the modified obstacle problems given by

min

(
∂tV +H(x, V,DV,D2V ) + β

T 2 − C1δe
−ρT (1 + |x|2

n−1
) ,

V + β
T − ψ

)
≤ 0 (0, T )×O

V (t, x) ≤ 1 (0, T )× ∂1O
−∂xnV (t, x) + δe−ρT ≤ 0 (0, T )× ∂2O
V (0, x) ≤ ψ(x) O

and 

min

(
∂tV +H(x, V,DV,D2V )− β

T 2 + C1δe
−ρT (1 + |x|2

n−1
) ,

V − β
T − ψ

)
≥ 0 (0, T )×O

V (t, x) ≥ 1 (0, T )× ∂1O
−∂xnV (t, x)− δe−ρT ≥ 0 (0, T )× ∂2O
V (0, x) ≥ ψ(x) O

and consider the function

Φ(t, x) := V
δ,ρ,β

(t, x)− V
δ,ρ,β

(t, x)−2C1δe
−ρ(T−t)(1 + |x|2

n−1
).

Thanks to the boundedness and the semi-continuity of V
δ,ρ,β

and V
δ,ρ,β

, Φ admits a

maximum point (t̂
δ,ρ,β

, x̂
δ,ρ,β

) = (t̂, x̂). If either t̂ = 0 or x̂ ∈ ∂1O, then (4.6.13) follows

from the boundary conditions. Similarly, (4.6.13) follows immediately in case Φ(t̂, x̂) ≤ 0.
If x̂ ∈ O, inequality (4.6.13) can be proved by using classical comparison results for
obstacle problems, see [170, Theorem 7.8] (see also the discussion of Case 1 and 2 below).

It remains to consider the case x̂ ∈ ∂2O, for which we will show that it cannot occur
if t̂ > 0, x̂ 6∈ ∂1O and Φ(t̂, x̂) > 0 and if ρ > 0 is sufficiently large (observe that it is
enough to establish (4.6.13) for all sufficiently large ρ because this will imply (4.6.13) for
all ρ > 0). Thanks to the property (4.6.11) of our domain, the existence of a family of
C2 test functions {wε}ε>0 as in [93, Theorem 4.1] can be proved (see also Lemma 3.10.2,
Chapter 3). Among the other properties, {wε}ε>0 satisfies:

wε(x, x) ≤ ε(4.6.14)

wε(x, y) ≥ C |x− y|
2

ε
(4.6.15)

− ∂xnwε(x, y) ≥ −C |x− y|
2

ε
if x ∈ ∂2O ∩B(x̂, η), y ∈ B(x̂, η)(4.6.16)

− ∂ynwε(x, y) ≥ 0 if y ∈ ∂2O ∩B(x̂, η), x ∈ B(x̂, η)(4.6.17)

for ε > 0 and some η > 0 small enough.
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Applying the doubling variables procedure we define

Φε(t, x, y) :=V
δ,ρ,β

(t, x)− V
δ,ρ,β

(t, y)− C1δe
−ρ(T−t)(1 + |x|2

n−1
)

− C1δe
−ρ(T−t)(1 + |y|2

n−1
)− wε(x, y)− |x− x̂|4 − |t− t̂|2

and we denote by (tε, xε, yε) its maximum point. By the usual techniques, thanks to the
properties (4.6.14) and (4.6.15), it is possible to prove that for ε going to 0

xε, yε → x̂, tε → t̂ and
|xε − yε|2

ε
→ 0.

It follows that for ε small enough we can assume that xε, yε /∈ ∂1O and tε > 0. Taking
ε small enough we can also say that xε, yε ∈ B(x̂, η) and then we can make use of
properties (4.6.16) and (4.6.17). In particular if xε ∈ ∂2O, taking ε small enough, we
have

− ∂xn
(
wε(xε, yε) + δe−ρ(T−tε)(1 + |xε|2n−1

) + |xε − x̂|4
)

≥ −C |xε − yε|
2

ε
− 4|xε − x̂|2|xεn − x̂n | > −δe−ρT .

On the other hand if yε ∈ ∂2O

−∂yn
(
− wε(xε, yε)− C1δe

−ρ(T−tε)(1 + |yε|2n−1
)
)
≤ 0 < δe−ρT .

This means that for sufficiently small values of ε, we can neglect the derivative boundary
conditions in xε, yε and only consider

min

(
∂tV δ,ρ,β

+H(xε, V δ,ρ,β
, DV

δ,ρ,β
, D2V

δ,ρ,β
) +

β

T 2
− C1δe

−ρT (1 + |xε|2n−1
) ,

V
δ,ρ,β

+
β

T
− ψ

)
≤ 0

min

(
∂tV δ,ρ,β

+H(yε, V δ,ρ,β
, DV

δ,ρ,β
, D2V

δ,ρ,β
)− β

T 2
+ C1δe

−ρT (1 + |yε|2n−1
) ,

V
δ,ρ,β
− β

T
− ψ

)
≥ 0

in the viscosity sense.
- Case 1: let us assume that

V
δ,ρ,β

(tε, xε) +
β

T
− ψ(xε) ≤ 0.

In this case we would get (since V
δ,ρ,β

(tε, yε)− β
T − ψ(yε) ≥ 0 always holds)

V
δ,ρ,β

(tε, xε)− V δ,ρ,β
(tε, yε) +

2β

T
+ ψ(yε)− ψ(xε) ≤ 0.

For sufficiently small ε > 0, from Φ(t̂, x̂) > 0 we know that Φε(tε, xε, yε) > 0 and this
implies V

δ,ρ,β
(tε, xε)− V δ,ρ,β

(tε, yε) > 0, leading to a contradiction for ε going to 0.
- Case 2: let us assume that

∂tV δ,ρ,β
+H(x, V

δ,ρ,β
, DV

δ,ρ,β
, D2V

δ,ρ,β
) +

β

T 2
− C1δe

−ρT (1 + |xε|2n−1
) ≤ 0.
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It follows that

∂tV δ,ρ,β
(tε, xε)− ∂tV δ,ρ,β

(tε, yε)− C1δe
−ρT (1 + |xε|2n−1

+ |yε|2n−1
)

+H(xε, V δ,ρ,β
, DV

δ,ρ,β
, D2V

δ,ρ,β
)−H(yε, V δ,ρ,β

, DV
δ,ρ,β

, D2V
δ,ρ,β

) ≤ −2β

T 2
.

Using the properties of the Hamiltonian H and of the test function wε, we can find a
constant C2 such that at the limit for ε→ 0 one has

−2β

T 2
≥ 2ρδe−ρ(T−t̂)(1 + |x̂|2

n−1
)− C2δe

−ρ(T−t̂)(1 + 2|x̂|2
n−1

)− C1δe
−ρT (1 + 2|x̂|2

n−1
)

≥ δe−ρ(T−t̂)(1 + |x̂|2
n−1

)(ρ− C2 − C1)

and a contradiction is obtained as soon as ρ ≥ (C1 + C2 + 1).
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Chapter 5

New approach for state
constrained stochastic optimal
control problems

Publications of this chapter

O. Bokanowski, A. Picarelli and H. Zidani, State constrained stochastic optimal control
problems via reachability approach, preprint.

O. Bokanowski, A. Picarelli, State constrained stochastic optimal control problems via
reachability approach, 2 pages extended abstract, Proceedings of the 21th MTNS con-
ference, Gröningen, The Netherlands, 7-11 July 2014.

5.1 Introduction

This chapter deals with stochastic optimal control problems in presence of state con-
straints. Let us denote by Xu

t,x(·), as usual, the strong solution associated with a certain
control u ∈ U of a controlled SDE. Let T > 0 be fixed. We aim to characterize and
compute the value function v defined by the following optimal control problem

v(t, x) := inf
u∈U

{
E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds

]
:(5.1.1)

Xu
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

}
.

In the unconstrained case, K = Rd, by using the dynamic programming approach the
function v can be characterized as the unique viscosity solution of a second order HJB
equation (classical references are [132, 133, 99], see also Chapter 2 and the references
therein). However it is evident that many practical applications are concerned with
the case K ( Rd where, for instance, K takes into account the presence of an obstacle,
economical/physical constraints etc.
In presence of state constraints the characterization of v as a viscosity solution of an
HJB equation becomes more complicated and it is essentially due to its loss of regularity
on the boundary. A rich literature has been developed for dealing with state constrained
optimal control problems and the associated HJB equation: we can refer to [160, 161,
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101, 112, 77, 136] for the deterministic case and to [117, 131, 114, 60] for the stochastic
case. In all this literature some further conditions are established in order to supply to
the loss of information on the boundary.

The aim of this chapter is to provide an alternative way for characterizing and com-
pute, in a very general setting, the value function associated with a state constrained
optimal control problem, trying to avoid the issues mentioned above. The approach we
propose essentially relies on two ideas: the first one is to re-write problem (5.1.1) as a
state constrained stochastic target problem and the second one is to solve this problem
by a level set approach by using an exact penalization technique for managing the state
constraints.
In the deterministic case (σ ≡ 0) the same approach has been applied with success in
[2]. The results proposed in [2] are based on the following characterization of the value
function v

v(t, x) = inf

{
z ∈ R : (x, z) ∈ Epigraph(v(t, ·))

}
= inf

{
z ∈ R : ∃u ∈ U s.t. z ≥ ψ(Xu

t,x(T )), Xu
t,x(s) ∈ K,∀s ∈ [t, T ]

}
.

(see also [78, 79, 16, 12]). Here ` ≡ 0 just to make it as clear as possible. The equality
above shows how any optimal control problem can be seen as a state constrained reach-
ability problem where the target set is represented by the epigraph of the cost function
ψ.
In the stochastic setting the same techniques do not apply directly. In order to provide
the link between our optimal control problem and the reachability one, we will use the
result by Bouchard and Dang contained in [58]. Adapting the arguments of this paper
to the constrained case, the following characterization of the function v is then obtained

v(t, x) = inf

{
z ∈ R : ∃(u, α) ∈ U ×A s.t.(5.1.2) (

Zαt,z(T ) ≥ ψ(Xu
t,x(T )), Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

}
where A is the set of square-integrable predictable processes with values in Rp and, if
` ≡ 0, Zαt,z belongs to a suitable set of martingales whose existence is guaranteed by the
Ito’s representation theorem. The right side of (5.1.2) is a stochastic target problem as
defined in [163] with the addition of state constraints.
Analogously to what we did in Chapter 3, we propose here to solve the target problem
in (5.1.2) by a level set approach, that has the advantage to lead to a computation of the
function v, managing the eventual state constraints by an exact penalization technique
without any further controllability assumption.

The chapter is organized as follows: we introduce the problem and the main assump-
tions in Section 5.2. In Section 5.3 we provide the link between the optimal control
problem (5.1.1) and a suitable stochastic target problem. Section 5.4 is devoted to
the solution of the reachability problem by the level set method. This will lead to a
characterization of the reachable set by a generalized HJB equation in Section 5.5. A
comparison principle for the associated boundary value problem is proved in Section 5.6.
In section 5.7 we consider the uncontrolled case deriving a PDE characterization for the
associated cost. We discuss the application of our method to an example coming from
the electricity market in Section 5.8. In the appendix, Section 5.9, we prove an existence
result necessary for the development of our arguments.

96



Chapter 5 Setting

5.2 Setting

Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0, P-augmentation of the
filtration generated by a p-dimensional Brownian motion B(·) (p ≥ 1).
Given T > 0 and 0 ≤ t ≤ T , the following system of controlled SDE’s in Rd is considered

(5.2.1)

{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dB(s) s ∈ [t, T ]
X(t) = x,

where u ∈ U set of progressively measurable processes with values in U ⊂ Rm (m ≥ 1).
Even if not specified at each time, along the whole chapter we will work under the
assumption (HU ) of compactness of the set U . For the coefficients b and σ of the
equation we will assume (Hb) and (Hσ) be satisfied.
Let us consider two functions ψ : Rd → R and ` : [0, T ] × Rd × U → R, namely the
terminal and running cost, such that:

(i) ψ, ` are continuous functions;

(ii) ψ, ` ≥ 0

(iii) ∃Lψ, L` ≥ 0 such that ∀x, y ∈ Rd, t ∈ [0, T ], u ∈ U :

|ψ(x)− ψ(y)| ≤ Lψ|x− y|
|`(t, x, u)− `(t, y, u)| ≤ L`|x− y|;

(H
ψ,`

)

Remark 5.2.1. The assumption of non negativity of ψ and ` is not restrictive. It is in
fact sufficient that ψ, ` ≥ −M for some M ≥ 0 and, by just adding a positive constant,
we can recover assumption (H

ψ,`
).

Let K ⊆ Rd be a given set of state constraints, such that

K ⊆ Rd is a nonempty and closed set.(HK)

In this chapter we deal with optimal control problems for a cost in the following
form:

(5.2.2) J(t, x, u) := E
[
ψ
(
Xu
t,x(T )

)
+

∫ T

t
`(s,Xu

t,x(s), u(s))ds

]
asking that the state Xu

t,x satisfies almost surely (a.s.) some state constraints

Xu
t,x(s) ∈ K, ∀s ∈ [t, T ].

In other words we aim to solve the following optimal control problem

v(t, x) := inf
u∈U

{
J(t, x, u) : Xu

t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

}
(5.2.3)

(observe that the non negativity of ψ and ` implies J(t, x, u) ≥ 0, for all (t, x, u) ∈
[0, T ]× Rd × U).

It is well known that in the unconstrained case (K = Rd), it is possible to characterize
v, via a dynamic programming approach, as the unique continuous viscosity solution of
a second order HJB equation. We can refer for instance to [132, 133, 99] and [63] (see
also the references given in Chapter 2).
When state constraints are taken into account, that is K ⊂ Rd, this characterization
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becomes more complicated and a rich literature dealing with the partial differential
equation associated to (5.2.3) is now available. The main problems that arise dealing
with state constrained optimal control problems are due to the loss of continuity of the
value function v on the boundary ∂K. In absence of further hypotheses, v can only be
characterized as a discontinuous viscosity solution of a state constrained HJB equation

F (t, x, ∂tv,Dv,D
2v) = 0 t ∈ [0, T ), x ∈ int(K)

F (t, x, ∂tv,Dv,D
2v) ≥ 0 t ∈ [0, T ), x ∈ ∂K

v(T, x) = ψ(x) x ∈ K.

with

F (t, x, r, q,Q) := −r + sup
u∈U

{
− q · b(t, x, u)− 1

2
Tr[σσT (t, x, u)Q]− `(t, x, u)

}
and uniqueness cannot be proved. In order to overcome this difficulty several authors
introduced in the years some assumptions in order to guarantee the continuity of the
value function v. The first one that appeared in literature, in the context of deterministic
control systems, is the so-called inward pointing condition, originally stated by Soner in
[160] and [161]. Other references for first order equations are [112, 167, 166, 101, 100].

In the stochastic setting, σ 6≡ 0, state constrained problems where introduced in
[131]. In this work the diffusion is the identity matrix, so the presence of state constraints
requires to consider unbounded controls, so that the trajectories with the action of the
drift can still be maintained inside the desired domain. The result in that case is an
HJB equation with singular boundary conditions. In our framework, the requirement
that some state constraint is satisfied almost surely is strictly connected with some
degeneracy property of the diffusion term. Important contributions in this case come
from [117, 27, 35, 114] and, more recently, from [62]. In all these references it turns out
the necessity of imposing on the boundary ∂K some conditions on the coefficients b and
σ (together with some other more or less restrictive degeneracy assumptions on σ). We
also point out that, in order to avoid that the value function v takes value +∞, it is
necessary at least the viability of the set K. An example of the type of condition that
guarantee such a property is given in Chapter 2 Section 2.5.
Our purpose in this chapter is to provide an alternative way for dealing with state
constrained optimal control problems as (5.2.3), leading to the computation of v even
in the case when this controllability assumptions are not necessarily satisfied. This
approach, as we are going to detail in the next section, is strongly based on the existing
equivalence between optimal control problems and reachability.

5.3 The associated reachability problem

The first step in our approach is to provide an equivalence between the optimal control
problem (5.2.3) and a suitable target problem.
If σ ≡ 0, i.e. a deterministic setting is considered, it is now well-known that a sort
of duality subsists between any optimal control problem and a reachability one (see
[12, 16, 79] and [2]). It is fact not difficult to prove that, under our assumptions,

v(t, x) = inf

{
z ≥ 0 : ∃u ∈ U s.t.(5.3.1)

(Xu
t,x(T ), Zut,x,z(T )) ∈ T and Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

}
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where
T :=

{
(x, z) ∈ Rd+1 : z ≥ ψ(x)

}
≡ Epigraph(ψ)

and

Zut,z(·) := z −
∫ ·
t
`(s,Xu

t,x(s), u(s))ds.

We point out that this kind of formulation for optimal control problems had been used
in [16, 12, 78, 79] for computing the value function v, or better its epigraph, by using
viability tools (see [21, 15]).
Given a generic volatility σ 6≡ 0, a relation analogous to (5.3.1) cannot be directly
obtained and some additional steps are necessary. In particular in order to obtain the
desired result we need to apply the arguments presented, for the unconstrained case, in
[58].

We start by proving the following simple lemma:

Lemma 5.3.1. Let assumptions (Hb),(Hσ) and (H
ψ,`

) be satisfied. Then

v(t, x) = inf

{
z ≥ 0 : ∃u ∈ U such that(5.3.2)

J(t, x, u) ≤ z and Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
Proof. If for any u ∈ U the state constraints is not almost surely satisfied there is nothing
to prove. So let us assume that for any (t, x) there exists at least one control u ∈ U such
that Xu

t,x(s) ∈ K,∀s ∈ [t, T ] almost surely.
By the definition of the value function v one has

v(t, x) ≤ J(t, x, u), ∀u ∈ U : Xu
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s..

It follows that for any z ≥ 0 for which there exists û ∈ U such that

z ≥ J(t, x, û) and X û
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

one has
v(t, x) ≤ z,

that is the “≤” inequality in (5.3.2) holds true.
In order to obtain the reverse inequality it is sufficient to observe that for any ν ∈ U
such that Xν

t,x(s) ∈ K,∀s ∈ [t, T ] one has

J(t, x, ν) ∈
{
z ≥ 0 : ∃u ∈ U such that

J(t, x, u) ≤ z and Xu
t,x(s) ∈ K,∀s ∈ [t, T ] a.s.

}
.

Therefore

J(t, x, ν) ≥ inf

{
z ≥ 0 : ∃u ∈ U such that

J(t, x, u) ≤ z and Xu
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

}
and the result follows by the arbitrariness of ν.
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The first important result of this section is contained in the theorem below. It
concerns the link between the right side of (5.3.2), that is linked with what in literature
is called a stochastic target problem with controlled expected loss (see the definition given
in [61]), and a suitable stochastic target problem, where the target is asked to be reached
almost surely. The proof, that we report here for completeness, is an adaptation to our
case of the arguments presented in [61] and [58]. The idea at the basis of the result is
that the problem with controlled-loss is equivalent to the corresponding stochastic target
problem up to a martingale. This observation will result in an augmentation of the state
and control space by adding a martingale component to the original dynamics.

Proposition 5.3.2. Let assumptions (Hb),(Hσ) and (H
ψ,`

) be satisfied. Then

v(t, x) = inf

{
z ≥ 0 : ∃(u, α) ∈ U ×A such that(

Zα,ut,x,z(T ) ≥ ψ(Xu
t,x(T )) and Xu

t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

}
where A denotes the set square-integrable Rp-valued predictable processes and Zα,ut,x,z(·) is
the one-dimensional process defined by

Zα,ut,x,z(·) = z −
∫ ·
t
`(s,Xu

t,x(s), u(s))ds+

∫ ·
t
αTs dB(s).(5.3.3)

Proof. We will prove that for any z ≥ 0 the following equivalence holds:

∃u ∈ U : E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds

]
≤ z

and Xu
t,x(s) ∈ K, ∀s ∈ [t, T ] a.s.

⇐⇒ ∃(u, α) ∈ U ×A :

(
Zα,ut,x,z(T ) ≥ ψ(Xu

t,x(T )) and Xu
t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

where Zα,ut,x,z is the process defined by (5.3.3).
The left implication is trivial and it just follows by taking the expectation in the right
hand term and recalling that if α ∈ A,

∫ ·
t α

T (s)dB(s) is a martingale.

Furthermore, under our assumptions, ψ(Xu
t,x(T ))+

∫ T
t `(s,Xu

t,x(s), u(s))ds ∈ L2(Ω,FT ;R)
for any u ∈ U , where L2(Ω,FT ;R) denotes the set of the R-valued FT -measurable random
variables η such that E[|η|2] < ∞. As a consequence the Ito’s representation theorem
applies (see [172, Theorem 5.7, Chapter I] for instance), that is there exists a process
α̂ ∈ A such that

z ≥ J(t, x, u) = ψ(Xu
t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds−
∫ T

t
α̂Ts dB(s).

Hence, defining

Zα̂,ut,x,z(·) := z −
∫ ·
t
`(s,Xu

t,x(s), u(s))ds+

∫ ·
t
α̂Ts dB(s),

the other implication is obtained and the statement of the theorem follows by Lemma
5.3.1.
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Remark 5.3.3. It can be useful to remark that the set A of controls that appears in
Proposition 5.3.2 can be restricted to the set of squared integrable Rp-valued process
uniformly bounded in the L2

F-norm.
In fact since α is defined by the Ito’s representation theorem, one has:∫ T

t
αT (s)dBs = ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds+

−E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds
]

for any t ∈ [0, T ], x ∈ Rd. Thanks to the Ito’s isometry and the linear growth of ψ and
` (consequence of (H

ψ,`
)) one has

‖α‖2L2
F

=E
[ ∫ T

t
|αs|2ds

]
= E

[∣∣ ∫ T

t
αT (s)dB(s)

∣∣2]
=E
[ ∣∣∣∣ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds

− E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s))ds
]∣∣∣∣2 ]

≤C1E
[(

1 + |Xu
t,x(T )|2 +

∫ T

t
|Xu

t,x(s)|2ds
)]

where C1 is a constant depending on Lψ, L` and T . We recall that under assumption
(Hb) and (Hσ) there exists a constant C2 such that

E
[

sup
t≤s≤T

|Xu
t,x(s)|2

]
≤ C2(1 + |x|2)

(see Proposition 2.1.1, Chapter 2), then a bound on the L2
F-norm of α of the form

‖α‖L2
F
≤ C(1 + |x|)

can be derived.

In order to simplify the notation, in some case we will directly consider the process

Y u,α
t,y (·) ≡ (Xu

t,x(·), Zα,ut,x,z(·))

solution of the following SDE in the augmented state space Rd+1:

(5.3.4)

{
dY (s) = b̃(s,X(s), u(s))ds+ σ̃(s,X(s), u(s), α(s))dB(s) s ∈ [t, T ]
Y (t) = y ≡ (x, z),

with

b̃(s,X, u) :=

(
b(s,X, u)
−`(s,X, u)

)
, σ̃(s,X, u, α) :=

(
σ(s,X, u)
αT

)
.

Let T ⊆ Rd+1, the target set, be defined by

T :=

{
y ≡ (x, z) ∈ Rd+1 : z ≥ ψ(x)

}
≡ Epigraph(ψ).

101



New approach for state constrained stochastic optimal control problems Chapter 5

The constrained condition for the variable Y (·) becomes:

Y u,α
t,y (s) ∈ K × R,∀s ∈ [t, T ] a.s. .

By Proposition 5.3.2 follows immediately that, defined the backward reachable set

RT ,Kt :=

{
y ∈ Rd+1 : ∃(u, α) ∈ U ×A such that(5.3.5)

Y u,α
t,y (T ) ∈ T and Y u,α

t,y (s) ∈ K × R,∀s ∈ [t, T ] a.s.

}
,

one has

v(t, x) = inf

{
z ≥ 0 : (x, z) ∈ RT ,Kt

}
.(5.3.6)

The immediate consequence of the equality above is that the computation of the back-
ward reachable set RT ,Kt can be the starting point for the characterization of v. We
already provided in in Chapter 3, Section 3.2, the main references (as [163, 162, 56]) for
the study of stochastic target problems in the unconstrained case. The constrained case
has been considered in [59]. In these works a characterization of the solution in terms of
discontinuous viscosity solution of a non-linear second order partial differential equation
(a particular HJB equation) is proved. The presence of state constraints complicates the
analysis and compatibility assumptions between the dynamics and the set K have still
to be required. One of our main interest is also to provide a way for the computation of
v in a very general setting and this aspect seems not yet be taken into account in the
existing literature on stochastic target problems.
For this reason, in analogy with what we did in Chapter 3, we propose here to solve the
target problem by a level set approach.

5.4 The level set approach

Re-write the optimal control problem as a reachability problem has the main advantage
that the state constraints can be managed without requiring any further assumption
on the system. It is due to the fact that state constrained reachability problems, as
(5.3.5), can be solved by using a level set method. This approach is based on the idea
of Osher and Sethian [147] (see also the references given in Chapter 3, Section 3.3) of
characterizing a set, the backward reachable set RT ,Kt for us, as a level set of suitable
continuous function. Adapting to our setting the ideas introduced in [122] and [47]
for the deterministic case, it will be proved in this section that the set RT ,Kt can be
seen as a level set of the value function associated to a suitable unconstrained auxiliary
optimal control problem. The arguments we propose here are close to those presented
in Chapter 3. There are mainly two differences: the first one is the necessity to take
into account the unbounded controls α and the second one is that we will privilege the
use an integral penalization of the state constraints. As shown in Chapter 3, the fact of
considering a “maximum” penalization in the stochastic case, makes necessary to add
an auxiliary variable for managing the past history of the running maximum. In the
context of this chapter, adding the variable z, we already augmented the dimension of
the problem and, for this reason, it seems better to us to avoid a further increase of the
dimension. Moreover, we saw that dealing with maximum costs makes the theoretical
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analysis more complicated so, to include unbounded controls in this framework could
further complicate the study. Let us consider a function gK such that:

gK : Rd → R is a Lipschitz continuous fuction,(HgK
)

gK(x) ≥ 0 and gK(x) = 0⇔ x ∈ K.

Remark 5.4.1. The requirements on the function gK are the same of Chapter 3, Section
3.3. So if K is a nonempty and closed set it is sufficient to take gK(x) = d+

K (x).

Let us also introduce the function g
ψ

: Rd+1 → R defined by

g
ψ

(x, z) := max
(
ψ(x)− z, 0

)
.

We consider the following unconstrained optimal control problem

w(t, x, z) := inf
(u,α)∈U×A

E
[
g
ψ

(Xu
t,x(T ), Zα,ut,x,z(T )) +

∫ T

t
gK(Xu

t,x(s))ds

]
(5.4.1)

The following assumption will be also considered:

for any (t, x, z) ∈ [0, T ]× Rd × R there exists an optimal pair(H0)

of controls (ū, ᾱ) ∈ U ×A for the optimal control problem (5.4.1).

Remark 5.4.2. When the set of control values is compact, the condition

(b, σσT , `)(t, x, U) is convex

is sufficient to guarantee, in the case of a weak formulation for problems of the form
(5.2.3) and in absence of state constraints, the existence of an optimal control (see Section
2.2 and the references therein). In [135] and [107] this results is extended to the case of
unbounded controls. In these papers some coercivity conditions replace the compactness
assumption. At the moment we don’t have knowledge of existence results that apply to
our optimal control problem (5.4.1). Until now, using the arguments in [172], we were
only able to rigorously prove an existence result if b, ` and σ are linear functions with
respect to the space and the control and under some convexity assumptions on gK and
ψ. The proof is given in the Section 5.9 at the end of the chapter.

Theorem 5.4.3. Let us assume (Hb),(Hσ),(H
ψ,`

) and (H0) be satisfied. Then

RT ,Kt =

{
(x, z) ∈ Rd+1 : w(t, x, z) = 0

}
and

v(t, x) = inf

{
z ≥ 0 : w(t, x, z) = 0

}
.

Proof. The latter statement clearly follows by the first one and by (5.3.6).
If (x, z) ∈ RT ,Kt , by the definition of the backward reachable set, there exists a couple
(ū, ᾱ) ∈ U ×A such that(

g
ψ

(X ū
t,x(T ), Zᾱ,ūt,x,z(T )) = 0 and gK(X ū

t,x(s)) = 0, ∀s ∈ [t, T ]

)
a.s..
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It means that w(t, x, z) = 0, therefore “⊆” inclusion is proved.
Let us now assume that w(t, x, z) = 0. Thanks to assumption (H0), there exists (ū, ᾱ) ∈
U ×A such that

E
[
g
ψ

(X ū
t,x(T ), Zᾱ,ūt,x,z(T )) +

∫ T

t
gK(X ū

t,x(s))ds

]
= 0.

Recalling that g
ψ

and gK are positive functions, it implies

g
ψ

(X ū
t,x(T ), Zᾱ,ūt,z (T )) +

∫ T

t
gK(X ū

t,x(s))ds = 0 a.s..

Hence, (
(X ū

t,x(T ), Zᾱ,ūt,x,z(T )) ∈ T and X ū
t,x(s) ∈ K, ∀s ∈ [t, T ]

)
a.s.

and the result is proved.

5.5 The HJB equation

In this section we aim to characterize the auxiliary value function w as the unique
solution, in the viscosity sense, of a suitable partial differential equation. As we will see,
the main difficulties come from the unboundedness of the control α.
Let us start by proving some regularity properties of w:

Proposition 5.5.1. Let assumptions (Hb),(Hσ), (H
ψ,`

) and (HgK
) be satisfied. Then w

is continuous with respect to t and Lipschitz continuous with respect to (x, z). Moreover
it satisfies the following growth condition on [0, T ]× Rd × [0,+∞):

0 ≤ w(t, x, z) ≤ C(1 + |x|).

Proof. Let us start by proving the Lipschitz continuity in the space variables.
One has

|w(t, x, z)− w(t, x′, z′)|

≤ sup
(u,α)∈U×A

{
E
[∣∣g

ψ
(Xu

t,x(T ), Zu,αt,x,z(T ))− g
ψ

(Xu
t,x′(T ), Zu,αt,x′,z′(T ))

∣∣]+

+E
[ ∫ T

t

∣∣gK(Xu
t,x(s))− gK(Xu

t,x′(s))
∣∣ds]}

≤ C sup
(u,α)∈U×A

{
E
[∣∣Xu

t,x(T )−Xu
t,x′(T )

∣∣+
∣∣Zu,αt,x,z(T )− Zu,αt,x′,z′(T )

∣∣+

+E
[ ∫ T

t

∣∣Xu
t,x(s)−Xu

t,x′(s)
∣∣ds]}

where the constant C ≥ 0 depends on the Lipschitz constants of ψ and gK . Recalling
that under assumption (Hb) and (Hσ) the estimates of Proposition 2.1.1 hold for the
diffusion process Xu

t,x(·) and observing that

∣∣Zu,αt,x,z(T )− Zu,αt,x′,z′(T )
∣∣ ≤ |z − z′|+ ∫ T

t
|`(s,Xu

t,x(s), u(s))− `(s,Xu
t,x′(s), u(s))|ds,
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thanks to the Lipschitz continuity of ` the result is obtained.
Let us now prove the continuity in time. Let be t ≤ t′ ≤ T . By the properties of the
infimum one has that for any ε > 0 there exists a pair (uε, αε) ∈ U ×A such that

w(t, x, z)− w(t′, x, z) ≤ E
[∣∣g

ψ
(Xuε

t,x(T ), Zuε,αεt,x,z (T ))− g
ψ

(Xuε
t′,x(T ), Zuε,αεt′,x,z (T ))

∣∣]
+ E

[∣∣ ∫ T

t
gK(Xuε

t,x(s))ds−
∫ T

t′
gK(Xuε

t′,x(s))ds
∣∣]+ ε.

Then thanks again to the Lipschitz continuity of g
ψ

and gK one has

w(t′, x, z)− w(t, x, z)

< E
[∣∣g

ψ
(Xuε

t,x(T ), Zuε,αεt,x,z (T ))− g
ψ

(Xuε
t′,x(T ), Zuε,αεt′,x,z (T ))

∣∣]+

+E
[∣∣ ∫ T

t
gK(Xuε

t,x(s))ds−
∫ T

t′
gK(Xuε

t′,x(s))ds
∣∣]+ ε

≤ E
[∣∣g

ψ
(Xuε

t,x(T ), Zuε,αεt,x,z (T ))− g
ψ

(Xuε
t′,x(T ), Zuε,αεt′,x,z (T ))

∣∣]+

+E
[ ∫ T

t′
|gK(Xuε

t,x(s))− gK(Xuε
t′,x(s)|ds+

∫ t′

t
|gK(Xuε

t,x(s))|ds
]

+ ε

≤ CE
[
|Xuε

t,x(T )−Xuε
t′,x(T )|Mg(t

′ − t) +

+

∫ T

t′
|Xuε

t,x(s)−Xuε
t′,x(s)

∣∣ds+
∣∣Zuε,αεt,x,z (T )− Zuε,αεt′,x,z (T )

∣∣]+ ε.

For the terms depending only on Xuε
·,x(·), thanks to the estimates of Proposition 2.1.1 we

can obtain a 1
2 -Hölder regularity in time. So let us only consider the variable Zuε,αε·,x,z (·).

By its definition one has∣∣Zuε,αεt,x,z (T )− Zuε,αεt′,x,z (T )
∣∣

≤
∣∣ ∫ T

t
`(s,Xε

t,x(s), uε(s))ds−
∫ T

t′
`(s,Xuε

t,x(s), uε(s))ds
∣∣+
∣∣ ∫ t′

t
(αε)

T
s dB(s)

∣∣.
Again for the first term in the right hand side of the inequality we can use Proposition
2.1.1 and obtaining 1

2 -Hölder continuity. On the other hand the continuity of the term
depending on αε comes from the fact that

lim
t′→t

∣∣ ∫ t′

t
(αε)

T
s dB(s)

∣∣ = 0

since αε ∈ L2
F(0, T ;Rp). It follows that

lim sup
t′→t

(
w(t′, x, z)− w(t, x, z)

)
≤ 0

locally uniformly. By the same arguments

lim inf
t′→t

(
w(t′, x, z)− w(t, x, z)

)
≥ 0,
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so the continuity is proved.
Concerning the growth condition, by the definition of w we have

w(t, x, z) ≤ inf
(u,α)∈U×{0}

E
[

max
(
ψ(Xu

t,x(T ))− Z0,u
t,x,z(T ), 0

)
(5.5.1)

+

∫ T

t
gK(Xu

t,x(s))ds

]
.

In particular, if z ≥ 0, thanks to the positivity of ` and ψ it leads to

w(t, x, z) ≤ inf
u∈U

E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s)) + gK(Xu
t,x(s))ds

]
and the desired result is obtained thanks to the linear growth of ψ, ` and gK and classical
estimates for the process Xu

t,x(·) (see [172, Theorem 6.3, Chapter I], for instance).

Another information that will be useful later concerns the value assumed by w for
z ≤ 0.

Lemma 5.5.2. Under assumptions (Hb),(Hσ),(H
ψ,`

) and (HgK
), for any t ∈ [0, T ], x ∈

Rd, z ≤ 0 one has
w(t, x, z) = w0(t, x)− z,

where

w0(t, x) := inf
u∈U

E
[
ψ(Xu

t,x(T )) +

∫ T

t
`(s,Xu

t,x(s), u(s)) + gK(Xu
t,x(s))ds

]
.

Proof. We can start observing that, thanks to the definition of the function g
ψ

, for any

(t, x, z) ∈ [0, T ]× Rd × R

w(t, x, z) = inf
(u,α)∈U×A

E
[

max
(
ψ(Xu

t,x(T ))− Zα,ut,x,z(T ), 0
)

+

∫ T

t
gK(Xu

t,x(s))ds

]
≥ inf

(u,α)∈U×A
E
[
ψ(Xu

t,x(T ))− z +

∫ T

t
αT (s)dBs

+

∫ T

t
`(s,Xu

t,x(s), u(s)) + gK(Xu
t,x(s))ds

]
= w0(t, x)− z,

using that
∫ T
t αT (s)dBs is a martingale. Hence the “≥” inequality is satisfied for any

z ∈ R.
On the other hand we can use (5.5.1). If z ≤ 0, thanks to the positivity of ` and ψ we
have

max
(
ψ(Xu

t,x(T ))− Z0,u
t,x,z(T ), 0

)
= max

(
ψ(Xu

t,x(T ))− z +

∫ T

t
`(s,Xu

t,x(s), u(s)), 0)

= ψ(Xu
t,x(T ))− z +

∫ T

t
`(s,Xu

t,x(s), u(s))

and we get
w(t, x, z) ≤ w0(t, x)− z.
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By the standard dynamic programming approach the candidate Hamiltonian associ-
ated to the optimal control problem (5.4.1) is

H(t, x, q,Q) := sup
(u,α)∈U×Rp

{
− b̃(t, x, u)q − 1

2
Tr[σ̃σ̃T (t, x, u, α)Q]

}
− gK(x)

where q ∈ Rd+1 and Q ∈ Sd+1. Recalling the definition of σ̃ we have

σ̃σ̃T (t, x, u, α) =

(
σσT (t, x, u) σ(t, x, u)α
αTσT (t, x, u) αTα

)
.

By the unboundedness of the control α ∈ Rp follows the possible unboundedness of the
Hamiltonian H and this may pose some problems for the definition of the concept of
solution for the associated HJB equation. We refer to [150] for the application of the HJ
techniques in the case of unbounded Hamiltonians.

Remark 5.5.3. In our case it is not possible to follow the approach in [150] for dealing
with the unbounded Hamiltonian. In fact by continuity arguments we cannot find a
continuous function G : [0, T ]× Rd × R× Rd+1 × Sd+1 → R such that

H(t, x, q,Q) < +∞⇔ G(t, x, q,Q) ≤ 0.

The approach we will apply is based on the ideas presented in [64] and exploited also
in [45]. In these works, thanks to an alternative formulation of the HJB equation satisfied
by w, a numerical scheme is proposed without turning to any a priori restriction on the
set of the values of α. We point out that similar “compactification” results have been
obtained in [153, 154] for deterministic control systems and in [144, 145] for stochastic
problems where the unbounded control acts only on the drift.
In what follows we denote by Λ+(A) the bigger eigenvalue of a given matrix A.

Lemma 5.5.4. For any t ∈ (0, T ), (x, z) ∈ Rd+1, q ∈ Rd+1, r ∈ R and Q ∈ Sd+1, let us
define A,C ∈ R and B ∈ Rp as follows:

a := 2(−r − b̃(t, x, u) · q − 1
2Tr[σσ

T (t, x, u)Q11]− gK(x)),

B := (B1, . . . , Bp)
T = σT (t, x, u)Q12, c := Q22

where Q11 ∈ Sd, Q22 ∈ R, Q12 = QT21 ∈ Rd×1 denotes the blocks of the symmetric matrix
Q. If Hu ∈ Sp+1 is the matrix defined by blocks by

Hu(t, x, r, q,Q) :=

(
a −BT

−B −cIp

)

=


a −B1 −B2 . . . −Bp
−B1 −c 0 . . . 0

−B2 0
. . .

. . .
...

...
...

. . .
. . . 0

−Bp 0 . . . 0 −c


the following assertions hold:

(i) −r +H(t, x, q,Q) ≤ 0⇔ sup
u∈U

(Λ+(Hu(t, x, r, q,Q))) ≤ 0;
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(ii) −r +H(t, x, q,Q) ≤ 0⇒ Q22 ≥ 0;

(iii) −r +H(t, x, q,Q) = 0⇒ sup
u∈U

(Λ+(Hu(t, x, r, q,Q))) = 0;

(iv) sup
u∈U

(Λ+(Hu(t, x, r, q,Q))) < 0⇒ −r +H(t, x, q,Q) < 0.

Proof. By the definition of σ̃ and by the fact that

Tr[σαQ21] = αTσTQT21 = αTσTQ12,

one can easily verify that the Hamiltonian H takes the following form:

H(t, x, q,Q) = sup
(u,α)
∈U×Rp

{
− b̃ · q − 1

2
Tr[σσTQ11]− αTσTQ12 −

1

2
‖α‖2Q22

}
− gK(x).

In particular it follows that

H(t, x, q,Q) = +∞ if Q22 < 0

or Q22 = 0 and σTQ12 6= 0

H(t, x, q,Q) ∈ R otherwise

and, as a consequence, (ii) holds.
Moreover the following equivalences can be obtained:

−r +H(t, x, q,Q) ≤ 0

⇔ sup
(u,α)
∈U×Rp

{
− r − b̃ · q − 1

2
Tr[σσTQ11]− gK(x)− αTσTQ12 −

1

2
αTαQ22

}
≤ 0

⇔ sup
(u,α)∈U×Rp

{
a− 2αTB − c‖α‖2

}
≤ 0

⇔ sup
(u,β)∈U×Rp+1,

β1 6=0

{
a− 2

p∑
i=1

βi+1

β1
Bi − c

p∑
i=1

β2
i+1

β2
1

}
≤ 0

⇔ sup
(u,β)∈U×Rp+1,

‖β‖=1

{
β2

1a− 2

p∑
i=1

βi+1β1Bi − c
p∑
i=1

β2
i+1

}
≤ 0

⇔ sup
u∈U

sup
β∈Rp+1

‖β‖=1

βTHu(t, x, r, q,Q)β ≤ 0

⇔ sup
u∈U

Λ+(Hu(t, x, r, q,Q)) ≤ 0

and (i) is proved. In the same way point (iii) is obtained and finally (iv) follows.

Remark 5.5.5. We point out that for any λ > 0

sign Λ+

(
a −BT

−B −cIp

)
= sign Λ+

(
a −λBT

−λB −λ2cIp

)
.
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In fact (we denote 0 ≡ (0, . . . , 0)T ∈ Rp)

Λ+

(
a −λBT

−λB −λ2cIp

)
≤ 0

⇔ sup
x∈Rp+1,x 6=0

〈
(

a −λBT

−λB −λ2cIp

)
x, x〉 ≤ 0

⇔ sup
x∈Rp+1,x 6=0

〈
(

1 0T

0 λIp

)(
a −BT

−B −cIp

)(
1 0T

0 λIp

)
x, x〉 ≤ 0

⇔ sup
x∈Rp+1,x 6=0

〈
(

1 0T

0 λIp

)(
a −BT

−B −cIp

)(
1 0T

0 λIp

)
x,

(
1 0T

0 λIp

)
x〉 ≤ 0.

Defining the vector

y =

(
1 0T

0 λIp

)
x

it is easy to verify that the last assertion is equivalent to

sup
y∈Rp+1,y 6=0

〈
(

a −BT

−B −cIp

)
y, y〉 ≤ 0.

For convenience of the reader we report below the explicit definition of Hu:

Hu(t, x, r, q,Q)

=

(
−r − (b, `)(t, x, u) · q − 1

2Tr[σσ
T (t, x, u)Q11]− gK(x) −1

2Q21σ(t, x, u)
−1

2σ
T (t, x, u)Q12 −1

2Q22Ip

)
.

Theorem 5.5.6. w is a viscosity solution of the following equation:
sup
u∈U

(
Λ+(Hu(t, x, ∂tw,Dw,D

2w))
)

= 0 [0, T )× Rd × (0,+∞)

w(t, x, 0) = w0(t, x) [0, T )× Rd
w(T, x, z) = max(ψ(x)− z, 0) Rd × [0,+∞)

(5.5.2)

Proof. The boundary condition for t = T and z = 0 are satisfied thanks to the definition
of w and Lemma 5.5.2.
Let be ϕ ∈ C1,2([0, T ]× Rd+1) such that

(w − ϕ)(t̄, x̄, z̄) = max
[0,T )×Rd+1

(w − ϕ)

for (t̄, x̄, z̄) ∈ [0, T )× Rd × (0,+∞). By the DPP one can obtain that

−∂tϕ(t̄, x̄, z̄) +H(t̄, x̄, Dϕ,D2ϕ) ≤ 0,

therefore by Lemma 5.5.4 follows

sup
u∈U

Λ+(Hu(t̄, x̄, ∂tϕ,Dϕ,D
2ϕ)) ≤ 0

and the sub-solution property is proved.

Let be ϕ ∈ C1,2([0, T ]× Rd+1) such that

(w − ϕ)(t̄, x̄, z̄) = min
[0,T )×Rd+1

(w − ϕ).
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Let us define the set

M(ϕ) :=

{
(t, x, z) : sup

u∈U

(
Λ+(Hu(t, x, ∂tϕ,Dϕ,D

2ϕ))
)
< 0

}
.

If by contradiction (t̄, x̄, z̄) ∈ M(ϕ), since M(ϕ) is an open set, there exists η > 0 such
that Sη(t̄, x̄, z̄) := [0∨ t̄− η, t̄+ η]×B((x̄, z̄), η) ⊂M(ϕ). Applying the same techniques
exploited in Lemma 3.1 in [150] it is possible to prove that

inf
∂P (Sη(t̄,x̄,z̄))

(w − ϕ) = min
Sη(t̄,x̄,z̄)

(w − ϕ)

where ∂P (Sη(t̄, x̄, z̄)) :=
(
[0∨ t̄−η, t̄+η]×∂B((x̄, z̄), η)

)
∪
(
{t̄+η}×B((x̄, z̄), η)

)
it is the

forward parabolic boundary of Sη. But since (t̄, x̄, z̄) is a strict minimizer, for η small
enough the contradiction is obtained since (t̄, x̄, z̄) /∈ ∂p(Sη(t̄, x̄, z̄)). We can conclude
that (t̄, x̄, z̄) /∈M(ϕ) and w is a viscosity super-solution of (5.5.2).

We point out that problem (5.5.2) is equivalent to
sup

u∈U,ξ∈Rp+1

‖ξ‖=1

{
ξTHu(t, x, ∂tw,Dw,D

2w)ξ

}
= 0 [0, T )× Rd × (0,+∞)

w(t, x, 0) = w0(t, x) [0, T )× Rd
w(T, x, z) = max(ψ(x)− z, 0) Rd × [0,+∞)

5.6 Comparison Principle

This section is devoted to the proof of a strong comparison principle between upper
semi-continuous (USC) viscosity sub-solution and lower semi-continuous (LSC) super-
solution of equation (5.5.2).
For this proof we follow the main lines of the proof presented in [64], extended here to
the higher dimension.
In virtue of Remark 5.5.5, choosing

λ(z) := max(1, z) > 0,

the equation considered is equivalent to the following (the dependence on (t, x, u) of b,
σ and ` is omitted for space reasons):
(5.6.1)

sup
u∈U

Λ+

(
−∂tw − b ·Dxw + ` ∂zw − 1

2Tr[σσ
TD2

xxw]− gK(x) −1
2λ(z)DT

xzw σ
−1

2λ(z)σTDxzw −1
2λ

2(z)∂zzwIn

)
= 0

Theorem 5.6.1. Let assumptions (Hb),(Hσ),(H
ψ,`

) and (HgK
) be satisfied and let w ∈

USC([0, T ]×Rd×[0,+∞)) and w ∈ LSC([0, T ]×Rd×[0,+∞)) be respectively a viscosity
sub- and super-solution of (5.6.1). Let us assume that w and w satisfy the following
growth condition

w(t, x, z) ≤ C(1 + |x|) w(t, x, z) ≥ C(1 + |x|).

Then if
w(T, x, z) ≤ max(ψ(x)− z, 0) ≤ w(T, x, z)

and
w(t, x, 0) ≤ w0(t, x) ≤ w(t, x, 0)

one has w(t, x, z) ≤ w(t, x, z) for all (t, x, z) ∈ [0, T ]× Rd × [0,+∞).
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Proof. We start proving that there exists a strict viscosity sub-solution of (5.6.1). Let
us introduce the function ζ defined by

ζ(t, z) := −(T − t)− ln(1 + z).

One has that ζ ∈ C∞([0, T ]× [0,+∞)) for all (t, z) ∈ [0, T ]× [0,+∞)

ζ(t, z) ≤ 0

and

Hu0(t, x, ∂tζ,Dζ,D
2ζ) :=

(
−∂tζ − bDxζ + ` ∂zζ − 1

2Tr[σσ
TD2

xxζ] −1
2λ(z)DT

xzζ σ
−1

2λ(z)σTDxzζ −1
2λ

2(z)∂zzζ In

)

=


−1− `(t, x, u) 1

1+z 0 . . . 0

0
... −1

2λ
2(z) 1

(1+z)2 In

0

 .

It follows immediately by the positivity of the function ` that −1− `(t, x, u)/(1 + z) ≤ −1.
Moreover using the fact that

1

4
≤ max(1, z2)

(1 + z)2
≤ 1

2

we have

(5.6.2) sup
u∈U

Λ+(Hu0(t, x, z, ∂tζ,Dζ,D
2ζ)) ≤ −1

4
.

Let wη be defined by
wη(t, x, z) := w(t, x, z) + ηζ(t, z).

We prove that for any η > 0, wη is a strict viscosity sub-solution of (5.6.1) in [0, T ]×R×
[0,+∞). The boundary conditions are of course satisfied thanks to the non positivity of
ζ and we have

wη(T, x, z) ≤ ψ(x)− z, wη(t, x, 0) ≤ w0(t, x).

Let us now consider a test function ϕ ∈ C1,2([0, T ]× Rd × [0,+∞)) such that

(wη − ϕ)(t0, x0, z0) = max(wη − ϕ)

for (t0, x0, z0) ∈ [0, T )× Rd × (0,+∞). From the definition of wη, we have(
w − (−ηζ + ϕ)

)
(t0, x0, z0) = max

(
w − (−ηζ + ϕ)

)
.

Therefore we can consider as a test function for w

ψ := −ηζ + ϕ.

By using the sub-linearity property of the operator Λ+, the following inequalities hold:

sup
u∈U

Λ+(Hu(t0, x0, ∂tϕ,Dϕ,D
2ϕ))

= sup
u∈U

Λ+
(
Hu(t0, x0, ∂tψ,Dψ,D

2ψ) + η Hu0(t0, x0, ∂tζ,Dζ,D
2ζ)
)

≤ sup
u∈U

Λ+(Hu(t0, x0, z0, ψtψ,Dψ,D
2ψ)) + η sup

u∈U
Λ+(Hu0(t0, x0, ∂tζ,Dζ,D

2ζ))

≤ −η
4
,
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where for the last inequality we have used (5.6.2) and the fact that w is a sub-solution.
Let us define

Φδ,η,ρ(t, x, z) := wη(t, x, z)− w(t, x, z)− 2δe−ρt(1 + |x|2 + z).

Let (t̂, x̂, ẑ) := (t̂
δ,η,ρ

, x̂
δ,η,ρ

, ẑ
δ,η,ρ

) be a maximum point for Φδ,η,ρ (this maximum point
exists because of the linear growth condition satisfied by wη − w).
Let us take into account the following three scenarios:

a) there exists a sequence {(δk, ηk, ρk)k≥0} such that t̂ = T ;

b) there exists a sequence {(δk, ηk, ρk)k≥0} such that ẑ = 0;

c) there is a sequence {(δk, ηk, ρk)k≥0} such that Φδk,ηk,ρk(t̂, x̂, ẑ) ≤ 0.

If case a) occurs, for any (t, x, z) one has

wηk(t, x, z)− w(t, x, z) = Φδk,ηk,ρk(t, x, z) + 2δke
−ρkt(1 + |x|2 + z)

≤ Φδk,ηk,ρk(t̂, x̂, ẑ) + 2δk(1 + |x|2 + z)

≤ w(T, x̂, ẑ)− w(T, x̂, ẑ) + 2δk(1 + |x|2 + z)

≤ 2δk(1 + |x|2 + z).

Analogously in case b) one has

wηk(t, x, z)− w(t, x, z) ≤ w(t̂, x̂, 0)− w(t̂, x̂, 0) + 2δk(1 + |x|2 + z)

≤ 2δk(1 + |x|2 + z).

In case c) we have
Φδk,ηk,ρk(t, x, z) ≤ 0

for any (t, x, z) and then again

wηk(t, x, z)− w(t, x, z) ≤ 2δk(1 + |x|2 + z).

Hence in cases a), b) and c) we get

w(t, x, z) + ηkζ(t, x, z)− w(t, x, z) ≤ 2δk(1 + |x|2 + z), ∀(t, x, z)

and in the limit δk, ηk → 0
(w − w)(t, x, z) ≤ 0

that gives the desired comparison result. For this reason in what follows we can assume
that δ and η are small enough, such that, there exists γ > 0 such that the maximum
point (t̂, x̂, ẑ) of Φ

δ,η,ρ
satisfies, for any ρ ≥ 0: t̂ < T − γ, ẑ > γ and

Φδ,η,ρ(t̂, x̂, ẑ) > 0.(5.6.3)

We aim to show a contradiction. From now on δ, η, t̂, x̂, ẑ are fixed.
The next passage is standard in order to prove comparison principles for viscosity solu-
tions and consists in the doubling of variables.
We consider

Φε(t, x, x
′, z, z′) :=

wη(t, x, z)− w(t, x′, z′)− δe−ρt(1 + |x|2 + z)− δe−ρt(1 + |x′|2 + z′)

− 1

2ε
(|x− x′|2 + |z − z′|2)− 1

2
|t− t̂|2 − 1

4
(|x− x̂|4 + |z − ẑ|4).
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Let (t̄, x̄, x̄′, z̄, z̄′) := (t̄ε , x̄ε , x̄
′
ε
, z̄ε , z̄

′
ε
) be a maximum point for Φε.

By standard arguments (see [84, Proposition 3.7] for instance) we can prove that for
ε→ 0 one has

|x̄− x̄′| → 0, |z̄ − z̄′| → 0

and

t̄→ t̂, x̄, x̄′ → x̂, z̄, z̄′ → ẑ,
|x̄− x̄′|2

ε
→ 0,

|z̄ − z̄′|2

ε
→ 0.

Let us define

f
δ,ρ

(t, x, z) := δe−ρt(1 + |x|2 + z) +
1

4
|t− t̂|2 +

1

4
(|x− x̂|4 + |z − ẑ|4),

f̂
δ,ρ

(t, x, z) := δe−ρt(1 + |x|2 + z)

ϕ(x, x′, z, z′) :=
1

2ε
(|x− x′|2 + |z − z′|2)

so that we can write

Φε(t, x, x
′, z, z′)

:=
(
wη(t, x, z)− fδ,ρ(t, x, z)

)
−
(
w(t, x′, z′) + f̂

δ,ρ
(t, x′, z′)

)
− ϕ(x, x′, z, z′).

Applying the Crandall-Ishii Lemma (see Lemma 2.4.7, Chapter 2) we can find r, r′ ∈ R
and two symmetric matrices X and X ′ such that

r + r′ = ∂tϕ(x̄, x̄′, z̄, z̄′) = 0

(r + ∂tfδ,ρ , D(x,z)
(ϕ+ f

δ,ρ
), X +D2

(x,z)
f
δ,ρ

) ∈ P1,2,+
wη(t̄, x̄, z̄)

(−r′ − ∂tf̂δ,ρ ,−D(x′,z′)(ϕ+ f̂
δ,ρ

),−X ′ −D2
(x′,z′)

f̂
δ,ρ

) ∈ P1,2,−
w(t̄, x̄′, z̄′)

and

(5.6.4) − 3

ε

(
I 0
0 I

)
≤
(
X 0
0 X ′

)
≤ 3

ε

(
I −I
−I I

)
(where P1,2,±

denote the closures of the parabolic semijets, see Definition 2.4.6, Chapter
2).
From the definition of viscosity sub- and super-solution :

sup
u∈U

Λ+(Hu(t̄, x̄, r + ∂tfδ,ρ , D(x,z)
(ϕ+ f

δ,ρ
), X +D2

(x,z)
f
δ,ρ

)) ≤ −η
4

sup
u∈U

Λ+(Hu(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−D(x′,z′)(ϕ+ f̂δ),−X ′ −D2
(x′,z′)

f̂δ)) ≥ 0.

Then using the following notation

(q1, q2)T := D
(x,z)

(ϕ+ f
δ,ρ

) Q := D2
(x,z)

f
δ,ρ

(q′1, q
′
2)T := D

(x′,z′)(ϕ+ f̂
δ,ρ

) Q′ := D2
(x′,z′)

f̂
δ,ρ

one has

sup
u∈U

Λ+(Hu(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−q
′,−X ′ −Q′))(5.6.5)

− sup
u∈U

Λ+(Hu(t̄, x̄, r + ∂tfδ,ρ , q,X +Q)) ≥ η

4
.
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We are going to estimate from above the left hand term. Let us define the matrices
A,A′ ∈ Sp+1:

A := 2

(
−r − 1

2∂tfδ,ρ − b(t̄, x̄, u)q1 + `(t̄, x̄, u)q2 − gK(x̄) 0

0 0

)
A′ := 2

(
r′ + 1

2∂tf̂δ,ρ + b(t̄, x̄′, u)q′1 − `(t̄, x̄′, u)q′2 − gK(x̄′) 0

0 0

)
.

We observe that

Hu(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−q
′,−X ′ −Q′)

= A′ +

(
1
2∂tf̂δ,ρ + Tr[σσT (t̄, x̄′, u)(X ′11 +Q′11)] λ(z̄′)(X ′12 +Q′12)Tσ(t̄, x̄′, u)

λ(z̄′)σT (t̄, x̄′, u)(X ′12 +Q′12) λ2(z̄′)(X ′22 +Q′22)Ip

)
= A′ + X̃ ′ + Q̃′

and

Hu(t̄, x̄, r + ∂tfδ,ρ , q,X +Q)

= A+

(
−1

2∂tfδ,ρ + Tr[σσT (t̄, x̄, u)(X11 +Q11)] λ(z̄)(X12 +Q12)Tσ(t̄, x̄, u)

λ(z̄)σT (t̄, x̄, u)(X12 +Q12) λ2(z̄)(X22 +Q22)Ip

)
= A− X̃ − Q̃

where we used the following definitions:

X̃ :=

(
Tr[σσT (t̄, x̄, u)X11] λ(z̄)XT

12σ(t̄, x̄, u)
λ(z̄)σT (t̄, x̄, u)X12 λ2(z̄)X22Ip

)

(X̃ ′ is the same expression for the matrix X ′ at point (t̄, x̄′, z̄′)) and

Q̃ :=

(
−1

2∂tfδ,ρ + Tr[σσT (t̄, x̄, u)Q11] λ(z̄)QT12σ(t̄, x̄, u)

λ(z̄)σT (t̄, x̄, u)Q12 λ2(z̄)Q22Ip

)
,

Q̃′ :=

(
1
2∂tf̂δ,ρ + Tr[σσT (t̄, x̄, u)Q′11] λ(z̄)(Q′12)Tσ(t̄, x̄, u)

λ(z̄)σT (t̄, x̄, u)Q′12 λ2(z̄)Q′22Ip

)
.

Therefore, using again the sub-linearity of the operator Λ+ we have

sup
u∈U

Λ+(Hu(t̄, x̄′,−r′ − ∂tf̂δ,ρ ,−p
′,−X ′ −Q′))

− sup
u∈U

Λ+(Hu(t̄, x̄, r + ∂tfδ,ρ , p,X +Q))

≤ sup
u∈U

{
Λ+(A′ + X̃ ′ + Q̃′)− Λ+(A− X̃ − Q̃)

}
≤ sup

u∈U

{
Λ+(A′ −A)︸ ︷︷ ︸

(I)

+ Λ+(X̃ + X̃ ′)︸ ︷︷ ︸
(II)

+ Λ+(Q̃+ Q̃′)︸ ︷︷ ︸
(III)

}

114



Chapter 5 Comparison Principle

-Estimation for (I):
A direct computation shows that

∂tfδ,ρ =
1

2
(t̄− t̂)− δρe−ρt̄(1 + |x̄|2 + z̄)

∂tf̂δ,ρ = −δρe−ρt̄(1 + |x̄′|2 + z̄′)

q =

(
2δe−ρt̄x̄+ (x̄− x̂)|x̄− x̂|2 + 1

ε (x̄− x̄′)
δe−ρt̄ + (z̄ − ẑ)3 + 1

ε (z̄ − z̄′)

)
q′ =

(
2δe−ρt̄x̄′ − 1

ε (x̄− x̄′)
δe−ρt̄ − 1

ε (z̄ − z̄′)

)
so

Λ+(A′ −A)

= 2 max

(
1

2
∂tfδ,ρ +

1

2
∂tf̂δ,ρ + b(t̄, x̄′, u)q′1

− `(t̄, x̄′, u)q′2 − gK(x̄′) + b(t̄, x̄, u)q1 − `(t̄, x̄, u)q2 + gK(x̄) , 0

)
≤ max

(
1

2
|t̄− t̂| − δρe−ρt̄(1 + |x̄|2 + z̄)− δρe−ρt̄(1 + |x̄′|2 + z̄′)

+ C
( |x̄− x̄′|2

ε
+
|z̄ − z̄′||x̄− x̄′|

ε
+ |x̄− x̄′|

(
1 + δe−ρt̄ + δe−ρt̄|x̄′|

)
+ (1 + |x̄|)(δe−ρt̄ + δe−ρt̄|x̄|+ δe−ρt̄|x̄′|+ |x̄− x̂|3 + |z̄ − ẑ|3

))
, 0

)
where C is a constant depending only on Lb, L`, LgK (we used also the fact that being b
and σ Lipschitz continuous, they have a linear growth). Taking the limit for ε → 0 we
have

lim sup
ε→0

Λ+(A′ −A) ≤ max

(
− δρe−ρt̂(1 + |x̂|2 + ẑ) + Cδe−ρt̂(1 + |x̂|2) , 0

)
.(5.6.6)

Choosing ρ large enough so that the first argument in the right hand side of (5.6.6) is
negative, we obtain

lim sup
ε→0

Λ+(A′ −A) ≤ 0.

-Estimation for (II):

Let us start defining the matrices Σ,Σ′ ∈ R(p+1)×(d+1):

Σ :=

(
σT (t̄, x̄, u) (0 . . . 0)T

0 . . . 0 λ(z̄)

)
Σ′ :=

(
σT (t̄, x̄′, u) (0 . . . 0)T

0 . . . 0 λ(z̄′)

)
.

Let ξ be an arbitrary vector in Rp+1. Multiplying inequality (5.6.4) by ξT (Σ Σ′) on
the left side and by (Σ Σ′)T ξ on the right side we obtain

ξT
(
Σ Σ′

)( X 0
0 X ′

)(
ΣT

Σ′T

)
ξ ≤ 3

ε
ξT
(
Σ Σ′

)( I −I
−I I

)(
ΣT

Σ′T

)
ξ.

that gives:

ξT (Σ′X ′Σ′T + ΣXΣT )ξ ≤ 3

ε
ξT (Σ− Σ′)(ΣT − Σ′T )ξ ≤ 3

ε
‖Σ− ΣT ‖2

F
‖ξ‖2
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where ‖ · ‖F denotes the Frobenius matrix norm. In particular choosing ξ of the form

ξ ≡ (0 . . . 0 β0︸︷︷︸
k-th

0 . . . 0 βk)

a straightforward calculation gives

β2
0

(
σTX11σ(t̄, x̄, u) + σTX ′11σ(t̄, x̄′, u)

)
kk

+ β2
k

(
λ2(z̄)X22 + λ2(z̄′)X ′22

)
+ 2β0βk

(
λ(z̄)σT (t̄, x̄, u)X12 + λ(z̄′)σT (t̄, x̄′, u)X ′12

)
k

≤ 3

ε
‖Σ− Σ′‖2

F
(β2

0 + β2
k), ∀k = 1, . . . , n.

It follows that for any β ∈ Rp+1

βT (X̃ + X̃ ′)β

=

n∑
k=1

(
β2

0

(
σTX11σ(t̄, x̄, u) + σTX ′11σ(t̄, x̄′, u)

)
kk

+ 2β0βk
(
λ(z̄)σT (t̄, x̄, u)X12 + λ(z̄′)σT (t̄, x̄′, u)X ′12

)
k

+ β2
k

(
λ2(z̄)X22 + λ2(z̄′)X ′22

))
≤ 3

ε
‖Σ− Σ′‖2

F
‖β‖2.

It is now sufficient to observe that, thanks to the definition of Σ and Σ′ and the Lipschitz
continuity of σ

3

ε
‖Σ− Σ′‖2

F
≤ 3

(
L2
σ

|x̄− x̄′|2

ε
+
|z̄ − z̄′|2

ε

)
ε→0−→ 0

and we get
lim sup
ε→0

Λ+(X̃ + X̃ ′) ≤ 0.

-Estimation for (III):
A direct calculation shows that

Q =

(
(2δe−ρt̄ + |x̄− x̂|2)Id + (x̄− x̂)(x̄− x̂)T (0 . . . 0)T

0 . . . 0 3|z̄ − ẑ|2
)

Q′ =

(
2δe−ρt̄Id (0 . . . 0)T

0 . . . 0 0

)
so

Λ+(Q̃′ + Q̃)

= max

(
1

2
∂tfδ,ρ +

1

2
∂tf̂δ,ρ + Tr[σσT (t̄, x̄, u)Q11] + Tr[σσT (t̄, x̄′, z̄′)Q′11] ,

λ2(z̄)Q22 + λ2(z̄′)Q′22

)
= max

(
1

4
(t̄− t̂)− 1

2
δρe−ρt̄(1 + |x̄|2 + z̄)− 1

2
δρe−ρt̄(1 + |x̄′|2 + z̄′)

+
∑
i,j

(
2δe−ρt̄ + |x̄− x̂|2 + (x̄− x̂)2

ij)σ
2
ij(t̄, x̄, u) + 2δe−ρt̄σ2

ij(t̄, x̄
′, u)

)
,

3λ2(z̄)|z̄ − ẑ|2
)
.
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Recalling that σ has linear growth and that |x̄|2, z̄ are bounded (z̄ is also non negative)
as ε→ 0 we have

Λ+(Q̃′ + Q̃)

≤ max

(
1

4
|t̄− t̂| − 1

2
δρe−ρt̄(1 + |x̄|2 + z̄)− 1

2
δρe−ρt̄(1 + |x̄′|2 + z̄′)

+ C1δe
−ρt̄(1 + |x̄|2 + |x̄′|2) + C(1 + |x̄|2)|x̄− x̂|2 , 3λ2(z̄)|z̄ − ẑ|2

)
≤ max

(
1

4
|t̄− t̂|+ δe−ρt̄(1 + |x̄|2 + |x̄′|2)(C1 −

ρ

2
) + C2|x̄− x̂|2 , C3|z̄ − ẑ|2

)
.

Taking ρ/2 ≥ C1, in the limit ε→ 0 one obtains

lim sup
ε→0

Λ+(Q̃′ + Q̃) ≤ lim sup
ε→0

max

(
1

4
|t̄− t̂|+ C2|x̄− x̂|2 , C3|z̄ − ẑ|2

)
= 0.

Hence, using estimations (I), (II) and (III), from inequality (5.6.5) we finally get, as
ε→ 0:

η

4
≤ 0

that leads to the desired contradiction.

5.7 The uncontrolled case

In this section we aim to determine the cost associated with a diffusion process under
state constraints. Let us denote by Xt,x(·) the strong solution of the following stochastic
differential equation{

dX(s) = b(X(s))ds+ σ(X(s))dB(s) s ∈ [t, T ]
X(t) = x.

Given a cost ψ ≥ 0, the value function we aim to compute is

v(t, x) :=

{
E
[
ψ(Xt,x(T ))

]
if Xt,x(s) ∈ K,∀s ∈ [t, T ] a.s.

+∞ otherwise.

In the unconstrained case K = Rd it is well known that the Faynman-Kac formula gives
a characterization of v as the unique viscosity solution of the linear PDE{

−∂tv −Dv · b(x)− 1
2Tr[σσ

T (x)D2v] = 0 t ∈ [0, T ), x ∈ Rd,
v(T, x) = ψ(x) x ∈ Rd.

When state constraints are taken into account, that is if K ⊂ Rd, such a characterization
may become a very delicate issue since in absence of further requirements on the coef-
ficients b and σ of the equation the value function is not guaranteed to be continuous
(see the discussion in the introduction of the chapter). In this section we will see how
the method we presented applies to this special (uncontrolled) case.

Let us consider the following optimal control problem

w(t, x, z) = inf
α∈A

E
[

max(ψ(Xt,x(T ))− Zαt,z(T ), 0) +

∫ T

t
d+
K (Xt,x(s))ds

]
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with

Zαt,z(·) := z +

∫ T

t
αT (s)dB(s).

Proposition 5.7.1. Let assumptions (Hb),(Hσ),(Hψ) and (HK) be satisfied. Let us also
assume that ψ ≥ 0. One has

v(t, x) = inf

{
z ≥ 0 : w(t, x, z) = 0

}
.

Proof. The result follows by Theorem 5.4.3 since assumption (H0) is satisfied (see Section
5.9 below).

Once established this result we can proceed with the PDE characterization of w. Let
us assume p = 1. Thanks to Theorem 5.5.6 and 5.6.1 we can state that w is the unique
viscosity solution of the following generalized HJB equation

sup
ξ2
1+ξ2

2=1

{
ξ2

1(−∂tw −Dw · b(x)− 1
2Tr[σσ

T (x)D2
xw]− d+

K (x)

+ξ1ξ2σ
T (x)Dxzw − ξ2

2∂zzw

}
= 0 t ∈ [0, T ), x ∈ Rd, z ∈ (0,+∞)

w(t, x, 0) = w0(t, x) t ∈ [0, T ), x ∈ Rd
w(T, x, z) = max(ψ(x)− z, 0) x ∈ Rd, z ∈ [0,+∞)

with

w0(t, x) := E
[
ψ(Xt,x(T )) +

∫ T

t
d+
K (Xt,x(s))ds

]
.

We point out that even if we started from an uncontrolled problem, that usually leads
to a linear PDE, the necessity of adding the auxiliary controlled variable z makes the
final equation nonlinear.

5.8 An application to the electricity market

In this section we will discuss the application of our approach in a specific case coming
from the electricity market.

We consider the electricity demand for the period [t, T ] governed by the following
stochastic differential equation in R:

dX(s) = b(X(s))ds+ σ(X(s))dB(s) s ∈ [t, T ], X(t) = x.

The volume Y (·) of electricity remaining at every instant in the reserve, controlled by
the debit u, is given by

dY (s) = (β(s)− u(s))ds s ∈ [t, T ], Y (t) = y.

We will assume that the debit, that is our control, takes values in a compact set U :=
[0, umax]. The value Y (·) is required to remain bounded by a maximum value Ymax along
all the interval [t, T ]. This is expressed by the following constraint on the state:

Y (s) ∈ [0, Ymax] =: K, ∀s ∈ [0, T ].
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Aim of the controller is to minimize the cost of production of electricity necessary to
supply the demand X(·). At any time s the cost of production is given by

`(X(s), u(s)) := C(X(s)− ku(s)),

for some function C : R → [0,+∞) of the form C(ξ) = µmax(ξ, 0) (µ > 0) and some
constant k > 0 (in other words if X(s) ≤ ku(s) we can cover the request of energy with
a debit u(s) and the cost is `(X(s), u(s)) = 0, otherwise, if X(s) > ku(s), we cannot
satisfy the request with the reserve and this will lead to a positive cost). This results in
the following state constrained optimal control problem

v(t, (x, y)) := inf
u∈U

{
E
[ ∫ T

t
C(Xt,x(s)− ku(s))ds

]
: Y u

t,y(s) ∈ [0, Ymax]

}
.

Applying our approach we introduce the auxiliary unconstrained optimal control problem

w(t, (x, y), z) := inf
(u,α)∈U×A

E
[

max
(
− Zu,αt,x,z(T ), 0

)
+

∫ T

t
d+

[0,Ymax]
(Y u
t,y(s))ds

]
with

Zu,αt,x,z(·) = z −
∫ ·
t
`(Xt,x(s), u(s))ds+

∫ ·
t
αT (s)dB(s).

In this case the existence of an optimal couple (ū, ᾱ) is guaranteed thanks to the linearity
of the dynamics, then we have

v(t, (x, y)) = inf

{
z ≥ 0 : w(t, (x, y), z) = 0

}
.

Therefore, in virtue of Theorems 5.5.6 and 5.6.1, the optimal value v(t, (x, y)) is com-
pletely determined by the solution of the following problem:

sup
u∈U,

ξ∈B(0,1)

{
ξ2

1(−∂tw − b(x)∂xw − (β(t)− u)∂yw + `(x, u)∂zw − 1
2σ

2(x)∂xxw − d+
[0,Ymax]

)

+ξ1ξ2σ(x)∂xzw − ξ2
2∂zzw

}
= 0 t ∈ [0, T ), (x, y) ∈ R2, z ∈ (0,+∞)

w(t, (x, y), 0) = w0(t, (x, y)) t ∈ [0, T ), (x, y) ∈ R2

w(T, (x, y), z) = −z (x, y) ∈ R2, z ∈ [0,+∞)

with

w0(t, (x, y)) = inf
u∈U

E
[ ∫ T

t

(
`(Xt,x(s), u(s)) + d+

[0,Ymax]
(Y u
t,y(s))

)
ds

]
We remand to [45] and [92, Section 9.4] for discussions concerning the numerical approx-
imation of this kind of equation.

5.9 Appendix: A result of existence of optimal controls for
linear stochastic differential equations

In this section we aim to discuss the existence of an optimal control, required by assump-
tion (H0) in Section 5.4, for the optimal control problem (5.4.1). The optimal control
we consider is

w(t, x, z) = inf
(u,α)∈U×A

J(t, x, z, u, α)(5.9.1)
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associated with the cost

J(t, x, z, u, α) := E
[
g
ψ

(Xu
t,x(T ), Zα,ut,x,z(T )) +

∫ T

t
gK(Xu

t,x(s))ds

]
.

As already pointed out in Remark 5.4.2, the main difficulties arise because of the un-
boundedness of the control α and the unique result we are able to prove rigorously
concerns the linear case. The proof reported below is strongly based on the arguments
in [172, Theorem 5.2, Chapter II] (see also Section 3.9 in Chapter 3 where the same
techniques are applied to problems with maximum cost).

The following assumptions will be considered:

(i) B is a one-dimensional Brownian motion, that is p = 1;

(ii) b, σ, ` : [0, T ]× Rd × U → Rd are given by:

b(t, x, u) = A(t)x+B(t)u,

σ(t, x, u) = C(t)x+D(t)u

`(t, x, u) = E(t)x+ F (t)u

where A,B,C,D,E and F are L∞continuous functions

with value in matrix spaces of suitable sizes.

(E′1)

Let us also consider the following convexity assumptions:

U ⊂ Rm is a convex and compact set;(E2)

ψ and gK are Lipscitz and convex functions.(E′3)

Remark 5.9.1. Also in this case (see Remark 3.9.1) if gK = d+
K , in order to satisfy assump-

tion (E′3), it is sufficient that K is a closed and convex set. Moreover we can observe that
the convexity of ψ automatically implies the convexity of g

ψ
(x, z) = max(ψ(x)− z, 0).

Theorem 5.9.2. Let assumptions (E′1),(E2) and (E′3) be satisfied. Then for any t ∈
[0, T ], (x, z) ∈ Rd+1 such that (5.9.1) is finite, there exists an optimal control (ū, ᾱ) ∈
U ×A.

Proof. Let (uj , αj)j≥1 ∈ U ×A a sequence of minimizing controls, that is such that

lim
j→+∞

J(t, x, z, uj , αj) = w(t, x, z).

Thanks to the compactness of U and the uniform bound on the L2
F-norm that can be

obtained on the control α, see Remark 5.3.3, we can extract from (uj , αj) a subsequence
(still indexed with j) such that

(uj , αj)→ (ū, ᾱ) weakly in L2
F-norm.

As a consequence of the Mazur’s lemma, there exists a linear combination of (uj , αj)

(ũj , α̃j) :=
∑
i≥1

λij(ui+j , αi+j), λij ≥ 0,
∑
i≥1

λij = 1

strongly convergent to the same limit, that is

(ũj , α̃j)→ (ū, ᾱ) strongly in L2
F-norm.
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One can observe that (ũj , α̃j) and (ū, ᾱ) are still elements of U×A thanks to the convexity
and closure of U .
Thanks to assumption (E′1), it is easy to verify that

X
ũj
t,x(·) =

∑
i≥1

λijX
ui+j
t,x (·), Z

ũj ,α̃j
t,x,z (·) =

∑
i≥1

λijZ
ui+j ,αi+j
t,x,z (·)

and (
X
ũj
t,x, Z

ũj ,α̃j
t,x,z

)
−→

(
X ū
t,x, Z

ū,ᾱ
t,x,z

)
strongly in L∞F -norm.

Then one has for any ε > 0 there exists j̄ = j̄(ε) such that for any j > j̄(ε)

J(t, x, z, ū, ᾱ)

= E
[
g
ψ

(X
ũj
t,x(T ), Z

ũj ,α̃j
t,x,z (T )) +

∫ T

t
gK(Z

ũj
t,x(s))ds

]
+ ε

≤ E
[∑
i≥1

λijgψ(X
ui+j
t,x (T ), Z

ui+j ,αi+j
t,x,z (T )) +

∫ T

t
gK(Z

ui+j
t,x (s))ds

]
+ ε

≤
∑
i≥1

λijE
[
g
ψ

(X
ui+j
t,x (T ), Z

ui+j ,αi+j
t,x,z (T )) +

∫ T

t
gK(Z

ui+j
t,x (s))ds

]
+ ε

= w(t, x, z) + 2ε

that means (ū, ᾱ) is optimal for (5.9.1).
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Chapter 6

Ergodic state constrained
stochastic optimal control
problems

6.1 Introduction

This chapter is devoted to the study of ergodic optimal controls problems in presence of
state constraints. Given a discount factor λ > 0, let v

λ
: Rd → R be the value function

associated to the following infinite horizon optimal control problem

v
λ
(x) = inf

u∈U
E
[ ∫ ∞

0
e−λt`(Xu

x (t), u(t))dt

]
.(6.1.1)

We are are going to study the limit of λv
λ

as λ goes to 0. The classical ergodic optimal
control problem concerns the long time behavior of the average 1

T vT where vT is given
by

vT (x) := inf
u∈U

E
[ ∫ T

0
`(Xu

x (t), u(t))dt+ ψ(Xu
x (T ))

]
.

By classical Abelian-Tauberian theorems it is possible to prove, under appropriate as-
sumptions, that the convergence for T → +∞ of 1

T vT is equivalent to the convergence
of the discounted problem λv

λ
as λ → 0. In virtue of this observation, in this chapter

we will focus only on the infinite horizon problem (6.1.1). For any λ > 0 fixed, it is well
known (see Chapter 2) that, applying the dynamic programming techniques, the value
function v

λ
can be characterized as the solution of the following HJB equation

λv +H(x,Dv,D2v) = 0,(6.1.2)

with

H(x, q,Q) := sup
u∈U

{
− b(x, u) · q − 1

2
Tr[σσT (x, u)Q]− `(x, u)

}
.

Dealing with ergodic problems, the typical result we look for is to prove the uniform
convergence of λv

λ
to a certain constant Λ and the convergence of v

λ
− v

λ
(0) to a con-

tinuous function χ. Under suitable stability assumptions on the HJB equation, passing
to the limit in (6.1.2), the function χ will result a viscosity solution of

Λ +H(x,Dχ,D2χ) = 0.(6.1.3)
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Equation (6.1.3) is called the cell problem. Related issues are the uniqueness of the
constant Λ and its characterization in terms of an invariant measure for the stochastic
system.
These questions have been addressed by several authors in the last years. We refer,
among the others, to [77, 7, 8, 76, 42, 3] for the case of first order equations and to [9, 157,
156, 75, 151, 53, 54, 38, 52, 66, 55, 6] for the stochastic case. In what follows we aim to
study this kind of problems taking into account the presence of state constraints. Dealing
with state constraints the following three scenarios are usually taken into account:

• The trajectories are constrained on a torus: it is expressed by an assumption of
periodicity on the coefficients of the dynamics;

• The trajectories are reflected on the boundary of the constraint: it brings to an
equation with Neumann boundary conditions (see [134]);

• The optimal control problem is restricted to the trajectories that satisfy the state
constraints.

In the deterministic case an overview of this three cases is presented in [7] and [8]. In
the stochastic setting we refer to [9] for a clear presentation of the periodic case. The
reflected case is studied in [157, 28, 43] (see also the references therein) and in [66, 52] for
constraints represented by a polyhedral cone. The state constrained case with singular
boundary conditions is studied in [131]. No results seem to be available at the moment
if v

λ
is a solution of the state constrained HJB equation (see [117, 160, 161]){

λv +H(x,Dv,D2v) = 0 in int(K)
λv +H(x,Dv,D2v) ≥ 0 in ∂K.(6.1.4)

The study presented in this chapter aim to be a first step in this direction in the par-
ticular case of invariant (possibly unbounded) domains and under some assumptions of
asymptotic flatness of the diffusion process.

The chapter in organized as follows: we introduce our setting, including the hypoth-
esis of invariance of the domain, in Section 6.2. A study of the optimal control problem
for λ fixed is proposed in Section 6.3. The asymptotic flatness assumption is presented
in Section 6.4 where the ergodic problem is considered.

6.2 Setting

Let be given a probability space (Ω,F ,P), with a filtration {Ft}t≥0 and a p-dimensional
Brownian motion B(·).
The following system of controlled SDE’s in Rd is considered

(6.2.1)

{
dX(t) = b(X(t), u(t))dt+ σ(X(t), u(t))dB(t) t ≥ 0, x ∈ Rd
X(0) = x,

where u ∈ U , the set of progressively measurable processes with values in a compact set
U ⊂ Rm (m ≥ 1). We will work under the regularity assumptions (Hb) and (Hσ) for the
coefficients of the SDE. Under these assumptions, for any choice of u ∈ U we will denote
by Xu

x (·) the unique strong solution of (6.2.1) starting at point x ∈ Rd.
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Let us consider a cost function ` : Rd × U → R such that:

(i) `(·, ·) is continuous on Rd × U ;

(ii) there is ω` modulus of continuity s.t. ∀x, y ∈ Rd, u ∈ U :

|`(x, u)− `(y, u)| ≤ ω`(|x− y|);
(iii) ∃M` ≥ 0 such that ∀x ∈ Rd, u ∈ U :

|`(x, u)| ≤M`.

(H ′`)

Thanks to the boundedness of `, without loss of generality we can assume that the
modulus ω` is concave and sublinear.
Let λ > 0 be a given discount factor and K a non empty closed subset of Rd, not
necessarily bounded. We consider in this chapter the ergodic problem associated with
the cost functional

(6.2.2) J
λ
(x, α) := E

[ ∫ ∞
0

e−λt`(Xu
x (t), u(t))dt

]
when the trajectory Xu

x (·) is required to satisfy almost surely (a.s.) some state con-
straints

Xu
x (t) ∈ K, ∀t ≥ 0.

The optimal control problem associated with the cost in (6.2.2) is what is called in
literature an infinite horizon optimal control problem (see the presentation given in
Chapter 2, Section 2.1). In this chapter we aim to study the behavior for λ→ 0+ of the
value function v

λ
defined by

v
λ
(x) := inf

u∈U

{
J
λ
(x, u) : Xu

x (t) ∈ K, ∀t ≥ 0 a.s.

}
.(6.2.3)

As extensively pointed out in Chapter 5, in the study of optimal control problems the
presence of state constraints generates additional difficulties because of the loss of reg-
ularity of the value function on the boundary. A wide literature is nowadays available
concerning the study of this kind of problems and the conditions that guarantees a char-
acterization of v

λ
as the unique viscosity solution of the state constrained HJB equation

(see for instance [117, 35, 62] and the other references given in Chapter 5). For the
study of the ergodic problem we will consider a simplified setting assuming that all the
trajectories that start in K remain almost surely in K for any time t ≥ 0. In other words
we will assume that the set K satisfies the following assumptions:

(i) K ⊆ Rd is a nonempty and closed set;

(ii) K is invariant for (6.2.1) : for any x ∈ K and u ∈ U
Xu
x (t) ∈ K, ∀t ≥ 0 a.s. .

(H ′′K)

This framework strongly simplifies the study of problem (6.2.3) that, under assump-
tion (H ′′K), can be treated as an unconstrained optimal control problem from the moment
that the trajectories “naturally” satisfy the constraints. By the way the solution of the
ergodic problem remains nontrivial and it represents, for the techniques proposed, a first
step for a future study.
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Remark 6.2.1. It has been proved in [25] that a necessary and sufficient condition for
the invariance of a closed domain K is that for any x ∈ ∂K

(6.2.4) b(x, u)p+
1

2
Tr[σσT (x, u)Y ] ≥ 0, ∀u ∈ U, (p, Y ) ∈ N 2

K(x)

where N 2
K(x) is the second order normal cone at point (see Definition 2.5.2 and Theorem

2.5.3 in Chapter 2). Let us assume that the domain K is the closure of an open set and
that the boundary ∂K is at least twice continuously differentiable. In this case using the
characterization of the second order normal cone given in [84, Remark 2.7] one has that
(6.2.4) is satisfied as soon as

n(x)σ(x, u) = 0 and b(x, u)DdK(x) +
1

2
Tr[σσT (x, u)D2dK(x)] ≥ 0, ∀u ∈ U

where n is the exterior normal vector and dK denotes the signed distance function to
∂K, that is

dK(x) :=

{
d+
K (x) if x ∈ Rd \ K
−d+
K (x) if x ∈ K.

Remark 6.2.2. Another approach for the studying of the invariance property of K is based
on the level set approach (see Chapter 3). Let us introduce a function gK : Rd → R
satisfying assumption (HgK

) in Chapter 3 and let us consider the following value function
(for some µ > 0)

wviab(x) := sup
u∈U

E
[
max
t≥0

gK(Xu
x (t))e−µt

]
(resp.

w̃viab(x) := sup
u∈U

E
[ ∫ +∞

0
gK(Xu

x (t))e−µtdt

]
).

It can be proved (see the proof of Proposition 3.3.2 in Chapter 3) that

K is invariant ⇔ wviab(x) = 0 (resp. w̃viab(x) = 0) ∀x ∈ K.

We point out that if assumption (H ′′K) is satisfied one has

UK(x) :=

{
u ∈ U : Xu

x (t) ∈ K,∀t ≥ 0 a.s.

}
= U , ∀x ∈ K

and we can simply write the optimal control problem (6.2.3) as

v
λ
(x) := inf

u∈U
J
λ
(x, u).

6.3 The HJB equation for λ fixed

In this section we state some result concerning the optimal control problem (6.2.3). Let
us start with the following result concerning the regularity of v

λ
.

Proposition 6.3.1. Let assumptions (Hb),(Hσ), (H ′`) and (H ′′K) be satisfied. Then v
λ

is continuous in K.
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Proof. Thanks to the invariance assumption (H ′′K), for any x, x′ ∈ K one has UK(x) =
UK(x′) = U and the classical arguments usually applied to optimal control problems in
the whole space can be used (see, for instance, [23, Proposition 2.1, Chapter II]). The
proof is reported below for completeness.
Let us start observing that under assumption (H ′`)

E
[ ∫ +∞

T
e−λt`(Xu

x (t), u(t))dt

]
≤M`

1

λ
e−λT , ∀x ∈ K, u ∈ U .

So we can choose T big enough such that E[
∫ +∞
T e−λt`(Xu

x (t), u(t))dt] < ε. For any
ε > 0 there exists a control uε ∈ U such that

v
λ
(x)− v

λ
(x′)

≤ J
λ
(x, uε)− Jλ(x′, uε) + ε

≤ E
[ ∫ T

0
e−λt

(
`(Xu

x (t), u(t))dt− `(Xu
x′(t), u(t))dt

)]
+ 3ε

≤ E
[ ∫ T

0
e−λtω`(|Xu

x (t)−Xu
x′(t)|)dt

]
+ 3ε

≤
∫ T

0
e−λtE

[
ω`(|Xu

x (t)−Xu
x′(t)|)

]
dt+ 3ε

≤
∫ T

0
e−λtω`

(
E
[
|Xu

x (t)−Xu
x′(t)|

])
dt+ 3ε

where in the last passage we used the concavity of ωλ for applying the Jensen inequality.
Recalling that under assumptions (Hb) and (Hσ) the estimates of Proposition 2.1.1 in
Chapter 2 hold, we have

v
λ
(x)− v

λ
(x′) ≤ L`

∫ T

0
e−λtω`

(
CeCT |x− x′|

)
dt+ 3ε

where the constant C only depends on the Lipschitz constants of b and σ. Hence,
choosing |x− x′| small enough, we can conclude that v

λ
(x)− v

λ
(x′) < 4ε. Reversing the

role of x and x′ and applying the same arguments we finally obtain the continuity of
v
λ
.

Once proved its a priori continuity, v
λ

can be characterized by standard dynamic pro-
gramming techniques as a continuous solution, in viscosity sense, of the state constrained
HJB equation {

λv +H(x,Dv,D2v) = 0 in int(K)
λv +H(x,Dv,D2v) ≥ 0 in ∂K(6.3.1)

where int(K) := K \ ∂K and H : Rd × Rd × Sd → R is defined by:

H(x, q,Q) := sup
u∈U

{
− q · b(x, u)− 1

2
Tr[σσT (x, u)Q]− `(x, u)

}
.

We point out that under the invariance assumption (H ′′K) for system (6.2.1) the dynamic
programming techniques apply as in the unconstrained case and v

λ
results to be also a

sub-solution of (6.3.1) up to the boundary, as stated in the following:
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Theorem 6.3.2. Let assumptions (Hb),(Hσ),(H ′`) and (H ′′K) be satisfied. Then v
λ

is
the unique bounded continuous viscosity solution to the HJB equation

λv +H(x,Dv,D2v) = 0 in K(6.3.2)

Proof. Thanks to the continuity of v
λ

proved in Proposition 6.3.1, it is sufficient that
UK(x) 6= 0 for any x ∈ K for stating that v

λ
satisfies a dynamic programming principle.

Indeed, referring for instance to [99] or [55], it is possible to prove that for every stopping-
time θ measurable with respect to the filtration {Ft}t≥0 one has

v
λ
(x) = inf

u∈UK (x)
E
[
v
λ
(Xu

x (θ)) +

∫ θ

0
e−λt`(Xu

x (t), u(t))dt

]
(6.3.3)

for every x ∈ K.
The straightforward consequence of (6.3.3) is that v

λ
is a viscosity solution of the state

constrained HJB equation (6.3.1). Moreover we can prove that the sub-solution property
holds also on ∂K. In fact, since UK(x) = U (consequence of (H ′′K)-(ii)), any constant
control ν(s) ≡ ν ∈ U is admissible and by the DPP (6.3.3) we get

v
λ
(x) ≤ E

[
v
λ
(Xν

x(θ)) +

∫ θ

0
e−λt`(Xν

x(t), ν(t))dt

]
.

Given a test function ϕ such that v
λ
− ϕ has a strict maximum point in x such that

v
λ
(x) = ϕ(x), for θ(ω) small enough we have

ϕ(x) ≤ E
[
ϕ(Xν

x(θ)) +

∫ θ

0
e−λt`(Xν

x(t), ν(t))dt

]
.

Applying the Ito’s formula and passing to the limit as θ goes to 0, we easily get

λϕ−Dϕ · b(x, ν)− 1

2
Tr[σσT (x, ν)D2ϕ]− `(x, ν) = 0

for any ν ∈ U . Hence the sub-solution property is derived thanks to the arbitrariness if
ν.
Finally, using the properties of H and the boundedness of the solutions, the uniqueness
in the whole domain K follows by standard comparison arguments [110, Theorem 7.3],
thanks to the fact that the equation is satisfied up to the boundary.

6.4 Solution of the ergodic problem

In this section are contained the main results of the chapter obtained studying the
asymptotic behavior of the problem for λ going to 0. The convergence of λv

λ
is usually

derived by an application of the Ascoli-Arzelà theorem once proved its equiboundedness
and uniform equicontinuity. The following hypothesis is made in order to guarantee the
equicontinuity peroperty:

there exist two constants C1 ≥ 0 and C2 > 0 such that(H1)

E
[
|Xu

x (t)−Xu
y (t)|

]
≤ C1e

−C2t|x− y|

for any u ∈ U , x, y ∈ K, t ≥ 0.
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We will also consider the following finiteness assumption:

for any compact set C ⊆ K one has(H2)

sup
t≥0

sup
x∈C

sup
u∈U

E
[
|Xu

x (t)|
]
<∞

Property (H1) was introduced in [38] and it is referred in literature with the name
of asymptotic flatness. Let us define for ϕ = b, σ

∆yϕ(x, u) := ϕ(x+ y, u)− ϕ(x, u)

and for ϕ ∈ C2(Rd)

L̃uϕ(x; y) := ∆yb(x, u)Dϕ(y) +
1

2
Tr[∆yσ∆yσ

T (x, u)D2ϕ(y)]

for any x, y ∈ Rd, u ∈ U . A sufficient condition guaranteeing that (H1) is satisfied is the
existence of a C2-Lyapunov function w such that there exist k1, k2, C2 positive constants
such that

L̃uw(x; y) ≤ −C2w(y),

and
k1|x| ≤ w(x) ≤ k2|x|,

for any u ∈ U .
In particular, it is proved in [6] that if there exist a symmetric positive definite matrix
Q ∈ Rd×d and a constant R > 0 such that for every u ∈ U and for every x, y ∈ Rd (y 6= 0)

2∆yb(x, u)TQy − |∆yσ(x, u)TQy|2

yTQy
+ Tr

[
∆yσ(x, u)∆yσ(x, u)TQ

]
≤ −R|y|2(6.4.1)

then (H1) holds and this Lyapunov function is given by

w(x) = (xTQx)
1
2 .

By similar arguments can also be proved (see again [6]) that (6.4.1) implies also (H2).
Some examples for which (6.4.1) is satisfied are reported below.

Example 6.4.1. Let be b(x, u) = Ax + Bu and σ(x, u) = {σi(x)}i=1...,p with σ1(x) = x
and σi(x) = 0 (i 6= 1), where A and B are two constant matrices of the suitable size
and σi denotes the i-th column vector of σ. If all the eigenvalues of A have negative real
part has been proved in [38] and [6] that (6.4.1) is automatically satisfied.

Example 6.4.2. If a linear diffusion σ(x, u) = Cx+Du is considered, for C,D matrices
of suitable sizes, one has, taking for instance Q = I,

− |∆yσ(x, u)T y|2

|y|2
+ Tr

[
∆yσ(x, u)∆yσ(x, u)T

]
= −|y

TCT y|2

|y|2
+ |Cy|2 ≤ ‖C‖2|y|2,

that means that condition (6.4.1) holds as soon as the drift b satisfies

2∆yb(x, u) ≤ (−R− ‖C‖2)|y|2.

Thanks to the previous assumptions we can state the following result concerning
equicontinuity estimates for the value function v

λ
.
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Proposition 6.4.1. Let assumptions (Hb),(Hσ),(H ′`),(H
′′
K) and (H1) be satisfied. Then

there exists a constant C ≥ 0 (independent of λ) such that

|v
λ
(x)− v

λ
(x′)| ≤ ω`(C|x− x′|)

for any x, x′ ∈ K.

Proof. As in the proof of Proposition 6.3.1 we start observing that, thanks to assumption
(H ′′K), one has UK(x) = UK(x′) for any x, x′ ∈ K. Therefore by (H ′`) and the concavity
of ω` the following inequalities hold:

|v
λ
(x)− v

λ
(x′)|

= | inf
u∈U

J
λ
(x, u)− inf

u∈U
J
λ
(x′, u)|

≤ sup
u∈U
|J
λ
(x, u)− J

λ
(x′, u)|

≤ sup
u∈U

E
[ ∫ ∞

0
e−λt|`(Xu

x (t))− `(Xu
x′(t))|dt

]
≤ sup

u∈U

∫ ∞
0

E
[
ω`(|Xu

x (t)−Xu
x′(t)|)

]
≤ sup

u∈U
ω`

(∫ ∞
0

E
[
|Xu

x (t)−Xu
x′(t)|

]
dt
)
.

Using now assumption (H1) we obtain

|v
λ
(x)− v

λ
(x′)| ≤ ω`

(
|x− x′|

∫ ∞
0

C1e
−C2tdt

)
and since C2 > 0 the result follows by the convergence of the integral in last term.

We can now prove the following result:

Theorem 6.4.2. Let assumptions (Hb),(Hσ),(H ′`),(H
′′
K),(H1) be satisfied. Then λv

λ

converges uniformly on K to a constant Λ as λ goes to 0+. Moreover for any subsequence
λn going to 0+, u

λn
−u

λn
(0) converges to a uniformly continuous function χ solution to

the cell problem

(6.4.2) Λ +H(x,Dχ,D2χ) = 0 x ∈ K.

Proof. Let us start by observing that there exists a constant C (independent of λ) such
that for any λ > 0

|λv
λ
| ≤ C in K.(6.4.3)

This can in fact be obtained either by the very definition of v
λ

or as a consequence of
the comparison principle for equation (6.3.2), taking into account sub-solutions (resp.
super-solutions) of the form −C/λ (resp. C/λ). The uniform bound (6.4.3) together
with Proposition 6.4.1 allow us to apply the Ascoli-Arzelà theorem, then (extracting
a subsequence if necessary) λv

λ
− λv

λ
converges uniformly to 0. It follows that λv

λ

converges uniformly to a constant in any compact set contained in K as λ goes to
0+. Analogously v

λ
− v

λ
(0) converges uniformly to a uniformly continuous function in

any compact subset of K. By a standard diagonal procedure we can finally extract a
subsequence λn going to 0+ such that λnuλn converges to a constant Λ and u

λn
−u

λn
(0)

to a uniformly continuous function χ in the whole domain K. Since the convergence
is locally uniform, by standard stability results for solution of HJB equations (see for
instance [170, Theorem 6.8]), χ results a viscosity solution of (6.4.2).
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We conclude the chapter with the following theorem that states that if the finiteness
property (H2) is satisfied, then Λ is actually the unique constant such that the cell
problem admits a solution in the class of uniformly continuous functions.

Theorem 6.4.3. If (H2) holds, together with the assumptions of Theorem 6.4.2, the
constant Λ given by Theorem 6.4.2 is the unique constant such that there exists a uni-
formly continuous solution to equation (6.4.2).

Proof. Let us consider two pairs (Λ1, χ1) and (Λ2, χ2), where Λ1,Λ2 are two constant
and χ1 , χ2 two uniformly continuous functions on K such that for i = 1, 2

Λi +H(x,Dχi , D
2χi) = 0 K.

Let us also assume that Λ1 > Λ2 and let us define the function vi, i = 1, 2 by

vi(t, x) := χi(x) + Λit.

It is not difficult to prove that for i = 1, 2 respectively, vi is a uniformly continuous
viscosity solution to the parabolic equation{

∂tv +H(x,Dv,D2v) = 0 (0,+∞)×K
v(0, x) = χi(x) K.(6.4.4)

Let us consider the following optimal control problem:

wi(t, x) := inf
u∈UK (x)

E
[ ∫ t

0
`(Xu

x (s), u(s))ds+ χi(X
u
x (t))

]
i = 1, 2.

Thanks to our assumptions and the uniform continuity of the function χi, one can prove
the uniform continuity of wi for any i = 1, 2. Thanks to uniqueness results for viscosity
solutions of (6.4.4) [91, Theorem 2.1] we can state that

vi(t, x) = inf
u∈UK (x)

E
[ ∫ t

0
`(Xu

x (s), u(s))ds+ χi(X
u
x (t))

]
i = 1, 2.

For any ε > 0 let uε ∈ UK(x) be such that

v2(t, x) ≥ E
[ ∫ t

0
`(Xuε

x (s), uε(s))ds+ χ2(Xuε
x (t))

]
− ε,(6.4.5)

then by the properties of the infimum one has

v1(t, x)− v2(t, x) ≤ E
[ ∫ t

0
`(Xuε

x (s), uε(s))ds+ χ1(Xuε
x (t))

]
+

−E
[ ∫ t

0
`(Xuε

x (s), uε(s))ds+ χ2(Xuε
x (t))

]
+ ε

≤ E
[
χ1(Xuε

x (t))− χ2(Xuε
x (t))

]
+ ε

and by the very definition of vi, for i = 1, 2 it follows

χ1(x)− χ2(x) + (Λ1 − Λ2)t ≤ E
[
χ1(Xuε

x (t))− χ2(Xuε
x (t))

]
+ ε.
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By the linear growth of χ1 and χ2 one obtains

E
[
χ1(Xuε

x (t))− χ2(Xuε
x (t))

]
≤ E

[
|χ1(Xuε

x (t))|+ |χ2(Xuε
x (t))|

]
≤ C(1 + E

[
|Xuε

x (t))|
]
)

so

χ1(x)− χ2(x) + (Λ1 − Λ2 −
ε

t
)t ≤ C(1 + E

[
|Xuε

x (t))|
]
).

The last inequality yields a contradiction. In fact thanks to assumption (H2) the right-
hand side results is bounded for any x ∈ C (with C compact set in K) and t ≥ 0, so taking
the limit for t that goes to +∞ the contradiction follows since we assumed Λ1 > Λ2. It
means that necessarily Λ1 ≤ Λ2, but reversing the role of (Λ1, χ1) and (Λ2, χ2) the other
inequality is obtained, that is finally Λ1 = Λ2.
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Conclusions and perspectives

The research developed in the present thesis provides a contribution to the study of dif-
ferent stochastic control problems involving state-constraints. We would like to mention
below some of the future directions of research that follow, in our opinion, from this work.

In Chapter 3 we studied the characterization of backward reachability by a level set
approach. In particular we asked the target and the state constraints to be satisfied
almost surely in a finite horizon of time T < +∞.
A future direction of research will be to extend this approach in order to take into ac-
count also the infinite horizon case T = +∞ and be able to deal with different type of
requirements as, for instance, the satisfaction of the target and/or the state constrained
condition with a certain given probability p ∈ (0, 1].
We also point out that the numerical examples proposed in Section 3.8 have the unique
objective to prove the validity of our method and tests on application taken from con-
crete models have not yet been carried out.
Moreover the ideas developed in Section 3.7 for studying error estimates for semi-
Lagrangian schemes for HJB equations with oblique derivative boundary conditions
could be probably be exploited in other frameworks where the “shacking coefficient”
techniques have to be adapted to the presence of a boundary.

In Chapter 4 we proposed a generalization of the Zubov method for characterizing
the domain of asymptotic controllability for systems of controlled diffusions under state-
constraints. Here we do not specify the exact probability of controllability. We conjecture
that this approach can be extended to a characterization of the sets{

x ∈ Rd : sup
u∈U

P
[

lim
t→+∞

d(Xu
x (t), T ) = 0 and Xu

x (t) ∈ K,∀t ≥ 0

]
= p

}
for given probabilities p ∈ [0, 1], similar to how [69] extends [73].

Chapter 5 concerns the study of state constrained optimal control. The approach we
proposed is based on the formulation of the state constrained optimal control problem
as a backward reachability problem which involves unbounded controls in an augmented
state space. We solved such a problem by a level set approach obtaining a characteri-
zation of the level set function w, defined by (5.4.1), as the unique viscosity solution of
the generalized HJB (5.5.2). The numerical approximation of this kind of equation has
not been investigated in the thesis, but we can consider as a starting point the papers of
Bokanowski, Brüder et al. [45] and Debrabant and Jakobsen [92]. In virtue of Theorem
5.4.3, solving numerically equation (5.5.2) would provide a numerical approximation of
the value function v solution of the original state constrained optimal control problem
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(5.2.3) and a further issue would be to compare our approach with other common tech-
niques of treatment of the state-constraints (see for instance [39]).
Another direction of research is to further develop the compactification technique used
in Section 5.5 (Lemma 5.5.4). In fact, our results seem to extend those in [145] and [144]
taking into account the dependency of the diffusion on the unbounded control α. In our
case such a dependence is linear since σ̃(t, x, u, α) := (σT (t, x, u), α)T , but we think that
more general cases could be taken into account.

In Chapter 6 we studied the ergodic problem associated with second order state
constrained HJB equations. We presented a set of assumptions making the problem
solvable. We don’t have in mind for the moment how to replace the condition of invari-
ance (H ′′K) on the set K. By the way it seems that recently developed techniques (see
[24]) might be employed in absence of the “asymptotic flatness” condition (H1).
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[89] J. Cvitanić and J. Ma. Hedging options for a large investor and forward-backward
SDE’s. Ann. Appl. Probab., 6:370–398, 1996.

[90] J. Cvitanic, H. Pham, and N. Touzi. Super-replication in stochastic volatility
models with portfolio constraints. J. Appl. Probab., 36:523–545, 1999.

[91] F. Da Lio and O. Ley. Uniqueness Results for Second Order Bellman-Isaacs Equa-
tions under Quadratic Growth Assumptions and Applications. SIAM J. Control
Optim., 45(1):74–106, 2006.

[92] K. Debrabant and E.R. Jakobsen. Semi-Lagrangian schemes for linear and fully
non-linear diffusion equations. Math. Comp., 82(283):1433–1462, 2012.

[93] P. Dupuis and H. Ishii. On oblique derivative problems for fully nonlinear second-
order elliptic partial differential equations on nonsmooth domains. Nonlinear Anal.
Theory Methods Appl., 15(12):1123–1138, 1990.

[94] N. El Karui, D. H. Nguyen, and M. Jeanblanc-Picqué. Compactification methods
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Abstract. This thesis deals with Hamilton-Jacobi-Bellman (HJB) approach for some stochas-
tic control problems in presence of state constraints. This class of problems arises in many chal-
lenging applications, and a wide literature has already analysed such problems under some strong
controllability conditions. The main feature of the present thesis is to provide new ways to face
the presence of constraints without assuming any controllability condition. The first important
contribution in this direction is obtained by exploiting the existing link between backward reach-
ability and optimal control. It is shown that by considering a suitable auxiliary unconstrained
optimal control problem, the level set approach can be extended to characterize the backward
reachable sets under state constraints. On the other hand the value function associated with a
general state constrained stochastic optimal control problem is characterized by means of a state
constrained backward reachable set, enabling the application of the level set method for handling
the presence of the state constraints. This link between optimal control problems and reacha-
bility led to the theoretical and numerical analysis of HJB equations with oblique derivative
boundary conditions and problems with unbounded controls. Error estimates for Markov-chain
approximation represent another contribution of this manuscript. Furthermore, the properties
of asymptotic controllability of a stochastic system have also been studied and a generalization
of the Zubov method to state constrained stochastic systems is presented. In the last part of the
thesis an ergodic optimal control problems in presence of state-constraints are considered.

Résumé. Cette thèse concerne l’approche Hamilton-Jacobi-Bellman (HJB) pour des problèmes
de contrôle stochastique en présence de contraintes sur l’état du système. Cette classe de
problèmes se pose dans de nombreuses applications importantes, et une grande littérature les
a déjà analysé sous des conditions de contrôlabilité fortes. La principale contribution de cette
thèse est de fournir de nouvelles façons de affronter la présence de contraintes sans hypothèse
de contrôlabilité. Une première importante contribution dans cette direction est obtenue en
exploitant le lien existant entre l’atteignabilité des systèmes stochastiques et des problèmes de
contrôle optimal. Il est montré que, en considérant un problème approprié auxiliaire de la
commande optimale sans contraintes sur l’état, l’approche level-set peut être étendue pour car-
actériser les ensembles atteignables sous contrainte sur l’état. D’autre part l’épigraphe de la fonc-
tion valeur associée à un problème général de commande optimale stochastique sous contraintes
d’état peut être caractérisée par un ensemble atteignable d’un système dynamique augmenté. Ce
résultat permet l’application de la méthode level-set pour gérer la présence des contraintes sur
l’état sans faire d’hypothèse de contrôlabilité. Ce lien entre les problémes de contrôle optimal et
les level-set a conduit à l’analyse théorique et numérique des équations HJB avec conditions aux
limites de derivé obliques et de problèmes avec contrôles non bornés. Les estimations d’erreur
d’approximation de type Chaine de Markov représentent une autre contribution de ce manuscrit.
En outre, les propriétés de contrôlabilité asymptotique d’un système stochastique ont également
été analysées et une généralisation de la méthode de Zubov aux systèmes stochastiques contraints
est étudiée dans le manuscrit. La dernière partie de la thèse est dédié à l’étude de problèmes de
contrôle optimal ergodiques en présence de contraintes sur l’état.
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