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Trend detection and information propagation in dynamic
social networks

Abstract: During the last decade, the information within Dynamic Social
Networks has increased dramatically. The ability to study the interaction and
communication between users in these networks can provide real time valuable
prediction of the evolution of the information.

The study of social networks has several research challenges, e.g. (a) real
time search has to balance between quality, authority, relevance and timeliness
of the content, (b) studying the information of the correlation between groups
of users can reveal the influential ones, and predict media consumption, network
and traffic resources, (c) detect spam and advertisements, since with the growth
of social networks we also have a continuously growing amount of irrelevant
information over the network. By extracting the relevant information from
online social networks in real time, we can address these challenges.

In this thesis a novel method to perform topic detection, classification
and trend sensing in short texts is introduced. Instead of relying on words as
most other existing methods which use bag-of-words or n-gram techniques, we
introduce Joint Complexity, which is defined as the cardinality of a set of all
distinct common factors, subsequences of characters, of two given strings. Each
short sequence of text is decomposed in linear time into a memory efficient
structure called Suffix Tree and by overlapping two trees, in linear or sublinear
average time, we obtain the cardinality of factors that are common in both trees.
The method has been extensively tested for Markov sources of any order for a
finite alphabet and gave good approximation for text generation and language
discrimination. The proposed method is language-agnostic since we can detect
similarities between two texts in any loosely character-based language. The
method is not based on a specific grammar or semantics, therefore there is no
need to build any specific dictionary or stemming technique. The proposed
method can be used to capture a change of topic within a conversation, as well
as the style of a specific writer in a text.

In the second part of the thesis, we take advantage of the nature of the
data, which motivated us in a natural fashion to use of the theory of Com-
pressive Sensing driven from the problem of target localization. Compressive
Sensing states that signals which are sparse or compressible in a suitable
transform basis can be recovered from a highly reduced number of incoherent
random projections, in contrast to the traditional methods dominated by the
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well–established Nyquist–Shannon sampling theory. Based on the spatial nature
of the data, we apply the theory of Compressive Sensing to perform topic
classification by recovering an indicator vector, while reducing significantly the
amount of information from tweets. The method works in conjunction with a
Kalman filter to update the states of a dynamical system as a refinement step.

In this thesis we exploit datasets collected by using the Twitter streaming
API, gathering tweets in various languages and we obtain very promising results
when comparing to state-of-the-art methods.

Keywords: Dynamic Social Networks, Joint Sequence Complexity, An-
alytic Combinatorics, Compressive Sensing, Sparse Representation, Kalman
Filter
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Détection des tendances et la propagation des
informations dans les réseaux sociaux dynamiques

Résumé: Au cours de la dernière décennie, la dissémination de l’information
au travers des réseaux sociaux a augmenté de facon spectaculaire. L’analyse
des interactions entre les utilisateurs de ces réseaux donne la possibilité de la
prédiction en temps réel de l’évolution de l’information.

L’étude des réseaux sociaux présentent de nombreux défis scientifiques,
comme par exemple : (a) peut on trouver un compromis entre la qualité,
l’autorité, la pertinence et l’actualité du contenu ? (b) Peut on utiliser les
interactions entre les groupes d’utilisateurs pour révéler les utilisateurs influents,
pour prédire les pics de trafic ? (c) la publicité, les spams, et autres trafics non
pertinent peuvent ils être détectés et écartés ?

Dans cette thèse, nous proposons une nouvelle méthode pour effectuer la
détections dans les textes courts des sujets et des tendances, et leur classifica-
tion. Au lieu de découper les textes en mots ou en n-grames comme le font la
plupart des autres méthodes qui utilisent des sac-de-mots, nous introduisons
la Complexité Jointe, qui est définie comme le cardinal de l’ensemble des
facteurs communs distincts entre les deux textes, un facteur étant une chaîne
de caractères consécutifs. L’ensemble des facteurs d’un texte est décomposé en
temps linéaire en une structure efficace de mémoire appelée arbre suffixe et on
obtient par le superposition des deux arbres, en temps moyen sous-linéaire, la
complexité jointe des deux textes. La méthode a été largement testée à grande
échelle pour des sources de texte de Markov d’ordre fini et permet en effet une
bonne discrimination des sources (langue, etc). La simulation de la production
des textes par processus de Markov est une approximation satisfaisante de la
génération de textes en langage naturel. La méthode de la complexité jointe
est indépendante de la langue agnostique puisque nous pouvons détecter les
similitudes entre deux textes sans avoir recours à l’analyse sémantique. Elle ne
nécessite pas une analyse sémantique sur la base d’une grammaire spécifique,
par conséquent, il ne est pas nécessaire de construire un dictionnaire spécifique.
La méthode proposée peut aussi être utilisé pour détecter un changement de
thème dans une conversation, ainsi qu’un changement de style d’un écrivain
dans un texte.

Dans la deuxième partie de la thèse, nous profitons de la faible densité
de l’espace des données, ce qui nous a motivé de facon naturelle à appliquer
la théorie de Compressive Sensing extrapolée du problème de la localisation
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des objets physiques. Le Compressive Sensing stipule que les signaux qui
sont rares ou compressibles peuvent être récupérés à partir d’un nombre
très réduit de projections aléatoires incohérentes dans une base appropriée,
contrairement aux méthodes traditionnelles dominées par la théorie classique
de Nyquist-Shannon de l’échantillonnage. Grâce à la faible densité spatiale des
sujets, nous appliquons la théorie pour récupérer un vecteur d’indicateur, à
partir de l’ensemble des tweets. Le procédé fonctionne en conjonction avec un
filtre de Kalman pour mettre à jour des états d’un système dynamique comme
étape de raffinement.

Dans cette thèse, nous exploitons des ensembles de données recueillies en
utilisant le flux de l’API de Twitter, sur des tweets collectés en plusieurs
langues et nous obtenons des résultats très prometteurs lorsque l’on compare
ces méthodes au meilleur de l’existant.

Mots-clés: Réseaux sociaux dynamiques, complexité jointe, analyse
combinatoire, Compressive Sensing, Sparse Representation, Filtre Kalman
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Chapter 1

Introduction

Contents

1.1 Dynamic Social Networks . . . . . . . . . . . . . . . . . . 1

1.1.1 The Twitter Social Network . . . . . . . . . . . . . . . . . 4

1.2 Research and Technical Challenges . . . . . . . . . . . . . 4

1.3 Problem Statement and Objectives . . . . . . . . . . . . . 6

1.4 Scope and Plan of the Thesis . . . . . . . . . . . . . . . . 10

1.1 Dynamic Social Networks

Social networks have undergone a dramatic growth in recent years. Such

networks provide an extremely suitable space to instantly share multimedia

information between individuals and their neighbours in the social graph.

Social networks provide a powerful reflection of the structure, the dynamics

of the society and the interaction of the Internet generation with both people

and technology. Indeed, the dramatic growth of social multimedia and user

generated content is revolutionising all phases of the content value chain includ-

ing production, processing, distribution and consumption. It also originated

and brought to the multimedia sector a new underestimated and now critical
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aspect of science and technology, which is social interaction and networking.

The importance of this new rapidly evolving research field is clearly evidenced

by the many associated emerging technologies and applications, including (a)

online content sharing services and communities, (b) multimedia communication

over the Internet, (c) social multimedia search, (d) interactive services and

entertainment, (e) health care and (f) security applications. It has generated a

new research area called social multimedia computing, in which well established

computing and multimedia networking technologies are brought together with

emerging social media research.

Social networking services are changing the way we communicate with

others, entertain and actually live. Social networking is one of the primary

reasons why more people have become avid Internet users, people who until

the emergence of social networks could not find interests in the Web. This

is a very robust indicator of what is really happening online. Nowadays,

users both produce and consume significant quantities of multimedia content.

Moreover, their behaviour through online communities, is forming a new

Internet era where multimedia content sharing through Social Networking

Sites (SNSs) is an everyday practice. More than 200 SNSs of worldwide

impact are known today and this number is growing quickly. Many of the

existing top web sites are either SNSs or offer some social networking capabilities.

Except for the major social networks with hundreds of millions of users

that span in the entire world, there are also many smaller SNSs which are

equally as popular as the major social networks within the more limited

geographical scope of their membership, e.g. within a city or a country. There
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are also many vertically oriented communities that gather users around a specific

topic and have many dedicated members on all continents.

Facebook is ranked among the most visited sites in the world, with over

than 1.3 billion subscribed users to date. Moreover, Friendster is popular in

Asia, Orkut in Brazil and Vkon-takte in Russia. On top of that, there are

dozens of other social networks with vibrant communities, such as Vznet, Xing,

Badoo, Netlog, Tuenti, Barrabes, Hyves, Nasza Klasa, LunarStorm, Zoo, Sapo,

Daily-Motion and so on. There are also many vertically oriented communities

which gather users around a specific topic, such as music, books, etc. LinkedIn

with over 330 million users or Viadeo with 50 million users and Xing with

13.5 million users are mostly oriented in establishing professional connections

between their users and initiate potential business collaborations.

The rapid growth in popularity of social networks has enabled large num-

bers of users to communicate, create and share content, give and receive

recommendations, and, at the same time, it opened new challenging problems.

The unbounded growth of content and users pushes the Internet technologies

to its limits and demands for new solutions. Such challenges are present in all

SNSs to a greater or lesser extent. Considerable amount of effort has already

been devoted worldwide for problems such as content management in large scale

collections, context awareness, multimedia search and retrieval, social graph

modelling analysis and mining, etc.
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1.1.1 The Twitter Social Network

Twitter is an online social networking service that enables users to send and read

short messages of up to 140 characters called “tweets”. Registered users can read

and post tweets, but unregistered users can only read them. Users access Twit-

ter through the website interface, SMS, or through a mobile device application.

Twitter is one of the most popular social networks and micro-blogging service in

the world, and according to its website it has more than 640 million users con-

nected by 24 billion links. In Twitter, “following” someone means that a user will

have in his personal timeline other people’s tweets (Twitter updates). “Followers”

are people who receive other people’s Twitter updates. Approximately 99.89%

of the Twitter accounts have less than 3, 500 followers and followings. There are

approximately 40 million accounts with less than 10 followers and followings,

that is between 6% to 7% of all Twitter accounts. It is a social trend to ask

followed accounts to follow back in Twitter. There is a limit at 2, 000 followings

that starts growing after 1, 800 followers, which is the number of followings set

by Twitter to prevent users monitoring too many accounts whereas they have

no active role in Twitter. Approximately 40% of accounts have no followers and

25% have no followings. Twitter is interesting to be studied because it allows

the information spread between people, groups and advertisers, and since the

relation between its users is unidirectional, the information propagation within

the network is similar to the way that the information propagates in real life.

1.2 Research and Technical Challenges

This section lists the main research challenges in social networks, which are

currently being investigated by the research community.
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• The analysis of relations and communications between members of a com-

munity can reveal the most influential users from a social point of view.

• As social networks will continue to evolve, the discovery of communities,

users’ interests [1], and the construction of specific social graphs from large

scale social networks will continue to be a dynamic research challenge [2].

Research in dynamics and trends in social networks may provide valuable

tools for information extraction that may be used for epidemic predictions

or recommender systems [3, 4, 5].

• The information extracted from social networks proved to be a useful tool

towards security. One example of an application related to security is the

terrorism analysis, e.g. the analysis of the 9-11 terrorist network [6]. This

study was done by gathering public information from major newspapers

on the Internet and analyzed it by means of social networks [7]. Therefore,

cyber surveillance for critical infrastructure protection is another major

research challenge on social network analysis.

• Searching in blogs, tweets and other social media is still an open issue since

posts are very small in size but numerous, with little contextual informa-

tion. Moreover, different users have different needs when it comes to the

consumption of social media. Real time search has to balance between

quality, authority, relevance and timeliness of the content [8].

• Crowdsourcing systems gave promising solutions to problems that were

unsolved for years. The research community nowadays is working by lever-

aging human intelligence to solve critical problems [9, 10], since social net-

works contain immense knowledge through their users. However, it is not

trivial to extract that knowledge [11].



6 Chapter 1. Introduction

• Traffic prediction based on media consumption may be correlated between

groups of users. This information can be used to dimension media servers

and network resources to avoid congestion and improve the quality of ex-

perience and service.

Content sharing and distribution needs will continue to increase. Mobile

phones, digital cameras and other pervasive devices produce huge amounts

of data which users want to distribute if possible in real time [12].

• Since users population and data production increase, spam and advertise-

ments will continue growing [13]. In addition, the importance of social

networks to influence the opinions of the users has to be protected with a

mechanism that promotes trustworthy opinions that are relevant to busi-

nesses.

• As in every human community, online social communities face also criti-

cal social and ethical issues that need special care and delicate handling.

Protection of personal information and many other problems need special

attention [14].

In order to address these challenges, we need to extract the relevant infor-

mation from online social media in real time.

1.3 Problem Statement and Objectives

Topic detection and trend sensing is the problem of automatically detecting

topics from large text documents and extracting the main opinion without any

human intervention. This problem is of great practical importance given the

massive volume of documents available online in news feeds, electronic mail,
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digital libraries, and social networks.

Text classification is the task of assigning predefined labels or categories to

texts or documents. It can provide conceptual views of document collections and

has important applications in real world problems. Nowadays, the documents

which can be found online are typically organized by categories according to

their subject, e.g. topics. Some widespread applications of topic detection

and text classification is community detection, traffic prediction, dimensioning

media consumption, privacy, and spam filtering, as mentioned in Section 1.2.

By performing topic detection on social network communities, we can re-

group users in teams and find the most influential ones, which can be used to

build specific and strategic plans. Public information in social networks can be

extracted by topic detection and classification and used for cyber surveillance

in an automatic way in order to avoid the overload. Extracting an opinion

from social networks is difficult, because users are writing in a way which

does not have correct syntax or grammar and contains many abbreviations.

Therefore, mining opinions in social networks can benefit by on automatic

topic detection on really short and tremendous posts. By grouping users and

adding labels to discussions or communities we are able to find their interests

and tag people that share information very often. This information can be

used to dimension media servers and network resources to avoid congestion and

improve the quality of experience and service. Finally, by performing topic

classification we can find similarities between posts of users that spread irrele-

vant information into the network and enable a spam filter to defend against that.

In this thesis we present a novel method to perform topic detection, clas-
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sification and trend sensing in short texts. The importance of the proposed

method comes from the fact that up to now, the main methods used for text

classification are based on keywords detection and machine learning techniques.

By using keywords or bag-of-words in tweets will often fail because of the

wrongly or distorted usage of the words – which also needs lists of keywords for

every language to be built – or because of implicit references to previous texts or

messages. In general, machine learning techniques are heavy and complex and

therefore are not good candidates for real time text classification, especially in

the case of Twitter where we have natural language and thousands of tweets per

second to process. Furthermore machine learning processes have to be manually

initiated by tuning parameters, and it is one of the main drawbacks for that kind

of application. Some other methods are using information extracted by visiting

the specific URLs on the text, which makes them a heavy procedure, since one

may have limited or no access to the information, e.g. because of access rights,

or data size. In this thesis we are trying to address the discussed challenges

and problems of other state-of-the-art methods and propose a method which is

not based on keywords, language, grammar or dictionaries, in order to perform

topic detection, classification and trend sensing.

Instead of relying on words as most other existing methods which use

bag-of-words or n-gram techniques, we introduce Joint Complexity (JC), which

is defined as the cardinality of a set of all distinct common factors, subsequences

of characters, of two given strings. Each short sequence of text is decomposed

in linear time into a memory efficient structure called Suffix Tree and by

overlapping two trees, in linear or sublinear average time, we obtain the JC

defined as the cardinality of factors that are common in both trees. The method
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has been extensively tested for text generation by Markov sources of finite

order for a finite alphabet. The Markovian generation of text gives a good

approximation for natural text generation and is a good candidate for language

discrimination. One key take-away from this approach is that JC is language-

agnostic since we can detect similarities between two texts without being based

on grammar and vocabulary. Therefore there is no need to build any specific

dictionary or stemming process. JC can also be used to capture a change in topic

within a conversation, as well as a change in the style of a specific writer of a text.

On the other hand, the inherent sparsity of the data space motivated us

in a natural fashion the use of the recently introduced theory of Compressive

Sensing (CS) [15, 16] driven by the problem of target localization [17]. More

specifically, the problem of estimating the unknown class of a message is reduced

to a problem of recovering a sparse position-indicator vector, with all of its

components being zero except for the component corresponding to the unknown

class where the message is placed. CS states that signals which are sparse

or compressible in a suitable transform basis can be recovered from a highly

reduced number of incoherent random projections, in contrast to the traditional

methods dominated by the well-established Nyquist-Shannon sampling theory.

The method works in conjunction with a Kalman filter to update the states of

a dynamical system as a refinement step.

In this thesis we exploit datasets collected by using the Twitter streaming

API, getting tweets in various languages and we obtain very promising results

when comparing to state-of-the-art methods.
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1.4 Scope and Plan of the Thesis

In this thesis, a novel method for topic detection, classification and trend sensing

in Dynamic Social Networks is proposed and implemented. Such system is able

to address the research and technical challenges mentioned in Section 1.2. The

structure of this thesis is organized as follows.

First, Chapter 2 overviews the state-of-the-art of topic detection, classifi-

cation and trend sensing techniques for online social networks. First, it describes

the document–pivot and feature–pivot methods, along with a brief overview of

the pre-processing stage of these techniques. Six state-of-the-art methods: LDA,

Doc-p, GFeat-p, FPM, SFPM, BNgram are described in details, as they serve

as the performance benchmarks to the proposed system.

In Chapter 3, we introduce the Joint Sequence Complexity method. This

chapter describes the mathematical concept of the complexity of a sequence,

which is defined as the number of distinct subsequences of the given sequence.

The analysis of a sequence in subcomponents is done by suffix trees, which is a

simple, fast, and low complexity method to store and recall subsequences from

the memory. We define and use Joint Complexity for evaluating the similarity

between sequences generated by different sources. Markov models well describe

the generation of natural text, and their performance can be predicted via linear

algebra, combinatorics, and asymptotic analysis. We exploit Markov sources

trained on different natural language datasets, for short and long sequences, and

perform automated online sequence analysis on information streams in Twitter.
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Then, Chapter 4 introduces the Compressive Sensing based classification

method. Driven by the methodology of indoor localization, the algorithm

converts the classification problem into a signal recovery problem, so that CS

theory can be applied. First we employ Joint Complexity to perform topic

detection and build signal vectors. Then we apply the theory of CS to perform

topic classification by recovering an indicator vector, while reducing significantly

the amount of information from tweets. Kalman filter is introduced as a

refinement step for the update of the process, and perform users and topics

tracking.

Chapter 5 presents the extension of Joint Complexity and Compressive

Sensing on two additional research subjects that have been studied during

this thesis, (a) localization and path tracking in indoor environments, and (b)

cryptography based on the Eulerian circuits of original texts. It has to be

noted that Section 5.2 describes the use of Compressive Sensing, which was first

exploited in the problem of indoor localization and path tracking, and motivated

us to use the theory for text classification.

Finally, Chapter 6 presents the concluding remarks and gives directions

for future work and perspectives.
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2.1 Introduction

Topic detection and tracking aims at extracting topics from a stream of tex-

tual information sources, or documents, and to quantify their “trend” in real

time [18]. These techniques apply on pieces of texts, i.e. posts, produced within

social media platforms. Topic detection can produce two types of complementary

outputs: cluster output or term output are selected and then clustered. In the

first method, referred to as document–pivot, a topic is represented by a cluster

of documents, whereas in the latter, commonly referred to as feature–pivot, a

cluster of terms is produced instead. In the following, we review several popular

approaches that fall in either of the two categories. Six state-of-the-art methods:

Latent Dirichlet Allocation (LDA), Document–Pivot Topic Detection (Doc-p),

Graph–Based Feature–Pivot Topic Detection (GFeat-p), Frequent Pattern Min-

ing (FPM), Soft Frequent Pattern Mining (SFPM), BNgram are described in

details, as they serve as the performance benchmarks to the proposed system.

2.2 Document–pivot methods

Simple document–pivot approaches cluster documents by leveraging some simi-

larity metric between them. A recent work [19] follows this direction to provide

a method for “breaking news” detection in Twitter. Tweets retrieved using

targeted queries or hashtags are converted into a bag-of-words representation

weighted with boosted tf-idf (term frequency–inverse document frequency)

emphasizing important entities such as names of countries or public figures.

Bag-of-words of a text is its representation as the set of its words, disregarding

grammar and even word order but keeping multiplicity. Tweets are then

incrementally merged in clusters by considering the textual similarity between
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incoming tweets and existing clusters. Similar approaches based on textual

similarity and tf-idf can be found in literature [20, 21]. Among them, the

method discussed in [21] classifies tweets as referring to real–world events or

not. The classifier is trained on a vast variety of features including social aspects

(e.g., number of mentions) and other Twitter–specific features. An important

drawback of the method is the need for manual annotation of training and test

samples.

Dimensions other than text can also be used to improve the quality of

clustering. TwitterStand [22] uses a “leader–follower” clustering algorithm that

takes into account both textual similarity and temporal proximity. Each cluster

center is represented using a centroid tf-idf vector and the average post–time

of the tweet in the cluster. A similarity metric based on both elements and

on the number of shared hashtags allows incremental merging of new tweets

with existing clusters. The main disadvantages of this method is the sensitivity

to noise (which is a known problem for document–pivot methods [23] ) and

fragmentation of clusters. It needs a manual selection of trusted information

providers and periodic defragmentation runs to mitigate such effects. The goal

in a large corpus is to detect the first document discussing a given topic like

in [24]. A new story is created by a document having low similarity with all

previously detected clusters. Locality sensitive hashing is used for fast retrieval

of nearest neighbors for the incoming document.

In conclusion, document-pivot methods have two main problems, which

are: (a) segmentation of classification groups, and (b) depend on arbitrary

thresholds for the classification of an incoming tweet.
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2.3 Feature–pivot methods

Feature–pivot methods are closely related to topic models in natural language

processing, namely statistical models used to build sets of terms which are

representative of the topics occurring in a corpus of documents. Most of the

state-of-the-art static topic models are based on the Latent Dirichlet allocation

(LDA) [25], which is described in Section 2.4.3. Even though LDA extensions

for dynamic data have been proposed [26], alternative approaches trying to

capture topics through the detection of term burstiness have been studied [27],

mainly in the context of news media mining. The idea behind those methods is

that “breaking news”, unlike other discussion topics, happen to reach a fast peak

of attention from routine users as soon as they are tweeted or posted [28, 29].

Accordingly, the common framework which underlies most of the approaches

in this category first identifies bursty terms and then clusters them together to

produce topic definitions.

The diffusion of the services over social media and detection of bursty

events had been studied in generic document sets. The method presented

in [23], for instance, detects bursty terms by looking their frequency in a given

time window. Once the bursty terms are found, they are clustered using a

probabilistic model of cooccurrence. The need for such a global topic term

distribution restricts this approach to a batch mode of computation. Similar

methods were tested for topic detection in social media, such as in the Twitter,

but with additional emphasis on the enrichment of the obtained topics with

non–bursty but relevant terms, URLs and locations [30].
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Graph–based approaches detect term clusters based on their pairwise sim-

ilarities. The algorithm proposed in [31] builds a term cooccurrence graph,

whose nodes are clustered using a community detection algorithm based on

betweenness centrality, which is an indicator of a node’s centrality in a network

and is equal to the number of shortest paths from all vertices to all others that

pass through that node. Additionally, the topic description is enriched with the

documents which are most relevant to the identified terms. Graphs of short

phrases, rather than of single terms, connected by edges representing similarity

have also been used [32]. Graph–based approaches have also been used in the

context of collaborative tagging systems with the goal of discovering groups of

tags pertaining to topics of social interest [33].

Signal processing approaches have also been explored in [34], which com-

pute df-idf (a variant of tf-idf) for each term in each considered time slot, and

then apply wavelet analysis on consecutive blocks. The difference between the

normalised entropy of consecutive blocks is used to construct the final signal.

Relevant terms which are bursty are extracted by computing the autocorre-

lation of the signal and heuristically learning and determining a threshold to

detect new bursty terms. Also in this case, a graph between selected terms is

built based on their cross–correlation and it is then clustered to obtain event

definitions. The Discrete Fourier Transform is used in [35], where the signal for

each term is classified according to its power and periodicity. Depending on the

identified class, the distribution of appearance of a term in time is modeled using

Gaussian distributions. The Kullback–Leibler divergence (as a relative entropy)

between the distributions is then used to determine clusters and increase the

computational complexity of the method.
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The knowledge of the community leads to even more sophisticated ap-

proaches. In a recent work [36] a PageRank–like measure is used to identify

important users on the Twitter social network. Such centrality score is combined

with a measure of term frequency to obtain a measure for each term. Then,

clustering on a correlation graph of bursty terms delineates topic boundaries.

These methods are based on the analysis of similarities between terms

and often give wrong correlation of topics, with their main disadvantage being

the use of dictionaries and stemming processes.

2.4 Related Work

In general the topic detection methods use preprocessing techniques. Next, we

define all the components of the topic detection process. In Section 2.4.1, we

present the problem statement and define some basic terminology. Then in Sec-

tion 2.4.2, we describe the data preprocessing and in the following sections we

present six methods that take in as input the preprocessed data and output the

detected topics.

2.4.1 Problem Definition

We address the task of detecting topics in real–time from social media streams.

To keep our approach general, we consider that the stream is made of short

pieces of text generated by social media users, e.g. posts, messages, or tweets in

the specific case of Twitter. Posts are formed by a sequence of words or terms,

and each one is marked with the timestamp of creation. A plethora of methods
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have a user–centered scenario in which the user starts up the detection system

by providing a set of seed terms that are used as initial filter to narrow down the

analysis only to the posts containing at least one of the seed terms. Additionally,

there exists an assumption that the time frame of interest (can be indefinitely

long) and a desired update rate are provided (e.g. detect new trending topics

every 15 minutes). The expected output of the algorithm is a topic, defined as

a headline and a list of terms, delivered at the end of each time slot determined

by the update rate. This setup fits well many real–world scenarios in which an

expert of some domain has to monitor specific topics or events being discussed in

social media [3, 37]. For instance, this is the case for computational journalism in

which the media inquirer is supposed to have enough knowledge of the domain of

interest to provide initial terms to perform an initial filtering of the data stream.

Even if it requires an initial human input, this framework still remains generic

and suitable to any type of topic or event.

2.4.2 Data Preprocessing

The content of user generated messages could be unpredictably noisy. In many

works, in order to reduce the amount of noise before the proper topic detection

is executed, the raw data extracted through the seed terms filter is subjected to

three preprocessing steps.

• Tokenization: In a raw post, terms can be combined with any sort of punc-

tuation and hyphenation and can contain abbreviations, typos, or conven-

tional word variations. The Twokenizer tool [20] is used to extract bags

of cleaner terms from the original messages by removing stopwords and

punctuation, compressing redundant character repetitions, and removing



20 Chapter 2. Background and Related Work

mentions, i.e., IDs or names of other users included in the text for messag-

ing purposes.

• Stemming: In information retrieval, stemming is the process of reducing

inflected words to their root (or stem), so that related words map to the

same stem. This process naturally reduces the number of words associated

to each document, thus simplifying the feature space. Most techniques use

an implementation of the Porter stemming algorithm [38].

• Aggregation: Topic detection methods based on word or n–grams cooccur-

rences, or any other type of statistical inference, suffer in the absence of

long documents. This is the case of social media, where user–generated

content is typically in the form of short posts. In information retrieval it

is a common practice to partially address this problem by concatenating

different messages together to produce documents of larger size. Large doc-

uments construction is based on two strategies. The first strategy involves

temporal aggregation that concatenates together N messages, whose gen-

eration date is contiguous. The second strategy involves a similarity–based

aggregation which attaches to a message all the near–duplicate messages

posted in the same time slot, identified through an efficient document clus-

tering method [24], which is also also used by one of the examined topic

detection algorithms presented in Section 2.4.4.

Determining the effect of such preprocessing algorithms on the quality of the

final topic detection is difficult to assess, and it has not been much investigated

so far. For instance, the aggregation of posts in super–documents could on the

one hand help to improve the word cooccurrence statistic but on the other hand

introduces the risk of grouping terms related to different topics, and to reveal
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false cooccurrence.

2.4.3 Latent Dirichlet Allocation

Topic extraction in textual corpus can be addressed through probabilistic topic

models. In general, a topic model is a Bayesian model which associates with

each document a probability distribution over the topics, where each topic is in

turn a probability distribution. The Latent Dirichlet Allocation (LDA) [25] is

the best known and most widely used topic model. According to LDA, every

document is considered as a bag of terms, which are the only observed variables

in the model. The topic distribution per document and the term distribution

per topic are instead hidden variable and have to be estimated through Bayesian

inference. The Collapsed Variational Bayesian inference algorithm [39], which

is an LDA variant, is computationally efficient, more accurate than standard

variational Bayesian inference for LDA, and has given rise to many independent

implementations already available in the literature. LDA requires the expected

number of topics k as a input. The estimation of the optimal k, although possible

through the use of non-parametric methods [40], falls beyond the scope of this

thesis.

2.4.4 Document–Pivot Topic Detection

The second method discussed here, is an instance of a classical Topic Detection

and Tracking method which uses a document–pivot approach (Doc-p). It works

as follows:

• First, the method performs online clustering of posts. It computes the

cosine similarity of the tf-idf [41] representation of an incoming post with
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all other posts processed so far. If the best cosine similarity is above some

threshold θtf−idf , it assigns the item to the same cluster as its best match;

otherwise it creates a new cluster with the new post as its only item. The

best matching tweet is efficiently retrieved by Locality Sensitive Hashing

(LSH).

• Then, it filters out clusters with item count smaller than θn.

• For each cluster c, it computes a score as follows:

score(c) =
∑

doc ∈ C

∑
word ∈ doc

exp(−p(word))

The probability of appearance of a single term p(word) is estimated from

a reference dataset that has been collected from Twitter, mentioned in

Section 2.4.5. Thus, less frequent terms contribute more to the score of the

cluster.

• Clusters are sorted according to their score and the top clusters are re-

turned. LSH can rapidly provide the nearest neighbours with respect to

cosine similarity in a large collection of documents. An alternative to LSH

is to use inverted indices on the terms which appear in the tweets and then

compute the cosine similarity between the incoming document and the set

of documents that have a significant term overlap with it; however, the use

of LSH is much more efficient as it can provide the nearest neighbours with

respect to cosine similarity directly.

In practice, when posts are as short as tweets, the similarity of two items is

usually either close to zero or close to one (between 0.8 to 1.0). This observation

makes setting θtf−idf relatively easy to 0.5. Due to this phenomenon, items
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grouped together by this procedure are usually, but not always, near–duplicates

(e.g. ReTweets). Therefore, it is clear that topics produced by this method

will be fragmented, i.e. the same topic may be represented by different sets of

near duplicate tweets. To begin dealing with this issue, we present methods for

aggregating as described in Section 2.4.2.

2.4.5 Graph–Based Feature–Pivot Topic Detection

The Graph–Based Feature–Pivot Topic Detection method (GFeat-p) is a first of

a series of feature–pivot methods, where the clustering step is performed via the

Structural Clustering Algorithm for Networks (SCAN) [42], which is in general

applied to network analysis. Apart from detecting communities of nodes, SCAN

provides a list of hubs (vertices that bridge many clusters), each of which may

be connected to a set of communities. For SCAN applied to topic detection, the

nodes in the network correspond to terms and the communities correspond to

topics. The detected hubs are terms which are related to more than one topic, and

effectively provides an explicit link between topics. That would not be possible to

achieve with a common partition clustering algorithm. The terms to be clustered,

is a subset of terms present in the corpus, applied to independent reference

corpus selected with randomly collected tweets [20]. For each of the terms in

the reference corpus, the likelihood of appearance p(w|corpus) is estimated as

follows:

p(w|corpus) =
Nw(corpus) + δ

N(corpus)

where Nw(corpus) is the number of appearances of term w in the corpus,

N(corpus) is the number of terms in corpus (including repetition), and δ is a
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constant (typically set to 0.5) that is included to regularize the probability esti-

mate (i.e. to ensure that a new term that does not appear in the corpus is not

assigned a probability of 0). The most important terms in the new corpus, are

determined by computing the ratio of the likelihoods of appearance in the two

corpora for each term, as follows:

p(w|corpusnew)

p(w|corpusref)

The terms with the highest ratio are expected to be related to the most

actively discussed topics in the corpus. Once the high ratio terms are identified,

a term graph is constructed and the SCAN graph–based clustering algorithm is

applied to extract groups of terms, each of which is considered to be a distinct

topic. More specifically, the algorithm steps are the following:

• Selection: The top K terms are selected using the ratio of likelihoods

measure and will be used as the nodes for a graph G.

• Linking: The nodes of G are connected using a term linking strategy.

According to a preselected similarity measure for pairs of terms all pairwise

similarities are computed.

Moreover, each term is linked with its k nearest neighbours (kNN approach)

or all pairs of nodes that have similarity higher that ε (ε-based approach)

are linked.

• Clustering: The SCAN algorithm is applied to the graph; a topic is gener-

ated for each of the detected communities. A hub may be linked to more

than one topic or community.

The term linking step is crucial for the success of the method. Unfortunately,
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there is no straightforward method for determining a priori the best similarity

measure or node linking strategy to be used. Additionally, it can be expected

that the graph construction tuning parameters will need to vary for datasets with

different topic granularities and levels of internal topic connectivity.

2.4.6 Frequent Pattern Mining

As it was mentioned in the previous section, a problem with the feature–pivot

methods is that terms clustering relies on pairwise similarities which are based

on cooccurrences number only. In the case of closely interconnected topics which

share a relatively large number of terms, this procedure most likely produces

general topics. An option to deal with this issue is to take into account the

simultaneous cooccurrence between more than two terms. This motivation leads

naturally to consider the use of frequent set of items, a well–defined technique

in transaction mining for topic detection to determine which items are likely to

cooccur in a set of transactions [43].

In the social media context, an item is any term w mentioned in a post

(excluding stop words, punctuation tokens, etc.). The transaction is the post,

and the transaction set are all posts that occur in a time slot T . The number of

times that any given set of terms occurs in the time slot is defined as its support,

and any set of items that meets a minimum support is called a pattern. The initial

challenge is to apply highly-scalable Frequent Pattern (FP) detection to each

time slot to identify the most frequent terms or patterns. These terms are used

to characterize the topics that best illustrate the underlying social interactions.

Below, we describe these two processing steps, FP detection and ranking.

1. FP detection: First, the algorithm constructs a term list according to their

frequency [44, 45]. Then, for each time slot an FP-Tree sorts the patterns
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according to their cooccurrences and their support. Finally, the FP-tree

structures are aggregated and analysed to produce association rules on the

transaction set.

2. FP ranking: Once a set of frequent patterns has been extracted from the

dataset, they are ranked and the top N results are returned as candidate

topics. The challenge is to rank patterns such that terms in the candi-

date topics are sufficiently related and with enough diversity to cover the

different underlying subjects of conversation in the social interactions. A

common way to rank patterns is to simply use the support of a given pat-

tern; the more often a set of terms cooccurs, the more likely it can be

considered relevant as a topic.

2.4.7 Soft Frequent Pattern Mining

In Section 2.4.6 a frequent pattern mining approach for topic detection was de-

scribed. It provided an elegant solution to the problem of feature–pivot methods

that takes into account only pairwise cooccurrences between terms in the case of

corpus with densely interconnected topics. Section 2.4.5 examined only pairwise

cooccurrences, where frequent pattern mining examines cooccurrences between

any number of terms, typically larger than two. A question that naturally

arises is whether it is possible to formulate a method that lies between these

two extremes. Such a method would examine cooccurrence patterns between

sets of terms with cardinality larger that two, like frequent pattern mining

does, but it would be less strict by not requiring that all terms in these sets

cooccur frequently. Instead, in order to ensure topic cohesiveness, it would

require that large subsets of the terms grouped together, but not necessar-
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ily all, cooccur frequently, resulting in a “soft” version of frequent pattern mining.

The proposed approach (SFPM) works by maintaining a set of terms S,

on which new terms are added in a greedy manner, according to how often

they cooccur with the terms in S. In order to quantify the cooccurrence match

between a set S and a candidate term t, a vector DS for S and a vector Dt for

the term t are maintained, both with dimension n, where n is the number of

documents in the collection. The i-th element of DS denotes how many of the

terms in S cooccur in the i-th document, whereas the i-th element of Dt is a

binary indicator that represents if the term t occurs in the i-th document or

not. Thus, the vector Dt for a term t that frequently cooccurs with the terms

in set S, will have a high cosine similarity to the corresponding vector DS.

Note that some of the elements of DS may have the value |S|, meaning that

all items in S occur in the corresponding documents, whereas other may have

a smaller value indicating that only a subset of the terms in S cooccur in the

corresponding documents. For a term that is examined for expansion of S, it is

clear that there will be some contribution to the similarity score also from the

documents in which not all terms cooccur, albeit somewhat smaller compared

to that documents in which all terms cooccur. The “soft” matching between a

term that is considered for expansion and a set S is achieved. Finding the best

matching term can be done either using exhaustive search or some approximate

nearest neighbour scheme such as LSH. As mentioned, a greedy approach that

expands the set S with the best matching term is used, thus a criterion is

needed to terminate the expansion process. The termination criterion clearly

has to deal with the cohesiveness of the generated topics, meaning that if not

properly set, the resulting topics may either end up having too few terms or
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really being a mixture of topics (many terms related to possibly irrelevant

topics). To deal with this, the cosine similarity threshold θ(S) between S and

the next best matching term is used. If the similarity is above the threshold,

the term is added, otherwise the expansion process stops. This threshold is the

only parameter of the proposed algorithm and is set to be a function of the

cardinality of S. In particular a sigmoid function of the following form is used:

θ(S) = 1− 1

1 + exp((|S| − b)/c)

The parameters b and c can be used to control the size of the term clusters

and how soft the cooccurrence constraints will be. Practically, the values of b

and c are set so that the addition of terms when the cardinality of S is small

is easier (the threshold is low), but addition of terms when the cardinality is

larger is harder. A low threshold for the small values of |S| is required so that

it is possible for terms that are associated to different topics and therefore

occur in more documents rather than to ones corresponding to the non–zero

elements of DS to join the set S. The high threshold for the larger values of

|S| is required so that S does not grow without limit. Since a set of topics is

required – rather than a single topic – the greedy search procedure is applied

as many times as the number of considered terms, each time initializing S

with a candidate term. This will produce as many topics as the set of terms

considered, many of which will be duplicates, thus a post-process of the results

is needed to remove these duplicates. To limit the search procedure in reason-

able limits the top n terms with the highest likelihood-ratio are selected by 2.4.5.

When the “soft” frequent pattern matching algorithm runs for some time,



2.4. Related Work 29

the vector DS may include too many non–zero entries filled with small values,

especially if some very frequently occurring term has been added to the set.

This may have the effect that a term may be deemed relevant to S because it

cooccurs frequently only with a very small number of terms in the set rather

than with most of them. In order to deal with this issue, after each expansion

step, any entries of DS that have a value smaller than |S|/2 are reset to zero.

The most relevant documents for a topic can be directly read from its vector

DS: the ones with the highest document counts.

2.4.8 BNgram

Both the frequent itemset mining and soft frequent itemset mining approaches

attempted to take into account the simultaneous cooccurences between more than

two terms. However, it is also possible to achieve a similar result in a simpler

way by using n–grams. This naturally groups together terms that cooccur and it

may be considered to offer a first level of term grouping. Using n–grams makes

particularly sense for Twitter, since a large number of the status updates in

Twitter are just copies or retweets of previous messages, so important n–grams

will tend to become frequent.

Additionally, a new feature selection method is introduced. The changing

frequency of terms over time as a useful source of information to detect emerging

topics is taken into account. The main goal of this approach is to find emerging

topics in post streams by comparing the term frequencies from the current time

slot with those of preceding time slots. The df − idft metric which introduces

time to the classic tf–idf score is proposed. Historical data to penalize those

topics which began in the past and are still popular in the present, and which

therefore do not define new topics have been used.
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The term indices, implemented using Lucene, are organized into different

time slots. In addition to single terms, the index also considers bigrams and

trigrams. Once the index is created, the df − idft score is computed for each

n–gram of the current time slot i based on its document frequency for this time

slot and penalized by the logarithm of the average of its document frequencies

in the previous t time slots:

scoredf−idft =
dfi + 1

log(
∑t
j=1 dfi−j

t
+ 1) + 1

In addition, a boost factor is considered to raise the importance of proper

nouns (persons, locations and organizations, in our case) using a standard

named entity recognizer [46], as they are essential terms in most discussed

stories. The use of this factor is similar to [19], where the authors highlight the

importance of such words for grouping results. The selected values for this factor

are based on the best values from the experiments of the previous work, being

boost=1.5 in case the n-gram contains a named entity and boost=1 otherwise.

As a result of this process, a ranking of n–grams is created sorted by their df-idft

scores. A single n–gram is often not very informative, but a group of them often

offers interesting details of a story. Therefore, a clustering algorithm to group

the most representative n–grams into clusters, each representing a single topic

is used. The clustering is based on distances between n–grams or clusters of

n–grams. From the set of distances, those not exceeding a distance threshold

are assumed to represent the same topic. The similarity between two n–grams

is defined as the fraction of posts that contain both of them. Every n–gram is

initially assigned to its own singleton cluster, then following a standard “group

average” hierarchical clustering algorithm [47] to iteratively find and merge
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the closest pair of clusters. When an n–gram cluster is joined to another, the

similarities of the new cluster to the other clusters are computed as the average

of the similarities of the combined clusters. The clustering is repeated until the

similarity between the nearest un-merged clusters falls below a fixed threshold

θ, producing the final set of topic clusters for the corresponding time slot.

The main contribution of this approach is the use of the temporal dimen-

sion of data to detect emerging stories. There are other similar approaches on

term weighting considering the temporal dimension of data but most of them

suffer from several shortcomings. For instance, in [27] two methods of finding

“peaky topics” are presented. They find the peak terms for a time-slot compared

to the rest of the corpus, whereas each slot is compared to the immediately

previous time slots. If some topic is discussed at several different times, their

approach could miss this since the defining words would be highly frequent in

the whole corpus. In addition, their approach only uses single words which often

seem to be too limited to identify stories. Finally, their use of the whole corpus

is less suitable for real-time analysis.

2.5 Chapter Summary

This chapter overviewed the state-of-the-art of topic detection, classification

and trend sensing techniques for online social networks. First, it described the

document–pivot and feature–pivot methods, along with a brief overview of the

pre-processing stage of these techniques. Six state-of-the-art methods: LDA,

Doc-p, GFeat-p, FPM, SFPM, BNgram were described in details, as they serve

as the performance benchmarks to the proposed system.
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3.1 Introduction

In this thesis we study joint sequence complexity and we introduce its applica-

tions for topic detection and text classification, in particular source discrimina-

tion. The mathematical concept of the complexity of a sequence is defined as

the number of distinct factors of it. The Joint Complexity is thus the number of

distinct common factors of two sequences. Sequences containing many common

parts have a higher Joint Complexity. The extraction of the factors of a sequence

is done by suffix trees, which is a simple and fast (low complexity) method to
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store and retrieve them from the memory. Joint Complexity is used for eval-

uating the similarity between sequences generated by different sources and we

will predict its performance over Markov sources. Markov models describe well

the generation of natural text, and their performance can be predicted via linear

algebra, combinatorics, and asymptotic analysis. This analysis follows in this

chapter. We exploit datasets from different natural languages, for both short

and long sequences, with promising results on complexity and accuracy. We

performed automated online sequence analysis on information streams, such as

Twitter.

3.2 Sequence Complexity

In the last decades, several attempts have been made to capture mathematically

the concept of the “complexity” of a sequence. In [56], the sequence complex-

ity was defined as the number of different factors contained in a sequence. If

X is a sequence and I(X) its set of factors (distinct substrings), then the car-

dinality |I(X)| is the complexity of the sequence. For example, if X = aabaa

then I(X) = {v, a, b, aa, ab, ba, aab, aba, baa, aaba, abaa, aabaa}, and |I(X)| = 12,

where v denotes the empty string. Sometimes the complexity of the sequence

is called the I–Complexity (IC) [50]. The notion is connected with quite deep

mathematical properties, including the rather elusive concept of randomness in

a string [51, 52, 53].
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3.3 Joint Complexity

In general, the information contained in a string cannot be measured in absolute

and a reference string is required. The concept of Joint Complexity (JC) has been

introduced in [54], as a metric of similarity between two strings. JC method is

the number of different factors, which are common in two sequences. In other

words the JC of sequence X and Y is equal to J(X, Y ) = |I(X) ∩ I(Y )|. We

denote Jn,m the average value of J(X, Y ) when X and Y have length n and m

respectively. In this work we study its growth when the lengths are the same,

n = m.

JC method is an efficient way of evaluating the degree of similarity between

two sequences. For example, the genome sequences of two dogs will contain

more common factors than the genome sequences of a dog and a cat. Similarly,

two texts written in the same language have more common factors than texts

written in very different languages. JC method is also greater when languages

have similarities (e.g., French and Italian), than when they differ significantly

(e.g., French and English). Furthermore, texts written in the same language but

on different topics (e.g., law and cooking) have smaller JC than texts on the same

topic (e.g., medicine). Therefore, JC method is a pertinent tool for automated

monitoring of social networks. This requires a precise analysis of the JC method,

discussed in this work as well as in [64], together with some experimental results,

confirming usefulness of the joint string complexity for short text discrimination.

In [54] it is proved that the JC of two texts of length n built from two

different binary memoryless sources grows like γ nκ√
α logn

, for some κ < 1 and

γ, α > 0 which depend on the parameters of the two sources. When the sources

are identical, i.e., when their parameters are identical, but the text still being
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independently generated, then the JC growth is O(n), hence κ = 1. When the

texts are identical (i.e., X = Y ), then the JC is identical to the I–Complexity

and it grows as n2

2
[56]. Therefore JC method can already be used to detect

“copy–paste” portion between the texts. Indeed the presence of a common factor

of length O(n) would inflate the JC by a term O(n2).

We should point out that experiments demonstrate that for memoryless

sources the JC estimate γ nk√
α logn

converges very slowly. Therefore, JC is not

really meaningful even when n ≈ 109. In this work we derive second order

asymptotics for JC of the following form γ nk√
α logn+β

for some β > 0. Indeed it

turns out that for text where n < 100 and log n < β, this new estimate converges

more quickly than the estimate γ nk√
α logn

, thus it can be used for short texts, like

tweets. In fact, our analysis indicates that JC can be refined via a factor for

P ( 1
α logn+β

) appearing in the JC, where P is a specific polynomial determined

via saddle point expansion. This additional term further improves the conver-

gence for small values of n, and also same periodic factors of small amplitude

appear when the source parameters satisfy some specific and very unfrequent

conditions.

In this work we extend the JC estimate to Markov sources of any order on a

finite alphabet. Although Markov models are no more realistic than memoryless

sources, say, for a DNA sequence, they seem to be fairly realistic for text gener-

ation [64]. An example of Markov simulated text for different order is shown in

Table 3.1 from “The Picture of Dorian Gray”.

In view of these facts, we can use the JC to discriminate between two

identical/non-identical Markov sources [55]. We introduce the discriminant func-

tion as follows d(X, Y ) = 1− 1
logn

log J(X, Y ) for two sequencesX and Y of length

n. This discriminant allows us to determine whether or not X and Y are gener-
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Table 3.1: Markov simulated text from the book “The Picture of Dorian Gray”

Markov order Text simulated by the given Markov order
3 “Oh, I do yourse trought lips whose-red from to his, now far

taked. If Dorian, Had kept has it, realize of him. Ther chariten
suddenial tering us. I don’t belige had keption the want you
are ters. I am in the when mights horry for own that words

4 “Oh, I want your lives. It is that is words the right it his find
it man at they see merely fresh impulses. But when you have
you, Mr. Gray, a fresh impulse of mine. His sad stifling round
of a regret. She is quite devoted forgot an arrowed.”

5 “Oh, I am so sorry. When I am in Lady Agatha’s black book
that the air of God, which had never open you must go. I am
painting, and poisons us. We are such a fresh impulse of joy
that he has done with a funny looked at himself unspotted”

ated by the same Markov source by verifying whether d(X, Y ) = O(1/ log n)→ 0

or d(X, Y ) = 1− κ + O(log log n/ log n) > 0, respectively when the length of X

and Y are both equal to n. In this work we concentrate mainly on the analysis

of the JC method, however, we also present some experimental evidence of how

useful our discriminant is for real texts.

In Figure 3.1, we compared the JC of a real English text with simulated texts

of the same length written in French, Greek, Polish, and Finnish (all language is

transcribed in the Latin alphabet, simulated from a Markov source of order 3).

It is easy to see that even for texts smaller in length than a thousand words, one

can discriminate between these languages. By discriminating, we mean that the

JC between texts of different languages drops significantly in comparison to JC

for texts of the same language. The figure shows that Polish, Greek, and Finnish

are farther from English than French is. On the other hand, in Figure 3.2, we

plot the similarity between real and simulated texts in French, Greek, Polish,

English, and Finnish.

In Polish, the second part of the text shifts to a different topic, and we can
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Figure 3.1: Joint Complexity of real English text versus simulated texts in
French, Greek, Polish, and Finnish
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Figure 3.2: Joint complexity of real and simulated texts (3rd Markov order) in
the English, French, Greek, Polish, and Finnish languages.
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see that the method can capture this difference. Clearly, the JC of such texts

grows like O(n) as predicted by theory. In fact, computations show that with

Markov models of order 3 for English versus French we have κ = 0.44; versus

Greek: κ = 0.26; versus Finnish: κ = 0.04; and versus Polish: κ = 0.01,

which is consistent with the results in Figure 3.1, except for the low value of κ

where the convergence to the asymptotics regime is slower. In fact, they agree

with the actual resolution of equation (3.7), which contains the transition to

an asymptotics regime. A comparison between different topics or subjects is

presented in Figure 3.3. We test four texts from books on constitutional and

copyright law as well as texts extracted from two cookbooks. As we can see, the

method can well distinguish the differences, and shows increased similarity for

the same topic.

The complexity of a single string has been studied extensively. The literature

is reviewed in [56] where precise analysis of string complexity is discussed for

strings generated by unbiased memoryless sources. Another analysis of the same

situation was also proposed in [54] which was the first work to present the joint

string complexity for memoryless sources. It is evident from [54] that a precise

analysis of JC is quite challenging due to the intricate singularity analysis and an

infinite number of saddle points. Here, we deal with the joint string complexity

applied to Markov sources, which to the best of our knowledge has never been

tackled before. The analysis requires two-dimensional asymptotic analysis with

two variable Poisson generating functions. In the following sections, we begin

with a discussion of models, and notations, and we present a summary of the

main results. Next, we present an extended overview of the theoretical analysis,

and apply the results in the context of the Twitter social network. We present a

study on expending asymptotics and periodic terms.
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Figure 3.3: Joint complexity of real text from a variety of books spanning con-
stitutional and copyright law to healthy cooking and recipes from the cuisine of
Italy.

3.4 Main Results

We detail our main results below. We introduce some general notations and then

present a summary.

3.4.1 Models and Notations

Let ω and σ be two strings over a finite alphabet A (e.g. A = {a, b}). We denote

by |ω|σ the number of times σ occurs as a factor in ω (e.g., |abbba|bb = 2). By

convention |ω|ν = |ω|+ 1, where ν is the empty string, because the empty string

is prefix and suffix of ω and also appears between the characters, and |ω| is the

length of the string.

Throughout we denote by X a string (text) and we plan to study its complex-

ity. We also assume that its length |X| is equal to n. Then the string complexity
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is I(X) = {ω : |X|ω ≥ 1}. Observe that

|I(X)| =
∑
σ∈A∗

1|X|σ≥1,

where 1A is the indicator function of a Boolean A. Notice that |I(X)| is equal

to the number of nodes in the associated suffix tree of X [56, 57, 58]. We will

come back on the suffix tree in Section 3.8.

Let X and Y be two sequences (not necessarily of the same length). We have

defined the Joint Complexity as the cardinality of the set J(X, Y ) = I(X)∩I(Y ).

We have

|J(X, Y )| =
∑
σ∈A∗

1|X|σ≥1 × 1|Y |σ≥1 .

We now assume that the strings X and Y are respectively generated by two

independent Markov sources of order r, so called source 1 and source 2. We

will only deal here with Markov of order 1, but extension to arbitrary order

is straightforward. We assume that source i, for i ∈ {1, 2} has the transition

probabilities Pi(a|b) from term b to term a, where (a, b) ∈ Ar. We denote by

P1 (resp. P2) the transition matrix of Markov source 1 (resp. source 2). The

stationary distributions are respectively denoted by π1(a) and π2(a) for a ∈ Ar.

Let Xn and Ym be two strings of respective lengths n and m, generated

by Markov source 1 and Markov source 2, respectively. We write Jn,m =

E(|J(Xn, Ym)|)− 1 for the joint complexity, i.e. omitting the empty string.

3.4.2 Summary of Main Results

Definition: We say that a matrix M = [mab](a,b)∈A2 is rationally balanced if

∀(a, b, c) ∈ A3: mab+mca−mcb ∈ Z, where Z is the set of integers. We say that a

positive matrix M = [mab] is logarithmically rationally balanced when the matrix
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log∗(M) = [`ab] is rationally balanced, where `ab = log(mab) when mab > 0 and

`ab = 0 otherwise. Furthermore, we say that two matrices M = [mab](a,b)∈A2

and M′ = [m′ab] are logarithmically commensurable when matrices log∗(M) and

log∗(M′) are commensurable, that is, there exist a nonzero pair of reals (x, y)

such that x log∗(M) + y log∗(M′) is rationally balanced.

We now present our main theoretical results in a series of theorems each

treating different cases of Markov sources. Most of the mathematics were primary

introduced in [64] and then developed in [72] and [73].

Theorem 1 Joint Complexity over same sources: Consider the average joint

complexity of two texts of length n generated by the same general stationary

Markov source, that is, P := P1 = P2.

(i) [Noncommensurable Case.] Assume that P is not logarithmically rationally

balanced. Then

Jn,n =
2 log 2

h
n+ o(1) (3.1)

where h is the entropy rate of the source.

(ii) [Commensurable Case.] Assume that P is logarithmically rationally balanced.

Then there is ε > 0 such that:

Jn,n =
2 log 2

h
(1 +Q0(log n)) +O(n−ε)

where Q0(.) is a periodic function of small amplitude.

Now we consider different sources, i.e. P1 6= P2 that are not the same and

have respective transition matrices P1 and P2. The transition matrices are on

Ar×Ar. For a tuple of complex numbers (s1, s2) we write P(s1, s2) for a matrix

whose (a, b)-th coefficient is (P1(a|b))−s1(P2(a|b))−s2 , with the convention that
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if one of the Pi(a|b) = 0 then the (a, b) coefficient of P(s1, s2) = 0.

We first consider the case when matrix P(s1, s2) is nilpotent [61], that is, for

some K the matrix PK(s1, s2) = 0.

Theorem 2 If P(s1, s2) is nilpotent, then there exists γ0 and ε > 0 such that

limn→∞ Jn,n = γ0 := 〈1(I − P(0, 0))−1|1〉 where 1 is the unit vector and 〈·|·〉 is

the inner product.

This result is not surprising since the common factors are uniformly bounded

in length, therefore form a finite set.

Indeed the common factors can only occur in a finite window of size K at the

beginning of the strings and this will be developed in the proofs.

Throughout, now we assume that P(s1, s2) is not nilpotent. We denote by K

the set of real tuple (s1, s2) such that P(s1, s2) has the main eigenvalue λ(s1, s2)

equal to 1. Let

κ = min
(s1,s2)∈K

{−s1 − s2}

(c1, c2) = arg min
(s1,s2)∈K

{−s1 − s2}.

with κ < 1.

Lemma 1 We have either c1 > 0 or c2 > 0 and (c1, c2) ∈ [−1, 0]2.

Theorem 3 Assume P(s1, s2) is not nilpotent and either c1 > 0 or c2 > 0. We

only handle c2 > 0, the case c1 > 0 being obtained by symmetry.

(i) [Noncommensurable Case.] We assume that P2 is not logarithmically bal-

anced. Let c0 < 0 such that (c0, 0) ∈ K. There exists γ1 and ε > 0 such that

Jn,n = γ1n
−c0(1 +O(n−ε)) (3.2)
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(ii) [Commensurable Case.] Let now P2 be logarithmically rationally balanced.

There exists a periodic function Q1(.) of small amplitude such that

Jn,n = γ1n
−c0(1 +Q1(log n) +O(n−ε)).

The case when both c1 and c2 are between −1 and 0 is the most intricate to

handle.

Theorem 4 Assume that c1 and c2 are between −1 and 0.

(i) [Noncommensurable Case.] When P1 and P2 are not logarithmically com-

mensurable matrices, then there exist α2, β2 and γ2 such that

Jn,n =
γ2n

κ

√
α2 log n+ β2

(1 +O(
1

log n
)) . (3.3)

(ii) [Commensurable Case.] Let P1 and P2 be logarithmically commensurable

matrices. Then there exists a double periodic function Q2(.) of small amplitude

such that:

Jn,n =
γ2n

κ

√
α2 log n+ β2

(1 +Q2(log n) +O(
1

log n
)).

3.5 Proof of Main Results

In this section we present proofs of our main results.

3.5.1 An important asymptotic equivalence

We have the identity:

Jn,m =
∑

w∈A∗−{ν}

P (w ∈ I(Xn)| ≥ 1) · P (w ∈ I(Yn) ≥ 1) . (3.4)
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We know that from [62, 58] there is a closed formula for

∑
n

P (|Xn|w ≥ 1)zn =
P1(w)z

(1− z)Dw(z)

which is, in the memoryless case,

Dw(z) = (1− z)(1 + Aw(z)) + P1(w)z|w|

where P (w) is the probability that w is a prefix of X ′n and Aw(z) is the

“autocorrelation” polynomial of word w [58]. For the Markov source, we omit

the expression which carries extra indices which track to the Markov correlations

for the starting symbols of the words. A complete description of the parameters

can be found in [62, 58].

Although it is a closed formula, this expression is not easy to manipulate. To

make the analysis tractable we notice that w ∈ I(Xn) is equivalent to the fact

that w is at least a prefix of one of the n suffices of Xn.

If the suffices would have been n independent infinite strings, then P (w ∈

I(Xn)) would be equal to 1 − (1 − P1(w))n whose generating function is
P1(z)z

(1−z)(1−z+P1(w)z)
which would be the same as P1(w)z

(1−z)(Dw(z)) if we set in Dw(z) with

Aw(z) = 0 and identify z|w| to z.

We define I1(n) (resp. I2(n)) as the set of prefixes of n independent strings

built on source 1 (resp. 2). Let

Cn,m =
∑

w∈A∗−{ν}

P (w ∈ I1(n))P (w ∈ I2(n))

As it is claimed in [62, 58] we prove that
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Lemma 2 There exists ε > 0

Jn,n = Cn,n
(
1 +O(n−ε)

)
+O(1). (3.5)

The proof is not developed in [62, 58] and seems to be rather complicated. It

can be found in [65].

3.5.2 Functional Equations

Let a ∈ A. We denote

Ca,m,n =
∑
w∈aA∗

P (w ∈ I1(n))P (w ∈ I2(n))

where w ∈ aA∗ for a ∈ A means that w starts with symbol a. Notice that

Ca,m,n = 0 when n = 0 or m = 0. Using the Markov nature of the string

generation, the quantity Ca,n,m for n,m ≥ 1 satisfies the following recurrence for

all a, b ∈ A

Cb,n,m = 1 +
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
×(P1(a|b))na(1− P1(a|b))n−na

×(P2(a|b))ma(1− P2(a|b))m−maCa,na,ma ,

where na is an integer smaller or equal to n (resp. ma) and denotes the number

of strings among n (resp. m), independent strings from source 1 (resp. 2) which

starts with symbol b, n strings starting with b and na tracks the number of such

string that starts with ba. Quantity ma is the counterpart for source 2. The
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unconditional average Cn,m satisfies for n,m ≥ 2

Cn,m = 1 +
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
πna1 (a)(1− π1(a))n−na

×πma2 (a)(1− π2(a))m−maCa,n,m.

since πi(a) is the probability that a string from source i starts with symbol a.

We introduce the double Poisson transform of Ca,n,m as

Ca(z1, z2) =
∑
n,m≥0

Ca,n,m
zn1 z

m
2

n!m!
e−z1−z2 (3.6)

which translates the recurrence (in the formula above na tracks the number) into

the following functional equation:

Cb(z1, z2) = (1− e−z1)(1− e−z2)

+
∑
a∈A

Ca (P1(a|b)z1, P2(a|b)z2) . (3.7)

Furthermore, the cumulative double Poisson transform

C(z1, z2) =
∑
n,m≥0

Cn,m
zn1 z

m
2

n!m!
e−z1−z2 (3.8)

satisfies

C(z1, z2) = (1− e−z1)(1− e−z2)

+
∑
a∈A

Ca(π1(a)z1, π2(a)z2) . (3.9)
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3.5.3 Double DePoissonization

The asymptotics of the coefficient Cn,m are extracted from the asymptotics of

function C(z1, z2) where <(z1, z2)→∞. This is an extension of DePoissonization

theorems of [63, 64, 57], and are used to prove the following lemma.

Lemma 3 (DePoissonization) When n and m tend to infinity:

Cn,m = C(n,m)(1 +O(n−1) +O(m−1)) .

This equivalence is obtained by proving some growth properties of C(z1, z2) when

(z1, z2) are complex numbers; such properties are stated in [64].

3.5.4 Same Markov sources

We first present a general result when the Markov sources are identical: P1 =

P2 = P. In this case (3.7) can be rewritten with ca(z) = Ca(z, z):

cb(z) = (1− e−z)2 +
∑
a∈A

ca (P (a|b)z) . (3.10)

This equation is directly solvable by the Mellin transform c∗a(s) =
∫∞
0
ca(x)xs−1dx

defined for −2 < <(s) < −1. For all b ∈ A we find [57]

c∗b(s) = (2−s − 2)Γ(s) +
∑
a∈A

(P (a|b))−sc∗a(s) . (3.11)

Introducing c∗(s) =
∫∞
0
C(z, z)zs−1dz [66], and the property of Mellin trans-

form
∫
f(ax)xs−1 = a−s

∫
f(x)xs−1dx. The definition domain of c∗(s) is <(s) ∈
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(−2,−1), and the Mellin transform c∗(s) of C(z, z) becomes

c∗(s) = (2−s − 2)Γ(s) +
∑
a∈A

(π(a))−sc∗a(s) .

Thus

c∗(s) = (2−s − 2)Γ(s)
(
1 + 〈1(I−P(s))−1|π(s)〉

)
(3.12)

where 1 is the vector of dimension |A| made of all 1’s, I is the identity matrix,

and P(s) = P(s, 0) = P(0, s), π(s) is the the vector made of coefficients π(a)−s

and 〈.|.〉 denotes the inner product.

By applying the methodology of Flajolet [67, 57], the asymptotics of c(z) for

| arg(z)| < θ is given by the residues of the function c∗(s)z−s occurring at s = −1

and s = 0. They are respectively equal to 2 log 2
h
z and −1−〈1(I−P(0, 0))−1π(0)〉.

The first residues comes from the singularity of (I − P(s))−1 at s = −1. This

led to the formula expressed in Theorem 1(i). When P is logarithmically

rationally balanced then there are additional poles on a countable set of complex

numbers sk regularly spaced on the same imaginary axes containing −1 and

such that P(sk) has eigenvalue 1. These poles contributes to the periodic terms

in Theorem 1(ii).

Computations on the trained transition matrix show that a Markov model of

order 3 for English text has entropy of 0.944221, while French text has an

entropy of 0.934681, Greek text has an entropy of 1.013384, Polish text has

an entropy of 0.665113, and Finnish text has an entropy of 0.955442. This is

consistent with Figure 3.2.
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3.5.5 Different Markov Sources

In this section we identify the constants in Theorem 3 and Theorem 4 with the

assumption P1 6= P2. We cannot obtain a functional equation for Ca(z, z)’s,

and we thus have to deal with two variables z1 and z2. We define the double

Mellin transform C∗a(s1, s2) =
∫∞
0

∫∞
0
Ca(z1, z2)z

s1−1
1 zs2−12 dz1dz2 and similarly

the double Mellin transform C∗(s1, s2) of C(z1, z2). And thus we should have the

identity

C∗b (s1, s2) = Γ(s1)Γ(s2) (3.13)

+
∑
a∈A

(P1(a|b))−s1(P2(a|b))−s2C∗a(s1, s2)

which leads to

C∗(s1, s2) = Γ(s1)Γ(s2)
(
1 + 〈1(I−P(s1, s2))

−1|π(s1, s2)〉
)

(3.14)

where π(s1, s2) denotes the vector composed of coefficients π1(a)−s1π2(a)−s2 .

In fact to define the Mellin transform we need to apply it to C(z1, z2) −
∂
∂z1
C(0, z2)z1e

−z1 − ∂
∂z2
C(z1, 0)z2e

−z2 which leads to exponentially decaying but

we omit this technical detail, which is fully described in [64]. The original value

C(z1, z2) is obtained via the inverse Mellin transform

C(z1, z2) =
1

(2iπ)2

∫ ∫
C(s1, s2)z

−s1
1 z−s22 ds1ds2 (3.15)

thus
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C(z, z) =
1

(2iπ)2

∫
<(s1)=ρ1

∫
<(s2)=ρ2

C∗(s1, s2)z
−s1−s2ds1ds2 . (3.16)

where (ρ1, ρ2) belongs to the definition domain of C∗(s1, s2); ρ ∈ (−2,−1) ×

(−2,−1).

We denote L(s) be the function of complex s such that P(s, L(s)) has eigen-

value 1 or equivalently such that (I−P(s1, s2))
−1 ceases to exist. The function

L(s) is meromorphic and has several branches; one branches describes the set

K when s is real. Now to evaluate the double integral (3.16) we move the line

of integration with respect to s2 from ρ2 to some M > 1 while fixing the value

of s1 and collecting on the way the residues on all the poles encounterned. In

particular, the dominant residue at s2 = L(s) contributes

C(z, z) =
1

2iπ

∫
<(s1)=ρ1

µ(s1)Γ(s1)Γ(L(s1))z
−s1−L(s1)ds1

+O(zρ1−M) (3.17)

where µ(s) is the residue of 〈1(I−P(s,s2))
−1π(s1, s2)〉 at point (s, L(s)), that is,

µ(s1) =
1

∂
∂s2
λ(s1, s2)

〈1|ζ(s1, s2)〉〈u(s1, s2)|π(s1, s2)〉
∣∣
s2=L(s1) .

where λ(s1, s2) is the eigenvalue which has value 1 at (s, L(s)) and u(s1, s2) and

ζ(s1, s2) are respectively the left and right eigenvectors with the convention that

〈ζ(s1, s2)|u(s1, s2)〉 = 1.

The expression is implicitly a sum since the function L(s) is meromorphic,

but we retain only the branch where λ(s1, s2) is the main eigenvalue of P(s1, s2)

that contributes to the leading term in the expansion of C(z, z). For more details
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see [64] where the analysis is specific to a case where one of the sources, namely

source 2, is memoryless uniform, i.e. P2 = 1
|A|1⊗ 1.

The next step consists in moving the integration line for s1 from ρ1 to c1

which corresponds to the position where function −s1−L(s1) (actually equal to

κ) attains the minimum value. We only consider the case when L(c1) = c2 < 0

(the other case is obtained by symmetry). The poles are due to the function Γ(.).

The first pole encountered is s1 = −1 but this pole cancels with the technical

arrangement discussed earlier.

We do not work on the simple case, i.e. when c1 > 0. We meet the second pole

at s = 0 and the residue is equal to µ(0)Γ(c0)z
−c0 since L(0) = c0. This quantity

turns out to be the leading term of C(z, z) since the integration on <(s1) = c1

is O(zκ). This proves Theorem 3. When P2 is logarithmically balanced, there

exists ω such that λ(s, L(s) + ikω) = 1 for k ∈ Z and the terms zc0+ikω lead to

a periodic contribution.

The difficult case is when −1 < c1 < 0. In this case, C(z, z) = O(zκ) but

to find precise estimates one must use the saddle point method [67], at s = c1

since the integration is of the form
∫
<(s) = c1f(s) exp(−(s + L(s))A)ds, where

f(s) = µ(s)Γ(s)Γ(L(s)), and A = log z → ∞. We naturally get an expansion

when <(z)→∞

C(z, z) =
eκ log zµ(c1)√
(α2 log z + β2)

(
1 +O(

1√
log z

)

)

with α2 = L′′(c1) and β2 = µ′(c1)
µ(c1)

. In fact, the saddle point expansion is extendible

to any order of 1√
log z

. This proves Theorem 4 in the general case. However, in

the case when P1 and P2 are logarithmically commensurable, the line <(s1) = c1

contains an infinite number of saddle points that contribute in a double periodic
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additional term.

Example: Assume that we have a binary alphabet A = {a, b} with memory

1, and transition matrices P1 =

0.5 0.5

0.5 0.5

 and P2 =

0.2 0.8

0.8 0.2


The numerical analysis gives Cn,n = 13.06 n0.92

√
1.95 logn+56.33

=⇒ Cn,n =

3.99(log 2)n.

Inspired from the general results about the asymptotic digital trees and suffix

tree parameters distribution we conjecture the following [58, 59, 60].

Conjecture 1 • (i) The variance Vn,n of the joint complexity of two random

texts of same length n generated by two Markov sources is of order O(nκ)

when n→∞.

• (ii) The normalised distribution of the joint complexity Jn,n of these two

texts tends to the normal distribution when n→∞.

Remark By "normalized distribution" we mean the distribution of Jn,n−Jn,n√
Vn,n

.

3.6 Expending Asymptotics and Periodic Terms

The estimate Jn,n = γ nk√
α logn+β

(1+Q(log n)+O( 1
logn

)) which appears in the case

of a different Markov source comes from a saddle point analysis. The potential

periodic terms Q(log n) occur in a case where the Kernel K shows an infinite set

of saddle points. It turns out that the amplitude of the periodic terms is of the

order of Γ( 2iπ
log |A|), i.e. of the order of 10−6 for binary alphabet, but it rises when

|A| increases. For example when |A| ≥ 26 such as in the Latin alphabet used
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in English (including spaces, commas, and other punctuation) we get an order

within 10−1.

Figure 3.4 shows the number of common factors from two texts generated

from two memoryless sources. One source is a uniform source over the 27 Latin

symbols (such source is so-called monkey typing), the second source takes the

statistic of letters occurrence in English. The trajectories are obtained by incre-

menting each text one by one. Although not quite significant, the logarithmic

oscillations appear in the trajectories. We compare this with the expression

γ nk√
α logn+β

without the oscillation terms which are actually 13.06 n0.92
√
1.95 logn+73.81

.

Figure 3.4: Joint Complexity (y axis) of memoryless English text (x axis) versus
monkey typing. The first order theoretical average is shown in red (cont. line).

In fact it turns out that the saddle point expression has a poor convergence

term since the O( 1
logn

) is indeed in 1
α logn+β

made poorer since the latter does

not make less than 1
β
for the text length range that we consider. But the saddle
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point approximation leads to the estimate factor Pk((α log n+ β)−1) of

Jn,n = γ
nk√

α log n+ β
(1+Pk((α log n+β)−1))+O(

1

(log n)k+
1
2

)+Q(log n) (3.18)

where Pk(x) =
∑k

j=1Aix
j is a specific series polynomial of degree k. The error

term is thus in (α log n+β)−k−
1
2 ) but is not uniform for k. Indeed, the expansion

polynomial Pk diverges when k →∞. Therefore for a given value of x there is an

optimal value of k which minimizes the error term whose relative order is given

by |Ak+1x
k+1 + Ak+2x

k+2|, since the series of the Ai’s have alternated signs.

Figure 3.5 shows the different error terms versus k for x = 1
β
. The optimal

is reached for k = 5 with a relative error of 10−3. Figure 3.6 shows the new

theoretical average with P5((α log n + β) − 1) as correcting term. The estimate

is now well centered but does not include the periodic terms, which are shown in

Figure 3.7. As we can see in Figure 3.7 the fluctuation confirms the Conjecture 1

about the variance of Joint Complexity.

3.7 Numerical Experiments in Twitter

In this Section we apply Joint Complexity in Twitter in order to perform topic

detection and extract similarities between tweets and communities. We consider

four sets of tweets from different sources – the New York Times, BBC Business,

CNN, and BBC Breaking. In Twitter the maximum length of the messages is 140

characters. We take the hypothesis that the sources are Markov sources of finite

order. Individual tweets are of arbitrary length. The alphabets of the different

languages of tweet sets, are converted on ASCII.

We compute the JC value for pairs of tweet sets in Figure 3.8. We used tweets
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Figure 3.5: Relative error in the saddle point expansion versus order for x = 1/β.

from the 2012 Olympic Games and 2012 United States elections. We took two

sets from each of these tweet sets to run our experiments, but first we removed the

tags similar to the topic, such as #elections, #USelections, #USelections2012,

#Olympics, #Olympics2012, #OlympicGames and so on. As we can see in

Figure 3.8, the JC is significantly high when we compare tweets in the same

subjects, for both real and simulated tweets (simulated tweets are generated

from a Markov source of order 3 trained on the real tweets). We observe the

opposite when we compare different subjects. In the US elections topic, we can

see that the JC increases significantly when the number of characters is between

1700 and 1900. This is because users begin to write about and discuss the same

subject. We can observe the same in the Olympic Games topic between 6100 and

6300 and between 9500 and 9900. This shows the applicability of the method
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Figure 3.6: Joint Complexity (y axis) of memoryless English text (x axis) versus
monkey typing. The optimal fifth order theoretical average is shown in red (cont.
line).

to distinguish information sources. In Figure 3.9, we plot the JC between the

simulated texts and compare with the theoretical average curves expected by the

proposed methodology.

3.8 Suffix Trees

A Suffix Tree [70] is a compressed trie [71] containing all the suffixes of the given

text as their keys and positions in the text as their values. We may refer as PAT

tree or, in an earlier form, position tree. The suffix tree allows particularly fast

implementations of many important string operations.

The construction of such a tree for a string S of length n takes on average
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Figure 3.7: Average Joint Complexity (y axis) of memoryless English text versus
monkey typing. The optimal fifth order theoretical (in red, cont. line) plus
periodic terms.

O(n log n) time and space linear in the length of n. Once constructed, several

operations can be performed quickly, for instance locating a substring in S, lo-

cating a substring if a certain number of mistakes are allowed, locating matches

for a regular expression pattern and other useful operations.

Every node has outgoing edges labeled by symbols in the alphabet of S. Thus

every node in the Suffix Tree can be identified via the word made of the sequence

of labels from the root to the node. The Suffix Tree of S is the set of the nodes

which are identified by any factor of S.

Suffix Tree Compression: An unitary sequence of nodes is a chain where

nodes have all degree 1. If an unitary chain ends to a leaf then it correspond to a

factor which appears only once in S. The chain can be compressed into a single
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node. In this case the concatenation of all the labels of the chain correspond to

a suffix of S and the compressed leaf will contain a pointer to this suffix. The

other (internal) nodes of the Compressed Suffix Tree correspond to the factors

which appear at least twice in S. This is the Compressed Suffix Tree version

whose size is O(n) in average, otherwise the uncompressed version is O(n2).

Similarly any other unitary chain which does not go to a leaf can also be

compressed in a single node, the label of the edges to this node is the factor

obtained buy concatenating all the labels. This is called the Patricia compression

and in general gives very small reduction in size.

The Suffix Tree implementation and the comparison process (ST superposi-

tion) between two Suffix Trees in order to extract the common factors of the text

sequences can be found in the Appendix A.

3.8.1 Examples of Suffix Trees

The proposed tree structure in the Appendix A needs O(n) time to be stored

and sub linear time for the superposition (finding overlaps). Two main examples

with graph tree representation follow in Figure 3.10 and 3.11 for the sequence

“apple” and “maple”, respectively, which have 9 common factors. Figure 3.12

and 3.13 show the Suffix Tree for the sequence “healthy” and “sealed”, which

have 7 common factors. The construction of the Suffix Tree for the sequence

“apple” and “maple”, as well as the comparison between them (ST superposition)

is shown in Figure 3.14.
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Figure 3.10: Suffix Tree for the sequence “apple”, where ν is the empty string.

Figure 3.11: Suffix Tree for the sequence “maple”, where ν is the empty string.

Figure 3.12: Suffix Tree for the sequence “healthy”, where ν is the empty string
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Figure 3.13: Suffix Tree for the sequence “sealed”, where ν is the empty string.

3.9 Snow Data Challenge

In February 2014 the Snow Data Challenge of the World Wide Conference

(WWW’14) was announced. Every year the WWW community organize a dif-

ferent challenge. In 2014 the challenge was about extracting topics in Twitter.

The volume of information in Twitter is very high and it is often difficult to

extract topics in real time. The task of this challenge was to automatically mine

social streams to provide journalists a set of headlines and complementary in-

formation that summarize the most important topics for a number of timeslots

(time intervals) of interest.

The Snow Challenge organization provided a common framework to mine the

Twitter stream and asked to automatically extract topics corresponding to known

events (e.g., politics, sports, entertainment). The crawled data were divided in

timeslots and we had to produce a fixed number of topics for selected timeslots.

Each topic should be in the form of a short headline that summarizes a topic

related to a piece of news occurring during that timeslot, accompanied by a set

of tweets, URLs of pictures (extracted from the tweets), and a set of keywords.
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Figure 3.14: Suffix Tree superposition for the sequences S1 = apple and S2 =
maple.

The expected output format was the following: [headline, keywords, tweetIds,

picture urls].

We got the third Prize in the Challenge, while our method was discussed

to receive the first Prize. The main advantage of the method was its language

agnostics and we were able to report topics in many different languages other

than English, e.g. French, Spanish, Korean, etc. The Challenge organization

restricted us to report topics only in English, since the evaluation was decided

to be done in that language, but we decided to report the exact output of the

method [68].

First, we collected tweets for 24 hours; between Tuesday Feb. 25, 18:00 and

Wednesday Feb. 26, 18:00 (GMT). The crawling collected more than 1, 041, 062

tweets between the Unix timestamps 1393351200000 and 1393437600000 and was

conducted through the use of the Twitter streaming API by following 556, 295

users and also looking for four specific keywords: Syria; terror; Ukraine; bitcoin.

The dataset was split into 96 timeslots, where each timeslot contains tweets for

every 15 minutes, starting at 18:00 on Tuesday 25th 2014. The challenge then
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consisted in providing a minimum of one and a maximum of ten different topics

per timeslot, along with a headline, a set of keywords and a URL of a relevant

image for each detected topic. The test dataset activity and the statistics of the

dataset crawl are described more extensively in [68].

3.9.1 Topic Detection Method

Until the present, the main methods used for text classification are based on

keywords detection and machine learning techniques as was extensively described

in Chapter 2. Using keywords in tweets has several drawbacks because of wrong

spelling or distorted usage of the words – it also requires lists of stop-words

for every language to be built – or because of implicit references to previous

texts or messages. The machine learning techniques are generally heavy and

complex and therefore may not be good candidates for real time text processing,

especially in the case of Twitter where we have natural language and thousands

of tweets per second to process. Furthermore, machine learning processes

have to be manually initiated by tuning parameters, and it is one of the main

drawbacks for the kind of application, where we want minimum if any human

intervention. Some other methods are using information extracted by visiting

the specific URLs on the text, which makes them a heavy procedure, since one

may have limited or no access to the information, e.g. because of access rights,

or data size and throughput.

In our method [69] we use the Joint Complexity (computed via Suffix Trees)

as a metric to quantify the similarity between the tweets. This is a significant

achievement because we used a general method adapted to the Snow Data Chal-

lenge.
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According to the dataset described in Section 3.9 and in [68] we have N = 96

timeslots with n = 1 . . . N . For every tweet tni , where i = 1 . . .Mn, with Mn

being the total number of tweets, in the n-th timeslot, we build a Suffix Tree,

ST (tni ), as described in Section 3.3. Building a Suffix Tree is an operation that

costs linear time and takes O(m) space in memory, where m is the length of the

tweet.

Then we compute the Joint Complexity metric as mentioned earlier,

JC(tni , t
n
j ) of the tweet tni with every other tweet tnj of the n-th timeslot, where

j = 1 . . .Mn, and j 6= i (by convention we choose JC(tni , t
n
i ) = 0). For the N

timeslots we store the results of the computation in the matrices T1, T2, . . . , TN

of Mn ×Mn dimensions.

Figure 3.15: Representation of the first row of the n-th timeslot via weighted
graph.

We represent each matrix Tn by fully-connected weighted graphs. Each tweet

is a node in the graph and the two-dimensional array Tn holds the weight of each
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edge, as shown in Fig. 3.15. Then, we calculate the score for each node in our

graph by summing all the edges which are connected to the node. The node

that gives the highest score is the most representative and central tweet of the

timeslot.

Tn =



0 JC(tn1 , t
n
2 ) JC(tn1 , t

n
3 ) · · · JC(tn1 , t

n
M)

JC(tn2 , t
n
1 ) 0 JC(tn2 , t

n
3 ) · · · JC(tn2 , t

n
M)

JC(tn3 , t
n
1 ) JC(tn3 , t

n
2 ) 0 · · · JC(tn3 , t

n
M)

...
... . . . ...

JC(tnM , t
n
1 ) JC(tnM , t

n
2 ) JC(tnM , t

n
3 ) · · · 0


Most of the timeslots have M = 5,000 tweets, so matrices T1, T2, . . . , TN

have approximately 25M entries for every timeslot. Since they are symmetric,

only half of these entries could be used, i.e the upper triangular of matrices

T1, T2, . . . , TN .

The whole Joint Complexity computation was run in a multithreaded way on

a 24 processor machine: k = 23 threads are started and each thread works on a

disjoint set of rows.

This implementation allowed the program to run in on average 90 seconds in

order to compute a 15-minutes timeslot, on a simple computer. These compu-

tations were only run once, as soon as the data was properly divided into the

15-minutes timeslots, and the results were saved in files which were subsequently

used to perform the rest of implementation.

When we finally get the scores of the Joint Complexity metric, we try

to find the R most representative and central tweets of every timeslot as re-

quired in the Challenge. At first we get the sum of the Joint Complexity,

Sni =
∑

j=1...M,j 6=i JCtni ,tnj , of the i-th tweet with every other tweet j in the n-th
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timeslot, and finally we get the vector Sn = [Sn1 , S
n
2 , . . . , S

n
Mn

] for every timeslot.

We sort the elements of each vector Sn in descending order and we get the

R most representative and central tweets in the following way: The best-ranked

tweet is chosen unconditionally, the second one is picked only if its JC score with

the first one is below a chosen threshold Thrlow, otherwise it is added to the list

of related tweets of the first tweet; similarly, the third one is picked only if its

JC score with the first two is below Thrlow, etc. This ensures that the topics

are dissimilar enough and it classifies best ranked tweets into topics at the same

time.

3.9.2 Headlines

In order to produce headlines as requested from the Data Challenge, we removed

punctuation, special characters, etc., of each selected tweet. We could use a

better selection but due to the lack of time in preparation for the Challenge

we used this simple selection method. We constructed the headlines of each

topic and we run through the list of related tweets to keep only tweets that are

different enough from the selected one (ensures no duplicates), we did so by

keeping only the tweets whose JC score with the selected tweet and all previous

related tweets was above a chosen threshold Thrmax. We first chose empirical

values 400 and 600 for Thrlow and Thrmax respectively, but then we noticed

that many topics had only one related tweet (all the others were retweets), so

we decided to lower that threshold to Thrlow = 240. Due to the lack of time

during the contest, we did not recompute the results on the whole dataset so

only a handful of timeslots benefited from this better Thrlow. The final plan

was to come up with a formula to have the system determine those thresholds

automatically depending on the number of characters of each tweet.
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While running through the list of related tweets we computed the bag-of-

words used to construct the list of keywords and we also checked the original

.json data to find a URL pointing to a valid image related to the topic.

We chose to print the first top eight topics for each timeslot, which are the

heads of the first eight lists of related tweets.

3.9.3 Keywords Extraction

In order to produce a list of keywords per topic as requested from the Data

Challenge, we first removed articles (stop-words), punctuation, special charac-

ters, etc., from the bag-of-words constructed from the list of related tweets of

each topic. We got a list of words, and then we ordered them by decreasing fre-

quency of occurrence. Finally, we reported the k most frequent words, in a list

of keywords K = [K1
1...k, K

2
1...k, . . . , K

N
1...k], for the N total number of timeslots.

3.9.4 Media URLs

As requested from the Data Challenge, we provided a representative Media

URL per topic. The body of a tweet (in the .json file format), contains a

URL information for links to media files such as pictures or videos, when avail-

able this information is stored in the following subsection of the json object:

entities → media → media_url. While reporting the most representative and

central tweets, we scan the original json format in order to retrieve such a URL,

from the most representative tweet or any of its related tweets, pointing to valid

photos or pictures in a .jpg, .png or .gif format. Then, we report these pictures

along with the headlines and the set of keywords, as shown in Algorithm 1.
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Algorithm 1 Topic detection based on Joint Complexity
// N = # timeslots, M = # tweets in the n-th timeslot
for n = 1 to N do

for t = 1 to M do
t← tjson.getText();

tST ← suffixTreeConstruction(t);

JCScores← JCMetric();

end for
// Find the most representative & central tweets
Sn ← sum(JCScores);

// Get headlines for the central tweets
Rn ← descendingOrder(Sn);

// Get set of keywords
Kn ← keywords(Rn);

// Get URLs of pictures from the .json file
P n ← mediaURL(Rn);

// Print the results in appropriate format
Print(Rn);

Print(Kn);

Print(P n);

end for

Almost half of the headlines (47%) produced by our method had a picture re-

trieved in the .json file. When no such URL is provided within the collected

json objects we planned to visit the URLs of websites and retrieve images, which

were online, in a way that were enforced to be relevant for the topic, but we did

not follow that strategy because of the study of the Google API and due to lack

of time. It is important to point out that the goal of the challenge was to detect

newsworthy items before they hit mainstream news websites, so it was decided

that parsing images from such websites was not interesting in that context.
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3.9.5 Evaluation of Topic Detection

Apart from the specific implementation for the Snow Data Challenge, the main

benefits of our method are that we can both classify the messages and identify the

growing trends in real time, without having to manually set up lists of keywords

for every language. We can track the information and timelines within a social

network and find groups of users which agree on the same topics.

The official evaluation results of our method in the Snow Data Challenge

are included in [68]. Although the dataset that was used for this challenge did

not allow to show this properly, one key advantage of using Joint Complexity is

that it can deal with languages other than English [72, 73] without requiring any

additional feature.

3.10 Tweet Classification

3.10.1 Tweet augmentation

Joint Complexity was also used for classification in Twitter [74]. The innovation

brought by the method is in the use of the information contained in the

redirected URLs of tweets. We use this information to augment the similarity

measure of JC, which we call tweet augmentation. It must be noted that this

method does not have access to the redirected URLs as described above about

the prior art existing solution.

The method proceeds in two phases: (3.10.2) Training phase, and (3.10.3)

Run phase.
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3.10.2 Training Phase

During the Training phase we construct the training databases (DBs) by using

Twitter’s streaming API with filters for specific keywords. For example, if we

want to build a class about politics, then we ask the Twitter API for tweets

that contain the word “politics". Using these requests we build M classes on

different topics. Assume that each class contains N tweets (eg. M = 5 Classes:

politics, economics, sports, technology, lifestyle of N = 5000 tweets). To each

class we allocate K keywords (e.g. the keywords used to populate the class;

their set is smaller than the bag-of-words). The tweets come in the .json format

which is the basic format delivered by the Twitter API.

Then we proceed to the URL extraction and tweet augmentation. The

body of a tweet (in the .json file format), contains a URL information if the

original author of the tweet has inserted one. In general Twitter applies a

hashing code in order to reduce the link size in the tweets delivered to users

(this is called URL shortening). However the original URL comes in clear in the

.json format provided by the Twitter API. While extracting the tweet itself, we

get both the hashed URL and the original URL posted by the user. Then, we

replace the short URL in the tweet’s text by the original URL and we get the

augmented tweet.

In the next step, we proceed with the Suffix Tree construction of the

augmented tweet. Building a suffix tree is an operation that costs O(n log n)

operations and takes O(n) space in memory, where n is the length of the

augmented tweet. The tweet itself does not exceed 140 characters, so the total

length of the augmented tweet is typically smaller than 200 characters.
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3.10.3 Run Phase

During the Run phase (shown in Algorithm 2), we get tweets from the Twitter

Streaming Sample API. For every incoming tweet we proceed to its classification

by the following operations: At first, we augment the tweet as described in the

3.10.2 Training phase. Then, we compute the matching metric of the augmented

incoming tweet with each class. The score metric is of the form:

MJC ∗ α + PM ∗ β (3.19)

where MJC is the max of Joint Complexity (JC) of the augmented incoming

tweet over the tweets already present in the class, and PM is the pattern match-

ing score of the incoming tweet over the class keywords. Quantities α and β are

weight parameters, which depend on the average Joint Complexity, JCavg
i , of

the i-th class, and the maximum JC (best fitted), JCmax
i . We construct those

as follows:

β =
JCmax

i − JCavg
i

JCmax
i

α = 1− β

When the average Joint Complexity, JCavg
i =

JCmaxi

2
the weight α = β = 0.5,

and if the pattern matching on the URL returns zero, then β = 0 and α = 1.

The Joint Complexity between two tweets is the number of the common

factors defined in language theory and can be computed efficiently in O(n) op-

erations (sublinear on average) by Suffix Tree superposition. We also compute

the Pattern Matching score with the keywords of the i-th class i.e. as the num-

ber of keywords actually present in the augmented tweet URL. The metric is a
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combination of the MJC and PM .

We then assign an incoming tweet to the class that maximizes the matching

metric defined at (3.19) and we also link it to the best fitted tweet in this class,

i.e. the tweet that maximises the Joint Complexity inside this class.

In the case described above where newly classified tweets are added to the

reference class (which is useful for trend sensing), then in order to limit the size

of each reference class we delete the oldest tweets or the least significant ones

(e.g. the ones which got the lowest JC score). This ensures the low cost and

efficiency of our method.

The main benefits of our method are that we can both classify the messages

and identify the growing trends in real time, without having to manually identify

lists of keywords for every language. We can track the information and timeline

within a social network and find groups of users that agree or have the same

interests, i.e, perform trend sensing.

3.10.4 Experimental Results on Tweet Classification

The efficiency of the proposed classification method is evaluated on sets of tweets

acquired from the Twitter API. The classification accuracy of five tested methods

was measured with the standard Precision, Recall, and F-score metrics (detailed

in the section below), using a Ground Truth (GT) shown in Fig. 3.16. The

experiments were run on more than 1M tweets [68].

Instead of retrieving live tweets from the Twitter Streaming API as described

in Algorithm 2, we stored a list of random tweet IDs in a file so that each

algorithm would work on the same set of tweets.

We selected the Document-Pivot (DP) method to compare with our new

method, since it outperformed most of the other state-of-the-art techniques in a
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Algorithm 2 Tweet classification based on Joint Complexity and pattern match-
ing

Training phase:

constructClasses(M,N);

for i = 1 to M do
for i = 1 to N do

tURLi,j ← extractURL(tij);

taugi,j ← tweetAugmentation(tij, t
URL
i,j );

tSTi,j ← suffixTreeConstruction(taugij );

end for
end for

Run phase:

while (tjson ← TwitterAPI.getSample() ! = null) do
t← tjson.getText();

tURL ← extractURL(tjson);

taug ← tweetAugmentation(t, tURL);

tST ← suffixTreeConstruction(taug);

for i = 1 to M do
PMi(t)← patternMatching(tURL);

JCavg
i ← averageJC(taug);

JCmax
i ← maximum(JC(taug));

β ← JCmaxi −JCavgi

JCmaxi

α← 1− β
end for

D(t)← argmaxMi=1{maxNj=1(JC(ti,j, t) ∗ α) + PMi ∗ β}
classifyTweet(t,D(t));

end while
UpdateByDeletingOldestTweets();

Twitter context as shown in [75].

In order to run the experiment, we modified an existing implementation of

Document-Pivot which was developed for topic detection in [75]. The modifi-

cation consisted in setting up almost the same Training phase as for the Joint
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Politics
(39%)

Economics
(5%)

Sports
(28%)

Technology
(11%)

Lifestyle
(15%)

Unknown
(2%)

Figure 3.16: Ground Truth distribution of the tweets into the different categories.

Complexity implementation (i.e. use the same reference tweets), with a notable

exception for the tweet augmentation. For the latter implementation, instead of

placing the original URL, we first decompose the URL into a list of pseudo-words

by replacing the ‘/’ character by a space. This method, named DPurl, will prove

useful for the classification as quite often URLs contain specific keywords such

as sport, politics, etc.

The other and more important difference with DP (without changing the output

of the method) is that instead of building Suffix Trees, this time the method

constructs a tf-idf bag of words, and then classifies each tweet of the Run phase

by selecting the category containing the closest tweet to our test tweet. The

notion of closest is because we used Locality Sensitive Hashing based on the Co-

sine Similarity in a vector space where each possible word is a dimension and its

tf-idf score is the coordinate in that dimension. In such a space when the cosine

between the two vectors is close to 1, it means that the vectors are pointing in

the roughly same direction, in other words the two tweets represented by the
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vectors should share a lot of words and thus should probably speak about or

refer to the same subject.

3.10.4.1 Classification Performance based on Ground Truth

The classification performance is compared for five methods, which are:

1. Document Pivot (DP), without tweet augmentation,

2. Joint Complexity (JC), without tweet augmentation,

3. Document Pivot with URL (DPurl) described above,

4. Joint Complexity with URL (JCurl) described above, without the Pattern

Matching,

5. Joint Complexity with URL and Pattern Matching (JCurlPM) described

in Algorithm 2 in Section 3.10.

The standard Precision, Recall, and F-score metrics were used to evaluate

the different classification output, they are described below:

Precision =
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives

where, for a class C, true positives are tweets that were classified in C by both the

algorithm and the Ground Truth, false positives are tweets that were classified

in C by the algorithm but in some other class by the Ground Truth and false

negatives are tweets that were classified in C by the Ground Truth but in some

other class by the algorithm.
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We also computed the F-score in order to combine into a single metric both

precision and recall (for faster comparison at a glance):

F-score = 2 ∗ Recall ∗ Precision
Recall + Precision

A global overview of the results is presented in Table 4.1 where we can see

that, on average, JC outperforms DP, JCurl outperforms DPurl, and JCurlPM

clearly outperforms them all.

Metric DP JC DPurl JCurl JCurlPM
Precision 0.47 0.60 0.68 0.71 0.86
Recall 0.38 0.48 0.57 0.63 0.86
F-score 0.42 0.53 0.62 0.67 0.86

Table 3.2: Average of precision, recall and F-score for the used classification
methods for all classes. The methods DP, JC, Purl, JCurl and JCurlPM are
used.

Looking in more details for each category, the global tendency is confirmed

except for a couple of categories like Technology where DP has a slightly better

Precision but a worse Recall. In the Sports category on the other hand the

situation is reversed as DP seems to provide a slightly better Recall. In both

cases the differences are too small to be really significant and what can be noted

is that JCurlPM always outperforms all other methods. The mediocre precision

obtained by DP and JC in Fig. 3.18 can be explained by the fact that the

Economics category was under-represented in the Ground Truth dataset and

given the fact that Politics and Economics are often very close subjects, both

methods classified a few Politics tweets into the Economics category thus lowering

the Precision. It can be noted that the Recall on the other hand is quite good

for both methods.
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Figure 3.17: Precision (left), recall (middle) and F-score (right) for the classified

tweets in the class Politics.
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Figure 3.18: Precision (left), recall (middle) and F-score (right) for the classified

tweets in the class Economics.
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Figure 3.19: Precision (left), recall (middle) and F-score (right) for the classified

tweets in the class Sports.
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Figure 3.20: Precision (left), recall (middle) and F-score (right) for the classified

tweets in the class Lifestyle.
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Figure 3.21: Precision (left), recall (middle) and F-score (right) for the classified

tweets in the class Technology

3.11 Chapter Summary

In this Chapter we studied the Joint Sequence Complexity and its applications,

which range from finding similarities between sequences to source discrimination.

Markov models well described the generation of natural text, and we exploited

datasets from different natural languages using both short and long sequences.

We provided models and notations, and presented the theoretical analysis. A

study on expending asymptotics and periodic terms was also mentioned. We ap-

plied our methodology to real messages from Twitter in the Snow Data Challenge

of the World Wide Web Conference in 2014, where we evaluated our proposed

methodology on topic detection, classification and trend sensing in Twitter in

real time. Our proposed method based on Joint Complexity was praised by a

committee of experts and we won the third Prize.
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4.1 Introduction

According to Compressive Sensing (CS) theory [16], signals that are sparse

or compressible in a suitable transform basis can be recovered from a highly

reduced number of incoherent linear random projections, which overcomes the
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traditional signal processing methods. Traditional methods are dominated by

the well-established Nyquist-Shannon sampling theorem, which requires the

sampling rate to be at least twice the maximum bandwidth.

We introduce a hybrid classification and tracking method, which extents

our recently introduced Joint Complexity method [72, 73], which was tailored

to the topic detection and trend sensing of user’s tweets. More specifically, we

propose a two-step detection, classification and tracking method:

First we employ the Joint Complexity, already described in detail in the

previous Chapter, as the cardinality of a set of all distinct factors of a given

string represented by suffix trees, to perform topic detection. Second, based

on the nature of the data, we apply the methodology of Compressive Sensing

to perform topic classification by recovering an indicator vector. Finally, we

combine the Kalman filter, as a refinement step for the update of the tracking

process.

4.2 Compressive Sensing Theory

Let us first describe the main theoretical concepts of CS [48, 15, 16] and how it

is applied on the problem classification [78]. Consider a discrete-time signal x

in RN . Such signal can be represented as a linear combination of a set of basis

{ψi}Ni=1. Constructing a N × N basis matrix Ψ = [ψ1, ψ2, . . . , ψN ], the signal x

can be expressed as

x =
N∑
i=1

siψi = Ψs (4.1)
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where s = (s1, s2, . . . sN) ∈ RN and is an equivalent representation of x in a basis

Ψ.

In fact the signal is represented as

x = Ψs+ θ (4.2)

with θ ∈ RN being the noise, where E(θ) = 0 and var(θ) = O(|Ψs|). The

efficiency of a CS method for signal approximation or reconstruction depends

highly on the sparsity structure of the signal in a suitable transform domain

associated with an appropriate sparsifying basis Ψ ∈ RN×N . It has been demon-

strated [15, 16] that if x is K-sparse in Ψ (meaning that the signal is exactly or

approximately represented by K elements of this basis), it can be reconstructed

from M = rK � N non-adaptive linear projections onto a second measure-

ment basis, which is incoherent with the sparsity basis, and where r is a small

overmeasuring factor (r > 1).

The measurement model in the original space-domain is expressed as g =

Φx , where g ∈ RM is the measurement vector and Φ ∈ RM×N denotes the

measurement matrix. By noting that x can be expressed in terms of the basis Ψ

as in( 4.2) the measurement model has the following equivalent transform-domain

representation

g = ΦΨs + Φθ . (4.3)

In fact when the length of the sequence (i.e. tweet) n → ∞ and N → ∞,

E(Ψs) = O(nN), with var(θ) = O(nN), std(θ) = O(
√
|Φ|n) and E(Φθ) =

0. The second part of (4.3), Φθ is of relative order O( 1√
nN

), and is negligible

compare to ΦΨs due to the law of large numbers. Examples of measurement

matrices Φ, which are incoherent with any fixed transform basis Ψ with high
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probability (universality property [16]), are random matrices with independent

and identically distributed (i.i.d.) Gaussian or Bernoulli entries. Two matrices

Ψ, Φ are incoherent if the elements of the first are not represented sparsely by the

elements of the second, and vice versa. Since the original vectors of signals, x, are

not sparse in general, in the following study we focus on the more general case of

reconstructing their equivalent sparse representations, s, given a low-dimensional

set of measurements g and the measurement matrix Φ.

By employing the M compressive measurements and given the K-sparsity

property in basis Ψ, the sparse vector s, and consequently the original signal x,

can be recovered perfectly with high probability by taking a number of different

approaches. In the case of noiseless CS measurements the sparse vector s is

estimated by solving a constrained `0-norm optimisation problem of the form,

ŝ = arg min
s
‖s‖0, s.t. g = ΦΨs , (4.4)

where ‖s‖0 denotes the `0 norm of the vector s, which is defined as the number

of its non-zero components. However, it has been proven that this is an NP-

complete problem, and the optimization problem can be solved in practice by

means of a relaxation process that replaces the `0 with the `1 norm,

ŝ = arg min
s
‖s‖1, s.t. g = ΦΨs . (4.5)

which will give s with a relative error of O( 1√
nN

). In [15, 16] it was shown that

these two problems are equivalent when certain conditions are satisfied by the

two matrices Φ, Ψ (restricted isometry property (RIP)).

The objective function and the constraint in (4.5) can be combined into a sin-

gle objective function, and several of the most commonly used CS reconstruction
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methods solve the following problem,

ŝ = arg min
s

(
‖s‖1 + τ‖g − (ΦΨs)‖2

)
, (4.6)

where τ is a regularization factor that controls the trade-off between the

achieved sparsity (first term in (4.6)) and the reconstruction error (second term).

Commonly used algorithms are based on linear programming [79], convex re-

laxation [15, 80], and greedy strategies (e.g., Orthogonal Matching Pursuit

(OMP) [81, 82]).

4.3 Compressive Sensing Classification

4.3.1 Training Phase

During the training phase, we built our classes as described in Section 3.3 and

for each class we extract the most central/representative tweet(s) (CTs) based on

the Joint Complexity method. The vector Ψi
T consists of the highest JC scores

of the i-th CT. The matrix ΨT is used as the appropriate sparsifying dictionary

for the training phase. Moreover, a measurement matrix Φi
T is associated with

each transform matrix Ψi
T . In the proposed algorithm, a standard Gaussian

measurement matrix is employed, with its columns being normalized to unit `2

norm.

Figure 4.2 shows a flowchart of the preprocessing phase classification based

on Compressive Sensing in conjunction with the part of Joint Complexity shown

in the flowchart of Figure 4.1.
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Figure 4.1: Flowchart of the preprocessing phase of Joint Complexity.
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Figure 4.2: Flowchart of the preprocessing phase of Compressive Sensing.

4.3.2 Run Phase

A similar process is followed during the runtime phase. More specifically, we

denote xc,R as the Joint Complexity score of the incoming tweet with the CTi

classified at the current class c, where R denotes the runtime phase. The runtime

CS measurement model is written as

gc = ΦRxc,R , (4.7)

where ΦR denotes the corresponding measurement matrix during the runtime

phase.

The measurement vector gc is formed for each CTi according to (4.7) and the

reconstruction takes place via the solution of (4.6), with the training matrix ΨT

being used as the appropriate sparsifying dictionary.

Figure 4.3 shows the flowchart for the runtime phase of the classification
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Figure 4.3: Flowchart of the runtime phase of the Compressive Sensing based
classification.

based on Compressive Sensing.

In this work, we are based on the assumption that the CS-based classification

method involves the mobile device that collects the tweets from the Twitter API

and performs the core CS algorithm. The performance analysis, described in

Section 4.5, reveals an increased accuracy of the proposed CS-based classification

algorithm when compared with other methods described in Section 2.4 and 4.5.

4.4 Tracking via Kalman Filter

Most of the tracking methods use past state estimates and motion dynamics to

refine the current state estimate determined by the above topic detection and

classification methods. In addition, the dynamic motion model can also be used
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Algorithm 3 Tweet classification based on JC, CS and Kalman
Training phase:

// Build Classes according to JC
constructClasses(M,N);

Run phase:

while (tjson ← TwitterAPI.getSample() ! = null) do
// Classify t by running the CS classification algorithm
Give the estimated class as input to the Kalman filter

end while
Update by deleting oldest tweets

in conjunction with the current state estimate to predict the future possible

states.

We are based on the assumption that the Compressive Sensing based clas-

sification method involves the mobile device that collects the tweets from the

Twitter API and performs the core Joint Complexity and Compressive Sensing

algorithm.

If we had a model of Joint Complexity to detect the change of topics, we

could use the Kalman filter to track a user according to his tweets. In this work,

we assume that the change of topics is uniform.

Kalman filtering is a well-established method for estimating and tracking

mobile targets. A typical Kalman filter [49] is applied recursively on a given

dataset in two phases: i) Prediction and ii) Update. The main advantage of this

algorithm is that it can be executed in real time, since it is only based on the

currently available information and the previously estimated state.

Focusing on the problem of classification, the user tweets periodically, and

we check that information with the CTs at a specific time interval ∆t.

Then, the classification system estimates the user’s class at time t, which is

denoted by p∗(t) = [x∗(t)]T . Following a Kalman filtering approach, we assume
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that the process and observation noises are Gaussian, and also that the motion

dynamics model is linear. The process and observation equations of a Kalman

filter-based model are given by

x(t) = Fx(t− 1) + θ(t) (4.8)

z(t) = Hx(t) + v(t) (4.9)

where x(t) = [x(t), vx(t)]
T is the state vector, with x being the correct class in

the space (user’s tweets) and vx(t) the tweeting frequency, z(t) is the observation

vector, while matrices F and H define the linear motion model. The process

noise θ(t) ∼ N(0,S) and the observation noise v(t) ∼ N(0,U) are assumed to

be independent zero-mean Gaussian vectors with covariance matrices S and U,

respectively. The current class of the user is assumed to be the previous one

plus the information provided by the JC metric, which is computed as the time

interval ∆t multiplied by the current tweeting speed/frequency.

The steps to update the current estimate of the state vector x∗(t), as well as

its error covariance P(t), during the prediction and update phase are given by

the following equations

x∗−(t) = Fx∗(t− 1) (4.10)

P−(t) = FP(t− 1)FT + S (4.11)

K(t) = P−(t)HT (HP−(t)HT + U)−1 (4.12)

x∗(t) = x∗−(t) + K(t)(z(t)−Hx∗−(t)) (4.13)

P(t) = (I−K(t)H)P−(t) (4.14)

where the superscript “−” denotes the prediction at time t, and K(t) is the
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optimal Kalman gain at time t.

The proposed Kalman system exploits not only the highly reduced set of

compressed measurements, but also the previous user’s class to restrict the clas-

sification set. The Kalman filter is applied on the CS-based classification [83],

described briefly in Section 4.3, to improve the estimation accuracy of the mo-

bile user’s path. More specifically, let s∗ be the reconstructed position-indicator

vector. Of course in practice s∗ will be not truly sparse, thus the current es-

timated position [xCS], or equivalently, cell cCS, corresponds to the highest-

amplitude index of s∗. Then, this estimate is given as an input to the Kalman

filter by assuming that it corresponds to the previous time t − 1, that is,

x∗(t−1) = [xCS, vx(t−1)]T , and the current position is updated using (4.10). At

this point, we would like to emphasize the computational efficiency of the pro-

posed approach, since it is solely based on the use of the very low-dimensional

set of compressed measurements given by (4.3), which are obtained via a simple

matrix-vector multiplication with the original high-dimensional vector. Given

the limited memory and bandwidth capabilities of a small mobile device, the

proposed approach can be an effective candidate to achieve accurate informa-

tion propagation, while increasing the device’s lifetime. Since M � N we have

a great complexity improvement given by Compressive Sensing, which reduces

the overall complexity of the Kalman filter. Algorithm 3 shows the combination

of JC and CS method in conjunction with the Kalman filter, and summarizes

the proposed information propagation system. Finally, Figure 4.4 presents the

flowchart for generating a tracking model and predicting classes of tweets.
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Figure 4.4: Flowchart of the classification and tracking model based on Kalman
filter and Compressive Sensing.
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4.5 Experimental Results

The efficiency of the proposed classification method is evaluated on sets of tweets

acquired from the Twitter API. The classification accuracy of the tested methods

was measured with the standard Precision, Recall, and F-score metrics, using a

Ground Truth (GT) on more than 1M tweets [68].

The GT was computed by averaging the values returned by users and kept

track of which tweet was classified in which class in order to compare this with

four classification methods along with many different optimisation techniques for

the signal reconstruction mentioned in Section 4.3.

We selected the Document-Pivot (DP) method to compare with our new

method, since it outperformed most of the other state-of-the-art techniques in a

Twitter context as shown in [75]. The most important difference of DP method

is that instead of building suffix trees, this time the method constructs a tf-idf

bag of words), and then classifies each tweet of the Run phase by selecting the

category containing the tweet closest to our test tweet. The notion of closest is

because we used Locality Sensitive Hashing based on the Cosine Similarity in a

vector space where each possible word is a dimension and its tf-idf score is the

coordinate in that dimension. In such a space when the cosine between the two

vectors is close to 1, it means that the vectors are pointing in the roughly same

direction, in other words the two tweets represented by the vectors should share

a lot of words and thus should probably speak about or refer to the same subject.

4.5.1 Classification Performance based on Ground Truth

The classification performance is compared for: (a) Document Pivot (DP),

(b) Joint Complexity with Compressive Sensing (JC+CS), (c) Document Pivot



96 Chapter 4. Text Classification via Compressive Sensing

with URL (DPurl), (d) Joint Complexity and Compressive Sensing with URL

(JCurl+CS), where (c) and (d) include the information of the compressed URL

of a tweet concatenated with the original tweet’s text and extracted from the

.json file.

An overview of the results is presented in Table 4.1 where we can see that, on

average, JC with CS outperforms DP, and JCurl with CS outperforms DPurl.

Table 4.1: Precision, recall and F-score for the used classification methods for
all classes.

Metric DP JC+CS DPurl JCurl+CS
Precision 0.47 0.78 0.68 0.89
Recall 0.38 0.56 0.57 0.81
F-score 0.42 0.65 0.62 0.85

Fig. 4.5 compares the classification accuracy of the DP, DPurl and JC+CS,

JCurl+CS method as a function of the number of measurements by using the `1-

norm minimization. Fig. 4.6 compares the reconstruction performance between

several widely-used norm-based techniques and Bayesian CS algorithms. More

specifically, the following methods are employed1: 1) `1-norm minimization using

the primal-dual interior point method (L1EQ-PD), 2) Orthogonal Matching Pur-

suit (OMP), 3) Stagewise Orthogonal Matching Pursuit (StOMP), 4) LASSO, 5)

BCS, and 6) BCS-GSM [84]. Fig. 4.6 shows that BCS and BCS-GSM outperform

the introduced reconstruction techniques, while Fig. 4.7 shows that we a achieve

better performance of 10% when using the Kalman filter.

1For the implementation of methods 1)-5) the MATLAB codes can be found in: http:
//sparselab.stanford.edu/, http://www.acm.caltech.edu/l1magic, http://people.ee.
duke.edu/~lcarin/BCS.html

http://sparselab.stanford.edu/
http://sparselab.stanford.edu/
http://www.acm.caltech.edu/l1magic
http://people.ee.duke.edu/~lcarin/BCS.html
http://people.ee.duke.edu/~lcarin/BCS.html
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Figure 4.5: Classification accuracy measured by F-Score for the DP, DPurl and
JC+CS, JCurl+CS method as a function of the number of measurements (%)
by using the `1-norm minimization.
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Figure 4.6: Classification accuracy measured by F-Score as a function of the
number of measurements (%) by using several reconstruction techniques, for the
JCurl+CS method.
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Figure 4.7: Classification accuracy measured by F-Score as a function of the
number of measurements (%) by using Kalman, for the JCurl+CS method, with
the BCS and BCS-GSM reconstruction techniques.

4.6 Chapter Summary

In this Chapter an information propagation method was introduced. First, we

performed topic detection based on Joint Complexity and low dimensional classi-

fication based on Compressive Sensing with the accuracy of a Kalman filter as a

refinement step. The experimental evaluation with a large set of tweets revealed

a better performance, when compared with previous state-of-the-art methods,

while being language-agnostic, without any need of grammar, dictionaries or

semantics.
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5.1 Introduction

During this thesis, the theory of Joint Complexity and Compressive Sensing has

been extended to three research subjects, (a) localization and path tracking in

indoor environments, (b) encryption based on compressive measurement vectors,

and (c) encryption based on the Eulerian circuits of original texts.

5.2 Indoor Path-Tracking Using Compressive

RSS Measurements

In this work, a hybrid path-tracking system is introduced, which exploits the

power of compressive sensing (CS) to recover accurately sparse signals, in

conjunction with the efficiency of a Kalman filter to update the states of a dy-

namical system. The proposed method first employs a hierarchical region-based

approach to constrain the area of interest, by modeling the signal-strength

values received from a set of wireless access points using the statistics of

multivariate Gaussian models. Then, based on the inherent spatial sparsity of

indoor localization, CS is applied as a refinement of the estimated position by

recovering an appropriate sparse position-indicator vector. The experimental

evaluation with real data reveals that the proposed approach achieves increased

localization accuracy when compared with previous methods, while maintaining



5.2. Indoor Path-Tracking Using Compressive RSS Measurements
101

a low computational complexity, thus, satisfying the constraints of mobile

devices with limited resources.

During the last decade, location estimation and navigation systems emerged

as important areas of research in the fields of pervasive and mobile computing.

Transportation, security, entertainment, and medicine are just a few examples

where accurate location estimation is a key ingredient. Focusing on the

problem of indoor localization, numerous solutions have been proposed based

on distinct technologies, such as IEEE802.11 [85], infrared [86], ultrasonic [87],

bluetooth [88], or even a combination of optical, acoustic, and received

signal-strength (RSS) information along with motion attributes [89]. In an

other work [90], the RSS was used for service discovery in mobile ad hoc networks.

Based on the wide deployment of wireless local area networks (WLANs)

using IEEE802.11 infrastructures, most indoor positioning systems employ the

RSS values obtained directly from a set of access points (APs) by any mobile

device which is connected to the network. However, the nature and structure

of indoor environments pose significant challenges, since phenomena, such

as shadowing and multipath fading, result in radio channel obstructions and

variations of the RSS values. This makes the design of accurate positioning

systems a difficult and challenging task.

On the other hand, the inherent spatial sparsity, which characterizes a

location estimation problem, motivates naturally the use of the novel mathe-

matical framework of compressive sensing (CS) [16]. CS states that signals that

are sparse or compressible in a suitable transform basis can be recovered from a



102
Chapter 5. Extension of Joint Complexity and Compressive Sensing

highly reduced number of incoherent linear random projections.

Motivated by the need to locate and track accurately a mobile user who

holds a device with potentially limited power, processing, and bandwidth

resources, in this work we introduce a hybrid path-tracking method, which

extents our recently introduced positioning approach [76, 77], which was tailored

to the localization of static users. More specifically, we propose a two-step

path-tracking method: First, we employ a region-based multivariate Gaussian

model to restrict the search space of candidate cells; then, for each region, we

perform CS reconstruction of an appropriate sparse position-indicator vector,

combined with a Kalman filter, as a refinement step for the update of the mobile

user’s estimated position.

The rest of the work is organized as follows: Section 5.2.1 overviews the

current state-of-the-art on indoor path-tracking methods, while Section 5.2.2

describes in brief our recent CS-based localization method for static users,

introduced in [76]. Section 4.4 analyzes in detail the proposed algorithm

for tracking the location of a mobile user in an indoor environment, while

Section 5.2.4 evaluates experimentally and compares the performance of our

approach with previous state-of-the-art localization methods.

5.2.1 Prior Work on RSS-based Path Tracking

RSS-based location estimation methods can be classified roughly in two cate-

gories, namely, the fingerprint- and prediction-based ones. Fingerprint-based

methods consist of two individual phases, that is, the training and the runtime

phase. During the training phase, a wireless device records the RSS values at
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known predefined positions on a discretized grid partition of the physical space

and constructs the training signature map [85, 91]. During the runtime phase,

the system also records the RSS values at an unknown position to construct a

runtime signature, which is then compared with the training signature map to

estimate the user’s location.

On the other hand, prediction-based techniques use the RSS values and radio

propagation models to predict the distance of a wireless device from an AP [92].

The main challenge of these techniques is the difficulty to formulate a reliable

radio propagation model due to multipath fading, shadowing, floor layout, and

moving objects.

In the following, we focus on fingerprint-based localization techniques. Cur-

rent state-of-the-art methods are reviewed in brief, which were shown to be

efficient in several indoor environments, and with which we compare the perfor-

mance of the proposed path-tracking architecture.

A common approach in location estimation problems is the use of the k-

Nearest Neighbor algorithm (kNN) [93], where an RSS map is constructed by

averaging separately the RSS values received from each AP. It computes a sig-

nature vector of the unknown runtime cell and a signature vector of the cell

extracted during the training phase. Then, the algorithm calculates the Eu-

clidean distance between the runtime and all the training cells, and reports the k

closest neighbors by sorting the distances in increasing order. The final estimated

position is given by computing the centroid of these k closest neighbors.

In [94], the problem of indoor path tracking is also treated in a probabilistic

framework. In particular, a reduced number of locations is sampled to construct

a radio map, in conjunction with an interpolation method, which is developed to

patch effectively the radio map. Furthermore, a Hidden Markov Model (HMM)
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that exploits the user traces to compensate for the loss of accuracy is employed

to achieve further improvement of the radio map due to motion constraints,

which could confine possible location changes. The HMM-based localization

technique requires several iterations to converge, while in each iteration several

model parameters have to be estimated. The major benefit of our proposed

algorithm, when compared with the HMM-based approach, is the significantly

reduced computational complexity and implementation simplicity, as well as the

high accuracy in several specific environments (obstacle-free, robust measure-

ments) as it was revealed by the experimental evaluation. On the other hand,

the HMM-based approach can be proven to be more robust in case of system

failures, but at the cost of requiring increased computational resources.

In another work introduced by Guvenc et al. [95], the Kalman filter is used

without considering the time complexity of the algorithm, especially in case of

runtime performance, which introduces large delays in estimating the location.

This is also a major drawback of the path-tracking methods proposed in [96, 97].

In a recent work [98], Au et al. introduced a tracking system analyzed in

two stages. During the coarse localization stage the appropriate cells are chosen,

while during the second stage the Kalman filter is used to refine the location

estimates. In particular, the localization algorithm is carried out on the mobile

device by using the average RSS values in order to construct the transform ba-

sis. Our proposed work differs from the previous one in several aspects, from

the way we acquire the compressed set of measurements to the way we perform

the location estimation. For instance, in contrast to [98], where the estimation is

performed onboard by the wireless device with the potentially limited resources,

in our system the computational burden is put on the server, where increased

storage and processing resources are available. Besides, in the proposed localiza-



5.2. Indoor Path-Tracking Using Compressive RSS Measurements
105

tion technique the CS approach is applied directly on the raw RSS measurements

and not on their average as in [98], and thus exploiting their time-varying be-

havior. Moreover, in [98], the lack of a random measurement matrix required

when working in the framework of CS may decrease the system’s performance

under unpredictable environmental conditions, while also the communication of

the projected measurements from the wireless device to the APs, where the lo-

calization takes place, could pose undesired security issues. In our work, there is

no insight of the physical space during runtime experiments where in [98] a map

information of the area is provided.

Except for the Kalman filter, particle filters [99] have been also very popular

in the design of positioning systems. However, the main disadvantage of a particle

filter lies in its high computational cost [101]. For instance, for an indoor space

of 70 m2 we need almost 5000 particles for each filter update. This is against

the power constraints of mobile devices, such as, cell phones, making particle

filters unsuitable for indoor localization in case of lightweight mobile devices

with limited resources.

In [102], a localization via random field differentiation is applied in order to

track a continuous trajectory between sampling points. Our approach is com-

plementary to this, since the field differentiation is used as a refinement after

the CS algorithm identifies the best candidate cell as if the tracking node were

static. The field differentiation uses the variation in the random field and is more

appropriate to track motion trajectory between cells.

One of the main advantages of our proposed approach, is that it succeeds to

run in real time with a significantly reduced computational complexity, and thus,

satisfying the constraints of devices with limited power, memory, and bandwidth

resources, which was not addressed completely in these earlier studies. Moreover,
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in a recent work [100] we exploited the spatial correlation structure of the finger-

prints and used the framework of Matrix Completion to build complete training

maps from a small number of random sample fingerprints.

5.2.2 CS-based Location Estimation

In this section, we review briefly the main concepts of our previous work on

localization of static users, based on the statistical modeling of the RSS values

using multivariate Gaussian (MvG) models [103, 104], in conjunction with a

spatial sparsity assumption exploited in the framework of CS [105].

5.2.2.1 Statistical Modeling of RSS Values using MvG Models

We start by considering that the physical space is discretized as a grid consisting

of cells with known coordinates. Then, during the training phase, a statistical

signature is extracted for each cell by modeling the RSS values received from a set

of APs using a multivariate Gaussian (MvG) distribution. During the runtime

phase, a statistical signature is generated at the unknown position in a similar

way, which is then compared with the training signatures by means of a sta-

tistical similarity measure, namely, the Kullback-Leibler divergence (KLD). The

estimated location is found by minimizing the following KLD (D(·‖·)) between

two MvGs,

j∗ = arg min
j=1,...,C

D(fR||fj,T ) , (5.1)

where C is the number of cells in the grid representing the physical space, fR

denotes the estimated MvG for the runtime cell, and fj,T is the estimated MvG

for the j-th training cell.

A hierarchical region-based approach [103] is applied as an initial step to
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restrict the space of candidate cells, as follows: First, the space is divided into

regions (groups of cells) and then, the process is repeated iteratively by dividing

the selected region into sub-regions and applying the algorithm on them, until

we end up with the final estimated cell. This process reduces the likelihood of

selecting a single false region/cell over the correct one. The closest region is

found by minimizing the following KLD between two MvGs,

s∗ = arg min
s=1,...,S

D(fR||Gs,T ) , (5.2)

where S is the number of regions and Gs,T denotes the MvG whose parameters

are estimated from the RSS values over all cells of the s-th region during the

training phase.

5.2.2.2 Exploiting Inherent Spatial sparsity using CS

The spatial sparsity, which is inherent in a localization problem, motivated us

to extend our previous statistical-based localization scheme in the framework

of CS [105]. More specifically, the problem of estimating the unknown position

is reduced to a problem of recovering a sparse position-indicator vector, with

all of its components being zero except for the component corresponding to the

unknown cell where the user is placed.

Let Ψ ∈ RP×N (P ≥ N) be a matrix whose columns correspond to a, possibly

overcomplete, transform basis. In terms of signal approximation it has been

demonstrated [16] that if a signal x ∈ RN is K-sparse in basis Ψ (meaning that

the signal is exactly or approximately represented by K elements of this basis),

then it can be reconstructed fromM = rK � N non-adaptive linear projections

onto a second measurement basis, which is incoherent with the sparsity basis,
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and where r > 1 is a small overmeasuring constant.

The measurement model generating these projections in the original space-

domain is denoted as g, described more extensively in Chapter 4.2, where g ∈ RM

is the vector of compressed measurements, Φ ∈ RM×N denotes the measurement

matrix, and w is the sparse vector of transform coefficients.

In our indoor positioning application, the training measurement model asso-

ciated with the i−th AP is given by

gi = Φi
TΨi

Tw, (5.3)

and the runtime measurement model for cell c is expressed as

gc,i = Φi
Rψ

i
R,c , (5.4)

where the subscripts T and R are used to denote the variables (matrices and

vectors) generated in the training and runtime phase, respectively, and ψi
R,c is

the vector of runtime RSS values collected at cell c from AP i.

For the localization problem, let w = [0 0 · · · 0 1 0 · · · 0]T ∈ RC be

a position-indicator vector whose j-th component is equal to “1” if the mobile

device is located in the j-th cell. The inherent sparsity in the problem of location

estimation comes from the fact that the device to be localized can be placed

in exactly one of these cells. Thus, in the framework of CS, the problem of

localization is reduced to a problem of recovering the 1-sparse vector w.

5.2.3 CS-Kalman Filter

Kalman filtering as described in Chapter 4.4 is used to estimate and track the

position of mobile targets. Focusing on the problem of indoor localization, the
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Figure 5.1: Flow diagram of the proposed path-tracking system.

device collects periodically the RSS values from each AP at a specific time in-

terval ∆t. Then, the indoor tracking system estimates the user’s position at

time t, which is denoted by p∗(t) = [x∗(t), y∗(t)]T . Following a Kalman filtering

approach, we assume that the process and observation noises are Gaussian, and

also that the motion dynamics model is linear. The process and observation

equations of a Kalman filter-based tracking model are described in Section 4.4.

The proposed CS-Kalman tracking system exploits not only the highly re-

duced set of compressed RSS measurements, but also the previous user’s posi-

tion estimate to restrict the set of candidate training regions based on physi-

cal proximity. The Kalman filter is applied on the CS-based positioning sys-

tem [106, 107, 108], described briefly in Section 5.2.2.2, to improve the estimation

accuracy of the mobile user’s path. More specifically, let w∗ be the reconstructed
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position-indicator vector. Of course in practice w∗ will be not truly sparse, thus

the current estimated position [xCS, yCS], or equivalently, cell cCS, corresponds

to the highest-amplitude index of w∗. Then, this estimate is given as an input

to the Kalman filter by assuming that it corresponds to the previous time t− 1,

that is, x∗(t−1) = [xCS, yCS, vx(t−1), vy(t−1)]T , and the current position is up-

dated using (4.10). At this point, we would like to emphasize the computational

efficiency of the proposed approach, since it is solely based on the use of the very

low-dimensional set of compressed RSS measurements g, which are obtained via

a simple matrix-vector multiplication with the original high-dimensional RSS

vector. Given the limited memory and bandwidth capabilities of a small mobile

device, the proposed approach can be an effective candidate to achieve accurate

location estimation, while increasing the device’s lifetime. Fig. 5.1 summarizes

the proposed indoor path-tracking system, while Algorithm 4 summarizes the

main steps of the proposed approach in a pseudocode form.

5.2.4 Experimental Results

The efficiency of the proposed tracking system is evaluated on sets of real data

acquired in INRIA at Rocquencourt campus1 and Bell Labs, in Murray Hill,

NJ2. The estimation accuracy of the tested methods is evaluated in terms of the

localization error, which is defined as the Euclidean distance between the centers

of the estimated and the true cell at time t, where the mobile user is located at

runtime.

1The data were collected at Hipercom team at INRIA, for which it is highly acknowledged.
2P. Mirowski and the Statistics and Learning Research department of Bell Labs in Murray

Hill, NJ, are highly acknowledged for sharing the dataset.
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Algorithm 4 Proposed CS-Kalman tracking algorithm

1. During training phase: collect RSS measurements at each cell from all APs.

2. During runtime phase: collect RSS measurements at the unknown cell from
each AP.

3. During runtime phase: execute the following steps for each cell c:

• Given the previously estimated position, extract a set of candidate
regions Eprox within physical proximity.

• Import the runtime RSS values and the training map to the MvG-
based method to get a set of regions EMvG (Section 5.2.2.1).

• The intersection, EI = EMvG∩Eprox, is the common region of interest.

• Use the CS-based algorithm (Section 5.2.2.2) by generating Φi
R,Ψ

i
T

and ψi
R,c for AP i.

• CS reconstruction of the position-indicator vector is performed in re-
gion EI , estimated position (cell) is reported and given as input to
the Kalman filter.

4. The estimated position (cell) is given as an input to the system in order to
obtain new regions within physical proximity.

5.2.4.1 Evaluation in INRIA, Paris

A detailed description of the physical space can be found in the experimentations

section of [102]. The wireless coverage is achieved by using an infrastructure

consisting of five IEEE802.11 APs. The physical space is discretized in cells of

equal dimensions 0.76 m× 0.76 m, while the RSS map consists of measurements

from different cells and for an average number of five APs per cell.

The reconstruction performance is compared for two widely-used CS algo-

rithms, thus working with the much lower-dimensional compressed RSS measure-

ments, as well as with methods working directly with the original full-dimensional

RSS vectors. In the CS domain we employ and test: 1) `1-norm minimization
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using the primal-dual interior point method (L1EQ-PD)3and 2) BCS-GSM [84].

In the original RSS domain we evaluate: 3) a kNN-based approached [93], 4)

our previous method based on MvGs [103], 5) a typical Kalman filter, and 6) a

method employing a particle filter.

Fig. 5.2 shows the cumulative distribution functions (CDFs, P (X < x)) of

the localization error of the kNN and MvG fingerprint-based methods working

in the original RSS domain, together with the CDFs corresponding to the L1EQ-

PD and BCS-GSM implementations of the proposed CS-Kalman approach. As

it can be seen, the CS-based methods obtain an improved position estimation

accuracy compared to standard fingerprint-based methods achieving median er-

rors of 1.71 m (L1EQ-PD) and 1.36 m (BCS-GSM), as opposed to a median

error of 1.90 m for the kNN and 1.69 m for the MvG. We emphasize that in

this experimental setup the compression ratio r (ref. Section 5.2.2.2) of the run-

time RSS measurements vectors employed by the CS-Kalman methods is equal

to r = M
N

= 0.25. In other words, the CS-based approach achieves better po-

sitioning results with a significantly reduced amount of data by exploiting the

inherent spatial sparsity property of the localization problem.

Fig. 5.3 compares the localization error of the proposed CS-Kalman filter ap-

proach using BCS-GSM to solve the sparse reconstruction problem, with the typ-

ical Kalman and particle filters. Again, we observe that our proposed approach

achieves a higher estimation accuracy with a significantly reduced computational

complexity, when compared to the Kalman and particle filters.

3http://sparselab.stanford.edu/

http://sparselab.stanford.edu/
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Figure 5.2: Performance evaluation of the proposed path-tracking method
(L1EQ-PD and BCS-GSM), compared with methods based on kNN and MvGs.
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Figure 5.3: Performance evaluation of the proposed path-tracking method (BCS-
GSM), compared with the typical Kalman and particle filters.

5.2.4.2 Evaluation in Bell Labs, Murray Hill, NJ

Table 5.1 illustrates three different trajectories acquired both in an office space, in

a large corridor with a high, slanted ceiling and in the 5-story atrium. The signal-
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strength was captured by a robot which covered an area of about 40 m× 50 m,

on a single floor, with an installed mobile phone on it. Every channel of an AP

is considered as a different AP, and we have 72 channels. One of the trajectories,

with multiple small loops, is used for defining the fingerprints. Three other

trajectories (so–called Track 1, Track 2 and Track 3) were acquired later the

same day, towards the end of the business day when there were occasional people

moving around the robot, which was a challenge. In order to define fingerprint

cells, we simply subdivide the trajectory of the robot according to a regular grid

defined using the building coordinates, which was 1 m×1 m. In order to assess the

impact of the fingerprint grid size and the trade-off between a denser fingerprint

grid (with fewer RF samples) and a coarser fingerprint grid (with more RF

samples in each cell), we have explored various resolutions for the fingerprint grid

size in the Bell Labs atrium dataset: 1 m, 2 m, 3 m, 4 m, 5 m, 7.5 m and 10 m. We

expect that richer fingerprints containing more received signal strength (RSSI)

samples per cell would enable better discrimination between RSSI distributions

in different fingerprint cells.

The MvG algorithm takes advantage of correlations of the RSSI at certain

positions from various APs. Due to the non-visibility of many APs (some of

them are not frequently heard) in the positions during training and runtime,

the MvG algorithm computes only the correlation between the common APs

which are visible in both training and runtime cell. The proposed framework

in Section 5.2.2 performs better in general, with best results for grid size of

2 m× 2 m.
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Table 5.1: Results in Bell Labs, Murray Hill, NJ
Grid size (m) 1 2 3 4 5 7.5 10
Track 1 MvG 2.09 1.85 2.11 3.10 3.78 3.87 4.32

CS 1.73 1.57 1.92 2.23 2.32 3.30 3.80
Track 2 MvG 1.81 2.04 2.60 3.31 3.89 4.06 4.86

CS 1.33 1.23 1.46 2.61 2.45 2.59 3.74
Track 3 MvG 2.12 2.42 2.59 3.11 3.28 3.77 4.09

CS 1.92 1.61 1.63 2.51 2.79 3.01 3.47

5.3 Encryption System based on Compressive

Sensing Measurements

In this work, the inherent property of CS acting as a weak encryption module

combined with an extra key (the combination of number of false measurement

vectors with the correct one) is exploited to guarantee with high probability that

the communication between the device and the server is secured against potential

intrusions of an unauthorized entity.

CS-based encryption [109] provides both signal compression and encryption

guarantees, without the additional computational cost of a separate encryption

protocol and thus it could be useful in location estimation, where the implemen-

tation of an additional software layer for cryptography could be costly.

5.3.1 SecLoc System Description

The method consists of two parts: (5.3.1.1) Privacy system, and (5.3.1.2) Key

description.
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Figure 5.4: N-1 false vectors plus the correct one. This key, i.e., the sequence of
the measurement vectors reaches the server.

5.3.1.1 Privacy System

Due to their acquisition process, CS measurements can be viewed as weakly

encrypted for a malicious user without knowledge of the random matrices Φi,

where i corresponds to the i-th AP, which have independent and identically

distributed (i.i.d.) Gaussian or Bernoulli entries [16].

The encryption property of a CS approach relies on the fact that the matrix

Φ is unknown to an unauthorized entity, since Φ can be generated using a (time-

varying) cryptographic key that only the device and the server share.

More specifically, the server extracts the runtime sub-matrix Φi
R from the

training Φi
T (since the runtime phase lasts significantly less time than training).

The lines of Φi
R are permuted and the key of the merge of the false measurement

vectors and the correct one is used, as shown in Fig. 5.5 and described extensively

in [76].

5.3.1.2 Key Description

The wireless device sends the measurement vector g to the server along with

N − 1 false vectors, where the reconstruction takes place. Then, the server uses

the information of the physical topology, AP characteristics, previous position,

etc., and estimates the location.
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Figure 5.5: SecLoc system’s security architecture
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5.3.2 Possible Attacks from Malicious Users

An attack could follow three directions:

1. Find Φ matrix by intercepting the server (modern network cryptographic

protocols could guarantee that the decryption of Φp – where p denotes the per-

mutation of the lines – is almost infeasible in practice due to the combinatorial

nature of the inverse problem).

2. Find g by intercepting the opposite direction (the exact knowledge of g

is insufficient, resulting in a significantly increased estimation error, when the

attacker does not achieve the exact estimate of Φi
R).

3. Find the correct measurement vector g, which increases the estimation

error, without exact knowledge.

5.3.3 Experimental Results

Fig. 5.6 shows the encryption capability of the method for the Bayesian Com-

pressive Sensing (BCS) [110] and Bayesian Compressive Sensing – Gaussian Scale

Mixture (BCS-GSM) [84, 111] reconstruction algorithms.

In particular, the average localization error, over 100 Monte-Carlo runs, is

shown as a function of the percentage of permuted lines from 0% to 100%, of the

true matrices Φi
R, where the reconstruction is performed by considering exact

knowledge of the measurement vectors g. The results agree with the intuition

that as the complexity of the permutation increases, the estimation accuracy

decreases without an exact estimate of the true measurement matrix.
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Figure 5.6: Evaluation of the encryption property using BCS and BCS-GSM, for
a varying number (percentage) of permuted lines of Φi

R (x axis).

5.4 Stealth Encryption based on Eulerian Cir-

cuits

In this work, we introduce an encryption system that destructs the semantics of

a text while retaining it almost in correct syntax. The encryption is almost un-

detectable, since the text is not able to be identified as different to a regular text.

This makes the system resilient to any massive scanning attack. The system is

based on the Eulerian circuits of the original text. We provide the asymptotic es-

timate of the capacity of the system when the original text is a Markovian string.

In the seventies the US Air Force set up a program for a stealth fighter

(so–called Nighthawk F-117). The principle was to design a fighter aircraft that

would be almost undetectable to radar. The idea was in a specifically shaped

hull, inside which the aircraft would be of a classical design. Our aim is to

design an equivalent for text encryption so that an encrypted text would hardly

detectable as such by an automated scanning process.
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The practice and study of techniques for secure communication between

users has become emergent and important in every day life. The meaning

of cryptology is huge in the disciplines of computer systems security and

telecommunications. The main goal is to provide mechanisms such that two

or more users or devices can exchange messages without any third party

intervention. Nowadays it is used in wireless networks, information security

in banks, military purposes, biometric recognition, smart cards, VPN, WWW,

satellite TV, databases, VOIP and plethora of systems.

In the very early stages, cryptographic mechanisms were dealing with the

language structure of a message, where nowadays, cryptography has to deal with

numbers, and is based on discrete mathematics, number theory, information

theory, computational complexity, statistics and combinatorics.

Cryptography consists of four basic functions: (a) confidentiality, (b) integrity,

(c) non-repudiation and (d) certification. The encryption and decryption of a

message is based on a cryptographic algorithm and a cryptographic key. Usually

the algorithm is known, so the confidentiality of the encrypted transmitted

message is based on the confidentiality of the cryptographic key. The size of

that key is counted in number of bits. In general, the larger the cryptographic

key, the harder the decryption of the message.

There are two main categories of crypto-systems: (a) classic crypto-systems,

which are divided in substitution ciphers and transposition ciphers, and (b)

modern crypto-systems, which are divided in symmetric (share a common key)
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and asymmetric (use public and private key). Systems based on symmetric

cryptography are divided into block ciphers and stream ciphers. However, users

based on asymmetric cryptographic systems, know the public key, but the

private key is secret. The information being encrypted by one of the keys, can

be decrypted only by the other key.

Up to now, the main methods used for text encryption are sophisticated

algorithms that transform original data into encrypted binary stream. The

problem is that such streams are easily detectable under an automated massive

attack, because they are in very different format and aspect of non encrypted

data, eg texts in natural language. This way any large scale data interception

system would very easily detect the encrypted texts. The result of this detection

is twofold. First detected encrypted texts can be submitted to massive decryp-

tion processes on large computing resources, and finally be deciphered. Second,

even when the texts would not eventually be deciphered, the source or the

destination of the texts are at least identified as hiding their communications

and therefore can be subject to other intrusive investigations. In other words

encryption does not protect against a massive spying attack if encrypted texts

are easily detectable.

In our method we use a permutation of the symbols i.e. n-grams of the

original text. Doing so leads to the apparent destruction of the semantic

information of the text while keeping the text quasi correct in its syntax, and

therefore undetectable under an automated syntactic interception process. To

retrieve the original information the n-grams would be reordered in their original
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arrangement.

5.4.1 Background

In the following terminology, let T be a text written on an alphabet A of size V .

Let r be an integer, which is used to denote a sequence of r consecutive symbols

appearing in a text, i.e r-gram, of text T .

5.4.1.1 Syntax Graph

According to the above terminology, we define the syntax graph G of text T .

We assume a fixed integer r and we denote Gr(T ) = (V,E) the directed syntax

graph of the r-grams of text T . There is an edge between two r-grams a and

b, if b is obtained by the translation by one symbol of r-gram a in the text T .

For example, the 3-gram b = “mpl” follows the 3-gram a = “amp” in the text

T = “example”.

The graph Gr(T ) is a multi-graph, since several edges can exist between two

r grams a and b, as many as b follows an instance of a in the text T .

Fig. 5.7 shows the syntax graph of the famous Shakespeare’s text T =

“to be or not to be that is the question”, with |V | = 13 (for 1-grams) and

|E| = 39.

5.4.1.2 Eulerian Path and Circuit

An Eulerian path in a multi-graph graph is a path which visits every edge exactly

once. An Eulerian circuit or cycle is an Eulerian path which starts and ends on

the same vertex and visits every edge exactly once. The number of Eulerian paths

in a given multi-graph is easy to compute (in a polynomial time) as a sequence of

binomials and a determinant; or can be adapted from BEST theorem [117, 118],
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Figure 5.7: Syntax Graph (1-grams) of the famous Shakespeare’s sentence T =
“to be or not to be that is the question”, where “ ” denotes the space.

to enumerate the number of Eulerian circuits [119, 120], [112] which will be

explained in section 5.4.3.

5.4.2 Motivation and Algorithm Description

5.4.2.1 Motivation

The originality of the system is that the appearance of the transmitted informa-

tion, although encoded, is not changed, so that malicious software applications

cannot determine that a flow of information under study is encoded or not.

Consequently, being undetected, the encoded information will not be subject to

massive deciphering techniques. The probability of the transmitted information

being deciphered is therefore dramatically higher, regardless of the encoding

scheme.

When a malicious deciphering application has detected an emitter or a
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receiver as transmitting encoded information (regardless of whether or not it

managed at deciphering it), it may tag it, so as to trigger further actions, like

systematically analyzing of its transmitted information, trying to infiltrate it to

steal further information. Therefore, an additional and un-addressed technical

problem solved by this system, consists in avoiding being determined by such

an application the fact that encoded information is transmitted.

The system applies in particular to text transmission, but can also apply

to other types of information. The encoded text comprises of only a few

grammatical or lexicographic errors, so that any detecting mechanisms based

on first level errors will not detect anything and will consider such an encoded

text as “badly written normal text". Accordingly, the encoded text will not

be detected as encoded and no deciphering mechanism will be triggered. Any

malicious application analyzing such information will detect a text, with a

typical text format (words, sentences, etc.), and detecting that it is encoded text

would require a complex semantic analysis. In addition, such a semantic analysis

would become more difficult by having no information about the language used

to write such a text.

Let the text “Up to now, the main . . . easily detectable. ” written in

the Introduction, be the text T . We design the Syntax Graph G(T ) with the

4-grams of T , which gives 3.42 × 1042 discrete Eulerian circuits. One possible

circuit is the following:

T ′ = “In In other words encryptions and finally be deciphered, therefore

can be submitted binary stream. This way any large communication does not
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protectable under an automated massive investination is twofold. First detect

the texts can be decrypted texts are in very easily detection of this detectable.

Up to now, they are easily detected encryption processes on large scale data into

encrypted to massive deciphered. Second, even when the main methods used

form original data intrusive spying resources, and as hiding attack if encrypted

data, eg text encrypted aspect of non encrypted texts are attack, because the

source or texts would very different for the encryption are easily detect against a

massive at least identified algorithms that transformat and their computing the

texts in natural language. The problem is that such streams are sophisticated

texts. The result of the destigation system would not eventually be subject to

other interceptions. In "

In this example, it is clear that the encoded text looks like an English

text, and that it would require either manual intervention to determine that it

is not a normal text, or a very complex automatic semantic analysis. Even the

small text presented in Fig. 5.7 gives 1.19× 1010 discrete Eulerian circuits.

5.4.2.2 Algorithm Description

In general, the block ciphers method, breaks into blocks the initial message,

which is going to be encrypted, and encrypts every block separately. Usually

these blocks’s size is 64 or 128 bits. This way the encryption can be adapted

to the length of the information to be coded. The encryption is based on a

mathematical encryption or cryptographic function f(x, k0) where x is the block

and k0 is a shared key. The result is a new cryptographic block y that usually
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has the same length with the initial block.

The length of every block has to be large enough, in order to avoid dic-

tionary attacks. If the length of every block is small, then a malicious user, can

find a pair of clean and respectfully encrypted block to design a dictionary that

corresponds every clean block to a encrypted block. Based on that dictionary,

every text that is encrypted with the particular key could be decrypted.

The decryption process is the inverted encryption process g(y, k0) such

that g(f(x, k0), k0) = x. In that case, a decryption function is used instead

of the encryption function. Some classic block cipher algorithms are Data

Encryption Standard [121], Triple DES which uses three keys instead of one,

Advanced Encryption Standard [122], Tiny Encryption Algorithm [123] and

others [124].

In our algorithm we assume that there is an encryption function f(x,N, k0)

where k0 is a shared key that produces an integer y ∈ (0, N − 1), when x is

an integer, and ∈ (0, N − 1). Let g(y,N, k0) be an inverse function, such that

x = g(f(x,N, k0), N, k0). The function can be made of the concatenation of

m blocks encryption of size ` (64 or 128 bits) with m = d log2N
`
e. In this case

f(x,N, k0) = x1y2 . . . ym if x is made of the concatenation of blocks x1 . . . xm

with yi = f(xi, k0) for all 1 < i < m. The first block is left unencrypted in order

to have y < N with very high probability.

Let r0 be an integer, the proposed scheme is described in the following

algorithm:
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Algorithm 5 Encryption system based on Eulerian path
Suppose that Alice is the transmitter with text T , Bob is the receiver, and
Neysa is the malicious user.

1. Transmitting Information:

• Alice builds the syntax graph Gr0(T )

• Computes the number N of Eulerian paths. Assume that Alice and
Bob share the same indexing method of the Eulerian paths in Gr0(T ).

• Since text T itself is a specific Eulerian path, assume that I(T ) is the
index of text T as Eulerian path. Alice builds the text T ′ being the
Eulerian path with index f(I(T ), N, k0), and then transmits the text
T ′ to Bob.

According to the malicious user Neysa, the text T ′ seems to have correct
syntax, but the original semantic is destroyed.

2. Receiving Information:

• Bob builds the syntax graph Gr0(T
′) which is the same as Gr0(T ).

• Computes the number of Eulerian paths N and is able to recover the
original text index I(T ) = g(I(T ′), N, k0).
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5.4.3 Performance in Markov Models

In this section we consider a string T = Xn of length n generated by a Markov

process of memory 1 over an alphabet A of size V . Notice that there is no loss

of generality with the r-grams description of our model, in this case A is the set

of all r-grams. We denote P the Markov transition matrix: for (a, b) ∈ A2 we

denote pab the coefficients of matrix P, ie the probability that symbol b follows

symbol a.

The Euler code length of a string is the logarithm in base 2 of the num-

ber of eulerian circuits that can be build from string Xn while making it cyclic.

We denote this quantity Ln it reflects the number of bits needed to index the

eulerian number and indeed the encoding capacity of our scheme.

Theorem 5 The average code length Ln of Xn is asymptotically equivalent to

the entropy H(Xn) of the string Xn when n→∞.

This theorem has an important consequence. Let denote Yn the string ob-

tained by the encryption algorithm. We assume that the encryption algorithm

selects an Euler circuit uniformly in the set of Eulerian circuits that can be built

in Xn, then we have the following corollary:

Corollary 1 The mutual information rate 1
n
I(Xn, Yn) tends to zero when n →

∞.

Proof 1 We already know that H(Yn) = H(Xn) since Xn and Yn have same

probability in the Markov process, thus I(Xn, Yn) = H(Xn)−H(Yn|Xn), where the

last term is the conditional entropy of Yn with respect to Xn. Since H(Yn|Xn) =

Ln the results holds.
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Remark The order of magnitude of I(Xn, Yn) that is obtained in the proof of

theorem 5 is O(log3 n
√
n) but the right order should be O(log n) with a more

careful handling of the error terms. Anyhow this proves that our scheme is

efficiently erasing the information of Xn while keeping the text in a formal shape.

We will also evaluate the average number En of Eulerian circuits in Xn. To

this end, for s ≥ 0 we denote P(s) the matrix made of coefficients (pab)
s (if

pab = 0 we assume (pab)
s = 0). We denote λ(s) the main eigenvalues of matrix

P(s).

Theorem 6 The average number of Eulerian circuits of string Xn of length n

is equivalent to α
n
λ2n(1

2
) for some α > 0 that can be explicitly computed.

Remark This average is purely theoretical, in fact it is impossible to simulate

this result when n is large like in the example text, since the most important

and decisive contributions come from strings with extremely low probabilities.

In order to prove our theorem we need some notations and lemmas.

Let k be a V × V integer matrix defined on A × A which is the adjacency

matrix of syntax graph G(Xn), i.e. the coefficient kab of k is equal to the number

of time symbol b follows symbol a in Xn, we say that k is the type of string Xn

as defined in [112]. For (a, b) ∈ A2 we also denote δab the type of the string ab.

For c ∈ A we denote kc =
∑

d∈A kcd and kc =
∑

d∈A kdc respectively the

outdegree and indegree of symbol c in the syntaxic graph. Let Fn the set of

balanced types, i.e. such that ∀c ∈ A : kc = kc, and such
∑

(c,d)∈A2 kcd = n.

Lemma 4 The set Fn is a lattice of dimension V 2 − V [112] . Its size a(n) =

O(nV
2−V+1) and we denote ω the volume of its elementary element.

Proof 2 The set of matrix is embedded in the vector space of real matrices which

is a dimension V 2. The V balance equations are in fact V − 1 since any of them
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can be deduced from the sum of the other. There is a last equation to specify that

all coefficients sum to n.

We denote F(1) the set of balanced real matrices with positive coefficients

that sum to 1. For y a real non negative matrix and s ≥ 0, we denote L(y, s) =∑
(c,d)∈A2 yc,d log( yc

ycd
pscd)

We have the following technical lemma.

Lemma 5 Let s > 0, the maximal value of L(y, s) for y ∈ F(1) − δba
n

is the

matrix ỹn(s) which converges to a matrix ỹ(s) ∈ F(1) whose (c, d) coefficient is

vc(s)ud(s)
pscd
λ(s)

with (uc(s))c∈A and (vc(s))c∈A being respectively the right and left

main eigenvectors of P(s) (with
∑

c∈A uc(s)vc(s) = 1). For instance L(ỹ(s), s) =

log λ(s) and L(ỹn(s), s) = L(ỹ(s), s)− 1
n
(log λ(s) ub(s)

ua(s)
).

Proof 3 We have for all (c, d) ∈ A2 the gradient matrix is

∂

∂ycd
L(y, s) = log

yc
ycd

pscd . (5.5)

The maximum on F(1) or F(1) − 1
n
δba must be member of the vector space

generated by the matrix 1 (made of all one), and the matrices Aj, j ∈ A, the

coefficients of Aj are all zeros excepted 1 on the jth column and -1 on the jth

row, and zero on the diagonal. These matrices are the orthogonal matrices that

define F(1) (or a translation of it). Membership to this vector space is equivalent

to the fact that ∂
∂ycd

L(y, s) must be of the form α+zc−zd for some α and (zc)c∈A,

which is equivalent to the fact that

ycd
yc

=
xd
xc

pscd
λ

(5.6)

for some λ and (xc)c∈A. From the fact that
∑

d∈A
ycd
yc

= 1 we get λ = λ(s) and
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(xc)c∈A = (uc(s))c∈A, i.e. λxc =
∑

d∈A p
s
cdxd. Consequently

L(y, s) =
∑

(c,d)∈A2

ycd log(λ
xc
xd

) (5.7)

= log(λ)
∑

(c,d)∈A2

ycd (5.8)

+
∑
c∈A

(yc − yc) log(xc) (5.9)

Thus L(ỹ(s), s) = log λ(s) and L(ỹn(s), s) = (1− 1
n
) log λ(s) + 1

n
log ua(s)

ub(s)
.

To simplify our proofs we will assume in the sequel that all strings start with a

fixed initial symbol a. The strings starting with a having type k have probability∏
(c,d)∈A2 p

kcd
cd that we denote Pk. We denote

Bk =
∏
c∈A

(
kc

(kcd)b∈A

)
. (5.10)

For a matrix M and (c, d) ∈ A2 we denote det(M) the (c, d) cofactor of M.

We know that the number of eulerian circuits that share the same balanced type

k is equal to Bk
detcd(I−k∗)

kc
for any pair of symbols (c, d) ∈ A2, defining k∗as the

matrix kcd
kc

for (c, d) ∈ A2 and I the identity matrix.

The number of strings that share the same type k depends on their terminal

symbol b. Let denote N b
k this number. When b 6= a, the type is not balanced

but k + δba ∈ Fn. As described in [112],

N b
k = Bkdetbb(I− (k + δba)

∗) . (5.11)

In passing N b
kP

k is the probability that string Xn has type k and we have
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the identity ∑
b∈A

∑
k+δba∈Fn

N b
kP

k = 1 . (5.12)

Similarly the number of eulerian circuits Eb
k corresponding to the string Xn

assuming it ends with b and is made cyclic satisfies:

Eb
k =

1

kba + 1
Bkdetbb(I− (k + δba)

∗) . (5.13)

For convenience we will handle only natural logarithms. We have Ln =
∑

b∈A L
b
n

with

Lbn =
∑

k+δba∈Fn

N b
kP

k logEb
k . (5.14)

Proof 4 (Proof of Theorem 5) Using the Stirling approximation: k! =
√

2πkkke−k(1 +O( 1
k
)) and defining `(y) =

∑
cd ycd log yc

ycd
we have

Lbn = (n+O(1))
1

n(V−1)V/2

∑
k+δba∈Fn

rb(y) exp(nL(y, 1))`(y)

+O(log n) (5.15)

where rb() is a rational function and y is the matrix of coefficients ycd = kcd
n
.

According to lemma 5 the maximum value of L(y, 1) is log λ(1) = 0 and thus

we already have Lbn = O(a(n)) = O(nV
2−V ). for a matrix M we denote ‖M‖

the cartesian norm, i.e. the square root of the squared coefficients. Since ˜y(1)

is the maximum of L(y, 1) over F(1) there exists A > 0 such that ∀y ∈ F(1):

L(y, 1) ≤ L(ỹ(1), 1)− A‖y − ỹ(1)‖2, and when y + 1
n
δba ∈ F(1)

L(y, 1) ≤ L(ỹn(1))− A‖y − ỹn(1)‖2 (5.16)
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Let B > 0: we define

Lbn(B) =
n

n(V−1)V/2

∑
k+δba∈Fn

|y−ỹn|<B logn/
√
n

rb(y) exp(nL(y))`(y) (5.17)

From (5.16) we have Lbn = Lbn(B)(1+O(n−1). Since function L(y, 1) is infinitely

derivable and attains its maximum in F(1), which is zero, on ỹn(1) we have for

all y ∈ F(1)− 1
n
δba

L(y, 1) = L(ỹn(1))−Dn(y − ỹn(1)) +O(‖y − ỹn(1)‖3) , (5.18)

where Dn() is a positive quadratic form obtained from the second derivative of

L(y, 1) on ỹn(1). The value of Ln will be attained in the vicinity of the maximum

since exp(nL(y, 1)) behaves like a Dirac when n→∞. Indeed we are in a kind of

Saddle point application. Thus, since L(ỹn(1)) = 1
n

log λ(1) ub(1)
ua(1)

= 0 (λ(1) = 1

and ∀c ∈ A: ua(1) = 1)

Lbn(B) =
1

n(V−1)V/2 (1 +O(
log3 n√

n
))∑

k+δba∈Fn
|y−ỹn|<B logn/

√
n

r̃(y)enDn(y−ỹn(1)) . (5.19)

Since 1
n
Fn is a lattice of degree (V − 1)V with elementary volume ωn−V 2+V and

Dn() converge to some the non negative quadratic form D() on F(1):

Lbn(B) = n`(ỹ(1))
r(ỹ(1))

n(V−1)V/2
nV

2−V

ω
(1 +O(

1√
n

))∫
F(1)

e−nD(y−ỹ(1))dyV (V−1) (5.20)
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We use the property that

∫
F(1)

exp(−nD(y − ỹ))dyV (V−1) =
1√

nV 2−V det(πD)
(5.21)

where det(πD) must be understood as the determinant of the quadratic operator

πD() on the vector spaceF(1). Therefore

Ln = n`(y)
1√

det(πD)

∑
b∈A

rb(ỹ)(1 +O(
log3 n√

n
)) . (5.22)

The same analysis can be done by removing logEb
k and since via (5.12) we shall

get
∑

b∈A
rb(ỹ(1))√
det(πD)

= 1, we get

Ln = n`(ỹ(1))(1 +O(
log3 n√

n
)) . (5.23)

We terminate the proof of theorem 5 by the fact that n`(ỹ(1)) = H(Xn) (since

∀c ∈ A: uc(1) = 1 and (vc(1))c∈A is the Markov stationary distribution).

Proof 5 (Proof of Theorem 6) The proof of theorem 6 proceeds equivalently

except that En =
∑

b∈AE
b
n with

Eb
n =

∑
k+δba∈Fn

N b
kP

kEb
k . (5.24)

The main factor PkB2
k leads to a factor exp(2nL(y, 1

2
)). Consideration on the

order of the n factors leads to the estimate in An−1λ2n(1
2
).

More extensive studies can be found in our later works in [113, 114, 115, 116].
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Figure 5.8: Mutual information I(Xn, Yn) versus n for the Markov process of
figure 5.7. Y axe is the mutual information (in bit), X axe is the length of the
string up to 10,000.

5.4.4 Experimental Results

Figure 5.8 shows I(Xn, Yn), the discrepancy between Ln and H(Xn), more pre-

cisely the mean value of logNk + log Pk versus the string length n, when Xn

is generated by a Markov process of memory 1 based on the statistics of the

syntax graph of the sentence to be or not to be that is the question (depicted on

figure 5.7) [113]. As predicted the conjectured it is quite sub-linear and seems

to be in log n as conjectured. Each point has been simulated 100 times.

5.5 Chapter Summary

In this Chapter we presented our work in three additional research subjects,

(a) localization and path tracking in indoor environments, (b) encryption based

on compressive measurement vectors, and (c) encryption based on the Eulerian

circuits of original texts.
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In the first additional research subject we proposed a path-tracking method

for indoor localization by exploiting the efficiency of a CS framework with the

accuracy of a Kalman filter. Using our previous method of MvG-based modeling

as an initial step to constrain the area of interest, CS was applied then as a

refinement step by recovering an appropriate sparse position-indicator vector.

The experimental evaluation with a set of real datasets revealed an increased

localization accuracy, when compared with previous state-of-the-art methods,

while operating at a significantly reduced computational cost by using only a

small number of compressed RSS measurements.

In the second additional research subject, we presented an efficient en-

cryption system based on Compressive Sensing, without the additional

computational cost of a separate encryption protocol, when applied to indoor

location estimation problems. The breakthrough of the method is the use of the

weakly encrypted measurement matrices (which are generated when solving the

optimization problem to localize the source), along with an alternative key to

secure the system.

In the third additional research subject, we presented an encryption sys-

tem based on Eulerian circuits, that destructs the semantics of a text while

retaining it in correct syntax. We studied the performance on Markov models,

and presented experiments on real text.



Chapter 6

Conclusions and Perspectives

This thesis introduced and compared two novel topic detection and classification

methods based on Joint Complexity and Compressive Sensing. In the first case,

the joint sequence complexity and its application was studied, towards finding

similarities between sequences up to the discrimination of sources. We exploited

datasets from different natural languages using both short and long sequences.

We provided models and notations, and presented the theoretical analysis. We

applied our methodology to real messages from Twitter, where we evaluated our

proposed methodology on topic detection, classification and trend sensing, and

we performed automated online sequence analysis.

In the second case, the classification problem was reduced in a sparse

reconstruction problem in the framework of Compressive Sensing. The dimen-

sionality of the original measurements was reduced significantly via random

linear projections on a suitable measurement basis, while maintaining an

increased classification accuracy.

The empirical experimental evaluation revealed that the methods outper-

form previous approaches based on bag-of-words and semantic analysis, while

the Compressive Sensing based approach achieved a superior performance when
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compared to state-of-the-art techniques. We performed an evaluation of various

datasets in Twitter and compete in the Data Challenge of the World Wide Web

conference 2014, where we got the 3rd Prize.

Finally, a hybrid tracking system is presented, which exploits the efficiency of

a Kalman filter in conjunction with the power of Compressive Sensing to track

a Twitter user, based on his tweets. The experimental evaluation reveals an

increased classification performance, while maintaining a low computational

complexity.

There is a growing interest in statistical methods that exploit various spatio-

temporal statistical properties of the datasets to form robust maps of the space.

In general, a user’s tweets are described by very transient phenomena (frequency,

language, list of followers) and is highly time-varying. At the same time, the

collection and analysis of data is subject to the quality and relevance of real time

search, the correlation information between groups of users, and the analysis

of the relationship between members of a group or a community. Thus, the

general problem of building a theoretical framework to analyze these data taking

into consideration the above limitations opens up exciting research opportunities.

Regarding the theoretical analysis of the Joint Complexity method, we

gave a conjecture inspired from the general results about the asymptotic digital

trees and suffix tree parameters distribution. We omitted the proof of the

conjecture on its variance, which will be studied in a future work.

Regarding the part of Compressive Sensing, in the present work, the un-
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known class was estimated by performing separate reconstruction for each

representative tweet. A straightforward extension will be the use of the joint

sparsity structure of the indicator vector s among the reference points for the

simultaneous classification. Moreover, the random nature of the measurement

vectors associated with a representative tweet vector could be exploited in

order to enhance the encryption capabilities of the proposed CS classification

approach, without the additional computational cost of a separate encryption

protocol. Besides, a more thorough study should be carried out for the

robustness of the inherent encryption property in terms of the several network

parameters. The choice of appropriate sparsifying and measurement bases is

crucial for an increased classification accuracy. The design of new transform

and measurement bases, Ψ, Φ, respectively, being adaptive to the specific

characteristics of the data is a significant open problem.

Another interesting use of Joint Complexity method, would be the design

of a source finding model, based on topic generation processes and the statistics

of the obsolescence rates of the topics. We may assume that topic sources are

generated on each Twitter user like an i.i.d Poisson process of a specific rate per

timeslot studied. Then we have to obtain an obsolescence rate, which defines

the number of tweets posted in a timeslot based on the difference between a

tweet’s time stamp and the time stamp of its source. The source finding model

will be also explored in a future work.
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Appendix A

Suffix Trees

A.1 Suffix Tree Construction

A suffix tree is composed of nodes, which can have three types:

• internal to the tree, in which case they contain only a list of children (or

equivalently outgoing edges), leaves, in which case they contain a pointer

to their beginning position in the original string (to save memory space as

opposed to storing the whole substring for each leaf). In order to recon-

struct the suffix, we simply build a string from the noted position to the

end of the original string.

• a special kind of leaf, noted epsilon, which is an empty leaf denoting the

end of the string.

• the list of children can be represented as a Map<Character, Node>, where

the Character key is the label of the outgoing edge and the value Node is

the other extremity of the outgoing edge.

The construction of a Suffix Tree follows:

• a root node is created. We start from the end of the string and add suffixes

from each position until we reach the beginning of the string after which

time the Suffix Tree construction is complete.



160 Appendix A. Suffix Trees

• adding a suffix takes two parameters, the position of the suffix and the

character leading to this position, and may have two outcomes:

– if there was no previous edge with the given label, we simply create

the edge and make it point to the given position.

– if there was already an edge with the same label, then we need to start

walking down this edge (and moving along also in the suffix we are

trying to add) until we reach a position where the child we are trying

to add is not already present, in which case we simply add the edge

at the correct sublevel. If at any point during this process we reach a

leaf node, we need to expand it and create the corresponding internal

nodes as long as the two substrings coincide and sprout new leaves as

soon as they differ.

A.2 Suffix Trees Superposition

In order to compute the Joint Complexity of two sequences, we simply need their

two respective Suffix Trees.

Comparing Suffix Trees can be viewed as a recursive process which starts at

the root of the trees and walks along both trees simultaneously. When comparing

subparts of the trees we can face three situations:

• both parts of the trees we are comparing are leaves. A leaf is basically a

string representing the suffix. Comparing the common factors of two strings

can be done easily by just incrementing a counter each time the characters

of both strings are equal and stop counting as soon as they differ. For

example comparing the two suffixes “nalytics” and “nanas” would give a
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result of 2 as they only share the first two characters; while comparing

suffixes “nalytics” and “ananas” would return 0 as they do not start with

the same character.

• one subpart is a leaf while the other subpart is an internal node (i.e. a

branch). Comparing a non-leaf node and a leaf is done by walking through

the substring of the leaf and incrementing the score as long as there is an

edge whose label corresponds to the current character of the leaf. Note

that the keys (edge’s labels) are sorted so that we can stop looking for

edges as soon as an edge is sorted after the current character (allowing

average sublinear computation). When we reach a leaf on the subtree side,

we just need to compare the two leaves (starting from where we are at in

the substring and the leaf that we just reached).

• both parts of the trees we are comparing are internal nodes (i.e. we are

trying to compare two branches). Comparing two non-leaf nodes is done

by initializing a current counter to zero and walking through both subtrees

while doing the following at each step:

– first check whether we have reached the end (epsilon) of one of the

subtrees, in which case we can stop comparing and return the current

counter.

– then check whether we have reached two leaves at the same time, in

which case we add the current counter to the output of the previously

described method for comparing two leaves.

– check whether we have reached a leaf on one side only, in which case

we add the current counter to the output of the previously described

method for comparing a leaf with an internal node.
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– keep walking through subtrees as long as we find identical edges

(and call ourselves recursively), each time incrementing our internal

counter.
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