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Introduction

(English version follows.)

Un système critique pour la vie ou pour la sécurité est un système dont la défaillance ou le
dysfonctionnement peut grièvement blesser ou tuer des gens, détruire ou faire subir des dégâts
importants à des équipements, ou causer des dommages environnementaux. Les méthodes et
les outils de l’ingénierie de la sécurité permettent d’appréhender les risques de cette nature.
Un système critique est conçu pour perdre moins d’une vie par milliard (109) d’heures de
fonctionnement [Fed88]. Sa conception fait général appel à l’évaluation probabiliste des risques,
une méthode qui combine l’analyse des modes de défaillance, de leurs effets et de leur criticité
(AMDEC) avec l’analyse par arbre de défaillance. Aujourd’hui, les systèmes de sécurité critiques
sont de plus en plus souvent informatisés.

L’ingénierie logicielle pour les systèmes critiques est particulièrement difficile. Elle repose sur
plusieurs éléments. Le premier est le génie et la gestion des procédés. Le second est le choix des
outils et d’un environnement appropriés pour le système. Cela permet au développeur de tester
efficacement le système par simulation et d’observer son efficacité. Le troisième consiste à se
soumettre à toutes les exigences légales et réglementaires de sécurité, telles que les exigences
de la FAA pour l’aviation (DO-178B [RTC92, Joh98]). La définition d’une norme selon laquelle
doit être développé un système contraint les concepteurs à respecter ces exigences. L’industrie
aéronautique a réussi à produire des normes standard pour la production de logiciels d’avia-
tion critiques. Des normes similaires existent dans l’industrie automobile (MISRA C [MIS98],
ISO 26262 [KTDA12]), médicale (IEC 62304 [Jor06]) et nucléaire (IEC 61513). L’approche
standard consiste à soigneusement coder, inspecter, documenter, tester, vérifier et analyser le
système.

Correctement appliquée, cette approche permet d’atteindre un très haut niveau de sécurité : des
logiciels critiques ont été utilisés durant des décennies dans l’industrie aérospatiale sans causer de
désastre majeur. Malheureusement, ces procédés de développements sont excessivement lourds
et coûteux : la vérification et la validation des logiciels critiques représentent ainsi plus de
50% du coût de son développement [WDD+12]. En raison de leur complexité et de leur coût,
ces contraintes sont parfois mal respectées, ce qui conduit à des bogues avec des conséquences
parfois dramatiques. Un exemple récent est le défaut du contrôleur électronique de la commande
d’accélération des véhicules Toyota Camry, qui a causé plusieurs morts [Yos13]. De plus, les
tests seuls ne sont pas suffisants : étant donné le nombre considérable de scénarios de tests,
il est impossible de couvrir tous les cas et il n’y a aucune garantie qu’un bogue n’ait pas pu
échapper aux tests.

Ces éléments expliquent l’intérêt académique et industriel actuel pour les méthodes formelles,
qui fournissent des garanties mathématiques de correction, avec différents niveaux d’automati-
sation. Une approche possible est de certifier un système de production et un compilateur, puis
de générer le code du système à partir des spécifications. Une autre consiste à utiliser des mé-
thodes formelles pour générer les preuves qui garantissent que le code répond à sa spécification.
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Contenu et contributions

Ce manuscrit est organisé en deux parties, chacune d’elles correspondant à une contribution
distincte. La première partie porte sur les systèmes de contrôle. Un système de contrôle est un
dispositif ou un ensemble de dispositifs qui gère, commande, dirige ou régule le comportement
d’autres dispositifs ou systèmes (chapitre 1). Des systèmes de contrôle industriels sont utilisés
en production, pour contrôler des équipements ou des machines. La propriété formelle qui
nous intéresse est la stabilité : en termes simples, c’est la propriété selon laquelle toutes les
solutions d’un système dynamique qui commencent à proximité d’un point d’équilibre restent
par la suite dans son voisinage. La théorie du contrôle énonce qu’un contrôleur linéaire est
stable si et seulement si il admet une invariant quadratique — géométriquement, un ellipsoïde,
appelé fonction quadratique de Lyapunov (chapitre 2), et propose des méthodes pour trouver
un invariant de cette nature à partir de la description algébrique du système. Nous présentons
un framework formel, générique, pour traduire des preuves de stabilité de Lyapunov codées
en MATLAB avec des nombres réels vers du code C de bas niveau en arithmétique machine
(chapitre 3) ; ainsi qu’un outil pour générer automatiquement les invariants de stabilité sur de
l’arithmétique à virgule flottante (chapitre 4).

Il arrive aussi qu’il soit nécessaire de reconstruire automatiquement les invariants sur un pro-
gramme donné. C’est pourquoi la seconde partie porte sur l’analyse des relations linéaires
(chapitres 5, 6, 7), un framework d’interprétation abstraite couramment utilisé, consacré à
la génération automatique d’invariants sous forme d’inégalités linéaires sur les variables nu-
mériques d’un programme. Nous présentons ALICe, un ensemble d’outils pour comparer les
techniques de calcul automatique d’invariants affines sur les boucles (chapitre 8). Il s’accom-
pagne d’un benchmark construit à partir de 102 cas de test provenant de la littérature sur les
problèmes d’invariants et de terminaison de boucles, et s’interface avec trois outils d’analyse
de programmes, utilisant des algorithmes différents : Aspic, iscc et PIPS. Les résultats expéri-
mentaux montrent l’importance du codage du modèle et les performances en retrait de PIPS en
présence de boucles concurrentes dans le programme analysé. Pour étudier ces problèmes, nous
utilisons deux techniques de restructuration de programme (chapitre 9), prouvées correctes en
Coq, et nous présentons plusieurs améliorations apportées aux algorithmes de PIPS pour le cal-
cul d’invariant (chapitre 10).

* * *

A life-critical system or safety-critical system is a system whose failure or malfunction may
result in death or serious injury to people, loss of or severe damage to equipment or envi-
ronmental harm. Risks of this sort are usually managed with the methods and tools of safety
engineering. A critical system is designed to lose less than one life per billion (109) hours of
operation [Fed88]. Typical design methods include probabilistic risk assessment, a method that
combines failure mode and effects analysis (FMEA) with fault-tree analysis. Safety-critical sys-
tems are increasingly computer-based.

Software engineering for critical systems is particularly difficult. There are three aspects which
can be carried out to support this discipline. First is process engineering and management.
Secondly, selecting the appropriate tools and environment for the system. This allows the
system developer to effectively test the system by emulation and observe its effectiveness.
Thirdly, address any legal and regulatory requirements, such as FAA requirements for avi-
ation (DO-178B [RTC92, Joh98]). By setting a standard for which a system is required to
be developed under, it compels the designers to stick to the requirements. The avionics in-
dustry has succeeded in producing standard methods for producing critical avionics software.
Similar standards exist for automotive (MISRA C [MIS98], ISO 26262 [KTDA12]), medical
(IEC 62304 [Jor06]) and nuclear (IEC 61513) industries. The standard approach is to carefully
code, inspect, document, test, verify and analyze the system.
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Correctly applied, this approach allows to achieve a very high level of safety: critical software
has been used for decades in the aerospace industry without any major disaster. Unfortunately,
such development processes are excessively heavy and expensive: verification and validation for
critical software represent more than 50% of software development costs [WDD+12]. Due to
their complexity and cost, these constraints are sometimes poorly respected, which leads to bugs
with dramatic consequences. A recent example is the electronic throttle control defect linked
to unintended acceleration in Toyota Camry vehicles [Yos13] that caused deaths. Furthermore,
testing alone is not enough: considering the huge number of test scenarios, exhaustive testing
is impossible and there is not any guarantee that the processed test cases did not fail to reveal
a specific bug.

These elements explain the current academic and industrial interest in formal methods; they
provide mathematical insurances of correctness, with various levels of automation. One possible
approach is to certify a production system, a compiler, and then generate the system’s code from
specifications. Another one is to use formal methods to generate proofs that the code meets
requirements.

This thesis focuses on model checking and abstract interpretation (with a secondary use of
proof assistants), an efficient family of formal methods to exhaustively and automatically check
whether a model meets a given specification, given in the form of numerical properties. More
precisely, these techniques compute invariants on a program, i.e. conditions on its states that
are true during its execution, or during some portion of it. They are logical assertions that hold
true during a certain phase of execution, and they are used to check whether the specification
holds. Therefore, generating accurate invariants is a key element to prove the correctness of a
program with respect to its specification.

Contents and Contributions

This manuscript in organized in two parts, each of them corresponding to distinct contribu-
tions. The first part is about control systems. A control system is a device, or set of devices,
that manages, commands, directs or regulates the behavior of other devices or systems (Chap-
ter 1). Industrial control systems are used in industrial production for controlling an equipment
or a machine. The formal property we are interested in is stability: in simple terms, that all
solutions of a dynamical system that start out near an equilibrium point stay in its neighbor-
hood forever. Control theory states that a linear controller is stable if and only if it admits a
quadratic invariant — geometrically speaking, an ellipsoid, called quadratic Lyapunov functions
(Chapter 2), and offers practical ways to find such an invariant from the algebraic description of
the system. We present a formalized, generic framework to translate Lyapunov stability proofs
on MATLAB real-valued code to low-level C code using machine arithmetic (Chapter 3), and
a tool that automatically generates stability invariants in the case of floating-point arithmetic
(Chapter 4).

It is also sometimes necessary to automatically reconstruct the invariants on given implemen-
tations. This is why the second part focuses on linear relation analysis (Chapters 5, 6, 7), a
widespread abstract interpretation framework devoted to the automatic discovery of invariant
linear inequalities on the numerical variables of a program. We present ALICe, a toolset to
compare automatic computation techniques of affine loop scalar invariants (Chapter 8). It
comes with a benchmark that we built using 102 test cases found in the loop invariant and
termination bibliography, and interfaces with three analysis programs, that rely on different
techniques: Aspic, iscc and PIPS. Experimental results show the importance of model cod-
ing and the poor performances of PIPS on concurrent loops. To tackle these issues, we use two
restructuring techniques whose correctness is proved in Coq (Chapter 9), and present various
improvements made to PIPS algorithms for invariant computation (Chapter 10).
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Part I

Linear Systems
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Chapter 1

Control-Command Critical Systems

Un système dynymatique est un concept en mathématiques où une règle fixe décrit la dépen-
dance temporelle d’un point dans un espace géométrique. Les modèles mathématiques qui dé-
crivent le mouvement du balancier d’une horloge, l’écoulement de l’eau dans un tuyau ou le
nombre de poisson chaque été dans un lac sont des exemples de systèmes dynamiques.

À tout instant, le système possède un état défini par un ensemble de nombres réels (un vecteur),
qui peut être représenté par un point dans l’espace d’état approprié. Une légere altération de
l’état corespond à un légere altération de ces valeurs. La règle d’évolution du système dynamique
est une règle fixe qui décrit quel état futur peut découler de l’état actuel. Cette règle est
déterministe : dans un intervalle de temps donné, l’état actuel ne peut mener qu’à un seul état
futur.

La théorie du contrôle (ou automatique) est la branche interdisciplinaire de l’ingénierie et
des mathématiques qui traite du comportement des systèmes dynamiques avec des entrées.
L’entrée extérieure d’un système est appelée la référence (ou consigne). Quand une ou plusieurs
variables de sortie d’un système doivent suivre une certaine consigne au cours du temps, le
contrôleur manipule l’entrée du système de manière à obtenir l’état souhaité en sortie. Il s’agit
d’un dispositif, historiquement mécanique, hydraulique, pneumatique et/ou électronique, plus
récemment un microprocesseur ou un microcontrôleur, qui surveille et modifie les conditions
de fonctionnement du système dynamique. La régulation de la température, de la pression, du
débit ou de la vitesse sont des applications typiques des contrôleurs. Le régulateur à boules sur
la figure 1.1 est l’un des premiers exemples de contrôleur mécanique, que l’on rencontre souvent
sur les moteurs à vapeur : il contrôle la vitesse du moteur en régulant la quantité de vapeur
admise, afin de maintenir une vitesse quasi-constante, indépendamment de la charge ou de la
fourniture en combustible.

Les sujets abordés en théorie du contrôle incluent la stabilité, la contrôlabilité et l’observabilité,
la spécification du contrôle, l’idenfication et la robustesse du modèle. Parmi ceux-ci, un objectif
courant est de calculer les solutions pour les actions de correction du contrôleur qui garantissent
la stabilité du système, c’est-à-dire que le système restera sur le point qui aura été défini au lieu
d’osciller autour de ce point. Une définition précise de la stabilité est donnée dans la section 1.3.

Bien que le champ d’application principal de l’automatique soit l’ingénierie des systèmes de
contrôle, qui traite de la conception de systèmes de contrôle industriels, d’autres applications
dépassent largement de ce cadre. L’automatique peut être utilisée pour étudier tout système
avec rétroaction et trouve des applications dans des domaines aussi divers que la physiologie,
l’életronique, la climatologie, les écosystèmes, la navigation, les réseaux de neurones ou encore
la génétique.

* * *

15



A dynamical system is a concept in mathematics where a fixed rule describes the time de-
pendency of a point in a geometrical space. Examples include the mathematical models that
describe the swinging of a clock pendulum, the flow of water in a pipe, or the number of fish
each springtime in a lake.

At any given time a dynamical system has a state defined by a set of real numbers (a vector)
that can be represented by a point in an appropriate state space (a geometrical manifold).
Small changes in the state of the system are represented by small changes in the numbers.
The evolution rule of the dynamical system is a fixed rule that describes which future state can
follow from the current state. The rule is deterministic; in other words, for a given time interval
only one future state follows from the current state.

Control theory is the interdisciplinary branch of engineering and mathematics that deals with
the behavior of dynamical systems with inputs. The external input of a system is called the
reference. When one or more output variables of a system need to follow a certain reference
over time, a controller manipulates the input to a system to obtain the desired output state
of the system. It is a device, historically using mechanical, hydraulic, pneumatic or electronic
techniques often in combination, but more recently in the form of a microprocessor or micro-
controller, which monitors and physically alters the operating conditions of a given dynami-
cal system. Typical applications of controllers are to hold settings for temperature, pressure,
flow or speed. The centrifugal governor in Figure 1.1 is an early example of mechanical con-
troller, commonly seen on steam engines, that controls the speed of an engine by regulating the
amount of steam admitted, so as to maintain a near-constant speed, irrespective of the load or
fuel-supply conditions.

Figure 1.1: Centrifugal governor at the Science Museum of London

Topics in control theory include stability, controllability and observability, control specification,
model identification and robustness. Among them, an usual objective is to calculate solutions
for a proper corrective action from the controller that result in system stability, that is, the
system will hold the set point and not oscillate around it. A precise definition of system stability
is given in Section 1.3.

Although a major application of control theory is control systems engineering, which deals with
the design of process control systems for industry, other applications range far beyond this.
As the general theory of feedback systems, control theory is useful wherever feedback occurs;
a few examples are in physiology, electronics, climate modeling, machine design, ecosystems,
navigation, neural networks, and gene expression.

1.1 Control-Command Systems
A control-command systems is an autonomous, self-controlled system that includes:

• The regulated parameter.
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• The controller.
• Sensors to feed input data to the controller.
• Actuators through which the controller acts on the system to reach the desired state.

A complex example of control-command system is a modern airliner: parameters like the plane’s
altitude and speed are regulated by an on-board computer, using a set of sensors (speedometer,
altimeter…), and adjusting the flight path by playing on actuators like engine thrust and flight
control surfaces.

Plant Modeling

To design a control-command system, control engineers need to know precisely the effect actu-
ators have on the system. For a physical system, it is required to design a model of the system
behavior in its environment, using laws of mechanics and physics. This model is called a plant.

Linear systems are a particular class of control-command systems that can be described by
linear equations (linear differential equations or difference equations). They are much easier to
study than the general, nonlinear cases. Therefore, a nonlinear system is often linearized around
an equilibrium point or trajectory (when possible), to obtain a linear system that accurately
represents the nonlinear system in the neighborhood of this equilibrium point or trajectory.

From a mathematical perspective, the internal state xp ∈ Rn of a linear plant (a vector contain-
ing the system characteristics in the environment: for a plane, it could be the speed, altitude,
etc.) is ruled by a differential equation

ẋp = Apxp +Bpup

where Ap ∈ Rn×n and Bp ∈ Rn×p are constant, real-valued matrices, and up ∈ Rp is the vector
of system inputs (speed, altitude…).

In the setting defined by the internal state xp and the input values up, the output yp (interpreted
as the system action) follows the equation

yp = Cpxp +Dpup.

where Cp, Dp are constant, real-valued matrices.

Controller Design

Control theory offers various methods to develop a controller corresponding to a particular
plant model. In the usual case of a linear controller, the controller internal state xc follows the
equation

ẋc = Acxc +Bcuc (1.1)

where uc is the controller input, that typically comes from input sensors yp (speed and altitude
measurements) and commands yd (cockpit controls), and equals the output of the physical
system, minus the command (yp − yd). The controller computes the output

yc = Ccxc +Dcuc (1.2)

that is applied to actuators and is equal to the plant input up (Figure 1.3).
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Controller Implementation

Once the controller is designed, they are several ways to implement it:

• Hardware implementation: either with a purely mechanic implementation — as is the
centrifugal governor in Figure 1.1 — or with analog electronics.

• Software implementation: running a program on a numerical controller, as on most mod-
ern devices.

In this document, we focus exclusively on software controllers. To implement a controller, it
is necessary to discretize its internal state equation (1.1), in order to be able to recompute its
internal state xc at a fixed frequency:

xck+1
= A′

cxck +B′
cuck . (1.3)

Typical frequencies for embedded systems are about 100 Hz.

Eventually, the discrete controller equations (1.2), (1.3) can be coded, for instance in MATLAB:

Ac = [0.4990, -0.0500; 0.0100, 1.0000];
Bc = [1; 0];
Cc = [564.48, 0];
Dc = -1280;
xc = zeros(2, 1);
while (1)

receive(uc);
xc = Ac*xc + Bc*uc;
yc = Cc*xc + Dc*yc;
send(yc);
wait_next_tick();

end
Listing 1.1: A toy linear controller by Feron [Fer10]

This is a specific, numerical code, consisting of a main loop and nested computations; it looks
very different from the source code of a compiler for example. Of course, the true controller of a
large scale system is something much more complex: real-scale software may require hundreds
of thousands of lines of C code (about 170,000 source lines of generated C code for an Airbus
A340, and 760,000 lines for an Airbus A380).

1.2 Open-Loop and Closed-Loop Controllers
An open-loop controller (also called a non-feedback controller), is a type of controller that
computes its input into a system using only the current state and its model of the system.

A characteristic of the open-loop controller is that it does not use feedback to determine if its
output has achieved the desired goal of the input. This means that the system does not observe
the output of the processes that it is controlling. Consequently, a true open-loop system may
not compensate for disturbances in the system.

An open-loop controller is shown in Figure 1.2.

Controller (state xc) ucyc

Figure 1.2: Open-loop controller
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To overcome the limitations of the open-loop controller, control theory introduces feedback. A
closed-loop controller uses feedback to control states or outputs of a dynamical system. Its
name comes from the information path in the system: process inputs (e.g., fuel flow in the
jet engines) have an effect on the process outputs (e.g., engine thrust), which is measured with
sensors and processed by the controller; the result (the control signal) is fed back as input to
the process, closing the loop.

Closed-loop controllers have the following advantages over open-loop controllers:

• Disturbance rejection.
• Guaranteed performance even with model uncertainties, when the model structure does

not match perfectly the real process and the model parameters are not exact, unstable
processes can still be stabilized.

• Reduced sensitivity to parameter variations.
• Improved reference tracking performance.

A closed-loop controller is shown in Figure 1.3.

Plant (state xp)

Controller (state xc) yd
yc

up yp

uc

Figure 1.3: Closed-loop stability

1.3 Stability Proofs
Stability theory addresses the stability of solutions of differential equations and of trajectories
of dynamical systems under small perturbations of initial conditions.

When focusing on stability, two types of properties are of major interest: closed-loop stability
and open-loop stability.

• Closed-loop stability expresses that the controller manages to stabilize the plant, assum-
ing that the physical system is correctly described by the model: if the command yd is
bounded, then the internal states xp and xc and the outputs yp and yc of the plant and
the controller remain bounded.

• Open-loop stability means that all variables in the controller are bounded, assuming its
inputs are bounded: if the controller input uc is bounded, its internal state xc and its
output yc remain bounded.

Both properties are interesting: closed-loop stability offers guarantees on the plant state,
whereas an open-loop stable controller is ensured not to diverge disastrously if there is a tem-
porary malfunction in its input sensors. This is why both open-loop and closed-loop stability
are often required simultaneously in critical systems. Both types of stability are considered in
this dissertation.
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Chapter 2

Lyapunov Stability Proofs

La stabilité constitue un attribut essentiel des systèmes de contrôle, en particulier lorsque la
sécurité des personnes est en jeu, comme c’est le cas par exemple en médecine ou en aéronautique
(chapitre 1). Les développements récents, comme les technologies de contrôle adaptatif, utilisent
principalement des critères de robustesse, de stabilité et de performance pour justifier leur
pertinence dans des applications de contrôle critiques. Il existe de nombreux théorèmes, motivés
par de telles applications, qui assurent la stabilité et la performance d’un système sous diverses
hypothèses et dans divers contextes. La théorie de stabilité de Lyapunov [Lya92] joue à cet
égard un rôle essentiel.

L’implémentation logicielle de bas niveau d’une loi de contrôle peut être inspectée par les outils
d’analyse disponible pour aider au développement de programmes informatiques critiques. La
technique d’analyse de programme la plus simple consiste à effectuer plusieurs simulations, en
incluant dans certains cas une représentation logicielle ou matérielle du système asservi dans la
boucle. Cependant, les simulations ne peuvent fournir d’information que sur un nombre limité
de comportements du système. Les méthodes plus avancées comprennent le model checking et
l’interprétation abstraite, par exemple en utilisant Astrée [CCF+15]. Ces méthodes prennent
en entrée les programmes informatiques eux-mêmes et renvoient en sortie des certificats ga-
rantissant le bon comportement des programmes par rapport aux spécifications choisies. Une
autre possibilité est d’utiliser des techniques de démonstration assistée de théorèmes, propo-
sées par des outils comme Coq, Isabelle ou PVS [INR15, PNW14, Com15]. Ces assistants de
preuve peuvent être utilisés pour établir des propriétés de programmes et plus généralement
des constructions mathématiques. Le model checking, l’interprétation abstraite et les assistants
de preuve sont tous trois utilisés pour vérifier des applications critiques.

Dans [Fer10], Feron étudie comment des informations de domaine sur les système de contrôle
— et, en particulier, les preuves de stabilité de Lyapunov sur une modélisation théorique de haut
niveau d’un système — peuvent être transposées vers des certificats de comportement de logiciels
de contrôle lisibles et vérifiables par un ordinateur, en s’appuyant sur le système de preuve de
Floyd et Hoare [Pel01], appliqué à du pseudo-code MATLAB (voir les sections 2.2 et 2.3). Feron
présente des implémentations en boucle ouverte et en boucle fermée de son contrôleur, selon
que l’action du système sur son environnement et la rétroaction sont modélisées ou non. Mais
les erreurs causées par l’arithmétique à virgule flottante ne sont pas considérées.

Dans cette partie, nous abordons cette question en présentant une approche automatique pour
traduire des invariants de preuves de stabilité de Lyapunov sur du pseudo-code à arithmétique
réelle, comme celui fourni dans l’article de Feron, vers des invariants similaires sur du code
machine en prenant en compte les erreurs d’arrondi introduites par l’arithmétique à virgule
flottante. Nous utilisons ces invariants pour vérifier si les conditions de stabilité sont toujours
respectées, auquel cas la stabilité du système à virgule flottante est établie. Cette approche est
basée sur un framework théorique générique, décrit plus loin dans ce document, dont la sûreté
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est prouvée en Coq ; elle est également implentée sous la forme d’un outil automatique.

Cette partie de la thèse est organisée comme suit. Dans le reste de ce chapitre, nous décrivons
l’exemple de système dynamique du second ordre utilisé par Feron dans [Fer10], avec le contrô-
leur correspondant. Nous présentons ensuite l’analyse par Feron du contrôleur en boucle ouverte
avec des nombres réels. Dans les chapitres qui suivent, nous présentons notre schéma géné-
rique de traduction (chapitre 3, page 29) et son implémentation dans une bibliothèque Python,
et nous l’utilisons par la suite pour réécrire l’analyse de Feron en arithmétique à virgule flot-
tante (chapitre 4, page 37). Enfin, on traitera le cas du système en boucle fermée. Cette partie
se termine par une discussion sur la généralité de cette approche.

* * *

Stability constitutes an essential attribute of control systems, especially when human safety is
involved, as in medical or aeronautical domains (Chapter 1). Modern system developments,
such as adaptive control technologies, rely on robust stability and performance criteria as the
primary justification for their relevance to safety-critical control applications. Motivated by
such applications, there exist many theorems that ensure system stability and performance
under various assumptions and in various settings. Lyapunov’s stability theory [Lya92] plays a
critical role in that regard.

The low-level software implementation of a control law can be inspected by analysis tools avail-
able to support the development of safety-critical computer programs. The simplest program
analysis technique consists in performing several simulations, sometimes including a software
or hardware representation of the controlled system in the loop. However, simulations provide
information about only a finite number of system behaviors. More advanced methods include
model checking and abstract interpretation, e.g. using Astrée [CCF+15]. In these methods, in-
puts are the very computer programs and outputs are certificates of proper program behavior
along the chosen criterion. Another possibility is to use theorem-proving techniques, supported
by tools such as Coq, Isabelle or PVS [INR15, PNW14, Com15]. These proof assistants can
be used to establish properties of programs and more general mathematical constructs. Model
checking, abstract interpretation, and theorem-proving tools are all used to verify safety-critical
applications.

In [Fer10], Feron investigates how control-system domain knowledge and, in particular, Lyapunov-
theoretic proofs of stability for the high-level theoretical modeling, can be migrated towards
computer-readable and verifiable certificates of control software behavior by relying on Floyd’s
and Hoare’s proof system [Pel01], applied to MATLAB pseudo-code (see Sections 2.2 and 2.3).
Feron presents both open-loop and closed-loop implementations of his controller, i.e. depend-
ing whether the system action on the environment and its feedback are modeled or not. But
errors resulting from the use of floating-point arithmetic are not considered.

In this part, we address this issue by presenting an automatic approach to translate Lyapunov-
theoretic stability proof invariants on pseudo-code with real arithmetic, as provided in Feron’s
article, to similar invariants on machine code that take into account rounding errors introduced
by floating-point arithmetic. We use them to verify whether the stability conditions still hold,
in which case system stability with floating-point numbers is established. This approach is
based on a generic theoretical framework, the soundness of which is proved in Coq, described
further in this document, and is implemented as an automatic tool.

This part of the dissertation is organized as follows. In the remainder of this chapter, we describe
the second-order dynamical system example used by Feron in [Fer10], with the corresponding
controller. Next, Feron’s analysis of the open-loop controller with real numbers is presented.
In the next chapters, we introduce our generic translation scheme (Chapter 3, page 29) and
its implementation as a Python library, and use it thereafter to rewrite Feron’s analysis with
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floating-point arithmetic (Chapter 4, page 37). Finally, the case of the closed-loop system is
handled. This part concludes with a discussion on the generality of this approach.

2.1 Lyapunov Stability Theory
Various types of stability may be discussed for the solutions of differential equations describing
dynamical systems. The most important type is the one concerning the stability of solutions
near to a point of equilibrium. This may be discussed by the theory of Lyapunov. In simple
terms, if the solutions that start out near an equilibrium point xe stay near xe forever, then
xe is Lyapunov stable. More strongly, if xe is Lyapunov stable and all solutions that start out
near xe converge to xe, then xe is asymptotically stable.

Lyapunov functions are scalar functions that may be used to prove the stability of an equilib-
rium. The existence of Lyapunov functions is a necessary and sufficient condition to establish
the stability of a discrete, time-invariant closed system, meaning that its state variable will re-
main bounded during the execution [HC11].

Informally, a Lyapunov function is a function that takes positive values everywhere except at
the equilibrium in question, and decreases (or is non-increasing) along every trajectory of the
control system’s differential equation f . It is a function V : Rn → R that satisfies the following
properties:

V (0) = 0 and ∀x ∈ Rn \ {0}, V (x) > 0 and lim
‖x‖→∞

V (x) = ∞ (2.1)

∀x ∈ Rn, V (f(x))− V (x) ≤ 0. (2.2)

In the case of discretized linear systems, i.e. systems whose internal state is defined according
to Equation (1.3):

xk+1 = Axk +Buk

and assuming that
‖uk‖∞ ≤ 1, (2.3)

it can be shown that the Lyapunov function V can be taken as a quadratic form of the state
variable of the system:

V (x) = x⊺Px

with P ∈ Rn×n a symmetric matrix such that

P ≻ 0 (2.4)
A⊺PA− P ≺ 0 (2.5)

where the notation P ≻ 0 means that P is a positive-definite matrix, i.e., for all non-zero
vector x, ensuring that x⊺Px > 0. Equation (2.3) expresses that values coming from input
sensors are usually bound into a given range. The bound value 1 is chosen with no loss of
generality since the matrix B can always be altered to account for different bounds.

2.2 Motivating Example by Feron
We consider the first system described in the article of Feron [Fer10]. It is a dynamical system
composed of a single mass and a single spring shown in Figure 2.1.

The position input y of the mass is available for feedback control. The signal yd is the reference
signal, that is, the desired position to be followed by the mass. We do not show (and Feron
does not) that the distance |yd − y| is bounded. yd has to be understood as a command.
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y yd

u

Figure 2.1: Mass-spring system

A discrete-time MATLAB implementation of the controller, using real numbers, is provided
in [Fer10]. The source code is shown in Listing 2.1. The process to produce this code from the
system modeling is covered in detail in Feron’s paper.

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;
5 xc = zeros(2, 1);
6 receive(y, 2); receive(yd, 3);
7 while (1)
8 yc = max(min(y - yd, 1), -1);
9 skip;

10 u = Cc*xc + Dc*yc;
11 xc = Ac*xc + Bc*yc;
12 send(u, 1);
13 receive(y, 2);
14 receive(yd, 3);
15 skip;
16 end

Listing 2.1: Pseudocode of the controller

In this code, the skip statement is a null operation: when it is executed, nothing happens.
It is useful as a placeholder when a statement is required syntactically to be surrounded by
invariants, but no code needs to be executed.

Apart from the mechanical system state observation y and the desired system output yd, vari-
ables in this code are:

• xc =
(
xc1
xc2

)
∈ R2 is the discrete-time controller state;

• yc ∈ [−1, 1] is the bounded output tracking error, i.e. the input (y−yd) is passed through
a saturation function to avoid variable overflow in the controller;

• u ∈ R is the mechanical system input (and the controller output at the same time), i.e.
the action to be performed according to the controller.

ConstantsAc, Bc, Cc andDc are the discrete-time controller state, input, output and feedthrough
matrices. The commands send and receive are basically I/O: they respectively send and
receive data given in the commands’ first argument through a specific channel given by the
commands’ second argument.
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2.3 Open-Loop Stability Proof with Reals
The stability proof of this system relies on Lyapunov theory. As seen in Section 1.3 and
Section 2.1, a system is Lyapunov stable if all states xc reachable from an initial starting state
belonging to a bounded neighborhood V of an equilibrium point xe remain in V . Lyapunov
theory provides constraints that must be satisfied by such a V . On linear systems, they are
equations that can be solved using linear matrix inequalities [BEGFB94]. Commonly, V is an
ellipsoid.

In our case, to prove Lyapunov stability, we need to show that at any time, xc belongs to the
set EP chosen by Feron:

EP = {x ∈ R2 |x⊺ · P · x ≤ 1}, P = 10−3

(
0.6742 0.0428
0.0428 2.4651

)

using EP as the stability neighborhood V .

This set is the full ellipse shown in Figure 2.2, centered around 0 and slightly slanted:

xc ∈ EP ⇐⇒ 0.6742xc
2
1 + 0.0856xc1xc2 + 2.4651xc

2
2 ≤ 1000.

xc1−40 −30 −20 −10 10 20 30

xc2

−20

−10

10

20

EP

Figure 2.2: The stability domain EP

A stability proof of the controller code is provided in [Fer10], using Floyd-Hoare program
annotation technique [Hoa69, Flo93, Pel01]: each program instruction comes with an invariant.
The program annotated by Feron is reproduced below.

5 xc = zeros(2,1);
% xc ∈ EP

6 receive(y, 2); receive(yd, 3);
% xc ∈ EP

7 while (1)
% xc ∈ EP

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP , y

2
c ≤ 1

9 skip;
% ( xc

yc ) ∈ EQµ , Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc ) ∈ EQµ , u
2 ≤ (Cc Dc) ·Q

−1
µ · (Cc Dc)

−1

11 xc = Ac*xc + Bc*yc;
% xc ∈ ER, R =

[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

⊺
]−1

,

% u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

12 send(u, 1);
% xc ∈ ER
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13 receive(y, 2);
% xc ∈ ER

14 receive(yd, 3);
% xc ∈ ER

15 skip;
% xc ∈ EP

16 end
Listing 2.2: Pseudocode with proof annotations

Most of the steps of the proof rely on algebraic arguments. For example, the invariant loosening
on Line 9:

% xc ∈ EP , y2c ≤ 1
9 skip;

% ( xc
yc ) ∈ EQµ , Qµ =

( µP 02×1

01×2 1−µ

)
, µ = 0.9991

means
xc ∈ EP ∧ y2c ≤ 1 =⇒ ( xc

yc ) ∈ EQµ ,

with Qµ =
( µP 02×1

01×2 1−µ

)
and µ = 0.9991.

The correctness of this assertion stems from the fact that, given any value of µ ∈ [0, 1], the
domain EQµ is a solid ellipsoid, centered around 0, and whose intersection with the planes
yc = 1 and yc = −1 is equal to EP . Consequently, the solid bounded cylinder C = {( xc

yc ) |xc ∈
EP ∧ y2c ≤ 1} is included within EQµ (Figure 2.3).

EQµ

EP

C
xc2

yc

1

−1

xc1

Figure 2.3: Inclusion of EP within EQµ

The next two invariants

% ( xc
yc ) ∈ EQµ , Qµ =

( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc ) ∈ EQµ , u
2 ≤ (Cc Dc) ·Q

−1
µ · (Cc Dc)

−1

11 xc = Ac*xc + Bc*yc;
% xc ∈ ER, R =

[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

⊺
]−1

,

% u2 ≤ (Cc Dc) ·Q
−1
µ · (Cc Dc)

−1

also rely on similar algebraic arguments and theorems. Other invariants are trivial. Finally,
only the very last loosening

% xc ∈ ER
skip;
% xc ∈ EP
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i.e. ER ⊂ EP , that closes the loop, is not purely algebraic since its validity relies on the
numerical parameters Ac, Bc, Cc, Dc. This assertion needs to be checked to ensure the correct-
ness of the proof statements. This can be done either numerically, or algebraically for at most
two-dimensional systems like this one.

We have checked this proof using Mathematica 8 [Wol14]. Our proof notebook is available
online†1.

†1Mathematica source file is available at: http://www.cri.mines-paristech.fr/people/maisonneuve/
lyafloat/resources/lyafloat_stability.nb, and the corresponding PDF file at: http://www.cri.
mines-paristech.fr/people/maisonneuve/lyafloat/resources/lyafloat_stability.pdf.
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Chapter 3

Proof Scheme with Limited-Precision
Numbers

Nous voulons vérifier que la preuve de stabilité est toujours valide sur un dispositif de commande
réaliste, en utilisant des nombres à précision limitée (par exemple, mais pas nécessairement,
des nombres à virgule flottante). Avec une arithmétique en précision limitée, les valeurs des
constantes sont légèrement modifiées et les calculs sont susceptibles de produire des erreurs
d’arrondi.

D’un point de vue théorique, il est impossible de passer de nombres réels à des nombres de
précision limitée sans affecter le comportement du contrôleur. Ainsi, la preuve de la stabilité ne
peut pas être conservée dans le cas général. Par ailleurs, le programme peut encore être stable
si les erreurs d’arrondi sont suffisamment petites et que l’inclusion finale ER ⊂ EP leur laisse
assez de place. Nous étudions comment les invariants de preuve peuvent être modifiés pour être
appliqués à une sémantique en précision limitée. L’objectif est d’obtenir, à partir du schéma de
preuve en nombres réels, un schéma de preuve qui convienne à une arithmétique en précision
limitée et dont la correction, non garantie, pourra être vérifiée aussi aisément que dans la preuve
d’origine.

* * *

We would like to check that the stability proof still holds on a realistic controller device, using
limited-precision numbers (for instance, but not necessarily, floating-point numbers). When
using limited-precision arithmetic, the values of constants are slightly altered and calculations
are likely to produce rounding errors.

In absolute terms, it is impossible to switch from real to limited-precision numbers without
affecting the behavior of the controller. Thus, the stability proof cannot be preserved in the
general case. On the other hand, the program can still be stable if rounding errors are small
enough and the final inclusion ER ⊂ EP leaves enough room. We study how proof invariants
can be tweaked so that they apply to a limited-precision semantic. Our goal is to derive from
the proof scheme for real numbers a proof scheme suited for limited-precision arithmetic, whose
correctness, although not guaranteed, can be checked as easily as in the original proof.

3.1 Formalism
In this section, an abstract formalism is defined to handle a program and its proof, with both
real and limited-precision arithmetic. This formalism is implemented in Coq.

Let X be the (finite) set of variables in the program.
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% d

i

% d′ = p(d, i)

Figure 3.1: Abstract scheme of invariant propagation on the original program

3.1.1 Values
Let F ⊂ R be the target set of limited-precision representations of real numbers (e.g., floating-
point numbers). We assume that each real number c ∈ R has a finite-precision representation
c̄ ∈ F and that Equation (3.1) is satisfied:

c ∈ F =⇒ c̄ = c. (3.1)

Throughout the rest of the document, we will use the uniform notation K to refer to either the
set R or F.

3.1.2 Functions Symbols
We consider a set of function symbols FR on real numbers. Each real function symbol f ∈ FR

is associated to a finite-precision counterpart f̄ ∈ FF. Functions symbols in FR and FF will be
simply referred as functions when there will be no ambiguity.

Each function symbol f in FR or FF has an arity n ∈ N and can be evaluated into a corre-
sponding mathematical function:

f ∈ FK =⇒ eval(f) ∈ Kn → K.

Functions f and f̄ have the same arity:

arity f = arity f̄ .

As for now, no other assumption is made as to the behavior of f̄ compared to f . In particular,
there is no guarantee that, applied to the same inputs, they will return the same value.

Notice that function symbols are not identified to their evaluations. The reason is that func-
tions with similar evaluations on real arithmetic may behave differently on a limited-precision
paradigm, e.g. function f : x 7→ 2100 + x − 2100 compared to the identity function Id : x 7→ x:
eval(f) = eval(Id) but eval(f̄) 6= eval(Id).

3.1.3 Valuations
A valuation v on K is a function that maps variables in X to values in K. The set of valuations
on K is noted ValK.

ValK ∋ v : X → K.

Notice that ValF is a subset of ValR.

Each valuation v in ValR is associated to a valuation v̄ in ValF, defined as follows:

v̄ : x ∈ X 7−→ v(x).

Using this definition, it can easily be shown using Equation (3.1) that for any valuation v ∈ ValR,

v ∈ ValF =⇒ v̄ = v.

30



Let v1 and v2 be two valuations in ValR. The distance dist between v1 and v2 is the valuation
that maps a variable in X to the distance in absolute value between its associated values in v1
and v2:

ValR ∋ dist(v1, v2) = x ∈ X 7−→ |v1(x)− v2(x)|.

We say that v1 is lower than v2, and note v1 ≤ v2, if

∀x ∈ X, v1(x) ≤ v2(x).

Finally, the sum of the two valuations, noted v1 + v2, is the valuation defined as follows:

v1 + v2 : x ∈ X 7−→ v1(x) + v2(x).

3.1.4 Domains (Invariants)
Domains are used to represent Floyd’s and Hoare’s invariants seen in previous sections. A
domain d on K is a set of valuations on K, i.e. d ⊂ ValK. The set of domains on K is noted
DK, with DF ⊂ DR.

A real domain d ∈ DR can be associated to a limited-precision domain d̄ ∈ DF defined by:

d̄ = {v̄ | v ∈ d}.

As for valuations in F, it can be shown that

d ∈ DF =⇒ d = d̄.

We also define an operation to overapproximate a domain with respect to a valuation (intuitively,
an error valuation ). The extension of a domain d ∈ DR using a positive valuation v ∈ ValR,
noted d⊕ v, is defined as follows:

d⊕ v = {v2 ∈ ValR | v1 ∈ d ∧ dist(v1, v2) ≤ v}.

3.1.5 Expressions
We consider a very simple language with variables, constants and function calls. This language
is expressive enough to represent most of control-command softwares, which corresponds to our
needs. The expressions EK of this language are constructed as follows:

EK ∋ e ::= x ∈ X variable
| c ∈ K constant
| f(e1, . . . , en) function call

with f ∈ FK, arity f = n

and ∀i ∈ [1, n], ei ∈ EK

An expression e ∈ K can be evaluated in the environment described by the valuation v ∈ ValK.
The result is a value in K.

eval(e, v) =





v(x) if e = x ∈ X

c if e = c ∈ K

eval(f)(c1, . . . , cn) if e = f(e1, . . . , en)
with ∀i ∈ [1, n], ci = eval(ei, v)

where the notation eval is overloaded to handle expressions.
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3.1.6 Instructions
An instruction is the affectation of an expression value to a variable. The set of instructions is
noted IK:

IK = X × EK

We note x := e the instruction (x, e) ∈ IK.

As for expressions, an instruction (x := e) ∈ IK can be evaluated in an environment v ∈ ValK.
The result is a valuation in ValK.

eval(x := e, v) =

(
y ∈ X 7−→

{
eval(e, v) if x = y

v(y) if x 6= y

)

This definition can be extended to evaluate the image of a domain d ∈ DK, the result being
also a domain of DK.

eval(x := e, d) = {eval(x := e, v) | v ∈ d}

3.1.7 Invariant Propagation
An invariant propagator, or simply propagator, is a function p that takes as input a domain in
DK, known as precondition, an instruction in IK, and returns a domain in DK called postcon-
dition.

p : DK×IK −→ DK

A propagator is expected to return a valid postcondition for a given precondition and instruc-
tion. Formally, this can be described by the correctness condition

∀(d, i) ∈ DK×IK, ∀v ∈ d, eval(i, v) ⊂ p(d, i)

that can also be written:

∀(d, i) ∈ DK×IK, eval(i, d) ⊂ p(d, i). (3.2)

The set of (correct) propagators is noted PK.

Propagators are an abstract representation of the argument theorems used to propagate Floyd’s
and Hoare’s invariants en route to prove a program. Unlike these arguments, propagators have
to be defined on the whole domain DK×IK, that is, for any precondition and instruction. It
is well known that most mathematical theorems make assumptions on their inputs. To make
propagators total functions, the universal postcondition can always be returned if the domain
is outside the scope of the corresponding argument, for instance when the hypothesis of some
Lyapunov theorem is not verified.

3.2 Translation Scheme
The general translation scheme that is implemented is the following (see Figure 3.2). Each
instruction i in the abstract controller code with real numbers is turned into a corresponding
instruction ı̄ on the concrete controller, where real constants and operators are replaced by their
limited-precision counterparts. A post-condition d̄′ on the limited-precision side is computed
using the same proof argument p as in the original code, enlarged to include the error term
bound verr that may occur in limited-precision arithmetics in ı̄. The same propagator p is
used because Floyd’s and Hoare’s invariants are still based on real numbers, even if the code
is implemented with a limited-precision arithmetic. verr is computed on an intermediate
instruction form ı̃, the meaning of which will be explained later. The precondition d might have
been previously replaced by d̄ as the postcondition of a preceding instruction.
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% d

i

% d′ = p(d, i)

% d̄

ı̄

% d̄′ ⊃ p(d̄, ı̃)⊕ verr

Figure 3.2: General translation scheme

The error term bound verr depends on the operators of the instruction ı̄ and on the information
on the program variables given by d̄. The limited-precision arithmetic error is not necessarily
bounded even when the variables are, e.g. consider division. In this case, we are not able to
compute a suitable d̄′ and the proof translation attempt fails.

Also, d̄′ will be used as a precondition in the next instruction. An effort has to be made so that
d̄′ has a similar shape to d′, in order to fit with the proof argument p′ used in this instruction,
if possible. In our case, we will strive to maintain the invariant under the form of an ellipsoid.
Thus, d̄′ is an overapproximation of p(d̄, ı̄) ⊕ verr in the domain of p′. In consequence, the
automated analysis falls short if such a d̄′ cannot be found.

3.3 Translation Steps

In this section, we consider an instruction i = (x := e) in IR, along with a precondition d and
a postcondition d′ in DR. d, i and d′ are linked through a propagator p in PR:

d′ = p(d, i).

As outlined in Section 3.2, we study how the instruction i can be translated into an equivalent
instruction ı̄ ∈ IF on limited-precision arithmetic, while using information on the precondition
d and propagator p of i to compute an interesting postcondition d̄′ for ı̄ (given a modification
d̄ of d). This is a two-step process:

1. First, the program constants c ∈ R are converted into their limited-precision representa-
tions c̄ ∈ F while keeping absolute-precision functions, giving an instruction ı̃ ∈ IR. This
induces a modified application of the propagator p.

2. Second, the functions f ∈ FR that appear in the code are changed into their limited-
precision counterparts f̄ ∈ FF. This induces the introduction of rounding errors that are
added to the invariant obtained at step 1.

The resulting code relies on limited-precision arithmetic only, which is what is being sought.
The translation scheme is described in Figure 3.3.

% d

i

% d′ = p(d, i)

% d̃

ı̃

% d̃′ = p(d̃, ı̃)

% d̄

ı̄

% d̄′ ⊃ p(d̄, ı̃)⊕ verr

Figure 3.3: Refined translation scheme
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3.3.1 Converting Constants
We construct an expression ẽ ∈ ER, obtained from e by converting its constants from R to F.
Formally, ẽ is defined recursively as follows:

ẽ =





x if e = x ∈ X

c̄ if e = c ∈ R

f(ẽ1, . . . , ẽn) if e = f(e1, . . . , en)

(3.3)

We let ı̃ = (x := ẽ).

Let d̄ ∈ DF be the precondition corresponding to d after converting both constants and func-
tions in the preceding instructions of the program. Let d̃′ = p(d̄, ı̃) ∈ DR. According to Equa-
tion (3.2), d̃′ is a valid postcondition for precondition d̄ and instruction ı̃.

3.3.2 Converting Functions
The next step is to convert real functions f that appear in the expression into their limited-
precision counterparts f̄ , as defined in Section 3.1.2. The resulting expression ē ∈ EF is obtained
with:

ē =





x if e = x ∈ X

c̄ if e = c ∈ R

f̄(ē1, . . . , ēn) if e = f(e1, . . . , en)

(3.4)

Compared to the definition of ẽ in Equation (3.3), we just have turned functions symbols f into
f̄ . As previously, we also let ı̄ = (x := ē).

Unlike ı̃, instruction ı̄ relies on different functions than i (taken from FF instead of FR): the
underlying invariant propagation argument in propagator p is very likely not to be applicable
to it, as the mathematical theorems used in p typically rely on properties of real arithmetic
operators. In this case, p(d̄, ı̄) would fall back on the universal domain, which of course is valid
but prevents us from doing any interesting proof further in the program. We want to obtain a
more precise and still valid postcondition invariant d̄′.

Functional Arithmetic Errors
To circumvent this issue, we propose when it is possible to enlarge the invariant d̃′ = p(d̄, ĩ)
found in Section 3.3.1 to take into account arithmetic errors introduced when converting func-
tions from FR to FF. Such errors are called functional arithmetic errors, but we will refer to
them as arithmetic errors, or simply errors, later in this document.

Equation (3.5) defines the arithmetic error on an expression ẽ ∈ ER modulo a valuation v ∈ ValF.
The result is a value in R.

err(ẽ, v) = | eval(ē, v)− eval(ẽ, v)| (3.5)

This definition is extended to define the arithmetic error induced by an instruction ı̃ = (x := ẽ)
in IR on a valuation v ∈ ValF. The result is a valuation in ValR defined as follows:

err(x := ẽ, v) =

(
y ∈ X 7−→

{
err(ẽ, v) if x = y

0 if x 6= y

)
.

Finally, a valuation verr ∈ ValF is an upper bound of the arithmetic error induced by instruction
ı̃ on a domain d ∈ DR if:

∀v ∈ d, err(̃ı, v) ≤ verr.
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Now, let us consider an instruction ı̃ in IR surrounded by a precondition d̄ and a postcondition
d̃′ = p(d̄, ı̃) in DR. We have:

eval(̃ı, d̄) ⊂ d̃′

Theorem 3.1. Let verr ∈ ValF be an upper bound of the arithmetic error induced by instruction
ı̃ on domain d̄. Then, the implication

∀d̄′ ∈ DR, d̃
′ ⊕ verr ⊂ d̄′ =⇒ eval(̄ı, d̄) ⊂ d̄′

holds.

In other words, if d̃′ is a postcondition for an instruction ı̃ on real numbers, on a given precon-
dition domain d̄, and d̄′ is a superset of d̃′ loose enough to support the arithmetic error verr,
then d̄′ is a valid postcondition for ı̄, the limited-precision counterpart of instruction ı̃.

A proof in Coq, limited to binary functions (which include all the functions that we need in this
document), has been implemented and is available at http://www.cri.mines-paristech.fr/
people/maisonneuve/thesis/LyaFloat.v.
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Chapter 4

Translating Stability Proof Scheme to
Floating-Point Numbers

Nous voulons vérifier si la preuve de stabilité dans le programme de Feron est toujours valable
sur un contrôleur implémenté avec des nombres flottants, en utilisant l’approche présentée dans
le chapitre précédent. Dans ce chapitre, on utilisera le standard IEEE pour l’arithmétique à
virgule flottante [IEE08], codée sur 64 bits†1, comme c’est le cas dans la majorité des unités
de calcul à virgule flottante actuelles. Dans cette norme, l’addition et la multiplication sont
correctement arrondies en fonction du mode actif d’arrondi, ce qui permet de borner l’erreur
en fonction de la valeur des opérandes. Le cas des représentations numériques alternatives est
discuté dans la section 4.5.

* * *
We would like to check whether the stability proof in Feron’s program still holds on a controller
implemented with floating-point numbers using the approach of the previous chapter. In this
chapter, we use the IEEE Standard for Floating-Point Arithmetic [IEE08] encoded on 64 bits†2,
as most of today’s floating-point units do. In this standard, both addition and multiplication are
correctly rounded depending on the active rounding mode, which allows to bound the rounding
error depending on the values of operands. The case of alternative numeric representations is
discussed in Section 4.5.

4.1 Automatic Translation
We have developed a program to automatically perform these computations, following the
translation scheme framework described in the previous chapter. It is a module called LyaFloat,
written in Python and built upon Python libraries SymPy (to handle symbolic mathematics)
and Mpmath (for arbitrary-precision floating-point arithmetic).

Here is the listing of a script that automatically computes the floating-point output invariant
ellipsoid ER (in variable ERbar) corresponding to ER in the original proof, and tests whether
ER ⊂ EP . Two cases are possible:

• either ER ⊂ EP , then the program is Lyapunov-stable on a floating-point architecture;

• or ER 6⊂ EP : as ER was obtained through overapproximations, we cannot conclude about
the program behavior.

†1La procédure qui suit serait exactement la même avec des nombres flottants 32 bits, les résultats numériques
seraient simplement différents. La précision numérique est en fait un paramètre du système.

†2The procedure that follows would be exactly the same with 32-bit floating-point numbers, only with different
numerical results. In fact, arithmetic precision is a parameter of the system.
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1 from lyafloat import *
2 # Parameters
3 setfloatify(constants=True, operators=True,
4 precision=64)
5

6 # Definition of EP
7 P = Rational("1e-3") * Matrix(rationals(
8 ["0.6742 0.0428", "0.0428 2.4651"]))
9 EP = Ellipsoid(P)

10

11 # Definition of EQµ

12 mu = Rational("0.9991")
13 Qmu = mu * P
14 Qmu = Qmu.col_insert(2, zeros(2, 1)).
15 row_insert(2, zeros(1, 3))
16 Qmu[2,2] = 1 - mu
17 EQmu = Ellipsoid(Qmu)
18

19 # Symbols
20 xc1, xc2, yc = symbols("xc1 xc2 yc")
21 Xc = Matrix([[xc1], [xc2]])
22 Yc = Matrix([[yc]])
23 Zc = Matrix([[xc1], [xc2], [yc]])
24

25 # Constant matrices
26 Ac = Matrix(constants(
27 ["0.4990 -0.0500", "0.0100 1.0000"]))
28 Bc = Matrix(constants(["1", "0"]))
29 Cc = Matrix(constants(["564.48 0"]))
30 Dc = Matrix(constants(["-1280"]))
31

32 # Definition and verification of ER
33 AcBc = Ac.col_insert(Ac.cols, Bc)
34 R = (AcBc * Qmu.inv() * AcBc.T).inv()
35 ER = Ellipsoid(R)
36 print("ER included in EP :", ER <= EP)
37

38 # Computation and verification of ER
39 i = Instruction({Xc: Ac * Xc + Bc * Yc},
40 pre=[Zc in EQmu], post=[Xc in ER])
41 ERbar = i.post()[Xc]
42 print("ERbar =", ERbar)
43 print("ERbar included in EP :", ER <= EP)

Listing 4.1: Computation of ER using LyaFloat

In this open-loop case, our program LyaFloat is able to check the inclusion. Thus, the stability
of the open-loop system with a 64-bit IEEE 754 compliant implementation is formally proven
to hold using our proof translation scheme.

Notice that the precision of the floating-point arithmetic can be set in setfloatify. This
allows us to check that the controller is still stable on a 32-bit only architecture, or to compute
that the minimum required precision is 17 bits. This can be useful if, instead of adapting the
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controller code and/or its proof to the hardware, we have to select a controller device that suits
the proof.

In the remainder of this section, we describe the operations performed by our tool to compute
ER. It follows the two-step scheme described in Section 3.3. Alternatively to our program, an
implementation of this proof using Mathematica is available online: see Footnote †1, page 27.

4.2 Handling Constants
Following Section 3.3.1, the first step when translating Feron’s program is to convert real
constants into floating-point numbers. The first lines of code in the program:

1 Ac = [0.4990, -0.0500; 0.0100, 1.0000];
2 Bc = [1; 0];
3 Cc = [564.48, 0];
4 Dc = -1280;

Listing 4.2: Original constant definitions in the program

become, assuming rounding to nearest value:

1 Ac = [0.49899999999999999911182158029987476766109466552734375,
-0.05000000000000000277555756156289135105907917022705078125;
0.01000000000000000020816681711721685132943093776702880859375,
1.0000];

2 Bc = [1; 0];
3 Cc = [564.48000000000001818989403545856475830078125, 0];
4 Dc = -1280

Listing 4.3: Constant definitions, using floating-point values

Theses matrices Ac, Bc, Cc and Dc will be used instead of the original matrices Ac, Bc, Cc and
Dc in the sequel of the proof.

Apart from constants, the proof scheme for the first part of the program is unchanged:

5 xc = zeros(2,1);
% xc ∈ EP

6 receive(y, 2); receive(yd, 3);
% xc ∈ EP

7 while (1)
% xc ∈ EP

8 yc = max(min(y - yd, 1), -1);
% xc ∈ EP , y

2
c ≤ 1

9 skip;
% ( xc

yc ) ∈ EQµ , Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
Listing 4.4: Beginning of the proof, unchanged

4.3 Handling Functions
The second step of our proof translation scheme is to convert function symbols from real to
floating-point. We show how it is done instruction by instruction.
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4.3.1 Invariant on u

The next instruction after Section 4.2 in the original proof scheme is:
% ( xc

yc ) ∈ EQµ , Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc ) ∈ EQµ , u
2 ≤ (Cc Dc) ·Q

−1
µ · (Cc Dc)

−1

Listing 4.5: Computation of u, original code

First of all, matrices Cc and Dc must be replaced by their floating-point counterparts Cc and
Dc both in the program instruction Line 10 and the ensuing invariant. This invariant relies
only on algebraic arguments and does not depend on the values in the matrices, it still holds
considering exact arithmetic operations. But this is not sufficient: indeed, this instruction is
a sum of matrix multiplications, i.e. a set of additions and multiplications on floating-point
numbers that yield rounding errors (see Section 3.3.2).
We can notice that entering this instruction, the values of matrices Cc, Dc and EQµ are known,
and the values of xc and yc are bounded by the precondition

( xc
yc ) ∈ EQµ ,

that is
0.000673593xc

2
1 + 0.000085523xc1xc2 + 0.00246288xc

2
2 + 0.9991y2c ≤ 1. (4.1)

From Equation (4.1), we deduce:




|xc1| ≤ 3 · 105
√

13 695
829 322 227 639 < 38.5515

|xc2| ≤ 105
√

33 710
829 322 227 639 < 20.1614

|yc| ≤ 100√
9991

< 1.00046

(4.2)

Here we are able to find algebraic solutions, but this may be impossible with ellipsoids of higher
dimension. Still, we would be able to find bounds using numerical methods.
In floating-point arithmetic, rounding errors created by addition and multiplication operators
can be bounded when the operands are known or bounded by Equation (4.2), provided that
overflow, underflow, and denormalized numbers do not occur [Gol91, Hig02].
Here, we need to compute

Ccxc +Dcyc = Cc(0,0)xc1 +Dcyc

where all values in the right-hand term are known or bounded. Thus, a constant ε can be
computed that bounds the absolute rounding error created when computing u. We obtain:

ε = 5.90 · 10−12

This way, starting from the algebraic result obtained on real numbers

|u| ≤
√

(Cc Dc) ·Q
−1
µ · (Cc Dc)

⊺

we can ensure that with floating-point numbers, the following inequality holds:

|u| ≤ Ū =

√
(Cc Dc) ·Q

−1
µ · (Cc Dc)

⊺

+ ε

which leads to the invariants:
% ( xc

yc ) ∈ EQµ , Qµ =
( µP 02×1

01×2 1−µ

)
, µ = 0.9991

10 u = Cc*xc + Dc*yc;
% ( xc

yc ) ∈ EQµ , u
2 ≤ Ū2

Listing 4.6: Computation of u, modified
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4.3.2 Invariant on xc

The next instruction, considering changes of constants, is:

11 xc = Ac*xc + Bc*yc;
% xc ∈ ẼR, R̃ =

[
(Ac Bc) ·Q

−1
µ · (Ac Bc)

⊺
]−1

,

Listing 4.7: Computation of xc, original code

where R̃ is defined the same way R is, using floating-point terms Ac, Bc instead of the real-
valued counterparts Ac, Bc, and ẼR is the ellipsoid built upon R̃. Again, this invariant holds
independently of matrix values.

Here, we compute the values assigned to xc =
(
xc1
xc2

)
:

{
xc1 := Ac(0,0)xc1 +Ac(0,1)xc2 + yc
xc2 := Ac(1,0)xc1 + xc2

Using the same method as above, absolute rounding errors introduced by floating-point opera-
tions can be bounded on dimensions xc1 and xc2 by constants

ε1 = 7.42 · 10−15 and ε2 = 3.62 · 10−15.

These constants must be taken into account in the postcondition. Then the postcondition can
be replaced by

% xc ∈ ER

where ER is an ellipse that includes ẼR plus the rounding error terms (see Figure 4.1). As
mentioned in Section 3.2, replacing the ellipse in the postcondition by another ellipse has the
advantage of introducing little change in the stability proof sketch (instead of using a different
domain, which would involve different theorems), which can greatly facilitate tweaking the rest
of the proof in longer codes. Formally, ER must satisfy:

∀xc ∈ ẼR, ∀xc
′ ∈ R2, |xc

′
1 − xc1| ≤ ε1 ∧ |xc

′
2 − xc2| ≤ ε2 =⇒ xc

′ ∈ ER (4.3)

ẼRER

xc1

xc2

ε1

ε2

Figure 4.1: Relation between ER and ER

At the end of the proof scheme, the system is stable with floating-point numbers if and only if
the inclusion

ER ⊂ EP

holds. To succeed, ER should be as narrow as possible with respect to Equation (4.3). This
is not a clear criterion, as several shapes are possible for ER with no clear winner. Indeed,
different criteria can be taken into consideration: area, bounding box, shape, or a combination
of criteria… We propose to define ER as the smallest homothety of ẼR centered around 0 that
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satisfies Equation (4.3). It can be computed rather easily, for any number of dimension; we
give details for two dimensions.
Let a, b, c be the coefficients of ẼR:

ẼR = {(xc1, xc2) | axc
2
1 + bxc

2
2 + cxc1xc2 ≤ 1}.

a, b and c are known, positive values. Then there exists k ≥ 0 such that
ER = {(xc1, xc2) | axc

2
1 + bxc

2
2 + cxc1xc2 ≤ k}.

As ER is wider than ẼR, k ≥ 1. We need a condition on k that guarantees Equation (4.3).

We consider a point (xc1, xc2) located on the border of ẼR:
axc

2
1 + bxc

2
2 + cxc1xc2 = 1. (4.4)

By construction, for any values e1, e2 ∈ R such that |e1| ≤ ε1 ∧ |e2| ≤ ε2 the relation
(xc1 + e1, xc2 + e2) ∈ ER

must hold, that is to say:
a(xc1 + e1)

2 + b(xc2 + e2)
2 + c(xc1 + e1)(xc2 + e2) ≤ k.

It develops into
(axc

2
1 + bxc

2
2 + cxc1xc2) + (2ae1 + ce2)xc1 + (2be2 + ce1)xc2 + (ae21 + be22 + ce1e2) ≤ k,

that is
1 + (2ae1 + ce2)xc1 + (2be2 + ce1)xc2 + (ae21 + be22 + ce1e2) ≤ k

due to Equation (4.4).
Greatest values for the left-hand term are reached with |e1| = ε1 ∧ |e2| = ε2, depending on
the signs of xc1 and xc2. As the ellipse ẼR is symmetric around the origin point (0, 0), we can
set e1 = ε1, which leaves only two cases to study. Finally, we numerically verify that greatest
values of the term are reached when e2 = ε2. This is the only case we detail here.
We can write:

1 + αxc1 + βxc2 + γ ≤ k

with values α = (2aε1 + cε2), β = (2bε2 + cε1) and γ = (aε21 + bε22 + cε1ε2).
We know that xc1 and xc2 are bounded, thus so is the term αxc1 + βxc2: we can compute a
minimum bound δ such that αxc1 + βxc2 ≤ δ. So it is sufficient that k satisfies:

k ≥ 1 + γ + δ.

Consequently, the smallest homothety of ẼR that satisfies Equation (4.3) is obtained with k =
1 + γ + δ; we take it as our definition of ER. The instruction becomes:
11 xc = Ac*xc + Bc*yc;

% xc ∈ ER
Listing 4.8: Computation of xc, modified

In our case, starting from the ellipse
ẼR = {(xc1, xc2) | 0.00269007xc

2
1 + 0.000341414xc1xc2 + 0.00247323xc

2
2 ≤ 1}

we get the following values:
α = 1.03246 · 10−17, β = 1.84829 · 10−17, γ = 7.17582 · 10−32.

Our program finds δ = 5.35754 · 10−16 ≫ γ and finally
k = 1 + 5.35754 · 10−16

that gives ER.
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4.3.3 End of Proof Scheme
Then, what remains of the stability proof scheme is only to handle inputs and outputs. No
change is required and this becomes:

% xc ∈ ER
12 send(u, 1);

% xc ∈ ER
13 receive(y, 2);

% xc ∈ ER
14 receive(yd, 3);

% xc ∈ ER
15 skip;

% xc ∈ EP
16 end

Listing 4.9: End of proof scheme

The only step to check carefully is at line 15. At this stage, the final assertion ER ⊂ EP holds
and is checked successfully.

4.4 Closed-Loop Stability Proof Scheme with Floating-Point
Numbers

We now show how the proof of state boundedness of the closed-loop system specifications can
be migrated to the level of the controller code and executable model of the system. To be more
precise, we exploit the invariance of the ellipsoid EP to develop a proof of proper behavior,
that is, stability and variable boundedness, for the computer program that implements the
controller as it interacts with the physical system. Unlike the developments related to the
open-loop controller, this proof necessarily involves the presence of a model of the physical
system. In [Fer10], Feron chooses to represent the physical system and the computer program by
two concurrent programs. The code for controller dynamics is unchanged, same as in Section 2.2.
The pseudocode to represent the physical system dynamics is shown below.

1 Ap = [1.0000, 0.0100; -0.0100, 1.0000];
2 Bp = [0.00005; 0.01];
3 Cp = [1, 0];
4 while (1)
5 yp = Cp * xp;
6 send(yp, 2);
7 receive(up, 1);
8 xp = Ap * xp + Bp * up;
9 end

Listing 4.10: Plant pseudocode

In this scheme, the computer program representation of the physical system is to remain un-
changed, since it only exists for modeling purposes and does not correspond to any actual
program, whereas the controller code is allowed to evolve to reflect the various stages of its
implementation.

Establishing proofs of stability of the closed-loop system at the code level is necessarily tied to
understanding the joint behavior of the controller and the plant. The entire state space therefore
consists of the direct sum of the state spaces of the controller and the physical system. The
approach described in the previous sections is used to document the corresponding system of two
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processes. One interesting aspect of these processes is their concurrency, which can complicate
the structure of the state transitions. However, a close inspection of the programs reveals that
the transition structure of the processes does not need to rely on the extensions of Hoare’s logic
to concurrent programs: one program at a time is running, through the blocking nature of the
receive primitive.

Feron’s stability proof with real numbers is much longer than for the open-loop system. We
do not detail it, the interested reader is referred to [Fer10] for full information. To be noticed,
the resulting invariants are not much more complex than those available from the study of the
controller alone in the open-loop case. On the good side, as already mentioned, the Hoare
formalism is not significantly affected by the concurrent structure of the closed-loop system.

A floating-point representation of the closed-loop system consists of keeping the listing corre-
sponding to the physical system in its real-number settings, while replacing the controller part
with the corresponding floating-point implementation, as we did in the first part of this chapter.
Using similar techniques to the study of the controller alone, proof invariants can be tweaked to
take into account constant changes and rounding errors resulting from the use of floating-point
arithmetic in the controller and real arithmetic in the plant.

Unfortunately, these invariants are not sufficient to show that the stability condition holds at the
end of the loop body in the case of 64-bit floating-point numbers. In this case, our tool cannot
prove the system stability on a double-precision floating-point architecture: either the system
is not stable with the floating-point based controller, and in this case the proof parameters (EP ,
µ, etc.) must be chosen more carefully by the controller designer, or stability holds but we
lost it by overapproximating the errors. Tuning the precision of floating-point arithmetic, as
described in Section 4.1, teaches us that the controller stability holds on a quadruple-precision
platform (i.e., with 128 bits). Thus, an alternative solution might be to use a microcontroller
device with superior precision.

4.5 Alternative Limited-Precision Arithmetics
Our general idea is to replace some of the invariants in the original proof scheme by wider ones
that include rounding errors, with the hope that the stability condition is strong enough and
still holds. This approach is made possible by the fact that the rounding errors introduced by
the operations used in the code are bounded on bounded inputs and bounded state variables.

In previous sections, we mostly dealt with the case of a floating-point representation of real
numbers. They are not available on all architectures, especially on microcontrollers that are
commonly used to implement control systems. In this section, we quickly discuss alternative
real-number representations.

• We can deal with fixed-point arithmetic the same way we do with floating-point, as long
as we stand far enough from extremal values that can lead to overflows or extremely large
error terms;

• Another way to represent real numbers is to use two integers, a numerator and a denom-
inator. Considering that the input values are exact, the elementary operations do not
introduce rounding errors but can easily lead to overflows, e.g. when computing

p1

q1
+

p2

q2
=

p1q2 + p2q1

q1q2
.

A strategy must be used to prevent overflows by introducing approximations: in this case,
the question is to quantify the errors introduced by these approximations.
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In our example, we exclusively used additions and multiplications: divisions are not involved
in linear control. Still, programs with divisions can also be analyzed, if the numerator can be
shown to be far enough from zero: it is a supplementary constraint, but it is reasonable to
assume that it should be respected on a realistic control system that uses divisions. Differen-
tiable, periodic functions such as (sin) can be computed with a table of values (abacus) and
an interpolation function, thus with bounded error. In the same way, functions not periodic,
but restricted to finite domains, can also be approximated. Other functions, such as tangent or
square root [Ner13], could raise more issues.
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Part II

Linear Relation Analysis
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Chapter 5

Models, Programs, Verification

Dans ce chapitre, nous donnons les principales définitions et notations relatives aux programmes,
leur sémantique, et les propriétés que nous voulons vérifier les concernant. Tout d’abord, nous
introduisons les systèmes de transition (section 5.1) qui constitueront le modèle sémantique
standard des programmes ; nous définissons ensuite les propriétés de ces systèmes, et la pro-
blématique générale de la vérification (section 5.2). Les automates interprétés, un modèle de
programme très général, sont introduits dans la section 5.3.

* * *
In this chapter, we give the main definitions and notations related to programs, their seman-
tics, and the properties we want to check about them. First, we introduce transition systems
(Section 5.1) that will constitute the standard semantic model of programs, then we define the
properties of theses systems, and the general problematic of verification (Section 5.2). In Sec-
tion 5.3, we introduce interpreted automata, a very general program model.

5.1 Transition Systems
Transition systems are the usual semantic models of programs. We give here definitions and
notations related to transition systems.

Definition 5.1 (Transition System). A transition system is a triple (Q,→, Qinit) where Q

is a set of states, Qinit ⊆ Q is a subset of states called initial states, and → ⊆ Q×Q is a binary
relation over Q called transition relation.

Considering two states q, q′ ∈ Q, the relation (q, q′) ∈ → is usually noted: q → q′.

Definition 5.2 (Successor State, Predecessor State). A state q′ is a successor of a state
q if q → q′. Likewise, q is a predecessor of q′.

Definition 5.3 (Path, Trace). A path from a state q to a state q′ is a sequence (q0, . . . , qn)
such as q0 = q, qn = q′ and: ∀i < n, qi → qi+1. A trace is a path whose origin is a state of Qinit.

Definition 5.4 (Accessible State, Coaccessible State). A state q′ is accessible from a
state q (likewise, q is coaccessible from q′) if there exists a path between q and q′, that is if
(q, q′) belong to the transitive closure of →.

5.2 Verification
We consider the framework of property verification (as opposed, for example, to program com-
parison [BRSV90, Fer90]). More specifically, we consider a linear semantics (as opposed, for
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example, to arborescent semantics [Lam80]): a behavior of a transition system is a trace, a
property is a set of traces. We are essentially interested in safety properties.

5.2.1 Properties
As said, we consider that a property of a transition system is a set of traces. In this paragraph,
we assume that these traces are infinite. Let Qω be the set of infinite sequences of states in Q.
Two important classes of properties are usually distinguished [Lam77, AS87], mainly because
different techniques are used to verify them. Informally:

• A safety property expresses that something bad will never happen during the execution.
• A liveness property expresses that something good will necessarily happen at some

point as the system is executing.

The violation of a safety property can be detected by a finite execution. Indeed, if a trace
σ = (q0, q1, . . . ) violates the property, then there exists a state qi in σ where something bad
occurs and this is definitive since the property supposes that it never happens. So, any trace
having (q0, q1, . . . , qi) as prefix (noted σ[. . . i]) violates the property. A trace satisfies the safety
property P if and only if every finite prefix verify P or, more exactly, if every finite prefix can
be extended into a trace that verifies P . Thus, we discuss the satisfaction of a safety property
by a finite trace.

Definition 5.5 (Safety Property). P ⊆ Qω is a safety property if and only if, for any trace
σ:

σ ∈ P ⇐⇒ ∀i ≥ 0, ∃σ′ ∈ Qω such as σ[. . . i] · σ′ ∈ P (5.1)

where σ[. . . i] is the finite sequence of the i first terms of σ, and · is the sequence concatenation
operator.

Usual examples of safety properties include the sequential behavior of transition systems, mutual
exclusion in products of transition systems, the absence of division by zero, the validity of array
accesses or pointer dereference, or the absence of deadlocks.

If P is a liveness property, no finite execution is definitively bad, since something good can
always happen in the future. Every finite execution can be prolonged in a trace that satisfies
P :

Definition 5.6 (Liveness Property). P ⊆ Qω is a liveness property if and only if

∀σ ∈ Q∗, ∃σ′ ∈ Qω such as σ · σ′ ∈ P. (5.2)

A usual example of liveness property is program termination.

Example. We consider a program with two threads. Each thread can be either waiting to be
executed (0), working (1) or terminated (2). The state space of the program is Q = {0, 1, 2} ×
{0, 1, 2} and the unique initial state is Qinit = {(0, 0)}.

The mutual exclusion property Pmutex = {σ ∈ Qω | ∀q ∈ σ, q 6= (1, 1)} ensures that the two
threads cannot be working at the same time. It is a safety property, as defined by Equation (5.1):
indeed, given a trace σ ∈ P , each finite prefix σ[. . . i] can be extended, for instance with the
infinite prefix ((0, 0), (0, 0), . . . ), into a trace that verify Pmutex.

The termination property Pjoin = {σ ∈ Qω | ∃q ∈ σ, q = (2, 2)} expresses that the program
terminates at some point during execution. It is a liveness property, according to Equation (5.2):
given any set of states σ ∈ Q∗, the trace σ ·((2, 2), (2, 2), . . . ) belongs to Pjoin. However, it is not
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a safety property: the trace σ = ((0, 0), (0, 0), . . . ) does not belong to Pjoin, still any finite prefix
σ[. . . i] can be extended with ((2, 2), (2, 2), . . . ) into a trace verifying Pjoin, which contradicts
Equation (5.1).

In this dissertation, we are only interested in verifying safety properties.

5.2.2 Accessibility and Verification
As mentioned above, a safety property expresses that something bad never happens . Accessi-
bility properties constitute a subset of safety properties, expressing that a certain set of states
— representing something bad , and noted Qerr — cannot be reached. Their verification
involves the computation of accessible states (from the initial states Qinit), or of coaccessible
states (from the error states Qerr).

We introduce a few usual definitions relative to accessibility. Let X be a subset of Q.

Definition 5.7 (Postconditions, Preconditions). We note:

Post(X) = {q′ ∈ Q | ∃q ∈ X, q → q′} and Pre(X) = {q ∈ Q | ∃q′ ∈ X, q → q′}.

Post(X) is the set of successor states of all states in X. Similarly, Pre(X) is the set of all
predecessors of states in X.

Definition 5.8 (Accessible States, Coaccessible States). We note acc(X) (respectively
coacc(X)) the set of all accessible states (respectively coaccessible states) from some state
in X. As acc(X) (respectively coacc(X)) is the smallest solution of the fixpoint equation
Y = X ∪ Post(Y ) (respectively Y = X ∪ Pre(Y )), we have:

acc(X) =
⋃

n≥0

Postn(X) and coacc(X) =
⋃

n≥0

Pren(X).

It appears that there are two ways to verify an accessibility property:

• Compute acc(Qinit) and verify that acc(Qinit) ∩Qerr = ∅.
• Compute coacc(Qerr) and verify that Qinit ∩ coacc(Qerr) = ∅.

Therefore, the crux of verifying accessibility properties is fixpoint computation. In some cases,
this compution can be done exactly: in these cases, we speak of model checking [QS82, CES86]
(Section 5.2.3). But in the general case, only approximations of fixpoints can be computed
automatically: then, we speak of conservative verification (Section 5.2.4).

5.2.3 Model Checking
Model checking mostly concerns finite-state systems. In this case, iterative fixpoint computa-
tions always converge and all properties are, theoretically, decidable. Efforts on model checking
are about, on the one hand, the verification of very general properties — both of safety and of
liveness, and with linear as well as arborescent semantics (temporal logic) — and, on the other
hand, the optimization techniques allowing to work on huge sets of states. As the verification
is exact, its conclusion consists either in a satisfaction verdict, or in an error verdict that can
come with a counterexample.

Moreover, model checking is also used in the case of infinite state systems, when they can be
abstracted (ignoring some aspects) into finite systems [GL93, CGL94]. In this case, we talk
of abstract model checking. It should be noted that in case of failure, this kind of verification
cannot conclude that the property is not satisfiable, as the failure can be due to the approxi-
mations that were made during abstractions.
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5.2.4 Conservative Verification
If every type of property requires fixpoint computations, approximate computations can be
enough in the case of accessibility properties: if we compute a superset Q′ of acc(Qinit) (respec-
tively, of coacc(Qinit)) and if it does not intersect Qerr (respectively, Qinit), then the property
is certainly satisfied (Figure 5.1). However, if the intersection is not empty, we do not know
whether the property is violated or if the overapproximation used is too inaccurate. Con-
versely, if we compute a subset of acc(Qinit) (respectively, of coacc(Qerr)) that intersects Qerr
(respectively, Qinit), the property is certainly violated. In both cases, we speak of conserva-
tive verification: in case of success, the verification provides a guaranteed result, but in case of
failure, it is inconclusive.

acc(Qinit) Q′

Qerr

Figure 5.1: Conservative Verification

The approximation of fixpoints is the central theme of the theory of abstract interpretation
that is presented in Chapter 6.

5.3 Program Models
Transition systems constitute a very low-level model. We need a higher-level model of programs,
but, as we do not want to rely on a particular programming language, we choose a relatively
abstract and general model: interpreted automata. We give in Section 5.3.2 a semantics of
interpreted automata in terms of transition systems. Also, the translation of a safety property
into an accessibility property is defined at the interpreted automaton level (Section 5.3.5).

5.3.1 Interpreted Automata
An interpreted automaton [bor95] is composed of a finite set of control points K, including one
initial point. Each control point is mapped to a set of guarded commands, that act on variables
and lead to other control points.

LetX be a finite set of typed variables (for example, integer and boolean variables). A valuation
is a function mapping each variable to one value of its type. Let Val be the set of valuations
on X.

Definition 5.9 (Guard, Action, Guarded Command).

• A guard g is a function g : Val → B = {⊤,⊥}, giving the value of a logic formula
on a valuation V . In practice, the guard is assimilated to its truth set (the set it is a
characteristic function of): {V | g(V ) = ⊤}. The set of guards is noted Guards.

• An action a is a binary relation on valuations (a ⊆ Val×Val). The set of actions is noted
Act.

• A command is a quadruplet c = (k, g, a, k′) ∈ K × Guards×Act×K. Intuitively, when
the automaton is at control point k, and if the current valuation V satisfies the guard
g (i.e. g(V ) = ⊤), the command may be executed, and when executed it moves to the
control point k′, with a valuation V ′ such that (V, V ′) ∈ a.
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The actions are by default nondeterministic. In particular, a read action (noted x := ? ) maps
a valuation V to any valuation V ′ that differs from V only by the value of x (in other words,
x can take any value). Thus, the value of some variables (input variables) can be completely
unspecified at some control points. At transition level, the choice of the next state can also be
nondeterministic.

Definition 5.10 (Interpeted Automaton). An interpreted automaton is a triple α =
(K,Com, kinit) where K is a finite set of control points, Com is a finite set of commands,
and kinit ∈ K is the initial control point.

Interpreted automata are a refinement of finite state machines: they have state and transitions,
but also variables that are involved in transitions. Also, the terminology is different: transitions
in finite state machines are called commands and states are called control points.

An example of interpreted automaton is given in Figure 5.2. It corresponds to the interpreted
automaton (K,Com, kinit) with K = {kinit, k1}, Com = {c1, c2, c3} and

c1 =
(
kinit, (λx, y : cos y ≤ x), {(x, y : x+ 1, y) |x, y ∈ Val }, k1

)

c2 =
(
k1, (λx, y : ⊤), {(x, y, x, y + 2) |x, y ∈ Val }, k1

)

c3 =
(
k1, (λx, y : x 6= y), {(x, y, x, yx) |x, y ∈ Val }, kinit

)

kinit k1

c1 : cos y ≤ x? → x := x+ 1

c2 : y := y + 2

c3 : x 6= y? → y := yx

Figure 5.2: An Interpreted Automaton

5.3.2 Semantics in Terms of Transition Systems
We give the semantics of interpreted automata in terms of transition systems. Let (K,Com, kinit)
be an interpreted automaton. It is associated to a transition system (Q,→, Qinit) defined as
follows:

• The set of states is the set of pairs (k, V ) where k is a control point and V is a valuation:
Q = K ×Val.

• Initial states have kinit as control point, and any valuation: Qinit = {kinit} ×Val.
• The transition relation is derived from the command semantics:

(k, V ) → (k′, V ′) ⇐⇒ ∃(k, g, a, k′) ∈ Com, g(V ) = ⊤ ∧ (V, V ′) ∈ a.

5.3.3 Example
We illustrate the modeling of a program by an interpreted automaton on a very small example,
from [Hal93]. We want to model a car

1. Whose speed is always lower or equal to 2m/s.
2. That stops after 4 seconds.
3. And should not collide into a wall after 10 meters when leaving the track.
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Our purpose is to show that, under assumptions (1) and (2), the car stops before hitting the
wall.

The simulation program has two boolean inputs m and s (respectively true when a meter is
covered and a second is elapsed, the events are supposed to be not simultaneous), read at every
transition. The program counts the distance traveled (d, a counter of meters), the elapsed time
(t, a counter of seconds) and the instant speed (v, a counter of meters by second, reset at each
second), stops the car if it goes too fast, or hits the wall after 10 m are covered.

The corresponding automaton is represented in Figure 5.3. As in [Mer05], the automaton can
be slightly modified to only take into account numerical aspects (Figure 5.4). We get rid of
the inputs, and we can see that state kfast is not accessible. It turns out that, as the system is
finite-state, the corresponding transition system is also finite. On this transition system, it is
easy to verify that the state kwall is unreachable.

k0

k1

kfastkwall kstop

d := 0; t := 0; v := 0

t ≥ 4d ≥ 10 v ≥ 3

s? → v := 0;

t := t+ 1

m? → v := v + 1;

d := d+ 1

Figure 5.3: Interpreted automaton with boolean input simulating a car controller

k0

k1

kfastkwall kstop

d := 0; t := 0; v := 0

t ≥ 3d ≥ 10 v ≥ 3

t ≤ 2? → v := 0;

t := t+ 1

v ≤ 1, d ≤ 8? → v := v + 1;

d := d+ 1

Figure 5.4: The Car Example

Remarks.

• As this example is finite-state, model checking can be used.
• If the constants appearing in the hypotheses (2m/s, 4 s, 10m) are increased, the number

of states in the transition system tends to explode, making model checking difficult. If
these constants are parameters, given symbolically, then model checking cannot be used.
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5.3.4 Collecting Semantics
To verify an accessibility property in an interpreted automaton, it is necessary to compute, or
approximate, either the set acc({kinit} × Val) of accessible states in the associated transition
system, either the set coacc({kerr} ×Val) of coaccessible states, assuming that error states are
characterized by a control point kerr (in the car example, the control point kwall).
To this end, instead of directly applying the semantics defined in Section 5.3.2, we can try to
take advantage of the control structure of the automaton to break up the problem.
For every k ∈ K, the set of accessible valuations (respectively, coaccessible valuations) at point
k is noted Ak (respectively, Ck):

Ak = {V | (k, V ) ∈ acc({kinit} ×Val)} and Ck = {V | (k, V ) ∈ coacc({kerr} ×Val)}.

Of course, we have:

acc({kinit} ×Val) =
⋃

k∈K
Ak and coacc({kerr} ×Val) =

⋃

k∈K
Ck.

Then, the sets (Ak)k∈K (respectively, (Ck)k∈K) can be caracterized as the smallest solution of
a forward (respectively, backward) system of semantics equations, defined as follows:

• Forward system:

Akinit = Val and ∀k 6= kinit, Ak =
⋃

(k′,g,a,k)∈Com
a(Ak′ ∩ g) (5.3)

where a(X) = {V ′ | ∃V ∈ X, (V, V ′) ∈ a} (image of X under the relation a).
• Backward system:

Ckerr = Val and ∀k 6= kerr, Ck =
⋃

(k,g,a,k′)∈Com
a−1(Ck′) ∩ g (5.4)

where a−1 is the inverse relation of a, and a−1 = {(V ′, V ) | (V, V ′) ∈ a}.

For instance, in Figure 5.5, the equation associated to point k is the following:

Ak = a1(Ak1 ∩ g1) ∪ a2(Ak2 ∩ g2) ∪ a3(Ak ∩ g3).

k1

k

k2

g1? → a1 g2? → a2

g3? → a3

Figure 5.5: An Interpreted Automaton

Intuitively, in any non-initial point k, a valuation V accessible in k is obtained through the
command (k′, g, a, k) on a valuation V ′ accessible in k′, satisfying g, and connected to V by a

((V ′, V ) ∈ a). Similarly, in any point k different from the target kerr, a valuation V coaccessible
in k must lead, through the command (k, g, a, k′), to a valuation V ′ coaccessible in k′, that is
to say that V must satisfy g, and that (V, V ′) must belong to a.
The advantage of this semantics (often called collecting semantics ) is that it gives an equa-
tion system of fixed points, instead of a single equation. We will show in Chapter 6 that this
partitioning allows to greatly increase the accuracy of computations in the case of an approxi-
mated computation of the solution.
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5.3.5 Composition of Interpreted Automata and Observers
The purpose of this section is to show how safety properties can be turned into accessibility
properties, thanks to the notion of synchronous observer [HLR94]. The idea is to associate
to a safety property an interpreted automaton called observer, that works as a recognizer for
traces satisfying the property. Appropriatly composed with the automaton to verify (that is to
say, in synchronous parallelism), the observer detects every violation of the property by joining
an error control point. This way, the verification consists into making sure that the composition
of the initial automaton with its observer cannot reach a state where the observer is in its error
point, which is an accessibility property.

First, we define the parallel synchronous composition on interpreted automata: intuitively, two
automata composed with parallel synchronisation will execute commands together, provided
that the values of variables coincide on both sides — the idea being that a variable is either
local to an automaton (and so, left unspecified in the other), or computed in one automaton
and read (and so, left unspecified) in the other.

Definition 5.11 (Synchronous product). The synchronous product A × A′ of two inter-
preted automata A = (K,Com, kinit) and A′ = (K ′,Com′, k′init) with a common set of variables
X is the automaton (K ×K ′,Com×, (kinit, k′init)) where

Com× = {((k1, k
′
1), g ∧ g′, a ∩ a′, (k2, k

′
2)) | (k1, g, a, k2) ∈ Com, (k′1, g

′, a′, k′2) ∈ Com′ }.

In other words, a command of the product from a composed state (k1, k
′
1) consists in the

(synchronous) composition of a command for each component: the synchronous composition of
two commands (g, a) and (g′, a′) on a valuation V is only possible if both guards are satisfied
((g ∧ g′)(V )), and its result V ′ is a common result of both actions ((V, V ′) ∈ (a ∩ a′)).

Let A be an interpreted automaton, working on a set of variables X. Let P be a safety property.

Definition 5.12 (Observer). An observer of P is an interpreted automaton O working on a
partitioned set of variables X ⊎X ′ and such that

• Variables in X are left unspecified in O.
• O has a distinctive control point, noted kerr, that the automaton reaches (and never

leaves) if and only if the evolution of variables in X violates P . Formally, consider
((k0, V0 ⊎ V ′

0), (k1, V1 ⊎ V ′
1), . . . , (kn, Vn ⊎ V ′

n)) a trace in O, then

kn 6= kerr ⇐⇒ ((k0, V0), (k1, V1), . . . , (kn, Vn)) ∈ P.

Proposition 5.13. If O is an observer of P , then A satisfies P if and only if A × O never
reaches a state in Kerr = {(k, kerr) | k ∈ K}.

Thus, every safety property for which an observer can be provided, can be turned into an
accessibility property.
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Chapter 6

Abstract Interpretation

L’interprétation abstraite est une théorie d’approximation de la sémantique des programmes
informatiques fondée sur les fonctions monotones pour ensembles ordonnés, en particulier les
treillis. Elle peut être définie comme une exécution partielle d’un programme pour obtenir des
informations sur sa sémantique (par exemple, sa structure de contrôle, son flot de données) sans
avoir à en faire le traitement complet.

La principale fonction de l’interprétation abstraite est l’analyse statique, l’extraction automa-
tique d’informations sur les exécutions possibles d’un programme. Ce chapitre définit les notions
de base de l’interprétation abstraite, qui sont utilisées dans la suite du document.

* * *

Abstract interpretation is a theory to approximate computer program semantics, based on
monotonic functions on ordered sets, in particular lattices. It can be defined as a partial
program execution to obtain information on its semantic (for instance, control structure, data
flow) without having to fully process it.

The main function of abstract interpretation is static analysis, automatic extraction of infor-
mation about possible executions of a program. This chapter defines basic notions of abstract
interpretation, that are used later in the document.

6.1 Introduction
In the previous chapter, we have seen the kind of systems and properties we want to verify. In
particular, we have seen

• How a safety property can be translated into an accessibility property (Section 5.3.5).
• How verifying an accessibility property can boil down to computing a set of accessible

states acc(Qinit) or coaccessible states coacc(Qerr) (Section 5.2.2).
• Finally, than these sets of states were solutions of fixed-point equations (Section 5.2.2)

acc(Qinit) = Qinit ∪ Post(acc(Qinit)) coacc(Qerr) = Qerr ∪ Pre(coacc(Qerr))

or of systems of fixed-point equations (Section 5.3.4)

Akinit = Val and ∀k 6= kinit, Ak =
⋃

(k′,g,a,k)∈Com
a(Ak′ ∩ g)

Ckerr = Val and ∀k 6= kerr, Ck =
⋃

(k,g,a,k′)∈Com
a−1(Ck′) ∩ g.

57



Usual theorems ensure that the considered fixed-point equations have least solutions, which are
well-characterized: according to Kleene’s fixed-point theorem, an equation X = F (X) — F

being a continuous function on a complete lattice — has a least solution

lfp(F ) =
⊔

n≥0

Fn(⊥) (6.1)

where ⊔ is the least upper bound operator, and ⊥ is the least element in the complete lattice.
In the present case, the complete lattice is the set of parts of Q ordered by inclusion, the upper
bound operator is the union of sets of states, and the least element is the empty set.

In general, solving Equation (6.1) is impossible. When the set of system states Q is infinite,
computing the ascending Kleene chain F (⊥), F (F (⊥)), F (F (F (⊥))), . . . raises two kinds of is-
sues:

• It requires to be able to represent arbitrary sets of states and to compute on them.
• The iterative computation may not terminate.

However, it was pointed out in Section 5.2.4 that accessibility properties could be proved in
a conservative way, by computing an overapproximation of the solution. The approximate
resolution of fixed-point equations is the main objective of abstract interpretation, a domain
that was formalized by Patrick and Radhia Cousot in the late 1970s [CC77a], whose main
principles will be recalled in the first part of this chapter (Section 6.2). The second part provides
an overview of abstract interpretations dedicated to numerical properties (Sections 6.3, 6.4
and 6.5).

6.2 Principles of Abstract Interpretation
We have identified two obstacles to the exact resolution of fixed-point equations, that are:

• The impossibility to represent complex values — in general, infinite sets of states —
and to compute on those values.

• The impossibility, in the general case, to compute the limit of infinite iterations.

Abstract interpretation proposes approximate solutions to these two problems. On the one
hand, a notion of abstract domain is proposed, that allows to compute on abstract values
simpler than sets of states. On the other hand, depending on the choice of these abstract values,
the finiteness of iterations can be guaranteed; if not, techniques are provided to extrapolate and
overapproximate the limit.

6.2.1 Abstract Domains
An abstract interpretation is first characterized by a domain of abstract values. These values
are used to approximate, or abstract, concrete values (sets of states) that are too complex. The
notion of approximation is formalized by an ordering relation: the abstract domain must be a
complete lattice, as the concrete domain. The initial fixed-point equation on concrete values
is then associated to an abstract fixed-point equation, to be solved in the abstract domain.
Abstract values must be chosen so that their computer representation is possible, as well as the
operations necessary to the iterative computation of the abstract equation.

We have seen that the concrete lattice is (P(Q),⊆,∪,∩, Q, ∅), that is the power set of Q,
ordered by inclusion, with ∪ and ∩ as upper and lower bound operations, and Q and ∅ as
greatest and least elements. As the theorical framework of abstract interpretation is more
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general, we note (L,⊑,⊔,⊓,⊤,⊥) this concrete lattice. The lattice of abstract values is noted
(L♯,⊑♯,⊔♯,⊓♯,⊤♯,⊥♯).

The relation between concrete and abstract values may be handled by the notion of Galois
connection: a Galois connection between L and L♯ is a pair of functions

α : L → L♯ (abstraction) and γ : L♯ → L (concretization)

such that (Figure 6.1):

∀x ∈ L, ∀y ∈ L♯, α(x) ⊑♯ y ⇐⇒ x ⊑ γ(y).

...
x

y
...

L L♯α

γ

Figure 6.1: Galois Connection

As there exists a Galois connection between concrete and abstract lattices, the following theorem
can be applied to the computation of fixed-point overapproximations:

Theorem 6.1 (Fixed-point overapproximation). If L and L♯ are connected by a Galois
connection (α, γ), if F is a continuous function in L [GHK+03] and G is a continuous function
in L♯, if

∀x ∈ L,α(F (x)) ⊑♯ G(α(x)) (6.2)
then

lfp(F ) ⊑ γ(lfp(G)).

This theorem means that, to compute an overapproximation of the least fixed-point of a concrete
function F , we can choose or build an abstract function G satisfying Equation (6.2), compute
the least fixed-point of G in the abstract lattice, and concretize the result.

6.2.2 Abstract Operations
It can be shown that the best choice for the abstract function G is α ◦ F ◦ γ. However, this
function is not computable in the general case, since it requires computations in the concrete
domain. On the other hand, we aim to have an automatic method to compute G from F . We
take advantage of the fact that the function F , in the case of program analysis, is constructed
by composition of elementary functions on sets of states (the preconditions or postconditions of
elementary instructions in the programming language), of unions and of intersections. Similarly,
an abstract function G can be mechanically constructed from elementary abstract functions,
associated to language instructions, and of upper and lower bounds operations (⊔♯ and ⊓♯).
Therefore, once the abstract lattice and the associated Galois connection are chosen, designing
an abstract interpretation requires to define these abstract functions, and to provide effective
algorithms.

Thus, in the case of interpreted automata, and for forward analysis (Equation (5.3), page 55),
we must give

• An interpretation of guards in the abstract lattice, that is to say an effective way to
associate to each guard g an abstract value g♯ such that

α(g) ⊑♯ g♯ (or: g ⊑ γ(g♯)).
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• An interpretation of actions, that is to say an effective way to associate to each action a

an abstract function a♯ such that
∀y ∈ L,α(a(γ(y))) ⊑♯ a♯(y) (or: ∀x ∈ L, a(x) ⊑ γ(a♯(x))).

So, the concrete equation (5.3)

Ak =
⋃

(k′,g,a,k)∈Com
a(Ak′ ∩ g)

is associated to the abstract equation

A
♯
k =

⊔♯

(k′,g,a,k)∈Com
a♯(A♯

k′ ⊓
♯ g♯).

6.2.3 Widening and Decreasing Sequence
In many cases, the iterative fixed-point computation in the abstract lattice converges with a
finite number of iterations: it is obviously the case when the abstract lattice is finite, but also
when simply its depth is finite (i.e., every strictly increasing chain is finite). In these cases, the
problem of infinite iterations is solved. However, it may be wise for accuracy purposes [CC92]
to use more expressive lattices that do not satisfy these properties. In this case, the idea
is to guess the limit of an infinite sequence using its first terms. To do this, the abstract
interpretation comes with a widening operator, used to extrapolate the limit of the iterative
sequence.

Definition 6.2 (Widening). A widening operator is a function ∇ : L♯×L♯ → L♯ that satisfies
the following properties:

1. ∀y1, y2 ∈ L♯, (y1 ⊔
♯ y2) ⊑

♯ (y1∇y2).
2. For any increasing sequence (xn)n≥0 in L♯, the sequence defined by y0 = x0, yn+1 =

yn∇xn+1 converges in a finite number of iterations.

Theorem 6.3 (Extrapolation). If ∇ is a widening operator on L♯ and G is a continuous
function on L♯, then the sequence y0 = ⊥, yn+1 = yn∇G(yn) converges in a finite number of
steps towards a limit ŷ that is a post-fixpoint of G (i.e., ŷ ⊒♯ G(ŷ)) and so, such that ŷ ⊒♯ lfp(G).

A trivial example of widening operator is: ∀x, y ∈ L♯, x∇y = ⊤.
The above theorem allows computing in every cases an approximation of the least fixed point
of G. If the limit ŷ is not a fixed point, the solution is improved by the following theorem:

Theorem 6.4 (Decreasing Sequence). If ŷ 6= G(ŷ), then the sequence z0 = ŷ, zn+1 = G(zn)
is decreasing, and all its terms are overapproximations of lfp(G).

In short, to overapproximate the least fixed point of a function G, instead of computing the
exact (and generally infinite) sequence

x0 = ⊥, xn+1 = G(xn).

we first compute an extrapolation sequence
y0 = ⊥, yn+1 = yn∇G(yn)

that converges in a finite number of steps toward a limit ŷ, that is a correct overapproximation
of lfp(G). Furthermore, if ŷ 6= G(ŷ), the result can be improved by computing the first terms
(up to any finite given precision) of the decreasing sequence

z0 = ŷ, zn+1 = G(zn)

that may be finite or infinite, but whose all terms are correct overapproximations of lfp(G).
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6.3 Abstract Interpretations of Interpreted Automata
We have seen, in Section 5.3.4, that the analysis of an interpreted automaton could lead to
solving a system of fixed point equations, based on the control structure of the automaton,
rather than a single equation. They are called partitioned systems. We focus on the forward
system, the backward case being similar:

Akinit = Val, ∀k 6= kinit, Ak =
⋃

(k′,g,a,k)∈Com
a(Ak′ ∩ g)

This system is associated to the following abstract equation system:

A
♯
kinit

= ⊤♯, ∀k 6= kinit, A
♯
k =

⊔♯

(k′,g,a,k)∈Com
a♯(A♯

k′ ⊓
♯ g♯).

This system can be solved iteratively, considering the equations one by one in any order, until
stabilization. The convergence speed in influenced by the order in which the equations are
considered, and the application of widening can be optimized:

• It makes sense to consider equations taking into consideration the control structure: when
A

♯
k changes, the values A

♯
k′ associated to the control points k′ that are successors of k

are likely to change too. Moreover, there is no use to consider control points located
downstream a strongly connected component in the control graph, before stabilizing the
values associated to control points in the component.

• It is unnecessary to use widening (that leads to information loss) in every equations of the
system to ensure convergence: it is sufficient to choose a set K∇ ⊆ K of widening control
points such that every cycle in the graph contains a point of K∇, and to apply widening
only in equations corresponding to widening points. As the choice of a minimal set of
widening points is an NP-complete problem, we simply rely on an heuristic choice [Bou92].

6.4 Approximating Numeric Sets
0.5

We are interested by the verification of numerical programs, and we consider specifically the
case where the state of the program is defined by a control point and a valuation of variables
in a numerical set N (Z, Q or R). Using the semantics defined in Section 5.3.4, we need to
represent subsets of N n where n is the number of variables. Thus, the concrete lattice is:

(
P(N n),⊆,∪,∩,N n, ∅

)
.

In this section, we provide a brief overview of the main abstract lattices that have been proposed
in the literature to abstract this domain.

6.4.1 The Sign Lattice

A rough abstraction consists in associating to each variable an abstract value in the lattice
represented in Figure 6.2. For instance, the set of points shown in Figure 6.3(a) would be
abstracted by the first, strict quadrant {x, y |x > 0, y > 0} (Figure 6.3(b)). In this lattice,
abstract operations are straightforward, and, as the lattice is finite, there is no need for widening.
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⊤

6= 0≤ 0 ≥ 0

< 0 = 0 > 0

⊥

Figure 6.2: The Sign Lattice

x

y

(a)
x

y

(b)

Figure 6.3: Abstraction Using the Sign Lattice

6.4.2 The Lattice of Affine Equations

One of the first nontrivial abstractions, introduced by [Kar76], consists in synthesizing invariant
linear equations. In this analysis, a set of points inN n is abstracted by the smallest affine variety
that contains it, that is to say by solution set of an affine system. Using this analysis, the set
in Figure 6.3(a) would be abstracted into the whole space (no information, no equation), but
the one in Figure 6.4(a) gives the equation x − 2y = 1 (Figure 6.4(b)). The lattice of affine
equations is infinite, but its depth is finite (there are at most n linearly independent varieties
in N n). Thus, there is no point in defining a widening operator.

x

y

(a)
x

y

(b)

Figure 6.4: Abstraction Using Affine Equations

6.4.3 The Lattice of Linear Congruences

In his thesis [Gra91], Philippe Granger proposes, in particular, a lattice for abstracting parts of
Zn as linear congruences, in the form a~x ≡ b (mod c) (that is, ∃k ∈ Z, a~x = kc+b). For example,
the set in Figure 6.5(a) as abstracted as shown in Figure 6.5(b), that is x − 2y ≡ 2 (mod 6).
The lattice is infinite, with infinite depth, but the increasing chain condition is satisfied: there
is no infinite sequence of strictly increasing abstract values. Once again, widening is useless.
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Figure 6.5: Abstraction Using Linear Congruences

6.4.4 The Lattice of Intervals

The interval lattice [CC77b] determines the variation interval of numerical variables. The
abstraction of a set E consists to associate to each variable v the pair [minv,maxv] of minimal
and maximal values (possibly −∞, +∞) of v in E. The abstraction by intervals of the set
represented in Figure 6.6(a) is given in Figure 6.6(b). In the interval lattice, it is necessary to
define a widening operator to ensure convergence. In [CC77b], the following widening operator
is proposed:

[a, b]∇[c, d] = [if c < a then −∞ else a, if d > b then +∞ else b]

x

y

(a)
x

y

(b)

Figure 6.6: Abstraction Using Intervals

6.4.5 The Lattice of Convex Polyhedra

The lattice of convex polyhedra was first introduced by [CH78, Hal79] to analyse linear inequal-
ities that are invariant amongst the variables of a program. The abstraction of a set of points
in N n is the smallest convex polyhedron that contains it (Figure 6.7). Let us notice that while
this definition makes sense for a finite set of points, this is not the case of an infinite set whose
convex hull is not necessarily polyhedral (for instance, a sphere). This difficulty arises from the
fact that the polyhedra lattice is not complete (the upper bound of a infinite set of polyhedra
is not necessarily of polyhedron). The actual, complete lattice is the lattice of convex sets in
N n, but as the computations are always finite (thanks, in particular, to widening), the com-
puted solutions are always polyhedra. This lattice is used in this dissertation and is discussed
in greater details in Chapter 7.

6.4.6 Particular Polyhedra

As the worst-case complexity of operations on polyhedra is exponential, some subclasses have
been identified for specific applications.
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Figure 6.7: Abstraction Using Polyhedra

Areas

Areas are very particular cases of of polyhedra, whose constrains are only bounds on variables
(as for intervals) or on differences of variables (Figure 6.8). In other words, all contraints are
in the form x op c or x− y op c where op is an operator in {<,≤,=,≥, > }, and c is a constant.
Areas are used to analyse timed automata [AD90, ACD93, HNSY92]. They can be represented
as difference-bound matrices , and normalized using graph algorithms.

x

y

(a)
x

y

(b)

Figure 6.8: Abstraction with Areas

Octagons

Areas have been generalized, without increasing complexity, by Antoine Miné [Min06], that
also allows constraints in the form x + y op c. The resulting polyhedra are called octagons
(Figure 6.9).

x

y

(a)
x

y

(b)

Figure 6.9: Abstraction with Octagons

Octahedra

Octagons have geen generalized too into octahedra [CC07], considering linear constraints
whose coefficients are in {−1, 0, 1} (so, that may involve more than two variables). However,
polynomial complexity is not preserved.
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6.4.7 Semi-Linear Sets and Presburger Arithmetic
We finish this short review of numerical set representation techniques by citing works less
directly related to abstract interpretation, that aim to analyze in an exact way the possible
values of integer variables during a program execution: some authors [BW94, BGP97, CJ98,
FS00] use the decidability of Presburger arithmetic to represent more accurately infinite sets
of integer vectors. As long as the sets of states to be represented are semilinear, algorithms to
handle them are available. For some programs, the set of accessible states can be computed
with accelerations [Gon07]. Acceleration is recognizing a fixed common pattern and exhibiting
hardcoded solutions for this. It is used instead of widening in relevant cases and gives exact
results.

6.5 Uses of Numerical Variables Analysis
There are various applications to the analysis of behavior of numerical variables. We classify
them in two parts:

• Applications with a goal given a priori, in general a set of states we want to verify the
inaccessibility of, and that can be taken into account by the analysis.

• Applications in which we simply want to get some information about, in general invariants,
as precise as possible, to use it at a later stage.

6.5.1 Verifying Inaccessibility
We have seen in Section 5.3.5 that all safety properties can be expressed as the inaccessibility of
some states. The same applies to verify the absence of errors at runtime (dynamic consistency),
for which there is no need to specify the property, and that often rely on numerical aspects
(divide by zero, out-of-bounds array access [NIAK01], arithmetic overflow).

In all these applications, the set Qerr of states we want to prove inaccessible is known, and we
can proceed either forward — to prove acc(Qinit) ∩ Qerr = ∅ — or backward — to prove
Qinit ∩ coacc(Qerr) = ∅. As it is an approximate analysis, we compute in fact either âcc(Qinit)
or ĉoacc(Qerr), with

acc(Qinit) ⊆ âcc(Qinit) and coacc(Qerr) ⊆ ĉoacc(Qerr).

In terms of accuracy, it is beneficial to iterate forward and backward analyses, by computing
successively

X0 = âcc(Qinit), Yn = ĉoacc(Qerr ∩Xn), Xn+1 = âcc(Qinit ∩ Yn)

that constitute a sequence increasingly precise, as long as the terms Xn or Yn are not empty
and do not stabilize.

6.5.2 Invariant Synthesis
A second class of applications is about invariant synthesis, with no preconceived objective, to
be used later on. These applications are about:

• Compilation, with, for example, dead code elimination, finding expressions that can be
computed at compile time or outside loops, the characterization of variation intervals
of variables to optimize their memory implementation, the determination of the precise
lifespan of array elements to improve memory management [LMC02]…

• Program parallelization [ACIK97] where an accurate analysis of inter-variable dependen-
cies is required, especially between array elements.
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• Interactive proof, where invariants found by analysis are used to make the human’s work
easier [BBC+00, BLO98].

• In some applications, it is necessary to add auxiliary counters to the program, and in the
analysis of their behavior. For example, [Mer92] proposes a method of communication
analysis in a multiprocess system by adding counters at each meeting point, analyzing the
code of each process one at a time and then, combining results while equalizing counters of
corresponding meetings. We can also try to show loop termination (a liveness property),
or try to determine the number of iterations [PR04], by adding a loop counter and then
bounding it.
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Chapter 7

The Lattice of Polyhedra

Comme indiqué en introduction, une partie de ce travail est consacrée à l’analyse des relations
linéaires, basée sur le treillis des polyèdres convexes. Ce chapitre présente les principaux algo-
rithmes sur les polyèdres. Les algorithmes utilisés reposent sur deux représentations des poly-
èdres — par système de contraintes et par système générateur — présentée dans la section 7.1.
La section 7.2 détaille le passage de l’une à l’autre des représentations, ce qui est l’algorithme
clé pour effectuer toutes les autres opérations et surtout pour simplifier les représentations. La
section 7.3 décrit les opérations usuelles sur les polyèdres convexes. Un exemple d’analyse est
ensuite détaillé dans la section 7.4. Finalement, les principales bibliothèques polyédriques exis-
tantes sont présentées dans la section 7.5.

Les références générales de ce chapitre sont [Hal79], [Sch86] et [Jea00].

* * *

As mentioned in Introduction, part of this work is devoted to the analysis of linear relations. It
is based on the lattice of convex polyhedra. This chapter presents the main algorithms relative
to polyhedra. The algorithms we use are based on the two characterizations of polyhedra — by
constraint systems and by generating systems — that are presented in Section 7.1. Section 7.2
details the translation from one representation to another, which is the key algorithm to perform
all other operations, and most importantly to simplify representations. Section 7.3 describes the
usual operations on convex polyhedra. An example of analysis is then detailed in Section 7.4.
Finally, the main existing polyhedral libraries are presented in Section 7.5.

The general references of this chapter are [Hal79], [Sch86] and [Jea00].

We consider a numerical set N and the affine space N n. The scalar product of two vectors X
and Y in N n, equals to

∑n
i=1XiYi, is noted X · Y or simply XY .

7.1 Two Representations
Definition 7.1 (Convex polyhedron). A closed, convex polyhedron (or simply polyhedron)
is the intersection of a finite number m of closed half-spaces in N n.

7.1.1 Linear Constraints

Proposition 7.2 (Representation with affine constraints). Any convex polyhedron can
be characterized as the solution set of a linear constraint system AX ≤ B, where A is an m×n

matrix and B is a vector in Nm. We call linear constraint an inequation aX ≤ b or an equation
aX = b, where a ∈ N n is a line vector and b ∈ N is a scalar.
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Example. Figure 7.1 represents the polyhedron corresponding to the constraint system

2x2 − x1 ≤ 7

−x1 − x2 ≤ −5

−x2 ≤ −1

in other terms, AX ≤ B with

A =



−1 2
−1 −1
0 −1


 , X =

[
x1
x2

]
and B =




7
−5
−1


 .

x1

x2

x1 + 7 ≥ 2x2

x2 ≥ 5− x1

x2 ≥ 1

Figure 7.1: Representation of a polyhedron as a constraint system

In practice this is the representation we use, as it gives direct information on variables.

7.1.2 Non-Canonicity of Constraint Systems
In this paragraph, we focus on the non-canonicity of the representation by linear constraints.
On the one hand, a constraint system may contain redundant constraints; on the other, when
the polyhedron is contained within a strict vector subspace of N n (i.e., when it satisfies linear
equations), it may be characterized by several minimal constraint systems.

Definition 7.3 (Redundant constraints). A constraint aX ≤ b is said redundant in the
system AX ≤ B if it can be removed while keeping unchanged the described polyhedron. In
other words, the satisfaction of other constraints implies the satisfaction of aX ≤ b. A constraint
system with no redundant constraint is said to be minimal.

The proliferation of redundant constraints obviously penalizes the operations on constraint
systems. It is therefore essential to be able to minimize constraint systems.

Definition 7.4 (Dimension of a polyhedron). The dimension of a polyhedron P is the
dimension of the smallest affine subspace containing P . In other words, the dimension of P is
equal to n, minus the number codimP of independent equations satisfied by P .

If the dimension of a polyhedron P is equal to n (i.e., codimP = 0), and if its constraint
system does not contain any redundant constraint, then this constraint system is unique, up to
a multiplication factor (since constraints multiple of each other are equivalent).

Definition 7.5 (Mutually redundant constraints). Two constraints c1 and c2 are mutually
redundant in a constraint system, if it it possible to remove either one of them — but not
both — while leaving unchanged the described polyhedron. This situation may occur only if
the polyhedron dimension is strictly inferior to n.
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Example. In the system x2 = 0, 0 ≤ x1 ≤ 1, x1+x2 ≥ 0, the constraints 0 ≤ x1 and x1+x2 ≥ 0
are mutually redundant (see Figure 7.2).

x1 ≥ 0

x1 + x2 ≥ 0

Figure 7.2: Mutually redundant constraints

As a consequence, when the dimension of a polyhedron if strictly inferior to n, it does not admit
a unique, minimal representation as a constraint system.

If the origin is contained in the polyhedron P , it is possible to define a normal form using
the scalar product. If P does not contain the origin, it can be reduced by translation. This
representation will be used in Section 7.1.5 to allow the translation from one representation to
another.

Definition 7.6 (Normal form of constraints). If the polyhedron P contains the origin,
it is possible to obtain a normal form (A1, A2, A3). These three sets separate the constraints
according to their natures: an inequality with a positive constant, a zero constant or an equality
to zero.

• The normal form of an inequation aX ≤ b with b > 0 is a
b
X ≤ 1 (a

b
∈ A1).

• The normal form of an inequation aX ≤ b with b = 0 is unchanged (a ∈ A2).
• The normal form of an equation aX = 0 is unchanged (a ∈ A3).

7.1.3 Generators
Definition 7.7 (Generating system). Any convex polyhedron P can be characterized by a
generating system, constituted by three finite sets V , R and L of vectors in N n, called sets of
vertices, rays and lines of P , respectively†1. Then, P is the set of points that can be obtained
as the sum of a convex combination of vertices, a positive combination of rays and a linear
combination of lines:

P =




∑

vi∈V
λivi +

∑

rj∈R
µjrj +

∑

ℓk∈L
νkℓk

∣∣∣∣∣∣
λi ∈ [0, 1],

∑

i

λi = 1, µj ≥ 0, νk ∈ N



 .

Example. The polyhedron in Figure 7.1 can be represented in a dual way as a generating
system (Figure 7.3), with

V =

{
v1 =

[
1
4

]
, v2 =

[
4
1

]}
, R =

{
r1 =

[
2
1

]
, r2 =

[
1
0

]}
, D = ∅.

7.1.4 Non-Canonicity of Generator Systems
As for constraints, the generator representation is not canonical in the general case: it may
contain redundant elements (called non extremal in this context), and, when the polyhedron
contains a line, it admits an infinite number of minimal generating systems.

†1In the following, a straight line will be confounded with one of its direction vectors. Likewise, a ray will be
confounded by one of its direction vectors.
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x1

x2

v1

r1

v2 r2

Figure 7.3: Representation as a generating system

Definition 7.8 (Extremal points and rays). A point (respectively, a ray) in a polyhedron is
extremal if it cannot be obtained by a convex combination (respectively, positive combination)
of other points in P (respectively, of other rays that are not collinear to it).

The vertices v1 and v2, the rays r1 and r2 of the example in Figure 7.3 are extremal. The point
(4, 4) belongs to the polyhedron, but is not extremal, the vector (3, 1) is a non-extremal ray.

Definition 7.9 (Codimension of a polyhedron). The codimension of a polyhedron P is
the dimension of the biggest affine subspace contained in P . In other words, the codimension
of P is equal to the number dimP of independent lines contained in P .

A polyhedron of codimension zero (no line) admits a unique, minimal generating system (ig-
noring a multiplication factor for the rays), whose vertices are the extremal points of the poly-
hedron, and whose rays are its extremal rays (normalized).

If the polyhedron contains a line, it has no extremal point, and no unique, minimal generating
system. In this case, a minimal generating system is constituted by a minimal set of lines (a
basis of the biggest affine subspace included in the polyhedron), and points and extremal rays
of a section of the polyhedron: a section of P is the intersection of P with any supplementary
subspace†2 of the biggest affine subspace included in the polyhedron.

In the example of Figure 7.4, the polyhedron contains the line ℓ of equation x1 = x2 and of
direction vector (1, 1). The line of equation x1 = 0 is a supplementary subspace to ℓ, so the
segment −1 ≤ x2 ≤ 0 is a section of the polyhedron, with vertices v1 = (0,−1), v2 = (0, 0) and
with no ray. Thus, ({v1, v2}, ∅, {ℓ}) is a minimal generating system of the polyhedron. But we
could have chosen another supplementary subspace (for instance x2 = 0, or x1 + x2 = 0), so
another section, and obtain another minimal generating system. If we have two lines or more,
there is the choice for the basis.

7.1.5 Link between the Two Representations
Satisfaction of Constraints by the Generator Elements

Definition 7.10. Let P be a polyhedron defined by the constraint system AX ≤ B. Then:

• Of course, a point v belongs to P if and only if Av ≤ B.
• A vector r is a ray of P if and only if Ar ≤ 0.
• A vector ℓ is a line of P if and only if Aℓ = 0.
†2Two affine subspaces E and E

′ are supplementary if their intersection is reduced to a point, and if any point
of the whole space is a linear combination of points in E and E

′.
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v1

v2

ℓ

x1

x2

Figure 7.4: Polyhedron containing a line

Polar Polyhedron

Section 7.1.1 and Section 7.1.3 suggest a strong duality between the two representations. This
duality is fully confirmed by the notion of polar polyhedron.

Definition 7.11 (Polar polyhedron). The polar polyhedron of P is the polyhedron P+

defined by:
P+ = {X ∈ N n | ∀Y ∈ P,XY ≤ 1}.

Properties.

• P+ always contains the origin.
• If P contains the origin, then P++ = P .
• If (V,R, L) is a generating system of P , then X ∈ P+ if and only if:

∀v ∈ V, v ·X ≤ 1, ∀r ∈ R, r ·X ≤ 0, ∀ℓ ∈ L, ℓ ·X = 0

• If P contains the origin and if (A1, A2, A3) is the normal form of its constraint system
(Definition 7.6), then (A1, A2, A3) constitutes a generating system of P+. The converse
also holds.

Considering a polyhedron representation and a characterization or an algorithm on this rep-
resentation, the polar polyhedron allows to define a dual property or algorithm on the other
representation. For instance, with an algorithm computing the intersection of two polyhedra
given as constraint systems, we can deduce an algorithm to compute the convex hull (dual op-
eration) of two polyhedra passed as generating systems.

7.1.6 Minimization of Representations
In this section, we show how the knowledge of both representations of a polyhedron can be used
to minimize these representations.

Definition 7.12 (Saturation). Let aX ≤ b be a linear inequation. Then a point v (respec-
tively, a ray r) saturates the constraint, if and only if av = b (respectively, ar = 0). Let AX ≤ B

a constraint system and (V,R, L) a generating system of the same polyhedron P . Then

• For any inequation c, Sat(c) denotes the subset of S∪R of vertices and rays that saturate c.
• For any vertex v ∈ V (respectively, for any ray r ∈ R), Sat(v) (respectively, Sat(r))

denotes the set of inequations, in AX ≤ B, saturated by v (respectively, by r).

Proposition 7.13 (Redundancy, extremality).

• A constraint c is redundant for P if and only if there exists another constraint c′ in P

such that Sat(c) ⊆ Sat(c′).
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• A vertex v (respectively, a ray r) is not extremal in P if and only if there exists another
vertex v′ (respectively, another ray r′) in P , such that Sat(v) ⊆ Sat(v′) (respectively,
Sat(r) ⊆ Sat(r′)).

• Two constraints c and c′ in P are mutually redundant if and only if Sat(c) = Sat(c′).

The previous proposition allows to simplify the representations, and to identify mutually redun-
dant constraints, at the cost of computing saturations (i.e., the product of the constraint matrix
by the generator matrix). This computation can be complicated if there are many redundant
elements, which increase the sizes of matrices. So we try to identify redundant elements earlier,
when translating one representation into the other one (see Section 7.2).
In the next sections, we use the following definitions.

Definition 7.14 (Adjacency). Let P be a polyhedron of dimension n − codimP and codi-
mension dimP . Then

• Two vertices v and v′ are adjacent if and only if they saturate (n− codimP − dimP − 1)
common inequations.

• A vertex v and a ray r are adjacent if and only if they saturate (n− codimP −dimP −1)
common inequations.

• Two rays r and r′ are adjacent if and only if they saturate (n − codimP − dimP − 2)
common inequations.

7.2 Computing the Dual Representation
Motzkin [MRTT53] has described an iterative algorithm that solves the problem of computing
the dual form. A similar algorithm has been described by Chernikova [Che68] and rediscovered
in [Hal79]. Thereafter, Le Verge [LV94] has proposed an optimization by improving the detection
of redundant elements.
In practice, these algorithms do not manipulate polyhedra of dimension n but cones of dimension
n+1, centered on the origin. A cone is represented by a vertex (the origin) and a set of rays and
lines (seen as bidirectional rays). The polyhedron is then seen as the intersection of the cone
with an hyperplane. This technical choice does not lessen the generality of the method. As for
polyhedra, a cone can be described with constraints or with generators. Turning the polyhedron
into a cone allows several simplifications in the process. First, by adding a dimension, vertices
and rays are treated in the same way. Another advantage is that the cone always contains the
origin (Section 7.1.5) and we can settle for finding the positive solutions of a system, in which
case simplex-based methods can be used.

7.2.1 Principle of Motzkin’s Algorithm
Motzkin’s algorithm can be used to compute the generating system of a polyhedron from its
constraint system, as well as the inverse operation, by duality. We consider the first case.
The algorithm starts with a double, minimal description (constraints and generators) of a
polyhedron that includes the polyhedron of which we want a double description. In practice,
the universal polyhedron is used, whose a generating system is constituted by the origin vertex,
an empty set of rays and a basis of the space as the set of lines. Initially, the set of constraints
taken into account is empty.
Informally, each step of the algorithm consists in taking into account a new constraint c =

(aX ≤ b)†3. Then:
†3We present the case of an inequation, the case of equations is easily deduced.
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1. If all the lines of the current generating system satisfy the constraint, the set of lines is
left unchanged. Otherwise, a line ℓ not satisfying the constraint (i.e., such as aℓ 6= 0, see
Definition 7.10) is chosen: it is composed linearly with all the other lines ℓ′ not satisfying
the constraint, to create new lines (ℓ′′ = (aℓ′)ℓ − (aℓ)ℓ′) that satisfy the constraint, and
the vector ℓ or −ℓ, depending on the sign of aℓ, becomes a new ray rℓ (Figure 7.5(a)).

2. For all pairs (r−, r+) of adjacent rays in the current generating system, such that r−

satisfies the constraint (ar < 0) and r+ does not (ar+ > 0), r+ is replaced by r− =
(ar+)r− − (ar−)r+, a positive combination that saturates the constraint (Figure 7.5(b)).

3. For all pair (v−, r+) (respectively, (v+, r−)) formed by a vertex strictly satisfying (re-
spectively, not satisfying) the constraint (i.e., av− < b and av+ > b, respectively) and a
ray that does not satisfy it (respectively, that strictly satisfies it), (v−, r+) (respectively,
(v+, r−)) being adjacent, r+ (respectively, v+) is replaced by the vertex v′ = v−+ b−av−

ar+
·r+

(respectively, v′′ = v+ + b−av+

ar−
· r−) that saturates the constraint (Figure 7.5(c)).

4. For all pair of vertices (v−, v+), adjacent and situated on either side of the constraint, v+
is replaced by the vertex v′ = λv− + (1− λ)v+, with λ = av+−b

av+−av−
∈ ]0, 1[, that saturates

the constraint (Figure 7.5(d)).

5. Other elements in the current generating system that do not satisfy the constraint are
removed.

c

ℓ

ℓ′

ℓ′′

rℓ

(a) lines → lines and rays

c

r+

r−

r′

(b) rays → rays

c

v−
r+

v′′
v+

r−
v′

(c) ray + vertex → vertex

cv+

v′

v−

(d) vertex + vertex → vertex

Figure 7.5: Steps of Motzkin’s algorithm

An invariant of this algorithm is that at each step, the generating system is minimal, thanks
to the fact that only adjacent generating elements are combined. Therefore, the resulting
generating system is minimal. Constraints are processed one by one until all constraints in the
initial system have been dealt with.

7.2.2 Optimizations
As mentioned above, Motzkin’s algorithm is, in general, implemented on a representation of
polyhedra based on cones. Unfortunately, determining adjacencies is expensive, and the main
optimizations have eliminated these computations:
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• Wilde [Wil93] and Le Verge [LV94] propose to combine all pairs of elements situated
on either side of the constraint, without concern for adjacency. As the result of the
combination is no longer necessarily extremal, its extremality is tested a posteriori with
the following criterion:
Let n − codimP be the dimension of a polyhedron. Then a vertex (respectively, a ray)
that does not saturate at least n− codimP (respectively, n− codimP − 1) inequations is
not extremal.

• The extremality condition of Le Verge is only necessary, and so does not implies the
minimality of the result. It has to be ensured by a complete analysis of saturations
(see Proposition 7.13). The Parma Polyhedral Library [BRZH02] relies on the following
necessary and sufficient extremality condition:
Let n − codimP be the dimension of a polyhedron and dimP its codimension. Then a
vertex (respectively, a ray) is extremal if and only if it saturates at least n − codimP −
dimP (respectively, n− codimP − dimP − 1) inequations.

Another optimization, used in the Linear library (Section 7.5.4), arises from the remark that, in
practice, matrices involved in representations are often very sparse, and consists in using classic
data structures for sparse matrices.

7.3 Operations on Polyhedra
An abstract interpretation of interpreted automata (see Section 6.3, page 61), based on the
lattice of polyhedra, requires defining the following operations:

• Lattice operations:

– Computation of the order relation (test for polyhedral inclusion).
– Comparison to ⊥, ⊤ (test for emptiness and fullness).
– Lower bound, upper bound (intersection, convex hull).

• Effect of an action, forward and/or backward.
• Widening.

These operations rely sometimes on one representation, sometimes on the other, or even both
of them, confirming the interest of having both representations.

7.3.1 Tests

We need to perform the following tests:

Emptiness Test

A polyhedron is empty if its constraints are not satisfiable. This test can easily be performed
on the minimized generating system, since a polyhedron is empty if and only if its vertex set is
empty.

Fullness Test

A polyhedron is equivalent to the universe polyhedron if its constraints are always satisfied, in
other words if its minimized constraint system is empty.

74



Inclusion Test

Here, both representations are used, since

P ⊆ P ′ ⇐⇒ ∀v ∈ V,A′v ≤ B′ ∧ ∀r ∈ R,A′r ≤ 0 ∧ ∀ℓ ∈ L,A′ℓ = 0

where (V,R, L) is a generating system of P , and A′X ≤ B′ is a constraint system of P ′ (see
Definition 7.10).

7.3.2 Intersection
The intersection of two convex polyhedra is a convex polyhedron. The intersection satisfies the
constraints of both polyhedra. Thus, trivially, the conjunction of constraint systems of both (or
several) polyhedra is a constraint system of their intersection. This conjunction is not minimal
in general and is often minimized immediately, to optimize future computations.

7.3.3 Convex Hull
The union of two convex polyhedra is not necessarily convex. The upper bound operation in
the lattice of polyhedra is the convex hull, noted ⊔, that maps two (or several) polyhedra to
the smallest polyhedron containing them (Figure 7.6).

P Q

P ⊔Q

Figure 7.6: Convex hull of two polyhedra

This is the dual operation of intersection, and a generating system of P1 ⊔ P2 is formed by
the union of vertices in P1 and P2, the union of their rays, and the union of their lines. The
resulting generating system is not minimal in general.

7.3.4 Applying Actions, Projections and Affine Transformations
The action of an interpreted automaton, as defined in Section 5.3.1, page 52, is a relation be-
tween values of variables. Obviously, in all generality, it is impossible to define the effect of
such an action on a polyhedron. Usually, it is simply defined in the case of affine relations, and
roughly approximated in other cases, eliminating the involved variables (existential quantifica-
tion).

Image by an Affine Relation

We only focus on the case of relations a in the form

a(X,X ′) ⇐⇒ X ′ = FX +G

where F is an n×n square matrix, and G is a vector of dimension n†4. This case is interesting,
from the point of view of the considered automata, since it corresponds to the actions defined
by affine affectations to variables.

†4It would not be much more difficult to consider more general affine relations of the form FX + F
′
X

′ ≤ G.
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As in Section 5.3.4, we note: a(P ) = P [X := FX + G] = {FX + G |X ∈ P} and a−1(P ) =
P [X := FX +G]−1 = {X |FX +G ∈ P}.

Then, if AX ≤ B and (S,R,D) are the two representations of P :

•
(
{Fv +G | v ∈ V }, {Fr | r ∈ R}, {Fℓ | ℓ ∈ L}

)
is a generating system of a(P ).

• AFX ≤ B −AG is a constraint system of a−1(P ).

Existential Quantification

It is often useful to eliminate certain variables (i.e., to lose all information about them), for in-
stance to overapproximate the effect of a non-affine affectation to these variables. This operation
corresponds to an existential quantification on a polyhedron: ∃x, P . This can be done, using
the generating system of P , by simply adjoining it a line which is the base vector corresponding
to x, or, using the constraint system of P , by applying a Fourier-Motzkin elimination [Sch86].

7.3.5 Widening
The choice of a widening operator heuristic is not an absolute choice but a compromise, that
requires experimental validation. The standard operator has been proposed by [CH78]. The
initial idea, considering two polyhedra P and Q, with P ⊆ Q, is to build the constraint system
of P∇Q by preserving only the inequalities c = (aX ≤ b) of P verified by every point X in Q

(see Figure 7.7).

x1

x2

P Q P∇Q

Figure 7.7: Standard widening for convex polyhedra

We should remember that widening is mainly used for fixed-point computation (Section 6.2.3),
to guess the limit of an infinite sequence based on its first terms. Here, the idea is that
a transformed inequality from P to Q (by a translation, a rotation…) may be transformed
an infinite number of times and so, is removed. Polyhedra P and Q are included in P∇Q.
As inequalities are removed from a finite system of inequalities, the algorithm stops in a finite
number of iterations.

The problem with this definition is that it depends on the constraint system chosen for P : if
this system is not canonical — and we stated in Section 7.1.2 that it happens when P satisfies
equations — widening can unnecessarily lose information.

For instance, let us consider the following polyhedra (Figure 7.8):

• P = {x1 = 0, 0 ≤ x2 ≤ 1}.
• Q = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1 + 1}.

If the widening operator is directly applied, the result is a quadrant (Figure 7.8(a)):

P∇Q = {0 ≤ x1, 0 ≤ x2}.
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x1

x2

P Q P∇Q

(a)

x1

x2

P Q P∇Q

(b)

Figure 7.8: Widening a polyhedron satisfying an equation

However, if P is described by P = {x1 = 0, 0 ≤ x2 ≤ x1 + 1}, we get (Figure 7.8(b)):

P∇Q = {0 ≤ x1, 0 ≤ x2 ≤ x1 + 1}.

To avoid this problem, the widening operator of [Hal79] uses the notion of mutually redundant
constraints (see Definition 7.5): the constraint system of P∇Q is formed by the constraints of
Q that are mutually redundant, in P , with a constraint in P . In the previous example, the
constraint x2 ≤ x1 + 1 in Q is mutually redundant in P with the constraint x2 ≤ 1, and the
widening gives the result shown in Figure 7.8(b), whatever the shape chosen for the constraints
in P .

There were subsequent work [BHRZ05] to improve this widening operator, by distinguishing
particular cases. But the standard operator, generally improved as follows, is the most com-
monly used.

7.3.6 Limited Widening
In [HPR97], a technique is proposed to improve the widening operator: when we know a set
of constraints, U , that is likely to be invariant in a widening state, we can choose to keep for
the widened polyhedron the constraints in U that are satisfied by all points in both widening
operands. As U is finite, the fundamental properties of widening are not changed. However, this
optimization often immediately obtains the results that the decreasing sequence would provide,
and also gives more accurate results.

7.4 Analysis Example
Let us consider the car example first introduced in Section 5.3.3, page 53, slightly simplified to
show only numerical aspects. Each control point of the automaton is associated to a polyhedron
(see Figure 7.9), as indicated in Section 6.3.

The abstract system of equations associated to this automaton is the following:

Pinit = ⊤

P = [d := 0][t := 0][v := 0]Pinit ⊔

[v := v + 1][d := d+ 1](P ∩ (v ≤ 2 ∧ d ≤ 9)) ⊔

[t := t+ 1][v := 0](P ∩ (t ≤ 3))

Pwall = P ∩ (d ≥ 10)

Pfast = P ∩ (v ≥ 3)

Pstop = P ∩ (t ≥ 4)
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Pinit

P

PfastPwall Pstop

d := 0; t := 0; v := 0

t ≥ 4d ≥ 10 v ≥ 3

t ≤ 2? → v := 0;

t := t+ 1

v ≤ 1, d < 8? → v := v + 1;

d := d+ 1

Figure 7.9: Car example with a polyhedron associated to each control point

and P is chosen as widening point, which will be limited by the set of distinguished constraints
{v ≤ 2, d ≤ 8, t ≤ 3} (see Section 7.3.6). Indeed, the control point P is attached to is exited
(definitively) as soon as one of these constraints is violated, so they are a priori likely to be
invariant in this control point.

The iterative resolution (Section 6.3) is the following. We only give the successive values of P
until convergence, then the final value of P will allow us to compute Pwall, Pfast and Pstop.

1. All polyhedra are initialized to the value ⊥. So, the first iteration gives:

P (1) = [d := 0][t := 0][v := 0]⊤ ⊔⊥ ⊔ ⊥

= (d = 0 ∧ t = 0 ∧ v = 0).

2. The second iteration produces:

P (2) = P (1)∇
(
[d := 0][t := 0][v := 0]⊤ ⊔

[v := v + 1][d := d+ 1](P (1) ∩ (v ≤ 2 ∧ d ≤ 9)) ⊔

[t := t+ 1][v := 0](P (1) ∩ (t ≤ 3))
)

= P (1)∇
(
(d = 0 ∧ t = 0 ∧ v = 0) ⊔

(d = 1 ∧ t = 0 ∧ v = 1) ⊔

(d = 0 ∧ t = 1 ∧ v = 0)
)

= P (1)∇(0 ≤ d ≤ 1 ∧ 0 ≤ t ≤ 1 ∧ t+ d ≤ 1 ∧ v = d).

The standard widening would give P (2) = (v = d∧0 ≤ t∧0 ≤ d), but as the distinguished
constraints are satisfied by both widening operands, the limited widening gives:

P (2) = (v = d ∧ 0 ≤ t ≤ 3 ∧ 0 ≤ d ≤ 2).

3. The third iteration of P is:

P (3) = P (2)∇
(
(d = 0 ∧ t = 0 ∧ v = 0) ⊔ (v = d ∧ 0 ≤ t ≤ 3 ∧ 1 ≤ d ≤ 2) ⊔

(v = 0 ∧ 1 ≤ t ≤ 3 ∧ 0 ≤ d ≤ 2)
)

= P (2)∇(0 ≤ v ≤ d ≤ 2t+ v ∧ t ≤ 3 ∧ d ≤ 2)

= (0 ≤ v ≤ d ≤ 2t+ v ∧ t ≤ 3 ∧ d ≤ 2).
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4. The result for the fourth iteration is:

P (4) = P (3)∇(0 ≤ v ≤ d ≤ 2t+ v ∧ d− 2 ≤ v ≤ 2 ∧ t ≤ 3 ∧ d ≤ 2)

= (0 ≤ v ≤ d ≤ 2t+ v ∧ v ≤ 2 ∧ t ≤ 3).

5. Finally, we find

P (5) = P (4)∇P (4)

= P (4).

The computation has converged towards a fixed point, that cannot be improved by a
decreasing sequence.

Now, we can compute the remaining polyhedra:

Pwall = P (4) ∩ (d ≥ 10)

= ⊥

Pfast = P (4) ∩ (v ≥ 3)

= (v = 3 ∧ 3 ≤ d ≤ 2t+ 3 ∧ t ≤ 3)

Pstop = P (4) ∩ (t ≥ 4)

= (t = 4 ∧ v = 0 ∧ 0 ≤ d ≤ 8)

and the result Pwall = ⊥ shows that in the model, the car stops before the wall!

7.5 Existing Libraries
Several libraries, providing most of the polyhedral operators, are available; we present the main
ones in this section. All libraries mentioned below operate with rational numbers (with limited
or arbitrary precision), for the sake of computational accuracy.

7.5.1 PolyLib

Initiated at IRISA [Wil93] in the early 1990s, the development of the PolyLib†5 has benefited
from the cooperation of several teams, working on program parallelization and the design of
systolic architectures.

The provided operations are the usual polyhedral operations, along with the possibility to ma-
nipulate explicit finite unions of polyhedra which, unlike convex hulls, do not lose information.
The PolyLib also offers sophisticated algorithms (for instance [NR00]) allowing to study integer
solutions of linear systems.

The PolyLib is implemented in C.

7.5.2 NewPolka
The NBAC tool [Jea00] uses the NewPolka library†6, that relies on a preliminary version of the
PolyLib and on optimizations proposed in [FP96]. NewPolka is now integrated in the APRON
library†7, which offers access to several abstract domains, and also a higher-level interface. The
main differences with PolyLib are the following:

†5See http://www.irisa.fr/polylib/.
†6See http://pop-art.inrialpes.fr/~bjeannet/newpolka/index.html.
†7See http://apron.cri.ensmp.fr/library/.
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Representation of coefficients Computing with rational numbers, with reduction to a same
denominator of constraint coefficients and vector components (reduction whose impact on
algorithm efficiency is identified by [Avi98]) implies an increase of coefficient sizes, that, as
soon as the dimension increases, causes arithmetic overflows. To solve this problem,
NewPolka allows choosing between three integer representations: 32 bits, 64 bits and
multiprecision integers using GMP†8.

Lazy evaluation The library keeps in general only one representation of the polyhedron. The
conversion towards the other one as well as the minimization are delayed and performed
only when necessary. When both representations are present, then they are both in a
minimal form.

Sorting constraints and generators Matrix lines are sorted (lazily) by lexicographic order
for two reasons. In general, this sorting leads to an acceleration into the conversion
algorithm. And, more specifically, it becomes easier to eliminate identical constraints, for
instance in an intersection.

Strict inequalities NewPolka allows to take into account strict inequalities, by adding an
extra dimension [HPR97].

7.5.3 PPL

The University of Parma has also developed a polyhedral library, the Parma Polyhedral Library
(or PPL) that is available on its website†9. PPL is quite close to the library realized for NBAC.
The main difference is the programming language, C++ instead of C. Other differences derive
more or less directly from the choice of C++ as programming language.

PPL is fully dynamic, no maximal size is specified during initiation.

The treatment of strict inequalities [BRZH02] is different from that of NewPolka. The PPL also
provides alternative widening operators [BHRZ05].

7.5.4 PIPS/Linear

Linear is the linear library used in the PIPS compilation framework†10 [IJT91] developed at
MINES ParisTech. This library uses sparse data structures to store the vectors, constraints
and constraint systems, and dense data structures for matrices.

The C data type for coefficients can be set to 32 or 64-bit integers, but is incompatible with
multiprecision numbers. However, intermediate computations may generate polyhedra with
huge coefficients, leading to arithmetic overflows even with 64-bit integers, because constraint
constants are transformed into coefficients by the convex hull operator. Eventually, when an
overflow occurs, some constraints may be dropped, and the resulting invariant is less accurate
than it should.

To address this problem, we added GMP support to some of the Linear polyhedral operators
(Section 10.3.2). This seemingly purely pratical implementation decision allows for a drastical
simplification of the polyhedral algorithms because overflow exceptions no longer have to be
handled.

†8See http://gmplib.org/.
†9See http://www.cs.unipr.it/ppl/.
†10See http://pips4u.org/.
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7.5.5 isl
The Integer Set Library†11 (or isl) [Ver10] is a thread-safe C library for manipulating sets and
relations of integer points bounded by affine constraints:

S(s) =
{
x ∈ Zd

∣∣ ∃z ∈ Ze : Ax+Bs+Dz ≥ c
}

R(s) =
{
x1 → x2 ∈ Zd1 × Zd2

∣∣ ∃z ∈ Ze : A1x1 +A2x2 +Bs+Dz ≥ c
}
.

(7.1)

The descriptions of the sets and relations may involve both parameters (s in Equation (7.1))
and existentially quantified variables (z in Equation (7.1)). All computations are performed in
exact integer arithmetic using GMP. The isl library offers functionalities that are similar to that
offered by the Omega+ library†12, but the underlying algorithms are in most cases completely
different.

†11See http://isl.gforge.inria.fr/.
†12See http://www.cs.umd.edu/projects/omega/.
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Chapter 8

ALICe: A Framework to Improve Affine
Loop Invariant Computation

Comme cela a déjà été souligné au chapitre 6, un point crucial de l’analyse de programme est le
calcul des invariants de boucle. Il est nécessaire d’avoir des invariants précis pour prouver des
propriétés sur un programme, mais de tels invariants sont difficiles à calculer. Des recherches
approfondies ont été effectuées mais, à notre connaissance, aucun benchmark n’a été développé
jusqu’à présent pour comparer les algorithmes et les outils.

C’est pourquoi nous avons développé ALICe, un ensemble d’outils pour comparer des techniques
de calcul automatique d’invariants affines de boucle. ALICe s’accompagne d’un benchmark, que
nous avons construit à partir de 102 cas de test trouvés dans la littérature sur les invariants
de boucles, et s’interface avec trois programmes d’analyse, reposant sur différentes techniques :
Aspic, iscc et PIPS (voir la section 8.2.5). Des outils de conversion sont fournis pour manipuler
les différents formats utilisés par ces programmes.

* * *

As already underlined in Chapter 6, a crucial point in program analysis is the computation of
loop invariants. Accurate invariants are required to prove properties on a program but they are
difficult to compute. Extensive research has been carried out, but, to the best of our knowledge,
no benchmark has ever been developed to compare algorithms and tools.

This is why we have developed ALICe, a toolset to compare automatic computation techniques
suited for affine loop scalar invariants. It comes with a benchmark, that we built using 102 test
cases found in the loop invariant bibliography, and interfaces three analysis programs, that rely
on different techniques: Aspic, iscc and PIPS (see Section 8.2.5). Conversion tools are provided
with ALICe to handle the various formats used by these programs.

8.1 Invariant Computation
The standard state-based model checking problem is to characterize the set of all reachable
states of a transition system modeling some program. This information is generally used to
check safety properties on the system, ensuring that bad configurations cannot be reached.
The accuracy of computed invariants is very important, as it plays an essential role in the
success of the program analysis.

Dealing with potentially infinite-state models requires to overapproximate invariants into a
mathematical model (or abstract domain) such that invariant representation is finite and that al-
lows to make the required computations. Many such domains exist in the literature, but we focus

83



on the domain of affine invariants (Chapter 7), first introduced by N. Halbwachs [CH78, Hal79],
as it offers a good compromise between invariant accuracy and computational complexity.

Most of the usual analysis techniques consist in starting from a set of supposed predicates about
a particular control position in the transition system, and then propagating it to other positions
by evaluating the effect of each transition on the predicates. This is pretty straightforward,
except in the case of loops, which requires a special treatment. This lead to intensive research,
with many approaches based either on abstract interpretation [Jea00, Gon07, Mer05], that is,
using widening operations, or on direct computation [ACI10]. The case of concurrent loops,
i.e. when there are different possible transition cycles on the same control point, is particularly
challenging.

As of today, several tools for linear relation analysis use a vast array of algorithms and heuristics
to handle loops, aiming to maximum accuracy. We propose a toolset that compares these tools
on a common set of small-scale, previously published test cases and to test the sensibility of
these tools to different encoding schemes.

8.2 The ALICe Framework
The ALICe framework project aims to provide tools and a standardized set of test cases to
compare as fairly as possible different polyhedral analysis techniques and programs. ALICe is
a free software distributed under GPLv3, available at http://alice.cri.mines-paristech.
fr/.

There are several motivations behind the ALICe project. First, we want to use it as a tool to
compare polyhedral invariant computation tools on a common ground, using a set of published
test cases issued from various sources, instead of evaluating their performances on ad hoc exam-
ples only, in the spirit of the TPTP library [Sut09] and the CASC competition [SS06, PSS02].
ALICe also gives the opportunity to evaluate the benefits of model-to-model restructurations
prior to analysis, and/or the sensitivity to encoding of the tools (Chapter 9).

8.2.1 Program Model
Test cases in ALICe — also called models — are interpreted automata as described in Section 5.3:
they are transition systems constituted by a set K of control points (nodes), connected by
guarded commands acting on integer variables (edges), and by a set of initial states Qinit. Each
model also comes with a set of error states Qerr.

Definition 8.1 (Correctness). A model m is correct if no error state is reachable from its
initial states.

All models provided with ALICe are correct. An example of (correct) model is shown in Fig-
ure 8.1.

k1 k2
t1 : x ≥ 0 ?

t2 : x ≤ 0 ?x++

t3 : x ≥ 1 ?x--

Initial states: Qinit = {(k1, x) |x ∈ Val }

Error states: Qerr = {(k2, x) |x < 0}

Figure 8.1: An example of model
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Challenging a Tool

The purpose of error states is to challenge analysis tools. A tool successfully analyses a model
if and only if the computed invariant, an overapproximation of the reachable states, does not
intersect with the set of error states Qerr.

More precisely, it is not possible in general to compute exactly the set of accessible states
Acc(Qinit). Instead, analysis tools tested by ALICe compute supersets Q′ of Acc(Qinit): if a
given Q′ does not intersect with Qerr, then the tool that generated this Q′ has verified that
states in Qerr are unreachable (Figure 8.2), thus the test case is considered a success for that
tool. However, if the intersection Q′ ∩Qerr is not empty, the tool user cannot conclude whether
the property is violated or if the overapproximation is too inaccurate: this corresponds to a
failure for the tool.

Acc(Qinit) Q′

Qerr

Figure 8.2: Model checking

Note that we could use backward analysis (see Section 5.3.4) instead: starting from error states
Qerr, computing iteratively the set of coaccessible states and testing the intersection with Qinit.
But, as all analysis tools used within ALICe rely on forward analysis (see Section 8.2.5), this is
not explored further.

8.2.2 Test Cases

The benchmark suite itself consists in 102 previously published test cases, including work by
L. Gonnord [Gon07, ADFG10], S. Gulwani [CCG+08, Gul09, GJK09, GMC08, GZ10], N. Halb-
wachs [Hal93, HPR97, Hal10, Hal79], B. Jeannet [Jea00] et al. The comprehensive list of
model sources can be found in the bibliography [Bar05, Lee02, BHMR07, BGP97, CCG+08,
CS01, CS02, CPR06, Cou05, GR06, GR07, GHK+06, Hen11, HJMS02, KEW+85, Mer05, PR04,
PC07], as well as on the ALICe website. They come mostly from works on loop invariant com-
putation, loop bound analysis, loop termination and, to a lesser extent, protocol verification.
The list of models is given in Table 8.1.

Test cases are usually relatively small, with typically 1 to 10 states and variables, and 2 to 15
transitions. Histograms showing distributions of test cases according to their sizes are shown
in Figure 8.3.

These test cases come in many forms and had to be encoded to a common format, described
in Section 8.2.4. The encoding was either done manually, from the model description, or
automatically from C code using the C2fsm utility developed by P. Feautrier [Fea10, FG10].

8.2.3 Supported Tools

When dealing with a state transition relation, a transitive closure is useful to compute invari-
ants [BGP97, ACI10], to check loop termination or derive loop complexities [GZ10], to build
dependency constraints or to move convex array regions from a control point to another [Kha13].
When dealing with a dependence relation, a transitive closure is useful to optimize or synthesize
code [Won01, VCB11, BKK13].
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aaron2 gulwani1 microsoftex6
ackerman gulwani1_alt microsoftex7
ax gulwani2 multcounters1
bakery gulwani2_alt multcounters2
bardin gulwani3 multcounters3
berkeley gulwani4 multcounters4
car halbwachs1 nd_loop
car_simple halbwachs2 ndecr
counterex1 halbwachs3 nested
counters1 halbwachs4 perfect
counters2 halbwachs5 popeea
counters3 halbwachs6 random1d
counters4 halbwachs7 random2d
cousot9 halbwachs8 realbubble
determinant halbwachs9 realheapsort
disj henry realheapsort_step1
disjbnd1 insertsort realheapsort_step2
disjbnd2 interleaving1 realselect
easy1 interleaving2 realshellsort
easy2 interleaving3 relation1
exmini interleaving4 rsd
forward jeannet1 sipmabubble
gasburner jeannet2 slam
gasburner_alt jeannet3 slam_bad
gcd jeannet4 speedometer
gonnord1 jeannet5 subway
gonnord2 jeannet6 synergy_bad
gonnord3 leeyannakis_bad terminate
gonnord4 loops terminator
gonnord5 maccarthy91 ticket
gonnord6 metro wcet1
gopan_reps microsoftex2 wcet2
gopan_reps_alt1 microsoftex4 while2
gopan_reps_alt2 microsoftex5 wise

Table 8.1: List of models currently provided with ALICe
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Figure 8.3: Distribution of test cases
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It is difficult to compare the algorithms and heuristics used by different tools designed for one
of these goals because they require different inputs and produce incompatible outputs. Also,
the encoding of the input often impacts the analysis.

As of now, ALICe is interfaced with three invariant computation tools: Aspic, iscc and PIPS.

• Aspic†1 [Gon13], a polyhedral invariant generator developed by L. Gonnord. Aspic relies
on classic linear relation analysis, improved with abstract accelerations, identifying classes
of loops in the abstract polyhedral domain whose effect can be computed directly instead
of using widening operations, thus granting better accuracy.

• iscc is an interactive interface to the barvinok counting library†2 [VSB+07, VWBC05].
barvinok is a library for counting the number of integer points in parametric and non-
parametric polytopes based on isl (Section 7.5.5) and PolyLib (Section 7.5.1). For a
parametric polyhedron, the number of points is represented by either a piecewise quasi-
polynomial or an Ehrhart series.

• PIPS†3 [Cen15], an interprocedural source-to-source compiler framework for C and Fortran
programs, initiated at MINES ParisTech, that relies on a polyhedral abstraction of pro-
gram behavior. Unlike other tools, PIPS performs a two-step analysis. First, the program
is abstracted: each program command instruction is associated to an affine transformer
representing its underlying transfer function. This is a bottom-up procedure, starting
from elementary instructions, then working on compound statements and up to func-
tion definitions. Second, polyhedral invariants are propagated along instructions, using
transformers previously computed. PIPS relies on the Linear library (Section 7.5.4).

We do not consider the Omega+ [PRK+14] library, as it appears to be superseded by isl [Ver10].
It would be very interesting to use more tools, such as FASTer [Lab06, BFL04], NBAC [Jea10,
Jea03] or PAGAI [HMM12a, HMM12b], but adding support is a time-consuming task, as ex-
plained below, and we have not been able to do it up to now.

8.2.4 Heterogeneity of Tools
ALICe test cases are written in the fsm format. This is a simple language that directly represents
models, originally used by FAST [Lab06] and then by Aspic. An example of fsm program for
the model in Figure 8.1 is given in Listing 8.1.

As we wish to analyze these test cases with different tools and compare results, we have to
convert input and output formats. Basically, each tool uses different input and output formats:

• Aspic uses the fsm format as input and fsm expressions as output.
• iscc uses a custom format to describe both the input model as a relation on states with

conditions on variables, and the output invariant, given as a map from states to polyhedral
domains. An iscc relation corresponding to the model in Listing 8.1 is implemented in
Listing 8.3, page 92.

• PIPS processes a structured C program according to a script written in a custom scripting
language, called tpips, while resulting invariants are given as inserted before statements
in the output C code. An example of PIPS output is given is Listing 10.3, page 103.

To check whether an analyzer works successfully on a test case, we follow these four steps:

1. If necessary, convert the model (originally in fsm) into the analyzer’s input format;
†1See http://laure.gonnord.org/pro/aspic/aspic.html.
†2See http://barvinok.gforge.inria.fr/.
†3See http://pips4u.org/.
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1 model m {
2 var x;
3 states k1, k2;
4 transition t1 {
5 from := k1;
6 to := k2;
7 guard := x >= 0;
8 action := ;
9 }

10 transition t2 {
11 from := k2;
12 to := k2;
13 guard := x <= 0;
14 action := x' = x + 1;
15 }
16 transition t3 {
17 from := k2;
18 to := k2;
19 guard := x >= 1;
20 action := x' = x - 1;
21 }
22 }
23 strategy s {
24 Region init := {state = k1};
25 Region bad := {x < 0};
26 }

Listing 8.1: Source code in fsm format

2. Run the analyzer and get the computed model invariant;
3. If necessary, convert the model invariant into isl format;
4. Use iscc to check whether the intersection of the model error region and the invariant

computed by the analyzer is empty, i.e. whether the analyzer is able to solve the test
case.

Those steps are illustrated in Figure 8.4.

in.fsm in.is

in.c

Aspic

iscc

PIPS

out.asp

out.is

out.c

out.is

out.is iscc

iscc

iscc

Figure 8.4: Analysis steps within ALICe

8.2.5 Translation Tools

Implementing these steps required to develop several translation programs, from and to Aspic,
isl and PIPS formats. In particular, the tools fsm2c and fsm2iscc, presented below, respectively
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convert a fsm model into C code or isl relation. There is also an export tool for fsm in dot
format that allows visualization, fsm2dot. They are available within ALICe.

Conversely, it is possible to use ALICe to analyze simple models written in C by first translating
them into fsm automata, using the C2fsm utility.

fsm2c

fsm2c is a conversion tool to generate C code from a fsm model. It is written in Python and
distributed with ALICe. fsm2c works as follows:

1. The fsm code is parsed, using the PLY parsing library, and a finite state machine structure
is generated.

2. A regular expression describing the possible paths in the automaton structure (regard-
less of transition guards) is generated, each character corresponding to a command.
This regular expression represents the structure of the produced C code: unions are
translated into conditional branches (if (rand()) { ... }), stars into loop statements
(while (rand()) { ... }). Thus, it is important to generate a simple regular expres-
sion to avoid producing an unnecessarily complicated C code. This is done using Brzo-
zowski’s algorithm [Brz64], followed by a simplification step including the elimination of
the ε-terms (the partial or final nature of an execution path is not relevant for invariant
generation).

3. The C code is generated iteratively from the regular expression, as stated above. Each
command g ? a is translated into a conditional statement with condition g and body exe-
cuting the action in a. Temporary variables are introduced if needed, to handle concurrent
modifications of variables in a, for instance in swaps.

Variables are renamed, to avoid any clash with C keywords. Dummy string instructions are
also injected, to keep track of the variable names and control points of the original model in
the produced C code. This allows to retrieve invariants at the model level when the C code is
analyzed.

The C code produced from the fsm model in Listing 8.1 is shown in Listing 8.2.

fsm2iscc

fsm2iscc is a much simpler program. An iscc relation is directly produced from the fsm model,
with no need for restructuring, renaming or control-state tracking. The iscc code produced from
the fsm model in Listing 8.1 is shown in Listing 8.3.

8.3 Results for the Raw Test Cases
In this section, we present experimental results obtained with ALICe v 1.0. Benchmarks were
run on a computer with a quad-core Intel i7-2600 processor clocked at 3.40GHz with 16GB of
memory, using the following versions of analyzers (latest versions at the time of writing):

• Aspic version 3.3.
• iscc from barvinok version 0.37.
• PIPS revision 22 241 (September 2014).

The test suite was run 5 times and the average 3 runs were retained for each test case. Results
obtained by these three tools are displayed in Table 8.2, along with the corresponding execution
times. Aspic stands out as the winner in this comparison, with iscc coming second and PIPS,
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which is not primarily targeted at invariant analysis, being placed last, both in terms of success
rate and of execution time.

Aspic iscc PIPS
Successes 75 63 43
Time (s.) 10.9 35.5 43.3

Table 8.2: Benchmark results

This ranking is not a total order because no tool is strictly better than another: for each tool,
there is at least one model that is successfully analyzed only by this tool, as shown in Figure 8.5;
and it appears in Table 8.3 that there is no clear trend as for the quality of generated invariants,
in terms of invariant inclusion.

Aspic

iscc PIPS

12

1 1

22

1

2
39

successes: 78
failures: 24

Figure 8.5: Venn diagram of successes for each tool

⊇ Aspic iscc PIPS
Aspic – 21 23
iscc 49 – 54

PIPS 32 23 –

Table 8.3: Invariant inclusions, in terms of sets

A closer analysis shows that iscc performs comparatively well on test cases encoded with con-
current loops (several loops on a single control point, similar to what is shown Figure 9.3,
page 98), unlike PIPS whose raw results appear to be the poorest. On the other hand, iscc can
be quite slow on test cases that display a large, intricate control structure. Finally, despite its
successes, Aspic has greater difficulty to deal with transitions featuring complex formulas, that
it is not able to accelerate. This leads us to wonder if the tools are sensitive to the encoding,
since a problem can be presented under many guises. This is the topic of Chapter 9.

PIPS comparative slowness is primarily due to the fact that it uses C as input format, which
is much more universal and thus, difficult to handle, than Aspic or iscc specific formats. This
issue is revisited in Section 10.2.1.
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1 #include <stdlib.h>
2 #include <stdbool.h>
3

4 #define {alice__abort}() {{while (1) {{}}}}
5 #define {alice__fail}() exit(1)
6 #define {alice__assume}(e) if (!(e)) {{{abort}();}}
7 #define {alice__rand}() (rand() - rand())
8

9 void model(main) {
10 int var_0;
11 "@alice variables: x";
12 if (var_0 >= 0) {
13 "@alice transition t1";
14 "@alice state k1";
15 while (alice__rand()) {
16 if (alice__rand()) {
17 "@alice transition t2";
18 "@alice state k2";
19 if (var_0 <= 0) {
20 var_0 = var_0 + 1;
21 }
22 else {
23 alice__abort;
24 }
25 "@alice state k2";
26 }
27 else {
28 "@alice transition t3";
29 "@alice state k2";
30 if (var_0 >= 1) {
31 var_0 = var_0 - 1;
32 }
33 else {
34 alice__abort;
35 }
36 "@alice state k2";
37 }
38 }
39 "@alice state k2";
40 }
41 else {
42 alice__abort;
43 }
44 }

Listing 8.2: C code produced by fsm2c for the example of Listing 8.1
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1 model := {
2 k1[x] -> k2[x]: x >= 0;
3 k2[x] -> k2[x + 1]: x <= 0;
4 k2[x] -> k2[x - 1]: x >= 1;
5 };
6 model + model^+;

Listing 8.3: iscc code produced by fsm2iscc for the example of Listing 8.1
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Chapter 9

Model-to-Model Restructuring
Transformations: Sensitivity to
Encoding

On mentionne au chapitre 8 la possibilité d’utiliser ALICe pour évaluer l’efficacité et la pertinence
des restructurations de modèles. La motivation initiale était d’améliorer des résultats obtenus
avec PIPS en jouant sur la structure de contrôle des modèles.

À des fins d’analyse, un modèle que l’on ne parvient pas à vérifier peut être restructuré en
un autre modèle, que l’on espère plus facile à analyser. Dans ALICe, nous avons implémenté
deux restructurations sur les états des modèles, pour tester les outils d’analyse sur un plus
grand échantillon de modèles et sur des schémas particuliers de modèles, et explorer l’impact
de l’encodage des modèles. Les restructurations de modèles sont effectuées au tout début de
l’exécution d’ALICe, lors d’une étape préliminaire additionnelle, représentée sur la figure 9.1.

La sûreté de ces deux restructurations a été prouvée en Coq, en utilisant un raisonnement par
équivalence de traces.

* * *
We mention in Chapter 8 the possibility to use ALICe to test the efficiency and relevance of
model-to-model restructuring transformations. An initial motivation was to improve results in
PIPS by playing on the model control structure.

For analysis purposes, a model that fails to be checked can be restructured into another one,
hopefully easier to analyze. Within ALICe, we have implemented two restructuring transforma-
tions on model states, to test analysis tools on a wider range of models and on specific model
schemes, and explore the impact of model encoding. Model restructuring transformations are
performed at the very beginning of ALICe execution, as an additional, preliminary stage, as
shown in Figure 9.1.

Both restructuring transformations were proved sound in Coq, using a trace-equivalence scheme.

Definition 9.1 (Model restructuring). A model restructuring is a sound abstraction on
models, i.e. a function ρ : M → M that maps a model m1 to a model m2 such that: if m2 is
correct (i.e., its error region is not reachable), then m1 is also correct:

∀m1,m2 ∈ M,m2 = ρ(m1) ∧ correct(m2) =⇒ correct(m1). (9.1)

Thus, given a model m1 and a restructuring ρ, it is sufficient to prove the correctness of
m2 = ρ(m1) to deduce that m1 is also correct. In addition, the restructuring ρ can be equivalent
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restructuring

Figure 9.1: Analysis steps within ALICe, using restructuring transformations

(m1 is correct if and only if m2 is correct), although we are not interested in proving such
properties in our toolchain. So, for instance, the restructuring that to any model associates the
same trivial, inconsistent model is sound (but not very interesting).

Considering an arbitrary, possible state trace with transitions

θ1 = (k0, v0)
t1−→ (k1, v1)

t2−→ (k2, v2)
t3−→ · · ·

in the original model m1, we show that for any corresponding trace θ2 in the transformed model
m2 (corresponding to the same behavior, once the model has been transformed), then:

(for all state q2 in θ2, q2 6∈ Qerr2) =⇒ (for all state q1 in θ1, q1 6∈ Qerr1),

thus ensuring Equation (9.1).

9.1 Control-Point Splitting Heuristic
The two main sources of imprecision that appear in Linear Relation Analysis are

• The computation of branches, performed with the convex union of invariants or trans-
formers of each path (Sections 6.2.2 and 7.3.3).

• The computation of loops, whether using widening (Sections 6.2.3 and 7.3.5) or alternative
techniques, as in PIPS (see Section 10.1.1).

These imprecisions are accumulated if there are structures in the automaton with two or more
loops involved in the same control point. That is the case, for instance, of control k2 in the
model of Figure 8.1, page 84, that involves two self-loops t2 and t3.

If such a structure is met during analysis, two ideas are used to improve accuracy. The first
one is to refine invariants or transformers involved in loops, so that both the transitive closure
approximation and the convex union might be more precise. The second is to reduce the
number of parallel loops. Both can be achieved through a control restructuring of the analyzed
automaton.

The first restructuring we use is a heuristic to split control nodes that contain several cycles.
The global idea is to get rid of such nodes, which are usually the most difficult to automatically
analyze, by splitting them with respect to the guards of the transitions, and adjusting the initial
and error regions accordingly, as shown in Figure 9.2. This heuristic was initially designed for
PIPS and is presented in details in [Mai12].

9.1.1 Algorithm
The control-point splitting algorithm presented here is a restructuring aimed at achieving these
two goals.
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k1

k′2 (x ≤ 0)

k′′2 (x ≥ 1)

t1 : x = 0 ?

t′1 : x ≥ 1 ?

t2 : x++ t3 : x = 1 ?x--

t′3 : x ≥ 2 ?x--

Figure 9.2: Model of Figure 8.1 transformed by the splitting heuristic

Let m = (X,K,Trans, Qinit, Qerr) be a model, k ∈ K \ {kinit | ∃v ∈ Val, (kinit, v) ∈ Qinit} a
non-initial control of m and P = P1⊎ · · · ⊎Pm a partition of the domain of valuations Val. The
model automaton mP/k is obtained from m by performing the following steps:

1. Delete control k.
Add fresh controls kP1

, . . . , kPm .

2. Delete each transition (k, g, a, k′) that leaves k (k′ 6= k).
For all i ∈ [1,m], add the transition (kPi

, gi, a, k
′) with gi such that:

∀v ∈ Val, gi(v) ⇐⇒ g(v) ∧ v ∈ Pi. (9.2)

3. Delete each transition (k′, g, a, k) that enters in k (k′ 6= k).
For all j ∈ [1,m], add the transition (k′, g, aj , kPj

) with aj such that:

∀v, v′ ∈ Val, aj(v, v′) ⇐⇒ a(v, v′) ∧ v′ ∈ Pj . (9.3)

4. Delete each transition (k, g, a, k) that loops on k.
For all i, j ∈ [1,m], add the transition (kPi

, gi, aj , kPj
) with gi and aj such that:

∀v ∈ Val, gi(v) ⇐⇒ g(v) ∧ v ∈ Pi. (9.4)
∀v, v′ ∈ Val, aj(v, v′) ⇐⇒ a(v, v′) ∧ v′ ∈ Pj . (9.5)

Controls that are not accessible nor coaccessible are not created, neither are the related tran-
sitions. Transitions whose guards are not satisfiable are not created either.

Interestingly, if guards g and actions a are polyhedral, and if every partition element Pi of P is
a polyhedron, then guards and actions in the resulting transitions are also polyhedral.

9.1.2 Correctness Theorems
We consider a general automaton m = (X,K,Trans, Qinit, Qerr) and its image mP/k obtained
by splitting the control node k ∈ K of m through the control-point splitting algorithm.

Theorem 9.2. For all j ∈ [1,m], for all v ∈ Val, if q = (kPj
, v′) is a reachable state of mP/k,

then v′ ∈ Pj .
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Proof. As the initial states of mP/k are the same as in m, kPj
is not initial. As kPj

is reachable,
there exists a transition t of mP/k that enters in kPj

. Let v, v′ ∈ Val the valuations before and
after entering in kPj

through t. According to the algorithm above, two cases are possible:

• Either t = (k′, g, aj , kPj
), as described in Step 3.

• Either t = (kPi
, gi, aj , kPj

), as described in Step 4.

Then aj(v, v
′) holds and hence, according to Equations (9.3) and (9.5), v′ ∈ Pj .

In other words, we have a guarantee that in every control kPi
of mP/k, the invariant given by

Pi holds.

Given two controls k1 inm, k2 inmP/k, we introduce a state equivalence relation ∼St. between
two states of m and mP/k, defined by: (k1, v) ∼St. (k2, v) if and only if

• Either k1 = k and k2 = kPi
where i ∈ [1,m] satisfies: v ∈ Pi.

• Either k1 = k2 6= k.

We also define a relation ∼Tr. between traces of m and mP/k: T1 ∼Tr. T2 if and only if states
in T1 and T2 pairwise satisfy ∼St.. Both relations ∼St. and ∼Tr. are bisimulations. They are
one-to-one mappings, so notions of image and inverse image by ∼St. and ∼Tr. are defined.

Then, the following two theorems hold:

Theorem 9.3. For all trace T1 of m, there exists a trace T2 of mP/k such that T1 ∼Tr. T2.

Theorem 9.4. For all trace T2 of mP/k, there exists a trace T1 of m such that T1 ∼Tr. T2.

These two theorems show that control-point splitting preserves reachable states:

Theorem 9.5. Let q1 a state of m and q2 a state in mP/k such that q1 ∼St. q2. q1 is reachable
in m if and only if q2 is reachable in mP/k.

Equivalence results 9.3, 9.4 and 9.5 give correspondences between automata m and mP/k in
terms of traces and reachable states. Thus, safety and liveness properties onm can be translated
into equivalent properties on mP/k and conversely. This allows to use the automaton mP/k

instead of m to prove correctness of models, if it turns out to be easier.

9.1.3 Partition Choice
It is well known that the choice of a control structure affects result accuracy. Therefore, when
dealing with a given model automaton m, an important question is to determine the control
points that should be split as well as the partitions they should be split along, in order to make
the analysis more accurate.

We have seen previously that most of the accuracy losses arise from the analysis of control
points with parallel cycles. These control points are candidates to be split. Concerning the
partition choices, a trade-off should be found between different criteria.

First, the automaton structure should be kept as simple as possible, in terms of control and, even
more, of transition number. In the general case, partitioning a control k within m components
not only adds m control states to the automaton, but also up to m2 transitions between the
newly created controls — from any control to any control —; the larger size and more complex
structure will increase the analysis complexity. To avoid these issues, the number m of partition
components must be bounded and the partition carefully chosen, so that some of the created
states are not reachable or not co-reachable, or that some of the created transitions are not
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satisfiable, as they will not be present inmP/k. If possible, the priority is to eliminate transitions
involved in loops or in cycles, as explained above in Section 9.1.

Also, the resulting transition guards should be as precise as possible, especially the ones involved
in loops or parallel paths, to limit accuracy losses due to approximations.

Choosing the partition can be done manually, considering the system behavior. Since we want
to use automatic invariant generation techniques, we also propose below an automatic heuristic
technique.

9.1.4 Guard-Based Control Partitioning
Let m be an affine transformer automaton. On every control k with parallel cycles, let
g1, . . . , gp be the guards of transitions looping on k.

Let Gi = {v | gi(v)} and Gi = Val \Gi. If Gi is a convex polyhedron, then Gi can be partitioned
into a finite set of convex polyhedrons Gi,1, . . . , Gi,ji [Cha84]. So Pi = {Gi, Gi,1, . . . , Gi,ji} is a
partition of Val. The partition taken on control point k is:

Pk = P1 ⊗ · · · ⊗ Pp

where ⊗ is the product partition operation defined by:

∀E1, . . . , En, ∀F1, . . . , Fm, {E1, . . . , En} ⊗ {F1, . . . , Fm} = {Ei ∩ Fj | i ∈ [1, n], j ∈ [1,m]}.

In a nutshell, controls are created to explicitly allow or disallow each transition. The key idea
behind this heuristic is that most of parallel loops have at least partly disjuncts guards. In
this case, there are seldom controls with many parallel loops in the resulting model mP/k, if
at all, and the memory state for these controls is well known (Theorem 9.2). This assumption
proved reasonable in most of our test cases. Despite this, the main drawback of this technique
is the important number of created controls and transitions, which limits its applicability to
transition systems with a small number of transitions per control node.

In Figure 9.2, we show the effect of this heuristic applied on the model of Figure 8.1, where the
control point k2 is split into two components with respect to the guards of transitions t2 and
t3. The initial state set is unchanged. Proving that the new error state set {k′2, k

′
2} × (x < 0)

cannot be reached is easier than in the original model: it is true by construction for the control
point k′′2 , and can be easily deduced by looking at guards entering transitions for control point
k′2.

9.2 Reduction to a Unique Control Point
The other model restructuring reduces the set of controls to a unique control point ℓ, with all
transitions turned into loops on ℓ, adding an extra boolean variable xk for each original control
point k in both guards and actions (assuming symbols ℓ and {xk | k ∈ [1, . . . , n]} are not bound
in the original model), to represent the corresponding control point of the original model. We
ensure that, in every state of the system, exactly one xk is set to 1. Formally, a transition t

between control states ki, kj , with guard g and action a

t : ki
g ? a
−−−→ kj

is turned into the transition

t′ : ℓ
g∧xi=1∧∧k 6=i xk=0 ? a∧x′

j=1∧∧k 6=j x
′
k
=0

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ℓ.
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Again, the initial and error set states are adjusted accordingly.

A more direct approach is to encode control information on a unique integer variable instead
of several boolean variables, by numbering the control points in the initial model. We did not
adopt it because it introduces encoding issues. Indeed, some relations on control points might or
might not be expressed in terms of affine constraints, depending on the control-point encoding.
For instance, being in (k1 or k′2) in the model of Figure 8.1 cannot be expressed if the third
control point k2 is encoded with a value between those of k1 and k′2. This issue is avoided with
our boolean variable scheme.

The resulting model of this restructuring applied on the initial model of Figure 8.1 is shown in
Figure 9.3. The corresponding initial state set is: Qinit = {ℓ} × {b1 = 1 ∧ b2 = 0}. The error
state set is: Qerr = {ℓ} × {b1 = 0 ∧ b2 = 1 ∧ x < 0}.

ℓ

t1 : b1 = 1, b2 = 0, x ≥ 0 ?
b1 = 0, b2 = 1

t2 : b1 = 0, b2 = 1, x ≤ 0 ?
x++

t3 : b1 = 0, b2 = 1, x ≥ 1 ?
x--

Figure 9.3: Model of Figure 8.1 reduced to a unique control point

This restructuring has three purposes. First, it stresses the tool with more difficult test cases.
It also reduces bias factors related to encoding choices. Finally, if used before the control-point
splitting heuristic, merging increases the effect of splitting by generating the type of control-
point structure to which it applies.

9.3 Combining Restructuring Transformations
These model restructuring transformations can be used independently or together: first the
model is reduced to a unique control point, then this control point is split, widening the scope
of the splitting heuristic. Therefore, ALICe works with four versions of each initial model:

• The original version, with no restructuring (noted direct in the tables below);
• With all control points merged into a unique one, as described in Section 9.2 ( merged );
• Using the control-point splitting heuristic presented in Section 9.1 ( split );
• Combining both approaches ( merged-split ).

9.4 Impact of Restructuring Transformations on Experimental
Results

The results obtained using these restructuring schemes are displayed in Table 9.1.

We notice that the control state splitting heuristic leads to improved results for all tools, as
shown by the comparison of Tables 9.1(a) and 9.1(c) with Tables 9.1(b) and 9.1(d), respec-
tively. These results also confirm that iscc is significantly better in the treatment of concurrent
loops, as previously noticed in Section 8.3: it outperforms the other tools on merged models
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Aspic iscc PIPS
Successes 75 63 43
Time (s.) 10.9 35.5 43.3

(a) Direct

Aspic iscc PIPS
Successes 79 72 50
Time (s.) 12.8 43.0 60.6

(b) Split

Aspic iscc PIPS
Successes 59 70 40
Time (s.) 16.7 26.2 43.5

(c) Merged

Aspic iscc PIPS
Successes 70 83 63
Time (s.) 11.3 40.8 54.6

(d) Merged-split

Table 9.1: Benchmark results with different encodings

(Table 9.1(c)). Aspic has lower scores than iscc on split models, with or without merging (Ta-
bles 9.1(b) and 9.1(d)), because it cannot accelerate transitions that are generated by control
node merging. PIPS is the worst performer in all cases, but we managed to increase its success
rate by about 50% (from Table 9.1(a) to Table 9.1(d)). The merge-splitting strategy gives the
best results for iscc and PIPS.

Once again, detailed results are more contrasted. There is still no inclusion relation between
successful test cases for different tools, regardless of the restructuring scheme (Figure 9.4). The
same holds for invariant sharpness (Table 9.2).

Aspic

iscc PIPS

12

1 1

22

1

2
39

successes: 78
failures: 24

(a) Direct

Aspic

iscc PIPS

2

2 1

29

1

8
40

successes: 83
failures: 19

(b) Split

Aspic

iscc PIPS

1

11 1

21

2

1
36

successes: 73
failures: 29

(c) Merge

Aspic

iscc PIPS

1

4 2

20

12

2
47

successes: 88
failures: 14

(d) Merge-split

Figure 9.4: Venn diagrams of successes for each tool

Globally, the merge-split restructuring leads to the best results with 88 out of 102 test cases
correctly solved.
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⊇ Aspic iscc PIPS
Aspic – 21 23
iscc 49 – 54

PIPS 32 23 –
(a) Direct

⊇ Aspic iscc PIPS
Aspic – 21 27
iscc 54 – 48

PIPS 51 36 –
(b) Split

⊇ Aspic iscc PIPS
Aspic – 7 8
iscc 68 – 54

PIPS 58 19 –
(c) Merge

⊇ Aspic iscc PIPS
Aspic – 21 22
iscc 69 – 58

PIPS 68 33 –
(d) Merge-split

Table 9.2: Invariant inclusions
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Chapter 10

Computing Invariants with
Transformers: Experimental Scalability
and Accuracy

Dans l’analyse classique des relations linéaires, les invariants sont normalement calculés par
propagation des préconditions le long des chemins de contrôle du programme, jusqu’à obtenir
une précondition stable sur chaque point de contrôle, comme nous l’avons vu à la section 7.4.
Pour éviter des propagations infinies, des opérateurs spéciaux d’approximation, comme l’élar-
gissement, sont utilisés pour garantir la convergence en un nombre fini d’étapes.

Au lieu de cela, PIPS s’appuie sur une approche alternative, modulaire, en utilisant des trans-
formeurs affines [IJT91], c’est-à-dire des polyèdres représentant des fonctions de transfert. Dans
la section 10.1, nous présentons comment PIPS calcule les transformeurs puis les invariants. La
section 10.2 donne un aperçu de la modularité et de la précision de l’approche par transfor-
meurs. Dans les sections 10.3 et 10.4, plusieurs améliorations sont apportées aux algorithmes
de calcul des transformeurs afin d’augmenter la précision des invariants ; ces améliorations sont
évaluées expérimentalement dans la section 10.5.

* * *

In classic Linear Relation Analysis, invariants are usually computed by propagating precon-
ditions along the control paths of a program until stable preconditions are obtained for each
control node, as seen in Section 7.4. To avoid infinite propagations, special approximation op-
erators, e.g. widening operators, are used to guarantee the convergence within a finite number
of steps.

Instead, PIPS relies on a modular alternative approach using affine transformers [IJT91], i.e.,
polyhedra representing transfer functions. In Section 10.1, we present how transformers then
invariants are generated in PIPS. Section 10.2 gives some insight on the modularity and accuracy
of the transformer-based approach. In sections 10.3 and 10.4, several refinements in transformer
computation algorithms are introduced to improve invariant accuracy; they are experimentally
evaluated in Section 10.5.

10.1 Generation of Invariants with Transformers
Transformers and preconditions are shown in Listings 10.2 and 10.3 for the example counter
used by Halbwachs et al. [HH12], as comments just above the related statement. Transformers
for elementary statements contain many trivial equations of the form xinit = x because usually
few variables are modified. These equations are kept implicit and instead the modified variables
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are listed as arguments. Finally, a #init suffix is used to distinguish the old value from the
new value.

void foo(float x) {
int n = 0;
while (1) {

if (x) {
if (n<60)

n++;
else

n = 0;
}

}
}

Listing 10.1: Statements for counter

// T() {0==-1}
void foo(float x) {
// T(n) {n==0}

int n = 0;
// T(n) {n#init==0}

while (1) {
// T(n) {n<=n#init+1}

if (x) {
// T(n) {n<=60, n<=n#init+1}

if (n<60)
// T(n) {n==n#init+1, n<=60}

n++;
else

// T(n) {n==0, 60<=n#init}
n = 0;

}
}

}
Listing 10.2: Transformers for counter

10.1.1 Generation of Transformers by PIPS

The algorithms used in PIPS assume no cycles in the call graph and proceeds as follows.
First, each program command S, elementary or compound statement or procedure call, is
over-approximated by an affine transformer T (S, P ), possibly using information about a pre-
condition P of S. This is a bottom-up procedure, detailed in the next paragraphs, because a
default value can be used for the precondition P when no information is available. Each func-
tion is analyzed once and its transformer is reused at each call site. Then, preconditions are
propagated from the program starting point using the transformers.

This approach can also be used with unstructured programs: the control flow graphs are either
turned into equivalent structured graphs [Amm92], or approximated and simplified by adding
transitions, or analyzed using a decomposition into cycles [Bou92].
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void foo(float x) {
// P() {}

int n = 0;
// P(n) {n==0}

while (1)
// P(n) {0<=n, n<=60}

if (x)
// P(n) {0<=n, n<=60}

if (n<60)
// P(n) {0<=n, n<=59}

n++;
else

// P(n) {n==60}
n = 0;

}
Listing 10.3: Preconditions for counter

The two-stage approach used by PIPS is the following. We suppose that elementary instructions
have been turned into transformers, and show how control structures are handled.

Sequence

Let xi, x
′
i and x′′i denote values of variable xi at different states. A sequence of affine trans-

formers T1 followed by T2 is overapproximated by the union of constraints in T1 (on values
x1, . . . , xn, x

′
1, . . . , x

′
n) with constraints in T2 (on values x′1, . . . , x

′
n, x

′′
1, . . . , x

′′
n), then projected

on x1, . . . , xn, x
′′
1, . . . , x

′′
n to eliminate the intermediate values x′1, . . . , x′n. We note this oper-

ation T2 ◦ T1.

Choice

The effect of a choice T1 or T2 is the transformer T1∪T2, which is not affine in the general case
(the union of two convex polyhedra is not a convex polyhedron). The best convex approximation
is the convex union T1 ⊔ T2. This is a lossy operation in general.

Loop

Given an affine transformer T for a loop body, the affine transformer T ∗ represents the effect
of any number of iterations of T . It is computed by the Affine Derivative Closure algo-
rithm [ACI10].

As noticed in Section 9.1, the two main sources of imprecision that appear are the abstractions
of loops (∗) and parallel paths (⊔). Their impact is cumulated when multiple control paths
appear within loops and nested loops.

These imprecisions are accumulated if there are structures in the automaton with two or more
loops involved in the same control. The state splitting heuristic described in Section 9.1 was
developed with regards to this issue. Two alternative possibilities are explored in this chapter:
transformer lists and iterative analysis.

Note that the pure bottom-up approach may be used or not. Since transformers are not
computed concurrently but by traversing the AST, information gathered previously can be
used right away. The range of a transformer or the condition of a test can be used as a
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precondition for the next statement to improve the accuracy of T . This explains, for instance,
why condition n ≤ 60 appears in the transformer of statement n++; in Listing 10.2.

10.1.2 Generation of Invariants
Invariants, also known as preconditions, are forward propagated from the initial state of the
program using the transformers computed during the previous phase. However, accuracy is
improved when some preconditions are recomputed directly for compound statements. For
instance, the postcondition of a conditional if (c) T⊤ else T⊥ can be obtained either as the
convex hull of the postconditions of the two branches:

Post = (T⊤ ◦ Tc) (Pre) ⊔ (T⊥ ◦ T¬c) (Pre),

or as the precondition transformed by the conditional transformer:

Post = (T⊤ ◦ Tc ⊔ T⊥ ◦ T¬c) (Pre).

The first equation provides more accurate results at little cost, because the branch postcondi-
tions are computed anyway.

10.2 Modularity and Accuracy: Experimental Results
PIPS has been developed as a compilation framework, able to process large applications interpro-
cedurally [NI05]. It is important to check that the modularity provided by transformers results
in the expected speed improvement and to measure the extent of its negative impact on accu-
racy. We show firstly that PIPS obtains accurate results in a small amount of time with respect
to three other tools, Aspic, iscc and PAGAI, when dealing with loop nests and procedure calls.
We then recall previous experimental results showing a lack of accuracy and large execution
times when dealing with the test cases shown in Chapter 9 to illustrate invariant generation
algorithms.

10.2.1 Tools Used
As in Section 8.2.5, we choose to compare PIPS with Aspic and iscc using the ALICe framework.
Aspic and iscc’s transitive closure functions use as input a state machine format, fsm, or a
proprietary relational format. Unlike PIPS, these tools deal neither with the intricacies of C
nor with their automatic abstraction. These differences in formats play an important role in
the execution times obtained in Tables 8.2 and 9.1, as will be seen below.

For comparison purposes, we also use another polyhedral analyzer for C programs, PAGAI†1,
by Henry et al. [HMM12a, HMM12b]. PAGAI — Path Analysis for invariant Generation by
Abstract Interpretation — is a static analyzer working over the LLVM compiler infrastructure,
which computes inductive invariants on the numerical variables of the analyzed program. PAGAI
implements various state-of-the-art algorithms combining abstract interpretation and decision
procedures (SMT-solving), focusing on distinction of paths inside the control flow graph while
avoiding systematic exponential enumerations.

Since the tools have very different structures and execution times, we report either directly the
sum of the User and IO times reported by the time command for Aspic, iscc and PAGAI, or the
times obtained using LOG_TIMINGS for the sole transformer and precondition passes of PIPS. In
this way, the C parsing part of PIPS is eliminated, as it is for Aspic and iscc who use internal
formats and for PAGAI who uses Clang for parsing, and we compare the execution time of the

†1See http://pagai.forge.imag.fr/.
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passes of PIPS that might be replaced by new passes based upon the other tools. Furthermore,
the evolution of the execution times for each tool is fully relevant and interesting.

Benchmarks were run on a computer powered by a quad-core Intel i7-2600 processor clocked
at 3.40GHz with 16GB of memory, using Aspic version 3.3, iscc version 0.12.2, PAGAI ver-
sion 14-04-07 and PIPS revision 22 241.

10.2.2 Impact of Cycle Nesting on Convergence
Nested loops are common in scientific codes and easy to analyze with transformers. However, a
2D loop nest is used by Halbwachs in [HH12] to show improvements in widening techniques. Let
us consider the code in Listing 10.4, a matrix multiplication. To check that all array accesses
are safe, invariants on i, j and k are needed, which requires the analysis of a 3D loop nest.

void mm(int l, int n, int m, float A[l][m], float B[l][n], float C[n][m]) {
int i, j, k;
for (i=0; i<l; i++) {

for (j=0; j<m; j++) {
A[i][j] = 0.;
for (k=0; k<n; k++) {

A[i][j] += B[i][k]*C[k][j];
}

}
}

}
Listing 10.4: Matrix multiplication: A = B × C

void mp(int n, int p, float A[n][n], float B[n][n]) {
int i, j, k;
for (i=0; i<n; i++) {

for (j=0; j<n; j++)
A[i][j] = B[i][j];

}
for (k=1; k<p; k++) {

float T[n][n];
for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
T[i][j] = A[i][j];

}
}
mm(n, n, n, A, T, B);

}
}

Listing 10.5: Matrix exponentiation: A = Bp

To understand time behaviors of the tools, we measured the execution times of the transformer
and precondition passes for nest depths of one to nine. Each loop has a zero lower bound and
a symbolic upper bound, for (i_k=0; i_k<b_k; i_k++), and the loop body is empty, ;. No
information about the upper loop bounds b_k is available: each loop can be either entered or
skipped. The results are shown in Table 10.1. The execution time of tools using transformers
or acceleration is not an affine function of the depth because the number of variables increases
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void mp(int n, int p, float A[n][n], float B[n][n])
{

int i, j, k;
for (i = 0; i <= n-1; i += 1)

for( j = 0; j <= n-1; j += 1)
A[i][j] = B[i][j];

for (k = 1; k <= p-1; k += 1) {
float T[n][n];
for (i = 0; i <= n-1; i += 1)

for (j = 0; j <= n-1; j += 1)
T[i][j] = A[i][j];

{
int i, j, k;
for (i = 0; i <= n-1; i += 1)

for (j = 0; j <= n-1; j += 1) {
A[i][j] = 0.;
for (k = 0; k <= n-1; k += 1)

A[i][j] += T[i][k]*B[k][j];
}

}
}

}
Listing 10.6: Matrix exponentiation, inlined with PIPS

twice as fast as the depth and because the polyhedral operators are known for their exponential
worst case complexities. However, it does not increase very fast, especially for the nesting
depths usual in functions when inlining is not used.

Depth 1 2 3 4 5 6 7 8 9
Aspic 0.037 0.043 0.040 0.053 0.047 0.063 0.067 0.087 0.100
iscc 0.000 0.010 0.037 0.083 0.370 0.853 1.197 7.927 5.713
PAGAI 0.067 0.187 0.420 0.797 1.373 2.260 3.620 5.780 9.643
PIPS 0.004 0.009 0.015 0.021 0.030 0.039 0.053 0.071 0.090

Table 10.1: Times in seconds for invariant analyses of empty nested for loops with varying
depths

10.2.3 Interprocedural Analysis or Inlining

The code in Listing 10.5, a matrix exponentiation, mp, contains a call to a matrix multiplica-
tion, mm, within a loop. Function mp is called from a main function that reads a matrix and
an exponent, and prints the resulting matrix. This code can be analyzed interprocedurally or
intraprocedurally after inlining, as show in Listing 10.6. Table 10.2 contains execution time
measurements for main programs calling mp from one to five times. Each measurement was
performed 10 times and the median time is displayed. The code is either analyzed interpro-
cedurally or intraprocedurally after the callees are inlined, which reduces the number of call
sites to zero. Modularity becomes more and more useful when multiple call sites of the same
function are present in the analyzed program. Also, inlining increases the loop nest depths,
which is bad for the execution time as seen in the section above.
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main-1 main-2 main-3 main-4 main-5
2 calls inlined 3 calls inlined 4 calls inlined 5 calls inlined 6 calls inlined

Aspic – 0.043 – 0.061 – 0.087 – 0.108 – 0.149
iscc – 261.810 – 274.580 – 370.960 – 413.300 – 456.360

PAGAI 0.980 1.417 1.383 5.680 2.030 14.677 2.990 30.007 4.467 53.247
PIPS 0.048 0.043 0.049 0.063 0.048 0.084 0.050 0.108 0.051 0.127

Table 10.2: Times in seconds for interprocedural analyses and intraprocedural analyses of inlined
versions

10.3 New Improvements in Transformer Computation
We present two new improvements for transformer-based analyses. The first one deals with
concurrent loops, and the second one with integer overflows.

10.3.1 Concurrent Loops
We are dealing with structured code. A control path set is built for each loop body. When a
test or a loop is found, each pre-existing control path is duplicated to take into account the true
and false branches, or the loop entrance and skip. This is not performed recursively down the
branches or the inner loop bodies. Thus the total number of control path is at most 2k, where
k is the number of (possibly compound) statements in the loop body.

Control-Path Transformers in Loops

Let us assume that a loop contains several control paths, each defined by its transformer Ti.
Such loops are called concurrent loops above. The loop precondition, P ∗, can be decomposed
into a set of preconditions, each obtained after a variable number of iterations and merged
together by convex hull operators, ⊔: We propose to decompose the loop precondition P ∗ as:

P ∗ = P0 ⊔ P2 ⊔ P+ ⊔ P3+ (10.1)

P0 is the precondition holding the first time the loop is entered. P2 is obtained after two
iterations with different control paths. P+ corresponds to the case when only one control
path is used for all iterations; it includes P1, the precondition of the second iteration. Finally,
P3+ is the loop precondition corresponding to all the longer control paths with at least three
iterations and two different control paths.

P2 =
⊔

i

⊔

j 6=i

Ti(Tj(P0)) P+ =
⊔

i

T+
i (P0) P3+ =

⊔

i

⊔

j 6=i

T+
i (Tj(C

∗(P1)))

C∗ is an over-approximation of the transitive closure of the convex hull C of the transitions,
C =

⊔
i Ti and P1 is the precondition after one iteration exactly,

⊔
i Ti(P0).

When the default formula in PIPS, P ∗ = P0 ⊔ C+(P0), is used, the convex hull operations are
mostly performed before the transitive closure, in the transformer space, when computing C+.
With Equation (10.1), they are executed later in the precondition space and each elementary
transition Ti is applied as last transition. Hence, the information brought by idempotent trans-
formations is preserved.

The formula used to compute the loop invariant has been unrolled to take into account explicitly
up to three iterations. It is possible to generalize this to k steps, with an exponential increase
in the number of terms. But we are lacking experimental cases justifying such a development.

Halbwachs et al. present in [HH12] the example in Listing 10.1. The reset to 0 is abstracted by
a transformer that cannot be merged accurately with a transformer abstracting a conditional
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increment and no information is obtained with the equations presented in [ACI10]. However,
Equation (10.1) provides an accurate loop invariant, 0 ≤ n ≤ 60, by combining them, their
transitive closures and the initial loop precondition.

Motivations for Equation (10.1)

Equation (10.1), combined with the definitions of P2, P+ and P3+, was developped:

1. To transfer as much as possible convex hulls performed in the transformer space into
convex hulls performed in the invariant (pre- and postcondition) space; for instance, the
merge of an incrementation and a decrementation results in no information, regardless of
the conditions used to control their executions.

2. C∗, the transitive closure of C, the convex hull of the transformers related to each control
path, is often imprecise. Information, especially idempotent components, can be restored
using each control path transformer Ti as last step for the iterations. This remark can be
generalized to T+

i .
3. In some cases, control path i can follow control path j, but j cannot follow i (Tj ◦Ti = ∅).

By considering the two last different kinds of iterations, some impossible multi-iteration
paths are eliminated.

10.3.2 Arbitrary-Precision Numbers
With a few test cases, another issue appears with PIPS. Intermediate computations may generate
polyhedra with huge coefficients, leading to arithmetic overflows even with 64-bit integers,
because constraint constants are transformed into coefficients by the convex hull operator.
Eventually, when an overflow occurs, some constraints must be dropped, and the resulting
invariant is less accurate than it should. To address this problem, we added GMP support to
some of the PIPS polyhedral operators. This seemingly purely practical implementation decision
allows for a drastical simplification of the polyhedral algorithms because overflow exceptions no
longer have to be handled. It turns out that this positively impacts both the execution time
(about 6 times faster now) and the comparison between transformer- and precondition-based
analyses.

10.4 Other Improvements in Transformer Computation
We recall several improvements for transformer-based analyses. They can either be applied di-
rectly to the source codes, or to existing analyses. They have already been published in [ACI10,
Mai12] but they all still required implementation and experimentation.

10.4.1 Iterative Analysis
It is sometimes possible to improve the loop preconditions P ∗ by recomputing the transformers
a second time, using the first set of preconditions as input to limit their domains and ranges.

As explained in [ACI10], the iterative relationship between transformers and preconditions is
formalized by the two equations below where B stands for the loop body statement and the
continuation condition, T for the function that converts a statement and its precondition into
a convex transformer, P0 represents the initial precondition entering the loop, and n is positive:

Tn+1 = T (B,P ∗
n) ∩ P ∗

n , P ∗
0 = ⊤, P ∗

n+1 = P0 ⊔ Tn+1

(
T ∗
n+1(P0)

)

Note that the n-th loop precondition P ∗
n , which can be computed more precisely using Equa-

tion (10.1), impacts the (n+ 1)-th transformer Tn+1 in two different ways. The affine abstrac-
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tion function T is sharpened and the domain of the resulting transformer also is restricted by
the previous precondition, P ∗

n .

The iterative refinement process does not always converge and it may even lead to a precision
loss, due to magnitude overflows. These can be addressed with arbitrary precision numbers
(Section 10.3.2).

void foo(int flag, float x) {
int i, j = 1, a = 0, b = 0;
if (flag) {

i = 0;
}
else {

i = 1;
}
while (x > 0.) {

a++;
b += j - i;
i += 2;
if (i % 2 == 0) {

j += 2;
}
else {

j++;
}

}
if (flag) {

assert(a == b);
}

}
Listing 10.7: Example by Dilig et al.

Iteration 1:
...
while (x > 0.) {
// P(a,b,i,j) {2a==i, j<=2a+1, a+1<=j}
...

Iteration 2:
...
while (x > 0.) {
// P(a,b,i,j) {2a==i, 2a==j-1, 0<=a, b<=a}
...

Iteration 3:
...
while (x > 0.) {
// P(a,b,i,j) {a==b, 2a==i, 2a==j-1, 0<=a}
...
Listing 10.8: Loop invariants for Listing 10.7 obtained iteratively when flag != 0
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The example in Listing 10.7 was published in [DDLM13]. Function foo has two different behav-
iors depending on the value of flag and it uses a non-affine condition in the loop, i % 2 == 0.
Different behaviors that depend on a formal parameter can be separated by partitioning the
function and values returned by the modulo operator can be analyzed precisely when informa-
tion about the parity of i is known. When flag is not zero, it is possible to derive that a equals
b. To obtain three equations in the function postcondition, transformers must be computed
three times because each time a precondition makes the abstraction of a statement more pre-
cise (see Listing 10.8).

10.4.2 Periodicity
Periodic behaviors occur in scientific computing, when, for instance, two sub-arrays of a matrix
A are swapped, to avoid copying new values in the locations of old values at each time step x:
A[new][*] = f(A[old][*]), at the cost of a mere swapping of the indices. See Listing 10.9
where new and old are two variables used in practice to index an array where new values
are computed at each iteration as a function of old values contained in the same array. To
parallelize such programs, the compiler must find the invariant new + old == 1, which is then
used in data dependence testing together with the conflict equation, new == old, to show that
A[new][*] and A[old][*] refer to different sets of locations.

int main() {
int x = 0, new = 0, old = 1, y = 0, z = 0;
while (x < 10) {

if (new == 0) {
y++;

}
else {

z++;
}
new = 1 - new;
old = 1 - old;
x++;

}
if (new == 1 && old == 0 || new == 0 && old == 1) {

printf("property verified\n");
}
else {

printf("property not found\n");
}

}
Listing 10.9: Periodic behavior

As pointed out in [ACI10], there are different ways to encode the swap, and the above invariant
may be more or less easy to generate. However, regardless of the encoding, the behavior is
always periodic. More information is preserved if the transitive closure of the loop transformer
is computed as a function of one of its powers [ACI10]. For instance, the square is useful for
idempotent functions and functions with a period of 2:

T ∗ =
(
T 2
)∗

⊔ T ◦
(
T 2
)∗
, T+ = T ⊔

(
T 2
)+

⊔ T ◦
(
T 2
)+

.

This can be generalized to any power of T . As no application has yet required a larger period-
icity, our current implementation in PIPS is limited to T 2.
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Iteration 1:
...
while (x < 10) {
// P(new,old,x,y,z) {new+old==1, y+z==x, 0<=new, new<=1, new<=x, x <= 9,
// y<=x, 0<=y}

...
}
// P(new,old,x,y,z) {new+old==1, x == 10, y+z==10, 0<=new, new<=1,
// new<=y, y<=new+9}
...

Iteration 2:
...
while (x < 10) {
// P(new,old,x,y,z) {new+old==1, new+x == 2y, new+z==y, 0<=new, new<=1,
// new<=y, y<=new+4}

...
}

// P(new,old,x,y,z) {new==0, old==1, x == 10, y==5, z==5}
...

Listing 10.10: Loop invariants and postconditions for Listing 10.9

10.4.3 While-If to While-While Conversion

Note finally that an iterative analysis (see Section 10.4.1) improves the invariant for the periodic
function: the relationship between y and z is found (see Listing 10.10). As for the Dilig example
in Listing 10.7, and unlike what is claimed in [ACI10], the iterations are not linked only to
non-polyhedral invariants, but also to polyhedral invariants and they may converge.

This optimization, the conversion of tests into while loops inside a while loop, was also used
in [ACI10] and proved correct in the extended version, but it has not been implemented, neither
explicitly with a program transformation nor implicitly when computing loop invariants. In fact,
it may have a detrimental effect with respect to using the convex hull to obtain a unique loop
transformer, unless control path transformers are used. The example in Listing 10.11 [Mas14]
shows how easier it is to prove the loop termination once the internal test has been changed
into a pair of while loops.

10.5 Experimental Evaluation of the Improvements
Although PIPS has not been designed to analyze the small test cases used in academic papers
dealing with loop invariants and termination and discussed in the previous chapters, it is yet
interesting to use them to measure the impact of the improvements presented above and to
compare PIPS to other tools able to compute invariants. Also, test cases left unsolved are good
starting points for designing new improvements in invariant generation.

10.5.1 Impact of Improvements for PIPS

Table 10.3 provides the numbers of successes and the total execution times obtained with the
four different encodings of ALICe benchmark (Chapter 9) by Aspic, iscc, the legacy version of
PIPS and PIPS with some of the improvements defined in Section 10.3. Accuracy figures for
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void masse_vmcai_2014_14(int x) {
while (x != 0) {

if (x > 0) {
x--;

}
else {

x++;
}

}
}

void masse_vmcai_2014_14_transformed(int x) {
while (x != 0) {

while (x != 0 && x > 0) {
x--;

}
while (x != 0 && x <= 0) {

x++;
}

}
}

Listing 10.11: While-if to while-while conversion: Example by Massé et al.

Aspic, iscc and the default version of PIPS are reproduced from Section 9.4 for comparison
purposes.

Aspic iscc PIPS
Default CP IA CP-IA CP-IA-MP

Direct Successes 75 63 43 69 45 72 73
Time (s.) 10.9 35.5 6.1 7.8 18.5 19.6 151.4

Split Successes 79 72 50 72 56 75 77
Time (s.) 12.8 43.0 5.7 6.8 14.4 19.0 113.3

Merged Successes 59 70 40 66 44 67 68
Time (s.) 16.7 26.2 6.2 8.0 18.5 19.7 225.9

Merged Successes 70 83 63 79 65 80 82
& Split Time (s.) 11.3 40.8 6.6 9.6 16.8 23.0 222.2

Table 10.3: Successes and execution times for ALICe test cases with different options (Control
Path transformers, Iterative Analysis, MultiPrecision).

As expected, the execution times increase and the benefit is sometimes quite small for the test
cases in ALICe. However, using sets of control path transformers and a favorable encoding
provides excellent results in the number of test cases solved per second, and future benchmarks
for invariant generation may have different profiles. Note that periodic analysis (Section 10.4.2),
not shown in Table 10.3, does not improve any of the test cases currently in ALICe.

Sizes in number of lines are indicated in Table 10.4 for FAST files and for C files generated by
fsm2c. C file sizes are reduced by eliminating files greater than 1 KLOC and by a first PIPS
pass (control simplification).

Note also that the execution times of PIPS in Table 10.3 differ widely from those shown in
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fsm C
Direct 5497 Raw 15482

Simplified 4323
Split 9348 Raw 757222

Simplified 4199
Merged 5579 Raw 15380

Simplified 5187
Merged 6206 Raw 38941
& Split Simplified 4549

Table 10.4: Size of fsm and C files in number of lines

Chapters 8 and 9. In previous chapters, the execution time is:

tnaive =
∑

i∈ALICe
time

(
PIPS

(
fsm2c(casei)

))

that is the sum of the PIPS processing time for all test cases in ALICe converted into C by fsm2c.
This is highly detrimental to PIPS because of its large startup time, because number of passes,
such as parsing, are not performed by other tools that are input with a simpler native format
and because fsm2c has also negative impacts discussed in the next paragraph.

The C encoding chosen for fsm2c implies the parsing of the stdlib header, an interprocedural
analysis by PIPS, lots of unreachable code and some exponential blow-ups in the generated
code sizes. In order to reduce the overheads incurred by PIPS, we eliminate test cases which
cannot be regenerated in less than 1000 lines, we replace the functional encoding of aleas by
uninterpreted expressions, we use PIPS to eliminate unreachable statements and we process all
test cases in one call to PIPS. Formally, the execution time is now:

t = time
(

PIPS
(

PIPS
(
substitute

( ⋃

i∈ALICe
Csize(i)<1000

fsm2c(casei)
)))

)

which reduces the PIPS execution time by a factor of 7 to 10.

10.5.2 Analysis of PIPS Failures
The ALICe benchmark contains 102 test cases, listed in Table 8.1, page 86. Out of them, there
are 9 test cases that involve non-Presburger invariants and PIPS finds invariant for 82. This
leaves 11 cases to investigate further, namely:

• halbwachs7.
• henry.
• metro and subway.
• microsoftex2.
• microsoftex5.
• popeea.
• realheapsort and realheapsort_step2.
• synergy_bad.
• ticket.

The next paragraphs discuss the reasons of the failures, and the improvements that can be
introduced to solve them.
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ALICe is based on the FAST format and the heuristics fsm2c used to generate structured C from
FAST control flow graphs may blow up exponentially, up to 300 KLOC (metro, realheapsort,
realheapsort_step2 and subway at the very least).

When some test cases are written in C, using while loops as they were published, the invariants
for henry, halbwachs7 and synergy_bad [GHK+06] are found by PIPS.

Case microsoftex2 is analyzed in [GZ10] to detect loop termination. The required informa-
tion is not an invariant but a transformer, and PIPS computes the required transformer. Case
microsoftex5 is also analyzed in [GZ10], using non-convex transformers. It contains two nested
while loops, and the internal loop may or may not be the identity function. The informa-
tion about the identity behavior is not preserved by PIPS because control paths are not built
recursively going down loops to keep their number small. This test case requires a different
algorithm to construct control paths in PIPS.

Case popeea [PC07, GZ10] has a non-convex invariant, which can only be found by a convex
tool if new control points are added. The heuristics used by ALICe, fsmnodesplit, probably
fails to discover a proper node splitting. Case ticket [BGP97] is interesting because it is easy
to make the invariant convex. However, the number of control paths is large and the convex
hulls used by PIPS lead to overflows when the while loop is unrolled. The algorithm is described
as a transition system and the way it may be coded in C is critical to its analysis by PIPS.
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Conclusion

(English version follows.)

Un nombre croissant de systèmes critiques, dont les dysfonctionnement peuvent avoir des consé-
quences désastreuses, sont aujourd’hui basés sur des composants informatiques. C’est le cas
par exemple des commandes de vol des avions de ligne, des appareils médicaux ou des centrales
nucléaires. À cause de la complexité toujours plus élevée des logiciels, la probabilité d’un vice
de conception ou d’une erreur de programmation augmente. Aussi, les méthodes formelles sont
de plus en plus souvent utilisées en complément des bancs de test et des normes de certifica-
tion de code, pour fournir des garanties mathématiques de la correction des programmes, et
ainsi atteindre une meilleure fiabilité. Ces méthodes proposent différents niveaux de précision
et d’automatisation.

La vérification automatique repose en général sur le model checking et l’interprétation abstraite,
une famille de méthodes efficaces pour générer automatiquement des invariants de programme,
c’est-à-dire des propriétés mathématiques qui sont toujours vraies lors de l’exécution du pro-
gramme, à différents endroits dans le code. Ces invariants sont ensuite utilisés pour assurer que
le programme respecte sa spécification. Ainsi, il est crucial de générer des invariants précis, afin
d’avoir des garanties sur les comportements complexes du programme. Les contributions pré-
sentées par ce manuscrit s’inscrivent dans ce cadre.

Contributions

Systèmes linéaires

La première partie de cette thèse concerne les sytèmes de contrôle, des dispositifs qui régulent
le comportement d’autres systèmes. Les systèmes de contrôle sont largement utilisés dans l’in-
dustrie, et interviennent dans un grande variété d’applications. Un sujet important en théorie
du contrôle est de garantir la stabilité d’un système de contrôle, c’est-à-dire que le système
démarré près d’un point d’équilibre restera dans un voisinage de ce point tout au long de l’exé-
cution. La théorie du contrôle énonce qu’un système de contrôle linéaire est stable s’il existe un
invariant caractéristique, appelé invariant de Lyapunov, et de nombreux systèmes sont conçus
et prouvés en utilisant ce théorème. Mais les preuves de stabilité de ces systèmes reposent sur
l’arithmétique des nombres réels, et ne s’appliquent pas nécessairement lorsque le système est
implémenté sur une architecture avec une arithmétique machine.

Nous introduisons un nouveau framework pour traduire les invariants de preuves en nombres
réels vers des invariants en nombres machine, en prenant en compte la représentation des
nombres et les problèmes d’arrondis. Les invariants traduits sont exacts, mais ne garantissent
pas nécessairement la stabilité du système. Le schéma de traduction générique a été vérifié à
l’aide de Coq, et est implémenté pour l’arithmétique à virgule flottante, la plus répandue des
arithmétiques machine. Cette implémentation, LyaFloat, peut vérifier automatiquement la sta-
bilité d’un système sur des architectures à virgule flottante, et calculer le nombre de bits néces-
saires à la fois pour la stabilité en boucle ouverte et en boucle fermée.
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Analyse des relations linéaires

La deuxième partie de ce manuscrit concerne l’analyse des relations linéaires, une interprétation
abstraite courante, basée sur la surapproximation des états numériques accessibles dans un
programme par des polyèdres convexes. Il existe aujourd’hui plusieurs outils pour l’analyse
des relations linéaires. Ils disposent d’un grand nombre d’algorithmes et d’heuristiques pour
traiter les boucles, en essayant d’obtenir la meilleure précision possible. Nous proposons un
nouveau framework, ALICe, pour comparer aussi équitablement que possible trois de ces outils :
Aspic, iscc et PIPS, sur un jeu commun de 102 petits cas de test, venant de publications traitant
de problèmes d’invariants ou de terminaison de boucles. Les expériences effectuées ont permi
d’aboutir à deux résultats originaux.

Premièrement, le choix de l’encodage est crucial pour réussir à analyser un modèle. Ce point est
exploré au moyen de deux algorithmes de restructuration de modèles, que nous avons développés
et prouvés en Coq. Le premier réduit les biais d’encodage en fusionnant le modèle en un unique
point de contrôle. L’autre partitionne les points de contrôle qui ont des boucles concurrentes,
qui sont difficiles à analyser. Utilisés séparément ou ensemble, ils permettent des améliorations
significatives des résultats d’analyse et aide à identifier les forces et les faiblesses de chaque outil
d’analyse.

La seconde observation expérimentale est que les algorithmes utilisés par défaut dans PIPS
manquent de précision dans le cas de boucles concurrentes. Contrairement à Aspic et iscc, le
calcul des invariants dans PIPS repose sur une première étape pour calculer les transformeurs,
qui sont ensuite utilisés pour propager les invariants. La meilleure scalabilité de cette approche
est utile pour analyser de gros volumes de code, au prix d’approximations supplémentaires.
Nous présentons de nouvelles améliorations dans le calcul des transformeurs qui augmentent la
précision des invariants dans PIPS. En les combinant avec d’autres techniques existantes, il est
possible d’obtenir avec PIPS des performances comparables à celles d’Aspic et iscc.

Perspectives
Systèmes linéaires

Concernant les perspectives, plusieurs améliorations peuvent être apportées dans l’outil de
traduction d’invariants LyaFloat. Actuellement, seule l’arithmétique à virgule flottante, la plus
répandue, est supportée ; il serait relativement facile de supporter l’arithmétique à virgule fixe,
au moins en théorie (l’implémentation est rendue difficile par l’absence de bibliothèque de calcul
en virgule-fixe et précision paramétrique en Python). Dans la même veine, il serait intéressant
de supporter davantage de fonctions et d’arguments de propagation, afin d’étendre la portée de
l’outil.

Dans sa forme actuelle, LyaFloat génère des invariants pour du code en arithmétique machine
en suivant un modèle formellement prouvé, mais il n’y a pas de garantie formelle que LyaFloat
lui-même n’est pas défectueux. On gagnerait un niveau d’assurance s’il était possible de vérifier
par un autre moyen les invariants générés. Une solution serait de réécrire et de formaliser
LyaFloat en Coq plutôt que d’utiliser Python. Cela nécessiterait de prouver (ou au moins de
formaliser) les arguments de propagation d’invariants requis dans les preuves de stabilité, ce
qui représenterait un travail conséquent. Une autre idée serait de générer avec les invariants des
scripts Coq qui feraient office de certificat de correction pour la propagation d’invariants, ce qui
serait suffisant pour vérifier facilement les invariants générés. Cela nécessiterait de développer
une bibliothèque Coq de théorèmes autour de la théorie de la stabilité.

D’un point de vue général, de nombreuses étapes sont nécessaires pour traduire un modèle de
contrôleur linéaire idéal et prouvé vers le code C de bas niveau qui l’implémente, et changer la
représentation arithmétique n’est que l’une de ces étapes. Parmi les autres étapes, on trouve la
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discrétisation d’un contrôleur continu, ce qui pose le problème de garantir des bornes de temps
de calcul dans la boucle de contrôle, ou l’acquisition des données, qui est implémentée sur la
plupart des contrôleurs sous la forme de routines de traitement d’interruptions.

Analyse des relations linéaires

Dans ALICe, la manipulation de code source en C s’est avérée problématique. Actuellement,
tous les cas de test sont implémentés sous forme de machines à états finis, dans le format
fsm, et sont compilés en C avant d’être analysés par PIPS. La transformation de fsm en C
n’est pas simple et les codes C générés tendent à être excessivement longs et complexes et
donc difficiles à analyser, ce qui désavantage PIPS en comparaison avec Aspic et iscc. Même
si le problème peut être en partie contourné avec une phase intermédiaire de simplification,
nous pensons qu’il faudrait employer une meilleure stratégie pour les codes C, que ce soit en
enregistrant une version C de chaque modèle en plus de la version fsm (ce qui amène d’autres
problème : choix des représentations, expressivité, cohérence, encodage), ou bien en améliorant
considérablement l’outil fsm2c afin de résoudre ces problèmes.

Le domaine d’application d’ALICe pourrait également être étendu, d’une part en ajoutant de
nouveaux modèles à la base de cas de test, et d’autre part en supportant davantage d’outils
d’analyse. Cette dernière tâche demande du temps puisqu’à cause du manque de standardisation
des formats utilisés par les outils d’analyse, il faut écrire des routines de conversion de formats
pour chaque outil ajouté. Il faudrait aussi vérifier que les outils d’analyse génèrent des invariants
réalistes, par exemple en associant à chque cas de test un invariant minimal. Un outil d’analyse
ne serait considéré correct que si les invariants qu’il génère sont des sur-ensembles des invariants
minimaux. Cela éviterait qu’un outil trivialement faux puisse bouleverser les résultats.

Finalement, même si les améliorations apportées au calcul d’invariants par transformeurs ont
permis d’améliorer significativement les résultats dans PIPS, les coûts de calcul les rendent im-
praticables pour l’analyse de gros programmes. Des algorithmes précis et de complexité raison-
nable sont encore à trouver.

* * *

Computers are involved in an ever-increasing number of critical systems, whose failures may
have a disastrous impact. Examples include flight commands, medical devices or nuclear power
plants. Due to the growing complexity of software, the probability of a misconception or
programming error is even increasing. Hence, formal methods are involved more and more often
in addition to extensive testing and code certification, to provide mathematical insurances of
program correctness, and thus achieve greater reliability. These methods offer various levels of
accuracy and automation.

Automatic verification generally relies on model checking and abstract interpretation, an effi-
cient family of methods to generate automatically program invariants, i.e. mathematical prop-
erties that always hold at various locations in the code during the program execution. These
invariants are then used to ensure that the program meets its specifications. Thus, it is crucial
to obtain accurate invariants in order to have guarantees about complex program behaviors;
this manuscript has contributed to this general subject.

Contributions
Linear Systems

The first part of this thesis is about control systems, devices that regulates the behavior of other
systems. Control systems are broadly utilized in industry, in a wide variety of applications. A
usual topic in control theory is ensuring the stability of a control system, that is, the system
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started near an equilibrium point will stay forever in its neighborhood. Control theory states
that a linear control system is stable if a distinctly shaped invariant, called Lyapunov invariant,
holds, and many systems are designed and proved stable accordingly. But the stability proofs
on these systems rely on exact arithmetic on real numbers, and do not necessarily apply when
implementing the system on a device with machine-precision arithmetic.

We introduce a new framework to translate real-arithmetic proof invariants into invariants
suited for machine arithmetic, taking into account number representation and rounding error
issues. The generated invariants are guaranteed to be correct, but do not necessarily ensure the
system stability. This generic translation scheme is checked using Coq, and is also implemented
in the case of floating-point arithmetic, the most common standard for machine arithmetic. This
implementation, LyaFloat, can check automatically system stability on floating-point platforms,
and compute the number of bits necessary to ensure it, for both open-loop and closed-loop
stabilities.

Linear Relation Analysis

The second part of this manuscript is about linear relation analysis, a classical abstract inter-
pretation based on an over-approximation of reachable numerical states of a program by convex
polyhedra. As of today, several tools for linear relation analysis exist. They rely on a large
set of algorithms and heuristics to handle loops, aiming to maximum accuracy. We propose a
new toolset, ALICe, to compare as fairly as possible three of these tools: Aspic, iscc and PIPS,
on a common set of 102 small-scale, test cases previously published in the loop invariant and
termination bibliography. Two main original results arise from the experimental measurements.

First, the choice of encoding is critical to the success of a model analysis. This issue is explored
with two model-to-model restructuring algorithms that we have developed and proved correct
with Coq. The first one reduces the encoding biases, by merging the model to a unique control
point. The other one splits control nodes involving concurrent loops that are difficult to analyze.
Used separately or together, they lead to significant improvements in analysis results and help
to identify the strengths and weaknesses of each analysis tool.

The second experimental observation is that PIPS default algorithms have poor accuracy when
dealing with concurrent loops. Unlike Aspic and iscc, invariant computation in PIPS relies on a
first step that computes transformers, used later to propagate invariants. The greater scalability
of this approach is useful to analyze large applications, at the cost of additional approximations.
We present new improvements in transformer computation to improve invariant accuracy in
PIPS. Combined with other existing techniques, PIPS is able to perform at comparable levels
with Aspic and iscc.

Perspectives
Linear Systems

Regarding perspectives, several improvements could be introduced in our invariant translation
tool LyaFloat. Currently, only the most common floating-point arithmetic is supported; yet it
would be relatively easy to add support for fixed-point arithmetic, at least from a theoretical
standpoint (the implementation raises technical difficulties, due to the lack of a suitable para-
metric fixed-point library for Python). In the same vein, it would be interesting to add support
for more functions and propagation arguments, in order to extend the scope of the tool.

In its current design, LyaFloat generates invariants for machine arithmetic code following a
formally proved pattern but there is no formal guarantee that LyaFloat itself is flawless. Thus,
we would gain extra confidence if we could check the generated invariants by some other means.
For this, LyaFloat could be rewritten and formalized in Coq rather than Python. This would
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require to prove (or at least formalize) the invariant propagation arguments needed for stability
proofs, which could be a huge work. An alternative idea is to make LyaFloat generate invariants
along with Coq scripts acting as certificates that the invariant propagation is correct, which
would be sufficient to easily verify the generated invariants. This would require the development
of a Coq library of theorems linked to stability theory.

From a general point of view, many steps are required to translate an idealized, proved linear
controller model into the low-level C code that implements it, and shifting to the arithmetic
representation is just one of them. Other outstanding issues include the discretization of con-
tinuous controllers, which poses the problem of guaranteeing a bounded computation time in
the control loop, or the data acquisition, which is implemented on most controllers as interrupt
handlers.

Linear Relation Analysis

In ALICe, dealing with C source code has proven problematic. Currently, all test cases are
implemented as finite state machines in fsm format and compiled in C prior to being analyzed
by PIPS. The translation from fsm to C is not straightforward and the generated C files tend
to be overly long and complex: this is not optimal for analysis purposes, and is a disadvantage
for PIPS in comparisons with Aspic and iscc. Even if the problem can be partially circumvented
with an intermediate simplification step, we believe a better strategy should be employed to
handle C code, either by storing a C version of each model alongside with the fsm version (which
brings several other problems concerning representation choices, expressivity, consistency and
restructuring), or by drastically improving the fsm2c tool to tackle these issues.

The scope of ALICe could be enhanced too, by collecting more models in the test suite on the
one hand, and by supporting more analysis tools on the other. The later point would be time-
consuming because of the lack of standardization of formats used by analysis tools, requiring
conversion routines for each added analysis tool. We should also check that the analysis tools
generate realistic invariants, for instance shipping each model with minimal invariants. An
analysis tool would be considered as correct only if the generated invariants are superset of the
minimal ones. This would prevent a trivially faulty tool to trash the results.

Finally, even if the improvements made to transformer loop computations allowed to signifi-
cantly improve the analysis results in PIPS, their computational complexity makes them un-
suited for large code analysis. Accurate algorithms with a decent complexity class still remain
to be found.
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Analyse statique des systèmes de contrôle-commande :
invariants entiers et flottants

Résumé : Un logiciel critique est un logiciel dont le bon fonctionnement a un impact important sur

la sécurité ou la vie des personnes, des entreprises ou des biens. L’ingénierie logicielle pour les sys-

tèmes critiques doit donc répondre à des exigences drastiques de qualité, souvent réglementaires,

permettant d’avoir un degré de confiance très élevé dans les programmes. C’est une tâche particuliè-

rement difficile, qui combine différentes méthodes pour garantir la qualité des logiciels produits. Parmi

celles-ci, les méthodes formelles peuvent être utilisées pour prouver qu’un logiciel respecte ses spé-

cifications. Le travail décrit dans ce manuscrit s’inscrit dans le contexte de la validation de propriétés

de sûreté de programmes critiques, et plus particulièrement des propriétés numériques de logiciels

embarqués dans des systèmes de contrôle-commande.

La première partie de cette thèse est consacrée aux preuves de stabilité au sens de Lyapunov.

Ces preuves raisonnent sur des calculs en nombres réels ; or, ceci ne décrit pas correctement le

comportement d’un programme exécuté sur une plateforme à arithmétique machine. Nous présentons

un cadre théorique générique pour adapter les arguments des preuves de stabilité de Lyapunov aux

arithmétiques machine. Un outil effectue automatiquement la transposition de ces preuves en nombres

réels vers des preuves en nombres à virgule flottante.

La seconde partie du manuscrit porte sur l’analyse des relations affines, une interprétation abs-

traite qui approxime les valuations associées aux points de contrôle d’un programme par des po-

lyèdres convexes. Nous présentons ALICe, un framework permettant de comparer différentes tech-

niques de génération d’invariants. Il s’accompagne d’un benchmark composé d’une collection de cas

de test tirés de publications sur l’analyse de programmes, et s’interface avec trois outils utilisant dif-

férents algorithmes de calcul d’invariants : Aspic, iscc et PIPS. Pour tester la sensibilité des outils à

l’encodage, deux restructurations conservatives des cas de test sont proposées. Afin d’affiner les in-

variants générés par PIPS, nous introduisons dans un dernier chapitre plusieurs améliorations à ses

algorithmes.

Mots clés : analyse statique, analyse des relations linéaires, calcul en virgule flottante, sécurité et

sûreté, stabilité de Lyapunov

Static Analysis of Control-Command Systems:
Floating-Point and Integer Invariants

Abstract: A critical software is a software whose proper functioning has an important impact on

safety or life of people, companies and goods. Software engineering on critical systems must comply

with drastic quality requirements, often regulatory, to achieve a higher level of trust in programs. This

task is particularly difficult and combines different methods to ensure the quality of produced software.

Among them, formal methods can be used to prove that a software obeys its specifications. The con-

text of the work described in this manuscript is the validation of safety properties for critical software;

specifically, of numerical properties for embedded software in control-command systems.

The first part of this thesis is dedicated to Lyapunov stability proofs. These proofs reason with

exact real-number computations, but this is not an accurate description of how a program behaves

on a machine-arithmetic platform. We present a generic, theoretical framework to adapt Lyapunov

stability proof arguments to machine arithmetics. A tool automatically transposes these proofs on real

numbers to proofs on floating-point numbers.

The second part of the manuscript is about linear relation analysis, an abstract interpretation that

approximates valuations associated to a program’s control points by convex polyhedrons. We present

ALICe, a framework to compare different invariant generation techniques. It comes with a benchmark

consisting of a collection of test cases drawn from the program analysis literature, and interfaces with

three tools relying on different invariant computation algorithms: Aspic, iscc and PIPS. To evaluate

the sensitivity of these tools to encoding choices, two techniques are proposed to conservatively re-

structure test cases. To refine invariants generated by PIPS, several improvements are made on its

algorithms and introduced in the last chapter.

Keywords: Static Analysis, Linear Relation Analysis, Floating-Point Computation, Security and

Safety, Lyapunov Stability
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