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Abstract

This thesis focuses on a cryptographic primitive that allows two distant par-
ties, usually called Alice and Bob, to generate an arbitrary amount of secret
key even in the presence of an eavesdropper, provided that they share a
short initial secret message. This primitive is called quantum key distribu-
tion, or in short QKD; and differs from classical key distribution primitives
in the sense that no assumption on the capacities of the eavesdropper is
required to prove the security of the scheme. While several QKD protocols
exist, we focus our study on continuous-variable protocols, which encode
the information on the quadratures of the electromagnetic field. Some of
these protocols are of particular interest because they can be implemented
with standard fiber-based telecommunication components and feature an in-
terferometric detection scheme that exhibits a high resistance to the noise
induced by potential adjacent classical channels that propagate on the same
optical fiber.

The advantage of QKD over classical primitives relies on fundamental
quantum physics principles such as the uncertainty principle: in a carefully
designed QKD protocol, an eavesdropper cannot interact with the quantum
system without introducing some noise which can be quantified by the par-
ties of the protocol. However, even when there is no active eavesdropper,
some errors inevitably occur during the transmission of quantum states be-
tween Alice and Bob. Alice and Bob must correct these errors to agree on
a common bit string. Since this step is done by revealing some information
on a public channel, it results in a limitation of the protocol in terms of
tolerance to noise and losses. To overcome this, we develop efficient error-
correcting codes that allow to extend the range of a QKD protocol based on
a Gaussian modulation of the quadratures of the electromagnetic field.

Security proofs for QKD protocols typically consider an ideal descrip-
tion of the protocol. In practice, however, one has to consider the distance
between a practical implementation of a QKD protocol and its theoretical
description. We study different aspects of a practical implementation of a
Gaussian continuous-variable QKD protocol, such as the imperfect statisti-
cal estimation (in the finite-size scenario) of the parameters that are relevant
to the security of the protocol and the quality of the practical Gaussian mod-
ulation of coherent states. We also consider a calibration attack that can
lead to a powerful eavesdropping strategy. We demonstrate experimentally
the distribution of secret keys over a 80 km fiber link when taking into
account all the known imperfections of our system.

Finally, we make initial deployment tests involving our QKD system
and wavelength division multiplexed (WDM) classical channels on the same
fiber link. We also demonstrate the long-term stability of our system in
combination with high-speed classical encryptors.
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Résumé

L’objet de cette thèse est l’étude d’une primitive cryptographique qui per-
met à deux utilisateurs distants, que l’on appelle Alice et Bob, de générer
une quantité arbitraire de clé secrète et cela y compris en présence d’un
espion, sous réserve qu’ils partagent un secret initial. Cette primitive est
appelée la distribution quantique de clés (Quantum Key Distribution ou
QKD en anglais) et diffère des primitives classiques de distribution de clés
en ce sens qu’il n’est pas nécessaire de faire des hypothèses sur les capaci-
tés de l’espion pour prouver la sécurité du protocole. Bien qu’il existe de
nombreux protocoles de QKD, nous restreignons notre étude aux protocoles
employant des variables continues et qui encodent l’information sur les qua-
dratures du champ électromagnétique. L’intérêt de ces protocoles tient au
fait qu’ils peuvent pour certains être implémentés avec uniquement des com-
posants standards optimisés pour les communications sur fibre optique ainsi
qu’à l’usage d’une détection interférométrique particulièrement résistante
au bruit induit par des canaux classiques adjacents qui se propagent sur le
même lien fibré.

L’avantage de la QKD sur les primitives classiques repose sur des prin-
cipes fondamentaux de la physique quantique tels que le principe d’incerti-
tude : dans un protocole QKD, un espion ne peut interagir avec le système
quantique sans introduire un certain niveau de bruit qui peut être évalué
par les protagonistes du protocole.

Même en l’absence d’attaquant, la transmission d’états quantiques entre
Alice et Bob ne se fait pas sans erreur en raison des interactions entre les
états quantiques et l’environnement. Alice et Bob doivent donc corriger ces
erreurs afin de se mettre d’accord sur une chaîne binaire commune. Cette
étape de correction d’erreurs s’effectue en révélant de l’information sur un
canal public, ce qui limite la tolérance du protocole au bruit et aux pertes.
Nous avons mis au point des codes correcteurs d’erreurs efficaces qui per-
mettent d’étendre la portée du protocole QKD basé sur une modulation
Gaussienne des quadratures du champ électromagnétique.

Les preuves de sécurité des protocoles QKD considèrent une description
idéale du protocole. En pratique, il convient de s’intéresser à la distance
entre l’implémentation pratique d’un protocole QKD et sa description théo-
rique. Nous étudions différents aspects de l’implémentation pratique d’un
protocole QKD Gaussien à variables continues, tels que l’imparfaite estima-
tion statistique (dans le cas d’un scenario réaliste où Alice et Bob échangent
une quantité finie de signaux) des paramètres qui caractérisent la sécurité
du protocole et la qualité d’une modulation Gaussienne d’états cohérents
de la lumière en pratique. Nous mettons également en évidence une attaque
visant la calibration d’un système QKD et pouvant conduire à une stratégie
d’espionnage mettant en péril la sécurité du dispositif. Nous démontrons
expérimentalement la distribution de clés secrètes sur un lien fibré de 80 km
en prenant en compte toutes les imperfections connues de notre système.

Enfin, nous conduisons des tests de déploiement de notre système QKD
dans un environnement mettant en scène des canaux classiques multiplexés
en longueur d’onde sur le même lien fibré. Nous démontrons également la
stabilité sur le long terme de notre système en combinaison avec des chif-
freurs classiques haut débit.
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Résumé en français

Cette thèse étudie la sécurité pratique et les performances de la distri-
bution quantique de clés à variables continues. La distribution quantique
de clés est une primitive cryptographique qui permet à deux intervenants
distants, Alice et Bob, de partager une clé binaire inconnue de tout poten-
tiel attaquant présent lors de l’établissement de la communication. Une fois
cette clé obtenue, Alice et Bob peuvent communiquer de façon confidentielle
en combinant un bit de clé et un bit de message à transmettre et en ne
réutilisant jamais le bit de clé utilisé. Cet algorithme de chiffrement, appelé
le masque jetable ou one-time-pad est prouvé sûr au sens de la théorie de
l’information.

Ce schéma semble résoudre le problème de la transmission de messages
de façon confidentielle mais présente plusieurs difficultés pratiques qui ex-
pliquent son utilisation peu répandue. Premièrement, les meilleurs débits
accessible avec les technologies actuelles de distribution quantique de clés
sont de l’ordre du megabit par seconde, ce qui reste plusieurs ordres de
grandeurs en dessous des débits de communications optiques utilisés dans
les infrastructures réseaux actuelles. Ensuite, la sécurité de ce mécanisme
repose entièrement sur la sécurité de la clé utilisée. Il est donc nécessaire
de pouvoir quantifier de façon précise la sécurité de la clé produite par le
dispositif de distribution quantique de clé utilisé. En effet, des démonstra-
tions d’espionnage partiel ou total de clés produites par des équipements de
distribution quantique de clés commerciaux ont déjà é té réalisées.

En dehors du débit et de la sécurité pratique des clés produites, la dis-
tance maximale de sécurité est le facteur de mérite le plus pertinent pour
caractériser un système de distribution quantique de clés. En effet, contraire-
ment aux communications classiques qui ne sont pas limitées en distance en
raison de l’utilisation d’amplificateurs erbium par exemple, les états quan-
tiques ne peuvent être régénérés sans détruire l’information portée par ces
états et les communications quantiques sont donc fondamentalement limitées
en termes de distance. Dans le cas des systèmes de distribution quantique
de clés à variables discrètes, les records actuels de distance sont de l’ordre
de 250 km en laboratoire et inférieurs à 100 km pour des systèmes commer-
ciaux. La distribution quantique de clés à variables continues n’a jamais été
démontrée sur des distances supérieures à 25 km en laboratoire. Cette tech-
nologie présente néammoins certaines caractéristiques intéressantes. D’une
part, elle peut être implémentée en employant uniquement des composants
standards optimisés pour les télécommunications optiques classiques, d’autre
part, elle présente un dispositif de détection particulièrement adapté à un
fonctionnement en coexistence avec plusieurs canaux optiques sur la même
fibre optique.

Dans cette thèse nous levons la limitation de distance de la distribution
quantique de clés à variables continues en développant des codes correcteurs
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efficaces dans des régimes de bas rapport signal à bruit qui correspondent
à de grandes distances de transmission. Nous implémentons un système ex-
périmental stable qui nous permet d’extraire des clés de blocs de grande
taille, ce qui est nécessaire pour s’affranchir du bruit statistique qui affecte
l’estimation des paramètres du canal quantique, et ce particulièrement pour
de grandes distances de transmission. Nous levons également la limitation
de débit de cette technologie en implémentant un post-traitement rapide
qui tire notamment partie d’architectures matérielles modernes comme les
processeurs graphiques. Nous considérons différentes imperfections expéri-
mentales de notre système pouvant donner lieu à des attaques par canaux ca-
chés et proposons différentes approches comme l’implémentation de contre-
mesures ou l’intégration de ces imperfections dans les preuves de sécurité.
Enfin, nous envisageons différents contextes d’intégration de notre système
dans les infrastructures réseaux actuelles. Tout d’abord, nous démontrons
la stabilité de notre système sur une période de plusieurs mois sur une fibre
de 17.7 km installée sur le terrain, en combinaison avec des chiffreurs sy-
métriques commerciaux de la société Thales. Puis, nous multiplexons en
longueur d’onde un canal classique intense sur le même lien fibré que notre
canal quantique et obtenons néammoins des taux de clé secrètes pratiques
sur une fibre de 25 km.

Chapitre 1 : De la cryptographie classique à la cryp-
tographie quantique

Après un rapide rappel historique de l’évolution des techniques cryp-
tographiques, le premier chapitre de ce manuscrit dresse un panorama des
primitives cryptographiques usuelles. Les techniques de cryptographie dites
classiques sont regroupées en deux grandes familles, la cryptographie à clé
privée ou symétrique et la cryptographie à clé publique ou asymétrique.

Les techniques de cryptographie symétrique sont caractérisées par le par-
tage d’une clé commune entre les deux protagonistes de la communication.
Cette clé sert à la fois au chiffrement et au déchiffrement des messages. En
cryptographie moderne, la sécurité d’un dispositif de chiffrement ne doit pas
reposer sur la confidentialité de l’algorithme de chiffrement mais sur celle de
la clé de chiffrement. La clé de chiffrement doit être un élément d’un espace
suffisamment grand pour éviter les attaques par force brute qui consistent
pour un attaquant en essayer toutes les clés possibles pour déchiffrer un
message. Pour cela il est nécessaire d’avoir un critère qui permette de recon-
naître un message déchiffré. Puisque la sécurité du chiffrement repose sur la
clé de chiffrement, il convient de stocker la clé de façon sécurisée, notamment
à l’aide de cartes à puce, et de disposer d’un moyen sûr de partager la clé
entre les protagonistes de la communication. Cette dernière tâche est par-
ticulièrement délicate et ce d’autant plus que le nombre de clés à partager
augmente avec le carré du nombre de protagonistes.

La cryptographie asymétrique appelée également cryptographie à clé pu-
blique apporte une réponse satisfaisante à ce dernier point. Chaque parti-
cipant dispose d’un couple de clés, une clé privée qu’il garde secrète et une
clé publique qui est diffusée par exemple sur Internet. La clé publique est
utilisée par un protagoniste pour chiffrer les données qu’il souhaite trans-
mettre au détenteur de la clé secrète correspondante. Seul le destinataire
légitime pourra déchiffrer ce message au moyen de la clé secrète qu’il est
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le seul à connaître. Cette famille de primitives cryptographiques permet de
résoudre le problème de la distribution de clé secrètes. En revanche, les clés
publiques doivent être distribuées de façon authentique. Cela nécessite en gé-
néral l’intervention d’un tiers de confiance. Les autorités de certification ou
infrastructures à clé publiques (PKI pour Public Key Infrastructure) jouent
le rôle de ce tiers de confiance. Une autre limitation de la cryptographie
à clé publique est que la sécurité des primitives employées repose sur des
hypothèses calculatoires. Par exemple, la puissance de calcul à disposition
d’un espion est supposée être limitée ou certains problèmes mathématiques
sont supposés ne pas pouvoir être résolus en temps polynomial.

En ce qui concerne les menaces concernant la sécurité de ces primi-
tives, certaines tendances semblent se dégager. D’une part, la sécurité des
primitives asymétriques repose majoritairement sur un nombre restreint de
problèmes mathématiques bien identifiés, comme par exemple la factorisa-
tion, d’autre part, les primitives symétriques présentent moins de structure.
Les avancées algorithmiques ou mathématiques semblent donc menacer plus
directement les primitives asymétriques que les primitives symétriques. Un
ordinateur quantique permettrait ainsi par exemple de factoriser les grands
nombres en temps polynomial. Une conséquence de cela est qu’une primi-
tive reposant sur la factorisation des grands nombres, comme par exemple
RSA, ne présente pas les meilleures garanties de sécurité pour des données
qui doivent rester confidentielles à long terme. En effet, un espion pourrait
se contenter d’enregistrer toutes les communications aujourd’hui dans l’at-
tente d’avoir à sa disposition un ordinateur quantique et de pouvoir alors
déchiffrer une grande quantité de données passées.

La distribution quantique de clés permet de partager une clé commune
aux deux extrémités d’un lien optique sans faire aucune hypothèse sur les
moyens à disposition de l’espion avec pour seule exigence que les deux prota-
gonistes de l’échange aient accès à un canal authentique. Des signaux quan-
tiques sont envoyés sur le canal physique qui sépare les deux protagonistes
et le principe de non-clonage d’états quantiques empêche tout attaquant
de dupliquer l’information envoyée sur ce canal : toute tentative d’un at-
taquant d’interagir avec les états quantiques pour acquérir de l’information
sur ces états introduit du bruit qui est détecté par les protagonistes de la
distribution quantique de clés lors d’une étape d’estimation des paramètres
du canal. Les statistiques du canal portent la signature de la présence d’un
attaquant. Il existe deux familles de protocoles de distribution quantique de
clés, les protocoles à variables discrètes et les protocoles à variables conti-
nues. Les protocoles à variables discrètes encodent l’information dans des
variables discrètes comme la phase ou la polarisation de photons uniques
tandis que les protocoles à variables continues encodent l’information dans
des variables continues comme les quadratures du champ électromagnétique.
Les quantités considérées étant de nature différente, les preuves de sécurité
concernant ces deux familles de protocoles font intervenir des outils diffé-
rents et il en est de même en ce qui concerne les dispositifs pratiques qui
permettent de mettre en oeuvre ces protocoles.

Bien qu’il existe des preuves de sécurité prenant en compte les attaques
les plus générales autorisées par les lois de la mécanique quantique, la sécu-
rité pratique des dispositifs de distribution quantique de clés pose de nom-
breux problèmes. En effet, la distance entre la description théorique d’un
protocole auquel s’applique la preuve de sécurité, et sa réalisation pratique,
peut ouvrir la voie à des attaques non prises en compte dans les preuves de
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sécurité. Il s’agit des attaques par canaux cachés. Tout comme il existe un
domaine de la cryptanalyse classique qui a trait aux défauts d’implémen-
tations pratiques des systèmes de cryptographie classique, et en particulier
les attaques par canaux cachés sur les cartes à puce, les imperfections des
dispositifs pratiques de distribution quantique de clés ont vu naître un nou-
veau domaine de recherche très actif depuis le milieu des années 2000, la
cryptanalyse quantique (ou quantum hacking). De façon peu surprenante,
les menaces sur les systèmes de distribution quantiques de clés sont donc à
chercher plutôt du côté des implémentations pratiques que des preuves de
sécurité théoriques.

Nous concluons ce chapitre en présentant succinctement les autres primi-
tives cryptographiques pouvant être implémentées avec les dispositifs quan-
tiques actuels. Le tirage à pile ou face quantique permet à deux protagonistes
distants et ne se faisant pas confiance de se mettre d’accord sur une valeur
binaire. Il est connu que l’une ou l’autre des parties peut biaiser la valeur
du tirage à pile ou face avec une grande probabilité sauf moyennant des
hypothèses de type calculatoires. L’utilisation d’états quantiques permet de
limiter la valeur du biais à une valeur limite de 1√

2
. En pratique, les im-

perfections des dispositifs quantiques ne permettent pour l’instant pas de
démontrer un avantage quantique sur des distances compatibles avec les in-
frastructures de communication actuelles. La signature quantique permet à
l’instar de la signature classique d’empêcher la production d’un certain do-
cument par un intervenant non légitime. La signature classique repose sur
des hypothèses de difficulté calculatoire, dont certaines sont remises en cause
par la mise à disposition d’un ordinateur quantique. La signature quantique
permet quant à elle de résister à un attaquant en possession d’un ordina-
teur quantique. Elle fait appel à des fonctions à sens unique quantiques, qui
ne peuvent être inversées, et cela même par un ordinateur quantique. Ce-
pendant l’utilisation de ces fonctions introduit des limitations de plusieurs
types : le nombre de signatures qui peuvent être produites est limité, ces
signatures ne peuvent pas être produites par un autre intervenant, et il est
difficile d’assurer que deux intervenants testant la validité d’une signature
obtiendront bien le même résultat.

Chapitre 2 : Information quantique avec des va-

riables Gaussiennes

Ce chapitre présente le cadre théorique et les principaux outils mathé-
matiques nécessaires à l’étude de la sécurité de la distribution quantique de
clés à variables continues. Nous y introduisons dans un premier temps les
postulats fondamentaux de la mécanique quantique.

Puis nous nous intéressons aux outils de base de la théorie de l’infor-
mation avec des variables classiques. Ce domaine des mathématiques est
considéré comme étant né en 1948 avec une publication de Claude Shannon
dans laquelle il introduit la notion d’entropie pour quantifier la quantité
d’information qui peut être transmise par des variables aléatoires. Le pre-
mier théorème de Shannon décrit la quantité d’information minimale qui est
nécessaire pour décrire une variable aléatoire. Il s’agit de l’entropie de cette
variable aléatoire. La compression d’une sources de données qui peut être
décrite par une variable aléatoire dont on peut calculer l’entropie ne peut se
faire sans perte de données au delà d’une certaine quantité qui est égale à
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l’entropie de cette source de données.

Le deuxième théorème de Shannon décrit la quantité maximale d’infor-
mation par symbole qui peut être transmise sur un certain canal de com-
munication défini par un certain niveau de bruit. Il s’agit de la capacité de
ce canal. Pour un canal sans mémoire, c’est à dire pour lequel la variable
aléatoire à la sortie du canal à tout instant ne dépend que de la variable
aléatoire en entrée de ce canal à ce même instant, la capacité du canal est
égale au maximum, pris sur toutes les distributions possibles en entrée du
canal, de l’information mutuelle entre les variables aléatoires d’entrée et de
sortie. Nous nous intéressons aux capacités de quelques canaux classiques
tels que le canal binaire symétrique ou le canal à bruit additif Gaussien.

Une fois introduite la notion de capacité d’un canal bruité, le problème
de transmettre des données de façon fiable sur ce canal en présence de bruit
reste entier. La réponse à cette question est d’ajouter de la redondance aux
données que l’on souhaite transmettre. En effet, lorsque l’on envoie plusieurs
fois la même information sur un canal bruité, le bruit qui correspond à
une variable aléatoire se manifeste de façon différente lors des différentes
transmissions. Il est donc possible de reconstruire le message envoyé à partir
de plusieurs observations indépendantes du message reçu. En pratique, il
est possible d’envoyer des mots de code au lieu d’envoyer plusieurs fois le
même message. On établit pour cela une correspondance entre l’ensemble
des messages que l’on souhaite envoyer et un ensemble de mots de code
qui sont de longueur plus grande que ces messages. Le ratio entre ces deux
quantités définit le taux du code correcteur d’erreur. Le second théorème
de Shannon énonce que pour tout taux inférieur à la capacité du canal, il
existe une stratégie d’encodage et de décodage qui permet de transmettre
de l’information avec une probabilité d’erreur asymptotiquement faible pour
des blocs de données de grande taille.

Il n’est pas aisé de construire des codes correcteurs d’erreurs de taux
proches de la capacité du canal pour tout type de canal. Les codes LDPC
ou les codes polaires permettent d’atteindre la capacité d’un canal pour des
blocs de taille arbitrairement grande. En revanche, les stratégies d’encodage
et de décodage deviennent algorithmiquement peu efficaces lorsque le taux
du code s’approche de la capacité du canal. Dans le chapitre 6, nous construi-
sons des codes LDPC multi-edge avec des taux très proches de la capacité
du canal pour des bruits élevés pour le canal à entrée binaire et bruit additif
Gaussien. Le chapitre 8 propose une comparaison des performances de codes
LDPC multi-edge et de codes polaires pour les canaux utiles pour la distri-
bution quantique de clés. Une implémentation sur processeur graphique est
réalisée pour accélérer la vitesse de décodage des codes LDPC multi-edge.

Ensuite, nous présentons différents types d’états quantiques et leurs ca-
ractéristiques. Parmi les états monomodes, on distingue les états de Fock,
qui sont des états dont le nombre de photons est parfaitement déterminé.
Au contraire, les états cohérents n’ont pas un nombre de photons déterminé
et n’ont pas une phase totalement aléatoire. Le produit de l’incertitude sur
leurs quadratures correspond au minimum autorisé par les lois de la méca-
nique quantique. Ils sont donc très proches des états classiques. Les états
comprimés présentent quant à eux des degrés d’incertitude différents entre
leurs quadratures contrairement aux états cohérents. Il est également pos-
sible de produire des états comprimés à deux modes qui sont des états pour
lesquels la lumière à deux fréquences différentes est corrélée.

Les états Gaussiens sont particulièrement intéressants car ils sont entière-
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ment déterminés par leurs deux premiers moments statistiques. La matrice
de covariance des états Gaussiens est donc suffisante pour les décrire. De
plus, l’entropie des états Gaussiens peut être calculée grace à sa décomposi-
tion sur les états thermiques. Nous donnons les bases d’analyse symplectique
qui nous permettront de calculer l’entropie des états qui interviennent lors de
la dérivation des preuves de sécurité du protocole Gaussien dans le chapitre
3. Enfin nous décrivons les opérations Gaussiennes, qui sont les opérations
qui transforment un état Gaussien en état Gaussien. Ces opérations seront
également employées dans le chapitre 3.

Chapitre 3 : La distribution quantique de clés avec

des variables continues

Ce chapitre est consacré à l’étude théorique de la sécurité des protocoles
de distribution quantique de clés à variables continues. Le but de la dis-
tribution quantique de clés est de produire des clés cryptographiques, c’est
à dire des chaînes binaires aléatoires secrètes, entre les deux participants
du protocole. Ces clés étant destinées à être utilisées dans des applications
cryptographiques diverses, telles que le chiffrement ou l’authentification, il
est nécessaire de définir un critère de sécurité concernant les clés issues d’un
protocole de distribution quantique de clés. Nous donnons la définition uni-
verselle de sécurité d’une clé : une clé est dite ǫ−sure si elle est uniformément
distribuée et indépendante de l’espion sauf avec une probabilité ǫ.

Nous rappelons ensuite les principales étapes d’un protocole général de
distribution quantique de clés. La première étape est l’échange quantique,
étape durant laquelle Alice et Bob échangent des états quantiques à travers le
canal quantique (qui n’est autre qu’un medium physique de communication
tel qu’une fibre optique ou l’air libre) et réalisent des mesures sur ces états.
Suite à cet échange, Alice et Bob communiquent à travers un canal public
(mais de façon authentique).

Après un bref rappel de l’évolution historique des protocoles de distribu-
tion quantique de clés, nous décrivons en détails le protocole GG02 qui est un
protocole de distribution quantique de clés à variables continues dans lequel
Alice module des états cohérents dans l’espace des phases avec une distribu-
tion Gaussienne bidimensionnelle. Cette thèse s’intéresse particulièrement à
la sécurité pratique du protocole GG02. Nous dressons donc une première
liste des potentielles imperfections que peut présenter une implémentation
pratique du protocole GG02.

La sécurité du protocole GG02 est établie contre les attaques collectives.
Cette preuve de sécurité s’étend contre les attaques les plus générales, les
attaques cohérentes, dans le cas où l’on considère un nombre infini d’échan-
tillons. Nous rappelons la preuve de sécurité contre les attaques collectives.
Dans le cas le plus général, le taux de clé secrète en réconciliation inverse
(c’est à dire où les mesures de Bob et non les mesures d’Alice servent de
référence pour l’établissement de la clé secrète) entre Alice et Bob est égal
à l’information mutuelle classique sur le canal entre Alice et Bob moins
l’information de Holevo entre Bob et Eve. Un argument d’optimalité nous
permet de nous restreindre à calculer cette information de Holevo pour l’état
Gaussien bimode dont la matrice de covariance correspond aux statistiques
observées sur le canal. Puis, nous raffinons successivement cette preuve de
sécurité pour y intégrer différentes imperfections qui affectent un dispositif
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expérimental de distribution quantique de clés.

La première de ces imperfections a été bien étudiée pour les protocoles à
variables discrètes comme pour les protocoles à variables continues. Il s’agit
de l’imperfection de la procédure de correction d’erreurs. En effet, bien qu’il
soit en théorie possible d’atteindre la capacité d’un canal, il n’existe pas de
codes correcteurs d’erreurs connus qui atteignent cette capacité pour des
échantillons de taille finie. Cette imperfection ne menace pas la sécurité du
protocole GG02, sous réserve que l’information révélée lors de la procédure
de correction d’erreurs soit bien prise en compte lors de l’évaluation du taux
de clé secrète. Cela se matérialise par un coefficient β inférieur à 1 qui inter-
vient en facteur de l’information mutuelle entre Alice et Bob. En revanche,
plus la distance entre la capacité du canal et la fraction d’information mu-
tuelle réellement extraite par Alice et Bob devient grande, moins le taux
de clé secrète est élevé. La limitation en distance des protocoles à variables
continues a longtemps été due à la difficulté de mettre en place des procé-
dures de correction d’erreurs efficaces dans des régimes de bas rapport signal
à bruit.

Une autre source d’imperfections déjà étudiée correspond aux imper-
fections liées au dispositif de détection cohérente. Dans notre cas, il s’agit
d’une détection homodyne. Un signal intense cohérent avec le signal quan-
tique joue à la fois le rôle d’amplificateur dans le domaine optique et de
référence de phase. Un modulateur de phase situé sur la voie de l’oscillateur
local permet de choisir librement de mesurer toute quadrature du champ.
Dans le cas où aucun signal quantique n’est présent, un tel dispositif permet
de mesurer les fluctuations quantiques du vide qui sont alors linéaires en la
puissance de l’oscillateur local. En pratique, même en l’absence d’oscillateur
local, le signal mesuré par le circuit électronique d’amplification du signal
et les cartes d’acquisition subséquentes n’est pas nul : un bruit électronique
résiduel est toujours présent. Le dispositif de détection présente également
une efficacité quantique limitée. En effet, les pertes du dispositif récepteur
se décomposent en plusieurs facteurs : l’efficacité des photodiodes, les pertes
optiques en ligne du dispositif récepteur et la visibilité de l’interféromètre.
Il est possible de définir un mode dit réaliste dans lequel l’on suppose que
l’attaquant ne peut contrôler ni les pertes de Bob ni le bruit électronique
ajouté par la détection homodyne. Dans ce cas là, le taux de clé secrète est
très peu affecté par ces imperfections du dispositif récepteur.

Nous étudions ensuite l’imperfection liée à la réalisation pratique de la
modulation Gaussienne théorique que doit générer Alice. Une telle distribu-
tion ne peut être générée parfaitement en raison de la quantité finie d’alea
à disposition et de l’amplitude de modulation finie qui est réalisable avec
des cartes de contrôle générant des signaux discrets et des modulateurs de
dynamique finie. Intuitivement, l’effet discret de la modulation Gaussienne
pratique n’est pas gênant en raison de la présence du bruit de photon qui
empêche de distinguer parfaitement deux états cohérents. Pour quantifier
cette imperfection de manière rigoureuse, nous considérons la distance trace
entre le mélange Gaussien idéal (qui correspond à un état thermique) et le
mélange discret d’états cohérents réalisé en pratique. Si cette distance est
bornée, l’attaquant ne peut distinguer le mélange idéal du mélange pratique
qu’avec une probabilité bornée par cette distance trace. Nous avons simulé
numériquement les approximations réalistes de la distribution Gaussienne,
en coordonnées cartésiennes et en coordonnées polaires, et avons obtenu
des bornes de sécurité compatibles avec les niveaux de sécurité attendus en
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distribution quantique de clés.

Un autre problème longtemps passé sous silence lors de l’étude de la
sécurité de dispositifs de distribution quantique de clés, que ce soit à va-
riables discrètes ou à variables continues, est l’estimation des paramètres
entrant en compte dans l’évaluation du taux de clé secrète. De nombreuses
preuves de sécurité dites en régime asymptotique considèrent que ces pa-
ramètres sont connus avec une précision infinie, en raison du nombre infini
d’échantillons qui sont censés être échangés entre Alice et Bob. Un dispo-
sitif pratique ne peut bien sûr pas travailler avec des échantillons de taille
infinie. Nous étendons une première analyse des effets de taille finie réalisée
pour les protocoles de distribution quantique de clés à modulation discrète
au cas du protocole à modulation Gaussienne et nous incluons dans l’ana-
lyse l’effet d’une imparfaite estimation du bruit électronique et de l’efficacité
de la détection homodyne. Il apparaît que l’effet le plus pénalisant est l’in-
certitude concernant l’excès de bruit introduit par le canal quantique. Afin
d’avoir une bonne précision concernant ce paramètre, des blocs de données
de taille importante doivent être considérés. En pratique, une telle contrainte
peut limiter le taux de clé à quelques dizaines de kilomètres, en raison de
la difficulté de conserver des paramètres stables sur des longues périodes
de temps. Ce problème peut être résolu en augmentant significativement la
fréquence de répétition du dispositif optique mais il convient alors de réa-
liser des progrès algorithmiques concernant le post-traitement des données
qui limite actuellement le débit des dispositifs de distribution quantique de
clés à variables continues. Nous verrons dans le chapitre 8 que la vitesse de
post-traitement peut ê tre considérablement augmentée en implémentant la
correction d’erreurs sur cartes graphiques ou en utilisant d’autres types de
codes correcteurs d’erreurs tels que les codes polaires.

Enfin, de la même façon que la calibration du dispositif de détection de
Bob permet d’augmenter le taux de clé secrète, nous proposons de prendre
en compte le bruit de phase lors de la préparation des états d’Alice dans la
preuve de sécurité. Ce bruit de phase peut être modélisé comme une mesure
imparfaite côté Alice. Les données classiques mesurées par Alice sont donc
bruitées en raison du bruit de phase et cela a pour conséquence de dégrader
l’information mutuelle entre Alice et Bob. En revanche, l’attaquant ne peut
pas acquérir plus d’information concernant les résultats de mesure de Bob,
qui servent de référence pour l’établissement de la clé dans un protocole à
réconciliation inverse. Il est donc possible de retrancher la valeur du bruit
de phase de la valeur de l’excès de bruit lors du calcul de l’information
mutuelle entre Eve et Bob. Dans ce cas, le taux de clé secrète augmente. Pour
pouvoir utiliser cette technique, il est impératif de mesurer le bruit de phase
d’Alice expérimentalement. Nous proposons une méthode pour mesurer le
bruit de phase à l’aide d’une détection homodyne, que ce soit lors d’une
phase de calibration préalable au déploiement du système de distribution
quantique de clés à variables continues ou bien en cours de fonctionnement.
Dans les deux cas, il est nécessaire de supposer que l’attaquant ne peut pas
interférer avec le dispositif d’Alice, auquel cas cette estimation du bruit de
phase pourrait être faussée et une surestimation de la valeur du bruit de
phase conduirait à une surestimation du taux de clé secrète. Nous avons pu
mesurer une valeur expérimentale du bruit de phase. Dans des conditions
d’excès de bruit relativement pessimistes où l’excès de bruit côté Alice est
de l’ordre de 2.5% en unité de bruit de photon, il est ramené à une valeur de
1.75% après soustraction du bruit de phase. Dans le cas d’un espion limité
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aux attaques collectives et en régime asymptotique, la distance maximale de
sécurité est alors augmentée de 40 km.

Chapitre 4 : Réalisation expérimentale

Ce chapitre est consacré à l’étude des caractéristiques des différents élé-
ments qui composent notre système expérimental de distribution quantique
de clés à variables continues avec des fibres optiques.

Nous présentons tout d’abord les principales caractéristiques des fibres
optiques. Une fibre optique est en général constituée de silice et à symétrie
cylindrique. Elle possède en son centre un milieu d’indice optique élevé qui
est entouré d’un milieu d’indice optique plus faible. Cette structure a pour
conséquence de confiner la lumière entre ses points d’entrée et de sortie. Il
existe différents types de fibre. Les fibres multi-modes autorisent plusieurs
chemins de propagation tandis que les fibres monomodes ne laissent se pro-
pager qu’un seul mode du champ électromagnétique. Quel que soit le type
de fibre utilisé, il existe une limite fondamentale de propagation due à la
réduction de l’intensité de la lumière au cours de sa propagation en raison
notamment d’impuretés dans les fibres optiques. Le maximum d’intensité
transmise correspond à une longueur d’onde de 1550 nm, ce qui explique
pourquoi cette longueur d’onde est utilisée pour les télécommunications à
grande distance. Par ailleurs, les fibres monomodes standards ne conservent
pas la polarisation et toute torsion de la fibre peut causer une différence d’in-
dex effectif entre les différentes polarisations de la lumière. Nous utilisons
pour remédier à cela des fibres à maintien de polarisation pour la plupart des
composants de notre système. Un autre critère important dans un montage
fibré est la qualité des connexions entre les différents composants. Nous uti-
lisont des connecteurs à ferrules et des fibres polies avec un angle (APC pour
Angled Physical Contact) pour empêcher la lumière réfléchie à l’endroit de
la connexion de se rétropropager.

En ce qui concerne la source laser, noua avons opté pour une source laser
à contre-action répartie (DFB pour Distributed Feedback). Une telle source
offre l’avantage d’avoir un spectre relativement étroit, de l’ordre de 1 MHz
en régime continu, et d’avoir une longueur d’onde réglable en ajustant la
température. Cette propriété est particulièrement intéressante pour pouvoir
fonctionner dans un contexte de multiplexage en fréquence avec d’autres
canaux classiques (cet aspect est abordé dans le chapitre 9) car les mul-
tiplexeurs et démultiplexeurs commerciaux sont alignés sur des grilles de
longueurs d’onde standards. En revanche, nous n’utilisons pas cette diode
laser en régime continu mais en régime impulsionnel et la largeur spectrale
est donc plutôt de l’ordre de 12.5 GHz dans ce régime. Le régime impul-
sionnel nous permet d’atteindre des extinctions quasi totales et donc une
meilleure séparation des impulsions, ce qui est nécessaire car nous utilisons
un multiplexage temporel d’un signal intense et d’un signal faible. Ainsi,
toute fuite du signal intense sur le signal faible ajoute un bruit important à
notre système.

Concernant la modulation du signal quantique, nous utilisons des modu-
lateurs électro-optiques au Niobate de Lithium spécialement optimisés pour
les télécommunications à haut débit. Ils permettent d’opérer une modula-
tion à des fréquences de l’ordre de plusieurs dizaines de GHz mais nous ne
les utilisons qu’à des fréquences de l’ordre du MHz. Ils peuvent êtres pilotés
avec des tensions faibles et la tension de biais qui correspond à la tension
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à appliquer pour produire une extinction maximale ne dérive pas très vite
avec le temps et la température. Nous pouvons donc implémenter un rétro-
contrôle qui nous permet de retrouver la valeur de cette tension de biais et
de contrôler l’intensité de modulation avec une bonne précision.

Afin de mesurer les quadratures du champ électromagnétique, nous uti-
lisons un dispositif spécifique qui nous permet de mesurer un terme pro-
portionnel à une quadrature et non un terme proportionnel au nombre de
photons comme un détecteur de photons ou une photodiode avec son cir-
cuit d’amplification. Un tel dispositif est une détection homodyne. Il repose
sur un principe d’interférence entre un signal optique intense et un signal
optique faible, notre signal quantique, sur une lame séparatrice équilibrée.
Le signal intense, appelé oscillateur local, joue à la fois le rôle d’amplifica-
teur dans le domaine optique et de référence de phase. Une modulation de
la phase du signal intense nous permet de choisir la quadrature du champ
que l’on souhaite mesurer. Après interférence, les intensités optiques des
deux voies sont transformées en courants par des photodiodes puis sont di-
rectement soustraites par loi des noeuds. Nous présentons les équations de
base de la détection homodyne qui montrent que le signal de différence des
photocourants est proportionnel à la quadrature du champ signal faible,
et ses principales sources d’imperfection. L’équilibrage de la lame sépara-
trice doit être d’autant plus précis que l’intensité de l’oscillateur local est
importante. Les différentes pertes de la détection homodyne, qui sont les
pertes optiques, l’efficacité des photodiodes et l’adaptation des modes entre
l’oscillateur local et le signal, sont modélisées par l’introduction d’une lame
séparatrice qui couple le mode signal avec le mode vide. Dans le cas où aucun
champ signal n’est introduit sur la voie signal, les équations de la détection
homodyne prédisent une relation linéaire entre la variance des mesures de
la détection homodyne et la puissance de l’oscillateur local. En pratique
cette relation n’est qu’affine, en raison d’un bruit électronique non nul du
circuit pour une puissance d’oscillateur local nulle. Nous présentons notre
montage électronique qui utilise notamment un étage d’amplification conçu
pour l’amplification bas bruit de faibles courants.

Avant de pouvoir interférer côté Bob, l’oscillateur local et le signal doivent
se propager à travers le canal quantique sans interférer. Pour cela, nous uti-
lisons un dispositif de multiplexage à la fois en temps et en polarisation.
Côté Alice, les impulsions lumineuses sont séparées en deux voies. La voie
signal est retardée et sa polarisation est tournée de π

2 à l’aide d’un montage
constitué d’un séparateur de polarisation, d’une ligne à retard et d’un miroir
de Faraday. Elle est alors recombinée avec la voie oscillateur local en sortie
d’Alice à l’aide d’un nouveau séparateur de polarisation. Côté Bob, les deux
polarisations sont alors séparées par un séparateur de polarisation qui est
précédé d’un contrôleur dynamique de polarisation. Les statistiques de la
détection homodyne permettent de trouver un état optimal de polarisation.
La voie oscillateur local est alors retardée et sa polarisation tournée de π

2
avec le même dispositif que celui d’Alice. La combinaison de ces deux tech-
niques de multiplexage est particulièrement efficace : le démultiplexage en
polarisation est particulièrement facile à implémenter tandis que la sépara-
tion temporelle est nécessaire pour éviter des fuites trop importantes de la
voie oscillateur local dans la voie signal.

Le contrôle et l’acquisition des signaux de notre système sont réalisés
au moyen de cartes National Instruments qui fonctionnent avec un signal
d’horloge externe. Côté Alice notre horloge est générée par la carte laser
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et côté Bob nous la générons en prélevant une partie de l’oscillateur local.
Dans les deux cas, l’horloge nous permet à la fois d’acquérir les signaux et
de piloter les modulateurs optiques.

Notre système nécessite une quantité importante de nombres aléatoires
non prédictibles par un attaquant. Nous rappelons la quantité de nombre
aléatoire requise aux différentes étapes du protocole, à la fois pour le pilotage
du hardware et pour le post-traitement des données. Nous utilisons des géné-
rateurs de nombres aléatoires physiques de la société Intel qui ont le double
avantage d’être très rapides et d’inclure un post-traitement des nombres
aléatoires issus du processus physique. Cela permet d’éviter d’éventuelles
déviations de la source physique sui seraient causées par un vieillissement
des composants.

Chapitre 5 : Prévention des attaques de calibration
liées à l’oscillateur local pour la distribution quan-
tique de clés à variables continues

Dans ce chapitre, nous étudions une attaque de calibration portant sur
l’oscillateur local dans un système pratique de distribution quantique de clés
à variables continues.

La preuve de sécurité mentionnée dans le chapitre 3 ne fait pas interve-
nir l’oscillateur local de manière explicite. En effet, en théorie il n’est pas
nécessaire d’envoyer l’oscillateur local sur le canal quantique entre Alice et
Bob. Ce dernier pourrait être généré localement par Bob. Cependant, cela
est difficile à réaliser expérimentalement car l’oscillateur local doit être cohé-
rent avec le signal afin que les deux signaux puissent interférer. L’oscillateur
local est donc envoyé sur le canal quantique, subit les mêmes fluctuations
que le signal quantique, et interfère avec le signal côté Bob. Une première
possibilité d’attaque consiste pour un attaquant à modifier l’intensité de
l’oscillateur local afin de compenser son action sur l’intensité du signal. Une
contre-mesure contre une telle attaque est de surveiller l’intensité de l’oscil-
lateur local en temps réel, ce qui est déjà le cas dans notre système.

L’oscillateur local définit également le niveau de référence pour toutes
les mesures de bruit. Il s’agit du bruit quantique (ou bruit de photon), qui
est mesuré comme la variance des mesures sur la détection homodyne en fai-
sant interférer l’oscillateur local avec le mode vide sur une lame séparatrice
équilibrée. La plupart des systèmes de distribution quantique de clés implé-
mentés jusqu’ici calibrent la relation entre le bruit quantique et le niveau de
l’oscillateur local en laboratoire et déduisent la valeur du bruit quantique en
fonctionnement. Nous proposons une attaque qui vise à fausser la relation
calibrée en laboratoire. Il s’agit de modifier la forme de l’impulsion oscilla-
teur local et ainsi décaler le signal d’horloge qui est généré côté Bob à partir
de cette impulsion. Les statistiques de la détection homodyne sont affectées
par le décalage du trigger et la relation calibrée en laboratoire n’ est donc
pas utilisable pour établir le niveau de bruit de photon en temps réel.

En pratique, un espion peut exploiter cette faille de calibration pour
récupérer la clé échangée par Alice et Bob sans être détecté. Il doit pour
cela combiner cette attaque avec une attaque par interception et réémis-
sion. Eve intercepte les impulsions envoyées par Alice en mesurant les deux
quadratures du signal quantique et envoie ces impulsions à Bob. Une telle at-
taque effectuée seule introduit un niveau de bruit important. En revanche,
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lorsqu’elle est combinée avec une modification de la calibration du bruit
quantique, le niveau de bruit estimé par Alice et Bob peut devenir nul et
l’espionnage reste donc indétecté.

Nous proposons une contre-mesure pour pallier cette attaque. Il s’agit
de mesurer le bruit quantique en temps réel. Pour cela, nous proposons
deux familles de techniques. La première consiste en l’introduction d’un
dispositif d’atténuation sur la voie signal côté Bob. Bob peut ainsi atténuer
la voie signal à des moments de son choix imprédictibles par un attaquant.
Il peut en déduire une mesure du bruit de photon. En pratique, on utilise
un modulateur d’amplitude ou un interrupteur optique, comme implémenté
dans le chapitre 9. Une autre famille de techniques est d’utiliser un autre
dispositif de détection homodyne côté Bob avec une voie non connectée
qui correspond au mode vide et l’autre voie qui correspond à une fraction
connue de l’oscillateur local entrant dans le dispositif de Bob. La mesure
du bruit quantique peut alors être réalisée directement avec cette détection
homodyne.

Nous étudions l’effet de la première famille de contre-mesures en calcu-
lant le taux de clé secrète contre les attaques collectives en régime asymp-
totique dans le mode réaliste où les pertes de Bob ne sont pas accessibles
à l’attaquant. Dans ce cas là, l’efficacité de Bob est diminuée d’une quan-
tité correspondant aux pertes du dispositif d’atténuation introduit dans le
dispositif et la fraction des données utilisées pour évaluer le bruit quantique
n’est plus utilisée pour extraire de la clé secrète. Pour des paramètres expé-
rimentaux réalistes, la distance de sécurité maximale est alors réduite de 10
km.

Chapitre 6 : Amélioration de la distance de sécu-
rité de la distribution quantique de clés à variables

continues avec une modulation Gaussienne

Dans le chapitre 3, l’effet d’une procédure de correction d’erreurs impar-
faite a été abordé. Dans le cas des protocoles de distribution quantique de
clés à variables continues, cet effet a longtemps limité la distance maximale
de sécurité. La raison en est l’absence de procédures de correction d’erreurs
efficaces pour une modulation Gaussienne et un canal à bruit Gaussien pour
des régimes de faible rapport signal à bruit, qui correspondent à de grandes
distances de transmission entre Alice et Bob.

Une première solution à ce problème a été apportée en 2008 par Anthony
Leverrier. Pour de faibles rapports signal à bruit, la capacité du canal à
modulation Gaussienne et à bruit Gaussien devient très proche de la capacité
du canal à modulation binaire et à bruit Gaussien. Or, il existe des codes
correcteurs d’erreur efficaces pour ce dernier canal : les codes LDPC (Low
Density Parity Check) multi-edge. Une procédure de virtualisation de canal
peut alors être utilisée. Il s’agit d’utiliser d copies du canal à modulation
Gaussienne et à bruit Gaussien pour construire d copies d’un nouveau canal
virtuel à modulation binaire et à bruit Gaussien. L’efficacité de la correction
d’erreurs sur le canal originel dépend alors de deux facteurs :

– l’efficacité des codes correcteurs sur le canal cible (ici le canal à mo-
dulation binaire et à bruit Gaussien)

– la qualité de l’approximation entre le canal virtuel et le canal cible
(qui augmente avec la dimension d)
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Il est donc possible d’améliorer l’efficacité de la réconciliation avec des va-
riables Gaussiennes en concevant des codes avec de meilleures efficacités
sur le canal à modulation binaire et à bruit Gaussien ou en augmentant la
dimension de la virtualisation de canal.

Il apparaît que la virtualisation de canal ne peut pas être opérée en
dimension supérieure à 8 en raison de l’absence d’une division pour les di-
mensions supérieures à 8. Il existe néammoins des méthodes probabilistes
qui fonctionnent en dimension supérieure mais présentent plusieurs incon-
vénients : leur complexité calculatoire est importante, elles consomment des
nombres aléatoires en quantité importante et nécessitent plus de communi-
cations réseaux.

Nous avons conçu des codes LDPC multi-edge pour le canal à modulation
binaire et à bruit Gaussien avec des efficacités élevées pour de bas rapports
signal à bruit. Les codes LDPC sont très utilisés dans les télécommunications
classiques car ils ont des efficacités très proches de la capacité de Shannon
et peuvent être décodés avec un algorithme itératif rapide appelé Belief
Propagation. Pour un certain rapport signal à bruit, on peut calculer la
capacité du canal et l’efficacité du code (comprise entre 0 et 1) est définie
par le rapport entre le taux du code et la capacité du canal. Plus le niveau de
bruit est élevé (ce qui correspond à de grandes distances de transmission),
plus la capacité du canal est faible et donc plus il est nécessaire de concevoir
des codes LDPC de taux faibles.

Un outil standard permet de concevoir des codes LDPC de taux donné :
il s’agit de l’algorithme génétique Differential Evolution. Il permet de faire
évoluer les distributions de probabilité des degrés des noeuds pour améliorer
la performance des codes LDPC de taux correspondant à ces noeuds et ces
degrés et leur probabilité d’occurrence. Le niveau de bruit maximum qui
peut être corrigé par un code est appelé le seuil de ce code et l’algorithme
Density Evolution est utilisé pour calculer ce seuil.

Nous avons pu concevoir des codes LDPC multi-edge de taux 0.5, 0.1,
0.05 et 0.02, qui nous permettent d’atteindre des rapports signal à bruit
compris entre 1.1 et 0.03 avec des efficacités comprises entre 93.6% et 96.9%
sur le canal Gaussien. A titre de comparaison les techniques de correction
d’erreurs précédentes permettaient au mieux des efficacités de l’ordre de 90%
pour des rapports signal à bruit de 0.5 et pour des valeurs supérieures.

Afin de pouvoir travailler sur des intervalles de rapports signal à bruit
plus grands et non à des valeurs fixes, nous proposons plusieurs techniques.
Les codes à répétition concaténés aux codes LDPC multi-edge permettent
d’atteindre des rapports signal à bruit arbitrairement bas sans perte notable
d’efficacité car les codes à répétition sont pratiquement optimaux pour des
bruits très élevés. Il est possible de modifier le taux d’un code LDPC à
l’aide de techniques de puncturing et de shortening dans une certaine mesure
tout en maintenant une efficacité élevée. Enfin, la présence d’un modulateur
d’amplitude chez Alice permet d’ajuster la variance de modulation afin de
maintenir un rapport signal à bruit optimal en ce qui concerne le taux de
clé secrète chez Bob.
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Chapitre 7 : Démonstration expérimentale de dis-

tribution quantique de clés à variables continues à

longue distance

Nous présentons dans ce chapitre les performances obtenues à longue
distance avec notre dispositif expérimental. La distance maximale obtenue à
longtemps été limitée à environ 25 km en raison de l’absence de procédures
de correction d’erreurs efficaces pour des rapports signal à bruit faibles, c’est
à dire pour de longues distances. Nous avons développé dans le chapitre 6
des codes correcteurs d’erreurs efficaces qui nous permettent en théorie de
générer des clés secrètes à des distances supérieures à 100 km. Ici, nous
démontrons expérimentalement la distribution quantique de clés à variables
continues à une distance de 80 km (16.1 dB de pertes).

Nous implémentons le protocole à modulation Gaussienne d’états cohé-
rents présentés dans le chapitre 3. Alice utilise une diode laser télécom en
régime impulsionnel à une fréquence de 1 MHz pour des impulsions d’une
durée de 100 ns. Les impulsions sont séparées en deux à l’aide d’un cou-
pleur déséquilibré de rapport 99/1. La voie la moins atténuée correspond
à l’impulsion oscillateur local. Sur la voie la plus atténuée, un modula-
teur d’amplitude et un modulateur de phase sont utilisée pour générer la
modulation Gaussienne bidimensionnelle du protocole GG02. Le niveau de
variance du signal est ajusté à l’aide d’un réglage grossier avec des atté-
nuateurs variables mécaniques et d’un réglage fin en utilisant le modulateur
d’amplitude. L’impulsion signal est retardée d’environ 200 ns à l’aide d’une
ligne à retard de 20 m et d’un miroir de Faraday. La polarisation de l’im-
pulsion signal est ainsi également tournée d’un angle de π

2 par rapport à
l’impulsion oscillateur local et le multiplexage en polarisation est réalisé au
moyen d’un combineur de polarisation. Sur la voie signal, une partie du si-
gnal est prélevée au moyen d’un coupleur puis injectée dans une photodiode
et son circuit d’amplification. Ce système permet de surveiller le niveau du
signal en cours de fonctionnement et ainsi d’ajuster le niveau de modula-
tion d’Alice. Ce rétrocontrôle permet d’une part de compenser les dérives
de la tension de biais du modulateur d’amplitude et d’autre part de choisir
le niveau de signal en sortie d’Alice pour obtenir un rapport signal à bruit
optimal chez Bob. Après s’être propagées à traver le canal quantique, les
impulsions signal et oscillateur local sont séparées chez Bob à l’aide d’un sé-
parateur de polarisation et d’un contôleur de polarisation dynamique. Avant
cela, une fraction fixe de ces signaux est prélevée afin de générer un signal
d’horloge qui permet de réaliser les mesures sur la détection homodyne. Une
deuxième ligne à retard côté Bob permet de superposer temporellement les
impulsions signal et oscillateur local. Un modulateur de phase situé sur la
voie oscillateur local permet de sélectionner aléatoirement une quadrature
du signal. Le canal quantique est constitué de plusieurs rouleaux de fibre
optique et la distance maximale de production de clés de notre système est
de 80 km.

Conformément à l’analyse de sécurité présentée dans le chapitre 3, l’état
quantique à deux modes partagé entre Alice et Bob est entièrement caracté-
risé par la variance de modulation d’Alice, la transmission et l’excés de bruit
du canal quantique. La variance de modulation d’Alice et l’excés de bruit
devant être exprimés en unités de bruit de photon, nous estimons également
le bruit de photon. Tous ces paramètres sont estimés en temps réel en ré-
vélant aléatoirement une fraction des signaux échangés entre Alice et Bob.
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Dans le mode réaliste, deux autres paramètres, qui sont l’efficacité et le bruit
électronique de la détection homodyne, doivent être estimés. Ces paramètres
sont estimés en laboratoire avant l’execution de la distribution quantique de
clés et nous devons donc supposer qu’un attaquant potentiel ne peut pas
altérer leur valeur. La variance de modulation d’Alice est ajustée en temps
réel afin de maintenir un rapport signal à bruit chez Bob qui est proche du
seuil de décodage d’un des codes correcteurs d’erreurs disponibles.

La procédure de correction d’erreurs s’effectue en deux parties. Les va-
leurs mesurées par Bob sont tout d’abord regroupées huit par huit et Bob tire
des valeurs binaires aléatoires de taille huit qui vont servir de référence pour
la clé. Bob transmet alors à Alice des vecteurs de taille huit qui décrivent
la rotation entre le vecteur reçu par Bob et le vecteur tiré aléatoirement.
On peut montrer que cette information transmise de Bob à Alice ne révèle
rien à propos de la clé. En utilisant cette rotation, Alice peut alors calculer
un vecteur qui correspond au vecteur de référence tiré chez Bob plus un
bruit proche du bruit Gaussien introduit par le canal. Il est alors possible de
regrouper 217 vecteurs de taille huit chez Alice et chez Bob afin de former
des vecteurs de taille 220 sur lesquels une procédure de correction d’erreurs
standards est appliquée. Bob calcule le syndrome associé à son vecteur de r
’e férence en le multipliant par la matrice de parité du code LDPC multi-
edge choisi pour le rapport signal à bruit constaté entre Alice et Bob. Alice
reçoit ce syndrome et applique un décodage itératif pour corriger les erreurs.
Nous utilisons un processeur graphique pour décoder plusieurs vecteurs à la
fois et ainsi obtenir des vitesses de correction d’erreurs compatibles avec un
post-traitement des données en temps réel. Des vitesses de plusieurs mega-
bits par seconde sont obtenues sur des processeurs graphiques AMD Tahiti
comme présenté dans le chapitre 8.

L’amplification de confidentialité est réalisée en accumulant plusieurs
vecteurs après correction d’erreurs et en les multipliant par des matrices
de Toeplitz aléatoires. Cette étape peut s’implémenter efficacement sur des
processeurs récents y compris pour des tailles d’entrée importantes. Pour
des tailles d’entrée de 109 et de sorties de l’ordre de 106, nous obtenons des
vitesses de l’ordre de 40 megabits par seconde sur un coeur de processeur
i7-920.

Afin de pouvoir obtenir des taux de clé positifs à longue distance en
prenant en compte les effets de taille finie, il est nécessaire d’estimer les
paramètres utilisés pour calculer le taux de clé secrète sur des blocs de grande
taille. En effet, l’information mutuelle entre Bob et Eve dans le cas des
tailles finies est calculée comme le maximum de cette information mutuelle
sur les intervalles de confiance obtenus lors de l’estimation des paramètres
sur des blocs de données de taille finie. Le principal effet de l’analyse en
taille finie correspond à l’incertitude sur l’excés de bruit du canal quantique.
L’incertitude sur l’estimateur de l’excés de bruit augmente avec la distance
de transmission et il faut donc considérer des blocs de taille de plus en
plus grande pour réduire cette incertitude pour de grandes distances de
transmission. En pratique, à 80 km nous devons estimer nos paramètres sur
des blocs de taille 109 pour obtenir un taux de clé positif. Cela n’est possible
que si le système est stable sur des durées permettant d’acquérir des blocs
de taille 109 c’est à dire quelques minutes pour un taux de répétition optique
de l’ordre du MHz.
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Chapitre 8 : Amélioration du débit de la distribu-

tion quantique de clés à variables continues

Ce chapitre est consacré à l’amélioration du débit de la distribution quan-
tique de clés à variables continues. Le débit des précédentes démonstrations,
et notamment le débit du système combiné à un système de chiffrement sy-
métrique dans le chapitre 9, était limité par la vitesse de post-traitement des
données issues du système. Au sein du tuyau de post-traitement, la correc-
tion d’erreurs était l’étape limitante en raison de l’utilisation d’algorithmes
itératifs tels que Belief Propagation dont la vitesse de convergence est lente
pour des niveaux de bruit proches du seuil du code correcteur d’erreurs uti-
lisé. De plus, travailler loin des seuils des codes correcteurs pour améliorer la
vitesse de décodage n’aurait pas permis de maintenir des taux de clé positifs
pour des distances acceptables.

Nous avons implémenté l’étape de décodage des codes LDPC sur un pro-
cesseur graphique à l’aide du langage de programmation OpenGL. L’impor-
tant parallélisme offert par ces processeurs permet d’atteindre des vitesses
allant jusqu’à 10 Mb/s tout en conservant les efficacités élevées obtenues
avec les codes correcteurs d’erreurs conçus dans le chapitre 6. Nous compa-
rons ces vitesses avec celles obtenues sur des unités centrales de traitement
modernes. Le gain est d’environ un ordre de grandeur et va en augmentant
car la pente de l’évolution de la vitesse des processeurs graphiques est plus
importante que celle des unités centrales de traitement.

Nous avons également généré un autre type de codes, des codes polaires,
à la fois pour le canal binaire symétrique qui est le canal de référence pour la
distribution quantique de clés à variables discrètes, et pour le canal à entrée
binaire et bruit Gaussien pour la distribution quantique de clés à variables
continues. Les codes polaires ont été découverts en 2008 et ont la particu-
larité d’atteindre la capacité de Shannon en limite asymptotique pour tous
les canaux binaires symétriques sans mémoire. Ils s’accompagnent de plus
de techniques d’encodage et de décodage efficaces. Pour les codes polaires,
différentes copies du canal sont combinées récursivement pour former un
nouvel ensemble de canaux de façon à ce qu’en limite asymptotique les ca-
naux soient ou bien sans bruit ou bien totalement bruités, avec une fraction
de canaux sans bruit égale à la capacité du canal. Ce phénomène est ap-
pelé la polarisation de canal. En limite asymptotique, les bits d’information
peuvent être envoyés sur les canaux sans bruit pour atteindre la capacité
du canal mais en pratique, l’on peut uniquement atteindre une fraction de
cette capacité avec une probabilité d’erreur proche de zéro pour des tailles
de blocs finies. La vitesse de convergence des canaux en canaux sans bruit
ou en canaux bruités est appelée la vitesse de polarisation.

Nous avons utilisé Density Evolution pour calculer les capacités des dif-
férents canaux pour des codes polaires de différentes tailles. Les bits corres-
pondant aux canaux de faible capacités sont simplement révélés et consti-
tuent les bits gelés du code. La méthode de construction utilisée nous per-
met de calculer une borne sur la probabilité d’erreur de décodage des codes
construits. Nos résultats de simulation montrent que la vitesse de polari-
sation des codes polaires dépend fortement du canal. Pour le canal binaire
symétrique, nous avons obtenu des codes d’efficacité supérieure à 95% pour
tout l’invervalle utile de probabilité d’erreur [0; 0.11] avec des codes de taille
supérieure à 224. Pour le canal à entrée binaire et bruit Gaussien, nous
n’avons pu atteindre que des capacités de l’ordre de 90% avec des codes
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polaires de taille 227. En ce qui concerne la vitesse de décodage, la struc-
ture récursive régulière des codes polaires nous a permis d’implémenter un
décodeur récursif qui atteint des vitesses de l’ordre de 10 Mb/s sur des pro-
cesseurs récents.

En ce qui concerne l’amplification de confidentialité, nous donnons nos
vitesses de hachage sur des processeurs récents pour la famille “multiplica-
tion par une matrice de Toeplitz aléatoire”. Les vitesses obtenues sont un à
deux ordres de grandeur supérieures aux vitesses obtenues pour la correction
d’erreur. Cette étape n’est donc toujours pas limitante en vue d’une aug-
mentation de la fréquence de notre système. Nous rappelons enfin le débit
de communication réseaux pour les différentes étapes de notre système. Ce
débit est bien inférieur aux débits réseaux actuellement accessibles.

Chapitre 9 : Intégration de la distribution quan-

tique de clés à variables continues dans les réseaux

optiques

Le dernier chapitre est consacré à l’intégration de la distribution quan-
tique de clés à variables continues dans les réseaux optiques. Nous présentons
dans un premier temps une démonstration de la stabilité long-terme (sur une
période de six mois) d’une implémentation du protocole GG02 sur un lien
optique fibré déployé sur le terrain et non en laboratoire. Dans le cadre de
cette démonstration, le dispositif de CVQKD est couplé à des chiffreurs sy-
métriques commerciaux qui implémentent un chiffrement AES. Le système
CVQKD est utilisé pour renouveler les clés de ces chiffreurs. La deuxième
partie de ce chapitre vise à démontrer la compatibilité de la CVQKD avec
des signaux classiques multiplexés sur la même fibre optique. Après avoir
rappelé l’analyse théorique des bruits ajoutés sur un canal quantique par
des canaux classiques à d’autres longueurs d’onde, nous présentons les ré-
sultats expérimentaux obtenus sur une fibre de 25 km avec notre système
de CVQKD et un canal classique intense.

Puisque le taux de clé secrète que l’on peut obtenir avec tout système
QKD décroît avec l’augmentation des pertes et donc avec la distance de
transmission, l’utilisation du chiffrement à masque jetable qui consiste en la
combinaison d’un bit de clé secrète pour un bit de message à transmettre
n’est pas adaptée aux communications à haut débit. En effet, les communi-
cations numériques actuelles atteignent des débits de plusieurs dizaines de
gigabits par seconde sur des distances arbitraires (en utilisant un nombre
potentiellement grand d’amplificateurs optiques) tandis que les meilleurs
taux de clé secrètes obtenus avec des dispositifs QKD en laboratoires sont
de l’ordre du megabit par seconde et même du kilobit par seconde pour les
systèmes commerciaux. A l’opposé, des systèmes de chiffrement classiques
basés sur des primitives avec des implémentations rapides, comme l’AES,
permettent d’atteindre des débits de plusieurs dizaines de gigabits par se-
conde. La mise à la clé de ces systèmes peut se faire de plusieurs façons. La
première consiste en un prépartage des clés entre équipements lors de leur
sortie d’usine. Un défaut de cette approche est que le vol d’un équipement
ou bien l’accès à un équipement à un certain moment compromet la sécurité
de toutes les communications postérieures. Une autre possibilité est d’utili-
ser des primitives asymétriques, comme le protocole Diffie Hellman. Un tel
protocole permet de renouveler la clé un nombre quelconque de fois, et force
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donc un espion à récupérer la nouvelle clé après chaque renouvellement afin
de pouvoir déchiffrer l’intégralité des communications. Le défaut de cette
approche est que la sécurité de cette primitive repose sur des hypothèses de
nature algorithmiques. Il est également possible d’utiliser un messager de
confiance, en d’autres termes un convoi sécurisé, pour partager les clés entre
Alice et Bob mais cette approche est peu pratique car non automatisable
et très coûteuse. Une dernière possibilité est donc d’utiliser la distribution
quantique de clés, qui présente l’avantage de ne reposer sur aucune hypo-
thèse algorithmique et de permettre un renouvellement de clés fréquent et
automatique.

Cette démonstration du renouvellement de clés symétriques de chiffreurs
AES par la QKD et de chiffrement à 1 Gb/s s’est effectuée sur un lien fibré de
17.7 km présentant 5.6 dB de pertes entre Massy et Palaiseau en région Pari-
sienne. La couche physique du dispositif QKD a été réalisée avec un dispositif
similaire à celui décrit dans le chapitre 7 fonctionnant à une fréquence de 500
kHz et à une longueur d’onde de 1550 nm. Le post-traitement des données
générées par les boîtiers optiques est fait par des unités centrales indépen-
dantes qui implémentent les étapes d’estimation des paramètres physiques
du canal quantique, de correction d’erreur, d’amplification de confidentialité
et de vérification de la clé. L’authentification et la gestion des clés est réali-
sée sur ces mêmes ordinateurs à l’aide de la couche logicielle réalisée dans le
cadre du projet Européen SECOQC par l’Austrian Institute of Technology.
Les clés sont injectées dans les chiffreurs Mistral par les dispositifs QKD
à une fréquence de 10 secondes qui est paramétrable à travers la console
de gestion des chiffreurs. Enfin, des unités centrales supplémentaires sont
utilisées pour générer du trafic à 1 Gb/s qui est chiffré par les Mistral.

Le système a fonctionné pendant six mois et était surveillé à travers une
connexion sécurisée à distance. Des prises commandables grâce à un accès
réseau permettaient également d’éteindre et de rallumer les systèmes en cas
de problème. Une panne matérielle a interrompu le fonctionnement du sys-
tème pendant une semaine puis des fluctuations de température importantes
ont altéré son fonctionnement. Un taux de clé secrète de l’ordre de 600 bits
par seconde contre les attaques collectives a été obtenu lors de la première
partie de la démonstration puis de l’ordre de 400 bits par seconde contre les
attaques individuelles après la panne matérielle et dans des conditions de
fonctionnement dégradées.

Nous nous intéressons ensuite aux différents bruits ajoutés dans le cadre
du fonctionnement d’un système de CVQKD avec d’autres canaux classiques
situés à d’autres longueurs d’onde sur la même fibre optique. La première
source de bruit est la fuite des canaux classiques dans le canal quantique en
raison de la largeur spectrale des sources laser utilisées. Cette fuite devient
très faible en pratique en utilisant des multiplexeurs et démultiplexeurs avec
des isolations importantes entre canaux. La deuxième source de bruit est
le Four Wave Mixing (FWM) qui correspond à l’interaction entre au moins
deux canaux classiques et la non linéarité des fibres optiques. Dans le cas
du FWM, trois signaux optiques de fréquences différentes interagissent pour
créer un quatrième signal à une fréquence qui est une combinaison linéaire
des fréquences précédentes. Le FWM peut être une source majeure de bruit
à courte distance mais il est largement dominé par l’effet Raman sur des
distances métropolitaines de l’ordre de 25 km. De plus son effet peut être
diminué par exemple en augmentant l’espacement entre canaux classiques ou
en omettant un canal entre le canal quantique et le canal classique suivant.



LIST OF TABLES xxxv

Pour ces raisons, nous négligeons l’effet du FWM dans notre étude. Enfin,
lorsque le canal quantique est placé à une longueur d’onde inférieure aux
canaux classiques, l’effet Raman spontané de type anti-Stokes est l’effet
dominant. Il s’agit de l’émission spontanée de photons à d’autres longueurs
d’onde que la longueur d’onde de ce champ avec un nombre de photons
proportionnel à la puissance du canal classique qui les créent ainsi qu’à la
longueur d’onde de ce champ.

L’effet Raman s’avère désastreux pour la DVQKD mais beaucoup moins
pour la CVQKD. En effet, l’oscillateur local qui interfère avec le signal quan-
tique joue le rôle de filtre pour les photons générés par effet Raman car seuls
les photons qui sont dans le même mode spatiotemporel et de polarisation
que l’oscillateur local vont interférer avec lui. Une partie importante du bruit
va donc être filtrée par la détection interférométrique. Nous simulons l’excés
de bruit ajouté sur notre système CVQKD par un canal classique et nous
calculons le taux de clé secrète que nous pouvons espérer atteindre pour le
système du chapitre 7 en coexistence avec un canal classique. Puis nous réa-
lisons la démonstration expérimentale. Dans un système où d’autres canaux
classiques peuvent générer un bruit de photon sur la détection homodyne,
l’utilisation d’une relation calibrée pour dé terminer le bruit de photon ne
peut pas être utilisée. Nous avons donc choisi d’implémenter l’une des contre-
mesures proposées dans le chapitre 5. Nous avons introduit un interrupteur
optique sur la voie signal du dispositif Bob. Cela nous permet de fermer cette
voie à des instants aléatoires et de mesurer le bruit de photon en temps réel.
L’implémentation de cette méthode ajoute un bruit intrinsèque à notre sys-
tème et nous ne sommes pas en mesure d’obtenir les mêmes niveaux de bruit
que dans le chapitre 7. Notre démonstration de la coexistence entre un canal
classique non atténué et notre système CVQKD est donc ici limitée à un lien
de 25 km.
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Introduction

This manuscript deals with the security and performance of a continuous-
variable quantum key distribution system that employs coherent states of
light. Quantum Key Distribution (QKD) is, together with Quantum Ran-
dom Number Generators (QRNG), one of the first applications of quantum
information, a modern research field situated at the intersection between
quantum mechanics and information theory.

Contrary to classical key distribution methods, QKD allows us to trans-
mit a secret message through a public communication channel without mak-
ing any assumption regarding the power of an eavesdropper attempting to
learn this secret. The security of this technique relies on the laws of quan-
tum physics and is said to be unconditional, while the security of classical
key distribution methods relies on some computational hardness assump-
tions and can only be proven against some restricted classes of attackers.
The protocol using coherent states of light offers the advantage of using
only standard components, optimized for high-speed optical telecommuni-
cations. In this thesis, we started from coherent state prototypes designed at
Thales Research & Technology and the Institut d’Optique Graduate School
in the context of the Secure Communication based on Quantum Cryptogra-
phy (SECOQC) European project. We then designed a commercial product
called Cygnus which has an improved performance in terms of operating
distance, speed, security and integration in current network infrastructures.

Scientific context at the beginning of the thesis

The first quantum key distribution protocols used discrete variables, i.e.
they encoded the information in discrete states of the light such as the po-
larization of single photons [120]. Only twenty years after the seminal paper
of Bennett and Brassard [9] that introduced this idea, on the one hand,
some start-up companies, like MagiQ Technologies [3] and IdQuantique [2],
designed fiber optics based commercial systems using discrete variables pro-
tocols. A few years later, the Austrian Institute of Technology developed
another QKD system built around a source of entangled photons. On the
other hand, the first protocols employing continuous variables were intro-
duced a few years later. Experimental continuous variables protocols were
demonstrated over both free space and fiber links. Contrary to Discrete
Variables Quantum Key Distribution protocols which require specific com-
ponents such as actively cooled single photon detectors, Continuous Vari-
ables Quantum Key Distribution (CVQKD) protocols using coherent states
employ only standard telecommunication components. However, CVQKD
performance was not suitable for long distance communications and no secret
key could be distributed over distances larger than 25 km [83]. In contrast,
DVQKD was performed over 200 km of optical fibre thanks to cutting-edge
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superconducting single photon detectors [137].

In parallel to the development of QKD commercial systems, a new re-
search field emerged: quantum hacking. Indeed, while in theory QKD offers
an unprecedented level of security, in practice this security can be threat-
ened because of implementation problems [121]. This is because the security
proof of a QKD protocol does not take into account real and therefore im-
perfect devices but ideal versions of these devices. Consequently, a malicious
eavesdropper can exploit such deviations from the theoretical description of
the protocol in order to perform powerful attacks that cannot be detected
[91, 155, 86, 58]. Hence, the existing security proofs were modified in order
to include effects not taken into account into the previous security proofs,
including the issue of finite-size effects [122, 77].

Finally, from an industrial point of view, performance and security are
not the only relevant criteria concerning QKD adoption in security infras-
tructures. Actually, QKD integration in current network infrastructures
might even be the main driver to a broader market. This is why several
field demonstrations of QKD were performed and not only laboratory ex-
periments. In [104, 119], QKD was demonstrated over real metropolitan
networks, while in [37], the authors demonstrate the coexistence of QKD
and classical encryption over a single point-to-point fiber link. However,
this latter demonstration suffers from DVQKD lack of tolerance to the noise
introduced by classical channels on the quantum channel. In fact, the fea-
sibility of quantum key distribution through a Dense Wavelength Division
Multiplexing (DWDM) network is an important topic addressed in [106]: in
this theoretical analysis CVQKD compared favorably to DVQKD as regards
deployments in a DWDM network.

Content of the manuscript

Chapter 1 of this manuscript introduces the basis concepts of cryptogra-
phy and presents briefly the new tools brought by quantum cryptography to
the field. Chapter 2 describes the building blocks of quantum information
with Gaussian variables that are necessary for the theoretical analysis of
the quantum key distribution protocols with continuous variables that are
studied in chapter 3. In chapter 4, we detail the experimental setup we used
for the implementation of the coherent states CVQKD protocol. In chapter
5, we describe a potential attack on a CVQKD system and provide possi-
ble countermeasures. In chapter 6, we explain how to increase the range
of CVQKD thank to a set of error-correcting codes we developed. These
error-correcting codes, together with the improved stability of our hardware
setup, allow for an experimental demonstration of long-distance in chap-
ter 7. Chapter 8 provides high-speed error-correction software tools that
enable an increase of the speed of our system. Chapter 9 is dedicated to
CVQKD integration in optical networks: it describes a field demonstration
of a CVQKD prototype combined with classical encryptors and gives pre-
liminary results concerning the compatibility of our CVQKD setup with a
DWDM environment.



LIST OF TABLES 3

Academic publications and conferences

The results of this thesis have been published in several peer-reviewed
journals. Here is the list in chronological order:

– P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long Distance Continuous-
Variable Quantum Key Distribution with a Gaussian Modulation”,
Phys. Rev. A 84, 062317 (2011).

– P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti,
R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache,
and P. Painchault, “Field Test of Classical Symmetric Encryption with
Continuous Variable Quantum Key Distribution”, Opt. Express 20,
14030 (2012).

– P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Anal-
ysis of Imperfections in Practical Continuous-Variable Quantum Key
Distribution”, Phys. Rev. A, 86, 032309 (2012).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Dia-
manti, “Experimental demonstration of long-distance continuous-variable
quantum key distribution”, Nat. Phot., 7, 378 (2013).

– P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing Calibra-
tion Attacks on the Local Oscillator in Continuous-Variable Quantum
Key Distribution”, Phys. Rev. A, 87, 062313 (2013).

– P. Jouguet, and S. Kunz-Jacques, “High Performance Error Correc-
tion for Quantum Key Distribution using Polar Codes”, Quant. Inf.
Comp., Vol. 14, No. 3&4 (2013).

– S. Kunz-Jacques, and P. Jouguet, “Using Hash-Based Signatures to
Bootstrap Quantum Key Distribution”, submitted to IEEE Trans.
Inf. Forens. Sec. (2013).

– A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler,
I. Kerenidis, and E. Diamanti, “Experimental plug & play quantum
coin flipping”, submitted to Nat. Comm., (2013).

The results of this thesis have also been presented in posters and presenta-
tions at the following conferences in chronological order:

– P. Jouguet, “Long-distance CVQKD with a Gaussian modulation”,
Continuous Variable Quantum Information Processing 2011 (CVQIP
2011), Paris, France, September 2011 (presentation).

– P. Jouguet, “Towards High-performance CVQKD”, FREQUENCY
project meeting, Waterloo, Canada, November 2011 (presentation).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, E. Diamanti, “High Perfor-
mance Continuous-Variable Quantum Key Distribution”, First GDR
- IQFA workshop, Paris, France, November 2011 (poster).

– P. Jouguet, “Performance and security of CVQKD”, Continuous Vari-
able Quantum Information Processing 2012 (CVQIP 2012), Federiks-
dal, Denmark, April 2012 (presentation).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, E. Diamanti, “Improving
the Performance of Continuous-Variable Quantum Key Distribution:
Study of Practical Imperfections and High-Performance Reconcilia-
tion”, QCRYPT 2012, Singapore, September 2012 (poster).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti
“Experimental demonstration of CVQKD over 80 km of standard tele-
coms fiber”, QCRYPT 2012, Singapore, September 2012 (presenta-
tion).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti,



4 LIST OF TABLES

“Experimental Demonstration of Long-Distance Continuous-Variable
Quantum Key Distribution”, Second GDR - IQFA workshop, Greno-
ble, France, November 2012 (presentation).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti,
“Experimental Demonstration of Long-Distance Continuous-Variable
Quantum Key Distribution”, Topical Research Meetings on Physics:
Quantum technologies: taking concepts through to implementations,
London, United Kingdom, December 2012 (presentation).

– P. Jouguet, “Integration of CVQKD in Future Optical Networks”,
Continuous Variable Quantum Information Processing 2013 (CVQIP
2013), Paris, France, January 2013 (presentation).

– P. Jouguet, “SeQureNet Coherent-State CVQKD Implementation”,
National Institute of Communications and Technology (NICT) semi-
nar, Tokyo, Japan, March 2013 (presentation).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti,
“Experimental demonstration of continuous-variable quantum key dis-
tribution over 80 km of standard telecoms fiber”, Conference on Lasers
and Electro-Optics - International Quantum Electronics Conference
2013 (CLEO - IQEC 2013), Munich, Germany, May 2013 (presenta-
tion).

– P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti,
“Experimental demonstration of continuous-variable quantum key dis-
tribution over 80 km of standard telecoms fiber”, Conference on Lasers
and Electro-Optics:Quantum Electronics and Laser Science - Funda-
mental Science 2013 (CLEO:QELS - Fundamental Science 2013), San
Jose, USA, June 2013 (presentation).

– P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Dia-
manti, R. Alléaume, “Experimental demonstration of the coexistence
of continuous-variable quantum key distribution with an intense DWDM
classical channel”, QCRYPT 2013, Waterloo, Canada, August 2013
(presentation).

– P. Jouguet, S. Kunz-Jacques, E. Diamanti, “Preventing calibration
attacks in continuous variables quantum key distribution”, QCRYPT
2013, Waterloo, Canada, August 2013 (poster).

At QCRYPT 2012 conference, the work entitled “Experimental demonstra-
tion of continuous-variable quantum key distribution over 80 km of standard
telecoms fiber” received the Best Student Paper Award by the conference
program committee.

Scientific collaborations

This work greatly benefited from several scientific collaborations. This
research was supported by the the ANRT (Agence Nationale de la Recherche
et de la Technologie), the French National Research Agency, through the
FREQUENCY (ANR-09-BLAN-0410) and HIPERCOM (2011-CHRI-006)
projects, by the European Union through the projects Q-CERT (FP7-PEOPLE-
2009-IAPP) and by the DIRECCTE Ile-de-France through the QVPN (FEDER-
41402) project.



LIST OF TABLES 5

Figure 1: Cygnus: a quantum key distribution product commercialized by
SeQureNet. The optical part is composed of two standard 19 inches rackable
boxes of 4U, one for Alice and the other for Bob. They are driven by two
computers that also perform the different post-processing steps.

Industrial and commercial impact

The first Continuous-Variables Quantum Key Distribution product, called
Cygnus (see Figure 1), has been released and sold by SeQureNet during this
thesis. A patent application focused on real time shot noise measurement
techniques for continuous variables quantum communication systems has
been filed. Some of these techniques are described in chapter 5.
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1.1 What is Cryptography?

The word cryptography stems from Greek κρυπτω that means hidden
or secret. It refers to a set of techniques allowing for secure communica-
tions in the presence of third parties, also called adversaries, attackers or
eavesdroppers. Historically, the only purpose of cryptography was data con-
fidentiality, which consists in preventing any non-legitimate party to access
a message some legitimate parties want to share. Secrecy of communications
is for example of utmost importance as regards military operations or diplo-
macy. Message confidentiality can be achieved using encryption, which is
the process of converting an ordinary message (called plaintext) into appar-
ent nonsense (called ciphertext). Decryption is the reverse operation that
recovers the plaintext from the ciphertext. Encryption and decryption are
performed using a pair of algorithms, also called a cipher. A cipher can be
instantiated by a key, i.e. a secret chosen in a large set, which is used both
to encrypt and decrypt the messages. If the key that indexes the cipher is
not chosen in a large enough set, the security of the cipher relies on the se-
crecy of the cipher. This is because the knowledge of the cipher is sufficient
to perform encryption and decryption which allows for a straightforward
strategy for an attacker, the exhaustive search. He can try to decrypt the

7
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message successively with all the possible keys until he finds an intelligible
message, which can be done in finite time for a finite set of keys.

Let us consider a famous example, Caesar cipher, or the shift cipher,
named after Julius Caesar who used it to communicate with his generals. It
simply consists in substituting each letter in the plaintext by a letter shifted
by some fixed number of positions in the alphabet. For instance, with a right
shift of 3, A is replaced by D, B by E, and so on. The plaintext HELLO is
encrypted in the ciphertext KHOOR. One can easily see that the number of
possible keys for the cipher is equal to the number of letters in the alphabet,
i.e. 26. Thus, an attacker aware of the shift cipher can try successively to
shift the letters of the ciphertext KHOOR by a number of positions between
1 and 26 until he recovers the plaintext. This is a brute force attack where
the attacker tries all the possible keys until he encounters the plaintext (this
requires to define a criteria to recognize a plaintext that does not give too
many false positives) without using more sophisticated approaches. Another
possible attempt to break such a cipher consists in analysing the frequency
of occurrence of the letters in the ciphertext. Since a shift cipher also shifts
the frequency of occurrence of the letters of the plaintext, an attacker can
recover the key from the ciphertext analysis. In the English language, E
is the most frequent letter, thus encrypting a long enough plaintext (for
example a book) with the shift cipher and the key 3 is likely to produce a
ciphertext whose most frequent letter if H. If the message is long enough,
an eavesdropper can deduce that the key is 3 from this simple observation.
More generally, cryptanalysis regroups all the techniques that can be used to
recover some information on plaintexts from ciphertexts without knowledge
of the encryption key. In practice, we say that a cipher is good if there is no
procedure allowing to recover the plaintext faster than brute force. In this
case, the security of the cipher is equivalent to the secrecy of the key.

In the modern era, cryptography and cryptanalysis have developed quickly,
in particular because they are eased by the use of computers. On the crypt-
analytic side, the development of computers allows us to carry out repetitive
and difficult tasks, which led for example to the decryption of ciphers gener-
ated by the German Army’s Lorenz SZ40/42 machine (a mechanical cipher
machine) during the World War II. Computers also enabled the development
of much more complex ciphers. One important feature of modern cryptogra-
phy is the manipulation of binary sequences by computers while mechanical
machines were limited to letters and digits: this enables the encryption of
any kind of data that can be represented in binary format, such as images,
audio files or video files for example.

The use of cryptography has expanded especially with the development
of digital communication infrastructures, such as network infrastructures.
This is a direct consequence of the increase of the volume of digital com-
munications over the world. In addition to national security usage, data
protection now also concerns companies, private individuals and even ma-
chines, which represent an increasing portion of the global volume of commu-
nications with the expansion of Internet Protocol (IP) networks that made
machine-to-machine communication easier. The physical media of commu-
nication are also diverse, ranging from fiber optics to free space that include
short distance transmission protocols (like the famous Wi-Fi protocol) but
also long distance satellite communications. Finally, a great diversity of
techniques are currently used in addition to data confidentiality: data in-
tegrity, user identity authentication and digital signatures are among the
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most famous ones.
The multi-level complexification of data communication infrastructures

which are composed of a large diversity of both hardware and software build-
ing blocks faces an increasing number of security threats which led people
to consider a broader field of research, Information Security, which is be-
yond the scope of this manuscript. In the next sections, we focus on some
modern cryptography techniques which are relevant to understand which
services can or cannot be improved with the help of quantum cryptography.

1.2 Modern Cryptography

1.2.1 Symmetric and Asymmetric Cryptography

Symmetric cryptography, or secret key cryptography, gathers together
all the encryption and authentication methods where the different parties
share the same key. This key is used for both encryption and decryption of
a message. Even if the cipher is good, it is still very important to define
a secure procedure allowing to share the key since any leak (even partial)
of the key considerably weakens the security of the symmetric scheme. A
confidential meeting between the parties can play this role, or the encryptors
used to perform the encryption and the decryption are simply made with
a common secret. Another possibility is to send a trusted secret courrier,
i.e. a secure means of transport, for example some militaries holding secret
keys stored on a protected storage medium such as smart cards. The major
drawback of these procedures is that the number of secret keys that need to
be exchanged, and also the deployment cost, scales quadratically with the
number of parties. For a large scale infrastructure, like electronic commerce,
such methods are not satisfactory. Another drawback is that if a key leaks
at some point, the procedure must be done again.

Asymmetric cryptography, or public key cryptography, aims at solving
these difficulties. It employs two different keys for encryption and decryp-
tion: the encryption key is public while the decryption key remains secret.
With such a scheme, it is not required any more to share a common secret
before transmitting confidential data. However, the two keys are related
and the security of the scheme relies on some assumptions, for example the
computational power of the eavesdropper is assumed to be bounded or some
mathematical problems (e.g. factorizing large numbers) are assumed to have
a non-polynomial complexity.

Another asymmetric cryptographic primitive of particular interest is dig-
ital signature. With a pair composed of one private key and one public key,
a user can sign a message with his secret key and output a signature. Then,
any other user can check the authenticity of the signature with the public
key and the signer cannot pretend he did not produce the signature since he
is supposed to be the unique owner of his secret key. Symmetric primitives
do not permit to produce non-repudiable signatures. This is because the
same key is used both for the signature and the signature checking. This
prevents any user from making the difference between signatures produced
by the legitimate signatory and signatures produced by any other user.

Though asymmetric cryptography does not require to share secret keys,
it requires to share authentic keys. Indeed, if one encrypts a message with
the public key of a non-legitimate recipient, this non-legitimate recipient can
decrypt the message. The usual solution used to ensure the authenticity of
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the public keys is called a Public Key Infrastructure (PKI). This consists in
defining some certification authorities, which are in charge of verifying the
matches between public keys and user identities. They provide certificates
that describe a user identity and the associated public key. Digital signatures
allow us to check the validity of these certificates.

1.2.2 Usual Primitives

The most famous symmetric encryption primitive is the Advanced En-
cryption Standard (AES)[41]. It is a block cipher, which means that the
message is divided into blocks of size 128 bits and each block is encrypted
using the algorithm and the secret key (usual key sizes are 128, 192 or 256
bits).

1.2.3 Threats

The security of asymmetric cryptography mostly relies on a small family
of well-identified hypotheses of hardness of simple mathematical problems.
For instance, the Rivest Shamir Adleman (RSA) hypothesis - related to, and
not stronger than factoring - for RSA [116], the discrete logarithm in finite
fields or elliptic curves for DSA/ECDSA [40, 59] and Schnorr Signatures
[124], or related problems like the Computational Diffie-Hellman problem,
etc. Thus, a sudden breakthrough either in mathematics or in algorithmics
can impact abruptly the security of asymmetric schemes. Furthermore, for
example, on a quantum computer Shor algorithm [129] allows to factorize
large numbers in polynomial time. Even if a quantum computer able to
manipulate thousands of quantum bits (or qubits) should remain out of
reach for a while, RSA is definitely not a primitive that will likely provide
long-term security guarantees. Indeed, an attacker can still record all the
communications until such a device is available.

The situation is rather different for symmetric ciphers. They exhibit a
lack of structure which has two consequences: there is no provable security
reduction between symmetric algorithms, but conversely their security is not
likely to collapse because of some sudden theoretical advance. In fact, the
last 30 years of cryptanalytic progress showed that the security of symmetric
primitives of early designs like DES [42] or hashing functions like SHA1 tend
to erode slowly rather than abruptly, and that more mature designs (the
AES competition contenders, the SHA2 family and now the SHA3 family)
exhibit a very good resistance to cryptanalysis.

1.3 Quantum Key Distribution

Quantum Key Distribution is a technique allowing to create shared and
secret random values at both ends of a communication link, with a security
guaranteed without computational hardness assumptions [120]. It requires
however a classical authenticated channel, together with an untrusted quan-
tum channel, i.e. a physical channel that is used to send quantum states.

In practice, light is a medium of choice to prepare and exchange quantum
states. Indeed, one can easily encode information in discrete variables such
as the phase or the polarization of single photons, or in continuous variables,
such as the phase of the amplitude of the electromagnetic field. The first
family of techniques is denoted as DVQKD and the second as CVQKD. For
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both families the communication medium can be either an optical fiber or
a free space optical link.

A lot of QKD demonstrations have been done during the past twenty
years and some discrete variables commercial products have been developed
[2, 3]. The work of this thesis led to the first commercial product based on
continuous variables [5]. The main interest of this technology is that it is
implemented with only off-the-shelf components optimized for the telecom-
munications industry.

1.3.1 Principle

QKD security relies on the fundamental no-cloning theorem which states
that one cannot duplicate quantum states without introducing some noise.
Consequently, the two participants of a QKD protocol can prepare random
states, send them on a quantum channel and reveal at random a fraction of
the states they prepared in order to estimate the amount of noise induced
by the quantum channel. Any eavesdropper who wants to learn information
from the quantum states will interact with them and introduce some noise
since he cannot copy them. When the noise level is above a certain limit,
the two parts simply abort the protocol and no secret key is obtained.

Even when no eavesdropper tries to measure the quantum states, these
states are altered because of their interaction with the environment. The
amount of secret key Alice and Bob can extract from a quantum exchange
is a function of the noise introduced by the quantum channel. This leads to
several practical limitations:

– There must not be any amplifier on the quantum channel: such an
equipment actually makes copies of the input signals and therefore
introduces a level of noise that is not compatible with the extraction
of secret keys.

– Any other signal on the physical channel can disturb the quantum
states and therefore prevents the participants from extracting any se-
cret key: in chapter 9, we study the impact of the coexistence of a
classical channel with a CVQKD on the same optical fiber.

– The maximum secure distance depends on the losses of both the phys-
ical channel and the detection apparatus: commercial systems can
deal with about 100 km of optical fiber today while some laboratory
experiments were demonstrated over about 250 km.

QKD is currently suited for metropolitan applications. It is worth noting
than the use of passive optical switches (that do not amplify the optical
signal) can allow to mitigate the number of links that are required to cover
a metropolitan network. Dealing with long distances is still possible but
requires to use trusted nodes to propagate the keys generated by two con-
secutive QKD links.

1.3.2 Security Characteristics

The main security property as regards QKD is the forward secrecy prop-
erty. This means that any key produced by a QKD session is totally inde-
pendent (when the protocol is correctly designed) from the initial key. Thus,
the leakage of any past key does not compromise the security of future keys.
This property is of utmost practical importance. First, it mitigates the im-
pact of any key leakage due to organizational flaws. Second, it enables the
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Discrete Continuous (2010)
carrier photon phase/polarisation field amplitude-phase
detection photon counters coherent
range 100 km 25 km
rate 1Mb/s 10kb/s

components active cooling standard
WDM integration - +

limitation detectors data processing
stability + -

side channels + -

Table 1.1: This table summarizes the main characteristics of DVQKD and
CVQKD and their respective performance and security status in 2010.

production of several independent keys that can be used to encrypt several
communications on the same link.

This forward secrecy property cannot be achieved with classical cryptog-
raphy, except with additional assumptions that do not provide any long-term
security guarantees. Furthermore, it contradicts the following common criti-
cism against QKD: since QKD speed does not allow to produce enough keys
to encrypt communications using one-time-pad but requires an initial secret
key and given the respective price of QKD systems and hard disk storage,
why could not one just preshare a high volume of keys instead of constantly
generating them with a QKD system? While a one time compromise of the
key storage compromises the whole encrypted traffic, only an attacker both
compromising the initial key and performing an attack at this very moment
would compromise the security of the whole traffic if QKD is employed.

1.3.3 DVQKD vs CVQKD in 2010

Table 1.1 summarizes DVQKD and CVQKD in terms of their charac-
teristics and performance at the beginning of this thesis. The achievable
distance of CVQKD was limited to 25 km in 2010 because of the lack of
efficient error-correction procedures. This complex data processing also pre-
vented CVQKD from achieving secret key rates higher than 10 kb/s. Con-
cerning DVQKD, it is the dark count rate of the single photon detectors that
restricts the range. DVQKD maximum achievable distance is about 100 km
with IdQuantique [2] commercial products while some laboratory experi-
ments demonstrated the extraction of secret keys for distances higher than
200 km [137] using superconducting single photon detectors. As regards
stability, DVQKD features commercial products that can operate during
several years while CVQKD experiments were only reported to work during
a few days [44]. Practical demonstrations of side channel attacks against
DVQKD have been conducted while the practical security of CVQKD had
not been studied yet. A key point related to the integration of QKD in net-
works is its compatibility with intense classical channels that are wavelength
multiplexed on the same optical fiber than the one used for quantum key
distribution. The coherent detection used in CVQKD features an intrinsic
tolerance to the noise induced by non linear effects in optical fibers [106]
while DVQKD requires active filtering to deal with this noise.
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Figure 1.1: Number of publications concerning QKD system imperfections
and attacks on QKD systems per year.

1.3.4 Threats

Although QKD protocols provide theoretical security proofs that aim at
taking into account all the possible attacks accessible to an eavesdropper
limited by the quantum mechanics laws, the practical security of QKD has
been a growing research field over the past ten years as shown in figure
1.1. Indeed, the deviations between theoretical protocols and their practical
implementations can open security loopholes also called side channels. In
chapter 3, we study several practical imperfections of a CVQKD protocol
while in chapter 5, we propose a practical attack against a CVQKD protocol
and a family of countermeasures to defeat this attack.

Side-channel attacks have been studied for a long time in classical cryp-
tography, mainly in the smart cards community, and had naturally been
expected to develop for QKD systems as well. The development of side-
channels attacks against equipments that claim unconditional security might
seem to sound the death knell of QKD technology but the situation is actu-
ally more complicated. Quantum cryptographers developed new theoretical
tools allowing us to design device-independent QKD protocols, i.e. proto-
cols whose security do not depend on the details of their implementation.
Finally, from a practical security point of view, performing side-channel at-
tacks is a rather difficult task since it must be done during a QKD run and
should remain undetected (at least partially).

1.4 Other Quantum Cryptographic Primitives

1.4.1 Coin Flipping

Coin Flipping is a cryptographic protocol which allows two distant dis-
trustful parties to agree on a bit [15]. Unless computational assumptions
are made, it is known that any malicious party can bias the coin, even if
some quantum communication is allowed between the two parties [81, 96].
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However, quantum mechanics allow in theory [131, 6, 19] to limit the bias
to an ultimate asymptotic bound of 1/

√
2.

In practice, demonstrations must consider all imperfections such that
losses in the quantum channel and measurement apparatus or multi-photon
pulses generated by standard telecom coherent light sources. In [11], the
authors implement a loss-tolerant protocol proposed in [10], but do not
demonstrate a quantum advantage for distances longer than a few meters.
By means of additional assumptions, such as restricting the security against
adversaries limited to imperfect quantum memories, experimental demon-
strations of closely related protocols like quantum bit commitment can be
realized [156]. In [102], we implemented a coin flipping protocol using a com-
mercial QKD system commercialized by IdQuantique [2]. It demonstrates a
quantum advantage over classical protocols for practical distances up to 20
km.

1.4.2 Quantum Signatures

Quantum signatures are the quantum equivalent to classical digital sig-
natures, i.e. they allow a user to protect a document against forgery by
another party. However, as previously explained, the security of classical
signatures relies on the difficulty of solving some mathematical problems,
which may become feasible with a quantum computer. Quantum digital
signatures are designed to provide security even against attackers who pos-
sess a quantum computer.

For classical signatures, the public key is computed from the private key
using a classical one-way function, that is a function designed such that
computing the output from the input is easy but computing the input given
the output is difficult. Quantum signatures follow the same principle but
use a quantum one-way function. Such a function relies on the uncertainty
principle, therefore it cannot be inverted even with a quantum computer. In
practice, one uses the input private key to prepare a quantum state in such a
way that this quantum state leaks a bounded amount of information about
the private key to any party that measures the state. Thus, there is an upper
bound on the number of quantum public keys that can be created with such
a scheme. This is a fundamental difference with the classical case where the
number of public keys is not restricted. Furthermore, since it is impossible to
copy a quantum state without knowing the state, public keys can be emitted
only by the owner of the private key. Another difficulty that occurs when
implementing quantum digital signature schemes is designing a procedure
allowing to check that different recipients get the same answer when testing
the validity of a signed message. While comparing two bit strings is easy,
comparing quantum systems is a difficult task. This can be done for example
using a swap test [48], but this requires a quantum computer, which is hard
to implement. Another possibility is quantum comparison of coherent states.
This technique was used for the first experimental demonstration of quantum
digital signatures in [24].
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In this chapter, we present the theoretical tools that are useful for the
understanding of this manuscript. We start by describing the postulates
of quantum mechanics. Then, we introduce the basics of classical informa-
tion theory. Finally, we review the specifics of quantum information with
Gaussian variables.
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2.1 Quantum mechanics postulates

2.1.1 Notations and basic definitions

A quantum system is a physical system whose evolution can be described
by quantum mechanics. The first postulate of quantum mechanics is the
postulate of description that gives the mathematical structure relevant to
describe a quantum system. The quantum state of a system is a complete
description of the system that allows us to predict the results of the experi-
ments we can perform on the system. However, in quantum mechanics, only
the probability distributions of the measurements outcomes can be accessed:
quantum mechanics is non-deterministic.

Axiom 2.1.1.1 (Postulate 1). Any quantum system is completely described
by a state vector, i.e. a unit vector in the system’s state space, which is a
Hilbert space H.

A Hilbert space is a complex inner product vector space (finite or infinite
dimensional) that is also complete with respect to the distance induced by
the inner product. The dimension of this Hilbert space corresponds to the
number of degrees of freedom of the considered system. An element of H is
usually written with the Dirac ket convention |x〉 ∈ H:

|x〉 =













x1
x2
...
xn













(2.1)

in a Hilbert space H of dimension n. Dual forms in H are written with the
bra notation 〈y| : H → C:

|y〉 =
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y∗1, y
∗
2, . . . , y

∗
n

)

(2.2)

The scalar product of two vectors |y〉 and |x〉 is a complex number called
braket and written 〈y|x〉:
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∑

i=1

y∗i xi (2.3)

A norm ‖ · ‖ can be associated to the inner product of H and is defined as
‖x‖ =

√

〈x|x〉. There exists an infinity of orthonormal basis in H, that can
be either countable {|xi〉}i∈I and satisfy the relation:

〈xi|xj〉 = δj
i (2.4)

or uncountable {|x〉}x∈J and satisfy the relation:

〈x|x′〉 = δ(x− x′) (2.5)

In a finite-dimensional Hilbert space, any quantum state |ψ〉 can be decom-
posed on {|xi〉}i∈I :

|ψ〉 =
∑

i∈I

ci |xi〉 , ci = 〈xi|ψ〉 , (2.6)

while in an infinite-dimensional Hilbert space, |ψ〉 can be decomposed on
{|x〉}x∈J :

|ψ〉 =
∫

J
c(x) |x〉 dx, c(x) = 〈x|ψ〉 (2.7)
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2.1.2 Quantum operators

The set of linear operators on H describes the possible evolutions of a
quantum system. The identity operator is noted ✶̂ and unitary operators Û
satisfy the relationship Û Û−1 = Û−1Û = ✶̂ where Û−1 is the inverse of Û .
According to the previous decomposition of any quantum state |ψ〉 in the
orthonormal basis of a finite-dimensional Hilbert space H we have:

∑

i∈I

|xi〉 〈xi| |ψ〉 =
∑

i∈I

ci |xi〉 = |ψ〉 (2.8)

One can deduce from this relationship the closure relation:
∑

i∈I

|xi〉 〈xi| = ✶̂ (2.9)

and that the projector on any vector |x〉 can be written P̂|x〉 = |x〉 〈x|. A
quantum operator Â admits a matrix representation in any orthonormal
basis {|xi〉}i∈I :

Â =
∑

i,j∈I

Ai,j |xi〉 〈xj | , Ai,j = 〈xi|Â|xj〉 (2.10)

2.1.3 Composite systems

For complex physical systems involving several quantum systems, one
must consider several Hilbert spaces to get a good description of the compos-
ite system. The second postulate of quantum mechanics aims at describing
composite systems.

Axiom 2.1.3.1 (Postulate 2). The state space one has to consider to de-
scribe a composite physical system is the tensor product of the state spaces of
the component physical systems. For a set of systems prepared in the states
ψi, 1 ≤ i ≤ n, the joint state of the composite system is ⊗n

i=1ψi.

In the case of a bipartite state AB described by the Hilbert spaces HA

and HB, the tensor product of HA and HB defines the Hilbert space HAB

of the bipartite system:
HAB = HA ⊗HB (2.11)

If HA and HB have finite dimensions dA and dB and respective orthonormal
bases BA = {a1, . . . , adA

} and BB = {b1, . . . , bdB
}, HAB is finite-dimensional

with dimension dAB = dAdB and an orthonormal basis for HAB is BAB =
{a1⊗b1, a1⊗b2, . . . , a1⊗bdB

, a2⊗b1, . . . , a2⊗bdB
, . . . , adA

⊗b1, . . . , adA
⊗bdB

}.
A consequence of this tensor structure is the existence of physical systems
that cannot be described by vectors. If a state |ψ〉 ∈ HA ⊗ HB can be
written |ψ〉 = |ψA〉 ⊗ |ψB〉, |ψA〉 ∈ HA, |ψB〉 ∈ HB, it is a separable state.
Otherwise it is an entangled state, which means that one cannot consider
separately its subsystems A and B.

Since in general a system is an unknown statistical mixture of vectors,
one can introduce the density operator to describe the set of the possible
states of the system. The density operator matrix ρ̂ can be any positive
semidefinite operator of norm unity on H (ρ̂ ≥ 0 and ‖ρ̂‖ = Tr(ρ̂) = 1).
A density operator is pure if ρ̂2 = ρ̂ and in this case it can be written
ρ̂ = |ψ〉 〈ψ| (another characterization of a pure density operator is that one
of its eigen values is equal to one and the others are equal to zero). Any
density operator that is not pure is called a mixed density operator.
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2.1.4 Dynamics of a physical system

The two other postulates of quantum mechanics describe the dynamics
of quantum states both with time and measurement processes. The third
postulate concerns the time evolution of a quantum system.

Axiom 2.1.4.1 (Postulate 3). The evolution of a closed quantum system
can be described by a unitary operator Û . The state |ψ1〉 of the system at
time t1 is related to the state of the system at time t by the relationship:

|ψ1〉 = Û |ψ〉 (2.12)

Another formulation of this postulate is Schrödinger equation for a closed
quantum system:

i~
d |ψ〉
dt

= Ĥ |ψ〉 , (2.13)

where Ĥ is the Hamiltonian operator of the system.
The fourth postulate is relative to the measurement process.

Axiom 2.1.4.2 (Postulate 4). One can associate a set of measurement
operators (also called Positive Operator Valued Measure) {Mi}, i ∈ I to any
measure on a quantum state |ψ〉 in a Hilbert space H. The index i refers
to the possible measurement outcomes of the experiment. The probability of
getting the result i after the measurement Mi of the quantum state ψ is given
by:

p(i) = 〈ψ|M †
i Mi|ψ〉 (2.14)

The state ψ
′

of the system after the measurement is:

ψ
′
=

Miψ
√

〈ψ|M †
i Mi|ψ〉

, (2.15)

and the measurement operators satisfy the completeness relationship:
∑

i∈I

M †
i Mi = ✶̂ (2.16)

We have presented the basic postulates in quantum mechanics. In the
next section, we briefly introduce some classical information theory concepts.

2.2 Classical Information Theory

Classical information theory was born in 1948 when Shannon introduced
the notions of entropy and channel capacity in [125]. In this introduction,
we give a basic description of these notions. The interested reader can refer
to more complete references such as [25, 89].

2.2.1 Entropies

The Shannon entropy of a random variable X gives a measure of its
uncertainty. It is defined as follows:

Definition 2.2.1.1 (Shannon entropy). Let X be a random variable tak-
ing values in the alphabet X and p(x) be the probability associated with the
realization x ∈ X , then the Shannon entropy H(X) of X is:

H(X) = −
∑

x∈X
p(x) log2 p(x) (2.17)
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The joint entropy of two random variables taking values in the alphabets
X and Y is:

H(X,Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x, y) (2.18)

The choice of the base 2 for the logarithm corresponds to the fact that the
information is measured in binary digits or bits. Let us illustrate this with
the coin flipping game. Since the probability of each possible outcome of the
game is one half, the Shannon entropy of the corresponding random variable
is − log2 1/2 = 1. Indeed, flipping a coin gives one bit of information. For a
biased coin that gives one outcome with probability one, the corresponding
Shannon entropy is − log2 1 = 0: a certain outcome gives zero bit of infor-
mation. In general, the entropy of a binary random variable X giving 1 with
probability p and 0 with probability 1− p is:

H(X) = −p log2 p− (1− p) log2 (1− p) = h(p) (2.19)

The following theorem gives the useful properties of Shannon entropy
that can be deduced from its definition:

Theorem 2.2.1.2 (Properties of the Shannon entropy).

1. H(X) ≥ 0, H(X) = 0 iff there is no uncertainty on X.

2. H(X,Y ) ≤ H(X)+H(Y ), H(X,Y ) = H(X)+H(Y ) iff X and Y are
independent.

3. If X is finite and with n elements, H(X) ≤ log2 n. H(X) = log2 n iff
X has a uniform distribution on X .

The operational meaning of the Shannon entropy was established by
Shannon in [125]. The limits to possible data compression are given in the
source coding theorem. It states that it is impossible to describe a random
variable, also called the source, with a number of bits that is lower than
the Shannon entropy of the source. If one tries to map the source to an
alphabet whose cardinal is smaller than the Shannon entropy of the source,
some information will be lost.

Theorem 2.2.1.3 (Shannon’s source coding theorem). N independent and
identically distributed (i.i.d.) random variables each with entropy H(X) can
be compressed into more than NH(X) bits with negligible risk of information
loss, as N tends to infinity; conversely, if they are compressed into fewer
than NH(X) bits it is virtually certain that information will be lost.

Shannon entropy can be generalized to define a family of entropies pa-
rameterized by a parameter α. The Renyi entropy of order α of a random
variable X is:

∀α ≥ 0, α 6= 1, Hα(X) = −
1

1− α log2
∑

x∈X
p(x)α (2.20)

Some values of α are of particular interest:
– α = 0: it is called max-entropy of X and is noted either H0(X) or
Hmax(X). Its value is H0(X) = log2 |X|.

– α = 1: H1(X) = H(X), the Shannon entropy of X.

– α = 2: H2(X) = − log2
(
∑

x∈X p(x)
2
)

= − log2 P
(

X = X
′
)

, where

X
′
is a random variable independent from X but with the same law.

It is called the collision entropy.
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– α = ∞: H∞(X) = − log2 supx∈X p(x) = Hmin(X) is the min-entropy
of X and is related to the maximum probability of guessing the value
of X.

The following inequality relates the min-entropy, entropy and max-entropy
of a random variable X:

Hmin(X) ≤ H(X) ≤ Hmax(X) (2.21)

the inequalities being saturated in the case of uniformly distributed random
variable.

Conditional entropy is a powerful tool that allows us to characterize a
random variable provided the knowledge of another random variable. For
two random variables X and Y defined on the alphabets X and Y, the
conditional entropy of the random variable X given the random variable Y
is:

H(X|Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x|y) (2.22)

Conditioning with respect to a random variable reduces the entropy:

∀X,Y,H(X|Y ) ≤ H(X) (2.23)

with equality iff X and Y are independent random variables. The following
chain rule property of the Shannon entropy is satisfied:

∀X,Y,H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) (2.24)

which basically means that the uncertainty on the couple of random variables
is equal to the uncertainty on the first random variable plus the uncertainty
on the second random variable knowing the first random variable.

Another quantity of interest is the mutual information between the ran-
dom variables X and Y . It basically gives a measure of the correlation
between these random variables:

I(X : Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)
(2.25)

One can see that the mutual information between two independent random
variables is zero and that mutual information is always non negative. One
can also check the following relationships:

I(X : Y ) = H(X)−H(X|Y ) (2.26)

= H(Y )−H(Y |X) (2.27)

= H(X) +H(Y )−H(X,Y ) (2.28)

Conditional mutual information can be defined in the same way than for
entropy:

I(X : Y |Z) = H(X|Z)−H(X|Y,Z) (2.29)

Contrary to entropy, conditioning can either increase or decrease the mutual
information.
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Transmitter Channel Receiver
X Y

Figure 2.1: Shannon’s coding theorem schematics.
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Figure 2.2: Binary symmetric channel transition probabilities.

2.2.2 Channels and Capacities

Another very important notion introduced by Shannon is the Shannon
capacity of a communication channel. It corresponds to the theoretical max-
imum information transfer rate of the channel for a particular noise level.
Let us consider the scheme of Figure 2.1 where a transmitter encodes mes-
sages using a discrete input alphabet X and a receiver receives messages
that belong to a discrete output alphabet Y from the noisy channel. If the
probability distribution of the output random variable Y only depends on
the input random variable X at the same time, the channel is said to be
memoryless. The capacity of the discrete memoryless channel is defined as:

C = sup
p(x)

I(X : Y ) (2.30)

where the supremum is taken over all possible choices of p(x).
It is interesting to look at the capacities of some commonly studied

channels. The Binary Symmetric Channel (BSC) is a channel where the
input and output random variables are binary. When one tries to transmit
a bit over this channel, it is changed with probability p and unchanged with
probability 1− p. The transition probabilities are represented in Figure 2.2.
Let us compute the capacity of the BSC:

I(X : Y ) = H(Y )−H(Y |X) (2.31)

= H(Y )−
∑

x∈X
p(x)H(Y |X = x) (2.32)

= H(Y )− p log2 p− (1− p) log2 (1− p) (2.33)

≤ 1− h(p) (2.34)

where h(p) = −p log2 p− (1− p) log2 (1− p) is the binary entropy function.
The last inequality comes from the fact that the entropy of a binary random
variable is upper bounded by 1. It is saturated when the distribution of the
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X + Y

Z

Figure 2.3: Additive white Gaussian noise channel schematics. A Gaussian
noise Z is added to the input random variable X and the output random
variable is Y = X + Z.

input random variable X is uniform. This shows that the capacity of the
BSC is:

CBSC = 1− h(p) (2.35)

which gives a capacity equal to 1 when no error occurs on the channel and
a capacity equal to 0 when an error occurs with probability 1/2.

When one wants to deal with continuous variables, the concept of dif-
ferential entropy must be used. For a random variable X defined on the
continuous domain X and that admits a density function p(x), the differen-
tial entropy h(X) is:

H(X) = −
∫

x∈X
p(x) log2 p(x) dx (2.36)

It is not hard to design examples of random variables for which the differ-
ential entropy does not exist. Furthermore, this quantity can be negative
contrary to the discrete entropy.

Let us compute the differential entropy of a normal distribution Z of
density φ(z) = 1√

2πσ2
exp− z2

2σ2 :

h(Z) = −
∫

z
φ(z) lnφ(z) dz (2.37)

= −
∫

z
φ(z)

(

− z2

2σ2
− 1

2
ln

(

2πσ2
)

)

dz (2.38)

=
E[Z2]

2σ2
+
1

2
ln

(

2πσ2
)

(2.39)

=
1

2
+
1

2
ln

(

2πσ2
)

(2.40)

=
1

2
ln

(

2πeσ2
)

(2.41)

=
1

2
log2

(

2πeσ2
)

(2.42)

where the last equality gives the result in bits. Let us use this result to
compute the mutual information between the input X and the output Y of
an Additive White Gaussian Noise Channel (AWGNC), which are related
through Y = X + Z with Z a Gaussian noise of variance σ2 independent
from the input (see Figure 2.3). Such a channel has an infinite capacity for
a general output. When considering an input with a finite variance Σ2, the
capacity is finite. The mutual information is given by:

I(X : Y ) = h(Y )− h(Y |X) (2.43)

= h(Y )− h(X + Z|X) (2.44)

= h(Y )− h(X|X)− h(Z|X) (2.45)

= h(Y )− h(Z) (2.46)
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where the last equality comes from the independence of X and Z. The
variance of Y is:

E[Y 2] = E[(X + Z)2] (2.47)

= E[X2] + E[Z2] + 2E[X]E[Z] (2.48)

= Σ2 + σ2 (2.49)

since X and Z are independent and E[Z] = 0. Since the normal distribution
maximizes the entropy for a given variance (see Theorem 9.6.5 of [25]), one
can bound h(Y ):

h(Y ) ≤ 1

2
log2 2πe

(

Σ2 + σ2
)

(2.50)

and we get:

I(X : Y ) ≤ 1

2
log2

(

1 +
Σ2

σ2

)

(2.51)

Hence the capacity of the AWGNC, which is achieved for a normal input
distribution is:

CAWGNC =
1

2
log2 (1 + SNR) (2.52)

where the Signal to Noise Ratio (SNR) is defined as SNR= Σ2/σ2.
Although the capacity of the AWGNC gives a tight upper bound on the

information transfer rate of a channel that adds a Gaussian noise, this bound
can never be achieved in practice because practical modulation schemes are
limited to a finite alphabet and cannot use the entire set of real numbers.
However, when studying the security of a CVQKD scheme with a Gaussian
modulation we use the formula of the capacity of the AWGNC when we want
to estimate the mutual information between Alice and Bob. We emphasize
the fact that although this approximation leads to an optimistic value of
the mutual information and therefore of the theoretical secret key rate, the
practical implementation of the discretized Gaussian modulation directly
leads to a mutual information that is lower than the theoretical mutual
information with a perfect Gaussian modulation. Thus this does not result
in an overestimation of the practical secret key rate.

Among the transmission schemes, the binary input modulation scheme
is of particular interest. Indeed, we will see in Chapter 6 that it is particu-
larly useful to build a Binary Input Additive White Gaussian Noise Channel
(BIAWGNC) on top of the Gaussian channel. We give the analytical form
of the capacity of the BIAWGNC:

CBIAWGNC =
1

σ2
−

∫ ∞

−∞

e−
x2

2√
2π

log2 cosh
(

1

σ2
+
x

σ

)

dx (2.53)

2.2.3 Channel Coding

Now that we have defined the capacity of a noisy channel, we are inter-
ested in transmitting information reliably on a noisy channel. This can be
done by adding redundancy to the data we want to transmit, which acts as
a protection from noise. This can be easily understood considering the BSC
and a particular information transfer scheme, the repetition scheme. Let us
assume that we want to transmit one bit on a BSC of parameter p = 0.1.
If we send directly this bit over the channel, information is lost with prob-
ability 0.1. Now, if we transmit this same bit three consecutive times and
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decide that the correct value for this bit is the most frequent value among
received values, information is lost if two flips of three flips occurred which
happens with probability p3 + 3× p2 × (1− p) = 0.028. The probability of
losing information has been reduced.

Mathematically, the repetition scheme we considered is a particular ex-
ample of an error-correcting code, i.e. a mapping from a finite set, the source
alphabet, to another finite set, the target alphabet. This can be extended
to sequences of symbols in both alphabets. The goal of error-correcting
codes is to recover reliably the information sent through the communication
channel. They differ by their rate R, which is a measure of the amount of
redundancy of a code. The rate of a code is defined by the ratio between
the number of information bits and the length of the code word n:

R =
log2 |X |

n
(2.54)

For the previous repetition scheme the rate is 1/3 since one bit of information
corresponds to three bits sent through the channel. The channel coding
theorem stated by Shannon in 1948 gives the maximum possible efficiency
of error-correcting codes with respect to the level of noise.

Theorem 2.2.3.1 (Shannon’s channel coding theorem). For any ǫ > 0 and
for any rate R less than the channel capacity C, there exists an encoding and
decoding scheme that can be used to ensure that the probability of decoding
error is less than ǫ > 0 for a sufficiently large block length. Also, for any
rate greater than the channel capacity, the probability of error at the receiver
goes to one as the block length goes to infinity.

Although this theorem gives a fundamental limit to the maximum re-
liable transmission rate through a noisy channel, one still needs to design
encoding and decoding schemes more subtle than the repetition scheme in
order to achieve these limits. Among the commonly used code families, Low
Density Parity Check (LDPC) codes provide a mathematical description
[114] that makes them adaptable for different channels. We designed a par-
ticular type of LDPC codes, multi-edge LDPC codes, for the BIAWGNC in
chapter 6 and explained how to use them to increase the range of CVQKD.
In 2008, another family of codes that achieve the capacity for all discrete
memoryless channels was introduced by Arıkan [8]. These are polar codes.
In chapter 8, we designed polar codes for the BSC and the BIAWGNC and
studied their use for both DVQKD and CVQKD. A particularity of cur-
rently known coding schemes is that their decoding complexity increases
roughly when approaching the capacity. This results in a speed limitation
in a practical QKD system. In chapter 8, we give our decoding performance
results with both LDPC and polar codes and investigate the use of Graphics
Processing Units (GPU) to increase the decoding speed of LDPC codes.

2.3 Single-mode Quantum Optics

We have seen that Hilbert spaces of potentially high dimension must be
used to describe a quantum system, in particular when the quantum system
involves several modes of the electromagnetic field. A mode is described by
a polarization state, an energy level and a wave function. Fortunately, a
N-mode quantum state can be decomposed over N Hilbert spaces, each one
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corresponding to one mode of the field. The tensor product of N one-mode
Fock spaces Hi describes a N-mode quantum system H:

H = ⊗N
i=1Hi (2.55)

Each Fock space can be described by a basis {|0〉 , . . . , |n〉 , . . .} where the
Fock state |n〉 corresponds to the state of n photons present in the mode
described by this Fock space. In the following, we introduce the basic equa-
tions that are used when dealing with Fock states.

2.3.1 One-mode Fock States

The annihilation â and creation â† operators for a given mode are:

â |n〉 = √n |n− 1〉 , n > 0, â |0〉 = 0 (2.56)

â† |n〉 =
√
n+ 1 |n+ 1〉 , n ≥ 0 (2.57)

where |0〉 corresponds to the state with no photon. These two operators are
linked by the commutation relationship:

[â, â†] = 1 (2.58)

By applying n times the operator â† to the vacuum state |0〉 that contains
no photon we obtain:

|n〉 = 1√
n!

(

â†
)n
|0〉 (2.59)

An eigenstate |n〉 of the number operator N̂ = â†â (N̂ † = N̂) is called a
Fock state (we also have ââ† = N̂+1) or a state with n photons in the mode
defined by a frequency ω:

â†â |n〉 = N̂ |n〉 = n |n〉 (2.60)

A Fock state is also an eigen vector of the Hamiltonian:

H |n〉 = ~ω

(

â†â+
1

2

)

|n〉 (2.61)

= En |n〉 (2.62)

with the energy eigen value being En = ~ω (n+ 1/2).

Quadratures operators

The quadratures of the electromagnetic field are linked to the annihila-
tion and creation operators by:

x̂ =
1√
2

(

â† + â
)

(2.63)

p̂ =
i√
2

(

â† − â
)

(2.64)

They are Hermitian operators and are linked by the commutation relation-
ship:

[x̂, p̂] = −i (2.65)
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Statistics

It is interesting to compute some basic statistics for the Fock states:

〈n〉 = 〈n|N̂ |n〉 = n 〈n|n〉 = n (2.66)

〈n2〉 = 〈n|N̂2|n〉 = n2 〈n|n〉 = n2 (2.67)

using the orthonormality of the Fock states basis. Then the variance is
(∆n)2 = 〈n2〉 − 〈n〉2 = n2 − n2 = 0.

Let us do the same calculations with the quadratures x̂ and p̂:

〈n|x̂|n〉 = 1√
2
〈n|â† + â|n〉 = 1√

2

(√
n+ 1 〈n|n+ 1〉+√n 〈n|n− 1〉

)

= 0

(2.68)

〈n|p̂|n〉 = i√
2
〈n|â† − â|n〉 = i√

2

(√
n+ 1 〈n|n+ 1〉 − √n 〈n|n− 1〉

)

= 0

(2.69)

where we used the orthonormality of the Fock states basis. We also have:

〈n|x̂2|n〉 = 1

2
〈n|â†â† + â†â+ ââ† + ââ|n〉 = 1

2

(

â†â+ ââ†
)

=
2n+ 1

2
(2.70)

〈n|p̂2|n〉 = −1
2
〈n|â†â† − â†â− ââ† + ââ|n〉 = 1

2

(

â†â+ ââ†
)

=
2n+ 1

2
(2.71)

Thus (∆x̂)2 = (∆p̂)2 = 2n+1
2 and:

∆x̂∆p̂ =
2n+ 1

2
≥ 1

2
(2.72)

where the equality holds for the vacuum state.

2.3.2 Coherent States

Contrary to Fock states, coherent states do not have a precisely known
number of photons. In addition to that, their phase is not completely ran-
dom. Furthermore, the product of the uncertainty on the amplitude and the
uncertainty on the phase corresponds to the minimum allowed by quantum
mechanics. Thus they are the closest states to classical states.

Let us define the unitary displacement operator:

D(α) = eαâ†−α∗â (2.73)

with α being an arbitrary complex number. The following theorems hold:

Theorem 2.3.2.1 (Disentangling theorem). For two operators such that
[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, we have [Â, f(B̂)] = f

′
(B̂)[Â, B̂].

and

Theorem 2.3.2.2. For two non-commuting operators Â and B̂ such that
[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 we have:

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 = eB̂eÂe[Â,B̂]/2 (2.74)
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We can apply this theorem with Â = αâ† and B̂ = −α∗â together with
the relation [â, â†] = 1. Since [Â, B̂] = |α|2, [Â, [Â, B̂]] = 0 and [B̂, [Â, B̂]] =
0:

D(α) = e−|α|
2/2eαâ†e−α∗â (2.75a)

D(α) = e|α|
2/2e−α∗âeαâ† (2.75b)

The first equation corresponds to the normal form (the creation operator
appears to the left of annihilation operators when the exponentials are writ-
ten as power series) and the second equation to the anti-normal form. The
hermitian conjugate of Eq. 2.75a is:

D†(α) = e−|α|
2/2e−αâ†eα∗â (2.76)

thus by multiplying by Eq. 2.75b we get:

D(α)D†(α) = 1 (2.77)

which proves that D(α) is a unitary operator.
Thus we have:

D†(α) = e−|α|
2/2e−αâ†eα∗â = D−1(α) = e|α|

2/2eα∗âe−αâ† (2.78)

= D(−α) (2.79)

where we used the previous theorem with Â = −αâ† and B̂ = α∗â to get
the last equality.

The Hadamard lemma gives:

e−ζÂB̂eζÂ = B̂ − ζ[Â, B̂] + ζ2

2!
[Â, [Â, B̂]]− ζ3

3!
[Â, [Â, [Â, B̂]]] + . . . (2.80)

Let us use Â = −αâ† and B̂ = â. We have:

eÂ = e−αâ†+α∗â = D−1(α) (2.81)

e−Â = eαâ†−α∗â = D(α) (2.82)

[Â, B̂] = −α[â†, â] = α (2.83)

and all higher order commutators are null. This gives:

D−1(α)âD(α) = â+ α (2.84)

D−1(α)â†D(α) = â† + α∗ (2.85)

The same technique gives:

D(α)âD−1(α) = â− α (2.86)

D(α)â†D−1(α) = â† − α∗ (2.87)

A coherent state can be obtained from a displacement of the vacuum state
in the phase space. When we apply a unitary operation by D(α) to the
annihilation and creation operators, they are augmented by α and α∗ re-
spectively.

The coherent state |α〉 is obtained by applying D(α) to the vacuum state
|0〉:

|α〉 = D(α) |0〉 (2.88)
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Thus by applying D†(α)â to previous equality we get:

D†(α)â |α〉 = D†(α)âD(α) |0〉 = (â+ α) |0〉 = α |0〉 (2.89)

since â |0〉 = 0. Thus by multiplying by the unitary operator D(α) we get:

â |α〉 = α |α〉 (2.90)

which proves that the coherent states are eigenstates of the annihilation
operator â.
The same technique can apply to the quadratures of the field and gives:

D†(α)x̂D(α) = x̂+
√
2R (α) (2.91)

D†(α)p̂D(α) = p̂+
√
2I (α) (2.92)

where R and I are the real and imaginary parts.
The power series expansion of an exponential operator gives:

e−α∗â |0〉 =
∑

n

(−α∗â)n
n!

|0〉 = |0〉 (2.93)

eαâ† |0〉 =
∑

n

(

αâ†
)n

n!
|0〉 =

∑

n

αn

√
n!
|n〉 (2.94)

thus:

|α〉 = D(α) |0〉 = e−
|α|2

2 eαâ†e−α∗â |0〉 = e−
|α|2

2 eαâ† |0〉 (2.95)

= e−
|α|2

2

∑

n

αn

√
n!
|n〉 (2.96)

The number of photons of a coherent state is undefined but this allows them
to have a phase relatively well defined contrary to Fock states that have a
totally random phase. The probability distribution of photons in a coherent
state is obtained by:

P (n) = | 〈n|α〉 |2 = e−|α|
2 |α|2n

n!
(2.97)

and the scalar product of two coherent states is:

〈β|α〉 = 〈0|D†(β)D(α)|0〉 = 〈0|D(α− β)|0〉 = 〈0|α− β〉 (2.98)

= e−
|α|2

2
− |β|

2

2
+αβ∗ = e−

|α−β|2

2 (2.99)

Thus two coherent states are never orthogonal though two states become
approximately orthogonal in the limit |α− β| ≫ 1.

Statistics

For a coherent state:

〈n〉 = 〈α|N̂ |α〉 = α 〈α|â†|α〉 = |α|2 (2.100)

〈n2〉 = 〈α|N̂2|α〉 = |α|4 + |α|2 (2.101)
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because 〈α|ââ†|α〉 = |α|2 + 1. The variance is (∆n)2 = α4 + α2 − α4 = α2.
For the quadrature operators, we have:

〈α|x̂|α〉 = 1√
2
〈α|â† + â|α〉 = 1√

2
(α∗ + α) (2.102)

〈α|p̂|α〉 = i√
2
〈α|â† − â|α〉 = 1√

2
(α∗ − α) (2.103)

〈α|x̂2|α〉 = 1

2
〈α|â†â† + â†â+ ââ† + ââ|α〉 = 1

2

(

α∗2 + 2α2 + 1 + |α|2
)

(2.104)

〈α|p̂2|α〉 = −1
2
〈α|â†â† − â†â− ââ† + ââ|α〉 = 1

2

(

α∗2 − 2α2 − 1 + |α|2
)

(2.105)

Thus (∆x̂)2 = (∆p̂)2 = 1
2 and ∆x̂∆p̂ =

1
2 .

2.3.3 Squeezed States

Squeezed states are a general class of minimum-uncertainty states. In
general a squeezed state has less noise in one quadrature than a coherent
state and consequently more noise in the other quadrature to satisfy the
requirements of a minimum-uncertainty state (whereas coherent states have
the same amount of noise in both quadratures).

Squeezed states can be generated with a squeezing operator defined by:

S(z) = e
1
2(zâ2−z∗â†2) (2.106)

for a complex number z = re−iφ. This operator is hermitian and has the
following properties:

S†(z) = S−1(z) = S(−z) (2.107)

We can apply Eq. 2.80 with Â = −i
2

(

zâ2 − z∗â†2
)

:

t̂ = S(z)âS†(z) = eiÂâe−iÂ (2.108)

= â+ [iÂ, â] +
1

2!
[iÂ, [iÂ, â]] +

1

3!
[iÂ, [iÂ, [iÂ, â]]] + . . .

(2.109)

The commutation relation [â, â†] = 1 gives:

[iÂ, â] = z∗â† (2.110)

t̂ = â+ z∗â† +
1

2!
|z|2â+ 1

3!
|z|2z∗â† + 1

4!
|z|4â+ . . . (2.111)

= â

(

1 +
1

2!
r2 +

1

4!
r4 + . . .

)

+ â†eiφ
(

r +
1

3!
r3 + . . .

)

(2.112)

= â cosh(r) + â†eiφ sinh(r) (2.113)

and:

t̂† = â† cosh(r) + âe−iφ sinh(r) (2.114)
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We have the commutation relation:

[t̂, t̂†] = 1 (2.115)

and the transformations:
[

â
â†

]

=

[

cosh(r) −eiφ sinh(r)
−e−iφ sinh(r) cosh(r)

] [

t̂
t̂†

]

(2.116)

and:
[

t̂
t̂†

]

=

[

cosh(r) eiφ sinh(r)
e−iφ sinh(r) cosh(r)

] [

â
â†

]

(2.117)

Let us now apply the transformation with quadrature components x̂ and p̂
and φ = 0:

t̂1 =
1√
2
(t̂† + t̂) =

1√
2
(S(z)(â† + â)S†(z)) (2.118)

=
1√
2
(â† + â)(cosh(r) + sinh(r)) = x̂er (2.119)

t̂2 =
i√
2
(t̂† − t̂) = 1√

2
(S(z)(â† − â)S†(z)) (2.120)

=
i√
2
(â† − â)(cosh(r)− sinh(r)) = p̂e−r (2.121)

Let us denote by (x̂in, p̂in) and (x̂out, p̂out) the quadrature operators respec-
tively before and after applying the previous transformation. We have:

[

x̂out

p̂out

]

=

[

e−r 0
0 er

] [

x̂in

p̂in

]

(2.122)

We can define the complex numbers τ and τ∗:

τ = α cosh(r) + α∗eiφ sinh(r) (2.123)

τ∗ = α∗ cosh(r) + αe−iφ sinh(r) (2.124)

and we have:

τ t̂† − τ∗t̂ = αâ† − α∗â (2.125)

In a similar manner to the definition of coherent states we can define:

D(τ) = eτt†−τ∗t = eαâ†−α∗â = D(α) (2.126)

and the squeezed state |τ〉 is generated from the vacuum by:

|τ〉 = D(α)S(z) |0〉 (2.127)

We have by definition of t:

t̂S(z) = S(z)â = 0 (2.128)

thus:

t̂S(z) |0〉 = S(z)â |0〉 = 0 (2.129)
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and t̂ |0t〉 = 0 with the squeezed vacuum state defined as:

|0t〉 = S(z) |0〉 (2.130)

A squeezed state can be generated from a squeezed vacuum state by applying
the displacement operator:

|τ〉 = D(τ) |0t〉 (2.131)

We can derive exactly the same relations as with coherent states and τ is
an eigenstate of t̂. Let us now compute the variances of the quadratures for
a squeezed state (with φ = 0):

〈τ |t̂1|τ〉 =
1√
2
〈τ |t̂† + t̂|τ〉 = 1√

2
(τ∗ + τ) (2.132)

〈τ |t̂12|τ〉 =
1

2
〈τ |t̂†2 + t̂†t̂+ t̂t̂† + t̂2|τ〉 = 1

2
(τ∗2 + 2|τ |2 + 1) (2.133)

(

∆t̂1
)2

= 〈τ |t̂12|τ〉 − 〈τ |t̂1|τ〉2 =
1

2
(2.134)

(

∆t̂2
)2

=
1

2
(2.135)

Furthermore we have:

〈τ |t̂1|τ〉 = 〈τ |x̂|τ〉 er (2.136)

〈τ |t̂2|τ〉 = 〈τ |p̂|τ〉 e−r (2.137)

〈τ |t̂12|τ〉 = 〈τ |x̂|τ〉 e2r (2.138)

〈τ |t̂22|τ〉 = 〈τ |p̂|τ〉 e−2r (2.139)

(2.140)

which gives the variance of the quadratures for a squeezed state:

(∆x̂)2 =
1

2
e−2r (2.141)

(∆p̂)2 =
1

2
e2r (2.142)

In the Fock basis the squeezed vacuum state is (with φ = 0):

S(r) |0〉 = 1√
cosh r

∞
∑

n=0

√

(2n)!

2nn!
tanh rn |2n〉 (2.143)

One can compute the photon statistics of a squeezed state:

〈n〉 = sinh2 r (2.144)

and

〈n2〉 = sinh2 r(3 sinh2 r + 2) (2.145)

= 3 〈n〉2 + 2 〈n〉 (2.146)
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2.4 Two-mode Squeezed States

Several devices, like non-degenerate optical parametric amplifiers for ex-
ample, produce light which is correlated at two frequencies ω+ and ω−.
The squeezing exists not in the individual modes but in the correlated state
formed by the two modes. A two-mode squeezed state can be defined by:

|α+, α−〉 = D+(α+)D−(α−)S(G) |0〉 (2.147)

where the displacement operator is:

D+,−(α) = eαâ†+,−−α∗â+,− (2.148)

and the unitary two-mode squeeze operator is (G = reiθ):

S(G) = eG∗â+â−−Gâ+
†â−

†

(2.149)

The squeezing operator transforms the annihilation operators as:

S†(G)â+,−S(G) = â+,− cosh r − â†−,+e
iθ sinh r (2.150)

This can be proven using the previous technique with the additional prop-
erties:

[â+, â−] = 0 (2.151)

[â+, â
†
−] = 0 (2.152)

[â†−, â
†
+] = 0 (2.153)

In the Fock basis one can prove that the two-mode squeezed vacuum state
reads:

S(r) |0, 0〉 = 1√
cosh r

∞
∑

n=0

tanhn r |n, n〉 (2.154)

where |n, n〉 = |n〉1 ⊗ |n〉2. If we trace out one of the two input modes, we
obtain the mixed state:

ρ1 = Tr2{|Ψ〉 〈Ψ|} (2.155)

=
1

cosh r

∞
∑

n=0

tanh2n r |n〉1 〈n|1 = |T 〉 (2.156)

This is a thermal state. One can compute its mean photon number:

〈T |n̂|T 〉 = sinh2 r (2.157)

Thus we have:

tanh2 r =
〈n〉

(〈n〉+ 1)
(2.158)

which gives the decomposition of the thermal state:

ρT H =
∞
∑

n=0

〈n〉
(〈n〉+ 1)n+1

|n〉 〈n| (2.159)



2.5. WEYL OPERATOR 33

We can also compute 〈n̂2〉:

〈T |n̂2|T 〉 = 〈n〉+ 2 〈n〉2 (2.160)

For a quadrature x̂ we have:

〈T |x̂|T 〉 = 0 (2.161)

and

〈T |x̂2|T 〉 = 2 〈n〉+ 1

2
(2.162)

Consequently, we have in the covariance matrix of the thermal state: V =
2 〈n〉+ 1.

2.5 Weyl Operator

The displacement operators can be generalized to the N-mode case. This
is done by introducing the Weyl operator:

Dξ = eixΩξT

(2.163)

ξ being a vector in the 2N-dimensional phase space. For each mode one can
use the quadratures representation (ξx =

√
2R(α), ξp =

√
2I(α)):

Dα = eαâ†−α∗â = ei(ξpx̂−ξxp̂) = D(ξ) (2.164)

2.6 Phase-Space Representation

All the physical information about an N-mode state is contained in its
quantum state represented by a density operator ρ, which is a trace-one
positive operator acting on the corresponding Hilbert space. The space of
density operators is called the state space. Instead of describing a quantum
state ρ through its density matrix, one can refer to functions defined on the
phase space. Let us introduce the Wigner characteristic function:

χρ(ξ) = Tr[ρD(ξ)] (2.165)

Then an arbitrary ρ is equivalent to a Wigner characteristic function and
by Fourier transform to a Wigner function:

ρ =
1

(2π)2N

∫

d2Nξχρ(−ξ)Dξ (2.166)

W (ξ) =
1

(2π)2N

∫

d2NζeiξT ωζχρ(ζ) (2.167)

In quantum physics, one cannot define the probability f(x, p) to find the
electric field in a small volume dxdp close to the point (x, p) because of
the uncertainty principle. However, it is possible to measure separately x, p
or any combination xθ = x cos θ + p sin θ. These measures correspond to
the projections of the probability distribution and one can build the ob-
ject that produced these projections. The projections are the distributions
of arbitrary projections Pθ(xθ) and the object that produced the projec-
tions is called Wigner function. The Wigner function is normalized to 1:
∫ ∫

W (x, p) dxdp = 1. The projections Pθ(xθ) give the optical density in xθ

when looking in the orthogonal direction pθ.
Wigner functions are useful in practice for two reasons:
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1. the Wigner function W is equivalent to the set of all the distributions
{Pθ}

2. the Wigner function contains all the information about the state, like
the density matrix

2.7 Gaussian States

The most relevant quantities to define a quantum state are the statistical
moments. A particular class of states can be entirely characterized with
only two moments, hence we can write ρ = ρ(mean, var). These states are
the Gaussian states. By definition, Gaussian states are the states whose
characteristic function, and equivalently Wigner function, is Gaussian. For
an arbitrary quantum state ρ, we define the displacement vector d:

d = 〈r̂〉 = Tr[ρr̂] (2.168)

and the positive-semidefinite symmetric 2N × 2N covariance matrix γ:

γi,j = Tr[ρ{(r̂i − di)(r̂j − dj) + (r̂j − dj)(r̂i − di)}] (2.169)

This definition comes from:

Cov(Xi, Xj) = Tr[
1

2
{(Xi −mi)(Xj −mj) + (Xj −mj)(Xi −mi)}ρ]

(2.170)

With these notations, the Gaussian states are the states whose characteristic
function is:

χρ(ξ) = e−
1
4

ξTΓξ+iDT ξ (2.171)

where D = Ωd and Γ = ΩγΩ. The Wigner function of a Gaussian state is:

W (r) =
1

π2N
√
det γ

e−(r−d)T γ−1(r−d) (2.172)

Proof. One can use the identity: e−
y2

2
+iyx = e−

(y−ix)2

2
−x2

2 and a change of
variables. Since γ is symmetric it is diagonalizable. This allows to compute
easily the determinant of the change of variables.

The admissible covariance matrices for Gaussian states are the ones that
satisfy the following condition:

γ + iΩ ≥ 0 (2.173)

2.7.1 One mode Gaussian states

The general form of the covariance matrix is:

γ =

[

a c
c b

]

(2.174)

They are fully characterized by the displacement vector d = (dx, dp) and the
covariance matrix.
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Vacuum and coherent states:

Their covariance matrix is the identity I. The vacuum state has null
mean value d = (0, 0) whereas the coherent state has a non null displacement
vector d = (dx, dp).

Squeezed states:

Their covariance matrix is

γ =

[

e−2r 0
0 e2r

]

(2.175)

The squeezed vacuum state has null mean value whereas squeezed coherent
states have a non null displacement vector.

Thermal states:

Their covariance matrix is

γ =

[

V 0
0 V

]

(2.176)

The thermal state has a null mean value. We have V = 2 〈n〉 + 1 where
〈n〉 is the average number of photons contained in the thermal state. The
vacuum state is a thermal state with 〈n〉 = 0.

2.7.2 Two mode Gaussian states

They are fully characterized by a displacement vector d = d1⊗ d2 and a
covariance matrix:

γ =

[

γ1 C
C γ2

]

(2.177)

where γ1 and γ2 are the covariance matrices of the first and second mode
after tracing and C is the matrix giving the correlation between the two
modes. Such a correlation can be either classical or quantum.

Tensor product state:

If C = 0 we have γ12 = γ1 ⊗ γ2 and the state is a tensor product of one
mode Gaussian states.

Two-mode squeezed state:

The mean is null and the covariance matrix is:

γ =

[

cosh 2rI sinh 2rσz

sinh 2rσz cosh 2rI

]

(2.178)

where

I =

[

1 0
0 1

]

(2.179)

and

σz =

[

1 0
0 −1

]

(2.180)
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2.8 Symplectic Analysis for Multimode Gaussian

States

Williamson’s theorem says that every positive-definite real matrix of
even dimension can be put in diagonal form by a symplectic transformation.
When applied to a N-mode covariance matrix it implies there exists a non-
unique symplectic transformation S such that:

STγS = ν (2.181)

where ν is a diagonal covariance matrix:

ν =
N
⊗

k=1

νkI (2.182)

ν is called the Williamson form of γ and the N positive quantities νk are
called the symplectic eigenvalues of γ. The symplectic eigenvalues can be
computed as the standard eigenvalues of the matrix |iΩγ|, where |A| stands
for
√
A†A. Since |iΩγ| is hermitian, it is diagonalizable. Then one can take

the modulus of its 2N real eigenvalues to get the N symplectic eigenvalues
of γ. Eq. 2.173 is equivalent to:

νk ≥ 1,∀k ∈ [1, N ] (2.183)

This bound is saturated only for pure Gaussian states where ν = I.

2.8.1 One-mode normal decomposition

For a one-mode state of covariance matrix γ1, one can compute the
symplectic eigenvalues using the determinant. Indeed one has det γ1 =
det(Sγ1ST ) for any symplectic transformation S because detS = 1. This
gives for a one-mode system:

ν1 =
√

det γ1 (2.184)

2.8.2 Two-mode normal decomposition

Here we are concerned in finding the symplectic eigenvalues ν1 and ν2 of
the two-mode covariance matrix

γ12 =

[

γ1 C1−2
CT
1−2 γ2

]

(2.185)

Another quantity ∆ is left invariant under symplectic transformations:

∆ = det γ1 + det γ2 + 2detC1−2 (2.186)

Since we have det γ12 = ν21ν
2
2 and δ = ν21 + ν22 one only needs to compute

the roots of the polynomial:

X2 −∆X + det γ12 (2.187)

which gives:

ν21,2 =
∆+−

√

∆2 − 4 det γ12
2

(2.188)
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2.8.3 Three-mode normal decomposition

Here we are concerned in finding the symplectic eigenvalues ν1, ν2 and
ν3 of the three-mode covariance matrix

γ123 =







γ1 C1−2 C1−3
CT
1−2 γ2 C2−3

CT
1−3 CT

2−3 γ3






(2.189)

The three symplectic invariants are:

∆3
1 = det γ1 + det γ2 + det γ3 + 2detC1−2 + 2detC1−3 + 2detC2−3

(2.190)

∆3
2 = det γ12 + det γ23 + det γ13 + 2detC12−23 + 2detC12−13 + 2detC23−13

(2.191)

∆3
3 = det γ123 (2.192)

where

Cij−kl =

[

Ci−k Ci−l

Cj−k Cj−l

]

(2.193)

Since we have:

∆3
1ν

2
1 + ν22 + ν23 (2.194)

∆3
2 = ν21ν

2
2 + ν22ν

2
3 + ν21ν

2
3 (2.195)

∆3
3 = ν21ν

2
2ν

2
3 (2.196)

the symplectic eigenvalues are the roots of the polynomial:

x3 −∆3
1x

2 +∆3
2z −∆3

3 = 0 (2.197)

2.9 Entropy of Gaussian States

2.9.1 Von Neumann entropy

The von Neumann entropy of a continuous-variable quantum system is:

S(ρ) = −Tr[ρ log ρ] (2.198)

This quantity is finite on the compact set of states with bounded energy.

2.9.2 Entropy of Gaussian states

For every N-mode Gaussian state ρG, according to Williamson’s theorem
there exists a symplectic transformation S such that:

SγST =
N
⊗

k=1

νkI (2.199)

Then there exists a unitary transformation that maps the Gaussian state
ρG to a product of N thermal states. Thus the entropy of ρG is equal to
the sum of the entropy of the thermal states. Furthermore the variance νk

of the thermal state k is linked to the number of photons in the mode k by:

νk = 2 〈nk〉+ 1 (2.200)
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Therefore we have:

S(ρG) =
N
∑

i=1

S(ρth) (2.201)

The Von Neumann entropy of a thermal state of density matrix:

ρth =
∞
∑

n=0

〈n〉n
(〈n〉+ 1)n+1

|n〉 〈n| (2.202)

can be computed as:

S(ρth) = −
1

〈n〉+ 1

∞
∑

k=0

( 〈n〉
〈n〉+ 1

)k

log2

[

1

〈n〉+ 1

( 〈n〉
〈n〉+ 1

)k
]

(2.203)

=
log2 〈n〉+ 1

〈n〉+ 1

∞
∑

k=0

( 〈n〉
〈n〉+ 1

)k

− 〈n〉
(〈n〉+ 1)2

log2
〈n〉

〈n〉+ 1

∞
∑

k=1

k

( 〈n〉
〈n〉+ 1

)k

(2.204)

= (〈n〉+ 1) log2 〈n〉+ 1− 〈n〉 log2 〈n〉 (2.205)

2.9.3 Extremality of Gaussian states

Theorem 2.9.3.1 (Extremality of Gaussian states). Let f : B(H⊗N )→ R
be a continuous functional, which is strongly sub-additive and invariant un-

der local unitaries f(U⊗NρU †
⊗N

) = f(ρ). Then for every density operator
ρ describing an N -partite system with finite first and second moments, we
have that

f(ρ) ≥ f(ρG) (2.206)

where ρG is the Gaussian state with the same first and second moments as
ρ.

2.10 Gaussian Operations

Gaussian operations are the operations that map every Gaussian input
state onto a Gaussian output state. What is very interesting about Gaussian
operations is that they correspond to operations that can be performed easily
with present technology.

Gaussian states being easy to characterize, there exists a large class
of transformations acting on Gaussian states that are easy to characterize
too: a Gaussian operation is entirely characterized by its action on the
displacement vector d and the covariance matrix γ of a Gaussian state.

2.10.1 Gaussian unitary operations

They correspond to the set of operations generated by U = e−iĤ/2 from
Hamiltonians Ĥ being second-order polynomials in the field operators:

Ĥ = i(â†α+ â†F â+ â†Gâ†T ) + h.c. (2.207)

where α ∈ CN , F,G are N ×N complex matrices and h.c. stands for ’Her-
mitian conjugate’. A Gaussian unitary acts on the quadrature operator as
an affine transformation:

x̂− > Sx̂+ d (2.208)

where d ∈ R2N and S is a 2N × 2N matrix.
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Displacement operator:

The displacement Dξ translates the mean of the Gaussian state dout =
din + ξ and leaves invariant the covariance matrix. More generally, it does
not modify the shape of the Wigner function of any quantum state of light.

A Gaussian state with mean 〈x〉 and covariance matrix γ is sent under
the action of a Gaussian unitary characterized by a symplectic matrix S and
a displacement vector d onto a Gaussian state with mean 〈x′〉 and covariance
matrix γ

′
given by:

〈x′〉 = S 〈x〉+ d (2.209)

γ
′
= SγST (2.210)

2.10.2 Passive transformations

These operations are the subset of symplectic transformation that are
orthogonal. They are phase shifts and beamsplitters. They do not change
the number of photons.

Phase shift:

A phase shift is a single mode operation corresponding to a rotation in
the phase space. It is characterized by an angle θ and the corresponding
rotation matrix SP S(θ):

SP S(θ) =

[

cos θ sin θ
− sin θ cos θ

]

(2.211)

Beamsplitter:

The beamsplitter operation of transmittance T makes a coherent com-
bination of two modes, characterized by the matrix SBS :

SBS(T ) =

[ √
TI

√
1− TI

−
√
1− TI

√
TI

]

(2.212)

Any passive transformation over N modes can be decomposed into a set of
phase shifts and beamsplitters.

2.10.3 Active transformations

The complementary set of passive transformations inside symplectic trans-
formations is called active transformations. These transformations are trans-
formations that inject photons in the system.

Squeezing:

The squeezing operation with squeezing parameter s is characterized by
a symplectic matrix SSq:

SSq(s) =

[

e−s 0
0 es

]

(2.213)
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Two-mode squeezing:

The two-mode squeezing operation with squeezing parameter s is char-
acterized by a symplectic matrix SSq2:

SSq2(s) =

[

cosh sI sinh sσz

sinh sσz cosh sI

]

(2.214)

Partial measurements

Let us consider a general (NA +NB)-mode Gaussian state ρAB charac-
terized by a displacement vector din

AB = (din
A , d

in
B ) and a covariance matrix:

γAB =

[

γA C
CT γB

]

(2.215)

The homodyne measurement on the B part of the state gives:

dout
A = din

A + C(XγBX)
MP (m− din

B ) (2.216)

γout
A = γA − C(XγBX)

MPCT (2.217)

where X = diag(1, 0, . . . , 1, 0) is the matrix of the measured quadratures
and m = (x1, 0, x2, 0, . . . , xNB

, 0) is the result of the measurements xi on the
mode Bi. This result can be demonstrated by looking at the characteristic
functions and applying a change of variables.
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In the previous chapter, we have introduced the mathematical tools that
are useful to study the security of CVQKD. In this chapter, we start by
explaining the criterion that characterizes the security of a QKD protocol
and detail the different steps of a QKD protocol. Then, we briefly review
the existing QKD protocols and focus on the GG02 [50] protocol that we
implemented in chapter 4. As quantum key distribution becomes a mature
technology, it appears clearly that some assumptions made in the security
proofs cannot be justified in practical implementations. This might open the
door to possible side-channel attacks. We examine several discrepancies be-
tween theoretical models and experimental setups in the case of continuous-
variable quantum key distribution. We start with the most general security
proof of GG02 protocol and study the impact of several imperfections on the
secret key rate. We review how the finite efficiency of the error-correction
procedure and an imperfect homodyne detection affect the secret key rate.
Then, we study in particular the impact of an imperfect modulation on the
security of Gaussian protocols and show that approximating the theoretical
Gaussian modulation with a discrete one is sufficient in practice. We also
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address the issue of properly calibrating the detection setup, and in partic-
ular the value of the shot noise. Finally, we consider the influence of phase
noise in the preparation stage of the protocol and argue that taking this
noise into account can improve the secret key rate because this source of
noise is not controlled by the eavesdropper.

3.1 The Security of a QKD Protocol

As we saw in chapter 1, the goal of QKD consists in establishing a se-
cret key between two distant parties, i.e. a binary string that is unknown
from any party except the two legitimate parties of the protocol, namely
Alice and Bob. Once this key is obtained, it can be used to perform sym-
metric cryptography. A common scheme is the One-Time Pad (OTP) that
consists in using one bit of secret key to encrypt and decrypt one bit of
message using a Exclusive Or (XOR) operation. Such a scheme was proven
to be information-theoretically secure by Shannon, which means that the
encrypted message C provides no information about the plaintext M to
any eavesdropper. Using the notations of chapter 2, this is expressed by
H(M) = H(M |C): conditioning on the knowledge of the ciphertext does
not lower the uncertainty on the plaintext. However, OTP security has
serious drawbacks:

– keys must be perfectly random
– keys must be as long as the message
– keys must never be reused

When either of these conditions is not satisfied, OTP security collapses
very abruptly. Another possibility consists in using the keys produced by
a QKD system to renew the keys of a non-information theoretically secure
symmetric cipher, such as AES. Chapter 9 includes a demonstration of a
cryptosystem combining a CVQKD system and an AES based encryptor.
The notion of security of a key is of utmost importance. A particularity of a
QKD protocol is that it is designed to abort if the key that it could produce
is not secure with respect to a given security criterion.

3.1.1 Key Security Criterion

The universal definition of security used in modern QKD protocols was
introduced by Renato Renner in [111]. It corresponds to the distance be-
tween the key S that is output by the QKD protocol and a perfectly ran-
domly distributed secret key. The previous security definitions of QKD did
not apply to joint attacks over QKD and the subsequent use of the key out-
put by the protocol. Following [111], we can describe the joint state of the
classical key S distributed according to a probability distribution p(s) and
the eavesdropper’s quantum system, whose density matrix in the Hilbert
space HE is ρs

E given that S takes the value s for any element s of the key
space S, as:

ρSE =
∑

s∈S
p(s) |s〉 〈s| ⊗ ρs

E (3.1)

where {|s〉}s∈S is an orthonormal basis of the Hilbert space HS of the key.
The key S is said to be ǫ-secure with respect to HE if:

1

2
||ρSE − ρS ⊗ ρE || ≤ ǫ (3.2)



3.2. A BRIEF HISTORY OF QKD PROTOCOLS 43

where ρS =
∑

s∈S
1
|S| |s〉 〈s| is the fully mixed state onHS and ρE is any state

of the eavesdropper. It means that an ǫ-secure key is uniformly distributed
and independent from the eavesdropper’s knowledge except with probability
ǫ.

3.1.2 QKD Protocol Steps

A QKD protocol is divided into several successive steps:
– Quantum communication: Alice and Bob exchange quantum states
through the quantum channel and perform some measurement on these
states.

– Parameter estimation: Alice and Bob publicly announce at random a
subset of the previously exchanged quantum signals. This step allows
them to estimate the correlations between their quantum subsystems
and therefore estimate the quantum information of the eavesdropper.
They can abort the protocol at this stage if this amount of information
is too large.

– Error-correction: the remaining quantum signals lead to partially iden-
tical bit strings on both Alice’s and Bob’s sides. Alice and Bob ex-
change public information on an authenticated classical channel and
agree on a common bit string. This step increases the amount of in-
formation of the eavesdropper. Alice and Bob can abort the protocol
at this stage if the total amount of information of the eavesdropper
after all the previous steps is higher than the size of the common bit
string.

– Privacy amplification: Alice and Bob extract from their common bit
string a shorter bit string about which the eavesdropper knows a van-
ishing amount of information. This is done by applying a hashing
function to their common bit string.

An incorrect implementation of any of these steps can threaten deeply
the security of a QKD protocol. As we saw in chapter 1, the number of publi-
cations targeting incorrect implementations of QKD protocols and practical
attacks on QKD systems has increased quickly over the past few years. In
the rest of this chapter, we mainly consider CVQKD protocol imperfections
related to the first two steps of this list.

3.2 A Brief History of QKD Protocols

Most implementations of QKD protocols and also the first commercial
QKD systems [2, 3] correspond to DVQKD protocols and are based on pho-
ton counting techniques. While these systems feature rather long security
distances (up to 40 dB losses [137] using superconducting single-photon de-
tectors) and relatively high secret key rates (in the Mb/s range [30] at the
time of writing), they suffer two major drawbacks that slow down their
integration in network infrastructures: they require non-standard actively
cooled components (the single-photon detectors) that might be hard to de-
ploy in a server room environment and do not tolerate coexistence with
other intense channels (with a power in the order of the mW) located at
other wavelengths on the same optical fiber.

On the contrary, CVQKD uses only standard telecoms components (such
as high efficiency PIN photodiodes optimized for the telecommunication
industry) and feature an interesting intrinsic tolerance to the noise induced
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by wavelength multiplexed intense optical signals. This was firstly analyzed
in [106] and we present further investigation in chapter 9.

Among CVQKD protocols, EPR-like entanglement protocols were first
proposed [108, 109, 66, 18] but they were out of reach experimentally. Then,
more practical versions of these protocols involved preparation and mea-
surement of squeezed states, with either a discrete modulation [55, 27] or
a Gaussian modulation [100]. This was a major improvement but the need
for squeezed states still limited the practicality of these protocols. In 2002,
Grosshans and Grangier [50] proposed the first CVQKD protocols using co-
herent states, which can easily be generated with a common laser source.
This protocol consists in a Gaussian modulation of both quadratures of co-
herent states on Alice’s side and applying a homodyne detection on Bob’s
side on one of the quadratures that is chosen at random. This protocol
was limited to losses below 3 dB (that is a transmissivity of one half) be-
cause the mutual information between the eavesdropper and Alice’s state
was higher than the mutual information between Alice and Bob for higher
losses. Several ideas were proposed to overcome this limitation: reverse rec-
onciliation protocols [51, 49] that consist in establishing the secret key using
Bob’s measurements instead of Alice’s prepared states, and post-selection
protocols [130] which discard part of Alice’s and Bob’s data with a rule that
leave them with data that are less noisy, i.e. less correlated to Eve. The
security of this last category of protocols is far more difficult to establish
due to the lack of a mathematical framework allowing us to analyze such a
protocol which does not exhibit the same symmetries as protocols that do
not use post-selection.

3.3 Security Analysis of the Ideal GG02 Protocol

Since we are mainly interested in improving the security and the perfor-
mances of practical CVQKD protocols, we focus on the security proof of the
GG02 protocol with reverse reconciliation in the rest of this chapter.

3.3.1 Protocol Description

We provide below a detailed description of the GG02 protocol with a
reverse reconciliation:

1. Alice draws 2N random numbers {pi}1≤i≤N , {qi}1≤i≤N according to
a centered normal Gaussian distribution of variance VA expressed in
shot noise units.

2. Alice prepares and sends through the quantum channel N coherent
states whose coordinates are {(pi, qi)}1≤i≤N in the phase space.

3. Bob draws N binary random numbers {bi}1≤i≤N .

4. Bob performs a homodyne measurement of either the Q or P quadra-
ture depending on the value of {bi}1≤i≤N . He obtains N classical
random variables {yi}1≤i≤N .

5. Bob sends to Alice on a public authenticated channel the values of
the choice of quadratures {bi}1≤i≤N . Alice keeps the N values among
its 2N values that correspond to Bob’s choices of quadratures. These
values are noted xi. Alice and Bob now share a couple of N correlated
classical variables {(xi, yi)}1≤i≤N .
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6. Alice (respectively Bob) draws m = Nh(p) random bits for 0 ≤ p ≤ 1
which allows them to select a subset ofm values among theirN couples
of correlated random variables. The classical variables {(xi, yi)}1≤i≤m

from this subset are going to be revealed to estimate some parameters
that characterize the quantum communication step. The value of p
can be optimized depending on the number of values that are required
to estimate the quantum transmission parameters with a good level of
precision.

7. Alice (respectively Bob) sends on a public authenticated channel the
m values selected at the previous step together with their position in
their sequence of correlated data.

8. Bob (respectively Alice) computes an estimate of both the trans-
missivity T̂ and the excess noise ξ̂ of the quantum channel using
{(xi, yi)}1≤i≤m then uses these estimates to compute an estimate χ̂(b :
E) (the reconciliation being reverse here) of the upper bound on Eve’s
information and an estimate Î(a : b) of the mutual information be-
tween Alice and Bob (a and b being Alice’s and Bob’s respective clas-
sical bits strings and E being Eve’s quantum state). If χ̂(b : E) >
βÎ(a : b) (where β corresponds to the effiency of the theoretical error
correction procedure at this signal-to-noise ratio), Bob (respectively
Alice) tells the other part to discard the N −m remaining values.

9. Bob sends to Alice a bit string depending on his measurements on
a public authenticated channel. According to Shannon’s theory, the
length of this bits string cannot be arbitrarily small and depends on
the level of noise on the quantum channel.

10. Alice uses the received bits string to compute an estimate of Bob’s
measurements. If this error-correction procedure is correctly designed,
the probability of Alice computing a correct value for the estimate of
Bob’s measurements is close to one. An optional step here consists in
sending a short bit string that is a hash function of Alice’s estimate
from Alice to Bob on a public authenticated channel. Bob can compute
the same hash function on its bit string and then compare the results.
If they differ, he informs Alice so they can discard their respective
classical bits strings.

11. Given χ̂(b : E) and the length of the bits string disclosed at the previ-
ous step Alice (respectively Bob) computes an estimate of the number
l of secret bits they can extract from their common partially secret bit
string.

12. Alice (respectively Bob) draws a random hashing function that com-
presses a N − m bit string into a l bit string. If they are using the
two-universal hashing family multiplication by a binary Toeplitz ma-
trix, the number of required random bits is N −m+ l − 1.

13. Alice (respectively Bob) sends on a public authenticated channel the
description of the drawn hashing function.

14. Alice and Bob apply this function to their respective bit strings. They
obtain a secret bit string of size l.

We can see that such a description does not give a practical implementation
of the protocol and makes use of rather theoretical objects such as the shot
noise or the homodyne measurement.
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3.3.2 Some Potential Deviations to the Ideal GG02 Protocol

Although this list does not intend to be exhaustive, it enumerates most
of the practical imperfections that arise when trying to implement the GG02
protocol and therefore threaten its security:

– The practical discretized Gaussian modulation one can generate in
an experiment might not be equivalent to the theoretical continuous
Gaussian modulation. We study this imperfection in section 3.4.3 and
in [63].

– The random numbers source that is required at different steps of the
protocol might be predictable by an attacker.

– The states prepared by Alice might not be coherent states. The effect
of preparing thermal states instead of coherent states was studied in
[141].

– The detection apparatus might not measure perfectly a quadrature of
the field.

– The Q and P quadratures that are supposed to be measured on Bob’s
side might not be orthogonal.

– The public channel might not be authentic.
– All the quantities used to estimate Eve’s information might not be
expressed correctly in shot noise units. As studied in chapter 5 and in
[62], a fake shot noise estimation can be used to hide a full intercept
and resend attack.

3.3.3 Security Proof against Collective Attacks

The security proof of the ideal GG02 protocol was established against
collective attacks in [46, 99]. We review the sketch of this proof in this
section.

The secret key rate against collective attacks in the asymptotic limit is
given by:

Kasympt
coll = I(a : b)− S(b : E) (3.3)

where I(a; b) is the mutual information between Alice and Bob’s classical
bit strings after the quantum exchange and S(b : E) if the Holevo quan-
tity between Bob’s classical bit string and Eve’s quantum state. The proof
proceeds by bounding the Holevo quantity between Eve and Bob using the
optimality property of Gaussian states [153]:

Theorem 3.3.3.1 (Extremality of Gaussian states, Lemma 1 of [153]). Let
f : B(H⊗N )→ R be a continuous functional, which is strongly sub-additive

and invariant under local unitaries f(U⊗NρU †
⊗N

) = f(ρ). Then for every
density operator ρ describing an N -partite system with finite first and second
moments, we have that

f(ρ) ≥ f(ρG) (3.4)

where ρG is the Gaussian state with the same first and second moments as
ρ.

In order to apply this theorem, let us show that S(b : E) = f(ρAB)
where ρAB is the state shared by Alice and Bob. Since one can always
write ρE = trAB(ρABE), it is possible to assume that ρABE is pure. The
property of the von Neumann entropy of a pure system gives S(AB) = S(E).
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Furthermore, after the projective homodyne measurement from B to b, the
quantum system ρAE is still pure. Then S(A|b) = S(E|b). By linearity
S(b : E) = S(E)− S(E|b) can be written as f(ρAB).

One can show that f : ρAB → f(ρAB) = S(b : E) satisfies the hypotheses
of Theorem 3.3.3.1. Thus we have:

f(ρAB) ≤ f(ρG
AB) (3.5)

and we can compute the quantity S(b : E) assuming that the state ρAB is
Gaussian and this gives a general bound on S(b : E). Then the secret key
rate satisfies:

Kasympt
coll ≥ I(a : b)− f(ρG

AB) (3.6)

Once we have this result, let us see how to compute S(b : E) for a two-
mode Gaussian state. Since a Gaussian bivariate mixture of coherent states
is a thermal state, in GG02 Alice prepares a thermal state of covariance
matrix:

γA =

[

VA + 1 0
0 VA + 1

]

(3.7)

Furthermore, this thermal state can be obtained as a purification of a two-
mode squeezed state (or EPR state) of covariance matrix:

γEP R =

[

V I
√
V 2 − 1σz√

V 2 − 1σz V I

]

(3.8)

where V = VA + 1. The anti-diagonal sub-matrices exhibit the quantum
correlations that characterize an EPR state. We still need to connect such
a general covariance matrix to the real statistics of a practical CVQKD
experiment which exhibit classical correlations.

In the general case, in the Prepare& Measure version of a CVQKD pro-
tocol, the covariance matrix related to Alice and Bob’s measurements has
the following form:

γP&M =











X11 X12 Z11 Z12
X21 X22 Z21 Z22
Z11 Z12 Y11 Z12
Z21 Z22 Z11 Z12











(3.9)

which is the general form of a two-mode state covariance matrix. Intuitively,
in an ideal version of the protocol, the quantum channel is supposed not to
introduce any correlation between the Q and P quadratures. This justifies
why all the non diagonal terms of the 2× 2 sub-matrices should be equal to
zero. Another theoretical justification is given in [73]: Alice and Bob could
apply the same random orthogonal transformation to their respective data
in order to symmetrize them. On the one hand, the Gaussian noise added
by the channel is symmetric and therefore its law is not changed by such
transformations, which implies that the same error-correction procedure can
be applied whether we apply the symmetrization procedure or not. On
the other hand, the symmetrization gives X = X11+X22

2 , Y = Y11+Y22
2 and

Z = Z11−Z22
2 and one can safely use the following symmetric covariance

matrix in the equivalent entanglement-based version of the protocol:

γsym =

[

XI Zσz

Zσz Y I

]

(3.10)
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This form shows that Q and P play the same role and that Alice and Bob are
simply left with estimating three parameters instead of ten. Furthermore, for
a quantum channel of transmission T and excess noise ξ, Alice’s modulated
data {xi}1≤i≤N and Bob’s measurements {yi}1≤i≤N are related by yi =
txi + zi where zi ∼ N (0, σ2). This allows us to estimate these parameters:















〈x2〉 = V − 1
〈xy〉
〈x2〉 =

√
T

〈y2〉 = 1 + T (V − 1) + Tξ

(3.11)

Thus the covariance matrix of Alice and Bob’s two-mode state can be writ-
ten:

γAB =

[

V I
√

T (V 2 − 1)σz
√

T (V 2 − 1)σz (1 + T (V − 1) + Tξ)I

]

(3.12)

One can note χ = (1− T )/T + ξ then we have:

γAB =

[

V I
√

T (V 2 − 1)σz
√

T (V 2 − 1)σz T (V + χ)I

]

(3.13)

Now one can compute SG(b : E) for the Gaussian state with covariance
matrix γAB. The obtained value is a bound for S(b : E). Since the system
E can be written as a purifying system of ABE, the property of the von
Neumann entropy of a pure composite system gives:

S(b : E) = S(E)− S(E|b) (3.14)

= S(AB)− S(AB|b) (3.15)

Then one just needs to compute the symplectic values of the matrices γAB

and γAB|b. For a 4× 4 matrix of the form:

γAB =

[

aI cσz

cσz bI

]

(3.16)

if we perform a measurement on the quadrature x̂ of respective modes A
and B we can apply the formula of the homodyne measurement respectively
with XA = diag(1, 0, 0, 0) and XB = diag(0, 0, 1, 0) to get:

γB
AB =

[

a− c2/b 0
0 a

]

(3.17)

and

γA
AB =

[

b− c2/a 0
0 b

]

(3.18)

Then we have:

γAB|b =

[

V − V 2−1
V+χ 0

0 V

]

(3.19)

The symplectic eigenvalue of γAB|b is given by the product of the diagonal
elements:

ν23 = V (V − V 2 − 1

V + χ
) (3.20)
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For γAB we have:

∆ = a2 + b2 − 2c2 = V 2(1− 2T ) + 2T + T 2(V + χ)2 (3.21)

D = ab− c2 = T (V χ+ 1) (3.22)

and:

ν21 =
1

2
(∆ +

√

∆2 − 4D2) (3.23)

ν22 =
1

2
(∆−

√

∆2 − 4D2) (3.24)

Finally, using the formula giving the entropy of a decomposition in thermal
states we get:

S(b : E) = S(AB)− S(E|b) (3.25)

= g

(

ν1 − 1

2

)

+ g

(

ν2 − 1

2

)

− g
(

ν3 − 1

2

)

(3.26)

Note that this quantity is exactly the same as in the protocol with squeezed
states and homodyne measurement. However the key rate differs because of
S(A : B) which is different between the two protocols.

3.3.4 Security proof against General Attacks

The secret key rate against collective attacks converges to the secret key
rate against coherent attacks in the asymptotic limit of infinite block lengths
[112]. This is because a de Finetti’s theorem [112] implies the optimality
of collective attacks in the asymptotic limit. The optimality of Gaussian
attacks [46, 99] among collective attacks allows us to conclude in this regime.
However, because of the slow convergence, the analysis done in [112] does
not allow us to compute useful bounds on the secret key rate in the finite-
size regime, which is the scenario of interest for a practical implementation
of a CVQKD protocol. A totally different security analysis makes use of
an entropic uncertainty inequality [45] and allows us to compute bounds
for practical values of exchanged signals. Unfortunately, the secret key rate
obtained with this technique does not converge to the asymptotic secret key
rate secure against collective attacks when considering an infinite number
of signals. This results in a vanishing secret key rate after a few hundred
meters. Another proof technique was introduced in [74] and improves the
convergence speed of [112]. It consists in exploiting the symmetries of the
protocol in phase space in order to obtain a tight bound on the effective
dimension of the quantum state. Then, the so-called post-selection technique
introduced in [23] for discrete-variables protocols can be applied [74] and
gives better convergence results than the de Finetti’s theorem used in [112].
The drawback of this last method is that it still lacks an analytical formula
to compute an estimate of the secret key rate for a finite set of exchanged
quantum signals [74].

3.4 Security Analysis of the Imperfect GG02 Pro-

tocol

The main argument in favor of QKD is its provable security based on the
laws of quantum mechanics; it is therefore particularly important to make
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sure that the security proofs derived for theoretical protocols can be ap-
plied to real-world implementations. This is unfortunately never really the
case because the security proofs usually assume idealized implementations,
which do not take into account all possible experimental imperfections. This
opens the door to potential security loopholes [121] that might be success-
fully exploited by an attacker. Such side-channel attacks have already been
demonstrated against commercial QKD systems [155, 86].

There are basically two ways around side-channel attacks. A drastic so-
lution consists in deciding that the systems held by Alice and Bob should not
be trusted: this is the device-independent paradigm, based on the violation
of a Bell inequality [31]. While being appealing in theory, this paradigm does
not offer a practical solution since violating a Bell inequality in a loophole-
free fashion has not been achieved until now. A more practical way to
address side-channel attacks aims at refining the theoretical models used for
security proofs in order to include various sources of experimental imper-
fections. This involves, for instance, developing better models for the state
preparation, including the light source, the modulation, and the noise, and
for the detection, including the quantum efficiency and the calibration of
the noise.

In this section, we follow the second approach. We start by presenting
two well-studied imperfections: the effect of the finite efficiency of the error-
correction procedure on the secret key rate and how the finite efficiency and
the electronic noise of an imperfect homodyne detection can be taken into
account into the security proof. Then, we study three kinds of imperfec-
tions that occur in all implementations of this protocol and see how they
affect its security and the secret key rate. The first imperfection concerns
the modulation, which, in practice, can only approach the theoretical Gaus-
sian modulation. Indeed, a Gaussian distribution is not only continuous but
unbounded, and therefore cannot be exactly achieved since for instance, an
infinite amount of randomness would be required. We show that the impact
on security is not significant when the Gaussian distribution is replaced by
a bounded, discrete approximation. However, deviations from a perfect dis-
cretized distribution degrade the security. The second source of imperfection
comes from finite-size effects, and in particular from the calibration of the
detection setup. While a first study in this direction has already considered
statistical estimation of the transmittance and excess noise of the channel
[77], it assumed that the quantum efficiency and the electronic noise of the
detection, and more importantly, the shot noise level, were all perfectly cal-
ibrated. Here, we consider these effects in detail and examine their impact
on the secret key rate and distance. Finally, we study the effect of phase
noise in the preparation process of the protocol. This noise is unavoidable
but one can safely assume that it is not controlled by the eavesdropper. We
therefore show that by calibrating it properly, one can increase the secret
key rate of the protocol.

3.4.1 Effect of an Imperfect Reconciliation Procedure

In this section we show that the effect of the imperfect reconciliation
procedure is well understood and does not threaten the security of a CVQKD
protocol if correctly performed. However, this step limited the range of
CVQKD protocols with a Gaussian modulation for a long time. Chapter 6
shows how to overcome this limitation.
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The theoretical secret key rate of Equation 3.3 can never be achieved in
a practical implementation because only a fraction β of the mutual infor-
mation between Alice and Bob can be recovered. In theory, according to
Shannon’s theorem, one can achieve the Shannon capacity of a channel which
corresponds to the supremum of the mutual information between the input
and the output over all the input distributions, with an error-correcting
code of rate R equal to the capacity. In our Gaussian CVQKD protocol we
are using a Gaussian modulation which is the probability distribution that
maximizes the mutual information over the AWGNC. We require an error-
correcting code of rate equal to the capacity of the AWGNC to extract all
the mutual information between Alice and Bob. Unfortunately, such finite-
length codes do not exist. The ratio between the rate of the code and the
capacity of the channel gives the efficiency of the code with respect to the
Shannon limit. The expression of the secret key rate taking into account an
imperfect reconciliation efficiency reads:

Kasympt
ECC = βI(a : b)− S(b : E) (3.27)

=
R

CAW GNC
I(a : b)− S(b : E) (3.28)

where 0 ≤ β ≤ 1. In the limit of very large blocks, there exist codes that
achieve the capacity and Kasympt

ECC converges towards Kasympt
coll .

Furthermore, when codes close to the channel capacity are available,
usually the known iterative decoding algorithms are suboptimal and do not
allow to correct errors at high repetition rates. In chapter 6, we give exam-
ples of LDPC codes that can perform close to the BIAWGNC capacity and
in chapter 8 we study the use of polar codes for both DVQKD and CVQKD
and give experimental speeds for both LDPC codes and polar codes.

3.4.2 Effect of an Imperfect Homodyne Detection

The efficiency of the homodyne detection is modeled by a beamsplitter
of transmittance η and the electronic noise of the detection is modeled by a
thermal noise of variance N added at the second input of the beamsplitter.
Before Bob’s homodyne measurement, the state received by Bob is mixed
with a thermal state. The other output is called mode F and the other part
of the thermal EPR pair is called mode G. We assume that FG is a pure
state, i.e. Eve cannot interact with this state totally controlled by Bob.
This seems justified because this state is produced in Bob’s lab.

The system ABFG where AB comes from the channel is a product
state ρABF G = ρAB ⊗ σF G. Since we are computing a bound we can safely
assume that ρAB is Gaussian. We also assume that the electronic noise is
Gaussian thus the state ρF G is Gaussian. Therefore the system ABFG is
Gaussian and can be described by its covariance matrix γABF G such that
γABF G = γAB ⊗ γF G. The beamsplitter on Bob’s side acts as a passive
symplectic transformation described by the matrix S = 1A⊗SBF ⊗1G with:

SBF =

[ √
η

√
1− η

−√1− η √
η

]

(3.29)

where B becomes B1 and F becomes F1 after coupling on the beamsplitter.
Thus we have:

γAB1F1G = SγAB ⊗ γF GS
T (3.30)
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We can rearrange the rows and the columns to get the matrix γAF GB and
after measurement of the x quadrature of mode B we get:

γxb

AF G =







γA σAF σAG

σT
AF γF σF G

σT
AG σT

F G γG






(3.31)

where

γA =

[

a− c2η
bη+(1−η)N 0

0 a

]

(3.32)

γF =

[

bN
bη+(1−η)N 0

0 bη + (1− η)N

]

(3.33)

γG =

[

N − (1−η)(N2−1)
bη+(1−η)N 0

0 N

]

(3.34)

σAF =

[ −√1−ηNc
bη+(1−η)N 0

0
√
1− ηc

]

(3.35)

σAG =





−c
√
(1−η)η(N2−1)

bη+(1−η)N 0

0 0



 (3.36)

σF G =

[

η(N2−1)
bη+(1−η)N 0

0 −
√

η(N2 − 1)

]

(3.37)

We note χD = 1−η
η N which gives a reduced form for the symplectic invari-

ants:

∆3
1 =

1

b+ χD
(2b+ aD + χD(∆ + 1)) (3.38)

∆3
2 =

1

b+ χD
(b+ 2aD + χD(D

2 +∆)) (3.39)

∆3
3 =

D

b+ χD
(a+ χDD) (3.40)

that satisfy P (x) = x3 −∆3
1x

2 + ∆3
2x −∆3

3 = 0. Since P (1) = 0 then one
has to compute the roots of the polynomial Q(x) = x2 − (∆3

1 − 1)x + ∆3
3.

Let us define χtot = χ+ χD

T , we can rewrite:

∆3
1 =

2T (V + χ) + V D + χD∆+ χD

T (V + χtot)
(3.41)

=
V D + T (V + χ) + ∆χD

T (V + χtot)
+ 1 = α+ 1 (3.42)

∆3
3 =

V D + χDD
2

T (V + χtot)
= β (3.43)
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with:

α =
V D + T (V + χ) + ∆χD

T (V + χtot)
(3.44)

β =
V D + χDD

2

T (V + χtot)
(3.45)

Finally the symplectic eigenvalues are:

ν23 =
1

2
(α+

√

α2 − 4β) (3.46)

ν24 =
1

2
(α−

√

α2 − 4β) (3.47)

ν25 = 1 (3.48)

Then in the case of a noisy homodyne detection the Holevo quantity reads:

S(b : E) = g

(

ν1 − 1

2

)

+ g

(

ν2 − 1

2

)

− g
(

ν3 − 1

2

)

− g
(

ν4 − 1

2

)

(3.49)

3.4.3 Security of Gaussian Protocols with an Imperfect Mod-
ulation

We first consider an issue present in all implementations of CVQKD
with a Gaussian modulation, namely that it is impossible to use an exact
Gaussian modulation in practice. In the ideal scenario for the prepare-and-
measure protocol, for each signal to be sent, Alice is supposed to draw two
random normal variables q, p ∼ N (0, VA) and to prepare the coherent state
|q+ip〉 centered on the point (q, p) in phase space. Unfortunately, in practice,
ignoring phase noise, the coherent state really prepared by Alice is centered
on (q′, p′) instead, where (q′, p′) is a point on a finite grid, approximating
the ideal value of (q, p). This is unavoidable for several reasons. First, the
analog-to-digital converters that drive the physical modulators used in prac-
tice produce discrete voltages; they typically have a bit depth of 10 like in
[44]. Second, intensity modulators only work in some finite range of values,
whereas the Gaussian distribution is unbounded. Another hardware con-
straint is the throughput of the physical Random Number Generators (for
example Quantis, from ID Quantique, is limited to 16 Mbit/s). But there
are also software limitations: one does not want to use too much randomness
in order to draw the Gaussian variables q and p out of the uniform variables
provided by the physical Random Number Generator because this requires
computational power. For these reasons, it is useful to know how well the
Gaussian modulation needs to be approximated in order to get a reasonably
good level of security.

Intuitively, the presence of shot noise hides the small imperfections of
the modulation and the security should not be compromised provided that
the grid of (q′, p′) is sufficiently fine-grained compared to the value of the
shot noise. Figure 3.1 illustrates how fine the grid needs to be compared to
the shot noise.

In order to analyze the security of the practical protocol, it is convenient
to look at the situation from Bob and Eve’s points of view. In the theoretical
protocol, the state sent by Alice to Bob should be a thermal state from
Eve’s perspective, that is a Gaussian mixture of coherent states. If Eve
cannot distinguish the state sent in practice from a thermal state, then
clearly the security of the protocol is not compromised by the approximated
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δ

7
√

VA, VA = N0

√

N0

p

q

Figure 3.1: Discretization grid used to approximate a Gaussian modulation
in phase space. The modulation variance VA is chosen to be equal to the
shot noise N0. The distribution is truncated to 7 standard deviations and
discretized in steps of 1/4th of shot noise units. A coherent state of vari-
ance N0 covers a large part of the grid, which results in hiding the small
imperfections of the discretized modulation.

modulation. More precisely, if the trace distance between the ideal state and
the actual state is bounded by ǫprep, and if the usual protocol (with perfect
state preparation) is ǫ-secure, then the true protocol is (ǫ + ǫprep)-secure.
Therefore, one simply needs to ensure that ǫprep can be made quite small,
that is on the order of 10−10 in a realistic implementation.

The quality of a Gaussian modulation

Let us write ρ = ρth =
∞
∑

n=0

xn

(x+ 1)n+1
|n〉〈n| the ideal thermal state and

σ =
∑

k

ωk|αk〉〈αk| the state used in practice. Here ωk corresponds to the

probability of preparing the coherent state |αk〉.
We will compute the trace distance ||ρ − σ||1 between the two states,

for two discretizations σ, either with a Cartesian or a polar grid. For both
discretizations, we will use the gentle measurement lemma [152, 101]:

Lemma 3.4.3.1 (Gentle measurement). Let ρ be a state and Π be a pro-
jector. Then

||ρ−ΠρΠ|| ≤ 2
√

1− tr (ΠρΠ). (3.50)

Let us take Π = |0〉〈0|+|1〉〈1|+· · ·+|Q−1〉〈Q−1|. The triangle inequality
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gives:

||ρ− σ|| ≤ ||ρ−ΠρΠ||+ ||ΠρΠ−ΠσΠ||+ ||ΠσΠ− σ||

≤
∞
∑

n=Q

〈n|ρ|n〉+
∣

∣

∣

∣

∣

∣

Q−1
∑

n,m=0

〈n|ρ|m〉 − 〈n|σ|m〉
∣

∣

∣

∣

∣

∣

+2
√

1− tr (ΠσΠ)

≤
∞
∑

n=Q

xn

(x+ 1)n+1
+

Q−1
∑

n=0

∣

∣

∣

∣

xn

(x+ 1)n+1
− 〈n|σ|n〉

∣

∣

∣

∣

+2
∑

0≤n<m<Q

|〈n|σ|m〉|+ 2

√

√

√

√1−
Q−1
∑

n=0

〈n|σ|n〉

≤
(

x

x+ 1

)Q

+∆diag + 2∆nondiag + 2
√

Rσ (3.51)

with ∆diag :=
∑

0≤n<Q

∣

∣

∣

∣

xn

(x+ 1)n+1
− 〈n|σ|n〉

∣

∣

∣

∣

, ∆nondiag :=
∑

0≤n<m<Q

|〈n|σ|m〉|

and Rσ := 1−
∑

0≤n<Q

〈n|σ|n〉. These three quantities can be estimated from

the terms 〈n|σ|m〉 , 0 ≤ n,m < Q.

Notice that Rρ :=
(

x
x+1

)Q
does not depend on the actual approximation

used, but only on the mean photon number x of the ideal thermal state.
When using a Gaussian modulation of variance VA (in shot noise units), one
has x = 2VA. This means that larger values of VA require larger values of
Q in order to obtain a good bound in Eq. (3.51). A typical range for VA

is [1, 20]. For VA = 20, and ǫprep = 10−10, one needs to have Q ≈ 1000 to
ensure that Rρ ≤ ǫprep. Furthermore one also needs Rσ ≤ ǫ2prep, which puts
additional constraints on Q.

Cartesian approximation

Here, we consider an approximation of the form

σ =
N
∑

k=−N

N
∑

l=−N

ωk ωl |αkl〉 〈αkl| (3.52)

where ωk = γk
∑

k
γk
, γk = e−q2

k
/(2V ), qk = pk = A

N k, αkl = qk + ipk, and

A, N are two parameters to be optimized. The |αkl〉 are coherent states:
|α〉 = e−|α|

2/2∑∞
n=0

αn√
n!
|n〉.

Therefore,

〈n|σ|m〉 =
N
∑

k,l=−N

ωkωl 〈n|αkl〉 〈αkl|m〉

=
N
∑

k,l=−N

ωkωl e
−|αkl|2 α

n
kl α

∗
kl

m

√
n!m!

.

From this expression, ∆diag, ∆nondiag and Rσ can be evaluated numerically
for any choice of x = 2VA, Q,A andN . Once A is chosen, N is typically set so
that δ = A/N , the discretization step, has some predetermined value. Given
VA, let us show that a low ǫprep = ||ρ− σ|| can be obtained with reasonable
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values of A and N . Assume VA = 20, a rather large value corresponding to
a Gaussian modulation of standard deviation

√
20; use (see Fig. 3.1)

– A = 7
√
VA, meaning that the actual Gaussian distribution is truncated

to 7 standard deviations;
– N = ⌈4A⌉, meaning that the distribution is discretized in steps of
1/4th of shot noise units.

These choices can be used in practice: for VA = 20, they require 2 × ⌈4 ×
7 × √VA⌉ + 1 = 253 discretization steps, that is, an 8-bit discretization
grid. The entropy of the corresponding pair of discretized Gaussian values
is 2× 6.2 = 12.4 bits. Source coding techniques enable to use on average no
more than this randomness quantity when drawing them in practice.

For Q = 2000 (chosen to get a sufficiently low value of Rσ), a numerical
evaluation yields

∆diag ≤ 1.02 10−11, (3.53)

∆nondiag ≤ 1.04 10−11, (3.54)

Rσ ≤ 1.09 10−24, (3.55)

from which we deduce

||ρ− σ|| ≤ 3.31 10−11. (3.56)

In the above discretization scheme, the mass lost because of the distribu-
tion cutoff is evenly distributed among the remaining coherent states. Let
us give a similar result for a slightly different cutoff scheme where the lost
mass is added to ω±N only: ωk =

A
N

1√
2πV

e−q2
k

/(2V ) for −N +1 ≤ i ≤ N − 1,
and ω−N = ωN = (1 − ∑N−1

i=−N+1 ωk)/2. For this scheme with the same
parameters as before, we find

||ρ− σ|| ≤ 2.98 10−11. (3.57)

Polar approximation

The actual modulation devices implement a polar modulation because
phase and intensity are modulated separately. It is therefore natural to
investigate the discretization required in polar coordinates to obtain a good
approximation of a thermal state.

Let us assume that the polar coordinates are discretized uniformly on
[0, R]× [0, 2π]. Let us note the discretized values as:

rk =
(

k +
1

2

)

R

K
, k ∈ [[0,K − 1]], (3.58)

θl =
(

l +
1

2

)

2π

L
, l ∈ [[0, L− 1]]. (3.59)

We consider then an approximation of the form

σ =
1

L

∑

k

ωk

∑

l

|αkl〉 〈αkl|, (3.60)
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where ωk = γk
∑

k
γk
, γk = rke

−r2
k

/(2V ) and |αkl〉 = e−r2
k

/2∑∞
n=0

rn
k

einθl√
n!
|n〉.

Therefore,

〈n|σ|m〉 = 1

L

K−1
∑

k=0

L−1
∑

l=0

ωk 〈n|αkl〉 〈αkl|m〉 (3.61)

=
1

L

K−1
∑

k=0

L−1
∑

l=0

ωk e
−r2

krn+m
k

ei(n−m)2πl/L

√
n!m!

(3.62)

= Unm,L

K−1
∑

k=0

ωk
e−r2

krn+m
k√

n!m!
(3.63)

with Unm,L = 1 if L divides n−m, and Unm,L = 0 otherwise.
Unfortunately, this polar discretization requires a finer discretization

than the Cartesian one for the same approximation quality. For instance,
with VA = 20 as before, using Q = L = 2000 (thus eliminating the term
∆nondiag altogether in Eq. (3.51)) and R = 7

√
VA, a 17-bit discretization

of the amplitude is required to obtain |〈0|ρ|0〉 − 〈0|σ|0〉| ≤ 10−10. Drawing
values corresponding to this discretization uses 11 bits for the angle and
15.5 bits for the modulus on average. This situation can be improved by
using instead of regularly spaced rk, points placed according to the Gauss
quadratures method, especially the Gauss-Hermite variant: an 9-bit ampli-
tude discretization entropy is found to be sufficient for ǫprep ≤ 10−10. This
is still slightly worse than the Cartesian grid, but could be improved further
by making the angle discretization depend on the amplitude, as less points
are needed in the vicinity of the origin.

Robustness of bounds

An important question related to the discretization is the robustness of
the bounds given in the previous sections when the discretization grid is dis-
turbed by some small systematic error term. This can happen, for instance,
because of calibration errors or because of complex discretization effects due
to the experimental setup. For example, an amplitude modulator generally
produces an amplitude A = cos(cV + φ), where V is the voltage applied to
it; since V is discrete, the modulated amplitude values are projected to a set
that is the image of the discrete set of attainable voltages by the functional
realized by the modulator. To model the effect of these errors, we added
a small disturbance with Gaussian distribution of standard deviation σerror
to each point of the Cartesian grid, and numerically computed the resulting
ǫprep. With parameters as in Section 3.4.3, we get ||ρ − σ|| ≈ 0.1 × σerror.
This shows that obtaining ǫprep ≤ 10−10 in practice may be difficult; it is
more realistic to expect ǫprep ≈ 10−4 or 10−5.

It is true that the proof techniques used today force us to include ǫprep
in the final security parameter of the key, but it is plausible that this is
too pessimistic. Indeed, it is known that protocols with a non-Gaussian
modulation are secure against all attacks corresponding to a linear channel
between Alice and Bob [76]. This gives a hint that approximations of the
order of 10−4 or 10−5 might be sufficient in practice.

3.4.4 Imperfect Calibration of the Detection Setup

We consider now finite-size effects related to the detection setup. We
note that a proper calibration of Alice and Bob’s devices is crucial to prove
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the security of the final key [58]. Our goal is to improve and expand the
analysis of Ref. [77] concerning finite-size effects in CVQKD 1. In particular,
the values of the quantum efficiency and the electronic noise of Bob’s Ho-
modyne Detection (HD) can only be estimated up to some finite precision.
These inaccuracies must be taken into account when computing a secret key
rate compatible with a realistic scenario (where these sources of noise are
not assumed to be controlled by Eve) while considering finite-size effects.
In the same way, the modulation variance on Alice’s side and the excess
noise on Bob’s side both need to be estimated, in shot noise units, when
computing the secret key rate. This implies that any imperfect precision on
the estimation of the shot noise has an impact on the secret key rate.

The effect of a noisy HD has already been taken into account in the
security proofs [83, 44]. The efficiency of the detection is modeled by a
beamsplitter of transmittance η and the electronic noise is modeled by a
thermal noise of variance Nel added at the second input of the beamsplitter.
That is, before Bob’s HD, the state received by Bob is mixed with a thermal
state of variance Nel on a beamsplitter of transmittance η. The variance of
the electronic noise of the HD, vel, is linked to Nel by vel = (1− η)(Nel− 1).
Interestingly, the final key rate depends only on one parameter, namely
the added noise referred to the input of the measurement device, denoted
as χhom = 1−η

η Nel =
1+vel

η − 1. Therefore, all the combinations of the
parameters (η, vel) that give the same χhom have the same impact on the
secret key rate.

In [44], these parameters were supposed to be calibrated in a secure lab,
which implies that no attacker can interfere with the calibration procedure.
Since this calibration is not performed during a QKD run, the statistical
noise due to the finite number of samples used for the estimation can be made
arbitrarily small. However, both parameters are still known imperfectly
because of the finite precision of the measurement apparatuses. Here we
consider an imperfect knowledge of these parameters and its effect on the
secret key rate.

In order to calibrate a fiber-based HD, like the one used in [44], one
should in fact estimate three quantities:

– the interferometer mode matching ηmod with precision ∆ηmod,
– the efficiency of the photodiodes ηphot with precision ∆ηphot,
– the fiber optic transmittance ηopt with precision ∆ηopt.

Then, the HD efficiency reads η = η2modηphotηopt
2 and the overall uncertainty

is:

∆η = η

(

2
∆ηmod
ηmod

+
∆ηphot
ηphot

+
∆ηopt
ηopt

)

(3.64)

The interferometer mode matching efficiency ηmod is close to 99%, while a
typical value for ηphot is 80% with the PIN photodiodes used in [44]. The
fiber optic transmittance is usually low (around 80% for fiber-based HD since

1. Note that finite-size effects are also considered in Ref. [45], where an entropic uncer-
tainty relation is used to prove the security of an entanglement-based CVQKD protocol.
Unfortunately, the bounds derived there are too pessimistic to be used in realistic experi-
mental conditions.

2. Note that ηmod is derived from a measurement of the visibility of the interference
fringes on one arm of the HD when the Local Oscillator (LO) interferes with another
classical signal of the same intensity. It is therefore the experimentally useful quantity
to characterize mode mismatching in the interferometer, and is used as a reference for
modeling the equivalent beamsplitter transmittance.



3.4. SECURITY ANALYSIS OF THE IMPERFECT GG02 PROTOCOL 59

losses are usually applied on one arm of the interferometer to compensate
for an unbalanced beamsplitter).

The electronic noise vel is estimated as the variance of the HD electronic
noise, i.e., the detection output variance when no optical signal enters the
detection device. This noise is mainly due to the thermal noise introduced
by the load resistance at the entrance of the amplifier circuit (the intrinsic
noise of the photodiodes is typically negligible). A straightforward way to
determine vel is to measure it directly as the variance of the HD output
when no light enters the homodyne detection. Alternatively, one can plot
the relationship between the power of a light source entering one branch of
the beamsplitter of a balanced shot-noise limited HD and the variance of
the HD output, when the other entrance of the HD is disconnected. This
relationship should be linear, the Y-intercept being the variance of the elec-
tronic noise. Experimentally, the latter method leads to less accurate values
of the electronic noise. However, even with the direct method vel can only
be known up to a precision ∆vel.

The different uncertainties mentioned above can be evaluated depending
on the measurement procedure and the precision of the measurement de-
vices. In a practical CVQKD setup, Alice and Bob estimate the quantities
required to compute the secret key rate through the sampling of m = N −n
pairs of correlated variables (xi, yi)i=1...m, where N is the total number of
quantum signals sent through the quantum channel and n is the number of
signals used for the key establishment.

More precisely, the parameter estimation is performed in two steps.
First, after the state distribution and measurements, Alice and Bob need
to roughly estimate the signal-to-noise ratio of their classical data in order
to choose the proper error correcting code for the reconciliation [65]. This
typically requires m = O(

√
N). Then, after the (reverse) reconciliation,

Alice knows both her raw string and the one received by Bob. In practice,
Alice and Bob would publicly compare a small hash of their final string to
make sure that the reconciliation procedure succeeded. The size of these
strings is N and the parameter estimation can be performed on the whole
string. The results of this estimation will be used to compute a tight bound
on Eve’s information about Bob’s string.

Since for CVQKD, it is sufficient to estimate the covariance matrix of
the state shared by Alice and Bob, the only parameters that need to be
estimated are the variance on Alice’s and Bob’s sides, respectively 〈x2〉 and
〈y2〉, and the covariance between Alice and Bob 〈xy〉 (assuming here that x
and y are centered variables, that is, that 〈x〉 = 〈y〉 = 0). These values are
linked to the key rate parameters through:

〈x2〉 = VA (3.65)

〈y2〉 = ηTVA +N0 + ηTξ + vel (3.66)

〈xy〉 =
√

ηTVA, (3.67)

where T is the quantum channel transmittance, VA is the modulation vari-
ance, ξ is the excess noise, and N0 is the shot noise (all expressed in their
respective units and not in shot noise units as it is usually assumed).

Since η and vel are calibrated beforehand, one has four unknown parame-
ters (VA, N0, T, ξ) and only three equations. However, by forcing a quantum
channel with zero transmittance, we get one more equation:

〈y02〉 = N0 + vel. (3.68)
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This can be done in Bob’s laboratory by measuring the vacuum.
In order to compute confidence intervals for these parameters, we con-

sider here a normal model for Alice and Bob’s correlated variables (xi, yi)i=1...N :

y = tx+ z, (3.69)

where t =
√
ηT ∈ R and where z follows a centered normal distribution with

unknown variance σ2 = N0 + ηTξ + vel. Note that this normal model is an
assumption justified in practice but not by current proof techniques, which
show that the Gaussian assumption is valid once the covariance matrix is
known [99, 46]. Exploiting symmetries of the protocol in phase-space might
be a way to rigorously justify this assumption [73, 75]. The random variable
x is a normal random variable with variance VA in the case of a Gaussian
modulation. Another set of Bob’s data (y0i)i=1...N ′ can be used to measure
the noise when no signal is exchanged (one can take N ′ to be on the order
of N):

y0 = z0 (3.70)

where z0 follows a centered normal distribution with unknown variance σ20 =
N0 + vel. Similarly to the analysis in [77], Maximum-Likelihood estimators
t̂, σ̂2 and σ̂0

2 are known for the normal linear model:

t̂ =

∑N
i=1 xiyi
∑N

i=1 x
2
i

, (3.71)

σ̂2 =
1

N

N
∑

i=1

(yi − t̂xi)
2, (3.72)

σ̂0
2 =

1

N ′

N ′
∑

i=1

y0
2
i , (3.73)

V̂A =
1

N

N
∑

i=1

x2i . (3.74)

The estimators t̂, σ̂2, σ̂0
2 and V̂A are independent estimators whose distri-

butions are:

t̂ ∼ N
(

t,
σ2

∑N
i=1 x

2
i

)

, (3.75)

Nσ̂2

σ2
,
N ′σ̂0

2

σ20
,
NV̂A

VA
∼ χ2(m− 1) (3.76)

where t, σ2, σ20 and VA are the true values of the parameters. In the limit
of large N,N ′, one can compute confidence intervals for these parameters:

t ∈ [t̂−∆T, t̂+∆T ] (3.77)

σ2 ∈ [σ̂2 −∆σ2, σ̂2 +∆σ2] (3.78)

σ20 ∈ [σ̂02 −∆σ20, σ̂0
2 +∆σ20] (3.79)

VA ∈ [V̂A −∆VA, V̂A +∆VA], (3.80)

where ∆T = zǫPE/2

√

σ̂2

NVA
, ∆σ2 = zǫPE/2

σ̂2
√
2√

N
, ∆σ20 = zǫPE/2

σ̂0
2
√
2√

N ′
, ∆VA =

zǫPE/2
V̂A

√
2√

N
and zǫPE/2 is such that 1− erf(zǫPE/2/

√
2)/2 = ǫPE/2 (ǫPE, typi-

cally 10−10, is the probability that the estimated parameters do not belong to
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the confidence region computed from the parameter estimation procedure).
Here we have used the error function erf(x), defined as:

erf(x) =
2√
π

∫ x

0
e−t2

dt. (3.81)

One can then estimate T = t̂2

η and ξ =
σ2−σ2

0

t̂2 using the previous estimators
and their confidence intervals. As regards the shot noise, it is known with a
precision that depends both on the number of samples used to compute the

estimator σ̂20 and on the precision on the electronic noise ∆vel.
Once the parameters and their respective confidence intervals have been

determined, one can in particular express in shot noise units all the quanti-
ties needed to compute SǫPE

(y : E), the maximal value of the Holevo infor-
mation between Eve and Bob’s classical data compatible with the statistics
except with probability ǫPE. Thus, the secret key rate for collective attacks
including all the finite-size effects and calibration imperfections discussed
previously can be computed as:

Kfinite =
n

N
(βI(x : y)− SǫPE

(y : E)−∆(n)), (3.82)

where βI(x : y) is the amount of mutual information Alice and Bob were
effectively capable to extract through the reconciliation phase (β is the rec-
onciliation efficiency which ranges from 0 when no information was extracted
to 1 for a perfect reconciliation scheme) and ∆(n) is related to the security
of the privacy amplification [122, 77].

Figure 3.2 gives the secret key rate for various values of the number of
samplesN = N ′. It appears that even taking pessimistic confidence intervals
for η and vel, for example with ∆η = 0.1η and ∆vel = 0.1vel, the impact on
the secret key rate is not significant. However, a high precision on the shot
noise is required for long distances since ηTξ must be known with a high
precision as already observed in [77]. It is worth noting that even using 106

samples leads to a positive secret key rate for the Gaussian protocol unlike
discrete modulation protocols for which at least 108 samples are required
[77].

3.4.5 Improved Key Rate with Phase Noise Calibration

In order to obtain precise statements about the security of a given quan-
tum key distribution (QKD) protocol, it is useful to carefully characterize
the equipment of Alice and Bob. For CVQKD, this issue has already been
addressed extensively for the detection stage. In particular, as was discussed
in the previous section, in a calibrated device scenario, the detection model
includes a finite quantum efficiency and a given level of electronic noise.
Interestingly, both these imperfections act as sources of noise that can be
trusted, in the sense that they are not controlled by Eve. This corresponds
to the so-called realistic model, as opposed to the paranoid model where the
eavesdropper is supposed to control all sources of noise. The realistic model
allows one to derive a secret key rate that is actually better than the one
obtained without this modeling for the imperfections of Bob’s detection.

Concerning the preparation phase of the Gaussian CVQKD protocol that
we are considering, recent work has addressed the issue of imperfections
in Alice’s state preparation. In particular, Refs [39, 141, 127] studied the
situation where Alice in fact prepares thermal states instead of coherent
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Figure 3.2: Secret key rate for collective attacks including finite-size effects
and calibration imperfections with respect to the distance for different values
of the number of samples. The transmittance T and distance d are linked
with the expression T = 10−αd/10, where α is the loss coefficient of the optical
fiber. VA = 2.5, ξ = 0.01, η = 0.6, vel = 0.01, α = 0.2 dB/km, β = 95%,
∆η = 0.1η, ∆vel = 0.1vel, ǫPE = 10−10, N = asympt, 1010, 109, 108, 107, 106

from top to bottom.

states. In fact, it is even possible to achieve CVQKD in the microwave regime
where the preparation of pure coherent states is impossible [146, 147]. One
remark about these works is that they consider a specific kind of imperfection
that can be efficiently dealt with experimentally (at least in the optical
regime). Indeed, if Alice really prepares thermal states instead of coherent
states, one simple solution is to increase the variance of modulation and
then to strongly attenuate the resulting state in order to obtain something
very close to a coherent state. For this reason, the problem of preparing
thermal states instead of coherent states is not really an issue in a practical
scenario.

A more relevant issue concerns non-Gaussian sources of noise. In par-
ticular, there always is some phase noise on the state prepared by Alice.
A typical value for the variance of this noise is 10−4N0 per photon in the
pulse [84]. One cannot suppress this noise by increasing the variance of the
modulation and then attenuating the state, as mentioned above. Studying
this noise is therefore of particular theoretical interest and of importance for
actual experiments.

An important property of this noise is that it leaves the global state
ρB0 = trAρAB0 sent by Alice in the quantum channel (and therefore seen
by Eve) invariant. This is different from the thermal noise considered in
[141, 127], which increases the variance of ρB0 . In particular, this means
that this noise can be modeled as an imperfect measurement for Alice in
the entanglement-based equivalent protocol. In that picture, Alice prepares
two-mode squeezed vacuum states, sends one mode to Bob and measures the
other one with a heterodyne detection. When modeling the noise, one can
keep the preparation of two-mode squeezed vacuum states, and only Alice’s
detection will be noisy. This simply means that the classical data that she
gets is noisy (with some phase noise). Therefore, the only consequence of
this noise is that it degrades the mutual information shared between Alice
and Bob, but it cannot increase Eve’s information about Bob’s measurement
outcome, which is of interest in a reverse reconciliation scheme.
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More specifically, in this case, the secret key rate against collective at-
tacks is Kasympt = βI(x : y)− χ(y : E), where βI(x : y) is defined as in the
previous section and χ(y : E) is an upper bound on Eve’s information on
Bob’s measurement outcomes. Because one can model phase noise as a local
noise acting on Alice’s system, it can only decrease the quantity I(x : y) but
cannot help the eavesdropper by increasing χ(y : E). In such a scenario, one
can expect that the phase noise can be removed from the excess noise when
computing Eve’s information, leading to a realistic model for the prepara-
tion stage, similarly to the detection stage. This should lead to better secret
key rates in practice.

Model for the phase noise

The phase noise can be modeled as applying a phase rotation U(θ) =
exp(iθa†a) on Alice’s mode with a random phase θ characterized by some
probability distribution p(θ). This means that when Alice tries to prepare
some coherent state |α〉 in the prepare-and-measure protocol, she actually
prepares a state with a noisy phase: ρα =

∫

U(θ)|α〉〈α|U(θ)†p(θ)dθ. Let
us assume that Alice initially prepares an ideal two-mode squeezed vacuum
state with a variance VA. This state ρideal has the following covariance
matrix (for a displacement vector [qA, pA, qB, pB]T ):

Γideal =

[

VA✶2 Wσz

Wσz VA✶2

]

, (3.83)

where W :=
√

V 2
A − 1 and σz = diag(1,−1).

Applying a local phase shift U(θ) on Alice’s mode gives a state with a
covariance matrix Γ(θ) given by

Γ(θ) =











VA W cos θ W sin θ
VA W sin θ −W cos θ

W cos θ W sin θ VA

W sin θ −W cos θ VA











. (3.84)

Finally, the state affected by the phase noise is a classical mixture of
states with random phase shifts ρ =

∫

(UA(θ)⊗✶B)ρideal(UA(θ)†⊗✶B)p(θ)dθ,
and its covariance matrix is

Γphase noise =

[

VA✶2
√
κWσz√

κWσz VA✶2

]

, (3.85)

where we assumed that the distribution θ is symmetric, and more precisely
that

∫

p(θ) sin θdθ = 0, and introduced κ := (
∫

p(θ) cos θdθ)2 = (E[cos θ])2,
where E[X] is the expectation of the random variable X.

The interesting point is that from both Bob and Eve’s points of view,
it does not change anything whether a random phase shift is applied. In
particular, the value of χ(y : E) quantifying the information that Eve can
acquire about the raw key in a reverse reconciliation scenario does not de-
pend on the value of the phase noise. Note that this statement would not be
true in a direct reconciliation scenario where the raw key would correspond
to Alice’s noisy data.

Let us suppose that the quantum channel between Alice and Bob is
characterized by its transmittance T and excess noise ξ. The covariance
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matrix ΓAB of the bipartite state shared by Alice and Bob after the quantum
channel is then given by:

ΓAB =

[

VA✶2

√
κTWσz√

κTWσz (T (VA − 1) + 1 + Tξ)✶2

]

. (3.86)

If they were not taking phase noise into account (that is, if κ was equal
to 1), Alice and Bob would estimate a transmittance T ′ and an excess noise
ξ′ such that

{

T ′ = Tκ
T ′(VA − 1) + 1 + T ′ξ′ = T (VA − 1) + 1 + Tξ

(3.87)

that is
{

T = T ′/κ
ξ = ξ′ − (1− κ)(VA − 1)

(3.88)

If the phase noise parameter κ is known, one can estimate the covariance
matrix as usual, hence obtaining values (T ′, ξ′) and use the formula above
to deduce the parameters (T, ξ) that can be used instead to compute Eve’s
information χ(y : E).

For this technique to work, it is necessary to be able to measure κ =
(E[cos θ])2 experimentally. This is discussed in the next section.

Experimental evaluation of the phase noise

The evaluation of the phase noise can be performed with a phase sensitive
apparatus which allows us to compute an estimate of the noise between a
signal whose quadratures are modulated following a chosen sequence and
the outputs of some chosen quadrature measurements. A homodyne or
heterodyne detection can be used for this purpose.

Similarly to what is done on Bob’s side when the homodyne detection
efficiency and the variance of the electronic noise are calibrated, it is neces-
sary to assume that the calibration of the phase noise is performed in a safe
place, i.e. that Eve cannot interfere with Alice’s apparatus during the phase
noise measurement. The measurement can also be performed during a run
of the protocol but one still needs to assume that Eve cannot interfere with
Alice’s device. This is crucial since overestimating the phase noise would
lead to an overestimation of the secret key rate.

Here, we are interested in the phase noise in the prepare-and-measure
version of the protocol. The procedure to estimate it goes as follows: Alice
modulates as usual with a bivariate Gaussian distribution and she measures
either one of the quadratures with a homodyne detection. Computing the
variance of her measurement outcomes allows here to infer the quantity κ
introduced above. Let us denote by φ the random variable corresponding to
the angle between the modulated state and the measured quadrature and by
B the random variable corresponding to the noise. This means for example
that Alice prepared the state centered in Aeiφ (with A ≥ 0) and that the
outcome of her q-quadrature measurement was A cosφ + B. This noise B
can be decomposed into the sum of a component orthogonal to the signal
and a component parallel to the signal:

B = B‖ cosφ+B⊥ sinφ, (3.89)
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Figure 3.3: Experimental evaluation of the phase noise. The noise B before
Bob’s measurement can be decomposed into the sum of a component orthog-
onal to the signal B⊥ and a component parallel to the signal B‖. The result
of Bob’s q-quadrature measurement is A cosφ+B where Alice prepared the
state centered in Aeiφ with A ≥ 0.

where we assume that B‖ and B⊥ are independent of φ. Figure 3.3 gives an
illustration of this decomposition. We can easily build estimators of B‖ and
B⊥ (in the following, E[X] and V [X] refer respectively to the expectation
and variance of the random variable X):

V [B cosφ] = V [B‖ cos
2 φ] + V [B⊥ cosφ sinφ] (3.90)

= V [B‖]E[cos
4 φ] + V [B⊥]E[cos

2 φ sin2 φ] (3.91)

= 3/8V [B‖] + 1/8V [B⊥] (3.92)

V [B sinφ] = 1/8V [B⊥] + 3/8V [B‖] (3.93)

Since both V [B cosφ] and V [B sinφ] can be measured experimentally, one
therefore has access to the values of V [B⊥] and V [B‖]. Here, we assume that
the only sources of noise are the shot noise and the phase noise. We assume
that B⊥ can be fully described by the shot noise and the phase noise:

V [B⊥] = N0 + V [A sin θ] = N0 + E[sin2 θ]E[A2] (3.94)

E[sin2 θ] =
V [B⊥]−N0

E[A2]
= E1 (3.95)

where A is the amplitude of the modulated signal and where we used
E[sin θ] = 0. The assumption of a small phase noise, i.e. small values
of θ, gives:

E[cos θ] = E[1− θ2/2] (3.96)

= 1− 1

2
E1 (3.97)

Figure 3.4 compares the so-called realistic and paranoid models. We
consider a pessimistic scenario where the excess noise on Alice’s side is about
2.5% of the shot noise (the detector quantum efficiency and electronic noise
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Figure 3.4: Secret key rate for collective attacks in the asymptotic regime.
The plot at the top is obtained in the so-called realistic model where the
phase noise is calibrated and is considered as a local noise useless to the
eavesdropper. The plot at the bottom corresponds to the so-called paranoid
model where all the sources of noise are attributed to the eavesdropper. The
transmittance T and distance d are linked with the expression T = 10−αd/10,
where α is the loss coefficient of the optical fiber. VA = 2.5, ξ = 0.025,
α = 0.2 dB/km, β = 95%, E1 = 3 10−3.

are not taken into account here, for clarity). For a modulation variance
VA = 2.5, we measured experimentally E1 = 3 10−3 with a system similar
to the one described in [44]. This leads to a realistic value of the excess
noise ξreal = 1.75%. The result on the secret key rate for collective attacks
is an increased achievable distance by about 40 km.

3.5 Conclusion

In this chapter, we have analyzed several types of imperfections that
appear in practical implementations of Gaussian continuous-variable QKD
protocols. In particular, we studied a realistic approximate Gaussian mod-
ulation in the state preparation at Alice’s site, the calibration of detection
characteristics estimated with a finite precision at Bob’s site, and the pres-
ence of intrinsic phase noise in the prepared states. In all cases, we provided
a precise model of the imperfection and used this model to examine its effect
on the security and performance of the protocol. These effects are more or
less significant in practice: it is clear, for instance, that taking into account
the phase noise in the security proof of a realistic scenario provides an im-
portant advantage in terms of secret key rate, while carefully approximating
the ideal Gaussian modulation with respect to the shot noise values can min-
imize the impact of this imperfection. Finally, as expected, finite-size effects
at all stages of the protocol should always be considered when calculating
practical secret key rates.

This analysis demonstrates the importance of refining security proofs
of QKD protocols to consider practical imperfections. In particular for
CVQKD protocols, where potential side channels have not been yet widely
studied, it provides specific ways to bypass attacks based on improperly
modeled devices and procedures.



Chapter 4

Experimental Setup

Contents

4.1 Optical fibers . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Waveguides . . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 Transmission characteristics . . . . . . . . . . . . . 68

4.1.3 Dispersion . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.4 Connections . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Laser Source . . . . . . . . . . . . . . . . . . . . . 70

4.3 Electro-optic Modulators . . . . . . . . . . . . . . 71

4.4 Light detection . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Homodyne Detection Principle . . . . . . . . . . . 74

4.4.2 Impact of the Imperfections on the Homodyne De-
tection . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Electronics of the Homodyne Detection . . . . . . 77

4.5 Time and Polarization Multiplexing . . . . . . . 77

4.6 Optical Component Characteristics Summary . 78

4.7 Acquisition and Control Cards . . . . . . . . . . 78

4.8 Random Numbers . . . . . . . . . . . . . . . . . . 80

4.9 Computing Power . . . . . . . . . . . . . . . . . . 84

In this chapter, we introduce the building blocks of our fiber-based ex-
perimental setup. We start by recalling some basic properties of optical
fibers. Then, we successively detail the different optical components of our
system: a standard telecom laser diode used in pulsed regime, electro-optic
modulators, the homodyne detection of a quadrature of the electromagnetic
field and a time and polarization multiplexing scheme. Finally, we consider
the electronics part of our experiment, namely acquisition and control cards,
random number generators and computing power.

4.1 Optical fibers

Most of quantum optics experiences are done in free space. This is be-
cause the physical properties of free space components together with the
control of their alignment with a high precision allow for a better control
of the losses and therefore the properties of the quantum states of interest.
However, it is also harder to set up a free space experiment: the difficulties
are mainly due to light alignment and mode coupling. While these imple-
mentation difficulties can be overcome in a lab, provided very stable optics
tables, moving free space quantum key distribution experiments from optics

67
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Figure 4.1: Generic optical fiber design. An optical fiber is composed of a
high refractive index core surrounded by a low-index cladding. This design
explains that the incident light is kept in the core by total reflection.

tables to rackable boxes located in server rooms is very challenging. Fur-
thermore, although there have been several demonstrations, long-distance
free-space QKD experiments [140, 123] suffer from laser aiming difficulties
and transmission fluctuations due to atmospheric disturbance.

Optical fibers allow to get rid of light alignment and light guide difficul-
ties. Fiber-based QKD products [2, 1, 4, 5] also benefit from well integrated
components optimized for the telecommunications industry during several
decades. Nevertheless, there are several drawbacks when using optical fibers
and we describe in the following sections the optical fibers specific aspects
that impact our experimental setup.

4.1.1 Waveguides

An optical fiber is a thin and flexible fiber made of silica or plastic. It
is an optical waveguide, i.e. it conveys electromagnetic waves in the optical
spectrum between its endpoints. The main particularity of optical fibers in
comparison with other waveguides is the presence of a cylindrical axis of
symmetry. Figure 4.1 shows the generic optical fiber design, which consists
of a core of high refractive index surrounded by a low-index cladding. With
such a design, incident light is kept in the core by total reflection. Some
fibers support many propagation paths and are called Multi-Mode Fibers
(MMF), these are fibers of large core (about 80 µm) and large numerical
aperture. Other fibers only support a single mode and are called Single
Mode Fibers (SMF). Single mode fibers at 1550 nm have a core of about 8
to 10 µm.

4.1.2 Transmission characteristics

Attenuation is the reduction of intensity of the light signal as it travels
through the fiber. It occurs due to fundamental scattering processes (mostly
Rayleigh scattering), scattering caused by inhomogeneities introduced in the
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Window Range Operating Wavelength
1st Window 800 - 900 nm 850 nm
2nd Window 1260 - 1310 nm 1310 nm
3rd Window 1500 - 1600 nm 1550 nm

Table 4.1: Transmission windows ranges and operating wavelengths of opti-
cal fibers with a silica core.

core stress rod

slow axis

fast axis

Figure 4.2: Cross section of a Panda type PM fiber. The cylindrical stress
rods that run parallel to the fiber core create two different effective optical
indexes along two orthogonal axis that are called the fast axis and the slow
axis.

fabrication process and absorption of light by molecules. This limits the
range of application of optical fibers at both short and long wavelengths.
Table 4.1 gives the transmission windows of typical optical fibers with a
silica core. The main transmission peak is at 1550 nm which explains why
this wavelength is chosen for long-distance telecommunications.

4.1.3 Dispersion

Another source of limitation for long-distance communications with op-
tical fibers is fiber dispersion, i.e. the variation of the propagation velocity
with either optical frequency or path length. One source of dispersion is
inter-modal dispersion in MMF: the arrival times of the different modes of
the signal are not the same and the resulting shape is distorted, which lim-
its the bandwidth of MMF. Dispersion is also caused by material dispersion
due to variation of the refractive index of material with wavelength. Fi-
nally, waveguide dispersion is caused by the fiber geometry in SMF fibers:
the chromatic dispersion of the input light results in different propagation
speeds due to the boundary conditions of the waveguide.

SMF do not conserve polarization. Any twist of the fiber can intro-
duce a birefringence, that is the property of having a refractive index that
depends on the polarization and propagation direction of light. Polarization-
maintaining Fibers (PMF) are optical fibers which maintain the polarization
of linearly polarized light waves during propagation. The cross-coupling of
optical power between the polarization modes is very low. Such fibers can
be made by introducing stress rods of another material (typically boron for
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Panda fibers) within the cladding. Stress rods induce an anisotropy that can
be characterized by different effective optical indexes along two orthogonal
axis called the fast axis and the slow axis (∆n = 10−3 between the two axis).
Panda style fibers are named based on the stress rods used. Stress rods are
cylindrical and run parallel to the fiber core. These fibers have historically
been used in telecoms applications, as it is easier to maintain uniformity in
their cylindrical stress rods over very long lengths than with other stress
shapes when manufacturing.

In our system, we used Panda PMF for all our components except for
the delay lines, the Faraday mirrors, and the photodiodes, which use SMF.

4.1.4 Connections

Optical fibers can be connected to each other by optical fiber connectors
or by splicing. Optical fiber connectors allow for a good flexibility as regards
components replacement. They mechanically couple and align fiber cores so
light can pass with high power transmission. There exists tens of standard
type connectors. Good connectors do not lose much power because of fiber
misalignments or reflections. We use Ferrule Connectors (FC) that were
designed for use in high-vibration environments. The fiber end is embedded
in a ferrule and the tip is polished to produce a rounded surface. Several
grades of polish are available for the fiber tip: Physical Contact (PC), Ultra
Physical Contact (UPC) or Angled Physical Contact (APC), where the fiber
end is polished at an angle that prevents light coming from the reflection
at the connection to travel back in the fiber. In the latter case, the angle
causes the reflected light to leak out into the cladding. In our setup, we
use only APC connectors for two main reasons. First, reflections could be
exploited by an eavesdropper to probe the system by sending light into the
output port and analyzing the reflected light and such a probing is harder to
perform with APC connectors. Second, connection between APC connectors
and non angled connectors result in high insertion loss.

4.2 Laser Source

The GG02 protocol we described in chapter 3 involves a Gaussian modu-
lation of the light in phase space. Such a modulation cannot be achieved by
direct modulation of the current of a laser. We will see in the next section
that we can use fast optical modulators to perform this modulation.

Another optical signal is required to measure quadratures of the light,
a classical local oscillator, i.e. a strong signal coherent with the quantum
signal. In theory, this strong signal could be generated locally on Bob’s side
but locking its phase to the phase of the quantum signal is rather challenging
experimentally. This is why in our experiment we chose to generate the
local oscillator on Alice’s side and send it through the quantum channel
together with the quantum signal. We opted for a time and polarization
multiplexing scheme as this will be detailed later. This implies that the
local oscillator signal must be strongly attenuated during the signal pulses
to avoid interference between them during the multiplexing step. A direct
modulation of the laser allows us to do that: when the current that drives
the laser diode is below the laser threshold a perfect extinction is achieved
except for a low fluorescence incoherent with the quantum signal.

We use a Distributed Feedback (DFB) standard telecom laser at 1550 nm
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Figure 4.3: Schematics of the principle of a LiNBO3 optical modulator. The
input light if splitted into two optical beams. One travels through a length
of LiNbO3 crystal while the other experiences a fixed delay. After the light
travels trhough these two paths, an optical combiner merges the two paths
and the resulting light travels until the output of the component. A voltage-
induced change in the refactive index is obtained on the LiNbO3 path. As
a result, the two light beams interfere constructively of destructively at the
combiner depending on the applied voltage.

with a maximum output power of 30 mW and a spectral width of about 1
MHz when operated in the continuous regime. Our custom laser card can
provide pulses with a duration between 10 ns and 100 ns and at a repetition
rate between 500 kHz and 5 MHz. When using 100 ns pulses at a repetition
rate of 500 kHz, the wavelength of the laser pulse varies by about 0.1 nm
which corresponds to a spectral width of about 12.5 GHz.

4.3 Electro-optic Modulators

In our protocol, we modulate both the phase and the amplitude of the
optical signal with Electro-optic Modulators (EOM) driven with an acquisi-
tion card. We benefit from lithium niobate (LiNbO3) modulators optimized
for high-speed telecommunications. They provide a high bandwidth and can
be designed for zero-chirp operation contrary to direct modulation of a laser
diode. Zero-chirp modulators help to minimize fiber dispersion effects in a
telecommunication system. LiNbO3 modulators also feature stable opera-
tion over temperature and low bias-voltage drift rates. These are desirable
characteristics to operate them over long periods of time in a server room
environment whose temperature is not perfectly controlled.

In a LiNbO3 modulator, modulation is produced by a voltage-induced
change in the refractive index. Since the index change is small, sufficient
modulation can be obtained using either large voltages or long electrode
lengths. Figure 4.3 shows the schematics of the principle of an optical mod-
ulator. The input light enters the modulator via the input fiber. Then the
light is split into two fibers with an optical splitter and one fiber path travels
through a length of LiNbO3 crystal while the other fiber path experiences
a fixed delay. After the light travels through these two paths, an optical
combiner merges the two paths and the light travels until the output of the
component. If the time delay through the crystal and the fixed fiber are
equal, the two light beams interfere constructively at the combiner while
they will interfere destructively if the delay through the crystal is changed
by half of one wavelength. Figure 4.4 gives the measured voltage on Alice’s
photodiode with respect to the voltage applied to the amplitude modulator.
A ramp voltage is applied to the amplitude modulator with a NI PCI-6115
acquisition card and for 216 samples. The measurement of signal intensity
using a photodiode and an amplifier circuit is a sinus function. The local
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Figure 4.4: Measured voltage on Alice’s photodiode with respect to the
voltage applied to the amplitude modulator. A ramp voltage is applied to
the amplitude modulator with a NI PCI-6115 acquisition card and for 216

samples. The measurement of signal intensity using a photodiode and an
amplifier circuit is a sinus function. The local minimum closest to a zero
voltage is called Vbias while the voltage difference between a minimum and
the next maximum is called Vπ.

minimum closest to a zero voltage is called Vbias while the voltage difference
between a minimum and the next maximum is called Vπ.

LiNbO3 material is subject to temperature variations. This results in
a variation of the voltage that must be applied to the modulator to obtain
the highest extinction ratio. Figure 4.5 shows the different responses to a
ramp voltage that were obtained on Alice’s photodiode at different moments
during a 24 hour window. One can see that the answer is always a sinus
function characterized by the same period but shifted along the x axis.
When applying the bivariate Gaussian modulation of the GG02 protocol
characterized by a variance VA, such a drift in the amplitude modulator
Vbias causes a variance variation, which results in a suboptimal secret key
rate. Figure 4.6 shows how the statistics on Alice’s photodiode are affected
when no feedback control is performed on Alice’s amplitude modulator. One
can see that the Vπ is quite stable while the Vbias varies notably. There
are two basic possibilities to perform this feedback control. The first one
consists in defining a set of calibration pulses that are used only to evaluate
the amplitude modulator parameters and are discarded from the raw key.
This method allows us to choose freely the amplitude and the number of
the calibration pulses. However, it lowers the raw key rate and thus the
secret key rate of the system. A second method consists in evaluating the
amplitude modulator parameters directly on the modulated pulses. We
chose to use this method that gives satisfactory results and does not penalize
the secret key rate. Figure 4.7 shows the improvement on the photodiode
statistics stability when using our feedback control.
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Figure 4.5: Alice’s photodiode answer to a ramp voltage at selected times
during a 24 hours period. This figure shows that the Vbias of an amplitude
modulator cannot be assumed to be constant. Temperature drifts affect
lithium niobate and the sinus function is displaced at different times of the
day.
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Figure 4.6: Alice’s photodiode mean and standard deviation during 20 hours
when no feedback control of Alice’s amplitude modulator is used.
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Figure 4.7: Alice’s photodiode mean and standard deviation during 20 hours
when Alice’s amplitude modulator feedback control is used.

4.4 Light detection

We are interesting in measuring quadratures of the electromagnetic field.
Such measurements cannot be done with a regular photodiode and its am-
plifier circuit for two reasons: such a system output a signal proportional
to the intensity of the field or the number of photons of the field, which are
quadratic quantities with respect to the field, and the oscillation frequency
of the field is several order of magnitudes faster than the bandwidth of cur-
rent photodiodes. Fortunately, interferences between a signal field and a
synchronous reference field solve these two problems. They allow to mea-
sure a term proportional to the quadrature of the field and the interferences
envelope fluctuates at a frequency that can be measured with an electronic
circuit.

4.4.1 Homodyne Detection Principle

Figure 4.8 gives an illustration of the homodyne detection principle. The
weak quantum signal and a strong classical signal coherent with the quantum
signal are mixed on a beam splitter. The intensity of each output is measured
with a high quantum efficiency photodiode. Then the photocurrents are
subtracted to eliminate the mean intensities of each path and output an
electronic signal proportional to the interference between the local oscillator
(LO) and the signal. The LO plays both the role of an optical amplifier, that
allows us to detect a weak signal with an appropriate electronics circuit, and
of a phase reference. A phase modulator on the local oscillator path allows
us to measure an arbitrary quadrature of the field.

Let us look at the theoretical equations that describe the homodyne
detection. Each path of the homodyne detection is described by a monomode
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Figure 4.8: Principle of the homodyne detection. A strong signal called local
oscillator (LO) interferes with a weak coherent signal on a balanced beam
splitter. The LO plays both the role of an optical amplifier, that allows
us to detect a weak signal with an appropriate electronics circuit, and of a
phase reference. A phase modulator on the local oscillator path allows us
to measure an arbitrary quadrature of the field. After the beam splitter,
the difference of the two signals is performed with two photodiodes and an
amplifier circuit.

annihilation operator â±:

â± =
1√
2
(âol ± âs) =

1√
2
(|Eol|eiφol ± âs) (4.1)

where we neglected the quantum fluctuation of the local oscillator and con-
sidered it as a classic field equal to its mean intensity. Since the photocur-
rents of each path are proportional to the photon number operator we get:

Î± = â†±â± =
1

2
|Eol|2 +

1

2
â†sâs ±

1

2
|Eol|(e−iφol âs + eiφol â†s) (4.2)

After subtraction of the mean intensities, the difference of the photocurrents
is proportional to Xs,φOL

the component of the signal quadrature that is in
phase with the local oscillator and defined by Es =

1
2
√

N0
(Xs,φol

+iPs,φol
)eiφol :

∆Î = |Eol|(e−iφol âs + eiφol â†s) =

√

Iol

N0
Xs,φol

(4.3)

where Iol = |Eol|2 is the intensity of the field. This equation explains the
observed proportionality between the variance of the measurements and the
local oscillator intensity for a balanced homodyne detection whose signal
input port is blocked. This gives an easy way to calibrate the standard
noise reference N0. However, the use of such a calibrated value for the shot
noise in a QKD protocol might be targeted by an attacker as we explain
in chapter 5. We proposed a countermeasure against such local oscillator
calibration attacks that consists in calibrating this shot noise value in real-
time during a QKD run.
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4.4.2 Impact of the Imperfections on the Homodyne Detec-
tion

We considered an ideal model for the homodyne detection. In prac-
tice, several imperfections occur in an experimental implementation of an
homodyne detection. Here, we consider the imbalance between the optical
paths, the losses introduced by the homodyne detection and the effect of the
quantum modelisation of the local oscillator beam.

The imbalance between the intensity of the two optical paths can be de-
scribed by an imperfect beam splitter whose transmission T and reflectivity
R are:

T =
1

2
+ ǫ (4.4)

and

R =
1

2
− ǫ (4.5)

for small values of ǫ. In this case, one can compute the photocurrents values
using a classical modelisation as:

I+ = |
√
TEol +

√
REs| (4.6)

=
1

2
(Iol + Is) + ǫ(Iol − Is) + 2

√

1

4
− ǫ2|EolEs| cosφol (4.7)

and

I− = |
√
REol −

√
TEs| (4.8)

=
1

2
(Iol + Is)− ǫ(Iol − Is)− 2

√

1

4
− ǫ2|EolEs| cosφol (4.9)

Since ǫ2 ≪ 1
4 and Is ≪ Iol we get:

∆I = 2|Eol||Es| cosφol + 2ǫIol (4.10)

=

√

Iol

N0
(Xs,φol

+ 2ǫ
√

IolN0) (4.11)

This expression allows us to quantify the required precision concerning the
balance of the homodyne detection. The imbalance becomes negligible when
ǫ ≪ 1

2
√

Iol
, i.e. ǫ ≪ 5 × 10−5 for local oscillator intensities of about 108

photons per pulse.
In quantum optics, the losses of the homodyne detection correspond to a

coupling of the signal mode with the void on a beam splitter of transmission
η. Therefore, losses do not only attenuate the signal but also add some
noise. As explained in chapter 3, three main contributions to the homodyne
detection losses can be identified: optical losses ηopt, the quantum efficiency
of the photodetectors ηphot and imperfect mode matching ηmod. The output
signal of the homodyne detection when taking into account the losses reads:

∆Î =

√

ηoptηphot
Iol

N0
(
√

ηoptηphotη
2
modXs,φol

+
√

1− ηoptηphotη
2
modX0,imperf )

(4.12)
where X0,imperf is a void mode that regroups all the void modes introduced
by the imperfections.

Finally, when considering a noisy local oscillator of intensity Iol + δIol,
one can show that the homodyne measurement becomes proportional to√
Iol + δIolXs,ol. One can therefore neglect these fluctuations if δIol ≪ Iol.
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Figure 4.9: Schematics of the homodyne detection electronics. The pho-
tocurrents difference at the output of the photodiodes goes through a
high pass filter composed of a 470 pF capacitance connected to the ground
through a 10MΩ resistivity. Then an Amptek A250 amplifier and its associ-
ated transistor FET 2SK152 constitute a first amplification stage specifically
designed for weak currents low noise amplification. Since the decrease after
each pulse is very slow, a derivative stage allows us to reduce it to 100 ns.
Finally, another amplifying circuit using a MAX4107 amplifier allows us to
achieve a higher level of amplification.

4.4.3 Electronics of the Homodyne Detection

Figure 4.9 represents the electronics of our homodyne detection. The
photocurrents difference at the output of the photodiodes goes through a
high pass filter composed of a 470 pF capacitance connected to the ground
through a 10MΩ resistivity. Then an Amptek A250 amplifier and its associ-
ated transistor FET 2SK152 constitute a first amplification stage specifically
designed for weak currents low noise amplification. Since the decrease after
each pulse is very slow, a derivative stage allows us to reduce it to 100 ns.
Finally, another amplifying circuit using a MAX4107 amplifier allows us to
achieve a higher level of amplification.

4.5 Time and Polarization Multiplexing

In the theoretical description of the GG02 [50] protocol, the measurement
process, i.e. homodyne measurement of the quadratures of the quantum sig-
nal, is not described from an experimental point of view. There is no mention
of the local oscillator and therefore to the need of sending it from Alice to
Bob through the quantum channel. As presented in the previous section, in
order to implement a homodyne detection, a classical signal coherent with
the quantum signal is required. While this task is easy to perform locally
by splitting the output of a laser beam into a weak beam and a strong beam
before making them interfere on a balanced beam splitter, it becomes more
challenging from a quantum communication point of view when the weak
signal has to be sent through a quantum channel and undergoes both losses
and noise.

As previously demonstrated in [83, 44], we chose to send the local oscilla-
tor together with the quantum signal through the quantum channel. When
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using a reasonably low time delay (a few hundreds of ns in our experiment)
between these signals, they are submitted to almost the same fluctuations
of the quantum channel and remain coherent after traveling through long
distances. In addition to time multiplexing, we use polarization multiplex-
ing: the local oscillator is polarized along the fast axis of our PM fibers
while the signal propagates along the slow axis. The combination of these
two methods is really useful: polarization multiplexing allows for an easy
demultiplexing and time multiplexing solves the problem of leakage from
the local oscillator into the signal.

In practice, time and polarization multiplexing is done on Alice’s side
using a Polarization Beam Splitter (PBS) together with a delay line and a
Faraday mirror. Demultiplexing requires two stages on Bob’s side. First, a
Dynamic Polarization Controller (DPC) is used to find an optimal polar-
ization state using the homodyne detection statistics. Second, another PBS
together with a delay line and a Faraday mirror complete the demultiplexing.

4.6 Optical Component Characteristics Summary

Table 4.2 gives a summary of the optical losses and some other important
characteristics of the different components used in our experimental setup.
It is worth noting that losses on Alice’s side do not have the same impact
on the performances of the system as losses on Bob’s side.

This is because the calibration of Alice’s system is done at the output
of the device. Consequently, losses on Alice’s side do not have any impact
on the theoretical secret key rate. The only limitation due to Alice’s losses
may be practical: for a given transmission channel, the intensity of both
the local oscillator and the quantum signal at the output of Alice must be
compatible with the establishment of the secret key. On the one hand, if
the local oscillator power is not compatible with the homodyne detection
linear regime, it is likely that no secret key will be obtained. On the other
hand, if Alice’s quantum signal variance cannot be adjusted to obtain a
SNR on Bob’s side that is compatible with the thresholds of the available
error-correcting codes, no secret key can be obtained.

As regards Bob’s losses one can distinguish two cases concerning the
security model:

– the realistic mode: in this case the losses on Bob’s signal path are
assumed not to be due to the eavesdropper and do not impact strongly
the theoretical secret key rate.

– the paranoid mode: Bob’s signal path losses are dealt with in the same
way as the quantum channel losses, which decreases the theoretical
secret key rate.

4.7 Acquisition and Control Cards

As demonstrated in chapter 3, relatively high bit depths are required to
drive the EOMs according to the Gaussian modulation of the GG02 proto-
col. Furthermore, we require two output channels on Alice’s side for both
amplitude and phase modulation and one input channel for the feedback on
the amplitude modulation using a photodiode with an amplifier circuit. On
Bob’s side, we use two input channels, the homodyne detection and a signal
proportional to the local oscillator power. Depending whether one of the
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Components Losses (dB) Fiber Comments
Laser Diode - PMF 30 mW power
Beam Splitter 0.3-0.5 PMF 99/1 to 50/50

Variable Attenuator 0.3-0.5 PMF Up to 55 dB
Amplitude Modulator 3-5 PMF 30-50 dB
Phase Modulator 2-3 PMF -

Polarization Beam Splitter 0.3-0.5 PMF 25-30 dB crosstalk
Polarization Controller 0.2-0.3 PMF 20 dB crosstalk

Photodiode - SMF 1 A/W efficiency
Faraday Mirror 0.2-0.4 SMF -

Table 4.2: Components used in our experimental setup with their respective
insertion losses excluding connection losses at 1550nm.

Laser clock

ADC/DAC clock

Figure 4.10: Alice’s optical device clock signals. The laser clock is delayed
in order to get a DAC/ADC clock allowing us to measure Alice’s amplitude
and set the amplitude and phase modulators at the same time.

countermeasures proposed in Chapter 5 is implemented, we use one or two
output channels: one is always dedicated to the phase modulator allowing us
to select any quadrature of the field, another might be used to drive either
an amplitude modulator or an optical switch. We use National Instruments
Peripheral Component Interconnect (PCI) 6110/6111/6115 cards. Any of
these cards feature at least two input and two output 12 bits precision chan-
nels at 2.5 mega samples per second per channel.

These cards can be driven with an external trigger. On Alice’s side, our
trigger is generated by the laser card with a delay that allows us to use
the same clock signal to set the states of the modulators and to perform a
signal measurement on the photodiode. Figure 4.10 gives a timing diagram
of Alice’s optical device and Figure 4.11 shows the temporal relationship
between the modulated and measured values of a clock cycle.

clk

t=0 t=1 t=2 t=3 t=4

Amplitude Modulator rk rk+1 rk+2 rk+3 rk+4

Phase Modulator φk φk+1 φk+2 φk+3 φk+4

Photodiode ak−1 ak ak+1 ak+2 ak+3

Figure 4.11: Alice’s input and output data. Since a single clock is used to
perform measurements on Alice’s photodiode and to set Alice’s modulators,
the data sent to the acquisition card to set the modulators correspond to
the pulse that is going to be measured at the next clock cycle.
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Local Oscillator clock

ADC/DAC clock

Figure 4.12: Bob’s device clock signals. A clock is generated from the local
oscillator signal. Then it is delayed in order to get a DAC/ADC clock allow-
ing us to perform a quadrature measurement with the homodyne detection
and set the phase modulator for the next pulse at the same time.

clk

t=0 t=1 t=2 t=3 t=4

Phase Modulator (LO path) φk φk+1 φk+2 φk+3 φk+4

Optical Switch (signal path) αk αk+1 αk+2 αk+3 αk+4

Homodyne Detection yk−1 yk yk+1 yk+2 yk+3

Figure 4.13: Bob’s input and output data. Since a single clock is used to
perform measurements on Bob’s homodyne measurement and to set Bob’s
modulator, the data sent to the acquisition card to set the modulator cor-
respond to the pulse that is going to be measured at the next clock cycle.

In the same way, on Bob’s side, we generate a trigger out of the lo-
cal oscillator signal at the input of Bob’s system using a photodiode and an
amplifier circuit. This trigger is then delayed and used to set the phase mod-
ulator (and the amplitude modulator or optical switch if the countermeasure
proposed in Chapter 5 is implemented) and to perform the homodyne mea-
surement. Figure 4.12 gives a timing diagram of Bob’s optical device and
Figure 4.13 shows the temporal relationship between the modulated and
measured values of a clock cycle.

We also use a National Instruments PCI 6704 static control card on Bob’s
side in order to set the dynamic polarization controller four voltages. An
optimal polarization state is found as a calibration step in an asynchronous
way with respect to the quantum protocol.

4.8 Random Numbers

Random numbers are required at different stages of the protocol and
on both Alice’s and Bob’s sides. The limiting factor as regards random
numbers is of course the generation of the bivariate Gaussian modulation,
which is performed on Alice’s side. All the other random numbers can be
drawn on Bob’s side which can be interesting if the random numbers source
has a limited throughput. The other steps that require random numbers are
the following:

– Modulation: since our acquisition cards have only 12 bits of precision,
no more than 24 random bits are required for modulating both the
phase and the amplitude.

– Quadratures choice: in the GG02 protocol, Bob measures at random
one of the two orthogonal quadratures X and P. This requires one bit
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of randomness per pulse or more generally h(p) = −p log2 p − (1 −
p) log2 1− p if they measure X on a fraction p of the pulses and P on
a fraction 1− p of the pulses.

– Sifting: in order to estimate the parameters that are necessary to
compute the amount of secret key they can extract from their raw
data, Alice and Bob must reveal at random a fraction p ∈ {0, 1} of
their correlated data. The amount of randomness required to perform
this task is h(p) = −p log2 p− (1− p) log2 1− p.

– Privacy amplification: once Alice an Bob share a common corrected bit
string of length n and know they can extract k bits of secret key from
this string, they need to perform a privacy amplification step whose
output is the final secret key. This is done by drawing a random
n × k Toeplitz matrix with coefficients in GF(2), the finite field of
two elements, and applying this matrix to the corrected bit string. A
generic n×k Toeplitz matrix is described by n+k−1 coefficients. This
implies that this step requires n + k − 1 random bits for a corrected
string of length n. Since k ≤ n and assuming that n ≥ 1, no more
than two random bits per pulse are required for this step.

– Multidimensional reconciliation (optional): as explained in chapter 6,
error correction with Gaussian modulation and Gaussian noise is hard
to perform efficiently in the high noise regime, i.e. at long distances.
This is why a multidimensional reconciliation protocol may be used at
long distances. This allows us to deal with a modulation that is closed
to a binary modulation and to benefit from efficient error-correcting
codes that are available on the BIAWGNC. However, this procedure
comes with an additional cost of drawing one random bit per pulse.

– Real time shot noise measurement (optional): in chapter 5, we detail
a potential loophole in a CVQKD system, linked to the manipulation
of the local oscillator during a QKD run and to the shot noise esti-
mation procedure that is usually performed before the QKD run in
a secure lab. We proposed a set of techniques allowing to deal with
this potential attack. These techniques consist in measuring the shot
noise in real time. One possible implementation is the introduction of
an optical switch on Bob’s signal path. This switch is used to define
two set of pulses, one set being used for the shot noise measurement
ant the other set for the usual key generation procedure. In the same
manner as for the sifting procedure, Bob must attenuate at random
a fraction p ∈ 0, 1 of their correlated data. The amount of required
randomness for this task is again h(p).

Table 4.3 summarizes the bounds on the amount of randomness that is
required for our experimental setup:

Let us look at the bivariate Gaussian modulation into more detail. Its
density probability is:

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.13)

Since in our experiment, we can only act on the amplitude and the phase of
the light, we are interested in their probability densities that can be obtained
through a change of variables:

g(r) =
r

σ2
e−

r2

2σ2 (4.14)
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Protocol Step Alice Bob
Modulation 24 0

Quadratures Choice 0 1
Sifting 0 1

Privacy Amplification 0 2
Multidimensional Protocol 0 1

Real Time Shot Noise Measurement 0 1
Total 24 6

Table 4.3: We assumed p = 0.5 for the fraction of pulses used for the
quadratures choice, the sifting and the real time shot noise measurement.
This corresponds to the worst case as regards random numbers consumption.

and

h(φ) =
1

2π
(4.15)

where r =
√

x2 + y2 is the amplitude of the field and φ is the phase of
the field. The phase has a uniform distribution in [0, 2π] and therefore can
be drawn directly using the uniform random numbers output by random
numbers generator. However, drawing the amplitude distribution is more
challenging. On the one hand, this distribution is unbounded, on the other
hand, a method allowing to generate this distribution out of the uniform
bits output by the random number generator is required.

A common method consists in generating a bivariate Gaussian distribu-
tion and use a change of variable to get the corresponding polar coordinates.
The bivariate Gaussian distribution can be drawn using Box Muller method
that generates two Gaussian random variables out of two uniform random
variables. However, since each uniform random variable output by the ran-
dom numbers generator corresponds to 16 bits of randomness, Box Muller
method requires 32 bits of randomness per pulse. At a frequency of 1 MHz
and using about 15% of synchronization pulses, this corresponds to about
27.2 Mb/s only for the Gaussian modulation. Such a rate is not possible
with well known commercial products such as Quantis from IdQuantique
[2]. We used an entropic coding method that allows us to use exactly the
amount of randomness that is necessary to generate a random distribution.
It is called range coding.

Furthermore, for frequencies above 1 MHz, we chose to use a Bull Moun-
tain RNG from Intel. It includes a 3 Gb/s physical source and a post-
processing stage. They present the advantage to be available on standard
Intel Ivy bridge x86 CPUs and are FIPS SP800/90, FIPS-140-3 compliant.
One could wonder why a post-processing stage is implemented on a device
that includes a physical source of randomness. The reason for that is that
physical devices can fail. Figures 4.14 and 4.15 give the bytes statistics
over a 1 Gb dataset for Salsa Pseudo-random Numbers Generator (PRNG)
and for an aged physical RNG. One can see that the deviations from the
uniform distribution are far more important with the aged physical RNG
than with the PRNG. Such a failure would not be noticed with a proper
post-processing stage.
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4.9 Computing Power

We end this chapter by emphasizing on the need for important computing
resources for CVQKD post-processing. This is because the error-correction
step needs to be performed close to Shannon’s bound in order to get a
positive secret key rate. In addition to that, current iterative decoding
algorithms fail to converge quickly when operating close to a LDPC code
threshold. We could solve this problem in chapter 8 using GPUs. We
also proposed to use polar codes that feature efficient recursive decoding on
modern CPUs.
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Establishing an information-theoretic secret key between two parties us-
ing a quantum key distribution (QKD) system is only possible when an
accurate characterization of the quantum channel and proper device cali-
bration routines are combined. Indeed, security loopholes due to inappro-
priate calibration routines have been shown for discrete-variable QKD. In
this chapter, we propose and provide experimental evidence of an attack tar-
geting the local oscillator calibration routine of a continuous-variable QKD
system. The attack consists in manipulating the classical local oscillator
pulses during the QKD run in order to modify the clock pulses used at the
detection stage. This allows the eavesdropper to bias the shot noise estima-
tion usually performed using a calibrated relationship. This loophole can
be used to perform successfully an intercept-resend attack. We characterize
the loophole and suggest possible countermeasures.

5.1 Theoretical Security vs Practical Attacks

The two communicating parties of a quantum key distribution (QKD)
protocol [120], Alice and Bob, can in principle share an information-theoretic
secret key after the exchange of a large number of quantum signals through a
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physical channel, known as quantum channel, which is subject to eavesdrop-
ping, and additional information sent on a public but authenticated classical
channel. After Alice and Bob have agreed on a set of non-commuting quan-
tum operators, they can safely encode the key into these variables: any
eavesdropping attempt disturbs the transmitted quantum states and is dis-
covered after random sampling of a fraction of Alice and Bob’s correlated
data. However, deviations of the practical implementation of a QKD pro-
tocol from the underlying theoretical model can be exploited by an eaves-
dropper.

In most commonly used QKD systems, the key information is encoded
on discrete variables, such as the polarization of a single photon, and thus
specific components for single-photon detection are required. Exploiting im-
perfections of such devices has led to powerful attacks, namely the time-shift
attack [159], the phase-remapping attack [155], and the remote control of
single-photon detectors using tailored bright illumination [86]. Other attacks
proposed against discrete-variable QKD systems include Trojan horse [47],
device calibration [58], and wavelength dependent beamsplitter [80] attacks.
The latter have also been adapted to continuous-variable QKD (CVQKD),
where the key information is encoded on continuous variables [148], such as
the quadratures of coherent states [50]. In CVQKD systems, measurements
are performed using standard coherent detection techniques, in particular
homodyne detection when the protocol requires the measurement of a single
quadrature of the electromagnetic field or heterodyne detection when both
quadratures need to be measured. Wavelength dependent beamsplitter at-
tacks targeting CVQKD schemes using heterodyne detection have recently
been studied [56, 87]. Finally, attacks specific to CVQKD [38, 88] typically
involve manipulation of the power of the local oscillator, which is the phase
reference classical signal required for the coherent detection and is usually
sent from Alice to Bob together with the quantum signal [64].

Here, we consider device calibration attacks against continuous-variable
QKD. These attacks arise from a subtle link between the local oscillator cal-
ibration procedure and the clock generation procedure in practical CVQKD
setups using Gaussian modulation of coherent states and homodyne detec-
tion. We show that combining this security loophole with intercept-resend
attacks can compromise the security of continuous-variable QKD in the ab-
sence of appropriate countermeasures. With recent advances in this technol-
ogy, which allows for long-distance key distribution using standard telecom-
munication components and with strong security guarantees [64], assuring
the practical security of all aspects of the implementation, and specifically
of the ubiquitous calibration procedure, is of utmost importance.

5.2 Security assumptions and calibration techniques

A standard assumption when designing and implementing a CVQKD
system is that the local oscillator cannot be manipulated by an eavesdrop-
per. This cannot, however, be verified in practice since the local oscillator
is a classical, and therefore intense, signal, and thus the no-cloning theorem
does not apply. This means that the local oscillator can be measured and re-
generated, or directly amplified, without adding any additional disturbance.

Current security proofs do not explicitly take into account the local os-
cillator, which is not required at a theoretical level to define the exchanged
states and the performed measurements [99, 46, 74]. In particular, all the
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Figure 5.2: Profile of the trigger signal generated at Bob’s site depending
on the shape of the local oscillator pulse.

trigger signal generated by the clock circuit is also altered.
In the following, we describe how the interplay between the local oscil-

lator calibration and the clock generation procedures can be exploited to
perform an eavesdropping attack.

5.3 Description of the local oscillator calibration

attack

The basic principle of the attack is illustrated in Figs. 5.2, 5.3 and 5.4.
In particular, as shown in Fig. 5.2, the clock circuit is usually designed to
output a rising trigger signal when the intensity entering the photodiode is
above a certain threshold. Subsequently, this trigger is delayed such that the
value of the signal at the output of the homodyne detection is maximized.
A potential attack for an eavesdropper consists in attenuating the beginning
of the local oscillator pulse, which induces a delay of the trigger used for
the measurements. Note that this was also suggested in [21] as a poten-
tial source of loophole. Figure 5.4 shows experimental results illustrating
the relationship between the variance of the measurement on the homodyne
detection and the local oscillator power for different trigger signals. These
results were obtained using the setup of Fig. 5.1, which corresponds to a sim-
plified version of Bob’s setup employed for long-distance continuous-variable
QKD using Gaussian modulation of coherent states [64]. The experiment
shows that a delayed trigger results in a decrease of the detection response
slope. This is because a homodyne measurement is usually performed by
integrating the differential photocurrent during a period ∆ using an inte-
grator circuit: after this period ∆, the capacitor discharges exponentially,
which implies that the maximum measurement variance is obtained when
the trigger coincides with the end of the period ∆, as shown in Fig. 5.3. As
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Figure 5.3: Differential signal obtained by the homodyne detector for sev-
eral modulated quadratures. After an integration period of ∆ = 100 ns,
the capacitor discharges exponentially. Depending on the time of the mea-
surement, the variance of the measurement of the homodyne detection is
different.

a result, if Alice and Bob use the previously calibrated relationship to eval-
uate the shot noise based on the measured local oscillator power, they will
use a false value, if the trigger signal has been delayed during the QKD run.
In particular, they will overestimate the value of the shot noise, and con-
sequently underestimate the excess noise present in the setup. This creates
an important loophole in the security of the implementation.

Based on this loophole, we propose the following practical attack. It is
important to note that this attack can be implemented with current tech-
nology, without any need, for instance, for a quantum memory.

– The eavesdropper, Eve, introduces a phase-independent attenuator in
the quantum channel and applies an attenuation factor α (0 ≤ α ≤ 1)
on a fraction ν (0 ≤ ν ≤ 1) of the local oscillator pulses in order
to modify their shape. The trigger used to perform the homodyne
measurement relative to these pulses is delayed by δ.

– Eve introduces a beam splitter in the quantum channel and for a
fraction µ (0 ≤ µ ≤ 1) of the input signal pulses she measures both
quadratures and prepares the appropriate quantum state, whereas for
a fraction 1 − µ of the input signal pulses she just eavesdrops using
the beamsplitter. This so called partial intercept-resend attack was
implemented experimentally in [82].

When Eve increases the fraction µ of signal pulses over which she per-
forms an intercept-resend attack, she introduces more noise, which lowers
the amount of secret key that Alice and Bob can extract from the quantum
transmission. The fraction ν of local oscillator pulses attenuated by Eve and
the attenuation factor α are two free parameters that play the same role:
they scale the variance of the measurements made by Bob while his shot
noise estimation remains unchanged. This leads Alice and Bob to conclude
that no noise has been introduced in the quantum channel and hence they
establish a key without detecting the presence of Eve.
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Figure 5.4: In red, the calibrated linear relationship between the variance
of the homodyne detection measurements and the local oscillator power. In
green, the linear relationship we obtain when delaying the trigger of the
homodyne detection by 10 ns.

5.4 Analysis of the excess noise

To assess the impact of our attack on the security of continuous-variable
QKD, we detail the parameter estimation procedure that is necessary for the
derivation of the secret key and how this procedure is altered when the attack
is implemented. In a practical CVQKD setup, Alice and Bob estimate the
quantities required to compute the secret key rate by sampling m = N − n
couples of correlated variables (xi, yi)i=1...m, where N is the total number
of quantum signals sent through the quantum channel and n is the number
of signals used for the key establishment. Since for CVQKD it is sufficient
to estimate the covariance matrix of the state shared by Alice and Bob, the
only parameters that need to be estimated are the variance on Alice’s and
Bob’s sites, 〈x2〉 and 〈y2〉, respectively, and the covariance between Alice
and Bob, namely 〈xy〉 (assuming here that x and y are centered variables,
that is, that 〈x〉 = 〈y〉 = 0). Then, the following estimators are used during
the QKD run:

〈x2〉 = VA, 〈xy〉 =
√

ηTVA (5.1)

〈y2〉 = ηTVA +N0 + ηTξ + vel (5.2)

In the above expressions, T is the quantum channel transmittance, VA is
the modulation variance, ξ is the excess noise, N0 is the shot noise, η is
the efficiency of the homodyne detector, and vel is the electronic noise (all
expressed in their respective units).

Here we assume that the electronic noise does not change between the
QKD run and the calibration procedure. In theory, an eavesdropper may
also try to modify the value of the electronic noise, for example by changing
the temperature operating conditions of the electronic circuit of the homo-
dyne detection between the calibration and the QKD run. However, the
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impact of such an attack would be less significant since the value of the
electronic noise is typically between 10 and 20 dB below the shot noise.

In order to compute confidence intervals for these parameters, we con-
sider a normal model for Alice and Bob’s correlated variables (xi, yi)i=1...m,
namely y = tx + z, where t =

√
ηT ∈ R, and z follows a centered nor-

mal distribution with unknown variance σ2 = N0 + ηTξ + vel. Note that
this normal model is an assumption justified in practice but not by current
proof techniques, which show that the Gaussian assumption is valid once
the covariance matrix is known [74].

Maximum-Likelihood estimators t̂, σ̂2 and V̂A are known for the normal
linear model:

t̂ =

∑m
i=1 xiyi

∑m
i=1 x

2
i

, σ̂2 =
1

m

m
∑

i=1

(yi − t̂xi)
2, V̂A =

1

m

m
∑

i=1

x2i

These are independent estimators with distributions:

t̂ ∼ N
(

t,
σ2

∑m
i=1 x

2
i

)

,
mσ̂2

σ2
,
mV̂A

VA
∼ χ2(m− 1),

where t, σ2 and VA are the true values of the parameters. Using the previous
estimators and their confidence intervals together with the shot noise value
from the calibration N ′0, it is then possible to estimate T = t̂2/η and ξ =
(σ̂2 −N ′0 − vel)/t̂2.

If the eavesdropper can change the slope of the homodyne detection
response as previously explained, the equality N ′0 = N0 is not verified. This
leads to the following estimation for the excess noise when a calibration
attack occurs:

ξ̂calib = ξ̂ +
N
′

0 −N0

t̂2
, (5.3)

where ξ̂ is the estimate without the attack. In order to compute a secret
key rate, the excess noise must be expressed in shot noise units, hence we
have:

ξ̂calib
N ′0

=
N0

N ′0

[

ξ̂

N0
+

1

t̂2

(

1− N
′

0

N0

)]

(5.4)

Next, we consider the excess noise introduced by a partial intercept-
resend (PIR) attack alone. According to the analysis of [82], in this case,
the probability distribution of Bob’s measurements is the weighted sum of
two Gaussian distributions with a weight of µ for the intercepted and resent
data and a weight of 1− µ for the transmitted data:

〈y2〉IR = ηT (VA + 2N0) +N0 + ηTξ + vel (5.5)

〈y2〉BS = ηTVA +N0 + ηTξ + vel, (5.6)

where ξ is the technical excess noise of the system. The excess noise intro-
duced by this attack can then be computed as:

ξ̂PIR = ξ̂ + 2µN0 (5.7)

In practice, when a full intercept-resend attack is implemented (µ = 1), the
excess noise is dominated by the second term in the above expression due
to the noise introduced by Eve’s measurements.
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If, additionally, the eavesdropper performs the local oscillator calibra-
tion attack, then the excess noise introduced by the partial intercept-resend
attack is computed, in shot noise units, as:

ξ̂PIRcalib

N ′0
=
N0

N ′0

[

ξ̂PIR

N0
+

1

t̂2

(

1− N
′

0

N0

)]

(5.8)

5.5 A quantitative example

When the eavesdropper implements a full intercept-resend attack (µ =
1), and with a typical value of ξ/N0 = 0.1, we find from Eq. (5.7) that the
noise introduced by the attack is ξPIR/N0 = 2.1. This noise value is above
the entanglement breaking limit, hence no secret key can be exchanged,
independently of the communication distance. However, if Eve implements
additionally the local oscillator calibration attack, then Alice and Bob will
estimate the excess noise using Eq. (5.8). For example, for a transmission
T = 0.5 and a homodyne detection efficiency η = 0.5, we find:

ξ̂PIRcalib

N ′0
=
N0

N ′0

[

2.1 +
1

0.5× 0.5

(

1− N
′

0

N0

)]

(5.9)

Then, for N
′

0/N0 ≈ 1.5, which is a realistic value as shown in Fig. 5.4, the
excess noise estimated by Alice and Bob will be close to zero, hence they
will conclude they can share a secret key. The security of the protocol is
thus entirely compromised.

5.6 Countermeasure: real-time shot noise mea-
surement techniques

In practice, it is possible to show that a calibrated linear relationship
between the shot noise level and local oscillator power cannot be used in
the presence of an eavesdropper (see Appendix for a detailed analysis).
Therefore, a countermeasure for the proposed attack consists in devising
techniques allowing us to measure the shot noise in real time. One such
technique consists in applying a strong attenuation on Bob’s signal path to
a randomly chosen set of pulses, using, for instance, an optical switch or an
amplitude modulator. Alternatively, an additional homodyne detector ded-
icated to the real-time shot noise measurement can be used: a beam splitter
is introduced in Bob’s local oscillator path and the relative sensitivity of the
two homodyne detectors is calibrated. A schematic representation of the
two techniques is shown in Fig. 5.5. In both methods, two noise measure-
ments on two sets of pulses allow us to extract the shot noise and the signal
noise by inverting a linear system. To the best of our knowledge, none of
these techniques has been proposed or implemented in CVQKD.

In Fig. 5.6, we compare the theoretical secret key rates against collective
attacks [99, 46] for a CVQKD system that does not implement any counter-
measure against the local oscillator calibration attack we proposed and for
a system that uses the countermeasure of Fig. 5.5(a) with an optical switch
on Bob’s signal path. In the latter case, the impact of the countermeasure
on the secret key rate is twofold. First, the number of pulses that can be
used to extract a secret key is diminished by the fraction of pulses chosen at
random to compute an estimate of the shot noise; in our numerical analysis,
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maximum secure distance drops from 80 km to 70 km when implementing
this countermeasure.

5.7 Conclusion

We proposed a powerful and realistic calibration attack for continuous-
variable QKD systems, by which an eavesdropper can make Alice and Bob
negotiate a key even for an introduced noise that is above the entanglement
breaking limit at which no secret key can be exchanged at any distance. Pre-
venting this attack involves real-time measurement of the shot noise, which is
possible but not trivial. Given the relevance of CVQKD technology for high-
performance secure communications, this work highlights the importance of
rigorously testing the practical security of current implementations.
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Figure 5.6: Secret key rate for collective attacks in the asymptotic regime.
Both plots are obtained in the so-called realistic model where the electronic
noise and the efficiency of the homodyne detection are calibrated and cannot
be altered by the eavesdropper. The red upper plot corresponds to the secret
key rate computed without implementing any countermeasure against the
local oscillator calibration attack. The green lower plot is obtained when
inserting an optical switch with typical losses of 2.7 dB on Bob’s signal
path and discarding 10% of the pulses on Bob’s side at random to perform
a real-time shot noise measurement. The transmittance T and distance d
are linked with the expression T = 10−αd/10, where α = 0.2 dB/km is the
loss coefficient of the optical fiber. The modulation variance of Alice VA is
adjusted to maintain a signal-to-noise ratio of 0.075 on Bob’s side, which
allows for a reconciliation efficiency of β = 94.8% [64]. The excess noise
on Bob’s side is ξBob = 0.001, and the electronic noise of the homodyne
detection is vel = 0.01. For the upper plot, the efficiency of the homodyne
detection is assumed to be η = 0.6 while the lower plot corresponds to an
efficiency ηcalib = 0.32 when taking into account the losses of the optical
switch on Bob’s signal path.
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In the standard protocol [50], one needs to prepare Gaussian modulated
coherent states and to measure them with a homodyne or a heterodyne [145]
detection which requires only standard telecommunication parts. With the
current proof techniques, using a Gaussian modulation is optimal as regards
the theoretical secret key rate. In particular, security against collective at-
tacks is well understood [46, 99], even in the finite-size regime [78], and
collective attacks are known to be asymptotically optimal [112]. However,
since the efficiency of the current reconciliation protocols for Gaussian vari-
ables drops dramatically in the regime of low signal-to-noise ratios (SNRs),
new protocols using specific non-Gaussian modulations, either discrete [71]
or continuous [76], have been developed. The idea of these modulations
is that they are compatible with high-performance error correction, mak-
ing possible for the protocol parties to extract efficiently the information
available in their raw data. This is in strong contrast with the Gaussian
modulation for which no efficient reconciliation procedure was available un-
til now. In theory, protocols with a non-Gaussian modulation therefore in-
crease the achievable secure distance of CVQKD. They have, however, not
yet been demonstrated experimentally. Indeed, for long distances, that is
low transmission of the quantum channel, the optimal modulation variance
is typically lower for non-Gaussian modulations (in particular for the four-
state protocol [71]) than for a Gaussian modulation. This makes the design
of a stable continuous-variable system able to operate at large distances dif-
ficult. Even if this effect is mitigated for the eight-dimension protocol [76],

97
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the modulation allowing for the largest variance remains the Gaussian one
[50].

In this chapter, we present high-efficiency error correcting codes which
can be combined with a multidimensional reconciliation scheme [70]. This
allows, for the first time, to distill a secret key from a CVQKD protocol
with a Gaussian modulation in the regime of very low SNR, and paves the
way for future experimental demonstrations of CVQKD over much larger
distances than the current record of 30 km [83, 44].

In Section 6.1, we explain how the problem of reconciling Gaussian vari-
ables can be translated into a channel coding problem on the Binary Input
Additive White Gaussian Noise Channel (BIAWGNC), for which we describe
very low rate error correcting codes in Section 6.2. Combining these tools,
we are able to efficiently reconcile data at low SNRs. Finally, we show in
Section 6.3 the consequences of these new developments on the performance
of the Gaussian protocol over long distances.

6.1 Theory of Reconciliation of Gaussian Variables

The data reconciliation step is critical in CVQKD: the distance of the
chosen error-correction scheme to the Shannon bound affects both the key
rate and the range of the protocol. Of considerable importance is the prob-
lem of the reconciliation of correlated Gaussian variables. This is indeed the
scenario considered in the GG02 protocol [50] where Alice’s coherent states
are modulated with a bivariate Gaussian distribution in phase space. Differ-
ent approaches have been explored to increase the reconciliation efficiency
for a Gaussian modulation, especially in the regime of low SNR.

A first approach called Slice Reconciliation was proposed in [143, 14] and
implemented in [83, 44] but the efficiency of this method currently limits the
protocol range to about 30 km. Another method is to encode the information
on the sign of the Gaussian modulated value. However, since we deal with
centered Gaussian variables, the uncertainty on the sign increases at low
SNRs because most values have small amplitude. Another class of protocols
use post-selection [130, 98, 69, 54] by working only with high-amplitude data
but the security is not proven against general collective attacks.

In [70], the idea of reducing the Gaussian variables reconciliation problem
to the channel coding problem is introduced. One first uses a d-dimensional
rotation to build a virtual channel close to the BIAWGNC from the physical
Gaussian channel. This means that d consecutive instances of the physical
channel are mapped to d approximate copies of a virtual BIAWGN channel,
which are used to perform the error correction and eventually distill the
actual secret. The final reconciliation efficiency one obtains with such a
scheme depends on two things:

– The intrinsic efficiency of the error correcting code used on the virtual
channel on the BIAWGNC (such an efficiency is given for example in
Table 6.1).

– The quality of the approximation between the virtual channel and the
BIAWGNC (for the scheme given in [70], the quality of this approxi-
mation increases with the dimension d).

One can therefore improve the reconciliation efficiency of the global scheme
by working on two things: designing codes with higher efficiencies on the
BIAWGNC and increasing the dimension of the scheme.

Let us now explain in more details the setting defined in [70]: Alice, the
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sender, and Bob, the receiver, are given two n-dimensional real vectors x
and y and can use a public authenticated channel to agree on a common bit
string u. For this, one of the parties (say Alice in the direct reconciliation
scheme) sends to the other additional information describing a function f
such that f(x) = u; the other party (Bob) applies this function to his data
to get v := f(y); this way, a virtual communication channel with input u
and output v is defined. The explicit construction of [70] aims at creating a
virtual channel that is close to the BIAWGNC since very efficient codes are
available for that channel.

Alice and Bob are given two d-uplets x and y corresponding to correlated
Gaussian vectors (this is valid for CVQKD with a Gaussian modulation and
a Gaussian optimal attack). This means that one can introduce constants
t, t′ and σ, σ′ such that one has y = tx+z with x ∼ N (0, 1)d, z ∼ N (0, σ2)d
in the direct reconciliation case and x = t′y+z′ with y ∼ N (0, 1+σ2)d, z′d ∼
N (0, σ′2)d in the reverse reconciliation case. Since the two scenarios are
similar, we consider without loss of generality only the direct reconciliation
one here. Furthermore, up to a simple renormalization, one can fix t = 1.

Alice chooses a random element u ∈ {−1/
√
d, 1/

√
d}d with the uniform

distribution on the d-dimensional hypercube and sends r = u.x−1 to Bob
through the public channel (a “multiplication” and its inverse “division”
operator are assumed to exist on d-dimensional vectors - more on this below).
Then Bob computes v := r.y. Let us analyze the noise w on this virtual
channel:

w := v− u

= ry− u

= u.x−1 (x + z)− u

= u
z

x
∼ u

z

||x||
where the last equality holds in law and is due to the spherical symmetry
of the distributions of z and x and their independence. Since the norm of
x is transmitted, the channel considered is a Fading Channel with Known
Side Information as defined in [114], the fading coefficient being the norm
of x, which follows a χ(d) distribution with d degrees of freedom. Since
the distribution χ(d) gets closer to a Dirac distribution when d goes to
infinity, one should use the highest dimension possible in order to obtain
the degenerate version of the Fading Channel with Known Side Information
where all the fading coefficients are equal to 1, that is, the BIAWGNC.
Unfortunately, the required division operator only exists in dimensions 1,
2, 4 and 8 (where it can be built from the algebraic structure of R, C, H
and O respectively), so that it is not possible to use the above algorithm in
arbitrary dimension.

6.2 Reconciliation of Gaussian Variables: Imple-

mentation with LDPC Codes

Low Density Parity Check (LDPC) codes (or Gallager codes) are linear
error-correcting codes with a sparse parity check matrix. A good reference
about general coding theory and LDPC codes is [114]. LDPC codes can be
represented as bipartite graphs, one set of the nodes being the check nodes
representing the set of parity-check equations which define the code; the
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other, the variable nodes which represent the elements of the codewords.
Variables nodes and check nodes are connected through edges. LDPC codes
are commonly used in telecommunications since they perform very close to
Shannon limit and can be decoded with a fast iterative message-passing
decoder called Belief Propagation (BP) (in such a decoding scheme, infor-
mation is propagated between variable and check nodes that are connected
by edges). These codes are designed for a given channel and a given SNR.
The rate of a code is defined as the ratio between the information bits and
the total number of transmitted bits on the channel. A low rate code is
therefore a code with a lot of redundancy bits. Correcting errors at very
low SNRs implies to design codes with low rates since adding redundancy
allows to correct more errors.

A standard way to characterize LDPC codes is the probabilistic method:
an ensemble of LDPC codes C is characterized by the node degrees and one
proves that good codes occur with high probability within this ensemble.
A specific code is simply drawn randomly from this set. Then one can
modify the node degrees and their probabilities of occurrence to improve
the performance of the codes of the ensemble. A well known method to
optimize LDPC codes for a given rate and a given channel is to use a genetic
algorithm called Differential Evolution. This method has been successfully
applied for a wide range of channels: the Binary Erasure Channel (BEC)
[128], the BIAWGNC [115] and the Binary Symmetric Channel (BSC) [32].
The cost function that is maximized using this algorithm is defined as the
threshold value for the channel (i.e. the maximal value of the noise that can
be corrected with a given code, e.g. the standard deviation σ of the noise
for the BIAWGNC or the probability of error ǫ for the BSC) and Discretized
Density Evolution is used to compute the threshold.

In CVQKD, we need low-rate and high-efficiency codes for the BIAWGNC
since errors must be efficiently corrected at very low SNRs to increase the
secure distance. Multi-edge-type LDPC codes [113] give simple structures al-
lowing to operate very close to Shannon limit at very low SNRs (for another
construction of low rate LDPC codes refer to [7]). In the multi-edge setting,
several edge classes are defined on the bipartite graph; then every node is
defined by its number of sockets in each class. Whereas for standard LDPC
ensembles the graph connectivity is constrained only by the node degrees,
the multi-edge-type setting allows a greater control over the graph because
only sockets of the same class can be connected together. Unlike standard
LDPC ensembles, this framework provides for example the possibility to use
degree-1 edges which improves significantly the threshold.

Every known reconciliation technique for CVQKD with a Gaussian mod-
ulation achieves an efficiency less than or equal to 90% [14, 83, 142]. This
efficiency parameter β (defined by β(s) = R/C(s) for a SNR s where R
is the code rate used for the reconciliation and C is the capacity of the
Additive White Gaussian Noise Channel (AWGNC)) is critical since the
asymptotic secure key rate in the reverse reconciliation scheme is given by
K = βI(x; y)−χ(y;E), where both I(x; y) (the mutual information between
the two protagonists bit strings x and y) and χ(y;E) (the Holevo informa-
tion between the eavesdropper and the receiver’s data) are large compared
to K. One should especially pay attention to the dependency of β on the
SNR. In [14, 83, 142], the good efficiency values are obtained only for SNRs
higher than 1 which is incompatible with long distances. In [70], a 90% effi-
ciency is obtained for a 0.5 SNR which allows to extend the secure distance
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R sDE Cth βDE

0.1 0.156 0.10429 95.9%
0.05 0.074 0.05144 97.2%
0.02 0.029 0.02038 98.1%

Table 6.1: Multi-edge LDPC codes asymptotic efficiencies. SNR asymptotic
thresholds (sDE) on the BIAWGNC, corresponding channel capacities (Cth)
and efficiencies (βDE) given by Density Evolution for low rate multi-edge
LDPC codes of rate R.

R s sd=1 sd=2 sd=4 sd=8

0.1 0.271 0.187 0.169 0.163 0.161
0.05 0.123 0.082 0.077 0.076 0.075
0.02 0.047 0.030 0.029 0.029 0.029

Table 6.2: SNR thresholds on the BIAWGNC for low rate multi-edge
LDPC codes (size 220) using the multidimensional reconciliation scheme
(d = 1, 2, 4, 8).

from 30 km to 50 km. Here, we obtain higher efficiencies for even lower
SNRs which allows secure key distribution over longer distances.

Let us now review low rate LDPC codes with a good efficiency available
in literature. In [113], table IX, a 95.9% efficiency, rate 1/10 code for the
BIAWGNC is described. This efficiency can be further improved through an
optimization of the distribution coefficients as mentioned in [113]. Starting
from the structure of this code we designed codes with lower rates and
with higher asymptotic thresholds. Table 6.1 sums up the performances
of this original code together with our set of new multi-edge LDPC codes
(the actual structure of the rate 0.02 code is described as an example in
Appendix 6.4). In this table, R is the rate of the considered code, sDE

is the SNR threshold given by Discretized Density Evolution, Cth is the
theoretical channel capacity for this level of noise and βDE is the efficiency
of the code. These results are valid in the asymptotic regime, i.e. for codes
of infinite length. However, the efficiency that is obtained with codewords
of length 220 is within 1% of the asymptotic efficiency.

6.2.1 Simulation Results with Rotations

Let us discuss the simulation results we obtained applying the multidi-
mensional reconciliation scheme on S1, S3 and S7 with the previous codes
for a dimension d = 2, d = 4 and d = 8, for the sign coding technique
(d = 1) and without using any additional information, i.e. when we try to
use a code designed for the BIAWGNC with a Gaussian modulation.

Tables 6.2 and 6.3 summarize the efficiencies we obtained with respect
to the Gaussian channel capacity with our multi-edge LDPC codes for a
block size of 220. We obtained a quite high Frame Error Rate (FER) (about
1/3) but a null Bit Error Rate (BER) on the blocks where the decoding
succeeded. This means that concatenating our codes with very high rate
codes like BCH codes to remove the residual errors (as was done in [83, 44])
is not necessary here.

Since the channel obtained with rotations is not exactly a BIAWGNC,
the efficiencies β are always lower than the efficiencies predicted by density
evolution on the BIAWGNC. However, increasing the dimension d of the
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R β βd=1 βd=2 βd=4 βd=8

0.1 57.9% 80.8% 88.7% 92.1% 93.1%
0.05 59.7% 88.3% 93.5% 94.8% 95.8%
0.02 60.0% 93.1% 96.3% 96.6% 96.9%

Table 6.3:
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Figure 6.1: Ratios between the capacities of the multidimensional channels
(d = 1, 2, 4, 8) and the BIAWGNC and between the BIAWGNC and the
AWGNC with respect to the SNR.

rotations allows to get closer to the efficiency of the code on the BIAWGNC.
This is expected since the norm of the input vector ud||xd|| of the virtual
channel follows a distribution χ(d) (where d is the number of degrees of
freedom), which gets closer to a Dirac when d tends to infinity.

Figure 6.1 compares the capacities of the BIAWGNC and the multidi-
mensional virtual channels for d = 1, 2, 4, 8 as a function of the SNR.

6.2.2 Use of rotations in higher dimension spaces

As was explained in the previous section, the multidimensional recon-
ciliation scheme is limited to dimensions 1, 2, 4 and 8 because these are the
only ones compatible with a division structure [70].

In [70], the following construction applicable to arbitrary dimension d
is proposed. In the direct case, with the same notations as in paragraph
6.1 (where Alice has a vector x, Bob a vector y, and Alice uses (x, r) to
’virtually’ send u to Bob), a random orthogonal transformation Q on R

d is
drawn according to the Haar measure, thenQ is composed with the reflection
S across the mediator hyperplane of x′ = Q(x) and u. The resulting matrix
R = S ◦ Q sends x to u and y to a point close to u, because R preserves
the euclidean distance; R is revealed by Alice and plays the same role as the
vector r in section 6.1. The randomization provided by Q ensures that R
does not reveal more information on (x,u) than the relation R(x) = u; in
particular, all u are equally likely given R.

Q is built, for instance, as the orthogonal (’Q’) part of the QR decom-
position of a d × d matrix G of Gaussian normalized random values. This
method has complexity O(d3). All other known methods to draw random
orthogonal matrices have the same complexity.
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We propose a method that allows to reduce the complexity to O(d2).
Let us observe first that we have the choice of the encoding of R: we do not
need to reveal it in matrix form. However, the encoding must not reveal
anything about u except that R satisfies R(x) = u. For instance, with the
first method, revealing separately Q and S instead of R = S ◦ Q is not a
good idea since S leaks information about u: indeed, in high dimension d,
two random independent vectors are approximately orthogonal and therefore
their mediator hyperplane forms and angle of about π/4 with either vector.

Let us examine first how an orthogonal transform Q can be drawn ac-
cording to the Haar measure with complexity O(d2), using an adequate rep-
resentation, the Householder decomposition. An orthogonal basis e1, . . . , ed

is fixed. Let E (resp. F ) be the span of e1, . . . , ed (resp. e2, . . . , ed).
If d = 1, choose +1 or −1. If d > 1, choose a random vector g uniformly

on Sd−1, the unit sphere in R
d (it can be constructed as g = h/||h|| where

h has independent normalized Gaussian coordinates), and draw recursively
a random orthogonal matrix Q′ of dimension d − 1, viewed as a transform
of F . Q′ is extended to E by setting Q′(e1) = e1. Let S be the reflection
that sends e1 on g, and define Q = S ◦Q′. Q′ is itself a composition of d−1
reflections in spaces of dimensions d − 1, . . . , 1. Describing each reflection
by its corresponding eigenvector for the eigenvalue -1, Q is described by d
vectors of dimensions d, d − 1, . . . , 1, for a total of d(d+1)

2 coefficients. The
decomposition is unique. Note that Q(e1) = g.

This process can be adapted when a constraint Q(x) = u is added, with
||x|| = ||u||. If d = 1, choose +1 or −1 depending on x = u or x = −u.
Assuming d > 1, g is chosen uniformly at random among unit vectors s.t.

u · g = x · e1 (6.1)

where · is the dot product. This relation is required for Q to satisfy both
Q(x) = u and Q(e1) = g. Starting from a Gaussian normalized vector h,
α is chosen uniformly so that (h + αu) · u = (x · e1) × ||h + αu|| (this is
a quadratic equation that has at least one solution except if h,u span the
same line, and e1,x do not, which happens with probability 0). g = h+αu

||h+αu||
is computed in linear time and satisfies (6.1).

For an arbitrary vector v, write its decomposition on F , e1 as v =
vF + vF⊥ . Q′ is drawn recursively, satisfying Q′(xF ) = S(u)F . This is
possible because x · e1 = u ·g = u ·S(e1) = S(u) · e1 implies xF⊥ = S(u)F⊥
and ||xF || = ||S(u)F ||. Then as Q′(e1) = e1, Q′(x) = S(u).

Define Q = S ◦Q′ as before: Q(x) = S(Q′(x)) = u.
The algorithm still runs in O(d2), and the decomposition does not reveal

any side information because it is unique. Since the added constraint (6.1)
is required for the relation Q(x) = u to hold, one sees recursively that the
process yields the correct distribution on Od. Finally, given the d reflection
vectors, computing Q(z) for any z is also done in time O(d2). Hence by
revealing these vectors instead of Q in matrix form, one gets the desired
O(d2) algorithm.

Let us now consider the rate 1/2 multi-edge LDPC code given in Table
VI of reference [113]. The SNR threshold given by Discretized Density
Evolution is s∗ = 1.074. The corresponding efficiency on the BIAWGNC
is 98.2%. When using a Gaussian modulation, table 6.4 shows the effect of
the dimension d on the efficiency β of the reconciliation scheme. We can
see that increasing the dimension above 8 when operating at a high SNR
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d s β

2 1.644 76.3%
4 1.336 85.7%
8 1.194 91.7%
16 1.144 94.3%
32 1.108 96.2%
64 1.097 96.9%

Table 6.4: SNR thresholds and channel efficiencies on the BIAWGNC for
a rate 1/2 multi-edge LDPC code with respect to the dimension of the
multidimensional reconciliation scheme. The description of this code can be
found in in Table VI of ref. [113]

enables to increase significantly the efficiency, and therefore the key rate in
QKD applications.

6.2.3 Dealing with a continuous range of SNR with punctur-
ing, shortening and repetition

We designed good efficiency codes for a finite set of rates so far; we are
going to show how to deal with a continuous range of SNRs with this finite
set. Since we designed low rate codes with good efficiencies, we can apply
the simple technique of repetition codes mentioned in [72]. It is shown that
starting from a code of rate R achieving an efficiency β(s) for a SNR s on
the BIAWGNC, one can use a repetition scheme of length k to build a new
code of rate R

′
= R/k achieving an efficiency β′ for a SNR s′ = s/k given

by

β′(s/k) = β(s)
log2(1 + s)

k log2(1 + s/k)

For example, using a repetition scheme of length 3 with our code of rate
0.02 and efficiency 98% for a SNR of 0.03, we can build a code of efficiency
β(0.01) = 0.98 log2(1.03)

3 log2(1.01) = 97%. We applied this technique with repetition
factors of 2 and 4 with our code of rate 0.02 to obtain the codes of rates
0.01 and 0.005 given in Table 6.5.

However, this technique allows a low efficiency loss only for very small
SNRs. For higher SNRs, other techniques must be applied if we want to
keep very good efficiencies. Puncturing and shortening for LDPC codes are
a good way to adapt the rate of a code [33]. Let us start with a (n, k) code,
i.e. a code of length n with n− k bits of redundancy; the rate is R = k/n.
Puncturing consists in deleting a predefined set of p symbols from each word,
converting a (n, k) code into a (n− p, k) code. Shortening means deleting a
set of s symbols from the encoding process (or revealing s message bits in
addition to the syndrome in each codeword), converting a (n, k) code into a
(n−s, k−s) code. With a combination of these techniques the rate obtained
is

R =
k − s

n− p− s .

The loss of efficiency incurred is small for small relative variations of the code
rate. Typically, one can achieve a decrease of 5% (though shortening) and
an increase of 10% (through puncturing) of the code rate with an efficiency
loss smaller than 1%.
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R β s

0.5 93.6% 1.097
0.1 93.1% 0.161
0.05 95.8% 0.075
0.02 96.9% 0.029
0.01 96.6% 0.0145
0.005 95.9% 0.00725

Table 6.5: SNR thresholds and channel efficiencies on the AWGNC of the
multi-edge LDPC codes mentioned in this chapter.

6.3 Practical use for a continuous-variable quan-

tum key distribution system

In this section, we apply the techniques developed in the previous sec-
tions to CVQKD in order to increase the secure distance achievable. We
have to take into account that our quantum channel is Gaussian so that
code efficiencies must be computed w.r.t. this channel capacity:

β =
R

CAW GNC

where R is the rate of the code and CAW GNC is the capacity of the AWGNC.
As we can see on Figure 6.1, the capacity of the BIAWGNC is very close
to the capacity of the AWGNC for small values of the SNR. We give the
efficiencies we can achieve on the AWGNC for different SNRs in Table 6.5.

Our set of codes allows us to correct errors with an efficiency of about
95% for some fixed low SNRs. Let us plot the secret key rate as a function
of the SNR on Bob side for a given distance and assuming a fixed error
correction efficiency β. This enables to determine for which particular SNR
it is relevant to design error-correcting code in order to maximize the secret
key rate. We do not consider here finite-size effects [78], meaning that our
figures represent the key rate in the regime of infinite block length. In
order to take finite-size effects into account two approaches are possible:
a theoretical one consists in improving the proofs and the bounds on the
secret key rate [12], a more practical one consists in designing systems with
sufficient hardware stability in order to compute keys on large blocks.

The modulation variance is restricted within the interval [1, 100] (in shot
noise units) since lower values make the experimental setup much more
complex. Indeed, a very low modulation variance is not compatible with
brighter synchronization and phase tracking signals, because of the limited
extinction ratios of the optical modulators (30dB for the most common
models). An attenuation of 0.2dB/km is assumed. The homodyne detection
efficiency is set to 0.6, and a value of 1% of the shot noise is taken for
the electronic noise of the homodyne detection [83, 44]. A conservative
value of 4% of the shot noise as in the European project SECOQC (Secure
Communication based on Quantum Cryptography) [44] is used for the excess
noise in Figure 6.4 while a more optimistic figure of 1% is used in Figures
6.2, 6.3 and 6.5. This second value is also typical of a realistic CVQKD
system citeLBG07.

Figure 6.2 shows the optimal variance modulation on Alice side with
respect to the key rate as a function of the distance. Achieving a good
reconciliation efficiency at any SNR allows to work with a high modula-
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tion variance. This compares favorably to previous schemes with a discrete
modulation which require modulation variances 10 times lower than the ones
shown here.

Figure 6.3 and 6.4, plotted respectively for an excess noise of 1% and 4%
of the shot noise, show that an improvement on the reconciliation efficiency
yields at any distance a wider range of SNR with a close-to-optimum secret
key rate. Conversely, the range of distances where a given error-correcting
code working close to its threshold SNR can be used to get an almost optimal
key rate is increased.

Given these large distance ranges where an error-correcting code is us-
able, it becomes feasible to use a small family of error-correcting codes to
perform the reconciliation step at any distance and without using rate-tuning
techniques such as puncturing or shortening. Figure 6.5 shows the key rate
and the maximum secure distance obtained with this simple approach and
the codes of Table 6.5. With an excess noise of 1% of the shot noise, a
secure distance above 150 km is obtained (with an excess of noise of 4% and
the same codes, the secure distance is above 140 km). This is a significant
improvement over previous reconciliation techniques since a reconciliation
efficiency of 90% for a SNR of 0.5 only allows a secure distance of about 50
km with a Gaussian modulation [70].

6.4 A rate 1/50 multi-edge LDPC code

Below is the description of a multi-edge LDPC ensemble of codes of
rate R = 0.02 (σ∗ = 5.91 on the BIAWGNC). The left half of the array
describes the multi-degree distributions of variable nodes, and the right half
the distribution of check node multi-degrees. m stands for a multi-degree
distribution of probability νm at the variable nodes and µm at the check
nodes. For instance, with probability 0.0225, a variable node has multi-
degree [2, 57, 0], i.e. it has 2 sockets for edges of type 0, 57 sockets for
edges of type 1, and no socket of type 2. Check node probabilities sum to
1−R = 0.98 since there is 0.98 check node for 1 variable node.
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νm m µm m

0.0225 2 57 0 0.010625 3 0 0
0.0175 3 57 0 0.009375 7 0 0
0.96 0 0 1 0.6 0 2 1

0.36 0 3 1

6.5 Puncturing / shortening performance

Figure 6.6 gives the efficiency of a rate 0.5 LDPC code on the BIAWGNC
with respect to noise. Modifications of the rate of the code with puncturing
and shortening techniques allow us to maintain a high efficiency over a wide
SNR range. This implies that a finite set of codes is sufficient to cover the
whole useful SNR range for CVQKD.

6.6 Conclusion

We designed high-efficiency error-correcting codes allowing to distribute
secret keys with a continuous-variable quantum key distribution system us-
ing a Gaussian modulation over long distances. Our results give a secure
distance above 150 km against collective attacks (in the asymptotic regime)
and can be implemented with only software modifications in the experimen-
tal setups of [83] and [44].
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Distributing secret keys with information-theoretic security is arguably
one of the most important achievements of the field of quantum information
processing and communications [120]. The rapid progress in this field has
enabled quantum key distribution (QKD) in real-world conditions [104, 119]
and commercial devices are now readily available. QKD systems based
on continuous variables [148] present the major advantage that they only
require standard telecommunication technology. However, these systems
were considered up till now unsuitable for long-distance communication
[44, 28, 61]. Here, we overcome all previous limitations and demonstrate
for the first time continuous-variable quantum key distribution over 80 km
of optical fiber. All aspects of a practical scenario are considered, including
the use of finite-size data blocks for secret information computation and key
distillation. Our results correspond to an implementation guaranteeing the
strongest level of security for QKD reported to date for such long distances
and pave the way to practical applications of secure quantum communica-
tions.

Long-distance experiments in quantum information science, and in par-
ticular for quantum key distribution (QKD), are of utmost importance for
future technological applications. Such experiments will allow the integra-
tion of quantum devices in current secure infrastructures and in future net-
works based on quantum repeaters [17]. The quest for long-distance QKD in
the last years has led to several successful demonstrations [137, 117, 133, 29],
however improving security guarantees and performance in practical condi-
tions in these implementations remains an issue. These experiments use
discrete-variable or distributed-phase-reference protocols [120], where the
key information is encoded on properties of single photons. Alternatively,
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close to the optimal bounds for low SNR. Implementing such error-correction
codes at high speed and in an optical environment featuring excellent stabil-
ity, which enabled the acquisition of large data blocks, allowed us to reach
parameter regions that were previously inaccessible. This was a key element
for the present experiments.

7.1 Outlook of the Experiment

In the experimental setup, shown in Figure 7.1, we implement the stan-
dard GG02 coherent-state CVQKD protocol [50]. The sender, Alice, pre-
pares coherent states with a Gaussian modulation and sends them to the
receiver, Bob, who measures one of the quadratures with a homodyne de-
tection system. A reverse reconciliation scheme, in which Alice and Bob use
Bob’s data to establish the secret key [49], is used.

Our experiment is a one-way implementation, where Alice sends to Bob
coherent light pulses with a 100 ns duration and 1 MHz repetition rate gen-
erated by a 1550 nm pulsed telecoms laser diode. These pulses are split
into a weak signal and a strong local oscillator (LO) with an unbalanced
coupler. The implemented protocol uses Gaussian modulation of coherent
states [50]: the signal is randomly modulated in both quadratures using an
amplitude and a phase modulator. The signal pulses are then attenuated
by a variable attenuator such that the signal power belongs to a range al-
lowing to control the variance of the Gaussian distribution exiting Alice’s
device using a photodiode and an appropriate feedback algorithm. A second
variable attenuator lowers the signal level to a few shot noise units.

The signal and LO are then transmitted through the optical fiber with-
out overlap using time and polarization multiplexing. Delay lines of 200 ns,
composed of a 20-m single-mode fiber followed by a Faraday mirror, are used
for the time multiplexing. Polarization multiplexing is achieved using polar-
ization beam splitters. After demultiplexing, the signal and LO interfere on
a shot-noise limited balanced pulsed homodyne detector. The electric sig-
nal coming from the detector is proportional to the signal quadrature Xφ,
where φ is the relative phase between the signal and the LO, which can be
controlled using the phase modulator on Bob’s LO path according to the
Gaussian protocol [50].

Feedback controls are implemented to allow for a stable operation of the
system over a large number of pulses (≥ 108). Polarization drifts occurring
in the quantum channel are corrected using a dynamic polarization con-
troller. The beamsplitter placed at the entrance of Bob’s apparatus aims
at generating from the LO pulse a clock signal that is independent of the
polarization state. Then, the homodyne detection statistics and an appro-
priate algorithm allow us to maintain an optimal polarization state at the
output of the channel. The photodiode on Alice’s signal path is used for
amplitude modulator feedback to correct alterations of the required voltage
settings induced by temperature variations. On Bob’s side, the homodyne
detection output is sensitive to phase and can be used to control Alice’s and
Bob’s phase modulators.

The security of the implemented protocol is well established against col-
lective attacks, both in the asymptotic [46, 99] and in the finite-size regime
[63]. Moreover, collective attacks have been shown to be asymptotically op-
timal [112, 74]. Here, we consider security proofs pertaining to such attacks,
taking also into account finite-size effects. The Gaussian modulation used in
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the implemented protocol maximizes the mutual information between Alice
and Bob, thus offering an optimal theoretical key rate. However, it is hard
to reconcile correlated Gaussian variables, especially at low signal-to-noise
ratios, which are inherent in long-distance experiments. Indeed, the secure
distance of previous demonstrations of fiber-based CVQKD [44, 61] was lim-
ited to 25 km because no efficient error-correction procedure was available
at low SNR. Here, we use a multidimensional reconciliation protocol[70],
which transforms a channel with a Gaussian modulation into a virtual bi-
nary modulation channel, with a capacity loss that is very low at low SNR.
This enables the use of error-correction codes designed for the Binary Input
Additive White Gaussian Noise Channel, whose typical efficiencies for arbi-
trarily low SNR are of 0.95 extracted bit per theoretically available bit [65].
This leads to a significant extension of the secure distance.

Let us now look at the parameters that are relevant for the extraction
of the secret key. Due to the Gaussian optimality theorem[46, 99], Alice
and Bob’s two-mode state at the output of the quantum channel is fully
characterized by Alice’s modulation variance VA, the channel transmission
T and the excess noise ξ, which is added by the channel. Both VA and
ξ are expressed in shot noise units. These parameters, together with the
shot noise, are estimated in real time using a parameter estimation process,
during which a fraction of the samples is randomly revealed. The other
parameters used to compute an estimate of the secret information that can
be extracted from the shared data, namely the electronic noise vel and the
efficiency of the homodyne detection η, are assumed not to be accessible to
Eve and are measured during a secure calibration procedure that takes place
before the deployment of the system. For simplicity, we make the standard
assumption that Eve does not tamper with the local oscillator, but we em-
phasize that countermeasures against such tampering have been proposed
(see Supplementary Information for details). The modulation variance is
adjusted in real time in order to be at all times as close as possible to the
SNR corresponding to the threshold of an available code.

Privacy amplification allows extracting the secret information from the
identical strings shared by Alice and Bob after error correction. In addition
to the amount of data revealed during error correction, we compute an
upper bound on the eavesdropper’s information on the corrected string for
collective attacks in both the asymptotic regime, where all the experimental
parameters are assumed to be known with an infinite precision, and in the
finite-size regime, where the parameters are estimated over large data pulse
sets. The stability of our system allows us to obtain a positive secret key
rate at long distances in both regimes.

7.2 Experimental Results

Long-distance secret key generation results are shown in Figure 7.2. Se-
cret keys were produced by the experimental system at 25 km, 53 km, and
80.5 km of standard optical fiber. The key rate was computed during 24
hours at all distances. A sifting procedure reveals 50% of the raw key for
parameter estimation, while 50% of the optical pulses have also been dis-
carded for shot noise estimation. The fraction of light pulses effectively
used for generating the key is thus 25%. The error correction is performed
using Low Density Parity Check codes with a Graphic Processing Unit de-
coder (see Supplementary Information for details). The obtained secret key
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Figure 7.2: These figures are obtained with a SNR of 1.1 on Bob’s side
at 25 km (5.0 dB losses), a SNR of 0.17 at 53 km (10.6 dB losses), and a
SNR of 0.08 on Bob’s side at 80.5 km (16.1 dB losses). In red, the rate is
calculated assuming an eavesdropper able to perform collective attacks in
the asymptotic regime. This rate is also valid against arbitrary attacks. In
green (resp. blue), the rate is calculated assuming an eavesdropper able to
perform collective attacks taking into account finite-size effects with block
size 109 (resp. 108) and security parameter ǫ = 10−10. The odd shape of the
curves results from the use of a small set of error-correcting codes optimized
to perform data reconciliation in specific ranges of SNR. The homodyne de-
tection is characterized by an efficiency η = 0.552, known with uncertainty
∆η = 0.025, and an electronic noise variance vel = 0.015, known with uncer-
tainty ∆vel = 0.002. For comparison, previous state-of-the-art experimental
results are shown [83, 44, 28]: they are all restricted to distances below 25
km, and do not take finite-size effects into account.
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Figure 7.3: Experimental excess noise measured during 24 hours with a
SNR of 0.17 on Bob’s side. For this measurement we used 53 km of stan-
dard optical fiber corresponding to 10.6 dB losses. The red + correspond to
measurements performed on blocks of size 108, each one corresponding to
roughly 6 minutes of data acquisition, and indicate the experimental mea-
sured excess noise (lower point) as well as the worst-case estimator for the
excess noise (upper point) compatible with this data. The probability that
the true value of the excess noise is underestimated by the estimator be-
cause of statistical fluctuations is less than 10−10, assuming that the noise
is Gaussian. This worst-case estimator is the value used to compute the
secret key rate when finite-size effects are taken into account. For compar-
ison, the green × correspond to the worst-case estimator if the estimation
was performed on blocks of size 106. The blue line indicates the maximal
value of excess noise that allows for a positive secret key rate. Even without
any experimental noise, no secret key could be extracted at 53 km with a
parameter estimation on blocks of size 106.

rates are lower than those obtained with discrete-variable QKD [29]. This
is mainly due to the lower clock rate of our experiment.

The results corresponding to the finite-size regime are of particular inter-
est because of their relevance for practical applications. Indeed, obtaining
an infinite precision in parameter estimation as required in the asymptotic
case is, in practice, impossible. We can further elucidate these results by
investigating the impact on the secret key rate of the uncertainty on the ex-
cess noise value. Figure 7.3 shows the experimental excess noise measured on
blocks of size 108 during 24 hours at a 53-km distance. For each data point,
a worst-case estimator of the excess noise compatible with the experimental
data is also indicated. For comparison, the worst-case estimator for a block
size of 106 is displayed and is clearly incompatible with the extraction of
a secret key rate, thus showing that a very large block size is required to
achieve long-distance QKD. These results illustrate the significance of the
excess noise estimation for system performance. They also confirm the ex-
cellent stability of our system, since the excess noise maintains low values,
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even in this very low SNR regime required by the security proof, and with
very large data blocks.

7.3 Security Conditions

Collective attacks against the implemented protocol have been shown to
be asymptotically optimal, thanks to an infinite-dimensional version of de
Finetti’s theorem [112]. Furthermore, security proofs combining arbitrary
attacks and finite-size effects are presently actively studied [74, 45].

The implemented protocol requires an exact Gaussian modulation, which
is impossible to achieve. In practice, this is approximated by a truncated
discretized modulation with parameters compatible with a security proof
against collective attacks. This is performed with almost optimal random-
ness consumption using source coding techniques.

The efficiency and the variance of the electronic noise of the homodyne
detection are assumed to be calibrated in a secure laboratory. This corre-
sponds to the standard realistic assumption for CVQKD implementations,
according to which Eve cannot entangle herself with the losses or electronic
noise of the homodyne detection. Under this assumption, we evaluate con-
fidence intervals for these values and we compute the eavesdropper’s cor-
responding information taking calibrated value uncertainties into account
[63]. Note that in the so-called “paranoid” or “uncalibrated-device” sce-
nario [120], where Eve can exploit the homodyne detection parameters, no
secret key would be obtained beyond 35 km.

7.4 Multidimensional Reconciliation

The error-correction step is divided into two parts. First, Bob divides
his data into vectors y of size 8 and for each, draws a binary vector u of the
same size at random; u is the reference for the key after the error correction.
Then Bob computes r = y ·u (where the vectors are interpreted as octonions,
see [70] for details) and sends it to Alice who obtains v = x−1 ·r = x−1 ·y ·u,
that is a noisy version of Bob’s binary modulated vector u, with a noise close
to a Gaussian noise. Interestingly, it can be shown that the classical data
r, available to Eve, does not leak any information about the binary vector
u [70]. The second step of the error-correction protocol consists in forming
vectors of size 220 on Alice’s and Bob’s sides (corresponding to 217 pairs of
such vectors u, v) and to use multi-edge Low Density Parity Check (LDPC)
codes to correct all the errors [65]. The amount of data revealed during this
step is subtracted from the secret information previously computed. We
use Graphics Processing Unit (GPU) decoding to obtain a decoding speed
compatible with real-time data-processing.

7.5 Local Oscillator Manipulation

In the main text we have made the standard assumption that Eve does
not tamper with the local oscillator. The simplest example of such tamper-
ing would be for Eve to manipulate the intensity of the LO, and a simple
countermeasure (implemented in the experiment) is to monitor continuously
the LO intensity [38]. More sophisticated tampering may be possible, and
deserves more studies. An example of such a calibration attack involving
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LO manipulation is given in chapter 5. All LO attacks can be fixed in prin-
ciple by “reconstructing” the LO at Bob’s site, but this is currently not
implemented.

7.6 Hardware Stability

Hardware stability over a long period of time is necessary to extract
secret keys from blocks of size greater than 109, as is required to take into
account finite-size effects for distances above 50 km [63]. A limitation to
the long-term hardware stability in [44, 61] was the clock reliability on the
receiver’s side, because of its dependence on the polarization control. We
use a splitter and a dedicated electronic circuit and obtain a considerably
less noisy and hence more reliable clock.

The hardware stability is also linked to the fraction of pulses that are
used for parameter estimation. In particular, for blocks of size 109, which
are required to perform parameter estimation at long distances, the ratio
between the number of pulses used for the parameter estimation and the
number of pulses used to extract the key was 1. It is possible to change this
ratio; however, if for example we use a ratio 0.1 instead of 1, the parameters
need to remain stable during a period corresponding to (1/0.1 + 1) × 109

pulses. More generally, the hardware stability needs to be improved in
order to sacrifice a vanishing fraction of symbols. We found that the ratio
of 1 offers a good trade-off between the amount of symbols we have to
sacrifice (and thus are not used to extract the key) and the stability of our
experimental parameters.

7.7 Post-processing Performance

The error-correction is performed using low signal-to-noise ratio (SNR)
multi-edge Low Density Parity Check (LDPC) codes [65]. High efficiencies
are obtained when operating very close to the maximum amount of noise
a code can correct. We achieve speeds up to several Mbits/s [60] using an
OpenCL implementation of Belief Propagation with flooding schedule on an
AMD Tahiti Graphics Processor Unit (GPU). The huge parallelism provided
by GPUs allows to overcome the computational complexity of CVQKD [158].

When several codes are available with the modulation variance VA in its
allowed range (between 1 and 10 shot-noise units on Alice’s side), the one
corresponding to the higher key rate is chosen. Puncturing and shortening
of LDPC codes allow to modify the rate of a code while maintaining a high
efficiency over a wide SNR range. We use a technique [94] that consists
in adapting the code rate with the sum of punctured and shortened bits
equal to a constant value determined as the maximum number of punctured
bits one can use with a given code without any significant efficiency loss
(approximately 10% of the code length). This is particularly convenient
since the input size of the error correction is constant; only the output size
of the corrected key depends on the number of shortened bits. The failure
probability of the error correction is roughly 10%. In case of failure, the
whole block is discarded, whereas all accepted blocks (9 over 10 on average)
are error-less.

Privacy amplification is performed by multiplying by random Toeplitz
matrices aggregated corrected key blocks. This can be done very efficiently
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with input blocks of size 109: a throughput above 40 Mbits/s is obtained
with one core of a Core i7-920 processor for a rate of 10−3 secret key bit per
raw key bit.

7.8 Conclusion and Perspectives

To conclude, let us discuss possible further improvements of our im-
plementation. The current repetition rate of 1 MHz can be increased by
shortening the pulse duration and the time-multiplexing period, as well as
the homodyne detection data sampling period, using high-speed and high-
precision data acquisition cards. Current error-correction techniques can
deal with raw key rates of up to 10 Mbits/s, and better rates are possible
using multiple devices. However, both the sifting procedure and the mul-
tidimensional reconciliation scheme require transmitting a large amount of
classical data between Alice and Bob, so increasing the optical rate too much
would lead to network link saturation. Finally, the ultimate secure distance
that can be reached by our system is determined by the excess noise present
in the setup. In this respect, recent protocols using “noiseless amplification”
[13] or its “virtual” implementation [43, 144] might be promising.
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In this chapter, we are concerned with the speed limitations that affect
a CVQKD system. For a long time, post-processing was the bottleneck that
limited CVQKD systems speed. In chapter 6, we designed high-efficiency
LDPC codes that allowed us to overcome the distance limitation. Here, after
emphasizing on the effect of an imperfect error correction step in QKD, we
propose the use of polar codes for both DVQKD and CVQKD and compare
their decoding speeds on CPUs with LDPC codes ones on both GPUs and
CPUs. We also present our speed results as regards privacy amplification.
Finally, we consider network bandwidth consumption in a real implementa-
tion of a CVQKD system.

8.1 Effect of an imperfect error correction step in

QKD

Two families of QKD technologies exist: Discrete Variables QKD and
Continuous Variables QKD. In both cases, the transmission of a binary
message, the raw key, on a quantum noisy channel is at the heart of the
protocol. Errors resulting from this transmission have to be corrected for
Alice and Bob to be able to compute the same key. The quantum channels
of DVQKD and CVQKD have different error distributions: in the DVQKD
case, the channel is a BSC whose probability of error is the Quantum Bit
Error Rate (QBER). For CVQKD, it is a Gaussian channel with both a
transmission T , and a Gaussian noise, composed of a quantum noise, the
shot noise, and other classical noises which form the excess noise.

121
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When linear, non-interactive, error-correcting codes are used, the error
correction algorithm uses the fact that the string sent satisfies some pre-
defined set of linear equations where some linear combinations of message
bits, or parity bits, are equal to zero. Transmission is therefore preceded by
an encoding step where the message to be transmitted is transformed into a
string that satisfies these equations. However, in the QKD setting, contrary
to the usual setup of error-correcting codes, a noiseless classical channel is
available alongside the quantum noisy channel. Using this channel, the en-
coding step can be avoided: the message and the string sent are equal, and
the values of the parity bits are revealed on the classical channel. Therefore
the performance of the encoding step is not considered in our case.

The limitations the error correction step introduces in the implemen-
tation of a QKD system are two-fold. First, the number of raw key bits
or linear combination of raw key bits revealed during the error correction
step must be subtracted from the final key size during the privacy amplifi-
cation step [111]. Therefore efficient codes, i.e. codes with thresholds close
to the Shannon Bound, are needed. Secondly, the throughput of the error-
correction, which is usually not high because of the aforementioned efficiency
constraints, may limit the final key rate below what is allowed by the optics.
On the other hand, cost, power consumption, and latency constraints are
much less of an issue than in typical error-correction applications.

We propose to examine the relevance for QKD of a new family of codes,
polar codes, introduced by Arıkan [8]. Based on our previous discussion,
we will look at their distance to Shannon bounds and the decoding speed.
For a given block size N and a fixed channel, the polar decoding algorithm
is deterministic. Its execution time provably scales in O(N logN); it also
has a simple recursive structure which gives good practical performance.
However, we will see that very large blocks are required to achieve the high
efficiencies needed for QKD on the BSC or the Binary Input Additive White
Gaussian Noise Channel (BIAWGNC).

The next sections are organized as follows: in section 8.1 the impact
of the imperfection of the error-correction procedure in both DVQKD and
CVQKD is detailed and the previous work is reviewed. In section 8.2 the
usage of polar codes to correct errors in a QKD setup is laid out. Finally
the performances of polar codes and LDPC codes are compared in section
8.3.

8.1.1 Secret key rate and error correction

Key rate and distance of error correction to Shannon bounds

In a classical DVQKD setup, Alice encodes a classical bit onto the phase
or the polarization of a photon and sends this photon to Bob who measures
it with a Single Photon Detector (SPD) and gets a bit value. As regards
CVQKD, Alice encodes continuous information onto the quadratures of the
electromagnetic field and sends weak light pulses to Bob who performs ei-
ther a homodyne measurement on one single quadrature or a heterodyne
measurement on both quadratures. In both cases, Bob ends up with a bit
string, like in a DVQKD setup, because of the finite precision of its mea-
surement apparatus. Since this step is repeated many times, Alice and Bob
are given two bit strings x and y after the quantum exchange.

The eavesdropper, Eve, has a quantum state E, generally correlated to x
and y. If we assume Alice is chosen as the reference for the establishment of a
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secret key, the maximal secret information shared by Alice and Bob is given
by S(x|E), which is the Von Neumann entropy of the variable x conditionally
to Eve’s knowledge (which is in general quantum). In order to compute an
information-theoretic secret key rate, all the information corresponding to
the errors between x and y, H(x|y) that is the conditional Shannon entropy
of x given y, is assumed to be known by Eve and is subtracted from the final
key. Thus the theoretical secret key rate reads:

Kth = S(x|E)−H(x|y) (8.1)

This expression can be rewritten in terms of mutual informations as:

Kth = I(x : y)− S(x : E) (8.2)

According to the information theory, one can never extract the exact amount
of mutual information I(x : y) between Alice and Bob with a finite error-
correcting code. That is why one introduces a factor β which represents the
reconciliation efficiency and ranges from 0 when no information is extracted
to 1 in the theoretical perfect reconciliation scheme:

Kreal = βI(x : y)− S(x : E) (8.3)

Thus an imperfect reconciliation scheme results in a reduction of the secret
key rate and a limitation of the range of the protocol. With all known
protocols I(x, y) − S(x : E) decreases faster with the distance than I(x, y)
and S(x : E) individually, so that the effect of β < 1 is most severe at large
distances. This last effect limited the range of CVQKD protocols for a long
time before specific error correcting codes were proposed [70, 65].

Key rate and error correction computation time

Long-range QKD therefore needs error-correcting codes and decoding
schemes enabling operation as close to the Shannon limit β = 1 as possible.
However, decoding close to the Shannon limit can be a computationally
demanding task; the computation time may then limit the throughput of
a QKD experiment. In [83], the raw optical repetition rate is 500 kHz
and the raw data rate reduces to 350 kHz because some pulses are used
for synchronization purposes and parameters estimation. Since the best
reconciliation algorithm available in [83] is limited to about 63 000 symbols
per second, only 18% of the available symbols can be used to extract secret
keys. More generally, the key rate of a practical system is affected by a
factor α = DECCout/DECCin where DECCout stands for the error-correction
output rate (63 kb/s in our example) and DECCin stands for the data output
rate of the system used as an input for the error-correction (350 kb/s in our
example).

Ksys = α (βI(x : y)− S(x : E)) (8.4)

Key rate and error correction frame error rate

The frame error rate (FER), or the probability for a message to be in-
correctly decoded, is usually one of the most regarded characteristics of an
error-correcting code, since failure to decode a message is usually associated
with data loss in conventional data transmission scenarios, at best causing
retransmission delays. However, in the quantum key distribution setting,
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raw key blocks incorrectly decoded are simply discarded by both the sender
and the receiver. As a result, the raw key rate and final key rate are affected
by a factor (1− FER). Frame error rates that are unacceptable in conven-
tional error correction applications are therefore sufficient in the QKD case.
Besides, accepting a high FER enables faster error correction. Our target
figure in the rest of this article is a FER of 0.1.

Taking into account all the previously discussed imperfections of ECC
in the QKD case, the final key rate is

K = α(1− FER) (βI(x : y)− S(x : E)) (8.5)

8.1.2 Previous work

Most of the error-correction algorithms designed especially for DVQKD,
such as Cascade [16, 26, 134], Winnow [154] or Liu’s algorithm [118] suffer
latency problems because they are highly interactive. Although the latest
ones exhibit less interactivity than Cascade, it remains the algorithm most
used in DVQKD experiments because it exhibits an efficiency higher than
96% [32] over the range [0; 0.11] for the error probability of a standard Binary
Symmetric Channel (BSC), which is the admissible range for the QBER to
distribute a secret in DVQKD. The maximum reported Cascade speed is
about 5.5Mb/s with 4 threads on a quad-core processor [119].

Low Density Parity Check (LDPC) codes have also been developed for
DVQKD experiments and have efficiencies similar with Cascade over the
range [0; 0.02] while they present a significant improvement for bit error
rates above 0.02[32]. As regards interactivity, LDPC codes require only
one exchange contrary to Cascade which is highly interactive. Since LDPC
codes are optimized for a given probability error, puncturing and shortening
techniques [35] can be used to extend their efficiency to a wider range and
protocols allowing to reconcile information while maintaining a low inter-
activity have been proposed [33, 34, 93]. However, high-efficiency LDPC
error-correction speed has not been investigated a lot except for CVQKD
where the authors of [83] report a 40kb/s speed on CPU and a 60kb/s speed
on GPU.

Modern coding techniques have mainly been used for continuous vari-
ables with Turbo-codes or LDPC codes. The main difficulty as regards
continuous variables is that the best protocols known require a Gaussian
modulation while the noise added by the channel is Gaussian too. Thus, one
has to deal with an Additive White Gaussian Noise Channel (AWGNC) and
high-efficiency error-correction is particularly hard at low Signal to Noise
Ratios (SNRs) which correspond to a long operating distance for CVQKD.
However, in [70], the authors proposed a technique allowing to encode the
information in binary variables which allows us to deal with a Binary Input
(BI) AWGNC instead of the usual AWGNC. Low-rate high-efficiency multi-
edge LDPC codes can be designed for this channel [65, 113] which results in
a considerably extended achievable distance for CVQKD with a Gaussian
modulation.

8.2 Polar codes for QKD: efficiency vs. block sizes

The use of polar codes has been previously considered for other sce-
narii. In [90], the authors show that the secrecy capacity of classical wiretap
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channels can be achieved using polar codes. This work was extended to
quantum wiretap channels with a classical eavesdropper in [151]. In [110],
polar codes are used to transmit quantum information and an efficient de-
coder is provided for both Pauli channels and erasure channels. In [52], it
is shown that the Holevo capacity of lossy optical channels can be achieved
with polar codes but an implementation of a quantum successive cancella-
tion decoder is far beyond what can be experimentally realized today with
quantum states.

The QKD and wiretap channel scenarii are nevertheless different: in
QKD, Alice and Bob’s correlations are directly used to compute an upper
bound on Eve’s information without making any assumption on the channel
between Alice and Eve, whereas in the wiretap channel scenario, the channel
between Alice and Eve is assumed to be characterized.

Polar codes exhibit some specificities that make them suitable for QKD
error correction. First, they are easily employed in a rateless setup where
the noise of the channel can change over time. Secondly, they enable non-
interactive error correction, similarly to LDPC codes, and contrary to two-
way protocols like Cascade. In this section, we evaluate the block sizes
needed to obtain the efficiencies required for QKD. This impacts the decod-
ing throughputs that can be obtained in practical implementations.

In polar codes, individual copies of symmetric Binary Discrete Memo-
ryless Channels (BDMC) are combined recursively in order to form a new
set of channels composed of more and more differentiated channels, such
that in the asymptotic limit channels are either error-free or completely
noisy, with a fraction of error-free channels equal to the code capacity. This
phenomenon is called channel polarization: each channel becomes either
noiseless or noisy as the block length goes to infinity. In the asymptotic
limit, the capacity of the BDMC can be achieved by sending the informa-
tion bits through the noiseless channels, while in practice, only a fraction
of this capacity is achieved using the bits with almost zero error probability
for finite block lengths. The convergence speed of channels into noiseless or
noisy channels is called polarization speed.

We used the polar codes construction method described in [92] to com-
pute the decoding error probabilities on symmetric binary memoryless chan-
nels for the BSC and the BIAWGNC. For a given noise level on a given
channel, Density Evolution allows us to compute the capacities of the differ-
ent bits of the code. Some of the bits corresponding to channels with lowest
capacities are simply revealed and are called the frozen bits of the code. As
explained in [92], this selection rule for frozen bits also gives us an upper
bound on the decoding error probability of a block (also called the Frame
Error Rate or FER). Since in QKD it is not crucial to lose some blocks (they
will just be thrown away at the verification step), we select sets of frozen bits
that give an upper bound of 0.1 on the FER. It appears that the polarization
speed is highly dependent on the channel for polar codes [67]. Figure 8.1
gives the polarization speed we obtained for the BSC. It shows that polar
codes have an efficiency above 95% over almost the entire probability error
range [0; 0.11], which is the range of interest in DVQKD, for block lengths
starting from 224. Even smaller block lengths can be used if one does not
need to cover the entire probability error range. The situation is definitely
worse in Figure 8.2 for CVQKD. We studied the polarization speed for the
SNRs described in [65] because high efficiency multi-edge LDPC codes have
been designed to deal with such noise levels [65, 113]. The results show that
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Figure 8.1: Polar codes efficiency for the BSC for probability errors from 1%
to 11% with a 1% step. The method described in [92] is used to compute
the capacities of each channel for a given noise level and the frozen bits are
chosen in order to upper bound the FER by 0.1 according to this method.
From the bottom to the top we used the following block sizes: 216, 218, 220,
222, 224. We can see that the efficiency is higher than the target efficiency
of 95% over almost the entire range for block sizes equal to 224.

Channel QBER / SNR Size β Speed (Mb/s) FER
BSC 2.0% 216 93.5% 10.9 0.09
BSC 2.0% 220 96.3% 9.5 0.11
BSC 2.0% 224 98.0% 8.3 0.08

BIAWGNC 1.097 224 95.2% 8.0 0.10
BIAWGNC 0.161 227 92.8% 7.3 0.09

Table 8.1: The efficiencies correspond to a block error rate of 0.1 when select-
ing the frozen bits according to the method described in [92]. These figures
were obtained with one core of an Intel Core i5 670 3.47GHz processor.

only a 90% efficiency can be achieved with polar codes for blocks of size
227 whereas efficiencies of about 95% are achieved in [65] with LDPC codes.
However long distance CVQKD is still possible using polar codes. Further-
more, there is still some hope to improve the polarization speed for polar
codes for the BIAWGNC, for example by changing the recursive method
used to combine channels, as proposed in [97].

8.3 Decoding speed: numerical results

An interesting feature of polar codes is their regular recursive structure.
This allows us to implement a recursive, successive-cancellation decoder that
achieves a speed of about 10Mb/s on modern CPUs (Intel Core i5 670 3.47
GHz in the simulations). The main optimization in this decoder is to use
fixed-point arithmetic and a table-lookup implementation of the function
ϕ(x) = log(tanh(x/2)) used to update log-likelihood ratios (LLRs). Other
techniques have been proposed for efficient polar codes decoding and could
improve the decoding speeds given in Table 8.1: in [157], the authors propose
look-ahead techniques that allow to reduce the decoding latency of successive
cancellation by 50% while in [138, 79, 20], some variants of list decoding for
polar codes are introduced.
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Figure 8.2: Polar codes efficiency for the AWGNC for the SNRs 1.097, 0.161,
0.075, 0.029 from [65]. The method described in [92] is used to compute the
capacities of each channel for a given noise level and the frozen bits are
chosen in order to bound the FER by 0.1 according to this method. From
the bottom to the top we used the following block sizes: 217, 219, 221, 223,
225, 227. We can see that the efficiency is higher than the target efficiency
of 90% over almost the entire range for block sizes equal to 227.

Channel QBER / SNR Size β Speed (Mb/s) FER
BSC 2.0% 217 92.9% 7.3 0.01

BIAWGNC 1.097 220 96.9% 6.5 0.09
BIAWGNC 0.161 220 93.1% 7.1 0.04

Table 8.2: LDPC codes decoding speeds with LDPC codes described in
[32] for the BSC and in [113] for the BIAWGNC. The maximum number of
iterations was fixed to 20 for the first code, and respectively to 160 and 100
for the next two codes. These figures were obtained with an AMD Tahiti
Graphics Processor.

The polar decoding performance has to be compared with the speed of
a LDPC decoder based on BP. The speed of such a decoder dramatically
lowers when approaching the capacity of the code used because BP requires
more iterations to converge. Thus LDPC decoding speed is limited to about
800kb/s using one core of a modern CPU. The LDPC CPU decoder uses
fixed-point arithmetic and the same implementation of ϕ as in the polar
code case. It is a shuffle decoder with an early termination strategy where
bits are considered to be known (and their LLR ceases to be updated) when
the absolute value of their LLR passes a threshold; when no bit is updated
for a sufficient number of iterations, decoding is considered to be over and is
stopped. Because the regime explored is close to the Shannon limit, simpli-
fied BP algorithms such as min-sum or its variants cannot be used. Finally,
the maximum number of iterations is controlled to adjust the FER to the
target value 0.1. This control is imprecise however, since small variations of
the maximum allowed number of iterations result in large FER changes. The
maximum number of iterations used for LDPC codes are given in Table 8.2
and Table 8.3 legends.

GPUs provide a huge amount of parallelism that allows us to achieve
speeds of 10Mb/s (figures are given for an AMD Tahiti Graphics Proces-
sor). The GPU LDPC decoder is different from the CPU implementation:
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Channel QBER / SNR Size β Speed (Mb/s) FER
BSC 2.0% 217 93.1% 0.82 0.03

BIAWGNC 1.097 220 96.9% 0.09 0.03
BIAWGNC 0.161 220 93.1% 0.12 0.04

Table 8.3: LDPC codes decoding speeds with LDPC codes described in
[32] for the BSC and in [113] for the BIAWGNC. The maximum number
of iterations was fixed to 15 for the first code, and respectively to 100 and
50 for the next two codes. These figures were obtained with one core of an
Intel Core i5 670 3.47GHz processor.

it is a floating-point, flood decoder running in a fixed number of iterations
and using both ’external’ parallelism (several vectors are decoded concur-
rently) and ’internal’ parallelism (for a single BP execution corresponding to
one message being decoded, several messages are propagated concurrently).
This was experimentally found to be optimal on GPU architectures because
they have much more floating point computational power than CPUs, but
are slowed down by complex control logic. No competitive GPU decoder
for polar codes was implemented, as successive cancellation is inherently
sequential, and therefore only external parallelism can be used.

Table 8.1 gives the decoding speeds obtained with polar codes for the
BSC and the BIAWGNC for characteristic noise levels in DVQKD and
CVQKD. Table 8.3 and Table 8.2 give the corresponding speeds with LDPC
codes respectively with a GPU and a CPU.

8.4 Privacy amplification

Privacy amplification allows to extract a secret bit string from the identi-
cal correlated bit strings shared by Alice and Bob after the error-correction
step. This step cannot be done with a single function without revealing
some information about the output string. This is why Alice and Bob must
consider families of hashing functions and use a new function for each key
extraction. A hashing functions family is universal if for any couple of input
messages B1 and B2, the collision probability f(B1) = f(B2) is bounded by
2−k where k is the size of the output message. It appears that the multi-
plication of binary vector by a random binary matrix is a universal hashing
function. However, a generic matrix-vector multiplication is not very ef-
ficient computationally and describing a generic n × k matrix requires nk
binary coefficients, which costs both random numbers and network band-
width.

We implemented the universal hashing function "multiplication by a ran-
dom Toeplitz matrix". Such n× k matrices are described by only n+ k − 1
coefficients and feature a structure that allows for high speed implementation
on modern CPUs. We give in Figure 8.3 our throughput results for different
input and output sizes. The obtained speeds range from tens to hundreds
of Mbits per second on one core of CPU, which clearly demonstrates that
privacy amplification is not a limiting factor for CVQKD.
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Figure 8.3: Privacy amplification performance on recent CPUs for the imple-
mentation of the universal hash family ”multiplication by a random Toeplitz
matrix”.

8.5 Network Bandwidth Consumption

Network bandwidth might become a limiting resource in future imple-
mentations of CVQKD. Indeed, dealing with continuous variables requires
to encode continuous data in potentially long bit strings. We recall in this
section the size of the different messages that are exchanged in our CVQKD
protocol. All these values are summarized in table 8.4:

– synchronization step: Alice modulates blocks of size 216 that are sent
through the quantum channel. Bob has to find Alice’s pulses numer-
ation in order to compute statistics such as the correlation between
their respective data. For each received block where he detected the
synchronization pattern, Bob sends the index of the beginning of the
received pulses to Alice. It is a number encoded on 64 bits. Alice tells
Bob if he must keep or discard this data block.

– sifting step: for each modulated pulse Alice reveals one of the mod-
ulated quadratures to Bob, which is encoded into 1 bit, and reveals
the 12 bits used for the modulation of the revealed quadrature. Bob
replies with an estimation of the signal-to-noise ratio, which is a float
of 32 bits. At this stage they work with blocks of 220 bits since this
size allows for a high-efficiency error-correction.

– error-correction step: Bob sends to Alice a set of parity check equations
(the syndrome), whose size depends on the rate of the selected code
and thus on the observed signal-to-noise ratio. Since we are using
the multidimensional protocol for the reconciliation, a real value must
be revealed for each measured pulse. However, since our measured
values are encoded into 12 bits, we reveal 12 bits per measured value
for the multidimensional protocol. Bob also sends a hashed value of
his reference string. After having performed the decoding step, Alice
computes her own hash of her corrected string and compares it with
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Protocol Step Size A to B (bits) B to A (bits)
Synchronization 216 1 26

Sifting 220 220 × (12 + 1) 25

Error Correction 220 1 220 × ((1−R) + 12) + 24

Privacy Amplification 224 1 224 × (1 +K) + 26

Final Key 224 ×K - -

Table 8.4: Network traffic for the Gaussian CVQKD protocol used in
Cygnus.

the received hash. She then sends to Bob 1 bit of information that
corresponds to the success or the failure of the error-correction.

– privacy amplification: in order to have a limited uncertainty on the
transmission parameters and therefore a high value of the secret key
rate, Alice and Bob perform this step over large blocks of size 224. Bob
draws a random Toeplitz matrix and send it to Alice. The number of
bits used to describe such a matrix depends on the number of secret
bits Alice and Bob can extract from their data. After having applied
this compression function to his data, Bob send the first 64 bits of
this string to Alice together with the matrix description. Then, Alice
applies this same function to her data and compares the first 64 bits
of her hashed string with the hash received from Bob. She finally
announces the success or the failure of the key distillation to Bob.

8.6 Several Bits per Pulse

When the first continuous variable protocols were designed, the main
selling point of these protocols was that CVQKD should feature higher secret
key rates than DVQKD because of the possibility to extract several bits per
pulse. In this thesis, we mainly focused on the extraction of secret keys at
long distances, i.e. with signal to noise ratios lower than 1. In such regimes
it is not possible to extract more than one bit per pulse. Furthermore, in
the meantime, single photon dectectors operating at GHz frequencies were
developed, which allowed DVQKD laboratory systems to demonstrate secret
key rates up to 1 Mb/s [30], which is still higher than the best key rates
reported using CVQKD.

We believe that CVQKD can obtain secret key rates up to a few Mb/s
and compare favorably with DVQKD at short distances. This should be
possible using error-correction procedures like Slice Reconciliation, which
was proposed in [143, 14] and implemented in [83, 44], and GPU decoding
as proposed in this chapter. Note that the repetition rate of CVQKD can
also be increased if low noise balanced homodyne detectors are available
[21].



Chapter 9

Integration of CVQKD in
Optical Networks

Contents

9.1 QKD and Network Infrastructures . . . . . . . . 131

9.2 SEQURE demonstration field test . . . . . . . . 134

9.2.1 Structure of the demonstration . . . . . . . . . . . 134

9.2.2 The quantum layer . . . . . . . . . . . . . . . . . . 136

9.3 Security considerations . . . . . . . . . . . . . . . 138

9.4 Performance of the quantum layer . . . . . . . . 139

9.4.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.4.2 Excess noise . . . . . . . . . . . . . . . . . . . . . . 139

9.4.3 Secret key rate . . . . . . . . . . . . . . . . . . . . 142

9.5 Performance of the encryption layer . . . . . . . 142

9.6 SEQURE Demonstration Conclusion and Per-
spectives . . . . . . . . . . . . . . . . . . . . . . . . 142

9.7 Analysis of the Noise Contributions in a WDM
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.7.1 Leakage from Classical Channels . . . . . . . . . . 144

9.7.2 Four-wave Mixing . . . . . . . . . . . . . . . . . . 145

9.7.3 Spontaneous Anti-Stokes Raman Scattering . . . . 145

9.8 Noise Photons in Local Oscillator Matched Mode 145

9.9 Experimental Results . . . . . . . . . . . . . . . . 146

9.10 Concluding Remarks . . . . . . . . . . . . . . . . 147

In this chapter, we consider the use of CVQKD as a practical security
primitive in current network architectures. First, we demonstrate the com-
bination of CVQKD and classical symmetric encryptors within a long-term
point-to-point field deployment where two fibers are used, one for the clas-
sical traffic, the other for the quantum channel. Second, we overcome the
dark fiber limitation of CVQKD and demonstrate possible coexistence of a
quantum channel with intense DWDM channels.

9.1 QKD and Network Infrastructures

Quantum Key Distribution (QKD) [120] is among the first industrial ap-
plications of the field of quantum information processing. Its natural com-
mercial target is network security, since this technology allows two distant
parties to share a secret key through the exchange of quantum states even

131
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in the presence of an eavesdropper, provided that the parties share an auxil-
iary authenticated classical communication channel. Contrary to all known
classical schemes, the security of the established key can be proven without
making any assumption on the capacities of the eavesdropper (for example
computational power, knowledge of efficient algorithms, amount of mem-
ory). In theory, this key can be combined with an information-theoretically
secure encryption method, the one-time pad (OTP), which requires a key
that has to be as long as the message. However, the latest long-term field
demonstrations, the Tokyo QKD network [119] and the SwissQuantum net-
work [132], report a secret key rate lower than 1 Mbit/s, which makes OTP
incompatible with most of practical applications that require key rates above
1 Gbit/s. If high bit rates are required, a practical solution is to use the
keys issued from QKD to renew keys used in classical symmetric algorithms
like the FIPS Advanced Encryption Standard (AES) [41]. Since each QKD
key is completely independent of keys generated earlier, renewing keys forces
an attacker to perform a new attack to obtain the key after each renewal.
This forward secrecy property cannot be achieved with classical symmetric
schemes. It can, however, be achieved with classical asymmetric schemes
but only under some complexity assumptions [68, 57].

In order to become an essential part of current network infrastructures,
QKD systems have to pass integrability and reliability tests. Systems that
rely on encoding the information on discrete variables, such as the phase
or the polarization of single photons, have been widely tested. Commercial
products based on such systems have been developed by ID Quantique [2]
and MagiQ Technologies [3]. AES key renewal was demonstrated in [37],
where the ID Quantique QKD system was combined with an AES-based en-
cryptor allowing to encrypt 1 Gbit/s communications, while the long-term
reliability of this technology was tackled in [132]. In comparison with QKD
based on discrete variables, continuous-variable QKD (CVQKD), relies on
encoding the information on continuous variables such as the quadratures
of coherent states [50], that has been implemented in a great variety of sit-
uations [49, 69, 85, 83, 139, 107, 136, 44, 36, 28, 135, 126] (for a review
of quantum information with continuous variables see [148]). This has im-
portant practical advantages: the homodyne detection hardware does not
require any specific component, such as actively cooled single-photon de-
tectors, and exhibits a better compatibility with a Wavelength Division
Multiplexing (WDM) environment [106]. As recently created companies,
Quintessence Labs [4] and SeQureNet [5], pursue the development of a new
generation of CVQKD technologies, it is imperative to demonstrate the in-
tegrability and reliability of CVQKD in a long-term field deployment.

We report here on the design and performances of the Symmetric En-
cryption with QUantum key REnewal (SEQURE) project demonstration. In
the context of this project, a point-to-point classical symmetric encryption
link using keys provided by a CVQKD system was installed in a production
environment and ran during six months. This is the first demonstration of
the long-term stability of CVQKD.



9.2. SEQURE DEMONSTRATION FIELD TEST 133

Figure 9.1: Map of the SEQURE demonstration. The two nodes are located
in the cities of Massy and Palaiseau in the southwest of Paris. The dashed
line shows the 5 km straight path between the two sites, whereas the actual
length of the fiber is 17.7 km. c©Google Maps – 2012
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Table 9.1: SEQURE demonstration link characteristics.
Length of fibre (km) Optical loss (dB)

17.7 5.6

9.2 SEQURE demonstration field test

9.2.1 Structure of the demonstration

We first discuss several important features of the SEQURE demonstra-
tion. The demonstration involves two nodes located in:

– Palaiseau (Thales Research & Technology France)
– Massy (Thales Raytheon Systems)

The characteristics of the link are summarized in table 9.1 and a map is given
in Fig. 9.1. For the generation and management of the secret keys, we used
the layered architecture (see Fig. 9.2) that was employed in the SECOQC
FP6 European project network [104]. Note that the Tokyo QKD network
[119] and the SwissQuantum network [132] also used the same architecture.
Its main feature is that a layer of abstraction, the key management layer, is
added between the physical medium used for the QKD and the application
layer that uses the produced keys to secure classical communications. Then,
it is straightforward to replace a QKD technology with another and, in
our case, to extend the SEQURE demonstration point-to-point setup to a
multipoint configuration.

In more detail, the SEQURE demonstration layers are the following:
– a quantum layer implemented with a CVQKD point-to-point link (de-
veloped jointly by Thales Research & Technology and Institut d’Optique/CNRS
[83, 44])

– a key management layer allowing to authenticate the reconciliation
traffic of the quantum layer and to provide symmetric keys to the
application layer (this software [1] was developed by the Austrian In-
stitute of Technology (AIT, formerly Austrian Research Center ARC)
during the SECOQC project [104])

– an application layer where the keys coming from the key management
layer are used by end users to encrypt their communications with a
classical symmetric encryptor Mistral Gigabit (developed by Thales
Communications)

The physical layer of the link is composed of one pair of dark fibres.
One fibre is used as a quantum channel (note that in a CVQKD system
there are two time-multiplexed physical channels on the optical fibre since
a classical signal, namely the local oscillator, is transmitted on the same
fiber as the quantum signal) and the other one is used to transmit all the
classical channels. In the SEQURE demonstration there were several types
of classical channels:

– the channel for the reconciliation protocol of the QKD system
– the channel for cryptographic applications
– the channel for the monitoring of all the devices

A diagram of the components of the system is shown in Fig. 9.3.
Since all the above classical channels need to operate in both directions,

they are multiplexed using WDM techniques. The wavelengths used are
1490nm (uplink) and 1310nm (downlink). Standard GigaBit Interface Con-
verters (GBIC) were used to convert Ethernet optical signals propagating
in fibres into Ethernet electric signals propagating in copper cables. The
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Figure 9.2: Layer structure of the SEQURE demonstration. The dashed
bidirectional arrow represents the fibre used for the Local Oscillator (LO)
and the quantum signal, while the plain arrow stands for the wavelength
multiplexed classical signals: the reconciliation part of the CVQKD, the key
management layer and the encrypted traffic.
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Figure 9.3: Structure of the SEQURE demonstration. The dashed lines
correspond to the two fibres. Fibre 1 is used for multiplexed classical com-
munications, fibre 2 transmits the physical pulses that are used to establish
the raw key. The colors correspond to the different types of traffic: blue is
plain text, black is the encrypted traffic VLAN, red is key renewal, orange
is optics control and raw key traffic, yellow is the control of Mistral prod-
ucts configuration, purple is the Internet link, green is the monitoring traffic
VLAN.
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Figure 9.4: Optical layout of the CVQKD prototype. Alice sends to Bob
100 ns coherent light pulses generated by a 1550 nm telecoms laser diode
pulsed with a frequency of 500 kHz. These pulses are split into a weak signal
and a strong local oscillator (LO) with an unbalanced coupler. The signal
pulse is modulated with a centered Gaussian distribution using an amplitude
and a phase modulator. The variance is controlled using a coarse variable
attenuator and a finely tuned amplitude modulator. The signal pulse is 400
ns delayed with respect to the LO pulse using a 40 m delay line and a Faraday
mirror. Both pulses are multiplexed with orthogonal polarization using a
polarizing beamsplitter (PBS). The time and polarization multiplexed pulses
are then sent through the channel. They are demultiplexed on Bob’s side
with another PBS combined with active polarization control. A second delay
line on Bob’s side allows for time superposition of signal and LO pulses.
After demultiplexing, the signal and LO interfere on a shot-noise limited
balanced pulsed homodyne detector. A phase modulator on the LO path
allows for random choice of the measured signal quadrature.

optical fibres carrying the classical channels exhibited significant losses in
the L-band; therefore Small Form-Pluggable (SFP or Mini-GBIC) modules
specified for a 40-km link (Prolabs GLC-BX-D/U) were used. These mod-
ules were inserted into 8-port Cisco switches (WS-C2960G-8TC-L) with one
dual port. The different classical channels were realized using only one clas-
sical link and multiplexing via Virtual Local Area Networks (VLANs). One
VLAN is used for the reconciliation and the encrypted traffic, another VLAN
is used to monitor all the devices.

The VLAN developed to monitor the demonstration was connected to a
Management Center located in Thales Research & Technology in Palaiseau.
Remote accessibility to this management center was provided by secure shell
(ssh) connections allowed only for legitimate users.

In case of power cuts, rack-mounted remote-control power switches (ePow-
erSwitch) could be used. They provide a secure web server interface allowing
to switch on and off specific devices.

9.2.2 The quantum layer

The quantum link is composed of a pair of optical devices, whose hard-
ware description is given in Fig. 9.4. This is a one-way implementation,
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where Alice sends to Bob 100 ns coherent light pulses generated by a 1550
nm telecoms laser diode pulsed at a frequency of 500 kHz. These pulses
are split into a weak signal and a strong local oscillator (LO) with an un-
balanced coupler. The implemented protocol uses Gaussian modulation of
coherent states [50]: the signal is randomly modulated following a centred
Gaussian modulation in both quadratures, using an amplitude and a phase
modulator. The random numbers used for this modulation are provided by
Quantis, a physical Random Number Generator (RNG) from ID Quantique
[2]. The signal pulses are then attenuated roughly by a variable attenuator
and finely by a second amplitude modulator, allowing to control the variance
of the Gaussian distribution exiting Alice’s device.

The signal and LO are then transmitted through the optical fiber with-
out overlap using time and polarization multiplexing. One 400 ns delay
line, composed of a 40-m single-mode fibre followed by a Faraday mirror,
is inserted into Alice’s signal path for the time multiplexing. Polarization
multiplexing is achieved by a polarization beam splitter (PBS) on Alice side.
Both pulses propagate through the fibre with orthogonal polarizations and a
400 ns time delay. They are demultiplexed on Bob’s side with another PBS
combined with active polarization control. A second delay line on Bob’s side
allows for time superposition of signal and LO pulses.

After demultiplexing, the signal and LO interfere on a shot-noise limited
balanced pulsed homodyne detector (HD). The electric signal coming from
the HD is proportional to the signal quadrature Xφ, where φ is the relative
phase between the signal and the LO. Following the protocol, by applying
a π/2 phase shift, the phase modulator on Bob’s LO path allows one to
measure randomly either X0 or Xπ/2.

Finally, feedback controls are implemented to allow for a stable opera-
tion of the system over several months. Polarization drifts occurring in the
quantum channel are corrected using a dynamic polarization controller that
finds an optimal polarization state at the output of the channel. Tempera-
ture drifts affect lithium niobate, the active material used in the amplitude
and phase modulators, therefore the voltages that need to be applied to
reach the target modulation vary with temperature. The photodiode on
Alice’s signal path is used for the feedback control of the amplitude modu-
lators while the HD output is sensitive to phase and can be used to control
the phase modulators.

It is important to note that the Gaussian modulation used in the im-
plemented protocol [50] maximizes the mutual information between Alice
and Bob, thus offering an optimal theoretical key rate against either indi-
vidual [49] or collective [46, 99] attacks. However, it is hard to reconcile
correlated Gaussian variables with low signal-to-noise ratios (SNRs). The
limited efficiency of the error-correcting codes (typically 0.90 bit extracted
per bit theoretically available) results in a limit of the secure distance in the
order of 30 km in our case. However, new ideas have been proposed [70]
and recently combined with new error-correcting codes [65] to increase the
secret bit rate and secure distance, still keeping the Gaussian modulation
which has presently the most robust security proofs [46, 99].

With respect to the classical communication, four steps are required (see
Fig. 9.2). First, a Parameter Estimation (PE) step is needed to compute
estimates of the physical parameters linked to the exchange of quantum
states through the quantum channel. These parameters are the modulation
variance VA, the transmission of the quantum channel T , and the excess noise
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ξ. Half of the raw key data is chosen at random and revealed to perform
PE over blocks of 50 000 measures. For some measured transmission and
excess noise the modulation variance VA is adjusted in order to optimize
the secret key rate for a set of pairs (SNR, β) (where SNR is the Signal
to Noise Ratio and β is the efficiency of the error-correction procedure)
corresponding to the set of available error-correcting codes [83]. The other
parameters used to compute an estimate of the secret information that can
be extracted from the shared data, the electronic noise vel and the efficiency
of the homodyne detection η, are measured during a calibration procedure
that takes place before the deployment of the system and that is assumed
to be performed in a secure environment. For the SEQURE demonstration,
the second step, which is the error correction procedure, was based on a
multilevel reconciliation algorithm using Low Density Parity Check Codes
(LDPC). This data reconciliation algorithm is explained in detail in [83].
The amount of data revealed during this step is subtracted from the secret
information previously computed. The privacy amplification step described
in [83] allows us to extract the secret information from the identical strings
shared by Alice and Bob after the error correction procedure. Finally, a
key verification step ensures with an overwhelming probability (10−60) that
Alice and Bob secret keys are identical. This is simply done by revealing a
small part of the final bits (200 bits) chosen at random.

9.3 Security considerations

The authentication of the classical channel needed for the QKD protocol
is performed by the cryptographic engine provided by the AIT software. A
point-to-point authenticated channel is created by the Q3P protocol. It is
based on the Wegman-Carter scheme [150, 149]. This authentication pro-
tocol, like other QKD implementations, requires an initial common secret.
The key consumption of the authentication is roughly 10 bits/s [104], that
is about 2% of the secret key rate produced by our system.

As for other families of QKD systems, some attacks can be implemented
on a CVQKD system exploiting the imperfections of the setup. For exam-
ple, the presence of excess noise, which is noise in excess of the shot noise,
opens the possibility for partial intercept-resend attacks as demonstrated
in [82]. This is why the shot noise level on the receiver side must be pre-
cisely known. Monitoring the physical parameters of the channel allows to
upper-bound the information available to Eve. An efficient way to perform
quantum hacking (see [120]) on a QKD system consists in exploiting side-
channels. In our setup, a linear relationship between the LO level and the
shot noise is determined during the system calibration. Then the LO level is
continuously monitored with one photodiode of the HD and the shot noise
level is computed with the help of the previously calibrated relationship. It
is used to convert in shot noise units all the physical quantities needed to
compute the amount of generated secret data. Generally, the LO, which is
a classical signal that can be manipulated by an eavesdropper, is a poten-
tial vulnerability [38, 53]. Monitoring the LO level is a counter-measure to
such attacks. This monitoring should be good enough so that any unde-
sired change in the shot noise variance is below the measured excess noise
variance, of order 1% of the shot noise. Since the shot noise variance is
proportional to the LO intensity, this intensity has to be monitored with a
slightly better accuracy, for example 0.1%. More details on that monitoring
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are given in references [38, 53].

9.4 Performance of the quantum layer

9.4.1 Events

The system was stable and ran continuously during more than 6 months,
from the end of July 2010 to the beginning of February 2011. The optical
part did not require any human intervention during the full period of the
demonstration. We list below the most significant problems experienced
during the demonstration:

– September 23 to September 29: the motherboard of Alice’s computer
in Massy failed and had to be changed (these two dates correspond to
the two first marks on Fig. 9.5 and Fig. 9.6). Error correction is the
most demanding task in terms of computing power and is performed
on Alice’s side.

– October 1 to October 31: the server room in Massy (Alice’s side)
was unavailable so the experiment had to be interrupted until it was
started again in a new location (these two dates correspond to the two
last marks on Fig. 9.5 and Fig. 9.6).

– November 1: the system was restarted but the experimental conditions
became continuously changing because of a lack of thermal regulation.
However, the results could still be exploited.

9.4.2 Excess noise

The excess noise was recorded during the full period of the experiment
and is reported in Fig. 9.5. On a daily scale, it is subject to variations linked
to statistical fluctuations and experimental conditions like fibre vibrations.
Since our detection scheme relies on an interferometer, phase noise in the
transmission creates excess noise. Most of the low frequency phase noise is
eliminated by constantly tracking the phase. However, this tracking cannot
be done with a perfect accuracy and the high frequency part of the phase
noise causes excess noise. Keys are mainly produced with low values of the
excess noise, while no keys are produced on blocks with a large excess noise
because of the limited efficiency of the error correction scheme (about 90%,
see [83]). The system operation was rather stable during the 6 months but
we can notice a significant difference in performance when the experiment at
one site was transferred from the server room to the room with no thermal
regulation. In fact, the excess noise obtained with the equipment in these
degraded experimental conditions does not allow to obtain a positive secret
key rate against collective attacks for the line transmission [46, 99]. As a
result, a secret key rate against individual attacks [49] only was produced
by the system during the second part of the demonstration. This illustrates
the importance of monitoring continuously the excess noise in order to eval-
uate the security of the keys [82]. It is important to note that this kind
of problem is typical of an external environment and would not occur in
laboratory conditions. Our system was still able to produce keys in those
degraded conditions, although with an inferior performance. This illustrates
the maturity of our setup.
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Figure 9.5: Secret key rate and excess noise during the SEQURE demonstra-
tion. In red, the secret key rate produced during the SEQURE demonstra-
tion. The given secret key rate corresponds to the key rate produced by the
system after key distillation and privacy amplification assuming an eaves-
dropper able to perform collective attacks in the first part and limited to
individual attacks in the second part. In green, the measured excess noise
during the SEQURE demonstration. During the first part (server room),
this excess noise can be mainly attributed to the acoustic noise in the server
room. In the second part, an additional excess noise occurred, that is at-
tributed to thermal fluctuations due to the lack of thermal regulation in the
room. The black marks correspond to the events listed in the section 9.4.1.
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Figure 9.6: Keys produced during the SEQURE demonstration. In red,
number of 128-bit keys per day produced during the SEQURE demonstra-
tion. The given secret key rate corresponds to the key rate produced by the
system after key distillation and privacy amplification assuming an eaves-
dropper able to perform collective attacks in the first part and limited to
individual attacks in the second part. In green, number of 128-bit keys per
day required for a key renewal every 10 seconds. The number of produced
keys largely exceeds this limit. Before day 100, the keys were produced as-
suming collective attacks from an eavesdropper. After day 100, they were
produced assuming only individual attacks because the excess noise was sig-
nificantly higher. The black marks correspond to the events listed in the
section 9.4.1.
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9.4.3 Secret key rate

The keys generated by the quantum layer were used to refresh the Thales
Mistral encryptors’ 128-bit AES keys. The renewal period was 10 seconds,
thus the quantum layer had to be able to generate 8640 128-bit keys per day,
which is roughly 1 Mbit of key material. Then, a 13 bit/s secret key rate
would be sufficient. This rate is much lower than the rate up to 2 kbit/s that
our setup can produce with comparable line transmission and excess noise
conditions [83]. The ultimate performances of our system were obtained
using a multi-thread data processing architecture with 2 cores devoted to
the reconciliation and 1 core dedicated to the management of the hardware
part [44]. In the present case only one core is required to perform the
reconciliation, which results in an improved stability of the software and
an improved stability of the overall system over long periods. Figure 9.6
shows that the SEQURE demonstration was largely above this threshold.
Figure 9.5 shows that the key rate was about 600 bit/s (against collective
attacks) during the first part of the demonstration and 400 bit/s key rate
(against individual attacks) during the second part. In both parts of the
experiment, the given secret key rate corresponds to the key rate produced
by the system after key distillation and privacy amplification, assuming an
eavesdropper able to perform collective attacks in the first part and limited
to individual attacks in the second part.

9.5 Performance of the encryption layer

Several tests were performed in order to ensure that the key renewal
did not affect the operation of the encryptors. As no specific adaptation
of the Thales Mistral products was performed for the project, it was clear
that the encryptors could not deal with a key renewal period lower than 3
seconds. A 10 second period, as mentioned in the previous paragraph, was
therefore chosen as a security margin. This period could seem arbitrary but
it ensures that no more than 235 bits are encrypted with the same key if we
consider 1Gb/s data communications. This can be compared with the best
known attack [95] on the former encryption standard, the Data Encryption
Standard (DES), which requires 243 plaintext - ciphertext pairs, that is 249

bits of observed traffic with known plaintext.
Classical networking applications like big files transfers (more than 1

Gbyte), disk sharing and persistence of the network link were tested. In all
cases, the performance of the Mistral Gigabit was not affected by the key
renewal.

9.6 SEQURE Demonstration Conclusion and Per-
spectives

The SEQURE demonstration that we have presented shows that continuous-
variable QKD can compare well with discrete-variable QKD with respect
to robustness and reliability in a server room environment, whose operat-
ing conditions are harder to cope with than laboratory ones. Furthermore,
it shows that CVQKD can be integrated easily with off-the-shelf network
equipments such as symmetric encryptors as a part of a more complex net-
work infrastructure. Integration into WDM networks could be also eased by
tolerance of the CVQKD homodyne detection scheme to incoherent noise
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[106]. Moreover, if CVQKD WDM compatibility is confirmed in real optical
network deployments, it will imply a significant decrease of the operational
costs, which can stimulate further interest for this technology. The sequel
of this chapter is dedicated to preliminary experiments concerning CDQKD
WDM compatibility.

The operating distance of the implemented system can be improved by
the recent developments of better error-correcting codes [65] without any
hardware modification. These codes would also allow to produce keys se-
cure against collective attacks even with the high values of the excess noise
obtained during the second part of the demonstration. For distances higher
than 100 km, the key management layer developed within the SECOQC
project can still be used to share keys between two sites connected through
several links.

As regards to the key rate, the current limitation of the system is not the
optical part but the error correction speed which can be drastically improved
using Graphics Processing Units (GPU) [83, 60]. Furthermore, in order to
take into account finite-size effects it is necessary to process large blocks
(≥ 108 pulses) to extract the final key [77, 63]. Then improving the error-
correction speed allows to deal with finite-size effects without dramatically
increasing the key production latency.

Finally, in a setting where QKD is used together with computational
high-speed symmetric encryption like in SEQURE, it is not unreasonable
to use a scheme based on minimal assumptions about the security of sym-
metric cryptography, like the Lamport signature scheme, instead of using
an initial secret key. This enables to initialize QKD with an exchange of
authentic values, which is easier to perform than an exchange of secret val-
ues. The security properties of QKD are unaffected provided the Lamport
scheme is instantiated with a function that can be considered to be collision-
resistant on the timescale of the first QKD session (such as cryptographic
hash functions); then, as soon as common secret values are available, ses-
sions are authenticated using unconditional means as usual. For a more
detailed security analysis, see [68].

9.7 Analysis of the Noise Contributions in a WDM

Setup

Another challenge in order to widen QKD deployments is to integrate
QKD into classical communication networks. WDM architectures allow to
share the use of one single optical fiber to transport several data channels
at different wavelengths. This allows us to linearly reduce the infrastructure
costs linked to fiber deployment. WDM compatibility would thus imply a
significant improvement for QKD in terms of cost-effectiveness and compat-
ibility with existing optical infrastructures. Extra noise due to the photon
leakage from classical channels into the quantum channel however lowers
QKD performance and must be controlled. While optical noise can be ef-
ficiently filtered when its wavelength is sufficiently far from the quantum
channel, non-linear processes such as Raman scattering can generate pho-
tons at the wavelength of the quantum channel. Coping with Raman noise
induced by classical channel is a major problem for QKD systems, espe-
cially for DVQKD that relies on photon counting: Raman spectrum is 200
nm broad and Raman scattering induced by one 0 dBm channel typically
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Figure 9.7: Generic WDM setup. 7 out of the 8 input channels of a MUX are
used for classical optical signals while Alice’s output is connected to the last
channel. All the signals are multiplexed and travel over a unique fiber. On
the receiver’s side, they are demultiplexed with the corresponding DEMUX
and the signal signal sent by Alice enters Bob’s system.

higher than 0.1 noise photon per nm per ns, cannot be removed by wave-
length filters. The coexistence in DVQKD with classical signals on a DWDM
network relying on photon counting has been studied in [105] where no key
could be established at 25 km for an input power higher than -3 dBm. Sev-
eral DVQKD experiments tried to circumvent this limitation. In [37], four
classical channels where multiplexed with a DVQKD system and 50 km op-
eration was demonstrated. However, the intensity of the classical channels
was attenuated to the smallest possible power compatible with the sensi-
tivity limit of the optical receiver (around -20 dBm). This technique was
also used in [103], where the temporal filtering technique developed in [22]
was applied to obtain an extended range of 90 km for DVQKD operation in
DWDM environment. Nevertheless, these two important results have been
obtained with strongly attenuated classical channels and cannot realistically
be translated to deployed DWDM networks.

As analyzed in [106], the coherent detection used in CVQKD to mea-
sure the field quadratures acts as a natural and extremely selective filter
whose acceptance is equal to the spectral width of the local oscillator (LO).
As a consequence, CVQKD, although less suited for very long distance op-
eration, is intrinsically more resilient to WDM-induced noise photons than
DVQKD. In this section, we review Bing Qi et al’s analysis [106] of the differ-
ent noise contributions when putting one weak quantum signal and several
strong classical signals together on a single optical fiber. We consider suc-
cessively leakage from classical channels and photons generated by nonlinear
processes such as Four-wave Mixing (FWM) and Spontaneous Anti-Stokes
Raman Scattering (SASRS).

9.7.1 Leakage from Classical Channels

Any practical laser source has a broadband noise background. Although
the classical signal wavelength is not the same as the quantum signal one,
a non negligible fraction of the classical signal can leak into the quantum
channel due to the finite isolation of the Demultiplexer (DEMUX). The mean



9.8. NOISE PHOTONS IN LOCAL OSCILLATOR MATCHED MODE 145

number of photons contributed by a classical signal C reads:

NC
leak =

ξ2P
C
out

hνC
(9.1)

where ξ2 is the cross channel isolation of the DEMUX, PC
out is the power of

the classical signal C at the input of the DEMUX and νC is the frequency
of the classical signal C.

Typical values of the parameters are: ξ2 = 10−8, PC
out = 0dBm, νC =

c/λC (λC = 1550nm).

9.7.2 Four-wave Mixing

Four-wave mixing is generated by the interaction between two or more
pump fields and the χ(3) nonlinearity of the optical fiber. Three optical
signals at different frequencies mix and create a new wave whose frequency
is a linear combination of the three others. FWM can become the major
source of noise for short distances but is dominated by the Raman effect for
metropolitan fiber length[105]. Furthermore, this effect can be mitigated for
example using wide channel spacing between classical channels of skipping
a signal between the QKD signal and classical signals as suggested in [105].
For these reasons we neglect FWM in our analysis.

9.7.3 Spontaneous Anti-Stokes Raman Scattering

When putting the quantum channel at a shorter wavelength than the
classical channel, SASRS is the dominant nonlinear process that generates
photons at the wavelength of the quantum channel. The mean photons
number contributed by SASRS is given by:

NC
SASRS =

λ3

hc2
PC

outβzηDEMUX (9.2)

where λ is the wavelength of the classical signal C, PC
out is the power of

the classical signal C at the input of the DEMUX, β is the spontaneous
Raman scattering coefficient, z is the fiber length, ηDEMUX is the insertion
loss of the DEMUX. Typical values of the parameters are: λ = 1550nm,
PC

out = 0dBm, β = 3×10−9(km.nm)−1, z = 1−100km, ηDEMUX = 0.89(0.5
dB loss).

9.8 Noise Photons in Local Oscillator Matched Mode

The advantage brought by CVQKD over DVQKD in a setup where the
quantum channel coexists with multiple classical channels setup is related
to the homodyne detection. The strong local oscillator coherent with the
quantum signal acts as a mode filter. The noise photons that are not in the
same spatiotemporal and polarization mode as the local oscillator do not
interfere with it. This reduces considerably the number of noise photons.
The case where a large number of noise photons are unmatched with the
local oscillator cannot be dealt with this way. Indeed, if this number is
comparable to the number of photons of the local oscillator these signals
create their own shot noise statistics on the homodyne detection and their
contributions cannot be neglected.
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Table 9.2: Parameters used for the computation of the secret key rate against
collective attacks in the realistic model in a WDM setup.

λC (nm) 1550
β 3× 10−9

ηBob 0.552
ηDEMUX 0.89

Based on the previous noise analysis, we assume that the quantum signal
wavelength is shorter than the classical channel wavelength. In this setting,
the total number of noise photons that are matched with the local oscillator
at the entrance of Bob’s system reads:

NC =
1

2
(ηchηDEMUXN

C
leak +NC

SASRS) (9.3)

where the 1
2 factor corresponds to the polarization selection of the local

oscillator. The excess noise contributed by these noise photons after the
homodyne detection of efficiency η is:

ǫC = 2ηNC (9.4)

Let us simulate the secure distance we should achieve assuming this noise
model and the experimental parameters of chapter 7. Table 9.2 summarizes
the experimental parameters we used for our simulation. We assume a 100
GHz width for MUX and DEMUX, which corresponds to a 0.8 nm width for
the channels. A typical laser background noise within a 0.8 nm window is -
60 dBm. Then the number of photons per mode with a DEMUX of isolation
ξ2 is significantly smaller than Raman photons. Figure 9.8 gives the excess
noise created on the homodyne detection by Raman noise photons for an
input power of 1 mW. It appears that this noise is comparable to the level
of noises obtained in chapter 7. Consequently, it is in theory possible to
maintain the secret key rates obtained in chapter 7, even in the presence of
a strong classical channel at another wavelength.

9.9 Experimental Results

It appears that measuring the Raman noise induced by a classical channel
at another wavelength than the quantum channel with the setup of chapter
7 cannot be done accurately without any modification. This is because the
Raman photons do not affect only signal pulses but also local oscillator
pulses. Furthermore, noise photons at other wavelengths than the local
oscillator wavelength will be detected by the homodyne detection. This
leads to two important remarks: the shot noise level depends on the Raman
noise and the calibrated relationship that links the local oscillator level to
the shot noise evaluation cannot be used safely.

We chose to solve this problem by implementing one of the real-time
shot noise measurement techniques proposed in chapter 5. We introduced
an optical switch on Bob’s signal path. This technique allows us to define
two sets of pulses on Bob’s side. A maximum extinction is applied on one set
of pulses while a minimum extinction is applied on the other set. From these
two sets of pulses statistics, one can estimate the shot noise and the excess
noise. However, this technique still adds an intrinsic noise that prevents us
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Figure 9.8: Theoretical noise induced by a 1 mW classical channel on the
homodyne detection.

Table 9.3: Experimental parameters of the experimental demonstration of
the coexistence between a classical channel and CVQKD on a single optical
link.

λC channel 29 and 33
λQ channel 34
ηBob 0.30

MUX losses 3.22 dB
ADM losses 0.59 dB
Channel losses 5.15 dB

from achieving the same excess noise levels as in chapter 7. The noise level
of our system using this technique currently limits the maximum secure
distance we can achieve in our WDM setup. Table 9.3 summarizes the
experimental values of the parameters of our WDM setup and table 9.4
gives our excess noise measurements. On Bob’s side, due to the extra losses
of our DEMUX, we used an Add Drop Module (ADM) to reduce losses. Our
excess noise levels are above the ones obtained in chapter 7 because of the
new shot noise measurement procedure. These high excess noise values do
not allow us to characterize the Raman induced noise. However these noise
levels still allow us to obtain a positive secret key rate against collective
attacks at 25 km.

9.10 Concluding Remarks

In this chapter, we showed that the maturity level of our setup is compat-
ible with long-term field deployments using real optical fibers. Our demon-
stration consisted in renewing AES keys from symmetric encryptors with
QKD generated keys. Future work includes combining QKD keys with asym-
metric keys using a simple XOR as already done in [132] for DVQKD and
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Table 9.4: Experimental excess noise measurements on Bob’s side for a
varying classical channel input power. The cases of an adjacent and a non-
adjacent classical channel are reported.

Power (dBm) channel 29 channel 33
0 6× 10−3 6× 10−3

3 6.5× 10−3 7.6× 10−3

5 6.7× 10−3 2.1× 10−2
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Figure 9.9: Operational cost of a QKD deployment over the lifespan of an
equipment. We assumed a price of 100 K$ for a QKD link and a renting
price of 1K$ per km and per year for the optical link. We plot the evolution
of the operational cost of a QKD link for practical distances of 10, 20 and
50 km. We also plot the price of the QKD link only which is the deployment
cost of a WDM compatible QKD system.

exploring schemes that benefit from the high volume of keys provided by
QKD. A possible scheme consists in renewing AES sub-keys (that are used
for each round of the AES) using QKD keys instead of deriving these sub
keys from the AES key. Another step towards better synergy between clas-
sical and quantum cryptography is to encrypt QKD traffic with classical
encryptors. In [68], we propose several other ways to enhance QKD secu-
rity using symmetric cryptography primitives in a context where QKD is
combined with symmetric encryptors.

We also demonstrated experimentally the combination of CVQKD and
intense optical channels at other wavelengths on the same optical fiber. The
coexistence of the quantum channel with classical channels is very important
to increase the number of deployment scenarii for QKD. Indeed, as shown
in figure 9.9, the operational cost of a QKD deployment is dominated by the
renting price of the fiber link when the QKD system requires a dark fiber.
WDM compatibility allows a QKD user to save the renting fiber cost which
is proportional to the fiber length.



Conclusion and Perspectives

In this thesis, we studied the performance and security of continuous-
variable quantum key distribution. At the beginning of this thesis, al-
though some continuous-variable quantum key distribution protocols fea-
tured promising characteristics like laboratory implementations using only
off-the-shelf components optimized for the telecommunication industry, they
were clearly outperformed by discrete variables protocols both in terms of
performance and security. Indeed, discrete variables commercial products
were already on the market and benefited from both more mature security
analyses and higher secure distances.

The main achievement of this thesis was to bridge the gap between these
technologies. On the performance aspect, we were able to increase the se-
cure distance of the coherent state protocol with a Gaussian modulation
from 25 km to 80 km. This was possible because of high-efficiency error-
correction techniques in the low signal-to-noise ratios regime. Furthermore,
we implemented these error-correcting codes on state-of-the art Graphics
Processing Units. As a result, post-processing speed is not the bottleneck of
this technology any more and higher speeds might be achieved in the near
future.

As regards security, we focused on several practical imperfections of our
experimental setup and took them into account in the security proof. This
includes computing security parameters over large data blocks, which re-
quires enhanced hardware stability. We built an experimental setup from
scratch and developed efficient feedback controls that allowed us to get stable
experimental parameters over long periods of time. We also imagined pos-
sible attacks against our system and designed proper countermeasures. We
strongly believe that real-time shot noise measurement techniques should be
implemented in any CVQKD setup in order to claim a high level of security.
More generally, we have initiated work concerning side-channel attacks that
target CVQKD (Trojan horse attacks and wavelength attacks are currently
being studied) and we aim at reaching security levels that qualify our system
to pass the first quantum system certification evaluations.

We also worked towards CVQKD integration in optical networks. First,
we demonstrated the combination of CVQKD with classical symmetric en-
cryptors as it had already been done with DVQKD. Such a combination
seems to be the most realistic QKD deployment scenario in the next few
years. Second, we ran preliminary experiments that demonstrated the com-
patibility of CVQKD with intense optical signals propagating on the same
fiber in a DWDM configuration. Given that the cost of a QKD system is
dominated by the cost of fiber optic infrastructures over the lifespan of a
product, DWDM compatibility is expected to significantly increase perspec-
tives of QKD deployments. Finally, we commercialized the first CVQKD
product, based on this thesis work. It features high hardware stability and
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2010 2013
range 25 km 80 km
rate 10 kb/s 100 kb/s

security proof asymptotic finite-size effects
practical security imperfect detection imperfect modulation
side channels - - - +
stability - - - + + +

WDM integration + + +

Table 9.5: This table compares CVQKD security and performance in 2010
and 2013.

long-distance key agreement capability.

We expect this is not the end of the story as regards CVQKD improve-
ments! Perspectives include improved DWDM compatibility over longer
distances and improved key rate performance. Our secure distance is cur-
rently limited by the excess noise of our setup. This limitation could be
overcome using virtual noiseless amplification or other protocols more re-
sistant to the excess noise such as heterodyne-based detection protocols.
Higher speed is now possible by improving the hardware repetition rate.
We believe the point in doing that is more to diminish the impact of finite
size effects by estimating parameters over larger blocks than to increase the
secret key rate since one-time-pad at state-of-the-art telecoms speeds should
remain an elusive goal. On the theoretical side, the main concern is to get
a security proof against coherent attacks in the finite-size regime. Finally,
perspectives offered by silicon photonics both in terms of miniaturization
and costs are expected to broaden CVQKD market. Indeed, on the one
hand replacing current bulk versions of CVQKD systems by silicon chips
would ease CVQKD integration in data centers, on the other hand the cost
of the optics should drop by an order of magnitude.



Appendix A

Matrix Representation of the
Octonions

We used the following matrix representation of the octonions to imple-
ment the multidimensional protocol described in chapter 6:

A0 =





























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





























A1 =





























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0





























A2 =





























0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0





























A3 =





























0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
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A4 =





























0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
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0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
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0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0





























A7 =





























0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0































Appendix B

Local Oscillator Power
Measurement and Clock
Signal Generation

Here, we discuss the feasibility of measuring the local oscillator power
and generating a trigger signal from the local oscillator without compromis-
ing the security of the system.

Reasonable trigger generation functions are of the following form:

U1(t) = 1s(t−r)>x (B.1)

U2(t) = 1s(t−r)−s(t−r−δ)>0 (B.2)

The function U1 outputs a positive value at time t if and only if the signal
measurement is above the threshold value x at time t− r. This corresponds
to detecting the beginning of a pulse (when its value is above the threshold x)
and then delaying the trigger with a chosen delay r. The function U2 outputs
a positive value at time t if and only if the difference between the signal and
the signal delayed of one pulse duration δ is positive. This presents the
advantage of being independent from the signal level but requires to know
the pulse duration δ. This cannot be assumed in the context of an active
eavesdropper. Both U1 and U2 are of the form 1φ(s) where φ is a linear
functional of the signal.

Reasonable power measurement functions are of the following form:

P =
∫ δ

0
s(t− s)α−sds (B.3)

where α is some nonnegative integration constant. P is a linear form of the
local oscillator signal. Since P is not a multiple of φ for the trigger examples
above, there are signals that can be added to the local oscillator signal that
do not change the output of P but that change φ. A closer look to this
problem shows that it is indeed possible to change Ui, i = 1 or 2, without
changing P .

A simple example is given in Fig. B.1. Both local oscillator pulses have
the same energy but the rising time of the trigger does not coincide with
the end of the pulse.

This analysis shows that, in practice, a calibrated linear relationship
between the shot noise level and local oscillator power cannot be used in the
presence of an eavesdropper, who will always be able to modify the linear
relationship during the QKD run.
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t

I

x

r
t1 t2

Figure B.1: Trigger generation with respect to pulses shapes. This figure
shows how two pulses of same energy generate two different trigger signals
of rising time t1 and t2.



Appendix C

Post-processing Scheduling

When doing a CVQKD experiment with post-processing, there are basi-
cally two possibilities. The first one consists in accumulating raw data during
the quantum exchange and then stopping the quantum exchange and per-
forming post-processing over the accumulated data. Such a method bounds
the time required by the system to extract secret key from a given data size
by the sum of the optics time to generate raw data and the post-processing
time to process these raw data. The second method allows us to make an
optimal use of both optical and computing power resources. It consists in
using multi-threading in order to post-process raw data on the fly while the
optics is still running. We used C++11 threads to share computing power
demanding tasks into several execution threads. With this parallelism, the
time required by the system to extract secret key from a given data size is
only bounded by the maximum of the optics time and the post-processing
time.

In figure C.1, we represent our post-processing flow diagram. Each rect-
angle represents an execution thread. Vertical arrows represent messages
passing between local threads and horizontal arrows are for network mes-
sages passing between Alice and Bob. SOme further details are given below:

– Alice Hardware thread generates the Gaussian modulation, sends
control data to the acquisition card and receives values coming from
Alice’s output photodiode. Both values are transmitted to Alice
Data Processing. Bob Hardware thread performs quadrature se-
lection by sending phase values to the acquisition card and receives
measurements coming from the homodyne detection. Both sets of
values are transmitted to Bob Data Processing.

– Alice Data Processing controls the quality of the Gaussian mod-
ulation, estimates amplitude modulator parameters and performs an
adjustment of these parameters if required. Then data are transmitted
to Regroup Intervals. Bob Data Processing tries to find Alice’s
synchronization pattern and can compute some statistics such as the
correlation between Alice and Bob once this pattern is detected. Then
data are transmitted to Compute Intervals.

– On Bob’s side Compute Intervals computes the offset of the cur-
rent data block in Alice’s modulation sequence and sends it to Alice
through the network. If no synchronization pattern has been found,
the data block is thrown away and Alie is informed about that. On
Alice’s side, Regroup Intervals uses Bob’s offset to create a data
block in phase with Bob’s block out of two successive blocks. If Alice
is not able to do that because of errors on her side, data is discarded
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and she informs Bob. Otherwise, she discloses at random a fraction of
this block quadratures and send them to Bob.

– On Bob’s side, Filter Intervals is used to discard Bob’s block is
he is informed by Alice that data concerning this block should not be
considered (because of modulation errors for example). In the opposite
case, Alice’s sifted data are transferred to Regroup ECC together
with Bob’s data. Here, data are accumulated until the size of an error-
correction block is reached (220 in our setup). Prepare ECC does
the same thing on Alice’s side.

– On Bob’s side Select Code computes an estimate of the SNR thanks
to Alice’s sifted data and selects an error-correcting code with eventu-
ally some puncturing and shortening parameters. Then he computes a
set of parity-check bits, the syndrome, and sends it to Alice, together
with the description of some rotations corresponding to the multi-
dimensional protocol described in chapter 6. On Alice’s side, Alice
uses the description of the rotations to prepare her data for the error-
correction in Prepare ECC. Then Alice performs the error-correction
in Error Correction.

– After the error-correction, Bob accumulates error-corrected keys in
Regroup and Init PA until he has enough data to perform the
privacy amplification over a block large enough, which allows to di-
minish the uncertainty on the transmission parameters and to achieve
a higher value of the secret key rate. Once this is done, he draws
a random binary Toeplitz matrix and multiplies his corrected binary
string by this matrix. Then he sends Alice the description of this ma-
trix together with some check bits that allow them to know with high
probability if they share a common key after privacy amplification.
On Alice’s side, error-corrected binary strings are accumulated in the
same way and Alice applies privacy amplification on her vector with
the matrix description sent by Bob. Then she compares her check bits
with the check bits sent by Bob and she informs him on the success of
the failure of the key extraction.

– On both sides, if a final key was successfully extracted, this key is
transmitted to a Key Broker thread which is in charge of delivering
this key to some users according to the defined security policy.
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Figure C.1: Flow diagram of Alice and Bob post-processing. Each step runs
in a separate C++11 thread. All the data structures are created once in
memory at the launch of the program and data are then moved between
threads using typed buffers. Races between threads to access data are dealt
with thanks to mutex from the standard C++11 library.
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List of Abbreviations

ADM Add Drop Module

AES Advanced Encryption Standard

APC Angled Physical Contact

AWGNC Additive White Gaussian Noise Channel

BIAWGNC Binary Input Additive White Gaussian Noise Channel

BSC Binary Symmetric Channel

CVQKD Continuous Variables Quantum Key Distribution

DEMUX Demultiplexer

DFB Distributed Feedback

DPC Dynamic Polarization Controller

DVQKD Discrete Variables Quantum Key Distribution

DWDM Dense Wavelength Division Multiplexing

EOM Electro-optic Modulator

FC Ferrule Connector or Fiber Channel

FWM Four-wave Mixing

GPU Graphics Processing Unit

HD Homodyne Detection

IP Internet Protocol

LDPC Low Density Parity Check

MMF Multi-Mode Fibers

OTP One-Time Pad

PBS Polarization Beam Splitter

PC Physical Contact

PCI Peripheral Component Interconnect

PKI Public Key Infrastructure

PMF Polarization-maintaining Fibers

POVM Positive Operator Valued Measure

PRNG Pseudo-random Numbers Generator

QBER Quantum Bit Error Rate
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QKD Quantum Key Distribution

QRNG Quantum Random Number Generator

RSA Rivest Shamir Adleman

SASRS Spontaneous Anti-Stokes Raman Scattering

SECOQC Secure Communication based on Quantum Cryptography

SEQURE Symmetric Encryption with QUantum key REnewal

SMF Single Mode Fibers

SNR Signal to Noise Ratio

UPC Ultra Physical Contact

XOR Exclusive Or
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Sécurité et performance de dispositifs

de distribution quantique de clés à variables continues

Paul JOUGUET

RESUME : L’objet de cette thèse est l’étude de la distribution quantique de clés, une primitive crypto-

graphique qui permet à deux utilisateurs distants de générer une quantité arbitraire de clé secrète et cela

y compris en présence d’un espion, sous réserve qu’ils partagent un secret initial. Nous restreignons notre

étude aux protocoles employant des variables continues et démontrons expérimentalement une implémenta-

tion entièrement fibrée fonctionnant à 80 km sur une fibre dédiée en prenant en compte toutes les imperfec-

tions expérimentales connues. Pour atteindre une telle distance de fonctionnement, nous avons mis au point

des codes correcteurs d’erreurs spécifiques fonctionnant près de la limite théorique de Shannon dans des

régimes de faible rapport signal à bruit. Nous envisageons également la possibilité d’attaques par canaux

cachés qui ne sont donc pas prises en compte dans la preuve de sécurité du système et proposons des

contre-mesures. Enfin, nous étudions la compatibilité de notre système avec des canaux de communication

intenses qui se propagent sur la même fibre optique.

MOTS-CLEFS : cryptographie quantique, cryptographie classique, distribution quantique de clés, optique

quantique, théorie de l’information, codes correcteurs d’erreurs, communications quantiques, canaux cachés,

attaques sur les systèmes quantiques, multiplexage en longueur d’onde.

ABSTRACT : This thesis focuses on a cryptographic primitive that allows two distant parties to generate

an arbitrary amount of secret key even in the presence of an eavesdropper, provided that they share a short

initial secret message. We focus our study on continuous-variable protocols and demonstrate experimentally

an all-fiber system that performs distribution of secret keys at 80 km on a dedicated fiber link while

taking into account all known imperfections. We could extract secret keys at such a distance by

designing specific error correcting codes that perform very close to Shannon’s bound for low

signal to noise ratios. We also consider side-channel attacks that are not taken into

account into the system security proof and propose some countermeasures. Finally, we study

our system compability with intense communication channels that propagate on the same optical

fiber.

KEY-WORDS : quantum cryptography, classical cryptography, quantum key distribution,

quantum optics, information theory, error correcting codes, quantum communications,

side channels, quantum hacking, wavelength division multiplexing.


