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Chapter I

Introduction

Fluid mechanics is a branch of Physics concerned with the study of fluids (liquid, gases
or plasmas). It can be divided into fluid statics and fluid dynamics. The study of fluid
mechanics goes back at least to the days of ancient Greece, when Archimedes investigated
fluid statics and buoyancy and formulated his famous law known as the Archimedes’
principle. Rapid advancement in fluid mechanics began with Leonardo da Vinci (obser-
vations and experiments), Evangelista Torricelli (invented the barometer), Isaac Newton
(investigation of viscosity) and Blaise Pascal (Pascal’s law), and was continued by Daniel
Bernoulli. During the course of the nineteenth century, two mathematicians, Claude-Louis
Navier and Georges Gabriel Stokes have derived the equations governing the motion of
a fluid. These equations, now known as the Navier-Stokes equations, are non-linear par-
tial differential equations. Assuming the flow is incompressible and Newtonian, these
equations read: 




∂U

∂t
= −(U · ∇)U−∇P +

1

Re
∆U

∇ ·U = 0
(I.1)

where U is the velocity field, P the pressure and Re a non-dimensional number charac-
terising the flow and known as the Reynolds number. Up to now, very few analytical
solutions are known. Moreover, there is no general proof so far that the solutions are
smooth and bounded in energy1. Yet, despite this lack of mathematical foundations,
these equations are widely used nowadays in Computational Fluid Dynamics (CFD) and
have greatly helped scientists to unravel the basic mechanisms responsible for transition
of flows to unsteadiness and eventually turbulence. Among these mechanisms, the keyrole
of hydrodynamic linear instabilities in the transition, already identified as early as the
nineteenth century, has been observed in a vast variety of flows.

1Since 2000, proving the Navier-Stokes smoothness and boundedness in R3 has been made one of
the seven Millenium Prize problems. In 1934, the French mathematician Jean Leray [101] proved the
existence of so-called weak solutions to the Navier–Stokes equations, satisfying the equations in mean
value, not pointwise. In the 1960’s, proof has been given about the smoothness and boundedness of
the solutions of the two-dimensional Navier-Stokes equations [95]. Early 2014, a Kazakh mathematician,
Mukhtarbay Otelbayev, claimed he had solved this problem in three dimensions. Very recently, Terence
Tao has shown that Otelbayev’s proof was wrong. Shortly after, Tao has published a paper [150] proving
that the three-dimensional incompressible Navier-Stokes equations admit solutions blowing up in a finite
time.
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(a) (b)

Figure I.1: (a) A Kelvin-Helmholtz instability on Saturn, caused by the interaction be-
tween two bands of the planet’s atmosphere. Image from the Cassini probe. (b) This
Landsat 7 image of clouds off the Chilean coast near the Juan Fernandez Islands on
September 15, 1999, shows a unique pattern called a von Karman vortex street.

I.1 Hydrodynamic instabilities
As underlined by its name, hydrodynamic stability theory is a branch of fluid mechanics
concerned with the stability and the onset of instability in fluid flows. The concept of
stability of the state of a physical system was understood as early as the eighteenth
century. According to P. G. Drazin [54], Clerk Maxwell was the first to qualitatively
expressed this concept in the nineteenth century:

”When ... an infinitely small variation of the present state will alter only by
an infinitely small quantity the state at some future time, the condition of the
system, whether at rest or in motion, is said to be stable; but when an infinitely
small variation in the present state may bring about a finite difference in the
state of the system in a finite time, the condition of the system is said to be
unstable.”

Hydrodynamic instabilities have been investigated for over a hundred years. Lot of famous
names have been attached to various instabilities. One can cite for instance the Kelvin-
Helmholtz instability, illustrated on figure I.1(a), studied in the nineteenth century by
Lord Kelvin and Hermann Ludwig von Helmholtz, or the Bénard-von Karman vortex
street depicted on figure I.1(b), a wake instability named after Henri Bénard and Theodore
von Karman.

Osborne Reynolds and the pipe flow transition

An introduction to hydrodynamic instabilities would not be worthwhile without a word
said about Osborne Reynolds and his famous experimental investigation of pipe flow
transition in 1883 yielding him to introduce for the first time what is now known as
the Reynolds number [128]. We now know that the pipe flow transition to turbulence
results from mechanisms more complex than simple hydrodynamic linear instabilities, the
scope of the present thesis. Nonetheless, it is believed by the author that describing the
experiment O. Reynolds had conducted might help new comers to better understand what
hydrodynamic instabilities are and how important it might be to study them.

2



The experiments were made on three tubes. The diameters of these were nearly
1 inch, ½ inch and ¼ inch. They were all fitted with trumpet mouthpieces,
so that the water might enter without disturbance. The water was drawn
through the tubes out of a large glass tank, in which the tubes were immersed,
arrangements being made so that a streak or streaks of highly coloured water
entered the tubes with the clear water. The general results were as follows:

(1) When the velocities were sufficiently low, the streak of colour extended
in a beautiful straigth line through the tube (see figure I.2, top).

(2) If the water in the tank had not quite settled to rest, at sufficiently
low velocities, the streak would shift about the tube, but there was no
appearance of sinuosity.

(3) As the velocity was increased by small stages, at some point in the tube,
always at considerable distance from the trumpet or intake, the colour
band would all at once mix up with the surrounding water, and fill the
rest of the tube with a mass of coloured water (see figure I.2, middle).

Any increase of the velocity caused the point of break down to approach the
trumpet but with no velocities that were tried did it reach this. On viewing
the tube by the light of an electric spark, the mass of colour resolved itself into
a mass of more or less distinct curls, showing eddies (see figure I.2, bottom).

O. Reynolds’ experimental work, by introducing what is now known as the Reynolds
number Re, clearly higlights that beyond a critical value of Re, the laminar flow in a pipe
breaks down and transition to what is called a turbulent state. His pionnering experimental
work clearly illustrates what are the aims of someone investigating hydrodynamics stability
theory: to find if a given laminar flow is stable or unstable, and if so, what are the physical
mechanisms responsible for transition to unsteadiness and eventually turbulence.

Mathematical background

The theoretical and numerical study of hydrodynamic instabilities are inherently linked
to the concept of base flow and to the spectral properties of the associated linearised
Navier-Stokes operator. The concept of base flow can be defined in several different ways.
To the author’s knowledge, one of the most comprehensive definition is the following:

Base flow: A base flow is a peculiar solution of the Navier-Stokes equations.
In the context of linear stability theory, this solution is either stationnary or
periodic in time.

From a mathematical point of view, the concept of base flow is similar to that of fixed
point (stationnary solution) or limit cycle (time-periodic solution) in the dynamical system
framework. As already said, very few analytical solutions of the Navier-Stokes equations
are known. However, with the progress made in CFD over the last decades, such peculiar
solutions can be computed numerically even in relatively complex setups. In order to do
so, one can use various tools ranging from the Newton method and its variants to the
more recent selective frequency damping approach introduced by Akervik et al. [6]. Once
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Laminar flow

Turbulent flow

Turbulent flow (observed with an electric spark)

Figure I.2: Water flow observed in a pipe, as drawn by Osborne Reynolds in his famous
experiment on pipe flow transition. Water flows from left to right in a transparent tube,
and dye (represented in black) flows in the middle. The nature of the flow (laminar or
turbulent) can easily be observed. These drawings were originally Reynolds’ influential
1883 paper [128].

such solution has been computed, one can then investigate the dynamics of infinitesimal
perturbations evolving onto this given base flow by linearising the non-linear Navier-Stokes
equation around this peculiar solution. In the most general framework treated here, i.e.
three-dimensional incompressible flows of Newtonian fluids, these linearised equations are
linear three-dimensional partial differential equations:





∂u

∂t
= −Ub

∂u

∂x
− Vb

∂u

∂y
−Wb

∂u

∂z
− u∂Ub

∂x
− v∂Ub

∂y
− w∂Ub

∂z
− ∂p

∂x
+

1

Re
∆u

∂v

∂t
= −Ub

∂v

∂x
− Vb

∂v

∂y
−Wb

∂v

∂z
− u∂Vb

∂x
− v∂Vb

∂y
− w∂Vb

∂z
− ∂p

∂y
+

1

Re
∆v

∂w

∂t
= −Ub

∂w

∂x
− Vb

∂w

∂y
−Wb

∂w

∂z
− u∂Wb

∂x
− v∂Wb

∂y
− w∂Wb

∂z
− ∂p

∂z
+

1

Re
∆w

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(I.2)

with u = (u, v, w)T and p the velocity and pressure fields characterising the perturbation,
respectively, and Ub = (Ub, Vb,Wb) a stationnary solution of the non-linear Navier-Stokes
equations (I.1) either known analytically or computed numerically. In the linear dynamical
system framework, this set of equations can be recast into the following matrix equation:

B
∂q

∂t
= Jq (I.3)

where q = (u, p)T is the state vector characterising the perturbation, B a mass matrix
and J the Jacobian of the Navier-Stokes equations. The linear stability of the base flow
Ub is then fully determined by the spectrum of eigenvalues of the linearised Navier-
Stokes operator J, whereas the associated leading eigenvectors then provide the spatial
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(a) Poiseuille (b) Couette

(c) Wake (d) Blasius

Figure I.3: (a) and (b): Examples of parallel flows. (c) and (d): Examples of quasi-parallel
flows.

distribution of the unstable perturbations. Depending on the nature of the base flow
(parallel, two- or three-dimensional flow), different tools can be used:

• Local stability theory for parallel flows,

• Global stability theory2 when it comes to two- and three-dimensional flows.

In the following sections, a brief introduction to local stability theory for parallel flows
and global stability theory applied to two-dimensional base flows will be given. On the
other hand, the case of global stability theory applied to fully three-dimensional base flows
being the scope of the present thesis, it will be discussed later.

I.1.1 Local stability theory

Because of limited analytical tools and limited computational ressources in the past, the
instability of flows has traditionally been investigated assuming that the wavelength of

2To differentiate between global stability applied to two- or three-dimensional flows, some authors
refer to bi- and tri-global stability analyses. The author however believes that such distinction should
not be. Moreover, the stability analysis of flows having two inhomogeneous directions but for which a
streamiwse independence (or almost independence) assumption still holds is sometime refered to bi-global
stability [48, 122] as well. Such name can unfortunately be misleading since such analysis remains within
the framework of local stability analysis. From the author’s point of view, the term global stability should
thus be strictly restricted to the stability of flows being strongly non-parallel for which a local stability
approach would make no sense.
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the underlying instability mechanism is short compared to the typical scale over which
the flow develops along the streamwise direction. Under such assumption, one can use the
parallel flow hypothesis such that the base flow has the form Ub = (Ub(y), 0, 0)

T as those
depicted on figure I.3. As a consequence, the complexity of the linearised Navier-Stokes
equations (I.2) is reduced:





∂u

∂t
= −v∂U

∂y
− Ub

∂u

∂x
− ∂p

∂x
+

1

Re
∆u

∂v

∂t
= −Ub

∂v

∂x
− ∂p

∂y
+

1

Re
∆v

∂w

∂t
= −Ub

∂w

∂x
− ∂p

∂z
+

1

Re
∆w

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(I.4)

Moreover, because these equations are homogeneous in x, z and t, they can be solved
using normal modes expansion of the perturbation both in the streamwise and spanwise
directions as well as in time. Only the cross-stream (also called wall-normal) direction
then remains unchanged. Assuming the infinitesimal perturbation q(x, y, z) = (u, p)T has
the form:

q(x, y, z) =

∫

Lλ

∫

Fα

∫

Fβ

q̂(y)ei(αx+βz)+λt dβdαdλ+ c.c (I.5)

where, c.c the complex conjugate, α is the streamwise wavenumber, β the spanwise
wavenumber and λ = σ + iω the (possibly complex) frequency of the normal mode con-
sidered. Since the equations considered are linear, one can then solve them for each
of these normal modes involved in the decomposition. As a consequence, the linearised
Navier-Stokes equations (I.4) can be rewritten as:





λû = −v̂ ∂Ub

∂y
− iαûUb − iαp̂+

1

Re

(
∂2

∂y2
− α2 − β2

)
û

λv̂ = −iαv̂Ub −
∂p̂

∂y
+

1

Re

(
∂2

∂y2
− α2 − β2

)
v̂

λŵ = −iαŵUb − iβp̂+
1

Re

(
∂2

∂y2
− α2 − β2

)
ŵ

iαû+
∂v̂

∂y
+ iβŵ = 0

(I.6)

Thanks to the parallel flow assumption and the normal modes expansion, the resulting
system (I.6) falls into the framework of local stability theory. Since only the wall-normal
direction needs to be discretised, the system of equations (I.6) involves only up to a few
hundreds degrees of freedom such that it has been extensively investigated numerically
since the early 1960’s for a wide variety of parallel flows. Several different types of analyses
can be conducted to investigate the properties of this system:

• Temporal stability analysis: investigation of the asymptotic time behaviour of per-
turbations having real wavenumbers (see Michalke [114]).
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• Spatial stability analysis (also known as the Signaling problem): investigation of
the flow’s response to time-harmonic localised forcing. In such analysis, the pre-
scribed frequency of the forcing is real whereas the wavenumbers characterising the
perturbation can be complex (see Michalke [115]).

• Absolute and convective instabilities: investigation of the flow’s response to a spa-
tially and temporally localised impulse. Such analysis allows one to distinguish
between convectively and absolutely unstable flows (see Huerre & Monkewitz [81]).

• Transient growth analysis: investigation of the short-time dynamics and amplifica-
tion of perturbations (see Reddy & Henningson [127]).

All of these analyses are based on the same set of equations (I.6) but look at different
aspects and thus require different mathematical tools. In the following, a brief introduction
will be given to each of these analyses. For extensive details, the reader is however refered
to the books by Drazin [54], Drazin & Reid [55], Schmid & Henningson [138] as well as
Charru [39].

I.1.1.1 Temporal stability analysis

Within the framework of temporal linear stability, the asymptotic time evolution of in-
finitesimal perturbations having a prescribed real wavevector k = αx + βz (where x and
z are the unit-vectors along the streamwise and spanwise directions, respectively) is in-
vestigated. This investigation can be further simplified using the Squire theorem3 [146].
Based on this theorem, the local stability equations (I.6) can be reduced to:





λû = −v̂ ∂Ub

∂y
− iαûUb − iαp̂ +

1

Re

(
∂2

∂y2
− α2

)
û

λv̂ = −iαv̂Ub −
∂p̂

∂y
+

1

Re

(
∂2

∂y2
− α2

)
v̂

iαû+
∂v̂

∂y
= 0

(I.7)

This set of linear coupled partial differential equations can be further simplified by in-
troducing the stream function ψ of the perturbation. One then obtains the well-known
Orr-Sommerfeld equation4 [118, 145]. However, to ease the comparison for the reader be-

3Squire theorem: To any three-dimensional unstable mode (k, λ) can be associated a two-
dimensional mode (k̄, λ̄) more unstable with ℜ(λ̄) = ℜ(λ)

√
α2 + β2/α

4Introducing the streamfunction ψ such that û = −∂yψ̂ and v̂ = iαψ̂ and eliminating the pressure
from the equations (I.7) yields to:

(Ub − c)
(
∂2

∂y2
− α2

)
ψ̂ − ∂2Ub

∂y2
ψ̂ =

1

iαRe

(
∂2

∂y2
− α2

)2

ψ̂

where c = λ/α is the complex phase velocity of the disturbance. This equation, independently derived
by Orr [118] and Sommerfeld [145] in the early twenteeh century, is commonly used in local stability
theory instead of its primitive variable counterpart. Though it involves fewer degrees of freedom than
system (I.7), it can still be quite computationally hard on the numerical method used to discretise it since
it involves the square of the second derivative of the streamfunction ψ.
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tween the local and global approaches, the choice has been made to stick to the primitive
variables formulation of the problem. Within the framework of temporal stability, the
linear system (I.7) can be recast into a linear generalised eigenvalue problem in λ:

λBq̂ = Jq̂ (I.8)

where the mass matrix B and the Jacobian matrix J are given by:

B =



1 0 0
0 1 0
0 0 0


 (I.9)

and

J =




1

Re

(
∂2

∂y2
− α2

)
− iαUb −∂Ub

∂y
−iα

0
1

Re

(
∂2

∂y2
− α2

)
− iαUb −

∂

∂y

−iα − ∂

∂y
0




(I.10)

The asymptotic time evolution of the infinitesimal perturbation q̂ = (û, p̂)T is then solely
governed by the sign of ℜ(λ) (i.e. the real part of the complex frequency λ):

• if ℜ(λ) < 0, the perturbation decays exponentially in time and the base flow Ub is
then denoted as linearly stable.

• if ℜ(λ) > 0, the perturbation grows exponentially in time and the base flow Ub is
then denoted as linearly unstable.

• if ℜ(λ) = 0, the system is said to be neutral and one has to use weakly non-linear
analysis to determine whether it is stable or unstable. Such analysis is however
beyond the scope of this rapid introduction.

Investigation of the properties of the linearised Navier-Stokes operator then allows one to
determine whether the flow considered is linearly stable (and thus physically observable)
or linearly unstable and might thus transition to another state. Thanks to the small
number of degrees of freedom involved, the generalised eigenvalue problem (I.8) can be
solved nowadays using direct eigenvalue solvers on a simple laptop.

I.1.1.2 Spatial stability analysis

Investigating the temporal stability of a certain class of problems, such as the response of
the boundary layer flow to a localised vibrating ribbon, might lead to an ill-posed prob-
lems. Indeed, for such problem, the frequency of the perturbation is fixed by the ribbon’s
oscillations and one is thus more interested in the spatial evolution of the perturbation
rather than its temporal evolution. Such problems fall into the framework of spatial
stability analysis. Within this framework, the response of the flow to a time-harmonic
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forcing having a prescribed real frequency ω is investigated. The linearised Navier-Stokes
equations (I.7) can be recast into a non-linear generalised eigenvalue problem in α:

C0q̂+ αC1q̂+ α2C2q̂ = 0 (I.11)

where the C0, C1 and C2 matrices are given by:

C0 =




ω − 1

Re

∂2

∂y2
∂Ub

∂y
0

0 ω − 1

Re

∂2

∂y2
− ∂

∂y

0
∂

∂y
0




C1 =



iUb 0 i
0 iUb 0
i 0 0




C2 =




1

Re
0 0

0
1

Re
0

0 0 0




(I.12)

One must be aware that the spatial stability of incompressible parallel flows is often
investigated based on the Orr-Sommerfeld equation. In this framework, since the equa-
tion involves the fourth derivative of the perturbation streamfunction ψ, the non-linear
generalised eigenvalue problem is no longer quadratic in α but quartic. Solving such non-
linear generalised eigenvalue problem might be relatively computationally expensive and
require sophisticated eigenvalue algorithms. However, this eigenvalue problem (I.11) can
be rewritten as: (

C0 C1

0 1

)(
q̂
αq̂

)
= α

(
0 −C2

1 0

)(
q̂
αq̂

)
(I.13)

Based on this formulation of the problem, the resulting eigenvalue problem is now linear
and can be solved relatively easily. The spatial linear stability of the flow is then solely
defined by the sign of ℑ(iα):

• if ℑ(iα) < 0 then the flow is spatially stable. Perturbations shed from the forcing
sources consist in a spatially decaying wavepacket.

• if ℑ(iα) > 0 then the flow is spatially stable. Perturbations shed from the forcing
sources consist in a spatially growing wavepacket.

whereas the eigenvectors provide the shape of spatially growing (decaying) perturbation.
Among the parallel flows prone to spatial instabilities, one might cite for instance the
Blasius boundary layer flow or the co-flowing mixing layer.

I.1.1.3 Absolute and convective instabilities

In the previous sections, the stability of the flow was solely defined by the growth either
in time or space of infinitesimal perturbations. However, inifinitesimal perturbations can
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also grow both in time AND space. The investigation of such perturbations requires
further mathematical developments beyond the scope of the present introduction. Such
investigation however falls within the framework of absolute-convective linear stability
analysis. This concept is only defined for open shear flows (i.e. situations where fluid
particles enter and leave the domain of interest in finite time without being recycled,
in contrast to close flows in a finite box such as the lid-driven cavity flow) that break
the Galilean invariance. Investigating the absolute-convective instability of such a flow
allows to determine whether the considered flow behave as a noise amplifier sensitive to
external noise (e.g. co-flowing mixing layers, flat plate boundary layer, ...) or as a flow
oscillator with a well-defined frequency relatively insensitive to external noise (e.g. wakes
at Reynolds numbers above the onset of the Karman vortex street).

Introducing the stream function ψ of the infinitesimal perturbation q(x, y) and fol-
lowing the notation introduced in [80], the linearised stability equations can be written
as:

D

(
− ∂

∂x
, i
∂

∂t
, Re

)
ψ(x, t) = S(x, t) (I.14)

where the term D(·) is the dispersion relation of the equations and S(x, t) a source term
specifiying the forcing imposed on the system in some localised interval both in time and
space, and where the dependence in y has been dropped for the sake of simplicity. In
the absence of forcing S(x, t) = 0 and one has to solve the spatial or temporal eigenvalue
problems introduced previously. Introducing the Green function G(x, t), i.e. the impulse
response of the system, one can then write:

D

(
− ∂

∂x
, i
∂

∂t
, Re

)
G(x, t) = δ(x)δ(t) (I.15)

where δ denotes the Dirac delta function. The Green function contains all the informa-
tion regarding the spatio-temporal dynamics of the system. Depending on the value of
the Reynolds number, several different impulse reponse of the system are possible. The
concept of temporal and spatial instability are then defined as:

• if the flow is linearly stable then:

lim
t→∞

G(x, t) = 0 along all rays x/t = const. (I.16)

• if the flow is linearly unstable (temporal or spatial instability) then:

lim
t→∞

G(x, t) = 0 along at least one ray x/t = const. (I.17)

If unstable, the impulse response of the flow then consists of an unstable wavepacket
confined in a wedge in the (x, t) plane growing either in time or space. Among linearly
unstable flows, one can then make the distinction between absolute and convective insta-
bility:

• An unstable flow is said to be convectively unstable if:

lim
t→∞

G(x, t) = 0 along the ray x/t = 0 (I.18)
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Figure I.4: Linear impulse response G(x, t). (a) Linearly stable flow; (b) linearly convec-
tively unstable flow; (c) marginally convectively/absolutely unstable flow; (d) absolutely
unstable flow. Figure from [80].

• It said to be absolutely unstable if:

lim
t→∞

G(x, t) =∞ along the ray x/t = 0 (I.19)

These different impulse response of the system are summarised on figure I.4. If the flow
is convectively unstable, a spatially unstable wavepacket is typically advected away from
the source and let it eventually undisturbed. On the other hand, if the flow is absolutely
unstable, the unstable wavepacket surround the source and eventually contaminates the
whole medium. Extensive details about these concepts and the associated mathematical
framework can be found in [80, 81].

I.1.1.4 2D local stability theory

So far, the different local stability theories introduced have assumed that the flow investi-
gated has the form Ub = (Ub(y), 0, 0)

T . One can however consider a flow slowly evolving
in the streamwise direction and yet inhomogeneous both in the wall-normal and spanwise
direction. The base flow then has the form Ub = (Ub(y, z), 0, 0)

T . Such definition of the
base flow allows one to investigate the stability of streaky boundary layer flows [34, 46]
or Poiseuille flow in a rectangular duct [151] for instance. Based on the form of the base
flow, the linearised Navier-Stokes equations (I.2) can be simplified as:





∂u

∂t
= −v∂Ub

∂y
− w∂Ub

∂z
− Ub

∂u

∂x
− ∂p

∂x
+

1

Re
∆u

∂v

∂t
= −Ub

∂v

∂x
− ∂p

∂y
+

1

Re
∆v

∂w

∂t
= −Ub

∂w

∂x
− ∂p

∂z
+

1

Re
∆w

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(I.20)

As one can see, whereas the u velocity component of perturbation is only coupled with
the v component in the local stability theory, in the case of bi-local stability theory it is
now coupled both with v and w. Since these equations are no longer homogeneous in the
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z direction, the solution to this set of equations can only be sought as:

q(x, y, z) =

∫

Lλ

∫

Lα

q̂(y, z)eiαx+λt dαdλ+ c.c (I.21)

Introducing such normal mode expansion in (I.20) yields to:




λû = −v̂ ∂Ub

∂y
− ŵ∂Ub

∂z
− iαUbû− iαp̂+

1

Re
∆αû

λv̂ = −iαUbv̂ −
∂p̂

∂y
+

1

Re
∆αv̂

λŵ = −iαUbŵ −
∂p̂

∂z
+

1

Re
∆αŵ

iαû+
∂v̂

∂y
+
∂ŵ

∂z
= 0

(I.22)

where ∆α =
∂2

∂y2
+

∂2

∂z2
− α2. As previously, one can investigate either the temporal,

spatial or spatio-temporal linear stability of this system. For the temporal stability, one
would then have to solve the linear generalised eigenvalue problem in λ:

λBq̂ = Jq̂ (I.23)

with q̂ = (û, v̂, ŵ, p̂)T and where the matrices J and B are given by:

B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 (I.24)

and:

J =




−iαUb +
1

Re
∆α −∂Ub

∂y
−∂Ub

∂z
−iα

0 −iαUb +
1

Re
∆α 0 − ∂

∂y

0 0 −iαUb +
1

Re
∆α − ∂

∂z

iα
∂

∂y

∂

∂z
0




(I.25)

As previously, the linear temporal stability of Ub = (Ub(y, z), 0, 0)
T is solely governed by

the sign of the real part of λ:
• if ℜ(λ) < 0, the perturbation decays exponentially in time and the base flow Ub is

then denoted as linearly stable.

• if ℜ(λ) > 0, the perturbation grows exponentially in time and the base flow Ub is
then denoted as linearly unstable.

Figure I.5 provides an example of a flow inhomogeneous in both the wall-normal and
spanwise directions and yet slowly evolving in the streamwise direction. It depicts slices
of a streaky boundary layer flow for which a parallel flow assumption is valid far enough
from the roughness element. Such problem, treated in the fully three-dimensional global
stability framework in the present thesis, has been investigated by Cossu & Brandt [46],
Brandt [34] or Piot et al. [122] based on bi-local approach.
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Figure I.5: Visualisation of the streamwise velocity component of the roughness-induced
boundary layer flow in several cross-streamwise planes. The green isosurface highlights
the spatial extent of the reversed flow region developing right downstream the cylindrical
roughness element.

I.1.1.5 Global stability theory

Though they allow one to have a deep understanding of the instability mechanisms, all
the analyses introduced so far are greatly limited by the parallel flow assumption they
rely on. Unfortunately, in most applications such assumption of the velocity profile does
not hold. To circumvent this problem, improvements have been brought to the local
stability theory in the form of the weakly non-parallel flow assumption or the parabolised
stability equations. Such approachs, based on a length scale separation hypothesis, allow
the investigation of weakly non-parallel flows as the flat plate boundary layer [30] or the
corner flow [10] for instance. However, due to the length scale separation hypothesis
they rely on, such approach still is enable to allow the investigation of strongly non-
parallel flows where separation can occur. Since the early 2000’s, with the increase of
computational ressources available, some light has been shed on the linear instability
mechanisms responsible for transition in two-dimensional strongly non-parallel flows Ub =
(Ub(x, y), Vb(x, y), 0)

T . Investigating the stability of such two-dimensional flow toward
infinitesimal perturbations now falls within the framework of so-called global stability
theory.

In order to derive the global stability equations governing the evolution of infinites-
imal perturbations evolving on strongly non-parallel two-dimensional flows, let us start
from the three-dimensional linearised Navier-Stokes equations (I.2). Assuming the base
flow considered is of the form Ub = (Ub(x, y), Vb(x, y), 0)

T , the linearised Navier-Stokes
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equations (I.2) can be simplified as:




∂u

∂t
= −u∂Ub

∂x
− v∂Ub

∂y
− Ub

∂u

∂x
− Vb

∂u

∂y
− ∂p

∂x
+

1

Re
∆u

∂v

∂t
= −u∂Vb

∂x
− v∂Vb

∂y
− Ub

∂v

∂x
− Vb

∂v

∂y
− ∂p

∂y
+

1

Re
∆v

∂w

∂t
= −Ub

∂w

∂x
− Vb

∂w

∂y
− ∂p

∂z
+

1

Re
∆w

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

(I.26)

Whereas the local stability equations (I.4) are homogeneous both in the x and z directions,
this set of equations is only homogeneous in the z direction. Nonetheless, the solution to
these equations can still be sought in the form of normal modes:

q(x, y, z) =

∫

Lλ

∫

Fβ

q̂(x, y)eiβz+λt dβdλ+ c.c (I.27)

with q̂(x, y) = (û, p̂)T being now a normal mode depending on both the x and y spatial
directions, β the spanwise wavenumber of the normal mode considered and λ its complex
frequency. As previously, since the equations considered are linear, one can solve them
for each of the normal mode. The global stability equations then read:





λû = −û∂Ub

∂x
− v̂ ∂Ub

∂y
− Ub

∂û

∂x
− Vb

∂û

∂y
− ∂p̂

∂x
+

1

Re

(
∂2

∂x2
+

∂2

∂y2
− β2

)
û

λv̂ = −û∂Vb
∂x
− v̂ ∂Vb

∂y
− Ub

∂v̂

∂x
− Vb

∂v̂

∂y
− ∂p̂

∂y
+

1

Re

(
∂2

∂x2
+

∂2

∂y2
− β2

)
v̂

λŵ = −Ub
∂ŵ

∂x
− Vb

∂ŵ

∂y
− iβp̂+ 1

Re

(
∂2

∂x2
+

∂2

∂y2
− β2

)
ŵ

∂û

∂x
+
∂v̂

∂y
+ iβŵ = 0

(I.28)

It is worthy to note that when a strictly two-dimensional perturbation is considered, these
equations can be further simplified using a stream function Ψ formulation of the equations.
However, there exists no equivalent form of the Squire theorem for the global stability
problem. More importantly, numerous studies have highlighted that spanwise periodic
perturbations behave very differently from strictly two-dimensional ones. Nonetheless,
depending on the problem of interest, the global stability of the flow can be investigated
using different tools:

• Temporal stability: investigation of the asymptotic time evolution of infinitesimal
perturbations.

• Resolvent analysis: investigation of the response of the flow to harmonic forcing.

• Transient growth analysis: investigation of the short-time dynamics and transient
amplification of infinitesimal perturbations.
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Whereas the wavenumber of the normal mode in the local stability framework could be
complex, one must be aware that in the global stability framework, the wavenumber
characterising the perturbation is only allowed to be a real number. Since the scope of
the present thesis focuses on global stability analysis of fully three-dimensional flows, only
a very brief illustration of the global stability of two-dimensional flows will be given. For
the sake of conciseness, the transient growth analysis in the global stability framework is
only treated in chapter II. Moreover, since the signaling problem in the global stability
framework is beyond the scope of the present work, it will not be presented. For details,
the reader is however referred to Monokroussos et al. [116] for an illustration on a fully
three-dimensional flow configuration.

Stability analysis

As for the temporal local stability of parallel flows, the global stability of two-dimensional
flow is governed by the spectrum of eigenvalues of the linearised Navier-Stokes operator.
The global stability equations (I.28) can be recast into a linear generalised eigenvalue
problem in λ:

λBq̂ = Jq̂ (I.29)

where the mass matrix B and the Jacobian matrix J are given by:

B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 (I.30)

and

J =




−∂Ub

∂x
− (Ub · ∇) + 1

Re
∆β −∂Ub

∂y
0 − ∂

∂x

−∂Vb

∂x
−∂Vb

∂y
− (Ub · ∇) + 1

Re
∆β 0 − ∂

∂y

0 0 −(Ub · ∇) + 1
Re
∆β −iβ

∂
∂x

∂
∂y

iβ 0




(I.31)
with ∆β = ∂2x + ∂2y − β2. The asymptotic time evolution of the infinitesimal perturbation
q̂(x, y) is then governed by the sign of ℜ(λ):

• if ℜ(λ) < 0, the perturbation decays exponentially in time and the base flow Ub is
then labelled as being globally stable.

• if ℜ(λ) > 0, the perturbation grows exponentially in time and the base flow Ub is
then labelled as being globally unstable.

• if ℜ(λ) = 0, the system is said to be neutral. As for the local stability, one can then
use global weakly non-linear analysis to determine the actual stability of the flow.

Illustration of a two-dimensional globaly unstable lid-driven cavity flow is given in chap-
ter II, whereas figure I.6 depicts the two-dimensional base flow and the two-dimensional
global mode obtained from the global stability of a detached boundary layer flow. It
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Figure I.6: Leading unstable two-dimensional global mode of the detached boundary layer
flow at Re = 700. The geometry considered is the same as in [58]. Solid black line depicts
the spatial extent of the base flow’s recirculation bubble.

is worthy to note that global instability and local absolute instability might be closely
related. Indeed, it has been shown by Hammond & Redekopp [77] for two-dimensional
separated flows that local absolute instability of the flow within the reversed flow region
could be a sufficient condition for a global instability of the whole flow. On the other
hand, from the work of Marquillie & Ehrenstein [113] on the global instability of a de-
tached boundary layer flow, it appears that local absolute instability of the flow is not
a necessary condition for global instability. This point is however still an open question
receiving a lot of attention.

Finally, from a purely practical point of view, since global stability analysis requires
two spatial directions to be discretised, a larger number of degrees of freedom are necessary
to characterise the perturbation compared to local stability analysis, typically O(50 000)
degrees of freedom. As a consequence, the matrices involved in the computation are
much more computationally expensive to construct and solving the generalised eigenvalue
problem with direct solvers might not be the most efficient way. To circumvent this
problem, one might then use iterative eigenvalue solvers. Among these eigenvalue solvers,
the most famous is the Arnoldi method introduced in 1951 by W. E. Arnoldi [16] and
some of its variants as the Implicitely Restarted Arnoldi Method (IRAM) introduced
by Lehoucq & Sorensen [100] in 1996. Nowadays, iterative eigenvalue solvers based on
the exponential propagator eJt are more and more popular (see Edwards et al. [57] and
Bagheri et al. [20]). For details about these eigenvalue sovlers, the reader is referred to
the book by Antoulas [14] as well as to the numerical aspects regarding this part of the
present thesis.

I.2 Context and Objectives

Context

The present PhD thesis is part of a broader project entitled SICOGIF (SImulation and
COntrol of Geometry Induced Flows) under the supervision of Uwe Ehrenstein and funded
by the French National Agency for Research (ANR). Started in 2009 and finished in August
2013, this project involved several different parties among which:
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• IRPHE, Aix-Marseille Université: Uwe Ehrenstein, Thomas Leweke, Pierre-Yves
Passaggia

• Laboratatoire Jean Dieudonné, Université de Nice Sophia Antipolis: François Gal-
laire and Edouard Boujo

• DynFluid, Arts et Métiers ParisTech: Jean-Christophe Robinet

• LMFA@Université Jean Monnet, Saint-Etienne (2009-2011) and LML, Université
de Lille 1 (2011-2014): Emmanuel Leriche, Alexandre Delache

Its aim was to improve our understanding of instability and transition in complex sepa-
rated flows as well as try to control them. Two configurations were originally part of it:
i) the flow over a two-dimensional bump (IRPHE, EPFL) and ii) the stenotic pipe flow
(IRPHE, DynFluid, LML). These two flow configurations have been both investigated
numerically and experimentally.

Objectives

Recently, Bagheri et al. [21] and Ilak et al. [82] have performed the first ever global stabil-
ity analyses of fully three-dimensional flows. Such breakthrough has been made possible
by the constant increase of computational ressources available as well as to the develop-
ment of new iterative eigenvalue solvers [20, 57]. Following their footsteps, the major aim
of the present thesis is to develop the tools necessary to perform similar investigations.
As to illustrate how fully three-dimensional global stability analyses can improve our un-
derstanding of flow instability and transition as well as its connection to two-dimensional
global stability analyses and its limitations, three different cases have been considered:

• the lid-driven cavity flow with spanwise end-walls,

• the asymmetric stenotic pipe flow,

• the roughness-induced boundary layer transition

Each of these cases has very different applications and properties. On the one hand, the
lid-driven cavity (LDC) flow is a fully three-dimensional confined flow with applications
essentially in the paper coating industry. Nonetheless, despite its apparent simplicity, the
flow in a lid-driven cavity exhibits some of the major features of fluid dynamics: bound-
ary layers, shear layers, vortices and velocity streaks. These properties thus make the
LDC flow a perfect candidate for three-dimensional global stability analysis and it is be-
lieved that improving our understanding of its transition mechanisms might eventually
help as well our understanding of the transition of various others flows exhibiting the
same features. On the other hand, the flow in a stenotic pipe with rigid walls is an open
shear flow having applications in the bio-medical area. It exhibits a three-dimensional
reversed flow region and shear layers as well as a confined jet. For small asymmetry of
the stenosis, one might think that the flow can be considered at the first order as being
almost axisymmetric. Yet, as explained in chapter IV, the global stability properties of
the strictly axisymmetric stenotic pipe flow and that of the very slightly asymmetric one
are very different. Finally, the boundary layer flow over a three-dimensional roughness
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element is an open shear flow having applications mostly in aerodynamics. The associated
roughness-induced transition has been extensively investigated since the 1950’s and still is
nowadays quite a challenging fundamental problem with yet practical applications. Until
very recently, this problem has enssentially been addressed by direct numerical simula-
tions and local stability theory [35]. Though it is the most computationally challenging
problem treated in this PhD thesis, results presented in chapter V stunningly highlight
the improved understanding one might gain from fully three-dimensional global stability
anlysis.

Outlines

This manuscript is organised as follows. First, the different numerical methods and tools
used during this PhD are presented in chapter II. It includes a short presentation of the
spectral elements code Nek 5000 [63], the fully three-dimensional global stability equations
and the Arnoldi method employed to solve the resulting eigenvalue problem, as well as
an introduction to the Koopman mode decomposition and to the optimal perturbation
theory. In chapter III, the instability and transition taking place in three-dimensional lid-
driven cavity flows are investigated. More particularly, the influence of the spanwise extent
of the cavity on the stability properties of the flow is studied along with some insights
given about the chaotic dynamics observed in a cubical lid-driven cavity at a moderate
Reynolds number. Chapter IV summarises results obtained regarding the global stability
of the flow within an asymmetric stenotic pipe. Focus is given about the influence of the
stenosis eccentricity on the stability of the flow. Then, chapter V details the investigation
conducted on the roughness-induced transition to turbulence in boundary layer flows.
This transition has been investigated using the joint application of fully three-dimensional
analyses and direct numerical simulations. Finally, conclusions are drawn in the last
chapter along with perspectives.
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Chapter II

Numerical methods

Contents
II.1 Introduction to the spectral elements code Nek5000 . . . . . . . . . . 19

II.1.1 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II.1.2 Time discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II.2 Steady states computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II.3 Modal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II.3.1 Global linear stability, time-stepping and Arnoldi algorithm . . . . . 30

II.3.2 Koopman modes decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II.4 Optimal perturbations and Transient growth analysis . . . . . . . . . 40

II.4.1 Adjoint linearised Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . 42

II.4.2 Optimal perturbation and eigenvalue analysis of M∗M . . . . . . . . . . 43

II.1 Introduction to the spectral elements code Nek5000
"In the mid-eighties Paul Fischer, Lee Ho, and Einar Rønquist (M.I.T) devel-
oped the incompressible fluid flow solver NEKTON, with technical input from
A. Patera and Y. Maday. A commercial version was brought to market by
Fluent, Inc, as NEKTON 2.0, in 1996. Paul Fischer branched off a research
version of the code known as Nek5000. This code was recognized with the
Gordon Bell prize for algorithmic quality and sustained parallel performance
in 1999. Today, Fischer’s code is released as an open source project covering
a broad range of applications including thermal hydraulics of reactor cores,
transition in vascular flows, ocean current modeling and combustion. More
than two dozen research institutions and more than 100 users worldwide are
using the code. Leading edge scalability has been demonstrated up to 262’144
processors producing more than 170TFlops (Extreme Scaling Workshop 2010
Report)."

from https://nek5000.mcs.anl.gov/index.php/Main_Page
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II.1.1 Spatial discretisation

The non-linear Navier-Stokes equations as well as their linearised counterparts are partial
differential equations (PDE) and as such require to be spatially discretised in order to
be solved numerically. The code Nek 5000 [62] used for this PhD thesis is based on the
Legendre spectral elements method. This method, introduced in 1984 by A. Patera [119],
shares close connections with the well-known finite elements discretisation and, as such, is
part of the family of approximation schemes based on the Galerkin method. Only a brief
introduction to this discretisation method will be given in the present manuscript. For
further details, the reader is referred to the books by Deville et al. [52] and Karniadakis
& Sherwin [87]. For the sake of simplicity, the notation used in this section will be the
same as the one in [52].

To gain clarity, the spectral elements spatial discretisation will be applied to a one-
dimensional non-linear advection-diffusion problem: the Burgers equation. Named after
Johannes Martinus Burgers (1895-1981), this non-linear partial differential equation shares
some connections with the Navier-Stokes equations. Introducing the velocity u and the
viscous coefficient ν, the one-dimensional Burgers equation reads:





∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

u(t = 0, x) = u0

u(t, x = −1) = 1; u(t, x = 1) = −1

(II.1)

The computational domain considered is Ω := {x ∈ [−1, 1]}. Equation (II.1) is more-
over subject to dirichlet boundary conditions at each end of the computational domain
Ω. Though equation (II.1) appears to share close connections with the Navier-Stokes
equations, Hopf [79] and Cole [45] have shown that it lacks the most important property
attributed to turbulence: its solutions do not exhibit chaotic features like sensitivity to
initial conditions. Despite this major difference with the Navier-Stokes equations, equa-
tion (II.1) exhibits a similar non-linearity and often serves as a benchmark for numerical
methods, hence it is used in the present introduction to the spectral element method.

II.1.1.1 Variational formulation of the equations

As mentionned, the spectral elements method is part of the approximation schemes based
on the Galerkin method. Partial differential equations discretised using such technique
need to be solved in what is known as the weak form. Introducing a set of test functions
v(x) belonging to a Sobolov space H1

0(Ω), one can recast equation (II.1) into its weak
counterpart: ∫

Ω

v
∂u

∂t
dx+

∫

Ω

vu
∂u

∂x
dx = −ν

∫

Ω

∂v

∂x

∂u

∂x
dx (II.2)

where the right-hand side has been treated using integration by parts and the dependence
on the variables x and t has been dropped for the sake of clarity. Let us now consider a
set of N + 1 basis functions φi(x) such that:
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u(x, t) =

N∑

i=0

φi(x)ui(t)

v(x) = φj(x) 0 ≤ j ≤ N

(II.3)

Introducing such expansion of u(x, t) and v(x) into the weak formulation of the Burgers
equation (II.2) yields to:

(∫

Ω

φjφidx

)
dui
dt

+

(∫

Ω

φjφiui
dφi

dx
dx

)
ui = −

(
ν

∫

Ω

dφj

dx

dφi

dx
dx

)
ui (II.4)

Equation (II.4) can be recast in matrix-vector form:

M d

dt
u+ C(u)u+Ku = 0 (II.5)

with u = (u0, · · · , uN)T and where M is the mass matrix, C(u) the convective operator
and K the stiffness matrix. The ijth entries of these matrices are given by:

Mi,j =

∫

Ω

φiφjdx,

Ci,j(u) =
∫

Ω

φiφj
dφi

dx
dx,

Ki,j = ν

∫

Ω

dφj

dx

dφi

dx
dx

(II.6)

To this point, derivation of the variational form of the Burgers equation is similar to
any Galerkin-like discretisation method. Differences between the different discretisation
schemes result from the choice of the test and trial functions.

II.1.1.2 Legendre polynomials and Legendre spectral elements discretisation

Equation (II.5) resulting from the weak formulation of the Burgers equation (II.1) is
a common feature to all approximation schemes based on the Galerkin method. The
determination of the particular approximation scheme used is then determined by the
choice of the set of test and trial functions φi(x). In the code Nek 5000 [62], these
functions are based on the Legendre polynomials. This specific choice of function basis
is where the spectral element method greatly differs from the finite elements method:
orthogonality of the functions is related to the topological (local extension) and analytical
nature of the function basis chosen in the SEM framework. Moreover, the Legendre
polynomials provide the best approximation in the H1 norm.

Let us consider the partition ∆E of the segment (a, b) with E elements such that:

∆E : a = x0 < x1 < x2 < · · · < xE−1 < xE = b (II.7)

Each element of this partition is defined as Ωe := {x ; xe−1 < x < xe} , 1 ≤ e ≤ E, and
let Ω̂ := {ξ ; −1 ≤ ξ ≤ 1} be the reference (or parent) element onto which each element

21



Ωe will be mapped using an affine transformation. For the sake of simplicity, an equi-
repartition of the elements is considered such that they are all of length he = (b− a)/E.
Only the discretisation of the problem within the reference element will be presented, for
further details readers are referred to [52]. Let ΞN+1 = {ξ0, ξ1, . . . , ξN} be the ordered set
of N + 1 Gauss-Lobatto-Legendre (GLL) quadrature points on Ω̂. These points are the
roots of the following equation:

(1− ξ2)L′
N (ξ) = 0 (II.8)

where L′
N is the first derivative of the Legendre polynomial of degree N. The Lagrange

interpolation polynomial of any function u(ξ) on the GLL quadrature points is given by:

INu(ξ) =
N∑

j=0

u(ξj)πj(ξ) (II.9)

with {πj(ξ)}Nj=0 being the associated interpolation basis of degree N. Elements of this basis
are related to the set of basis functions φi(x) by an affine transformation such that:

φi(x)|Ωe
= πi(ξ

e(x)) (II.10)

with the functions πi given by:

πj(ξ) =
−1

N(N + 1)

(1− ξ2)L′
N(ξ)

(ξ − ξj)LN (ξj)
, 0 ≤ j ≤ N (II.11)

As to further illustrate the difference between the Legendre spectral element and the
finite element methods, figure II.1 depicts the first five functions of (a) the Legendre-SEM
function basis and (b) the classical FEM, respectively.

Based on this Legendre spectral element basis, the spectral elements approximation of
ueN(x) of degree N in the element Ωe mapped onto the reference element Ω̂ is:

ueN(x) =

N∑

j=0

uejπj(ξ
e(x)) (II.12)

with
{
uej
}N

j=0
the nodal values of the unknown vector field u in Ωe. Replacing φ(x) in

(II.4) by the Legendre basis functions πj(ξ) and applying Gaussian quadrature rule based
on the GLL nodes to evaluate numerically the different integrals yields:

Me
ij =

he
2
ρiδij (II.13)

for the discretised elemental mass matrix, where ρi denote the GLL quadrature weight at
the ith GLL node. The discretised elemental stiffness matrix and the non-linear convection
operator are given by:

Ke
ij = ν

2

he

N∑

m=0

ρmD
(1)
N,miD

(1)
N,mj

C(u)ij = ρiuiD
(1)
N,ij

(II.14)
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(a)

(b)

Figure II.1: Example of (a) the finite element basis and (b) the Legendre spectral element
basis for N = 10. Figures from [52].
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(a) Global mass matrix M (b) Global stiffness matrix K

Figure II.2: Structure of the global mass and stiffness matrices for E = 3 and N = 5.

where the differentiation matrix D(1)
N is given by:

D
(1)
N,ij =

dπj
dξ

(ξ = ξi) =





LN(ξi)

Ln(ξj)

1

ξi − ξj
, i 6= j,

− (N + 1)N

4
, i = j = 0,

(N + 1)N

4
, i = j = N,

0 otherwise

(II.15)

In order to assemble the contribution of all elements Ωe to the global matrices, one has
to use direct stiffness summation which is beyond the scope of this rapid introduction to
spectral elements. The semi-discretised equation however finally reads:

M
d

dt
u+C(u)u+Ku = 0 (II.16)

Figure II.2 displays the structure of the global stiffness K and mass M matrices resulting
from the direct stiffness summation. As one can see, the mass matrix M exhibits a diag-
onal structure (it usually is tri- or penta-diagonal in the finite elements method), whereas
the stiffness matrix K exhibits a block-diagonal structure, another major difference with
the finite element method where the matrices are sparse. The stiffness matrix is moreover
symmetric and positive-definite.

On boundary conditions

So far, nothing has been said about the implementation of boundary conditions. In the
spectral elements method, these conditions can be imposed by several different ways.
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Though the use of Lagrange multipliers is not the way boundary conditions are imple-
mented within Nek 5000, this method will be presented here due to the resemblance of the
resulting system with the Navier-Stokes equations. Introducing the Lagrange multiplier
p, equation (II.16) along with its constraints can be rewritten as:





M
d

dt
u+C(u)u = −Ku−DTp

Du = 0
(II.17)

Assuming the constraint Du = 0 is similar to the divergence-free constraint ∇ · u = 0
and DTp similar to the pressure gradient term ∇p, then the resemblance to the Navier-
Stokes equations is striking. From this point of view, the pressure p in the incompressible
Navier-Stokes equations can actually be seen to play the role of a Lagrange multiplier in
order to impose the divergence-free constraint. One major difference remains however the
way this pressure p is treated in the spectral elements discretisation of the Navier-Stokes
equations. Further details about this can be found in [52].

Remarks about the meshing process

As for any discretisation of partial differential equations, a mesh is a pre-requisite. Meshing
a geometry using spectral elements is not as straightforward as in finite differences for
instance. Indeed, as it has just be shown, one has to bear in mind that spectral elements
mesh relies on two different grid levels: the spectral elements distribution itself and the
polynomial approximation within each element. Figures II.3(a) and (b) depict a typical
elemental mesh for a square lid-driven cavity problem along with the resulting mesh when
polynomial approximation of order 7 is used, respectively. In order to refine the mesh,
two different types of refinements can be used:

• One can add more spectral elements to the spectral elements distribution, a refine-
ment known as h-type.

• Or keeping the spectral elements distribution unchanged and increases the poly-
namial order within each of the spectral element. This is known as p-type refine-
ment.

In all the different studies presented in this manuscript, p-type refinement has been pref-
ered to h-type refinement. Indeed, p-type refinement only requires an increase of the
number of Legendre polynomials used while h-type requires the construction of a new
mesh.

II.1.2 Time discretisation

Let us consider the semi-discretised formulation (II.17) of the Burgers equation just estab-
lished. As we have just seen, this problem is equivalent to the semi-discretised formulation
of the Navier-Stokes equations. In order to avoid the algorithmic difficulties resulting from
an implicit treatment of the non-symmetric non-linear terms C(u)u, the remaining possi-
bility is to treat them explicitly. The temporal discretisation scheme used in Nek 5000 is
the semi-implicit scheme BDFk/EXTk: the viscous terms are discretised implicitly using

25



X

Y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a)

X

Y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b)

Figure II.3: (a) Elemental mesh for the lid-driven cavity flow problem. 10 elements
are used in each direction and located along a GLL grid. (b) Resulting mesh using a
polynomial approximation of order 7 within each element.

a backward differentiation scheme of order k whereas the non-linear terms are treated
explicitly by an extrapolation of order k, with k = 2 or 3. For k = 3, the fully discretised
Burgers (Navier-Stokes) problem then reads:
(

11

6∆t
M+K

)
un+1
i −DT

i p
n+1 =

M

∆t

(
3uni −

3

2
un−1
i +

1

3
un−2
i

)
−
(
3Cuni − 3Cun−1

i +Cun−2
i

)

(II.18)
Adding DT

i p
n to both sides and rewritting the right-hand side as a simple forcing vector

MFn
i , equation (II.18) along with the divergence-free condition can be recast into the

following matrix form of the unsteady forced Stokes problem:
(

H −DT

−D 0

)(
un+1

δpn+1

)
=

(
MFn +DTpn

0

)
(II.19)

where H is known as the Helmholtz operator. This matrix problem can be solved using a
LU decomposition. Introducing a matrix Q for the sake of projection onto a divergence-
free space, the solution to such LU decomposition is a two-step procedure:

(
H 0
−D −DQDT

)(
u∗

δpn+1

)
=

(
MFn

i +DTpn

0

)
(II.20)

and
(
I −QDT

0 I

)(
un+1

δpn+1

)
=

(
u∗

δpn+1

)
(II.21)

The choice of the matrix Q then determines which projection method is used. In the
present code, the matrix Q is set to be:
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Q = H−1 (II.22)

resulting in the Uzawa algorithm. From a practical point of view, evaluations of the
inverse of the Helmholtz operator is computationnally intensive. In order to overcome this
problem, instead of the exact Uzawa algorithm, the Blair-Perot algorithm is implemented
within Nek 5000. The projection matrix then is Q = γM−1/∆t (with γ = 11∆t/6 for
the BDF3/EXT3 scheme). Since the mass matrix M is diagonal, computing its inverse is
a straightforward task. Extensive details on the resolution of this Helmholtz problem and
the choice of both the temporal discretisation and the projection method can be found
in [52].

II.2 Steady states computation

Computing steady equilibriums of the non-linear Navier-Stokes equations is a pre-requisite
to any linear stability calculation. Several procedures exist to compute such solutions,
also called fixed points of the equations in the applied mathematics community or base
flows in the fluid dynamics one, among which all the techniques derived from the Newton
algorithm. Though extremely efficient, the major drawback of these techniques is that they
rely on the computation of a Jacobian matrix1. Unfortunately, when dealing with fully
three-dimensional Navier-Stokes equations, the number of degrees of freedom involved is
far too large to enable the computation and storage of such matrices. This problem has
been overcome in 2006 by Akervik et al. [6] introducing a method known as selective
frequency damping. This technique enables a damping of the oscillations of the unsteady
part of the solution using a temporal low-pass filter. From a practical point of view, this
is achieved by adding a forcing term to the right-hand side of the Navier-Stokes equations
and extending the Navier-Stokes equations (I.1) with an equation for the filtered state Ū.
The extended system is then governed by the following set of equations:





U̇+ (U · ∇)U = −∇P +
1

Re
∆U− χ(U− Ū)

˙̄U = ωc(U− Ū)

∇ ·U = 0

(II.23)

with χ being the gain of the filter and ωc its cutting circular frequency. The choice of
these two parameters is crucial for the computation: χ has to be positive and larger
than the growth rate of the instability one aims to kill, whereas ωc has to be lower than
the eigenfrequency ωI of the instability (usually ωc = ωI/2). Provided the filtered state
Ū equals the Navier-Stokes state U, system (II.23) reduces to the steady Navier-Stokes
equations highlighting that this extended system indeed enables the computation of fixed
points of the original non-linear Navier-Stokes equations (I.1). One major limitation of
this technique remains however the computation of steady solutions when an eigenvalue
of the associated linearised system turns out to be a real eigenvalue. Indeed, in such cases

1The reader must be aware nonetheless that some Jacobian-free Newton methods exist. Such method
however requires important modifications of the one’s code and have thus not been considered as potential
steady state computation tool in the present thesis for the sake of time limitations.
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the low-pass filter applied to the non-linear Navier-Stokes equations is unable to kill such
non-oscillating unstable mode and consequently to stabilise the fully non-linear system.
One possibility to overcome this problem is to use existing symmetries of the base flow
solution whenever possible though this is not always sufficient.

Numerical implementation : Two different time discretisation schemes can be used
to implement the filtered state’s evolution equation within a direct numerical simulation
code: implicit or explicit schemes. For the sake of simplicity, it has been decided in the
present work to make use of explicit Euler schemes since they do not need any intrusive
modifications of the code and are pretty straigthforward to implement. For a simple
explicit Euler scheme of order 1, the resulting discretised filtered state’s equation would
then reads:

Ūn+1 = Ūn +∆t
(
ωc

(
Un − Ūn

))

In the meantime, the stabilising forcing term in the right-hand side of the Navier-Stokes
equations has been treated explicitly as well: −χ(Un − Ūn).

Illustration : To illustrate the use of selective frequency damping to compute unstable
steady equilibrium of the Navier-Stokes, the flow over a two-dimensional cylinder is taken
as an example. Numerous studies have shown that such flow becomes globally unstable
for Re ≥ 48. Hence, the Reynolds number will be set to Re = 60 as to compute an
unstable steady equilibrium. Previous global stability analyses have predicted that the
leading eigenvalue for this given Reynolds number is λ ≃ 0.02+ i0.8. As a consequence, in
order for the selective frequency damping to work, one must have χ ≥ 0.02 and ωc ≤ 0.4.

In order to highlight the influence of the parameters χ and ωc on how fast the compu-
tation converges toward the unstable steady equilibrium solution, several differents cases
have been considered. Table II.1 provides the values of χ and ωc for these different cases
as well as the number of iterations that have been needed to reach a steady state con-
verged down to ‖un+1 − un‖L2/dt ≤ 10−8, whereas figures II.4(a) and (b) provide the
time-evolution of the residual for fixed ωc and fixed χ, respectively, along with the un-
filtered case. As one can see, the choice of the couple (χ, ωc) is crucial for how fast the
solution converges toward the unstable equilibrium. Indeed, though only the values of χ
and ωc have been changed, the computational time needed for convergence between Case
1 and Case 5 has almost been reduced by a factor 3. Mathematical details about the
influence of χ and ωc on the convergence rate can be found in the paper by Akervik et
al. [6]. Despite the dependance of the convergence rate on the values of χ and ω, provided
χ ≥ 0.02 and ωc ≤ 0.4, this procedure will always converges toward the same unstable
equilibrium. As shown on figure II.5, the streamwise velocity contours of the solution
computed for (χ, ωc) = (0.5, 0.05) (solid lines) and (χ, ωc) = (0.125, 0.2) (dashed lines)
are superimposed.
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Case 1 Case 2 Case 3 Case 4 Case 5
χ 0.5 0.25 0.125 0.125 0.125
ωc 0.05 0.05 0.05 0.1 0.2

Number of iterations 276’636 188’662 141’974 105’650 87’796

Table II.1: Values of the different couples (χ, ωc) for selective frequency damping as well
as the number of iterations needed to reach a steady state converge down to ‖un+1 −
un‖L2/dt ≤ 10−8 for all the cases considered. A two-dimensional cylinder flow at Re = 60
has been considered.

(a) Fixed ωc = 0.05

(b) Fixed χ = 0.125

Figure II.4: Time-evolution of the residual for the different set of parameters (χ, ωc)
considered in table II.1. Convergence threshold is set to 10−8.

Figure II.5: Streamwise velocity contours of the 2D cylinder unstable equilibrium solution
at Re = 60 computed for (χ, ωc) = (0.5, 0.05) (solid lines) and (χ, ωc) = (0.125, 0.2)
(dashed lines).
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II.3 Modal decomposition

II.3.1 Global linear stability, time-stepping and Arnoldi algorithm

Various types of stability may be discussed for the solutions of differential equations
describing dynamical systems. As such, before continuing with the stability analysis of
fluid systems, one needs to properly define what is meant by linear stability. In the
present section, we base our definition of linear stability on the one initially given by
Lyapunov. Given a fixed point Qb = (Ub, Pb)

T of the Navier-Stokes equations, one then
infinitesimally perturbs the fluid system in the vicinity of this particular equilibrium. If
the perturbation decays exponentially so that the system eventually relaxes toward the
fixed point Qb, this particular fixed point is said to be linearly stable, otherwise it is
said to be linearly unstable. It is important to note that, given this definition of linear
stability, one only is interested in the asymptotic time evolution of a given infinitesimal
perturbation q = (u, p)T . In the present framework, this time-evolution is governed by
the linearised three-dimensional incompressible Navier-Stokes equations:





u̇+ (u · ∇)Ub + (Ub · ∇)u = −∇p+ 1

Re
∆u

∇ · u = 0
(II.24)

Introducing the Jacobian matrix J and the mass matrix B, one can recast system (II.24)
into the following linear dynamical system form:

B
∂q

∂t
= Jq (II.25)

where the Jacobian and mass matrices are given by:

J =

(
−∇Ub −Ub · ∇+Re−1∆ −∇

∇· 0

)

B =

(
I 0
0 0

) (II.26)

Since the system under consideration is a time-autonomous linear dynamical system, one
can expend the perturbation q into normal modes such that q(x, t) = q̂(x)eλt. Introducing
such expansion for q, system (II.25) can then be transformed into the following generalised
eigenvalue problem:

λBq̂ = Jq̂ (II.27)

where λ = σ + iω is the eigenvalue and q̂ is the eigenvector one seeks for. The sign
of the leading eigenvalue’s real part σ then determines whether the fixed point Qb is
linearly stable or unstable, whereas its imaginary part ω characterises the stationnary or
oscillatory nature of the associated eigenvector. Moreover, the imaginary part of the first
eigenvalue to step within the upper-half complex plane also determines whether the fixed
point experiences a pitchfork (ω = 0) or a Hopf bifurcation (ω 6= 0).
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Base Flow Inhomo. direction(s) Dim. of u(t) Storage of J
Poiseuille U(y) 1D 102 ∼1Mo
2D LDC U(x, y) 2D 105 ∼25Mo

Roughness element U(x, y, z) 3D 107 ∼10To

Table II.2: Estimates of the memory footprint required for explicit construction of the
matrices involved in generalised eigenvalue problems.

II.3.1.1 Time-stepper approach

Numerous algorithms exist to compute the eigenpairs (λ, q̂) solution to the generalised
eigenvalue problem (II.27). However, most of these algorithms require the explicit con-
struction of the matrices B and J. Unfortunately, generalised eigenvalue problems result-
ing from the discretisation of the fully three-dimensional linearised Navier-Stokes equa-
tions (II.24) involve a very large number of degrees of freedom resulting in mass and
Jacobian matrices of extremely large dimensions. Table II.2 provides some estimates of
the memory requirements one would typically need to explicitly construct the generalised
eigenvalue problem (II.27) depending on the spatial dimension of the initial problem un-
der investigation. Though the actual memory footprint highly depends on the size of
the problem and the choice of dicretisation used, these rough estimates clearly high-
light how costly and unpractical it would be to explicitly construct these matrices in
the fully three-dimensional global stability framework. As to circumvent this problem,
quite a few algorithms have been proposed over the past decades. The one chosen for
the present PhD thesis is based on a time-stepper formulation of the eigenvalue problem
as proposed initally by Marcus & Tuckerman [111] in 1987 and used by few other au-
thors [12, 24, 57, 70, 86, 110, 134] until it has been greatly popularised in 2008 by Bagheri
et al. [20]. This technique relies on the projection of the linear dynamical system (II.25)
onto a divergence-free vector space such that it can simply be rewritten as:

∂u

∂t
= Au (II.28)

where A is the projected Jacobian matrix. Equation (II.28) now accepts the following
expression:

u(∆t) = eA∆tu0 (II.29)
as a formal solution. The operator eA∆t, also denoted M(∆t), is called the time or
exponential propagator of the system (II.28). It appears at first sight that this so-called
time stepper approach does not really simplify the initial problem of memory footprint.
Indeed, not only does eA∆t is a matrix of very large dimensions as well, but it is well-known
that computing a matrix exponential can be quite a challenging computational task. The
most interesting feature of such a time-stepper approach however is that, though eA∆t

is at least as computationally challenging to construct explicitly as the Jacobian A, the
action of this exponential propagator onto a vector u0 can easily be approximated by
simply time-marching the linearised Navier-Stokes equations (II.24) with u0 as the initial
condition. Moreover, it is worthy to note that the eigenpairs (V,Λ) of the Jacobian matrix
A and those (Ve,Σ) of the associated exponential propagator eA∆t are related as follows:

Λ =
log(Σ)

∆t
, V = Ve (II.30)
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M U U

H

R

Figure II.6: The Arnoldi process: given M ∈ Rn×n, construct U ∈ Rn×k with orthonormal
columns such that H ∈ Rk×k is an upper Hessenberg matrix and only the last column of
the residual R ∈ Rn×k is nonzero. Figure has been adapted from [14].

Due to this fairly simple relationship linking the eigenpairs of the Jacobian matrix to those
of the exponential propagator, and because the action of the latter operator onto a given
vector can be approximated relatively easily, the technique proposed in [20, 57] aims at
computing the exponential propagator’s eigenpairs instead of the Jacobian matrix ones.

II.3.1.2 Arnoldi algorithm

To compute the eigenpairs of the exponential propagator M, the time-stepper approach
then relies on the Arnoldi factorisation. Introduced in 1951 by W.E. Arnoldi [16] and
derived from the Lanczos iteration, the Arnoldi algorithm is an iterative eigenvalue solver
enabling one to compute the eigenpairs of a general - possibly non-Hermitian - matrix.
Whereas regular direct eigenvalue solvers work out the eigenvalues directly from the ele-
ments of the matrices (hence the label direct methods), the Arnoldi algorithm rather make
the matrices map vectors and makes its conclusions from their images. As a consequence,
this Arnoldi factorisation is based on the use of Krylov subspaces. Consequently, this
iterative eigenvalue algorithm aims at computing approximations of the leading subsets of
eigenpairs instead of the eigenpairs themselves. For extensive details on the Arnoldi algo-
rithm and other eigenvalue algorithms, the reader is refered to the book by Antoulas [14].

Given the exponential propagator M and an initial vector u0 such that ‖u0‖ = 1, one
can build-up the following Krylov sequence Kn of dimension n:

Kn(M,u0) =
{
u0,Mu0, · · · ,Mn−1u0

}
(II.31)

This Krylov sequence Kn converges towards the eigenvector corresponding to the largest
eigenvalue (in modulus) of M. Unfortunately, as the dimension n is increased, the se-
quence Kn becomes increasingly badly conditionned. This simple iteration is known as
the power iteration. Though such method is extremely simple to implement within a
given code, it is unfortunately relatively slowly converging and only enables the recovery
of the leading eigenpair discarding in the meantime all of the information contained in
the n − 1 previous vectors of the sequence. As to overcome this loss of information, the
Arnoldi factorisation combines the power iteration with a Gram-Schmidt orthogonalistion
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process. The basic Arnoldi iteration then reads:

MUk = UkHk + rke
T
k (II.32)

where Uk is an orthonormal set of vectors, Hk a k × k upper Hessenberg matrix, and
rke

T
k is the residual vector indicating how far from an invariant subspace of M is Uk.

Figure II.6 depicts the structure of the matrices involved in the process. Because of its
relatively small dimension, the eigenpairs (ΣH ,X) of the Hessenberg matrix, also known
as Ritz pairs, can be directly computed and are a good approximation of those of M. Since
this Hessenberg matrix is a low-dimensional approximation of the exponential propagator
M = eA∆t, these Ritz pairs are linked to the eigenpairs of the Jacobian matrix A by:





Λ ≃ log(ΣH)

∆t
,

V ≃ UX
(II.33)

Though extremely efficient at computing the leading subsets of eigenvalues of the matrix
M, one has to bear in mind that this technique actually relies on a sophisticated signal
processing treatment. As a consequence, in order to capture an eigenvector oscillating at
a given circular frequency ω, one has to obey to the Nyquist criterion and needs at least
four snapshots to appropriately discretise the associated time period. Hence, for a given
sampling period ∆t one would then be able to compute only eigenvalues of the linearised
Navier-Stokes operator such that their imaginary parts are smaller than 2π/4∆t. The ac-
tual Arnoldi algorithm used during this thesis is presented on algorithm 1 and displayed
on figure II.7 in its block-diagram representation as well. One must remember that ev-
ery time one has to compute the matrix-vector product Muj , this is actually performed
numerically by time-marching the linearised Navier-Stokes equations as explained in the
previous subsection. More elaborate versions of this algorithm, though harder to imple-
ment, are the explicitly restarted Arnoldi method, the implicitly restarted one introduced
by Lehoucq & Sorensen [100] or the one proposed more recently by Barkley et al. [25].

Validation and performances

To illustrate the algorithm just introduced, the unregularised square lid-driven cavity flow
at Re = 10 000 is used as a benchmark. The Legendre spectral element mesh is composed
of 10 elements within each spatial direction and polynomial reconstructions of order 8
within each element are used in the two directions as well. The resulting linearised Navier-
Stokes operator thus involves 18 700 degrees of freedom. The four leading eigenvalues for
Krylov subspaces of dimension 250, 500 and 750 are presented in tables II.4, II.5 and II.6,
respectively, and compared with those obtained by Robinet et al. [130] in table II.3. As
one can see, even for dimension of the Krylov subspace as low as 250, these four leading
eigenvalues are correctly computed by the algorithm. The converged subsets of the spectra
computed for each case are depicted on figure II.8. It is obvious from this figure that, for
all Krylov subspaces considered, the leading part of the eigenspectrum is converged quite
easily. It is noteworthy moreover that the higher the Krylov subspace’s dimension the
more eigenvalues are converged within the lower-half complex plane.
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Algorithm 1 The k-step Arnoldi factorisation.
Require: M ∈ Rn×n, starting vector u ∈ Rn.
u1 = u/‖u‖;
w = Mu1;
α1 = uT

1w;
f1 ← w− α1u1;
U1 ← (u1);
H1 ← (α1);
for j = 1, 2, · · · , k − 1 do
βj = ‖fj‖;
uj+1 ← fj/βj ;
Uj+1 ← (Uj ,uj+1);

Ĥj ←
(

Hj

βje
T
j

)

w ←Muj+1;
h← UT

j+1w;
fj+1 ← w −Uj+1h;
Hj+1 ← (Ĥj,h);

end for

Figure II.7: Block diagram of the time-stepping Arnoldi algorithm implemented around
the Nek5000 temporal loop.
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Figure II.8: Spectra of the lid-driven cavity flow at Re = 10 000 for Krylov subspace’s
dimensions k = 250 (green squares), k = 500 (red circles) and k = 750 (blue dots).

σ 0.093 0.070 0.055 0.051
ω/2π 0.61 0.71 0.43 0.53

Table II.3: Leading eigenvalues reported by Robinet et al. [130]

σ 0.1046 0.0848 0.0653 0.0583
ω/2π 0.6239 0.7193 0.5361 0.4453

Table II.4: Leading eigenvalues obtained for a Krylov subspace of dimension k = 250.

σ 0.1046 0.0848 0.0653 0.0583
ω/2π 0.6239 0.7193 0.5361 0.4453

Table II.5: Leading eigenvalues obtained for a Krylov subspace of dimension k = 500.

σ 0.1046 0.0848 0.0653 0.0583
ω/2π 0.6239 0.7193 0.5361 0.4453

Table II.6: Leading eigenvalues obtained for a Krylov subspace of dimension k = 750.

35



II.3.2 Koopman modes decomposition

Fluid flows often exhibit complex phenomena involving a substantially large range of both
spatial and time scales. Because of this complexity, analysing and inferring conclusions
regarding the behaviour of a given flow directly from raw measurements data is more than
often quite unpractical. As to unravel some order hidden behind the apparent complexity,
one often resort to modal decomposition of these data to identify the flow structures
and investigate their spatio-temporal dynamics. The global modes decomposition just
presented is one of these modal decomposition applied to a linear system, however other
exist and can be applied to non-linear systems such as the famous Fourier transform or
the Proper Orthogonal Decomposition (POD) [78].

Over the past twenty years, modal decomposition of non-linear systems has essentially
been relying on the Proper Orthogonal Decomposition. Such decomposition is based on a
singular value decomposition (SVD) of a sequence of the flow’s observables. Singular value
decomposition can be seen as a generalisation of the eigenvalue decomposition concept
applied to not-necessarilly square matrices. Given a matrix X ∈ Rn×k into which the n
flow’s observables have been stacked in k columns, performing SVD would decompose this
matrix into three parts:

• U: a matrix whose columns are orthonormal one to another. Each of these columns
then contains one of the so-called POD modes.

• Σ: a real-valued diagonal matrix containing the singular values. The ith singular
value indicates the importance of the ith POD mode from U in the initial sequence
of data.

• V: the dynamics matrix. Its ith row provides the temporal evolution of the ith POD
mode.

Such decomposition thus identifies flow structures and their associated dynamics accord-
ingly to their relative energetic importance within the initial sequence. Moreover, because
the matrix of POD modes U is constrained to be an orthonormal matrix, the flow struc-
tures are orthonormal one to another. Figure II.9 summarizes this decomposition. Though
extremely efficient when it comes to the identification of some specific patterns within a
given flow field, one major drawback of such Proper Orthogonal Decomposition relies in
the dynamics matrix V: several different frequencies can be involved in the time evolution
of a single POD mode. As a consequence, identifiying the spatial structure associated to
a given frequency of the flow might be quite complicated using POD. In order to over-
come this problem, a new modal decomposition as been introduced in 2008 by Schmid
& Sesterhenn [139] known as Dynamic Modes Decomposition (DMD) and a year later by
Rowley et al. [131] known as Koopman Modes Decomposition. Despite having different
names, these two modal decompositions essentially are the same and only differ in the
actual algorithm used to compute these modes. The major difference with the Proper
Orthogonal Decomposition is that the orthonormality constraint is no more applied to
the modes matrix U but to the dynamics matrix V instead. As a result, though the
spatial modes are no more orthogonal one to another, each dynamics within the V matrix
now involves only one single frequency.
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Figure II.9: Structure of the matrices resulting from singular value decomposition.

The algorithm to be presented is the one originally introduced by Rowley et al. [131].
Assume one has a given discrete set of flow observables xj = x(j∆t) at k different time
steps such that:

K = [x0,x1, · · · ,xk−1] (II.34)
Koopman modes decomposition relies on the strong assumption that the (k+1)th vector of
this sequence can be given by a linear operator A such that we actually have the following
time-discrete linear dynamical system:

xi+1 = Axi (II.35)

One must be aware that, as for global stability analysis, the operator A might not be di-
rectly accessible. Moreover, the observables xi might even actually be those of a non-linear
flow in which this operator is actually unknown. However, assuming this time-discrete
linear dynamical system form is at the heart of the Koopman modes decomposition. In-
deed, stemming from this strong assumption, the sequence K can be seen as a Krylov
sequence resulting from repeated application of the linear operator A onto the initial
vector x0. Hence, as for the global modes decomposition, given this Krylov sequence
one can construct a low-dimensional approximation of the operator A and compute rea-
sonnable approximations of its eigenvalues and eigenvectors. Difference with the global
modes decomposition however relies in the fact that, for Koopman modes decomposition,
the matrix resulting from the low-dimensional approximation is no more an upper Hes-
senberg matrix but a Companion one. Let us assume that the kth vector of the Krylov
sequence can be expressed as a linear combination of the previous iterates:

xk ≃ c0x0 + c1x1 + · · ·+ ck−1xk−1

xk ≃ Kc
(II.36)

where c is a column vector containing the k coefficients ci needed for the linear combi-
nation. These coefficients can either be computed by a least-square best fit or by solving
a linear system. This linear problem can be recast into the following equivalent matrix
form:

AK ≃ KC (II.37)
where C is a k × k Companion matrix given by:

C =




0 0 . . . 0 c0
1 0 0 c1
0 1 0 c2
... . . . ...
0 0 . . . 1 ck−1




(II.38)
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Figure II.10: Representation of the basic Koopman iteration along with the involved
matrices structures. Gray denotes full matrices.

It is clear from the structure of expression (II.37) that, apart from the specific structure
of C, a striking resemblence exists between the Koopman modes decomposition and the
global modes one as underlined by the representation of this basic Koopman iteration
depicted on figure II.10. In fact, the Koopman modes decomposition can be seen as a
generalisation of global stability analysis applied to non-linear system. As a consequence,
the eigenpairs (Σc,X) of the Companion matrix C are a reasonnably good approximation
of the eigenpairs (Σ,U) of the operator A since:

{
Σ ≃ Σc

U ≃ KX
(II.39)

As for global stability analysis, the growth rate and circular frequency of the Koopman
modes can be recovered by:

σ + iω =
log(Σ)

∆t
(II.40)

∆t being the sampling period between two snapshots of the observables. For further de-
tails on the algorithm, the reader is referred to Rowley et al. [131] as well as Schmid [136].
One question however remains unanswered. Whereas in the Proper Orthogonal Decom-
position, modes are classified accordingly to their energy in the initial sequence, sorting
the Koopman modes might be slightly less well defined. Yet, most studies have however
sorted these Koopman modes accordingly to their norm: the larger the mode’s norm, the
more important its contribution in the vector sequence analysed.

Illustration

The following illustration of the Koopman modes decomposition is based on a collabora-
tion with Antoine Ducoin and Jean-Christophe Robinet. The Koopman modes decom-
position has been recently used by Ducoin et al. [56] to investigate the structures to be
found in the flow past an airfoil at a Reynolds number Re = 20 000 based on the chord
length c, the incoming velocity U∞ and the kinematic viscosity ν. Though much more
complicated than the rest of the flow configurations investigated during this thesis, this
particular study greatly underlines the strong interest one could have in using Koopman
modes decomposition when analysing high Reynolds numbers flows.
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(a)

(b)

Figure II.11: (a) Instantaneous vorticity field and velocity streamlines along the lami-
nar to turbulent transition region. (b) Isosurfaces of λ2 criterion and velocity contours
downstream of the Laminar Separation bubble. Figure from [56]
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Figure II.11(a) depicts the instantaneous vorticity contours and velocity streamlines
in the vicinity of the trailing edge of the wing section considered whereas figure II.11(b)
depicts λ2 criterion isosurfaces near the trailing edge as well (top view). It is clear from
the numerous physical mechanisms at play identified by Ducoin et al. [56] that the flow
is characterised by rather complicated space-time dynamics. A sequence of 600 veloc-
ity snapshots taken from the direct numerical simulation has then been analysed using
the Koopman modes decomposition just presented. Figures II.12(a) and (b) depict the
eigenpsectum of the Koopman operator as well as the evolution of the norm of the Koop-
man modes with respect to their circular frequency. Whereas the figure II.12(a) shows
that most of the eigenvalues computed are indeed converged (i.e. almost all along the
unit circle), figure II.12(b) clearly highlights that three families of modes dominate the
dynamics. Three of these modes are represented on figure II.12(c) displaying the norm of
the velocity vector. It is clear from these figures that Koopman analysis has indeed been
able to identify some specific flow structures linked to periodic shedding toward the wake
of spanwise-oriented vortices from the laminar separation bubble located in the vicinity of
the trailing edge. For extensive details on the physical analysis of this quite complicated
flow, the reader is again referred to the paper by Ducoin et al. [56] to be published soon.

II.4 Optimal perturbations and Transient growth anal-
ysis

As already explained, the term linear stability can recover several different definitions. In
the previous section, linear stability was based on the definition enonced by Lyapunov:
given a fixed point Qb = (Ub, Pb)

T of the Navier-Stokes equations, one then infinitesimally
perturbs the fluid system in the vicinity of this particular equilibrium. If the perturbation
decays exponentially so that the system eventually relaxes toward the fixed point Qb,
this particular fixed point is said to be linearly stable, otherwise it is said to be linearly
unstable. The linear stability or instability of the fixed point Qb is then governed by the
spectrum of eigenvalues of the linearised Navier-Stokes operator. Perturbations governed
by such eigenvalues often turn out to have relatively small growth rates. As a conse-
quence, it would take quite a large amount of time for such perturbations to grow up to
only a few orders of magnitude higher than their initial amplitude. However, numerous
experimental investigations have reported instabilities and transition scenarios occuring
on substantially smaller timescales revealing how poor of a proxy the eigenspectrum of
the linearised Navier-Stokes operator can be when inferring the short-time evolution of
infinitesimal perturbations. These scenarios are closely related to the concepts of sub-
critical bifurcations and linear transient growth. Hence, defining the stability of a given
fixed point based on an asymptotic time-evolution of the perturbations seems to be rather
limiting. As a consequence, one can redefine the concept of linear instability as the abil-
ity for an initial perturbation to exhibit transient energy amplification over a given time
interval [135, 137, 138].

Mathematical details about the relationship between eigenspectrum of the linearised
Navier-Stokes operator and transient growth analysis can be found in the book by Schmid
& Henningson [138] as well as in the recent review paper by Schmid & Brandt [137]. The

40



(a) (b)

(c)

Figure II.12: (a) and (b) Eigenvalues of the Koopman operator. (c) Velocity field for the
first three modes. (X, Y ) plane are taken at mid span. (X,Z) planes are taken at LSB
level. Figure from [56]
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optimal energy amplification, also known as the optimal gain, is given by:

G(t) = max
q0

E(q(t))

E(q0)
(II.41)

where q0 is the initial perturbation, q(t) the response of the system at time t and E the
energy-norm of the perturbations. Recollecting that the time-evolution of q(t) is governed
by the linear dynamical system (II.28) and hence one has:

q(t) = eAtq0

the expression of the optimal gain can be rewritten as:

G(t) = max
q0

‖q(t)‖E
‖q0‖E

= max
q0

‖eAtq0‖E
‖q0‖E

= ‖eAt‖E (II.42)

As a consequence, the initial condition q0 and the optimal perturbation at a given
time t are linked as follows:

eAtq0 = ‖eAt‖q (II.43)

with q0 and q being unit-norm vectors, and ‖eAt‖ the optimal gain. Recalling that the
dominant singular value σ1 of a given matrix is equal to its L2-norm, and re-introducing
the exponential propagator M(t) = eAt, one can recast the previous expression into a
singular value problem:

Mv1 = σ1u1 (II.44)

with v1 being the initial condition yielding to the optimal energy amplification σ1 at time
t, and u1 the associated response ot the system. Introducing the operator M∗, i.e. the
Hermitian of M, one can recast the singular value problem (II.44) into an eigenvalue
problem:

M∗Mv = σv (II.45)

where the singular value σ now plays the role of an eigenvalue and the singular vector v
the role of an eigenvector. Unfortunately, as for global stability analysis, the matrices M
and M∗ are of too large dimension to be explicitly computed. Hence, in order to solve
this eigenvalue problem one has to compel to time-stepper approach once again. However,
one also require to introduce the linear adjoint state equations to approximate the action
of M∗ onto a given vector.

II.4.1 Adjoint linearised Navier-Stokes equations

Adjoint state is a concept originating from the optimisation theory. Over the past years,
resulting adjoint-based methods have been used successfuly in flow control and stability
analysis. In the hydrodynamic instability framework, such methods can be used to identify
optimal perturbations, highlight the most receptive path to break down, select the most
destabilising base flow defect in an otherwise stable configuration, and map the structural
sensitivity of an oscillator. All of these uses have been recently reviewed by Luchini &
Bottaro [108].
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Let us consider the linear dynamical system (II.25) already introduced when investi-
gating the eigenspectrum of the linearised Navier-Stokes operator:

B
∂q

∂t
= Jq

The adjoint operator of J has the property that:

〈y,Jx〉 = 〈J∗y,x〉 (II.46)

where 〈·, ·〉 denotes the appropriate inner product for the flow domain. Provided one
defines correctly its inner product, the adjoint linearised Navier-Stokes equations then
read: {

u̇† + (Ub · ∇)u† − (∇Ub)
T u† = −∇p† +Re−1∆u†

∇ · u† = 0
(II.47)

For a complete derivation of the adjoint linearised Navier-Stokes equations as well as the
consequences on the boundary conditions, the reader is referred to [25]. As for the lin-
earised Navier-Stokes equations (II.24), this set of equations can be recast into a dynamical
system form:

B
∂q†

∂t
= J∗q† (II.48)

where q† = (u†, p†)T is the adjoint state vector and J∗ the adjoint Jacobian matrix.
Futhermore, projection onto a divergence-free vector yields to the following expression:

∂u†

∂t
= A∗u† (II.49)

with A∗ being the projected adjoint Jacobian matrix. From here on, one can introduce
the adjoint exponential propagator defined as:

M∗(t) = eA
∗t (II.50)

It is worthy to note that, as for its direct counterpart, because of the number of degrees of
freedom involved and the challenging task an exponential matrix is, this operator cannot
be explicitly computed. However, the action of this adjoint time propagator onto a given
vector can be approximated by using an adjoint linearised Navier-Stokes solver.

II.4.2 Optimal perturbation and eigenvalue analysis of M∗M

It has been shown in a previous subsection that the singular value problem (II.44) could
be reformulated into the eigenvalue problem (II.45) by introducing the adjoint state’s
exponential propagator M∗(t) = eA

∗t. Because the first singular triplet gives the worst
case possible for transient energy amplification at a given time horizon of an otherwise
infinitesimal perturbation, computing only this particular triplet is often sufficient to
assess the short-time non-modal stability of the flow. As a consequence, the simplest
eigenvalue algorithm, i.e. the power iteration method, can be used in order to compute
this singular value and associated singular vectors. This simple algorithm consists in
repeated applications of the operator M∗(t)M(t) onto an initial unit-norm vector u0
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Figure II.13: Block diagram of direct-adjoint loop implemented in Nek5000 for the power-
iteration method.

until convergence is achieved. Its associated block-diagram representation is depicted on
figure II.13. Despite the significance of the first singular triplet in the transient dynamics
of the flow, one might also be interested in the sub-optimal perturbations. Unfortunately,
such sub-optimal perturbations cannot be computed using the simple power-iteration
algorithm. Moreover, from a purely computational point of view, the power-iteration
method is known to be slowly converging toward the leading singular triplet and can thus
be relatively time-consuming. An alternative to overcome these two problems is to use
a modified version of the Arnoldi algorithm presented previously. As one can see from
the block-diagram depicted on figure II.14, this SVD-Arnoldi algorithm is very similar to
the one presented earlier differing only by the fact that the input vector uk is not only
multiplied by the time propagator M(t) but also by its adjoint counterpart M∗(t). It is
noteworthy that the version of the algorithm presented here only enables the computation
of the right singular vectors, i.e. the optimal perturbations. A modified version where
the operator M∗(t)M(t) is replaced by M(t)M∗(t) can be used in order to obtain the
left singular vectors, i.e. the optimal responses. However, these responses can also be
computed from a simple linearised DNS once the optimal perturbations obtained by the
SVD-Arnoldi algorithm. Last but not least, both the Arnoldi and SVD-Arnoldi algorithms
presented in this manuscript can be seen as simpler versions of the algorithm introduced
by Barkley et al. [25].

44



Figure II.14: Block diagram of the SVD-Arnoldi algorithm implemented in Nek5000.
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Chapter III

Three-dimensional lid-driven cavity flow
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III.1 Problem formulation
The motion of the fluid contained within a three-dimensional enclosure of depth L, length
L (square section), width ΛL and driven by a moving lid is considered. The flow, assumed
to be incompressible and Newtonian, is governed by the three-dimensional Navier-Stokes
equations:





∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∆U

∇ ·U = 0
(III.1)

The lid of the cavity moves with a constant velocity U in the x-direction. The Reynolds
number is then defined as Re = UL/ν, where ν is the kinematic viscosity. The origin
of the axes system is assigned to be the geometrical center of the cavity such that the
non-dimensional domain considered is: Ω = [−0.5, 0.5] × [−0.5, 0.5] × [−Λ/2,Λ/2]. A
sketch of the computational domain considered is depicted on figure III.1(a). For the
sake of clarity, Λ will refer hereafter to the spanwise aspect ratio of the cavity under
consideration. Apart from the lid, no-slip boundary conditions are applied on all the
walls of the cavity. According to figure III.1(b), the two faces normal to the x-axis will
be referred as the downstream and upstream walls, dependant on their position relatively
to the motion of the lid, whereas the faces normal to the z-axis will be referred to side
walls. The remaining face parallel to the moving lid will be called the bottom wall.
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(a)

(b)

Figure III.1: (a) Sketch of the computational domain considered. (b) Nomenclature used
to refer to the different walls of the cavity.
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(a) (b)

Figure III.2: Real part of the (a) x-velocity and (b) y-velocity components of the most
unstable global mode in the square lid-driven cavity problem at a Reynolds number Re =
8500. The arrow indicates the motion of the lid.

III.2 State of the art
The flow within a lid-driven cavity (LDC) is an idealisation of a number of fluid mechanics
problems and qualitatively presents most of the important features responsible for transi-
tion in a wide variety of other flows (e.g. shear layers, counter-rotating pairs of vortices,
high- and low-speed streaks, ...). From a practical point of view, the lid-driven cavity is a
simplification of several engineering situations such as slots on the walls of heat exchangers
or simplification of coating devices used in the paper industry for producing high grade
paper and photographic film [5]. Spatial variations in coating thickness and in coat weight
profiles were observed when increasing the machine speed and three-dimensional hydro-
dynamic instabilities are thought to be responsible for these variations [5]. The simplified
lid-driven cavity problem may help the understanding of such flow phenomena. Due to
this idealisation, lid-driven cavity flows have been the subject of numerous studies over
the past decades but only very few references exist on experimental studies. Because of
the extremely large body of literature existing on the subject, an exhaustive review would
be quite impractical to perform and only the most important papers (from a stability
analysis point of view) will be reported hereafter.

Two-dimensional LDC

Because of the extremely large body of literature, the two-dimensional lid-driven cavity
flow has become a standard benchmark problem for testing the accuracy of new numerical
methods and algorithms. Since the pioneering work of Burggraf [37] in the mid 1960’s
on the structure of steady separated flows, high quality data of the two-dimensional flow
within a square lid-driven cavity have been produced by Botella & Peyret [33] using a
Chebyshev collocation method at Reynolds number Re = 1000. Regarding the linear
instability of such flow, the first relevant results on a square lid-driven cavity flow are
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those obtained by Poliashenko et al. [124] in 1995, as well as those by Fortin et al. [64]
and Gervais et al. [68] in 1997. All these studies have only assessed the stability of the two-
dimensional LDC flow toward perturbations being two-dimensional as well. For the square
lid-driven cavity under consideration, transition to unsteadiness has been reported to occur
around a critical Reynolds number Rec ≃ 8000 via a Hopf bifurcation. The leading two-
dimensional unstable global mode, depicted on figure III.2, consists in vortices located
along the streamline separating the central vortex core from the corner eddies. Despite
the flow within such cavity being a standard benchmark, it is however worthy to note that
the specific critical Reynolds number at which the Hopf bifurcation occurs seems to be
relatively dependant on the discretisation technique used, on the fixed point computation
method employed as well as on the treatment (or not) of the corner singularities existing
at the intersections between the lid and the vertical walls (see [129] and references therein
for a complete review).

Assessing the transition thresholds by investigating the stability of two-dimensional
base flows toward perturbations being two-dimensional as well is unfortunately often an
over idealisation for practical applications. As a consequence, numerous papers have been
published since the early 2000’s where the stability of the two-dimensional LDC flow to-
ward perturbations exhibiting a given spanwise periodicity is now investigated. Hereafter,
such stability analysis will be referred to 2.5D stability analysis. To our knowledge, the
firsts to have investigated the LDC flow stability properties toward such perturbations
are Ramanan & Homsy [126] as early as 1994. A few years later, Ding & Kawahara [53],
Albensoeder et al. [9], Theofilis et al. [152] and Chicheportiche et al. [42] have performed
similar investigations. In 2006, Non et al. [117] further refined the stability calculations
performed in [9, 53, 152]. All of these authors have shown that, depending on the Reynolds
number Re and the spanwise wavenumber β of the prescribed perturbation, the 2.5D lid-
driven cavity flow is unstable toward four different families of modes. The neutral curves
in the (Re, β)-plane of these branches are reproduced on figure III.3(a) adapted from [42].
All of these modes are related to a centrifugal instability of the base flow developing along
the curved streamline separating the primary vortex from the downstream eddy. The
first bifurcation occurs at a critical Reynolds number ReS1 = 780, i.e. a lot earlier than
the two-dimensional instability, and for a spanwise wavenumber β ≃ 15. The associated
branch is known as the S1 family of modes. It is a familly of non-oscillating Taylor-
Görtler like vortices whose typical spatial structure is depicted on figure III.3(b). Further
increasing the Reynolds number drives a larger range of wavenumbers to become unstable
and the flow eventually experiences a Hopf bifurcation (T1 family) yielding transition
to unsteadiness beyond a critical Reynolds number ReT1 = 840 for the same spanwise
wavenumber, i.e. β ≃ 15. Comparison of these results with experimental data (where
the cavity necessarily has side walls) turned out to be in not too bad agreements only
when considering cavities with a relatively large spanwise extent. For smaller cavities,
discrepancies might come from the fact that the flow in the symmetry plane cannot be
approximated as being two-dimensional anymore, as well as due to the viscous damping
induced by the experimental side walls inexistent in the numerically investigated base
flows.
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Figure III.3: Global stability analysis of the 2D lid-driven cavity flow with respect to
spanwise-periodic perturbations. (a) Neutral stability curve. (b) Leading unstable global
mode. Figures reproduced from [42]. The arrow indicates the motion of the lid.

Three-dimensional LDC

The problem of the flow within a three-dimensional enclosure has received much less at-
tention than its two-dimensional counterpart. In the mid 1970’s, Davis & Mallinson [47]
have been the first to investigate the fully three-dimensional lid-driven cavity flow. They
have observed that the flow developing within such a three-dimensional setup qualita-
tively exhibits the same features as its two-dimensional counterpart: a central primary
vortex flanked with corner eddies. For extensive details regarding the topology of three-
dimensional LDC flows, the reader is referred to the exhaustive review by Shankar &
Deshpande [141]. To our knowledge, only a few experimental data are available in the
literature. Most of them have to be credited to Koseff et al. [91–93]. The former authors
have presented qualitative and quantitative experimental observations of the flow devel-
oping within three-dimensional lid-driven cavities. In [93], they have particularly focused
on the influence of the spanwise end walls on the flow. Their main conclusions are that
reducing the spanwise extent of the cavity increases the viscous drag of the side walls.
Consequently, the critical Reynolds number for transition to unsteadiness increases and
as such it affects the intensity and the distribution of the Taylor-Görtler like vortices.
From a numerical perspective, Albensoeder & Kuhlmann [7] have provided in 2005 ac-
curate data of the steady flow within a cubical LDC at a Reynolds number Re = 1000
using a Chebyschev collocation method. However, because investigating the linear stabil-
ity analysis of such fully three-dimensional flow still is quite computationally challenging,
very few references can be found in the literature on the transition thresholds. To our
knowledge, Feldman & Gelfgat [60] have only addressed the stability of the cubical lid-
driven cavity by means of direct numerical simulations. They have found that the flow
experiences a Hopf bifurcation at a critical Reynolds number Rec = 1914. As for the
2.5D global stability analysis, the exponentially growing perturbation they have found in
their DNS takes the form of Taylor-Görtler like vortices. Since a Hopf bifurcation has
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been encountered, these are however oscillating at a circular frequency ω = 0.575. Quite
recently, Kuhlmann & Albensoeder [94] and Gómez et al. [71, 72] have also investigated
this problem and found similar critical Reynolds numbers. In 2011, Liberzon et al. [105]
have conducted experimental investigation on the same cubical setup. Beside a slight
disagreement on the value of the critical Reynolds number above which unsteadiness sets
in (though this might be explained by some imperfectness in the experimental setup or by
genuine characteristics of the bifurcation such as sub-criticality), both the frequency and
the rms fluctuations observed in the experiment are in qualitatively and quantitatively
good agreements with the numerical predictions.

As part of this thesis, the work presented in this chapter aims at improving our under-
standing of instability and transition occuring in fully three-dimensional lid-driven cavity
flows. More specifically, we will try to give answers to the following questions:

• What are the physical mechanisms underlying the instability of such three-dimensional
flows? Do they differ from those found in the two-dimensional LDC flows?

• How does the spanwise aspect ratio of the LDC influence these instabilities?

• How does the prediction of the threshold of the first bifurcation occuring in these
fully three-dimensional flows compare with those of the two-dimensional lid-driven
cavity flow?

This chapter is organised as follows. First, the most important features of the steady
equilibriums are presented along with a grid convergence analysis. Then, the stability of
the flows towards infinitesimal perturbations is investigated by means of global stability
analyses. Both the analysis of the underlying mechanism as well as the influence of the
cavity’s aspect ratio on the stability are part of this investigation. Finally, as shown
very recently by Kulhmann & Albensoeder [94], beyond its critical Reynolds number,
the flow within a cubical lid-driven cavity exhibits chaotic dynamics. These dynamics
are thus studied and characterised using direct numerical simulations, Koopman mode
decomposition and state-space representations.

III.3 Results

III.3.1 Steady state solutions

Computing steady equilibriums is a pre-requisite to any stability analysis. These peculiar
solutions, also called base flows, have been computed for lid-driven cavities of constant
square section and spanwise aspect ratios ranging from Λ = 0.5 up to Λ = 3. The
selective frequency damping approach introduced in section II.2 has been used whenever
these equilibriums turned out to be unstable and typical values of the χ and ωc parameters
are reported in table III.1. Figure III.4 depicts one of the streamlines of the steady flows
obtained for (a) (Λ, Re) = (0.5, 4250), (b) (Λ, Re) = (1, 1950) and (c) (Λ, Re) = (3, 1000),
respectively. It can be seen from figure III.4 that, in all cases, the streamline remains
enclosed within the left half of the cavity. Such behaviour of the streamlines indicates
that all of these steady flows are symmetric with respect to the spanwise mid-plane of the
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(Λ, Re) = (0.5, 4250) (Λ, Re) = (1, 1950) (Λ, Re) = (3, 1100)
χ 0.01 0.01 0.01
ωc 0.05 0.25 0.05

Table III.1: Typical values for the χ and ωc parameters used in the selective frequency
damping approach to compute the unstable steady states for various aspect ratio LDC.

cavities. Two major features of these flows can furthermore be observed in this symmetry
plane: a central vortex surrounded by bottom corner eddies. According to the streamline’s
trajectory, the fluid is attracted by the central vortex from the spanwise end-walls toward
the center of the cavity. This effect is known as the Eckman pumping. The fluid is
then expelled within the central plane in a rotating motion due to the core vortex solid
rotation before being captured by the bottom corner eddies. Finally, once captured by
these secondary eddies, it is eventually expelled from the central plane toward the spanwise
walls of the cavity. Because of these end-walls, the velocity has to drop to zero between
the central plane and the walls. This drop creates a non-zero spanwise pressure gradient
which eventually creates the spanwise motion of the fluid visualised by the streamlines in
figure III.4. Though the vortical structures are qualitatively similar, the fluid’s motion
just described is the major difference between the two-dimensional and three-dimensional
lid-driven cavity flows and might thus influence the stability of the flow.

Figure III.5 highlights the influence of the spanwise end-walls on the flow within the
central mid-plane at a fixed Reynolds number Re = 1000 as compared to the strictly
two-dimensional lid-driven cavity flow at the same Reynolds number. Figure III.5 depicts
the x-velocity profile along the y = 0 line (blue) and the y-velocity profile along the x = 0
line (red) in the central plane for the different three-dimensional LDC (solid lines) and
their two-dimensional counterpart (dashed line). It obviously appears from these plots
that, though the overall features of the flows look similar, assuming the flow in the three-
dimensional cavities to be essentially two-dimensional always yields to an over-prediction
of the strength of the boundary layers developing along the downstream, bottom and up-
stream walls of the cavity. This can easily be explained when thinking in terms of energy.
Indeed, whereas all of the energy input from the moving lid is only transfered to the x-
and y-velocity components in the two-dimensional setup, part of this energy is transfered
to the z-component of the velocity field as well within the three-dimensional cases. More-
over, whereas no spanwise end-walls are present within the two-dimensional flow, such
walls are a genuine feature of the three-dimensional setup. Hence, the energy dissipated
in their vicinity cannot be accounted for in the strictly two-dimensional assumption of
the flow. Consequently, due to the redistribution of the input energy and the dissipation
associated to the spanwise walls, the boundary layers in the three-dimensional flow cannot
be as energetic as their two-dimensional counterparts. It is nonetheless apparent that, as
the spanwise extent of the three-dimensional lid-driven cavity is increased, the discrep-
ancies between the 3D and 2D flows seem to be reduced. This is further highlighted by
table III.2 providing the relative contribution of each of the velocity components to the
total kinetic energy of the base flows. The contribution of the spanwise velocity com-
ponent is almost negligible in all cases. Moreover, increasing the spanwise aspect ratio
of the cavity essentially redistribute the energy along the x- and y-velocity components
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Figure III.4: Visualisation of the base flow’ structure using a streamline for (a) (Λ, Re) =
(0.5, 4250), (b) (Λ, Re) = (1, 1950) and (c) (Λ, Re) = (3, 1000). The arrows indicate the
motion of the lid.
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Figure III.5: Comparison of the flow in the spanwise mid-plane (solid lines) with the
two-dimensional lid-driven cavity flow (dashed lines) both at Re = 1000. Blue solid and
dashed lines display the evolution of the x-velocity along the x = 0 line, and red lines the
evolution of the y-velocity along the y = 0 line.

Λ = 0.5 Λ = 1 Λ = 3 2D∫
V
U2
b dV/E 0.58577 0.55880 0.53738 0.52917∫

V
V 2
b dV/E 0.40842 0.43381 0.45730 0.47083∫

V
W 2

b dV/E 0.00581 0.00737 0.00531 0

Table III.2: Contribution of the various components of the velocity field to the total
kinetic energy E =

∫
V
(U2

b + V 2
b +W 2

b )/2 dV for LDC flows of various spanwise aspect
ratios Λ at fixed Reynolds number Re = 1000.

accordingly to the two-dimensional reference. It is thus expected that considering an
even larger lid-driven cavity (see appendix A for an example), the energy distribution
among the velocity components would tends asymptotically toward the two-dimensional
distribution.

Grid independence analysis

Figure III.6(a) shows the distribution of Legendre spectral elements used in a spanwise
section for all of the cavities considered, whereas figure III.6(b) shows the grid resulting
from the use of Legendre polynomials of order N = 7 within each spectral element. Both
the x and y directions are discretised using ten spectral elements located according to
a two-dimensional set of Gauss-Lobatto-Legendre quadrature points. Such partionning
allows us to refine along the different walls of the cavities where the gradients of the
velocity are the largest. In the spanwise direction, the number of spectral elements used
to discretise the problem depends on the aspect ratio of the cavity considered. Five
elements are used for Λ = 0.5, ten and thirty are used for Λ = 1 and Λ = 3, respectively.
It is worthy to note that these elements are also located according to Gauss-Lobatto-
Legendre quadrature points such that the problem is finely discretised in the vicinity of
the spanwise end walls as well.
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Figure III.6: (a) Distribution of the Legendre spectral elements for the lid-driven cavity
flow problem. Ten elements are used in each direction and located along a GLL grid. (b)
Resulting mesh using an order 7 Legendre polynomial reconstruction within each element.

Independence of the computed solutions with respect to the grid resolution has been
assessed by increasing the order of the polynomial order within each spectral elements from
N = 5 up to N = 11. Tables III.3 and III.4 provide the reader with a comparison of the
values of the x- and y-velocity components for (Λ, Re) = (1, 1000) and different polynomial
orders with those reported by Albensoeder & Kuhlmann [7] using a Chebyschev spectral
collocation method on 963 mesh. Values of our present computations have been spectrally
interpolated onto the points coordinates given in [7] to ease the comparison. Even for
the coarser resolution, the values obtained with the present computation are in excellent
agreements with those obtained by Albensoeder & Kuhlmann [7]. The mean relative errors
for the x-component are ǫ = 0.03% for N = 5, ǫ = 0.002% for N = 7 and ǫ = 0.0004%
for N = 11, respectively. For the y-component, these errors are ǫ = 0.04% for N = 5,
ǫ = 0.0008% for N = 7 and ǫ = 0.0002% for N = 11, respectively. No clear difference
can be observed between the three different resolutions. The intermediate grid N = 7
then presents a pretty good trade-off between accuracy and computational time for all
the cases and will thus be used to pursue the investigations.

III.3.2 Linear stability analysis

As to understand how the steady solutions computed in the previous section lose their
stability, the underlying physical mechanisms are investigated by mean of global stability
analyses. Figure III.7 depicts the eigenspectrum of the linearised Navier-Stokes opera-
tor for (a) (Λ, Re) = (0.5, 4000), (b) (Λ, Re) = (1, 1950) and (c) (Λ, Re) = (3, 1075),
respectively. They have been computed using Krylov subspaces of dimension 250 and a
sampling period ∆T = 1 enabling good convergence of the eigenvalues up to ω = 1.6 (with
ω being the circular frequency). Since these eigenspectra are symmetric, only their right
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y UAlb. Upresent

N = 5 N = 7 N = 11

0.5000 1.0000000 1.0000000 1.0000000 1.0000000
0.4766 0.5896414 0.5895510 0.5896338 0.5896418
0.4688 0.4844275 0.4843287 0.4844196 0.4844286
0.4609 0.3982086 0.3980585 0.3982002 0.3982090
0.4531 0.3317110 0.3316870 0.3317025 0.3317109
0.3516 0.1218293 0.1217866 0.1218260 0.1218286
0.2344 0.0733444 0.0733271 0.0733437 0.0733443
0.1172 0.0390483 0.0390543 0.0390491 0.0390486
0.0000 0.0080177 0.0080268 0.0080194 0.0080184
-0.0469 -0.0061192 -0.0061142 -0.0061172 -0.0061183
-0.2187 -0.1099894 -0.1100487 -0.1099850 -0.1099881
-0.3281 -0.2516006 -0.2515849 -0.2515946 -0.2515998
-0.3984 -0.2729293 -0.2726963 -0.2729276 -0.2729297
-0.4297 -0.2369550 -0.2367250 -0.2369556 -0.2369555
-0.4375 -0.2228255 -0.2225908 -0.2228259 -0.2228259
-0.4453 -0.2062332 -0.2059942 -0.2062333 -0.2062335
-0.5000 0.0000000 0.0000000 0.0000000 0.0000000

Table III.3: Comparison of the values of the x-velocity component along the y = 0 lines
for different polynomial orders with those reported in [7] for (Λ, Re) = (1, 1000).

x VAlb. Vpresent

N = 5 N = 7 N = 11

0.5000 0.0000000 0.0000000 0.0000000 0.0000000
0.4688 -0.1886420 -0.1884574 -0.1886396 -0.1886391
0.4609 -0.2409470 -0.2406544 -0.2409442 -0.2409442
0.4531 -0.2903172 -0.2900838 -0.2903130 -0.2903146
0.4453 -0.3351117 -0.3348599 -0.3351107 -0.3351095
0.4063 -0.4342302 -0.4340571 -0.4342278 -0.4342311
0.3594 -0.3111715 -0.3111979 -0.3111748 -0.3111731
0.3047 -0.1522299 -0.1523298 -0.1522293 -0.1522300
0.0000 0.0367355 0.0367529 0.0367383 0.0367362
-0.2656 0.1698661 0.1698358 0.1698623 0.1698654
-0.2734 0.1758025 0.1757662 0.1757982 0.1758017
-0.3437 0.2292360 0.2291543 0.2292297 0.2292352
-0.4062 0.2440743 0.2439377 0.2440691 0.2440740
-0.4219 0.2350273 0.2349018 0.2350224 0.2350271
-0.4297 0.2274623 0.2273439 0.2274581 0.2274621
-0.4375 0.2173841 0.2172601 0.2173798 0.2173838
-0.5000 0.0000000 0.0000000 0.0000000 0.0000000

Table III.4: Comparison of the values of the y-velocity component along the x = 0 lines
for different polynomial orders with those reported in [7] for (Λ, Re) = (1, 1000).
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half is depicted. As one can see, in all cases, complex conjugate pairs of eigenvalues lie
in the vicinity of the upper-half complex plane. This indicates that the three base flows
presented in the previous section are all equilibriums on the verge to or having already
experienced a Hopf bifurcation. Table III.5 provides the critical Reynolds numbers Re1c
for the different cavities investigated. It appears from this table that, for the range of
spanwise aspect ratios considered, the larger the spanwise extent of the cavity considered,
the lower the value of the critical Reynolds number. The decrease of the critical Reynolds
number with an increase of the spanwise extent of the cavity is related to the increased
viscous damping induced by the spanwise end-walls and has already been foreseen exper-
imentally by Koseff et al. [93]. It is moreover in good agreements with the observations
made concerning the two-dimensionality of the flow in the spanwise mid-plane. Indeed,
the closer the flow in the symmetry plane is to its two-dimensional counterpart, the lower
the critical Reynolds number.

Depicted on figure III.8 are the vertical velocity components of the real part of the
leading unstable mode for (a) (Λ, Re) = (0.5, 4000), (b) (Λ, Re) = (1, 1950) and (c)
(Λ, Re) = (3, 1075), respectively. As one can see, all these modes share at least one
common feature: vertical low- and high-speed streaks on the downstream wall. It is
moreover obvious that the mode for (Λ, Re) = (1, 1950) and (Λ, Re) = (3, 1075) share
even closer connections: they display a banana-like structure remininscent of the modes
found by Theofilis et al. [152] and Chicheportiche et al. [42] on a 2.5D lid-driven cavity
flow and similar to what has been observed by Feldman & Gelfgat [60] and Goméz et
al. [71] on similar three-dimensional setups. Moreover, they all exhibit a symmetry
with respect to the spanwise mid-plane of the cavities. In the mean time, the x- and z-
velocity components (not shown) display a symmetry and an anti-symmetry with respect
to this mid-plane, respectively. To get a better understanding of the motion these unstable
eigenmodes induce, table III.7 provides the contribution of the different components of the
global mode to its kinetic energy. It can be seen that though fewer energy is along the z-
component, the three velocity component are more or less of the same order of magnitude.
Figure III.9 depicts the perturbation’s velocity field in a y-cut plane whose location is
dependent on the mode considered: vectors highlight the in-plane motion, whereas colored
contours show the vertical motion (blue: negative, red: positive). All these mode share
common features: they induce spanwise pairs of counter-rotating vortices located in the
vicinity of the upstream wall and high- and low-speed streaks on the downstream wall.
It is striking moreover that, apart from Λ = 0.5, such streaks are also to be found on
the upstream wall. For Λ = 1 and Λ = 3, these vortices, known as Taylor-Görtler-like
(TGL) vortices transfer vertical high-speed fluid from the inner part of the cavity toward
the upstream wall, whereas low-speed fluid is transfered from the wall toward the inner
part of the cavity. This transfer of momentum, known as the lift-up effect [97], causes the
emergence of low- and high-speed vertical streaks identified by the colored contours. It is
morover obvious from figure III.9 that the number of TGL vortices induced by the mode is
dependent on the spanwise extent of the cavity. Indeed, apart from Λ = 0.5 where vortices
are hardly visible, two pairs of TGL vortices can be seen in the Λ = 1 cavity, and six of
them in the largest cavity considered herein. It appears finally from these slices as well
that the diameter D of the TGL vortices seems almost constant, i.e. D ≃ 0.2, no matter
the spanwise extent of the cavity considered (provided it is sufficiently large). Associated
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Λ = 0.5 Λ = 1 Λ = 3 Λ =∞
Re1c 4000 1910 1070 780 (S1)
Re2c 4375 2000 1072 840 (T1)

Table III.5: Instability onsets predicted by linear stability theory for the symmetric (first
row) and anti-symmetric (second row) instabilities.

Λ = 0.5 Λ = 1 Λ = 3 T1 branch Benson & Aidun
ω/2π 0.023 0.09 0.119 0.1012 0.108

Table III.6: Comparison of the frequency predicted by fully three-dimensional global
stability analysis with those predicted by 2.5D global stability [152] and experiments [28].

(Λ, Re) = (0.5, 4000) (Λ, Re) = (1, 1950) (Λ, Re) = (3, 1075)∫
V
u2r + u2i dV 0.334059 0.425757 0.394354∫

V
v2r + v2i dV 0.533169 0.371588 0.388477∫

V
w2

r + w2
i dV 0.132771 0.202654 0.217168

Table III.7: Relative contribution to the total kinetic energy of the various components of
the symmetric global modes velocity field for LDC flows of various spanwise aspect ratios
Λ. The norm E =

∫
V
q∗ · q dV is set to one, where ∗ denotes the complex conjugate and

· the scalar product, and ·r and ·i the real and imaginary parts, respectively

(Λ, Re) = (0.5, 4000) (Λ, Re) = (1, 1950) (Λ, Re) = (3, 1075)∫
V
u2r + u2i dV 0.326470 0.422994 0.394237∫

V
v2r + v2i dV 0.492067 0.362398 0.388622∫

V
w2

r + w2
i dV 0.181461 0.214607 0.217139

Table III.8: Relative contribution to the total kinetic energy of the various components of
the anti-symmetric global modes’ velocity field for LDC flows of various spanwise aspect
ratios Λ.

to this diameter D, one can then determine that the dominant spanwise number of the
perturbation is β3D = 15.07, i.e. extremely close to the most unstable wavenumber in
the two-dimensional LDC flow subject to spanwise-periodic perturbations (see [42, 152]).
Because of this close resemblance with the two-dimensional case, table III.6 provides a
comparison of the frequency of the fully three-dimensional leading global modes found in
the present investigation with the closest spanwise-periodic global mode from Theofilis et
al. [152] and experimental data from Benson & Aidun [28]. First of all, one must remember
that as the spanwise extent of the lid-driven cavity is increased, the critical value of the
Reynolds number predicted by fully three-dimensional global stability analyses decreases.
The leading unstable global modes seem to be related to the T1 family of modes as
highlighted by the data from table III.6: the frequency at which the leading globally
unstable mode oscillates for Λ = 1 and Λ = 3 is very close to the one observed in the
experiment by Benson & Aidun [28] as well as to the frequency of the leading T1 mode
found by Theofilis et al. [152]. One might wonder however if the fully three-dimensional
instability could tend toward the S1-branch when considering very large spanwise LDC.
This question is partially addressed in appendix A.
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(a) (Λ, Re) = (0.5, 4000)

(b) (Λ, Re) = (1, 1950)

(c) (Λ, Re) = (3, 1075)

Figure III.7: Eigenspectra of the linearised Navier-Stokes operator. On figure (c), the
subset shows a close-up view on the four leading eigenvalues contained within the dashed
rectangle.
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Despite transition to unsteadiness being always triggered by a symmetric instability,
one might also be interested in the nature of the second leading pair of complex con-
jugate eigenvalues. The critical Reynolds numbers Re2c associated to these instabilities
are provided by table III.5 as well, whereas the spatial distribution of their real part’s
y-velocity component are depicted on figure III.10. The first striking piece of information
from these figures is the symmetry of these modes: whereas the leading modes are always
displaying a symmetry with respect to the spanwise mid-plane of the cavities, these now
display an anti-symmetry. Beside this difference in the symmetry, they exhibit the same
features as their symmetric counterparts letting us infer they might as well be related to
the same underlying instability mechanisms. This is further confirmed by taking a look
at the y-plane cuts depicted on figure III.11. Indeed, as one can see, vortices are clearly
visible in the vector plots. Moreover, as previously, these vortices induce vertical low- and
high-speed streaks due to the lift-up effect [97]. It is however striking that, whereas the
symmetric modes always exhibit an even number of TGL vortices, these antisymmetric
modes only display an odd number of such vortices. It can finally be noted that, as the
spanwise aspect ratio Λ of the cavity is increased, the difference between Re1c and Re2c
decreases down to a point where the symmetric and anti-symmetric global modes become
unstable almost at the exact same critical threshold. Despite these differences in symme-
try which are genuine to fully three-dimensional setups, as their symmetric counterparts,
these modes are thus very likely to be related to the T1 family of modes observed by
Theofilis et. al [152] in 2.5D lid-driven cavities.

Perturbation’s kinetic energy transfer analysis

In order to ascertain that the underlying mechanism is the same as in 2D-periodic stability
analyses[9, 42, 152] and to understand how the spanwise extent of the LDC influences this
instability mechanism, the kinetic energy transfers between the base flow and the pertur-
bations are investigated. The time-evolution of the kinetic energy E of the perturbation
u is governed by the Reynolds-Orr equation:

∂E

∂t
=

∫

Ω

−u · (u · ∇)Ub dΩ−
1

Re

∫

Ω

∇u : ∇u dΩ (III.2)

where the first term on the right-hand side of equation (III.2) is the total production
term, and the second one is the total dissipation in the computational volume

∫
Ω
D dΩ.

As proposed in [9], the perturbation velocity vector can decomposed into u = u⊥ + u‖,
i.e. components perpendicular and parallel to the direction of the base flow Ub. These
two components are given by:

u‖ =
(u ·Ub)

‖Ub‖2
Ub

u⊥ = u− u‖

(III.3)

Such decomposition highlights that, while the counter-rotating vortices are associated to
a motion perpendicular to the base flow’s direction, the high- and low-speed streaks are
parallel to the flow. Using such decomposition, the production term −u · (u · ∇)Ub can
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(a) (b)

(c)

Figure III.8: Vertical velocity component of the leading symmetric global mode’s real
part for (a) (Λ, Re) = (0.5, 4000), (b) (Λ, Re) = (1, 1950) and (c) (Λ, Re) = (3, 1075).
Isosurfaces depict in all cases ±10% of the vertical velocity’s maximum.
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(a) (Λ, Re) = (0.5, 4250) (b) (Λ, Re) = (1, 1950)

(c) (Λ, Re) = (3, 1075)

Figure III.9: Vector fields depict the horizontal in-plane motion induced by the symmetric
modes, whereas coloured contours show the vertical motion. (a) y = −0.45 and (Λ, Re) =
(0.5, 4000),(a) y = −0.25 and (Λ, Re) = (1, 1950) and (c) y = −0.25 and (Λ, Re) =
(3, 1075)
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(a) (b)

(c)

Figure III.10: Vertical velocity component of the leading antisymmetric global mode’s
real part for (a) (Λ, Re) = (0.5, 4000), (b) (Λ, Re) = (1, 1950) and (c) (Λ, Re) = (3, 1075).
Isosurfaces depict in all cases ±10% of the vertical velocity’s maximum.
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(a) (Λ, Re) = (0.5, 4250) (b) (Λ, Re) = (1, 1950)

(c) (Λ, Re) = (3, 1075)

Figure III.11: Vector fields depict the horizontal in-plane motion induced by the anti-
symmetric modes, whereas coloured contours show the vertical motion. (a) y = −0.45
and (Λ, Re) = (0.5, 4000),(a) y = −0.25 and (Λ, Re) = (1, 1950) and (c) y = −0.25 and
(Λ, Re) = (3, 1075)
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then be decomposed into four different contributions, namely:

I1 = −u⊥ · (u⊥ · ∇)Ub

I2 = −u‖ · (u⊥ · ∇)Ub

I3 = −u⊥ · (u‖ · ∇)Ub

I4 = −u‖ · (u‖ · ∇)Ub

(III.4)

Each of these contributions to the total production term can be associated to a different
physical mechanism. The sign of the different integrals

∫
Ω
Ii dΩ then informs whether

the physical mechanism associated to them acts as promoting (positive) or quenching
(negative) the global instability under consideration.

The symmetric instability of the flow is the first one encountered in all the cases
investigated. Figure III.12 provides the total kinetic energy transfers for lid-driven cavities
of various spanwise extents Λ. As for the 2D-periodic lid-driven cavity flow [9], the I2
production term dominates these energy budgets for all of the spanwise extents considered.
Figure III.13 depicts the spatial distribution of this I2 production term averaged in the
z-direction for lid-driven cavities of different spanwise aspect ratio Λ. As can be assessed
from these figures, the global modes essentially extract their kinetic energy from the
left side of the cavities, along the shear layer delimiting the primary vortex from the
corner eddy. Comparing these kinetic energy budget and the spatial distribution of the
dominant production term with the work of Albensoeder & Kuhlmann [9], it appears
obvious that the fully three-dimensional instability mechanism at play here is similar to
that of the 2D-periodic lid-driven cavity flow. It has been argued by the latter authors [9]
that this particular I2 production term should be the dominating one in the case of a
centrifugal instability of the flow. Though we agree with their explanations, another
physical interpretation can nonetheless be given to this production term. Indeed, the I2
term characterises the transfer of kinetic energy from the vortical structure u⊥ to the
streaky one u‖. As a consequence, it shares close connections with the lift-up effect [96]
in boundary layer flows wherein streamwise velocity streaks (i.e. u‖) are promoted by
streamwise-oriented counter-rotating vortices (i.e. u⊥). As a consequence in a control
perspective, one might need to act only on the vortical stucture u⊥ to modify the whole
kinetic energy transfer from the base flow to the perturbation. Finally, it is worthy to
note that similar results hold for the anti-symmetric instability (not shown here).

III.3.3 Non-linear evolution

Among the large body of literature on the lid-driven cavity flow, few references can be
found regarding the unsteady non-linear flow developing within a cubical LDC. Unfor-
tunately, as in Leriche [102], Leriche & Gavrilakis [104], most of these numerical studies
have considered relatively high Reynolds number flows making their insights inconclusive
regarding the dynamics of the flow close to the critical Reynolds number. After hav-
ing investigated the linear stability of the flow in the cubical lid-driven cavity, Feldman
& Gelfgat [60] have also rapidly looked at its non-linear evolution close to the critical
Reynolds number Rec = 1914. They have shown that, once linearly unstable, the flow
was driven from the steady equilibrium to a periodic limit cycle. Unfortunately, as shown
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(a) (Λ,Re) = (1, 1950)

(b) (Λ,Re) = (3, 1075)

Figure III.12: Total kinetic energy budget of the leading unstable global mode for cavities
of various spanwise extents Λ. All of the production terms

∫
Ω
Ii dΩ have been normalised

by the total dissipation
∫
Ω
D dΩ for the sake of comparison.
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(a) (Λ,Re) = (1, 1950)

(b) (Λ,Re) = (3, 1075)

Figure III.13: Spatial distribution of the I2 production term averaged in the z-direction
for lid-driven cavities of various spanwise aspect ratio Λ.

68



Figure III.14: Long time evolution of the flow’s kinetic energy in an aspect ratio Λ = 1
lid-driven cavity at Re = 1930

very recently by Kuhlmann & Albensoeder [94], the total time integration of the Navier-
Stokes equations performed in [60] was not sufficiently long to unravel the most interesting
feature of the resulting non-linear flow: its intermittent chaotic nature.

Figure III.14 shows the long time evolution of the kinetic energy of the flow in the
cubical lid-driven cavity (Λ = 1) at a slightly supercritical Reynolds number Re = 1930.
The direct numerical simulation has been initialised with the appropriate unstable base
flow as the initial condition. This base flow being linearly unstable, the flow slowly deviates
from its initial state. The speed at which it deviates is however obviously Reynolds
number-dependent: the higher the Reynolds number, the larger the growth rate of the
most unstable global mode and the quicker does the flow depart from its equilibrium state.
Once deviation is large enough, non-linearities kick in and the flow settles on what would
appear to be a periodic limit cycle. Unfortunately, as shown by the long time integration
of the equations, this limit cycle is unstable and the flow eventually experiences a burst
of the kinetic energy. The flow then comes back in the vicinity of the unstable steady
state before slowly deviating from it and settles on the unstable limit cycle once again.
After a slightly smaller period of time, a new burst occurs and the scenario just described
repeats itself over and again. According to Pomeau & Manneville [125], such transition
scenario is characteristic of intermittent chaos. Except the recent work by Kuhlmann &
Albensoeder [94], such intermittent chaotic dynamics have never been mentionned in the
literature before for the lid-driven cavity flow at the onset of transition. In the following
subsections, some insights about the dynamics during the unstable limit cycle and the
burst will be given essentially for Re = 1930.

III.3.3.1 Unstable limit cycle at Re=1930

Figure III.15(a) depicts a subset of the time evolution of the kinetic energy along the
unstable limit cycle at Re = 1930 whereas figure III.15(b) depicts the associated Fourier
spectrum and figure III.15(c) a phase space representation of the flow dynamics during this
period of time. It is clear from these figures that, during the period of time considered on
figure III.15(a), the dynamics exhibited by the flow are indeed those of an established limit
cycle. The time evolution of the flow only involves the fundamental circular frequency
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ωE = 0.5848 as well as it sub-harmonics due to the non-linearities. The frequency at which
the non-linear flow oscillates is moreover in good agreements with the predictions obtained
from linear global stability analyses (ω = 0.584). Based on the kinetic energy of the flow
and its time derivative, one can reconstruct the phase plot depicted on figure III.15(c).
Using such a representation, it is clear that the trajectory of the flow in the phase space
for the time window considered is a closed orbit characteristic of limit cycles.

To further characterise these dynamics and more specifically the spatial distribution
of the associated perturbations, a Koopman modes decomposition [131] of a sequence
of snapshots obtained during this limit cycle is performed. The Krylov subspace is a se-
quence of 300 snapshots having a sampling period ∆T = 0.5. Each period is thus sampled
by almost 20 snapshots. According to the Nyquist criterion, such sampling period enables
us to capture the high frequencies up to ω = π, that is well beyond the dominant circular
frequency of the flow. Figure III.16(a) shows the computed spectrum of Ritz eigenvalues
whereas figure III.16(b) shows a classification of the relative importance of the modes in
the sequence showing their amplitude versus their circular frequency. Apart from the zero
frequency peak associated to the mean flow, two dominant peaks can be found at circular
frequencies identical to that identified by the Fourier analysis of the kinetic energy1. Fig-
ure III.16(c) depicts isosurfaces of the real part’s vertical velocity of the leading Koopman
mode, whereas figure III.16(d) depicts the motion in the y = −0.25 horizontal plane. As
for the leading unstable global mode identified from global stability analyses, it consists
in oscillating symmetric Taylor-Görtler like vortices inducing vertical low- and high-speed
streaks on the upstream and downstream walls of the cavity. Moreover, comparing fig-
ure III.16(c) and figure III.8(b), it is clear that the leading Koopman mode found by the
present analysis and the most unstable global mode share a striking resemblance. It can
thus be interpreted as the non-linear evolution of the unstable global mode. From the
frequencies involved in the dynamics and the shape of the dominant Koopman mode, it
would thus appear that this limit cycle is solely induced by the linear instability identified
in section III.3.2 and its non-linear interactions.

Figure III.17(a) depicts the logarithmic transformation of the Ritz eigenvalues corre-
sponding to the first twenty dominant Koopman modes. Such representation allows one
to determine whether each of these Koopman modes has a growing or decaying relative
importance in the sequence of snapshots analysed. It can be seen that most of the modes
have a zero growth rate, typical of Koopman mode decomposition of limit cycles. More-
over, the neutral modes are all harmonic of the same fundamental frequency. Yet, it is
striking that a complex conjugate pair lies in the upper half complex plane. Though the
amplitude of the associated Koopman mode is extremely small (A ≃ 6.10−9), such com-
plex conjugate pair indicates that the relative importance of these modes in the sequence
of snapshots is slowly growing in time. More importantly, the circular frequency associ-
ated to these eigenvalues is not a subharmonic of the fundamental frequency. Indeed, one
has ω0 = 0.5848 for the fundamental frequency, whereas the frequency of these modes is
ω = 0.1432 (ω0/ω = 4.1). Such low frequency is in good agreement with the one found

1It has been shown by Chen et al. [40] that, when considering a strictly periodic signal, the Koopman
mode decomposition and the Fourier analysis are equivalent. Hence, retrieving the peaks observed in the
Fourier spectrum when using the Koopman mode decomposition is a somewhat expected result.
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(a)

(b)

(c)

Figure III.15: (a) Subset of the kinetic energy’s evolution when the flow at Re = 1930
is in the vicinity of the limit cycle. (b) Associated Fourier spectrum. (c) Corresponding
phase plot.
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(a) (b)

(c) (d)

Figure III.16: Koopman analysis of the limit cycle dynamics. (a) Ritz eigenspectrum.
Only the leading 50 modes are depicted (b) Amplitude vs circular frequency classification
of the mode. (c) Vertical velocity component of the leading Koopman mode’s real part.
Isosurfaces depict ±10% of the maximum y-velocity. (d) Vector field depicts the horizontal
in-plane motion induced by the Koopman mode, whereas coloured contours show the
vertical velocity component in the y = −0.25 horizontal plane.
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by Kuhlmann & Albensoeder [94] when investigating the dynamics of the bursts. Prelim-
inary Floquet stability calculations have moreover revealed that this complex conjugate
pair of Ritz eigenvalues indeed corresponds to unstable modes of the periodic limit cycle
investigated. According to the classification by Pomeau & Manneville [125], the intermit-
tent chaotic dynamics observed in the time evolution of the flow’s kinetic energy depicted
on figure III.14(a) would thus be a type-2 intermittency.

Figures III.17(b) and (c) depict the spatial distribution of the Koopman mode’s vertical
velocity associated to ω = 0.1432 and the motion it induces in the y = −0.25 plane,
respectively. As for the leading Koopman mode depicted on figure III.16(b) and the
leading unstable global mode depicted on figure III.8(b), this mode exhibits a symmetry
with respect to the spanwise mid-plane of the cavity for its x- (not shown) and y-velocity
components, and an antisymmetry for its z-velocity component (not shown). Similarly
to the other modes identified, it consists in Taylor-Görtler like vortices inducing low- and
high-speed streaks along the walls of the cavity. It is thought by the author that, once
it has grown sufficiently large, the non-linear interactions between this unstable mode
and the periodic limit cycle identified previously are responsible for what would appear
to be a secondary periodic cycle that can be observed during the burst (see figure III.18,
9750 ≤ t ≤ 10250). Further in-depth analyses are however required to fully characterise
the dynamics during such burst and to assess the validity of this working hypothesis.

III.3.3.2 Fully chaotic dynamics at Re=2000

Figure III.19 shows the long time evolution of the kinetic energy of the flow in the cubical
lid-driven cavity (Λ = 1) at a supercritical Reynolds number Re = 2000. Whereas the
intial dynamics are similar to what has been observed for the Re = 1930 case, it is clear
that they greatly differ after the burst has occured. Indeed, whereas forRe = 1930 the flow
was then relaxing toward the unstable steady state followed by the unstable limit cycle
before eventually experiencing a new burst, in the present case the dynamics become fully
chaotic right after the burst took place. Figures III.20(a), (c) and (e) show the evolution
of the x-, y- and z-velocity recorder by a probe located in (x, y, z) = (−0.45,−0.25, 0). It
is clear from figure III.20(e) that the transition to chaos is followed by a breaking of the
flow symmetry. The Fourier spectra depicted on figures III.20(b), (d) and (f) highlight the
frequencies involved only in the post-burst dynamics for each velocity component. As one
can see, the frequential signature of the unstable limit cycle is clearly visible on the Fourier
spectra of the x- and y-velocity components. On the other hand, the Fourier spectrum of
the spanwise velocity appears to be largely dominated by a low-frequency unsteadiness.
It is not clear yet if this low frequency unsteadiness is related to the unstable Floquet
mode identified by the Koopman analysis.

Figure III.21 depicts the rms fluctuations of the three velocity components in the z = 0
plane (left) and y = −0.25 plane (right), respectively. It appears from these figures that
the u-rms and w-rms fluctuations have their maxima in the vicinity of the upstream wall
of the cavity, while the v-rms has its maximum in the vicinity of the downstream corner
eddy. The location of the v-rms maxima is in agreement with what has been observed at
higher Reynolds number by Leriche [103]. On the other hand, the location of the u-rms
and w-rms maxima on the streaks located along the upstream wall appear to be essentially
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(a)

(b) (c)

Figure III.17: (a) Logarithmic transformation of the Ritz eigenvalues corresponding to
the first 20 leading Koopman modes. (b) Vertical velocity component of the unstable
Koopman mode’s real part identified from this spectrum. Isosurfaces depict ±10% of the
maximum y-velocity. (d) Vector field depicts the horizontal in-plane motion induced by
the Koopman mode, whereas coloured contours show the vertical velocity component in
the y = −0.25 horizontal plane.
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Figure III.18: Subset of the kinetic energy’s time evolution during the burst at Re = 1930.

Figure III.19: Long time evolution of the flow’s kinetic energy in an aspect ratio Λ = 1
lid-driven cavity at Re = 2000
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(a) (b)

(c) (d)

(e) (f)

Figure III.20: Fourier spectra of the velocity measurements recorded by probe located at
(x, y, z) = (−0.45,−0.25, 0). (a) x-velocity, (b) y-velocity and (c) z-velocity.
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a feature of the low Reynolds number considered. Indeed, in [103], the maxima of u-rms
and w-rms is located in the vicinity of the downstream corner eddy as well.

III.4 Conclusion
The transition from steady to unsteady flow in fully three-dimensional lid-driven cavities
with spanwise end-walls has been investigated using the joint application of unstable
steady states computations, fully three-dimensional global stability analyses and direct
numerical simulations. A focus on the influence of the spanwise extent of the cavity on
the stability of the resulting flow has also been given.

The various base flow computations have shown that the most important spatial struc-
tures to be found in such fully three-dimensional lid-driven cavity flows are quite similar
to their two-dimensional counterparts. Indeed, as for the 2D LDC, the 3D LDC exhibits
a central vortex core as well as corner vortices. Moreover, the flow in the spanwise z = 0
symmetry plane also closely resembles the two-dimensional one. However, because of the
fundamental three-dimensionality of the flow field in the present case, some differences
are still obviously observed. Indeed, due to the existence of the spanwise end-walls, a
non-zero spanwise pressure gradient exists in the cavity triggering a spanwise motion of
the fluid particles as well. Because of this spanwise motion, though they closely resemble
one another, the flow in the spanwise symmetry plane and its two-dimensional counter-
part are fundamentally different. Indeed, whereas in the 2D lid-driven cavity flow, fluid
particles have closed trajectories, the ones in the three-dimensional cavity flow have much
more complex three-dimensional trajectories. Three spatial locations however appear to
be of crucial importance in their motion, the cores of the primary vortex and of the corner
eddies. Indeed, on the one hand, the core of the central vortex appears to be a saddle at-
tracting fluid from the spanwise walls toward the center of the cavity and expelling it from
the center of the cavity toward the upper and bottom walls in a spiralling motion. The
attraction of the fluid particles just described and clearly visible on figure III.4 is known
as the Eckman pumping. However, on the other hand, the cores of the secondary eddies,
though they act as saddles as well, are attracting the fluid particles already lying within
the spanwise symmetry plane before expelling these towards the spanwise end-walls, thus
enabling the flow to remain divergence-free. Though the spanwise extent of the cavity
clearly has an impact on the flow, the motion just described has been observed for all
cavities investigated in the present study.

The transition to unsteadiness of these flows has been investigated by means of global
linear stability analyses. It has appeared in all cases that the flow was undergoing a Hopf
bifurcation induced by a globally unstable mode exhibiting a symmetry with respect to
the spanwise mid-plane for all of the various cavities considered. It is however worthy to
note that shortly after the flow has experienced this first Hopf bifurcation, it experiences
a second one induced this time by an anti-symmetric global mode. No matter their
symmetry, all these modes induce vertical low- and high-speed streaks along the upstream
and downstream walls as well as Taylör-Gortler-like vortices. Though the number of
TGL vortices induced by the modes is found to be dependent on both the symmetry
of the mode and the spanwise aspect ratio of the cavity considered, they are associated
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Figure III.21: Left: rms-fluctuations in the z = 0 plane. (a) x-velocity, (c) y-velocity, (e)
z-velocity. Right: rms-fluctuations in the y = −0.25 plane. (b) x-velocity, (d) y-velocity,
(f) z-velocity. 78



in all cases to a dominant spanwise wavenumber β3D ≃ 15 extremely close to what has
been found by Theofilis et al. [152] and Chicheportiche et al. [42] regarding the three-
dimensional instability of an otherwise two-dimensional lid-driven cavity flow. Despite
the transition scenario appearing to be identical no matter the spanwise aspect ratio of
the cavity considered, close investigations of the shape of the globally unstable modes and
of the regions of the base flows providing them with energy have suggested that two slightly
different instability mechanisms may actually be at play. Indeed, for the smaller cavity
considered (i.e. Λ = 0.5), though they induce hardly visible Taylor-Görtler-like vortices
along the upstream wall of the cavity, the globally unstable modes are located mainly
along the downstream wall and are oscillating are a relatively low frequency. Moreover,
investigation of the associated kinetic energy transfer has put in the limelight that, in this
case, the symmetric and anti-symmetric global modes essentially extract their energy from
the region separating the central vortex core from the downstream corner eddy. On the
other hand, for the larger cavities considered (i.e. Λ = 1 and Λ = 3), the globally unstable
modes have similar amplitudes in the vicinity of the upstream and downstream walls. The
motion they induced is however quite different from Λ = 0.5. Whereas only vertical low-
and high-speed streaks can be observed on the downstream wall, pairs of counter-rotating
TGL vortices are clearly visible in the vicinity of the upstream wall. Due to the lift-up effet
[97], these TGL vortices further amplify the velocity streaks. Investigation of the kinetic
energy transfers have shown that these global modes were now mostly extracting their
energy from the region separating the central vortex core from the upstream eddy and
along the upstream wall. Close resemblance of these modes and of the spatial distribution
of their production term with what has been found by Albensoeder et al. [9] strongly
suggests that the underlying instability mechanism is a centrifugal instability of the central
vortex core as in the two-dimensional lid-driven cavity flow. Finally, the values critical
Reynolds numbers beyond which the Hopf bifurcations are taking place are dependent on
the spanwise aspect ratio Λ of the cavity: the larger the spanwise aspect ratio, the smaller
the threshold to unsteadiness. It is interesting to observe however that results obtained
on the larger cavity considered herein (i.e. Λ = 3) might suggest that, as the spanwise
aspect ratio is further increased, the value critical Reynolds number might asymptotically
tends toward the value ReT1 = 840, i.e. the critical threshold found by Theofilis et al.
[152] for spanwise periodic oscillatory instability in a two-dimensional lid-driven cavity
flow.

Direct numerical simulations have put in the limelight, at least for the cubical lid-
driven cavity (Λ = 1), that once linearly unstable, the flow was bifurcating toward a
periodic limit cycle. Long time integration has however shown that this limit cycle is
itself unstable and the flow eventually experiences bursts that are the signature of inter-
mittent chaos. Koopman modes analysis of the data highlights that the dynamics of the
flow while on the periodic limit cycle are essentially correctly predicted by global stability
analysis. Indeed, both the dominant frequency and the shape of the associated Koopman
mode share striking resemblance with the globally unstable mode and the associated circu-
lar frequency. Nonetheless, the Koopman mode analysis has also put in the limelight that
an unstable mode was slowly evolving onto this limit cycle. The frequency at which this
unstable Koopman mode oscillates is in good agreement with the low frequency observed
by Kuhlmann & Albensoeder [94] as well as with preliminary results from Floquet anal-
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ysis of the limit cycle’ stability. Accordingly to the classification proposed by Pomeau &
Manneville [125], these dynamics would then be classified as type-2 chaotic intermittency.
The direct numerical simulations have moreover revealed that, whereas for relatively low
supercritical Reynolds numbers (Re = 1930) the flow eventually relaxes toward the unsta-
ble limit cycle before eventually experiencing a new burst, for higher Reynolds numbers
(Re = 2000) the flow becomes fully chaotic right after the first burst has occured. Further
in-depth quantification of the chaotic dynamics are however necessary.

Perspectives

The present study has given us the opportunity to peak a glance at the new investi-
gation capabilities offered by fully three-dimensional global stability analysis. Moreover,
results obtained in the present study open the way for numerous other researches on
the transition in cavity flows. From the author’s point of view, three of these possible
offsprings are of major interest:

• Extension to very large aspect ratio LDC: The present investigation has essentially
been focused on the transition in low to moderate aspect ratio three-dimensional
lid-driven cavity flow. One might thus wonder how do these apply to very large
aspect ratio LDC. Indeed, as the aspect ratio is increased, the flow within the mid-
plane of the cavity resembles more and more to its two-dimensional counterpart. It
thus seems reasonnable to assume that, beyond a critical aspect ratio, results from
three-dimensional global stability analyses might asymptotically tend toward those
obtained regarding the stability of a two-dimensional LDC with respect to spanwise
periodic perturbations as in [42, 152]. Preliminary results obtained on an aspect
ratio Λ = 6 LDC (see Appendix A) seem to confirm this hypothesis.

• Extension to shear-driven cavity flows: Shear-driven cavity flows, also known as
open cavity flows, are encountered in numerous industrial applications such as slots
on the walls of heat exchangers or on airplane’s wings. As for the two-dimensional
lid-driven cavity, a relatively large body of literature exist on the two-dimensional
shear-driven cavity flow. As shown by Brès & Colonius [36] on compressible shear-
driven cavities, the dynamics of the flow can be divided into two-parts: intra-cavity
dynamics and shear layer dynamics. Though they are coupled, the intra-cavity
dynamics closely resembles the ones observed in lid-driven cavity flows. Extension
to three-dimensional shear-driven cavity flows of the analyses presented herein thus
seems quite natural and might help to obtain better predictions of the transition
thresholds once again.

• In-depth investigation of the chaotic dynamics: As shown in section III.3.3, the
flow in a cubical lid-driven cavity can exhibit chaotic dynamics. Because of time
limitations, only rough analyses of these dynamics have been made possible so far.
Further quantitative analyses might thus be necessary in order to provide a better
understanding of the laminar-turbulent transition taking place in such flows. More-
over, since LDC flows exhibit features that can be found in numerous other flows,
having a better understanding of its underlying transition mechanisms might as well
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help the understanding of a large variety of other flows (shear-driven cavity flows
and boundary layer flows along concave walls for instance).
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Chapter IV

Stenotic pipe flow
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IV.1 Introduction
The association of arterial diseases with flow-related mechanisms has motivated the study
of the flow within a model geometry of arterial stenosis. Atherosclerosis is a widely spread
cardio-vascular disease predominant in most industrialised countries. It is a condition in
which an artery wall thickens as a result of the accumulation of fatty material, such
as cholesterol, that might eventually lead to serious health conditions as dangerous as
a break-up of the plaque of atherosclerosis. Figure IV.1 depicts the modification of the
geometry of the artery due to the accumulation of fatty materials resulting in the formation
of a plaque of atherosclerosis. The genesis of this plaque is closely related to wall shear
stress in the arterial flow. It involves an accumulation of cholestorol on the walls of large
arteries, typically where the local wall shear stress is low and periodic. The process can be
considered as a long time non-linear instability of the geometry of the arterial wall, wherein
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(a) (b)

Figure IV.1: (a) Modification of the artery’s geometry. (b) Growth of the stenosis in the
artery. Image courtesy: [1, 2]

a local constriction can grow through the promotion of flow separation. The increased
pressure losses associated with flow separation can reduce the flow rate causing problems
related to oxygen level in the blood. Over the past decades, due to the crucial impact
of this disease on human health, numerous investigations of the flow’s dynamics within
simplified versions of stenotic geometries have been conducted. Quite often, for the sake
of simplicity, two dimensional or axisymmetric partially blocked channels and pipe with
non-elastic walls and steady or pulsatile inflows have been assumed to be proxies good
enough to unravel the basic physical mechanisms underlying the transition to turbulence.

IV.1.1 Axisymmetric stenotic pipe flows

Assuming a strictly two-dimensional geometry being a model good enough to unravel
the underlying transition mechanisms of the flow within arteries has proven to be par-
tially wrong. Indeed, the transition threshold predicted by global stability of such two-
dimensional flows turn out to be almost an order of magnitude lower than the ones typ-
ically observed in experimental investigation of the stenotic artery flow. Over the past
decade, researchers have tended to favor an axisymmetry assumption of the geomtry as a
first approximation when dealing with such blood-flow related problems. Among the large
body of literature existing on stenotic artery flows, only a few references must retain our
attention as being extremely relevant to the problem of global instability and transition
of the flow considered in the present PhD thesis.

The flow developing within axisymmetric stenotic pipes with steady inlets have been
investigated experimentally since the late 1970’s by Cassanova & Giddens [38], Khalifa &
Giddens [88] as well as Ahmed & Giddens [4]. In these pioneering works, transition was
observed to take place for Reynolds numbers in-between 500 and 1000, based on the pipe’s
diameter and the mean inflow velocity. More recently, Long et al. [107] and Mallinger &
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Drikakis [109] have used computational fluid dynamics and direct numerical simulations
to investigate the properties of such idealised flows. Under standard physiological con-
ditions, the blood flow within arteries is considered to be laminar. Unfortunately, the
growth of atherosclerosis plaque induces an inflection point in the velocity profile that
can yield the flow to transition. To our knowledge, the first global stability analysis ever
done on an axisymmetric stenotic pipe flow with steady and pulsatile inlets has to be
credited to Sherwin & Blackburn [142]. Using the pipe’s diameter D as length scale, the
mean value Ū of the inlet Hagen-Poiseuille velocity profile as velocity scale and the kine-
matic viscosity ν to define the Reynolds number Re, the axisymmetric base flow velocity
field they had obtained for a stenotic constriction given by a sine function displays two
major features similar to what has been observed in similar two-dimensional cases, i.e. a
confined axisymmetric jet stemming from the stenotic constriction and a toric reversed
flow region surrounding the jet and quite elongated in the streamwise direction. It is
moreover noticeable that after reattachment, the flow very slowly relaxes back toward the
Hagen-Poiseuille velocity profile. For the geometry under consideration, the authors have
shown that the flow becomes unstable for Re > 722 due to a pitchfork bifurcation. The
associated unstable global mode has an azimuthal wavenumber m = ±1. It consists in
a positive and a negative streamwise velocity tube. This unstable mode triggers a small
deflection of the stenotic jet from the pipe’s centerline eventually yielding a weak Coanda-
like wall reattachment of the jet as explained in [142]. It is worthy to note however that,
after having conducted a direct numerical simulation, the authors have presented some
evidences for the pitchfork bifurcation to be subcritical. Griffith et al. [75] have inves-
tigated a similar problem where the stenotic constriction is now given by a hemisphere.
Whereas the blockage induced by the stenotic constriction in [142] was kept constant,
the major contribution of [75] is the investigation of the influence of this parameter on
the stability of the flow. For a similar flow configuration (75% blockage of the pipe cross-
sectional area), the first mode to become unstable and the associated critical threshold are
in qualitatively good agreements with [142]. However, when the blockage induced by the
stenotic constriction is reduced, though the bifurcation taking place remains a pitchfork
bifurcation, the azimuthal symmetry of the first global mode to become unstable changes
from m = ±1 to m = ±2.

More recently, Sanmiguel-Rojas & Mullin [133] have studied the influence of defect of
the inlet Hagen-Poiseuille velocity profile in an otherwise axisymmetric sudden-expansion
pipe. Though the geometry is different, the dynamics observed in this flow configuration
share close connections with those observed in the stenotic pipe. It is thus believed that
it is worthwhile to introduce the reader to the results presented in this paper. They have
observed that introducing a small asymmetric finite-amplitude disturbance to the inlet
Hagen-Poiseuille velocity profile eventually yields the flow to transition at a Reynolds
number lower than the critical threshold predicted by global linear stability analyses of
the axisymmetric base flow. The threshold beyond which the very slightly asymmetric
flow transition is however dependant on the amplitude of the inlet disturbance. Moreover,
they have also shown that once unsteadiness is observed, it self-sustains eventhough ax-
isymmetry is restored in the inlet velocity profile. Moreover, incrementally decreasing the
Reynolds number has helped unravelling the existence of an hysteresis cycle associated
to a subcritical bifurcation. It is remarkable that the lower bound of this hysteresis cycle
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is in good agreement with the critical Reynolds number beyond which unsteadiness is
observed experimentally. It is not yet clear though if the instability mechanisms yielding
the axisymmetric and slightly asymmetric flow to transition to unsteadiness are the same
or not. These results however suggest that, since even small imperfectness are part of
any experimental work, observing the axisymmetric solutions up to the critical Reynolds
number for linear instability would be a formidable experimental task likely to be never
achieved and highlight the importance to investigate the properties of flow fields even in
very slighlty asymmetric geometries.

IV.1.2 Asymmetric stenotic pipe flows

Whereas the body of literature on the axisymmetric stenotic pipe flow is quite large,
the one on the asymmetric stenotic pipe flow is much more sparse. One of the first
computational studies to investigate the transition to unsteadiness and turbulence in
asymmetric stenotic pipe flow with a steady inlet is the one by Varghese et al. [156]. The
geometry of the stenotic constriction they have considered is the same as in [142], i.e.
a stenosis given by a sine function. Two cases have been considered: an axisymmetric
stenotic constriction for the sake of reference and validation, and one that has been offset
from the pipe’s centerline by 5% of the pipe’s diameter. Though the overall features of the
steady axisymmetric solutions are similar to the ones obtained in [142], the flow remains
stationnary and axisymmetric for Reynolds numbers as high as 1000. Unfortunately, no
clear explanation is given as to why the axisymmetric flow computed in [156] is much
more stable than the ones in [142] and [75]. With the recent knowledge acquired on the
influence of the streamwise extent of the computational on the global stability of the
flow, one might however wonder if the computational domain considered in [156] (i.e.
−2 ≤ z ≤ 24 as compared to −5 ≤ z ≤ 40 in [142]) is not too short to appropriately
capture the steady instability. It is however believed that the general conclusions drawn
in [156] still hold. For the 5% eccentricity, it has been observed that the confined stenotic
jet experiences a weak Coanda-like wall reattachment for a Reynolds number as low as 500
with the resulting velocity field remaining however stationnary. Transition to turbulence
for eccentric stenotic pipe flow then takes place in-between Re = 500 and 1000. At
Re = 1000, the mean flow field essentially looks like its Re = 500 counterpart in the near-
stenosis region, i.e. an early wall-reattached stenotic jet surrounded by an asymmetric
toric reversed flow region. A turbulent breakdown of the stenotic jet is however occuring
in the vicinity of z ≃ 10 thus yielding the mean reversed flow region to be almost 50%
smaller than its axisymmetric laminar counterpart. From the various flow visualisations
they had performed, it is believed by the authors that the turbulent structure resulting
from the breakdown of the stenotic jet might share some connections with the turbulent
puffs observed in the subcritical transition to turbulence in the pipe flow [19] and slowly
diverging pipe flow [120].
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IV.2 Problem formulation
The dynamics of a three-dimensional incompressible Newtonian flow is described by the
incompressible Navier-Stokes equations:





U̇ = −(U · ∇)U−∇P +
1

Re
∆U

∇ ·U = 0
(IV.1)

where U = (U, V,W )T is the velocity vector and P the pressure term. Variables are
made non-dimensional with respect to the pipe’s diameter D and the mean inlet Hagen-
Poiseuille velocity Ū . Therefore, the Reynolds number is defined as Re = ŪD/ν, with ν
being the kinematic viscosity. Figure IV.2 depicts a sketch of the geometry considered.
The stenosis is centered on x = 0. Its height varies with the streamwise distance as:

H(x) = 0.5D(1− 0.25(1 + cos(2πx/L))) (IV.2)

where L is the stenosis length. Throughout the present study, this length is fixed to
L = 2D. Such definition of the stenosis constriction yields to a 75% reduction of the cross-
sectional area of the pipe at the stenosis throat. Such reduction of the cross-sectional area
of the pipe will be kept constant throughout this study. The cross-stream coordinates of
the stenosis are then given by: {

y = H(x) cos(θ)

z = H(x) sin(θ)
(IV.3)

The eccentricity of the stenosis throat is defined as:

E(x) = 0.5ED(1 + cos(2πx/L)) (IV.4)
with E being the eccentricity parameter. The offset is in the z direction such that one
actually has z = E(x)+H(x) sin(θ). The eccentricity parameter E is varied from E = 0%
(axisymmetric case) up to E = 10%.

The computational domain considered extends from xin = −15 up to xout = 40 in the
streamwise direction. The following boundary conditions are applied:

• at the inlet (xin = −15), a Dirichlet boundary condition is imposed on the velocity
(parabolic Hagen-Poiseuille velocity profile for DNS and steady state computations,
zero velocity boundary condition for linear stability analyses),

• at the outlet (xout = 40), a Neumann boundary condition is imposed on the velocity
∇U · x = 0;

• finally, a no-slip boundary condition is imposed on the pipe’s walls.

Calculations have been performed using the code Nek5000 developed at Argonne National
Laboratory by Fischer et al. [62]. Spatial discretisation is done by a Legendre spectral
elements method with polynomials of order N = 8 to 12. The number of spectral elements
is set to 2500, resulting in computational problems having between 1.3 and 4.3 millions
grid points. The convective terms are advanced in time using an extrapolation of order
3, whereas the viscous terms use a backward differentiation of order 3 as well, resulting
in the time-advancement scheme labelled BDF3/EXT3.
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Figure IV.2: Sketch of the geometry of the stenotic pipe considered.

IV.3 Reference case: the axisymmetric stenotic pipe
flow

In order to provide the reader with a complete and up-to-date picture of stenotic pipe flow
transition, the case of an axisymmetric stenotic constriction will first be considered. Such
geometry has already been studied using a similar approach by Sherwin & Blackburn [31,
32, 142] and Griffith et al. [75, 76].

IV.3.1 Steady state solutions

Steady state solutions in an axisymmetric stenotic pipe with a 75% reduction of the area
at the stenosis throat have been computed for Reynolds numbers ranging from Re = 300
up to Re = 750. Their main features are presented on figure IV.3.1. As one can see, the
flow essentially consists in a jet emerging from the stenotic constriction. As explained
by Sherwin & Blackburn [142], since an incompressible flow is considered, due to mass
conservation, the sectionally averaged velocity at the throat of the stenosis is four times
larger than the inlet mean velocity Ū . During the stenosis expansion (0 ≤ x ≤ 1), the flow
is then unable to remain attached and the laminar axisymmetric jet is formed in the centre
of the pipe. As shown on figure IV.3.1, it is surrounded by an elongated reversed flow
region. Once it has reattached, the flow then slowly relaxes toward the Hagen-Poiseuille
flow. Nonetheless, it is worthy to note that for the computational domain considered,
even at x = 39, it still is not yet fully restablished. Indeed, even this close from the outlet
of the computational domain, at Re = 700, the centerline velocity still is almost 20%
higher than the Hagen-Poiseuille centerline velocity 2Ū .

Several different quantities can be used to monitor the evolution of the base flow. In
separated flows, the maximum length of the reversed flow region is often a good candidate.
Though it works perfectly fine for two-dimensional flows, such criterion might hide part
of the evolution of the base flow when a fully three-dimensional recirculation bubble is
considered. In the present work, it has thus been decided to use the volume of the reversed
flow region instead. Let us consider a Heaviside function H(x, y, z) such that:

H(x, y, z) =

{
0 if Ub(x, y, z) > 0

1 if Ub(x, y, z) < 0
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Figure IV.3: Evolution of the axisymmetric base flow when increasing the Reynolds num-
ber. Dashed red lines depict the streamwise extent of the reversed flow region.

the volume V − of the reversed flow region is then given by:

V − =

∫

V

H(x, y, z) dV

with V the total volume of the computational domain considered. Figure IV.4 depicts the
evolution of this quantity V − with an increase of the Reynolds number for the axisym-
metric stenotic pipe flow. As for the recirculation length, it can be seen that the volume
V − of the base flow’s reversed flow region increases linearly with the Reynolds number.
When investigating the influence of the eccentricity of the stenosis throat on the flow, this
linear scaling of the volume V − of the reversed flow region in the axisymmetric case will
be used as a baseline for the sake of comparison.

IV.3.2 Linear stability analysis

The linear stability of the axisymmetric stenotic pipe flow is investigated by mean of linear
global stability analysis. The Krylov subspace used to compute the leading eigenvalues
of the linearised Navier-Stokes has dimension k = 250 and a sampling period ∆T = 1.
The flow is found to be unstable beyond a critical Reynolds number Rec = 721, i.e. in
extremely good agreement with the critical Reynolds number found by Sherwin & Black-
burn [142] (Rec = 722). Figure IV.5 depicts the subset of computed eigenvalues at the
critical Reynolds number Rec = 721. As one can see, it is dominated by a real eigenvalue
indicating the flow experiences a pitchfork bifurcation. Such bifurcation are usually re-
lated to a symmetry breaking instability. Figure IV.6 depicts the spatial distribution of
the leading global mode in (a) the x = 5 plane and (b) a three-dimensional visualisation
of its streamwise component. Due to the real eigenvalue it is attached to, this mode is
a non-oscillating one. It is clear from these two figures that the leading global mode is
symmetric with respect to the y = 0 plane while being anti-symmetric with respect to the
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Figure IV.4: Evolution of the volume V − of the reversed flow region with an increase of
the Reynolds number Re for the axisymmetric stenotic pipe base flows. The reduction of
the cross-sectional area at the stenosis throat in 75%.

Figure IV.5: Eigenspectrum of the linearised Navier-Stokes operator for an axisymmetric
stenotic pipe flow at Re = 721.
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z = 0 plane. Moreover, a Fourier decomposition in the azimuthal direction shows that it
is associated to a m = ±1 azimuthal wavenumber as in [142]: the mode exhibits positive
streamwise velocity on the upper side of the pipe and negative velocity on the lower side.
Moreover, it arises right downstream the stenosis throat and is quite elongated in the
streamwise direction. Figure IV.6(a) depicts the motion it induces in the x = 5 plane. It
is clear from the vector plot that the instability mode tends to promote a deflection of
the stenotic jet from the pipe’s centerline eventually yielding to a mild Coanda-type wall
reattachment. Such symmetry-breaking Coanda-type instabilities have been reported for
a wide variety of two-dimensional confined jet flows. However, for strictly two-dimensional
flows, it usually arises at substantially lower critical Reynolds numbers (O(10)) and the
resulting deflection is far stronger (see [11, 99, 123, 144] for examples).

Kinetic energy budget analysis

In order to get a better understanding of the instability mechanism, the kinetic energy
transfer between the base flow and this mode is investigated. The kinetic energy transfer
is governed by the Reynolds-Orr equation already introduced in chapter III and recalled
here for the sake of clarity:

∂E

∂t
= −D +

9∑

i=1

∫

V

Ii dV

where the kinetic energy and the total dissipation of the perturbation in the computational
domain’s volume V are given by:

E =
1

2

∫

V

(u2 + v2 + w2) dV,

D =
1

Re

∫

V

∇u : ∇u dV

and where the integrands Ii which represent the production terms are:

I1 = −u2
∂Ub

∂x
, I2 = −uv

∂Ub

∂y
, I3 = −uw

∂Ub

∂z

I4 = −uv
∂Vb
∂x

, I5 = −v2
∂Vb
∂y

, I6 = −vw
∂Vb
∂z

I7 = −wu
∂Wb

∂x
, I8 = −wv

∂Wb

∂y
, I9 = −w2∂Wb

∂z

with (u, v, w)T being the perturbation and (Ub, Vb,Wb)
T the base flow under consideration.

The sign of the different integrands indicates whether the local transfer of kinetic energy
associated to them acts as stabilising (negative) or destabilising (positive). It is worthy to
note that, since an axisymmetric base flow is considered, reformulating the kinetic energy
budget in terms of wall-normal and azimuthal derivatives of the base flow would make
more sense. However, for sake of comparison with the asymmetric stenotic pipe flow, it
has been decided to stick to a cartesian formulation of the Reynolds-Orr equation.

Figure IV.7 depicts the kinetic energy transfer rates integrated over the whole vol-
ume normalised by the dissipation for the axisymmetric stenotic pipe flow at the critical
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(a)

(b)

Figure IV.6: Streamwise velocity component of the leading global mode for the axisym-
metric stenotic pipe at the critical Reynolds number Rec = 721. (a) Motion induced in
the x = 5 plane. (b) Isosurfaces depicting ±10% of the maximum streamwise velocity of
the mode (red: negative, blue: positive).
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(a)

Figure IV.7: Kinetic energy budget of the leading global mode integrated over the whole
volume of the axisymmetric stenotic pipe at Rec = 721.

Reynolds number Rec = 721. It is clear that the unstable global mode essentially extracts
its energy from the wall normal gradient of the streamwise velocity component of the base
flow. Moreover, this kinetic energy budget is largely dominated by the

∫
V
I3 dV term.

The instability thus mostly extracts its energy from the work of the uw Reynolds stress
against the z-derivative of the base flow streamwise velocity component Ub. Figure IV.8
depicts the spatial distribution of this production term in (a) the x = 5 plane and (b)
the y = 0 plane, respectively. It is clear from this figure that the instability essentially
extracts its kinetic from the confined stenotic jet. This instability thus seems to be an
instability of the confined jet rather than one of the reversed flow region itself further
confirming the Coanda-like instability.

IV.3.3 Non-linear saturation and transition to turbulence

The non-linear evolution of this particular instability mode has not been investigated in
the present work. The following explanatory section thus essentially relies on the work by
Sherwin & Blackburn [142]1 to provide the reader with some insights about the non-linear
evolution of the mode and the subsequent transition to turbulence.

The DNS code used in [142] employs a Fourier decomposition of the Navier-Stokes
equations in the azimuthal direction. Consequently, the authors have been able to easily
monitor the energy along the m = ±1 Fourier mode. Assuming one has Ψ ∝ E

1/2
1 , where

Ψ stands for the mode’s amplitude and E
1/2
1 is the square-root of the kinetic energy

along the m = ±1 Fourier mode, the authors produced some evidences for the bifurcation
occuring at Re = 721 to be a subcritical pitchfork bifurcation. Sherwin & Blackburn [142]
mimicked the time-evolution of Ψ using the three-terms model:

∂Ψ

∂t
= γΨ+ β1Ψ

3 − β2Ψ5 (IV.5)

where β1 and β2 are postive numbers. Figure IV.9 depicts the time evolution of E1/2
1

(solid line), the predicted evolution of Ψ (dashed line) and a comparison with the purely
1The author is very grateful to Spencer Sherwin and Hugh Blackburn for having kindly allowed the

reproduction of the figures presented in this section. They have been taken from their paper [142].
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(a)

(b)

Figure IV.8: Spatial distribution of the
∫
V
I3 dV =

∫
V
−uw ∂Ub

∂z
dV production term in

(a) the x = 5 plane and (b) the y = 0 plane. The dashed red line depicts the extent of
the reversed flow region.

exponential growth (dotted line). As one can see, though both the growth of E1/2
1 and Ψ

initially follow closely the purely exponential growth, past t ≃ 400 they start to quickly
depart from it before eventually saturating non-linearly. Such over-exponential growth
right before non-linear saturation is the clear signature of subcriticality. In the non-
linearly saturated regime, some low-frequency oscillations of the stenotic jet are observed.
As explained by the authors, this low-frequency unsteadiness observed within the flow
corresponds to a periodic rotation of the stenotic jet. Moreover, as highlighted by the
instantaneous isosurfaces of streamwise and azimuthal vorticity depicted on figure IV.10 at
various instants of the low-frequency cycle, this periodic rotation of the jet is accompanied
by the shedding, roughly four diameters downstream the stenosis throat, of a structure
similar to that of the turbulent puffs observed in subcritical pipe flow transition. For
further visualisation of this turbulent-like puff, the reader is refered to Varghese et al. [156]
where λ2 visualisations are presented.

IV.4 Asymmetric stenotic pipe flows

IV.4.1 Influence of the eccentricity at fixed Reynolds number

As a first step toward comprehension of the influence of asymmetry defects on the proper-
ties of the steady inlet stenotic pipe flow, the Reynolds number is kept constant, Re = 350,
and the eccentricity of the stenosis throat ranges from E = 0% (axisymmetric case) up to
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Figure IV.9: Growth to saturation and transition to turbulence of the steady inlet flow
solution at Re = 750, where E1/2 is used as a measure of perturbation amplitude Ψ. The
three-term model fit is for (5,2). Inset: approximate bifurcation diagram, with observed
Re-range of turbulent solutions indicated by hatching.

E = 10%. Figure IV.11 shows the evolution of the volume V − of the reversed flow region
with an increase of the eccentricity of the stenosis throat. Three different stages can be
observed in this diagram:

• From E = 0% to E ≃ 0.25%: the volume of the reversed flow region remains
almost constant. It can thus be infered that the base flow velocity field is almost
axisymmetric.

• From E ≃ 0.25% to E ≃ 1%: the volume of the reversed flow region is drastically
reduced.

• From E ≃ 1% up to E = 10%: the volume of the reversed flow region increases
and eventually becomes more important than that of the axisymmetric reference
solution.

Figures IV.12 and IV.13 depict streamwise velocity contours of the flow for eccentricities
within each of the stages just described in the x = 5 and y = 0 planes, respectively.
These figures make it obvious that, for E ≤ 0.25%, the flow only slightly deviates from
the axisymmetric reference solution. On the other hand, for E ≥ 0.25%, great differences
are observed. First, it is clear from figure IV.12 that the jet has been deflected toward
the upper side of the pipe. Moreover, this deflection and early wall reattachment of the
jet yield the upper part of the reversed flow region to shrink, thus explaining the drop in
the volume V − of the recirculation bubble. Finally, as the eccentricity E exceeds 1% of
the pipe’s diameter, the upper part of the reversed flow region has totally disappeared.
Similar evolution has been observed by Griffith et al. [74] when investigating the same
setup. For the Reynolds number under consideration herein, these authors have found
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Figure IV.10: Time series of the energy in the first two azimuthal Fourier modes for
steady inlet at Re = 750 during a long-period oscillation, and instantaneous isosurfaces
of azimuthal and streamwise vorticity at seven points in the cycle. At the start of the
cycle, the orientation of the jet is towards the top of the tube; at the end, it is towards
the bottom.
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Figure IV.11: Evolution of the volume of the reversed flow region with an increase of the
stenotis throat’s eccentricity at Re = 350.

that the critical value for the stenosis offset is Ec = 0.2525%, a critical value in good
agreement with the present estimate.

IV.4.1.1 Linear stability analysis

In order to understand what is the physical mechanism responsible for this early wall
reattachment of the jet and whether or not it is related to the pitchfork bifurcation taking
place in the axisymmetric stenotic pipe flow at Re = 722, a global stability analysis of
the 0.25% eccentric stenotic pipe flow at Re = 350 is performed. Figure IV.15 depicts
the spectrum of the associated linearised Navier-Stokes operator. It has been computed
using a Krylov subspace of dimension k = 250 and a sampling period ∆T = 1. As one
can see, two real eigenvalues lie very close to the upper half complex plane indicating
the flow is about to experience two successive pitchfork bifurcations. Figure IV.15 shows
(a) the motion induced by the leading global mode in the x = 5 plane and (b) a three-
dimensional view of its streamwise velocity component, respectively. It is clear from these
two figures that this mode shares striking resemblance with the leading global mode found
in the axisymmetric reference case depicted on figure IV.6. It arises at the throat of the
stenosis and induces a reduction of the velocity of the flow on the lower side of the pipe,
whereas it slightly increases the velocity on the upper side. It can as well be deduced from
the in-plane motion depicted on figure IV.15(a) that this mode essentially transfers the
velocity from the upper side of the reversed flow region towards its lower side. It moreover
triggers an upward deflection (in the direction of the stenosis offset) of the reversed flow
region and of the jet from the pipe’s centerline. As its axisymmetric counterpart, this
global mode thus enhances the up-and-down symmetry breaking and can be related to a
Coanda-like instability of the confined jet.

Figure IV.16 shows the spatial distribution of the second leading global mode. Once
again, the mode arises right downstream the stenosis throat. However, the motion it
induces is quite different from the motion induced by the leading global mode. First of
all, whereas only two vortices can be observed in the motion induced by the leading global
mode depicted on figure IV.16(a), three of these vortices are visible on figure IV.16(a).
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Figure IV.12: Streamwise velocity contours in the x = 5 plane. Thin solid lines depicts
streamwise velocity contours from Ub = 0.5 up to Ub = 4. Red dashed line highlights
the extent of the reversed flow region within this plane. The Reynolds number is set to
Re = 350.
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Figure IV.13: Streamwise velocity contours in the y = 0 plane. Red dashed line highlights
the extent of the reversed flow region within this plane. The Reynolds number is set to
Re = 350.

More importantly, though the leading global mode enhances the up-and-down symmetry
breaking, it still remains symmetric with respect to the y = 0 plane. On the other hand,
it is clear from figures IV.16(a) and (b) that this sub-dominant global mode increases the
velocity of the flow on the left side of the pipe while reducing it on the right side, thus
breaking the remaining left-rigth symmetry of the flow. Despite these differences, this
sub-dominant global mode appears to be essentially deflecting the stenotic jet toward the
left side of the pipe. It might thus be related to a secondary Coanda-like instability of
the confined jet.

IV.4.1.2 Kinetic energy budget analysis

To get a better understanding of the instability mechanism at play for each of the two
global modes identified, the kinetic energy transfer rates between the base flow and these
two modes are investigated. Figure IV.17 depicts the kinetic energy transfer rates inte-
grated over the whole volume of the stenotic pipe for (a) the leading symmetric global
mode and (b) the sub-leading antisymmetric global mode. These rates have been nor-
malised by the dissipation in both cases for the sake of comparison. It is obvious from
these two figures that both instabilities essentially extract their energy from the work of
the Reynolds stresses against the gradients of the streamwise velocity component Ub of
the base flow. Yet, depending on the mode considered, the major contribution does not
stem from the same component of the gradient. Indeed, as can be seen on figure IV.17(a),
the kinetic energy transfer rates of the leading global mode are mostly dominated by
the

∫
V
I3 dV production term. This mode thus extracts most of its kinetic energy from

the work of the uw Reynolds stress against the z gradient of the streamwise velocity
component of the base flow, that is in the direction of the stenosis offset. Moreover, com-
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Figure IV.14: Eigenspectrum of the linearised Navier-Stokes operator for a E = 0.25%
eccentric stenotic pipe flow at Re = 350.

parison with the kinetic energy budget of the axisymmetric mode depicted on figure IV.7
suggests that the underlying instability mechanism is similar. On the other hand, the sub-
dominant antisymmetric global mode mostly extracts its kinetic energy from the work of
the uv Reynolds stress against the y gradient of the streamwise velocity component of the
base flow, i.e. in the direction perpendicular to the stenosis offset. Figure IV.18 depicts
the spatial distribution of the kinetic energy production term in the x = 5 plane for (a)
the leading symmetric mode and (b) the sub-dominant antisymmetric mode, respectively.
Despite the genuine difference in their symmetry, it is clear from these figures that both
modes essentially extract their kinetic energy from the confined stenotic jet similarly to
what has been observed for the axisymmetric unstable global mode for which the spa-
tial distribution of its leading production term is depicted on figure IV.8. It thus seems
reasonnable to assume that these two modes, despite their different symmetry, are both
related to Coanda-like instability of the jet stemming from the stenotic constriction as
well.

IV.4.2 Influence of the Reynolds number at fixed eccentricity

Now that a survey of the stenosis eccentricy’s influence on the flow at fixed Reynolds
number has been given, one might wonder what is the influence of the Reynolds number
at fixed eccentricity. To do so, the eccentricity of the stenosis is set to E = 0.1% while
the Reynolds number is varied from Re = 300 up to Re = 500. Figure IV.19 depicts the
evolution of the volume V − of the reversed flow region with an increase of the Reynolds
number. This bifurcation diagram clearly highlights the existence of a hysteresis cycle.
Such hysteresis cycle is a genuine feature of subcritical pitchfork bifurcations. Subcriti-
cality of the bifurcation has already been foreseen by Sherwin & Blackburn [142] and has
been observed by Griffith et al. [74] as well. Figures IV.20 and figures IV.21 depict the
features of the upper and lower branch solutions at Re = 400 in the x = 5 plane and
y = 0 plane, respectively. As previously, one of the two solutions is a slightly asymmetric
solution while the other one has experienced an early wall-reattachment of the confined
stenotic jet. On figure IV.19, the blue line thus shows the evolution of the slightly asym-
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(a)

(b)

Figure IV.15: Streamwise velocity component of the leading global mode. (a) Motion
induced in the x = 5 plane. (b) Isosurfaces depicting ±10% of the maximum streamwise
velocity of the mode (red: negative, blue: positive).
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(a)

(b)

Figure IV.16: Streamwise velocity component of the second leading global mode. (a)
Motion induced in the x = 5 plane. (b) Isosurfaces depicting ±10% of the maximum
streamwise velocity of the mode (red: negative, blue: positive).
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(a)

(b)

Figure IV.17: Kinetic energy budget integrated over the whole volume of the stenotic
pipe. (a) Leading symmetric global mode. (b) Sub-dominant antisymmetric global mode.

(a) (b)

Figure IV.18: Spatial distribution in the x = 5 plane of the leading production term
for (a) the leading unstable mode (

∫
V
I3 dV ) and (b) the sub-dominant one (

∫
V
I2 dV ).

Regions coloured in black are regions where kinetic energy is produced, whereas regions
in white are regions where it is dissipated.
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Figure IV.19: Evolution of the volume of the reversed flow region with an increase of the
Reynolds number for a fixed eccentricity E = 0.1%. Blue line depicts the evolution of the
slightly asymmetric solution whereas red line shows the evolution of the wall-reattached
solution. The dashed line is the suspected form of the unstable branch of solutions.

metric solution’s reversed flow volume while the red line shows the evolution of the wall
reattached solution.

Linear stability analysis

Figure IV.22 depicts the spectrum of the linearised Navier-Stokes operator of the slightly
asymmetric stenotic pipe flow where the stenosis throat has been offset by E = 0.1% of the
pipe’s diameter and at a Reynolds number Re = 450. It has been computed using a Krylov
subspace of dimension 250 and a sampling period ∆T = 1. Though the stenosis throat’s
eccentricity and the Reynolds number considered are different than those considered in
section IV.4.1.1, it is clear that the spectrum depicted here shares close connections with
the one depicted on figure IV.14. It is dominated by two real eigenvalues lying very
close to the upper-half complex plane thus indicating the flow is about to experience two
successive pitchfork bifurcations once again. Figures IV.23 and IV.24 depict the spatial
distribution of the streamwise component of these two modes. As previously, the leading
global mode, depicted on figure IV.23, displays a symmetry with respect to the y = 0
plane while the sub-dominant mode, depicted on figure IV.24, displays an anti-symmetry
with respect to this same plane. It is also clear from these figures that these two modes
closely resemble the two leading modes identified in section IV.4.1.1. Whereas the leading
symmetric mode enhances the up-and-down symmetry breaking, the sub-dominant anti-
symmetric mode breaks the remaining left-right symmetry of the flow. An analysis of the
kinetic energy transfer between the base flow and these modes (not shown here for the sake
of conciseness) let us draw the same conclusions as previously: these modes are related to
a Coanda-like instability of the jet stemming from the stenotic constriction rather than
an instability of the reversed flow region itself. It would thus appear that, starting from
the axisymmetric steady state at low Reynolds number, the first two bifurcations to be
encountered are symmetry-breaking pitchfork bifurcations no matter the trajectory taken
in the parameter space (E,Re)
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(a) (b)

Figure IV.20: Streamwise velocity component of (a) the slightly asymmetric base flow and
(b) the wall-reattached solution in the x = 5 plane. Red dashed line depicts the spatial
extent of the reversed flow region. Thin solid lines depicts streamwise velocity contours
from Ub = 0.5 up to Ub = 4.

Figure IV.21: Streamwise velocity component of the slightly asymmetric base flow (top)
and the wall-reattached solution (bottom) in the y = 0 plane. Red dashed line depicts
the spatial extent of the reversed flow region.

Figure IV.22: Eigenspectrum of the linearised Navier-Stokes operator for a E = 0.1%
eccentric stenotic pipe flow at Re = 450.
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(a)

(b)

Figure IV.23: Streamwise velocity component of the leading global mode for (E,Re) =
(0.1%, 450). (a) Motion induced in the x = 5 plane. (b) Isosurfaces depicting ±10% of
the maximum streamwise velocity of the mode (red: negative, blue: positive).
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(a)

(b)

Figure IV.24: Streamwise velocity component of the second leading global mode for
(E,Re) = (0.1%, 450). (a) Motion induced in the x = 5 plane. (b) Isosurfaces depicting
±10% of the maximum streamwise velocity of the mode (red: negative, blue: positive).
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Figure IV.25: Dye visualisation of the unsteady structures in the E = 5% asymmetric
stenotic pipe flow at Re = 330.

IV.5 Discussion

Comparison with the experimental work of Griffith & Passaggia

As part of the project SICOGIF, Martin D. Griffith and Pierre-Yves Passaggia have
investigated the dynamics of the asymmetric stenotic pipe flow from an experimental
perspective. Depending on the ecentricity of the stenosis, almost axisymmetric flows and
wall-reattached ones have both been observed. However, their experimental work has also
underlined a crucial feature not observed in the present numerical investigation: transition
to unsteadiness. Figure IV.26 depicts the evolution of the critical Reynolds number beyond
which unsteadiness is observed in the experiment with respect to the eccentricity of the
stenosis throat. As one can see, as the eccentricity of the stenosis throat increases, the
critical Reynolds number for unsteadiness decreases. The unsteadiness typically consists
in oscillations of the shear layers of the reversed flow region as depicted on figure IV.25.
The dye visualisations clearly highlight that these oscillations are closely related to a
Kelvin-Helmholtz instability of the shear layers. The frequency at which these shear
layers oscillate however appear to be dependent on both the eccentricity of the stenosis
throat and the Reynolds number of the flow. Nonetheless, these experimental observations
strongly question the validity of the numerical approach used in the present investigation.
Figure IV.26 summarises the distribution in the (E,Re) parameter space of all the slightly
asymmetric and wall-reattached solutions computed during the present thesis. Black dots
enclose a region of the parameter space still under current investigation. It is worthy
to note however that both the green and red dots only stand for stationnary solutions
and that no unsteady flow has been numerically observed so far. This fact suggests great
discrepancies between the experimental observations and the numerical predictions. The
source of these discrepancies is still unknown at the present time. However, based on the
form of the experimentally observed perturbations, a reasonnable assumption would be
a subcritical transition to unsteadiness induced by transiently growing linear and non-

108



linear perturbations. Following the work of Blackburn et al. [32], preliminary optimal
perturbation analysis of the flow in the E = 0.1% eccentric stenotic pipe at a Reynolds
number Re = 400 has been performed. Figure IV.27(a) depicts the streamwise velocity
component of the optimal perturbation. It is located in the vicinity of the separation
point and is divergent to the right. On the other hand, the optimal response of the flow
at the optimal time τ = 4.5 is depicted on figure IV.27(b). As one can see, the optimal
response takes the form of a wavepacket travelling along the shear layers of the reversed
flow region as the experimentally observed perturbation. It is moreover apparent that the
perturbation has been reoriented by the shear of the base flow, a linear mechanism known
as the Orr mechanism on which transient growth is based. Due to this reorientation of the
perturbation by the Orr mechanism, its energy has been multiplied byGmax(τ) = 1.06×106
over a period of time τ = 4.5 time units. These preliminary results thus suggest that, even
in a well controlled experiment, the energy of small uncontrolled disturbances inherent to
any experimental setup can grow up to one million times its initial level over a relatively
short period of time. Such transient growth of small perturbation is thus very likely to
trigger non-linear effects neglected in the present linear optimal perturbation analysis,
hence potentially causing the flow to transition to unsteadiness as in the experiment.

The subcritical pitchfork bifurcation and the concept of base flow

In the introduction, the concept of base flow has been defined as follows:

Base flow: A base flow is a peculiar solution of the Navier-Stokes equations.
In the context of linear stability theory, this solution has to be stationnary or
periodic in time.

For the range of eccentricities investigated herein, such peculiar solution is unique as
long as the Reynolds number is below a given critical value (Re ≃ 350). However, the
subcritical pitchfork bifurcation and the associated simultaneous existence of the slightly
asymmetric stenotic flow and the wall-reattached one over a given range of Reynolds
numbers challenges this definition. Indeed, both flows are stationnary solutions of the
Navier-Stokes equations. Moreover, as explained previously, both solutions are symmetric
with respect to the y = 0 plane, i.e. the only symmetry plane of the geometry, and thus
both maximise the possible symmetries of the problem. As a consequence, for Reynolds
numbers larger than 350, it is not clear which of these two solutions should be considered
as the base flow. In order to solve this problem, another definition of the concept of base
flow could be proposed. However, from the author’s point of view, this problem is an
ill-posed one and the answer should be based on physical considerations. For the 0.1%
asymmetric stenotic pipe flow investigated in section IV.4.2, one should instead have the
following reasonning:

• For Re < 350: only the slightly asymmetric solution exists. As a consequence, this
solution is the only possible candidate for the base flow.

• For 350 < Re < 450: both the slightly asymmetric and wall-reattached solution
are permissible base flows. The linear stability of both solutions should thus be
investigated as well as the transient growth of infinitesimal perturbations evolving
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Figure IV.26: (a) Steady-unsteady transition observed in the asymmetric stenotic pipe
flow experiment by Griffith & Passaggia. (b) Families of asymmetric stenotic pipe flows
in the (E,Re) parameter space.
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(a) (b)

Figure IV.27: (a) Streamwise velocity component of the optimal perturbation for a E =
0.1% stenotic pipe flow at Reynolds Re = 400 in the y = 0 plane. (b) Optimal response
of the flow.

onto both solutions. Conclusions should then be drawn accordingly to experimental
observations if possible.

• For Re > 450: the slightly asymmetric solution is linearly unstable and thus can-
not be observed anymore (nor numerically or experimentally) without a stabilising
procedure. Past this point, only the stability of the wall-reattached solution should
thus be investigated in order to appropriately investigate the secondary bifurcation
eventually encountered by the flow.

Such physical considerations could also be applied to the case where the flow ecounters
a Hopf bifurcation. Indeed, once the base flow has encountered a Hopf bifurcation, it is
linearly unstable and thus cannot be physically observed anymore. Consequently, investi-
gating the secondary instability of the stationnary base flow would make very little sense
from the author’s perspective and one should instead focus on the Floquet stability of the
periodic solution to be physically accurate.

IV.6 Conclusion
The instabilities experienced by stenotic pipe flows have been investigated by mean of
base flow computations and global stability analyses. A thorough illustration of the ax-
isymmetric stenotic pipe flow has first been considered in order to provide the reader with
a complete overview of the up-to-date picture about this peculiar flow’s transition. The
flow developing in such geometries consists in a confined jet stemming from the stenotic
constriction and surrounded by an annulus reversed flow region. As for most separated
flows, the characteristics of this reversed flow region evolve linearly with the Reynolds
number. Nonetheless, beyond a critical Reynolds number Re = 721, the flow experiences
a pitchfork bifurcation. The associated global mode triggers an upward deflection of the
stenotic jet from the pipe’s centerline while transferring the fluid from the upper part of
the reversed flow region toward its lower part. As a consequence, the lower part of the
recirculation bubble extends further downstream while the upper part starts to shrink.
In the mean time, the upward deflection of the jet from the pipe’s centerline eventually
triggers a mild Coanda-type wall reattachment of the flow. Sherwin & Blackburn [142]
have investigated the non-linear evolution of this instability. In their direct numerical
simulation, they have observed that, once unstable, the jet starts to be deflected from the
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pipe’s axis as predicted by linear stability theory. Nonetheless, beyond a given deflection,
the jet experiences a breakdown and the flow eventually displays localised transition to
turbulence. The associated structures were found to share some connections with the
turbulent puffs observed in subcritical pipe flow transition [19]. Moreover, some evidence
suggests that this pitchfork bifurcation is subcritical.

Unfortunately, experimental results about the dynamics axisymmetric stenotic pipe
flows put in the limelight that the flow might transition as early as Re = 425. Based
on the assumption that these discrepencies might originate from very small asymmetry
defects, the throat of the stenosis has been slightly offset from the pipe’s centerline and
the stability properties of the resulting flows have been investigated. Though for small
eccentricities the flows appear to be quite similar to their axisymmetric counterpart, they
experience global instability at substantially lower Reynolds numbers. Indeed, even for
an eccentricity of the stenosis throat as small as 0.1% of the pipe’s diameter, it has been
shown that the flow becomes linearly unstable for Rec ≃ 450. Nonetheless, for the range
of eccentricities considered, the first bifurcation to occur always is a pitchfork bifurcation.
Despite the different critical thresholds, the leading unstable mode in the asymmetric
stenotic pipe flow is seen to be closely related to its axisymmetric counterpart. Indeed,
as for the axisymmetric reference case, it triggers an upward deflection of the stenotic
jet and transfers fluid from the upper side of the reversed flow region toward its lower
side. As a consequence, the jet experiences a Coanda type wall reattachment once again
hence promoting flow separation on the lower side of the pipe. It is noteworthy that
this leading global mode only enhances the up-and-down symmetry breaking induced by
the stenosis offset but still is symmetric with respect to the y = 0 plane. It must be
highlighted however that once unstable, the sub-dominant global mode eventually breaks
the remaining left-right symmetry of the flow. Unfortunately, due to time limitation,
their non-linear evolutions have not been investigated yet. It is thought by the author
that, once this sub-dominant global mode is unstable, since the resulting flow field has
no symmetry left, it might eventually transition to unsteadiness. This still is however an
open question and requires further analyses.

Finally, comparison with the experimental work of Martin D. Griffith and Pierre-Yves
Passaggia has however revealed that great discrepancies exist between the experimental
observations and the predictions obtained by global stability analyses. Indeed, for the
range of eccentricties and Reynolds numbers considered herein, no unsteady flow has
been observed. Unfortunately, experimental observations put in the limelight that the
flow transitions to unsteadiness for Reynolds numbers as low as Re ≃ 250 for a 1%
eccentric stenotic pipe. These discrepancies strongly suggest that global stability analysis
might not be the most suited tool to investigate the transition of such flow. On the
other hand, preliminary optimal perturbation analysis appears to give results in better
agreements with the experimental observations. These preliminary results suggest that the
unsteadiness observed in the experiment might be the consequence of a by-pass transition.
This hypothesis however requires further investigations to be confirmed.

Perspectives
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The present study has shown that the stability properties of the axisymmetric stenotic
pipe flow and those of the asymmetric one were quantitatively very different even when a
very small asymmetry of the geometry has been considered. From the author’s point of
view, several different leads can be explored to continue this work:

• It has been shown that the global stability properties of slightly asymmetric stenotic
pipe flows significantly differ from those of the axisymmetric reference case. In-depth
mathematical investigations of the properties of the axisymmetric linearised Navier-
Stokes operator and of the slighly asymmetric one might help us to understand why
is that so and get a better idea of the range of validity of the axisymmetric flow
assumption when investigating such geometries.

• During their post-doctoral stays at IRPHE, Martin D. Griffith and Pierre-Yves
Passaggia have conducted a series of experiments on the asymmetric stenotic pipe
flow. As already explained, the transition to unsteadiness was observed to occur
at substantially lower Reynolds numbers than those predicted by global stability
theory. Preliminary results however suggest that optimal perturabtion theory might
be a more suitable tool to investigate what would appear to be a by-pass transition
to unsteadiness.

• Though the geometry considered here is a model of the geometry of stenotic arter-
ies, assuming the inlet velocity profile to be steady is too much of an idealisation
for practical biomedical applications. This problem has already been partially ad-
dressed by Sherwin & Blackburn [142] as well as Varghese et al. [155]. In the future,
extending the present analysis to time-dependant base flows is seriously considered.
Such extension would allow one to go one step further in the comprehension of
the transition to turbulence taking place in stenotic arteries and might eventually
provide valuable insights to bio-mechanical engineers working on this crucial health
problem.
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V.1 Introduction
Understanding, predicting and eventually delaying the laminar-turbulent transition in
boundary layer flows still is a long time challenge for researchers ever since the pioneering
work by Ludwig Prandtl and his two students, Walter Tollmien and Hermann Schlichting.
For small amplitude disturbances and supercritical Reynolds numbers, the linear stabil-
ity theory predicts the slow transition process due to the generation, amplification and
secondary instability of Tollmien-Schlichting (TS) waves. It has however been known for
quite a long time that this transition process can be greatly modified by environmental
noise or by the presence of localised or distributed surface roughness. Depending on the
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flow’s characteristics and the nature of the surface roughness, the transition process can
either be promoted or delayed.

On the one hand, in their experimental work, Klebanoff & Tidstrom [89] have shown
that this natural transition could be promoted using spanwise invariant roughness ele-
ments. This earlier transition is related to the modified stability properties of the bound-
ary layer flow developing downstream the roughness element. More precisely, this transi-
tion process is explained by the enhancement of the unstable TS waves due to modifica-
tions of the flow’s properties in the downstream reversed flow and recovery regions. More
recently, Perraud et al. [121] have shown that the higher the two-dimensional roughness
element, the closer to it does transition to turbulence take place. On the other hand,
the influence of fully three-dimensional roughness elements on the transition to turbu-
lence is very different. Indeed, whereas fully three-dimensional roughness elements hardly
promote flow separation, they induce streamwise velocity streaks. It has been shown by
Cossu & Brandt [46] that these streaks act as stabilising the TS waves and thus delay
the natural transition process. This delay of the transition to turbulence by fully three-
dimensional roughness elements has been further confirmed experimentally by Fransson
et al. [65–67], using an array of cylindrical roughness elements. Though promising, this
delay technique needs a careful choice of the main parameters of the set up, namely the
Reynolds numbers, the shape and spacing of the roughness elements, as well as their height
with respect to the thickness of the boundary layer. In fact, the previously mentioned
authors have observed that, beyond a given threshold, the velocity streaks induced by the
three-dimensional roughness elements can become themselves unstable yielding the flow
to transition to turbulence right downstream the roughness elements.

It is known that in the presence of moderate to high environmental noise, free-stream
disturbances can penetrate into the boundary layer and trigger by-pass transition. The
developing perturbations no longer take the form of TS waves but of velocity streaks
which are quasi-optimal disturbances (i.e. with the optimal perturbation being the one
inducing the largest transient energy growth in the considered base flow). Because three-
dimensional roughness elements also induce velocity streaks in the boundary layer, it
is believed that such by-pass transition and fully three-dimensional roughness-induced
transition share close connections. The formation process of these high- and low-speed
streaks has been explained by Landahl [98] and relies on the lift-up effect. The free-
stream disturbances entering the boundary layer give birth to streamwise aligned counter-
rotating vortices. Such vortices then transfer high-speed fluid from the outer part of the
boundary layer toward the wall and low-speed fluid from the wall toward the outer region
of the boundary layer. Due to this transfer of momentum, the resulting perturbation
takes the form of high- and low-speed streaks. The dynamics of optimal streaks has
been investigated by Andersson et al. [13]. These can potentially undergo secondary
instability taking the form of a sinuous modulation of the streaks when their amplitude
exceeds approximately 26% of the free-stream velocity. Instability with respect to varicose
perturbations has also been reported for optimal streaks having an amplitude larger than
roughly 37% of the free-stream velocity. However, more recently, Konishi & Asai [90]
have shown experimentally that the stability properties of isolated streaks, as the ones
induced by a three-dimensional roughness element, are different from the ones of spanwise-
periodic, optimal streaks as those considered by Andersson et al. [13]. In fact, even if one
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can carefully chose the shape and aspect ratio of an isolated roughness element trying
to reproduce the wavelength of spanwise-periodic streaks (see Ergin & White [59]), the
shape of the induced streaks will be rather different, especially concerning the lateral ones,
which would easily fade away in the absence of side vortices able to sustain them.

Concerning the flow past three-dimensional roughness elements and its transition to
turbulence, Sedney [140] has reviewed most of the literature available until the early
1970’s. The flow pattern induced by an isolated three-dimensional roughness element
has been known for almost 60 years (see Gregory & Walker [73]). When impinging the
three-dimensional roughness element, the spanwise vorticity of the incoming boundary
layer wraps around it thus creating horseshoe vortices. One of the most thorough inves-
tigations of the structure of such vortical structures has been carried out by Baker [22],
for an isolated cylindrical roughness mounted on a flat plat. As shown by Baker [22], the
number of horseshoe vortices wrapped around the roughness element, as well as their main
features, are essentially dependent on the aspect ratio of the roughness element consid-
ered. However, in all of these cases, such horseshoe vortices give birth further downstream
to quasi-aligned streamwise vortices. As already explained, due to the lift-up effect [98],
these streamwise aligned vortices can trigger strong transient growth of the boundary
layer streaks [85], strong enough to yield their breakdown and subsequent transition to
turbulence.

The receptivity of the boundary layer flow to an array of three-dimensional cylindri-
cal roughness elements and the associated transient growth of the velocity streaks have
been thoroughly investigated by various authors as Fischer & Choudhari [61], Ergin &
White [59], Fransson et al. [65, 66], as well as Denissen & White [49, 50]. Their major find-
ing is that the streamwise transient growth of the induced streaks roughly scales with the
square of the roughness Reynolds number, Reh = UBl(xk, h)h/ν (UBl being the value of
the Blasius velocity profile evaluated at the roughness element’s position xk and height h).
The crucial importance of the roughness Reynolds number in the roughness-induced tran-
sition to turbulence had already been outlined many years earlier. Indeed, as soon as the
early 1960’s, Tani et al. [149] had already observed experimentally that the transition to
turbulence in the wake of an aspect ratio η = 1 cylindrical roughness element is occurring
in the vicinity of Reh = 600 almost independently of the other parameters characteris-
ing the flow (provided the roughness element is totally immersed within the boundary
layer). Almost at the same time, von Doenhoff & Braslow [158] have reviewed most of
the experimental results available back then, obtained for roughness elements of different
shape, height and spanwise spacings, and compiled them into a transition diagram cor-
relating the roughness element’s aspect ratio to the roughness Reynolds number beyond
which the induced flow would transition to turbulence. The von Doenhoff & Braslow’s
diagram [158] shows clearly that the fundamental parameters for predicting transition to
turbulence past a roughness element are its aspect ratio and its height with respect to
the Blasius boundary layer profile. In particular, the height of the roughness element
appears to be fundamental for the development of streamwise streaks of finite amplitude
and length. The crucial role of streaks in the onset of transition has been highlighted by
Vermeersch [157] and Arnal et al. [15], who have developed a model grounded on optimal
perturbation theory for determining transition to turbulence past roughness elements of
any shape. In particular, they have conjectured that transition occurs when the ratio of
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the shear stress generated by optimal streaks, with respect to the viscous stress, reaches a
given critical value. Though promising, their approach relies on the strong assumption of
quasi-parallelism of the flow induced by the three-dimensional roughness element, regard-
less of the separation zones which can be induced in the near-wake for large/high enough
roughness elements. The same authors have also shown that arrays of smooth roughness
elements share similar features with sharp-edged ones, both concerning stabilization of
TS waves and transition to turbulence.

The receptivity of a boundary-layer flow to an array of bumps has been investigated by
Tumin & Reshotko [154]. Similarly to what observed for cylindrical roughness elements,
they found that behind each bump a pair of counterrotating vortices is generated, creat-
ing relatively high- and low-speed streaks in the wake downstream from the bump. An
investigation of the local stability of streamwise streaks developing past a smooth, large,
isolated roughness element has been carried out by Piot et al. [122]. Assuming that the
flow past the smooth roughness element evolves slowly in the streamwise direction, they
have studied its local stability at each streamwise location just behind the roughness ele-
ment, assessing the stabilizing effect of such a pre-streaky flow on the growth of TS waves.
The same configuration has been studied very recently by Cherubini et al. [41] from a
global point of view. To investigate bypass transition in the presence of a large isolated
bump, these authors have searched the optimal perturbation inducing the largest growth
of disturbances over the fully three-dimensional flow field surrounding this smooth rough-
ness element. In this three-dimensional framework, the optimal perturbation takes the
form of a wavepacket-like structure initially localised in the vicinity of the separation line
on the top of the roughness element and will eventually travel along the central low-speed
streak induced by the roughness element. Interestingly enough, at small target times,
this optimal perturbation exhibits a varicose symmetry, whereas at larger target times it
exhibits a sinuous structure. It is worthy to note that for the geometry they have investi-
gated, the varicose optimal perturbation is the most efficient to trigger localised transition
and induces hairpin vortices once non-linearities are taken into account. However, due
to the linearly stable nature of the flow considered, the unsteadiness observed is not
self-sustaining once these linear transients have been washed out from the computational
domain. In the mean time, de Tullio et al. [48] have investigated the roughness-induced
transition in the case of a compressible boundary layer flow using the joint application of
local stability analysis, parabolised stability equations and direct numerical simulations.
These authors have shown that the flows they have investigated are much more convec-
tively unstable, be it to varicose or sinuous perturbations, than the classic boundary layer
flow. Moreover, for the sharp-edged rectangular roughness element they considered, the
varicose perturbations exhibit larger temporal and spatial growth rates than their sinuous
counterparts.

Though they provide valuable insights into the linear dynamics of the flow, stability
analyses as performed by Piot et al. [122] (for bumps), de Tullio et al. [48] (for rectan-
gular roughness elements), and Denissen & White [51] (for cylinders), rely on the strong
assumption of a nearly parallel flow. However, the flow past three-dimensional roughness
elements exhibits some reversed flow regions where such parallel assumption can not hold.
As a consequence, for such class of flows, stability analyses relying on a parallel flow hy-
pothesis totally discard the influence of the region in the vicinity of the roughness element
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on the stability properties of the overall flow field which, as seen by Fransson et al. [66],
appears to be the region triggering the unsteadiness. To circumvent this major drawback
and to fully capture the instability mechanisms, one then has to turn to a fully three-
dimensional global stability framework for which no such parallel assumption is required.
Since the number of degrees of freedom involved in such formulation of the stability prob-
lem is extremely large, fully three-dimensional global stability analysis still is nowadays a
heavy computational task. Hopefully, with the increase of computational ressources over
the past decade and the recent popularisation of new eigenvalues algorithms [20, 57], in-
vestigation of the linear stability of flows with three inhomogeneous directions has become
feasible. Recently, on the case of a jet in cross flow, Bagheri et al. [21] and Ilak et al. [82]
have shown that fully three-dimensional global stability analysis is able to provide a better
understanding of the underlying instability mechanisms. To our knowledge, no such global
stability analysis has ever been attempted on the flow past a three-dimensional roughness
element. The aim of the present work is to provide new insights on the roughness-induced
transition using these new developments in the global stability theory. Indeed, it is be-
lieved that fully three-dimensional global stability analysis can help us addressing several
questions among which:

(i) Can the varicose and sinous instability mechanisms found by local stability analyses,
as well as the critical Reynolds number measured in experiments and numerical sim-
ulations, be accurately recovered using a fully three-dimensional global approach?

(ii) Can one link the roughness-induced transition to a global instability of the flow and
not only to transient growth and associated convectively unstable perturbations as
widely accepted until now?

(iii) Is it possible to predict the flow’s non-linear patterns and dynamics using pieces of
information stemming from linear analyses only?

The case of a cylindrical roughness element immersed within a laminar boundary
layer flow developing along a flat plate is investigated. The present paper is structured
as follows: first, in section V.2 the problem under consideration and the numerical meth-
ods used are presented. In section V.3, the experimental case investigated by Fransson
et al. [66] is numerically reproduced and its global instability is investigated. In section
V.4, a parametric investigation is carried out, highlighting two instability mechanisms, a
sinuous and a varicose one, arising for roughness elements of different aspect ratio. Fi-
nally, in section V.5, direct numerical simulations revealing the non-linear evolution of
these instabilities as well as the criticality of the bifurcation associated with the sinuous
one are presented. Finally, in section V.6 concluding remarks are provided.

V.2 Problem formulation
The dynamics of a three-dimensional incompressible flow is described by the incompress-
ible Navier-Stokes equations:





∂U

∂t
+ (U · ∇)U = −∇P +

1

Re
∆U

∇ ·U = 0
(V.1)
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Figure V.1: Sketch of the computational domain under consideration. The parameters
defining the geometry take the following values: h = 1, l = 15 and (Lx, Ly) = (105, 50).
Only the roughness element’s diameter d will be varied and the spanwise dimension of the
domain Lz.
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where U = (U, V,W )T is the velocity vector and P the pressure term. Dimensionless
variables are defined with respect to the height h of the cylindrical roughness element and
the free-stream velocity U∞. Therefore, the Reynolds number is defined as Re = U∞h/ν,
with ν being the kinematic viscosity. Concerning the coordinate system, x, y and z
are defined as the streamwise, wall-normal and spanwise directions, respectively, with x
having its origin at the leading edge of the flat plate. However, since the domains used
in this work do not include the leading edge of the flat plate, it is convenient to define a
shifted streamwise axis X = x− xk, having its origin in the location xk of the roughness
element along the flat plate. A sketch of the computational domain considered is depicted
on figure V.1, along with this roughness-centered coordinate system. The cylindrical
roughness element, having diameter d and height h, is thus centred in (X, z) = (0, 0).
The computational box has a streamwise extent LX = 105 (−15 ≤ X ≤ 90), a wall-
normal extension of Ly = 50, whereas the spanwise extent Lz will be varied in the different
computations as specified in the next sections. In particular, in most of the computations,
the spanwise domain length is chosen in order to make sure the roughness element behaves
as being isolated [158], by scaling it with respect to the aspect ratio of the roughness
element, η = d/h.

The following boundary conditions have been applied:

• at the inlet (Xin = −15), a Dirichlet boundary condition is imposed on the velocity.

• at the outlet (Xout = 90), a Neumann boundary condition is imposed on the velocity
∇U · x = 0;

• on the spanwise end planes (zside = ±Lz/2), periodic boundary conditions are im-
posed for the three components of the velocity vector;

• at the upper boundary (ytop = 50), the following conditions are applied: U = 1 and
∂V/∂y = ∂W/∂y = 0;

• finally, a no-slip boundary condition is imposed on the flat plate and the walls of
the roughness element.

Regarding the inflow boundary condition for the base flows, since the computational
domain does not include the leading edge of the flat plate, a Blasius velocity profile is
imposed at inlet points. The imposed profile is chosen by requiring that the theoretical
Blasius boundary layer displacement thickness, δ∗, that the flow would have at (X, z) =
(0, 0) in the absence of the roughness element, has a prescribed value with respect to
the roughness height. The prescribed values of δ∗, as well as the associated values of
the displacement thickness Reynolds number, Reδ∗ = U∞δ∗/ν, will be given in the next
sections, allowing a comparison with the configurations used in previous studies. Note that
two other domains extending down to Xout = 30 andXout = 60 in the streamwise direction
have been considered, whereas the inlet of the domain has been kept at a streamwise
distance l = 15 upstream the center of the roughness element (see figure V.1). However,
in order to present results independent of the domain size, only the longest domain (i.e.
Xout = 90) will be considered in the present work, as discussed in detail in Appendix B
providing a numerical convergence analysis.
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Case 1 Case 2 Case 3 Case 4
δ∗(xk) 0.6026 0.5547 0.5425 0.5310
Reδ∗ 281 305 312 319
Re 466 550 575 600

Stability Stable Stable Unstable Unstable

Table V.1: Summary of the different cases considered in Section V.3. For all of them, the
roughness elements are located at a distance xk = 57.14 from the leading edge, separated
by Lz = 10 and have an aspect ratio η = 3.

Calculations have been performed using the code Nek5000 developed at Argonne Na-
tional Laboratory by Fischer et al. [63]. Spatial discretisation is done by a Legendre
spectral elements method with polynomials of order 12. Depending on the aspect ratio
considered, the number of spectral elements in the mesh ranges from 10 000 for η = 1 up
to 18 800 for η = 3. The convective terms are advanced in time using an extrapolation of
order 3, whereas for viscous terms a backward differentiation of order 3 is used, resulting
in the time-advancement scheme labelled BDF3/EXT3.

V.3 The Fransson experiment

Following the theoretical work by Cossu & Brandt [46], Fransson et al. [65–67] have con-
ducted a series of experiments demonstrating the ability for finite amplitude streaks to
stabilise the Tollmien-Schlichting waves and thus delay the natural transition of the bound-
ary layer flow. With this aim, they have placed an array of roughness elements, having
an aspect ratio η = 3, located at xk = 57.14 from the leading edge of a flat plate and
separated one from another by a spanwise distance Lz = 10 [66]. Despite the stabilising
effect of the streaks on the TS waves, transition was however observed to take place right
downstream the roughness elements beyond a critical Reynolds number. In this section,
the case described by Fransson et al. [66] is reproduced numerically, in order to ascertain
that fully three-dimensional global instability analysis is able to predict with reasonable
accuracy the critical Reynolds number experimentally obtained by the previously men-
tioned authors. The prescribed Reynolds numbers as well as the displacement thickness
δ∗(xk) are given in table V.1.

V.3.1 Base flow

Figure V.2 depicts the base flow obtained for (Re,Reδ∗ , η) = (466, 281, 3), i.e. the same
setup as the reference one in [66]. It exhibits the two major features of all the steady
solutions that have been investigated within the present work: an upstream and a down-
stream reversed flow region (visualised by the Ub = 0 isosurface in the top frame), as well
as a system of multiple vortices stemming from the upstream recirculation zone, wrapping
around the roughness element and eventually getting almost aligned with the streamwise
direction of the flow as shown by the streamlines. The topology of this upstream vorti-
cal system has been investigated experimentally by Baker [22] and exhibits between one
and three counter-rotating vortex pairs. According to Baker [22], the particular vortical
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(a)

(b)

Figure V.2: Computed base flow for (Re,Reδ∗ , η) = (466, 281, 3). (a) Visualisation of
the vortical system using streamlines and isosurfaces of the upstream and downstream
reversed flow regions (visualised by the Ub = 0 isosurface). (b) Close-up of the upstream
vortical system highlighted by streamlines in the symmetry plane coloured with the ve-
locity magnitude.
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topology chosen by the flow essentially depends on the Reynolds number and on the ratio
of the roughness element’s diameter d over the boundary layer displacement thickness δ∗.
This vortical system can be seen on figure V.2(b) depicting streamlines in the symmetry
plane. The impact of this vortical system on the boundary layer flow is as follows:

(i) Upstream the roughness element, all of the vorticity is in the spanwise direction.

(ii) When the flow encounters the roughness element, the upstream spanwise vorticity
rolls up, forming the vortical system observed in figure V.2(b).

(iii) It then wraps around the roughness element and is transferred into streamwise
vorticity further downstream thus creating the legs of the horseshoe vortices.

The legs of these horseshoe vortices being streamwise-aligned vortices, high speed fluid
is transported from the outer region of the boundary layer toward the wall, whereas low
speed fluid is transported away from the wall toward the outer region of the boundary
layer. This transport of momentum, known as the lift-up effect, thus gives birth to
streamwise streaks [98].

Figure V.3 depicts the spatial distribution of the central low-speed region and outer
streaks induced by the array of roughness elements at various streamwise stations. These
streaks have been identified using the deviation of the base flow streamwise component
from the corresponding Blasius boundary layer flow (UBl), as used by Fischer & Choud-
hari [61], i.e. ū = Ub−UBl. As depicted on figure V.3(a), the roughness element generates:
a central low-speed region created by the streamwise velocity deficit induced by the rough-
ness element and a pair of high- and low-speed streaks on each side induced by the legs
of the primary horseshoe vortex. On the one hand, the central low-speed region appears
to fade away relatively rapidely in the streamwise direction, while on the other hand the
outer pairs of streaks appear to sustain over quite a long distance. This can be better
visualised on figures V.3(b) to (e) depicting contours of the streamwise velocity deviation
in various X = constant planes. It indeed appears clearly from these figures that, while
the central low-speed region has almost disappeared as soon as X = 60, the amplitude of
the outer low- and high-speed streaks varies very little. Such behavior has already been
observed experimentally by Fransson et al. [65] (see figure 2 of the cited paper).

V.3.2 Global stability

In order to investigate the early transition observed in the experiment [66], global stability
analyses of various base flows are conducted. All of the cases considered are reported in
table V.1. Figure V.4 depicts the spectra of eigenvalues for Re = 550 (Reδ∗ = 305) and
Re = 575 (Reδ∗ = 319). It is clear from these eigenspectra that the flow experiences a Hopf
bifurcation for 550 < Rec < 575 due to an isolated pair of complex conjugate eigenvalues of
the linearised Navier-Stokes operator moving into the upper-half complex plane. A linear
interpolation provides a critical Reynolds number Rec = 564 ((Reδ∗)c = 309) only 6%
larger than the critical Reynolds number experimentally obtained by Fransson et al. [66].
This good agreement for the value of the critical Reynolds number strongly suggests that
the transition observed in the experiment might be the consequence of a three-dimensional
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(a)

(b) X = 20 (c) X = 40

(d) X = 60 (e) X = 80

Figure V.3: Streamwise evolution of the streaks induced by the array of roughness elements
for (Re,Reδ∗) = (466, 281): top view of the ū = ±0.3 surfaces (black and white), with
ū = Ub − UBl being the deviation of the base flow from the Blasius boundary layer flow
(a); slices extracted at X = 20 (b), X = 40 (c), X = 60 (d), and X = 80 (e). The shaded
contours range from ū = 0.3 (red) to ū = −0.3 (blue), whereas the solid lines depict the
base flows streamwise velocity isocontours from Ub = 0.1 to 0.99.
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Figure V.4: Eigenspectra of the linearised Navier-Stokes operator. Blue dots show
the eigenvalues for (Re,Reδ∗) = (550, 305), whereas green triangles show the ones for
(Re,Reδ∗) = (575, 312).

global instability of the flow. Comparison of the dominant frequency in the flow dynamics
however turned out to be unconclusive essentially because the frequency reported by
Fransson et al. [66] has been measured far beyond the end of the computational domain
considered herein (X ≃ 175 compared to Xout = 90).

The shape of the associated unstable global mode is depicted on figure V.5. As one
can see on figure V.5(a), this mode takes the form of streamwise alternated patches of
positive and negative velocity exhibiting a varicose symmetry with respect to the spanwise
mid-plane. To get a better insight of the structure of the mode and of its location with
respect to the base flow’s features, figure V.5 provides slices of its spatial support in the
X = 23 (b) and the X = 40 (c) plane. The mode is identified using its streamwise velocity
contours (shaded) whereas the solid black lines depict the baseflow Ub isocontours. These
figures make it clear that, though the mode is initially located along the central low-speed
region, it then contaminates almost the whole spanwise extent of the domain before fading
away for X > 60. Moreover, for all of the streamwise planes considered, the maximum
of the mode is located along the shear layers delimiting the central low-speed region and
the streaks.

V.4 Parametric investigation

In order to get a better understanding of the physical mechanisms underlying the roughness-
induced transition, a parametric investigation is conducted. As to avoid the potential in-
teraction between roughness elements, the spanwise extent of the computational domain
has been changed from Lz = 10 to Lz = 8η (with η being the aspect ratio of the roughness
element considered) such that they behave as being isolated no matter the aspect ratio
considered. Moreover, for the sake of clarity, the theoretical displacement thickness of the
incoming Blasius boundary layer at the position of the roughness element is kept equal
to δ∗(xk) = 0.6883 (the boundary layer thickness being fixed at δ99(xk) = 2) throughout
this investigation. This allows to isolate the influence of changes in the Reynolds number
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(a)

(b) X = 23 (c) X = 40

Figure V.5: Visualisation of the streamwise velocity component of the leading unstable
global mode at (Re,Reδ∗) = (575, 312). (a) Top view of isosurfaces depicting ±10% of
the mode’s maximum streamwise velocity. Slices in the (b) X = 23 plane (i.e., where the
mode achieve its maximum amplitude) and in the (c) X = 40 plane. Both figures (b) and
(c) have been normalised by the local maximum velocity. The solid lines depict the base
flows streamwise velocity isocontours from Ub = 0.1 to 0.99.

η 1-3 1-3 1-3 1-2 1-2 1 1
Re 600 700 800 900 1000 1100 1250
xk 96 112 128 144 160 176 200

Reδ∗ 413 482 551 620 688 757 860

Table V.2: Location xk of the roughness element along the flat plate such that δ∗(xk) =
0.6883 and the associated Reynolds numbers Re,Reδ∗ for most of the different cases con-
sidered in Section V.4’s parametric investigation.

only and not a mixed combination of changes in the Reynolds number and displacement
thickness at the same time. Finally, the aspect ratio η of the roughness elements consid-
ered will be varied from η = 0.85 up to η = 3, while the Reynolds number ranges from
Re = 600 up to Re = 1250. Table V.2 summarises most of the different cases treated
during this parametric investigation.

V.4.1 Base flow

V.4.1.1 Influence of the Reynolds number

The influence of the Reynolds number Re on the base flow can be assessed from figures V.6
and V.7. Figures V.6 (a) and (b) provide slices of the streamwise velocity component
of the base flow in the symmetry plane for (Re, η) = (600, 1) and (Re, η) = (1250, 1),
respectively. It can be seen that when increasing the Reynolds number, the shape of
the reversed flow regions remains almost unchanged. The main impact on the flow of an
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(a) (Re, η) = (600, 1) (b) (Re, η) = (1250, 1)

Figure V.6: Slices in the symmetry plane of different base flows. The dashed red line
depicts the spatial extent of the reversed flow regions, whereas the thin solid black lines
are the streamwise velocity contours ranging from 0.1 up to 0.99.

increase of the Reynolds number, and hence a decrease of the effect of viscosity, is however
to strengthen the gradients as can be assessed from the stronger deformation of the iso-
contours in figure V.6(b). Increasing the Reynolds number has also an effect on the streaks
induced by the vortical system identified previously. As can be seen on figure V.7(a) in
the lower Reynolds number case, the central low-speed streak induced by the roughness
element’s blockage is fading away quite rapidly in the streamwise direction and one can
even observe a merging of the two outer high-speed streaks resulting in only three streaks
near the outflow: a central high-speed streak flanked with two low-speed ones. The
merging of the high-speed streaks and the resulting pattern near the outflow can be
better observed by visualizing the streamwise velocity contours on different X = constant
planes, as provided in figure V.8 (a). A very similar behaviour has already been observed
experimentally by Fransson et al. [65] in a highly subcritical configuration. On the other
hand, in the higher Reynolds number case shown in figures V.7(b) and V.8(b), the decrease
of the viscosity’s effect allows the central low-speed region to sustain over a much longer
streamwise extent and prevents, at least in the computational domain considered, the
merging of the two high-speed streaks.

In both cases, the amplitude of the different streaks has been measured from X = 10,
i.e. sufficiently far from the roughness element such that the strongly non-parallel effects
induced by the reversed flow region can be discarded. Though the amplitude of the central
low-speed region decays monotically in the streamwise direction for both cases, the initial
amplitudes are quite different: miny,z(ū) = −0.21 for Re = 600 and miny,z(ū) = −0.47 for
Re = 1250 at the streamwise position X = 10. On the other hand, the amplitude of the
outer streaks varies between ±0.14 for Re = 600 and roughly ±0.3 for Re = 1250. From
the work of Andersson et al. [13], it would thus appear that the Re = 600 case is stable
while the Re = 1250 case might be prone to streaks instability.

V.4.1.2 Influence of the aspect ratio

Figures V.9 (a) and (b) provide slices of the steady solutions streamwise component in
the spanwise mid-plane obtained for the same Reynolds number and two different aspect
ratios, namely (Re, η) = (600, 2) and (Re, η) = (600, 3), respectively. As one could have
expected, due to the larger blockage induced by the roughness element, the reversed flow
regions (depicted by the dashed red line) in the case of the η = 3 roughness element have
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(a) (Re, η) = (600, 1), ū = ±0.075

(b) (Re, η) = (1250, 1), ū = ±0.2

Figure V.7: Top view of the streaks induced by the roughness elements. Low-speed
(white) and high-speed streaks (black) are depicted using isosurfaces of the streamwise
velocity deviation of the baseflows from the theoretical Blasius boundary layer flow, ū =
Ub − UBl.

a longer upstream and downstream extent than for the roughness elements of aspect ratio
η = 1 and 2 (compare with figure V.6(a) as well). Moreover, increasing the roughness
element’s aspect ratio also slightly strengthens the gradients of the base flows. It is as
well worth noting that increasing the spanwise blockage given by the cylinder, more and
more upstream spanwise vorticity has to wrap around the roughness element, influencing
the strength of the vortical system identified previously and, hence, the amplitude of the
induced low- and high-speed streaks further downstream. These can be visualised on
figure V.10 where the deviation from the theoretical Blasius boundary layer of the steady
equilibrium solutions for (Re, η) = (600, 2) and (Re, η) = (600, 3) are shown. Though for
the present flows no merging of the high-speed streaks is observed, increasing the aspect
ratio of the roughness element allows once again the central low-speed region to sustain
on a longer streamwise extent indicating that the amplitude of the streaks is stronger.

As previously, the amplitude of the different streaks have been measured from X = 10
such that one can almost neglect the strongly non-parallel influence of the roughness
element. While the central low-speed region has an amplitude of −0.4 at X = 10 for
the η = 2 roughness element, its amplitude is −0.54 for the η = 3 case. However, the
amplitude of the outer streaks roughly varies between ū = ±0.27, for η = 2, and ū = ±0.4,
for η = 3. Once again, from the work of Andersson et al. [13], it would thus appear that
both cases might be prone to streaks local instabilities.

V.4.2 Global stability

Figure V.12 depicts the eigenspectra obtained for three of the cases considered here. For
all of them, the flow experiences a Hopf bifurcation due to an isolated complex conjugate
pair of eigenvalues moving toward the upper-half complex plane. These isolated modes
show a different type of structure depending on the aspect ratio considered. In particular,
a sinuous global mode is observed for η = 0.85 and η = 1 (see the green dot in figure V.12
(a)), whereas a varicose mode is obtained for η = 2 and η = 3 (see figures V.12 (b-c)).
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(a) (Re, η) = (600, 1) (b) (Re, η) = (1250, 1)

Figure V.8: Visualisation of the streaks pattern in several different streamwise planes.
On figure (a), the color table ranges from ū = −0.2 (blue) to ū = 0.2 (red), while it
ranges from ū = −0.4 (blue) to ū = 0.4 in figure (b). The solid lines depict the base flows
streamwise velocity isocontours from Ub = 0.1 to 0.99.
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(a) (Re, η) = (600, 2) (b) (Re, η) = (600, 3)

Figure V.9: Slices in the symmetry plane of different base flows. The dashed red line
depicts the spatial extent of the reversed flow regions, whereas the thin solid black lines
are the streamwise velocity contours ranging from 0.1 up to 0.99.

(a) (Re, η) = (600, 2), ū = ±0.2

(b) (Re, η) = (600, 3), ū = ±0.2

Figure V.10: Top view of the streaks induced by the roughness elements. Low-speed
(white) and high-speed streaks (black) are depicted using isosurfaces of the streamwise
velocity deviation of the baseflows from the theoretical Blasius boundary layer flow, ū =
Ub − UBl.
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(a) (Re, η) = (600, 2) (b) (Re, η) = (600, 3)

Figure V.11: Visualisation of the streaks pattern in several different streamwise planes.
For both columns, the color table ranges from ū = −0.4 (blue) to ū = 0.4 (red). Solid
lines depict the base flows streamwise velocity isocontours from Ub = 0.1 to 0.99.
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Shortly below, all these isolated eigenvalues are followed by a branch of modes exhibiting
exclusively a varicose symmetry. For η = 3 this branch is closer to the isolated mode, so
that a second unstable mode can be observed already at Re = 700. However, since the
frequency and the structure of these two unstable modes are very similar, this does not
result in strong changes on the related route to transition. It is worthy to notice that,
whereas the isolated eigenvalues do not seem to be to very sensitive to the streamwise
extent of the computational domain (provided Xout ≥ 60), the branches of eigenvalues
on the other hand appear to be extremely sensitive and tend to move toward the upper-
half complex plane as the streamwise length of the domain is reduced. For the longest
domain considered (i.e. Xout = 90), table V.3 provides the critical Reynolds numbers
and the symmetry of the associated leading global mode for roughness elements of various
aspect ratio η. Figure V.13 depicts the leading unstable mode for each of the aspect ratios
considered here, at different Reynolds numbers. Since for all of these modes the streamwise
component is at least almost 4 times larger than the other components, only the real part
of this component is depicted. As can be seen, all the modes are mostly localised along
the central low-speed region, differently from the case of non-isolated cylinder analysed
in the previous section for which a large part of the mode migrates on the outer streaks
downstream of the roughness element. The crucial importance of such low-speed streaks
in the roughness-induced transition process to turbulence has already been underlined by
previous studies such as the experimental work by Asai et al. [17, 18], or the numerical
investigation by Brandt [34] and Denissen & White [51]. More recently, several different
authors have observed a similar behaviour in the case of roughness-induced compressible
boundary layer flows [23, 29, 48, 83, 148].

It is obvious from table V.3 and figure V.13 that an exchange of symmetry of the
leading unstable global mode occurs as the aspect ratio of the roughness element is in-
creased. Indeed, whereas sinuous modes are found to be the dominant instability for thin
cylindrical roughness elements (η ≤ 1), the varicose global instability turns out to be the
dominant one when roughness elements of larger aspect ratio (η ≥ 2) are considered. This
exchange of symmetry of the leading unstable mode beyond a given threshold of the rough-
ness element’s aspect ratio had already been underlined experimentally by Sakamoto &
Arie [132] and Beaudoin [27]. The former authors have investigated the nature of the vor-
tices shed periodically from prismatic and cylindrical roughness elements immersed within
a turbulent boundary layer. For thin roughness elements, they have reported a shedding
of von Kármán (sinuous) vortices, whereas they have labelled vortices shed from larger
roughness elements as being arch-type vortices exhibiting a varicose symmetry. Though
the present setup is different, due to the laminar nature of the incoming boundary layer
flow, results from global stability analyses regarding the spatial structure of the dominant
eigenmode are in qualitatively good agreement with their experimental observations, as
it will shown in more detail in Section V.5 by direct numerical simulations.

V.4.2.1 Analysis of the modes

We will first focus our attention on the sinuous global mode. The spatial structure of
this mode has already been shown in figure V.13(a) and (b). As one can see, it consists
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(c) (Re, η) = (700, 3)

Figure V.12: Spectrum of eigenvalues for different cases considered in the present work.
Red squares denote varicose modes whereas the green dot stands for a sinuous one.

η 0.85 1 2 3 Fransson et al. [66]
Rec 910 1040 805 656 564
Rech 712 813 630 513 519

Symmetry S S V V V

Table V.3: Critical Reynolds number Rec and symmetry of the associated leading unstable
global mode for various aspect ratio η. S stands for a sinuous global mode, and V for a
varicose one.

in positive and negative patches of velocity mostly localised along the central low-speed
region. Its streamwise and wall-normal components are exhibiting a sinuous symmetry
with respect to the spanwise mid-plane, whereas its spanwise component exhibits a vari-
cose symmetry with respect to the same plane (not shown). To get a better insight of
the structure of the mode and of its location with respect to the base flow’s features,
figure V.14(a) provides a slice of it in the X = 25 plane for (Re, η) = (1125, 1). The mode
is identified using its streamwise velocity contours (shaded) whereas the solid black lines
depict the baseflow Ub isocontours. The fully three-dimensional shear layer developing
around the velocity streaks, here depicted by the red dashed line, is identified using the
points of null curvature in the Ub distribution, i.e. ∂2Ub/∂y

2 + ∂2Ub/∂z
2 = 0. It can be

seen that the regions of maximum amplitude of the mode are located on the flanks of
the central low-speed region along its shear layer. Such particular location, where the
wall-normal and spanwise gradients of the base flow are relatively strong, let us think
that this sinuous global instability is likely to extract the energy for its growth from the
transport of these two shears along the central low-speed region, as it will be shown in
detail in subsection V.4.3.

The second type of global instability identified from figures V.13 (c), (d) is a varicose
global instability. As for its sinuous counterpart, this second family of unstable modes
is essentially localised along the central low-speed region and consists in streamwise al-
ternated patches of positive and negative velocity. The major difference is however the
symmetry of the mode: its streamwise and wall-normal components now exhibit a vari-
cose symmetry with respect to the spanwise mid-plane, whereas its spanwise component
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(a) (Re, η) = (1250, 0.85)

(b) (Re, η) = (1125, 1)

(c) (Re, η) = (900, 2)

(d) (Re, η) = (700, 3)

Figure V.13: Real part of the leading unstable mode streamwise component with in-
creasing roughness element’s aspect ratio η from top to bottom, and different Reynolds
numbers indicated within the figure. The isosurfaces depict u = ±10% of the maximum
amplitude of the modes, whereas open black circles denote the location of the roughness
elements.
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(a) (Re, η) = (1125, 1) (b) (Re, η) = (850, 2)

Figure V.14: Slice of the streamwise component of the sinuous unstable global mode (a)
and varicose global mode (b) in the X = 25 plane identified by the shaded red and blue
contours. Solid lines depict the base flows streamwise velocity isocontours from Ub = 0.1
to 0.99, whereas the red dashed line stands for the location of the shear layer identified
by the points of null curvature (i.e. ∂2Ub/∂y

2 + ∂2Ub/∂z
2 = 0).

exhibits a sinuous symmetry (not shown). As previously, in order to gain a better under-
standing of the mode structure, a slice of it in the streamwise X = 25 plane is depicted
on figure V.14(b) for (Re, η) = (850, 2). As for its sinuous counterpart, the varicose mode
is essentially located along the shear layer delimiting the central low-speed region. It is
worthy to note however that, for the set of parameters considered here, small non-zero
patches of velocity are visible on the shear layers of the lateral low-speed streaks as well.
Once again, such location of the mode let us conjecture that it essentially extracts the
energy necessary for its growth from the transport of the base flow streamwise compo-
nent shears along the whole shear layer. One must also be aware that all of the modes
belonging to the branches of eigenvalues observed in the spectra depicted on figure V.12
share common features with this particular varicose mode.

It is worthy to note finally that, relatively far from the roughness element, the shapes
of these global modes visualized in different X = constant planes are very similar to that
found by Brandt [34] and more recently by de Tullio et al. [48] and Denissen & White [51]
using a local stability approach. Indeed, due the strong predominance of the base flow
streamwise component and its nearly parallel nature far from the roughness element, it
is expected that the two approaches, global and local, give similar results regarding the
shape of the modes in the almost parallel parts of the flow. However, the critical Reynolds
numbers can be greatly over- or under-predicted when the non-parallel flow regions in the
vicinity of the roughness element are not taken into account, as it will be discussed in
subsection V.4.4.

V.4.3 Perturbation kinetic energy budget

Aiming to get a better understanding of the mechanisms yielding the flow to become
unstable and to understand how and where the sinuous and varicose unstable global
modes do extract their energy, the kinetic energy transfer between the base flow and
the global modes is investigated. Similar analysis has already been conducted in a local
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framework by Brandt [34]. Calculating this kinetic energy transfer has proven to be very
helpful in order to get a better insight of the instability mechanisms. The kinetic energy
rate of change is given by the Reynolds-Orr equation:

∂E

∂t
= −D +

9∑

i=1

∫

V

IidV (V.2)

where the total kinetic energy and the total dissipation in the computational domain’s
volume V are given by:

E =
1

2

∫

V

u · u dV, D =
1

Re

∫

V

∇u : ∇u dV (V.3)

and where the integrands Ii which represent the production terms are:

I1 = −u2
∂Ub

∂x
, I2 = −uv

∂Ub

∂y
, I3 = −uw

∂Ub

∂z

I4 = −uv
∂Vb
∂x

, I5 = −v2
∂Vb
∂y

, I6 = −vw
∂Vb
∂z

I7 = −wu
∂Wb

∂x
, I8 = −wv

∂Wb

∂y
, I9 = −w2∂Wb

∂z

(V.4)

The sign of the different integrands Ii indicates whether the local transfer of kinetic energy
associated to them acts as stabilising (negative) or destabilising (positive). For the sake of
comparison, all the kinetic energy budgets presented in this section have been normalised
by the dissipation D.

V.4.3.1 Sinuous instability

Figures V.15(a) and (b) provide the integral over the whole computational domain of the
production terms I1 to I9 along with the diffusion term D for (Re, η) = (1125, 1) and
(Re, η) = (1250, 1), respectively. As one can see, only the base flow streamwise compo-
nent related shears (

∫
V
I1 dV ,

∫
V
I2 dV and

∫
V
I3 dV ) provide a significant contribution

to the energy transfer. More particularly, as expected from the analysis of the shape of
the mode in the X = 25 plane shown in figure V.14(a), this sinuous instability essentially
extracts its energy from the work of the Reynolds stresses uv against the wall-normal
gradient of the base flow streamwise component ∂Ub/∂y (I2), as well as from the work of
uw against the spanwise gradient ∂Ub/∂z (I3) no matter the Reynolds number considered.
Figures V.15(c) and (d) provide the streamwise evolution of

∫
y,z
I2 dydz (red dashed line)

and
∫
y,z
I3 dydz (blue solid line) for the two Reynolds numbers considered. As one can

see, in both cases, a large peak in the streamwise evolution of the spanwise production
term occurs in the vicinity of the downstream reversed flow region. The major impact
of an increase of the Reynolds number beyond its critical value is to greatly amplify the
amount of energy extracted from this near-wake region, whereas the energy extraction
process further downstream seems to be only slightly influenced. This might indicate that
the instability mechanism linked to the sinuous mode finds its origin mostly in the near
wake region, as will be further discussed in subsection V.4.4. The spatial distribution of
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Figure V.15: Top: Sinuous unstable mode’s kinetic energy budget integrated over the
whole domain. Bottom: Streamwise evolution of the production terms

∫
y,z
I2 dydz (red

dashed line) and
∫
y,z
I3 dydz (blue solid line).

the I2 and I3 production terms in the X = 25 plane for (Re, η) = (1125, 1) are depicted
on figures V.16(a) and (b), respectively. As one can see, the sinuous global mode mostly
extracts its energy spatially from the lateral parts of the central low-speed region’s de-
limiting shear layer. Moreover, the spatial distribution in the y = 0.75 horizontal plane
of I3 is depicted on figures V.16(c). As highlighted by the kinetic energy budget, this
production term appears to be very active right downstream the roughness element as
well as further downstream along the sides of the central low-speed region.

V.4.3.2 Varicose instability

Results for the varicose instability are summarised in figures V.17(a) and (c) for (Re, η) =
(850, 2) and figures V.17(b) and (d) for (Re, η) = (1000, 2). At Re = 850, slightly above
the critical Reynolds number, one can see on figure V.17(a) that, though

∫
V
I2 dV gives

a small non-zero contribution to the energy extraction process, the mode surprisingly ex-
tracts most of its energy from the work of uw against the spanwise gradient of the base
flow streamwise component ∂Ub/∂z, whereas in a local framework, varicose modes are
mostly linked to the transport of the wall-normal gradient. Looking at the streamwise
evolution of these two terms depicted on figure V.17(c) helps us to understand this surpris-
ing dominance of

∫
V
I3 dV . Indeed, whereas

∫
y,z
I3 dydz is positive throughout the whole

streamwise extent of the domain, one can see that
∫
y,z
I2 dydz actually acts as slightly sta-

bilising in a large portion of the computational domain (from x ≃ 40 up to x ≃ 70). This
can be explained by the features of the associated base flow: while the spanwise gradient
remains more or less constant throughout the computational domain, the destabilising
effect of the wall-normal gradient induced by the central low-speed region quickly drops
as the central low-speed region starts to fade away beyond X ≃ 40. Figures V.17(b) and
(d) provide the same analysis for (Re, η) = (1000, 2). It is clear from the global kinetic
energy budget depicted on figure V.17(b) that, whereas the contribution of

∫
V
I3 dV does

not change much, the contribution of
∫
V
I2 dV significantly increases. This is also clearly

visible on figure V.17(d) where the region within which the wall-normal shear was acting
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(a) I2 = −uv∂U/∂y (b) I3 = −uw∂U/∂z

(c) I3 = −uw∂U/∂z

Figure V.16: Top: Spatial distribution of the I2 = −uv∂Ub/∂y (a) and I3 = −uw∂Ub/∂z
(b) production terms in the plane X = 25 for (Re, η) = (1125, 1). Solid lines depict the
base flows streamwise velocity isocontours from Ub = 0.1 to 0.99, whereas the red dashed
lines stand for the location of the shear layer. (c) Spatial distribution of I3 in the y = 0.75
horizontal plane.

as stabilising at lower Reynolds numbers has now disappeared. This behaviour can once
again be explained by the features of the associated base flow. Indeed, as shown in section
3.1.1, increasing the Reynolds number yields a strengthening of the wall-normal gradients
and causes the central low-speed region to sustain on a much longer streamwise extent.
As a consequence, the varicose perturbation can then take advantage of this to extract
more energy from the wall-normal gradient of Ub over a longer streamwise distance. Two
other major differences with respect to the sinuous instability can also be recovered from
these kinetic energy transfer analyses. First of all, figures V.18(a) and (b) provide the
spatial distribution of the I2 and I3 integrands in the streamwise X = 25 plane. Whereas
the sinuous instability is essentially extracting its energy from the lateral parts of the
low speed region’s shear layer, one can see in the present case that the varicose mode
seems to be an instability of the fully three-dimensional shear layer as a whole. More
importantly, no peak of energy extraction can be found in the near wake region for the
varicose instability as highlighted by the curves on figures V.17(c) and (d) as well as on
the spatial distribution of the I3 term in an horizontal plane as shown on figure V.18 (c).

V.4.4 Wavemaker

Investigating the perturbation kinetic energy budget has proven helpful to get a better
understanding of the instability mechanisms. Yet, such analysis provides only limited in-
formation about the core region of the instability, i.e. the region known as the wavemaker.
The concept of wavemaker has been introduced by Giannetti & Luchini [69] and Marquet
et al. [112] where it has been illustrated on the global instability of the two-dimensional
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Figure V.17: Top: Varicose unstable mode’s kinetic energy budget integrated over the
whole domain. Bottom: Streamwise evolution of the production terms

∫
y,z
I2 dydz (red

dashed line) and
∫
y,z
I3 dydz (blue solid line).

(a) I2 = −uv∂U/∂y (b) I3 = −uw∂U/∂z

(c) I3 = −uw∂U/∂z

Figure V.18: Spatial distribution of the I2 = −uv∂Ub/∂y (a) and I3 = −uw∂Ub/∂z (b)
production terms in the plane X = 25 for (Re, η) = (850, 2). Solid lines depict the base
flows streamwise velocity isocontours from Ub = 0.1 to 0.99, whereas the red dashed lines
stand for the location of the shear layer. (c) Spatial distribution of I3 in the y = 0.75
horizontal plane.
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cylinder flow. It enables one to identify the most likely region for the inception of the
global instability under consideration. Following the definition given in [69], the wave-
maker is given as the overlap of the direct and adjoint modes:

ζ(x, y, z) =
‖u(x, y, z)‖‖u†(x, y, z)‖

〈u†,u〉 (V.5)

where u† is the adjoint of the global mode considered. For the set of adjoint equations and
visualisations of the adjoint sinuous and varicose modes, the reader is refered to appendix
A. Figures V.19 depict the wavemaker region for (a) the sinuous instability and (b) the
varicose one, respectively. It is clear from these figures that the sinuous and varicose
instabilities have very different sensitivity regions.

Sinuous instability : As shown on figure V.19(a), the sinuous global mode’s wavemaker
is exclusively localised within the downstream reversed flow region, having its maximum
values along the flanks of the recirculation bubble, very similarly to what is found for
a two-dimensional cylinder flow (compare with figure 17 in [69]). Once combined with
the knowledge acquired from the kinetic energy analysis, it thus appears that the sinuous
global mode extracts its energy from two different underlying instability mechanisms:

(i) First, a global instability of the downstream reversed flow region takes place. Ac-
cording to the nature of the mode and the location of its wavemaker, the sinuous
global mode seems to be related to the von Kármán global instability encountered
in a supercritical two-dimensional cylinder flow [69, 112]

(ii) Then, due to the spatially convective nature of the central low-speed region, the
sinuous mode experiences weak spatial convective growth before eventually fading
away.

It thus appears from these results that the sinuous global instability observed in the
present investigation is very different from the sinuous instability of optimal streaks un-
derlined by Andersson et al. [13].

Varicose instability : It is clear from figure V.19(b) that the core region of the varicose
instability is quite different from that of the sinuous one. Indeed, its wavemaker is not
only localised within the downstream reversed flow region but also extends along the top
of the central low-speed region. This spatial extent further highlights the key role of the
central low-speed region and outer streaks on this global instability. However, despite
its elongated nature, it is worthy to note that the amplitude of the varicose wavemaker
within the downstream reversed flow region still is almost ten to fifteen times larger than
that within the wake of the roughness element. From these elements, it thus appears that:

(i) The varicose mode finds its roots in a global instability of the downstream reversed
flow region. However, based on the kinetic energy budget, this particular region
appears to behave essentially as a wave generator and plays very little role in the
energy extraction process of the varicose instability.
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(a) (Re, η) = (1125, 1)

(b) (Re, η) = (900, 2)

Figure V.19: Visualisation of the wavemaker region of the leading mode for (a) the sinuous
instability in the y = 0.5 plane and (b) the varicose instability in the z = 0 plane,
respectively. The red dashed lines depict the spatial extent of the reversed flow region.

(ii) Once generated from the wavemaker, the varicose global mode then experiences
large spatial transient growth along the central low-speed region induced by the
roughness element that dominates the whole energy budget.

As will be shown in section 5.1, such varicose global instability non-linearly seems to
give rise to hairpin vortices shed directly from the roughness element. It thus appears
that the linear mechanism identified from the perturbation kinetic energy and wavemaker
analyses of this varicose global instability is similar to the one proposed by Acarlar &
Smith [3] for the creation of hairpin vortices right downstream a hemispheric protuberance,
i.e. a small roll-up of the downstream shear layer that is then convected by the flow and
greatly amplified along the central-low speed region, eventually giving birth to a hairpin
vortex by non-linear effects.

V.5 Non-linear evolution

V.5.1 Varicose global instability

In order to have a glimpse of the non-linear evolution of the varicose global instability
identified previously, a direct numerical simulation (DNS) of the Fransson’s setup already
introduced in section V.3 is conducted for Re = 575, for which the global stability analysis
of the base flow predicts that only a single varicose global mode is unstable. The non-
linear Navier-Stokes equations have been initialised using the base flow solution and are
marched in time until a statistically steady state has been reached. Figure V.20(a) shows
the streamwise velocity signal recorded by a probe located at (X, y, z) = (10, 0.5, 0), while
figure V.20(b) presents the associated Fourier spectrum. It is clear from figure V.20(a)
that the dynamics of the flow exhibits well established periodic oscillations. As shown
in figure V.20 (b), these oscillations of the flow have a circular frequency ωDNS = 0.832,
very close to that of the unstable varicose global mode identified in section 3.2 (i.e. ω =
0.824). Figure V.21 provides the instantaneous streamwise velocity distribution of the
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(a) (b)

Figure V.20: Probe measurements and normalised Fourier spectrum of the spanwise ve-
locity in the near wake region at (X, y, z) = (10, 0.5, 0) for the Fransson’s set up.

Figure V.21: Visualisation of the streamwise velocity distribution in the horizontal y = 0.5
plane for the Fransson’s set up at Re = 575. The black dot depicts the position of the
probe recording data shown in figure V.20.

non-linearly saturated flow within the y = 0.5 plane. It appears that the self-sustaining
oscillations of the flow recorded by the probe consist in a varicose time-periodic modulation
of the central low-speed region and surrounding velocity streaks. Figure V.22 depicts
instantaneous vortical structures present within the flow that have been identified using
the λ2 criterion [84]. It seems obvious from this figure that these vortical structures are
hairpin vortices shed directly downstream the roughness element. Moreover, it can be
assessed from the large population of hairpin vortices that transition is triggered very
close to the roughness element, coherent with the numerous experimental observations
reviewed by von Doenhoff & Braslow [158]. Based on these observations and on results
from global stability analyses, one can conclude that the unstable varicose global mode
contributes to the birth of the set of hairpin vortices non-linearly generated and might
thus explain the early transition observed in the experimental work by Fransson et al. [66]
for supercritical Reynolds numbers.

Figure V.22: Top view of the hairpin vortices visualised by the isosurfaces of the λ2 =
−0.025 criterion coloured with the local kinetic energy of the flow.
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V.5.2 Sinuous global instability

Most studies on roughness-induced transition have focused on relatively large aspect ratio
roughness elements (η ≥ 2) and, as a matter of fact, on the unsteadiness related to the
varicose instability mechanism only [3, 48, 147, 153, 160], whereas very little can be found
in the literature regarding the non-linearly saturated sinuous instability [27, 132]. Thus,
in the following we focus our attention more closely on the non-linear evolution of the
sinuous global mode using direct numerical simulations of the non-linear Navier-Stokes
equations. More specifically, the nature of the bifurcation will be determined as well as the
flow pattern and dynamics resulting from the non-linear saturation of the sinuous unstable
global mode. The direct numerical simulations to be described have been performed for
an aspect ratio η = 1 roughness element and Reynolds numbers ranging from 1030 up to
1125. The velocity field used for initializing the DNS consists in the unstable equilibrium
state onto which a small disturbance made of the sinuous global mode is superimposed.
The initial energy of the perturbation field is chosen to be 108 times smaller than the
energy of the base flow to ensure that no by-pass transition could be triggered due to the
initial amplitude of the perturbation. The resulting flow field is then marched in time
until non-linear saturation is reached and a statistically steady state is obtained.

V.5.2.1 Criticality of the bifurcation

Before investigating the non-linear dynamics, the super- or subcritical nature of the sinu-
ous Hopf bifurcation is characterised. To do so, the Reynolds number of the non-linearly
saturated flow is incrementally decreased from Re = 1125 until a steady flow is reached.
Provided a steady solution is recovered for Re = Rec, the bifurcation is then determined
as being supercritical. Otherwise, the bifurcation is labelled as being subcritical. Since
the base flow is symmetric with respect to the z = 0 plane, the spanwise velocity recorded
by a probe located at (X, y, z) = (10, 0.5, 0) is standing for a clear signature of the sin-
uous unstable mode’s evolution. As a consequence, such measurement appears to be a
good indicator to monitor how far the non-linearly saturated flow has departed from the
base flow solution. The evolution of the maximum amplitude of this variable with re-
spect to changes in the Reynolds number is depicted on figure V.23. As the Reynolds
number is decreased from Re = 1125 to 1030, the maximum amplitude of the spanwise
velocity recorded by the probe is also decreasing. Moreover, below the critical Reynolds
number Rec = 1040, no more self-sustained oscillations of the flow are observed. Similar
observations have been made from the signals recorded by other probes placed within the
flow. This particular behaviour, i.e. no oscillation below the critical Reynolds number
predicted by linear stability analysis, provides striking evidence for the sinuous Hopf bi-
furcation to be supercritical. This is further confirmed by how the maximum amplitude
of the perturbation depends on the off-criticality parameter ǫ = Re− Rec. The solid line
in figure V.23 depicts the least-square best fit obtained using

√
Re− Rec as the fitting

function. It is clear that the maximum amplitude evolves as the square-root of the off-
criticality parameter, another clear signature of the supercritical nature of this bifurcation.
Consequently, the unsteadiness observed in the near-wake region in the direct numerical
simulation can be traced back to the sinuous unstable global mode and not to any kind
of by-pass transition.
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Figure V.23: Bifurcation diagram of the sinuous instability for η = 1. Red squares depict
the perturbation spanwise amplitude at (X, y, z) = (10, 0.5, 0) whereas the black solid
line stands for the least-square best fit. The dashed line at Amplitude = 0 indicates the
branch of equilibrium solutions which becomes unstable for Re ≥ Rec.

V.5.2.2 Mean flow characteristics

Figure V.24 depicts lines of constant streamwise velocity within the spanwise mid-plane
both for the base flow (top) and the mean flow (bottom) at (Re, η) = (1125, 1). While
the reversed flow region appears to be quite similar in both cases (see the left frames
of figure V.24), the shear layers developing further downstream are quite different (right
frames). Whereas the shear layer in the base flow is relatively thin, the one developing
in the mean flow is a lot thicker. Despite the thickening of the shear layer, the boundary
layer’s thickness of the two flows are almost the same in the near wake region as can be
assessed from the location of the U = 0.99 line in the left parts of figure V.24. In the
far wake region however, the boundary layer thickness of the two flows greatly differs.
Indeed, only a relatively small increase of δ99 can be observed in the case of the base flow
(right part of figure V.24(a)), while it has thicken by almost 50% in the mean flow. Such
large thickening of the mean flow’s boundary layer underlines the transitioning nature of
the far wake region.

The overlap between the mean flow shear layer with the location of the rms-fluctuations
can be seen on figure V.25. Depending on the streamwise station considered, two different
behaviours can be observed. While in the near-wake region the rms-fluctuations are es-
sentially localised along the central low-speed region (see figure V.25(a)), they then start
to transfer along the outer low-speed streaks (see figure V.25(b)) before eventually invad-
ing the whole spanwise extent of the boundary layer (figures V.25(c) and (d)). Extremely
far from the roughness element one might even expect to recover fully turbulent boundary
layer’s characteristics. In the present study however, the Reynolds number is too low and
the computational domain not long enough to achieve such state. Hence, near the outflow,
though the flow field observed has already departed quite far from laminarity, it can not
yet be considered as being fully turbulent.
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(a) Base flow

(b) Mean flow

Figure V.24: Streamwise velocity contours in the spanwise mid-plane for (Re, η) =
(1125, 1). Isolines range from 0 (dashed red) up to 0.99. Left frames show the flow
in the vicinity of the roughness element, whereas right frames show the flow in the far
wake region close to the ouflow of the computational domain.

(a) X = 5 (b) X = 17.5

(c) X = 30 (d) X = 45

Figure V.25: rms-fluctuations of the streamwise velocity (shaded contours) in various
X−planes. Solid lines depict contours of the streamwise velocity ranging from 0.1 up to
0.99.
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Figure V.26: Probe measurements and Fourier spectrum of the spanwise velocity in the
near wake region at (X, y, z) = (10, 0.5, 0)

V.5.2.3 Dynamics

Self-sustained oscillations are defined as persistent oscillations of the system arising in
the absence of any forcing or regardless of the nature of the small-amplitude forcing
eventually due to experimental or environmental noise. Such oscillations can be observed
in the near-wake region as highlighted by the spanwise velocity measurement recorded
from the probe located at (X, y, z) = (10, 0.5, 0) and the associated Fourier spectrum (see
figure V.26(a) and (b), respectively). It is clear that saturated periodic dynamics are well
established in the near-wake laminar region with a dominant circular frequency ωDNS =
0.687 close to that predicted by global stability analysis (i.e. ω = 0.672). Figure V.27
depicts the instantaneous streamwise velocity distribution in the y = 0.5 plane. It appears
obvious from this figure that the self-sustained oscillations recorded by the probe are
related to a sinuous wiggling of the central low-speed region induced by the sinuous global
instability of the flow identified previously. The main wavelength of this wiggling has
been extracted by taking the Fourier transform in the X direction of the saturated flow
signal extracted at (y, z) = (0.5, 0). A dominant streamwise wavelength of about 6.1
has been found, which matches well with the one characterising the sinuous eigenmode,
6.9, extracted by Fourier transform of the eigenmode in x. However, despite the sinuous
wiggling of the central low-speed region, λ2 visualisations [84] of the instantaneous vortical
structures depicted on figures V.28 and V.29 show the existence of hairpin vortices shed
directly from the roughness element. Such shedding of hairpin vortices behind roughness
elements has already been investigated by Acarlar & Smith [3], Tufo et al. [153] and Zhou
et al. [160] on hemispherical elements, and more recently by Stephani & Goldstein [147]
on a cylindrical one. One major difference with these works and the results presented in
section 5.1 however is the nature of the shedding. Indeed, in cited works, hairpin vortices
are exhibiting a varicose symmetry with respect to the spanwise mid-plane. In the present
case on the other hand, figure V.29 clearly highlight that the hairpin vortices shed from
the roughness element considered herein are initally modulated by the sinuous wiggling of
the central low-speed region before eventually yielding the flow to transition to turbulence
further downstream as illustrated on figure V.28. It is not clear at the present time however
whether the mechanism responsible for the creation of these hairpin vortices is the same as
the one described by Acarlar & Smith [3] for hemispherical roughness elements or if they
result from more complicated interactions between the mean flow and the non-linearly
saturated sinuous global instability.
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Figure V.27: Visualisation of the streamwise velocity distribution in the horizontal y = 0.5
plane. The black dot depicts the position of the probe recording data shown in figure V.26.

Figure V.28: Hairpin vortices visualised by the isosurfaces of the λ2 = −0.06 criterion
coloured with the local kinetic energy. Only one single roughness element has been simu-
lated.

Figure V.29: Close-up of the hairpin vortices (visualised by the coloured isosurface of
Λ2 = −0.06) shed in the near-wake region. Shaded grey contours depict the streamwise
velocity in the y = 0.5 horizontal plane. A clear sinuous wiggling of the streaks can be
observed.
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V.5.3 Comparison with von Doenhoff-Braslow transition diagram

Roughness-induced transition has been extensively investigated since the early 1950’s.
The large body of literature existing on the subject has been well summarized by von
Doenhoff & Braslow [158] on a transition diagram, reproduced on figure V.30. Based on
the roughness Reynolds number Reh = UBl(xk, h)h/ν (where UBl(xk, h) is the value of
the Blasius velocity profile evaluated at the roughness element’s position xk and height
h) and the aspect ratio of the roughness elements considered, this diagram allows one to
predict the outcome of his experiment:

(i) If the parameters characterising the flow setup lie below the grey zone of this dia-
gram, it is then expected that the flow observed downstream the roughness element
is laminar and steady.

(ii) If these parameters lie above the grey zone, it is expected that transition has already
occured right downstream the roughness elements considered.

(iii) Finally, within the grey zone, the flow may undergo transition to turbulence or
experience unsteadiness, depending on the other configuration parameters (shape,
spanwise spacing, etc..).

It is noteworthy that the results summarized in the von Doenhoff & Braslow’s dia-
gram [158] stem from various experimental investigations of transition induced by isolated
and/or periodic arrays of roughness elements of different shapes (cylindrical, hemispheric,
prismatic, ...) and wind tunnels of variable quality, thus explaining the large spread of the
transition region (grey shaded area in figure V.30). Nonetheless, this transition diagram
allows qualitative comparison of the theoretical predictions with experimental results and
still is widely used nowadays in industries.

The various critical thresholds predicted by the global stability analyses performed here
have been rescaled to their roughness Reynolds number counterparts and reported on this
transition diagram. Red dots stand for the critical Reynolds numbers for varicose global
instability, whereas the green squares stand for the critical Reynolds numbers for sinuous
global instability. All of these critical Reynolds numbers lie within the transition band
of the diagram. Such positions suggest that a fully three-dimensional global instability
of the reversed flow region might be one of the possible explanations of the roughness-
induced transition. The authors are nonetheless aware that mechanisms based on the
local stability properties of the flow, such as local transient growth [15], also provide
satisfactory explanations thus leaving this question still open at the present time.

V.6 Summary and conclusions
The properties of the incompressible flow induced by three-dimensional cylindrical rough-
ness elements of various aspect ratios have been investigated by the joint application of
fully three-dimensional global stability analyses and direct numerical simulations. In all
cases considered, horseshoe vortices are created around the roughness element, whose
legs create two pairs of high- and low-speed streamwise streaks due to the lift-up effect.
Furthermore, a central low-speed region, whose crucial importance in the transition pro-
cess has been indicated by several authors, as well as in the present work, is created due
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Figure V.30: Reproduction of the transition diagram by von Doenhoff & Braslow [158].
Green squares stand for the critical value of the sinuous instability, whereas red dots
denote the critical value for varicose instability and the black cross the critical threshold
in the experiment by Fransson et al. [66].

to the streamwise velocity blockage induced by the presence of the roughness element.
The strength of this central low-speed region, and whether or not it sustains over a long
streamwise distance, is closely linked both to the roughness element’s aspect ratio and to
the Reynolds number.

Regarding the stability of such flows, two different types of global instabilities have
been identified. The symmetry of the dominant unstable mode depends on the aspect
ratio of the roughness element considered. For thin cylindrical roughness elements, the
first bifurcation encountered is related to a sinuous global instability of the lateral parts of
the shear layers developing in the downstream flow, whereas for larger roughness elements
it is related to a varicose instability of the three-dimensional shear layer as a whole. The
underlying physical mechanisms are investigated by means of a kinetic energy transfer
analysis between the base flow and the perturbations as well as by the computation of
the wavemaker of the two global instabilities identified. Though both instabilities are
essentially fed by the work of the Reynolds stresses against the wall-normal and spanwise
gradients of the base flow streamwise component, some major differences are observed
that allow us to clearly differentiate between the underlying mechanisms. On the one
hand, the sinuous instability is related to a global instability of the near-wake region
and of the associated reversed flow region similar to what occurs in a supercritical two-
dimensional cylinder flow. On the other hand, the varicose mode appears to be related
to a global instability of the whole three-dimensional shear layer surrounding the central
low-speed streak. In particular, a weak pocket of instability is originated in the near wake,
which is strongly amplified further downstream due to the highly convective nature of the
downstream flow similarly to the explanation proposed by Acarlar & Smith [3] regarding
the creation of hairpin vortices right downstream hemispheric roughness elements.

The non-linear evolutions of both instabilities have been investigated using direct nu-
merical simulations. For roughness elements having a relatively large aspect ratio, it has
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been shown that the varicose global instability of the flow gives rise to a shedding of
hairpin vortices right downstream the roughness elements. These hairpin vortices trigger
a very rapid transition of the flow right after the roughness elements. Despite the tran-
sitional dynamics, Fourier analysis has shown that the dominant frequency involved in
the dynamics are in good agreement with the predictions made by global stability analy-
sis. The non-linear evolution of the sinuous global instability has been investigated more
deeply. Varying the Reynolds number of the simulation has revealed that the amplitude of
the sinuous perturbation, measured by a probe in the spanwise mid-plane, evolves as the
square root of the off-criticality parameter (i.e. ǫ = Re − Rec). Such evolution is typical
of supercritical bifurcations. Analyses of the dynamics show that the sinuous global mode
induces a wiggling of the central low-speed region. Once again, the dominant frequency
involved in these dynamics is well predicted by global stability analyses. Nonetheless,
identification of the vortical structures present within the flow also revealed the existence
of hairpin vortices shed right downstream the roughness element. These hairpin vortices
slightly oscillate showing a sinuous wiggling, and are then convected by the flow eventually
triggering transition to turbulence further downstream. It is not clear at the present time
if these hairpin vortices are created by a mechanism similar to that described by Acarlar
& Smith [3] or if they result from complicated non-linear interactions between the mean
flow and the non-linearly saturated sinuous instability.

Finally, the different transition thresholds computed by the fully three-dimensional
global stability analyses have been reported onto the transition diagram by von Doenhoff
& Braslow [158]. Qualitatively good agreement is found between the predictions obtained
from linear global stability analyses and those of the transition diagram. Moreover, the
experimental configuration used by Fransson et al. [66] has been numerically reproduced;
the predictions of the global instability analysis in this configuration show a very good
agreement with the critical Reynolds number measured by the previously mentioned au-
thors. These elements allows us to conjecture that a global instabilities of the reversed flow
region developing right downstream the roughness element may be a possible explanation
of the roughness-induced transition, at least in the configurations considered herein.

Concluding remarks

The present work has provided some answers on the global origin of two different in-
stabilities arising past a cylindrical roughness element, on their onset depending on the
aspect ratio of the cylinder, and on the vortical structures and frequencies observed in
the route to turbulence for both transition scenarios. However, several questions still re-
main however unanswered and require further qualitative and quantitative investigations,
namely:

(i) What is the mechanism responsible for the creation of hairpin vortices in the case
of a sinuous global instability of the flow?

(ii) What is the role of fully three-dimensional linearly and non-linearly transiently
growing perturbations in the transition process? Under which conditions, if any,
such optimal perturbations can trigger transition to turbulence and, as such, bypass
all of the linear instability scenario?
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(iii) How does the shape of the three-dimensional roughness element influence the tran-
sition process?

Concerning transiently growing perturbations, previous works have provided some ele-
ments indicating that they also might have a role in the transition process. In the case of
the streaky flow induced by a rectangular panel, Asai et al. [17, 18] and Brandt [34] have
shown that the flow can exhibit local convective instability. As shown by Chomaz [43],
such convective instability is closely related to transient growth. Very recently, Cheru-
bini et al. [41] have moreover demonstrated that three-dimensional linear optimal per-
turbations can trigger localised transition of the flow induced by a smooth roughness
element. For the range of subcritical roughness Reynolds numbers investigated, the un-
steadiness was however observed not to be self-sustaining and was eventually washed out
from the computational domain, the flow slowly recovering toward its initial state. Un-
der which conditions these optimal perturbations may lead to a self-sustaining instability,
and whether including the effects of non-linearity in the computation of this perturbations
may lead to an early transition are points that still remain to be unraveled.

Finally, concerning the influence of the shape of the roughness element on the stability
of the flow, the present authors [106] have already presented preliminary results indicating
that, for a fixed aspect ratio, the smoother the roughness element the higher the critical
Reynolds number beyond which linearly global instability of the flow can set in. Future
work will aim at clarifying these aspects.
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Appendix A: Adjoint equations and adjoint modes
Adjoint state is a concept originating from the optimisation theory. Over the past years,
adjoint-based methods have been used successfully in flow control and stability analysis.
In the hydrodynamic instability framework, such methods have been used to identify
optimal perturbations, highlight the most receptive path to break down, select the most
destabilising base flow defect in an otherwise stable configuration, and map the structural
sensitivity of a flow oscillator. All of these uses have been recently reviewed in [108]. The
adjoint state equations read:





∂u†

∂t
+ (Ub · ∇)u† − (∇Ub)

T u† = −∇p† + 1

Re
∆u†

∇ · u† = 0

(V.6)

For a complete derivation of the adjoint linearised Navier-Stokes equations as well as the
consequences on the boundary conditions of the problem, the reader is referred to [26].
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(a) (b)

Figure V.31: Visualisation of the streamwise velocity component of the leading adjoint
mode for (a) the sinuous instability in the y = 0.75 plane and (b) the varicose instability
in the z = 0 plane, respectively. Red dashed line depicts the spatial extent of the reversed
flow region.

η 1 2 Fransson et al. [66]
Re 1125 900 575

λ (Direct) 0.0123± i0.6718 0.0395± i0.9395 0.0105± i0.8240
λ† (Adjoint) 0.0122± i0.6717 0.0396± i0.9394 0.0106± i0.8240

Table V.4: Comparison of the leading eigenvalue of the direct and adjoint linearised
Navier-Stokes operators.

Nonetheless, as for the linearised Navier-Stokes equations, this set of equations can be
recast into a linear dynamical system form:

B
∂q†

∂t
= J∗q† (V.7)

where q† = (u†, p†)T is the adjoint state vector and J∗ the adjoint Jacobian matrix. The
eigenspectrum of this adjoint Jacobian matrix is then computed using the same algorithm
as the one introduced in section 2.3.

Figure V.31 depicts the leading adjoint mode for (a) the sinuous instability with
(η, Re) = (1, 1125) and (b) the varicose instability with (η, Re) = (2, 900), respectively.
As for its direct counterpart, the streamwise and wall-normal components of the sinuous
adjoint mode are antisymmetric with respect to the z = 0 plane while its spanwise velocity
component is symmetric. Its maximum is located in the vicinity of the separation lines
on the vertical walls of the cylindrical roughness element. On the other hand, the leading
varicose adjoint mode has its maximum located within the symmetry plane of the prob-
lem, in the vicinity of the separation point right downstream the cylindrical roughness
element. Its streamwise and wall-normal components are symmetric with respect to the
z = 0 plane while its spanwise velocity component is antisymmetric. Table V.4 provides
a comparison of the leading eigenvalue of the direct and adjoint linearised Navier-Stokes
operator. It can be seen that, for all the different cases, they agree up to the fourth digit.
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Figure V.32: Distribution of the spectral elements in an arbitrary horizontal plane. Red
long-dashed box depicts the extent of the smallest computational domain considered
(Xout = 30), while the blue dashed box depicts that of the intermediate one (Xout = 60).

Appendix B: Convergence of the eigenvalue computa-
tions
In this appendix, we highlight the influence of the domaine size and mesh refinement on
the computation of the leading eigenvalues and eigenvectors of the linearised Navier-Stokes
operator using the Fransson et al. [66] setup investigated in section 3. Figure V.32 depicts
the distribution of spectral elements in an arbitrary horizontal plane. In all cases, the wall-
normal and spanwise extents of the computational domain have been kept constant (i.e.
Ly = 50 and Lz = 10), while the location of the outflow plane has been changed from
Xout = 30 (red long-dashed box), to Xout = 60 (blue dashed box) and eventually to the
longest domain considered herein Xout = 90. For all cases, the order of the Legendre
polynomials has been kept equal to 8. Figure V.33 depicts the eigenspectrum of the
linearised Navier-Stokes for each domain. On the one hand, the Xout = 30 spectrum
appears to be made of a branch of eigenvalues only. On the other hand, the Xout = 60
and Xout = 90 exhibit an isolated eigenvalue lying in the upper-half complex plane.
Figure V.34 depicts the streamwise velocity component of the leading eigenmode for each
domain considered. It is obvious from these figures that a sufficiently long domain is
required in order to capture appropriately the whole spatial extent of the mode and might
explain the difference between the spectrum obtained for Xout = 30 with those for Xout =
60 and 90. Morover, considering a short streamwise extent of the computational domain
yields to an under-prediction of the critical Reynolds number as shown in table V.5.
Based on these conclusions, all the results presented in this paper have been obtained for
Xout = 90.

Now that it has been shown that the domain needs to be long enough to capture ap-
propriately the global instability under investigation, the influence of the mesh refinement
on this instability is highlighted by table V.6. All the results within this table have been
obtained on the longest domain considered (i.e. Xout = 90). The order of the Legendre
polynomials is changed from N = 6 to N = 12, resulting in an increase of the gridpoints
from 1.43 million up to almost 12 million. As one can see, provided N ≥ 8, it is clear
from table V.6 that the leading eigenvalue appears to be almost independant of the mesh
refinement. All the results presented in this paper have been obtained using the finest
grid (N = 12).
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Figure V.33: Comparison of the eigenspectrum for (a) Xout = 30 and (b) Xout = 60 and
90.

Figure V.34: Streamwise velocity component of the leading global mode of the [66] setup
at Re = 575 for three different streamwise length of the computational domain. Top:
Xout = 30, middle: Xout = 60, bottom: Xout = 90.
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Xout 30 60 90
Rec 520 560 564

Table V.5: Evolution of the critical Reynolds number with respect to changes in the
location of the outflow plane.

N 6 8 12
Gridpoints 1.43 106 3.4 106 11.5 106

σ 0.0265 0.0105 0.0098
ω ±0.7932 ±0.8240 ±0.8240

Table V.6: Evolution of the growth rate σ and circular frequency ω of the leading eigen-
value with an increase of the mesh refinement.
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Chapter VI

Overall conclusion

This thesis is part of a larger project, the SICOGIF (SImulation and COntrol of Geometri-
cally Induced Flows) project funded by the French National Agency for Research (ANR),
involving several different parties. In order to improve their control, this project aims at
a better comprehension of the instabilities and non-linear dynamics of flows displaying a
geometrically induced separation. Within this framework, the aim of the present thesis
has been to develop tools allowing the investigation of the global stability of fully three-
dimensional flows. Among the tools that have been developed and implemented within
the spectral element code Nek 5000 [62] are:

• the selective frequency damping approach,

• a time-stepper Arnoldi algorithm,

• the Koopman modes decomposition.

In order to illustrate the new capabilities offered by these tools, three flow configurations
have been investigated:

• the lid-driven cavity flow,

• the asymmetric stenotic pipe flow,

• the boundary layer flow over a cylindrical roughness element mounted on a flat plate

These three flow configurations, having very different practical applications, have very
different properties. The lid-driven cavity flow is essentially an academic problem inten-
sively investigated over the past twenty years. The stenotic pipe flow serves as a first order
model to investigate the genesis of atherosclerosis in arteries. Finally, the boundary layer
flow over a cylindrical roughness element mounted on a flat plate is practical problem of
transition to turbulence on the wings of an airplane.

The lid-driven cavity flow
The flow within a lid-driven cavity is an idealisation of a number of fluid mechanics prob-
lems and qualitatively presents most of the important features responsible for transition
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in a wide variety of other flows (e.g. shear layers, counter-rotating pairs of vortices, high-
and low-speed streaks, ...). From a practical point of view, the lid-driven cavity is a sim-
plification of several engineering situations such as slots on the walls of heat exchangers
or simplification of coating devices used in the paper industry for producing high grade
paper and photographic film [5].

An extremely large body of literature exists on the instability and transition of strictly
two-dimensional lid-driven cavities as well as about 2.5D lid-driven cavities. For 2.5D
square lid-driven cavities, the flow is subject to a centrifugal instability of the primary
vortex core beyond a critical Reynolds number Rec = 780 [42, 53, 117, 152? ]. The
unstable global mode takes the form of Taylor-Görtler like vortices inducing low- and
high-speed streaks on the vertical walls of the cavity. Unfortunately, the body of literature
about the instability and transition of fully three-dimensional lid-driven cavities with
spanwise end walls is much more sparse. It has been shown by Feldman & Gelfgat [60, 105]
and the present work, that the three-dimensional LDC experiences a centrifugal instability
of the primary vortex core as well. However, for low to moderate spanwise aspect ratio
LDC, the first bifurcation encountered by the flow is no more a pitchfork bifurcation but
a Hopf one. Moreover, due to the increased viscous damping induced by the spanwise end
walls and the redistribution of the energy input on the three components of the velocity,
the critical Reynolds number beyond which the flow transition is higher than that of 2.5
LDC flow. It is remarkable nonetheless that, for very large aspect ratio LDC, this critical
Reynolds number tends toward the value predicted from 2.5D global stability analyses.
Moreover, the frequency predicted by fully three-dimensional global stability turns out to
be in good agreements with the exprimental observations made by Benson & Aidun [28].

Non-linear direct numerical simulations of the unstable flow in a cubical lid-driven
cavity have revealed that, once linearly unstable, the flow exhibits intermittent chaotic
dynamics. Except the very recent work by Kulhmann & Albensoeder [94], such chaotic
dynamics have never been reported in the literature before. Long time integration of the
Navier-Stokes equations at Re = 1930 (the critical Reynolds number being Rec = 1914)
have highlighted that flow remains for a long period of time on a period limit cycle whose
properties are well predicted by global stability analysis. However, the flow eventually
experiences a chaotic burst. A Koopman mode analysis has put in the limelight that this
periodic limit actually is Floquet unstable. Even for a Reynolds number this close to the
critical Reynolds number of the Hopf bifurcation, these results show that the Poincarré
map associated to the limit cycle has already experienced a Neimarck-Sacker bifurcation.
This particular route to chaos and the associated intermittent dynamics have been labelled
by Pomeau & Manneville [125] as being intermittent chaos. Further in-depth analyses are
currently conducted in order to fully characterise this transition.

The asymmetric stenotic pipe flow
The association of arterial diseases with flow-related mechanisms has motivated the study
of the flow within a model geometry of arterial stenosis. Atherosclerosis is a widely spread
cardio-vascular disease predominant in most industrialised countries. It is a condition in
which an artery wall thickens as a result of the accumulation of fatty material, such as
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cholesterol, that might eventually lead to serious health conditions as dangerous as a
break-up of the blood vessel’s walls.

Numerous experimental and numerical investigations have been conducted on the in-
stability and transition of axisymmetric stenotic pipe flow with steady or periodic inlet
velocity profiles [4, 38, 75, 88, 142]. For the particular stenotic geometry considered, the
flow experiences a Coanda-like instability beyond a critical Reynolds number Rec = 721.
Due to the unstable global mode, the confined jet stemming from the stenotic constriction
is deflected away from the pipe’s centerline. This deflection eventually triggers a Coanda-
type wall reattachment of the flow. These results, found in [142], have been reproduced
with the tools developed during this thesis. Unfortunately, recent experimental works []
have revealed that the flow transition to unsteadiness at a substantially lower Reynolds
number.

Based on the assumption that this early transition might be caused by small defects
of axisymmetry of the geometry, the stenotic constriction has been slightly offset from the
pipe’s centerline. The stability properties of the resulting slightly asymmetric stenotic
pipe flows have then been investigated by means of steady state computations and global
stability analyses. For low to moderate Reynolds numbers and relatively small eccen-
tricities of the stenosis, the flow is seen to closely resemble the axisymmetric solution.
However, beyond a critical value, the eccentric triggers an early wall reattachement of the
confined stenotic jet. Global stability analyses have revealed that the underlying instabil-
ity mechanism is similar to that of the axisymmetric problem: a Coanda-like instability of
the jet stemming from the stenotic constriction. Though the flow already is asymmetric,
this global instability further enhances the up-and-down symmetry breaking of the flow.
These analyses have moreover shown that, shortly after, the flow should encounter a sec-
ondary pitchfork bifurcation. The global mode associated to this secondary bifurcation
differs from the leading one. Indeed, it now breaks the remaining left-right symmetry of
the flow. Unfortunately, due to time limitations, its non-linear evolution have not been
investigated. Yet, based on physical considerations, it is believed by the author that, once
this mode is unstable as well, the flow is likely to transition to unsteadiness. Indeed,
once this mode is unstable, the flow has no remaining symmetry and the reversed flow
region surrounding the stenotic jet is very unlikely to self-sustain. Steady state compu-
tation have more revealed the existence of an hysteresis cycle. Such cycle is a genuine
feature of subcritical bifurcations thus confirming the conjectures made by Sherwin &
Blackburn [142]. Finally, comparison with experimental work of Martin D. Griffith and
Pierre-Yves Passaggia has revealed great discrepancies between the experimental observa-
tions and the actual predictions obtained by global stability analysis. Preliminary optimal
perturbation analysis however suggests that the unsteadiness observed in the experiment
might be triggered by transient growth of small disturbances inherent to any experimental
setup.

The roughness-induced boundary layer transition
Understanding, predicting and eventually delaying the laminar-turbulent transition in
boundary layer flows is a long time challenge for researchers ever since the pioneering
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work by Ludwig Prandtl and his two students, Walter Tollmien and Hermann Schlicht-
ing. For small amplitude disturbances and supercritical Reynolds numbers, the linear
stability theory predicts the slow transition process due to the generation, amplification
and secondary instability of Tollmien-Schlichting (TS) waves. It has however been known
for quite a long time that this transition process can be greatly modified by environmental
noise or by the presence of localised or distributed surface roughness. Depending on the
flow’s characteristics and the nature of the surface roughness, the transition process can
either be promoted or delayed.

It is known since the mid 2000’s that boundary layer streaks can delay the natural
transition process by reducing the spatial growth rate of Tollmien-Schlichting waves [46?
]. Following these works, the global stability of the fully three-dimensional boundary layer
flow past a cylindrical roughness element mounted on a flat plate has been investigated in
details. Two different types of global instability are observed. The symmetry of the first
global instability to take place is highly dependent on the aspect ratio of the roughness
element considered. For thin cylindrical roughness elements, the first bifurcation taking
place is related to a sinuous global instability of the lateral parts of the shear layers
developing in the downstream flow, whereas for larger roughness elements it is related
to a varicose instability of the three-dimensional shear layer as a whole. The underlying
global instability mechanisms are investigated by mean of a kinetic energy transfer analysis
between the base flow and the perturbations. Though both instabilities are essentially
fed by the work of the Reynolds stresses against the wall-normal and spanwise gradients
of the base flow streamwise component, two major differences are still found that allow
us to clearly differentiate between the underlying mechanisms. Indeed, on the one hand
these investigations have put in the limelight that the sinuous instability is very likely to
be related to a global instability of the near-wake region and of the associated reversed
flow region similar to what occurs in the flow past a two-dimensional cylinder. On the
other hand, the varicose mode is seen to be related to an instability of the downstream
low-speed streaks exclusively. Finally, direct numerical simulations have revealed that the
sinuous global instability of the wake is related a supercritical Hopf bifurcation of the
flow.

Perspectives

The work described in this manuscript essentially deals with the global instability and
transition of steady states from a purely numerical and theoretical point of view. From
the author’s perspective, the work done during this PhD thesis offers various ways to
continue it. The short list that follows is not exhaustive and only reflects the current
interests of the authors and his collaborators:

• The global instability encountered in the stenotic pipe flow is a non-oscillating one.
Hence, the selective frequency damping cannot be used to compute the unstable
steady states. In order to overcome this problem, the implementation of a Newton
algorithm into the code Nek 5000 is seriously considered. However, since three-
dimensional flows involve a relatively number of degrees of freedom, the approach
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should be based on a Jacobian free Newton method. For the time being, prelimi-
nary work has been done using the Recursive Projection Method (RPM) [143]. This
method assumes that the solution to the equations can be divided into two parts:
a stable and an unstable part. The stable part of the solution is simply computed
by time-marching the equations while the unstable part is computed using a New-
ton method restricted to the unstable subspace. This method requires very little
intrusive modification of the DNS code and its memory footprint is not larger than
a classical direct numerical simulation. Moreover, it can easily be coupled with
an continuation technique thus allowing the computation of the whole bifurcation
diagram of the problem under consideration.

• The whole study on the stenotic pipe flow has been based assuming the inlet ve-
locity profile to be steady. However, in order to have a better understanding of the
blood flow in such geometry, one should consider a periodic inflow as in Sherwin &
Blackburn [142] and Varghese et al. [155]. Under this assumption of periodic flow,
the stability analysis then falls in the framework of global Floquet stability theory.
Provided an appropriate time sampling is used for the Krylov subspace, the time-
stepper Arnoldi algorithm developed during this PhD is able to easily capture the
leading Floquet multipliers of the monodromy matrix. Unfortunately, in order to
do so, one must first be able to compute the unstable periodic solution. Once again,
the selective frequency damping approach cannot be used to compute such solution.
Fortunately, the Recursive Projection Method [143] can be reformulated in order to
compute these peculiar solutions further underlining the endless possibilities offered
by this method.

• The roughness-induced transition has been investigated only through the spectrum
of its eigenvalues. Though eigenvalue analysis gives an upper bound for linear insta-
bility, it is now well known that non-normality of the linearised Navier-Stokes op-
erator can induce large transient growth. If sufficiently large, this transient growth
can eventually trigger the non-linearities and potentially self-sustain. Following the
work of Cherubini et al. [41] where an optimal perturbation analysis has been per-
fomed in the fully three-dimensional framework, the author and his collaborators
are seriously considering the extension of the tools developed during this thesis to
linear and non-linear optimal perturbations. Indeed, as shown in [41], localised tran-
sition in linearly stable roughness-induced boundary layer flow can be triggered by
optimal perturbations. It is moreover believed that the lower bound for transition
observed in the von Doenhoff-Braslow diagram might be predicted by such optimal
linear and/or non-linear perturbation analysis.

Depending on one’s sensibility, numerous other perspectives could have been added
to this non-exhaustive list. However, the present list clearly summarises the author’s
thoughts about the most challenging way to continue this work. Particularly, the optimal
linear and non-linear perturbation analysis is currently investigated by Stefania Cherubini
with the help of undergraduate students. Other perspectives can also be found at the
end of each chapter. Finally, some aspects requiring further in-depth investigations and
development are presented in the various appendices.
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Appendix A

Very large aspect ratio lid-driven cavity
flow
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The linear instability and transition scenario of the flow developping within lid-driven
cavities having small (Λ = 0.5) to moderate (Λ = 3) aspect ratios have been investigated
in chapter III. It was shown that, for such cases, the first bifurcation to take place is a Hopf
bifurcation resulting from an oscillatory centrifugal instability of the primary vortex core.
The associated globally unstable mode was seen to be closely related to the T1-branch of
modes found by Theofilis et al. [152] when investigating the stability of two-dimensional
lid-driven cavities with respect to spanwise-periodic perturbations. Unfortunately, the
conclusions drawn from these three-dimensional moderate aspect ratio cavities do not
seem to hold for very large aspect ratio 3D ones. Indeed, steady Taylor-Görtler vortices
have been observed experimentally by Albensoeder & Kuhlmann [8? ] in an aspect ratio
Λ = 6.55 LDC before any unsteadiness could be seen, thus relating the emergence of these
steady TGL vortices to the S1-branch of stationnary modes instead. As to provide the
reader with a few insights about the transition scenario of very large three-dimensional
LDC, preliminary results obtained about the primary instability of an aspect ratio Λ = 6
lid-driven cavity are presented in this appendix.

A.1 Primary base flow

Figure A.1(a) depicts one of the streamlines for the flow in the lid-driven cavity having
an aspect ratio Λ = 6 at a Reynolds number Re = 900. As one can see, as for the low
to moderate aspect ratio LDC presented in chapter III, the streamline remains enclosed
within the left part of the cavity indicating the flow is symmetric with respect to the
spanwise mid-plane of the cavity. On figure A.1(b) is depicted the comparison of the flow
along the x = 0 and y = 0 lines with its two-dimensional counterpart. It is obvious from
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the latter figure that, contrary to the low to moderate aspect ratio LDC, assuming the
flow within this plane to be essentially two-dimensional hardly yields to an over-prediction
of the strength of the vertical upward and downward boundary layers developing along
the upstream and downstream walls, respectively and is hence a relatively good proxy.

A global stability analysis of this three-dimensional base flow has been performed.
The Krylov subspace used has dimension 250, whereas the sampling period is set to
1.5 enabling good convergence of the eigenvalues up to ω = 1. Figure A.2 depicts the
computed eigenspectrum. Whereas the eigenspectra for low to moderate spanwise aspect
ratio cavities presented in section III.3.2 are dominated by complex conjugate pairs of
eigenvalues, the one for large aspect ratio LDC seems to be dominated by a real eigenvalue.
It is worthy to note however that two eigenvalues are actually overlapping on this spectrum
(σ1 = −4.91611 10−3 and σ2 = −4.91636 10−3). It thus appears that one has either two
really close eigenvalues or a single one with multiplicity 2. As previously however, these
two eigenvalues are related to two modes having opposite symmetries. Anyhow, the first
bifurcation the flow might encounter at a very slightly larger Reynolds number (900 ≤
Rec ≤ 925) is no more a Hopf bifurcation but now appears to be either a transcritical or
a pitchfork one.

Figure A.3(a) depicts the vertical velocity component of the symmetric mode, wheres
figure A.3(b) highlights the motion it induces in the y = −0.25 plane. Once again, this
mode takes the form of Taylor-Görtler like vortices and induces vertical low- and high-
speed streaks in the vicinity of the upstream and downstream walls of the lid-driven cavity.
However, since it is related to a real valued eigenvalue, the induced TGL vortices are now
non-oscillating and, hence, related to the S1-branch observed in the 2.5D lid-driven cavity
flow rather than to the T1-branch as previously.

A.2 Non-linear evolution

As shown by the global stability analysis, the steady equilibrium compted for Re = 900
is on the verge to become unstable. Increasing very slighlty the Reynolds number up to
Re = 925 is enough to cause a change in the nature of this stable equilibrium. Surprisingly,
though linear stability predicts the onset of a non-oscillating mode, unsteadiness is clearly
present in the evolution of the kinetic energy depicted on figure A.4. These oscillations
are related to spanwise travelling Taylor-Görtler vortices. Since these are preliminary
calculations, no clear conclusion can be given. Nonetheless, it is clear that the onset of
unsteadiness greatly differs between low to moderate LDC considered in chapter III and
the present very large aspect ratio one.

A.3 Conclusion

Present results highlight the fact that for very large aspect ratio lid-driven cavity flows
the transition scenario might be slightly different from the one presented in chapter III.
Indeed, though the base flow in a Λ = 6 aspect ratio lid-driven cavity qualitatively presents
the same essential features as its low to moderate spanwise aspect ratios counterparts, it
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Figure A.1: Visualisation of the steady state solution for (Λ, Re) = (6, 900). (a) Streamline
visualisation. (b) Comparison of the velocity (solide lines) along the x = 0 (blue) and
y = 0 (red) lines with their two-dimensional counterparts (dashed lines).
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Figure A.2: Spectrum of the linearised Navier-Stokes operator for (Λ, Re) = (6, 900).

(a)

(b)

Figure A.3: (a) Vertical velocity component of the leading symmetric global mode’s real
part. Isosurfaces depict ±10% of the vertical velocity’s maximum. (b) Motion it induces
in the y = −0.25 plane. Vectors depict the in-plane motion whereas coloured contours
shows the vertical motion.
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Figure A.4: Time evolution of the kinetic energy of the flow within a lid-driven cavity of
spanwise aspect ratio Λ = 6 at Re = 925.

becomes unstable at a lower Reynolds number (Rec ≃ 900). Moreover, the eigenspectrum
of linearised Navier-Stokes operator is no more dominated by a complex conjugate pair of
eigenvalues but a real-valued one indicating it might be related to the S1-branch observed
in 2.5D lid-driven cavity flows [152]. It thus appears that the flow does not experience
a Hopf bifurcation but either a transcritical or pitchfork one. Yet, the underlying linear
instability mechanism remains unchanged: creation of Taylor-Görtler like vortices due
to a centrifugal instability of the flow. Direct numerical simulation of the non-linearly
saturated flow at Re = 925 has revealed that, despite the eigenspectrum of the linearised
Navier-Stokes operator being dominated by a real eigenvalue, unsteadiness is observed in
the preliminary DNS. This behaviour appears to be in contradiction with the observations
made by Albensoeder & Kuhlmann [8? ] on a Λ = 6.55 lid-driven cavity flow. Because
of the preliminary character of the present study, the mechanism responsible for the
emergence of this low frequency unsteadiness has not been investigated yet. A possible
hypothesis however is that it might be related to the wavelength selection mechanism
presented in [8]. Further calculations and in-depth analyses are however required to fully
answer this question.
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The work presented in this appendix results from a joint collaboration between
myself, Stefania Cherubini, Jean-Christophe Robinet and Emmanuel Leriche.
It has been presented at the Instability and Control of Massively Separated
Flows Conference held early September 2013 in Prato, Italy. It has morever
been submitted and accepted for publication in Springer’s Fluid Mechanics
and its applications series. The pdf version of this short paper as well as the
slides of the talk given at the conference can be found online1.

Abstract

Global instability analysis of the three-dimensional flow past two roughness
elements of different shape, namely a cylinder and a bump, is presented. In
both cases, the eigenspectrum is made of modes characterised by a varicose
symmetry and localised mostly in the zones of large base flow shear. The
primary instability exhibited is the same in both cases and consists in an
isolated unstable mode closely related to streaks local instability. For the
cylinder however, a whole branch of modes is in addition destabilised as the
Reynolds number is further increased.

1https://sites.google.com/site/loiseaujc/publications/conference-proceedings
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B.1 Introduction
Delaying transition in spatially developing boundary layer flows has been a long time chal-
lenge. For small amplitude disturbances and supercritical Reynolds numbers, the linear
stability theory predicts the slow transition process due to the generation, amplification
and secondary instability of Tollmien-Schlichting (TS) waves. It has been shown recently
in Ref.[67] that those TS waves can be stabilised by streamwise streaks. In this experi-
mental work, sub-optimal streaks have been created using a periodic array of cylindrical
roughness elements. Despite the stabilising effect of the streaks on the TS waves, the flow
may undergo transition to turbulence right downstream the roughness elements provided
the streaks are strong enough. This roughness-induced transition has been extensively
investigated experimentally by different authors [44, 149, 159]. For cylindrical roughness
elements, in the early 60’s, most of the results available back then have been reviewed
in Ref.[158] into one transition diagram, thus giving an empirical criterion for transition.
However, fewer studies have been carried out on smooth roughness elements, and the
influence of the shape of the roughness on the destabilisation process has not yet been
investigated in detail. Though the mechanism responsible for transition to turbulence in
the flow past a 3D roughness element is not yet fully understood, it is believed that it is
due to an instability of the streaks induced by the roughness elements. Thus, in order to
investigate the origin of unsteadiness, a global instability analysis on the three-dimensional
flow past a sharp-edged and a smooth roughness element is performed.

B.2 Problem formulation
The aim of the present work is to investigate the influence of the shape of the roughness
element on the streaks generation further downstream along with their possible global
instability. Two different kinds of roughness elements having aspect ratio d/k = 2 (where
d is the diameter and k is the maximum height of the roughness), both mounted on a
flat plate, have thus been considered: a cylindrical roughness element, and a smoother
one defined by a cubic cosine function, h(r) = k cos3(πr/d), r being the distance from the
centre of the bump on the x− z plane.

The flow past these roughness elements is studied using the 3D incompressible Navier-
Stokes (NS) equations, non-dimensionalised with respect to the maximum height k of the
roughness and the free-stream velocity U∞; therefore, the Reynolds number is defined as
Re = U∞k/ν, ν being the kinematic viscosity. The computational domain extends from
x = −15 to x = 90 in the streamwise direction, has a spanwise extent of Lz = 16 and wall-
normal dimension Ly = 50 such that the global stability results are almost independent of
the domain size. The Blasius velocity profile prescribed at the inlet (x = −15) is chosen
such that, in the absence of the roughness element, one would have a theoretical Blasius
boundary layer thickness of δ99 = 2 at x = 0.

The behaviour of an infinitesimal perturbation q = (u, p)T superposed to a 3D steady
state Q = (U, P )T has been studied using a global stability analysis. The steady base
flows have been computed using the selective frequency damping (SFD) approach intro-
duced in Ref.[6]. The following boundary conditions have been applied: at the inlet, the
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Blasius boundary layer velocity profile is imposed for the streamwise and wall-normal
components of the velocity, whereas its spanwise component is set to zero. At the out-
let, a standard outflow boundary condition is used. In the spanwise direction, periodic
boundary conditions are imposed for the three components of the velocity. At the upper
boundary, the streamwise component has been set equal to U∞, and a Neumann con-
dition on the wall-normal direction has been imposed for the wall-normal and spanwise
components of the velocity. Finally, a no-slip condition is imposed on the flat plate and
the roughness element’s walls.

Once the base flow has been computed, the NS equations are linearised around such
a steady state, leading to a problem of the following type:

∂u

∂t
= Au, (B.1)

which is subject to the same boundary conditions as previously except regarding the inflow
and the upper boundaries where a zero-velocity condition is prescribed. To perform a
global stability analysis, one has to compute the eigenvalues of the Jacobian matrix A,
which is a hard computational task due to the large number of degrees of freedom involved.
Thus, a time-stepper approach as introduced in Ref.[57] and Ref.[20] has been used, which
avoids the explicit storage of A and direct computation of its eigenvalues.

All of the calculations were performed using the code Nek5000 [62]. Spatial discreti-
sation is done by a spectral elements method with Lagrange polynomials of order N = 8.
The convective terms are advanced in time using an extrapolation of order 3, whereas the
viscous terms use a backward differentiation of order 3 as well.

B.3 Results and discussion
Figure B.1 shows base flows obtained at Re = 1000 for both roughness elements consid-
ered. An upstream and a downstream reversed flow region are shown in the right frames
of figure B.1 by the U = 0 isosurface (blue). In the left frames, the streaks induced by the
roughness elements, being defined as the deviation of the base flows from the Blasius ve-
locity profile UB as in Ref.[44], are plotted. These flows share similar features: five streaks
can be observed, two positive (red) and three negative (green) ones. These are induced by
the presence of strong horseshoe vortices wrapped around the roughness elements, whose
legs transport the low and high-momentum flow upwards and downwards in the boundary
layer. These counter-rotating vortices induce the two outer pairs of streaks, whereas the
central low-speed one is due to the streamwise velocity deficit induced by the roughness
element.

Though their main structure is similar, some differences are found between the two
flow fields. Indeed, for the case of the bump: (i) the separation zone is smaller than for
the cylinder; (ii) the horseshoe vortex wrapping around the roughness element is much
more spanwise-localised, its legs being weaker and closer one to the other; (iii) the streaks
are weaker and quickly fade away downstream of the roughness element, whereas for the
cylinder they appear to sustain on a much longer streamwise extent.
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Figure B.1: Base flows computed at Re = 1000 in the presence of a cylinder (top) and
a bump (bottom). The left frames show positive (red) and negative (green) surfaces
of Ust = U − UB, with Ust = ±0.1 (top) and Ust = ±0.05 (bottom); the right frames
show isosurfaces of the U = 0 contour (blue), highlighting the separation zone, and the
Q-criterion (green, for Q = 0.1).
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Figure B.2: Eigenspectra obtained for the flow past a cylinder with Re = 800 (a) and
Re = 1000 (b), and for the flow past a bump with Re = 800 (c) and Re = 1000 (d).

The eigenspectra obtained for the cylinder case at Re = 800 and Re = 1000 are
provided in Figure B.2 (a) and (b), respectively. At Re = 800, one can observe a single
isolated eigenvalue lying almost on the neutral axis. Slightly increasing the Reynolds
number drives the most unstable mode to move towards the upper-half complex plane, so
that the flow becomes globally unstable at Recr ≈ 805. Further increasing the Reynolds
number yields a whole branch of eigenvalues to move in the upper-half complex plane, as
shown in Figure B.2 (b) for Re = 1000.

Regarding the bump, a similar behaviour has been found. Figure B.2 (c) shows the
eigenspectrum obtained for Re = 800. As previously, a single isolated mode is observed
within the lower-half complex plane. When the Reynolds number is increased this eigen-
value moves upwards, reaching the upper-half of the complex plane at Recr ≈ 891 as
shown on figure B.2 (d).

As to get some insights on the instability mechanisms, the shape of the two unstable
global modes is closely looked at. Figure B.3 provides the streamwise component of
the velocity for the most unstable eigenmode obtained at Re = 1000 for the cylinder case
(left) and the bump one (right). These global modes are both characterised by streamwise
alternated patches of positive/negative velocity developing mostly along the central low-
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speed streak, showing a symmetry with respect to the z = 0 plane. For the cylindrical
element, the wave packet is placed well downstream of the roughness element, in a region
where the streaks are well-developed and quasi-parallel. On the other hand, in the bump
case, the most unstable eigenmode is placed closer to the roughness element which is
concordant with the weaker streaks and gradients induced by the bump as well as their
smaller streamwise extent.

The location and structure of the spatial support of the most unstable modes with
respect to the base flow streaks at Re = 1000 are shown in figure B.4 (a) and (b) for
both cases, respectively. For the cylinder case, the streamwise velocity contours of the
eigenvector (shaded contours) and of the base flow (solid lines) are provided in the x = 25
plane. The strong deformation of the U = const contours indicates the large amplitude
of the streaks. The zones of maximum amplitude of the eigenvector are localised on the
flanks and the top of the streaks, where the spanwise and wall-normal shears are the
largest. A similar behaviour is observed for the bump case, as shown in figure B.4 (b). As
indicated by the deformation of the U = const contours in the x = 15 plane, the streaks
are weaker and much more localised in the spanwise direction. The spatial structure of the
eigenvector is similar to the one recovered for the cylinder, showing a mushroom-shaped
disturbance on top of the central low-speed streak, with maximum velocity values located
in the zones of maximum base-flow shear. However, the spatial support of the mode is
much more compact in the spanwise direction.

These locations seem to indicate that these unstable global modes might be linked to
a streak instability similar to the one recovered for parallel optimal streaks in Ref.[13] and
that the instability mechanism might be related to the transport of the base flow shear
by the perturbation. It is noteworthy that, for parallel streaks, the primary instability
is of sinuous type, whereas in the present case it is of varicose type. However, one must
note that for thinner roughness elements (not presented here) similar sinuous instabilities
have also been recovered. The present results also confirm that, for large roughness
elements, varicose perturbations are the most dangerous ones, as also highlighted by a
global transient growth analysis in Ref.[41].

B.4 Conclusion
The flows past two roughness elements, a cylindrical and a cubic-cosine one, have been
investigated. The cylindrical roughness element induces strong streaks which appear to
be well sustained in the streamwise direction, whereas in the bump case the streaks are
weaker and eventually fade away. In both cases, a global stability analysis of the three-
dimensional steady base flow has been carried out. In all of the cases considered, the
spectra are composed by modes characterised by a varicose symmetry, mostly localised
in the zones of large base flow shear and related to an instability of the quasi-parallel
streaks. Finally, the critical Reynolds number being higher for the smooth bump than for
the cylindrical roughness element might be related to the weaker amplitude of the induced
streaks in the former case.

177



(a)

(b)

Figure B.3: Streamwise velocity component of the eigenvector of the most unstable mode
obtained at Re = 1000 for the cylindrical roughness element (a) and the smooth one (b).
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Figure B.4: Shaded contours of the streamwise component the most unstable mode for
the cylindrical roughness element in the plane x = 25 (a) and the cubic-cosine-shaped
one at x = 15 (b) with Re = 1000. The solid lines are the base-flow streamwise velocity
contours in the range [0.1, 0.9].
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