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Chapter I

Introduction

Up-to-date Computational Fluid Dynamics (CFD) softwares have reached maturity in terms of
solution accuracy as well as the computational efficiency. However, many progresses remain to be
done, in particular for the accurate prediction of configurations with complex flow physics, or to
reduce mesh refinement levels required to achieve a given tolerance on the discretization errors.
This last item is particularly important in the case of unsteady simulations for laminar and,
even more, turbulent viscous flows. Indeed, even if, from a theoretical viewpoint, current CFD
softwares can, in the case of unsteady viscous simulations over long physical integration times,
provide accurate results, this is achieved at the cost of extremely refined computational meshes
that make routinary use of these kind of simulations unfeasible in the design practice, even on
the most powerful machines. Mesh refinement is related, on one side, to physical constraints on
the size of the physical structures to be captured but, on the other hand, this minimal resolu-
tion is generally increased by factors of 20 to 30 in each flow direction to compensate numerical
errors introduced by the discretisation scheme. These stumbling block has been identified by
the scientific community since quite a long time, and this has led to several research programs
such that the IDIHOM FP7 STREP (Industrialization of High Order Methods), at least one
ERC advanced grant, several research programs at ONERA or DLR, or industrial initiatives,
at Dassault and SNECMA for instance in France, to extend high-order discretisation methods
from academic, geometrically simple, configurations, to realistic flows of industrial interest. This
thesis is situated within the framework of the European project IDIHOM, coordinated by DLR
[3].
High-fidelity CFD (Computational Fluid Dynamics) tools, defined as simulation codes based
on advanced physical models and high-order accurate numerical techniques, are not yet fully
exploited in industrial design environments, mainly because of their higher computational cost
and reduced robustness compared to standard approaches. Approaches currently available in
virtually any industrial CFD code are based on the Reynolds-Averaged Navier-Stokes (RANS)
equations, supplemented by a suitable turbulence model, and use lower-order discretisation tech-
niques (second-order accurate at most). For essentially steady, attached flows with weak shock
waves (with is generally the case for most flow systems at nominal conditions), current industrial
CFD codes are able to provide useful information to within engineering accuracy criteria and
with simulation turn-around times compatible with an industrial use. The increased availability
of parallel computers has also contributed to the application of CFD to geometrically complex 3D
configurations, and most industrial codes do possess rather good parallel scalability (also thanks
to the use of small discretisation stencils). Nevertheless, CFD is now being applied to even
more complex flow configurations: on the one hand, the development of highly loaded aircraft
components (in view of weight reductions) may lead to the formation of separated zones and
strong shock waves even at nominal conditions, on the other hand, CFD represents an attractive
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tool to provide predictions about the off-design behaviour, as well as a deeper understanding of
the underlying physical mechanisms (fine unsteady flow structures, shock wave/boundary layer
interactions, acoustic feedback, ...). An accurate representation generally requires at least to
take into account average unsteadiness (by solving , namely, the unsteady RANS, or URANS,
equations), if not to consider more advanced physical models, like Large Eddy Simulation (LES)
approaches or hybrid RANS/LES approaches (e.g. DES, Detached Eddy Simulation, or other).
Unsteady physical models are much more sensitive than RANS approaches to numerical errors,
which may be inextricably coupled to physical effects. To circumvent this problem, very fine
meshes may be used, in conjunction with massive parallelisation to reduce computational costs.
Nevertheless, large computational meshes lead to memory, storage and post-treatment problems;
furthermore, massively parallel computer are not already commonly available in industry, require
specific expertise to be used, and are highly energy consuming.
An attractive alternative to the use of large computational meshes is to increase the order of
accuracy of the discretisation scheme. It has been known since a long time, in the field of Or-
dinary Differential Equations (ODE) that, to match a given accuracy requirement it is more
computationally efficient to increase the order of accuracy of the approximation scheme than to
refine the computational mesh. For many simple flows, experience shows that this is also true
for space discretisation schemes used to solve systems of Partial Differential Equations (PDE).
Nevertheless, some work is still required to prove the interest of higher-order methods for the
numerical simulation of fluid flow of high geometrical and physical complexity, to ensure a robust
behaviour of computation, and to improve their computational efficiency.
In the case of compressible flows, the development of effective high-order methods is made par-
ticularly challenging by the presence of flow discontinuities, which may interact together and
with the surrounding boundary layers. A typical example is given by turbomachinery flows.
On the one hand, the scheme has to be robust enough to capture flow discontinuities without
generating numerical instabilities or spurious numerical artefacts and, on the other hand, it
has to be accurate enough to describe accurately and with a minimal number of discretisation
points smooth flow features. For instance, in the case of the interaction of a discontinuity with a
smooth structure (e.g. shock/vortex interaction), the solution can be at most first-order across
the discontinuity, but one may wish that the numerical dissipation is well behaved enough not to
damp flow structures downstream of the shock, even for long integration times. The combination
of these two features is a real challenge for current numerical schemes and, actually, for most
high-order schemes, including advanced discretisation approaches like the so-called Discontinu-
ous Galerkin schemes, Spectral Volume and Spectral Difference schemes, which cannot be used
without addition of some form of artificial viscosity.
This shows that the technical challenges currently encountered by the aeronautical industry re-
quire further research effort for the development of high-order methods capable of circumventing
these difficulties.

I.1 State of the art of High-Order methods

The state-of-the-art of high-order (HO) methods cannot be separated from the general status
of CFD with a perspective on its applications in the Aeronautical industry. The large major-
ity of current industrial codes rely on the solution of the RANS equations using finite volume
schemes. Significant examples of such codes are the elsA code [1] developed by Onera with
some inputs from CERFACS and used by SAFRAN and Airbus among others, the TAU code
[5] developed by DLR, as well as popular commercial codes as Fluent, CFX, and Fine-Hex of
NUMECA. Moreover, time-accurate computations are still considered as too costly for an in-
dustrial practice so that, in the day-to-day use, unsteady simulations are often carried out with
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an non physically high, often local, time step to quickly converge to a steady solution (when
such a solution is physically admitted by the system under consideration). Of course, improved
computer capabilities are now allowing the use of URANS simulation even in an industrial con-
text [135]. Even more, physical limitations intrinsic to RANS modelling for the representation
of unsteady flows, namely in case of separated flow [142], are pushing industry toward more
advanced physical models like LES or at least hybrid RANS/LES approaches (see [136] for a
review). These advanced calculations are however restricted to limited configurations and aim
more to obtaining physical insight on specific phenomena characterising some aircraft compo-
nents than to current design practice. Besides physical modelling improvements, considerable
effort has been made to improve the handling of geometrically complex configurations, thanks to
the use of hybrid grids (including structured layers close to the walls and unstructured meshing
elsewhere), non-matching, sliding, and overlapping (Chimera) meshes. In spite of considerable
improvement made in physical modelling and geometrical flexibility, unsteady viscous simula-
tions remain unacceptably costly for common practice, so that these kind of simulations is still
far from being routinely applicable to design purposes. In fact, currently available industrial
codes require the use of discretisation meshes made by hundreds of millions of mesh points to
make sure to rule out numerical errors. This not only increases CPU costs, but also memory
consumption and storage requirements, which can be partly alleviated by the enormous increase
in computer power. However, high-performance computers are costly and energy consuming and
their use cannot be generalized. Considerable reduction in computational cost can be achieved
by improving the discretization methods themselves. The need for extremely fine meshes may
be relaxed considerably by choosing a discretisation scheme that maximises the resolvability for
a given cost, i.e. minimise dissipation and dispersion over a wide range of scales. The other de-
ciding factors concern the ease of implementation (parallelisation, boundary conditions, complex
geometries...), and the robustness. The integration of high fidelity/high order methods in an in-
dustrial environment to support aerodynamic, aeroelastic and aeroacoustic design is expected to
reduce design cycle time and cost and is then crucial for industry, as also suggested by ACARE’s
objectives for 2050 (Acare Vision 2050) [6].
High-order methods offer, a priori, the possibility to achieve a fast reduction of approximation
errors with only a moderate increase in the number of unknowns. On a regular mesh, the number
N of degrees of freedom scales like h−d where h is a typical size of the mesh cell or element and
d is the dimension of the problem (d = 1, 2, 3) while the formal error scales like hk+1, with k+1
the scheme’s convergence order. However, for a given error level, computational cost may behave
very differently between different methods. This depends on several factors such as the size of the
computational stencil needed to reach a given formal accuracy, the number of operations needed
to update each degree of freedom (DOF), but also the type of parallelism that is implemented,
as well as the characteristics of machines that is used. Higher-order methods offer the possibility
to achieve a fast reduction of approximation errors with only a moderate increase in the number
of unknowns. The counterpart to this quicker error reduction is that the actual cost in terms of
computational time per degree of freedom increases with the order of the method, but only with
a fixed factor, thus at sufficiently low error level high-order methods will be faster than low-order
ones.
It is expected that, given a required accuracy level and a specific flow case it exists an optimal or-
der in terms of computational cost. This is currently unknown, but some authors suggest orders
in the range of three or four for typical CFD computations involving Euler or RANS modelling,
and may be higher for unsteady simulations involving fine structures, like LES [52, 158]. In the
case of high-speed compressible flows the solutions are not globally smooth and this reduces the
convergence order in non-smooth regions like shocks or sharp (trailing) edges, but still high-order
methods are shown to be overall more accurate [156]. Furthermore local accuracy loss close to
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discontinuities can be tackled by local mesh adaptation instead of globally finer meshes. Selecting
an appropriate order of the method, combined with local mesh adaptation, higher accuracy can
be achieved with similar computational effort compared to classical second-order finite volume
schemes. On the other hand, a given accuracy accuracy level can be achieved with reduced
computational effort.
There are several ways of increasing the formal accuracy of CFD solvers. We review in this
introduction their main characteristics.

I.1.1 ENO/WENO methods

The ENO (Essentially non oscillatory) methods have been initiated in [74] and then improved
into the WENO (Weighted ENO) method in [109]. These concept have been further improved
by Shu and coauthors in a series of papers. The idea is to replace the polynomial reconstruction
that is at the core of the van Leer MUSCL method by a higher degree one. Special care is taken
to avoid oscillations near discontinuities, this leads to a hierarchical algorithm, using a large
discretization stencil. In the WENO method, the regularity of the reconstruction is improved
by weighting all the possible reconstructions according to the regularity of the solution. Again,
the computational stencil is quite large, typically for a k + 1th order scheme on a Cartesian
mesh. Because of their complexity, very few attempts have been done to extend these methods
to unstructured meshes. One may quote the early work of Abgrall [8] for ENO methods, Friedrich
[56] and Hu [80]. They are also non trivial to parallelise because of the very large stencil, and
then a high communication cost. However, spectacular results have been obtained, on academic
configurations, by Shu and his group.

I.1.2 Discontinuous Galerkin methods

The discontinuous Galerkin (DG) method combines features of the finite volume method as
well as of the discretisation with standard (conforming) finite elements. It is especially suited
for the treatment of convection-diffusion problems, in particular for the numerical simulation of
compressible flows. Some of the advantages of the DG method are its flexibility with respect to the
computational meshes together with a natural amenability to parallelisation and hp-refinement
[75]. The overall order of convergence can be systematically chosen by an appropriate definition
of the underlying polynomial basis. For an overview of DG methods we refer to [37]. Given
a local approximation in each mesh element (hence the global approximation is discontinuous
across elements in general), a DG scheme writes in three terms: an evolution term that appears
as the product of a block diagonal mass matrix multiplied by the derivative of the solution
variables, the sum of a surface term and a boundary term that balances the first term. In the
case of viscous problems, sophisticated techniques [21] must be used for the reconstruction of the
gradient across element boundaries. One advantage of the method is that the mass matrix is
block diagonal, so that its inverse is easy to evaluate and can be stored. Because of this feature,
explicit Runge Kutta type temporal schemes are easy to implement and very popular. In the
case of stiff problems partially implicit methods, such as those known as IMEX methods, are
also rather easy to implement. However, the DG methods suffer from two main drawbacks: first,
because of a the local nature of the variable representation, the number of degrees of freedom
grows very quickly. To fix ideas, we assume a conformal and regular mesh made of tetrahedrons:
if ns is the number of vertices, the Euler formula shows that the number of element scales like
6ns, the number of edges like 6ns also, and the number of faces as 5ns, so that in the case of
quadratic approximation we need approximately 40ns and 80ns for cubic approximations. The
other drawback is that the surface and boundary terms are evaluated independently. Hence,
an accuracy of order k + 1 is needed to enforce this accuracy for the surface and boundary
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terms: this can be obtained via high order Gaussian like quadrature formula. Various tricks can
be used to simplify the evaluation of these terms, such as quadrature free techniques (see [77]
for example), and the evaluation of the integral can be made very efficient by using LAPACK
type routines, but the storage is very important and the coding very tricky. We also note that
the existence of a diagonal mass matrix is not always a relevant argument, in particular for
viscous simulations where some form of implicitation will be needed in order to have reasonable
time steps. Currently, the development of DG methods for computational aerodynamics is an
active field of research. Since the pioneering work on the DG discretisation of the turbulent
RANS equations by Bassi and Rebay [22, 24], many research groups have contributed to the
advancement of this approach [20, 23, 28, 55, 96, 97, 125]. During the European ADIGMA and
IDIHOM projects mesh refinement, local adaptation of the polynomial degree, and computational
scalability were identified as key techniques for the successful application of the DG method to
CFD applications. Especially worth mentioning are the results from the University of Bergamo
and the DLR, who demonstrated the benefits of the DG method also for turbulent flows on three-
dimensional basic configurations [92]. Still, the implementation of an accurate, computationally
efficient and robust DG method for the routine simulation of steady-state three-dimensional
turbulent flow remains a future challenge. Besides the numerical and computational difficulties
of the DG approach, where implementations are still far from being mature, further topics have
already arisen for forthcoming research. In particular, the accurate simulation of unsteady flows
requires further investigation [63]. Also, shock capturing capabilities of higher-order DG methods
are still unsatisfactory, and mostly rely on the addition of artificial viscosity, with subsequent
loss of accuracy. Finally, since current simulations codes in the aeronautic industry rely on finite
volume methods, use of DG technique requires the development of completely new codes, in
terms of implementation and parallelisation techniques.

I.1.3 Spectral Volume/Spectral Difference Schemes

In this subsection, we briefly discuss the Spectral Volume (SV) and Spectral Difference (SD)
methods, two recently developed and still evolving methods for compressible flow computations.
Both the SV and SD methods employ the same solution space as the DG method, i.e., element-
wise discontinuous polynomials. They differ on how the DOFs are updated. The SV method is
similar to a FV method, while the SD method is closer to a FD method.
The SV method was developed by Wang, Liu and their collaborators for hyperbolic conservation
laws, then extended to the Navier–Stokes equations (see [157] for a review). The spectral volume
(SV) method is a new conservative high-order accurate numerical method developed by Wang
in a series of papers [111, 143, 155, 159–161]. The SV method is a finite-volume method for un-
structured grids that, unlike other FV methods, does not require information from neighbouring
cells to perform reconstruction. The SV method, like other FV methods and the DG method,
can be extended to discontinuous flow via the application of limiters or artificial viscosity.
The basic idea of the spectral volume method is to discretised the computational domain into N
non overlapping cells Si called spectral volumes, which are the same as the usual finite volumes.
The surface or line integral on each face or edge, respectively, can be performed with a kth order
accurate Gauss quadrature. A kth order accurate approximation of the state variable in the SV
can be obtained with a (k + 1)th order polynomial. This approximation of the state variable is
in general discontinuous across the SV boundaries and flux integration is carried out using an
exact or an approximate Riemann solver like in DG methods. The weak analogy between the
DG method and the SV method is that for the DG method the order of accuracy is related to
the number of nodes on the element while in the SV method is determined by the number of
subdivisions in control volumes.
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A major obstacle for the application of the SV methods in large scale, high-Reynolds number
aerodynamic simulations is time step limitation that deteriorates with the increase of the order
of the method, as well as high memory requirements, especially in 3D applications.
A more recent variant of SV methods is represented by the so-called Spectral-Difference (SD)
methods, proposed by Liu et al. [110]. The SD method is a DG-like finite element method. It
is formulated using the differential form of the Navier-Stokes equation (hence its name), in con-
trast to the integral form used for DG. The SD method, like DG, is element-wise discontinuous.
Within each element, collocated solution and flux points are used to store flow solution and flow
flux information. The solution points in each dimension are chosen to be the Chebyshev points.
The flux points are selected to be the zeros of the Legendre polynomial with its end points. This
choice leads to a stable SD scheme. Using N solution points, a degree N − 1 solution polyno-
mial can be constructed using Lagrange basis to represent the flow solution in the local domain
span by the element. The flux polynomial is one order higher than the solution polynomial such
that when it is differentiated the flux divergence is of the same order as the solution polyno-
mial. Therefore, the number of flux points is one more than that of solution points. Because of
the different reconstruction stencil used for variables and for fluxes, SD is sometimes related to
staggered-grid methods. At the element interface, where two sets of local solutions meet each
other, the flux across the interface is discontinuous. A method to enforce flux continuity is to use
a Riemann solver at the interfaces. The SD method is presented as easier to implement than the
DG and SV methods, especially for high-order curved boundaries, because it does not involve
surface or volume integrals. Nevertheless, its stability may be very much dependent on partition
used and small instabilities are possible [88]. Similarly to DG methods, SV and SD methods
require a quite different implementation than FV methods, and cannot be easily integrated in
existing industrial codes.

I.1.4 High-order centred finite difference schemes with filtering

Although finite volume (FV), finite element (FE) and DG schemes associated to unstructured
grid systems have advantages in treating complex geometries, the finite difference methods (FD)
with the structured grid system are superior in boundary layer simulations, computing costs, and
convenience. Thus high-order multi-block FD techniques are still attractive at present and in the
future. The main drawback inherent to FD methods is the difficulty to generate a high-quality
structured single-block grid system for a complex configuration. Visbal and Gaitonde [152] and
other researchers use an overset grid strategy for high-order FD. Multi-block structured grid
technique makes it possible to run high-order finite difference schemes on each individual block,
and the information transmission between neighbouring blocks and the propagation throughout
the flow field can be realised by some kind of interface conditions. Traditionally, high-order FD
require smooth grids, and the smoothness of the grids shall be comparable with the order of
the accuracy of the schemes. Fortunately, Visbal and Gaitonde [152] have shown that high-order
schemes can be applied in low quality grids such as deforming grids and non differentiable grids if
some special techniques are applied to get rid of the Geometric Conservation Law (CGL)-related
errors and numerical oscillations. At low Reynolds numbers or if only low-frequency motions are
of interest, the discretisation scheme should be accurate at low wave numbers, and an accurate
scheme is the same as a high-order scheme in the sense of truncation of Taylor’s series. On the
contrary, at high Reynolds numbers, where small turbulent scales are present, a better tradeoff
can be obtained with an optimisation of the coefficients in the wavenumber space. The formal
order is sacrificed to preserve small scales on a given grid. For FD schemes, the choice of the
number of degrees of freedom is directly linked to the size of the discretisation stencil. Too large
stencils can be cumbersome for distorted grids, for the implementation of boundary conditions
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or for the communication in parallelised codes. Historically this problem is clearly raised in
the papers of Lele [98], who talks about quasi-spectral schemes, and Tam and Webb [146], who
developed Dispersion Relation Preserving (DRP) schemes. In particular, Lele proposed to use
compact schemes, i.e. spatially implicit, to improve the scheme resolvability without increasing
the stencil size. The cost to pay is the solving of tri- or penta-diagonal systems, which males the
implementation of compact scheme somewhat more delicate for massively parallel applications.
On the other hand, DRP-type centered finite-difference exhibit an extremely large stencil which
also decreases communication performance in parallel implementations. DRP schemes often
lack robustness. The destabilization arises from ill-posed problems such as corner points (cavity
corners, diaphragm in a duct, airfoil trailing edge). The small errors due to the singular character
of those points can be amplified by the use of non centered finite-difference or filtering schemes
at domain boundaries. Similar difficulties may affect compact schemes. Both kind of schemes
are generally purely centered and, as such, zero dissipative, so that they cannot be used without
addition of some form of artificial viscosity or filtering techniques. Tam and Webb [146] suggest
the use of explicit filters optimized in the space of wave numbers. Further improvements have
been suggested by Bogey and Bally [18], who also use lower order filtering to suppress spurious
oscillations generated close to flow discontinuities in compressible flow [29] On the other hand,
Visbal and Gaitonde use compact filters of very high order in conjunction with their compact
schemes. The above-mentioned finite difference schemes have proved their interest for the LES
and DNS of flows in moderately complex geometries, as well as for aeroacoustic applications, but
their extension to highly compressible flows in complex geometries (e.g. transonic or supersonic
turbomachines) is not straightforward.

I.1.5 Continuous Residual-Distribution Schemes

Another promising strategy to reach higher order accuracy is the Continuous Residual-Distribution
(RD) method, combining ideas from both finite elements and finite volumes. The early contri-
butions are due to Roe [133] and Ni [119]. Afterwards several group contributions, see e.g.
[12, 131]. Abgrall et al. [10, 11] RD schemes (RDS) are based on a continuous finite element
representation but they also include up-winding ideas and limiting, thus allowing satisfaction of
a maximum principle (borrowed from Godunov Finite Volume methods). Discrete equations are
derived by splitting (distributing) in each element of the grid an approximation of the integral of
the equations over the element (cell residual). This approach has two important consequences: It
naturally lends itself to the use of unstructured meshes, and its accuracy is entirely determined
by the accuracy with which the cell residual is evaluated, and which is ultimately determined by
the choice of the degree of the finite element interpolation space of the unknowns. In order to
satisfy conservation constraints, the mesh is needed to be conformal, even-though this constraint
can be alleviated, see [13].
Compared to standard FV methods and their nominal second-order accuracy, RDS methods
with linear elements have demonstrated improved accuracy [47, 48] while preserving monotone
shock capturing. Moreover, the compactness of the method allows for the design of very efficient
parallel solution strategies. The scheme have been extended to viscous problems, allowing a
uniform accuracy whatever the Reynolds number [9]. In comparison to DG methods, and for
regular conformal meshes made of tetrahedons only, RDS schemes need less DoF than DG meth-
ods. However for reasonably high approximations, RDS methods are less demanding in term of
memory. Unsteady applications of RDS schemes have been studied up to now only for second
accurate schemes in time and space, either using a dual time stepping or a variant of Runge-
Kutta schemes [130]. Nothing has been done for higher than second order accurate schemes on
triangular type meshes.
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I.2 Scientific background on RBC schemes

Residual-Based-Compact (RBC) schemes have been initially developed by Lerat and Corre [102].
They are related to Residual Distribution schemes, but are developed in a finite difference frame-
work, i.e. dealing with the differential form of the governing equation, then extended to complex
geometry by means of a finite volume approach. Classical methods of high-accuracy scheme
construction on structured grids are non compact directional methods [137, 146] or compact
methods needing the use of linear algebra through Pade approximations [79, 98, 166]. Compact
schemes are more attractive since their numerical dependence domain is narrower.
The first serious discussions and analyses of compact schemes emerged during the 1970s with
Kreiss. In [120], Kreiss introduced in 1974 the idea of using an implicit Pade approximation
method in computational fluid dynamics. The accuracy order and the applicability of these
centered scheme was verified within the next year by R.S. Hirsh [79]. Since then a considerable
amount of literature has been published on implicit compact schemes with some famous schemes
such as Lele’s compact finite difference schemes with spectral-like resolution [98]. Compact
schemes for compressible flows have been mainly developed as centered approximations in space
(see [39, 98, 154, 166] for instance) relying on the use of artificial viscosities, numerical filters or
limiters for shock capturing. Upwind compact schemes have also been proposed in [58, 148].
A serious weakness with the use of an implicit compact spatial discretization is the computational
cost induced by the method. In 1988, Abarbanel and Kumar [7] proposed 2D and 3D compact
implicit schemes solving unsteady Euler equation on a 3d stencil (d is the space dimension i.e. 2
or 3). The relevant contribution of these compact scheme lies in the fact that the implicitness
of the schemes comes only from the time derivative approximation and not from the spatial one.
The main idea remains in adding error terms that vanish by combining with other terms, and are
based on the derivatives of the residual. These schemes are shown to be linearly conditionally
stable in 3D. They are theoretically second order in time and fourth order in space but an artifi-
cial viscosity with a tuning parameter is needed in a view to compute a 2D shock case [7] which
reduces the spatial accuracy to third order. Although it improves the computation by reducing
spurious oscillations, it does not cancel them and the scheme is not shock capturing.
In the early 2000’s Lerat and Corre designed a third order accurate Residual Based Compact
(RBC) scheme for steady state compressible Euler equations [102, 103] in Sinumef laboratory
(renamed DynFluid afterwards). This scheme is compact, needs no linear algebra and uses a
numerical dissipation without any tuning parameter. As for Abarbanel and Kumar’s schemes,
reaching spatial high order for the centered part of the scheme is managed by adding error terms
in order to express the truncation error as a linear combination of residual derivatives that van-
ishes at a steady-like state. The dissipation is also built on the residual and is upwinded through
a characteristic time step [45, 81, 82]. This explicit method is conditionally stable but an implicit
matrix-free [90] version of the scheme is also presented in the same paper [102]. RBC schemes
have been reformulated in finite volume using a straightforward extension of the numerical fluxes
or by maintaining the order of accuracy on irregular structured meshes [73]. They also have
been extended to unsteady flow [41] in a dual time step framework. Their general design for any
odd orders, up to order seven, was described in [40] for inviscid flows and in [42] for advection-
diffusion problems, in 2007 and 2008 respectively. Finally an unstructured version of the third
order scheme has been developed [50, 51] in the European project ADIGMA (Adaptive higher
order variational methods for aerospace applications).
Second and third-order RBC schemes, RBC2 and RBC3, have been implemented in the ONERA
CFD code, elsA, and validated on realistic and increasingly complex transonic unsteady flows
[117]. Nevertheless, these schemes failed inexpectedly for some flow configurations. The rea-
son will be made clear in the following of this manuscript. Higher-order RBC schemes, namely
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RBC5 and RBC7, were mostly applied to steady or inviscid unsteady cases. The present work
is a continuation of the research effort on RBC schemes in view of their application to unsteady
turbulent flows.
This thesis was conducted within the framework of the European project IDIHOM, presented in
the next section.

I.3 IDIHOM project

IDIHOM is an European-Union funded project gathering 21 research groups, academic and in-
dustrial teams, from 10 European countries. The IDIHOM project aims to promote the use
of high-order numerical methods by the European aerospace industry. It is motivated by the
increasing need to improve the CFD-aided (Computational Fluid Dynamic-aided) design pro-
cedure and analysis, using more accurate and fast numerical methods. The project follows the
European Vision-2020 [2] by supporting the purpose of more affordable, safer, cleaner, quieter
and thus greener aircraft. The project enables transfer of these high-order methods to industry,
since they will be assessed and improved by using relevant and complex industrial test cases,
called application challenges. In the project, steady and unsteady turbulent aerodynamic flows
are handled for external and internal (turbo-machinery) aerodynamics as well as aeroelastic and
aeroacoustic applications. IDIHOM will therefore contribute to maintain and foster the leader-
ship of the European aerospace industry by allowing accurate predictions for complex flows at
an industrially acceptable computational cost.
Among the research teams involved in IDIHOM, the complete high-order methods suite is stud-
ied. Regarding numerical schemes, the two most common methods are Discontinuous Galerkin
[38] and Continuous Residual-Based methods [12, 40]. The present work deals with the latter
method since the numerical schemes used are Residual Based Compact schemes.

I.4 Objectives

In line with the work done on Residual Based Compact schemes in the DynFluid laboratory and
within the framework of the IDIHOM project, this thesis seeks to understand and improve the
application domain of RBC schemes to unsteady compressible flows. In order to be able to use
RBC schemes for complex unsteady flows several issues have to be adressed:

• to develop an improved extension to unsteady computations of RBC schemes of any order
and achieve a better understanding of the dissipative and dispersive properties of these
schemes

• extend unsteady RBC schemes to curvilinear grids in the more robust and accurate way
possible

• apply unsteady RBC schemes to test cases of increasing complexity.

I.5 Outline of the thesis

This thesis is divided into four main chapters:

• Chapter 2 briefly reviews the physical models for compressible flows and the litterature on
RBC schemes for steady compressible flows giving the state of the art on RBC schemes
before the beginning of this thesis.

9



• Chapter 3 presents the design of high-order RBC schems to unsteady compressible flows
with a comprehensive study of their dissipation properties. It also goes further with the
quantification of the dissipation and dispersion resolvability properties of RBC schemes
through a detailed analysis of their Fourier spectra. Numerical applications further supports
the theoretical results of this chapter.

• Chapter 4 present the FV formulation of RBC schemes and the design of a third-order
finite volume Residual-Based Compact scheme, RBCi. This scheme is designed to take
into account mesh deformations, in such a way that it is third-order on mildly distorted
structured grids and second-order on highly distorted meshes. Numerical applications
further supports the theoretical results of this chapter.

• Chapter 5 provides application of RBC schemes to selected unsteady compressible flows.

The manuscript is closed by a general conclusion giving also some perspectives to the present
work.

10



Chapter II

General background
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In this chapter, we briefly review the physical models for compressible flows, resolved equa-
tions and used turbulence models. Then we recall the formulations of RBC schemes for steady
compressible viscous and inviscid flows.

II.1 Physical models for compressible flows

This section gives a brief review of physical models for compressible flows computations. The
models used in the present work are the system of Navier-Stokes equations and Euler equations.
They are only reminded in the present document, their derivation can easily be found in any
introduction to fluid mechanics [93].

II.1.1 Navier-Stokes equations

II.1.1.1 General framework

Navier-Stokes equations are set under the hypothesis of continuum and assuming that the fluid
stress is the sum of a diffusing viscous term and a pressure term. The system consists of three
equations:

• The continuity equation (mass conservation)

• The momentum conservation equation

• The energy conservation equation

11



Hereafter, we consider the system of Navier Stokes equations written in conservative vector form:

∂w

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 (II.1)

where w is the state vector and f , g, and h are the physical fluxes in the space directions x, y,
and z. The physical fluxes are expressed as the sum of convective fluxes and diffusive fluxes:

f = fE − fV , g = gE − gV , h = hE − hV

They are defined as:

w =




ρ
ρu
ρv
ρw
ρE




, fE =




ρu
ρu2 + p
ρuv
ρuw
ρHu




, gE =




ρv
ρvu

ρv2 + p
ρvw
ρHv




, hE =




ρw
ρwu
ρwv

ρw2 + p
ρHw




,

fV =




0
τxx
τxy
τxz

uτxx + vτxy + wτxz + κ∂T
∂x




, gV =




0
τyx
τyy
τyz

uτyx + vτyy + wτyz + κ∂T
∂y




.

and

hV =




0
τzx
τzy
τzz

uτzx + vτzy + wτzz + κ∂T
∂z




where u, v, and w are the components of the velocity vector v in the spatial directions x, y and
z, ρ the fluid density, t the time, p the pressure, τ the viscous stress tensor, E the specific total
energy, H the total enthalpy and T the temperature and κ the fluid thermal conductivity. The
specific total energy and the total enthalpy expressions are:

E = e+
1

2
|v|2

and
H = E +

p

ρ

where e is the specific internal energy. In the preceding equations, the repeated index notation
is adopted.
The system is closed by giving constitutive equations for thermodynamic properties p and e. In
this work, we restrict our considerations to perfect gases. In this case, the thermal and caloric
equations of state are p = ρrT and e = CvT . In addition, only Newtonian fluids flow are
computed in this work. Consequently, the viscous stress tensor is related to the velocity gradient
by:

τ = µ

(
▽v + (▽v)T − 2

3
trace(▽v)I

)
(II.2)

where µ is the dynamic viscosity coefficient and I is the identity operator. Finally, we assume
that the viscosity is related to the local temperature through Sutherland’s law:

µ

µref
=

√
T

Tref

1 + Cref/Tref
1 + Cref/T

(II.3)

where µref , Tref , and Cref depend on the nature of the considered gas.
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II.1.1.2 Euler equations

The Euler equations govern inviscid flows. They are obtained from the Navier Stokes equations
(c.f. II.1.1) in the special case of ideal fluids with no viscosity and heat transfer by setting

f = fE, g = gE and h = hE .

This simplified system of equations is convenient with a view to test, analyze and validate the
schemes on known cases.

II.1.2 Turbulence models

A direct approach of the computation of turbulent flows is too costly for high-Reynolds number,
noted Re, flows. In order to have a Direct Numerical Simulation (DNS) of a flow we need a mesh
fine enougth to discretize properly all the scales present in the flow. If we denote lk the highest
scale present in a flow, the computational cost can be estimated by the number of mesh points
needed N . The order of N is

N ∝ Re
9/4
lk

where

Relk =
ρuklk
µ

with uk is the characteristic velocity associated to the scale lk, and µ and ρ are respectively the
dynamic viscosity coefficient and the density of the considered fluid. A realistic turbomachinery
flow has a Reynolds number of the order of 105 and the computational cost of a DNS of this flow
is of the order of 1011. This cost is not affordable for available computational ressources.
A first viable approach is the use Reynolds-Averaged Navier-Stokes (RANS) turbulence models
[17, 19, 86, 87, 115, 141, 142, 163]. This approach is by definition dedicated to steady problems
but can be extended to some unsteady computations. This extension is called Unsteady RANS
(URANS) [136, 142, 163] and is valid for problems involving low frequencies in the limitation of
the RANS model used. The RANS/URANS models used in this thesis are the one implemented
in elsA (see [1, 33, 34] for details).
We are generally interested in the large scales of a flow since these scales drive the turbulent diffu-
sion of momentum. Large Eddy Simulation (LES) [61, 108, 126, 136] can be seen as an affordable
alternative compared to DNS for the computation of time evolving flows. In this approach the
wavelengths smaller than the grid mesh are filtered out and accounted for by some model. Con-
ventional LES, where an explicit subgrid scale (SGS) model is used, have shown to be successful
for the computation of several flows [61, 108, 136]. However, subgrid models seems to be too dis-
sipative in the case of the growth of an initially small perturbation [15, 16, 108, 126, 147] because
of a coupling between the SGS model and the truncation error of the numerical discretization.
It has been shown that for some flows, the use of flow regularization at small scales by means of
the numerical dissipation of the dicretization scheme, without the explicit addition of any sugrid
scale model, have been shown to give good results [15, 31, 76, 108]. In some cases [76], the SGS
model is implicitly designed in the limiting method of the numerical scheme. These computations
are called Implicit LES (ILES). The LES computations in the present work are ILES where the
role of the SGS model is taken by the numerical dissipation of RBC schemes.

Now that the physical models for compressible flows have been briefly introduced we review
in the next section the litterature on RBC schemes for steady compressible flows.
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II.2 Residual Based Compact (RBC) schemes: steady formula-

tion

Classical methods for calculating compressible flows on a structured mesh rely on a directional
approach in which space derivatives are approximated independently direction by direction. In
the present section, we describe compact approximations that provide high accuracy not for each
space derivative treated apart but for the complete residual r, i.e. the sum of all of the terms
in the governing equations. For steady problems solved by time marching, r is the residual at
steady state; it involves space derivatives only. For unsteady problems, r also includes the time
derivative. Schemes of this type are referred-to as Residual-Based Compact (RBC). They have
been developed in the last ten years and applied to realistic flow configurations in aerodynamics
and aeroacoustics (see [40–42, 101–104, 117]). This section recalls the design principles of RBC
schemes for steady compressible flows.
The following discussion is based on [106].

II.2.1 Concept of residual-based scheme

Let us consider, for simplicity, an initial-value problem for the two-dimensional hyperbolic system
of conservation laws:

wt + fx + gy = 0 (II.4)

where t is the time, x and y are Cartesian space coordinates, w is the state vector and f = f(w),
g = g(w) are flux components depending smoothly on w. The Jacobian matrices of the flux are
denoted A = df/dw and B = dg/dw. System (II.4) is approximated in space on a uniform mesh
(xj = jδx, yk = kδy) with steps δx and δy of the same order of magnitude, say O(h), using a
residual-based (RB) scheme. This is defined as a scheme that can be expressed only in terms of
approximations of the exact residual, i.e. of the left-hand side of System (II.4). More precisely
hereafter we consider RB schemes that present a discrete form of:

wt + fx + gy =
δx

2
[Φ1(wt + fx + gy)]x +

δy

2
[Φ2(wt + fx + gy)]y (II.5)

The coefficients Φ1 and Φ2 are numerical viscosity matrices that depend only on the eigensystems
of the Jacobian matrices A and B and on the step ratio δx/δy. They use no tuning parameters
or limiters. Their construction is presented in Section II.2.3.
In System (II.5), the exact residual

r = wt + fx + gy

is everywhere approximated in a space-centered way, but not at the same location or at the same
order. The discrete form of (II.5) can be written as

r̃j,k = d̃j,k (II.6)

where r̃j,k is a space-centered approximation of r, called the main residual and d̃j,k is the residual-
based dissipation.
Let us introduce the way we denote and handle high order approximations in the main residual.
Any discrete formula can easily be expressed from combinations of a difference and an average
operator over one mesh interval in each space direction, namely

(δ1v)j+ 1

2
,k = vj+1,k − vj,k (δ2v)j,k+ 1

2

= vj,k+1 − vj,k

(µ1v)j+ 1

2
,k =

1

2
(vj+1,k + vj,k) (µ2v)j,k+ 1

2

=
1

2
(vj,k+1 + vj,k)
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where j and k are integers or half integers. All these discrete operators commute. For instance:

(
δ1µ1f

δx

)

j,k

=

(
µ1δ1f

δx

)

j,k

=
fj+1,k − fj−1,k

2δx
,

(δ21f)j,k =(δ1 (δ1f))j,k = fj+1,k − 2fj,k + fj−1,k.

(II.7)

Using the preceding notations, the discrete dissipation writes:

d̃j,k =
1

2
[δ1(Φ1r̃1) + δ2(Φ2r̃2)]j,k (II.8)

where (r̃1)j+ 1

2
,k and (r̃2)j,k+ 1

2

are space-centered approximations of r, called the mid-point resid-
uals - see Fig. II.1. Without the notations the dissipation expresses as

d̃j,k =
1

2
[(Φ1r̃1)j+ 1

2
,k − (Φ1r̃1)j− 1

2
,k] +

1

2
[(Φ2r̃2)j,k+ 1

2

− (Φ2r̃2)j,k− 1

2

] (II.9)

Despite appearance, the order of magnitude of the residual-based dissipation is not simply O(h)
as it could seem from (II.5), but much smaller because the mid-point residuals approximate the
exact residual which is everywhere null. Since centered differencing always leads to even order
of accuracy, let the mid-point residuals be discretized so that

(r̃1)j+ 1

2
,k = rj+ 1

2
,k +O(h2p−2) +O(∆tl) = O(h2p−2) +O(∆tl)

(r̃2)j,k+ 1

2

= rj,k+ 1

2

+O(h2p−2) +O(∆tl) = O(h2p−2) +O(∆tl)

where p and l are integers (p > 2, l > 1). Then the residual-based dissipation verifies

d̃j,k = O(h2p−1) +O(h∆tl). (II.10)

If in addition the main residual is such that

r̃j,k = rj,k +O(h2p) +O(∆tl) = O(h2p) +O(∆tl)

then the truncation error of the scheme (II.6) is

εj,k = O(h2p) +O(∆tl) +O(h2p−1) +O(h∆tl)
= O(h2p−1) +O(∆tl)

(II.11)

and the scheme is accurate at order 2p− 1 in space. Since the spatial approximation of r̃, r̃1 and
r̃2 will be made using compact formulas, the scheme (II.6) is said to be residual-based compact
of order 2p− 1 and denoted as RBC2p−1.

Figure II.1: Location of the discrete residuals, ◦: main residual r̃, ×: mid-point residual r̃1 or r̃2
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II.2.2 RBC schemes for steady inviscid problems

For steady flow problems the exact residual would be:

rsteady = fx + gy

and the the discrete form (II.6) is written as

wn+1 − wn

∆t
+ r̃steady n+1

j,k = d̃steady n+1
j,k (II.12)

where r̃steadyj,k is a space-centered approximation of rsteady, called the main residual and d̃steadyj,k is
the residual-based dissipation defined as (II.9) by its mid-point residuals and numerical viscosity
matrices. The time evolution being reduced to a pure numerical procedure to reach a steady-
state solution, we simply use the Backward Euler approximation in time with a large time step.
To complete the discretization, we need to introduce approximations for the main and midpoints
residuals.

II.2.2.1 Approximation of the main residual

We now seek for a high-order centered approximation of the main residual. One way to do this is
to use non-compact directional approximation for each derivative separately. For instance, with
the preceding notations, the 8th-order centered approximation at (j,k) of a first derivative of a
smooth function (f ∈ C 9) can be written as:

fx =

(
I − 1

6
δ21 +

1

30
δ41 −

1

140
δ61

)
δ1µ1f

δx
+O(δx8) (II.13)

where I is the identity operator and the subscripts (j, k) are omitted. This formula has a 9-point
stencil (from j−4, k to j+4, k). The advantage of the writing (II.13) is to use 3 coefficients only(
−1
6 ,

1
30 ,− 1

140

)
and to display embedded formulas of lower order: dropping the δ6 term leads to

the 6th-order approximation, dropping also the δ4 term leads to the 4th-order and dropping in
addition the δ2 term gives the 2nd-order formula (II.7).
Compact approximations can be described similarly by using Pade fractions of difference opera-
tors. For instance, a 8th-order centered approximation at (j,k) of a first derivative on a 5-point
stencil can be written formally as:

fx =
I +

5

42
δ21

I +
2

7
δ21 +

1

70
δ41

δ1µ1f

δx
+O(δx8) (II.14)

The meaning of the above formula is

(
I +

2

7
δ21 +

1

70
δ41

)
fx =

(
I +

5

42
δ21

)
δ1µ1f

δx
+O(δx8) (II.15)

where both sides are defined on a 5-point stencil. In other words, the "denominator" in (II.14)
denotes an operator inversion. An important point is the following one: by expanding the inverse
of the denominator (I + ε1)

−1 in terms of the operator ε1 =
2
7δ
2
1 +

1
70δ

4
1 = O(h2) and taking into

account the numerator I + 5
42δ

2
1 , we recover a non-compact formula which is nothing but (II.13).

Conversely, this procedure is useful to determine the coefficients of a compact formula from the
knowledge of a non-compact one.
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In a compact formula like (II.15), the derivative is usually found by solving a linear algebraic
system on each horizontal mesh line k = cte. In the present residual-based approach we do not
follow this procedure, as we will see below. Finally, it should be emphasized that a compact
formula reduces the truncation error with respect to a non-compact one of the same order of
accuracy. For instance the remainder O(δx8) in (II.13) and (II.15) can be expressed as1:

Cδx8f9x(xj + θδx), with − 4 6 θ 6 4

where the constant C is − 1
630 for the non compact formula (II.13) and − 1

44100 for the compact
formula (II.15), which is precisely 70 times smaller. Fourier analysis also shows that compactness
improves accuracy over the whole spectrum (see Lele [98]).
We now describe the compact treatment of the main residual r̃j,k in the RBC2p−1 scheme. As
we have seen in Section II.2.1, the main residual should be approximated at order 2p. This is
done by using the Pade fractions:

(fx)j,k =

(
N1

D1

δ1µ1f

δx

)

j,k

+O(δx2p)

(gy)j,k =

(
N2

D2

δ2µ2g

δy

)

j,k

+O(δy2p)
(II.16)

where Nm and Dm are formal polynomials of second difference operators:

Nm = I + aδ2m, Dm = I + bδ2m + cδ4m, m = 1, 2, (II.17)

The degrees of these polynomials are chosen so that the scheme stencil does not exceed 5×5
points. Both space directions are treated similarly, i.e. the polynomials coefficients a, b and c
are the same for m = 1 and 2.
The denominators in (II.16) are eliminated by applying the operator D1 D2 to all the terms.
Then, the main residual is defined as:

r̃steadyj,k =

(
D2 N1

δ1µ1f

δx
+D1 N2

δ2µ2g

δy

)

j,k

which is really of order 2p, since

r̃steadyj,k = (D1 D2)j,k
[
fx + gy +O(h2p)

]
= (D1 D2)j,kO(h2p)

=
[
I +O(h2)

]
O(h2p) = O(h2p).

The detailed expression of the main residual is

r̃steadyj,k =

[
(I + bδ22 + cδ42)(I + aδ21)

δ1µ1f

δx
+ (I + bδ21 + cδ41)(I + aδ22)

δ2µ2g

δy

]

j,k
(II.18)

Several accuracy orders 2p can be reached with this expression.
a) Order 2p = 4 is achievable on a 3×3-point stencil by the choice:

a = 0, b =
1

6
, c = 0. (II.19)

which reduces (II.18) to

r̃steadyj,k =

[
(I +

1

6
δ22)

δ1µ1f

δx
+ (I +

1

6
δ21)

δ2µ2g

δy

]

j,k

(II.20)

1In this thesis, fqx denotes the qth-derivative ∂qf
∂xq .
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b) Order 2p = 6 can be obtained using

a =
1

30
+ 6c, b =

1

5
+ 6c

which gives a family of the 6th-order approximations depending on the coefficient c. The choice
c = 0 is the simplest one, but we retain the one made in [40, 104]:

a =
1

10
, b =

4

15
, c =

1

90
(II.21)

because it is more suitable for the extension to the compressible Navier-Stokes equations.
c) Finally, order 2p = 8 (the highest one for a 5×5-point stencil) can be obtained only with

a =
5

42
, b =

2

7
, c =

1

70
(II.22)

which corresponds to the example of Pade fractions (II.14).

II.2.2.2 Approximation of the mid-point residuals

We now consider the dissipation term (II.9). Using the discrete operators introduced in the
previous section, it can be rewritten as:

d̃steadyj,k =
1

2
[δ1(Φ1r̃

steady
1 ) + δ2(Φ2r̃

steady
2 )]j,k (II.23)

In theory, the mid-point residuals (r̃steady1 )j+ 1

2
,k and (r̃steady2 )j,k+ 1

2

are constructed similarly as

the main residual. In practice, the treatment is a bit more intricate. First, to define a mid-point
residual, say (r̃steady1 )j+ 1

2
,k, we have to approximate fx and to average gy at the mid location

x = (j + 1
2)δx, using new types of Pade fractions based on the 2-point difference and average

operators δ1 and µ1. As mentioned in Section II.2.1, the mid-point residuals are discretized at a
lower order than the main residual (2p − 2 instead of 2p). So we introduce:

(fx)j+ 1

2
,k =

(
N δ
1

Dδ
1

δ1f

δx

)

j+ 1

2
,k

+O(δx2p−2)

(gy)j,k+ 1

2

=

(
N δ
2

Dδ
2

δ2g

δy

)

j,k+ 1

2

+O(δy2p−2)
(II.24)

and for any mesh function v:

(v)j+ 1

2
,k =

(
Nµ
1

Dµ
1

µ1v

)

j+ 1

2
,k

+O(δx2p−2)

(v)j,k+ 1

2

=

(
Nµ
2

Dµ
2

µ2v

)

j,k+ 1

2

+O(δy2p−2)
(II.25)

where N δ
m, Dδ

m, Nµ
m and Dµ

m for m = 1, 2 are formal polynomials of second difference operators:

N δ
m = I + aδδ2m, Nµ

m = I + aµδ2m

Dδ
m = I + bδδ2m + cδδ4m, Dµ

m = I + bµδ2m + cµδ4m.
(II.26)

Another point is that the dissipation has to be defined on a 5×5-point stencil as the main residual.
Therefore, the formula (II.23) shows that the mid-point residuals should have smaller stencils.
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Namely, (r̃1)j+ 1

2
,k and (r̃2)j,k+ 1

2

should only use 4×5 and 5×4 points, respectively. Fortunately,

this is possible because orders 2p − 2 = 2, 4 and 6 can be achieved with Pade fractions (II.24)
having the same denominators, more precisely:

Dδ
1 = Dµ

1 Dδ
2 = Dµ

2 (II.27)

Finally, for the approximations of gy at j+ 1
2 , k in r̃steady1 (respectively of fx at j, k+ 1

2 in r̃steady2 ),
we need the average (II.25) in the x-direction (resp. in the y-direction), but also the classical
Pade fractions for a derivative in the y-direction (resp. in the x-direction). These Pade fractions
are analogous to the formulas (II.16) used in the main residual, but they have different coefficients
because they require a lower accuracy order (2p− 2 instead of 2p). So we introduce new formal
polynomials Nm, Dm and define:

(fx)j,k =

(
N1

D1

δ1µ1f

δx

)

j,k

+O(δx2p−2)

(gy)j,k =

(
N2

D2

δ2µ2g

δy

)

j,k

+O(δy2p−2)
(II.28)

where

Nm = I + aδ2m, Dm = I + bδ2m + cδ4m, m = 1, 2. (II.29)

Here the denominators are compatible with the stencils of the mid-point residuals (5 points
allowed in the y-direction for r̃1 and in the x-direction for r̃2).
A direct discretization of the exact residual at j + 1

2 , k gives:

(fx + gy)j+ 1

2
,k =

[
Nµ
1

Dµ
1

N2

D2

µ1δ2µ2g

δy
+
N δ
1

Dδ
1

δ1f

δx

]

j+ 1

2
,k

+O(h2p−2)

By applying the operator Dµ
1D2 = Dδ

1D2 to all the terms, we obtain the first mid-point residual:

(r̃steady1 )j+ 1

2
,k =

[
Nµ
1N2

µ1δ2µ2g

δy
+N δ

1D2
δ1f

δx

]

j+ 1

2
,k

(II.30)

Similarly, we get the second mid-point residual:

(r̃steady2 )j,k+ 1

2

=

[
Nµ
2N1

µ2δ1µ1f

δx
+N δ

2D1
δ2g

δy

]

j,k+ 1

2

. (II.31)

These residuals are respectively defined on a 4×5 and a 5×4-point stencil. Both can be O(h2p−2)
for p = 2, 3, 4. Their detailed expressions can be written as:

r̃steady1 =(I + bδ22 + cδ42)(I + aδδ21)
δ1f

δx
+ (I + aµδ21)(I + aδ22)

δ2µ2µ1g

δy

r̃steady2 =(I + bδ21 + cδ41)(I + aδδ22)
δ2g

δy
+ (I + aµδ22)(I + aδ21)

δ1µ1µ2f

δx
.

(II.32)

They depend on the five coefficients aµ, aδ, a, b and c, the values of which will be given in
Section III.3 and III.4. Note that all sets of possible coefficients are given in [40] for steady flow
problems.
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II.2.3 Dissipation matrices

The numerical viscosity matrices Φ1 and Φ2 in the residual-based dissipation were designed for
the solution of steady flow problems. For these problems, the scheme becomes a discrete form of

wt + fx + gy = dsteady (II.33)

where

dsteady =
δx

2
[Φ1(fx + gy)]x +

δy

2
[Φ2(fx + gy)]y (II.34)

The time evolution being reduced to a numerical procedure to reach a steady-state solution, we
simply use the Backward Euler approximation in time with a large time step. During the conver-
gence to the steady-state, note that the residual-based scheme is also first-order in space because
of the lack of wt in (II.34). This ensures robustness to the scheme in the convergence process.
At steady-state, the scheme recovers the high accuracy order of the spatial approximation.
It is clear that some conditions should be satisfied by Φ1 and Φ2 in order that (II.34) be actually
dissipative. The term dsteady can be rewritten as:

dsteady =
δx

2
(Φ1Awx +Φ1Bwy)x +

δy

2
(Φ2Awx +Φ2Bwy)y (II.35)

Consider the case where A, B, Φ1 and Φ2 are scalar constants. Then (II.35) reduces to

dsteady = D
steadyw

with the linear partial differential operator of second order:

D
steady =

δx

2
Φ1A

∂2

∂x2
+
1

2
(δxΦ1B + δyΦ2A)

∂2

∂x∂y
+
δy

2
Φ2B

∂2

∂y2

which contains the highest derivatives of (II.35). The Fourier symbol of Dsteady is:

D̂
steady = −1

2

[
δxΦ1Aξ

2 + (δxΦ1B + δyΦ2A)ξη + δyΦ2Bη
2
]

(II.36)

where ξ and η are the wave numbers (Fourier variables).
By dissipation (in the broad sense), we mean:

∀ξ ∈ R, ∀η ∈ R, D̂
steady(ξ, η) 6 0,

that is dsteady damps any Fourier mode.
For ξ = 0, the above dissipation condition leads to Φ2B > 0. For ξ 6= 0, we can rewrite (II.36)
as:

D̂
steady(ξ, η) = −ξ

2

2
D(ξ, η)

with

D(ξ, η) = δxΦ1A+ (δxΦ1B + δyΦ2A)

(
η

ξ

)
+ δyΦ2B

(
η

ξ

)2

Clearly, D is always positive if and only if

Φ2B > 0 and ∆ 6 0

where
∆ = (δxΦ1B + δyΦ2A)

2 − 4δxΦ1AδyΦ2B = (δxΦ1B − δyΦ2A)2.
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Thus, the necessary and sufficient conditions to get dissipation are Φ2B > 0 and ∆ = 0, which
can also be expressed as:

Φ1A > 0, Φ2B > 0

δxΦ1B = δyΦ2A
(II.37)

Introducing the notations

Φ1 = sgn(A)Φ, Φ2 = sgn(B)Ψ

α =
δx|B|
δy|A| ,

(II.38)

the dissipation conditions (II.37) become:

Φ > 0, Ψ = αΦ. (II.39)

Note that the parameter α characterizes the local advection direction with respect to the mesh.
For α = 1, the advection takes place along the mesh diagonal. For α < 1, it takes place between
the x-direction and a mesh diagonal and for α > 1 between the y-direction and a mesh diagonal.
Various choices of Φ satisfying (II.39) are possible. An optimal one proposed in [102] is:

Φ = min

(
1,
1

α

)
, Ψ = αΦ = min(1, α). (II.40)

These functions make use of no tuning parameter and only depend on the local advection direction
α. For hyperbolic systems of conservation laws, the matrix functions Φ1 and Φ2 are defined
through a direct extension of the scalar case: the eigenvectors of Φ1 are those of the Jacobian
matrix A – evaluated at some suitable intermediate state–, the eigenvectors of Φ2 are those of B
and the eigenvalues of Φ1 and Φ2 are deduced from the above scalar definitions. More precisely,
let TA (respectively TB) be a matrix the columns of which are the right eigenvectors of A (resp.
B) and let a(i) (resp. b(i)) be the eigenvalues of A (resp. B). Matrices Φ1 and Φ2 are then
defined as

Φ1 = TADiag[φ
(i)
1 ]T−1A , Φ2 = TBDiag[φ

(i)
2 ]T−1B

with

φ
(i)
1 = sgn(a(i))φ(i), φ

(i)
2 = sgn(b(i))ψ(i)

φ(i) = min

(

1,
δy|a(i)|
δx m(B)

)

, ψ(i) = min

(

1,
δx|b(i)|
δy m(A)

)

where Diag[d(i)] denotes a diagonal matrix with diagonal entries d(i) and m(A) = min
i
|a(i)|,

m(B) = min
i
|b(i)|.

II.2.4 Extension to the Navier Stokes equations

We now consider the steady Navier-Stokes equation introduced in Section II.1.1:

(fE − fV )x + (gE − gV )x = 0 on Ωt = R2 × R+ (II.41)

Viscous RBC schemes are defined by (II.6). Only the definition of the main and mid-points
residuals are modified. The exact residual is:

r = (fE − fV )x + (gE − gV )x (II.42)
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For the discretisation of viscous terms, both a second-order and a high-order approximation
formula can be constructed [104]. In the present work, we restrict our analysis to a standard
second-order approximation of the viscous fluxes for the main residual and the mid-point resid-
uals.

II.2.4.1 Approximation of the main residual

The compact treatment of Euler fluxes is the one detailed in Section II.2.2. We now describe the
compact treatment of the viscous terms at order 2. This is done by using the Pade fractions:

(fVx )j,k =

(
I

D1 D2

δ1f
V

δx

)

j,k

+O(δx2)

(gVy )j,k =

(
I

D1 D2

δ2g
V

δy

)

j,k

+O(δy2)
(II.43)

where Dm are the formal polynomials introduced in Section II.2.2, fV and gV are the viscous
fluxes approximated at cell faces through with mean and difference operators. Consequently, the
main residual r̃0 is approximated through a difference operator of the form:

(r̃0)j,k =

[
δ1
δx

(
D2 N1µ1f

E − fV
)
+
δ2
δy

(
D1 N2µ2g

E − gV
)]

j,k

(II.44)

and errors introduced by r̃0 are an error of order 2p − 1 for RBC2p−1 only dependent of Euler
fluxes and an error of order two function only of the viscous terms. The truncation error of
(II.44) is indeed

εj,k =
[
I +O(h2)

] [
rj,k +O(h2p)LE(fE, gE) +O(h2)LV (fV , gV )

]
(II.45)

where LE(. , . ) and LV (. , . ) are linear differential operators since D1 D2 = [I +O(h2)].

II.2.4.2 Approximation of the mid-point residuals

The dissipation operator d̃j,k is given again by Eq. (II.9). The Pade fractions (II.43) are used
here for the discretization of viscous terms in the mid-point residuals residuals. Precisely, the
following difference operators define the mid-point residuals:

(r̃1)j+ 1

2
,k =

[
δ2
δy

(
Nµ
1N2µ1µ2g

E − µ2gV1
)
+
δ1
δx

(
N δ
1D2f

E − µ1fV1

)]

j+ 1

2
,k

(r̃2)j,k+ 1

2

=

[
δ1
δx

(
Nµ
2N1µ2µ1f

E − µ1fV2
)
+
δ2
δy

(
N δ
2D1g

E − µ2gV2

)]

j,k+ 1

2

(II.46)

where fVd and gVd are viscous fluxes fV and gV evaluated at the center of a cell face in the
dth-direction of the mesh. The notations are based again on the use of formal polynomials
introduced in Section II.2.2. Here, the error introduced by viscous terms is of order three and
the error introduced by Euler terms is of order 2p− 1 for RBC2p−1.
Finally, the use of complex Pade fractions to discretize the viscous terms at order two leads us
to a very simple extension of RBC schemes to Navier-Stokes equations.
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II.3 Chapter summary

In this Chapter, we have layed out a brief overview of the physical models for compressible
flows used in the present work. Then we have presented the formulations of RBC schemes for
steady compressible inviscid and viscous flows. RBC schemes are compact approximations that
provide high accuracy not for each space derivative treated apart but for the complete residual
r. RBC schemes are defined by a space-centered approximation r̃0 called the main residual and
a residual-based dissipation term d̃. They are both built on derivatives of the residual r that
becomes high-order accurate as r tends to 0. We have denoted RBCq the RBC scheme of order
q (q = 3, 5, 7). With this notations, RBC3 scheme can be constructed with 3× 3 points only and
RBC5 and RBC7 schemes with 5× 5 points.
Difficulties arise when these formulations of RBC schemes are extended to unsteady problem
in a straightforward manner, apparently because a weak instability may appear for some flow
conditions. In the next Chapter, we present the design of high-order RBC schemes for unsteady
compressible flows, along with a comprehensive study of their dissipation properties. We then go
further with the investigation of the dissipation and dispersion resolvability properties of RBC
schemes through a detailed analysis of their Fourier spectra. Numerical exemples will further
illustrate the theoretical results.
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Chapter III

Design of high order RBC schemes for

unsteady compressible flows
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III.1 Introduction

A special feature of RBC schemes is the use of a numerical dissipation term also constructed
from the complete residual r. This unusual dissipation gives to RBC schemes special properties
that have not been fully analyzed so far. In practice, the RBC schemes are robust for steady
flow computations (cf. Section II.2.2.2), but some of them may have difficulties for unsteady
problems, apparently due to a weak instability. In this chapter, we present a comprehensive
study of the residual-based dissipation term of high-order RBC schemes for the unsteady Euler
equations. The study provides a deeper insight of the dissipation mechanism, provides a mathe-
matical criterion (called χ-criterion) characterizing the dissipation for 2-D and 3-D problems and
restores the stability of RBC schemes for unsteady problems. Given the importance of numerical
dissipation in Computational Fluid Dynamics, it is also hoped that the present work could help
the development of other classes of high-order schemes.
A peculiarity of the present RBC schemes is to use three independent compact approximations
of the residual (four in 3-D). One applies to the usual residual at the current location j, k (main
residual). The two others are involved in the dissipation and defined at location j+ 1

2 , k or j, k+ 1
2

(mid-point residuals). A correct choice of the discretization of the mid-point residuals is essential
to ensure dissipation for all flow conditions. This is why we try here to identify the effective dis-
sipation operator, which is not obvious for a RBC scheme since the dissipation operator comes
from high order expansions of the mid-point residuals. Then we move a further step toward the
understanding of the numerical properties of high-order RBC discretizations by looking into their
spectral behaviorn and the introduced dispersion and diffusion errors. The dissipation analysis
of RBC schemes is done in two stages, in Section III.3 and III.4 respectively, for RBC schemes
of order 2p − 1 = 3, 5 and 7. In Section III.5, the dissipation operator is cast into a general
form (2-D partial differential operator of degree 2p) and a necessary and sufficient condition,
the χ-criterion, is found for this operator be always dissipative. Application of this criterion to
the RBC schemes gives the correct coefficients to use in the high-order approximations of the
mid-point residuals. A complete extension of the analysis to three space-dimension is presented
in Section III.6. In Section III.7, the χ-criterion is confirmed through a Von Neumann stability
analysis then interpreted in Section III.8. In section III.9.2 we derive the spectral counterparts
of the RBC schemes and discuss their dissipation and dispersion properties. Finally, numerical
experiments are presented in Section III.10 to confirm the relevance of the χ-criterion and sup-
porting the theoretical analysis on spectral properties of RBC schemes.
The material presented in this chapter has been published in two refered international journal
articles [68, 106].

III.2 Straightforward extension to unsteady problem

Consider the initial-value problem for the hyperbolic system of conservation laws:

wt + fx + gy = 0

The exact residual is:
r = wt + fx + gy

A straightforward extension of steady RBC schemes to unsteady problems is to solve the above
unsteady equation as a steady one with a residual vanishing at steady state in a dual time
framework as proposed in [40, 41]. To enable this resolution the evolution problem is modified
by adding a derivative with respect to a dual time framework τ :

wτ + wt + fx + gy = 0. (III.1)

26



As seen in Section II.2.1 in the truncation error (II.11) of a general RBC scheme the error due to
the spatial and temporal derivative can be uncoupled in the truncation error. Thus, at this stage,
we treat time derivatives exactly, i.e. we focus on semi-discrete approximations in space. Using
the Pade fraction presented in II.2.2 the main residual and mid-point residuals approximations
expresses as:

(r̃0)j,k =

[
D1 D2wt +D2 N1

δ1µ1f

δx
+D1 N2

δ2µ2g

δy

]

j,k

(r̃1)j+ 1

2
,k =

[
D2N

µ
1 µ1wt +Nµ

1N2
µ1δ2µ2g

δy
+N δ

1D2
δ1f

δx

]

j+ 1

2
,k

(r̃2)j,k+ 1

2

=

[
D1N

µ
2 µ2wt +Nµ

2N1
µ2δ1µ1f

δx
+N δ

2D1
δ2g

δy

]

j,k+ 1

2

(III.2)

In a first approach one can use the formal polynomials used for steady RBC schemes as in
[40, 101].
For steady flow problems, it is clear that the operator dsteady in (II.34) with the numerical
viscosity matrices Φ1 and Φ2 ensures dissipation. As a matter of fact, its use has led to successful
calculations of various steady flow problems (see [101, 103] for instance).
For unsteady simulations, the time derivative is included in the dissipation operator as in (II.5)
and the viscosity matrices are kept unchanged. This has allowed the solution of the Euler
equations using RBC schemes of order 5 and 7 for shock-vortex interaction [40], the computation
of some turbomachinery flows using RBC3 [117] and a 3D propagation of spinning acoustic modes
in an aeroengine inlet using RBC7 [101]. However for the later case, a 10th-order azimuthal
filtering was necessary. Other unsteady applications to turbomachinery flows were difficult, even
with the RBC scheme of order 3, so that a weak instability of the unsteady scheme can be
suspected. This is the reason why a deeper insight of the dissipation mechanism is needed.
For the unsteady scheme, the discrete operator d̃j,k represents the differential operator:

d =
δx

2
[Φ1(wt + fx + gy)]x +

δy

2
[Φ2(wt + fx + gy)]y (III.3)

which cannot be viewed as the real dissipation since it is identically null! So the effect of
d̃j,k must be identified by expanding it further in space and time. For a RBC2p−1 scheme,
the dissipation d̃j,k is of order h2p−1 in space -see (II.10)-. To identify it, the centered term
d̃j,k must be expanded up to a remainder O(h2p+1). Concerning the expansion in time, the
expression (II.11) of the truncation error of the global scheme shows that the leading term in
space comes from the dissipation and the leading term in time from the main residual. Therefore,
the dissipation operator can finally be studied by expanding d̃j,k in space only, that is by keeping
the time derivative continuous in the dissipation. In other words, a semi-discrete analysis of the
dissipation (based on the expression (II.32) of the mid-point residuals) is sufficient for studying
its effect on the scheme. For a better understanding of the role of the different contributions in
the dissipation, this semi-discrete analysis will be done in two stages: in the following section, we
restrict our attention to the role of the x-discretization in r̃1 and of the role of the y-discretization
in r̃2 and, in the section after, we complete the analysis by adding the effect of the remaining
spatial discrete terms.
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III.3 Partial analysis of the RBC dissipation

III.3.1 Partial residual r̃1
x

Here, we discretize at (j + 1
2 , k) the x-derivative as in (II.24) and the x-average as in (II.25),

but we keep the y-derivative continuous (we do not use (II.28)). Then the mid-point residual r̃1
defined in (II.30) takes the partial form:

(r̃1
x)j+ 1

2
,k =

[
Nµ
1 µ1(wt + gy) +N δ

1

δ1f

δx

]

j+ 1

2
,k

=

[
(I + aµδ21)µ1(wt + gy) + (I + aδδ21)

δ1f

δx

]

j+ 1

2
,k

(III.4)

We now carry out a Taylor expansion of r̃1
x around (j + 1

2)δx. Provided the exact residual is
sufficiently smooth, we obtain after some algebra:

Nµ
1 µ1v = v +

δx2

8
(1 + 8aµ)vxx +

δx4

384
(1 + 80aµ)v4x +

δx6

46080
(1 + 728aµ)v6x +O(δx8), (III.5)

where v = wt + gy and,

N δ
1

δ1f

δx
= fx+

δx2

24
(1+24aδ)fxxx+

δx4

1920
(1+240aδ)f5x+

δx6

322560
(1+2184aδ)f7x+O(δx8). (III.6)

For brevity, the subscript (j + 1
2 , k) has been omitted. Summing (III.5) and (III.6) gives:

r̃1
x = r +

δx2

8
(1 + 8aµ)rxx + δx2

(
aδ − aµ − 1

12

)
fxxx

+
δx4

384
(1 + 80aµ)r4x +

δx4

24

(
3aδ − 5aµ − 1

20

)
f5x

+
δx6

46080
(1 + 728aµ)r6x +

δx6

5760

(
39aδ − 91aµ − 3

28

)
f7x +O(δx8)

(III.7)

with the exact residual r = wt+fx+gy = v+fx. Since r is null everywhere for an exact unsteady
solution, r̃1

x at (j + 1
2 , k) reduces to:

r̃1
x = δx2

(
aδ − aµ − 1

12

)
fxxx+

δx4

24

(
3aδ − 5aµ − 1

20

)
f5x+

δx6

5760

(
39aδ − 91aµ − 3

28

)
f7x+O(δx8)

(III.8)
which no longer contains t and y-derivatives.

III.3.2 Partial residual r̃2
y

Similarly, we restrict the mid-point residual r̃2 to the partial form:

(r̃2
y)j,k+ 1

2

=

[
Nµ
2 µ2(wt + fx) +N δ

2

δ2g

δy

]

j,k+ 1

2

=

[
(I + aµδ22)µ2(wt + fx) + (I + aδδ22)

δ2g

δy

]

j,k+ 1

2

(III.9)

Carrying out similar Taylor expansions at (j, k + 1
2) as above, we obtain

r̃2
y = δy2

(
aδ − aµ − 1

12

)
gyyy+

δy4

24

(
3aδ − 5aµ − 1

20

)
g5y+

δy6

5760

(
39aδ − 91aµ − 3

28

)
g7y+O(δy8)
(III.10)
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III.3.3 Partial dissipation d̃x,y

Inserting the partial residuals (III.4) and (III.69) in the dissipation (II.23) gives the partial
dissipation term:

d̃x,yj,k =
1

2
[δ1(Φ1r̃1

x) + δ2(Φ2r̃2
y)]j,k (III.11)

a) For aδ − aµ 6= 1
12 , the partial mid-point residuals are O(h2).

If

aδ = aµ = 0 (III.12)

then these residuals reduce to 2-point formulas and from the expansions (III.68) and
(III.72), we obtain:

r̃1
x = −δx

2

12
fxxx +O(δx4), r̃2

y = −δy
2

12
gyyy +O(δy4) (III.13)

Therefore the partial dissipation involves only 3× 3-points and expands as:

d̃x,y = − 1

24
[δx3(Φ1fxxx)x + δy3(Φ2gyyy)y] +O(h5) (III.14)

b) For

aδ − aµ = 1

12
and aµ 6= 1

10
(III.15)

the mid-point residuals are O(h4) and expand as:

r̃1
x =

δx4

12

(
1

10
− aµ

)
f5x +O(δx6), r̃2y =

δy4

12

(
1

10
− aµ

)
g5y +O(δy6) (III.16)

so that the partial dissipation is represented by:

d̃x,y =
1

24

(
1

10
− aµ

)
[δx5(Φ1f5x)x + δy5(Φ2g5y)y] +O(h7) (III.17)

c) Finally, for

aµ =
1

10
and aδ =

11

60
(III.18)

we obtain:

r̃1
x = − δx6

2800
f7x +O(δx8), r̃2

y = − δy6

2800
g7y +O(δy8) (III.19)

and

d̃x,y = − 1

5600
[δx7(Φ1f7x)x + δy7(Φ2g7y)y] +O(h9) (III.20)

In this first stage of the analysis, we have obtained the dissipation contribution due to the
approximation in the main direction of each mid-point residual. This intermediate result is
useful to simplify the global analysis, but above all it will be important for the interpretation of
the χ-criterion for dissipation in Section III.5.
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III.4 Full analysis of the RBC dissipation

III.4.1 Residuals r̃1 and r̃2

We consider the complete mid-point residuals (II.30), (II.31). A Taylor expansion of r̃1 can easily
be obtained from the one of r̃x1 by noting that (II.28) yields

N2
δ2µ2g

δy
= D2(gy + ε2), ε2 = O(δy2p−2) (III.21)

so that r̃1 can be related to r̃x1 as

r̃1 = D2(r̃
x
1 +Nµ

1 µ1ε2).

Since Nµ
1 and D2 are consistent with the identity plus second order terms, whereas r̃x1 and ε2 are

O(h2p−2) for p > 2, we get
r̃1 = r̃x1 + µ1ε2 +O(h2p). (III.22)

Similarly, using

N1
δ1µ1f

δx
= D1(fx + ε1), ε1 = O(δx2p−2) (III.23)

we get
r̃2 = r̃y2 + µ2ε1 +O(h2p). (III.24)

The simple relations (III.22) and (III.24) are used below to obtain the full dissipation term d̃ of
the RBC2p−1 schemes, for p = 2, 3 and 4.

III.4.2 Dissipation for RBC3

The RBC3 scheme is constructed on a 3×3-point stencil from the 4th-order main residual (II.20)
and from a 3rd-order dissipation based on 2nd-order mid-point residuals defined by (II.32) with

aδ = aµ = a = c = 0, (III.25)

that is

r̃1 =(I + bδ22)

(
µ1wt +

δ1f

δx

)
+
δ2µ2µ1g

δy

r̃2 =(I + bδ21)

(
µ2wt +

δ2g

δy

)
+
δ1µ1µ2f

δx

(III.26)

the stencils of which use 2×3 and 3×2-points, respectively. Thus, the RBC3 dissipation depends
on the parameter b only. Its simplest form corresponds to b = 0. This choice was made in the
first paper on residual-based schemes [102], focussed on the calculation of steady compressible
flows. As we discussed in Section II.2.2.2, any consistent approximation of dsteady is dissipative
with the numerical viscosity matrices given in Section II.2.3. However for unsteady problems,
the RBC3 dissipation with b = 0 is not always dissipative as we will prove through the study of
the dissipation for any b.
Let us now complete the expansion of the mid-point residuals (III.26) using the relations (III.22),
(III.24) and the expansions (III.75) of r̃x1 and r̃y2 for aδ = aµ = 0. A classical expansion of the
Pade approximations (III.21), (III.23) with a = c = 0 gives the error terms:

ε1 =

(
1

6
− b

)
δx2fxxx +O(δx4), ε2 =

(
1

6
− b

)
δy2gyyy +O(δy4),
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so that we obtain:

r̃1 =−
δx2

12
fxxx +

(
1

6
− b

)
δy2gyyy +O(h4)

r̃2 =−
δy2

12
gyyy +

(
1

6
− b

)
δx2fxxx +O(h4).

Inserting these expansions in the definition (II.23) of d̃, we find the effective RBC3 dissipation
term for unsteady problems:

d̃ = −κ[Φ1(δx3fxxx + χδxδy2gyyy)]x − κ[Φ2(δy3gyyy + χδyδx2fxxx)]y +O(h5) (III.27)

with the coefficients

κ =
1

24
, χ = 2(6b− 1).

The dissipative nature of this term depends on the parameter b and will be studied in the general
framework of Section III.5.

III.4.3 Dissipation for RBC5

The RBC5 scheme is constructed on a 5×5-point stencil from the 6th-order main residual (II.18)
with (II.21) and a 5th-order dissipation based on 4th-order mid-point residuals defined by (II.32)
with aδ and aµ related by (III.78). For the error terms ε1 and ε2 in (III.21), (III.23) be O(h4),
we prescribe

b− a = 1

6
(III.28)

which precisely gives:

ε1 =

(
b

6
− c− 1

30

)
δx4f5x +O(δx6)

and a similar expression for ε2. By plugging these results in Eqs (III.22), (III.24) and by using
the expansions (III.79), we obtain:

r̃1 =
1

12
(
1

10
− aµ)δx4f5x +

(
b

6
− c− 1

30

)
δy4g5y +O(h6)

r̃2 =
1

12
(
1

10
− aµ)δy4g5y +

(
b

6
− c− 1

30

)
δx4f5x +O(h6)

(III.29)

Inserting (III.29) in (II.23), we get the effective RBC5 dissipation term for unsteady problems:

d̃ = κ[Φ1(δx
5f5x + χδxδy4g5y)]x + κ[Φ2(δy

5g5y + χδyδx4f5x)]y +O(h7) (III.30)

with the coefficients

κ =
1

24
(
1

10
− aµ), χ =

1

2κ

(
b

6
− c− 1

30

)
.

and aµ < 1/10.
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III.4.4 Dissipation for RBC7

The RBC7 scheme is constructed on a 5×5-point stencil from the 8th-order main residual (II.18)
with (II.22) and a 7th-order dissipation based on 6th-order mid-point residuals defined by (II.32)
with aδ and aµ given by (III.80). For the error terms ε1 and ε2 in (III.21), (III.23) be O(h6), we
impose

b− a = 1

6
,

b

6
− c = 1

30
(III.31)

so that

ε1 =
1

30

(
1

70
− c

)
δx6f7x +O(δx8)

and similarly for ε2. By using the relations (III.22), (III.24) and the expansion (III.19), we
obtain:

r̃1 =−
δx6

2800
f7x +

1

30

(
1

70
− c

)
δy6g7y +O(h8)

r̃2 =−
δy6

2800
g7y +

1

30

(
1

70
− c

)
δx6f7x +O(h8)

(III.32)

Inserting (III.32) in (II.23), we get the effective RBC7 dissipation term for unsteady problems:

d̃ = −κ[Φ1(δx7f7x + χδxδy6g7y)]x − κ[Φ2(δy7g7y + χδyδx6f7x)]y +O(h9) (III.33)

with the coefficients

κ =
1

5600
, χ =

280

3

(
c− 1

70

)
.

III.5 The χ-criterion for dissipation

III.5.1 Dissipation criterion

The effective dissipation term d̃ induced by the discretization of the second-order partial differen-
tial operator (III.3) has been identified through the above expressions (III.27) for RBC3, (III.30)
for RBC5 and (III.33) for RBC7. Owing to the residual-based structure of the dissipation, these
expressions contain no time derivative. In some sense, the time derivatives have been replaced
by space derivatives because the exact residual r and its derivatives are null everywhere.
The dissipation expressions (III.27), (III.30) and (III.33) can be cast in a general form. Consider
a RBC2p−1 scheme and denote partial derivatives as

fqx =
∂qf

∂xq
, gqy =

∂qg

∂yq
, q = 2p − 1,

the dissipation term is of the form:

d̃ = dq +O(hq+2) (III.34)

with

dq = (−1)p−1κ
{
δx[Φ1(δx

q−1fqx + χδyq−1gqy)]x + δy[Φ2(δy
q−1gqy + χδxq−1fqx)]y

}
(III.35)

where κ > 0 and χ are two constant coefficients depending on the order q of the scheme.
To determine whether the multidimensional operator (III.35) is really dissipative or not, we
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proceed as in Section II.2.3 for the operator dsteady. Considering the linear scalar case, (III.35)
reduces to

dq = Dqw

with the linear partial differential operator:

Dq = (−1)p−1κ ( δx2p−1Φ1A
∂2p

∂x2p
+ χδxδy2p−2Φ1B

∂2p

∂x∂y2p−1

+ δy2p−1Φ2B
∂2p

∂y2p
+ χδyδx2p−2Φ2A

∂2p

∂y∂x2p−1

)

which contains the highest derivatives in (III.35).
All the derivatives in Dq being even, its Fourier symbol is real. It is denoted by D̂q(ξ, η), where
ξ and η are the wave numbers (Fourier variables).
Again, by dissipation (in the broad sense), we mean:

∀ξ ∈ R, ∀η ∈ R, D̂q(ξ, η) 6 0. (III.36)

Theorem III.5.1 (χ-criterion) The operator (III.35) is dissipative for any order q = 2p − 1
(p > 2), any advection direction (A, B) and any functions Φ1, Φ2 satisfying the conditions (II.37)
if and only if χ = 0.

Proof. Since the Fourier symbol of a derivative like ∂2p/∂x∂y2p−1 is (−1)pξη2p−1, we get:

D̂q = −κδx2p−1
[
Φ1Aξ

2p + χ

(
δy

δx

)2p−2

Φ1Bξη
2p−1 + χ

(
δy

δx

)
Φ2Aξ

2p−1η +

(
δy

δx

)2p−1

Φ2Bη
2p

]
.

• For A = B = 0 (no advection), then D̂q = 0.

• For A = 0 and B 6= 0 (1-D advection), then from (II.23) Φ1 = 0, Φ2B > 0 and

D̂q = −κδy2p−1Φ2Bη2p 6 0.

• Now for A 6= 0, D̂q can be written as:

D̂q = −κδx2p−1Φ1Aξ2pD

with

D = 1 + χ

(
δx

δy

B

A
λ2p−1 +

Φ2
Φ1
λ

)
+
δx

δy

Φ2B

Φ1A
λ2p

where λ =
δy η

δx ξ
.

Using the conditions (II.37) with the definition (II.38) of α, we have

δxB

δyA
=
Φ2
Φ1

= sgn(AB)α = ᾰ

so that
D(λ, ᾰ) = 1 + χᾰλ(λ2p−2 + 1) + ᾰ2λ2p

Since Φ1A is always positive, D̂q is negative if and only if

∀ᾰ ∈ R, ∀λ ∈ R, D(λ, ᾰ) > 0.
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Note that λ is a reduced wave number ratio and ᾰ characterizes the advection direction
with respect to the mesh. It is not easy to discuss the sign of D viewed as a polynomial
of degree 2p in λ. It is better to begin with the dependency on ᾰ. Considering D as a
polynomial of degree 2 in ᾰ, we compute its discriminant

∆ = χ2λ2(λ2p−2 + 1)2 − 4λ2p

= λ2[χ(λ2p−2 + 1) + 2λp−1][χ(λ2p−2 + 1)− 2λp−1]

D is positive if and only if ∆ 6 0. For λ = 0, ∆ = 0. For λ 6= 0, ∆ 6 0 is tantamount to:

− 2|λ|p−1
1 + λ2p−2

6 χ 6
2|λ|p−1
1 + λ2p−2

Since the lower and upper bounds of χ tend to zero as λ tends to infinity, the above
condition can be satisfied for all real numbers λ if and only if χ = 0.

III.5.2 Application of the χ-criterion to RBC3

The mid-point residuals of the RBC3 scheme are defined by (III.26) and depend on the parameter
b. Since χ = 2(6b− 1) for RBC3, the condition χ = 0 for dissipation requires

b =
1

6
(III.37)

For this value of b, gy in r̃1 and fx in r̃2 are approximated at order 4. Thus, the simplest choice
b = 0 should not be used for unsteady problems. However, the correct choice (III.37) does not
extend the scheme stencil.

III.5.3 Application of the χ-criterion to RBC5 and RBC7

The mid-point residuals of the RBC5 and RBC7 schemes are defined by (II.32) with

aδ = aµ +
1

12
(III.38)

and

b− a = 1

6
.

For RBC5, aµ 6= 1/10. In addition, the condition χ = 0 for dissipation gives

b

6
− c = 1

30
,

that is

a =
1

30
+ 6c, b =

1

5
+ 6c. (III.39)

When (III.39) holds, gy in r̃1 and fx in r̃2 are approximated at order 6. Note that the correct
dissipation depends on two parameters (aµ and c), but the dissipation coefficient κ in (III.30)
depends only on aµ (that should be strictly lower than 1/10).
In the previous works [40, 104], the following coefficients were used:

aµ =
1

12
, aδ =

1

6
, a =

1

10
, b =

4

15
, c =

1

90
. (III.40)
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They happen to satisfy (III.38) and (III.39).
Another correct choice satisfying the same conditions and producing the same dissipation (same
aµ) for RBC5 is:

aµ =
1

12
, aδ =

1

6
, a =

1

30
, b =

1

5
, c = 0. (III.41)

It is simpler because the operators δ41 and δ42 vanish in r̃1 and r̃2. Finally for RBC7, the coefficients

are given by (III.38) and (III.39) along with aµ = 1/10. Here the condition χ = 0 for dissipation
gives c = 1/70, and a unique set of coefficients is found, leading to a dissipative RBC7 scheme.
This is:

aµ =
1

10
, aδ =

11

60
, a =

5

42
, b =

2

7
, c =

1

70
. (III.42)

Here, gy in r̃1 and fx in r̃2 are approximated at order 8. Note that the coefficients are different
from those used in [40, 104] for RBC7, that were:

aµ =
1

10
, aδ =

11

60
, a =

1

30
, b =

1

5
, c = 0. (III.43)

Actually, the coefficients (III.43) do not ensure dissipation to RBC7 for all flow conditions.

III.6 Extension to 3-D

III.6.1 Dissipation criterion in 3-D

Consider now the three-dimensional hyperbolic system

wt + fx + gy + ez = 0 (III.44)

where e = e(w) is the flux component in the z-direction and C = de/dw. Using difference and
average operators δ3 and µ3 on the discrete axis zl = lδz, the residual-based scheme reads:

r̃j,k,l = d̃j,k,l (III.45)

where the main residual r̃ is a space-centered approximation of the exact residual r (the left-hand
side of (III.44)) and d̃ is the dissipation term

d̃j,k,l =
1

2
[δ1(φ1r̃1) + δ2(φ2r̃2) + δ3(φ3r̃3)]j,k,l (III.46)

which approximates:

d =
δx

2
(φ1r)x +

δy

2
(φ2r)y +

δz

2
(φ3r)z (III.47)

For steady problems, the time derivative is cancelled into (III.46) and d̃ is consistent with dsteady

defined from (III.47) after replacing r by

rsteady = fx + gy + ez

Conditions on Φ1, Φ2 and Φ3 should be satisfied for the operator dsteady be actually dissipative
in the broad sense. For a scalar problem, these conditions are found to be

Φ1A > 0, Φ2B > 0, Φ3C > 0,

δxΦ1B = δyΦ2A, δxΦ1C = δzΦ3A.
(III.48)
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With the following notations:

Φ1 = sgn(A)φ, Φ2 =sgn(B)ψ, Φ3 = sgn(C)ζ,

α =
δx|B|
δy|A| , β =

δx|C|
δz|A| ,

the dissipation conditions (III.48) for dsteady become

φ > 0, ψ = αφ, ζ = βφ. (III.49)

An optimal choice is

φ = min

(
1,
1

α
,
1

β

)
= min

(
1,
δy|A|
δx|B| ,

δz|A|
δx|C|

)
,

ψ = min

(
1, α,

α

β

)
= min

(
1,
δx|B|
δy|A| ,

δz|B|
δy|C|

)
,

ζ = min

(
1, β,

β

α

)
= min

(
1,
δx|C|
δz|A| ,

δy|C|
δz|B|

)
.

(III.50)

For hyperbolic systems, Φ1, Φ2 and Φ3 are matrix functions defined from the above relations by
following a process perfectly similar to the one described in Section II.2.3 for the bidimensional
case.
To construct and analyse the dissipation term (III.46), we discretize the mid-point residuals r̃1,
r̃2 and r̃3 in two stages as in the 2-D case. First, we discretize r̃p in the pth-direction only. For
instance for r̃1, this leads to the partially discrete residual

(r̃1
x)j+ 1

2
,k,l =

[
Nµ
1 µ1(wt + gy + ez) +N δ

1

δ1f

δx

]

j+ 1

2
,k,l

where the operator polynomials Nµ
1 and N δ

1 are still defined by (II.26) with m = 1. Clearly, the
expansions made in Section III.3.1 remains valid with the new definition of v:

v = wt + gy + ez.

As a result the expansions of r̃1
x and r̃2

y are unchanged in 3-D and we just have to introduce a
similar expansion for r̃3

z.
Then in the second stage, we proceed as in Section III.4 to complete the space discretization,
which requires to introduce a Pade approximation for ez:

N3
δ3µ3e

δz
= D3(ez + ε3), ε3 = O(δz2p−2) (III.51)

where N3 and D3 are defined by (II.29) for m = 3 and ε3 is the error term.
After applying the operator product D2D3 to all the terms involved in r̃1, we define:

(r̃1)j+ 1

2
,k,l =

[
Nµ
1 µ1

(
D2D3wt +D3N2

δ2µ2g

δy
+D2N3

δ3µ3e

δz

)
+N δ

1D2D3
δ1f

δx

]

j+ 1

2
,k,l

(III.52)

and similarly:

(r̃2)j,k+ 1

2
,l =

[
Nµ
2 µ2

(
D3D1wt +D3N1

δ1µ1f

δx
+D1N3

δ3µ3e

δz

)
+N δ

2D3D1
δ2g

δy

]

j,k+ 1

2
,l

(III.53)

(r̃3)j,k,l+ 1

2

=

[
Nµ
3 µ3

(
D1D2wt +D2N1

δ1µ1f

δx
+D1N2

δ2µ2g

δy

)
+N δ

3D1D2
δ3e

δz

]

j,k,l+ 1

2

(III.54)
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A Taylor expansion of r̃1 can be easily obtained by noting that the formulas (III.21) and (III.51)
yield

D3N2
δ2µ2g

δy
= D2D3(gy + ε2), D2N3

δ3µ3e

δz
= D2D3(ez + ε3)

so that r̃1 is related to r̃1
x by

r̃1 = D2D3[r̃1
x +Nµ

1 µ1(ε2 + ε3)].

With the same arguments as in the 2-D case, we can reduce this relation to

r̃1 = r̃1
x + µ1(ε2 + ε3) +O(h2p)

and similar expressions for r̃2 and r̃3, the error ε3 being quite similar to the error ε1 and ε2.
Finally, we easily find the general form of the dissipation in 3-D. With the same notations as in
Section III.5.1, the dissipation of a RBCq scheme (q = 2p − 1) is given by (III.34) with

dq = (−1)p−1κ{δx[Φ1(δxq−1fqx + χδyq−1gqy + χδzq−1eqz)]x

+δy[Φ2(δy
q−1gqy + χδzq−1eqz + χδxq−1fqx)]y

+δz[Φ3(δz
q−1eqz + χδxq−1fqx + χδyq−1gqy)]z}

(III.55)

and exactly the same coefficients κ and χ as in 2-D (these coefficients depend only of the order
q of the RBCq scheme).
The definition (III.36) of dissipation is unchanged except by the adding of a third wave number.

Theorem III.6.1 (χ-criterion) The operator (III.55) is dissipative for any order q = 2p − 1
(p > 2), any advection direction (A, B, C) and any functions Φ1, Φ2, Φ3 satisfying the conditions
(III.48) if and only if χ = 0.

Proof. The condition χ = 0 is sufficient for dissipation since when it holds, the operator dq has
no crossed derivatives and reads

dq = (−1)p−1κ{δxq(Φ1fqx)x + δyq(Φ2gqy)y + δzq(Φ3eqz)z} (III.56)

which is always dissipative provided Φ1A > 0, Φ2B > 0 and Φ3C > 0.
The condition χ = 0 is also necessary since it does in a 2-D situation as we have shown in Section
III.5.

The above χ-criterion can be interpreted similarly as in 2-D: a RBCq scheme (q = 2p − 1)
satisfying this condition has a mid-point residual r̃1 (resp. r̃2, r̃3) in which the derivative fx
(resp. gy, ez) is approximated at order 2p− 2 and the two other derivatives are approximated at
order 2p.

III.6.2 Application of the χ-criterion to RBC3 in 3-D

In 3-D, the RBC3 dissipation involves 3×3×3-points and is given by (III.46) with a 2×3×3-point
residual (r̃1)j+ 1

2
,k,l defined as:

r̃1 = (I + bδ22)(I + bδ23)

(
µ1wt +

δ1f

δx

)
+ (I + bδ23)

δ2µ2g

δy
+ (I + bδ22)

δ3µ3e

δz
(III.57)

along with a 3× 2× 3-point residual (r̃2)j,k+ 1

2
,l and a 3× 3× 2-point residual (r̃3)j,k,l+ 1

2

deduced

from (III.57) by circular permutations of the subscripts 1,2,3, of the flux components f, g, e and
of the space steps δx, δy, δz.
Since the coefficient χ is the same in 3-D as in 2-D, the dissipation condition is again (III.37),
which sets the only parameter b.
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III.6.3 Application of the χ-criterion to RBC5 and RBC7 in 3-D

The 5× 5× 5-point RBC5 and RBC7 schemes are defined by (III.46) with

r̃1 =(I + bδ22 + cδ42)(I + bδ23 + cδ43)

[
(I + aµδ21)µ1wt + (I + aδδ21)

δ1f

δx

]

+ (I + aµδ21)µ1

[
(I + bδ23 + cδ43)(I + aδ22)

δ2µ2g

δy
+ (I + bδ22 + cδ42)(I + aδ23)

δ3µ3e

δz

] (III.58)

and similar expressions for r̃2 and r̃3 deduced by circular permutations of the subscripts, the flux
components and the space steps.
The coefficients corresponding to the RBC5 dissipation satisfying the condition χ = 0 are given
by (III.38) and (III.39). They still depend on the two parameters aµ and c. The analogous
coefficients for RBC7 are uniquely set by (III.42).

III.7 Numerical verification of the χ-criterion

Up to now, we restricted our considerations to space approximation schemes. The time approx-
imation is treated independently so that various choices can be made. In the present work, we
use a Linear Multistep Method (LMM). In this implicit method, the residual is taken at the new
time level (n+ 1)∆t and

(wt)
n+1 =

1

∆t

(
∆w +

1

2
∆2w +

1

3
∆3w + ...+

1

l
∆lw

)n+1

+O(∆tl) (III.59)

where
(∆w)n+1 = wn+1 − wn, ∆2w = ∆(∆w), ∆3w = ∆(∆2w), ...

For l = 2, we get the popular approximation

(wt)
n+1 =

1

2∆t

(
3wn+1 − 4wn + wn−1

)
+O(∆t2). (III.60)

LMM methods are A-stable at order l = 1 and 2 and A(α)-stable at higher orders (see [44, 95,
164]). A-stable methods are unconditionally stable when the spatial approximation is dissipative.
Given the complexity of RBC schemes we first confirm numerically the χ-criterion through a Von
Neumann stability analysis of schemes satisfying or not this criterion. The time-discretization
chosen for this numerical investigation is the second-order A-stable LMM method. To study
these properties, we consider the linear problem

wt +Awx +Bwy + Cwz = 0 (III.61)

where A,B and C are scalar constants. Thereby, the physical fluxes are: f = Aw, g = Bw and
e = Cw. This equation serves as a model for the reduced hyperbolic part of the Navier-Stokes
equations.
The Fourier symbol of the difference and average operators are:

δ̂1µ1 = isin(ξ), δ̂2µ2 = isin(η), δ̂3µ3 = isin(ζ),

δ̂21 = 2(cos(ξ)− 1), δ̂22 = 2(cos(η)− 1) and δ̂23 = 2(cos(ζ)− 1)

where i2 = −1 and ξ, η and ζ are the reduced wave numbers in the x-, y- and z-direction respec-
tively. For a three step, second-order accurate LMM method, the time derivative is approximated
as

T (w) = 1

2∆t

(
3wn+1 − 4wn + wn−1

)
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and its Fourier symbol is

T̂ (w) = 1

2∆t

(
3G− 4 +

1

G

)
ŵn

where G = ŵn+1/ŵn = ŵn/ŵn−1 is the amplification factor. We denote Ȧ, Ḃ and Ċ the CFL
(Courant–Friedrichs–Lewy) numbers Ȧ = A∆t/δx, Ḃ = B∆t/δy and Ċ = C∆t/δz. In order
to carry out the Von Neumann stability analysis of RBC schemes, the Fourier symbols of the
schemes are written in the form:

α∆tT̂ (w) = −βŵn+1

where α and β are functions of Ȧ, Ḃ, Ċ, ξ, η and ζ. With the preceding notations, this can be
re-written as

α

2

(
3G − 4 +

1

G

)
= −βG.

Finally, by reordering with respect to G; we obtain:

P (G) = 0

where P (G) =
(
3α
2 + β

)
G2 − 2αG + α

2 is a second order polynomial in G. The amplification
factor is one of the two roots, G1 and G2, of P . |G| is chosen to be max(|G1|, |G2|) which is the
more conservative choice for a stability analysis.
The values of α and β are:

α =D(Z1)D(Z2)D(Z3)−
i

2
[Φ1 sin(ξ)N

µ(Z1)D(Z2)D(Z3)

+ Φ2 sin(η)N
µ(Z2)D(Z1)D(Z3) + Φ3 sin(ζ)N

µ(Z3)D(Z1)D(Z2)]

β =
Φ1
2
[−ȦZ1D(Z2)D(Z3)N δ(Z1) +N(Z2)N

µ(Z1)D(Z3)Ḃ sin(ξ) sin(η)

+N(Z3)N
µ(Z1)D(Z2)Ċ sin(ξ) sin(ζ)] +

Φ2
2
[−ḂZ2D(Z1)D(Z3)N δ(Z2)

+N(Z1)N
µ(Z2)D(Z3)Ȧ sin(η) sin(ξ) +N(Z3)N

µ(Z2)D(Z1)Ċ sin(η) sin(ζ)]

+
Φ3
2
[−ĊZ3D(Z1)D(Z2)N δ(Z3) +N(Z1)N

µ(Z3)D(Z2)Ȧ sin(ζ) sin(ξ)

+N(Z2)N
µ(Z3)D(Z1)Ḃ sin(ζ) sin(η)] + i[Ȧ sin(ξ)N (Z1)D(Z2)D(Z3)

+ Ḃ sin(η)N (Z2)D(Z1)D(Z3) + Ċ sin(ζ)N(Z3)D(Z1)D(Z2)]

(III.62)

where Z1 = 2(cos ξ − 1), Z2 = 2(cos η − 1), Z3 = 2(cos ζ − 1) and where N , N , D, D, Nµ, N δ

are the polynomials introduced previously.

We consider now the specific case of the RBC3 scheme with a dissipation operator corresponding
to b = 0 or b = 1/6. According to the preceding analysis, the former choice does not allow to
satisfy the χ-criterion, whereas the latter does. Additionnally, we also consider the case of the
RBC7 scheme with the coefficients (III.43) associated to c = 0 (χ 6= 0) or the coefficients (III.42)
associated to c = 1/70 (χ = 0). Given the complexity of the analytical expression of α and β
a computer code has been written to study the Von Neumann stability of these schemes. The
analysis is carried out in 2D and 3D. In the 3D analysis (respectively in 2D), for every triplet
(respectively couple) of CFL numbers the maximum value of the amplification factor modulus
|G| in the wave numbers space, called |G|max, is determined.
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Figure III.1: 2D and 3D Von Neumann stability analysis of RBC3 (b = 0 i.e. χ 6= 0).

In the 2D analysis, the reduced wave numbers (ξ, η) vary in [−π;π] × [0;π] with a step
∆ξ = ∆η = π/50 and the CFL numbers in the range [−2; 2] with a step ∆Ȧ = ∆Ḃ = 1/100. In
the 3D analysis, the triplet (ξ, η, ζ) varies in [−π;π]2× [0;π] with a step ∆ξ = ∆η = ∆ζ = π/50,
and the CFL numbers in [−1; 1]3 with a step ∆Ȧ = ∆Ḃ = ∆Ċ = 1/50. The ranges of variation
of the parameters take into account symmetries of |G|. The discretizations have been tested so
as to have a sufficient resolution for the analysis.
Fig. III.1 shows that RBC3 with b = 0 (χ-criterion violated) is not linearly stable in 2D and
3D since the maximum modulus of the amplification factor is greater than one for some waves
number. The maximum value of |G|max is 1.006 for the 2D scheme and 1.019 for the 3D configu-
ration. It has to be stressed that several complex unsteady computations have been successfully
carried out with this scheme despite this slight linear instability [40, 101, 117]. It seems likely
that this is due to the fact that high values of |G|max are restricted to a small range of CFL
numbers, and for these values of CFL numbers, |G| is higher than one only in a small range of
reduced wave numbers. Moreover, |G|max is always close to one for this fully discretized scheme.
Thereby in the computation of a viscous case, the fact that the linear advection scheme is un-
stable might not be an issue in most of the cases thanks to the stabilizing effect of the viscous
terms. Similarly Fig. III.2 provides the results of the Von Neumann analysis in 2D and 3D for
RBC7 with c = 0 (χ 6= 0). They reveal that this scheme is also slightly linearly unstable. The
maximum values of |G|max are 1.00079 in 2D and 1.00184 in 3D, which is very close to 1, but
may lead to computational break-up for some configurations.
On the other, the Von Neumann stability analysis of RBC schemes of third-, fifth- and seventh-
order of accuracy satisfying the χ-criterion, respectively defined by the set of coefficients (III.37),
(III.38) and (III.42), shows these schemes to be unconditionally linearly stable for both 2D and
3D configurations, which confirms the relevance of the χ-criterion.
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Figure III.2: 2D and 3D Von Neumann stability analysis of RBC7 (c = 0 i.e. χ 6= 0).

III.8 Interpretation of the χ-criterion

We now try to understand the meaning of the dissipation condition χ = 0. When it holds, the
mixed derivatives vanish and the dissipation operator reduces to

dq = (−1)p−1κ[δxq(Φ1fqx)x + δyq(Φ2gqy)y], q = 2p− 1 (III.63)

which is precisely the result obtained in the partial analysis of Section III.3 where we only took
into account the x-discretization in r̃1 and the y-discretization in in r̃2. This means that the
effect of the complementary discretization comes at a higher order in the expansion of d̃. To
ensure dissipation, the derivative gy in the mid-point residual r̃1 (resp. fx in r̃2) should be
approximated at a higher order than necessary to get the accuracy required for the mid-point
residual. Practically, the mid-point residual r̃1 of RBCq scheme (q = 2p−1) uses approximations
of order 2p− 2 for fx and of order 2p for gy. The latter is nothing but the one used in the main
residual r̃. For the mid-point residual r̃2, the roles of fx and gy are exchanged.
Fortunately, this extra accuracy for half of the dissipation terms is achieved without extending
the scheme stencil.

In this section we try to show why ensuring dissipation means that the derivative gy in the
mid-point residual r̃1 (resp. fx in r̃2) has to be approximated at a higher order than necessary
to get the accuracy required for the mid-point residual. We do it by computing the truncation
error of RBC schemes using only the Taylor expansions of the Pade fraction used.
This expansions could be done in the general framework of RBC schemes. However, in order
to fix ideas and to simplify this interpretation we only take the example of RBC7. The main
residual Taylor expansion is:

r̃0 = (D1 D2)
[
r +O(h8)

]
=

[
I +O(h2)

]
O(h8) = O(h8)

Now, we consider the Taylor expansion of one of the mid-point residual, r̃1 for instance. For
RBC7, the approximations have to be at least at sixth order in the dissipation. Thus, the Taylor
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expansion of the Pade fraction used are:

N δ
1

Dδ
1

δ1f

δx
= fx −

223

4838400
δx6f7x +O(δx7)

Nµ
1

Dµ
1

µ1f = f +
δx6

5120
f6x +O(δx8)

and
N2

D2

δ2µ2g

δy
= gy +

(
1

140
− b

30
+
c

6

)
δy6g7y +O(δy8) = gy + αδy6g7y +O(δy8)

where α =
1

140
− b

30
+
c

6
. Besides Dδ

1 = Dµ
1 for reason of compactness. Consequently, the

expansion of r̃1 writes:

r̃1 = D2D
δ
1

[
Nµ
1

Dµ
1

µ1

(
wt +

N2

D2

δ2µ2g

δy

)
+
N δ
1

Dδ
1

δ1f

δx

]

= D2D
δ
1

[
r +

δx6

5120
(wt + fx + gy)6x + αδy6g7y −

(
223

4838400
+

1

5120

)
δx6f7x

]
+O(h8)

= D2D
δ
1

[
r +

δx6

5120
r6x + αδy6g7y −

73

302400
δx6f7x

]
+O(h8)

The exact residual r is null and consequently

r̃1 = D2D
δ
1

[
αδy6g7y −

73

302400
δx6f7x

]
+O(h8)

=
[
I +O(h2)

] [
αδy6g7y −

73

302400
δx6f7x

]
+O(h8)

= αδy6g7y −
73

302400
δx6f7x +O(h8)

Finally, in the case of the linear scalar advection, the truncation error of RBC7 is

ǫ =
Φ1
2

[
αδxδy6gx7y −

73

302400
δx7f8x

]
+
Φ2
2

[
αδyδx6fy7x −

73

302400
δy7g8y

]
+O(h8)

= D7w +O(h8)

and the Fourier transform of D7 is

D̂7 = −
Φ1
2

[
αδxδy6Bξη7 − 73

302400
δx7Aξ8

]
− Φ2

2

[
αδyδx6Aηξ7 − 73

302400
δy7Bη8

]
(III.64)

The only terms that could be non-dissipative in the sens of (III.36) are terms with the coefficient
α. Thus, the dissipation prperties of RBC7 depends only on the choice of the Pade fraction
N1/D1 and N2/D2. When the χ-criterion (χ = 0) is satisfied α is null and when the χ-criterion

is not satisfied (c = 0) α is equal to 1/2100. If χ 6= 0 the sign of −Φ1α
2
δxδy6Bξη7 depends on

the configuration of the flow. In the 2D scalar advection case the sign of this contribution is
negative when:

- Ȧ and Ḃ have contrary signs, and ξ and η have contrary signs
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- Ȧ and Ḃ have the same sign, and ξ and η have the same sign

The present result is consistent with a Von Neumann analysis; the amplification factor is indeed
greater than one in the Fourier space only for configurations described above (cf. Figure III.3).

Figure III.3: |G| for unsteady RBC7 with (Ȧ, Ḃ) = (0.19, 0.01) on the left and (Ȧ, Ḃ) = (0.19,−0.01)
on the right

Note that the cross derivatives in the proof of the χ-criterion are multiplied by the coefficient

−κχ which is equal to − 1

4200
= −α

2
for RBC7 with c = 0.

In summary, we have interpreted the χ-criterion for dissipation. To ensure the validity of χ-
criterion and thus dissipation, the derivative gy in the mid-point residual r̃1 (resp. fx in r̃2) should
be approximated at a higher order than necessary to get the accuracy required for the mid-point
residual. Moreover we have shown the flow condition leading to this numerical instability when
the χ-criterion is not satisfied.

III.9 Spectral properties of RBC schemes

III.9.1 General framework

The aim of the present section is to move a further step toward the understanding of the numer-
ical properties of high-order RBC discretizations, and precisely of the internal representation of
solution modes provided by these schemes. Truncation error analysis provides information about
the asymptotic behavior of numerical schemes in the limit of vanishing mesh size. Namely, for
stable methods and for smooth flow problems, it allows to conclude on the convergence rate of
the global error. Furthermore, it may be used to establish, as done in the present chapter, the
dominant (dissipative or dispersive) nature of the numerical scheme, according to the kind of
derivatives (even or odd) of the unknown field featuring in the leading error term. Nevertheless,
this type of analysis does not provide all possible information on the actual error introduced by
the scheme on finite computational grids, and precisely on the cutoff frequencies associated to
the numerical representation of the solution. For this purpose, the wave propagation (spectral)
properties of the scheme can be studied to obtain information on the evolution of the Fourier
modes of the computed field that are supported on a given grid of finite size. The spectral
behavior of high order schemes has been extensively investigated in the past, namely in view of
their application to aeroacoustics [18, 146] and Large-Eddy Simulation [18, 54]. Specifically, a
careful analysis of the approximation of convective terms in the governing equations is in order
for the numerical simulation of high-Reynolds compressible flows, since it is likely to introduce
dispersion and diffusion errors that affect the numerical representation of a given solution mode.
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For directional schemes, spectral analysis is often applied to a single space derivative taken apart
[18, 54, 146]. Morover, since many high-order schemes have a purely centered nature, only the
dispersion errors are taken into account, numerical damping being introduced a posteriori via
the addition of some form of artificial dissipation or explicit filtering, whose transfer function
(rate of damping associated to a given wave number) is investigated separately.
This kind of disjoint analysis is not applicable to RBC schemes because of their genuinely multi-
dimensional and intrinsically dissipative nature. For these schemes, an analysis of the properties
of the multidimensional spatial discretization operator as a whole is required. In this case, the
dispersive and dissipative behavior depends on a multidimensional wave number (or on the local
advection direction). Since our main goal is to investigate the spectral properties of numerical
approximations for the convective terms, in the following we restrict our analysis to inviscid
compressible flow problems.

III.9.2 Spectral analysis of the RBC spatial operator

Omitting the subscript j, k, the RBCq spatial discretization scheme of order q = 3, 5, 7 can be
expressed as:

r̃0(w,wt) = d̃(w,wt) (III.65)

where r̃0 is the centered residual operator and d̃ is the numerical dissipation operator. They can
both be split in a part dependent on the state vector w only and another one that involves wt.
Precisely, calling:

Ir̃0 = D1 D2, Id̃ =
1

2
(δ1Φ1N

µ
1 µ1D2 + δ2Φ2N

µ
2 µ2D1) (III.66)

the difference operators that apply to wt and:

Rr̃0 = D2 N1
δ1µ1f

δx
+D1 N2

δ2µ2g

δy
,

Rd̃ =
1

2

[
δ1Φ1

(
N δ
1D2

δ1f

δx
+Nµ

1 µ1N2
δ2µ2g

δy

)
+δ2Φ2

(
N δ
2D1

δ2g

δy
+Nµ

2 µ2N1
δ1µ1f

δx

)] (III.67)

the operators depending on w only, Eq. (III.65) can be rewritten as;

(Ir̃0 − Id̃)wt = −Rr̃0 +Rd̃

or, in a more compact way:

wt = −I−1R, with I = Ir̃0 − Id̃ and R = Rr̃0 −Rd̃ (III.68)

Finally, we can formally set:
wt = S(w), with S = −I−1R (III.69)

Eq. (III.69) represents now a system of ordinary differential equations and, completed by initial
conditions w(., 0) = w0(.), it defines a Cauchy problem. Thus, the spectral properties of the
semi-discrete scheme depend only on those of the operator S.
To study these properties, we consider the linear problem

wt +Awx +Bwy = 0 (III.70)

where A and B are scalar constants. The Fourier transform of Eq. (III.70) is:

ŵt = −i(Akx +Bky)ŵ = −iA.kŵ (III.71)
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where A = (A,B) is the advection velocity vector and k = (kx, ky) a 2D wave vector. Denot-
ing Ȧ = (Ȧ, Ḃ) a vector whose components are the CFL numbers in the x and y directions,
respectively:

Ȧ = A∆t/δx, Ḃ = B∆t/δy

and introducing the reduced wave number in the Ȧ-direction:

ξθ =
Ȧ

|Ȧ|
.ξ

with ξ = (ξ, η) = (kxδx, kyδy) the reduced wave vector, Eq. (III.71) can be rewritten as:

ŵt = −i|Ȧ|ξθ
ŵ

∆t
(III.72)

The notation ξθ refers to the local advection direction with respect to the mesh, where cos(θ) =
Ȧ/|Ȧ|, sin(θ) = Ḃ/|Ȧ|, and |Ȧ| is the global CFL number. The right-hand side of Eq. (III.72)
represents the exact transport operator, a pure imaginary number, and ξθ is a pure real number.
We now consider the semi-discrete counterpart to Eq. (III.72). Taking the spatial Fourier
transform of the semi-discrete system (III.69) applied to the linear problem (III.70), we obtain:

ŵt = Ŝ(ξ, Ȧ)
ŵ

∆t
(III.73)

with Ŝ the Fourier symbol of the spatial operator. Introducing the modified wave number:

ξ∗θ = i
Ŝ(ξ, Ȧ)
|Ȧ|

(III.74)

Eq. (III.73) can be rewritten as:

ŵt = −i|Ȧ|ξ∗θ
ŵ

∆t
(III.75)

which represents the numerical counterpart of the exact operator (III.72). Eq. (III.74) is called
the approximate dispersion relation of the semi-discrete scheme and relates a given reduced wave
number ξθ to its numerical representation ξ∗θ . Contrary to the exact wave number, the modified
wave number ξ∗θ is a complex, since it has a non-zero imaginary part in general. Inspection of Eq.
(III.75) shows that, according to its positive or negative sign, this imaginary part contributes to
the amplification or damping of ŵ in time. If the imaginary part is positive, then any Fourier
mode set as an initial condition to the ordinary differential equation (III.69) will grow without
bound.
As a consequence, a necessary condition for the Cauchy-stability of the semi-discrete system of
equations is that:

∀Ȧ ∈ R2, sup
ξ∈[−π,π]2

Im(ξ∗θ ) 6 0 (III.76)

This comes to require that the Fourier symbol of the spatial discretization Ŝ always lies in the
left-hand side of the complex plane. Any spatial discretization satisfying the stability condition
(III.76) leads to an unconditionally stable fully discrete scheme whenever it is combined to an
A-stable time integration method.
In addition to stability analysis, the modified wave number may be used as an indicator of how
accurately a given wave number is represented by the difference operator. Specifically, we define
the error with respect to the exact wave number:

E = ξ∗θ − ξθ = (Re(ξ∗θ)− ξθ) + iIm(ξ∗θ ) (III.77)
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More precisely, following previous works [18, 57, 98, 146, 149] for 1-D problems, we consider the
multidimensional counterparts of the scheme normalised phase error and damping function:

Pξθ =
|Re(ξ∗θ)− ξθ|

π
, Dξθ = 1− exp[Im(ξ∗θ )] (III.78)
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Figure III.4: Representation in the complex plane of the Cauchy-stability criterion (III.76) for RBC
schemes with different choices of the Pade coefficients used in the numerical dissipation term.

For an infinitely accurate scheme, Pξθ = 0 and Dξθ = 0. In the following, we apply the
preceding measures to the RBC schemes presented in Section III. To this purpose, we first
establish the approximate dispersion relation for a RBC scheme. We start by taking the Fourier
transform of Eq. (III.68), which gives:

ŵt = −Î−1R̂ŵ, with Î = Î(ξ, Ȧ) and R̂ = R̂(ξ, Ȧ)

As a consequence:

ξ∗θ = −i∆t
Î
−1

R̂

|Ȧ|
(III.79)
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Taking the Fourier transform of Eqs. (III.66) and (III.67), we finally obtain:

∆tR̂ =
Φ1
2

(
N(Z2)N

µ(Z1)Ḃ sin(ξ) sin(η)− ȦZ1D(Z2)N δ(Z1)
)

+
Φ2
2

(
N(Z1)N

µ(Z2)Ȧ sin(η) sin(ξ)− ḂZ2D(Z1)N δ(Z2)
)

+ i
(
Ȧ sin(ξ)N (Z1)D(Z2) + Ḃ sin(η)N (Z2)D(Z1)

)

Î
−1 =

{
D(Z1)D(Z2)−

i

2
(Φ1 sin(ξ)N

µ(Z1)D(Z2) + Φ2 sin(η)N
µ(Z2)D(Z1))

}
−1

(III.80)

where Z1 = 2(cos ξ − 1), Z2 = 2(cos η − 1) and where N , N , D, D, Nµ, N δ are the polynomials
introduced previously, with coefficients given by Eq. (II.14) and (III.42), (II.15) and (III.32),
and (II.16) and (III.34) for RBC3, RBC5, and RBC7 respectively.
Given the complexity for the analytical expression of the modified wave number for an RBCq
scheme, a computer code has been written to study its mathematical properties. First of all,
we numerically check that RBCq schemes using coefficients given by Eq. (III.42) to (III.34)
are Cauchy stable. To this purpose, the imaginary part of ξ∗θ is computed for CFL numbers
Ȧ and Ḃ ranging in [−2, 2] with a step ∆Ȧ = ∆Ḃ = 1/100 and the wave vector ξ ranging in
[−π, π] × [0, π] with steps ∆ξ = ∆η = π/50. Fig. III.4 displays criterion (III.76) for several
RBC schemes. Precisely, Fig. III.4(a) to III.4(c) show that RBC schemes with coefficients
satisfying the dissipation criterion of Thm. III.6.1 verify condition (III.76) for any CFL and any
wave number, whereas the third- and seventh-order RBC schemes with coefficients given in [40]
violate the stability criterion over a range of wave numbers, which may lead to stability problems
for some flow configurations.
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Figure III.5: 1D behavior of Pξ∗
0

and Dξ∗
0

for RBC schemes.

ξc λc/δx

RBC3 0.74 8.47

RBC5 1.39 4.53

RBC7 1.54 4.07

Table III.1: Resolvability limit due to dispersion
of RBC schemes.

ξc λc/δx

RBC3 0.40 15.56

RBC5 1.03 6.08

RBC7 1.24 5.06

Table III.2: Resolvability limit due to dissipation
of RBC schemes.
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Figure III.6: Contours of the phase error Pξ∗
0

(left) and damping function Dξ∗
0

(right) for pure advection

in the x direction, Ȧ = (Ȧ, 0), i.e. θ = 0. Bold black lines correspond to a threshold error of 10−3.

Then, we proceed to the analysis of the dispersion error and damping function for dissipative
RBC schemes of different orders. Fig. III.6 shows contour levels of the dispersion error and
damping function for different combinations of the reduced wave numbers and an advection
velocity aligned with one grid direction, i.e. θ = 0. Specifically, we choose Ȧ = (Ȧ, 0). In these
figures, the bold black lines correspond to a threshold error of 10−3. It can be seen that, when
the order of accuracy increases, the threshold moves towards higher wave numbers. For this 1D
configuration, the error does not depend on η even if the schemes are formulated in 2D. Thus,
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for a deeper analysis, we take a 1D cut of figures III.6 for all of the schemes under investigation,
and represent the errors on the same graph for comparison purposes. Fig. III.5(a) shows the 1D
phase errors (in log scale), for RBC schemes of different orders.

1.0E-02
1.0E-031.0E-04

ξ

η

π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

ad
ve

ct
io

n

dire
ct

io
n

(a) Pξ∗
π/4

, RBC3.

1.0E-01

1.0E-03
1.0E-02

9.0E-01

ξ

η

π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

(b) Dξ∗
π/4

, RBC3.

1.0E-05

1.0E-03
1.0E-04

1.0E-02

ξ

η

π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

(c) Pξ∗
π/4

, RBC5.

1.0E-03

1.0E-05
1.0E-04

1.0E-02

1.0E-01

9.0E-01

ξ

η
π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

(d) Dξ∗
π/4

, RBC5.

1.0E-05

1.0E-03
1.0E-04

1.0E-02

ξ

η

π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

(e) Pξ∗
π/4

, RBC7.

1.0E-03

1.0E-05
1.0E-04

1.0E-02
1.0E-01

9.0E-01

ξ

η

π

π/2

π/2

π-

-

0

0 π/2 ππ/2π- -

(f) Dξ∗
π/4

, RBC7.

Figure III.7: Contours of the phase error Pξ∗
π/4

(left) and damping function Dξ∗
π/4

(right) for pure

advection in the diagonal direction, Ȧ = (Ȧ, Ȧ), i.e. θ = π/4. Bold black lines correspond to a threshold
error of 10−3.

Tab. III.3 provides the wave number corresponding to an error of 10−3. RBCq schemes
of fifth- and seventh-order accuracy exhibit a cut-off wave number ξc very close to π/2, the
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smallest resolvable wave number being close to 2π/5 according to Nyquist criterion. Similarly,
Fig. III.5(b) displays 1D cuts of the damping function Dξ∗

0
. As it can be seen in Tabs. III.2,

RBC5 and RBC7 exhibit a damping function of less than 10−3 up to cut-off wave numbers of
1.03 and 1.24, respectively, which raises sharply at higher wave numbers.
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Figure III.8: Contours of the phase error Pξ∗
π/8

(top) and damping function Dξ∗
π/8

(bottom) for pure

advection in the direction, Ȧ = (Ȧ, Ȧ/2), i.e. θ = π/8. Bold black lines correspond to a threshold error
of 10−3.

This shows that the intrinsic numerical dissipation of high-order RBCq schemes acts as a
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selective filter with a sharp cut-off at high frequency: it efficiently damps out grid-to-grid oscil-
lations that can lead to numerical instabilities without affecting the resolved wave numbers.
Also note that, coherently with the truncation error analysis, the resolvability limit of RBC
schemes is essentially ruled by the dissipation and not by the dispersion error, their leading-
order error term being of dissipative nature. The results summarized in Tab. III.3 and III.2
prove that RBC schemes of order 5 and 7 can accurately resolve a given wavelength by means
of less than 7 or 6 mesh cells respectively, whereas RBC3 requires approximately 9 mesh cells
to meet the prescribed accuracy requirements on dispersion errors and 16 mesh points for dissi-
pation errors. Nevertheless, these requirements are still lower than those e.g. of the third-order
upwind scheme, for which 10 and 20 mesh cells per wavelength are required to meet the accuracy
criteria on dispersion and dissipation, respectively.
Then, we investigate the spectrum of RBCq schemes in the case of multidimensional advection,
and namely for Ȧ = (Ȧ, Ȧ) or θ = π/4. This corresponds to an advection velocity aligned with
a mesh diagonal. Fig. III.7 shows the phase error and damping function contours for this case,
which illustrate well the multidimensional nature of RBCq schemes. The bold black contour
corresponds to the error criterion 10−3. RBCq schemes display very low dissipation and disper-
sion errors up to small reduced wave numbers in the diagonal direction. Precisely, inspection of
the damping function contours displayed in Fig. III.7(b)-III.7(d)-III.7(f) shows that the multidi-
mensional nature of RBCq schemes allows minimising numerical dissipation along the advection
direction. Moreover, the dispersion error is almost zero in the transverse direction (see Fig.
III.7(a)-III.7(c)-III.7(e)). This effect is more evident for higher order RBC5 and RBC7 schemes
compared to RBC3.
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Figure III.9: Average of Pξ∗
θ

and Dξ∗
θ

over the interval ξ ∈ [−π/2, π/2]2 as a function of the advection
direction θ.

We also investigate the spectrum of RBCq schemes in case of multidimensional advection in
which no symmetry is present, namely for Ȧ = (Ȧ, Ȧ/2) (i.e. θ = π/8). Fig. III.8 shows the
phase error and damping function contours for this case. It illustrates well the multidimensional
nature of RBCq schemes for any flow conditions. It also shows very low dissipation and disper-
sion errors up to small reduced wavelengths in the advection direction.
Finally, we give an overview of the phase and damping error for the range of advection directions,
θ ∈ [0, π/2]. Specifically Fig. III.9 shows the average value of Pξ∗θ

and Dξ∗θ
for ξ ∈ [−π/2, π/2]2.

The present plots show that thanks to their genuinlly multi-dimensional formulation RBC pro-

51



vides an almost constant error level over the whole range of advection direction, with a maximum
at θ = π/4 and a minimum at θ = 0 and θ = π/2. It also confirms that error levels decrease
quickly with the order of accuracy, and that dissipation errors dominate over dispersion errors
for a given order of accuracy.

III.10 Numerical tests

In the following, we carry out some numerical tests to check the effect of satisfying or not the
χ-criterion. We consider the RBC3 scheme with a dissipation operator corresponding to b = 0
(χ-criterion violated) or b = 1/6 (χ-criterion satisfied) and the RBC7 scheme with the coefficients
(III.43) associated to c = 0 (χ-criterion violated) or the coefficients (III.42) associated to c = 1/70
(χ-criterion satisfied). Then, numerical applications are considered in order to illustrate the
accuracy and resolvability properties of RBCq schemes (q = 3, 5, 7). Initially, we consider a
simple linear problem, namely the advection of a sine wave, to numerically check the theoretical
results of the preceding Section. Only RBCq schemes satisfying the χ-criterion are considered
for the last computations.

For the following computations, the time derivative in the main residual and in the mid-point
residuals is approximated by second-order accurate Backward Linear Multistep Method, which
is A-stable (see Equ. (III.60)). Such a choice leads to an unconditionally stable fully discrete
scheme when coupled to a dissipative spatial approximation. The time-discretization being fully
implicit, the resulting system of equations is solved at each time step by using a dual-time
stepping approach. Newton subiterations are also a valid alternative. For more details on the
time integration scheme, we refer the reader to Refs [41, 117].

III.10.1 Advection of a sine wave: numerical proof of the χ-criterion

In the proof of Theorem III.5.1, we have found that the multidimensional dissipation property
is equivalent to the positivity of the function D(λ, ᾰ). Consider the simple case of an advection
directed in the first mesh diagonal, that is ᾰ = 1 and consider any sinusoïdal wave propagating
along this diagonal, that is δy η = δxξ, or λ = 1. Then

D(1, 1) = 2(1 + χ)

for any order of the RBC scheme.
Clearly D(1, 1) is positive for χ = 0, but it is negative for the values corresponding to RBC3
(b = 0) and RBC7 (c = 0) as summarized in Table III.3. So this diagonal advection is an
interesting situation to investigate numerically.

κ χ D(1, 1)

RBC3 (b = 0) 1
24 −2 −2

RBC3 (b = 1
6)

1
24 0 2

RBC7 (c = 0) 1
5600 −4

3 −2
3

RBC7 (c = 1
70 )

1
5600 0 2

Table III.3: Dissipation characteristics for a diagonal advection
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We thus consider the initial-value problem:
{
wt + wx + wy = 0

w(x, y, 0) = sin(2π(x+ y)), − 1 6 x 6 1, − 1 6 y 6 1,

with periodic boundary conditions. The initial condition is shown on Fig. III.10. In the diagonal
direction, the wavelength is

√
2/2 and the advection speed is

√
2. The computational domain

[−1, 1]2 is discretized by 25×25 square cells (δx = δy = 0.08), which corresponds to 12.5 points
per wavelength. The time step is rather small: ∆t/δx = 0.05. The time evolution of the
amplitude is notably amplified when the χ-criterion is violated as shown in Fig. III.11. This
amplification is faster with RBC7 than with RBC3. On the contrary the sine wave is damped
out when the χ-criterion is satisfied. The damping is very small for RBC7: 1.6% after 5000 time-
iterations (t = 20), corresponding to a diagonal advection over a distance of 40 wavelengths.

Figure III.10: Initial wave on the 25×25 mesh.
Figure III.11: Wave amplitude versus time-
iterations.

III.10.2 Advection of a sine wave: assesment of the spectral properties

The accuracy of RBC schemes has been quantified in Section III.9.2 through the study of dissi-
pation and dispersion errors in the Fourier space, and their resolvability limits have been stated
in term of minimum number of points per wavelength. To assess those results, we study linear
advection of a sine wave for different choices of the number of points per wavelength used to rep-
resent it in both directions. The computational domain [−1, 1]2 is discretised by 48×48 cells and
periodicity conditions are applied at the four boundaries. A very small time step (∆t = 0.002)
is used to rule out errors due to the time integration scheme.
Precisely, we consider the initial-value problem:




wt +Awx +Bwy = 0

w(x, y, 0) = sin

[
2π

(
x

δx nx
+

β y

δy ny

)]
, − 1 6 x 6 1, − 1 6 y 6 1,

where w is a scalar quantity, A = (A,B) is the advection velocity vector, nx and ny are the
number of points per wavelength in the x- and y-direction and β is a parameter governing the
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inclination of the wave front with respect to the x-axis: for β = 0, the wave front is perpendicular
to x and the initial condition does not depend on y. In the following, we choose A and B in
order to reproduce the flow situations studied theoretically in Section 3. Namely, by choosing
A = (1, 0), A = (1, 1) and A = (1, 0.5) we get the cases θ = 0 (horizontal advection), θ = π/4
(diagonal advection), θ = π/8. Note that the first choices introduce some symmetry in the
discretization, whereas the last one does not. For each situation, we investigate the impact of
the number of points per wavelength used in each direction on the numerical solution.

III.10.2.1 Case θ = 0

For θ = 0, damping of the sine wave only depends on the number of mesh points along this
direction. Fig. III.12 illustrates two cases using different wavelengths in the direction orthogonal
to the advection direction and thus different values of the reduced wavenumber in the y direction,
but the same number of points per wavelength (and thus the same reduced wavenumber) in the
x direction. Numerical computations using any RBC scheme give the same damping of the
sine wave for both cases. This behaviour is due to the structure of the dissipation matrices Φi

(i = 1, 2) which adapt numerical dissipation to the local advection direction with respect to the
mesh [82].
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Figure III.12: Case θ = 0. Initial conditions leading to the same dissipation and dispersion error for
RBCq schemes

For this reason, we only consider a wave aligned with y, i.e. we choose β = 0. Simulations are
carried out with a number of points per wavelentgh equal to 6, 8 and 16, respectively. The choice
6 or 8 points per wavelength gives a rather rough representation of the wave. The amplitude
of the numerical solution versus the number of wavelengths traveled by the sine wave in the
x-direction is displayed in Fig. III.13 for the three values of nx and several RBC schemes. The
simulations are carried out over a very long integration time, namely, 150 wavelengths. Even
after such a long time, only approximately 20% of the initial amplitude has been lost by using
RBC7 and only 6 points per wavelength, against 65% for RBC5. For RBC3, the sine wave is
completely damped out after less than 30 travelled wave lengths. If grid resolution is increased
to 8 points per wavelength, RBC7 and RBC5 lose about 5% and 20% of the initial amplitude,
respectively, whereas again RBC3 totally damps it out. Finally, for a well discretised initial
condition (16 points per wavelength), the amplitude is almost conserved by RBC7 and RBC5,
whereas RBC3 still loses about 90% of the initial amplitude after 150 travelled wavelengths.
Fig. III.14 illustrates phase lag effects on the numerical solution after 48 traveled wavelentghs.
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For any scheme and any number of mesh points used to discretize the wave, dispersion errors
are almost negligible. This proves numerically the theoretical results, i.e. the fact that RBCq
schemes are dissipative dominant and not dispersive.
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Figure III.13: Wave amplitude versus number of wavelengths traveled in the case of A = (1, 0) i.e.

θ = 0.
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Figure III.14: Sine wave after an advection over 48 wavelengths in the case of θ = 0 with nx equal 6
and 16.

III.10.2.2 Case θ = π/4

For the case θ = π/4, we study the advection along a mesh diagonal of a sine wave aligned
with the mesh and another one aligned with the diagonal. The two cases are represented in Fig.
III.15. In the first case, the initial condition does not depend on y and the sine wave is repre-
sented by 6 points per wavelength in the x-direction (see the case with nx = 6 and β = 0 of Fig.
III.15(a)). In the second case, the sine wave direction is aligned with the second mesh diagonal
and progagates along the first diagonal. It is represented by 8/

√
2 ≈ 5.6 points per wavelength
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in the advection direction (see the case with nx = 8, ny = 8 and β = 1 in Fig. III.15(b)).
Fig. III.16 shows that RBC7 resolves the wave equally accurately in both cases: namely, the sine
wave is damped only by approximately 20% of the initial amplitude after travelling 150 wave-
lengths. Moreover, results given by RBC7 for diagonal advection are similar to those obtained
for θ = 0.
RBC5 also provides similar results to case θ = 0 for the case of a wave aligned with a mesh
direction: the sine wave loses 65% of its amplitude after 150 travelled wavelenths; in the case of
a diagonal wave, the results are even better and amplitude is damped by approximately 40%.
As in the previous case, RBC3 is not able to preserve the wave over long integration times when
using such coarse grid resolution levels. These results confirm the theoretical analysis of Section
III.9.2 and prove that, thanks to their genuine multidimensionality, RBC schemes ensure high
resolvability even for structures that are not aligned with the mesh. This would not have been
the case if a directional scheme had been used: for instance, the study presented in ref. [138] for
a class of purely centered schemes shows that directional schemes provide higher dispersion error
levels than multidimensional ones for advection direction that are not aligned with the grid.
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(b) nx = 8, ny = 8, β = 1.

Figure III.15: Wave amplitude versus number of wavelengths traveled in the case of θ = π/4.
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Figure III.16: Wave amplitude versus number of wavelengths traveled in the case of A = (1, 1) i.e.

θ = π/4.
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III.10.2.3 Case θ = π/8

This last example (see Fig. III.17) allows to further illustrate the accuracy of RBC schemes
in multidimensional settings, namely for an advection problem that does not exhibit any flow
symmetry with respect to the computational mesh. The results, shown in Fig. III.18, are very
similar to those of the preceding cases, further demonstrating that the resolvability properties of
RBC schemes are essentially insensitive to the advection direction.
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Figure III.17: Wave amplitude versus number of wavelengths traveled in the case of θ = π/8.
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Figure III.18: Wave amplitude versus number of wavelengths traveled in the case of A = (1, 1/2) i.e.

θ = π/8.

III.10.3 A multidimensional flow problem: the converging cylindrical shock

When the χ-criterion is violated in an RBC scheme, the lack of dissipation occurs in some oblique
flow directions. So, we consider a test case involving all the flow directions and a large range of
wave numbers, that is a 2-D simulation of a converging cylindrical shock on a uniform Cartesian
mesh. Of course, this axisymmetric problem could be solved more easily as a 1-D problem in
polar coordinates. Here, the 2-D Euler equations, for a perfect gas with a specific heat ratio
γ = 1.4, are solved in a square domain [−0.5, 0.5]2 .
At time t = 0, a cylindrical shock (satisfying the Rankine-Hugoniot relations) lies on a circle of
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center (x, y) = (0, 0) and radius r0 = 0.25. Inside the cylindrical shock (state 0), the fluid is at
rest and at pressure p0. The pressure just behind the shock is p1 = 2.4 p0 at t = 0. Outside the
cylindrical shock, the initial state corresponds to a steady converging flow, i.e. the flow at a radius
r > r0 is related to the state 1 just behind the shock by the conservation of mass (ρV r = ρ1V1r0
where ρ is the density and V the radial velocity), the conservation of total enthalpy and of the
entropy. For improving the initial representation of the shock on the Cartesian mesh, the vector
w of conservative variables is defined as follows in the mesh cells intersecting the shock:

w∗ = (1− θ)w0 + θw1, 0 6 θ 6 1

where θδxδy is the cell area fraction in state 1.

Figure III.19: Shape of the converging shock at different times computed by RBC7.

During the evolution, the cylindrical shock increases in strength as it converges towards the
axis. When the shock reaches the axis, it is reflected as a divergent shock. At the very instant
of reflection, the pressure at the axis becomes infinite in the Euler model. To avoid a numerical
difficulty, the Cartesian mesh is set so that the axis corresponds to a cell vertex and not to a cell
center. This prevents the computation of any unphysical quantity on the axis. Note also that
the outside boundary is not affected by the perturbations coming from the shock motion in the
duration of the present simulation.
Chisnell [36] gave in 1957 an analytical estimation of the pressure behind a moving cylindrical
shock, the theoretical arguments of which were improved by Whitham [162]. According to this
theory, the Mach number M of the shock wave (relative to the fluid at rest) at radius r is solution
of the differential equation:

dM

dr
= −1

r

(M2 − 1).K(M)

2M
(III.81)

where

K(M) = 2

[(
1 +

2

γ + 1

1− µ2
µ

)(
2µ+ 1 +

1

M2

)]−1

µ =

[
(γ − 1)M2 + 2

2γM2 − (γ − 1)

] 1

2

.

58



(a) RBC3. (b) RBC5.

(c) RBC7.

Figure III.20: Pressure along the x-axis at different times for RBC schemes satisfying the χ-criterion.

For γ = 1.4, the function K(M) decreases slowly from 0.5 forM = 1 to 14/(17+7
√
7) ≈ 0.394

for M → ∞. Starting from the initial condition M0 = M(r0), the equation (III.81) can easily
be solved numerically with a high accuracy. An exact solution is also available [36], but its
expression is very complicated and defined in the form r = r(M).
The pressure behind the shock in motion is deduced from M =M(r) using the Rankine-Hugoniot
relations:

p1 =
2γM2 − (γ − 1)

γ + 1
p0 (III.82)

The converging cylindrical shock problem is solved by the RBC schemes on a 800×800 Cartesian
mesh with ∆t/δx = 0.21. When the χ-criterion is violated, the computation fails after a few
time iterations (one iteration for RBC3 with b = 0 and 26 for RBC7 with c = 0). When the
χ-criterion is satisfied, the computation succeeds, even after the shock reflection on the axis. In
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this case, the pressure profiles along the x-axis are shown on Fig. III.20 for the RBC3, RBC5 and
RBC7 schemes at different times, together with the analytical pressure behind the shock deduced
from (III.81)-(III.82). The agreement between the numerical solution and the Chisnell theory is
very good. The shape of the converging shock computed by the RBC7 scheme at different times
is shown on Fig. III.19 . This shape has been defined as the isobar lines of level 1

2(p1 + p0)
at each time. The converging shock appears to be perfectly circular on the Cartesian mesh.
Clearly, Fig. III.20 reveals the oscillatory nature of the shock profiles computed by the present
high order schemes, specially by RBC5 and RBC7. It should be noted that the computations
have been achieved by a strict use of the method described in the present paper: there is no
limiter, no entropy correction, no filtering or other additive. In these conditions, it appears that
a good design of the dissipative operator allows the calculation of a difficult test case, even if the
discrete shock is oscillatory and could be improved.

III.11 Chapter summary

In this chapter, a comprehensive study of the dissipation properties of a family of Residual-Based
Compact schemes has been presented for 2-D and 3-D hyperbolic systems of conservation laws.
The residual-based numerical dissipation operator has been shown to be the counterpart of a
high-order differential operator based on pure and mixed derivatives of even order. A general
criterion (Thm. III.5.1 and III.6.1) has been established for this operator to be dissipative. This
criterion has also been confirmed and interpreted. The dissipation and resolvability properties of
RBC schemes of several orders have been quantified through a detailed analysis of their Fourier
spectra for a multidimensional linear problem. The analysis of the modified wave number ξ∗θ
associated to RBC schemes of different orders proves that, for RBC schemes which coefficients
have been selected according to a sufficient and necessary dissipation condition –the χ-criterion–,
ξ∗θ exhibit a negative imaginary part for any wave number and any choice of the CFL numbers
associated to space directions. As a consequence, no solution mode can be amplified spuriously
by the schemes. The modified wave number is also used to define damping and phase errors
with respect to an exact transport operator. Present results confirm former studies based on
truncation error analysis and show that odd-order RBC schemes are eminently dissipative and
not dispersive. For RBC schemes of higher orders (5 and 7), both dissipation and dispersion
errors take very low values (less than 10−3) up to reduced wave numbers close to π/2, i.e. to
the grid resolvability limit. Then, dissipation increases sharply so that higher frequencies are
efficiently damped out. Moreover, thanks to their genuinely multidimensional formulation, RBC
schemes conserve good dissipation and dispersion properties even for flow modes that are not
aligned with the computational grid.
Numerical tests confirm the theoretical results and demonstrate the importance of a well-designed
dissipation operator for numerical simulations in gas dynamics. Specifically, the present residual-
based formulation ensures controlled damping of sine waves propagating along any direction with
respect to the computational mesh and with any advection speed. It also allows the computation
of unsteady multidimensional flows with strong shocks without any treatment for shock capturing.
Moreover, numerical tests for a linear advection problem confirm the theoretical results on the
spectral properties of RBC schemes.
In this chapter, RBC schemes have been introduced only for Cartesian regular meshes. However,
with a view of computing realistic fluid flows their is a need of a formulation of these schemes
on curvilinear meshes. The next chapter deals with this issue describing the extension of RBC
schemes to curvilinear meshes.
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Chapter IV

Extension to curvilinear meshes
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IV.1 Introduction

For the numerical simulation of fluid flows in complex geometries using body-fitted meshes, finite
difference schemes require exact or approximate coordinate coordinate transformation techniques
to map the physical domain into a Cartesian computational domain (see e.g. [60, 114, 150–152]).
Special care is required to evaluate the metrics on non-smooth meshes because of numerical errors
in the determination of the transformation Jacobian [60]. Suitable treatement is also required to
preserve uniform flow on 3D curvilinear meshes [150, 151]. Finally, the conservation property is
not automatically guaranteed in the Finite Difference framework.

An alternative to coordinate transformation, widely used in Computational Fluid Dynamics
for its ability to handle complex geometries while ensuring conservation, is represented by the
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finite-volume (FV) method. This consists in discretizing a system of conservation laws writ-
ten in integral form over a mesh composed of small volumes or cells. For compressible flows,
the first developements of the method have been made in the early seventies at NASA Ames
[112, 113, 132], but the concept can also be found in the pioneering work by Godunov [66]. FV
schemes are classified according to the kind of mesh used (structured or unstructured) and to the
place where the discrete unknown are assigned (cell centers, cell vertices, ...). Once the system
of conservation laws has been discretized on every mesh cell, the main issue for lower order FV
methods (i.e. methods of second-order accuracy at most) is to define the numerical flux at the
interfaces from the unknowns. For higher-order methods (third-order and more), it is essential
to distinguish whether the unknowns represent cell-averaged properties or pointwise values of
the field variables in the control volume (e.g. values at cell centroids). The use of cell-averaged
values and fluxes as main unknowns is quite a natural choice in FV methods, since it avoids
introducing quadrature formulae to evaluate volume and surface integrals. Nevertheless, an im-
plicit deconvolution step is required to relate cell-averaged values to face values [59, 91, 94, 123]:
this procedure is restricted to uniform Cartesian meshes, and its application to non-uniform grids
leads to a loss of accuracy. A more general procedure valid for non-uniform structured grids has
been proposed in [94], with focus on compact schemes: thanks to this, it was possible to con-
struct a compact scheme of fourth-order accuracy on Cartesian meshes and 3rd-order accuracy
on distorted meshes. The implicit deconvolution step requires the solution of a linear system
for each cell face, which may increase the computational cost considerably. In [72], a high-order
piecewise polynomial reconstruction is used to increase the accuracy of MUSCL schemes on arbi-
trary unstructured grids. Face values are computed from cell-averaged quantities via a recursive
correction technique involving approximations of the solution derivatives. Nevertheless, this ap-
proach requires to store additional connectivity information about the reconstruction stencil and
to store or recompute at each time step reconstruction matrices. Since we are mainly interested
into FV schemes on structured meshes, and in an effort to minimize storage and computational
cost requirements, in this work we adopt a point-wise cell-centered FV formulation, according to
the general framework presented in [128, 129].

Point-wise cell-centered FV RBC schemes of third-order accuracy have been developed in
the case of both structured [73, 105] and unstructured meshes [51, 101], and applied mainly to
steady flow problems. In this case, the numerical dissipation does not contain time derivatives,
which simplifies the accuracy and stability analysis. For unsteady problems, this kind of analysis
is no longer sufficient, and straightforward extensions of the steady schemes to unsteady flows
may lead to numerical instabilities for some flow conditions, as shown in the preceding Chapter
for finite-difference RBC schemes ( see also [106]). For this reason, in the following we design a
dissipative third-order FV RBC scheme for unsteady compressible flows of second order on highly
deformed structured meshes and third order on slightly distorted meshes. We call this scheme
RBCi where the i stands for irregular, since it is designed for irregular meshes. Because we are
essentially interested into spatial accuracy properties, in the following of this paper we restrict
our discussion to semi-discrete schemes. The Cauchy-stability and spectral properties of RBCi
are then investigated for regular meshes. The scheme is implemented within the flow solver elsA
[1, 33, 34], developed by the Numerical Simulation and Aeroacoustics Department (DSNA) of
ONERA, and applied to the computation of a variety of unsteady flow problems governed by the
Euler or Reynolds-Averaged Navier–Stokes equations.
At this stage, no attempt is made to generalize the proposed procedure to high-order since it
leads to a very cumbersome formulation at orders higher then three. Alternative approaches rep-
resented by finite element-like reconstructions, coordinate transformations and Cartesian grids
with immersed boundary techniques [35, 139, 144, 145, 153].
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The present chapter is organised as follows. In Section IV.2 we briefly recall some important
definitions and measures of accuracy for finite volume schemes. Section IV.3 gives the general
definition of a Residual-Based Compact scheme in the finite volume framework. Section IV.4
describes two different finite volume extensions of the third-order accurate RBC scheme: the
first one is a straightforward extension of the finite-difference scheme, whereas the second one
takes into account the effective mesh geometry in order to satisfy accuracy conditions in the
finite-volume sense on general meshes. When applied to regular Cartesian grids, such a scheme
degenerates to an approximation of the spatial derivatives that differs from the finite-difference
RBC approximation. In Section IV.6, we study the Cauchy-stability and the spectral properties
of this approximation. Finally, Section IV.7 is devoted to numerical applications.
Material presented in this Chapter makes the object of an article submitted to an international
journal [70].

IV.2 Finite volume framework

Consider the integral form of a hyperbolic system of conservation laws:

d

dt

∫

Ω
w dΩ+

∮

∂Ω
φ.n dΓ = 0 (IV.1)

with initial conditions

w(x, y, z, 0) = w0(x, y, z)

where t is the time, x, y and z are Cartesian space coordinates, w is the vector of conservative
variables, Ω is a closed control volume which boundary is ∂Ω, φ is the physical flux density
φ = [f, g, e] depending smoothly on w, and n is the unit outward normal. The Jacobian matrices
of the flux are denoted A = df/dw, B = dg/dw and C = de/dw.
Define a structured mesh composed of hexaedral cells Ωj,k,l and denote the cell centers by Cj,k,l,
the cell vertices by Mj+ 1

2
,k+ 1

2
,l+ 1

2

and the cell faces by Γj+ 1

2
,k,l, Γj,k+ 1

2
,l or Γj,k,l+ 1

2

:

∂Ωj,k,l =Γj+ 1

2
,k,l ∪ Γj,k+ 1

2
,l ∪ Γj,k,l+ 1

2

∪ Γj− 1

2
,k,l ∪ Γj,k− 1

2
,l ∪ Γj,k,l− 1

2

The cell volume is denoted by |Ωj,k,l| and an edge surface by |Γj+ 1

2
,k,l|. For each cell face Γj+ 1

2
,k,l

we denote Γj+ 1

2
,k,l = (Γx,Γy,Γz)j+ 1

2
,k,l the oriented surface directed in the sense of increasing

mesh indeces, with module equal to |Γj+ 1

2
,k,l|. For each cell Ωj,k,l we identify the cell center by its

coordinates (xj,k,l, yj,k,l, zj,k,l) calculated as the mean of the cell node coordinates, and we denote
its maximum dimension in each direction as δxj,k,l, δyj,k,l, and δzj,k,l, respectively. As mentioned
in the Introduction, we choose to locate the unknown vector w at cell centers. Finally, we define
a characteristic mesh size by h = max(max

j,k,l
δxj,k,l,max

j,k,l
δyj,k,l,max

j,k,l
δzj,k,l).

Applied to the cell Ωj,k,l, the conservation law (IV.1) reads:

d

dt

∫

Ωj,k,l

w dΩ+
∑

Γ∈∂Ωj,k,l

∫

Γ
φ.n dΓ = 0 (IV.2)

We define a FV exact residual R as:

Rj,k,l := Vj,k,l + Sj,k,l (IV.3)

63



with

Vj,k,l =
d

dt

∫

Ωj,k,l

w dΩ (IV.4)

and

Sj,k,l =
∑

Γ∈∂Ωj,k,l

∫

Γ
φ.n dΓ. (IV.5)

A FV approximation of (IV.3) can be written:

R̃j,k,l = Ṽj,k,l + S̃j,k,l (IV.6)

where Ṽj,k,l approximates the volume integral

1

|Ωj,k,l|
Ṽj,k,l =

1

|Ωj,k,l|
Vj,k,l +O(hp) (IV.7)

and S̃j,k,l approximate the surface integral

1

|Γ| S̃j,k,l =
1

|Γ|Sj,k,l +O(h
p) (IV.8)

for any edge Γ of the cell Ωj,k,l. If Equations (IV.6) and (IV.7) are satisfied simultaneously, the
FV approximation (IV.6) is said to be accurate at order p in the FV sense [128, 129].

IV.3 Finite Volume RBC schemes

Let us introduce for further convenience the difference and average operators for any mesh func-
tion v:

(δ1v)j+ 1

2
,k,l =vj+1,k,l − vj,k,l

(δ2v)j,k+ 1

2
,l =vj,k+1,l − vj,k,l

(δ3v)j,k,l+ 1

2

=vj,k,l+1 − vj,k,l

(µ1v)j+ 1

2
,k,l =

1

2
(vj+1,k,l + vj,k,l)

(µ2v)j,k+ 1

2
,l =

1

2
(vj,k+1,l + vj,k,l)

(µ3v)j,k,l+ 1

2

=
1

2
(vj,k,l+1 + vj,k,l)

where j, k and l are integers or half integers.

A residual-based scheme can be expressed in terms of approximations of the exact residual
R. More precisely, such a scheme is of the following form:

(R̃0)j,k,l = d̃j,k,l (IV.9)

where R̃0 is a space-centered approximation of R called the main residual and d̃ is a residual-
based dissipation term, introduced to ensure numerical stabiliy, defined in terms of first-order
differences of the residual as:

d̃j,k,l =
1

2
[δ1(Φ1R̃1) + δ2(Φ2R̃2) + δ3(Φ3R̃3)]j,k,l (IV.10)
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where R̃1, R̃2 and R̃3, respectively defined at j + 1
2 , k, l, j, k +

1
2 , l and j, k, l + 1

2 (cf. Fig. IV.1),
are also space-centered approximations of R on a suitably chosen shifted control volume, are
called the mid-point residuals, and Φ1, Φ2, Φ3 are numerical viscosity matrices (defined at the
same location as the corresponding mid-point residuals).

Figure IV.1: Location of the discrete residuals, ◦: main residual R̃, ×: mid-point residual R̃1 or R̃2

These matrices depend only on the eigensystems of the Jacobian matrices A, B and C and
on the geometry of the current cell Ωj,k,l. They are designed once for all [73, 104, 116] and use
no tuning parameters nor limiters. Since the matrices Φ1, Φ2 and Φ3 remain O(1) as h tend to
zero, the dissipation d̃ represents, to the leading order, a numerical approximation of the partial
differential term:

d =

[
δx

2
(Φ1R)x +

δy

2
(Φ2R)y +

δz

2
(Φ3R)z

]
(IV.11)

This leading term of the expansion, that is only first order accurate, vanishes for an exact solu-
tion (R = 0), so that d̃ is actually consistent with a higher-order dissipation term when the mesh
is Cartesian uniform. For FD RBC schemes, the accuracy and spectral properties of the RBC
dissipation operator have been discussed in [106] and [67, 68], respectively. Its properties in the
case of FV extensions of RBC schemes are discussed later in this paper.

In the following of the discussion, we introduce a direct extension of RBC schemes to Finite
Volume. Then, we develop approximations of the main and midpoint residuals that are fourth-
order and second-order accurate on uniform Cartesian grids, respectively, and that are as accurate
as possible on general curvilinear grids. These approximations will use a stencil made of 33 grid
points at most. The resulting scheme is expected to be third-order accurate on uniform Cartesian
grids; on the other hand, according to the specific approximation that is adopted, the scheme
accuracy will be preserved to a more or less great extent on general curvilinear grids.

IV.4 Direct FV extension of RBC schemes

As a first step, we describe a straightforward FV extension of the finite difference RBC scheme
of nominal third, fifth or seventh order of accuracy for unsteady flows, referred-to as RBCq
(q = 3, 5, 7) in the following. These non-weighted versions of the schemes are shown to degenerate
on the corresponding finite difference described in the previous section and in [106], when applied
to regular Cartesian grids.

IV.4.1 Approximation of the main residual

The main residual approximation R̃0 can be splitted into a volume integral and a surface integral
approximation

(R̃0)j,k,l = (Ṽ0)j,k,l + (S̃0)j,k,l (IV.12)
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where Ṽ0 is a centered approximation of V and S̃0 is a centered approximation of S, V and S
being defined by Eqs. (IV.4) and (IV.5), respectively. Precisely, Ṽ0 and S̃0 are given by the
following compact approximation operators:

(Ṽ0)j,k,l =
[
FDw0

RBCq(wt)
]
j,k,l

|Ωj,k,l| (IV.13)

(S̃0)j,k,l = [δ1F1 + δ2F2 + δ3F3]j,k,l (IV.14)

whith
(F1)j+ 1

2
,k,l =

[
FDF01

RBCq(φ)
]
j+ 1

2
,k,l

.Γj+ 1

2
,k,l, (IV.15)

where FDw0

RBCq and FDF01

RBCq are FD operators applied to the time derivative and to the flux in
the first direction defined in the previous sections for an RBCq scheme. For instance, for RBC3
we have:

FDw0

RBC3 =

(
I +

1

6
δ21

)(
I +

1

6
δ22

)(
I +

1

6
δ23

)
(IV.16)

FDF01

RBC3 =

(
I +

1

6
δ22

)(
I +

1

6
δ23

)
µ1 (IV.17)

Similar expressions are used for (F2)j,k+ 1

2
,l and (F3)j,k,l+ 1

2

. For RBC3, approximations (IV.13),

(IV.14) and (IV.15) can be seen as multidimensional Simpson formulae for the numerical approx-
imation of volume and surface integrals, where local mesh irregularities are neglected. Because
of this simplification, the formulae are not expected to be high-accurate on general grids, as
confirmed by numerical experiments presented in the following. Nevertheless, Ref. [128] shows,
in the framework of non compact schemes, that nominal accuracy can still be preserved if the
mesh satisfies suitable regularity conditions. The higher the scheme accuracy, the more stringent
grid regularity requirements, so that nominal accuracy is generally lost for most cases of practical
interest.
For RBC3, in the case of a uniform Cartesian mesh, Ωj,k,l = δxδyδz, the main residual R̃0 reduces
to the fourth-order accurate operator seen in the previous section:

(R̃0)j,k,l =

[(
I +

1

6
δ21

)(
I +

1

6
δ22

)(
I +

1

6
δ23

)
wt +

(
I +

1

6
δ22

)(
I +

1

6
δ23

)
δ1µ1f

δx

+

(
I +

1

6
δ21

)(
I +

1

6
δ23

)
δ2µ2g

δy
+

(
I +

1

6
δ21

)(
I +

1

6
δ22

)
δ3µ3e

δz

]

j,k,l

|Ω|j,k,l.
(IV.18)

IV.4.2 Residual-based dissipation operator

To complete the scheme formulation we still have to approximate the dissipation operator d̃j,k,l,
defined by Eq.(IV.10). This requires approximations of the mid-point residuals. To this end, we
define shifted control volumes around cell faces; for instance, a shifted volume denoted Ωj+ 1

2
,k,l

will be used to approximate (R̃1)j+ 1

2
,k,l. We associate to this shifted cell the oriented surfaces

Γ
1
j,k,l, Γ

2
j+ 1

2
,k+ 1

2
,l

and Γ3
j+ 1

2
,k,l+ 1

2

respectively in the directions 1, 2 and 3 (c.f. Fig. IV.2) approx-

imated by:

Γ
1
j,k,l =

1

2
(Γj+ 1

2
,k,l + Γj− 1

2
,k,l)

Γ
2
j+ 1

2
,k+ 1

2
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=
1

2
(Γj,k+ 1

2
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2
,l)

Γ
3
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2
,k,l+ 1

2

=
1

2
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2

+ Γj+1,k,l+ 1

2

)
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Figure IV.2: Shifted cell

The mid-point residuals can also be splitted into a mid-point volume integral and a mid-point
surface integral approximation. For instance, the mid-point residual in the first direction writes:

(R̃1)j+ 1

2
,k,l = (Ṽ1)j+ 1

2
,k,l + (S̃1)j+ 1

2
,k,l (IV.19)

where Ṽ1 and S̃1 are given by the following approximation operators:

(Ṽ1)j+ 1

2
,k,l =

[
FDw1

RBCq(wt)
]
j+ 1

2
,k,l
|Ωj+ 1

2
,k,l|

(S̃1)j+ 1

2
,k,l =

[
FDF11

RBCq(φ).Γ
1 + FDF12

RBCq(φ).Γ
2 + FDF13

RBCq(φ).Γ
3
]
j+ 1

2
,k,l

(IV.20)

where |Ω|j+ 1

2
,k,l =

1
2(|Ω|j,k,l + |Ω|j+1,k,l) and FDw1

RBCq, FD
F11

RBCq, FD
F12

RBCq and FDF13

RBCq are the

FD operators used in the FD definition of RBCq scheme. As an illustration, for RBC3:
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6
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6
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)
µ1
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)
δ1
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1
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δ23
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1

6
δ22

)
δ3µ3µ1

(IV.21)

R̃2 and R̃3 use similar approximations in the other directions of the mesh.
For RBC3, in the case of a Cartesian uniform mesh, the mid-point residual R̃1 can be written in
the following form:

(R̃1)j+ 1

2
,k,l =

[(
I +

1

6
δ22

)(
I +

1

6
δ23

)(
µ1wt +

δ1f

δx

)

+

(
I +

1

6
δ23

)
δ2µ2µ1g

δy

+

(
I +

1

6
δ22

)
δ3µ3µ1e

δz

]
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2
,k,l

|Ω|j+ 1

2
,k,l

(IV.22)

and similar expressions are obtained for R̃2 and R̃3, so that the dissipation operator becomes
identical to the dissipation operator of the corresponding finite difference scheme [106]. The same
results is straightforward for RBC5 and RBC7.
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IV.4.3 Limitations

The preceding straightforward FV extension of RBC3 is third-order accurate on Cartesian uni-
form meshes but its order of accuracy is not preserved on non-uniform curvilinear meshes. For
instance, by applying (IV.13) and (IV.14) in the simple case of a 1D problem we show that the
order of accuracy of the scheme is equal to one for the discretization of the main residual.
Consider a non-uniform 1D mesh as illustrated in Fig. IV.3, with cell centers of coordinates xj,
δxj being the size of the jth-cell. Also, let be α = (xj − xj−1)/δxj and θ = (xj+1 − xj)/δxj .

Figure IV.3: 1D configuration

For such a 1D configuration, the FV formulation of the hyperbolic system is:
∫ xj+1/2

xj−1/2

wt dx+ [δ1f ]j = 0,

and the main residual approximation writes:

(R̃0)j =

[(
I +

1

6
δ21

)
wt

]

j

δxj + [δ1µ1f ]j (IV.23)

Thus, in the main residual, the volume integral is approximated by:

(Ṽ0)j = δxj

[(
I +

1

6
δ21

)
wt

]

j

(IV.24)

and the surface integral by:

(S̃0)j = [δ1µ1f ]j =
1

2
(fj+1 − fj−1) (IV.25)

By carrying out a Taylor series expansion of the preceding formulae for an exact solution of the
conservation law, we obtain:

1

δxj
(Ṽ0)j = (wt)j +

(θ − α)δxj
6

(wtx)j +O(h2)

(S̃0)j =
(α+ θ)δxj

2
(fx)j +O(h2).

(IV.26)

as a consequence:

1

δxj
(Ṽ0)j =

1

δxj

∫ xj+1/2

xj−1/2

wt dx+
(θ − α)δxj

6
(wtx)j +O(h2)

where the first order term is in general non zero for a non uniform mesh (θ 6= α), thus

1

δxj
(Ṽ0)j =

1

δxj

∫ xj+1/2

xj−1/2

wt dx+O(h).
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Similarly:

(S̃0)j = [δ1f ]j +

(
α+ θ

2
− 1

)
δxj(fx)j +O(h2)

where the first-order term is equal to zero if and only if θ + α = 2. Thus, according to the
definition (IV.7) and (IV.8), the straightforward extension of RBC3 to FV is of order one in the
FV sense for non uniform meshes (θ 6= 1 or α 6= 1) in the case of one-dimensional configurations.
Similar or worst accuracy losses are encountered for multi-dimensional irregular grids, as it will
be made clear from numerical experiments shown in the following.

We described a straightforward FV extension of the finite difference RBC schemes. In the
following, this simple extension is referred-to as RBCr for RBC scheme of nominal third order of
accuracy (the r stands for regular) , the non-weighted version of the scheme. In the next Section,
we introduce a finite volume extension of RBC3, called RBCi, which is at least second-order
accurate on any structured mesh and third-order on meshes with smooth irregularities.

IV.5 Finite volume third-order RBC scheme

The RBCi scheme is also expressed through the general formula (IV.9) where the numerical
dissipation is of the form (IV.10) and the residual is defined in (IV.3). The main difference
with respect to RBCr scheme described above is that the main and mid-point residual are
now approximated by means of weighted discretization operators that take into account mesh
deformations. The procedure used to approximate the volume and surface integrals involved
in the residuals is described hereafter. The dissipation matrices Φi do not affect the order of
accuracy of the scheme and they are consequently not modified.

IV.5.1 Approximation of the main residual

Once again, we express the main residual as the sum of a volume integral and a surface integral.
For the sake of simplicity and to avoid complex reconstruction procedures we do not try to
ensure third-order accuracy on any irregular mesh. Instead, we look for approximations of
the integrals that are second order accurate on highly irregular grids and third order accurate
on sufficiently smooth grids. Grid regularity criteria were introduced in [128] based on grid
stretching, parallelism and orthonormality criteria.
Let us start with the approximation of the volume integral in the main residual V0. The standard
second-order accurate approximation for V0 at point (j, k, l) is just given by:

(Ṽ0)std = wtP |Ωj,k,l| = (V0)j,k,l +O(|Ωj,k,l|h2), (IV.27)

where P is any point in Ωj,k,l. Hereafter, we choose instead to approximate (V0)j,k,l as a linear
combination of the standard volume integral referred to the cell-center and of integrals evaluated
at cell vertices A, B, C, D, E, F , G and H (see Fig. IV.4):

Ṽ0 =αTC1
+ β(TA + TB + TC + TD + TE + TF + TG + TH)

=V0 +O(|Ωj,k,l|h2)
(IV.28)

where we set TP = wtP |Ωj,k,l|, and where the values of wt at the cell vertices are obtained by
linear interpolation from the surrounding cell centers [25, 65], which is second-order accurate. By
consistency, the coefficients of Eq. (IV.28) should satisfy the relation α+8β = 1. Moreover, since
TP is a second-order accurate approximation of V0, Eq. (IV.28) is also second-order accurate for
general irregular grids (no hypothesis on mesh regularity or symmetry). An additional relation is
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required to complete the choice of coefficients α and β. To this purpose, we develop Eq. (IV.28)
in the case of a uniform Cartesian grid. In this case, the interpolated values of wt at cell vertices
are just given by 1/8 of the sum of the surrounding cell-center values, which results in:

1

|Ωj,k,l|
ṼCart
0 =αwtj,k,l +

β

8
[8wtj,k,l + 4(wtj+1,k,l +wtj−1,k,l + wtj,k+1,l + wtj,k−1,l

+wtj,k,l+1 + wtj,k,l−1) + 2(wtj+1,k+1,l + wtj−1,k+1,l + wtj,k+1,l+1 + wtj,k−1,l+1

+wtj+1,k,l+1 +wtj+1,k,l−1 + wtj+1,k−1,l + wtj−1,k−1,l + wtj,k+1,l−1 + wtj,k−1,l−1

+wtj−1,k,l+1 +wtj−1,k,l−1) + (wtj+1,k+1,l+1 + wtj−1,k+1,l+1 + wtj+1,k−1,l+1

+wtj+1,k+1,l−1 + wtj+1,k−1,l−1 + wtj−1,k+1,l−1 + wtj−1,k−1,l+1 + wtj−1,k−1,l−1)]

(IV.29)

The preceding expression is now rewritten under the form:

1

|Ωj,k,l|
ṼCart
0 =

[(
I +

1

6
δ21

)(
I +

1

6
δ22

)(
I +

1

6
δ23

)
wt

]

j,k,l

+ (γ1[δ
2
1δ
2
2 + δ21δ

2
3 + δ22δ

2
3 ]wt + γ2δ

2
1δ
2
2δ
2
3wt)j,k,l

(IV.30)

where γ1 and γ2 are free coefficients introduced for convenience. Equation (IV.30) can be seen as
the non-weighted approximation of the main volume integral (IV.13) plus some higher order terms
resulting from the general formulation (IV.28) that allow preserving second-order of accuracy on
irregular grids. By identification between Eqs. (IV.29) and (IV.30), we get the following relations
for coefficients α, β, γ1 and γ2:





8
27 = α+ β − 12γ1 + 8γ2
2
27 = 1

2β + 4γ1 − 4γ2
1
54 = 1

4β − γ1 + 2γ2
1
216 = 1

8β − γ2

(IV.31)

The preceding relations satisfy the consistency condition α + 8β = 1 and lead finally to the
unique solution





α = 1
3

β = 1
12

γ1 =
1
72

γ2 =
5
864

(IV.32)

In practice, the approximation for the volume integral on a general grid used in the RBCi
formulation is given by relation (IV.28), with α = 1/3 and β = 1/12.
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Figure IV.4: Shifted cell Ωj+1/2,k,l

We now look for an approximation of the surface integral (S0)j,k,l. This requires the evaluation
of flux integrals over each cell face. To ensure high accuracy on highly distorted grids, one
important point is to account for possible skewness of the faces.
To this purpose, let us consider the auxiliary shifted control volume represented in Fig. IV.4.
For any main cell face identified through its vertices A, B, C and D, this shifted control volume
is represented by an irregular octahedron with vertices coincident with the face vertices plus the
adjacent cell centers C1 and C2.
To fix ideas, we consider the approximation of the surface integral over face Γj+ 1

2
,k,l, so that

the vertices A, B, C and D correspond to points (j + 1
2 , k +

1
2 , l +

1
2), (j + 1

2 , k − 1
2 , l +

1
2),

(j + 1
2 , k − 1

2 , l − 1
2) and (j + 1

2 , k +
1
2 , l− 1

2 ). Integrals on the other faces are approximated in a
similar way.
The surface integral over face Γj+ 1

2
,k,l is approximated as follows:

∫

Γ
j+1

2
,k,l

φ.ndΓ =
1

2
(IL − IR) (IV.33)

where

IL =

∫

Γ
j+1

2
,k,l

φ.nP1
dΓ, IR =

∫

Γ
j+1

2
,k,l

φ.nP2
dΓ

and nP1
and nP2

are the outward normals to the pyramids ABCDC1 and ABCDC2, respectively.
On face Γj+ 1

2
,k,l = ABCD we have nP1

= n and nP2
= −n. Instead of calculating these

integrals on face Γj+ 1

2
,k,l, which can be non planar for a general irregular mesh, we express

them as a combination of integrals on the other faces of the pyramids, which are triangular and
then belong to a plane. To this purpose, we remark that, for steady flows, application of the
conservation laws to pyramids ABCDC1 and ABCDC2, respectively, leads to:

IL =−
∫

AC1B
φ.nP1

dΓ−
∫

BC1C
φ.nP1

dΓ−
∫

CC1D
φ.nP1

dΓ−
∫

DC1A
φ.nP1

dΓ (IV.34)

IR =−
∫

BC2A
φ.nP2

dΓ−
∫

CC2B
φ.nP2

dΓ−
∫

DC2C
φ.nP2

dΓ−
∫

AC2D
φ.nP2

dΓ (IV.35)

Relations (IV.34) and (IV.35) are exact for steady flows and IL is strictly equal to −IR for an
exact solution.
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For unsteady flows, formulae (IV.34) and (IV.35) should be modified as follows:

IL =−
∫

AC1B
φ.nP1

dΓ−
∫

BC1C
φ.nP1

dΓ−
∫

CC1D
φ.nP1

dΓ−
∫

DC1A
φ.nP1

dΓ

−
∫

ABCDC1

wtdΩ,

(IV.36)

IR =−
∫

BC2A
φ.nP2

dΓ−
∫

CC2B
φ.nP2

dΓ−
∫

DC2C
φ.nP2

dΓ−
∫

AC2D
φ.nP2

dΓ

−
∫

ABCDC2

wtdΩ,

(IV.37)

which would lead to the appearence of the following extra term in Eq. (IV.33):

− 1

2

[∫

ABCDC1

wtdΩ−
∫

ABCDC2

wtdΩ

]
= −1

2
∆Pyr . (IV.38)

Note however that:

∆Pyr = wtΓ
j+1

2
,k,l
|Γj+ 1

2
,k,l|

h1
3

(
1− h2

h1

)
+O(|Γj+ 1

2
,k,l|h2) (IV.39)

where h1 and h2 are the heights of pyramids ABCDC1 and ABCDC2, respectively. The ratio
h2/h1 is a measure of grid streching in the j-th direction. For highly irregular meshes, the
streching ratio can be written under the form:

(
1− h2

h1

)
= O(h) (IV.40)

and ∆Pyr = O(|Γj+ 1

2
,k,l|h2) represents a second-order error. Condition (IV.40) includes quite

extreme situations; for instance, it allows for doubling or tripling mesh height is direction j.
Taking into account (IV.40) in (IV.39), we conclude that for highly irregular grids the extra term
(IV.38) can be simply estimated as:

− 1

2

[∫

ABCDC1

wtdΩ−
∫

ABCDC2

wtdΩ

]
= |Γj+ 1

2
,k,l|O(h2) (IV.41)

and, consequently, it can be neglected while keeping an overall second-order accuracy. For
sufficiently smooth irregular grids, e.g. such that (1 − h2/h1) = O(h2) the extra term is O(h3)
or higher and it can, a fortiori, be neglected. On the other hand, for regular Cartesian grids
h1 = h2, the pyramids are symmetric with respect to Γj+ 1

2
,k,l, and the extra term (IV.38) is

exactly equal to zero.
In summary, the preceding reasoning shows that relations (IV.33), (IV.34) and (IV.35) can be
used to estimate surface integrals in the main residual exactly for steady flows and to the second
order on highly irregular grids.
We still need to approximate the surface integrals on triangles used in relations (IV.34) and
(IV.35). To this purpose, we first interpolate linearly the fluxes at cell vertices A, B, C and D,
and then approximate the integrals as:

∫

AC1B
φ.nP1

dΓ =
1

3
(φA + φC1

+ φB).nAC1B , (IV.42)

which is second-order accurate. Similar approximations as (IV.42) are used for the other triangles.
The advantage of the proposed approach is that triangular surfaces allow to compute a unique
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normal vector to that surface, which greatly inhances the scheme accuracy on highly skewed
grids. Finally, we note that, thank to the choice of 1/3 in (IV.42), the final expression for S̃0
degenerates to Eq. (IV.14) with

(F1)j+ 1

2
,k,l =

[(
I +

1

6
δ22

)(
I +

1

6
δ23

)
µ1φ+

1

72
δ22δ

2
3µ1φ

]

j+ 1

2
,k,l

.Γj+ 1

2
,k,l, (IV.43)

on a regular Cartesian grid. In other terms, we recover a formulation that is similar to that
of the non-weighted approximation of RBC3 augmented with a high-order corrective term. In
summary the final approximation of the main residual used for RBCi is:

R̃0 = Ṽ0 + S̃0 (IV.44)

with Ṽ0 given by (IV.28) with coefficients (IV.32) and S̃0 given by a sum of integrals of the form
(IV.33). Since the approximations used for Ṽ0 and S̃0 are second-order accurate on general grids,
then R̃0 is at least second-order accurate in a FV sense.

IV.5.2 Approximation of the mid-point residuals

To fix ideas, we consider the approximation of mid-point residual R1 at point (j + 1
2 , k, l), the

other residuals being approximated in a similar way. To evaluate R1 at (j + 1
2 , k, l), we consider

again the shifted octahedral control volume of Fig. IV.4, and look for an approximation R̃1 of
the form:

(R̃1)j+ 1

2
,k,l =

(
Ṽ1 + S̃1

)
j+ 1

2
,k,l

(IV.45)

with Ṽ1 an approximation of

V1 =3
∫

ΩOct

j+1
2
,k,l

wt dΩ

=3

(∫

C1ABCD
wt dΩ+

∫

C2ABCD
wt dΩ

)
,

(IV.46)

where we denote ΩOct
j+ 1

2
,k,l

the shifted control volume and we split the volume integral on the

shifted cell in two integrals over the pyramids on both sides. We denote S̃1 an approximation of:

S1 = 3

(∮

ABCDC1

φ.nP1
dΓ +

∮

ABCDC2

φ.nP2
dΓ

)
(IV.47)

The factor 3 in (IV.46) and (IV.47) accounts for the fact that the volume of an octahedron is
one third that of a parallelepiped with the same height C1C2 (see Fig. IV.5), i.e. the shifted cell
used for the FV RBCr scheme.
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Figure IV.5: ΩOct
j+ 1

2
,k,l

and ΩCart
j+ 1

2
,k,l

To find V1, we look for an approximation of the volume integrals on ABCDC1 and ABCDC2
under the form:

∫

C1ABCD
wt dΩ =|ΩP1

|[α⋆wtC1
+ β⋆(wtA + wtB + wtC + wtD) +O(h2)]

∫

C2ABCD
wt dΩ =|ΩP2

|[α⋆wtC2
+ β⋆(wtA + wtB + wtC + wtD) +O(h2)]

(IV.48)

where α⋆ and β⋆ are real coefficients and |ΩP1
| and |ΩP2

| are the volumes of pyramids ABCDC1
and ABCDC2, respectively. By plugging relations (IV.48) in (IV.46) we finally obtain:

Ṽ1 = V1 +O(|Ωj+ 1

2
,k,l|h2) (IV.49)

with

Ṽ1 =3α⋆(|ΩP1
|wtC1

+ |ΩP2
|wtC2

) + 3β⋆(|ΩP1
|+ |ΩP2

|)(wtA + wtB + wtC + wtD) (IV.50)

We still need to choose the weighting coefficients α⋆ and β⋆. Consistency requires that α⋆+4β⋆ =
1. To this end we follow a procedure similar to that used to construct Ṽ0, and we look for a
set of coefficients such that Ṽ1 can be reduced to the following writing in the case of a regular
Cartesian grid:

Ṽ1 =
[(
I +

1

6
δ22

)(
I +

1

6
δ23

)
+ γ⋆δ22δ

2
3

]
(µ1wt)j+ 1

2
,k,l|ΩCart

j+ 1

2
,k,l
| (IV.51)

where γ⋆ is a supplementary coefficient introduced for convenience and |ΩCart
j+ 1

2
,k,l
| is the volume

of the Cartesian shifted cell represented in Figs. IV.2 and IV.5. Similarly to the approximation
of Ṽ0, relation (IV.51) is the sum of a term formally identical to the non weighted approximation
used in RBCr, plus an additional higher-order term with coefficient γ⋆, required to match the
general second-order formulation of the scheme given by (IV.50). By developing relations (IV.50)
and (IV.51) in the case of a uniform Cartesian grid, by identification of analogous terms we get the
following set of relations for α⋆, β⋆ and γ⋆, which automatically satisy the consistency condition:





4
9 = α⋆ + β⋆ − 4γ⋆

1
9 = 1

2β
⋆ + 2γ⋆

1
36 = 1

4β
⋆ − γ⋆

(IV.52)
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which leads to the unique choice: 



α⋆ = 1
3

β⋆ = 1
6

γ⋆ = 1
72

(IV.53)

The approximation of V1 is then given by Eq. (IV.50) with the coefficients (IV.53).
Finally, we turn to the approximation of S1. Note that:

S1 = 3

(∮

ABCDC1

φ.nP1
dΓ +

∮

ABCDC2

φ.nP2
dΓ

)

= 3(IL + IR)

(IV.54)

where IL and IR are given by Eqs. (IV.34) and (IV.35) and are computed by following the
procedure described in Section IV.5.1, which leads to a second order-accurate approximation.
For a regular Cartesian grid, Eq. (IV.54) reduces to:

(S̃1)j+ 1

2
,k,l =|ΩCart

j+ 1

2
,k,l
|
[
δ1f

δx
+

(
I +

1

6
δ23

)
δ2µ2µ1g

δy
+

(
I +

1

6
δ22

)
δ3µ3µ1e

δz

+
1

12

(
δ23
δ2µ2µ1g

δy
+ δ22

δ3µ3µ1e

δz

)]

j+ 1

2
,k,l

(IV.55)

This corresponds to the RBCr formulation, augmented with higher-order terms specific to the
second-order formulation on irregular grids. The mid-point residual R̃1 writes as (IV.45) with
(IV.54) and (IV.50) defined by the coefficients (IV.53). Similar expressions are used in the second
and third direction to construct R̃2 and R̃3 with the same choice of coefficients α⋆ and β⋆.

IV.5.3 Comments on the extension to curvilinear meshes of high-order RBC
schemes

No attempt is made to generalize the proposed procedure to high-order since it leads to a very
cumbersome formulation at orders higher then three. In order to increase the accuracy on
curvilinear meshes we have multiple choices. We can use a high-order piecewise polynomial
reconstruction [72] or coordinate transformations [145, 153] for instance. However, all these
choices implies a non negligible increase of the computational cost since we have to approximate
the Jacobian, the Hessian and higher order derivatives of the metrics or the numerical fluxes in
these procedures.
The strategy that is the most likely to be chosen for high-order computations with RBC schemes
is the use of multiblock computation with overset grids [35, 139, 144]. The computational domain
can be decomposed into body-fitted curvilinear meshes and Cartesian meshes. This way the body-
fitted meshes could be computed with RBCi and the Cartesian meshes with higher-order finite-
difference RBC schemes. Besides, Cartesian grids can aesily be generated through automatic
techniques [124]. This strategy is being developed within the framework of the Ph.D. thesis of
P.Y. Outtier and implemented in DynoLab [122], the C.F.D. code of the DynFluid Laboratory.
Such a choice could be coupled in the future with mesh adaptation techniques [26, 124].

IV.6 Stability properties of RBCi

Stability properties of FV RBC schemes depend on mesh regularity properties and may hardly
be studied in the general case. In [128] the energy method was used to show for a simple case
and a purely centered scheme that weighted discretization operators may be favorable or not
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to stability depending on grid properties. For regular Cartesian meshes, stability and spectral
properties of FV schemes may be studied using analysis tools typical of the finite difference (FD)
framework. Since RBCr degenerates to its FD equivalent when written on Cartesian grids, results
discussed in [106] for finite-difference RBC schemes remain also valid for RBCr. Specifically,
RBCr leads to a Cauchy-stable spatial approximation, like its finite-difference equivalent. On
the other hand, it has been shown in the preceding Section that the RBCi FV formulation
introduces, even on Cartesian grids, additional terms with respect to RBCr. It is then necessary
to investigate the impact of these additional terms on the dissipation and stability properties of
RBCi.

IV.6.1 Dissipation properties of RBCi

Similarly to all RBC schemes, RBCi is the sum of a purely centered, non dissipative, approxi-
mation of the residual, R̃0, and a dissipation term d̃. Since R̃0 does not introduce any form of
dissipation, we investigate the dissipation properties of RBCi by studying the discrete operator
d̃j,k,l.

Precisely, the dissipation operator of RBCi follows the general definition (IV.10) where, ac-
cording to Eqs (IV.51) and (IV.55), the midpoint residuals written for a regular Cartesian grid
(and denoted hereafter with the superscript i) are:

1

|Ω|(R̃
i
1)j+ 1

2
,k,l =

{[(
I +

1

6
δ22

)(
I +

1

6
δ23

)
+

1

72
δ22δ

2
3

]
µ1wt +

δ1f

δx
+

(
I +

1

6
δ23

)
δ2µ2µ1g

δy
+

(
I +

1

6
δ22

)
δ3µ3µ1e

δz
+

1

12

(
δ23
δ2µ2µ1g

δy
+ δ22

δ3µ3µ1e

δz

)}

j+ 1

2
,k,l

(IV.56)

and similar relations hold for R̃i
2 and R̃i

3. In the above, |Ω| = |Ω|j,k,l = (|Ω|j,k,l + |Ω|j+1,k,l)/2
since the mesh is Cartesian regular.

On the other hand, the dissipation operator of RBCr, noted hereafter d̃r, also satisfies and
expression similar to Eq. (IV.10), with the midpoint residuals (now denoted with the superscript
r):

1

|Ω|(R̃
r
1)j+ 1

2
,k,l =

[(
I +

1

6
δ22

)(
I +

1

6
δ23

)(
µ1wt +

δ1f

δx

)

(
I +

1

6
δ23

)
δ2µ2µ1g

δy
+

(
I +

1

6
δ22

)
δ3µ3µ1e

δz

]

j+ 1

2
,k,l

(IV.57)

and similarly for R̃r
2 and R̃r

3.
According to the general study carried out for finite difference RBC schemes of order 2p −

1 [106], the operator (IV.10) with the mid-point residual (IV.57) is always dissipative. We
prove hereafter that, a fortiori, the same is true when relation (IV.56) is used, since this choice
introduces an additional dissipation with respect to (IV.57).

To this purpose, we apply RBCr and RBCi to the linear scalar problem:

wt +Awx +Bwy + Cwz = 0 A, B, C ∈ R (IV.58)

In this case the dissipation matrices Φ1, Φ2, Φ3, designed in [102, 104] in order to introduce some
form of upwinding of the numerical scheme with respect to the local advection direction, satisfy
the conditions

Φ1A > 0, Φ2B > 0, Φ3C > 0,

δxΦ1B = δyΦ2A, δxΦ1C = δzΦ3A.
(IV.59)
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with

Φ1 = sgn(A)φ, Φ2 = sgn(B)ψ, Φ3 = sgn(C)ζ,

φ = min

(
1,
1

α
,
1

β

)
, ψ = min

(
1, α,

α

β

)
, ζ = min

(
1, β,

β

α

)

with α =
δx|B|
δy|A| and β =

δx|C|
δz|A| . (IV.60)

The interested reader is referred to [102–104, 106, 116] for more details about the dissipation
matrices Φ1, Φ2, Φ3 and their extension to systems of conservation laws.

On the other hand, the Taylor-series expansion of d̃r (see [106] for details) writes as:

1

|Ω|(d̃
r) = Dr +O(h4) (IV.61)

with

Dr = − 1

24

[
δx(Φ1δx

2fxxx)x+ δy(Φ2δy
2gyyy)y + δz(Φ3δz

2ezzz)z
]

(IV.62)

For problem (IV.58), Φ1, Φ2 and Φ3 become scalar constants, and the operator (IV.61)
reduces to

Dr = D
rw

with Dr a linear partial differential operator of fourth-order. The Fourier symbol of Dr is:

D̂
r = − 1

24

[
δx(Φ1Aδx

2ξ4) + δy(Φ2Bδy
2η4) + δz(Φ3Cδz

2ζ4)
]

(IV.63)

where ξ, η and ζ are the reduced wave numbers in the x, y, and z direction, respectively. All the
derivatives in Dr being even, D̂r(ξ, η, ζ) is real.
It is easy to check that operator Dr is dissipative, in the sense that [106]:

∀ξ ∈ R, ∀η ∈ R, ∀ζ ∈ R, D̂
r(ξ, η, ζ) 6 0. (IV.64)

In other terms, Dr satisfies the following

Dissipation property. The operator (IV.62) is dissipative for any advection direction (A,B,C)
and any functions Φ1, Φ2 and Φ3 satisfying the conditions (IV.59).

We now turn to RBCi. In this case, the dissipation operator d̃i can be written in a way similar
to Eq. (IV.61), with:

Di = Dr + δx[Φ1(2δy
2fyyx + 2δz2fzzx − 2δz2gzzy − 2δy2eyyz)]x

+ δy[Φ2(2δx
2gxxy + 2δz2gzzy − 2δz2fzzx − 2δx2exxz)]y

+ δz[Φ3(2δx
2exxz + 2δy2eyyz − 2δy2fyyz − 2δx2gxxy)]z

(IV.65)

The preceding equation clearly shows the supplementary error terms, based on fourth-order
cross derivatives, introduced by RBCi with respect to Eq. (IV.62). We need to investigate if
these terms contribute to dissipate or amplify solution modes. To this aim, we consider the
Fourier symbol:

D̂
i = D̂

r − δx3

12
Φ1Aξ

4D′ (IV.66)
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where

D′ = σ2 + ω2 + ϕ2σ2 + ϕ2σ2ω2 + ψ2ω2 + ψ2σ2ω2 − 2
(
ϕσω2 + ψσ2ω + ϕψσω

)

where σ =
δy η

δx ξ
, ω =

δz ζ

δx ξ
, ϕ =

Φ2
Φ1

=
δxB

δyA
and ψ =

Φ3
Φ1

=
δxC

δzA
. Since:

D′ = σ2(1− ψω)2 + ω2(1− ϕσ)2 + (ϕσ − ψω)2 ≥ 0

it is clear that corrective terms in RBCi always introduce an additional dissipation with respect
to RBCr, so that the preceding dissipation property is a fortiori valid for RBCi.

IV.6.2 Cauchy stability of RBCi

We now prove that, thanks to the fact that RBCi involves a purely centered approximation of
the residual R0, supplemented by the dissipative operator d̃, it leads to a Cauchy-stable semi
discrete scheme. Hereafter, we recall the Cauchy stability condition in the case of a linear scalar
problem of the form (IV.58).
The Fourier transform of (IV.58) is

ŵt = −i(Akx +Bky + Ckz)ŵ = −iA.kŵ (IV.67)

where A = (A,B,C) is the advection velocity vector and k = (kx, ky, kz) a 3D wave vector.
Denoting Ȧ = (Ȧ, Ḃ, Ċ) a vector whose components are the CFL numbers in the x, y and z
directions, respectively:

Ȧ = A∆t/δx, Ḃ = B∆t/δy, Ċ = C∆t/δz

and introducing the reduced wave number in the Ȧ-direction:

ξθ,φ =
Ȧ

|Ȧ|
.ξ

with ξ = (ξ, η, ζ) = (kxδx, kyδy, kzδz) the reduced wave vector, Eq. (IV.67) can be rewritten as:

ŵt = −i|Ȧ|ξθ,φ
ŵ

∆t
(IV.68)

The notation ξθ,φ refers to the local advection direction with respect to the mesh, where cos(φ) =
Ċ/|Ȧ|, tan(θ) = Ḃ/Ȧ, and |Ȧ| is the global CFL number. The right-hand side of Eq. (IV.68)
represents the exact transport operator, a pure imaginary number, and ξθ,φ is a pure real number.
We now consider the semi-discrete counterpart to Eq. (IV.68). Taking the spatial Fourier
transform of the semi-discrete system (IV.75) applied to the linear problem (IV.58), we obtain:

ŵt = Ĉ(ξ, Ȧ)
ŵ

∆t
(IV.69)

with Ĉ the Fourier symbol of the spatial operator. Introducing the modified wave number:

ξ∗θ,φ = i
Ĉ(ξ, Ȧ)
|Ȧ|

(IV.70)

Eq. (IV.69) can be rewritten as:

ŵt = −i|Ȧ|ξ∗θ,φ
ŵ

∆t
(IV.71)
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which represents the numerical counterpart of the exact operator (IV.68). Eq. (IV.70) is called
the approximate dispersion relation of the semi-discrete scheme, and relates a given reduced wave
number ξθ,φ to its numerical representation ξ∗θ,φ. Unlike the exact wave number, the modified
wave number ξ∗θ,φ is a complex, since it has a non-zero imaginary part in general. Inspection of
Eq. (IV.71) shows that, according to its positive or negative sign, this imaginary part contributes
to the amplification or damping of ŵ in time. If the imaginary part is positive, then any Fourier
mode set as an initial condition to the ordinary differential equation (IV.75) will grow without
bound.
The spatial discretization operator C is Cauchy-stable if:

∀Ȧ ∈ R3, sup
ξ∈[−π,π]3

Im(ξ∗θ,φ) 6 0 (IV.72)

This comes to require that the Fourier symbol of the spatial discretization Ĉ always lies in the
left-hand side of the complex plane. Any spatial discretization satisfying the stability condition
(IV.72) leads to an unconditionally stable fully discrete scheme whenever it is combined to an
A-stable time integration method.

Figure IV.6: Representation in the complex plane of the Cauchy-stability criterion (IV.72) for RBCi

We determine now the expression of C in the case of RBCi discretization. Omitting the
subscript j, k, l, the RBCi spatial discretization scheme can be expressed as:

R̃0(w,wt) = d̃(w,wt) (IV.73)

where R̃0 is the main residual discretization operator and d̃ is the numerical dissipation operator.
They can both be split in a part dependent on the state vector w only and another one that
involves wt. Precisely, calling I the difference operator that applies to wt and R the operator
depending on w only, Eq. (IV.73) can be rewritten as;

wt = −
[
I
−1

R
]
(w) (IV.74)

Finally, we can formally set:
wt = C(w), with C = −I−1R (IV.75)
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Figure IV.7: Contours of the phase error Pξ∗
0,0

(top) and damping function Dξ∗
0,0

(bottom) for pure

advection in the x direction, Ȧ = (Ȧ, 0, 0), i.e. (θ, φ) = (0, 0). Bold black lines correspond to a threshold
error of 10−3.

Eq. (IV.75) represents now a system of ordinary differential equations and, completed by
initial conditions w(., 0) = w0(.), it defines a Cauchy problem. For this problem to be well-
posed, operator C has to be Cauchy-stable, i.e. it has to satisfy Eq. (IV.72). To this purpose,
we compute Ĉ as:

Ĉ = −∆tR̂Î
−1

By taking the Fourier transform of (IV.73) and after some algebra, we obtain:

∆tR̂ =
Φ1
2
[Di(Z3)Ḃ sin(ξ) sin(η) +Di(Z2)Ċ sin(ξ) sin(ζ)− ȦZ1]

+
Φ2
2
[Di(Z3)Ȧ sin(η) sin(ξ)− ḂZ2 +Di(Z1)Ċ sin(η) sin(ζ)]

+
Φ3
2
[Di(Z2)Ȧ sin(ζ) sin(ξ) +Di(Z1)Ḃ sin(ζ) sin(η)− ĊZ3]

+i[Ȧ sin(ξ)N(Z2, Z3) + Ḃ sin(η)N(Z1, Z3) + Ċ sin(ζ)N(Z1, Z3)]

Î
−1 =

{
D(Z1)D(Z2)D(Z3) +

1

72
(Z1Z2 + Z2Z3 + Z3Z1) +

5

864
Z1Z2Z3

− i
2
[Φ1 sin(ξ)N(Z2, Z3) + Φ2 sin(η)N(Z1, Z3) + Φ3 sin(ζ)N(Z1, Z2)]

}
−1

(IV.76)

80



where Z1 = 2(cos ξ− 1), Z2 = 2(cos η− 1), Z3 = 2(cos ζ − 1), Di(Z) = 1+Z/4, D(Z) = 1+Z/6
and N(Y,Z) = D(Y )D(Z) + Y Z/72.
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Figure IV.8: Contours of the phase error Pξ∗
π/4,0

(top) and damping function Dξ∗
π/4,0

(bottom) for pure

advection in the diagonal direction, Ȧ = (Ȧ, Ȧ, 0), i.e. (θ, φ) = (π/4, 0). Bold black lines correspond to
a threshold error of 10−3.

Given the complexity of the analytical expression of the modified wave number for RBCi
scheme, a computer code has been written to study its mathematical properties. We numerically
check that RBCi is Cauchy stable. To this purpose, the imaginary part of ξ∗θ,φ is computed for

CFL numbers Ȧ, Ḃ and Ċ ranging in [−2, 2] with a step ∆Ȧ = ∆Ḃ = ∆Ċ = 1/100 and the
wave vector ξ ranging in [−π, π]2 × [0, π] with steps ∆ξ = ∆η = ∆ζ = π/50. Fig. IV.6 displays
criterion (IV.72) for RBCi. Precisely, it shows that RBCi verifies condition (IV.72) for any
CFL and any wave number, which confirms that RBCi is a dissipative, and thus Cauchy-stable
approximation.
In addition to stability analysis, the modified wave number may be used as an indicator of how
accurately a given wave number is represented by the difference operator. Specifically, we define
the error with respect to the exact wave number:

E = ξ∗θ,φ − ξθ,φ =
(
Re(ξ∗θ,φ)− ξθ,φ

)
+ iIm(ξ∗θ,φ) (IV.77)

More precisely, following previous works [18, 57, 98, 146, 149] for 1-D problems, we consider the
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multidimensional counterparts of the scheme normalised phase error and damping function:

Pξθ,φ =
|Re(ξ∗θ,φ)− ξθ,φ|

π
, Dξθ,φ = 1− exp[Im(ξ∗θ,φ)] (IV.78)

For an infinitely accurate scheme, Pξθ,φ = 0 and Dξθ,φ = 0.
We investigate the dispersion error and damping function for dissipative RBCr and RBCi schemes
in 2D. Figs. IV.7 and IV.8 shows contour levels of the dispersion error and damping func-
tion for different combinations of the reduced wave numbers with an advection velocity aligned
with one grid direction and a multidimensional advection respectively, i.e. (θ, φ) = (0, 0) and
(θ, φ) = (π/4, 0) respectively. Specifically, we choose Ȧ = (Ȧ, 0, 0) and Ȧ = (Ȧ, Ȧ, 0). In these
figures, the bold black lines correspond to a threshold error of 10−3.
Figs. IV.7 and IV.8 shows that RBCi is more dissipative and dispersive than RBCr on a Carte-
sian mesh. Dissipation and dispersion errors increase especially for situations such that the
transverse flow direction with respect to the advection speed is ill-resolved. However, numerical
tests presented in the following will demonstrate that this loss of accuracy on Cartesian meshes
is the price to pay to ensure high accuracy and robustness on general deformed grids.

IV.7 Numerical tests

For the following computations, the time derivative in the main residual and in the mid-point
residuals is approximated by second-order accurate Backward Linear Multistep Method [44, 95,
164], which is A-stable. Such a choice leads to an unconditionally stable fully discrete scheme
when coupled to a dissipative spatial approximation. The time-discretization being fully implicit,
the resulting large system of equations is solved at each time step by using a dual-time stepping
approach. Newton subiterations are also a valid alternative. For more details on the time
integration scheme, we refer the reader to Refs [41, 117].
For viscous flow simulations, a second-order discretization of the viscous terms that does not
alter the discretization operator applied to inviscid terms is adopted. The interest reader may
refer to reference [101] for details.

IV.7.1 Advection of an inviscid vortex

The convergence order of FV RBC schemes is investigated for an inviscid flow problem, namely
the advection of an inviscid vortex. In this test case, an isentropic vortex is added to a uniform
freestream flow. The free stream density and pressure are given by ρ∞ = 1, p∞ = 1/γ with
γ = 1.4 the ratio of specific heats. The freestream flow velocity components are chosen such that
u∞ = v∞ =

√
2 in order to yield an advection at supersonic speed along the grid diagonal.The

problem is therefore fully multidimensional.
The perturbation values of the vortex are those given in [167]:

(δu, δv) =
Γ

2π
e

1−r2

2 (−y, x) δT = −(γ − 1)Γ2

8γπ2
e1−r

2

where Γ is the vortex strength set equal to 5, T is the temperature equal to p/ρ through the
non-dimensional perfect gas equation of state, (xc0, yc0) is the initial position of the vortex,
(x, y) = (x− xc0, x− yc0) is the relative position and r = x2 + y2. Thereby, the initial primitive
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variables are:

ρ0 =

[
1

S∞

(
T∞ −

(γ − 1)Γ2

8γπ2
e1−r

2

)] 1

γ−1

u0 =u∞ −
Γ

2π
e

1−r2

2 y

v0 =v∞ +
Γ

2π
e

1−r2

2 x

p0 =S∞(ρ
0)γ

with S∞ = p/ργ = p∞/ρ
γ
∞. The exact solution of this problem consists in the passive advection

of the vortex at freestream velocity. The vortex evolution is computed up to tf = 14. The com-
putational domain extends from −15 to +15 in both directions in space with periodic boundary
conditions. The initial position of the core vortex is (xc0, yc0) = (−10,−10).
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Figure IV.9: L2 error on ρ for Cartesian meshes.

The convergence study is first done on a series of Cartesian regular grids with 400×400,
600×600 and 800×800 cells. We want to check if the spatial schemes RBCr and RBCi are third
order accurate.
Since the time approximation is second-order accurate, we choose the time step such that ∆t ∝
h

p
2 , where p > 2 is the spatial order of accuracy and h the spatial mesh size, in order to recover

a global order of accuracy equal to p.
Fig. IV.9 plots the L2 norm of the error with respect to the exact solution (for the density field)
as a function of the mesh size, in a double-log scale. A slope almost equal to 3 is recovered both
for RBCr and RBCi, which confirms the preceding theoretical results.
In order to introduce mesh irregularities we randomly shake the meshes by an amount σ. In
practice, each cell node is randomly moved within a circle centered on its initial position and of
radius σh where h is the mesh size for a regular Cartesian mesh with the same number of nodes.
Fig. IV.10 shows the aspect of shaken meshes with random amounts σ equal to 0.05 and 0.1.
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(a) σ = 0.05 (b) σ = 0.1

Figure IV.10: Aspect of the shaken meshes.

Fig. IV.11 shows that for mildly deformed grids (σ = 0.05) RBCi remains third order
accurate, unlike RBCr, for which a lower slope (2.85) is found.
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Figure IV.11: L2 error on ρ for shaken meshes with σ = 0.05.

For a more severly deformed grid (σ = 0.1) Fig. IV.12(a) shows that neither RBCr nor RBCi
are third order accurate any more. Nevertheless, if we verify if they are second order accurate for
this configuration by taking ∆t ∝ h, we find that RBCi is still second order accurate, whereas
RBCr is less than second order (see Fig. IV.12(b)). Once again, this is in line with the theoretical
analysis of Sec. IV.5.
Fig. IV.13 shows iso-lines of the density obtained on a 600 × 600 cell mesh with σ = 0.1 for
both RBCi and RBCr. The exact solution is also represented. It can be noticed that spurious
oscillations due to mesh irregularities are produced by RBCr, whereas RBCi provides a much
smoother solution, in satisfactory with the reference.
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(b) Order 2 test.

Figure IV.12: L2 error on ρ for shaken meshes with σ = 0.1.

(a) RBCi. (b) RBCr.

(c) Exact solution.

Figure IV.13: Density contours of the vortex on the 600×600 mesh shaken with σ = 0.1 at t = tf .
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IV.7.2 Laminar flow past a cylinder

Next, we consider an unsteady laminar flow past a two-dimensional circular cylinder at a Reynolds
number of 1200 and a Mach number of 0.3. Comparing experimental and 2D computational data
of the flow over a circular cylinder is complicated since this flow is driven by three-dimensional
effects for a Reynolds number over 180 [43, 118, 165]. Nevertheless, it is a good test case in
order to quantify the accuracy of a numerical scheme [27] for vortex-dominated viscous flows, by
comparison with a reference numerical solution. The computational grid used for the third-order
RBC schemes is a regular polar mesh composed by 100×168 cells. The grid points are uniformly
distributed in the radial direction and clustered close to the cylinder wall in the normal direction.
The external boundary is located 20 diameters far from the cylinder and the distance between
the wall and the first grid point is 0.0085 times the diameter. The adimensional time step used
for all the computations is ∆t = 3.125 × 10−3. It is small enough to rule out numerical errors
due to the time discretization. A reference computation has been carried-out on a fine mesh
composed by 400×672 cells, using a nominally fifth-order accurate RBC scheme (named RBC5
[106]), and is used to evaluate the accuracy of RBCr and RBCi.

(a) σ = 0.1 (b) σ = 0.2 (c) σ = 0.3

(d) σ = 0.4

Figure IV.14: Aspect of the shaken meshes.

In addition to the regular polar mesh, a series of randomly deformed meshes is generated
by shaking the nodes of the regular one by a random amount σ, going from 0. to 0.4. with a
step of 0.1. Shaken grids are shown in Fig. IV.14. An overall view (isolines of the instantaneous
entropy field) of the numerical solutions of RBCr and RBCi on the most deformed grid (σ = 0.4)
is provided in Fig. IV.15. The reference solution is also represented.
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(a) RBC5, reference, 401×673 regular polar mesh
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(b) RBCi, 100×168 shaken mesh, σ = 0.4
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(c) RBCr, 100×168 shaken mesh, σ = 0.4

Figure IV.15: Snapshot of the entropy field.

Even if the vortex street is dissipated more quickly (because of the mesh coarsening and
deformation), RBCi provides results in somewhat closer agreement with the reference than RBCr.
For a more quantitative comparison, we computed discrete Fourier tranforms of the unsteady
vertical force acting on the cylinder for different schemes and meshes. The frequency content
of the signal is essentially represented by a single mode, associated to vortex shedding. This is
used to compute the Strouhal number St (based on free-stream velocity and cylinder diameter)
of the vortex street. The reference computation returns St = 0.25. Table IV.1 summarizes the
results given by RBCr and RBCi on different meshes. RBCi returns a Strouhal number equal to
the reference one even on very deformed grids, whereas RBCr deviates from the reference value
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starting from σ = 0.2.

RBCr RBCi

regular mesh 0.25 0.25

σ = 0.1 0.25 0.25

σ = 0.2 0.24 0.25

σ = 0.3 0.24 0.25

σ = 0.4 0.23 0.24

Table IV.1: Computed Strouhal numbers on increasingly deformed grids.

Again, we conclude that for relatively academic configurations RBCi provides slightly more
accurate results than RBCr when deformed grids are considered.

IV.8 Chapter summary

We have presented the FV formulation of RBC schemes and a third-order finite volume Residual-
Based Compact scheme, RBCi, has been designed for the numerical simulation of compressible
flows on structured meshes. The scheme is designed to take into account mesh deformations,
in such a way that it is third-order on mildly distorted structured grids and second-order on
highly distorted meshes. To this purpose, suitable weighted discretisation operators, which take
into account mesh deformations, are introduced. An analysis of the Fourier symbol of the pro-
posed spatial approximation demonstrates that the resulting discretization is dissipative and
then Cauchy-stable for all flow configurations. An investigation of the multidimensional modi-
fied wave number of the scheme shows that, on Cartesian grids, it is somewhat more dissipative
and dispersive than its finite-difference counterpart. Specifically, the scheme dissipates more
quickly ill-resolved solution modes in the transverse direction with respect to the advection ve-
locity. This may be considered a drawback, but in practice ensure robustness on highly distorted
grids, where in any case the accuracy of the straightforward finite volume extension (RBCr) is
lost because of grid deformations, while RBCi remains high-order accurate.
Numerical tests confirm the theoretical results and demonstrate the importance of using a
weighted scheme formulation on very irregular meshes. For all cases, RBCi is more accurate
and more robust than RBCr when highly deformed grids are used. This enables its application
to complex flows of industrial interest, like turbomachinery flows, for which the generation of
pretty smooth grids is generally a very hard task. This is demonstrated later in this manuscript
by calculations of a very severe transonic flow in the high-pressure ratio VKI BRITE HP turbine
stage (cf. Section V).
In term of numerical cost, RBCi is more expensive than RBCr, essentially because of the calcu-
lation of weighed operator coefficients. The CPU time of an RBCi computation is roughly 1.27
times the time of an RBCr computation. This is the price to pay for accuracy and robustness on
irregular meshes. On the other hand, it may be expected that time savings can be made for the
mesh generation task, since RBCi enables high accuracy on computational grids of poor quality.
In summary, present results suggest that RBCi may represent a good candidate for industrial
CFD applications.
An RBCi FV extension of RBC5 and RBC7 could be done in future work even if it is not
straightforward and possibly too costly at high-order. An alternative to that is a multiblock
approch coupled with the use of overset grid treatment: one can use RBCi for body fitted
meshes and higher order finite difference RBC schemes in Cartesian meshes. This is currently
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being investigated in the PhD work by P.-Y. Outtier (some preliminary results are given in [121]).

In the present and preceding chapters, unsteady RBC schemes have designed and shown to
be linearly stable and dissipative. Their spectral properties have been studied in detail demon-
strating that RBC schemes are high-accurate. Besides, these theoretical results on RBC schemes
have been validated on numerical tests. In the next Chapter, we go further in the understand-
ing of RBC schemes behaviour by investigating the applicability of these schemes to selected
unsteady compressible flows.
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Chapter V

Application to selected unsteady

compressible flows
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V.1 Introduction

In the present chapter, we want to go further in the understanding of RBC schemes behaviour
on more realistic unsteady compressible flows. On the one hand, we look into the capabilities of
RBC schemes for the computation of fine scale flow structures characteristic of turbulent flow.
To this purpose, we carry out computations of the inviscid and viscous Taylor-Green Vortex
case. On the other hand, we explore the feasibility of high-order RBC schemes for complex
industrial flow computations. A first step to achieve this goal is the use of RBCi on 2D and 3D
unsteady turbomachinery as the VKI LS-59 turbine cascade and the VKI BRITE HP turbine
stage respectively.

V.2 Numerical simulation of fine scale turbulence: the Taylor-

Green Vortex

V.2.1 Inviscid Taylor-Green vortex

In Chapter III, the spectral properties of RBC schemes (cf. Section III.9) were validated for
a simple linear problem. Here, we turn to a test case well suited for the numerical investiga-
tion of the intrinsic dissipation and resolvability properties of RBC schemes for nonlinear flow
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problems. Precisely, we consider the nearly incompressible, inviscid Taylor-Green vortex flow in
a three-dimensional periodic domain defined as [2π]3. The test case is a simple model for the
investigation of the nonlinear transfer of kinetic energy among eddies over a range of spatial scales.

The computation is initialised with a two-dimensional, single-mode initial velocity field of the
form:





u(x, y, z, 0) = sin(x) cos(y) cos(z)

v(x, y, z, 0) = − cos(x) sin(y) cos(z)
w(x, y, z, 0) = 0

(V.1)

and evolves to a fully three-dimensional flow characterized by small scales of motion.

To complete initialization, the preceding equations for the velocity field are supplemented
with initial conditions for density and pressure:

{
ρ(x, y, z, 0) = 1

p(x, y, z, 0) = p0 +
ρ

16
[(cos(2z) + 2)(cos(2x) + cos(2y))− 2]

(V.2)

where p0 = 100, so that the average Mach number in the flow field is approximately 0.08, as in
[140].
As the time-evolution of the Taylor-Green vortex entails a kinetic energy cascade, the evolution
of this simple flow has been used to study the effects of both viscous dissipation in Navier-Stokes
dynamics and numerical dissipation in the solution of the Euler equation [32, 140].
For this inviscid and almost incompressible flow, the total kinetic energy in the computational
domain is conserved for an exact solution, and it is easily seen that it remains equal to π3. So a
quantitative measure of numerical dissipation inherent in a numerical algorithm can be assessed
by observing the rate of decrease of the kinetic energy from its initial value during the time-
evolution of the flow. On the other hand, as the nonlinear interactions generate successively
smaller scales, the enstrophy, directly related to the volume integral of the rotational kinetic
energy of flow eddies –which is in its turn related to the vorticity field–, grows without bound
and leads to finite time singularity. The enstrophy involves derivatives of the velocity field
components, so that its computation is sensitive to the accuracy with which the small scales
can be represented numerically and can be used to quantify the resolvability of a numerical
scheme. Numerical dissipation significantly reduces the sharpness of the approximation of flow
derivatives, and the consequent reduction of vorticity production results in a less rapid increase
of the enstrophy than expected (see [140] and references cited therein for more details).
In the following, we use dissipative (in the χ-criterion sense) RBC schemes of different orders to
compute the Taylor-Green vortex flow on regular Cartesian grids with different resolutions. The
results are compared to those of Shu et al. [140], obtained by using either a WENO-5 scheme or a
Fourier collocation method with a sharp cut-off filter (F-SF-23N). The latter scheme is considered
hereafter as a benchmark for this smooth and periodic problem, because of its spectral resolution.
Fig. V.6 illustrates the early stages of the vortex break-up process as computed by RBC5 using a
grid with 1283 mesh cells: it provides isosurfaces of the Q criterion, Q=0, colored by the kinetic
energy, k.
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(a) t = 0. (b) t = 3. (c) t = 5.

Figure V.1: Iso surface Q=0 colored by k (computed with RBC5 on the 1283 mesh). Initial phases of
vortex break-up.

The vortex stretching mechanism is seen even better from Fig. V.2, which provides iso-
contours of the vorticity on selected planes. At time t = 3 the flow displays only large structures,
whereas tiny vortices and filaments are visible in the flow field at time t = 5.

(a) t = 3 (b) t = 5

Figure V.2: Visualization of the vortex stretching through iso-contours of vorticity (computed with
RBC5 on the 1283 mesh).

Figure V.3 shows the time history of the normalized total kinetic energy obtained for different
schemes by using two grids with different resolutions. Note that the spectral scheme F-SF-23N
has the property of conserving kinetic energy exactly and provides the highest rate of growth
of the enstrophy. On the contrary, the WENO scheme no longer conserves energy starting from
a time of approximately 1.5 on a 643 mesh and a time 3 on the 1283 mesh. RBC schemes
display intermediate behaviors between these two limits. RBC3 dissipates a bit earlier than
WENO-5, buth at a slower rate, so that at time 6 it has dissipated only about 18% of the initial
kinetic energy on the coarse grid and 6% on the fine grid, against 25% and 12% for WENO-5,
respectively. RBC5 and RBC7 conserve the energy up to times equal to 4 and more, according
to the chosen grid resolution, RBC7 being slightly more accurate than RBC5. Precisely, RBC5
loses about 4% of the initial energy on the 643 grid and about 2% on the 1283 grid, whereas the
losses are reduced to about 3% and 1.5% for RBC7, respectively.
To measure even more accurately the dissipation rate of the kinetic energy due to numerical
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damping errors, we consider in Fig. V.4 the evolution of the time derivative of the total kinetic
energy. This should be zero at any time for an exact solution. Once again, RBC schemes of
all orders exhibit a much lower dissipation rate than WENO-5. For instance, at time t = 6
the dissipation rate of RBC5 is more that 2.5 times lower than that of WENO-5 on the coarse
grid and, interestingly, more than 3 times lower on the finer grid, which shows that the intrinsic
dissipation of RBC schemes vanishes quickly when the mesh is refined.
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Figure V.3: Comparison of the time evolution of the normalized total kinetic energy on a 643 mesh (a)
and on a 1283 mesh (b) with different numerical schemes.
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Figure V.4: Comparison of the time evolution of the time derivative of the total kinetic energy on a
643 mesh (a) and on a 1283 mesh (b) with different numerical schemes.

Fig. V.5 illustrates the time evolution of the flow enstrophy for the same combinations of
grids and numerical schemes. The rate of increase of the enstrophy is almost the same for all
schemes almost up to time 2.5 on the coarse grid and 3.5 on the finer one. As suggested in
[140], this is due to the fact that at early times the vortical flow is dominated by relatively
large structures that are well-captured by all of the schemes. However at later times, when the
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vortex core steepens up into a high gradient, large differences among the computed values of the
enstrophy appear. The largest values of the enstrophy are provided by the Fourier collocation
method with the sharp-cutoff filter (F-SF-23N), followed by RBC7 and RBC5, that exhibit quite
close behaviors. At later times, WENO-5 and RBC3 schemes exhibit a decrease in the rate of
enstrophy production and do not produce as much vorticity as the other schemes: this is due to
their higher intrisic dissipation. Nevertheless, it is noteworthy that the RBC scheme of third-
order accuracy is still less dissipative than the fifth-order WENO scheme.
In the work [140], the fifth-order WENO scheme uses a global Lax-Friedrichs flux splitting [84],
which computational cost in terms of number of operations per Runge-Kutta step has been
estimated in [84]. Note that, based on a rough operation count, the computational cost of
WENO-5 is 75% higher than the one of RBC3 space discretization, whereas it is 10% higher
than those of RBC5 and RBC7. Note also that WENO results from [140] were obtained by using
a third-order three-stage TVD Runge-Kutta scheme, whereas the present calculations use a
second-order implicit LMM method solved by a dual-time stepping approach: this is unfavorable
to RBC schemes both in terms of accuracy and efficiency and must be improved in the near
future. On the other hand, the WENO-5 scheme uses a non linear approximation of convective
fluxes to achieve a non-oscillatory representation of strong discontinuities, which is not the case
of RBC schemes.
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Figure V.5: Comparison of the time evolution of the normalized total enstrophy on a 643 mesh (a) and
on a 1283 mesh (b) with different numerical schemes.

The computation of the inviscid Taylor-Green vortex flow with RBC schemes confirms nu-
merically the interest of a well-designed RBC dissipation to resolve accurately fine scale flow
structures. The high-accuracy is also demonstrated on this case since we can quantify the nu-
merical dissipation of the schemes by means of the dissipation of the kinetic energy.

V.2.2 Viscous Taylor-Green vortex

In the present section, we compute the viscous Taylor-Green Vortex (TGV) which is an unsteady
viscous flow problem dominated by energy transfer from large to small flow scales. This problem
has been proven to be an excellent testing bench to study the resolvability properties of high-order
schemes in view of subsequent application to fine-scale turbulence simulations [16, 32, 53, 54, 76].
Consequently, this computation is a good prototype to scale resolving simulations.
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The use of high accurate schemes is of utmost importance for numerical simulation of turbulent
flows since they enable capturing flow structures from large to small scales at an acceptable
computational cost.
Here, a three-dimesional vortex is set as an initial condition for a 3D-computation. Again, the
computational domain is the cube [0, 2π]3, with periodicity conditions imposed at all boundaries.
Because of vortex-stretching and vortex tilting mechanisms, the vortex breaks up, giving origin
to smaller and smaller structures. For finite values of the Reynolds number, the kinetic energy
is transferred from larger to smaller scales and dissipated by the smallest one; the test case gives
thereby a simple model of the energy cascade (Fig. V.6). The Taylor-Green vortex is a classical
example of nonlinear fluid flow with kinetic energy transfert from large to small scales and is
a good milestone to assess the applicability of numerical schemes to Large Eddy Simulation
(LES) and has been used as a benchmark case in two workshops on high-order methods [4, 158].
Hereafter, we perform Implicit LES (ILES) where the role of the SGS model is taken by the
numerical dissipation of RBC schemes.

(a) Iso surface Q=0 at t = 0. (b) Iso surface Q=0 at t = 4.

(c) Iso surface Q=3 at t = 8. (d) Iso surface Q=3 at t = 12.

Figure V.6: Iso surface of the Q criterion colored by k (computed with RBC5 on the 1283 mesh). The
figure show phases of the vortex break-up.

Part of the present results have been presented at an international conference [71] and an
international workshop [69]. The initial conditions of the computations are again those of Eq.
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(V.1) along with:

{
ρ(x, y, z, 0) = 1

p(x, y, z, 0) = p0 +
ρ

16
(cos(2z) + 2)(cos(2x) + cos(2y))

(V.3)

where now we choose p0 = 100, a Mach number M0 = 0.1, a Reynolds number Re = 1600 and
a Prandlt number Pr = 0.71. For these conditions, previously computed by Brachet [32] using
DNS and a spectral method, a recent DNS obtained on a 5123 with a pseudo-spectral code over a
quite long integration time is available [4]. This solution has been shown to be converged and can
be considered as a reference. The data and a detailed description of the test case are available
in [4].
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Figure V.7: Comparison of the time evolution of the time derivative of the total kinetic energy on a
323 mesh (a), 643 mesh (b), 1283 mesh (a) and on a 2563 mesh (b) with RBC schemes.

The absence of external forcing implies that the kinetic energy is only decaying during the
computation. Thus, the first comparison with the the DNS is done on the time derivative of the
kinetic energy integrated on the whole computational domain −dK/dt (cf. Fig. V.7), where

K =
1

(2π)3

∫ ∫ ∫

[0,2π]3

1

2
ρ||u||2 dxdydz.
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This quantity represents the kinetic energy dissipation rate. Integral quantities are more difficult
to match since they are affected by numerical errors commited in the whole computational domain
and not only local effects. As in the preceding inviscid case, RBC5 and RBC7 demonstrate their
good resolvability, thanks to their low dissipation and dispersion errors. Even if the reference
solution can not be perfectly matched on a 1283 mesh because of aliasing, the solutions of RBC5
and RBC7 on this mesh are yet very close to the reference one (Fig. V.7(c)). RBC5 energy
dissipation rate almost matches the DNS solution on the 2563. The solution of RBC3 on the
1283 mesh is similar to the RBC5 solution on the 643 mesh.
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Figure V.8: Comparison of the time evolution of the total enstrophy on a 323 mesh (a), 643 mesh (b),
1283 mesh (a) and on a 2563 mesh (b) with RBC schemes.

Fig. V.8 illustrates the time evolution of the enstrophy, Ω, for the same combinations of grids
and numerical schemes. The total enstrophy is defined by

Ω =
1

(2π)3

∫ ∫ ∫

[0,2π]3

1

2
ρ||ω||2 dxdydz,

where ω is the vorticity. This quantity is more difficult to match than the dissipation rate of
the kinetic energy. The kinetic energy is indeed a second-order quantity. A given discretization
can solve this field and underestimate higher-order quantities involving velocity gradient, like the
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enstrophy [49]. This quantity emphasizes the difference of resolvability between RBC3, RBC5
and RBC7. Besides Figs. V.8(d) clearly shows that the computations are not converged for
these scales on a 2563 mesh even if the dissipation rate of the kinetic energy almost matches the
DNS results. The flow physic is well captured with RBC5 on a 1283 mesh, vortex stretching and
tilding mechanisms are clearly visible (see Figures V.6(a) and V.6(b)) due to inviscid terms as
well as the vortex break-up due to viscous terms (see Figures V.6(c) and V.6(d)).
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Figure V.9: Iso-contours of the dimensionless vorticity norm, |ω|, on a subset of the periodic face
x = −π at time t/tc = 8. Comparison of the solution computed with RBC5 on the 323, 643, 1283 and
2563 meshes with the DNS solution.

By looking at the dimensionless vorticity norm |ω| on a subset of the plane y = 0 we can
identify a characteristic vortical structure at time t = 8 (see Fig. V.9(e)). Fig. V.9 shows the
grid convergence of RBC5 on this strucure. It confirms that the 323 mesh is too coarse in order
to capture the driving structures of the flow. Even if the 643 and the 1283 mesh computations are
not converged we can clearly distinguish and identify the investigated structure. The structure
captured on the 2563 mesh is close to the DNS one even if the vorticity is also a quantity
with high-order moment since it contains velocity gradients. Fig. V.11 provides a close-up of
the comparison between this computation and the DNS confirming that the contours are really
close.
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Figure V.10: Time evolution of the spectrum E(k) of the solutions computed with RBC schemes on a
1283 mesh.
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Figure V.12: Time evolution of the spectrum E(k)
of the solutions computed with RBC schemes on a
2563 mesh.
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Figure V.13: Comparison of the spectrum E(k) of
the solution computed with RBC5 on the 2563 and
the 1283 meshes at t = 10.
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Figure V.14: Spectrum E(k) of the solution com-
puted with RBC5 on the 1283 mesh at t = 10.

Fig. V.10 provides the time evolution of the kinetic energy spectra of the solutions computed
with RBC of different orders schemes on the 1283 mesh. These energy spectra are computed by
taking the mean of the FFT (Finite Fourier Transform) done on the 3× 1282 mesh lines of the
computational domain for each time of the computation represented. The range of wavenumbers
is delimited on the left by the value corresponding to the domain length and on the right to the
spatial discretization step. The initial spectrum is represented by a single mode. The energy
of this mode is then transfered to the smaller scales. New modes are progressively generated
through the vortex stretching mechanism. Fig. V.10(a), V.10(c) and V.10(e) show that all the
scales present in the computation are set up at t = 8. From the time 8, we can distinguish the
−5/3 slope since almost all the scales involved in this flows are set. This slope corresponds to
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the inertial subrange of the energy spectrum respecting the Kolmogorov’s k−5/3 law [107, 127].
This is confirmed by the computation done with RBC5 on the 2563 mesh (see Fig. V.13) where
the −5/3 slope is more identifiable at the adimensional time t = 10. The time t = 10 is chosen
since it corresponds to the time where all the scales of the computation are present and no more
modes are generated. This also corresponds approximately to the energy dissipation peak. At
later time, no new scales are genrated and the main mecanism is represented by turbulence decay.
Fauconnier et al., in [53], provided the spectra of a DNS of the Taylor-Green Vortex at Re = 3000
confirming the presence of the −5/3 slope in the Taylor-Green Vortex case. These results show
that even if the initial state of the Taylor-Green Vortex is highly anisotropic it verifies the local
isotropy hypothesis since the Kolmogorov’s k−5/3 law is only valid under this assumption. In the
present case the −5/3 slope has to be present on a smaller range of wave number compared to
[53] since the Reynolds number is lower [134].

k

E
(k

)

100 10110-6

10-5

10-4

10-3

10-2

10-1

t=10, RBC3,1283

k-5/3

k-3

k-5

Figure V.15: Spectrum E(k) of the solution com-
puted with RBC3 on the 1283 mesh at t = 10.
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Figure V.16: Comparison of the spectrum E(k) of
the solutions computed with RBC3 and RBC5 on a
1283 mesh and RBC5 on a 2563 mesh at t = 10.

The 2563 computation with RBC5 is clearly not completely mesh converged since the enstrophy
plot does not fit the DNS (cf. Fig. V.8(d)). This was expected, since we are using an LES
mesh resolution. Nevertheless, the kinetic energy and its time derivative are almost converged
with RBC5 on this mesh resolution (cf. Fig. V.7(d)). This can be explained by the fact that
the kinetic energy is a second-order quantity since E(k) falls rapidly for wave numbers k higher
than 1/η, where η is the Kolmogorov scale [49]. Here, the enstrophy is certainly underestimated
since it is a higher-order moment of velocity gradient and thus is contained at smaller scales
[49]. Several studies has led to this conclusion including the work of Yakhot and Sreenivasan
that proposed that the finest scale that has to be resolved for a DNS are of the order of ηRe−1/4

[49, 168] in order to capture higer-order moments such as the enstrophy. Besides, most of the
enstrophy of the turbulent fluctuant field is contained at scales of the order of the Taylor micro-
scale [85].
This 2563 computation with RBC5 could be considered as a quasi DNS in the sense of capturing
second-order moments such as the kinetic energy. Morover, the computation has been done with
2563 ≈ 1.7·107 degrees of freedom which is of the same order of Re9/4 = 16009/4 ≈ 1.6·107. Re9/4
corresponds to the minimum degrees of freedom needed to resolve the scales of the order of η [168].
This is also the case in the DNS computation of Fauconnier et al. [53] where the number of degrees
of freedom used is 3843 = 5.6 · 107 which is of the same order as Re9/4 = 30009/4 = 6.7 · 107. We
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have to specify that the DNS in [53] is computed with a spectral method whereas our computation
is done with a finite difference method, RBC5, with good spectral properties (needing about six
points per wavelentgh, cf. Sec. III.9).
In addition to the −5/3 slope, we also observe a −3 and a −5 slope in the viscous range of
the computations done with RBC schemes. Figs. V.13 and V.14 show that this behavior is
observable for the same scheme on different meshes and thus is not mesh dependent. Fig. V.15
shows that even for a lower order schemes, e.g. RBC3, we still observe this behavior. Finally, the
comparison of the different spectra in Fig. V.16 show that even if RBC3 and RBC5 underestimate
the kinetic energy of fine scales on the 1283 mesh the behavior of the RBC5 on the 2563 mesh
seems to be mimic in the viscous range. The different slopes observed in Figs. V.13, V.14 and
V.15 are investigated in detail in Fig V.17 by plotting the spectrum of k5/3E(k), k3E(k) and
k5E(k). Even if our spectra are oscillatory we can observe a plateau in the curves corresponding
to the different slopes.
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Figure V.17: Indetailed investigation of the −5/3, −3 and −5 slopes.
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The Taylor micro-scale λ has been defined for DNS computation by Jimenez et al. in [85] by

λ2 =
5
∫
∞

0 E(k)dk∫
∞

0 k2E(k)dk
=
5K

Ω
. (V.4)

is consistent with its mono-dimensional definition [78] . This definition has been extended by
Garnier et al. in [62] in order to compare the resolvability of several schemes. Fig. V.18 shows
the time evolution of the pseudo Taylor micro-scale of our computation with RBC schemes on
the different meshes. It shows that the computation with RBC5 on the 2563 is almost converged
since it almost captures the Taylor micro-scale of the DNS. Besides it also emphasizes the mesh
convergence of the schemes and the advantage of using high-order, since RBC3 results on the
1283 mesh are similar to the results of RBC5 on the 643 mesh.
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Figure V.18: Comparison of the time evolution of the Taylor micro-scale on a 323 mesh (a), 643 mesh
(b), 1283 mesh (c) and on a 2563 mesh (d) with RBC schemes.

104



RBC3 RBC5 RBC7

323 3.27∆ 2.51∆ 2.51∆

643 4.37∆ 3.02∆ 2.96∆

1283 6.15∆ 5.13∆ 4.94∆

2563 × 8.82∆ ×

Table V.1: Pseudo Taylor micro-scale values for RBC schemes at t = 10 on the 323, 643, 1283 and 2563

meshes with ∆ = 2π/N (N = 32, 64, 128, 256).

In order to be more quantitative we compare in Table V.1 the Taylor micro-scale of different
computations at time t = 10 in terms of the mesh spacing ∆ = 2π/N , with N the number of
mesh cells in one direction. It gives the number of points discretizing the Taylor micro-scale for
each computation. The computation with RBC5 on the 2563 mesh is the only one where this
number of points, 8.82, is greater than the resolvability of the scheme, 6.08 points. This results
also confirms the mesh convergence of these schemes and quantify the advantage of high-order
schemes.
In summary, we esteem that the preceding results are very encouraging, since they proove a good
resolvabilty of RBC schemes and their capability to compute a flow with a large range of scales.

V.3 Toward the application of RBC schemes to complex indus-
trial flows

The application of RBC schemes to challenging industrial configurations is not straightforward.
Nevertheless, a first step toward the use of these schemes in an industrial framework is the
application of the third-order finite-volume RBC scheme designed in chapter IV, RBCi. All
calculations shown in the following have been performed by using the elsA simulation software
developed at ONERA [1, 33, 34]. Hereafter, we apply RBCi to two increasingly realistic cases
of industrial interest. The first one is a turbulent transonic flow through an isolated 2D turbine
cascade, whereas the second one is a fully 3D turbine stage involving unsteady rotor/stator
interaction.

V.3.1 VKI LS-59 turbine cascade

Figure V.19: VKI LS-59 turbine blade, computational grid
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The VKI LS-59 is a high-loaded rotor blade with a thick, rounded trailing edge originally designed
for near-sonic exit flow conditions. This rotor blade has been extensively tested in various
European wind tunnels [89] and computed by several authors [14, 30, 83]. Experiments are
available in a wide range of conditions, and Schlieren photographs clearly indicate the existence
of vortex shedding downstream of the blade blunt trailing edge, which is responsible for an
appreciable fraction of profile losses. The flow conditions considered for this study correspond
to a unit exit isentropic Mach number and a Reynolds number of 7.44 × 105 based on the
chord length and mean outlet velocity. The inlet flow angle is equal to 30 degrees. This choice
is motivated by the fact that all numerical computations available in the literature known to
the authors have been made for these conditions, for which experimental distributions of the
isentropic Mach number at the wall are also available.
Unsteady two-dimensional computations are carried out using a C-grid of 384 × 32 cells with a
conformal join along the branch cut (see Fig. V.19). The enforcing of a conformal join leads to
a highly distorted mesh in the suction side region for this high-deflection blade. The unsteady
computations are initialised via a preliminary steady run. For unsteady computations, the non-
dimensional time step is selected in order to get approximately 30 time steps per shedding cycle.
The computations are performed using the Spalart-Allmaras turbulence model.

(a) RBCi. (b) RBCr.

(c) RBC2.

Figure V.20: Snapshot of the unsteady entropy field.
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To investigate the importance of taking into account mesh irregularities for highly distorted
grids RBCr and RBCi are compared with the second order RBC2. Snapshots of the unsteady
entropy field computed with these three schemes are provided in Fig. V.20. Only third order
schemes, RBCr and RBCi, exhibit vortex shedding. Nevertheless, the solution of RBCr exhibits
non-physical features on the suction side region of the blade where the mesh is higly distorted,
cf. Fig. V.20(b). The solution is indeed polluted by significant spurious numerical oscillations
originating from the regions of the computational domain where the grid is more severely dis-
torted, cf. Fig. V.20(b), that cannot be damped by this scheme.
Fig. V.21 provides the Fourier spectra of the blade load (tangential force acting on the blade)
for RBCi and RBCr. The computed Strouhal numbers are based on the main frequency, the
isentropic outlet velocity and the thickness of the trailing edge (equal to 0.06 the axial chord for
this blade). RBCi scheme returns a value of 0.24 close to the experimentally measured range
[89] (0.2, 0.4), along with its harmonics. The RBCr scheme returns the same Strouhal value
associated to the main frequency along with a rich frequency spectrum. These additional fre-
quencies are probably due to numerical errors introduced when mesh irregularities are not taken
into account.
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Figure V.21: Fourier spectra of the unsteady tangential force on the blade.

Fig. V.23 displays the distributions of the isentropic Mach number at the blade’s surface.
The time-averaged solutions are compared to the experimental data of Kiock et al. [89]. For the
second-order scheme, the time-averaged solutions can be associated to a steady solution since
only the third-order schemes exhibit an unsteady solution. The rear part of the blade suction side
is significantly affected by flow unsteadiness: the results of the RBCi scheme are characterised
by a shock wave at the suction surface, although located more upstream than the experimental
one.
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(a) Schlieren picture from [89]. (b) Snapshot of ||∇ρ||2 computed with
RBCi.

Figure V.22: Comparison of of the aspect of RBCi and experimental solutions

A snapshot of the instantaneous density gradient contours computed with RBCi is provided
in Fig. V.22(b). A Schlieren photograph from [89] corresponding to a slightly different exit
isentropic Mach number and Reynolds number is also reported for comparison in Fig. V.22. It
confirms that the RBCi solution is quantitatively close to the experiment. For this reason, only
the RBCi scheme is retained for the following computation.
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Figure V.23: Time-averaged isentropic Mach number wall distribution

V.3.2 VKI BRITE HP turbine stage

As a final application, the RBCi scheme is used to compute the BRITE HP turbine stage exper-
imentally tested in the compression tube facility CT3 of the Von Karman Institute [46] at high
vane exit Mach number (pressure ratio 5.11). This case is computed in order to demonstrate the

108



applicability of the proposed methodology to complex unsteady 3D cases, like a realistic turbine
configuration including tip clearance.

Figure V.24: Snapshot of Q criterion isosurface,
Q=0.001, colored by the entropy
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Figure V.25: Time evolution of the mass flows at
stator outlet, rotor inlet and rotor outlet.

The computational grid contains approximately 3 million of points and is composed by twelve
blocks: both the rotor and the stator are discretised by an O-shaped grid around the blades and
three H-shaped blocks for inlet, outlet, and inter-blade regions; the tip clearance is also discretized
with an O-shaped and three H-shaped grids. Unsteady computations are initialised with steady
results obtained by imposing a mixing-plane inter-stage condition. The use of chorochronic
periodic boundary conditions [64] allows simulating just one blade per row. The flow is modelled
through the RANS equations completed by the Spalart-Allmaras transport-equation model for
turbulence.
RBCi allows sharp capturing of shock waves and von Karman vortices in the blade wakes Fig.
V.24 and Fig. V.27. Fig. V.24 shows a snapshot of the 3D vortex structures within the geometry
with an isosurface of the Q-criterion colored by the entropy showing the 3D nature of the flow
field. The complex unsteadiness of the flow with rotor/stator interaction is also captured. Fig.
V.25 provides the evolution of the normalized mass flows at stator outlet, rotor inlet and rotor
outlet as a function of adimensioned time. The parameters are normalized using the reference
length Lref = 10−3 m, and the speed of sound at the inlet of the stator ainlet = 416.11 m.s−1.
All these mass flows are periodic signals, the Fourier spectra of which are provided in Fig. V.26.
The main frenquency at the stator outlet corresponds to the adimensioned passage frequency of
rotor blades with regard to the stator, frotor = 0.016, with its first harmonic confirming that the
rotor/stator interaction is taken into account. Similarly the main frequency observed on rotor
mass flows at inlet and outlet is the adimensioned frequency of passage of stator blades with
regard to the rotor, fstator = 0.011, with its main harmonics. The high frequency peak of low
magnitude at fvort = 0.116 in the stator spectrum is likely to correspond to the vortex shedding
at the trailing edge of the stator blades since it is not a multiple of blade passage frequency and
its magnitude is too high. This frequency is seen by the rotor at a slightly different frequency,
probably because of the chorochronic reconstruction between the rotor and the stator.
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Figure V.26: Mass flow frenquency spectrum.

Fig. V.27 provides a snapshot of three slices of the configuration colored by the entropy field
with isobar lines. The slices are located near the hub, at mid span of the blades and near the
rotor housing. It shows that strong shocks are created at the trailing edge of the stator and rotor
blades near the hub. Morover the differences between these three slices confirm that this case
is highly three-dimensional with a major impact of the tip clearance on the wake of the rotor
blades.
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(a) Slice near the hub. (b) Slice at mid span of the blades.

(c) Slice near the rotor housing.

Figure V.27: Snapshot of three slices colored by the entropy field with isobar lines.

V.4 Chapter summary

In the present chapter, we went further in the understanding of RBC schemes behaviour on more
realistic unsteady compressible flows. We looked into the capabilities of RBC schemes for the
computation of fine scale flow structures are analysed through the computation of the inviscid and
viscous Taylor-Green Vortex case. They both confirm numerically the interest of a well-designed
RBC dissipation to resolve accurately fine scale flow structures. The low dissipative and dispersive
errors introduced by RBC schemes make them excellent candidates for compressible turbulent
flow simulations, since they combine good shock capturing (c.f. Sec. III.10.3) capabilities with
high resolvability of fine flow structures.
Then, we went forward toward the application of RBC schemes to complex industrial flows. We
used RBCi on 2D and 3D unsteady turbomachinery as the VKI LS-59 turbine cascade and the
VKI BRITE HP turbine stage respectively. RBCi is more accurate and more robust than RBCr,
its finite difference counterpart, when highly deformed grids are used. This enables its application
to complex flows of industrial interest, like turbomachinery flows, for which the generation of
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pretty smooth grids is generally a very hard task. This is demonstrated by calculations of a very
severe transonic flow in the high-pressure ratio VKI BRITE HP turbine stage. The more general
use of RBC schemes to industrial flows will be further investigated in future work. This will be
done using a multiblock approach coupled with an overset grid technique where we can use RBCi
for body fitted meshes and higher order finite difference RBC schemes in Cartesian meshes.
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Chapter VI

Conclusions and perspectives

The present work was undertaken to design and assess a family of high-order Residual-Based
Compact (RBC) schemes for unsteady compressible flows with suitable dissipation properties.
Specific attention was payed to the design of a numerical dissipation term ensuring stability for
any flow conditions, while ensuring an accurate representation of flow structures up to mesh
cutoff. This was achieved through several steps.

First of all, a comprehensive study of the dissipative properties of a general family of Residual-
Based Compact schemes for 2-D and 3-D hyperbolic systems of conservation laws has been carried
out. The residual-based numerical dissipation operator has been shown to be the counterpart
of a high-order differential operator based on pure and mixed derivatives of even order. A gen-
eral criterion (Thm. III.5.1 and III.6.1) has been established for this operator to be dissipative.
Thanks to this dissipation criterion, a subset of dissipative schemes was identified from the gen-
eral family. It was shown that pre-existing versions of RBC schemes for unsteady flows [73, 101],
corrsponding to schemes of minimal complexity from the same family, do not always satisfy the
dissipation criterion, namely for the third and seventh-order accuracy. This leads to weak insta-
bility of the fully discrete scheme. Numerical examples are used to confirm the relevancy of the
proposed criterion.
Then, the dissipation and resolvability properties of RBC schemes have been quantified through
a detailed analysis of their Fourier spectra for a multidimensional linear problem. The analysis
of the modified wave number ξ∗θ associated to RBC schemes of different orders proves that, for
RBC schemes satifying the χ-criterion, ξ∗θ exhibit a negative imaginary part for any wave number
and any choice of the CFL numbers associated to space directions. As a consequence, no solution
mode can be amplified spuriously by the schemes. The modified wave number is also used to
define damping and phase errors with respect to an exact transport operator. Present results
confirm the χ-criterion studies based on truncation error analysis and show that odd-order RBC
schemes are eminently dissipative and not dispersive. For RBC schemes of higher orders (5 and
7), both dissipation and dispersion errors take very low values (less than 10−3) up to reduced
wave numbers close to π/2, i.e. to the grid resolvability limit. Then, dissipation increases sharply
so that higher frequencies are efficiently damped out. Moreover, thanks to their genuinely multi-
dimensional formulation, RBC schemes conserve good dissipation and dispersion properties even
for flow modes that are not aligned with the computational grid.
Numerical tests confirm the theoretical results and demonstrate the importance of a well-designed
dissipation operator for numerical simulations in gas dynamics. Specifically, the present residual-
based formulation ensures controlled damping of sine waves propagating along any direction with
respect to the computational mesh and with any advection speed. It also allows the computation
of unsteady multidimensional flows with strong shocks without any treatment for shock captur-
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ing. Moreover, numerical tests for a linear advection problem confirm the theoretical results on
the spectral properties of RBC schemes.

In view of computing realistic fluid flows, RBC schemes have to be extended to curvilinear
meshes. Straightforward extension of RBC schemes to structured curvilinear meshes does not
preserve the nominal accuracy and can lead to robustness problems. This is why a third-order
finite volume Residual-Based Compact scheme for irregular structured meshes, RBCi, has been
designed for the numerical simulation of compressible flows. This scheme takes into account
mesh deformations, in such a way that it is third-order on mildly distorted structured grids
and second-order on highly distorted meshes. To this purpose, suitable weighted discretisation
operators are introduced. An analysis of the Fourier symbol of the proposed spatial approxi-
mation demonstrates that the resulting discretization is dissipative and then Cauchy-stable for
all flow configurations. An investigation of the multidimensional modified wave number of the
scheme shows that, on Cartesian grids, it is somewhat more dissipative and dispersive than its
finite-difference counterpart. Specifically, the scheme dissipates more quickly ill-resolved solution
modes in the transverse direction with respect to the advection velocity. This may be considered
a drawback, but in practice ensures great robustness on highly distorted grids, where in any
case the accuracy of the straightforward finite volume extension (RBCr) is lost because of grid
deformations, while RBCi remains high-order accurate.
Again, numerical tests confirm the theoretical results and demonstrate the importance of using
a weighted scheme formulation on very irregular meshes. For all cases, RBCi is more accurate
and more robust than RBCr when highly deformed grids are used. This enables its application
to complex flows of industrial interest, like turbomachinery flows, for which the generation of
pretty smooth grids is generally a very hard task. This is demonstrated by calculations of a
very severe transonic flow in the high-pressure ratio VKI BRITE HP turbine stage. In term of
numerical cost, RBCi is more expensive than RBCr, essentially because of the calculation of
weighed operator coefficients. On a non deforming mesh, the computational CPU time of an
RBCi computation is roughly 1.27 times that of an RBCr computation. This is the price to
pay for accuracy and robustness on irregular meshes. On the other hand, it may be expected
that time savings can be made for the mesh generation task, since RBCi enables high accuracy
on computational grids of poor quality. In summary, present results suggest that RBCi may
represent a good candidate for industrial CFD applications.

After the design and the theoretical analysis of unsteady RBC schemes, we went further in
the understanding of RBC schemes behaviour on more realistic unsteady compressible flows. We
looked into the capabilities of RBC schemes for the computation of fine scale flow structures
through the computation of the inviscid and viscous Taylor-Green Vortex case. The results
confirmed the interest of a well-designed RBC dissipation to resolve accurately fine scale flow
structures. The low dissipative and dispersive errors introduced by RBC schemes make them
good candidates for compressible turbulent flow simulations, since they combine good shock cap-
turing capabilities with high resolvability of fine flow structures.
We also investigated the applicability of RBC schemes to complex industrial flows. Precisely,
RBC schemes were applied to the unsteady RANS simulations of 2D and 3D turbine configura-
tions. In both cases, the computational grids in use were highly deformed, because of the complex
geometries under investigation. In such situations, taking into account mesh deformations in the
very formulation of the numerical fluxes is of paramount importance to ensure robustness and to
avoid the appearance of spurious oscillations, as it is observed when a straightforward extension
of the numerical fluxes to curvilinear grids is used. Secondly, the numerical results show that
at least third-order accuracy is required to capture the natural unsteaduness of viscous wakes
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behind turbine blades. The second-order accurate RBC scheme predicts instead a steady wake.

To conclude, we have shown the advantage of high-order scheme for flows of increasing com-
plexity. Nevertheless, some work is still required to prove the interest of higher-order methods
for the numerical simulation of fluid flow of high geometrical and physical complexity, to ensure a
robust behaviour of the computations, and to improve their computational efficiency. The more
general use of RBC schemes to industrial flows will be further investigated in future work. An
RBCi FV extension of RBC5 and RBC7 could be done in future work but is not straightforward,
and it is possibly very costly at high-order. An alternative to that is a multiblock approach
coupled with the use of an overset grid technique such that one can use RBCi for body fitted
meshes and higher order finite difference RBC schemes in Cartesian meshes. Besides, there is
a need for increasing the efficiency in term of computational cost of these schemes for flows
governed by small time scales. In fact, the present time integration, based on the second-order
backward linear multistep scheme, is not suitable for fast unsteady flow features: in this case the
CFL number is limited to values of the order of 1 by physical considerations, i.e. by necessity of
resolving correctly small time scales. Thus, performing sub-iterations to solve nonlinear systems
of equations generated by such an implicit scheme (typically, at least 30 subiterations per time
step are required) has a dramatic impact on computational time; on the other hand, even lower
CFL numbers would be required to rule out second-order errors coming from the time integration
scheme. This is not always done at present to avoid increasing further the computational cost.
As a consequence, the present time integration scheme is penalizing both in terms of accuracy
and efficiency. Note that this is not the case when slow unsteady flows are considered, like slow
unsteadiness of the mean field in URANS: for these applications, implicit time schemes are the
best choice.
To improve accuracy and efficiency for fast unsteady flow computations, a reasonable choice
would be a Runge-Kutta time integration scheme. Nevertheless, direct coupling of RBC schemes
with Rung-Kutta (RK) schemes would lead to the inversion of broad-band matrices at each RK
stage, because of the presence of the time derivative in the RBC dissipation operator. A good
option could be that of writing the dissipation at a preceding RK stage, while modifying RK
coefficients to ensure the right order of accuracy in time. This kind of approach was studied by
Abgrall and Ricchiuto [130] for Residual Distribution schemes.

Finally, further investigations are required to better understand the shock-capturing proper-
ties of RBC schemes. A recent analytical study [99, 100] has shown that, for steady flows,
RBC schemes can provide non oscillotary shock profiles without need for limiters on the shock-
capturing correction. However, further work is needed for fast unsteady flow cases. This is of
particular importance in view of the application of RBC schemes to compressible turbulence. The
preceding developments will ultimately allow to speed up the simulation process and improve
numerical simulation capabilities over the current state-of-the-art, according to Airbus goal for
"more simulation, less testing".
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SCHEMAS COMPACTS BASES SUR LE RESIDU D'ORDRE ELEVE POUR DES 
ECOULEMENTS COMPRESSIBLES INSTATIONNAIRES. Application à de la capture 

de fines échelles. 
 

RESUME : Les solveurs de calcul en mécanique des fluides numérique (solveurs CFD) ont atteint leur 
maturité en termes de précision et d'efficacité de calcul. Toutefois, des progrès restent à faire pour les 
écoulements instationnaires surtout lorsqu'ils sont régis par de grandes structures cohérentes. Pour ces 
écoulements, les solveurs CFD actuels n'apportent pas de solutions assez précises à moins d'utiliser des 
maillages très fins. De plus, la haute précision est une caractéristique cruciale pour l'application des 
stratégies avancées de simulation de turbulence, comme la Simulation des Grandes Echelles  (LES). Afin 
d'appliquer les méthodes d'ordre élevé pour les écoulements instationnaires complexes  plusieurs points 
doivent être abordés dont la robustesse numérique et la capacité à gérer des géométries complexes. 
Dans cette thèse, nous étudions une famille d'approximations compactes qui offrent une grande précision 
non pour chaque dérivée spatiale traitée séparément mais pour le résidu r complet, c'est à dire la somme 
de tous les termes des équations considérées. Pour des problèmes stationnaires résolus par avancement 
temporelle, r est le résidu à l'état stationnaire ne comprenant que des dérivées spatiales; pour des 
problèmes instationnaires r comprend également la dérivée temporelle. Ce type de schémas sont appelés 
schémas Compacts Basés sur le Résidu (RBC). Plus précisément, nous développons des schémas RBC 
d'ordre élevé pour des écoulements instationnaires compressibles, et menons une étude approfondie de 
leurs propriétés de dissipation. Nous analysons ensuite les erreurs de dissipation et la dispersion 
introduites par les schémas RBC afin de quantifier leur capacité à résoudre une longueur d'onde donnée 
en utilisant un nombre minimal de points de maillage. Les capacités de la dissipation de RBC à drainer 
seulement l'énergie aux petites échelles sous-résolues sont également examinées en vue de l'application 
des schémas RBC pour des simulations LES implicites (ILES). Enfin, les schémas RBC sont étendus à la 
formulation de type volumes finis (FV) afin de gérer des géométries complexes. Une formulation FV des 
schémas RBC d'ordre trois préservant une précision d'ordre élevé sur des maillages irréguliers est 
présentée et analysée. Des applications numériques, dont la simulation d'écoulements instationnaires 
complexes de turbomachines régis par les équations de Navier-Stokes moyennées et des simulations 
ILES d'écoulements turbulents dominés par des structures cohérentes   dynamiques ou en décroissance, 
confirment les résultats théoriques.  

Mots clés : schéma compact basé sur le résidu, ordre élevé, instationnaire, méthode numérique. 

HIGH-ORDER RESIDUAL BASED COMPACT SCHEMES FOR UNSTEADY 
COMPRESSIBLE FLOWS. Application to scale resolving simulations. 

ABSTRACT : Computational Fluid Dynamics (CFD) solvers have reached maturity in terms of solution 
accuracy as well as computational efficiency.  However, progress remains to be done for unsteady flows 
especially when governed by large, coherent structures. For these flows, current CFD solvers do not 
provide accurate solutions unless very fine meshes are used. Moreover, high-accuracy is a crucial feature 
for the application of advanced turbulence simulation strategies, like Large Eddy Simulation (LES). In order 
to apply high-order methods to complex unsteady flows several issues needs to be addressed among 
which numerical robustness and the capability of handling complex geometries. In the present work, we 
study a family of compact approximations that provide high accuracy not for each space derivative treated 
apart but for the complete residual r, i.e. the sum of all of the terms in the governing equations. For steady 
problems solved by time marching, r is the residual at steady state and it involves space derivatives only; 
for unsteady problems, r also includes the time derivative. Schemes of this type are referred-to as 
Residual-Based Compact (RBC). Precisely, we design high-order finite difference RBC schemes for 
unsteady compressible flows, and provide a comprehensive study of their dissipation properties. The 
dissipation and dispersion errors introduced by RBC schemes are investigated to quantify their capability 
of resolving a given wave length using a minimal number of grid-points. The capabilities of RBC dissipation 
to drain energy only at small, ill-resolved scales are also discussed in view of the application of RBC 
schemes to implicit LES (ILES) simulations. Finally, RBC schemes are extended to the Finite Volume (FV) 
framework in order to handle complex geometries. A high-order accuracy preserving FV formulation of the 
third-order RBC scheme for general irregular grids is presented and analysed. Numerical applications, 
including complex Reynolds-Averaged Navier-Stokes unsteady simulation of turbomachinery flows and 
ILES simulations of turbulent flows dominated by coherent structure dynamics or decay, support the 
theoretical results. 

Keywords : Residual-based scheme, high-order, unsteady, numerical method. 


