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Abstract

Elliptic Curve Cryptography (ECC) has gained much importance in smart cards because of
its higher speed and lower memory needs compared with other asymmetric cryptosystems such
as RSA. ECC is believed to be unbreakable in the black box model, where the cryptanalyst has
access to inputs and outputs only. However, it is not enough if the cryptosystem is embedded on
a device that is physically accessible to potential attackers. In addition to inputs and outputs,
the attacker can study the physical behaviour of the device. This new kind of cryptanalysis is
called Physical Cryptanalysis where two main families arise: Side-Channel and Fault Attacks.
Side-Channel Attacks exploit information leaking during the execution of a cryptographic algo-
rithm embedded in a device. In a Fault Attack, the attacker forces the device into an abnormal
mode of operation. The attacker can potentially derive the secrets stored in the system from
the wrong results. This thesis focuses on physical cryptanalysis of ECC.

The first part gives the background on ECC. From the lowest to the highest level, ECC
involves a hierarchy of tools: Finite Field Arithmetic, Elliptic Curve Arithmetic, Elliptic Curve
Scalar Multiplication and Cryptographic Protocol. Depending on the physical attack, the crypt-
analyst must have a certain knowledge of the implementation to a certain level. Therefore, each
level of the hierarchy is described in detail in a chapter.

The second part exhibits a state-of-the-art of the different physical attacks and countermea-
sures on ECC. For each attack, the context on which it can be applied is given while, for each
countermeasure, we estimate the time and memory cost. We propose new attacks and new
countermeasures. Then, we give a clear synthesis of the attacks depending on the context. This
is useful during the task of selecting the countermeasures. Finally, we give a clear synthesis of
the efficiency of each countermeasure against the attacks.



Résumé

La Cryptographie sur les Courbes Elliptiques (abréviée ECC de I’anglais Elliptic Curve Cryp-
tography) est devenue tres importante dans les cartes a puces car elle présente de meilleures
performances en temps et en mémoire comparée a d’autres cryptosystemes asymétriques comme
RSA. ECC est présumé incassable dans le modele dit “Boite Noire”, ot le cryptanalyste a unique-
ment acces aux entrées et aux sorties. Cependant, ce n’est pas suffisant si le cryptosysteme
est embarqué dans un appareil qui est physiquement accessible & de potentiels attaquants. En
plus des entrés et des sorties, I'attaquant peut étudier le comportement physique de 'appareil.
Ce nouveau type de cryptanalyse est appelé cryptanalyse physique, qui se distinguent en deux
grandes familles: attaques par canal auxiliaire et attaques en fautes. Les attaques par canal
auxiliaire exploitent I'information émanant de l'appareil pendant l’exécution d’un algorithme
cryptographique. Concernant les attaques en fautes, 'attaquant force 'appareil a effectuer
un mode d’opérations anormal. A partir des faux résultats, attaquant peut potentiellement
dériver les secrets stockés sur la carte. Cette these porte sur les attaques physiques sur ECC.

La premiere partie fournit les pré-requis sur ECC. Du niveau le plus bas au plus élevé, ECC
nécessite les outils suivants : 'arithmétique sur les corps finis, 'arithmétique sur courbes ellip-
tiques, la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques.
Les attaques physiques nécessitent une certaine connaissance de I'implémentation visée jusqu’a
un certain niveau dans la hiérarchie. Ainsi, chaque niveau est décrit de facon détaillée dans un
chapitre.

La deuxieme partie expose un état de l'art des différentes attaques physiques et con-
tremesures sur ECC. Pour chaque attaque, nous donnons le contexte dans lequel elle est ap-
plicable. Pour chaque contremesure, nous estimons son coiit en temps et en mémoire. Nous
proposons de nouvelles attaques et de nouvelles contremesures. Ensuite, nous donnons une
synthese claire des attaques suivant le contexte. Cette synthese est utile pendant la tache du
choix des contremesures. Enfin, une synthese claire de Defficacité de chaque contremesure sur
les attaques est donnée.
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Description des travaux

La cryptographie est une science qui permet de protéger des messages. Avant l’envoi d'un
message, il est d’abord transformé de fagon a ce qu’il soit incompréhensible sauf pour le des-
tinataire du message : c’est le chiffrement. La confidentialité est alors assurée. La méthode
inverse est appelé le déchiffrement. En plus de la confidentialité, la cryptographie remplit
d’autres fonctionnalités telles que I'authentification et 'intégrité.

Par le principe de Kerckhoffs, la sécurité d’un cryptosystéme doit uniquement reposer sur
une donnée secrete et non sur les méthodes utilisées pour chiffrer ou déchiffrer des messages.
Cette donnée secrete est appelée clé. Deux grandes familles de cryptosystemes existent: la
cryptographie symétrique et asymétrique.

Dans un cryptosysteme symétrique, la méme clé est utilisée pour chiffrer et déchiffrer des
messages.

Dans un cryptosysteme asymétrique, deux clés sont utilisées. Une clé est publiquement
diffusée et sert a effectuer des procédures publiques telles que le chiffrement de messages ou la
vérification de signatures. Cette clé est appelée clé publique. Lorsqu’un message est chiffré, per-
sonne n’est capable de le déchiffrer sauf le propriétaire de la seconde clé, appelée clé privée. Le
détenteur de cette clé privée est aussi le seul capable de signer des messages. La cryptographie
asymétrique apporte plus de fonctionnalités que la cryptographie symétrique mais elle nécessite
des calculs beaucoup plus importants que la cryptographie symétrique. Généralement, la cryp-
tographie asymétrique est utilisée au départ d’une communication entre deux entités pour
I’authentification et I’échange d’une clé symétrique. Une fois fait, les deux entités commu-
niquent en utilisant un cryptosysteme symétrique avec la clé échangée que seules ces entités
connaissent. RSA fut le premier cryptosystéme asymétrique, introduit par Rivest, Shamir et
Adleman en 1977. A la fin des années 1980, Koblitz et Miller ont présenté 1'utilisation des
courbes elliptiques pour des applications cryptographiques. Cette these se focalise sur la Cryp-
tographie sur Courbes Elliptiques (abréviée ECC, de l'anglais Elliptic Curve Cryptography).

La sécurité d’'un cryptosysteme est assurée par de fortes preuves mathématiques dans le
modele de la boite noire. Dans ce modele, 'attaquant a uniquement acces aux entrées et aux
sorties.

La cryptographie est beaucoup utilisée dans les cartes a puces. Un nouveau type d’attaques
sur les cartes a puces a vu le jour a la fin des années 1990. Kocher a montré qu’une sim-
ple analyse du temps d’exécution était suffisante pour récupérer la clé utilisée dans la carte
ciblée. Depuis, de nombreuses attaques de ce type ont émergé. Elles se basent sur I’observation
du comportement de la cible pendant I'exécution d’un algorithme cryptographique. Ce type
d’attaques est appelé attaques physiques. Les preuves de sécurité dans le modele de la boite
noire ne sont pas suffisantes dans ce cas. Bien sir, de nombreuses méthodes existent pour
contrer ces attaques.
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Cette these s’adressent aux designers développant des applications cryptographiques a base
de courbes elliptiques embarquées sécurisées. La premiere partie donne les pré-requis de ECC.
La seconde partie se focalisent sur les attaques physiques et contremesures sur ECC. En plus d’un
état-de-’art complet, nous introduisons de nouvelles attaques et de nouvelles contremesures.

Partie I : Cryptographie sur Courbes Elliptiques

Cette partie fournit les pré-requis sur ECC. Du niveau le plus bas au plus élevé, ECC nécessite
les outils suivants : Darithmétique sur les corps finis, 'arithmétique sur courbes elliptiques,
la multiplication scalaire sur courbes elliptiques et enfin les protocoles cryptographiques. Les
attaques physiques nécessitent une certaine connaissance de I'implémentation visée jusqu’a un
certain niveau dans la hiérarchie. Ainsi, chaque niveau est décrit de facon détaillée dans un
chapitre.

Cette partie est en fait un état-de-I’art des différentes méthodes de calcul sur les courbes
elliptiques.

Chapitre 1 : Définition des Courbes Elliptiques

Ce chapitre décrit les courbes elliptiques et leurs propriétés. A savoir, une courbe elliptique
sur un corps K de caractéristique différente de deux et trois, est défini par son équation de
Weierstraf3 réduite :

E:y?=a34ax+b .
avec a,b € K vérifiant 4a> + 27b% # 0.

Dans ce chapitre, nous donnons également les propriétés principales des courbes elliptiques.
Parmi celles-ci, nous insistons sur leur structure de groupe car c’est ce qui fait des courbes
elliptiques de bons outils pour la cryptographie. Les points de la courbe elliptiques forment un
groupe abélien additif, en suivant la regle de la sécante tangente illustré ci-dessous sur R.

|
I
|
i

Q —(P+Q K\,
\ | - 72 K_/L
P+Q |

Figure 1: Addition et doublement de points sur la courbe y? = 23 — 2z + 1 sur R

Nous présentons également le systeme de coordonnées projectives. Dans ce systeme, les
points de la courbe sont définis avec trois coordonnées (X,Y,Z) au lieu de deux (z,y). Ce
systeme et ses variantes (tel que les coordonnées Jacobiennes) sont tres utilisés car ils permettent
d’éviter d’effectuer de nombreuses inversions modulaires trés cotiteuses.



Chapitre 2 : Arithmétique sur les Corps Finis

Les courbes elliptiques les plus utilisées sont les courbes elliptiques définies sur un corps premier
de grande caractéristique. Ainsi, les opérations de bases sur les courbes elliptiques, mais aussi
sur RSA, sont les opérations sur le corps I, avec p > 3. Ces opérations sont trés importantes car
elles doivent étre tres performantes. Elles sont donc tres étudiées tant au niveau algorithmique
qu’au niveau de I'implémentation logicielle ou matérielle.

Certaines attaques physiques se focalisent sur ce niveau le plus bas de la hiérarchie. Nous
décrivons donc en détails certaines implémentations pour une grande compréhension de ces
attaques. Nous décrivons notamment en détails la multiplication de Montgomery qui tres
largement répandue.

Chapitre 3: Arithmétique sur les Courbes Elliptiques

De nombreuses formules existent pour calculer ’addition de deux points ou le doublement d’un
point. On trouve aussi d’autres formules plus exotiques telles que I'addition conjugué de deux
points P et @) qui calcule P+ @Q et P — () au sein de la méme formule.

Ce chapitre synthétise les différentes formules les plus utilisées. Une synthese sur le cout
des formules en temps et en mémoire est fourni a la fin de ce chapitre.

Chapitre 4 : Multiplication Scalaire

La multiplication scalaire sur courbes elliptiques (EcsM de 'anglais Elliptic Curve Scalar Mul-
tiplication) est l'opération qui consiste a calculer

KP=P+---+P,
—_——

k fois

a partir d’un point P de la courbe donnée et d'un entier k.

Ce chapitre donne les algorithmes de multiplication scalaire les plus utilisés. Les multipli-
cations scalaires sont répertoriées en fonction de la régularité. Un ECSM est dit régulier si, a
chaque itération, les mémes opérations sur la courbe sont effectués quel que soit la valeur du
scalaire.

Cette distinction est importante pour la sécurité physique puisqu’une multiplication scalaire
réguliere est protégée face a I'une des premieres attaques en canaux auxiliaires : 'attaque Simple
Side-Channel Analysis.

De méme que pour les formules sur courbes elliptiques, une syntheése est donnée a la fin du
chapitre sur le cout des différents algorithmes de multiplication scalaire.

Chapitre 5 : Protocoles Cryptographiques

Ce chapitre décrit certains protocoles cryptographiques basés sur les courbes elliptiques. Le
protocole de signature ECDSA, le protocole d’échange de clés ECDH et le protocole de chiffrement
EC-ELGAMAL sont décrits. Voici la procédure de signature ECDSA qui sera utile par la suite.



10 Description des travaux

Algorithm 1 ECDSA Signature
Entrée: clé privée d, un entier encodé m € [0, p — 1] représentant un message
Sortie: Signature (r,s)
& t—1)
Q + [kIG
T < 2 mod t
if r =0 then
go to ligne 1
Eine <k~ mod t
$ 4 kiny(dr +m) mod ¢
if s =0 then
go to ligne 1

H
=

return (r,s)

Toutes les procédures privées de ces protocoles nécessitent le calcul d’une multiplication
scalaire [k]P avec k devant rester impérativement secret sinon la clé privée du systeme cryp-
tographique est retrouvée.

Chapitre 6 : Sécurité de ECC

La sécurité de ECC dans le modele de la boite noire repose sur la difficulté du Logarithme
Discret sur Courbes Elliptiques (ECDLP de l'anglais Elliptic Curve Discrete Logarithm
Problem) ou de ses variantes. Le probleme ECDLP consiste & retrouver k en ayant acces & P et

Q= [KP.

Ce probléeme est considéré comme difficile. Actuellement, les meilleurs algorithmes permet-
tant de le résoudre sont I’algorithme rho de Pollard [Pol78] et 'algorithme Baby-step Giant-Step
[Sha71]. IIs ont tous les deux une complexité de O(v/t) ol t = ord(P). Lors d’une application
cryptographique, si [ est le parametre de sécurité (par exemple 128 ou 256), la courbe elliptique
est choisie de telle sorte qu’il existe un point P d’ordre ord(P) =~ 2%.

Généralement, les attaques physiques visent a récupérer le scalaire k avec des méthodes
totalement différentes, sans résoudre le ECDLP. Heureusement, il existe aussi des méthodes
pour parer ces attaques. C’est le sujet de la seconde partie de la these.

Partie II : Attaques physiques et contremesures sur ECC

Cette partie décrit les différentes attaques physiques et contremesures sur ECC. Les attaques
et contremesures sont treés nombreuses et doivent étre décrites suivant une méthodologie. Le
chapitre 7 explique comment les différentes attaques seront décrites. Le chapitre 8 est le coeur
de la these car c’est dans ce chapitre qu’on liste toutes les attaques et contremesures. Nous
présentons également de nouvelles attaques et contremesures. Dans le chapitre 9, nous ex-
pliquons comment il est possible d’effectuer des attaques en faute différentielles sur ECDSA.
Enfin, les chapitres 10 et 11 sont des syntheses des attaques et des contremesures.



11

Chapitre 7 : Caractérisation

Etant donné le tres grand nombre d’attaques physiques sur ECC, il est important de choisir des
termes précis pour les décrire. Les attaques sont classées en trois catégories :

e Attaques par canaux auxiliaires. L’attaquant observe le comportement de la cible
sans le perturber. Jusqu’a maintenant, les différents attaques par canaux auxiliaires sont:

— Attaques temporelles. L’attaquant déduit de I'information sur le secret en analysant
le temps d’exécution.

— Attaques par analyse simple. L’attaquant observe les différents motifs de la
consommation courant ou du rayonnement électromagnétique pendant 1’exécution
d’un algorithme cryptographique.

— Attaques par templates. L’attaquant contrdle une carte (c’est a dire qu’il peut
choisir les données mais aussi les secrets) ayant exactement les mémes caractéristiques
physiques que la carte ciblée. Il récupere la trace de consommation courant ou du
rayonnement électromagnétique de sa carte qu’il controle en faisant varier des sous-
parties de la clé. Cette phase constitue les templates. Il récupere ensuite la trace de
la cible et compare celle-ci avec les templates pour conclure quel secret est le plus
probable.

— Attaques en canaux auxiliaires verticales. Plusieurs ECSMs sont exécutés et
l'attaquant récupere la trace de consommation a chaque fois. Un outil statistique
est appliqué sur les traces pour déduire les valeurs utilisées et donc le secret.

— Attaques en canaux auxiliaires horizontales. Une seule trace est disponible.
L’attaquant utilise des outils statistiques sur des segments de la trace.

e Attaques en faute. L’attaquant perturbe le systeme et les résultats éventuellement
incorrects peuvent déduire de I'information. Pour ECC, les différentes attaques en faute
sont :

— Attaques Safe-Error. L’attaquant injecte une faute sur une zone précise a un
moment précis de I'exécution. Le résultat final sera incorrect uniquement si le secret
vérifie certaines conditions.

— Attaques par courbes faibles. Une donnée est perturbée. L’ECSM est effectué
sur une courbe qui est plus faible que la courbe de départ.

— Attaques en fautes différentielles. Plusieurs ECSMs sont exécutés. A chaque
fois, une faute est introduite. Les résultats incorrectes sont comparés avec les bons
résultats ou entre eux pour déduire de I'information sur le secret.

e Attaques combinées. L’attaquant peut combiner deux attaques ou plus, éventuellement
une attaque par canaux auxiliaires et en faute.

Le contexte de chaque attaque sera aussi décrit. En effet, certaines attaques ne fonctionnent
que sur certaines implémentations, ou certaines courbes, ou si ’attaquant peut choisir le point
de base de 'EcsM. Pour chaque attaque, nous donnons les informations suivantes:

e Récupération de la clé. Une description de la procédure de récupération de la clé est
donnée.

e Particularité de la courbe elliptique. Nous indiquons si I'attaque fonctionne unique-
ment sur certaines courbes.
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e Particularité de I'implémentation. Nous indiquons si 'attaque fonctionne unique-
ment sur des implémentations particulieres.

e Nombre d’exécutions. Le nombre d’exécutions nécessaire pour retrouver l'intégralité
du scalaire est donné.

e Acces au point de base. Nous indiquons si I'attaquant doit choisir le point de départ,
ou s’il doit le connaitre ou s’il n’a aucune importance.

e Acces au résultat. Nous indiquons si 'attaquant doit connaitre ou non le résultat de
I’'ECSM.

e Modele de faute. Pour les attaques en faute, nous indiquons la précision de la faute
nécessaire pour que 'attaque puisse fonctionner.

Chaque contremesure a un certain cout. Nous précisons le cout en utilisant les notations
suivantes :

® ECSM; ,: temps d’exécution d'un ECSM avec un scalaire de [ bits et un module de n bits,

e ECADD,,, ECDBL,, C-ECADD,,: temps d’exécution d'une addition, d’un doublement et d’une
addition conjuguée respectivement avec un module de n bits,

® ADD;, SQR,,, MUL,,, DIV,,: temps d’exécution d’une addition/soustraction, d’un carré, d’une
multiplication et d’une division respectivement, avec des entiers de n bits,

e MADD,,, mSQR,,, MMUL,, mINV,: temps d’exécution d’'une addition/soustraction modu-
laire, d’'un carré modulaire, d’'une multiplication modulaire et d’une inversion modulaire
respectivement, avec des entiers de n bits,

® RNG,: temps d’exécution de la génération d’'un nombre aléatoire de n bits,
® RPG,,: temps d’exécution de la génération d’une permutation aléatoire de m éléments,
e CRC,: temps d’exécution d’un contréle de redondance cyclique d’un entier de n bits,

e MEM,,: bloc mémoire pour stocker un entier de n bits.

Chapitre 8 : Attaques et Contremesures

C’est le coeur de la these. Ce chapitre liste les attaques physiques et contremesures sur ECC,
avec une précision sur la description de chaque attaque et le colit de chaque contremesure en
utilisant les notations du chapitre précédent.

Quand les designers proposent des méthodes pour se prémunir contre une classe d’attaques
ou une attaque en particulier, les cryptanalystes proposent de nouvelles attaques pour con-
tourner ou rendre totalement inefficace certaines contremesures. C’est réellement un jeu du
chat et de la souris entre les attaques et les protections. Nous avons choisi de présenter les
attaques et les contremesures avec une structure d’arbre pour correspondre a cette idée.

Nous décrivons ci-dessous nos attaques et contremesures nouvelles qui ont été publiées ou
vont étre publiées dans des conférences.
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Same-Values Analysis sur la contremesure d’atomicité

La contremesure d’atomicité consiste a réécrire les formules d’addition et de doublement de
point en utilisant les mémes patterns atomiques [CCJ04]. Un pattern atomique est une séquence
d’opérations dans le corps de base.

Cette contremesure contrecarre l'attaque par analyse de courant simple classique introduite
dans [Cor99] car lattaquant n’est pas capable de différencier une addition d’un doublement.
Cette contremesure a été améliorée dans [GV10].

Notre proposition d’attaque est d’identifier les paires de multiplications ou il y a un opérande
en commun au sein de trois patterns atomiques seulement si ces trois patterns correspondent a
une addition suivi d’un doublement. Cette suite d’opérations est effectuée si le bit courant du
scalaire est différent de 0 lors de I'exécution de ’'ECSM. Les opérandes en commun sont illustrés
dans la Figure 2 avec des boites numérotées. Les opérandes en commun ont le méme numéro.
Seize paires de multiplications peuvent étre analysées.

ECADD - part 1 ECADD - part 2 modECDBL
2 2 2
L T 1,2,14 T 9,10 T« 12
2. * * Th+~Y1+Y
3. Ty + Y1 x 173715 T, + T5 x T} Z3 + Th % 14,15,16
4. * * T, T+ 1T
5, Ts « Yy x 4’5 Ts « T} x 9’11 Ty« Th x Y,
6. * * Ts « T5+ 13
7. T3 < 7 X Ty Ty + 576 X 10’11 Ty Ty x T;
8. * * T« Ty + T
9. * * T+ T + W,
2
10. T, « 4’6 Ts + T2 Ty « T2
11. Ty + Ty x 8 Zs3 Ty % 2,3,16 T, + Tg % 13
12. * Ty« T4+ Ty T5 < Wi+ Wy
13 To Ty, —Ts Te < T — T4 T3 T5—1Ty
14. T5<¥7XX1 Ty < T5 x T3 Wg(‘TQXT5
15. * X3+ 15 —T;5 Xy T5-1Ty
16. * Ty« T, — X3 Te Ty — X3
17. Te < 12713 X 8 T3+ T, xT T, + 1T x T
18. Te < T — Ts Y315 -1y Yo T, —Ts

Figure 2: Opérandes en commun dans seulement si les patterns correspondent & une addition
de points (deux premieéres colonnes) suivi d'un doublement (troisieme colonne)

Pour distinguer les opérandes en commun, nous proposons deux méthodes différentes. La
premiere méthode fournit une attaque verticale, la seconde fournit une attaque horizontale plus
puissante.

La premiere méthode consiste a analyser plusieurs traces correspondant a plusieurs ECSMs.
Une paire de multiplication parmi les seize est choisie arbitrairement. Ensuite, deux variables
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aléatoires sont construits a partir des traces. La variable X est construite a I’endroit temporelle
correspondant a la premiere multiplication et la variable Y correspondant a la deuxieme mul-
tiplication de la paire comme illustrée dans la Figure 3. Le coefficient de corrélation est calculé
entre ces deux variables. Ce coefficient est élevé si pour chaque paire de multiplication, on a
effectivement un opérande en commun.

X Y

W.M‘fﬁmgN‘MWMMF‘WWM 'ﬂﬁqwiﬂi‘t{w’ﬁwi
A A, 0 N,

A

Figure 3: Construction des variables aléatoires pour une détection de méme valeurs

wwm',p”n.ww‘w«

Dans la deuxieéme méthode, nous utilisons une technique décrite dans I'attaque Big Mac
[Wal01]. Soient T3, 7% les traces durant le calcul de respectivement deux multiplications A x
B mod P, C x Dmod P, avec A # C. A partir de Ty, 75, la méthode Big Mac consiste a
affirmer si C' = D. Le succes de cette attaque dépend de la taille des entiers manipulés. Plus
les entiers sont grands, plus les chances de succes de la distinction sont élevées. Ainsi, cette
attaque fonctionne tres bien sur RSA mais pas sur ECC car les entiers manipulés sont beaucoup
plus petits (256 bits pour ECC face & 2048 pour RSA pour atteindre le méme niveau de sécurité).

Nous avons étendu cette méthode pour attaquer la contremesure d’atomicité. En effet,
comme indiqué précédemment, on peut comparer non pas une seule paire de multiplications
mais seize. Le grand nombre de paires de multiplication que nous pouvons comparer permet
de compenser la petite taille des entiers.

Nous avons testé cette attaque expérimentalement et nous avons obtenu de tres bons
résultats.

Décalage de la Courbe par Isomorphisme

Nous présentons notre contremesure contre l’attaque Refined Side-Channel Analysis (RSCA)
[Gou03]. Cette attaque prend avantage de points particuliers de la forme Py = (0,y). Ce point
va apparaitre durant le calcul de 'ECSM uniquement sous certaines conditions du scalaire secret.

Notre contremesure, publiée & [DGH™12], consiste & changer de courbe de départ par isomor-
phisme. L’isomorphisme ¢ est choisi de telle sorte que I'image du point de départ P = (zp,yp)
vaut ¢(P) = P’ = (0,yp).

Les courbes E and E’ d’équations

E: y? = 23 + aux + ag,
E': y? =23+ dya® + djx + a
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sont isomorphiques sur ), si et seulement s'ils existent u € F), et r € F;, tels que le changement
de variables

(337 y) - (’u’_Q(‘r - T)v u_3y)

transforme équation E en I’équation E’ avec :

u?ay, = 3r
uta), = ay+3r?
ubay = ag+rag+r3.

Si P = (xzp,yp) est le point de base, il suffit de choisir u = 1 et r = xp pour obtenir le résultat
attendu. Cet isomorphisme est illustré a la Figure 4.

Figure 4: Décalage par isomorphisme avec E: y?> = 23 —3z+3 et E': y> = 23 — 622+ 92+ 1 .

Malheureusement, E’ n’est pas sous sa forme d’équation de Weierstrafl réduite. Les for-
mules classiques ne s’appliquent pas. Il faut les modifier et elles ont un surcotit. Cependant, ce
surcolit est compensé par le fait que le point de base est P’ = (0, yp). Nous pouvons simplifier
les formules lorsqu’on additionne un point avec P’ ou —P’. Pour certains ECSMs, il est méme
avantageux d’appliquer la contremesure.

La sécurité contre I'attaque RSCA est assurée par des théoremes que nous détaillons dans
le mémoire. L’idée est que P’ et —P’ sont les seules points ayant une coordonnée x a zéro. Le
point P’ est le point de base de I'ECSM, ainsi ce point ne peut apparaitre en tant que point
intermédiaire en faveur de I'attaquant.

Same-Values Analysis classique

Nous décrivons notre attaque publiée & [MGDT12]. L’idée de I'attaque est de profiter de points
spéciaux. Ces points ont la particularité suivante. Pendant leur doublement, deux variables
intermédiaires ont la méme valeur.

L’attaquant identifie un point particulier Psya. Il choisit le point de base de I'ECsM de telle
sorte Pgya apparaisse pendant I’'ECSM seulement si le bit courant visé est égal a 1. L’attaquant
déduit ainsi le scalaire secret de fagon récursive.
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Pour détecter si le point particulier est effectivement apparu durant le calcul de I'EcsM,
nous proposons deux méthodes différentes.

La premiere correspond a une attaque verticale car plusieurs traces sont nécessaires. Cette
méthode est similaire a 'attaque verticale contre la contremesure de ’atomicité et est illustré
a la Figure 3.

Pour la seconde méthode, il nous faut décrire des points ayant des conditions plus fortes
que précédemment. En plus de faire intervenir deux mémes valeurs durant le doublement, ces
valeurs sont ensuite utilisées de la méme fagon. Typiquement, ces valeurs seront mises au carré.
La différence des traces correspondant au calcul du carré modulaires des deux valeurs permet
de révéler si les valeurs sont justement identiques.

Attaque sur la conversion de coordonnées projectives en coordonnées affines

Cette attaque a été présentée & [MMNT13]. Les coordonnées projectives ou Jacobiennes per-
mettent d’accélérer les calculs durant 'EcsM. A la fin du calcul, le résultat est converti en coor-
données affines. Notre attaque consiste a injecter une faute pendant la conversion et récupérer
les coordonnées projectives ou Jacobiennes du point @) = [k]P. Naccache, Smart et Stern ont
montré que lorsque le résultat de 'ECSM était fourni en coordonnées projectives ou Jacobiennes,
Pattaquant peut retrouver quelques bits de k [NSS04].

La procédure suivante convertit le point en coordonnées Jacobiennes P = (X,Y,Z) =
(xZ2,yZ3,Z) en coordonnées affines (,y).

7 1

[\

CONVERT(X,Y, Z) = X -
Y .

T
s
s
t-r return(z,y)

@+ 8 n 3
TTTTT

Notre attaque consiste & injecter une faute juste apres I'étape s < r2. La valeur corrompue
s + e donne les équations suivantes :

X(s+e) =7 =x+a2%,

IS
I

Y(s+er=179=y+yZ .

<
Il

Ensuite, nous proposons différentes méthodes pour récupérer la valeur de Z manquante a
partir de un ou plusieurs résultats incorrects Z,7y. Les méthodes proposées dépendent de la
taille de la faute.

Notre attaque permet de récupérer les coordonnées projectives ou Jacobiennes du résultat
de PECSM et ainsi appliquer I'attaque de [NSS04].

Chapitre 9: Attaques en Faute Différentielles sur ECDSA

Certaines attaques en faute différentielles nécessitent de comparer un résultat corrompu avec
le résultat correct d’'un EcsM pour déduire quelques bits du scalaire.

Lors d’une signature ECDSA (Algorithme 1), le scalaire est choisi aléatoirement pour chaque
nouvelle signature. Ainsi, la comparaison entre un résultat de ECSM corrompu et le bon résultat
semble infaisable.
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Nous avons remarqué que c’est en fait possible. Gréace a un résultat de ECSM corrompu,
fourni avec la signature corrompue, il est possible de récupérer le bon résultat de 'ECcsM. Voici
la méthode utilisée.

Nous supposons que, durant la procédure de signature, une faute est introduite pendant le
calcul de Q = [k]G' = (zg,yq), ce qui donne le mauvais résultat Q = (5:Yp)- La signature
incorrecte (7, §) vérifie:

Qmodt

r=x
§ = kinov(dF +m) mod ¢

A partir de (7, 8), attaquant peut calculer :

w = 5! mod ¢
u = w-m mod ¢t
Uy = W-T mod ¢t
R = [mlG+[wlP= 2 6+ 5] P= ] o+ [#5] ¢

= | dme=me

Le point R est en fait la bonne valeur de Q = (zg,yg) = [k]G qui était censée étre calculée au
départ. L’attaquant retrouve z¢,yq et x5 mod ¢. Il peut ainsi appliquer certains attaques en
faute différentielles car il peut comparer le bon et le mauvais résultat.

Chapitre 10: Résumé des Attaques de Facon Contextuel

Dans le chapitre précédent, pour chaque attaque décrite, nous fournissons le contexte de
I'attaque. Dans ce chapitre-ci, une synthese des attaques au niveau contextuelle est donnée.
Cette synthese est tres utile pour un designer car il peut vérifier tres rapidement si des attaques
sont faisables suivant I'application qu’il est censé développer. Si certaines attaques ne sont pas
faisables, une protection n’est pas nécessaire et 'application peut ainsi étre plus rapide.

Chapitre 11: Syntheése des Attaques et des Contremesures

Ce chapitre donne une synthese de l'efficacité de chaque contremesure contre chaque attaque.
Toutes les attaques et contremesures de cette these sont répertoriées sous forme d'un tableau
pour un affichage clair de I'interaction entre les attaques et les contremesures.

Conclusion et Perspectives

Dans cette these, nous avons étudié les attaques physiques sur ECC. Pour chaque attaque, nous
détaillons le contexte dans lequel 'attaque est faisable. Aussi, pour chaque contremesure, nous
détaillons son cout. Nous avons choisi de présenter les attaques et les contremesures suivant
une structure d’arborescence pour clairement indiquer si une attaque a été présentée contre une
contremesure en particulier ou si elle est plus générale. De la méme facon, nous pouvons voir
si une contremesure couvre une attaque en particulier ou si elle est plus générale.

Nous introduisons de nouvelles attaques appelées Same-Values Analysis. Les attaques sont
nommées ainsi car elles se basent sur des mémes valeurs qui sont répétées au sein d’'un ECSM.
Elles différent sur I'implémentation visée ou sur la méthode de détection de l'apparition des
mémes valeurs.
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Nous introduisons également une nouvelle attaque en faute différentielle. A la différence des
autres attaques en faute, ou la faute est introduite avant ou pendant 'ECSM, une faute est ici
introduite pendant la conversion de coordonnées projectives a affines a la fin du calcul.

Nous présentons également une contremesure contre I’attaque Refined Side-Channel Anal-
ysis (RSCA). L’attaque RSCA repose sur I'apparition d’un point particulier de la forme (0, y).
Nous proposons d’utiliser un isomorphisme entre les courbes elliptiques pour contréler le point
particulier génant. Son apparition ne révele rien sur le scalaire secret.

Enfin, nous montrons que les attaques en faute différentielles peuvent s’appliquer sur ECDSA,
qui est un protocole de signature probabiliste.

Dans cette these, nous fournissons un état-de-I’art complet sur les attaques physiques sur
ECC. A I’avenir, de nouvelles attaques vont inévitablement survenir. De méme, de nouvelles
contremesures émergeront. Elles peuvent étre intégrées au fur et & mesure dans I'état-de-’art
en suivant la méme méthodologie.

Il serait intéressant d’étendre ce travail a d’autres cryptosystemes asymétriques tels que RSA
ou ceux basés sur le couplage. Une autre idée serait de présenter un état-de-I’art commun entre
ces cryptosystemes d’une certaine facon. En effet, de nombreuses similarités subsistent entre ces
cryptosystemes. D’abord, le méme module d’arithmétique modulaire est généralement utilisé
pour RSA, ECC et la cryptographie a base de couplage. Ensuite, les méthodes de multiplication
scalaire pour ECC et le couplage sont similaires aux méthodes d’exponentiations pour RSA.
Ainsi, des attaques et contremesures sont également similaires.
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Introduction

Cryptography formerly referred to the art of protecting messages. Before sending a message,
it is first encoded in a way that makes it seem nonsensical. This process is called encryption.
Only the intended receiver can read it by applying the inverse process, the decryption. The
processes are known by the sender and the receiver only. Confidentiality of the message is then
ensured.

Following the evolution of telecommunications, cryptography also changed. Modern cryp-
tography, highly influenced by the Data Encryption Standard (DES) in the 1970s, is no more an
art but a science. Today, in addition to confidentiality, cryptography brings new functionalities
such as authentication, i.e. the confirmation of an entity’s identity, and integrity, i.e. the con-
firmation that messages received have not been modified by an unauthorized entity, and many
others.

By Kerckhoffs’s principle, the security of a cryptosystem should rely on secret data only,
rather than on the very methods used for encoding and decoding messages. These methods will
necessarily be discovered somehow. Such a secret is called a key. Two families of cryptosystems
arise: symmetric and asymmetric cryptosystems.

In a symmetric cryptosystem, the same key is used for both encryption and decryption.
It must be kept secret by the entities who want to communicate. Nowadays, encryption and
decryption are very fast and are suitable for confidentiality. The DES is in fact a symmetric
cryptosystem.

In an asymmetric cryptosystem, two keys are used. One key is broadcast. It is used for pub-
lic processes such as encryption or verification of signatures. This key is called the public key.
When a message is encrypted, no one can decrypt it, except the owner of the second key called
the private key. The owner of the private key is also the only one who can sign messages. Asym-
metric cryptosystems are interesting because they are suitable for authentication. However, the
computations they involve are a lot slower than those involved by symmetric cryptosystems.
This is because they rely on computationally costly mathematical tools such as arithmetic on
very large integers. RSA is the first asymmetric cryptosystem, introduced by Rivest, Shamir
and Adleman in 1977. Koblitz and Miller independently introduced the use of elliptic curves
for cryptographic applications in the late 1980s. The class of asymmetric cryptosystems based
on elliptic curves is called Elliptic Curve Cryptography (Ecc). This thesis focuses on ECC only.

Nowadays, the security of a cryptosystem is generally based on the difficulty of solving a
mathematical problem, such as integer factorization or the Elliptic Discrete Logarithm Problem
in the case of ECC. Proofs based on assertions such as “this cryptosystem C' is unbreakable if no
one can solve problem P” arise. These proofs go with a cryptosystem and ensure its security.
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Cryptography is naturally used in smart cards. Many different examples such as bank
cards, telephony, or electronic passports, obviously need cryptography to ensure confidentiality,
authentication or integrity. A new kind of attacks in smart cards arose in the late 1990s.
Kocher showed that analysing the execution timing of a device to execute a cryptographic
algorithm can be enough to recover the secret key. No need to solve the difficult underlying
mathematical problem. Other attacks of this kind have emerged since then. They are based
on the observation of the device’s behaviour when a cryptographic algorithm is being executed.
This kind of attacks is called physical attacks. The security proofs of a cryptosystem are no
longer enough when physical attacks are taken into account. Of course, many methods have
also emerged to prevent these attacks.

Provable security against physical attacks is still a research topic. Until a clear methodol-
ogy of provable security on ECC in smart cards is accepted by the cryptographic community,
attacks and countermeasures will be a cat-and-mouse game. So, to date, a designer who wants
to prove the security of his implementation, has no choice but to argue that his implementation
is protected against all existing physical attacks by an exhaustive method.

This thesis is intended to help the designer implementing a secure embedded ECC. The first
part gives a detailed background on ECC, useful to understand the physical attacks and coun-
termeasures. In the second part, the physical attacks and countermeasures are displayed with a
tree structure. This follows the idea of the cat-and-mouse game of attacks and countermeasures.
In addition to the complete and accurate state-of-the art, we introduce new attacks. Some of
these attacks are powerful since they need only one execution of the cryptographic algorithm.
Moreover the knowledge of the inputs is not necessary. Also, a new countermeasure against an
attack, the Refined Power Analysis is proposed. Surprisingly, under some assumptions that we
detail, it turns out that applying the countermeasure is in fact more efficient. In addition to
security, this is an improvement for ECC implementations.
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Introduction

The use of elliptic curves for cryptographic applications has been independently introduced by
Koblitz [Kob87] and Miller [Mil85]. With the same security level, Elliptic Curve Cryptography
(ECC) involves smaller key lengths compared with other asymmetric cryptosystems such as RSA
or systems based on the multiplicative group of a finite field. In most architectures, the com-
plexity in time of the modular multiplication, which is the most frequently used operation in
both ECC and RSA, is quadratic in the size of the operands. For example, for a security require-
ment of 128 bits, the minimal size of the key in ECC is 256 bits, as opposed to RSA in which
the public modulus is at least a 3072-bit integer. For this reason, the use of elliptic curves in
cryptographic applications has increased these last years, especially in embedded systems with
limited resources.

The elliptic curves used for ECC are generally defined over prime fields F,,, p > 3 or binary
fields Fan. The latter can bring better performance because arithmetic operations in such fields
are carry-free. However, elliptic curves over prime fields are more often used because of the
following main reasons. First, elliptic curves over binary fields are restricted by several patents.
The second reason is that, recently, Faugeres, Perret, Petit and Renault improved the index
calculus to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) on elliptic curves over
binary fields [FPPR12]. They did not break ECC over binary fields but it is a strong basis
towards future results to reduce the complexity of the ECDLP. Consequently, we only focus on
ECC over I, p > 3.

This part exposes the background on EcC. Chapter 1 gives the general definition of elliptic
curves. The different levels of ECC’s hierarchy are described in the next chapters. The arithmetic
in IF), is described in Chapter 2. The most efficient elliptic curve formulae can be found in
Chapter 3. The most frequently used elliptic curve scalar multiplications are given in Chapter 4.
Some examples of cryptographic protocols, including a signature, a cipher and a key agreement
schemes, based on elliptic curves can be found in Chapter 5. Finally, the security of ECC in the
black box model is discussed in Chapter 6.
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Chapter 1

General Definition

This chapter gives the background on elliptic curves used for cryptographic applications. The
following definitions and properties can be found in [BSS99, CFAT06].

1.1 Elliptic Curves in Affine Coordinates
Definition 1.1. In a field K, an elliptic curve is defined by its Weierstrafl equation:
E:y* +a1xy + azy = 23 + ax2® + agx + ag . (1.1)

with a1, as,as3,a4,a6 € K and A # 0 where A is defined as follows:

dy = a? + 4aq

dy = 2a4+ aqas

d6 = a% + 4(16

ds = dalag+ dasag — ajazay + a2a§ —a?
A = —d3ds —8d3 — 27d2 + 9dadyds -

We denote by E(K) the set of points (z,y) € K? satisfying Equation (1.1), together with a
“point at infinity” O. A is called the discriminant of the curve. The coordinates x,y are called
the affine coordinates.

Remark 1.2. If the field is implicit, the set of points is denoted by E.

1.2 Group Structure

E(K) is an additive Abelian group defined by the following addition law. Let P = (z1,y1) # O
and Q = (z2,y2) € {O, —P} be two points on E(K). The point R = (x3,y3) = P+ Q is defined
by the formula:

Y1=y2 if P+Q,

_ T1 -T2
Where /\ — {3m5+2a2x1+a4alyl lf P = Q

2y1taizi+as

x3:)\2—|—a1)\—a2—x1—m2

ys = AMz1 —x3) —y1 — a1x3 — as

The inverse element of the point P is —P = (z1, —y1 — a1x1 — ag). O is the neutral element, in
that P+ O =0+ P = P.
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32 CHAPTER 1. GENERAL DEFINITION

Geometrically, we draw the line passing through P, @ (or the tangent of P if P = Q). A is
the slope of this line. The line intersects the curve in a third point, counting with multiplicity.
We call it S = (z3,y4). 23, ys are found by solving the equations system

y2+a1xy+a3y:x3+a2x2+a4m+a6
Yy=Ar+y1 — Ay

This leads to the equation in x:
Az +y1 — Ax1)? +arz(M\e +y1 — A1) + azy = 23 + a2 + agx + ag -

We can simplify the equation since x1, x5 are solutions. This gives the formula of z3 above. x3
yields y4. We take —S = R = (x3,y3 = —ys4 — a1x3 — a3) as the result of the addition. R is the
intersection between the curve and the line passing through O and S.

Remark 1.3. We take R = —S as the result of the addition to respect the group axioms.

If K is a finite field of ¢ elements, the number of points on E(K) is denoted by #E(K) (or
simply #FE if the field is implicit). By Hasse’s theorem [Has36], #E(K) satisfies

[#E(K) —q—1]<2\/q .

#FE(K) and ¢ have the same magnitude. In cryptographic applications, recommended elliptic
curves satisfy #E(K) = ht with ¢ a large prime and h a very small number (1, 2 or 4). h is
called the cofactor. Only points of order ¢ are considered in cryptographic applications.

1.3 Short Weierstraf3 Equation

Five parameters define an elliptic curve in its Weiertrafl equation. The group law requires many
field operations. Using isomorphisms between elliptic curves simplify the curve equation and
thus the group law.

Definition 1.4. Two elliptic curves E, E’ defined by their Weierstrafl equations:
E: y2+a1xy+a3y:x3+a2m2+a4x+a6,
E': y? 4 adlwy + ayy = 2% + aha® + ajx + af,

are said to be isomorphic over K if there exist r,s,t € K,u € K*, such that the change of

variables
!

o =u(x—7r),y =u(y — sz —sr—t) (1.2)

preserving O, transforms equation E into equation E’. The transformation (1.2) is called an
admissible change of variables. Furthermore, the elliptic curves parameters are linked by

uaj = ar+2s
vlahy = ay—say+3r— s
uday = ag+ra;+2t
utay = a4 — saz+2ray — (t+7rs)ay + 3r? — 2st

6./ _

u’ag a6+ra4+r2a2+r3—ta3—t2—rta1 .
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Let the curve E: y? +a,xy+asy = > +asx’+as2+ag defined over a field K of characteristic
different from 2 and 3 (which makes division by 2 and 3 possible). Choosing

u = 1
2
N aj+4az
r = L1z
e a1
s = 2
¢ a‘;’+4a1a2—12a3
24
transforms the curve E into
By =23 +ax+0 . (1.3)

for some a,b € K. Equation (1.3) is called the short Weierstrafl equation. Its discriminant is
A = —16(4a® + 27b%).

Let P = (z1,11) # O and Q = (22,y2) € {O, —P} be two points on E’'(K). Points addition
R = (x3,y3) = P+ Q is given by the formula:

Yi—y2 if P ,
where \ = g;;;_fg 7@
Y1 L if P=0Q.

2y1

.133:)\2—1‘1—1‘2

ys = Mxq —x3) —

The inverse element of P is —P = (x1,—y1). The group law of elliptic curves in the short
Weierstrafl equation is illustrated in Figure 1.1 over the real elements.

< —(P+Q K\
\ | N 72 K_/L
P+Q |

Figure 1.1: Addition and doubling of points on the curve y? = 23 — 2z + 1 over R

1.4 Elliptic Curves in Projective Coordinates

To avoid costly inversions when computing A, elliptic curves can also be defined in the projective
plane.

Definition 1.5. The projective plan P?(K) over the field K is:
X,Y,Z) e K*\ (0,0,0)}

~

with ~ being the following equivalence relation:

(Xl,Yth) ~ (XQ,YQ,ZQ) if 4 r € K* such that (Xl,Yl,Zl) = (TXQ,TYQ,TZQ)
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The coordinates are called homogeneous or projective coordinates. The equivalences classes,
denoted by (X : Y : Z) with (X,Y, Z) € K3\ (0,0,0), are called projective points. We denote
by (X,Y, Z) a representative of the projective point (X : Y : Z).

If K is finite of cardinality #K, the projective point (X : Y : Z) have #K — 1 representatives.
If Z+#0,(X:Y :Z) corresponds to the unique affine point (X/Z,Y/Z).

Remark 1.6. In the rest of this thesis, by abuse of notation, we will call a “point” on the curve
which is in fact a “representative” of a projective point. Unless otherwise specified (explicitly
stated or using the notation (X : Y : 7)), a point will refer to a representative of a projective
point.

The equation of an elliptic curve in the homogeneous coordinates system in the reduced
Weierstrafl form is:
EP:Y?Z =X%+aXZ? +07° .
The point at infinity O, which is not explicit in affine coordinates, is the projective point
O =(0:1:0). In fact, O is the only projective point on the curve with a zero Z coordinate.

The coordinates were generalized using different equivalence relations. The Jacobian coor-
dinates is often used for efficiency reason. The equation of an elliptic curve in the Jacobian
projective coordinates system in the reduced Weierstrafl form is:

EY . V2=X34+aXZ*+b2% .

The point at infinity is @ = (1 : 1 : 0). The projective point (X : Y : Z), with Z # 0,
corresponds to the unique affine point (X/Z2,Y/Z3). The equivalence relation is:

(X1,Y1,7Z1) ~ (X2, Ys, Z9) if 37 € K* such that (X1,Y1,21) = (r?Xo,r3Ys,125)

Remark 1.7. We omit the notation J or P when the coordinates system is obvious in the
context.

Let P, = (X1,Y1, 7)), Py = (X2,Ys, Z5) be two points on EY (K) with P, # O, ord(P;) > 2
and P, ¢ {O,—P;}. Point doubling and points addition are defined by the following formulee:

e ECDBL. P3 = (X3,Y3,Z3) = 2P, can be computed as:
X3=T, Ys=-8Y}+M(S—T), Z3s =2Y17,
S=4X1Y? M =3X?+aZ{, T =25+ M?>

e ECADD. P; = (X3,Y3,73) = Py + P5 can be computed as:
X3 = —H?—2U1H? + R?, Y3 = —S,H® + R(U\H? — X3), Zs = Z,ZoH,
Uy =X173, Uy= X272 S =Y173, So=YoZ}, H=Uy — Uy, R= 55— 5

There is a certain hierarchy of calculation in ECC applications. The different levels, from the
lowest to the highest, are finite field arithmetic, elliptic curve arithmetic, elliptic curve scalar
multiplication (EcSM) and cryptographic protocol. These different levels are detailed in the
next chapters.



Chapter 2

Finite Field Arithmetic

Finite field arithmetic finds its application in asymmetric cryptography. Therefore, it is a
subject under intensive study, and many different algorithms and implementations are proposed
to perform fast operations in the field F,. A description of certain methods is required to
understand some side-channel attacks targeting this level in ECC’s hierarchy. This chapter
details these methods.

2.1 Field Element Representation

The elements of F,, are integers in [0, p—1]. The algorithms to perform field operations generally
operate word by word. Denote w the size of the words'.

Denote n = [log, p] the bit length of p and m = [n/w]. The integers in [0,p — 1] are
manipulated as arrays of m elements, as illustrated in Figure 2.1.

| am—1] | e \ all] \ al0] ‘

Figure 2.1: Representation of A = 2(m=Dwq[m —1]+--- 4 2%a[1] + a[0] as an array of m words.

In the rest of this chapter, capital letters will denote long integers and lower cases will denote
words of w bits.

2.2 Main Module

In the algorithms exposed in the rest of this chapter, we suppose there is a module performing
the following operation:
(u,v) «—axb+e+c (2.1)

with e, a, b, ¢, u, v being w-bit words. v is the low word of the result and w is the high word (called
the carry). No overflow occurs because a, b, c,e € [0,2%] = axb+e+c < (29 —1)24+2x2¥ -2 =
220 — 1 = u < 2¥. Thus, a X b+ e + ¢ = 2%u +v. We use the notation (u,-) < a X b+e+c
when only the carry is updated; the low result is thrown out. In most architectures, the same
module supports the two’s complement of integers:

(u,v) «—axb+eée+c (2.2)

lw = 32 or w = 64 in common architectures, even in smart cards where there are hardware accelerators.
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The two’s complement of e is € = 2 — 1 —e. Subtracting two words a, e with a > e can be done
using the module illustrated in Equation (2.2) by replacing b by 1 and ¢ by 1. v will contain
a — e and u will be equal to 1 which is ignored.

2.3 Modular Addition and Subtraction

We give the schoolbook algorithms for addition and subtraction of long integers.

Algorithm 2 Schoolbook long integer addition (ADD)
Input: A= (a[m —1],...,a[0]), B = (b}m —1],...,b[0]), m.
Output: (¢,R) with R=A+Bifc=0and R=A+B-2""ifc=1

L c«0

2: fori=0tom—1do

3: (c,r[i]) < ali] + b[i] + ¢ > ¢ € {0,1} because ali] + bfi] + ¢ < 2@t —1
4: return (¢, R)

The operation of line 3 can be done using the module illustrated in Equation (2.1) by
replacing b by 1 and e by b.

Algorithm 3 Two’s complement schoolbook long integer subtraction (SUB)
Input: A= (a[m —1],...,a[0]), B = (b}m —1],...,b[0]), m.
Output: (¢, R) with R=A—-Bifc=0and R=A—-—B+2""ifc=1

1 e+ 1 > e is set to 1 because we will compute (A + B +1) = A — B 4 2™m¥
2: fori=0tom—1do

3: (c,r[i]) < ali] + b[i] + ¢ >ce{0,1}
4 ccdl

5: return (¢, R)

With those two basic procedures, we can give modular addition and subtraction.

Algorithm 4 Modular Addition
Input: A, B, P,m such that A < P, B < P.
Output: A+ B mod P
(¢, R) + ADD(A, B, m)
if ¢ =1 then
(d,S) < suB(R, P,m)
return S
else
if R > P then
(d,S) < suB(R, P,m)
return S
else
return R
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Algorithm 5 Modular Subtraction
Input: A, B, P,m such that A < P,B < P.
Output: A — Bmod P
(¢, R) < suB(A, B,m)
if ¢ =1 then
(d,S) + ADD(R, P,m) > in this case, ¢ = d = 1 and the carry cancels the borrow
return S
else
return R

The conditional subtraction or addition of the previous algorithms can be inconvenient.
First, an operator comparing long integers is required for the modular addition. Secondly, we
will see in Sections 8.1 and 8.2.2.1 that some physical attacks take advantage of this step. We
can remove the conditional step by introducing a dummy operation, as described below. We
present the following methods to properly handle the carry and the borrow.

Algorithm 6 Constant Time Modular Addition (mADD)
Input: A, B, P,m such that A < P,B < P.
Output: A+ B mod P
(¢, R) <~ ADD(A, B,m)
: (d,8) < SUB(R, P, m)
if c® d =0 then
return S
else
return R

AN AR

The correctness of Algorithm 6 is proved below.
Since 0 < A < P,0 < B < P, we must consider the three following cases:

e A+ B <P <2,
In this case, R = A + B.
Since A+ B < P, = ¢=0and d = 1. R is therefore the correct result because it
satisfies 0 < R=A+ B < P.

e P<A+ B <2V,
In this case, R= A+ Band S=A+ B - P.
Since P < A+ B <2¥" = ¢=0and d = 0. Moreover, P < A+ B < 2P — 0 <
A+ B — P < P. S is the only integer in [0, P| satisfying S = A+ B mod P.

e 2" < A4+ B < 2P.
In this case, R= A+ B — 2¥".
Since 2" < A4+ B = ¢ = 0. Moreover, A+ B<2P =— A+ B —2"" < 2P —-2"" < P.
Therefore, d =1 and S = R— P +2"" = A+ B — P. S is the only integer in [0, P|
satisfying S = A + B mod P.

Remark 2.1. The condition ¢ = 1,d = 0, never occurs.
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Algorithm 7 Constant Time Modular Subtraction (msuB)
Input: A, B, P,m such that A < P,B < P.
Output: A — B mod P
(¢, R) + suB(A, B,m)
(d,S) < ADD(R, P, m)
if ¢ =0 then
return R
else > in this case, ¢ = d = 1 and the carry cancels the borrow
return S

The correctness of Algorithm 7 is trivial considering Algorithm 5.

2.4 Modular Multiplication

Field inversions are costly compared with the other field operations. In Section 1.4, we ex-
plained how the Projective or Jacobian coordinates enables the substitution of inversions for
multiplications. Hence, modular multiplications become the most numerous expensive opera-
tions involved in ECC. Great care should be taken for implementing the modular multiplication
operator.

Many methods exist to efficiently perform modular multiplications. For instance:

the Montgomery multiplication [Mon85],

the Barrett multiplication [Bar86],

the Quisquater’s multiplication [Qui90, Qui9l] and

the Montgomery multiplication in the Residue Number System [Baj98].

In addition, some standardized elliptic curves, such as the ones proposed in the Digital
Signature Standard [FIPS186-3], are based over prime fields enabling fast modular reduction.
Due to the particular form of the prime p, modular reductions can be performed with only
shifts, additions and subtractions. However, this optimization is not always considered because
of the lack of genericity: each curve has its own modular multiplication module. The need of a
generic modular multiplication module is required anyway for some ECC protocols. Moreover,
a common module is generally implemented for all asymmetric cryptosystems.

We choose to detail the Montgomery multiplication (Algorithm 8), because it is quite com-
mon and many side-channel attacks are described with this example.

The algorithm, called the Coarsely Integrated Operand Scanning, alternates the multipli-
cation and the reduction loops. This permits to avoid the extra memory required if a naive
modular multiplication is performed: first compute the entire product, then reduce. This algo-
rithm is from [KA96], where we added the final conditional subtraction step.
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Algorithm 8 Montgomery Modular Multiplication (montMUL)

Input: A = (a[m —1],...,a[0]),B = (b[m —1],...,0[0]),P = (p[m — 1],...,p[0]), p, m such
that A < P, B < P,y = —p[0] mod 2v.

Output: A x B x 277%™ mod P

1: R<0
2: 40 > s will hold the (m + 1)** word of the temporary result R
3:
4: > Main loop
5: for i =0tom —1do
6: > Step R <~ R+ a[i|B
T c+0
8: for j =0tom—1do
9: (¢,r[j]) «= ali] x 5] + r[j] + ¢
10: end for
11: (¢,8) «+ s+c
12: L+ c > t will hold the (m + 2)*" word of the temporary result R
13: > End Step R < R+ ali|B
14: c<+0
15: (c,q) < r[0] xp+c >q=—RP~! mod2v
16:
17: > Step R <+ %
18: c+0
19: (¢,-) = g x p[0] +r[0] + ¢
20: for j=1tom—1do
21: (e.rlj —1]) <= g x plj] +rlj] + ¢
22: end for
23: (c,rfm—1]) - s+c
24: s 1
25: > End Step R «+ £H4F
26: > Invariant: R20FD% = (a[i]2" + - -+ + a[0]) B mod P
27: > Invariant: R < P+ B
28: end for
29:
30: > End Main Loop
31: > Reduction step

32: if s =1 then
33: (¢, S) < suB(R, P,m)

34: return S

35: else

36: if R > P then

37: (¢,S) < suB(R, P,m)
38: return S

39: else

40: return R

41: end if

42: end if

When P, p,m are implicit, we simply denote montMUL(A, B) the Montgomery multiplica-
tion of A, B.
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Like the modular addition, there is a conditional step depending on the value at the end.
By adding extra words to the manipulated integers, the final subtraction condition can be
avoided [Wal99, HQO00]. However, this solution is costly. For a constant time Montgomery
multiplication, one can perform a subtraction whatever the value after the main loop, as for
the modular addition. This can be done by replacing the reduction step by:

c< s
(d,S) < suB(R, P,m)
if d® ¢ =0 then
return S
else
return R

The justification of the correctness of the reduction step is the same as the modular addition
(Algorithm 6).

To avoid the resetting data of line 1, the first iteration (i = 0), line 9 can be replaced by
(c,r[j]) < alj] x b[j] + ¢. Also, it is possible to improve the algorithm if A = B (montsQR).

Denote C' = A x B mod P the product of two integers A, B modulo P. The Montgomery
multiplication of A, B returns C' x 277%™ mod P. Let A’ = A2¥" mod P and B’ = B2“™ mod
P. The Montgomery multiplication of A", B’ returns

montMUL(A’, B") = A2%™ x B2wm x 2-wm mod P
= (Q2wm mod P

Denote C' = C2¥™ mod P. A’, B', C" are called the Montgomery representations of A, B, C
respectively. The Montgomery multiplication of integers in their Montgomery representations
returns the Montgomery representation of the product. At the beginning of ECC applica-
tions, Montgomery representations of the manipulated integers are pre-computed. Trivially,
the modular addition of integers in their Montgomery representation returns the Montgomery
representation of the sum:

A+ B’ A2wm 4 Bawm mod P
(A+ B)2vm mod P

Obviously, the same holds for modular subtraction. Integers in their Montgomery represen-
tation are then manipulated in a transparent manner, as if they were in the regular form. At the
end of an ECC application, the correct values are easily recovered using A = montMUL(A’, 1).
Algorithm 8 can be optimized if one of the operand is 1.

The pre-computations of the Montgomery representation of the integers is the main draw-
back of the Montgomery multiplication. The pre-computation of the Montgomery representa-
tion of A can be done by computing A’ = montMUL(A, R) with R = 22*™ mod P. One way to
compute R is to perform:



2.5. MODULAR INVERSION 41

R + montMUL(1, 1) > R— 9—wm
R+ montMUL(R, 1) > R = 2 2wm
R + mINV(R, P,m) > R = 22“™ (modular inversion described below)

2.5 Modular Inversion

Modular inversions are costly and are avoided as much as possible, using projective or Jacobian
coordinates. It is estimated that the cost of a modular inversion is approximatively 100 times
the cost of a modular multiplication [Ver12, §1.1.1.6], which is the case for our implementation.
Modular inversion is however required at the end of the ECSM for the conversion from projective
to affine coordinates, for some cryptographic protocols or for some countermeasures. We give
the unsigned version of the binary inversion algorithm of [HMV03, Algorithm 2.22].

Algorithm 9 Euclidean Modular Inversion (mINV)
Input: A, P,m such that ged(A, P) =1, P is odd and A < 2%™ P < 2w™
Output: A~ mod P

U<+ A

VP

X +1

Y+ 0

while U #1 and V # 1 do
while U is even do
c+0
U+ (U>>1) > right shift
if X is odd then > perform X «+ (X + P)/2 with the following
(¢, X) < ADD(X, P,m)
X+ (X>>1)
if c =1 then X « X 4 2wm~! > set the most significant bit to 1
while V' is even do
c+0
Ve (V>>1)
if Y is odd then
(¢,Y) < AaDD(Y, P,m)
Y+ (Y >>1)
if c=1thenY « Y 4 2wm—! > set the most significant bit to 1

if U >V then
(¢,U) < suB(U,V,m
X < msuB(X,Y, P,m)
else
(¢, V) < suB(V,U,m)
Y « msuB(Y, X, P,m)

if U =1 then
return X
else

return Y
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2.6 Cost of Arithmetic Operations

In Part II, we are interested on the theoretical cost of the countermeasures against physical
attacks. For some applications or countermeasures, it is also necessary to have an access to long
integer arithmetic such as addition, subtraction, multiplication, square and Euclidean division
with remainder. Since the real cost depends on the architecture and on the size of the integers,

we choose the following notation:

ADD,,: execution time of an addition or a subtraction? of n-bit integers,

SQR,,: execution time of a square of a n-bit integer,

MULy,: execution time of a multiplication of n-bit integers,

DIV,,: execution time of a division of n-bit integers,

MADD,,: execution time of a modular addition or subtraction? of n-bit integers,
mSQR,,: execution time of a modular square of a n-bit integer®,

mMUL,,: execution time of a modular multiplication of n-bit integers?,

mINV,,: execution time of a modular inversion of a n-bit integer?.

2The cost of an addition and subtraction are rarely significantly different.
3The modulus is a n-bit integer as well.



Chapter 3

Elliptic Curve Arithmetic

The formulae given in Section 1.4 (ECADD and ECDBL) may be used to perform addition and
doubling. During the past years, many different formulese have been proposed for different ellip-
tic curves and different coordinates. So far, standardized curves for cryptographic applications
are given in the short Weierstrafl equation. We thus restrict to these elliptic curves where the
Jacobian coordinates are the most efficient. The choice of the formulae is made depending on
the ECSM used, on some physical security requirements or on the memory available.

We give in Section 3.1 the most commonly used formule for elliptic curves in the short
Weierstrafl equation. It is essential for describing and understanding some physical attacks.
Moreover, some countermeasures consist in slightly modifying the formulae. For a more detailed
explanation on the formulee and on their cost, one can refer to the synthesis given in [BL04]
and [Ver12, Chapter 1]. In addition, we give the memory required. Section 3.2 summarizes the
cost in number of field operations and the memory required.

3.1 Elliptic Curve Formulae

This section gives the most efficient formulee for elliptic curves over F,,, with p a n-bit prime
integer, in the short Weierstral equation. We distinguish classical operations (addition and
doubling) from the co-Z formulee where more refined operations are presented: the addition
and update, and the conjugate addition and update formulze.

The number of registers for each formula is given without considering input and output
points. Only the number of extra temporary registers is taken into account. MEM; denotes
a memory block of [ bits. We can save some memory with additional field additions and
subtractions as in [GJM*11]. We give the memory required for an optimal number of finite
field operations.

This section gives high level algorithm of elliptic curve operations. The same algorithms
with register allocation are given in appendix, only if they are useful for the description of some
attacks or countermeasures.

For all formulae, the points are in the Jacobian coordinates system, and they are different
from the point at infinity.
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3.1.1 Classical Formula

Algorithm 10 ECADD
Input: P = (Xl,Yl,Zl),Q = (X27Y27ZQ) with Q }é +P
Output: P+ Q
A+ X173 B+ X273 C+ Y173, D+ Y273
EFE+~B—-A, F+<D-C
Xy F? — E3 —2AF?
Y; + F(AE? — X3) - CFE?
Zg «— 175K
return (X3,Y3, Z3)

If Q is in affine coordinates (Z3 = 1), one can save four multiplications and one square [CMO98].
It is called mixed addition (mECADD). If Z2 and Z3 are pre-computed, one multiplication and
one square are saved [CC86]. It is called re-addition (reECADD).

Cost (ECADD): 12 mMUL,,, 4 mSQR,,, 7 mADD,,, 3 MEM,,

Cost (MECADD): 8 mMUL,, 3 mSQR,,, 7 MADD,,, 3 MEM,,

Cost (reECADD): 11 mMUL,, 3 mSQR,,, 7 MADD,,, 3 MEM,,

Algorithm 11 ECDBL
Input: P = (X1,Y1,Z;) with ord(P) # 2, elliptic curve parameter a

Output: 2P
A+ 2Y}
B+ 2AXy; C+ 3X}? +aZl; D+ 24>
X3 C?—-2B
Y;+C(B—-X3)—D
Zg «— 2Y174

return (X3,Y3, Z3)

If (X3,Y3, Z3) is used later for re-addition, computing Z7 and Z3 needs one extra square and
one extra multiplication (reECDBL). If Wi = aZ{ is pre-computed, two squares are saved, and it
needs one extra addition! [CMO98]. It is called the modified Jacobian coordinates (modECDBL).
The use of both modified coordinates and re-addition is also given (mod-reECDBL).

Cost (ECDBL): 4 mMUL,,, 6 mSQR,,, 11 mADD,,, 3 MEM,,

Cost (reECDBL): 5 mMULy,, 7 mSQR,,, 11 mADD,,, 3 MEM,,

Cost (modECDBL): 4 mMUL,, 4 mSQR,,, 12 mADD,,, 3 MEM,,

Cost (mod-reECDBL): 5 mMUL,,, 5 mSQR,,, 12 mADD,,, 3 MEM,,

Remark 3.1. In the standardized elliptic curves recommended in [FIPS186-3], the parameter
a of the curve is equal to —3. This makes it possible to perform a faster computation of
C = 3X?+ aZ{ in this way: C < 3(X; + Z2)(X, — Z?). This saves two squares and costs an
extra subtraction over ECDBL. The formula is called fast doubling.

3.1.2 Co-Z Formulae

An ECsM is generally based on addition and doubling formule of points. Meloni shows that addi-
tion of two points of an elliptic curve is more efficient if they share the same Z-coordinate [Mel07].

Hn fact, two squares and one multiplication are saved. An extra addition and an extra multiplication are
needed for the computation of W3 = aZé1 =2DWi.
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He brought a new formula, which was called later co-Z addition and update (ZADDU) in
[GIM10]. This formula alone is enough to perform an ECsM with addition chains and Zeckendorf
representation [Mel07].

Algorithm 12 co-Z addition and update (zADDU) [Mel07]
Input: P = (Xl,Yl,Z),Q = (XQ,YQ, Z) with Q 7& +P
Output: (R,S) with R =P+ Q and S = (A\2X1,\3Y7,\Z) with A = X7 — X,

C «+ (Xl — X2)2

Wy« ch; Wy XQC; 3 Z(X1 — Xg)

D (Yl — Y2)2; Al <« Yl(Wl — WQ)

Xg — D — W1 — W2

Y3 (Y1 = Yo) (W) — X3) — Ay

X4 < W1

Y4 < Al

return ((Xs,Ys, Z3), (X4, Y, Z3))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used for
the EcsM [GIMT11]. It is called (X,Y)-only co-Z addition and update (zADDU’). One multi-
plication is saved. The final Z coordinate is recovered at the end of the ECSM.

Cost (ZADDU): 5 mMUL,, 2 mSQR,,, 7 MADD,,, 2 MEM,,

Cost (zADDU’): 4 mMUL,,, 2 mSQR,,, 7 MADD,,, 2 MEM,,

Meloni’s formula was extended. The conjugate co-Z addition (zADDC) was proposed in
[GIM10]. It consists in computing the points P 4+ @ and P — ) within the same formula. In
[GIM10, HIJS11, GIMT11], with both ZADDU and ZADDC, the authors show that co-Z formulee
might be usable with classical ECSM algorithms such as the Right-to-Left signed-digit method,
the Montgomery Powering Ladder [JY02], or the Joye’s double-add method [Joy07].

Algorithm 13 conjugate co-Z addition (zADDC) [GJM10)]
Input: P = (Xl,YhZ),Q = (X27Y2, Z) with Q 7é +P
Output: (R,S) with R=P+Q,S=P—-Q

C «+ (Xl — X2)2

Wy« ch, Wy XQC, 3 Z(Xl — X2)

Dy (Yl — }/2)2; A1 — Yl(Wl — WQ)

X3+ D —Wi — Wy

Y3 (Y1 = Yo)(W1 — X3) — Ay

Dy (}/1 + }/2)2

X4 «— D2 — W1 — W2

Yo — (Y1 +Yo) (W1 — Xy) — Ay

return ((Xg, Y37 Z3), ()(47 Y4, Zg))

The computation of the Z coordinate is not necessary if the Montgomery Ladder is used
[GIMT11]. Tt is called (X,Y)-only co-Z conjugate addition (zADDC’). One multiplication
is saved. The final Z coordinate is recovered at the end of the ECSM.

Cost (zADDC): 6 mMUL,,, 3 mSQR,,, 11 mADD,,, 3 MEM,,

Cost (zADDC’): 5 mMUL,, 3 mSQR,,, 11 mADD,,, 3 MEM,,
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3.2 Cost Summary

Table 3.1 gives the cost of the different formulee of this section. The memory cost is the number
of temporary registers needed for the formula, excluding input and output memory blocks.

Point doubling
ECDBL 4 mMUL,,, 6 mSQR,,, 11 mADD,,, 3 MEM,,
reECDBL 5 mMUL,, 7 mSQR,,, 11 mADD,,, 3 MEM,,
modECDBL 4 mMUL,,, 4 mSQR,,, 12 mADD,,, 3 MEM,,
mod-reECDBL | 5 mMUL,, 5 mSQR,,, 12 mADD,,, 3 MEM,,

Points addition

ECADD 12 mMUL,,, 4 mSQR,,, 7 MADD,,, 3 MEM,,
MECADD 8 mMUL,, 3 mSQR,,, 7 MADD,,, 3 MEM,,
reECADD 11 mMUL,, 3 mSQR,,, 7 mMADD,,, 3 MEM,,

ZADDU 5 mMUL,,, 2 mSQR,,, 7 MADD,,, 2 MEM,,
ZADDU’ 4 mMUL,, 2 mSQR,,, 7 MADD,,, 2 MEM,,

Points conjugate addition

ZADDC 6 mMUL,,, 3 mSQR,,, 11 mADD,,, 3 MEM,,

ZADDC’ 5 mMUL,,, 3 mSQR,,, 11 mADD,,, 3 MEM,,

Table 3.1: Cost of the most commonly used elliptic curve formule for a n-bit prime modulus.

We use the following notation to quantify the different ECSMs described in the next chapter
and the cost of some countermeasures increasing the number of elliptic curve operations:

e ECADD,,: execution time of an elliptic curve points addition with a modulus of size n,
e ECDBL,: execution time of an elliptic curve point doubling with a modulus of size n,

e C-ECADD,: execution time of an elliptic curve points conjugate addition with a modulus
of size n.



Chapter 4

Elliptic Curve Scalar
Multiplication

In ECC applications, one has to compute scalar multiplications (ECSMs), i.e. compute

K|P=P+---+P,
—_——

k times

given a point P and an integer k. The choice of an ECSM algorithm depends on the memory
constraints and on the physical security requirements.

ECSMs are generally performed with a loop scanning of the bits of the scalar. In fact, the
ECSMs can be compared to the modular exponentiation methods used in RSA and systems based
on the multiplicative group of a finite field: an addition of points is replaced by a multiplication,
and a doubling is replaced by a square. In addition, in elliptic curves we can take advantage
of the useful property that the inverse element of the point P = (z,y) is —P = (z, —y). This
operation is almost free; hence, it can be done on the fly. For modular exponentiations, the
analogy would be computing modular inverses, which are very costly.

The ECsMs are generally organized depending of the regularity. An ECSM is said to be reg-
ular if, at each iteration, the same elliptic curve operations are performed whatever the value
of the scalar. Unregular ECSMs are generally more efficient. However, we will see in Section
8.2 that unregular ECSMs can be vulnerable to the Simple Side-Channel Analysis. We will also
describe some related countermeasures.

The EcsMs described in this section can use different formulee given in the previous section,
depending on the performance and on the security requirements. We use the notation “ + .”
for an elliptic curve addition and “2 -7 for an elliptic curve doubling. We evaluate the cost of
the ECSM using the notations of Section 3.2 where n is the bit-length of the prime modulus.
A more detailed comparison on the cost of the ECSMs can be found in [Verl2, Chapter 1]. In
addition, we give the memory required. A summary of the cost of the ECSMs is given in Section
4.3.
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4.1 Unregular ECSMs

We give in Algorithms 14, 15, 16, 17, 18, the most commonly used unregular ECSMs.

Algorithm 14 Left-to-Right Double-and-Add
Input: a point P and an integer k = (1,k,,—2,...,ko)2
Output: [k]P
Ro +— P
for i =n — 2 downto 0 do
Ry + 2Ry > Ry = [(kn—1,.-,kit1,0)2] P
if k; =1 then Ry < Ry + P > Ry = [(knfh vy kg, kl)Q]P

return R

Cost: § ECADD,, + n ECDBLy,

Algorithm 15 Right-to-Left Double-and-Add
Input: k= (kyp—1,...,k1,1)2, P
Output: [k]P
Ry« P
Ry + 2P
fori=1ton—1do
if k; =1 then Ry < Ry + R; > Rg = [(kl,,ko)Q]P
R+ 2R, >Ry = [2z+1]P

return R,

Cost: § ECADD,, +n ECDBL,

Computing the inverse element of a point is almost free: if P = (z,y), then —P = (z, —y).
Using a signed digit representation of the scalar can speed up some algorithms. The Non-
Adjacent Form (NAF) is suitable. The following definitions and properties of the NAF can be
found in [HMVO03, Section 3.3].
Definition 4.1. A non-adjacent form (NAF) of a positive integer k is an expression k =
Zé;é ;2" where k; € {—1,0,1}, k;_1 # 0, and no two consecutive digits k; are nonzero. The
length of the NAF is [.
Theorem 4.2. [HMV03, Theorem 3.29]. Let k be a positive integer.

e [k has a unique NAF denoted NAF(k) or (ki—1,...,ko)NAF-

o NAF(k) has the fewest nonzero digits of any signed digit representation of k.

e [ is at most one more than the length of the binary representation of k.

e The average density of nonzero digits among all NAFs of length n is approzimatively 1/3.
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Algorithm 16 Left-to-Right sliding window NAF scalar multiplication
Input: k= (1,k—_o,...,ko)NAF,v > 2, P
Output: [k]P
m <+ 22V — (-1)¥)/3 -1
Q<+ P
for i =1 tom by 2 do
1 1—2
while 7 > 0 do
if k; =0 then
Q<+ 2Q
141—1
else
s+ max(i — v+ 1,0)
while k£, = 0 do
s+ s+1
U <— (]fi, Ceey ks)NAF
for j=1toi—s+1do
Q< 2Q
if u > 0 then
Q<+ Q+ Py
if u < 0 then
Q < Q - P—u
14— s5—1
return @

Cost: (U+JQ(U) + 20 1) ECADD,, + (I + 1) ECDBL,, with f(v) = 4 — ;10

T 3x2v—2

The NAF can be generalized to larger digits.

Definition 4.3. Let v > 2 be a positive integer. A width-v NAF of a positive integer k is an
expression k = Zi;é k;2% where each nonzero coefficient is odd, —2V~1 < k; < 2v~1, k1 # 0,
and at most one of any v consecutive digits is nonzero. The length of the NAF is [.

Theorem 4.4. [HMV03, Theorem 3.33]. Let k be a positive integer.
e k has a unique width-v NAF denoted NAF, (k).
o NAFy(k) = NAF(k).
e [ is at most one more than the length of the binary representation of k.

e The average density of nonzero digits among all width-v NAFs of length | is approxima-
tively 1/(v + 1).
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The following algorithm computes the width-v NAF representation of the scalar on the fly.

Algorithm 17 Right-to-Left sliding window width-v NAF scalar multiplication
Input: k= (k’rb—la vy k}o)g,v > 2,P
Output: [k]P
m< 2V —1
R+ P
Q1,Q3,...,Qm < O
while k£ > 1 do
if kg = 1 then
U <— (kvfl, .. .,ko)
if w>2""! then u « u — 2V
if v > 0 then
Qu <+ Qu+R
if u < 0 then
qu < qu -R
k+—Fk—-u
R+ 2R
k<« k/2
for i = 3 to m by 2 do
Q1+ Q1 + [i]Q;

return @,

Cost: (vﬁl 4 22v—4 _ 1) ECADD,, + n ECDBL,,

The Shamir’s trick computes [k]P + [d].S with a single loop scanning.

Algorithm 18 Shamir’s trick [Str64]
Input: k= (kn—h sy ]{10)2, d= (dn—17 SN ,do)z with (k'n—l, dn—l) 75 (O, O), P7 S
Output: [k]P + [d]S
Ry« P; R2<—S; R3+ P+ S
c+—2d, 1+ k/’nfl; Ry + R.
for i =n — 2 downto 0 do
Ro (—2R0 > RO = [(kn—la---aki—&-laO)Q]P
H(dn-1,...,di41,0)2]S

if ¢ #0 then Ry« R+ R.
> Ry = [(kn—h ey ki+1; kZ)Q]P
+[(dn_1, ey di+1, dl)g]s

return R

Cost: 3 ECADD,, + n ECDBL,
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4.2 Regular ECSMs

We give in Algorithms 19, 20, 21, 22, 23, 24, 25 the most commonly used regular ECSMs.

Algorithm 19 Left-to-Right Double-and-Add always [Cor99, §3.1]
Input: k= (1,k,_2,...,ko)2, P
Output: [k]P
Ry < P, Ry + 2P
for i =n — 2 downto 0 do
Ry + 2Ry
Ry, < Ri_j, +P
return R

Cost: n ECADD,, + 1 ECDBL,,

Algorithm 20 Right-to-Left Double-and-Add always
Input: k= (kp-1,...,k1,1)2, P

Output: [k]P
RO +— P
Ry« P > point for dummy operations
R2 «— 2P
fori=1ton—1do
Ri_p, <+ Ri—p, + Ro > Ry = [(kii,...,kio)g}P
and R1 = [(ku ey ko)Q]P
R2 — 2R2 > R2 = [27'+1}P
return R

Cost: n ECADD,, + 1 ECDBL,,

Algorithm 21 Montgomery Ladder [JY02]
Input: k= (1, kn—27 ey ko)g, P
Output: [k]P
1: R()(—P,R1<—2P
2: for i =n — 2 downto 0 do
3: Ri_p, +— Ro+ Ry
4: Rki — 2RkL > Ry = [(kn—h ey kl)Q]P
5
6

: and Ry = Rg+ P
: return Ry

Cost: n ECADD,, +n ECDBL,,
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The Montgomery Ladder, adapted with the co-Z formule, is given below.

Algorithm 22 Montgomery Ladder with co-Z formulse [GIJM10]
Input: k= (1,k,—2,...,ko)2, P
Output: [k]P
Ry« P, Ry + 2P
for i =n — 2 downto 0 do
(Ri—k,, Ri,) < ZADDC(Ry,, R1_k,)
(kaRl—ki) A ZADDU(Rl—km qu) > RO - [(kn_la BRI kl)Q]P
and Ry = Rg+ P

return R

Cost: n C-ECADD,, + n ECADD,,

The following algorithm is the regular version of Algorithm 18 by adding a dummy operation.

Algorithm 23 Regular Shamir’s trick [CJ03]
Input: k= (kn—la ey k’o)g, d= (dn—h . ,dQ)Q
with (knfl,dnfl) # (0,0), P,S
Output: [k]P + [d]S
R+ P; Ry« S; R3« P+ S
Ry« P+ S > Ry is used for dummy operations
c2d, 1+ knp_1; Ry <+ R,
for i =n — 2 downto 0 do
Ry < 2Ry > Ry = [(knfl,...,k7;+1,0)2]P
+[(dn_1, R 7di+17 O)Q]S

b(—_‘(k‘,’\/di); c< 2d; + k;
R4b %R45+RC I>R0 = [(kn_l,...,ki)g]P
+[(dn717 ) dZ)Z]S

return R,

Cost: n ECADD,, + n ECDBL,,

Algorithm 24 Binary Random Initial Point (BRIP) [MMMO04]
Input: k= (kyp—1,...,ko)2, P
Output: [k]P
S < random_point()
Ro(—S, R1<——S,R2=P—S
for i =n — 1 downto 0 do
Ry < 2Ry > Ry = [(kn—la Ceey k‘i+170)2]P + [Q]S
Ry + R0+R1+ki > Ry = [(kn_l’...7ki)2]P+S
return Ry + R,

Cost: n ECADD,, + n ECDBL,,
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The following algorithm was introduced for RSA applications. We adapted it for elliptic
curves. We removed the final coherence check which will be discussed in Section 8.18.

Algorithm 25 Blinded Right-to-Left Double-and-Add always [BHT09]
Input: k= (kp-1,...,ko)2, P
Output: [k]P

S« random _point()

RQ(*S, Ry (**S,RQ =P

fori=0ton—1do

Ry g, < Ri—k, + R > Ro = [(Ki, ..., ko)2] P+ S
and R1 = [(ki, ey ]{jo)g]P -5
R2 — 2R2 > R2 = [2Z+1]P

return Ry — S

Cost: n ECADD,, + n ECDBL,,

4.3 Cost Summary

Table 4.1 gives the cost of the different ECSMs without any countermeasure. For each ECSM, the
more suitable formulse from Chapter 3 are chosen regarding the efficiency. The memory cost
is calculated from the memory blocks required to store all involved points, the intermediate
variables for elliptic curve operations, and the curve parameters a,p (b is not used).

Remark 4.5. The number of field operations is given in average per bit of scalar. Obviously,
the number is exact for regular ECSMs since the operations do not depend on the scalar.

Remark 4.6. The length of the NAF is at most one more than the length of the binary
representation of the scalar. In ECC applications, the prime modulus is at least a 256-bit
integers. Therefore, we can neglect the extra possible digit when the scalar in expressed in the
NAF representation. In Table 4.1, we expose the cost of the ECSMs without distinguishing the
representation of the scalar.

Some countermeasures against physical attacks increase the number of iterations of the
ECSM or increase the number of ECSMs. We denote by ECSM; ,, the execution time of an ECSM
with a [-bit scalar and a n-bit modulus.
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Table 4.1: Average cost per bit of scalar for the most commonly used ECSMs for a n-bit prime

modulus

CHAPTER 4. ELLIPTIC

CURVE SCALAR MULTIPLICATION

Unregular ECSMs

L-to-R Double-Add
ECDBL and mECADD

8 mMUL,, 7.5 mSQR,,,
14.5 mADD,,, 8 MEM,,

R-to-L Double-Add
modECDBL and ECADD

10 mMUL,,, 6 mSQR,,,
15.5 mADD,,, 10 MEM,,

L-to-R window NAF (v = 2)
ECDBL and mECADD

6.7 mMUL,,, 5 mSQR,,,
13.4 mADD,,, 8 MEM,,

L-to-R window NAF (v = 3)
ECDBL and mECADD

5.8 mMUL,,, 4.7 mSQR,,,

12.6 mADD,,, 12 MEM,,

L-to-R window NAF (v = 4)
ECDBL and mECADD

5.6 mMUL,, 4.6 mSQR,,,

12.4 mADD,,, 16 MEM,,

R-to-L window NAF (v = 2)
modECDBL and ECADD

8 mMUL,, 5.4 mSQRr,,,
14.4 mADD,,, 10 MEM,,

R-to- L window NAF (v = 3)
modECDBL and ECADD

7 mMUL,,, 5 mSQR,,,
13.8 mADD,,, 13 MEM,,

R-to-L window NAF (v = 4)
modECDBL and ECADD

6.4 mMUL,,, 4.8 mSQR,,,

13.4 mADD,,, 19 MEM,,

Shamir’s trick
ECDBL and mECADD

9 mMUL,, 6.75 mSQR,,,

13.5 mADD,,, 12 MEM,,

Regular EcSMs

L-to-R Double-Add always
ECDBL and mECADD

12 mMUL,,, 9 mSQR,,,
18 mAaDD,,, 11 MEM,,

R-to-L Double-Add always
modECDBL and ECADD

18 mMUL,,, 8 mSQR,,,
19 maDD,,, 13 MEM,,

Montgomery Ladder
ZADDU’ and ZADDC’

9 mMUL,,, 5 mSQR,,,
18 mADD,,, 9 MEM,,

Regular Shamir’s trick
ECDBL and mECADD

12 mMUL,, 9 mSQRr,,,
18 mADD,,, 13 MEM,,

BRIP
ECDBL and mECADD

12 mMUL,,, 9 mSQR,,,
18 mADD,,, 12 MEM,,

Blinded R-to-L Double-Add always
modECDBL and ECADD

18 mMUL,,, 8 mSQR,,,
19 mADD,,, 13 MEM,,
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Cryptographic Protocol

Given the following curve parameters:
e [, an elliptic curve over a prime field I,
e (5, a generator of a subgroup of E of order ¢,

a private key is expressed by an integer d randomly chosen in {1,¢ — 1}. The corresponding
public key is P = [d]G.

Such a key pair is involved in cryptographic protocols such as the signature scheme ECDSA

(Section 5.1), the key agreement protocol ECDH (Section 28) or the encryption scheme EC-
ELGAMAL (Section 5.3).

5.1 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature scheme. It has been
standardized in [ANSI X9.62].

Algorithm 26 ECDSA Signature
Input: private key d, an encoded integer m € [0, p — 1] representing a message
Output: Signature (r, s)
k&t —1)
Q« [klG
r < 2o modt
if » =0 then
go to line 1
Einy <+ k=" mod t
$ 4 kino(dr +m) mod ¢
if s =0 then
go to line 1

_.
=

return (r, s)
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Algorithm 27 ECDSA Verification
Input: public key P, an encoded integer m € [0, p — 1] representing a message, signature (r, s)
Output: true or false
Sinw < s Y mod t
U1 4 Siny X m mod t
Ug < Siny X T mod t
Q + [u1)G + [ug) P
v 4= xg mod t
if v = r then
return true
else
return false

The Shamir’s trick (Algorithm 18) is suitable for the verification procedure.

5.2 Elliptic Curve Diffie Hellman

The Elliptic Curve Diffie Hellman (ECDH) cryptographic scheme is a key agreement between
two entities. It was standardized in [ANSI X9.63]. The procedure enables to share a secret
data from the private key of the first entity and the public key of the second entity.

Algorithm 28 ECDH
Input: A’s private key d4, B’s public key Pp
Output: Secret Point S
S+ [dA]PB
if S = O then
return ERROR
return S

The entity B does the same with his own private key dp and A’s public key P4. Both
respective calculations give the point S = [dadg]G. A and B now share a secret data. ECDH
can be used with ephemeral or static keys.

5.3 Elliptic Curve ElGamal

The Elliptic Curve ElGamal (EC-ELGAMAL) is a cipher scheme.

Algorithm 29 EC-ELGAMAL Encryption
Input: Public Key P, an encoded integer m € [0, p — 1] representing a message
Output: (z1,y1,¢)

&Lt —1)

(z1,91) < [K|G

(z2,92) < [K]P

c 4+ xo +m mod p

return (x1,y1,¢)
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Algorithm 30 EC-ELGAMAL Decryption

Input: Private Key d, an encrypted message (x1,y1,¢)

Output: an encoded integer m’ € [0, p — 1] representing a message
(ah, ) < [d) (1, 1)
m’ < ¢ — x5, mod p
return m’
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Chapter 6

ECC Security

The security of ECC in the black box model relies on the hardness of one of the following
problems:

e the Elliptic Curve Discrete Logarithm Problem (ECDLP), that is the computation
of k given P and Q = [k]P,

e the Elliptic Curve Computational Diffie Hellman, that is the computation of
[k1ko] P given P, Q1 = [k1]P and Q2 = [ko]| P,

e the Elliptic Curve Decisional Diffie Hellman, that is, given P, Q1 = [k1]P, Q2 =
[ko] P and Q3 = [ks]P, assess if Q3 = [k1k2]P.

The Elliptic Curve Computational Diffie Hellman and the Elliptic Curve Decisional Diffie
Hellman are trivially solvable if the ECDLP is. The best known algorithms to solve the ECDLP
are the Pollard’s rho [Pol78] and the Baby-step Giant-Step [Sha71] methods. They both have
a complexity of O(v/t) where t = ord(P). If [ is the security parameter of the cryptographic
application (e.g. 128 or 256), the recommended elliptic curve shall have a point P of order
ord(P) =~ 2%, Although there is no concrete proof that the ECDLP cannot be solvable with better
algorithms, this problem has been accepted by the cryptographic community to guarantee the
security of ECC.

Note that, so far, no sub-exponential algorithm is known to solve the ECDLP. This is not
the case for integers factorization (which immediately breaks rRSA) and discrete logarithms on
the multiplicative group of a finite field.

Remark 6.1. In particular elliptic curves, such as anomalous curves, supersingular curves, or
other curves [BSS99, Chapter IIT], better methods than the Pollard’s rho and the Baby-step
Giant-Step are known for solving the ECDLP. Elliptic curves for cryptographic applications are
chosen with good care so they do not have any of those particularities, and the Pollard’s rho
or the Baby-step Giant-Step methods are the best known methods to solve the ECDLP.

Generally, physical attacks aim at recovering the scalar or breaking the protocol with totally
different methods, without solving the ECDLP. Fortunately, several methods exist to thwart
them. This is the topic of the next part.
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Part 11

Physical Attacks and
Countermeasures on ECC
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Introduction

Side-Channel Analysis (SCA) is the cryptographic technique exploiting different leaks, such
as the execution time, the power consumption, the electromagnetic emanation during the ex-
ecution of a cryptographic algorithm embedded in a device. Kocher was the first to report
a side-channel attack in 1996 [Koc96]. The attack exploits the variation of execution timing
with different inputs. Boneh, DeMillo and Lipton introduced another kind of physical attack
in 1997 [BDL97]. They suggest introducing a fault during the execution of the cryptographic
algorithm. The secret key is then derived from the erroneous result. Since then, various fault
attacks have emerged. On the other hand, many different countermeasures have been imagined
and introduced year after year to defeat physical attacks. This part gives a survey on the
physical attacks and countermeasures on ECC.

While defenders introduce new methods to thwart a class of attacks or an attack in par-
ticular, cryptanalysts propose new attacks to bypass previous countermeasures making them
incomplete or even completely ineffective. We exhibit the attacks and countermeasures with a
tree structure to represent this cat-and-mouse game.

Chapter 7 is devoted to the characterisation of the attacks and countermeasures. Consider-
ing the large number of attacks, the employment of precise terms to describe them is required.
Also, most of the countermeasures have a negative effect on the performance; we explain how
to quantify their cost.

Chapter 8 is the core of the thesis. It displays the different attacks and countermeasures. We
propose new side-channel attacks, called Same-Values Analysis (SVA), based on the occurrence
of same values within the same ECSM. Namely, these attacks are the horizontal SVA targeting
the Unified Formulee (Section 8.2.2.2), the vertical and horizontal SVA against the Side-Channel
Atomicity (Sections 8.2.3.1 and 8.2.3.2), the vertical and horizontal classical SVA (Sections 8.13
and 8.14). Also, a new kind of fault attacks is proposed in Section 8.23. A fault is induced
at the very end of the ECSM, during the conversion from projective to affine coordinates. In
addition, we propose a very efficient countermeasure against the Refined Side-Channel Analysis
in Section 8.11.1. We propose new elliptic curve formulae, ensuring the security against the
Refined Side-Channel Analysis.

Some fault attacks require several pairs of correct and faulted results. Intuitively, ECDSA
seems naturally immune against such attacks because it is a probabilistic signature scheme. We
show in Chapter 9 that is not true for several fault attacks.

Chapter 10 summarizes the attacks depending on the context. It is suitable for the task of
selecting different countermeasures when implementing a secure embedded ECC application.

Finally, a synthesis on the attacks versus the countermeasures is given in Chapter 11. The
efficiency of each countermeasure against the attacks is clearly displayed.
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Chapter 7

Characterisation of Attacks and
Countermeasures

Given the large number of physical attacks in ECC, the use of precise terms is essential to describe
and classify them. In Section 7.1, we give the different categories of the attacks depending of
the exploited leak. Section 7.2 gives a description of the context for the attacks. In the next
chapter, experimental results are given to verify the practicability of some side-channel attacks.
To perform the experiments, we use a test platform that is described in Section 7.3. Finally,
we give in Section 7.4 the terms that will quantify the cost of each countermeasure.

7.1 Categories of the Attacks

The different attacks in embedded systems are generally classified into three main categories:
Side-Channel, Fault and Combined Attacks. For each attack of the next chapter, we
specify in which category it belongs to.

Side-Channel or Passive Attacks are those where the attacker observes the behaviour of
the chip during a process without disturbing it. Since the behaviour depends on the manipulated
data, the observations may reveal secret information such as the secret scalar. So far, the
different passive attacks are:

e Timing Attacks. They exploit the interdependence between values of the inputs and
the time needed to execute the cryptographic algorithm. The first reported side-channel
attack of Kocher [Koc96] is in fact a timing attack.

e Simple Side-Channel Analysis (SSCA). The attacker observes the different patterns
of the power consumption or the electromagnetic traces. Each step of the attack requires
a single trace to conclude on some information of the secret.

e Template Attacks. They proceed in two phases [CRR02]. The first phase consists in
building the templates. The attacker needs a fully controllable device in which she can
choose private and public data, and acquire traces of the power consumption by varying
the input data: this database makes up the templates. The second phase is the acquisition
of the targeted device with the same known public data used for the templates. The trace
is then compared with the templates to conclude which secret data are the more probably
manipulated.
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e Vertical Side-Channel Analysis. Several ECSMs are run with different input data.
Each time, the power consumption or the electromagnetic radiation is acquired. A statis-
tical analysis is performed on the different traces to deduce the manipulated values, and
hence the secret scalar.

e Horizontal Side-Channel Analysis. A single trace is analysed to conclude on some in-
formation of the secret. The attacker uses statistical tools on segments of the trace. Since
a single trace is available, the length of the random variables is really limited. Therefore,
Horizontal SCA is more difficult to mount in practice compared with Vertical SCA in
which the attacker has a potential access to unlimited traces. Nonetheless, recently, these
attacks have been intensively studied because they are in fact very powerful since a single
trace can reveal the whole secret data. These attacks make it possible to target some
cryptographic protocols naturally immune to vertical SCA such as ECDSA. They also can
bypass some very powerful countermeasures.

Fault or Active Attacks are those where the opponent disturbs the chip during the execu-
tion of the cryptographic algorithm by using a laser, by varying the supply voltage, by varying
the external clock or other methods. The possibly erroneous result can reveal information of
the targeted secret data. The first reported attack that used a fault to derive secret information
was introduced by Boneh, DeMillo and Lipton [BDLI7] to target RSA implementations used
with the Chinese Remainder Theorem (CRT). The attack was renamed later Bellcore attack
after the name of the company for which Boneh, DeMillo and Lipton were working. Since then,
many methods to derive a secret key using a fault were introduced. In ECC, the different active
attacks are generally classified as follows:

e Safe-Error Attacks. The attacker injects a fault on a specific area of the chip at a
specific time during a process. The final result will be wrong if and only if some condition
of the secret data is met. Otherwise, the result will be correct and the fault had no effect:
it was safe.

e Weak Curve Attacks. A fault is induced on some parameters before the ECSM so that
the ECSM is performed on another elliptic curve that is weaker than the original one. The
new curve E’ is weak in the sense that solving the ECDLP is easy. Generally, this means
that the order of E’ has no large factor.

e Differential Fault Attacks (DFA). Several ECSMs are run. Each time, a fault is
induced during the execution of the cryptographic algorithm. The attacker collects the
erroneous results. They are analysed and compared with each other or with the correct
ones to deduce some information on the secret key. The term “Differential Fault Analysis”
was first employed by Biham and Shamir to describe an attack against an implementation
of the Data Encryption Standard (DES) [BS97]. The Bellcore attack on RsA is in fact a
DFA.

This thesis focuses on the different methods to derive the secret scalar from possibly erro-
neous results rather than the technical aspect of injecting a fault. For a detailed description of

the different methods to disturb the chip, the interested reader can refer to the survey given in
[BCNT06].

Combined Attacks are those where the attacker combines two (or more) passive or active
attacks at a time.
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7.2 Attack Context

The context of an attack is essential for the designer trying to protect an embedded system.
Depending on the protocol, the implementation or the architecture, an attack is not necessarily
feasible. In this case, a protection is not necessary, and the performance can be increased
because each countermeasure has a cost. The context is described by giving details on the
following information:

e Key Recovery. A description of the key recovery procedure is given; it can be either
recursive if the bits recovery process follows a certain order, or “independent bits” if the
bits are recovered independently from each other. The key recovery process can also
involve more computation such as the ECDLP to recover a small scalar, or the ECDLP on
a weak curve.

e Elliptic Curve Specificity. Some attacks work only if the given elliptic curve has some
properties; these properties are given,

e Implementation Access. The attacker needs some knowledge of the implementation
(until a certain level of the ECC’s hierarchy), or she needs an access to a device with
exactly the same implementation.

e Implementation Specificity. An attack can either be adapted for many different im-
plementations, or it targets a very specific implementation, a specific algorithm, a specific
elliptic curve formula or a specific countermeasure.

e Number of Executions Needed. To succeed, an attack requires the run of one or sev-
eral ECSMs (for example n, n being the bit-length of the scalar); when the attack is based
on a statistical approach, we simply say “multiple” executions because the executions
number depends on the standard deviation of the random variables.

e Input Access. Either the attacker needs to choose a base point having some properties
or she simply needs the knowledge of it or the base point does not matter.

e OQutput Access. The attacker may need either some information about the output point
like the knowledge of it or, more simply, the knowledge of its validity (correct or incorrect)
or, even, no information at all about it.

e Fault model. The different faults are characterized as data randomization (a random
fault is injected into a specific area), resetting data (a fault is injected to force a data to the
zero value) or modifying opcode (a fault is injected to modify or skip some instructions).
Also the area size of the fault is given.

7.3 Test Platform

Side-Channel attacks are generally experimentally validated. We implemented elliptic curves
operations in the Side-channel Attack Standard Evaluation Board SASEBO-GII [SASEBO].
The hardware arithmetic module was implemented using algorithms described in Chapter 2
with a word size of 64 bits. All measures and experimental results given in the next chapter
are performed with this test platform.
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7.4 Quantifying the Cost of the Countermeasures

Fach countermeasure has a non negligible time or memory cost on ECC applications. Indeed,
a countermeasure can extend the ECSM by several iterations, it can increase the number of
operations of an elliptic curve formula, or it can cost only a few modular multiplications. For
the extra field operations, extra elliptic curve operations, or extra iterations of the ECSM, we use
the notation of Sections 2.6, 3.2 and 4.3 respectively. A Random Number Generation (RNG), a
Random Permutation Generation (RPG) or a Cyclic Redundancy Check (CRC) might be needed
for the countermeasure. We notify it. The memory required to store the extra values also
matters. For each countermeasure, we give the cost with the following notation:

® ECSM;,: execution time of an ECSM with a [-bit scalar and a n-bit modulus,

e ECADD,,, ECDBL,,, C-ECADD,,: execution time of an elliptic curve addition, doubling and
conjugate addition with a modulus of size n,

e ADD,, SQR,,, MUL,, DIV,: execution time of an addition/subtraction, a square, a multipli-
cation and a division respectively, with n-bit integers,

e MADD,,, mSQR,,, MMUL,, mINV,,: execution time of a modular addition/subtraction, a
modular square, a modular multiplication and a modular inversion respectively, with
n-bit integers,

e RNG,: execution time of the generation of a random n-bit integer,
® RPG,,: execution time of the generation of a random permutation of m elements,
e CRC,: execution time of a cyclic redundancy check of a n-bit integer,

e MEM,,: memory block to store a n-bit integer.



Chapter 8

Attacks and Countermeasures

This chapter gives a state-of-the-art in physical attacks and countermeasures on ECC. Existing
attacks and countermeasures are described. Our new attacks: the Same-Values Analysis and
the Fault Attack on Projective to Affine Conversion are detailed. Our countermeasure against
the Refined Side-Channel Analysis is described as well.

Some countermeasures were introduced to counteract an attack in particular. In this case,
the countermeasure will be a subsection of the latter. The same is done with an attack targeting
a specific countermeasure. This structure tree is more suitable to expose the state-of-the-art.
In addition, the titles of the attacks are in red, while the titles of the countermeasures are in
blue.

For each attack, we specify if some countermeasures, prior in the state-of-the-art, thwart
the attack. We also specify if previous countermeasures have been proven ineffective against
the attack currently described. This analysis of interaction was either found in the paper in-
troducing the attack or it is from our own researches.

The characteristics of the attacks, as described in the previous chapter, are given. Also, the
cost of each countermeasure is specified.

Remark 8.1. Some passive attacks consist in analysing the power consumption trace dur-
ing the execution of the cryptographic operation. These attacks can be adapted using the
electromagnetic radiation trace. We use a single notation for better clarity.

In this chapter, unless otherwise specified, we consider the following parameters:
o E:y?=2%+ax+bis the given elliptic curve defined over F,, with p a n-bit prime integer,

e [ is the secret scalar that the attacker tries to recover.

8.1 Classical Timing Attack [Koc96|

The first timing attack, introduced by Kocher, targets RSA implementations. It takes advan-
tage of the non-constant execution timing of the modular multiplication such as Algorithm 8
with the conditional reduction step. The attack was improved and simplified by Dhem, Koe-
une, Leroux, Mestré, Quisquater and Willems [DKLT98]. Tt is described below, adapted to Ecc.
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The attack is recursive. Suppose that the attacker already knows the n —i — 1 leftmost bits
of the fixed scalar k = (k,_1,...,ko)2 and tries to recover k; (1).

The attacker collects the execution time of different ECSMs with different base points. She
simulates the computation with exactly the same implementation of the targeted chip, by
making an assumption on k; (e.g. k; = 0).

She separates the different timings in two sets S; and Sy. If a final reduction is needed at
a specific time of the algorithm (this can be for example the first multiplication of the elliptic
curve operation), the timing is put in Ss. The timing is put in S; otherwise (no reduction).
Let T1 and T5 be the average timings of S; and S5 respectively. If 75 — T} ~ ¢, € being the
average time of the final reduction, then the hypothesis on the secret was right.

Remark 8.2. In [DKL™98], they improve the attack by making the two possible assumptions:
k; = 0 and k; = 1. The sets T (no reduction) and Ty (reduction) are constructed for both

assumptions. They are denoted by T 1(0), T 2(0) and Tl(l)7 T2(1) for k; = 0 and k; = 1, respectively.
The method consists in comparing TQ(O) — Tl(o) and Tz(l) — Tl(l). The larger number reveals the
good hypothesis.

Attack Context:
o Key recovery: recursive,
e Elliptic Curve Specificity: none,
e Implementation Access: full knowledge of all algorithms,

e Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications,

e Number of Executions Needed: multiple,
e Input Access: known and varying,

e Output: unnecessary.

8.1.1 Constant Time of Field Operations

A effective solution to prevent the timing attack described above is to perform all field operations
in constant time, whatever the input values. This can be done by adding dummy operations if
necessary as explained in Sections 2.3 and 2.4. To ensure a full protection, the designer should
verify that the the field operations are performed with the same number of cycles whatever the
input values.

With random values, the probability of subtraction for a modular addition is 1/2, and the
probability of addition for a modular subtraction is 1/2. The probability of a final reduction is
3/16 for a Montgomery multiplication and 1/4 for a Montgomery squaring [SST04]. One extra
memory block is required to store the result of dummy operations.

Cost: 1/2 ADD,, per mADD,,, 13/16 ADD,, per mMUL,,, 3/4 ADD,, per mSQR,,, 1 MEM,,

I This presumes this is a Left-to-Right EcsMm. Of course, the attack works backwards on Right-to-Left ECSMs.
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8.2 Simple Side-Channel Analysis [Cor99]

Coron was the first to report a SSCA on Ecc. This attack targets unregular ECsMs such as the
Left-to-Right Double-and-Add method (Algorithm 14).

At each iteration, an addition of points is performed only if the current bit of the scalar is
1. If the attacker is able to distinguish the power consumption of a doubling from the one of
an addition of points, as in Figure 8.1, the bits of the scalar are easily recovered. Contrary to
RSA, where squares and multiplications can be executed by the same code, this is not the case
for ECC.

Ul bkl PR SRR P e

Figure 8.1: Power consumption trace of a doubling (left curve) and an addition (right curve).
Field operations are delimited by vertical lines.

A single trace of an ECSM is enough to recover the scalar.

Attack Context:
e Key recovery: recursive (the iteration number has to be known),
e Elliptic Curve Specificity: none,
e Implementation Access: knowledge of the ECSM and the elliptic curve formulee,

e Implementation Specificity: unregular EcsM, different formulae for addition and dou-
bling operations,

e Number of Executions Needed: 1,
e Input Access: unnecessary,

e Output Access: unnecessary.

8.2.1 Regular ECSM [Cor99, §3.1]

A countermeasure against SSCA consists in regularizing the ECSM, i.e. perform the same elliptic
curve operations at each iteration of the ECSM whatever the value of the scalar.

Introducing dummy operations can make an ECSM regular such as the Left-to-Right Double-
and-Add always (Algorithm 19). The Montgomery Ladder (Algorithms 21 and 22) is regular
as well without any dummy operation. Regular ECSMs were previously given in Section 4.2.
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8.2.1.1 C Safe-Error [YKLMO01]

C Safe-Error attacks, introduced by Yen, Kim, Lim and Moon, target implementations with
dummy operations such as the Left-to-Right Double-and-Add always method (Algorithm 19).
The attacker injects a fault during the computation of the addition of points at iteration 4.
If the addition is dummy, which is the case if k; = 0, the fault had no effect and the result is
correct.
This attack targets one bit at a time per ECSM.
Attack Context:
e Key recovery: independent bits,

e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the field arithmetic module,
knowledge of the ECSM and the elliptic curve formulze,

e Implementation Specificity: implementation with dummy operations depending on
the current bit,

e Number of Executions Needed: n,
e Input Access: unnecessary,
e Output Access: knowledge of the validity,

e Fault Model: any on the field arithmetic module.

8.2.2 Unified Formulz [BJ02]

This countermeasure was introduced by Brier and Joye to prevent the SSCA. Elliptic curve
operations are reviewed so that the operations for computing a doubling and an addition are
the same.

The following formula can be used for both addition (@ # +P) and doubling (QQ = P). They
presented the formula in projective coordinates because it is more efficient than the Jacobian
coordinates.

Algorithm 31 unified ECADD in projective coordinates [BJ02]
Input: P = (X1,Y7,721),Q = (X2, Ys, Zs) in projective coordinates such that Y175 # —Y227,
elliptic curve parameter a
Output: P+ Q
U, + Xlzg; Uy X2Z1;S1 — Y1Z2; So < Yo 74
Z(*leg; T(*U1+U2; M(*Sl+52
R+ T? -U Uy +aZ% F <« ZM
L+ MF
G+ TL
W+ R?>-G
X3 — 2FW
Y3 + R(G —2W) — L?
Z3 +— 2F3
return (X3,Y3, Z3)
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Cost: (unified ECADD): 13 mMUL,, 5 mSQR,,, 9 mADD,,, 6 MEM,,

This prevents the classical SSCA since doubling and addition operations cannot be distin-
guished with the power consumption trace as in Figure 8.1.

This countermeasure must be carefully implemented. The attacker should not be able to
distinguish the transition of an iteration to the next from the transition of the two elliptic curve
operations within the same iteration. The atomicity principle should be applied [CCJ04].

An addition of points requires 13 mMUL,,, 5 mSQR,,, 9 mADD,, and 6 temporary registers.

Cost:
e 9 mMUL,, — 1 mSQR,, — 2 mADD,, over ECDBL,,,

e 1 mMUL, + 1 mSQR,, + 2 mADD,, over ECADD,,.

8.2.2.1 SSCA on Unified Formule [Wal04]

Walter showed that a simple SCA can reveal whether a final subtraction is needed at the
end of the Montgomery multiplication, as shown in Figure 8.2. By analysing all Montgomery
multiplications performed during the execution of Algorithm 31, the attacker is able to tell if
the points are the same (doubling) or not (addition).

|

Figure 8.2: Power consumption of a multiplication with a final subtraction (left curve) and
without a final subtraction step (right curve). The vertical arrow indicates the additional
subtraction.

Stebila and Thériault improved the attack [ST06]. In addition to the conditional subtrac-
tion at the end of the Montgomery multiplication, they use the conditional subtraction (resp.
addition) at the end of the modular addition (resp. subtraction).

A single trace may be enough to recover the whole bits of the scalar. In addition, the
knowledge of the input point is not required [Wal04, ST06]. Obviously, the Constant Time of
Field Operations countermeasure, as described in Section 8.1.1, thwarts the attack?.

Attack Context:
e Key recovery: recursive (the iteration number has to be known),

e Elliptic Curve Specificity: unregular ECSM,

20f course, only if the dummy operations are performed in the same manner as if they were real. Also, the
conditional step and throwing away the temporary wrong result should not be distinguished with side-channel
analysis.
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Implementation Access: full knowledge of all algorithms,

Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications, unified formulze,

e Number of Executions Needed: 1,
e Input Access: unnecessary,

e Output Access: unnecessary.

8.2.2.2 Horizontal Same Values Analysis on Unified Formulse

We introduce a new attack against the Unified Formulee countermeasure. A single trace is
analysed: it is a horizontal attack.

Algorithm 31 is used so that the attacker cannot distinguish whether a doubling or an
addition is being performed. However, if the input points of unified ECADD are the same, the
values Uy, Uy are computed with the same input values: X; = X5 and Z; = Z5. The same goes
for 317522 Yl = Y2 and Zl = ZQ.

The trace segments during the computation of Uy, U, are compared as illustrated in Figure
8.3.

Xy Zy Xaly
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Difference of trace segments = m

Fd =&ndy =2y IFX] # Xp2, # 24

Figure 8.3: Comparison of the power consumption during the computation of unified ECADD.

If the inputs of the two multiplications are equal, the difference of traces corresponds of the
difference of the noise only. Consequently, if the noise is low, the difference of traces will be
near zero in that case. If the noise is high, a more sophisticated tool than a simple difference
can be used, such as the Euclidean distance or the correlation with the points of interest of
the traces. The trace segments during the computation of Uy, Us can be seen as random vari-
ables XY respectively. The construction of such random variables are illustrated in Figure 8.4.

The comparison can be done at each iteration, so the scalar can be recovered from a single
trace.

Attack Context:
e Key recovery: recursive (the iteration number has to be known),

e Elliptic Curve Specificity: none,
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Figure 8.4: Construction of random variables for a Horizontal SCA without a leakage model
during the execution of an ECSM.

e Implementation Access: knowledge of the ECSM and the elliptic curve formulee,
e Implementation Specificity: unified formula,

e Number of Executions Needed: 1,

Input Access: unnecessary,

Output Access: unnecessary.

8.2.3 Side-Channel Atomicity [CCJ04]

The concept of Side-Channel Atomicity was introduced by Chevallier-Mames, Ciet and Joye.
The elliptic curve formule are rewritten with sequences of identical atomic patterns. In [CCJ04],
an atomic pattern is the sequence of the following (possibly fake) operations:

1. modular multiplication or square
2. modular addition
3. modular opposite
4. modular addition

A point doubling requires 10 of these atomic patterns, while an addition requires 16.

This countermeasure has been improved by Giraud and Verneuil [GV10]. A point doubling
in modified coordinates requires 2 msQR,,, 6 mMUL,,, 10 mADD,, and 7 temporary registers®. An
addition of points requires the double amount of operations: 4 mSQR,,, 12 mMUL,,, 20 mADD,,
and 7 temporary registers®. The formulee are suitable for the Right-to-Left sliding window
width-v NAF scalar multiplication (Algorithm 17). The elliptic curve operations are illustrated
in Figure 8.5.

This implementation is not vulnerable anymore to SSCA since the attacker cannot distin-
guish between the operations performed. She only sees a sequence of identical atomic patterns
without knowing if they correspond to a doubling or an addition (see Figure 8.6).

Fake operations are introduced so that the different elliptic curve operations might be written
with the same atomic patterns. Therefore, Safe-Error attacks can be applied to distinguish
which operation is currently performed.

36 temporary registers are needed in [GV10], we added one extra temporary registers for the dummy opera-
tions.
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modECDBL (D)

2. * * TQ(*Y1+Y1
3. T2<—Y1><Zg T4<—T5><T1 Z3(—T2XZ1
4. * * Ty Ty +T
5. Ts + Yy X 74 Ts Ty xTg T3+ To xY;
6. * * T < T35+ T3
7. Tg%T1XT2 Tl(*Zl>(T6 TQ(‘TﬁXTg
8. * * Tl(—T4—|—T1
9. * * T < Ty + Wy
10. Ty <—Z12 Ts (—T22 T3 (—T12

11. Ty« T5 x Ty Zg%T1><Z2 T, + T x X4
12. * Ty« T4+ Ty T5 «+— Wi+ Wh
13. To Ty, — Ty Te < T — Ty T3 T3 —Ty
14. Ts < Ty x X, Ty < T5 x Ty Wy Ty x Ty
15. * X3+ 15— T;5 Xy T35-1T},
16. * T4<—T4—X3 T6<—T4—X3
17. T6<*X2XT4 T3%T4XT2 T4(*T6XT1
18. Te < T — Ts Y315 -1y Y3 T, —Ts

Figure 8.5: ECADD and modECDBL operations written with the same atomic pattern (x repre-
sents a dummy operation). Each column is an atomic pattern.

Figure 8.6: Power trace observed during a few iterations of the ECSM using the patterns of
Figure 8.5

Cost:

e modECDBL,, with atomic patterns costs 2 mMUL,, — 2 mSQR,, — 2 mADD,, + 4 MEM,, over
the classical modECDBL,, of Section 3.1.1 (which is an improvement if mMUL,, = mSQR,,),

e ECADD,, with atomic patterns costs 13 mADD,, + 4 MEM,, over the classical ECADD,, of
Section 3.1.1.

8.2.3.1 Same Values Analysis against the Atomicity Countermeasure

We present our Vertical Side-Channel Attack targeting the Side-Channel Atomicity Counter-
measure. We use the notation of the patterns A1, 42, D as described in the previous section.
We illustrate our attack on the Right-to-Left sliding window width-v NAF scalar multiplication
(Algorithm 17) in which the Side-Channel Atomicity was described in [CCJ04, GV10].
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If we are able to distinguish between a doubling (D) and an addition (Al;.42), we can
deduce if the current digit of the scalar is zero. The attack is recursive. For a better clarity,
we will see how to find the first digit ko of the v-NAF representation of k. The next digits are
recovered in the same way.

The core idea of the attack is to identify which operation is performed by analysing the
possible repetitions of variables in the patterns.

Possibilities of the patterns. Considering Algorithm 17, the possible operations of the
three first atomic patterns are:

1. A1; A2;D. In this case, kg # 0.
2. D; Al; A2. In this case, kg = 0.
3. D;D; Al. In this case, kg = 0.
4. D;D;D. In this case, kg = 0.

We want to assert if the first three patterns correspond to A1;.42; D (ko # 0).

Same values in the different patterns. With Figure 8.5 and the different possibilities of
the three first patterns, we label the modular multiplications with a common operand only if the
operations are Al; A2; D; we deliberately omit the multiplications sharing a common operand
if they possibly occur in another sequence of patterns.

The common operands are illustrated in Figure 8.7. They are denoted with boxes with the
same index. For example, the square at line 1 of the 1% pattern and the multiplication at line
3 of the 1% pattern share a common operand (Z3) only if the sequence is Al;.A2;D. Note
that the multiplication at line 17 of the 1! pattern and the multiplication at line 11 of the
374 pattern share a common operand (X, and X1) only if A1;.A2; D is performed. The same
holds for Zs in Al;. A2 and Z; in D. Indeed, the point (Xs,Y5, Z5) of Al; A2 and the point
(X1,Y1,Z71) of D both correspond to the point R or —R in Algorithm 17.

The total number of pairs of multiplications or squares sharing a common operand is sixteen
in the sequence Al; A2; D.

Detecting the same values. The attacker arbitrarily chooses a pair within the sixteen.
Several ECSMs are run with the same scalar k. The base point does not matter.

We want to detect if, for each ECSM, the two multiplications of the selected pair share a
common operand. The method introduced by Schramm et al. [SWP03] to attack an imple-
mentation of the DES can be used. It was later improved in [CFGT11] to attack a protected
implementation of the Advance Encryption Standard (AES). The principle of the method is as
follows. Within each trace, the two points where the same values are possibly manipulated are
saved for constructing two random variables, as illustrated in Figure 8.8. The correlation or
another statistical tool is performed to reveal if the same values are indeed manipulated.

Remark 8.3. The pair of multiplications is selected such that the common operands are in
the same operand input (left or right). This makes it possible to perform a collision analysis
without any synchronization procedure. The attack is still possible if it is not the case, but
a strong study on the field arithmetic module is required for a synchronization because the
sensitive data is not manipulated at the same time within the field operation.
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Figure 8.7: Common operands in the atomic patterns
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Figure 8.8: Construction of random variables for a detection of same values

Experimental Results.

We conducted an experiment with the test platform described in

Section 7.3. We measured the power consumption of 400 pairs of modular multiplications of

256-bit integers.

For each pair, the two modular multiplications share a common operand.

We then computed the correlation curve (X and Y illustrated in Figure 8.8 are slid together
along the traces). The same was done with 400 pairs of modular multiplications with random
operands. The correlation curves are given in Figure 8.9. Four peaks can be seen when the
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modular multiplications share a common operand. It corresponds to the four words of the
common operand.

Figure 8.9: Correlation curves results for 400 pairs of modular multiplications sharing a common
operand (left curve) and random operands (right curve) of 256-bit integers

If a significant peak can be seen on the correlation curve (left curve of Figure 8.9), the
operations of the three first patterns are A1;.42;D. The attacker concludes that kg # 0. She
starts again with the next three patterns to target the digit k1. Conversely, if no peak is detected
(right curve of Figure 8.9), the first pattern corresponds to D, and the attackers concludes that
ko = 0. The attacker starts again with the two last patterns of the three, added together with
the fourth of the ECSM to target k.

The fifteen other pairs can be used to increase the length of the random variables and
therefore decrease the number of traces required.

Attack Context:
e Key recovery: recursive (the iteration number has to be known),
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the ECSM and the elliptic curve formulee,

Implementation Specificity: unregular ECSM, usage of the Side-Channel Atomicity
countermeasure,

e Number of Executions Needed: multiple,

Input Access: unnecessary,

Output Access: unnecessary.

8.2.3.2 Horizontal SVA on the Atomicity Countermeasure

The previous attack was a Vertical Side-Channel Attack. The attack is no longer applicable if
the scalar is not fixed or randomized.

We extend the previous attack and propose a Horizontal Side-Channel Attack. Like the
previous attack, the attacker tries to detect if the three current patterns are Al; A2; D using
the possibly same values occurring in the patterns. Our attack is based on the Big Mac principle.

Big Mac attack. The Big Mac attack was first introduced by Walter to target RSA imple-
mentations [Wal01]. The attack is based on a method to detect if two multiplications share a
common operand by comparing their power trace. This method is described here because we
extend this method for our attack. The Big Mac attack will be fully described later in Section
8.7.
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Walter pointed out that two multiplications with a common operand have similarities as
for the power consumption. Denote by 77,75 the traces during the computation of respec-
tively two modular multiplications A x B mod P, C x D mod P, with A # C (or Montgomery
multiplications).

Denote by m the words number of the integers. The sample points of the trace 77, in which

each b;,j € [0, m[ is manipulated, are averaged into one single value sgj )1t Algorithm 8 is
(0)
1

used, this corresponds to the lines 8 to 10. The computation of s; ’ is illustrated in Figure 8.10.

Figure 8.10: Ilustration of the computation of Sgo) with a modular multiplication of integers
of four words (256-bit integers in a 64-bit architecture)

The average permits to reduce the noise corresponding to the manipulation of the a; for i €
[0, m[ and other activities of the device [Wal01]. Let S; = 850) ... ||s(1m_1) be the concatenation

of the sgj). The same is done with T5 to obtain Ss.

If B = D, the Euclidean distance between S; and Ss is small. If B # D, the distance is
high. The trace segments T7,T> can be seen as random variables constructed from a single
trace of an exponentiation, as illustrated in Figure 8.4.

This method works with a single pair of multiplications on RSA because the number of words
is large compared to Ecc?. The success of the attack depends on the size of the manipulated
integers: the longer the used integers are, the higher the success rate is [Wal0l, BJPW13a].

Big Mac CoCo. In [CFG*12], Clavier et al. propose to use the Pearson coefficient between
S, 52 instead of the Euclidean distance. They called the method Big Mac CoCo (CoCo for
Collision-Correlation). They compare the two methods with simulation results on RSA and the
correlation is better by far [CFG*12].

Later, Bauer, Prouff, Jaulmes and Wild gave simulation results of the Big Mac CoCo on
elliptic curves [BJPW13b]. They target the Side-Channel Atomicity. Indeed, they notice that
there are common operands regarding the side-channel atomicity formulee. For instance, to dis-
tinguish an addition from a doubling, they suggest to compare the first multiplication (line 1)
and the second multiplication (line 3) of Figure 8.5. If it is a doubling, the two multiplications

4For a 128 bits security, ECC must use 256-bit integers length, while RSA must use 3072-bit integers.
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share a common operand. They give the success rate on simulation results using a correlation
which was high enough even for a 32 bits architecture.

We experimentally tried both the Big Mac and the Big Mac CoCo on real measurements on
a 64 bits architecture and we failed. In the following, we present a significant improvement of
the attack of [BJPW13b]. We also present experimental results of our attack.

Assembling the pieces of the puzzle. In [BJPW13b], they compare only two multiplica-
tions in two different patterns. Our contribution is to compare many pairs of multiplications by
analysing a sequence of several patterns depending of a bit of the scalar. Namely, we want to
assert if the three first patterns correspond to Al; A2; D. In this case, the first bit is non-zero.

Compared with the classical Big Mac attack on RSA, the low number of words is compensated
by the large number of modular multiplications we compare. We can compare sixteen pairs
(see Figure 8.7) instead of one, thanks to the atomicity countermeasure.

First, we split the trace of the three first patterns; we separate the field operations. We
denote by s(-) the method for constructing S; or Ss as previously described for the Big Mac
attack.

We then construct two sets Uy, Us as follows. Uy, Us are first set empty. We perform s(-)
for the power traces of the multiplications that might share a common operand. One element
of each pair is put in Uy, the other is put in U;. The construction of Uy, Us is illustrated in
Figure 8.11 for the first three pairs possibly sharing the same operand Zs.

The Euclidean distance between U; and U, is small if each pair share a common operand.
In this case the three patterns observed are actually Al; A2; D, and the attacker concludes
that kg # 0. She then iterates the method with the next three patterns to target the digit k;.
Conversely, The Euclidean distance between U; and Us is large if no multiplication among all
multiplications shares a common operand. In this case, the three patterns observed are not
Al; A2; D, and the attacker concludes that ky = 0. She starts again with the two last patterns
of the three, added together with the fourth pattern of the ECSM to target k.

i = . | ; ; ; : - 7 i ; T :

_—> > >
U1 = s{a) s{a) s(b) " - *

> > >
U2 — s(b) s(e) s{e) -t

Figure 8.11: Assembling the pieces of the puzzle of three atomic patterns

Experimental Results - Euclidean Distance. We mounted the attack with 384-bit inte-
gers (six words with our 64-bit architecture) with our test platform described in Section 7.3.
The first step of the attack is the characterisation of the arithmetic module. We constructed
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Uy, U, as previously described with fourteen pairs of multiplications sharing a common operand®
100 times. The average Euclidean distance was 2.165. The same was done with fourteen
pairs of multiplication with random operands. The average Euclidean distance was 3.198. We
established that a distance lower than the mean 2.682 correspond to Al; A2;D.

We then assembled the pieces of the puzzle as previously described with a trace of Al; . A2; D
50 times. Only one distance was larger than 2.682. We conclude that the attacker can detect
Al; A2; D with a success of 98%. The same was done with D;D; Al 50 times. Only two
distances were smaller than 2.682. We conclude that the attacker wrongly detects a patterns
triplet as Al; A2; D with probability 4%.

We performed the experiment with 256-bit integers (four words) as well. We obtained a
probability of 96% to correctly detect Al; A2; D, and a probability of 16% that D;D; Al was
detected as Al; A2; D, which is still acceptable to perform the attack.

We strongly believe that the success probability is higher on a 32-bit architecture because
of the larger number of words.

Experimental Results - Big Mac CoCo. We also tried using the Pearson correlation as
in [CFGT12, BJPW13b]. Surprisingly, the coefficient was high (around 0.9) each time, even if
the guess was incorrect (i.e. even if there are no common operand for all multiplications).

The reason is that there are similarities in long integer multiplications even if the values are
different such as the word index. Our experiment shows that in certain cases, the Euclidean
Distance is better than the correlation. It also shows how difficult it is to characterise the
leakage of an implementation with simulated leaks. We think that, at this stage of research,
the best method is to experimentally try different methods and pick the best one.

Unlike the vertical version (Section 8.2.3.1), only a single trace is analysed. The secret scalar
can thus be recovered with a single execution of the ECSM.

Attack Context:
e Key recovery: recursive (the iteration number has to be known),
e Elliptic Curve Specificity: none,

e Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

e Implementation Specificity: unregular ECSM, usage of the Side-Channel Atomicity
countermeasure, word-wise method of the modular multiplication,

e Number of Executions Needed: 1,
e Input Access: unnecessary,
e Output Access: unnecessary.

Note that we introduced side-channel attacks against the Unified Formulee and the Side-
Channel Atomicity. Both countermeasures were proposed to prevent the SSCA. Furthermore,
our attacks are very powerful since they require only a single trace and the knowledge of the
input is not necessary. We strongly suggest to use regular ECSMs, the only remaining protection
against the SSCA that has not been directly targeted by powerful attacks.

5We use fourteen pairs instead of sixteen as shown in Figure 8.7 because we avoid the pairs where the possibly
same operand is not in the same side: boxes 5 and 13.
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8.3 Correlation Side-Channel Analysis [Cor99, §3.2]

Coron was the first to report a Vertical Side-Channel Analysis on Ecc. This attack is called
Correlation Side-Channel Analysis (CSCA).

The attack is recursive. Suppose that the attacker already knows the n —i — 1 leftmost bits
of the fixed scalar k = (k,_1,...,ko)2 and tries to recover k; (%).

The attacker collects N power consumption traces during the iteration ¢ of the ECSMs with
different base points. Each time, she tries to guess the values that are manipulated, by making
an assumption on k;. The guessed values are denoted by a; with j € [1, N]. The a; are indeed
manipulated only if her guess is correct.

She constructs the random variable X with the samples of the traces where the possible
values a; are used. Besides, she constructs the random variable Y with these values a; and a
specific leakage model m (e.g. the Hamming weight or the Hamming distance). The correlation
between X and Y is high if the hypothesis on the secret data is correct. Figure 8.12 illustrates
the construction of X and Y.

X ¥

WM‘II“W‘ N‘WM WWWWP\% MWMW W\Wi m(a1)
W L A ()

w.mmw.vww‘..Wwﬂmmwﬁwl m(Ea N)

Figure 8.12: Construction of random variables for a CSCA

Attack Context:
o Key recovery: recursive,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the ECSM, the elliptic curve formulee, the rep-
resentation of integers and the word size of manipulated integers,

e Implementation Specificity: none,
e Number of Executions Needed: multiple,
e Input Access: known and varying,

e Output Access: unnecessary.

6This presumes this is a Left-to-Right Ecsm. Of course, the attack works backwards on Right-to-Left ECSMs.
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In the same paper introducing the CSCA on Ecc, Coron exposes three very different methods
to thwart his own attack: the Group Scalar Randomization (Section 8.3.1), the Point Blinding
(Section 8.3.5) and the Random Projective Coordinates (Section 8.3.6). These methods were
intensively studied, attacked or improved during the past years.

8.3.1 Group Scalar Randomization [Cor99, §5.1]

Coron suggests to randomize the scalar using the group structure of the elliptic curve. The
scalar is randomized as k' = k + r#FE, with a random r of small size (32 bits seems a good
trade of between security and efficiency). Obviously, the result of the ECSM is the same:
[k + r#E]P = [k]P + [r]([#E]P) = [k]P for any point on the curve.

The countermeasure prevents the CSCA because the attack works only on a fixed scalar. It
prevents the classical Timing attack (see Section 8.1) for the same reason. The countermeasure
thwarts also the C Safe-Error attack (see Section 8.2.1.1). Indeed, this attack can target a
single bit at a time. Recovering a single bit of &’ is useless.

k and #F have generally the same size n. So k' is approximatively a (n 4 32)-bit integer.
The ECSM is longer by 32 iterations.

Cost: 1 mMUL,, 1 ADD,, 132, 1 MEM33, 1 RNG32, 1 ECSM32 ,

8.3.1.1 Carry Leakage Attack [FRVDO0S8]
Fouque, Réal, Valette and Drissi introduced the Vertical Attack called the Carry Leakage At-

tack to target the Group Scalar Randomization.

This attack consists in analysing the carry propagation of the addition performed for the
scalar randomization. The probability to have a carry only depends on the most significant bits
of each word. The power consumption of several randomizations are averaged. The amplitude
reveals the probability to have a carry and hence the most significant bits of each word of the
scalar are recovered.

The remainder of the unknown bits are recovered using the baby-step, giant-step method
[ShaT1].

Attack Context:

e Key recovery: independent bits followed by a baby-step, giant-step method to recover
the missing bits,

e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the scalar randomization technique and the
word size of manipulated integers,

e Implementation Specificity: group scalar randomization or additive splitting counter-
measure,

e Number of Executions Needed: multiple,
e Input Access: unnecessary,

e Output Access: unnecessary.
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8.3.2 Additive Splitting [CJ01, §4.2]

Clavier and Joye proposed another method to randomize the scalar. Instead of computing [k]P,
one can compute @ = [k — r|P + [r]P with a random 7.

This countermeasure doubles the cost of the execution since two ECSMs are performed.
Another solution is to compute [k — r]P and [r]P in parallel. In this case, this doubles the
memory required. Finally, one can use a multi-exponentiation method such as the regular
Shamir’s trick (Algorithm 23) with S = P and the scalars k — r and r.

Cost:

e 1 ECSMy, ,, 1 ECADD,,, 1 ADD,, 1 RNG,, 1 MEM,, in the case of a sequential computation

e 1 ECADD,, 1 ADD,,, 1 RNG,,, and as many MEM,, needed for one ECSM,, ,, in the case of a
parallel computation

e 1 ADD,, 1 RNG,, in the case of the regular Shamir’s trick (Algorithm 23)

8.3.2.1 Carry Leakage Attack [FRVDO0S8]

In the Additive Splitting countermeasure, the scalar is subtracted to a random value. The
method described in Section 8.3.1.1 can be performed during the computation of k —r. Indeed,
as explained in Section 2.3, subtraction is generally performed using the two’s complement. We
compute k —r as k4 7+ 1. This is exactly the scenario considered in Section 8.3.1.1 with 741
instead of r#F.

8.3.2.2 Combined Attacks against Additive Splitting [MV06]

This attack of Muller and Valette consists in combining two attacks to target the Additive
Splitting countermeasure.

The bits repartition of k —r and r are highly correlated to the bits repartition of k. Denote
by r) the random value 7 for the j** split. A statistical analysis of the values (k — r)); and
(r(9)); of different computations j can reveal k;;.

Diffe)rent combined attacks are proposed to recover the statistical repartition of (k — rl ))i
and (r());:

e combining two C or M Safe-Errors (see Sections 8.2.1.1 and 8.4 respectively), which is
called second order Safe-Errors attack, or

e combining a C or M Safe-Error and an address-bit DSCA (see Section 8.9).

The Additive Splitting method resists to the three attacks if they are performed separately.

Attack Context:
e Key recovery: independent bits,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the EcsM, knowledge of the location of the field
arithmetic module (C Safe-Error) or the memory blocks (M Safe-Error),
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e Implementation Specificity: same addresses values on different executions, group
scalar randomization or additive splitting,
e Number of Executions Needed: multiple,
e Input Access: unnecessary,
e Output Access: knowledge of the validity,

e Fault Model: any on the field arithmetic module (C Safe-Error) or data randomization
on a single memory block of size n (M Safe-Error).

8.3.3 Multiplicative Splitting [TEO02]

Trichina and Belleza propose another scalar randomization technique. It consists in computing
Q = [K']S, with

o S=[r|P,
o k' =kr~! mod #E,

with 7 a random integer of small size (32 bits seems a good trade of between security and
efficiency).

The countermeasure brings an additional ECSM with a 32-bit scalar®.

Cost: 1 ECSM32 5, 1 MUL,, 1 mINV,,, 1 RNG32, 1 MEM3,

8.3.4 FEuclidean Splitting [CJ03, §4]

Ciet and Joye suggest to compute Q = [k1]P + [k2]S, with
o S=[P
o ki =k mod r
o ko= |k/r]

r being a random integer half the size of k. The result of the ECSM is the same because
[k1]P + [k2]S = [k mod 7]P + [|k/r|]([r]P) = [k mod r + |k/r]|r]P = [k]P.

This scalar randomization countermeasure increases the cost of the execution of 50%: three
ECSMs are performed with scalars having half the size of k. Another solution is to use the
regular Shamir’s trick (Algorithm 23) for the computation of [k1]P + [k2]S. In this case, there
is no additional cost”: two ECSMs are performed (one to compute S = [r]P and one to compute
[k1]P + [k2]S) with scalars half the size of the initial scalar.

Cost:
e 1 ECSMy, /2., 1 ECADDy, 1 DIV,, 1 RNGy /0, 1 MEM,, /2, 3 MEM,,

® 1 RNG, /2, 1 DIV, in the case of the use of the regular Shamir’s trick

7A Jacobian to affine coordinates conversion of the point S is sometimes needed in the case where the base
point needs to be in affine coordinates.
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8.3.5 Point Blinding [Cor99, §5.2]

The countermeasure, by Coron, consists in computing @ = [k](P + R) instead of [k]P, with R
a pseudo-random point. The chip returns Q — [k]R. R and S = [k]R are pre-computed and
stored in the chip. After each EcSM, R and S are updated by computing R < (—1)'2R and
S + (—1)*2S with ¢ randomly chosen in {0, 1}.

The pre-computation of a random point is required because the dynamic generation of a
random point is very costly. Indeed this can be done by generating a random number x, then
computing the square root of 2® +ax +0b (a, b being the curve parameters). Computing a square
root on a limited resources system is costly.

This countermeasure was improved in [IIT04] and later in [MMMO04]. The authors proposed
to modify the ECSM to gradually subtract the random point R. With this improvement, the
pre-computation of [k]R is not necessary anymore (see Algorithm 24).

Later, Boscher, Handshuh and Trichina propose another blinded exponentiation algorithm
for RsA implementations [BHT09]. We adapted it for ECC in Algorithm 25.

The countermeasure prevents the CSCA since the intermediate values are randomized by
the pseudo-random point. It prevents the classical Timing attack (Section 8.1) as well.

Cost:
e 2 ECADD,,, 2 ECDBL,,, 6 MEM,, for the initial countermeasure [Cor99, §5.2]

e 1 ECADD,, 1 ECDBL,, in the case of the use of the BRIP EcSM (Algorithm 24) or Boscher
et al.’s algorithm (Algorithm 25)

8.3.6 Random Projective Coordinates [Cor99, §5.3]

A point P = (X,Y, Z) in Jacobian coordinates is equivalent to any point (r?X,r3Y,rZ), with
r € ;. Coron suggests to randomize the base point at the beginning of the ECSM by choosing
a random nonzero 7.

If the base point must remain in affine coordinates for efficiency reasons (e.g. using the
mixed coordinates for Algorithm 19), the randomization can be applied on the other points
instead before the main loop of the ECSM (e.g. Rp, Ry in Algorithm 19).

The countermeasure prevents the CSCA since the coordinates are randomized. It prevents
the classical Timing attack (Section 8.1) as well.

Cost: 3 mMUL,, 1 mSQR,,, 1 RNG,,

8.3.7 Random Curve Isomorphism [JT01]

Given Definition 1.4, elliptic curves E: y? = 23 +axz+band E': y? = 2> +a’x+b" are isomorphic
if and only if there exists u € F, such that u*a’ = a and u®b’ = b. The isomorphism ¢ is defined
as:

@Y E l> .E‘l7 { O - O —92 -3

(z,y) — (W7 z,u™"y)
The countermeasure, introduced by Joye and Tymen, consists in computing the ECSM on a
random curve E’ instead of E/. The base point is therefore randomized, as well as the parameters
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a, b of the curve. Therefore, the CSCA cannot be applied. The implementation is also protected
against the classical Timing attack (Section 8.1).

Cost: 8 mMUL,, 2 msSQRr,,, 1 miNV,,, 1 MEM,,, 1 RNG,,

8.4 M Safe-Error [YJOO]

M Safe-Error attacks, brought out by Yen and Joye, exploit the fact that a fault on a memory
block is cleared only if the scalar meets some condition. For example, in Algorithm 21, the
attacker injects an error on R just after the computation of the addition and just before the
storage of the result in Ry, (%). The fault will be cleared only if k; = 0.

The attack can target a single bit at a time. Therefore, if a scalar randomization method is
used, the attack can no longer be done.

Attack Context:
e Key recovery: independent bits,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the memory blocks, knowledge
of the ECsM and the elliptic curve formuls,

e Implementation Specificity: same addresses values on different executions,
e Number of Executions Needed: n,

e Input Access: unnecessary,

e Output Access: knowledge of the validity,

e Fault Model: data randomization on a single memory block of size n.

8.5 Invalid Point Attack [BMMO0O, §4]

Biehl, Meyer and Miiller introduced the first Weak Curve Attack on ECC.

A fault is injected on the x coordinate of the base point P = (zp,yp) yielding the erroneous
point P= (zp,yp). Instead of lying on the strong given elliptic curve E: y? =23 +ax+0, P
lies on a weak curve E: y* = 23 4 ax + b for some b € F,,. Indeed, the parameter b of the initial
curve is generally not involved in elliptic curve operations.

The ECsM is run with the base point P € E and the attacker recovers the result Q =

3

- y~) = p bhwith b — 2,2 -
(5:Y5) = [k]P. The attacker can deduce the value of b with b = Yo — Ty — ATy

The faulted value x5 is deduced by solving the equation yh = 2% + ax + bon z [CJO5].
This polynomial has two or three roots. The correct candidate is the one having the most bits
matching those of xp.

The attacker can solve the ECDLP on the weak curve E to recover k mod ord(P).

8This attack needs a more details on the implementation.
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Attack Context:

e Key recovery: each time, an ECDLP on E is performed to recover k mod ord(P); the
full key is then recovered using the CRT,

e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the base point’s memory blocks,
the ECSM,

e Implementation Specificity: same addresses of the coordinates’ base point on different
executions,

e Number of Executions Needed: less than n (it depends on the order of P on the
weak curve E),

e Input Access: known,
e Output Access: known,

e Fault Model: data randomization on a single memory block of size n.

8.5.1 Output Point Validity [BMMOO]

Biehl, Meyer and Miiller suggest to verify that the computed point lies on the elliptic curve
given. That is, given @ = (zg,yg) and the curve equation y* = 23 + ax + b, verify that the
equality yé = a:SQ + axrg + b is satisfied. If not, no output is given.

Cost: 2 mMUL,, 2 mSQR,,, 4 mADD,,, 1 MEM,,

8.6 Classical Differential Fault Attack [BMMOO, §5]

Biehl et al. introduced the first DFA on Ecc with the Right-to-Left Double-and-Add method
(Algorithm 15).

First, a correct result @) = [k]P is recovered. A second ECSM is run with the same scalar
and the same input. Denote by @Q; the value of Ry at the end of iteration i of Algorithm 15:
Qi = [(ki—1,...,ko)2]P. The attacker injects a fault on a few bits on Q; yielding the wrong
value QZ She recovers the erroneous result Q.

If we denote k) = (k,_1,..., k)2, we have Q = Q; + [2kD]P and Q = Q; + [2'kD]P. The
attacker tries all possible values of k(") to generate Q; = Q — [Qik(i)]P and Q; = Q — [2ik(i)]P.
The correct hypothesis of k(") is the one where Q; and Q; differ from only a few bits.

This attack can be iterated to recover the next bits, and it can be adapted for other ECSMs.

Remark 8.4. QZ does not lie on the elliptic curve. Biehl et al. argued that this is not an issue.
The computation of Q; = Q — [2'k()]P can be performed with elements in F? not lying on the
same elliptic curve. They call it pseudo-addition [BMMO00].

The countermeasures described in Section 8.3 against CSCA, consisting in randomizing the
points or the scalar, thwart the attack. Indeed, the attacker cannot guess the intermediate
points Q; and Q; anymore.

In addition, this attack seems feasible only if the affine coordinates are used. Indeed, the
fault induced to @; is done on one or several point’s coordinates. If the Jacobian coordinates
are used, the attacker needs to compute the same representatives of Q; and Q; that actually
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occurred during the execution of the ECSM. The attacker cannot perform the pseudo-additions
to generate Q; and Q; since she does not know the Jacobian coordinates of the result Q and Q,
but only the affine coordinates. It is not clear how to take advantage of the fault in Jacobian
or homogeneous coordinates.

Attack Context:
o Key recovery: recursive,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the memory blocks, knowledge
of the EcsM and the elliptic curve formulse,

e Implementation Specificity: affine coordinates formulae, same addresses of the coor-
dinates’ intermediate point on different executions,

e Number of Executions Needed: less than n,
e Input Access: known and constant,
e Output Access: known,

e Fault Model: data randomization on a single register.

8.6.1 Output Point Validity [BMMOO]

The method described in Section 8.5.1 was presented to prevent both the Invalid Point and
Differential Fault Attacks of Sections 8.5 and 8.6 respectively.

8.7 Big Mac Attack [Wal01]

The Big Mac attack was introduced by Walter against sliding window methods on RSA im-
plementations, with unknown inputs [Wal0l]. A single trace is analysed which makes it a
Horizontal Side-Channel Attack.

The attack is based on a method to detect if two multiplications share a common operand
by comparing their power trace. This method was described in Section 8.2.3.2 and used for our
horizontal attack against the Side-Channel Atomicity countermeasure.

If we take the example of the Left-to-Right sliding window NAF method (Algorithm 16),
the comparison of the multiplications can be used to identify which point P, or —P_,, is being
added to @ at iteration 1.

The method can be applied at each iteration to deduce the whole scalar with a single ECsSM.
Since no leakage model is needed, this attack works on unknown and/or randomized input.
This attack has been extended to the Square-and-Multiply method in [BJPW13a]. Given our
definition of a same-values attack, the Big Mac attack is in fact a SVA.

Remark 8.5. The Big Mac was introduced to target RSA implementations. The success of
the attack depends on the size of the manipulated integers: the longer the used integers are,
the higher the success rate is [Wal0l, BJPW13a]. In ECc, the integers are shorter than RSA”.
However, more integers and operations are involved during a doubling or addition of points.

9For a 128 bits security, ECC must use 256-bit integers length, while RSA must use 3072-bit integers.
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The attack can theoretically be applied on ECC but no practical experiment has been reported.
In Section 8.2.3.2, we presented an attack based on the Big Mac principle with experimental
results. This attack is however presented on a specific implementation which permits to compare
many (fourteen) multiplications to balance the small size of the integers.

Attack Context:
e Key recovery: independent bits,
e Elliptic Curve Specificity: none,

e Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

e Implementation Specificity: wordwise method of the modular multiplication,
e Number of Executions Needed: 1,
e Input Access: unnecessary,

e Output Access: unnecessary.

8.7.1 Multiplication with Random Permutation [CFG'10]

Clavier, Feix, Gagnerot, Rousselet and Verneuil introduced the Multiplication with Random
Permutation countermeasure [CFGT10]. It consists in randomizing the order of the manipu-
lation of the words during a long multiplication. For example, in Algorithm 8, it consists in
randomizing the order of both loops (lines 5 and 8) with two random permutations in [0, m[ (m
being the word number of the manipulated integers).

The construction of sgj),O < j < m is no longer possible for the Big Mac attack. The
countermeasure is also efficient against the horizontal SVA attacks.

Guessing both random permutations is not possible: there is (m?)! possibilities. However, a
drawback of the countermeasure was noticed in [BJPW13a]. Bauer, Jaulmes, Prouff and Wild
proved that the attack is still possible when guessing only one random permutation within the
two. That reduces the possibilities to m!, which is possible for m < 16. This is due to the fact
that the proposed multiplication method in [CFGT10] still follows a “schoolbook like” method
(namely, the same word of A is used during the j loop at lines 8 to 10 in Algorithm 8).

The authors of [BJPW13a] suggest another method to correct this drawback: a single loop is
performed where the words of A and B are randomly chosen with a random permutation of size
m?+2m. 2m additional word multiplication are performed during a long integer multiplication.
Also, a second permutation of size 2m + 1 is required to avoid attacks in the carry propagation
treatment. Since the modular multiplication described in Section 2.4 requires 2m? word mul-
tiplications with both multiplication (m?) and reduction (m?), a modular multiplication with
the countermeasure roughly costs 1 RPG,,249,, + 1 RPGopy1 + (14 %) mMUL,,.

However, an adjustment of the module performing the operation described by Equation
(2.1) is required since the addition with another word and the addition with the carry are
performed independently. Moreover, as pointed in [CFGT10], it remains difficult to design the
countermeasure in hardware due to the numerous permutations and atomic operations. The
real cost might be higher than 1 RPG,,2 9., + 1 RPGopmy1 + % mMUL,,.
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Cost: 1 RPG,u219m, 1 RPGopi1, % mMMUL,, per modular multiplication (with m = [n/w] and

w the word size of the architecture).

8.8 Horizontal Correlation Side-Channel Analysis [CFG'10]

As opposed to the Big Mac attack, the Horizontal Correlation Side-Channel Analysis of Clavier,
Feix, Gagnerot, Roussellet and Verneuil was initially presented with a leakage model.

The attacker collects a single trace of an ECSM. The attack is recursive. Like the CSCA (see
Section 8.3), the attacker guesses intermediate variables by making an assumption on the current
bit. The attacker computes the intermediate values v; involving during the multiplication of
the supposed variables. If Algorithm 8 is used, these values can correspond to the words of the
inputs, i.e. a[i], b[j], but also all intermediate values such as ali] x b[j], ¢ x p[j] for (i, j) € [0, m[>.
A leakage model m (e.g. the Hamming weight) is applied to those values, yielding a random
variable Y. She performs a correlation or applies another statistical tool between the points of
interest'® of the trace of the very modular multiplication she had guessed the inputs, yielding
the random variable X, and Y (see Figure 8.13). The coefficient is high if her guess is correct.

m(vy) m(vy) == m(vy)

}/"

X

Figure 8.13: Construction of random variables for Horizontal Side-Channel Analysis with a
leakage model

This attack has been extended to more exponentiation methods in [BJPW13a]. As opposed
to the Big Mac attack, this attack requires the knowledge of the input. Therefore, randomizing
the input, such as the Point Blinding (Section 8.3.5), the Random Projective Coordinates
(Section 8.3.6) and the Random Curve Isomorphism (Section 8.3.7), thwarts the attack, only if
the random is large enough to prevent a guess with a brute force approach [CFG110].

Remark 8.6. Remark 8.5 concerning the Big Mac attack holds here: the Horizontal Correlation
SCA was presented on RSA and no practical experiment has been reported on ECC due to the
difference of the size of the manipulated integers.

Attack Context:
e Key recovery: recursive,
e Elliptic Curve Specificity: none,

e Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

e Implementation Specificity: wordwise method of the modular multiplication,

10That is where the supposed values are possibly manipulated.
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e Number of Executions Needed: 1,
e Input Access: known,

e Output Access: unnecessary.

8.8.1 Multiplication with Random Permutation [CFG*10]

The Random Permutation countermeasure described in Section 8.7.1 was in fact first presented
against the Classical Horizontal SCA.

The classical Horizontal Attack, which consists in making assumptions on the intermediate
values during the modular multiplication can no longer be applied. Indeed, the values of the
random variables X, Y of Section 8.8 must be in the same order.

8.9 Address-bit DSCA [IIT02]

Address-bit Differential Side-Channel Analysis (Address-bit DSCA), introduced by Itoh, Izu
and Takenaka, is a vertical attack exploiting the manipulation of addresses rather than data.

In most ECSMs, the manipulation of data depends only on a few bits of the scalar. For
example, in Algorithm 21, the point R; is doubled only if k; = 1.

The attack consists in detecting if the manipulated addresses during the doubling at iteration
i are the same as the ones of a reference. The reference can be the doubling of the first iteration:
the attacker supposes that k, o = 1 (1!). The random variable X is constructed where the
addresses of R; are manipulated during the doubling of the first iteration.

Then, the attacker constructs the random variable Y where the addresses of Ry, are manip-
ulated during the doubling at iteration ¢. In [IIT02], the authors suggest to perform a difference
of means between X and Y. An another statistical method (e.g. a correlation or the Euclidean
distance) can be used instead. Figure 8.8 illustrates the construction of the random variables.

Attack Context:

e Key recovery: independent bits,

Elliptic Curve Specificity: none,
e Implementation Access: knowledge of the ECSM,
e Implementation Specificity: same addresses values on different executions,

e Number of Executions Needed: multiple,

Input Access: unnecessary,

e Output Access: unnecessary.

HTf her guess is incorrect, at the end of the attack, she will recover k instead of k. The correct value of the
scalar is trivially recovered.
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8.9.1 Random Register Address [IIT03]

The authors that introduced the Address-bit DSCA proposed a countermeasures to thwart it.
It consists in randomizing the addresses at each iteration of the EcsM. A flaw of the counter-
measure has been showed by Izumi, Tkegami, Sakiyama and Ohta and the countermeasure was
improved [IISO10]. In [IIT03], an extra point is necessary for the Left-to-Right Double-and-
Add always method. We propose an alternative solution illustrated in Algorithm 32 without
any extra point. For the Montgomery Ladder, an extra point in necessary [IISO10].

Algorithm 32 Left-to-Right Double-and-Add always with Random Address
Input: k= (1,k,_2,...,ko)2, P
Output: [k]P
r & 0,27
Ry« P,Ry < P
for i =n — 2 downto 0 do
R, < 2R,
Rl—(n@ki) R, +P

return R,

The countermeasure prevents the address-bit DSCA, described in Section 8.9. It also pre-
vents M Safe-Errors (Section 8.4) since the addresses are randomized.

Cost:
e 1 RNG,, 1 MEM,, for the Left-to-Right Double-and-Add always method,

e 1 RNG,, 4 MEM,, for the Montgomery Ladder.

8.10 Doubling Attack [FVO03]

The doubling attack of Fouque and Valette relies on the power consumption comparison of two
ECSMs with the base point P and [2]P, respectively. This is a vertical attack (with only two
traces).

The same values occur in the two ECSMs only if the scalar meets some condition (e.g. the
current bit is 0) and therefore a collision of traces can be detected. In [FV03], the authors
suggest to perform a difference between the traces to detect a collision. The doubling attack is
illustrated in Figure 8.14.

Due to the birthday paradox, the doubling attack can be performed even if the Group Scalar
Randomization (Section 8.3.1) or the Multiplicative Splitting (Section 8.3.3) is used [FV03].

The Point Blinding countermeasure (Section 8.3.5) is vulnerable as well [FV03]. This is
because the pseudo-random point R, intended to randomize the base point P, is updated as
R < (=1)!2R, with t € [0, 1], after each ECSM. There is a probability of 1/2, that the attack
still works.

The doubling attack can be mounted only if elliptic curve formulse are implemented using
the affine coordinates. Indeed, in Jacobian coordinates, the base point [2] P of the second ECSM
is first given in affine coordinates. Same projective points will occur during the computation



8.11. REFINED SIDE-CHANNEL ANALYSIS 95
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Figure 8.14: Construction of random variables for the doubling attack

o

[k]P and [k]([2]P) but with different representatives. We recall that, in Jacobian coordinates,
there is the equivalence relation (X,Y, Z) ~ (r*X,r°Y,rZ) with r € F}.

Attack Context:

e Key recovery: independent bits,

Elliptic Curve Specificity: none,

Implementation Access: knowledge of the ECSM and the elliptic curve formulze,

°

e Implementation Specificity: affine coordinates formulae,

e Number of Executions Needed: 2,

Input Access: 1 known and 1 chosen,

Output Access: unnecessary.

8.11 Refined Side-Channel Analysis [Gou03]

The Refined Side-Channel Analysis (RSCA) of Goubin is based on the occurrence of the par-
ticular point Py = (0,y) during the ECsM. It is a SSCA.

The attacker chooses the base point P such that the special point Py will occur under some
assumption (for example the current targeted bit is 0). The computation of such a point P is
performed as follows, with the example of the Double-and-Add always method (Algorithm 19).

Suppose that the attacker already knows the n — i — 1 leftmost bits of the fixed scalar
k = (kn-1,...,ko)2 and tries to recover k;. If the base point P is chosen such that P =
[(kn_1,...,kiz1,1)5" mod #E]Py, Py will be doubled at iteration i — 1 only if k; = 1.

The doubling of the point Py can be detected by observing the trace, as shown in Figure 8.15.

Obviously, the particular point is not randomized neither by the Random Projective nor by
the Random Curve Isomorphism countermeasures (see Sections 8.3.6 and 8.3.7).

Scalar randomization techniques help prevent the RSCA since the recursive process is bro-
ken. However, an attacker can target several bits at a time. Several bits of the randomized
scalar can be recovered and reveal some information on the initial scalar.
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|
| [T i) I

Figure 8.15: Power consumption of 256-bits modular multiplications of two random operands
(left curve) and a random operand and zero (right curve)

The Point Blinding described in Section 8.3.5 thwarts the attack because the point Py + R
with an unknown pseudo-random point R will occur instead of P.

Attack Context:
e Key recovery: recursive,
e Elliptic Curve Specificity: must contain a point of the form (0,y) for some y € F,,,
e Implementation Access: knowledge of the ECSM,
e Implementation Specificity: none,

e Number of Executions Needed: n,

Input Access: chosen,

Output Access: unnecessary.

8.11.1 Isomorphism Shifting [DGH™"12]

We present our countermeasure thwarting the RSCA. The basic principle is to use an isomor-
phism to transform the base point into the inconvenient point of the RSCA, namely (0,y). We
“control” this point and its apparition does not reveal anything about the scalar. Moreover, on
some ECSMs, the extra cost of the countermeasure is negligible and even negative thanks to the
zero value.

Transformation of the base point using an isomorphism. With Definition 1.4, the
elliptic curves E and E’ given by the equations

E: y?=23+asr+ag
E': y? =23+ dya? + dyx + a

are isomorphic over [, if and only if there exist v € Fj, and r € F), such that the change of
variables

(l‘, y) - (u_Q(x - T)v u—3y)

transforms equation E into equation E’ with:

u?al, = 3r
uta), = a4+ 3r?

ubafy = ag+rag+1r3.
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This isomorphism is a particular case of Definition 1.4 with s = ¢ = 0. Given the base point
P = (zp,yp) we can choose u = 1 and r = xp. The isomorphism ¢ is

LB E 0 = 0
@ : N

(z,y) (x—xp,y)

and transforms P into ¢(P) = P’ = (0,yp). Applying the isomorphism on the curve costs
2 mMUL,, + 1 mSQR,, + 5 mADD,,. Applying the isomorphism on a point costs only 1 mADD,,.
It costs also 1 mADD,, for the isomorphism inverse. Two extra memory blocs of n bits are also
required to store af and xp. The transformation over R is illustrated in Figure 8.16.

Figure 8.16: Isomorphism Shifting with F: y?> = 23 — 3z +3 and E': y? = 2 — 622 + 92+ 1 .

Modifications of the elliptic curve formulae. The isomorphic curve E’ is not in its Weier-
strafl equation. The formulee given in Section 3.1 do not apply with the curve E’. Extra fields
operations are required using the general formule in affine coordinates of Section 1.2 (with
a; = az =0).

However, the z coordinate of P’ is equal to zero. We can remove the unnecessary field
operations when adding P’ or —P’. If P’ is the base point, P’ and —P’ are involved at each
iteration in some ECSMs, such as the Left-to-Right Double-and-Add methods (Algorithms 14
and 19) and the Montgomery Ladder with co-Z formulee (Algorithm 22).

We give the adapted formula that can be used for the three ECSMs listed above. The input
and output points lie on the curve E': y? = z3 + aha? + ajjx + af. The value a)pZ3 is always
computed (Z3 being the Z coordinate of the output point), we can add it in the coordinates.
We denote it by U.
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Algorithm 33 ECADD-ISO-SHIFTING
Input: P’ = (0,Y1,7Z,U; = abZ?),Q" = (X2, Ya, Zo,Us = a5 Z3), elliptic curve parameter al
Output: P + Q'

B XoZ2 O+ Y123 D« Yo 75

F«+D-C

Zé «— Z1Z5B

Us + a’2Z§

X3 F? - B3 — Us

Ys « —FX5 — CB®

return (Xs,Ys, Z3,Us)

Like the classical formulee, if P’ is in affine coordinates, we can save four multiplications and
one square (mixed addition: mMECADD-ISO-SHIFTING). If ZZ and Z} are pre-computed, one
multiplication and one square are saved (re-addition: reECADD-ISO-SHIFTING ).

Cost (ECADD-ISO-SHIFTING): 11 mMUL,,, 5 mSQR,,, 5 mADD,,, 5 MEM,,

Cost (MECADD-ISO-SHIFTING): 7 mMUL,,, 4 mSQR,,, 5 MADD,,, 3 MEM,,

Cost (reECADD-ISO-SHIFTING): 10 mMUL,,, 4 mSQR,,, 5 MADD,,, 5 MEM,,

For the three additions, the difference is 1 msQR,, —1 mMUL,, —2 mADD,, compared with ECADD,
mMECADD and reECADD.

Algorithm 34 ECDBL-ISO-SHIFTING
Input: Q' = (X1,Y1, Z1,U;, = a)Z?), elliptic curve parameters ab, a),
Output: 2Q’

A 2Y?

B+ 24Xy; C « 3X2+2X Uy +d,Z4; D + 242

Z3 < 2Y1 Zl

U3 — aéZg

X3 C?-2B— Us

Y3 C(B — X3) —D

return (X3,Ys, Z3,Us)

If (X3,Y3,Z3,Us) is used later for re-addition, the computation of Z3 and Z3 needs one ex-
tra multiplication!'? (reECDBL-ISO-SHIFTING). If a}Z} is pre-computed (modified formulee:
modECDBL-ISO-SHIFTING), two squares are saved, and it needs one extra addition for the com-
putation of a},Z3. The use of both modified coordinates and re-addition is also given (mod-
reECDBL-ISO-SHIFTING).

Cost (ECDBL-ISO-SHIFTING): 7 mMUL,,, 6 mSQR,,, 14 mADD,,, 3 MEM,,

Cost (reECDBL-ISO-SHIFTING): 8 mMUL,, 6 mSQR,,, 14 mADD,,, 4 MEM,,

Cost (modECDBL-ISO-SHIFTING): 7 mMUL,,, 4 mSQR,,, 15 mADD,,, 4 MEM,,

Cost (mod-reECDBL-ISO-SHIFTING): 8 mMMULy,, 5 mSQR,,, 15 mADD,,, 4 MEM,,

The extra cost is 3 mMUL,, +3 mADD,,, 3 mMUL,, — 1 mSQR,, +3 mADD,,, 3 mMUL,, +3 mADD,,
compared with the general doubling, the doubling for re-addition, the doubling in modified
coordinates and the doubling in both modified coordinates and re-addition, respectively.

For the Montgomery Ladder using co-Z formulee (Algorithm 22), the cost is even smaller
because no doubling is performed. We give the adapted formulae below.

12This is because Zg is computed anyway for Us.
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Algorithm 35 co-Z addition and update with the isomorphism shifting
(ZADDU-ISO-SHIFTING)
Input: P' = (X1,Y1,2,U = a52?),Q" = (0,Ys, Z,U)
Output: (R',S’) with R = P' + Q' and S’ = (A\?>X1, A\3Y1,\Z, ab(A\Z)?) with A = X
C+ X?
Wi + ch; Zg < ZXl; U3 «~—UC
D + (Yl — YQ)Q; Al ~— Y1 W
Xg+— D—-W; —-U;
Y (Y1 —Yo)(W1 — X3) — Ay
X4 — W1
Y, + Al
return ((Xg, Y37 Z3, Ug), (X4, Y4, Zg, U3))

Like the classical co-Z addition and update, the computation of the Z coordinate is not neces-
sary and one multiplication is saved (ZADDU’-ISO-SHIFTING).

Cost (ZADDU-ISO-SHIFTING): 5 mMUL,,, 2 mSQR,,, 5 mADD,,, 1 MEM,,

Cost (ZADDU’-ISO-SHIFTING): 4 mMUL,,, 2 mSQR,,, 5 mADD,,, 1 MEM,,

For both formulz, the gain is 2 mADD,, compared with ZADDU and ZADDU’.

Algorithm 36 conjugate co-Z addition with the isomorphism shifting
(ZADDC-ISO-SHIFTING)
Input: P’ = (X1,Y1,2,U = a4Z?),Q" = (Xs,Ys, Z,U) such that zp:_g = 0.
Output: (R',S) with R =P +Q', S =P —-Q'

C «+ (Xl — X2)2

W1 «— ch; Wg «— XQC, Z3 < Z(Xl — Xz), U3 +~—UC

D + (Yl — YQ)Q; Al — Yl(Wl — Wg)

Xg%D—Wl—WQ—Ug,

Vs (Y1 —Yo) (W1 — X3) — Ay

Y4 «— (Yl + }/Q)Wl — A1

return ((Xs,Ys, Z3,Us), (0,Ys, Z3,Us))

Like the classical conjugate co-Z addition, the computation of the Z coordinate is not necessary
and one multiplication is saved (ZADDC’-ISO-SHIFTING).

Cost (ZADDC-ISO-SHIFTING): 7 mMUL,, 2 mSQR,,, 10 mADD,,, 2 MEM,,

Cost (ZADDC’-ISO-SHIFTING): 6 mMULy,,, 2 mSQR,,, 10 mADD,,, 2 MEM,,

For both formulae, the difference is 1 mMUL,, — 1 mSQR — 1 mADD,, compared with ZADDU and
ZADDU’. The formulse with register allocation, is given in appendix.

An important remark is that, if 1 mMUL,, = 1 mSQR,,, we gain three modular additions
per bit for the Montgomery Ladder using co-Z formulae. Therefore, it is a non-negligible
improvement to apply the countermeasure in this condition.

Security Analysis. We explain here how the countermeasure prevents the RSCA. The elliptic
curve E': y? = 2% + ahz? + )z + ajy contains exactly two points of the form (0,4’). Those
points are P’ = (0, /ag) and —P’ = (0, —y/ag). We give the following theorems:
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Theorem 8.7. Suppose that the Left-to-Right Double-and-Add (Algorithm 14) is performed
with a scalar k = (kp—1,...,ko)2, the base point P’ = (0,yp) and the formule ECADD-1SO-
SHIFTING and ECDBL-ISO-SHIFTING. Let k) = (ky_1,kn_o,...,ki)2. Suppose that ged(k®) £
Lord(P")) =1 and ged(2k"+V) + 1, 0ord(P")) = 1 for all i € [0,n — 2].

Then Ry cannot be equal to £P’" at any iteration i € [0,n — 2.

Proof. At the beginning of iteration i with n —2 < i < 0, the point Ry verifies Ry = [k(+V]P’.

o if Ry = [kUFD]P" = P’ then [k0+1) —1]P" = O so the order of P’ is (k('*1) — 1), which
contradicts our hypothesis on k.

o if Ry = [2kUFD]P’ = P’ after the doubling, then [2k(**1) — 1]P" = O so the order of P’
is (2k(*+1) — 1), which contradicts our hypothesis on k.

e if Ry = [kW]P" = P’ after the doubling, then [k} — 1]P’ = O so the order of P’ is
(k) — 1), which contradicts our hypothesis on k.

o if Ry = [kHtV]P’ = — P’ then [k(FY 4 1]P" = O so the order of P’ is (k") + 1), which
contradicts our hypothesis on k.

o if Ry = [2k(D]P’ = — P’ after the doubling, then [2k(+1) + 1]P" = O so the order of P’
is (26041 + 1), which contradicts our hypothesis on k.

o if Ry = [kW]P’ = —P' after the doubling, then [k} + 1]P’ = O so the order of P’ is
(k) 4+ 1), which contradicts our hypothesis on k.

O

Remark 8.8. The condition ged(k') + 1,0rd(P’")) = 1 and ged(2k0+YD 4+ 1, 0rd(P')) = 1 for
all n —2 <4 < 0 is not binding. If [ is the security parameter, then ord(P’) is a prime and
ord(P') ~ 22!, This is explained in Chapter 6.

Corollary 8.1. Suppose that the Left-to-Right Double-and-Add always (Algorithm 19) is per-
formed with a scalar k = (kp—_1,...,ko)2, the base point P’ = (0,yp) and the formule ECADD-
ISO-SHIFTING and ECDBL-ISO-SHIFTING. Let k9 = (kp_1,kn_2,...,ki)2. Suppose that ged(k™ +
1+ 1,0rd(P)) = 1, ged(k®) + 1,0rd(P')) = 1 and ged(2k"+tV) £ 1,0rd(P")) = 1 for all
ief0,n—2

Then neither Ry nor Ry can be equal to £P’ at any iteration ¢ € [0,n — 2.

Proof. In addition to the previous theorem, we only need to check that the value of Ry cannot
take the value +P’. This is verified as long as ged(k®™) + 1 £ 1,0rd(P’)) = 1. O

With the countermeasure, both ECSMs are secure against the RSCA since the inconvenient
points are managed and the attacker cannot take advantage of their occurrence.

Theorem 8.9. Suppose that the Montgomery Ladder using co-Z formule (Algorithm 22) is
performed with a scalar k = (kn—1,...,ko)2, the base point P' = (0,yp) and the formule
ZADDU-ISO-SHIFTING and ZADDC-ISO-SHIFTING. Let k) = (k,_1,k,_o,...,k;)2. Suppose that
ged(ED ord(P")) = 1, ged(k® £ 1,0rd(P")) = 1 and ged(k') + 2,0rd(P')) = 1 for all i €
0,7 —1].

Then neither Ry nor Ry can be equal to =P’ at the end of any iteration.

Proof. At the end of iteration i with n —2 < i < 0, the points R, Ry verify Ry = [k)]P", Ry =
ERESE
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o if Ry = [kD]P" = P’ then [k) — 1]P" = O so the order of P’ is (k¥ — 1), which
contradicts our hypothesis on k.

o if Ry = [k + 1]P" = P', then [kW]P’' = O so the order of P’ is (k(), which contradicts
our hypothesis on k.

e if Ry = [kW]P’ = —P’, then [k + 1]P’ = O so the order of P’ is (k¥ 4 1), which
contradicts our hypothesis on k.

o if Ry = [k 4 1]P' = —P’, then [k 4 2]P’ = O so the order of P’ is (k") + 2), which
contradicts our hypothesis on k.

O

With the countermeasure, the ECSM is secure against the RSCA since the inconvenient
points are managed.

We presented an elegant countermeasure against the RSCA using an isomorphism between
curves. Because of the isomorphism, the formulse have been reviewed.

Cost:

e (2.5n+42) mMULy,, (0.5n+1) mSQR, (2n+6) mADD, 4 MEM,, for the Left-to-Right Double-
and-Add method (Algorithm 14)

e (2n+2) mMUL,, (n+1) mSQRr, (n+6) mADD, 5 MEM,, for the Left-to-Right Double-and-
Add always method (Algorithm 19)

e (n+2) mMUL,, (—n+1) mSQR, (—3n +6) mADD for the Montgomery Ladder using co-Z
formulee (Algorithm 22)

8.12 Zero Side-Channel Analysis [ATO03]

The Zero Side-Channel Analysis (ZSCA) of Akishita and Takagi is an extension of the RSCA.

This attack does not only focus on a zero value in a point’s coordinates but on intermediate
values when performing a doubling or an addition. Such points are defined as zero-value points.
For example, consider ECDBL with register allocation (Algorithm 39). Let P = (zp,yp) a point
such that 3zp + a = 0 in affine coordinates. The doubling of P in Jacobian coordinates will
lead to the condition C' = 3X3 + aZp = 0, with Xp = xpZ} for some Zp € F;. The ZSCA
brings more possible particular points to consider.

As the RSCA, the Random Projective or the Random Curve Isomorphism countermeasures
(see Sections 8.3.6 and 8.3.7) does not prevent this attack.

As the RSCA, scalar randomization techniques help prevent the ZSCA since the recursive
process is broken and the Point Blinding (see Section 8.3.5) thwarts the attack.

Attack Context:
e Key recovery: recursive,
e Elliptic Curve Specificity: must contain zero-value points,

e Implementation Access: knowledge of the ECSM and the elliptic curve formulze,
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Implementation Specificity: none,

e Number of Executions Needed: n,

Input: chosen,

Output: unnecessary.

8.13 Classical Same Values Side-Channel Analysis [MGD"12]

We present our vertical SCA called the classical Same Values Side-Channel Analysis (SVA). Like
the RSCA and ZSCA (Sections 8.11 and 8.12), it exploits the occurrence of particular points.
These points verify that, within an elliptic curve operation (e.g. an addition or a doubling),
two distinct intermediate variables have the same values.

Some curves do not contain any zero-value point for performing the RSCA or ZSCA. The
SVA considerably increases the number of particular points the attacker can use to mount an
attack, and therefore, works on a larger set of curves.

Same-values points. We introduce the definitions of the particular points that the attacker
will take advantage to perform the SVA.

Definition 8.10. Let E be an elliptic curve over IF,, and ECDBL a doubling algorithm. A point
P = (z1,11) € E is a same-values point relative to ECDBL if, for any representative of P (i.e.
(A221, A3y, \) for all A € [} in Jacobian coordinates), same values show up among intermediate
variables during the computation of the point 2P using algorithm ECDBL.

Definition 8.11. Let E be an elliptic curve over F,, and ECADD an addition algorithm (respec-
tively C-ECADD a conjugate addition algorithm). Points P,Q € E are said to be same-values
points relative to ECADD (resp. to C-ECADD) if, for any representatives of P and @, same
values show up among intermediate variables during the computation of the point P 4 @ using
algorithm ECADD (resp. the computation of P + @ and P — @ using algorithm C-ECADD).

The same-values points depend on the elliptic curve formulse used. The formulse given in
Section 3.1 are not accurate enough to identify the same-values points. The knowledge of the
ECDBL and/or ECADD algorithms, together with register allocation is required. We will give
examples of same-values points for a doubling algorithm and for an addition algorithm.

Theorem 8.12. Let E: y? = 23 +ax +b be an elliptic curve over Fy,. Let P = (z1,vy1) a point
lying on E and R = (x3,y3) = [2]P. P is a same-values point relative to ECDBL with register
allocation (Algorithm 39 in appendiz) if one of the following conditions is satisfied:

1. x1 =1 8. 12yt = y3
2. 2z192 = (322 + a)? 9. 16y} = y3
3. 6x1y? = (322 + a)? 10. 1 =0
4. 8z1yi = (323 + a)? 11. y1=0
5. 10x1y? = (323 + a)? 12. 23=0
6. 122193 = (323 + a)? 13. y3 =10
7. —4yf = y3 14. 322 = —a
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Proof. Given a point P = (X1,Y1,21) = (A%z1, \y1, )\), the relations of Theorem 8.12 must
hold for any A € F;. So we must check equalities between terms with a factor A of the same
degree. Let S; be the set of values that involve a factor A of degree i. An analysis of Algorithm

39 gives:
o Sy ={Z1},
o Sy ={X1, 27},
e S3={Y1},

o Sy = {A2 = 4Y{ 2A% = 8Y1 Vs + 2A4% = C(B — X3),Ys = C(B — X3) — 242}

S4 = {X%,Y1Z1,2Y71Z1,2X12,3X12, Zf,aZf,C’ = 3X12 + aZf},

Se = {Y12a 2Y12 }7

Sy = {2X,Y2, B =4X,Y2,C? X3+ B=C?>-B,X3=C02—2B,B— X3 =3B — C?},

Equal values can only be found in the same set. Comparing the terms from each other by set,

and developing give the relations of the theorem.

Remark 8.13. Points satisfying one of the condition

xr1 =0 or
y1 =0or
xr3 =0 or
y1 =0or
y3 =0 or

323 = —a or

O
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o 411y = (323 +a)?
are zero-value points.

Theorem 8.14. Let E: y> = 2% + ax + b be an elliptic curve over F,. Let P = (z1,11),Q =
(22,y2) two points lying on E and R = (x3,y3) = P+ Q. P,Q are same-values points relative
to ECADD with register allocation (Algorithm 37 in appendiz) if one of the following conditions
given below is satisfied:

1. 21 =1 10. w2 — w1 =1

2.y =1 17. 29 — 11 = Yo

3. x9=1 18 xo—x1 =y2 — 11

4. y2 =1 19. y1 =y

5. 11 = x9 20. 2y1 =y

6. 221 = 29 21. x1(z2 — 21)% = (y2 — 11)?

7. yi(z — 12)3 = y3 22. 2(xy — x1) = (y2 — 11)?

8. x1=0 23. 2wy — 1) = (y2 — y1)* — w1 (22 — 21)°
9. y1 = 24. 2(xa — 1) = (y2 —y1)? — 221 (w2 — 1)?

10. 1 = 25. 3wy (22 — 21)% = (y2 — 11)?

11. 23 =0 26. x1(wy —11)? = (11 — 22)3

12. y3=0 27. 2x1(x2 — 21)% = (21 — 22)3

13. xy(xg — 1) = —3 28. 2(ya —y1)* = 3x1 (22 — 21)% + (12 —21)°
14. x1(x2 — 21)% = 23 29. 2(ya—1y1)? = 3z1(v2 —11)2 +2(22 — 1)
15. (22 —21)° = (y2 —1)* 30. 2x3 = (w9 — 21)°

Proof. Given points P = (X1,Y1, Z1) = (\fx1, Ay, M) and Q = (X2, Y2, Z2) = (A5w2, AJya, Aa2),
the relations of Theorem 8.12 must hold for any A1, A2 € Fy. So we must check equalities be-

tween terms with factors Ay, Ay of the same degree. Let S; ; be the set of values that involve a

factor Ay of degree ¢ and a factor Ay of degree j. An analysis of Algorithm 37 gives:

o Si0=A{21}

o So1={Z2}

o Si1={2125}
o So0=1{X1,2}}

Ss0={Y1,Z}}

So,2 = { X, Z3}

Soz ={Y2, 23}
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Soo={A=X1Z3,B= X7} FE=X7} — X173}

Sss={Zs = Z12:B,C = Y123, D = Y223, F = Y, 7% — Y, Z3}

Sy4={E?}

Se6 = {AE? E3 F2, F? — E3 Xy+ AE? = F? — B3 — AE?, X3 = F? — E® — 2AE?, AE® -
X3 = 3AE® + E3 — F?}

(] 5979 = {CES,Yg + CEB = F(AE2 - Xg), }/3 = F(AE2 - Xg) - CEg}

Equal values can only be found in the same set. Comparing the terms from each other by set,
and developing give the relations of the theorem.
O

Remark 8.15. Points satisfying one of the following condition
e ;1 =0o0r
e y; =0or
® 1] =xy Or
e y3 =0 or

o z1(vy —x1)? = —x3 Or

o 71(x2 —x1)? =23 Or

o (12— 931)3 = (y2 — 91)2
are zero-value points.

Remark 8.16. If £ and E’ are both given in their reduced Weierstrafl form, the isomorphism
@ is defined as

o~ g O —- O
@'EHE’{ (z,y) — (u?z,u"?y)

for some u € Fy. If P is a same-values point relative to a doubling algorithm on £, this does
not imply that it is a same-values point on E’. For example, comparing the values of the set
Sy = {X1, Z2} of Theorem 8.12, leading to the affine condition z1 = 1, is not relevant anymore
on E’. Indeed, if X; = Z? (P is a same-values point on E) then u=2X; # Z7 if u # +1 (P’ is
not a same-values point on E’).

Therefore, the Random Curve Isomorphism, described in Section 8.3.7, decreases the number
of same-values points relative to some elliptic curve operations but does not entirely prevents
the attack since some equalities still hold. For example, 2X? can be compared to C = 3X?+aZ}
(set Sy of Theorem 8.12) whatever the value of w.

Taking advantage of the same-values points is similar to the RSCA and ZSCA (Sections
8.11 and 8.12) and it is recalled below.
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Choosing the suitable base point. First, the attacker finds a same-values point Psya
relative to the doubling formula. She then chooses a base point such that Psya will occur on
a certain condition of the scalar (e.g. the current targeted bit is 1). The computation of such
a point P is performed as follows, with the example of the Double-and-Add always method
(Algorithm 19). It can be adapted for the other ECcsms. Assume that the attacker already
knows the n — i — 1 leftmost bits of the fixed scalar k = (k,,_1,...,ko)2 and tries to recover k;.
The attacker computes the point P = [(kp_1,...,kit1,1); " mod #E]Psya. The point Psya
will be doubled at iteration ¢ — 1 only if k; = 1. Several ECSMs are run, with the same scalar
and the same base point P. The attacker collects the power consumption trace of the doubling
at iteration i — 1. If k; = 1, Psya will be doubled at iteration ¢ — 1 in each ECSM.

Remark 8.17. Taking advantage of same-values points relative to addition is more diffi-
cult. Indeed, the attacker needs to find a base point P such that P and Q = [¢|P, with
¢ = (kn-1,...,kiy1,1)2, are same-values point relative to the addition used. Finding such a
point P is currently difficult if ¢ is large. This issue is discussed in [IT03] and [AT03] for similar
reasons.

Detecting the same-values point. To detect if Psys occurs each time, one can apply the
method described in Section 8.2.3.1 for detecting the same values.

Remark 8.18. The same-values point is chosen such that the same values are used in the same
field operation (multiplication or addition) and in the same side (left or right). This makes it
possible to perform a collision analysis without any synchronization procedure. The attack is
still possible if it is not the case, but a strong study on the field arithmetic module is required
for a synchronization because the sensitive data is not manipulated at the same time within
the field operation.

Compared with the RSCA and the ZSCA, the number of possible same-values points on a
curve is very large. This makes it very hard to find a curve that does not contain any same-
values points. We do not know if it is even possible.

As opposed to the RSCA and the ZSCA, several traces are necessary to detect if the par-
ticular point occurs. Therefore, scalar randomization techniques thwart this attack.

Like the RSCA and the ZSCA, the Point Blinding (see Section 8.3.5) thwarts the attack
since the point Psya + R with an unknown pseudo-random point R will occur instead of Psya.

Attack Context:
e Key recovery: recursive,
e Elliptic Curve Specificity: must contain same-values points,
e Implementation Access: knowledge of the ECSM and the elliptic curve formulee,
e Implementation Specificity: none,
e Number of Executions Needed: multiple,
e Input Access: chosen,

e Output Access: unnecessary.



8.14. HORIZONTAL SVA 107

8.14 Horizontal SVA

We propose to extend the SVA which has been introduced as a vertical attack in our paper
[MGD*"12]. We show that, in some conditions, the occurrence of the particular point can be
detected with a single trace.

Stronger Conditions of Same-Values Points. In the vertical SVA described in the pre-
vious section, the attacker takes advantage of points that have same values occurring in an
elliptic curve formula. Here, we take advantage of points with stronger conditions. In addition
of the occurrence of the same values, those same values will be inputs of the modular square
operation. We can compare the power consumption of the squares to detect if they have indeed
the same input. Among all conditions of Theorems 8.12 and 8.14, the conditions below give
the required result:

1. z; = 1: this condition implies that the inputs of the squares at lines 5 (X? = (127)?)
and 11 ((Z3)?) of Algorithm 39 are the same.

2. 2y; = 3z3+a: this condition implies that the input of the square at line 14 ((3X7+aZ1)? =
(322 + a)Z1)?) of Algorithm 39 and the input of the square of the value Z3 = 2Y1Z; =
2y1 Z¢, which will occur during the addition or the doubling of Ps at the next iteration of
the ECSM, are the same.

3. Yo — Y1 = T2 — x1: this condition implies that the input of the square at line 16 (F? =
(YaZ?—Y173)? = ((y2—y1)Z3 Z3)? and the input of the square of the value Z3 = Z; ZoF =
(X223 —Y223)7125)? = (w2 — x1) Z3 Z3)? of Algorithm 37, which will occur during the
addition or doubling of P5 at the next iteration of the ECSM, are the same.

The attacker analyses the trace segments of the two squares to determine if the value squared
is the same and conclude on the current bit.

Detecting the Same Inputs in the Squares. If the noise signal is low, a simple difference
of the trace segments is enough to detect if the same value is manipulated. If the difference is
near zero, the inputs of the two multiplications are equal. This is illustrated in Figure 8.3. If
the noise signal is high, a more sophisticated tool can be used, such as the Euclidean distance
or the correlation with the points of interest of the traces. The trace segments of the squares
to compare can be seen as random variables X,Y. The construction of such random variables
are illustrated in Figure 8.4.

The number of possible particular points is reduced compared with the classical SVA of the
previous section (two conditions instead of thirty-three for ECDBL). Finding a curve that does
not contain any same-values points with the strong condition is feasible. Moreover, for the
three conditions listed above, the Random Curve Isomorphism (see Section 8.3.7) thwarts the
attack. This information has to be taken with great caution because it is not necessarily the
case for other formulae.

Compared with the vertical version, a single trace is enough to detect if the particular point
appears. However, the attack is recursive and n executions of the ECSM is required to reveal
the whole scalar. Therefore, like the RSCA and the ZSCA, scalar randomization techniques
help prevent the horizontal SVA since the recursive process is broken. However, an attacker
can target several bits at a time by guessing several bits instead of only one. Several bits of the
randomized scalar can be recovered and reveal some information of the initial scalar.
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Like the RSCA, the ZSCA and the classical SVA, the Point Blinding described in Section
8.3.5 thwarts the attack.

We introduced a new kind of attacks and proved the danger of repetition of same values.
This was in fact the first Same-Values Analysis that we published. Later, we tried to extend
this attack and take advantage of repetition of values on other implementations and proposed
the other SVA already described in Sections 8.2.2.2, 8.2.3.1 and 8.2.3.2.

Attack Context:
e Key recovery: recursive,

e Elliptic Curve Specificity: the curve must contain same-value points which brings
same values that will be squared,

e Implementation Access: knowledge of the ECSM and the elliptic curve formulee,
e Implementation Specificity: none,

¢ Number of Executions Needed: n,

e Input Access: chosen,

e Output Access: unnecessary.

8.15 Particular Point Timing Attack [SSTO04]

Sato, Schepers and Takagi introduced another timing attack. Like the classical Timing Attack
described in Section 8.1, this attack takes advantage of the conditional final reduction of the
Montgomery multiplication. It works only on curves with parameter ¢ = —3. Such curves
enable computing the variable C' of ECDBL (Algorithm 11) as follows (see Remark 3.1):

C=3(X1+ 2} (X1 - Z3) (8.1)

The attack exploits the occurrence of a special point: P = (2,y). In Jacobian coordinates,
P = (22},yZ}, Z,) for some Z; € Fj;. When P is doubled, substitute its coordinates into
Equation (8.1) leads to:
C « 3(32})(Z3)

In [SSTO04], the authors show that the probability of the final reduction during the Montgomery
multiplication of «, g is higher if § = 3a than for random values.

If the attacker judiciously chooses the base point, this point occurs only on a certain hy-
pothesis of the scalar. In this case, the average timing of the ECSMs is higher than random
inputs.

The particular point is not well randomized by the Random Projective Coordinates coun-
termeasure (see Section 8.3.6). Indeed, whatever the value of Z;, the inputs of the modular
multiplication when computing C' will still be o, 8 = 3a for some a € F,. The attack can
therefore be applied even if this countermeasure is present.

In the following, we show that the Random Curve Isomorphism countermeasure (see Section
8.3.7) thwarts the attack. Indeed, if the points are randomized with the isomorphism defined
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as ¢: (z,y) — (u2x,u"%y) for some random u € F, the special point P = (227,yZ}, Z1)
is randomized as p(P) = P’ = (2u™2Z%,yu=3Z3,Z1) in Jacobian coordinates. Substitute its
coordinates into Equation (8.1):

C+3(Z;2u+1)(Z}(2u™? - 1))

The inputs of the modular multiplication: o = (Z?(2u=2 +1)),8 = (Z?(2u=2? — 1)) do not
verify 8 = 3« if u # £1.

A more drastic method is to use the Constant Time of Field Operations countermeasure
described in Section 8.1.1.

Attack Context:
e Key recovery: recursive,

e Elliptic Curve Specificity: elliptic curve parameter a = —3, must contain a point of
the form (2, y) for some y € F),

e Implementation Access: full knowledge of all algorithms,

e Implementation Specificity: deterministic and non-constant time execution of modu-
lar multiplications, fast doubling,

e Number of Executions Needed: multiple,
e Input Access: chosen,

e Output Access: unnecessary.

8.16 Invalid Curve Attack [CJ05]

This weak curve attack is similar to the Invalid Point Attack described in Section 8.5. Rather
than injecting a fault on the base point P, Ciet and Joye propose to inject a fault on the curve
parameters, particularly on the parameter a of the curve.

Denote by a the corrupted value. Since the parameter b of the initial curve is generally not
used, P = (xp,yp) lies on another curve E: y® = z3 + ax + b.

The EcSM is performed on the weak curve E’. The attacker recovers the result Q =
(zg:Y5) = [k]P. The parameters a,b of the curve E can be retrieved from the following
equations system:

dx@—&—gzy%—x?i

{ &xp—i—l;:y]%—mi}’,
QR

The attacker can solve the ECDLP on the weak curve E to recover k mod ord(P).

Attack Context:

e Key recovery: each time, an ECDLP on E is performed to recover k mod ord(P); the
full key is then recovered using the CRT,

e Elliptic Curve Specificity: none,
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e Implementation Access: knowledge of the location of the curve parameters’ memory
blocks, knowledge of the ECsM,

e Implementation Specificity: same addresses of the curve parameters on different exe-
cutions,

e Number of Executions Needed: less than n (it depends on the order of P on the
weak curve F),

e Input Access: known,
e Output Access: known,

e Fault Model: data randomization on a single memory block of size n.

8.16.1 Curve Integrity Check [CJ05]

Ciet and Joye pointed out the necessity to verify that the public parameters were not disturbed.
A cyclic redundancy check is performed on the curve parameters to verify that no fault was
introduced. For a full protection, we must check all curve parameters: a,b and the modulus p.

Cost: 3 CRC,

8.17 Sign Change Fault Attack [BOS06]

Blomer, Otto and Seifert introduced a DFA. Their idea is to inject a fault to change the sign
of an intermediate point during the ECsM. Let’s take for example the Double-and-Add always
method (Algorithm 19).

First, a correct result @@ = [k]|P is recovered from a first ECSM. A second ECSM is run with
the same scalar and the same input. At iteration 4, a fault is induced during the addition of
points to switch the sign of Ry. The operation R;_j, < Ry + P becomes Ry_j, < P — Ry. If
k; = 0, the result is correct, and the attacker tries again at another iteration. If k; = 1, the
incorrect result Q is equal to Q = [(Kiy. . ko)2] P — [28(kn—1,- -, kit1)2] P.

The attacker computes Q + Q = [2(K4, ..., ko)2]P. If i is small enough, the attacker can
perform the ECDLP on Q + Q to recover (k;, ..., ko) with a complexity of 2//2 using the baby-
step giant-step method [Sha71].

The method is iterated to recover the other bits.

The inverse of point R = (X,Y, Z) is —R = (X, =Y, Z). To change the sign of a point, the
control signal of the two’s complement of the operand is switched when loading ¥ [BOS06].
One can also inject a fault on an opcode during the elliptic curve addition formula to switch
from a field addition to a field subtraction.

Since all points still lie on the given elliptic curve, the Output Point Validity and the Curve
Integrity Check do not detect the fault (see Sections 8.5.1 and 8.16.1 respectively).

Attack Context:
e Key recovery: recursive, several ECDLPs are performed,

e Elliptic Curve Specificity: none,
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e Implementation Access: full knowledge of all algorithms, knowledge of the architecture
of the modular arithmetic operator,

e Implementation Specificity: same addresses of the coordinates’ intermediate point on
different executions,

e Number of Executions Needed: less than n,
e Input Access: known and constant,
e Output Access: known,

e Fault Model: data randomization on a single control signal or modifying opcode.

8.18 Coherence Check [Gir06]

This countermeasure was introduced by Giraud to protect RSA implementations against fault
attacks. It can be adapted for ECC. A verification is performed at the end of to the Montgomery
Ladder (Algorithm 21) to check the integrity of the result.

At the end of each iteration, Ry and Ry verify Ry — Ry = P. One can verify at the end
of the ECSM that the equality stands. Any fault on the curve parameters or the intermediate
points after the initialization phase (lines 1 and 2 of algorithm 21) will be detected with very
high probability [DH11].

This countermeasure can be adapted for Algorithm 20. Indeed, at the end of each iteration,
Ro+ Ri+ P = [(kiy-..,ko)a]P + [(Ki,..., ko)2] P + P = [27TY]P = Ry. The equality can be
verified at the end.

The countermeasure is also applicable on Algorithm 25 [BHT09]. The equality is similar to
Algorithm 20: Ry + Ry + P = R» is verified at each iteration.

In addition of preventing the Weak Curve attacks (Sections 8.6, 8.5 and 8.16), it also brings
security against the Sign Change Fault attack (Section 8.17). This also thwarts the C Safe-Error
(Section 8.2.1.1) since the dummy operations introduced are in fact used at the end for the check.

The countermeasure costs one or two elliptic curve additions (depending on the algorithm),
the field operations necessary to compare two points in Jacobian coordinates (a conversion to
the same Z coordinate is required) and two memory blocks needed to store the base point P
for the final check.

Cost: 1 or 2 ECADD,,, 2 mSQR,,, 6 mMUL,,, 2 mADD,,, 2 MEM,,

8.19 Zero Word and SSCA [AVFMOT]

Amiel, Villegas, Feix and Marcel suggest to combine a fault attack and a SSCA.

Let’s take the example of the Left-to-Right sliding window NAF method (Algorithm 16).
At the beginning of the ECsM, a fault is introduced to set a word of one coordinate of one of
the read-only points (for example P;) to zero. A multiplication with an operand with a zero
word is easily detected by observing the trace (see Figure 8.17).

This attack permits to recover all bits of the scalar with a single trace. This attack works
on ECSMs in which at least one point is read only, and its usage depends on the scalar. This is
the case for the Left-to-Right window method (Algorithm 16), the Shamir’s trick (Algorithms
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Figure 8.17: Power consumption of a random Montgomery multiplication (left curve) and a
Montgomery multiplication with the first word of the first operand being zero (right curve)

18 and 23), and the BRIP (Algorithm 24).

Checking the validity of the output is ineffective since the scalar is deduced from the side-
channel observation.

Attack Context:

e Key recovery: independent bits,

Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the ECcSsM, knowledge of the location of the
memory blocks,

e Implementation Specificity: ECSM where a point is read only,
e Number of Executions Needed: 1,

e Input Access: unnecessary,

e Output Access: unnecessary,

e Fault Model: resetting data on a word.

8.20 Template Attack on ECDSA [MOO0S|

Medwed and Oswald could mount a template attack on ECDSA to recover a few bits of several
different scalars from different signatures.

The number of bits was large enough to recover the static private key of the signature using
the lattice attack described in [HSO01].

There is no theoretical obstruction which prevents this attack from recovering all bits of
the scalar. Indeed, when the first bits are known, the attacker can construct new templates
using her own controllable device with the known first bits and the next unknown few bits. The
templates are compared with the same trace of the targeted device. However, no experimental
results have been proposed to recover the whole scalar.

Randomizing the base point using the Random Projective Coordinates (Section 8.3.6), the
Point Blinding (Section 8.3.5) or the Random Curve Isomorphism (Section 8.3.7) thwarts the
attack since the stage of constructing the templates cannot be done.
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Attack Context:

o Key recovery: recursive,

Elliptic Curve Specificity: none,

Implementation Access: access to exactly the same controllable chip as the target,

Implementation Specificity: none,

e Number of Executions Needed: 1,

Input Access: known,

Output Access: unnecessary.

8.21 Twist Curve Attack [FLRVO0S]

If the Montgomery Ladder is used, addition and doubling formule can be performed without
the y coordinate [IMT02]. Fouque, Lercier, Réal and Valette suggest to inject a fault on the x
coordinate of the base point P = (zp,yp) lying on the elliptic curve E: y? = 23 + azx + b.

Let P = (xp,yp) denotes the faulted point. yp is unused during the computation of [k]P.
Two possibilities arise:

° xk} +arp +~b is a square. In this case, yp is a solution of the equation y? = xig + azp +b
in F, and P lies on the curve E. The x coordinate of the result point ) = [k]P gives
nothing.

° :17‘;’5+ax15+b~is not a square. In this case, yp is a solution of~the equation y? = :17‘;’5+ax15+b
in Fp,> and P lies on the twist curve F defined over IF,2. If I is weak, the ECDLP is feasible.

In the latter case, one method to recover the faulted value x5 = zp @ € is to try all possible
values of £ and compute the ECDLP with P and the result point ¢ = [k]P. Therefore, the
number of bits affected by the fault has to be small (max 8 or 16)3.

The output point validity described in Section 8.5.1 thwarts the attack only if a full check
is performed, i.e. with all curve parameters and all coordinates. For example, it is not enough
to verify if a:dQ +axg+0bis a square, xg being the x coordinate of the ECSM’s output. A second
fault can be induced at the end to bypass the check with probability 1/2 [FLRV0S].

Attack Context:

e Key recovery: performing 2% or 2'¢ gcpLps on E (depending on the precision of the
fault),

e Elliptic Curve Specificity: the twist of the curve is weak,
e Implementation Access: knowledge of the location of the base point’s memory blocks,

e Implementation Specificity: elliptic curve formulee without the y coordinate, same
addresses of the coordinates’ base point on different executions,

13 Another method to find the value T, with less computational effort, is described in [FLRVO08]. However, it
needs more faulted results.
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e Number of Executions Needed: 1,
e Input Access: known,
e Output Access: known,

e Fault Model: data randomization on a single register of small size (maximum 8 or 16).

8.22 Invalid Point Attack and SSCA [FGV11]

Fan, Gierliches and Vercauteren propose to combine an Invalid Point Attack (see Section 8.5)
and a SSCA.

At the beginning of the ECSM, a known fault is introduced to the base point P. The faulty
point P lies on another curve, and has a very low order ord(P). Eventually, the point at infinity
O will occur during the computation of [k]ﬁ In embedded systems, the point at infinity is
generally not managed for efficiency reasons. This is understandable since the point at infinity
should not appear in a normal mode of operation. The elliptic curve points operations will then
be incorrect and zero values will appear and remain till the end of the EcsM. The manipulation
of a zero value is easily detected by SSCA (see Figure 8.15). The number of iterations before
the apparition of the point at infinity reveals k mod ord(ﬁ), or the most significant bits of k
modulo ord(P) in the case of a Left-to-Right ECSM.

Unlike the classical Invalid Point Attack (see Section 8.5), the attacker does not need the
output point: the attack works even if a validity check is performed at the end of the ECSM (see
Sections 8.5.1 and 8.18).

The choice of the base point is made by the attacker because it has to be a neighbour of a
point of low order P. P and P are neighbours in the sense that only one bit differs between P
and P [FGV11].

The Point Blinding of Section 8.3.5 and any scalar randomization prevent the attack [FGV11].

Attack Context:

e Key recovery: each time, k mod 0rd(]5) is revealed; the full key is then recovered using
the CRT,

e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the base point’s memory blocks,
knowledge of the ECSM,

e Implementation Specificity: same addresses of the coordinates’ base point on different
executions,

e Number of Executions Needed: less than n (it depends on the order of 15),
e Input Access: chosen,
e Output Access: unnecessary,

e Fault Model: data randomization on a single bit.
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8.22.1 Input Point Validity after a Randomization [FGV11]

Checking if the base point lies on the given elliptic curve is generally done at the cryptographic
level. However, a fault can be induced after the verification.

Performing the check after a randomization of the input, such as the Random Projective
Coordinates (Section 8.3.6), the Random Curve Isomorphism (Section 8.3.7) or the Point Blind-
ing (Section 8.3.5), is very powerful. Indeed, the fault injected after the check will necessarily
be random, since all values are randomized.

Cost: 5 mMUL,, 4 mSQR,,, 4 mADD,,

8.23 Fault Attack on Coordinates Conversion [MMNT13]

We present our new DFA. In the previous fault attacks, the fault is either introduced at the
beginning (Weak Curve attacks) or during the EcsM (Safe-Errors and the other DFAs). Here,
the fault is introduced at the very end of the ECSM, during the projective to affine coordinates
conversion. This enables to retrieve the projective coordinates of the result of the ECsm [k]P.
Naccache, Smart and Stern showed that when the result is given in projective coordinates, an
attacker can recover information on &k [NSS04].

Leakage in Projective Coordinates. First, we briefly overview the attack described in
[NSS04] when the attacker has access to the Jacobian coordinates of the output.

Assume that Algorithm 14 is used to compute @ = [k]P with mixed coordinates (P is in
affine coordinates).

We denote by A; = (X, Y, Z;) the value of point A at the end of iteration i in Algorithm
14. The attacker knows the output Ag = Q = (Xo, Yo, Zp) in Jacobian coordinates and the
input P = (xp,yp) in affine coordinates. The attacker will attempt to reverse the scalar mul-
tiplication process i.e. replace doubling by halving and replace additions of P by subtractions.

If kg = 0, Ay can be recovered by halving Ay. Given Algorithm 11:

Z
Zo=2V12, =2p 2F = 7+ =22
2y

y1 is obtained by computing (z1,y1) = [27! mod #E]Q in affine coordinates which is always
possible. We need to compute a fourth root to obtain Z; from Zy and y;:

e if p=1 (mod 4), then computing a fourth root is possible in a quarter of the cases and
yields four values.

e if p = 3 (mod 4), then computing a fourth root is possible for half of the inputs and,
when possible, this computation yields two values.

We can easily obtain X; and Y; from Z;.

If, on the other hand, kg = 1, A; can be recovered by subtracting P from A and halving.
We denote by (X, Y;, Z;) the intermediate point between doubling (step A <— ECDBL(A)) and
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addition (step if k; = 1 then A < ECADD(A, P)). Given Algorithm 10 in mixed coordinates,

we have:

Z
Zo=(xpZ? —X\)2 = 7} =—"9
rp — Tt

x¢ is obtained by computing (¢, y;) = @ — P in affine coordinates. We need to compute a cubic
root to obtain Z; from Zy, x, and z;:

e if p=1 (mod 3), then extracting a cubic root is possible in a third of the cases and, when
possible, this calculation yields one of three possible values.

e if p=2 (mod 3), then extracting a cubic root is always possible and yields a unique value.

We can easily obtain X; and Y; from Z;. After subtraction, the attacker must halve (Xy, Y:, Z;)
as described previously:

Zy

2y;

Zi =

From this observation, the opponent can recover the least significant bit of k. Indeed, if the
value 22—01 isn’t a fourth power, the opponent immediately concludes that kg = 1. If 22—01 is a
fourth power, then the attacker must try the subtraction and halving step. If subtracting P from
Ap or halving A; is impossible, the attacker concludes that kg = 0. If both steps are possible
(which happens with non-negligible probability), the attacker cannot immediately identify ko,
but can hope to do so by backtracking, i.e. guessing the values of k1, ko, etc. and computing
the corresponding intermediate points until reaching one of the previous contradictions.

Once kg is known, the opponent can iterate the procedure starting with k; and so forth to
extract a few more bits of k. Note that several candidate values for Z; arise from the reversal
process as the corresponding equations have several roots, and backtracking is usually required
to determine the correct one.

[NSS04] reports experimental data on the number of recovered bits and success probabilities.
The success highly depends on the value of p mod 12.

To prevent this attack, the defender should in principle output results in affine coordinates.
Another possible countermeasure suggested in [NSS04] is to randomize the output, replacing
(Xo, Yo, Zo) by (r?Xo, %Yy, rZy) for some random r € [F7, which effectively avoids any possible
leakage from the Jacobian representation.

As a side note, we point out that, while [NSS04] also claims that attacks are thwarted by
randomly flipping the sign of Zj, this is incorrect: just as k1 can be recovered with significant
probability even though Z; is only known up to a sign (by simply trying both possibilities and
backtracking until a contradiction is reached), ko can also be recovered even when Z; is only
known up to a sign. This observation is important in our case, as the fault attacks described
hereafter retrieve Z2 rather than Z; itself.

Projective-to-Affine Conversion. The following procedure converts the point P = (X,Y, Z) =
(2%, yZ3,7) from Jacobian to affine coordinates (z,).

7 1

2
X -
Y.

r
CONVERT(X,Y, Z) =
t-r return(z,y)

s (8.2)

@+ 8 n 3
TTTTT
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Faults during conversion. In standardized cryptographic protocols based on elliptic curves,
the computed points are given in affine coordinates, and hence [NSS04] does not apply. Our
idea is to corrupt the conversion process, so that the faulty affine results reveal the missing Z
coordinate. Suppose that an error corrupted s just after the step s < 72 (of Process (8.2)).
The corrupted s + ¢ yields:

Equations (8.3) and (8.4) imply

i
S o1=27 8.5
. € (85)
y 2

Z_1=27% 8.6
) (8.6)

We will describe three different attacks depending on the fault’s precision.

Large Unknown Faults and One Correct Result. Let € = (e1,...,&;) be a vector of [
large faults, as illustrated in Figure 8.18. We want to recover €.

b
4

Figure 8.18: Illustration of large fault injections

Each ¢; satisfies an equation of the form (8.5), thus the attacker knows [ numbers u; =
Z% . g; mod p denoted as a vector u = (ug,...,u;). Assume that Vi € {1,...,1},&; < p® for
a number o < 1. Let L be the lattice generated by the vector u and pZ' in Z! and let
s = Z~? mod p. Since € satisfies € = s-u mod p, € is a vector in L, of length || < p®. Assume
further that g = ged(uy,...,u;) = 1. This happens with probability ~ 1/¢(l) ~ 1 — 27!, which
is very close to 1. Then, we have vol(L)T = [Z! : L]T = p'~1. Therefore, we can recover &
directly by reducing the lattice L using LLL [LLL82] as long as p* < pit, e > ﬁ

The attack can also be carried out when g > 1: in that case, LLL will recover £1/g - £, so
exhaustive search on the few possible values of g is enough. However, the probability that g > 1
is so small makes this refinement unnecessary.

Size of p (modulus size) 256 bits
Number of errors (1) 9

Error size (percentage of the modulus size) 224 bits (87.5%)
Success probability 99.8%

CPU time 3 ms

Table 8.1: Timings for a SAGE implementation on a 2.27 GHz Intel Core i3 CPU core.
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To evaluate the attack, we implemented it in SAGE [SAGE12] (without treating the case
g > 1) and observed the results given in Table 8.1. The failure rate of ~ 0.2% corresponds to
the cases when ¢g > 1, and is consistent with 1/¢(9) =~ 0.998.

Remark 8.19. In the paper [MMNT13], we present an alternative solution where the correct
result is not necessary.

Since several faulty results with the same Z coordinate are necessary, any randomization
used against the CSCA described in Section 8.3 thwarts this attack. The knowledge of the base
point in affine coordinates is necessary for the backtracking algorithm. For this reason, the
Point Blinding countermeasure (see Section 8.3.5) is also effective against the attack.

Attack Context:
e Key recovery: Naccache’s et al.’s backtracking algorithm,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

e Implementation Specificity: use of Jacobian or projective coordinates,
e Number of Executions Needed: ~ 10 for a few bits,
e Input Access: constant,

e Output Access: known,

e Fault Model: data randomization on a single memory block of size ~ 4?”.

Two Faults and a Correct Result. As we have just seen, a correct conversion and two
faulty conversions yield the values: Z2¢; and Z%e5 and hence, by modular division 8 = 165 L
Theorem 8.20 (see [FSWO02]) guarantees that 1 and &2 can be efficiently recovered from f
if each ¢; is smaller than the square root of p divided by 2. This problem is known as the
Rational Number Reconstruction [PW04, WP03] and is typically solved using Gauf’ algorithm
for finding the shortest vector in a bidimensional lattice [Val91].

Theorem 8.20. Let e1,e9 € Z such that —A < e1 < A and 0 < ey < B. Let p > 2AB be a
prime and = 51551 mod p. Then e1,e5 can be recovered from A, B, 3, p in polynomial time.

Assume that the &; are smaller than \/D, as illustrated in Figure 8.19. Taking A=D=
[\/p/2], we get 2AB < p. Moreover, 0 < ¢ < A and 0 < g3 < B. Thus the attacker can
recover €1 and €5 from £ in polynomial time.

If the g; are shifted to the left by an arbitrary number of bit positions, this does not change
anything as these powers of two will divide out.

The attack is also feasible in the more general unbalanced case when

e169 < p/4. (8.7)

In contrast to the case where the ¢; are bound individually (i.e. 0 <e; < Aand 0 < 3 < B) we
do not have a fixed bound for £; and 2 anymore; Equation (8.7) only provides a bound for the
product €162. Equation (8.7) implies that there exists 1 < i < |n] such that 0 < &; < 2¢ and
0 < g9 < p/2°t1. Then using Theorem 8.20 again, the attacker can recover the pair (e1,&2),
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| i

Figure 8.19: Illustration of two fault injections, half the size of p

and hence Z. In principle, there could be several candidate solutions depending on the choice
of i, making it necessary to consider many possible values of Z. In practice, however, multiple
solutions seem to occur with negligible probability when p is large enough.

Like the previous attack with large faults, any randomization described in Section 8.3
thwarts this attack since two faulty results with the same Z coordinate are necessary. The
Point Blinding of Section 8.3.5 is effective as well.

Attack Context:
e Key recovery: Naccache’s et al’s backtracking algorithm,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,

e Implementation Specificity: use of Jacobian or projective coordinates,
e Number of Executions Needed: 3 for a few bits,

e Input Access: constant,

e Output Access: known,

e Fault Model: data randomization on a single memory block of size n/2.

Known or guessable fault. If € is known or successfully guessed, then one faulty point
(¥ = 2 +a7Z%,§ =y + yZ%) and the correct point (z,y) is enough to recover Z (up to the
sign).

As opposed to the previous attacks, a single faulty result is necessary for this attack. The
security is not guaranteed anymore by the randomization techniques of Section 8.3, except for
the Point Blinding because the attacker needs the knowledge of the base point of the ECSM.

Attack Context:
e Key recovery: Naccache’s et al’s backtracking algorithm,
e Elliptic Curve Specificity: none,

e Implementation Access: knowledge of the location of the memory blocks, knowledge
of the conversion procedure,
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Implementation Specificity: use of Jacobian or projective coordinates,
Number of Executions Needed: 2 for a few bits,

Input Access: constant,

Output Access: known,

Fault Model: data randomization on a single bit.



Chapter 9

Differential Fault Attacks on
ECDSA

Some DFAs previously described rely on the comparison of one erroneous result and the cor-
rect result of an ECSM, to recover a few bits of the scalar. That is the case for the classical
DFA (Section 8.6), the Sign Change Fault attack (Section 8.17) and the Fault Attack on the
Coordinates Conversion with the known fault (Section 8.23).

In ECDSA, the scalar used for the ECsM is randomly chosen for each new signature. In this
chapter, we describe a method to attack the ECDSA with the DFAs listed above. This method
was initially described in our paper [MMNT13, §6.1].

9.1 Principle of the Method

Let G be the generator of the subgroup considered on the given elliptic curve F, d the secret
key the attacker wants to recover, and P = [d]G the corresponding public key.

We suppose that, during the signature procedure of ECDSA (Algorithm 26), a fault is induced
during the computation of @, yielding to the wrong result Q = (xQ,yQ). The erroneous
signature (7, §) satisfies:

T = Tg mod ¢
5 = kino(di +m) mod ¢

From (7, §), the attacker can compute:

w o= 5! mod ¢
U = wW-m mod ¢
Uy = W-T mod ¢
R o= [@]G+[mlP =[] 6+ [ P =[] o+ [425] 6

k- g 6 = G

The point R is hence the correct value of Q) = (g, y¢g) = [k]G that was intended to be computed
during the signature. The attacker gets zq, yq and x5 mod t. Since log,(p) ~ log,(t) in most
standardized curves, Ty can be guessed from Ty mod t.
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9.2 Attacking ECDSA with the Classical Differential Fault
Attack

We recall that for the classical DFA, described in Section 8.6, a fault is induced on an interme-
diate point of the EcsM. Using the example of the Right-to-Left Double-and-Add method (Al-
gorithm 15), the attacker injects a fault to alter the intermediate point Q; = [(ki—1, ..., ko)2]P
into Q; (we use the same notations as in Section 8.6). If the fault is known or can be guessed!,
the attacker can generate Q from Q; and all possible values of (ki—1,...,ko0)2. The good hy-
pothesis is the one where the z coordinate of Q matches T4

9.3 Attacking ECDSA with the Sign Change Fault Attack

We recall that, in the attack described in Section 8.17, the sign of an intermediate point at
iteration 7 is switched during the ECSM. The attacker gets the z coordinate of the ECSM’s result
Q from the signature. The correct result @ is retrieved using the method described above.
Since @ lies on the curve, the attacker can recover the missing y coordinates with probability
1/2 using the curve equation. She then computes Q + Q = [2(k;, ..., ko)2]P and preforms an
ECDLP to recover (k;, ..., ko)2. If she is not successful, her guess on y was wrong and tries the
other possibility.

9.4 Attacking ECDSA with the Fault on the Coordinates
Conversion

In our attack described in Section 8.23, a fault is induced during the affine to projective co-
ordinates conversion process. The attacker gets the faulty z coordinate of the result z45 =
rq + xQZHe with zq, Zg unknown. zg.¢€ (the fault targets only a bit) are known. The at-
tacker can recover xg using the method previously described. Zg is then retrieved and this
makes the attack described in Section 8.23 and in [NSS04] possible. A few bits of k can be
recovered.

9.5 Synthesis

We showed how to use the properties of ECDSA to compare a correct and an erroneous result of
an ECSM. For the three DFAs, a few bits of the ephemeral scalar k£ can be recovered. Iterating
the procedure can reveal a few bits of several ephemeral scalars. This is precisely the scenario
considered in [HS01] allowing recover the private key d.

Our analysis showed that the ECDSA is not naturally immune to attacks where several ECSMs
have to be run with the same scalar.

1For example if a single bit is switched but the attacker does not know which one, she can try all bits



Chapter 10

Summary of the Context of the
Attacks

In this chapter, we give a synthesis of the attacks depending on the context. This clear syn-
thesis is useful when implementing an embedded ECC application. Depending on the protocols
intended to support or on the targeted implementation, some attacks are not feasible and a
protection against this attack is not necessary.

10.1 Key Recovery

The synthesis of the key recovery process is given in Table 10.1. This makes an understanding of
the attacks. We can anticipate on some future refinements of the attacks since the key recovery
process does not evolve drastically.

10.2 Elliptic Curve Specificity

Few attacks work on specific curves only. We give the list below.

e Particular Point Timing Attack (Section 8.15): the parameter a of the curve is
equal to —3 and the curve contains a point of the form (2, y) for some y € F,,.

e RSCA (Section 8.11): the curve contains a point of the form (0,y) for some y € F,,.
e ZSCA (Section 8.12): the curve contains at least one zero-value point.
e SVA (Section 8.13): the curve contains at least one same-values point.

e Horizontal SVA (Section 8.14): the curve contains at least one same-values point
where the same values will be squared.

e Twist Curve Attack (Section 8.21): the twist of the curve is weak.
This synthesis is useful if the application has to support only a few known curves. We can

easily check if the curves verify the condition for each attack. If it is not the case, a protection
against the corresponding attack is not necessary.
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ars

Naccaches et al’s
backtracking algorithm

Independent Bits
Recursive
ECBLP on a weak curve

Chinese Remainder Theorem

ECDLP with smaller scal

Classical Timing Attack
Section 8.1

Particular Point Timing Attack
Section 8.15

Classical SSCA
Section 8.2

SSCA on unified formulae
Section 8.2.2.1

RSCA
Section 8.11

ZSCA
Section 8.12

Template Attack
Section 8.20

NN N NN IS NN

CSCA
Section 8.3

Address-bit DSCA v
Section 8.9

Doubling Attack v
Section 8.10

Carry Leakage Attack v
Section 8.3.1.1

SVA v
Section 8.13

<

SVA on Atomicity
Section 8.2.3.1

Big Mac v
Section 8.7

Horizontal Correlation SCA
Section 8.8

Horizontal SVA
Section 8.14

Horizontal SVA on Unified Formulae
Section 8.2.2.2

SNEEENEENEEN

Horizontal SVA on Atomicity
Section 8.2.3.2

C Safe-Error v
Section 8.2.1.1

M Safe-Error v
Section 8.4

Invalid Point Attack v v
Section 8.5

Invalid Curve Attack v v
Section 8.16

Twist Curve Attack v
Section 8.21

Classical DFA v
Section 8.6

Sign Change Fault v v
Section 8.17

Fault Attack on Coordinates Conversion v
Section 8.23

Combined Attack on Additive Splitting v
Section 8.3.2.2

Zero word and SSCA v
Section 8.19

Invalid Point Attack and SSCA v v
Section 8.22

Table 10.1: Synthesis of the Key Recovery Process for each attack
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10.3 Implementation Access

The synthesis of the implementation access, i.e. the attacker’s level of knowledge of the imple-
mentation, is given in Table 10.2. This synthesis reveals what the attacker needs to know or
guess to succeed.

10.4 Implementation Specificity

The synthesis of the implementation specificity is given in Table 10.3. When implementing an
embedded ECC application, it is fast to check if some attacks are not feasible because of the
choice of the implementation. Instead of selecting countermeasures to prevent some attacks,
one may prefer to implement an embedded ECC that is naturally immune against some attacks.

10.5 Number of Executions Needed

The synthesis of the number of executions needed is given in Table 10.4. For all attacks, the
number given corresponds to the number required to recover the whole scalar, except for the
fault attacks on the conversion coordinates which permits to recover only a few bits (see Section
8.23).

10.6 Input Access

The synthesis of the input access is given in Table 10.5. When the attacker needs to choose the
base point, the attack is not feasible for some protocols such as the ECDSA Signature (Section
5.1) where the input is fixed and constant.

10.7 Output Access

The synthesis of the output access is given in Table 10.6. When the output is needed, the attack
is not feasible for some protocols such as the EC-ELGAMAL Decryption (Section 5.3) where the
output is intended to be kept inside the embedded system.

10.8 Fault Model

The synthesis of the implementation specificity is given in Table 10.7. This reveals the difficulty
of some attacks to mount in practice depending on the accuracy.
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5 to the same

ECSM
Controllable Device

¢ Curve Formulae

Memory Location

Splitting Method
Conversion Procedure

Word Size of Integers

Modular Arithmetic Algorithms
Modular Arithmetic Module Architecture

Classical Timing Attack v v v
Section 8.1
Particular Point Timing Attack v v v
Section 8.15
lassical SSCA v v
Section 8.2
SSCA on unified formulae v v v
Section 8.2.2.1
RSCA v v
Section 8.11
ZSCA v v v
Section 8.12
Template Attack v
Section 8.20
CSCA v v v v
Section 8.3
Address-bit DSCA v
Section 8.9
Doubling Attack v v
Section 8.10
Carry Leakage Attack v v
Section 8.3.1.1
SVA
Section 8.13
SVA on Atomicity
Section 8.2.3.1
Big Mac
Section 8.7
Horizontal Correlation SCA
Section 8.8
Horizontal SVA
Section 8.14
Horizontal SVA on Unified Formulae
Section 8.2.2.2
Horizontal SVA on Atomicity
Section 8.2.3.2
C Safe-Error
Section 8.2.1.1
M Safe-Error
Section 8.4
Invalid Point Attack
Section 8.5
Invalid Curve Attack
Section 8.16
Twist Curve Attack
Section 8.21
Classical DFA
Section 8.6
Sign Change Fault v v v
Section 8.17
Fault Attack on Coordinates Conversion v v
Section 8.23
Combined Attack on Additive Splitting v v
Section 8.3.2.2
Zero word and SSCA v v
Section 8.19
Invalid Point Attack and SSCA v v v
Section 8.22

C

ANEEENEEENEEEN
ANEEENEEENEEEN

<
<
<

<
<
<

NN N
N

AN EEENEEEN NN

<

N

Table 10.2: Synthesis of the Implementation Access Context
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stic and Non-Constant

Modular Arithmetic

Fast Doubling

Unregular ECSM

Read Only Point

Dummy Operation

Different Addition
and Doubling Formulae

Indistinguishable Formulae

without y coordinate

Affine Coordinates

Projective Coordinates

Atomicity

Same Addresses

Group Scalar Randomization

Additive Splitting

Wordwise Modular Multiplication

Classical Timing Attack
Section 8.1

Particular Point Timing Attack
Scction 8.15

Classical SSCA
Section 8.2

SSCA on unified formulae
Section 8.2.2.1

Address-bit DSCA
Section 8.9

Doubling Attack
Section 8.10

Carry Leakage Attack
Section 8.3.1.1

SVA on Atomicity
Section 8.2.3.1

Big Mac
Section 8.7

Horizontal Correlation SCA
Section 8.8

Section 8.2.2.2

Horizontal SVA on Unified Formulae

Horizontal SVA on Atomicity
Section 8.2.3.2

C Safe-Error
Section 8.2.1.1

M Safe-Error
Section 8.4

Invalid Point Attack
Section 8.5

Tnvalid Curve Attack
Section 8.16

Twist Curve Attack
Section 8.21

Classical DFA
Section 8.6

Sign Change Fault
Section 8.17

Section 8.23

Fault Attack on Coordinates Conversion

Section 8.3.2.2

Combined Attack on Additive Splitting

Zero word and SSCA
Section 8.19

Invalid Point Attack and SSCA
Section 8.22

Table 10.3: Synthesis of the Implementation Specificity for each attack
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‘ 1 [ 2 [ 3 [ ~ 10 [ n [ Multiple |

Classical Timing Attack v
Section 8.1
Particular Point Timing Attack v
Section 8.15
Classical SSCA v
Section 8.2
SSCA on unified formulae v
Section 8.2.2.1
RSCA v
Section 8.11
ZSCA v
Section 8.12
Template Attack v
Section 8.20
CSCA v
Section 8.3
Address-bit DSCA v
Section 8.9
Doubling Attack v
Section 8.10
Carry Leakage Attack v
Section 8.3.1.1
SVA v
Section 8.13
SVA on Atomicity v
Section 8.2.3.1
Big Mac v
Section 8.7
Horizontal Correlation SCA v
Section 8.8
Horizontal SVA v
Section 8.14
Horizontal SVA on Unified Formulee v
Section 8.2.2.2
Horizontal SVA on Atomicity v
Section 8.2.3.2
C Safe-Error
Section 8.2.1.1
M Safe-Error
Section 8.4
Invalid Point Attack
Section 8.5
Invalid Curve Attack
Section 8.16
Twist Curve Attack v
Section 8.21
Classical DFA
Section 8.6
Sign Change Fault v
Section 8.17
Fault Attack on Coordinates Conversion v
(Large Faults)
Section 8.23
Fault Attack on Coordinates Conversion v
(n/2 bit length Faults)
Section 8.23
Fault Attack on Coordinates Conversion v
(Known Faults)
Section 8.23
Combined Attack on Additive Splitting v
Section 8.3.2.2
Zero word and SSCA v
Section 8.19
Invalid Point Attack and SSCA v
Section 8.22
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<

Table 10.4: Synthesis of the Number of Executions Needed for each attack
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[ Unnecessary | Known [ Chosen Constant [ Varying |

Classical Timing Attack v v
Section 8.1
Particular Point Timing Attack v v
Section 8.15
Classical SSCA v
Section 8.2

SSCA on unified formula v
Section 8.2.2.1

RSCA v v

Section 8.11

ZSCA v v

Section 8.12
Template Attack v
Section 8.20

CSCA v v

Section 8.3
Address-bit DSCA v
Section 8.9
Doubling Attack v v
Section 8.10

Carry Leakage Attack v
Section 8.3.1.1

SVA v v

Section 8.13

SVA on Atomicity v
Section 8.2.3.1

Big Mac v

Section 8.7
Horizontal Correlation SCA v
Section 8.8
Horizontal SVA v v
Section 8.14
Horizontal SVA on Unified Formulae v
Section 8.2.2.2
Horizontal SVA on Atomicity v
Section 8.2.3.2

C Safe-Error v

Section 8.2.1.1

M Safe-Error v

Section 8.4

Invalid Point Attack v
Section 8.5

Invalid Curve Attack v
Section 8.16

Twist Curve Attack v
Section 8.21
Classical DFA v v
Section 8.6

Sign Change Fault v v
Section 8.17

Fault Attack on Coordinates Conversion v
Section 8.23
Combined Attack on Additive Splitting v
Section 8.3.2.2

Zero word and SSCA v
Section 8.19

Invalid Point Attack and SSCA v v
Section 8.22

Table 10.5: Synthesis of the Input Access for each attack
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Knowledge of

Unnecessary Known the Validity

Classical Timing Attack v
Section 8.1
Particular Point Timing Attack v
Section 8.15
Classical SSCA
Section 8.2
SSCA on unified formulae
Section 8.2.2.1
RSCA
Section 8.11
ZSCA
Section 8.12
Template Attack
Section 8.20
CSCA
Section 8.3
Address-bit DSCA
Section 8.9
Doubling Attack
Section 8.10
Carry Leakage Attack
Section 8.3.1.1
SVA v
Section 8.13
SVA on Atomicity v
Section 8.2.3.1
Big Mac
Section 8.7
Horizontal Correlation SCA
Section 8.8
Horizontal SVA
Section 8.14
Horizontal SVA on Unified Formulae
Section 8.2.2.2
Horizontal SVA on Atomicity v
Section 8.2.3.2
C Safe-Error v
Section 8.2.1.1
M Safe-Error v
Section 8.4
Invalid Point Attack v
Section 8.5
Invalid Curve Attack v
Section 8.16
Twist Curve Attack v
Section 8.21
Classical DFA v
Section 8.6
Sign Change Fault v
Section 8.17
Fault Attack on Coordinates Conversion v
Section 8.23
Combined Attack on Additive Splitting M
Section 8.3.2.2
Zero word and SSCA v
Section 8.19
Invalid Point Attack and SSCA v
Section 8.22

N

ENEERN

<

\

N

ENEERN

<

N

ENEEEN

<

Table 10.6: Synthesis of the Output Access for each attack
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Data Resetting Modifying Fault Lentgh
Randomization Data Opcode (in bits)
C Safe-Error v . S17e (.)f the
Section 8.2.1.1 arithmetic module
M Safe-Error v n
Section 8.4
Invalid Point Attack v n
Section 8.5
Invalid Curve Attack v n
Section 8.16
Twist Curve Attack v < 16
Section 8.21
Classical DFA v 1
Section 8.6
size of the control
Sign Change Fault v signal of two’s
(Switch Control Signal) complement
Section 8.17
size of the signal
Sign Change Fault operation
(Switch Addition to Subtraction) command
Section 8.17
Fault Attack on Coordinates Conversion v ~ 1
(Large Faults)
Section 8.23
Fault Attack on Coordinates Conversion v n/2
(1/2 bit length Faults)
Section 8.23
Fault Attack on Coordinates Conversion v 1
(Known Fault)
Section 8.23
Combined Attack on Additive Splitting v | swe (.)f the
arithmetic module
(C Safe-Error)
Section 8.3.2.2
Combined Attack on Additive Splitting v n
(M Safe-Error)
Section 8.3.2.2
Zero word and SSCA size of a word
Section 8.19
Invalid Point Attack and SSCA v 1
Section 8.22

Table 10.7: Synthesis of the Fault Model for each attack
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Chapter 11

Synthesis of the Attacks versus
the Countermeasures

In this chapter, we give a synthesis of the efficiency of each countermeasure against the different
attacks on Ecc. It is displayed of the form of a table (Table 11.1) inspired from [FGD'10]. It
was completed with more recent attacks and we were able to fill some of the boxes from our
analysis. We use the following symbols:

o v/ means that the countermeasure thwarts the attack,

o ~ means that the countermeasure highly disturbs the attack but does not guarantee a
full protection,

o x means that the countermeasure brings the specified vulnerability to the implementation,

o — means it has been shown that the countermeasure is ineffective against the attack,
despite the apparent link between them,

an empty cell means that either the countermeasure and the attack are clearly unrelated
or there is no concrete published study on the effect of the countermeasure on the attack.

o
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Passive Attacks

Active Attacks

Combined Attacks

TA SSCA Vertical Analysis Horizontal Analysis Safe-Error| Weak Curve DFA Att,'a‘(:ks ;?ga‘m?t
N Additive Splitting
i <|=
& £ < | =
= 4 o |9
g g 2 1A
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= 3 & | E da—e 5| 8 2|2 @
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222|822 8|2 |22 |2 |2 |8 8|8 |85 |Z|=|=|2|%2|2|=12 S1E|72 ] =
S E |2 R 2 Q| E|2|I2 2|2 |2|S 2|2 |5|2|8|2|2|8|c|s|2|B|2|2|2|¢ 2|82
Ol | O ||| RN |=|0O|<|a|lo|O a2 | |2||lo|l2 |E|8| 5|0l |E|E|E|lo|l=2|N|a&
[ Constant Time Arithmetic || v/ | v v [ [ [ [ [ [ [ [ | [ [ [ [ [ | [ [ [ [
Regular ECSM Vv x4 x@ x@ V&
Unified Formulae V| x X
Side-Channel Atomicity v X X X X X
Isomorphism Shifting v
Random Coordinates v - - - vV v - v - v Ve
Random Curve Isomorphism v |V - - v IV v - v v Ve
Point Blinding v |V VIV |V |V - v v |V v v v
Group Scalar Randomization v |V ~ | ~ Vv - X | v ~ v |V v Ve v
Additive Splitting v |V ~ | ~ v |V X | v ~ v |V v VOl x | x| x| x v
Euclidean Splitting v |V ~ | ~ v |V v ~ V|V v Ve v
Multiplicative Splitting v | v ~ | ~ Vv - v ~ v | v v Ve v
[ Random Register Address || [ [ [ v ] [ [ [ [ [ [ | v ] [ [ [ [ | [ V] [ V]
‘ Random Multiplication H ‘ ‘ ‘ ‘ ‘ ‘ v ‘ v ‘ v ‘ v ‘ v H ‘ ‘ ‘ ‘ ‘ H ‘ ‘ ‘ ‘
Coherence Check v VIiVviIiVvI|Vv |V
Output Point Validity VIVvIivIv V@
Input Point Validity N
Curve Integrity Check v

Table 11.1: Attacks versus Countermeasures

%except for the Montgomery Ladder
bexcept for BRIP and the regular Shamir’s trick

cexcept for the known fault
donly if the check is performed after the Projective-to-affine conversion

¢only if the check is performed after a randomization of the base point
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Conclusion and Perspectives

This thesis is a survey on the physical attacks and countermeasures on ECC. The feasibility of
each attack depending on the context is detailed. The cost of each countermeasure are detailed
as well. Surveys on physical cryptanalysis usually display the attacks and countermeasures
separately. We tried a different approach. The attacks and countermeasures are exhibited with
a tree structure to clearly indicates if an attack has been introduced against a specific coun-
termeasure or if it more general. Similarly, we can see if a countermeasure has been proposed
against a specific attack. A synthesis in tabular form of attacks and countermeasures is given
at the end. For this one, we clearly separate the attacks from the countermeasures.

We introduced new attacks called Same-Values Analysis. The attacks are named after the
same principle: they all take advantage of same values occurring within an Elliptic Curve Scalar
Multiplication (EcsM). They differ from the targeted implementation or from the method used
to detect the occurrence of the same values.

The classical SVA consists in choosing the suitable base point so that same values occur
only if some condition of the scalar is met. This attack, originally proposed as a vertical attack,
was extended into a horizontal analysis. We also used the occurrence of same values to target
some existing countermeasures such as the Unified Formulae and the Side-Channel Atomicity
countermeasures, with a single trace.

Depending on the attack, we used different existing statistical methods to detect the oc-
currence of same values. For the Horizontal SVA on the Atomicity Countermeasure, we also
used a new method inspired from the Big Mac attack. For each method, we gave experimental
results to validate the attacks.

With this new kind of attacks, we showed that the occurrence of same values within an ECSM
can be exploited by the attacker. This concept can probably be modified and refined to target
other implementations, and even to other asymmetric cryptosystems. Against these attacks,
we are currently studying on new methods to ensure that the occurrence of same values is not
possible.

We also introduced a new Differential Fault Attack. As opposed to previous fault attacks,
where the fault is induced at the beginning or during the ECSM, our attack targets the final
conversion process from projective to affine coordinates. Such faults permit to recover some
information of the missing Z coordinate of the projective or Jacobian coordinates systems. This
makes it possible to retrieve a few bits of the scalar from a method presented by Naccache et
al. at Eurocrypt 2005.

Also, a new countermeasure against the Refined Side-Channel Analysis (RSCA) is presented.
The RSCA relies on the occurrence of a particular point, namely the points of the form (0, y).

We proposed to use an isomorphism between elliptic curves to control the inconvenient point.
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Its occurrence does not reveal anything about the scalar. Because of the isomorphism, elliptic
curve formulee are updated. Under certain assumptions that we clearly detailed, the new for-
mulae are in fact more efficient than the regular ones.

Finally, we showed that some differential fault attacks are feasible on the ECDSA. These
attacks need the comparison of one erroneous result and the corresponding correct result. In
ECDSA, the scalar changes at each new signature. Intuitively, one can think that the signature
scheme is naturally immune against DFAs. We showed that this is not the case for some attacks
because of some properties of the ECDSA.

This thesis gave a state-of-the-art on attacks and countermeasures on ECC. A detailed de-
scription of the attacks and the cost of the countermeasure is useful for the designer trying to
protect his implementation. In the introduction, we emphasized that the topic on side-channel
and fault analysis is a cat-and-mouse game. In the future, new attacks will necessarily emerge,
targeting a specific implementation or a countermeasure, or it will be more general. New coun-
termeasures will appear as well. The structure tree proposed and the synthesis at the end are
suitable to easily incorporate new attacks and countermeasures.

It would be interesting to extend this work to other asymmetric cryptosystems such as
RSA or pairing-based cryptography. Another method would be to give a single state-of-the-art
for the different asymmetric cryptosystems in some way. Indeed there are strong similarities
between the implementations. First, the same arithmetic module is generally used for RSA, ECC
and pairing-based cryptography. Secondly, Elliptic Curve Scalar Multiplication methods for
both ECC and pairing-based cryptography are similar to the modular exponentiation methods
for RSA. Some attacks and countermeasures would also be similar.
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Elliptic Curve Formulae with
register allocation

The following appendix resumes some algorithms of Section 3.1 and, in addition, it gives the
detailed registers allocation.

Classical Formula

Algorithm 37 ECADD (register allocation)
Input: P = (Xl, Yl, Zl), Q = (‘ng,Y—z7 ZQ)
Output: P+ Q

Tl <—X]_; T2 “— Yl; T3 — Zl

Ty < Xo; T5 < Yo; T < 22

1 T7 < T35 x Tg {leg} 12: T35 < 17 x Ty {Zg = ZlZQE}

2: Ty + T3 {72} | 13: Ty + T2 {E?%}

3: T3+ T3 x Ty {Z%} 14: Ty + T7 x Ty {E?’}

4: Ty < Ty x Ty {D = }/2213} 15: T < T7 x Tr {AEQ}

5: Tg < Ty x Ty {B = XQZ%} 16: 1o < 15 x Ty {CE‘S}

6: Tg < T¢ {Z3} | 17 Ty + T2 {F?}

7Ty Ty x Ty {A:X1Z22} 18: Ty +T1 — Ty {FQ—E?’}

8: Tg <+ Tg x Ty {ZS} 19: Ty < T —T7 {F2 - F3 - AE2}

9: Ty < Ty x Ty {C’:YlZS} 20: 11« 11 — 1% {Xg}

10: Ty < Ty — T} {E =B - A} 21: T < T7 =T} {AE2 — Xg}
11: Ty + T3 — 15 {F =D — C} 22: Tg + Tg x 17 {F(AE2 — Xg)}
23: Ty Ty —Th {YE),}

return (71,73,7T3)

Remark .1. Ty, T5, Ts are not modified. The operation P < ECADD(P, Q) can be done with 3
extra temporary registers without modifying the coordinates of Q).
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FORMULAZA WITH REGISTER ALLOCATION

Algorithm 38 mECADD (register allocation)

Input: P=(X1,Y1,71),Q = (22,y2)

Output: P+ Q

T1 %Xl; TQ(*Yl; Tg%Zl

Ty < x9; T5 < Yo

1: Tr T32 {Z12} 10: T < T7 x T} {X1E2}
2: Ty < Ty x 17 {B = IQZ%} 11: 1o < 15 x Ty {YlEB}
3. T7 < T7 x T3 {Zf} 12: T + T82 {Fz}
4: Th < T x Ty {D:ng%} 13: Ty < T4 — Ty {FQ—ES}
5. Ty Ty —T4 {E:B—Xl} 14: Ty« 11 —T7 {FQ—E3—X1E2}
6: Tg < Ty — T {F:D—}/l} 15: Ty < T —Tr {X3}
7 T3 T35 x Ty {Zg = ZlE} 16: T < T7 — T} {X1E2 — Xg}
8: 17 T92 {EQ} 17: Tg < Tg x 17 {F(X1E2 — Xg)}
9: Ty < Ty x T {E?’} 18: 1o« T3 — 15 {}/3}
return (11, 73,T3)
Algorithm 39 ECDBL (register allocation)
Input: P = (X1,Y1, Z;), elliptic curve parameter a
Output: 2P
T1<—X1; T2<—Y1; T3 +— 74
1: Ty < T22 {}/12} 12: Ty < T5 X a {U,Z%}
2: Tg < Ts+ Ts {A = 2Y12} 13: Ty < T5 + T} {C = 3X12 + (ZZ%}
3 Ty < Ty x Tg {AX 1} | 14: Ty < T2 {C?}
4: Ty Ty + Ty {B=2AX1} 15: Ty < T4y — 1Ty {CQ—B}
5. T (—T12 {X%} 16: Ty < T1 — Ty {62—2B=X3}
6: Ts < T1 + T4 {2X12} 17: Ty T62 {AQ}
7.1y Ty +T5 {3X12} 18: 15 < 1 + 15 {D = 2142}
8: T T32 {Z%} 19: To < Ty — 1T} {B — Xd}
9: T3+ T35 x Ty {Y1Z1} 20: Ty + To x Tk {C(B — Xg)}
10: T3 < T3+ T3 {Z3 = 2Y1Z1} 21: Ty < Ty —Tg {YE),}
11: Ty < T {Z})

return (7,1, T3)
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Algorithm 40 zADDU (register allocation)

IHPUt: P = (XlaylaZ)aQ = (X271/éaZ)
Output: (R,S) with R= P + Q and S = (\2X1, \V1, AZ) with A = X, — X»
T1<—X1; T2<—Y1; Tg(—XQ; T4<—}/2; T5<—Z

1. T+ Ty =T {Xl — Xg} 8 Ty <+ Th xTy {Al = Yl(Wl — Wg)}
2: T+ T5 x T {Z(X1 — XQ)} 9: Th + T62 {D = (}/1 — }/2)2}
3. Tg (*TGQ {C: (Xl 7X2)2} 10: Ty <14 — 13 {D*Wl}
4: Th < T3 x Ty {W2 :XQC} 11: Ty« 11 — 17 {Xd =D-—-W; —WQ}
5. T3 Ty x Ty {W1 = ch} 12: Ty + T3 =T} {Wl — X3}
6: T < Ty — Ty {Yi —}/2} 13: 1o « T5 x T {Y3+A1}
7 Ty« T3 — 1T {Wl — WQ} 14: To < T5 — Ty {Yg}
return ((Tl,TQ,T5), (T37T4,T5))
Algorithm 41 zADDC (register allocation)
Input: P = (Xl,Yl,Z),Q = (XQ,YQ,Z)
Output: (R,S) with R=P+Q,S=P—-Q
T1<—X1; T2<—Y1; T3<—X2; T‘4<—Y27 Ts +— 7
1. Tg <1, — 13 {X1 — X2} 11: Ty < T32 {Dl = (Yl — }/2)2}
2: T < Ts5 x T {Z(Xl — XQ)} 12: Ty <11 — T {Xg =D —W;— WQ}
3. Tg < T62 {C = (Xl — X2)2} 13: To + Tg — 1T} {Wl — Xg}
4: Tg Ty x Ty {Wl = ch} 14: Ty + Ty x T; {Yg + Al}
5. Tg < T3 x Tg {Wg = XQO} 15: Ty < Ty — T {Yg}
6: T7 < Tg — T {Wl — WQ} 16: 13 < T42 {DQ = (Yl + }6)2}
7 Tg T+ Tg {Wl + WQ} 17: Ty + T3 — Tg {X4 =Dy — W — WQ}
8 Tr Ty x Ty {Al =Y (Wl — Wg)} 18: Ty + Tg — T3 {Wl — X4}
9: T3 < Ty — Ty {Yi —}/2} 19: Ty <+ Ty x Tg {Y4+A1}
10: Ty < 15+ 1y {Yl + }/2} 20: Ty <+ T, — 1T {}/4}

return ((71,7%,T5), (15,74, T5))
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FORMULAZA WITH REGISTER ALLOCATION

Algorithm 42 zZADDU-ISO-SHIFTING (register allocation)

InI)Ut: Pl = (leylvzaU = a/222)7Q/ = (O7Y27Z7 U)
Output: (R',S') with B = P' + Q' and 8" = (\2X1, \3Y1, \Z, dy(A\Z)?) with A = X,
T1<—X1; T2<—Y1; T4<—Y2; T5(—Z; Tg(—U

1 T5+T5 x T4 {Zg = ZXl} 7 T+ T72 {D = (Yl — }/2)2}
2: T7<*T12 {C:Xlz} 8 Ty« 1Ty —1Tg {D*Ug}
3. T3« Ty x T {W1:X1C} 9 Ty« Ty — T3 {XgZD—Wl—Ug}
4: T < T x T {U3 = UC} 10: 15 < 15 — 1T} {Wl — X3}
5. Ty Ty — Ty {Yl — }/2} 11: Ty < Ty x Tr {Yg + Al}
6: Ty < Ty x T3 {Al = Y1W1} 12: To <15 — Ty {}/3}
return ((Tl,T27T5,T6), (Tg,T4,T5,T6))
Algorithm 43 ZADDC-ISO-SHIFTING (register allocation)
Input: P’ = (X1,Y1,Z,U = a4Z?),Q' = (X2,Ys, Z,U) such that zp/_¢ = 0.
Output: (R,S)with RF =P +Q',S"=P -Q’
Ty X To Yy, T3+ Xoy Ty Yo, T 7Z; Ty U
1Ty <1y — 15 {Xl 7X2} 11: Ty <15+ 1y {Y1+Y2}
2: Ts < Ts x 17 {Z(Xl — XQ)} 12: Ty < Ty x T3 {(Yl + YvQ)Wl}
3. T T72 {C = (Xl — X2)2} 13: Ty + T72 {D = (Yl — }/2)2}
4: Tg < Ty x Tx {U3:UC} 14: Ty < Ty —Tg {D—U3}
5: Ty < T3 x 1% {W2:X20} 15: Ty < 15 — 1T {X3:D—W1—W2—U3}
6: T3 < T1 x 1% {Wl = ch} 16: 15 < 15 — T} {Wl — X3}
7Ty T3+ Ty {Wl + WQ} 17: Ty < T7 x T3 {Yg + Al}
8 Tg <+ T35 —1Ty {Wl — WQ} 18: Ty + Ty — Ty {YE),}
9: Ty < Ty x Ty {Al = Yl(Wl — WQ)} 19: Ty <+ Ty — Ty {Y4}
10: 17 <15 — 1Ty {Yl — }/2} 20: 13+ 0

return (11, T, T5,Tg), (T3, T4, T5, T5))




