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Abst ract

Theamount of availableaudio data, such asbroadcast newsarchives, radio recordings,

music and songs collect ions, podcasts or various internet media is constant ly increasing. In

the same t ime there are not a lot of audio classificat ion and ret rieval tools, which could help

users to browse audio documents.

Content -based audio-ret rieval is a less mature field compared to image and video

ret rieval. There are some exist ing applicat ions such as song classificat ion, advert isement

(commercial) detect ion, speaker diarizat ion and ident ificat ion, with various systems being

developed to automat ically analyze and summarize audio content for indexing and ret rieval

purposes. Within these systems audio data is t reated different ly depending on the applica-

t ions. For example, song ident ificat ion systems are generally based on audio fingerprint ing

using energy and spectrogram peaks (as in the SHAZAM and the Philips systems). While

speaker diarizat ion and ident ificat ion systems are using cepstral features and machine learn-

ing techniques such as Gaussian Mixture Models (GMMs) and/ or Hidden Markov Models

(HMM).

The diversity of audio indexing techniques makes unsuitable the simultaneous treat-

ment of audio st reams where different types of audio content (music, commercials, jingles,

speech, laughter, etc.) coexist .

In this thesis we report our recent efforts in extending the ALISP (Automat ic Lan-

guage Independent Speech Processing) approach developed for speech as a generic method

for audio indexing, ret rieval and recognit ion. ALISP is a data-driven technique that was

first developed for very low bit -rate speech coding, and then successfully adapted for other

tasks such as speaker verificat ion and forgery, and language ident ificat ion. The part icularity
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of ALISP tools is that no textual t ranscript ions are needed during the learning step, and

only raw audio data is suffi cient . Any input speech data is t ransformed into a sequence of

arbit rary symbols. These symbols can be used for indexing purposes. The main contribu-

t ion of this thesis is the exploitat ion of the ALISP approach as a generic method for audio

(and not only speech) indexing and recognit ion. To this end, an audio indexing system

based on the ALISP technique is proposed. It is composed of the following modules:

• Automated acquisit ion (with unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP audio models.

• Segmentat ion (also referred as sequencing and transcript ion) module that t ransforms

the audio data into a sequence of symbols (using the previously acquired ALISP

Hidden Markov Models).

• Comparison and decision module, including approximate matching algorithms in-

spired form the Basic Local Alignment Search (BLAST) tool widely used in bioin-

format ics and the Levenshtein distance, to search for a sequence of ALISP symbols of

unknown audio data in the reference database (related to different audio items).

Our main contribut ions in this Ph.D can be divided into three parts:

1. Improving the ALISP tools by int roducing a simple method to find stable segments

within the audio data. This technique, referred as spect ral stability segmentat ion, is

replacing the temporal decomposit ion used before for speech processing. Themain ad-

vantage of this method is its computat ion requirements which are very low comparing

to temporal decomposit ion.

2. Proposing an effi cient technique to ret rieve relevant informat ion from ALISP se-

quences using BLAST algorithm and Levenshtein distance. This method speeds up

the ret rieval process without affect ing the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,

for radio st reams indexing. This system is applied for different fields of audio indexing

to cover the majority of audio items that could be present in a radio st ream:
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- audio ident ifi cat ion: detect ion of occurrences of a specific audio content (mu-

sic, advert isements, jingles) in a radio st ream;

- audio mot i f discover y : detect ion of repeat ing objects in audio st reams (music,

advert isements, and jingles);

- speaker diar izat ion: segmentat ion of an input audio st ream into homogenous

regions according to speaker’s ident it ies in order to answer the quest ion: ” Who

spoke when?” ;

- nonl inguist ic vocal izat ion det ect ion: detect ion of nonlinguist ic sounds such

as laughter, sighs, cough, or hesitat ions;

The evaluat ions of the proposed systems are done on the YACAST database (a work-

ing database for the SurfOnHertz project ) and other publicly available corpora. The ex-

perimental results show an excellent performance in audio ident ificat ion (for advert isement

and songs), audio mot if discovery (for advert isement and songs), speaker diarizat ion and

laughter detect ion. Moreover, the ALISP-based system has obtained the best results in

ETAPE 2011 (Evaluat ions en Traitement Automat ique de la Parole) evaluat ion campaign

for the speaker diarizat ion task.
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G lossary

A ut omat ic speech recognit ion: Conversion of a speech signal into a textual representa-

t ion by automated methods.

A udio fingerpr int : Compact content-based signature that represents an audio recording.

A udio ident ifi cat ion: Detect ion and locat ion of occurrences of a specific audio content

(music, advert isement , jingle,..) in audio st reams or audio databases.

A udio index ing: Extract ion of relevant informat ion from unknown audio data.

A udio mot i f discover y : Detect ing repeat ing audio objects in audio st reams or audio

databases.

B asic Local A l ignment Sear ch Tool (B LA ST ) : Algorithm for comparing primary

biological sequence informat ion, such as amino-acid sequences of different proteins or the

nucleot ides of DNA sequences.

D at a-dr iven approaches: Techniques that automat ically learn the linguist ic units and

informat ion required from representat ive examples of data without human expert ise.

H idden M ar kov M odel (H M M ): Stat ist ical model used to model a processwhich evolves

over t ime, where the exact state of the process is unknown, or ” hidden” .

H igh-level informat ion: Set of informat ion that reflects the behavioral t raits such as

prosody, phonet ic informat ion, pronunciat ion, idiolectal word usage, conversat ional pat-

terns, topics of conversat ions, etc.

Levensht ein dist ance: String metrics for measuring thedifferencebetween two sequences.

The Levenshtein distance between two words is the minimum number of single-character

edits (insert ions, delet ions, subst itut ions) required to change one word into another.

M el-Frequency Cepst r al Coeffi cient s (M FCC) : Coeffi cients of the cepstrum of the
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short -term spectrum, downsampled and weighted according to the Mel scale that follows

the sensit ivity of the human ear.

N onl inguist ic vocal izat ion: Very brief, discrete, nonverbal expressions related to human

behavior.

P recision: Fract ion of ret rieved documents that are relevant to the search.

R ecal l : Fract ion of the documents that are relevant to the query that are successfully

ret rieved.

R efer ence D at abase: Contains all the audio items to be ident ified by an audio ident ifi-

cat ion system.

Speaker diar izat ion: Segment ing an input audio data into homogenous regions according

to speaker’s ident it ies in order to answer the quest ion ” Who spoke when?” .

Speaker ident ifi cat ion: Determining which registered speaker provides a given ut terance.

Speaker ver ificat ion: Accept ing or reject ing the ident ity claim of a speaker.
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1.4.4 Détect ion du Rire . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.5 Conclusions et Perspect ives . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 General I nt r oduct ion 47
2.1 Context and Mot ivat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Audio Indexing: Problemat ic . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Cont ribut ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



CON T EN T S 9

3 St at e of t he A r t of D at a-dr iven Speech Pr ocessing and A udio I ndexing 53
3.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Toward Unsupervised Techniques for Speech Processing . . . . . . . . . . . 55

3.2.1 Expert -based Speech Processing . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Data-based Speech Processing . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Decipher-based Speech Processing . . . . . . . . . . . . . . . . . . . 58
3.2.4 Sensor-based Speech Processing . . . . . . . . . . . . . . . . . . . . . 60

3.3 Data-driven ALISP Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Parameterizat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Temporal Decomposit ion . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Vector Quant izat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.4 Hidden Markov Modeling . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 ALISP-based Speech Processing . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Very Low Bite Rate Speech Coding . . . . . . . . . . . . . . . . . . . 67
3.4.2 Speaker Verificat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Voice Forgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.4 Language Ident ificat ion . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Audio Indexing Based on Fingerprint ing: State of the Art . . . . . . . . . . 70
3.5.1 Propert ies of Audio Fingerprint ing . . . . . . . . . . . . . . . . . . . 71
3.5.2 Audio Degradat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.3 Literature Review of Audio Fingerprint ing Systems . . . . . . . . . . 73

3.5.3.1 Spectral Representat ions Techniques . . . . . . . . . . . . . 74
3.5.3.2 Computer Vision Techniques . . . . . . . . . . . . . . . . . 76
3.5.3.3 Machine Learning Techniques . . . . . . . . . . . . . . . . . 77
3.5.3.4 Comparing System Performances . . . . . . . . . . . . . . . 78

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 D at abases 81
4.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Radio Broadcast Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 ETAPE Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 MOBIO Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Laughter Detect ion Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Cont r ibut ions t o D at a-dr iven A udio I ndexing 88
5.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Improving the ALISP Segmenter . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Uniform Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Spectral Stability Segmentat ion . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Phonet ic Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.4 Comparing Segmentat ion Techniques . . . . . . . . . . . . . . . . . . 96

5.3 Approximate Matching Process of ALISP Sequences . . . . . . . . . . . . . 97
5.3.1 ALISP Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CON T EN T S 10

5.3.2 Similarity Measure and Searching Method . . . . . . . . . . . . . . . 98
5.3.2.1 Full Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2.2 BLAST Algorithm . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.2.3 Approximate Matching Process of ALISP Sequences . . . . 101

5.4 Generic ALISP-based Audio Indexing System . . . . . . . . . . . . . . . . . 102
5.4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 Audio Indexing: Fields of Interest . . . . . . . . . . . . . . . . . . . 105

5.4.2.1 Audio Ident ificat ion . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2.2 Audio Mot if Discovery . . . . . . . . . . . . . . . . . . . . 105
5.4.2.3 Speaker Diarizat ion . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2.4 Nonlinguist ic Vocalizat ions Detect ion . . . . . . . . . . . . 107

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 A udio I dent ifi cat ion 110
6.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 ALISP-based Audio Fingerprint ing . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Number of Gaussian Components . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 Threshold Set t ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Number of ALISP Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5.1 Threshold Set t ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Method of the Init ial Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.1 Threshold Set t ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Comparat ive Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 A udio M ot i f D iscover y 129
7.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 Problem Formulat ion . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2.2 Literature Review of Audio Mot if Discovery . . . . . . . . . . . . . . 131

7.3 ALISP-based Audio Mot if Discovery System . . . . . . . . . . . . . . . . . . 134
7.4 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.2 Threshold Set t ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.4 Runt ime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



CON T EN T S 11

8 Speaker D iar izat ion 141
8.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 State of the Art of Speaker Diarizat ion . . . . . . . . . . . . . . . . . . . . . 143

8.2.1 Acoust ic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.2 Voice Act ivity Detect ion . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2.3 Speaker Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2.3.1 Generalized Likelihood Rat io . . . . . . . . . . . . . . . . . 147
8.2.3.2 Bayesian Informat ion Criterion . . . . . . . . . . . . . . . . 148
8.2.3.3 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . 149

8.2.4 Speaker Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.4.1 BIC-based Clustering Approach . . . . . . . . . . . . . . . 151
8.2.4.2 Hidden Markov Model Approach . . . . . . . . . . . . . . . 152
8.2.4.3 Cross Likelihood Rat io Approach . . . . . . . . . . . . . . 153

8.2.5 Recent Research Direct ions . . . . . . . . . . . . . . . . . . . . . . . 153
8.2.5.1 Prosodic Informat ion Exploitat ion . . . . . . . . . . . . . . 153
8.2.5.2 Overlapping Speech Detect ion . . . . . . . . . . . . . . . . 154

8.3 The ALISP-based Speaker Diarizat ion System . . . . . . . . . . . . . . . . . 155
8.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3.2 ALISP-based Audio Sequencing and Ident ificat ion . . . . . . . . . . 156
8.3.3 Speech Act ivity Detect ion . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3.4 GLR-BIC Segmentat ion . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3.5 BIC Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3.6 Viterbi Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3.7 NCLR Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4.1 ETAPE Evaluat ion Campaign . . . . . . . . . . . . . . . . . . . . . 162

8.4.1.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.4.1.2 Evaluat ion Measure . . . . . . . . . . . . . . . . . . . . . . 163
8.4.1.3 Threshold Set t ing . . . . . . . . . . . . . . . . . . . . . . . 163
8.4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.4.2 Speech Time Measure of Polit icians . . . . . . . . . . . . . . . . . . 167
8.4.2.1 MOBIO Evaluat ion Campaign . . . . . . . . . . . . . . . . 168
8.4.2.2 YACAST Evaluat ion . . . . . . . . . . . . . . . . . . . . . 169

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9 N onl inguist ic Vocal izat ions D et ect ion 174
9.1 Int roduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.2.1 Feature Extract ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.2.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . 177

9.3 ALISP-based Laughter Detect ion System . . . . . . . . . . . . . . . . . . . 177
9.3.1 ALISP Segmentat ion and Model Adaptat ion . . . . . . . . . . . . . 178
9.3.2 Viterbi Decoding and Symbolic-level Smoothing . . . . . . . . . . . 179

9.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



CON T EN T S 12

9.4.1 Experimental Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4.2 Laughter Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10 Conclusions, D iscussions and Per spect ives 185
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.3 Perspect ives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Per sonal B ibl iography 190

B ibl iogr aphy 193



13

List of F igures

1.1 Spectrogramme d’un extrait audio et les segmentat ions obtenues avec chaque
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Segmentat ion par stabilit é spectrale (vert ), segmentat ion uniforme (bleu),
segmentat ion phonét ique (gris). . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Appariement approximat if d’unerequêteALISP en ut ilisant un Lookup Table
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C hapt er 1

R ésum é Long

1.1 Int roduct ion

La quant it é de données audio disponibles, telles que les enregist rements radio, la

musique, les podcasts et les publicit és est en augmentat ion constance. Par cont re, il n’y

a pas beaucoup d’out ils de classificat ion et d’indexat ion, qui permet tent aux ut ilisateurs

de naviguer et ret rouver des documents audio. L’indexat ion audio par le contenu est un

domaine moins mature que l’indexat ion d’images et de vidéos. Les applicat ions existantes

telles que la classificat ion des morceaux de musique, l’ident ificat ion des publicit és et la seg-

mentat ion et regroupement en locuteurs sont baśees sur diff érents syst èmes mis au point

pour analyser et résumer automat iquement le contenu audio à des fins d’indexat ion et iden-

t ificat ion. Dans ces syst èmes, les données audio sont t rait ées diff éremment en fonct ion

des applicat ions. Par exemple, les syst èmes d’ident ificat ion des morceaux de musique sont

généralement baśes sur cequ’on appelle les empreintes audio en ut ilisant l’énergieou les pics

dans les spect rogrammes comme les syst èmes propośes par SHAZAM et PHILIPS. Alors

que les syst èmes de segmentat ion et regroupement en locuteurs ut ilisent généralement les

coeffi cients cepst raux et les techniques d’apprent issage comme les mélanges de Gaussiennes

ou lesmodèlesdeMarkov cachés. La diversit édeces techniquesd’indexat ion rend inadéquat

le t raitement simultané de flux audio où diff érents types de contenu audio (musique, pub-

licit é, j ingles, parole, rire, etc.) coexistent . Dans cet te thèse, nous présentons nos t ravaux
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sur l’extension de l’approche ALISP (Automat ic Speech Processing Language Indepen-

dent) [28] (Chollet et al., 1999), développé init ialement pour la parole, comme une méthode

génériquepour l’indexat ion et l’ident ificat ion audio. ALISP est uneapprochenon superviśee

qui a ét é init ialement développée pour le codage de la parole à t rès bas débit [26] (Cernoky,

1998) [96] (Padellini et al., 2005), puis exploit ée avec succ̀es pour d’autres t âches telles que

la vérificat ion du locuteur [40] (ElHannani et al., 2009) [39] (ElHannani, 2007) [102], la

conversion de la voix [99] (Perrot et al., 2005) et l’ident ificat ion de la langue (Petrovska-

Delacrétaz et al., 2000). La part icularit é des out ils ALISP est qu’aucune transcript ion

textuelle ou annotat ion manuelle est nécessaire lors de l’étape d’apprent issage. Le principe

de cet out il est de transformer les données audio en une śequence de symboles. Ces sym-

boles peuvent êt re ut iliśes à des fins d’indexat ion. La principale contribut ion de cet te thèse

est l’exploitat ion de l’approche ALISP comme une méthode générique pour l’indexat ion et

ident ificat ion audio. De ce fait , un syst ème d’indexat ion audio baśe sur l’approche ALISP

est propośe. I l est compośe des modules suivants:

• Acquisit ion et modélisat ion des unit és ALISP d’une manière non superviśee

• Segmentat ion (aussi appelée t ranscript ion) ALISP, qui t ransforme les données au-

dio en une śequence de symboles (en ut ilisant les modèles de Markov cachés ALISP

préćedemment acquis).

• Comparaison et décision qui ut ilisent les algorithmes de recherche approximat ive des

śequences de symboles, inspirées de la technique BLAST (Basic Local Alignment

Search) [3] (Altschul et al., 1990) et la distance de Levenshtein [76] (Levenshtein ,

1966).

Les principales contribut ions de cet te thèse peuvent êt re diviśees en trois part ies:

1. Améliorer les out ils ALISP en int roduisant une méthode simple pour segmenter les

données d’apprent issage en segments stables. Cet te technique, appelée segmentat ion

par stabilit é spectrale, remplace la décomposit ion temporelle ut iliśee auparavant dans

lesout ilsALISP. Leprincipal avantagedecet teméthodeest l’acćelérat ion du processus

d’apprent issage non superviśe des modèles HMM ALISP.
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2. Proposer une techniqueeffi cacepour la rechercheet comparaison des śequencesALISP

ut ilisant l’algorithme BLAST et la distance de Levenshtein. Cet te méthode acćelère

le processus de la recherche approximat ive des śequences de symboles sans affecter les

performances du syst ème d’indexat ion audio

3. Proposer un syst ème ǵenérique pour l’indexat ion audio pour les flux radiophoniques

baśe sur la segmentat ion ALISP. Ce syst ème est appliqué dans diff érents domaines

d’indexat ion audio pour couvrir la majorit é des documents audio qui pourraient êt re

présents dans un flux radio:

- ident ifi cat ion audio: détect ion d’occurrences d’un contenu audio spécifique

(musique, publicit é) dans un flux radio;

- découver t e des mot i fs audio r écur rent s: détect ion des répét it ions des doc-

uments audio dans un flux radio (musique, publicit é);

- segment at ion et r egroupement en locut eur s: segmentat ion d’un flux audio

en régions homogènes en fonct ion de l’ident it é des locuteurs afin de répondre à

la quest ion : ” Qui parle quand?” ;

- dét ect ion de vocal isat ion non l inguist iques: détect ion de sons non linguis-

t iques tels que les rires, soupirs, toux ou hésitat ions;

Les évaluat ions du syst ème propośe pour les diff érentes applicat ions sont effectuées

avec la base de données YACAST (une base de données acquis dans le cadre du projet Sur-

fOnHertz) et avec d’autres corpus disponibles publiquement. Les résultats expérimentaux

montrent d’excellentes performances pour l’ident ificat ion audio (pour la publicit é et la

musique), pour la découverte de mot ifs récurrents (pour la publicit é et la musique), pour la

segmentat ion et regroupement en locuteurs et pour la détect ion derire. En outre, lesyst ème

propośe baśe sur ALISP, a obtenu les meilleurs résultats dans la campagne d’évaluat ion

ETAPE 2011 (évaluat ions en Traitement Automat ique de la Parole) pour la t âche de seg-

mentat ion et regroupement en locuteurs.

Ce résumé est st ructuré de la façon suivante : la sect ion 2 présente un état de l’art

des principales méthodes de l’indexat ion audio par ext ract ion d’empreintes. La sect ion 3
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décrit les principales contribut ions de nos t ravaux de thèse. Les évaluat ions du syst ème

propośe pour les t âches d’ident ificat ion audio, découverte des mot ifs audio, segmentat ion

et regroupement en locuteur et la détect ion du rire sont décrites dans la sect ion 4.

1.2 É t at de l’A r t des Syst èm es d ’Indexat ion Aud io par Ex-

t ract ion d ’Em preint e

L’indexat ion audio par ext ract ion d’empreinte est compośee de deux modules : un

module d’ext ract ion d’empreinte et un module de comparaison. La première étape dans un

syst ème d’indexat ion audio par ext ract ion d’empreinte (appelé aussi l’ident ificat ion audio

par ext ract ion d’empreinte) est la créat ion d’une base d’empreintes à part ir d’une base de

références. La base de références cont ient les documents audio (musique, publicit és, j ingles)

que le syst ème pourrait ident ifier. Dans la deuxième étape un extrait audio inconnu est

ident ifié en comparant son empreinte avec celles de la base de références. L’ident ificat ion

audio par ext ract ion d’empreinte a ét é t rès étudiée durant les dix dernières années. Ainsi,

l’état de l’art est relat ivement fourni, avec des proposit ions d’approches très diverses pour

aborder le problème. Le principal défi de ces syst èmes est de calculer une empreinte audio

robuste aux diff érents types de distorsions et de proposer une méthode rapide de compara-

ison qui peut sat isfaire les contraintes temps-réel quelle que soit la taille de la base de

références.

Plusieursméthodesd’indexat ion audio par ext ract ion d’empreinteont ét épropośees[25] (Cano

et al., 2005). Nous avons choisi de présenter ces syst èmes selon l’approche ut iliśee pour

l’ext ract ion d’empreinte. A travers les art icles publiés sur le sujet , t rois grandes familles se

dégagent en ce qui concerne la technique d’ext ract ion d’empreinte.

La première famille opère directement sur la repr ésent at ion spect rale du signal

pour ext r air e les empreint es. Ce type d’empreinte est généralement facile à ext raire et

ne requiert pas des ressources de calcul importantes. La deuxième famille fait appel aux

techniques ut iliśees dans le domaine de la vision par or dinat eur , l’idée principale étant

de t raiter le spectrogramme de chaque document audio comme une image 2-D et de trans-
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former l’ident ificat ion audio en un problème de t raitement d’images. La dernière famille

inclut les approches baśees sur la quant ifi cat ion vect or iel le et l ’appr ent issage au-

t omat ique, ces syst èmesproposent un modèled’empreintequi imite les techniques ut iliśees

dans le t raitement de la parole.

1.2.1 Techn iques Basées sur la R epr ésent at ion Sp ect rale

Cestechniquessont lespluscouramment ut iliśeesvuela simplicit éd’ext ract ion d’empreinte.

Plusieurs syst èmes ont ut iliśe directement la représentat ion spectrale du signal pour con-

st ruire l’empreinte.

Haitsma et al. [57] ont développé un syst ème d’ident ificat ion audio pour la reconnais-

sance des morceaux de musique. I ls ont ut iliśe une échelle Bark pour réduire le nombre de

bandes fréquent ielles par l’intermédiaire de 33 bandes logarithmiques couvrant l’intervalle

de 300Hz à 2 kHz. Le signe de la diff érence d’énergie des bandes adjacentes est calculé et

stocké sous forme binaire. Le résultat de ce processus de quant ificat ion est une empreinte de

32 bits par t rame. La méthode de recherche adopt ée par PHILIPS consiste à indexer chaque

t rame de référence dans une table de correspondances (lookup table). Si le nombre de sous-

bandesut iliśeesest Nb, alorschaque tramesera représent éepar un vecteur de(Nb− 1) bitset

on ret rouvera dans le ” lookup table” 2N b entrées. Chaque trame binaire de l’empreinte sert

de clé dans le lookup table, toutes les empreintes de références posśedant une même trame

binaire qu’une empreinte à ident ifier sont considérées comme candidates à l’ident ificat ion.

Haitsma suppose donc qu’il existe au moins une trame binaire de l’empreinte à ident ifier

non distordue par rapport à la référence qui lui correspond. Cet te technique a donné lieu

à des études diverses. Une améliorat ion de la méthode d’ext ract ion d’empreinte de façon à

rendre plus robuste le syst ème face aux distorsions comme l’ét irement temporel (pitching)

a ét é propośee [58] (Haitsma and Kalker, 2003). Dans [78] (Liu et al., 2009) ont modifié

l’algorithme pour contourner l’hypothèse de présence d’une trame binaire non distordue.

Un autre syst ème commercial (SHAZAM) qui se base sur la représentat ion spectrale

du syst ème a ét é propośe par Wang [133] pour l’ident ificat ion d’un ext rait audio inconnu

capturé par un t éléphone mobile. Cet te technique binarise le spectrogramme en ne gardant
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que des maxima locaux. Il s’agit alors d’ext raire des pics de ce spectrogramme en prenant

soin de choisir des points d’énergie maximale localement et en s’assurant une densit é de pics

homogène au sein du spectrogramme. L’auteur propose alors d’indexer les empreintes des

référencesen ut ilisant la localisat ion despicscommeindex. Cependant , un index s’appuyant

sur la localisat ion de chaque point isolément se révèle peu śelect if. Par conśequent , Wang

propose d’ut iliser des paires de pics en tant que index, chaque pic est combiné avec ses plus

proches voisins. Cet te technique est ut iliśee pour ident ifier un morceau de musique dans

un milieu bruit é. Cependant pour les objets de courte durée (une publicit é ou un jingle),

elle s’avère ineffi cace vue le nombre insuffi sant de pics extraits. De plus Fenet et al. [44]

ont montré que ce syst ème n’est pas robuste à l’ét irement temporel et ont propośe une

version diff érente de cet algorithme en se basant sur la t ransformée à Q constant (Constant

Q Transform-CQT).

1.2.2 Techn iques Basées sur la V ision par Ord inat eur

I l y a eu plusieurs expériences de l’ut ilisat ion des techniques de vision par ordinateur

pour l’ident ificat ion audio par ext ract ion d’empreinte. L’idée principale est de t raiter le

spectrogramme de chaque document audio comme une image 2-D.

Baluja et al. [12] ont exploit é l’applicabilit é des ondelet tes dans la recherche des

images dans des larges bases de données pour développer un syst ème d’ident ificat ion audio

par ext ract ion d’empreinte. Cet te technique consiste à ǵenérer un spectrogramme à part ir

d’un signal audio avec les mêmes proćedures que [57] (Haitsma and Kalker, 2002), ce qui

donne32 bandesd’énergie logarithmiqueentre318 Hz et 2 kHz pour chaque trame. Ensuite,

une image spectrale est ext raite à part ir de la combinaison des bandes énergét iques sur un

certain nombre de trames et la décomposit ion en ondelet tes, ut ilisant les ondelet tes de

Haar, est appliquée sur les images obtenues. Les signes du premiers 200 amplitudes des

ondelet tes sont exploit é pour construire une empreinte binaire. Enfin, une table de hachage

est ut iliśee pour t rouver les meilleures empreintes et la distance de Hamming est calculée

entre les empreintes candidates de morceaux de musique et les empreintes de la requête.

Ke et al. [68] ont propośe un syst ème d’ident ificat ion de morceaux de musique baśe
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sur l’algorithme de Viola-Jones [132] (Viola and Jones, 2001). Un algorithme de ’boost ing’

est ut iliśe sur un ensemble de descripteurs de Viola-Jones pour apprendre des descrip-

teurs locaux et discriminants. Durant la phase de recherche, une liste des candidats est

déterminée à part ir des descripteurs appris auparavant . Pour chaque candidat , l’algorithme

RANSAC [45] (Fishler and Bolles, 1987) est appliquépour aligner lecandidat avec la requête

et une mesure de vraisemblance est calculée ent re les deux morceaux.

1.2.3 Techn iques Basées sur la M odélisat ion St at ist ique

Cet te dernière famille regroupe les techniques ut iliśees habituellement pour le t raite-

ment de la parole, comme la quant ificat ion vectorielle ou les modèles de Markov cachés.

Cremer et al. [31] ont propośe une approche essent iellement baśe sur la quant ificat ion

vectorielle. La créat ion de l’empreinte se fait à part ir des descripteurs ut iliśes dans la

norme MPEG-7. Les descripteurs ut iliśes sont l’intensit é, la mesure de plat itude spectrale

et le facteur de crête spectral. La méthodologie de l’ident ificat ion consiste à ext raire ces

descripteurs à part ir des références. Un algorithme de quant ificat ion vectorielle produit

ensuite un ensemble de centroides (appelés vecteurs de codage) approximant les vecteurs

des descripteurs de la référence. Lorsque le syst ème ident ifie un ext rait inconnu, il ext rait

les vecteurs descripteurs du signal, puis pour chaque référence, projet te ces vecteurs sur

les vecteurs de codage de la référence. La référence posśedant les vecteurs de codage qui

produisent l’erreur de project ion minimale est considérée comme la référence à ident ifier.

Cano et al. [24] ont propośe un syst ème baśe sur la modélisat ion de Markov caché.

32 modèles HMM appelés g̀enes audio sont ut iliśees pour segmenter le signal audio en ut il-

isant l’algorithme de Viterbi. L’empreinte audio se compose de śequences d’ét iquet tes (les

gènes) et d’informat ion temporelle (temps du début et de la fin de chaque gène). Durant

le processus d’appariement , des śequences des gènes sont ext raites à part ir d’un flux ra-

dio cont inu et comparées avec les empreintes des références. Afin de réduire la durée du

t raitement , l’algorithme de recherche de l’ADN appelé FASTA [98] (Pearson and Lipman,

1988) a ét é ut iliśe. Ce syst ème a ét é évalué sur la t âche de l’ident ificat ion des morceaux de

musique dans un flux radio.
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1.2.4 E t ude C om parat ive

Comme l’on a ment ionné auparavant , les syst èmes d’indexat ion audio par ext ract ion

d’empreintesont pour but decalculer uneempreinte audio robustecont rediff érents types de

distorsions et de proposer une méthode de comparaison effi cace et rapide qui peut sat isfaire

les contraintes temps-réel. Nous avons comparé les syst èmes présent és dans les sect ions

préćedentes en termes des crit ères suivants :

• Fiabilit é : le nombre d’ident ificat ions correctes, les fausses alarmes et les fausses

ident ificat ions.

• Robustesse: La capacit é du syst ème à ident ifier correctement les documents audio en

présence de diff érents types de distorsion (bruit , filt rage, pitching, etc.).

• Granularit é: La durée minimale de l’empreinte requête nécessaire pour ident ifier le

document audio. Par exemple, la durée moyenne des publicit és varie de 5 à 30 secon-

des, de ce fait il est nécessaire d’avoir une granularit é inférieure à 5 secondes.

• Complexit é : La complexit é du syst ème détermine le coût et le temps de calcul

nécessaire pour l’ident ificat ion.

• Passage à l’échelle: les performances du syst ème en présence de plus grande base

de références. Ce crit ère est en relat ion directe avec la complexit é et la fiabilit é du

syst ème.

Le tableau 1.1 illust re lesperformancesdessyst èmesd’indexat ion audio par ext ract ion

d’empreintes selon les crit ères décrit en dessus.

D’aut repart , diff érentsprotocolesexpérimentaux sont ut iliśespour évaluer lessyst èmes

d’indexat ion audio par ext ract ion d’empreintes. Cesprotocolessont résumésdans letableau 1.2.

Les deux mesures de performance ut iliśees pour évaluer ces syst èmes sont :

- Pr écision: le nombre de documents audio correctement détect ées / nombre total de

documents audio.
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Syst èmes Fiabilit é Robustesse Granularit é Complexit é Passage à l’échelle
Haitsma et al. [57] + NA NA + -
Wang et al. [133] - - - + +

Pinquier et al. [104] + NA + + -
Baluja et al. [12] + + NA - NA

KE et al. [68] - - NA - NA
Cremer et al. [31] + NA NA - -
Cano et al. [24] + + NA - NA

Table 1.1: Performances des syst ème d’indexat ion audio par ext ract ion d’empreintes en
termes de fiabilit é, robustesse, granularit é, complexit é et passage à l’échelle.

Syst èmes Références Test Précision Rappel
Haitsma et al. [57] 4 chansons 4 chansons 100% 100%
Wang et al. [133] 10,000 chansons 250 chansons NA 80%

Pinquier et al. [104] 32 jingles 10h radiodiffusion 100% 98,5%
Baluja et al. [12] 10,000 chansons 1,000 chansons NA 97,9%

KE et al. [68] 1,862 chansons 220 chansons 93% 80%
Cremer et al. [31] 15,000 chansons 15,000 chansons NA 98%
Cano et al. [24] 50,000 chansons 12h radiodiffusion 100% 100%

Table 1.2: Comparaison des performances des syst èmes décrits dans la sect ion 3.5.3, les
bases de référence et l’ensemble de test , précision et rappel.

- R appel: le nombre de documents audio correctement détect ées / Le nombre de doc-

uments audio qui doivent êt re détect ées.

La plupart des syst èmes d’indexat ion audio décrits dans les tableaux 1.1 et 1.2 sont

évalués sur un type spécifique de contenu audio (musique ou jingle). De plus ces syst èmes

ut ilisent des protocoles d’évaluat ion privés rendant la comparaison entre eux impossible.

Danscet tesect ion, un aperçu desméthodesd’indexat ion audio par ext ract ion d’empreintes

est présent é. Ces syst èmes devraient répondre à certains crit ères comme la granularit é et la

précision. En outre, l’empreintedoit êt re robuste à diff érentes dégradat ions que le signal au-

dio pourrait subir. Nous avons aussi montré que ces syst èmes ut ilisent diff érentes techniques

pour ext raire l’empreinte et proposent plusieurs méthodes de recherche des empreintes dans

la base de références.

Dans cet te thèse nous proposons un syst ème d’indexat ion audio générique capable

d’ident ifier simultanément les morceaux de musique, publicit és, tours de parole et les
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rires. Ce syst ème sera évalué sur des bases privées et publiques, lors de la campagne

d’évaluat ion QUAERO 2010 [108] (Ramona et al., 2012) et la campagne dévaluat ion

ETAPE 2011 [55] (Gravier el al., 2012). Dans la sect ion suivante, les pricipales cont ibut ions

de nos t ravaux sont présent ées. Elles concernent le module d’acquisit ion et modélisat ion

des unit és ALISP, le module de la recherche et comparaison des śequences ALISP et le

développement du syst ème générique d’indexat ion audio.

1.3 C ont r ibu t ions à l’Indexat ion Aud io N on Sup ervisée

Les principales contribut ions de cet te thèse peuvent êt re diviśees en trois part ies:

1. Améliorer les out ils ALISP en int roduisant une méthode simple pour segmenter les

données d’apprent issage en segments stables. Cet te technique, appelée segmentat ion

par stabilit é spectrale, remplace la décomposit ion temporelle ut iliśee auparavant dans

lesout ilsALISP. Leprincipal avantagedecet teméthodeest l’acćelérat ion du processus

d’apprent issage non superviśe des modèles HMM ALISP.

2. Proposer une technique effi cace pour la comparaison et la recherche des śequences

ALISP ut ilisant l’algorithme BLAST et la distance de Levenshtein. Cet te méthode

acćelère le processus de la recherche approximat ive des śequences de symboles sans

affecter les performances du syst ème d’indexat ion audio.

3. Proposer un syst ème générique pour l’indexat ion audio pour les flux radiophonique

baśe sur la segmentat ion ALISP. Ce syst ème est appliqué dans diff érents domaines

d’indexat ion audio pour couvrir la majorit é des documents audio qui pourraient êt re

présents dans un flux radio.

- ident ifi cat ion audio: détect ion d’occurrences d’un contenu audio spécifique

(musique, publicit é) dans un flux radio;

- découver t e des mot i fs audio: détect ion des répét it ions des documents audio

dans un flux radio (musique, publicit é);
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- segment at ion et r egroupement en locut eur s: segmentat ion d’un flux audio

en régions homogènes en fonct ion de l’ident it é des locuteurs afin de répondre à

la quest ion : ” Qui parle quand” ;

- dét ect ion de vocal isat ion non l inguist iques: détect ion de sons non linguis-

t iques tels que les rires, soupirs, toux ou hésitat ion;

Comme l’on a souligné préćedemment , les out ils ALISP ont ét é déj à ut iliśes pour le

codage de la parole à t rès bas débit , la reconnaissance du locuteur et de la langue et la

conversion de voix.

L’object if decet te thèseest d’exploiter les informat ionsdehaut niveau fourniespar les

unit és ALISP afin de développer un syst ème d’indexat ion audio générique et unsuperviśee.

Notre méthode consiste à segmenter les données audio en ut ilisant les modèles HMM

ALISP. La part icularit é des out ils ALISP est qu’aucunes transcript ions textuelles ne sont

nécessaires lorsde l’étaped’apprent issage, et seules lesdonnéesaudio brutessont suffi santes.

De cet te manière, toutes les données audio sont t ransformées en une śequence de symboles,

appelés symboles ALISP. Ces symboles peuvent êt re ut iliśes à des fins d’indexat ion.

1.3.1 Am éliorat ion des Out ils ALISP

Une part ie de nos travaux est liée à adapter et améliorer les out ils ALISP à l’égard de

la t âche et les bases de données. Les améliorat ions que nous avons apport ées concernent la

segmentat ion init iale faite par la décomposit ion temporelle. La décomposit ion temporelle

est ut iliśee pour obtenir une segmentat ion init iale et quasi-stat ionnaire des données audio.

Ces segments sont regroupés en ut ilisant la quant ificat ion vectorielle. Ensuite, ces segments

ainsi que leurs ét iquet tes sont ut iliśes comme transcript ion init iale pour la modélisat ion de

Markov caché.

Dans cet te sect ion, d’autres méthodes de segmentat ion sont explorées afin d’acćelérer

le processus d’apprent issage des modèles ALISP et d’étudier l’influence de la segmentat ion

init iale sur le syst ème d’indexat ion audio. Ces méthodes sont les suivantes:

• Segmentat ion uniforme : c’est l’approche la plus simple pour segmenter les données

audio. Elle consiste à segmenter les données audio en trame de taille égale.
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• Segmentat ion par stabilit é spectrale : Le but de cet te méthode est de trouver les

régions stables du signal audio. Ces régions représentent les segments spectralement

stables des données audio. Ce processus est effectué en ut ilisant la courbe de stabilit é

spect rale obtenue en calculant la distance euclidienne entre deux vecteurs MFCC

successives comme suit :

d =

vu
u
t

nX

i = 1

(Ci�j − Ci�j + 1)2 (1.1)

Où Ci�j et Ci�j + 1 sont deux vecteurs MFCC successifs et n est leur taille. Les maxima

locaux de cet te courbe représentent les front ières des segments alors que les minima

représentent les t rames ” stables” du signal audio.

• Segmentat ion phonét ique : Cet te méthode consiste à ut iliser des modèles HMM

phonét iques pour obtenir la segmentat ion init iale des données audio. Cet te segmen-

tat ion est ut iliśee pour déterminer si les modèles phonét iques pourraient êt re ut iliśes

à des fins d’indexat ion audio. Les modèles HMM phonét iques sont appris avec la base

de données ESTER (base de données française de radiodiffusion) [49] (Galliano et

al., 2009). Comme pour les modèles ALISP, chaque phone (41 phones) est modéliśe

par un HMM gauche-droite ayant t rois états émet teurs sans sauts. La segmentat ion

phonét ique remplace la décomposit ion temporelle et la quant ificat ion vectorielle. En

fait , la segmentat ion phonét ique est ut iliśee en tant que transcript ion init iale pour la

modélisat ion de Markov caché.

Un ensemble de modèles ALISP est appris pour chaque technique de segmentat ion

init iale en ut ilisant une base de données d’apprent issage de 288 heures issues 12 radios

françaises. La figure 1.1 illust re le spectrogramme d’un extrait audio et les segmentat ions

obtenues avec chaque ensemble de modèles ALISP.

Cet tefiguremontreque la segmentat ion par stabilit é spectrale fournit la segmentat ion

la plus proche à celle fournie par la décomposit ion temporelle. D’autre part , les segmenta-

t ions phonét iques et uniformes ne sont pas appropriées pour obtenir une segmentat ion en

région spectralement stables des données audio.
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Figure 1.1: Spect rogramme d’un extrait audio et les segmentat ions obtenues avec chaque
ensemble de modèles ALISP ut ilisant la décomposit ion temporelle (rouge), Segmentat ion
par stabilit é spectrale (vert ), segmentat ion uniforme(bleu), segmentat ion phonét ique (gris).

En plus, pour acquérir 32 modèles ALISP avec 288 heures de données audio, le temps

de traitement de compose comme suit :

• 10 jours pour la décomposit ion temporelle;

• 7 jours pour la segmentat ion par stabilit é spectrale;

• 6 jours pour la segmentat ion uniforme;

• 18 jours pour la segmentat ion phonét ique.

Ce résultat montre qu’en remplaçant la décomposit ion temporelle par la segmen-

tat ion par stabilit é spectrale, le temps de traitement est diminué de 3 jours. D’autre

part , l’influence des quatre méthodes de segmentat ion sur les performances du syst ème

d’indexat ion audio propośe sera étudiée dans les sect ions suivantes.
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1.3.2 Appar iem ent Approxim at if des Séquences ALISP

Le syst ème d’indexat ion audio propośe est compośe de t rois modules: acquisit ion et

modélisat ion desunit ésALISP, lemoduledesegmentat ion ALISP et lemodulesd’appariement

approximat if des śequences ALISP. Dans la sect ion préćedente, nous avons présent é nos con-

t ribut ionspour lepremier et ledeuxièmemodule. Danscet tesect ion, unenouvelle technique

de recherche approximat ive de śequence de symboles ALISP est propośee. Cet te technique

est baśee sur l’algorithme BLAST et la distance de Levenshtein.

Comme la principale exigence du syst ème d’indexat ion audio est la robustesse aux

plusieurs types de distorsions, les śequences de symboles ALISP ext raites du signal audio

n’est pas ent ièrement ident ique aux śequences qui existent dans la base de références. De ce

fait , deux techniquesd’appariement approximat if des śequencesALISP sont développées. La

première est baśee sur une recherche exhaust ive (ou recherche brute), tandis que la seconde

technique est inspirée de la méthode BLAST, ut iliśee généralement en bioinformat ique.

1.3.2.1 R echerche Exhaust ive

Dans cet te méthode les śequences ALISP extraites du flux radio cont inu sont com-

parées contre les t ranscript ions ALISP stockées dans la base de référence. Tout d’abord, les

t ranscript ions ALISP de chaquedocument audio de référence (ceux que nous allons chercher

dans leflux radio cont inu) sont calculées. Ensuite, leflux radio de test est t ransforméen une

śequence de symboles ALISP. Une fois les t ranscript ions ALISP de référence et de données

de test sont obtenues, nous pouvons passer à l’étape d’appariement . La mesure de simi-

larit é ut iliśee pour comparer les t ranscript ions ALISP est la distance de Levenshtein. La

distance de Levenshtein mesure la similarit é ent re deux châınes de caract ères. Elle est égale

au nombre minimal de caract ères qu’il faut supprimer, inśerer ou remplacer pour passer

d’une châıne à l’aut re.

Pour commencer, la méthodederechercheut iliśeedansnotresyst èmeest t rès élémentaire.

A chaque it érat ion on avance par une unit é ALISP dans le flux radio de test et la distance

de Levenshtein est calculée entre la t ranscript ion de référence et la t ranscript ion de l’ext rait

śelect ionné dans le flux radio. Au moment où la distance de Levenshtein est inférieure à un
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certain seuil, cela signifie que nous avons un chevauchement avec la référence. Puis nous

cont inuons la comparaison en avançant par un symbole ALISP jusqu’à ce que la distance

de Levenshtein augmente par rapport à sa valeur à l’it érat ion préćedente. Ce point indique

l’appariement opt imal, où toute la référence a ét é détect ée.

Afin d’acćelérer la phasederecherche, uneméthodealternat ived’appariement approx-

imat if des śequences ALISP, baśee sur BLAST et la distancede Levenshtein, est développée.

1.3.2.2 B LA ST A lgor i t hm

BLAST est un algorithmedecomparaison deśequencebiologique, telsqueles śequences

de nucléot ides ou d’acides aminés. Une recherche BLAST permet de chercher une śequence

requête dans une base de données, et ident ifier les śequences de châınes de caract ères ayant

une mesure de similarit é inférieur à un certain seuil.

Soit q la śequence de châıne requête, D la base de données et w une sous-châıne de

la śequence q. La première étape de l’algorithme consiste à construire un ” Lookup Table

(LUT)” qui cont ient toutes les sous-châınes dans D de longueur w. Chaque entrée de LUT

pointe à la posit ion de la sous-châıne dans la base D. Dans la deuxième étape, pour chaque

sous-châıne de la śequence requête q, une liste de sous-châınes est ǵenérée en ut ilisant le

LUT. Cet te liste cont ient toutes les sous-châınes de longueur w avec un score de similarit é

supérieur à un certain seuil T. La dernière étape de l’algorithme consiste à étendre chaque

sous-châıne candidate pour t rouver l’alignement opt imal avec la śequence requête q. Un

candidat est considéré comme l’alignement opt imal si son score de similarit é avec la requête

q est supérieur à un certain seuil S. Dans notre cas, la requête est une longue śequence

de symboles ALISP où des occurrences de publicit és et des morceaux de musique sont

recherchées. Afin de résoudre ce problème, l’algorithme BLAST a ét é adapt é comme suit .

1.3.2.3 M ét hode Proposée pour l ’A ppar iement A pproximat i f

Le processus d’appariement approximat if illust ré dans la figure 1.2 est propośe. Tout

d’abord, un LUT est cré́e par toutes les śequences ALISP de longueur w mais avec un

décalage de k unit és qui existent dans les t ranscript ions ALISP de la base de références.
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Cet te base cont ient tous les documents audio que le syst ème pourrait ident ifier, tels que des

morceaux de musique, des publicit és, des tours de parole et des mot ifs audio.

Chaque entrée de LUT pointe vers sa posit ion dans le document de référence. Comme

une śequence ALISP peut se produire dans plusieurs références, une śequence ALISP peut

avoir plusieurs pointeurs et posit ions.

 
c l 6 p y...e 9

|
|
|

S b k M 8...f 1
d n 5 H z...l 8

|
|
|
|

|
|
|

f 4 i 4 i...4 v

l v M l 2...w 3
s w k 3 2...r q

|
|

A b k u 6...T q 

Requête
ALISP LUT Element 1

d n 5 H z...1 8
A b k u 6...r q

|
|
|
|
|

j g P @ c...4 k 

Element N

A b k u

A b k u 6...T q

5...r s

j g O @ c...4 0

j g P @ c...4 k

Figure 1.2: Appariement approximat if d’une requête ALISP en ut ilisant un Lookup Table
(LUT) et une base de référence contenant N éléments.

Ensuite, la t ranscript ion ALISP de la requête est calculée, et pour chaque sous-

śequence w avec un décalage de k de cet te requête une liste de sous-śequences candidates

est ǵenérée à l’aide du LUT. A part ir de cet te liste de sous-śequences, une liste de références

et la posit ion dans laquelle les sous-śequences se produisent est cré́ee.

Comme la base de référence est formée par la t ranscript ion ALISP de chaque docu-

ment audio, l’étape finale du processus de comparaison est diff érente de celle de BLAST.

Elle consiste à une simple comparaison entre la t ranscript ion ALISP de la requête au-

dio et les références candidates avec la distance de Levenshtein. La référence candidate
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ayant la distance de Levenshtein la plus faible et inférieure à un certain seuil est relat ive à

l’appariement opt imale de la requête audio.

1.3.3 Syst èm e G én ér ique d ’Indexat ion Aud io à Base d ’ALISP

L’object if principal de nos travaux est d’indexer et ident ifier la majorit é des éléments

audio présents dans un flux radio. Ces éléments sont généralement : la musique, publicit é,

j ingle, la parole et la vocalisat ion non linguist ique (rire, toux, ...). À cet te fin, un syst ème

d’indexat ion audio ǵenérique et unsuperviśe baśe sur la méthode ALISP est développé

et appliqué pour l’ident ificat ion audio, la découverte de mot if audio, la segmentat ion et

regroupement en locuteurs et la détect ion de rire. Bien que ces syst èmes soient diff érents,

ils ut ilisent une architecture commune baśee sur la méthode ALISP. Comme le montre la

figure 1.3, cet te architecture est compośee de t rois modules: modélisat ion et acquisit ion des

modèles ALISP, segmentat ion ALISP et appariement approximat if des śequences ALISP.

Figure1.3: Architecture ǵenéraledu syst ème ǵenériqued’indexat ion audio à base d’ALISP.
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Dans cet te sect ion, les principales contribut ions de cet te thèse ont ét é présent ées.

D’abord, nous avons montré qu’en remplaçant la décomposit ion temporelle par la segmen-

tat ion par stabilit é spect rale le processus d’apprent issage des modèles ALISP pourrait êt re

acćeléré. Ensuite une méthode d’appariement approximat if des śequences ALISP inspirée

de BLAST et la distance de Levenshtein est présent ée. Enfin, un syst ème d’indexat ion

audio ǵenérique et unsuperviśe baśe sur ALISP est propośe. Dans la sect ion suivante, le

syst ème d’indexat ion propośe est évalué sur les t âches d’ident ificat ion audio, découverte de

mot ifs audio, segmentat ion et regroupement en locuteurs et détect ion de rire.

1.4 Evaluat ions et R ésu lt at s

Dans cet te sect ion, nous présentons les protocoles expérimentaux et les résultats

obtenus pour les diff érentes t âches auxquelles le syst ème d’indexat ion audio est appliqué.

1.4.1 Ident ificat ion Aud io

Le syst ème d’ident ificat ion audio baśee sur ALISP est ut iliśe pour ident ifier les pub-

licit és et les morceaux de musique dans les flux de radio. Pour évaluer ce syst ème, deux

protocoles expérimentaux sont propośes.

Le premier protocole, appelé protocole YACAST, correspond à 12 journées radios

fournies dans le cadre du projet ANR-SurfOnHertz et diviśees comme suit :

• D onnées développement : 5 jours radios sont ut iliśes pour étudier la stabilit é des

t ranscript ions ALISP et fixer le seuil de décision pour la distance de Levenshtein.

• D onnées de r éfér ence: elles cont iennent 2,172 publicit és et 7,000 morceaux de

musique menant à 9,172 éléments de référence.

• D onnées d’évaluat ion: 7 jours de t rois radios françaises. Ces jours sont diff érents

de ceux ut iliśes dans les données de développement et dans le corpus d’apprent issage

de modèles ALISP. Ces données cont iennent 1,456 publicit és et 4,880 chansons à

ident ifier.
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Syst ème R% P% Eléments non ident ifiés Fausses alarmes

Décomposit ion temporelle 92 100 416 0
Stabilit é spect rale 92 100 416 0

Segmentat ion uniforme 90 95 623 301
Segmentat ion phonét ique 85 87 942 806

Table 1.3: Rappel (P%), Précision (R%), nombre d’éléments non ident ifiés et nombre de
fausses alarmes pour les diff érentes techniques de segmentat ion avec le protocole YACAST.

Le deuxième protocole, appelé protocole QUAERO, a ét é ut iliśe lors de la campagne

d’évaluat ion QUAERO 2010 (ht tp :/ / www.quaero.org/ )). I l est décrit comme suit :

• Données de développement : les mêmes que celles ut iliśees dans le protocole YACAST

• Données de référence: elles cont iennent 7,309 extraits de morceaux de musique ayant

une durée d’une minute chacune. La posit ion de ces signatures dans les morceaux de

musique est inconnue.

• Données d’évaluat ion: 7 jours de la radio française RTL (durée totale de 168 heures).

Ces enregist rements cont iennent 551 morceaux de musique..

Afin d’évaluer lesperformancesdenotresyst èmed’ident ificat ion, lesmesuresderappel

(R%) et précision (P%) sont ut iliśees. Pour le protocole YACAST l’influence des méthodes

de segmentat ion init iale sur les performances du syst ème propośe est étudiée. Le tableau 1.3

illust re les taux de rappel et précision pour chaque méthode de segmentat ion init iale.

Le tableau 1.3 mont re que pour les modèles ALISP HMM ut ilisant la décomposit ion

temporelleet la stabilit é spectrale, lesyst èmen’était pasen mesured’ident ifier 416 éléments.

Ces éléments correspondent à 389 chansons et 27 publicit és.

Pour la musique, 372 morceaux sont liés à des chansons qui ont une version diff érente

de celle présente dans la base de référence. Par exemple, nous avons trouvé 302 morceaux

de musique ” live” dans le flux radio, tandis que les références associées sont interprét ées

en version studio. Pour les publicit és, les 27 éléments non ident ifiés sont diff érents de leurs

références. Ces résultats montrent que le syst ème propośe permet de trouver les erreurs des

annotat ions manuelles de la musique et des publicit és.
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Syst ème R% P% Eléments non ident ifiés Fausses alarmes

Notre syst ème 100 100 0 0
Fenet et al. [44] 97.4 100 12 0

Ramona et al. [109] 96.9 99 15 2
Yacast [108] 95.9 99 17 0

Table 1.4: Précision (P%), Rappel (R%), nombre d’éléments non ident ifiés et nombre de
fausses alarmes pour le protocole QUAERO 2010.

D’aut re part , le syst ème ut ilisant la segmentat ion uniforme a obtenu plus d’éléments

non ident ifiés et de fausses alarmes que ceux obtenus avec la décomposit ion temporelle et

la stabilit é spectrale. De plus, les modèles ALISP baśes sur la segmentat ion phonét ique ont

obtenu les pires résultats. Cependant , ce syst ème a correctement ident ifié tout les éléments

audio où la parole est la part ie dominante.

Le tableau 1.4 compare les performances de notre syst ème par rapport à ceux part ic-

ipant à la campagne dévaluat ion QUAERO 2010. Notons que dans le protocole QUAERO

la reconnaissance d’interprétat ions diff érentes du même t it re est considérée comme hors du

périmèt re de l’ident ificat ion audio.

Le tableau 1.4 montre que notre syst ème se comporte aussi bien que les syst èmes qui

ont part icipé à la campagne d’évaluat ion. De plus notre syst ème a montré sa robustesse

à l’ét irement temporel (plus connu sous le nom du ” pitching” ). En effet parmi les 459

morceaux de musique correctement ident ifiés, 209 morceaux ont ét é acćelérés (ou ralent is)

jusqu’à 7% par rapport à leurs versions de références.

Relat ivement au temps néćessaire pour les diff érents modules, l’acquisit ion et la

modélisat ion des unit és ALISP se fait hors ligne. D’autre part , le temps nécessaire pour La

t ranscript ion des flux audio avec les modèles ALISP est négligeable. Par conśequence, la

complexit é de calcul du syst ème est actuellement limit ée à la recherche de la plus proche

śequence ALISP avec la distance de Levenshtein. Avec la méthode de recherche exhaust ive,

le temps nécessaire pour t raiter une seconde du signal de test est de six secondes alors qu’en

ut ilisant la nouvelle méthode de recherche baśee sur BLAST le temps de traitement est

réduit à 0.49 secondes avec 33 modèles ALISP et pour une base de références qui cont ient

9,000 éléments avec une machine 3.00GHz Intel Core 2 Duo 4 Go de RAM.
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1.4.2 D écouver t e des M ot ifs Aud io R écur rent s

Pour l’ident ificat ion audio, le syst ème dispose d’une base de références qui cont ient

les documents audio (musique, publicit és) qu’il pourrait ident ifier. De ce fait un morceau

de musique ou une publicit é qui n’a pas une référence ne pourrait pas êt re ident ifié. C’est

le cas des nouvelles chansons et publicit és qui sont diffuśees pour la première fois par les

radios. Ce genre de document audio est ǵenéralement joué plusieurs fois par la radio. Par

conśequent , la détect ion des répét it ionsd’élémentsaudio (appeléaussi découvertedesmot ifs

audio) dans les flux radio devrait conduire à la découverte automat ique des publicit és et

des chansons sans avoir besoin d’une base de références.

La découverte des mot ifs audio est ǵenéralement baśee sur l’ext ract ion d’empreintes

audio. Danscet te thèse, lesout ilsALISP sont ut iliśespour convert ir leflux audio hét érogène

(contenant de la musique, j ingles, publicit és, parole, etc.) en une śequence de symboles.

Ces symboles représentent l’empreinte nécessaire pour détecter les éléments répét it ifs dans

les flux audio. Par conśequent , le problème consistant à découvrir les mot ifs audio est

t ransforméen un problèmederechercheapproximat ivedes śequencesALIPSqui se répètent .

Ce problème est t rait é à l’aide du syst ème ǵenérique d’indexat ion audio où les out ils ALISP

sont ut iliśes pour calculer l’empreinte audio et la méthode de recherche inspiré de BLAST

et la distance de Levenshtein est ut iliśee pour acćelérer la recherche mot ifs audio dans le

flux radio.

Afin d’évaluer notre syst ème pour cet te t âche, le protocole YACAST (ut iliśe aussi

pour la t âche d’ident ificat ion audio est ut iliśe). Dans ce protocole les données d’évaluat ion

se const ituent de 7 jours de trois radios françaises qui cont iennent 1,456 publicit és et 4,880

chansons. Dans ces données, il existe 1,315 répét it ions pour les publicit és et 3,081 pour la

musique. La moyenne des répét it ions est de 2 pour les publicit és et 4 pour la musique.

L’évaluat ion du syst ème propośe pour la t âche de la découverte de mot ifs audio a ét é

réaliśee avec les mesures de précision et rappel, expośees dans le tableau 1.5.

Pour la musique, le syst ème n’était pas capable de détecter 21 répét it ions. Ces

répét it ions sont liées à des morceaux de musique qui se chevauchent avec des tours de

parole, ce qui perturbe le processus de détect ion. D’autre part , l’absence de fausses alarmes
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Répét it ions R% P% répét it ions non détect ées Fausses alarmes
Songs 3081 99 100 21 0
Ads 1315 98 99 14 6

Table1.5: Nombrede répét it ions, précision (P%), rappel (R%), nombre des répéti tions non
détectées et nombre des fausses alarmes, obtenu pour le protocole d’évaluation YACAST.

confirme le résultat obtenu pour la t âche d’ident ificat ion audio.

Pour les publicit és, le syst ème n’était pas capable de détecter 14 répét it ions et a

obtenu six fausses alarmes. En fait , ces erreurs sont liées à la détect ion de deux répét it ions

de deux publicit és successives et une répét it ion de trois publicit és successives. Alors que

dans les t ranscript ions manuelles, ces publicit és ont ét é annot ées comme mot if dist inct ce

qui a cauśe les erreurs de détect ion et les fausses alarmes.

D’aut re part , en ut ilisant l’algorithme baśe sur BLAST, le syst ème a besoin de 10

heures pour t raiter les 24 heures de flux radio avec une machine 3.00GHz Intel Core 2 Duo

4 Go de RAM, tandis que pour la recherche exhaust ive le temps est est imé à 10 jours pour

t raiter un jour de flux radio.

1.4.3 Segm ent at ion et R egroup em ent en Locu t eu rs

Dans les t âches d’ident ificat ion audio et la découverte des mot ifs audio, le but était

d’indexer et ident ifier les morceaux de musique et les publicit és. Pour montrer la ǵenéricit é

de notre syst ème d’indexat ion audio, nous nous int éressons à un autre type de document

audio, la parole, à t ravers la t âche de segmentat ion et regroupement en locuteurs (appelé

aussi ” diarizat ion” ).

La segmentat ion et regroupement en locuteurs a pour object if de segmenter un signal

audio en régions homog̀enes selon l’ident it é des locuteurs afin de répondre à la quest ion

” Qui parle quand?” . Cet te tache est compośee généralement de deux étapes. Une étape

de segmentat ion qui consiste à t rouver les front ières des segments de parole homogènes en

détectant les points de changement acoust ique. Les segmentent t rouvés devraient contenir

la parole d’un seul locuteur ou un signal audio aut re que la parole (silence, bruit , j ingle,

musique, etc.). Dans l’étape de regroupement , les segments de parole ayant prononćes par
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le même locuteur sont ét iquet és avec le même ident ifiant .

Généralement , un syst ème de segmentat ion et regroupement en locuteurs est compośe

de quatre étapes :

• Paramét risat ion: lesignal audio est t ransforméen uneśequencedevecteurs, généralement

les MFCCs

• Détect ion d’act ivit é vocale: la segmentat ion du signal audio en segments de parole et

de non parole en ut ilisant les vecteurs calculés dans l’étape préćedente.

• Segmentat ion: segmentat ion des régions de parole en segments homog̀enes (du même

locuteur).

• Regroupement : classer les segments obtenus selon l’ident it é de locuteur.

Dans nos travaux, nous nous sommes int éresśes par la segmentat ion et regroupement

en locuteurs des émissions radio et TV. Généralement , ces émissions ont tendance à garder

la même structure avec les mêmes présentateurs, journalistes, effets sonores, j ingles, etc.

Cet te redondance est ut iliśee pour améliorer la performance du syst ème de diarizat ion.

L’idée principale de not re syst ème est de comparer l’émission à segment és avec la

même émissions diffuśee à une date ult érieure afin de trouver les éléments audio similaires,

comme les tours de parole prononće par le même locuteur, le silence, le bruit , les jingles,

la musique et les publicit és. Cet te opérat ion est effectuée par l’intermédiaire du syst ème

d’indexat ion audio baśesur ALISP. En effet , uneśequencedesymbolesALISP est ext raitede

chaque document audio stocké dans la base de références. Un extrait audio de test inconnu

est déterminé en comparant son empreinte ALISP avec celles de la base de références à

l’aide de not re algorithme de recherche approximat ive des symboles ALISP. Ensuite, les

segments ident ifiés sont ét iquet és selon leur nature (parole, j ingle, silence, etc.), déterminée

avec les éléments de la base de références. Tandis qu’une ét iquet te ” inconnu” est at t ribuée

aux segments non ident ifiés. Enfin le signal du test pré-ét iquet é est t rait é avec un détecteur

d’act ivit é vocale, un module de segmentat ion et un module de regroupement .

Ce syst ème a ét é évalué lors de la campagne d’évaluat ion ETAPE 2011 [55] (Gravier

el al., 2012). Cet te campagne d’évaluat ion vise à évaluer les diff érents syst èmes de traite-
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Genre Train Dev Test Sources

Journaux TV 7h30 1h35 1h35 BFM Story, Top Quest ions (LCP)
Débats TV 10h30 2h40 2h40 Pile et Face, Ca vous regarde

Entre les lignes (LCP)
Variét és TV - 1h05 1h05 La place du village (TV8)
Emissions Radio 7h50 3h00 3h00 Un temps de Pauchon, Service Public

Le masque et la plume, Comme on nous parle
Le fou du roi

Total 25h30 8h20 8h20 42h10

Table1.6: BasededonnéesETAPE : apprent issage(t rain), développement (dev), évaluat ion
(test ) [55].

ment de la parole à t ravers la reconnaissance automat ique de la parole, la segmentat ion et

regroupement en locuteurs, la détect ion de la parole mult iples et la détect ion des ent it és

nommés.

Comme le montre le tableau 1.6, les données ETAPE sont diviśe en trois sous-corpus.

Notez que le nombre d’heures sont rapport és en termes d’enregist rements, et non de tours

de parole. Plus préciśement 77 % des enregist rements cont iennent de la parole. La mesure

d’évaluat ion ut iliśee est le Diarizat ion Error Rate (DER).

Letableau 1.7 donnelesvaleursDER pour lesyst èmedebase(sans l’étaped’indexat ion

audio baśee sur ALISP) et le syst ème propośe. Ce tableau mont re que l’int roduct ion du

syst ème d’indexat ion audio baśee sur ALISP a amélioré les performances du syst ème de

diarizat ion pour toutes les émissions TV et radio. Cependant , ces améliorat ions ne sont

pas significat ives pour toutes les émissions. Pour l’émission ” LCP-TopQuest ions-213800”

l’améliorat ion relat ive de la DER est 84,62%, tandis que pour l’émission ” EST2BC-ENG-

FR-0910” elle est de 5,38 %. D’une façon plus générale, l’améliorat ion globale relat ive est

de 34.37% et l’améliorat ion absolue de 8.5%.

D’aut re part , not re syst ème a eu les meilleures performances lors de la campagne

d’évaluat ion ETAPE 2011, sachant que 7 inst itut ions ont part icipé à la t âche de diarizat ion

dans cet te campagne et que le plus grand DER était de 29.32%.
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Emission Baseline ALISP
BFMTV-BFMStory-175900 19.30 15.87 (-17.77%)
LCP-CaVousRegarde-235900 20.70 12.60 (-39.13%)
LCP-EntreLesLignes-192800-1 24.77 17.31 (-30.11%)
LCP-EntreLesLignes-192800-2 27.19 18.48 (-32.03%)
LCP-PilesEtFace-192800 28.42 19.76 (-30.04%)
LCP-TopQuest ions-000400 35.46 29.55 (-16.66%)
LCP-TopQuest ions-213800 15.87 2.44 (-84.62%)
TV8-LaPlaceDuVillage-201300 37.86 22.27 (-41.22%)
TV8-LaPlaceDuVillage-172800 35.82 20.40 (-43.04%)
EST2BC-FRE-FR-1000 14.55 13.75 (-5.49%)
EST2BC-FRE-FR-1750 39.41 22.93 (-41.81%)
EST2BC-FRE-FR-2152-1 41.83 27.34 (-34.64%)
EST2BC-FRE-FR-2152-2 29.91 23.93 (-19.99%)
EST2BC-FRE-FR-0910 8.73 8.26 (-5.38%)
EST2BC-FRE-FR-2004 21.13 15.48 (-26.73%)
ETA PE-2011 24.73 16.23 (-34.37%)

Table 1.7: DER du syst ème de base (baseline) et le syst ème propośe (ALISP) avec le
protocole d’évaluat ion ETAPE 2011.

1.4.4 D ét ect ion du R ire

Dans les sect ions préćedentes, le syst ème d’indexat ion audio baśee sur ALISP a ét é

appliqué sur l’ident ificat ion audio et la découverte de mot ifs audio pour la musique et les

publicit és, et la segmentat ion et regroupement en locuteurs pour la parole. Dans cet te

sect ion, une cat égorie diff érente de document audio, appelée vocalisat ion non linguist ique,

est étudiée.

Malgré tous leseffortsdéployésau coursdesdeux dernièresdécenniesdanslessyst èmes

de reconnaissance de la parole, la détect ion des vocalisat ions non linguist iques comme le

rire, le soupire, la respirat ion, l’hésitat ion semble encore une t âche diffi cile cite Weninger-

ICASSP 2011 (Weninger et al., 2011). Ces vocalisat ions sont plus fréquentes dans les

émissions radio et TV ou dans les conversat ions quot idiennes.

Dans nos travaux, nous nous int éressons à un type de vocalisat ion non linguist ique

bien précis qui est le rire. Le rire est un type de vocalisat ion non linguist ique complexe qui

communique des messages avec des significat ions diff érentes. En outre, le rire est un signal

t rès variable (variabilit é int ra-locuteur et iner-locuteur).
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Figure1.4: Segmentat ion ALISP d’un signal derireobtenu par lesmodèlesALISP originaux
(rouge) et par les ensembles de modèles spécifiques (bleu). Les symboles commençant par
’L’ sont spécifique au rire et les autres symboles sont spécifiques aux éléments audio autre
que le rire. Le symbole marqué par un cercle est une erreur de transcript ion qui pourrait
êt re corriǵee automat iquement avec un syst ème de lissage.

Vu cet tevariabilit é, une étape d’adaptat ion est ajout ée au syst èmed’indexat ion audio

baśee sur ALISP pour améliorer les performances du syst ème de détect ion du rire. Après

avoir appris les modèles HMM ALISP originaux sur le corpus d’apprent issageYACAST (qui

on ét é ut iliśes pour toutes les t âches préćedentes), deux ensembles spécifiques de modèles

HMM sont adapt és. Le premier est obtenu en adaptant les modèles ALISP originaux avec

un corpus du rire et le deuxième avec un corpus qui ne cont ient pas de rire.

Les deux ensembles de modèles obtenus sont ut iliśes pour t ransformer le signal audio

en une śequence de symboles en ut ilisant l’algorithme de Viterbi. La figure 1.4 illust re le

spectrogramme d’un signal du rire el les t ranscript ions obtenus avec les deux ensembles de

modèles spécifiques.

Après avoir t ranscrit le signal audio en symboles ALISP spécifique au rire et au non

rire, une étape de lissage est réaliśee pour corriger les éventuelles erreurs de transcript ions

comme le montre la figure 1.4.

Afin d’évaluer le syst ème propośe, les t rois bases de données publiques, SEMAINE-

DB [86] (McLeown et al., 2012), AVLaughterCycle [130] (Urbain et al., 2010) et Mahnob
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laughter database [100] (Petridis et al., 2013) ont ét é ut iliśees. De plus, nous avons comparé

notre syst ème par rapport à des syst èmes baśes sur des modélisat ions GMM et HMM.

Le tableau 1.8 montre la précision, le rappel et la F -mesure obtenus pour les diff érentes

méthodes.

[%] Précision Rappel F -measure
GMMs 70.8 78.6 74.5
HMMs en śerie 85.7 86.3 86.0
HMMs ergodique 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 93.9 94.1

Table 1.8: Taux de précision, rappel et F -mesure pour les méthodes: GMM, HMM en śerie,
HMM ergodique, le syst ème propośe sans lissage (ALISP-adapt), le syst ème propośe avec
une fenêt re de lissage de taille 3 (ALIPS-sm3) et le syst ème propośe avec une fenêt re de
lissage de taille 5 (ALIPS-sm5).

Parmi lesmodèlesacoust iquesglobaux, lesHMM ergodiquesperforment mieux que les

GMM et les HMM en śerie. Les HMM ergodiques montrent une grande précision (92,8%) à

localiser les régions du rire, tandis que les HMM en śerie sont relat ivement mieux en rappel

(86,3%). En se comparant avec ALISP-adapt, les HMM ergodiques sont toujours mieux de

4,2% de Précision. Cependant , ALISP-adapt obt ient de meilleurs résultats en termes de

F -mesure par rapport aux HMM globaux.

D’aut re part , les modèles ALISP HMM avec une fenêt re de lissage off rent une flex-

ibilit é supplémentaire pour corriger les valeurs aberrantes à l’aide d’un syst ème de vote

majoritaire simple. Par conśequent , ALISP-adapter-SM3 et ALISP-adapter-sm5 montrent

respect ivement une améliorat ion en termes de F -mesure par rapport à ALISP-adapter de

2,9% et 4,4%. Dans l’ensemble, ALISP-adapter-sm5 a obtenu des performances relat ive-

ment mieux que toutes les autres approches test é dans nos travaux.
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1.5 C onclusions et P ersp ect ives

Dans cet te thèse, nous avons propośe un syst ème ǵenérique d’indexat ion audio pour

ident ifier la majorit é des documents audio présents dans un flux radio. Ces documents sont :

la musique, les publicit és, la parole et les vocalisat ions non linguist iques (comme le rire, la

toux, la vue, ...). De ce fait , le syst ème d’indexat ion audio baśe sur la méthode ALISP est

appliqué pour diff érentes t âches qui sont : l’ident ificat ion audio, découverte de mot ifs audio,

segmentat ion et regroupement en locuteurs et la détect ion du rire. Le syst ème propośe se

compose de t rois modules:

• Acquisit ion et modélisat ion des unit és ALISP d’une manière unsuperviśee

• Segmentat ion (aussi appelée t ranscript ion) ALISP, qui t ransforme les données au-

dio en une śequence de symboles (en ut ilisant les modèles de Markov cachés ALISP

préćedemment acquis).

• Comparaison et décision qui comprend les algorithmes correspondants à la recherche

approximat ive des śequences de symboles inspirées de la technique BLAST (Basic

Local Alignment Search) et la distance de Levenshtein

Les principales contribut ions de cet te thèse peuvent êt re diviśees en trois part ies:

1. Améliorer les out ils ALISP en int roduisant une méthode simple pour segmenter les

données d’apprent issage en segments stables. Cet te technique, appelée segmentat ion

par stabilit é spectrale, remplace la décomposit ion temporelle ut iliśee auparavant dans

lesout ilsALISP. Leprincipal avantagedecet teméthodeest l’acćelérat ion du processus

d’apprent issage non superviśe des modèles HMM ALISP.

2. Proposer une technique effi cace pour la comparaison et la recherche des śequences

ALISP ut ilisant l’algorithme BLAST et la distance de Levenshtein. Cet te méthode

acćelère le processus de la recherche approximat ive des śequences de symboles sans

affecter les performances du syst ème d’indexat ion audio

3. Proposer un syst ème générique pour l’indexat ion audio pour les flux radiophonique

baśe sur la segmentat ion ALISP. Ce syst ème est appliqué dans diff érents domaines



1.5. CON CLU SI ON S ET PERSPECT I V ES 46

d’indexat ion audio pour couvrir la majorit é des documents audio qui pourraient êt re

présents dans un flux radio.

L’évaluat ion du syst èmepour la t âched’ident ificat ion audio en ut ilisant leprotocoleQUAERO

2010, montre la robustesse de l’empreinte ALISP par rapport aux aut res syst èmes. Pour la

découverte de mot if audio les résultats expérimentaux mont rent que le syst ème propośe est

aussi performant que les syst èmes ut ilisant les empreintes audio pour détecter des objets

répét it ifs dans les flux de radio. Pour la t âche de diarizat ion le syst ème a ét é évalué au cours

de la campagne d’évaluat ion ETAPE 2011 et a obtenu les meilleurs résultats parmi les 7

part icipants. Enfin pour la détect ion de rire, les modèles HMM fournis par les out ils AL-

ISP ont obtenu de meilleurs résultats par rapport aux syst ème ut ilisant des modélisat ions

acoust iques globaux (GMM , HMM en śerie , HMM ergodique ).

Les direct ions possibles de poursuite de ces travaux sont les suivantes. Tout d’abord,

les informat ions śemant iquesprovenant dessyst èmesdereconnaissancedela parolepourront

êt re exploit ées pour améliorer les performances du syst ème de segmentat ion et regroupe-

ment en locuteurs. De plus, un t raitement parallèle pourrait êt re effectué afin d’acćelérer

le processus d’indexat ion et ident ificat ion. En effet , le syst ème propośe d’indexat ion audio

pourrait êt re int égré dans un autoradio cequi nécessite un traitement simultané deplusieurs

stat ions radio. En outre, le calcul des MFCC, l’algorithme de Viterbi et la recherche ap-

proximat ive des śequences ALISP seront étudiés afin de détecter la part ie qui pourrait êt re

paralléliśe et mis en oeuvre à l’aide des processeur graphique (GPU). Enfin, le syst ème

propośe pour la détect ion des vocalisat ions non linguist iques pourrait êt re aussi appliqués

pour la détect ion des sons domest iques, telles que la fermeture des porte et le bruit des

machines.
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C hapt er 2

G eneral Int roduct ion

2.1 C ont ext and M ot ivat ion

For many decades, audio processing technologies have simplified the storage and ac-

cessibility to data. Actually, millions of audio documents are listened and hundreds of them

are created every day. For example, more than 1 billion unique users visit YouTube each

month and over 6 billion hours of video are watched each month on YouTube, that ’s almost

an hour for every person on Earth1. However, there are not a lot of audio classificat ion and

ret rieval tools to index, manage and characterize these data. Accordingly, few applicat ions

are developed to help users to search and browse the audio contents.

It was predictable that many researchers and industrials started focusing on audio

indexing. There are some exist ing applicat ions such as song classificat ion, advert isement

(commercial) detect ion, speaker diarizat ion and ident ificat ion, with various systems being

developed to automat ically analyze and summarize audio content for indexing and ret rieval

purposes. Within these systems audio data are t reated different ly depending on theapplica-

t ions. For example, song ident ificat ion systems are generally based on audio fingerprint ing

using the energy and the spectrogram peaks such as SHAZAM and Philips systems. While

speaker diarizat ion and ident ificat ion systems are using cepstral features and machine learn-

ing techniques such as Gaussian Mixture Models and/ or Hidden Markov Models.

1http://www.youtube.com/yt/press/statistics.html
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However, the diversity of the audio indexing techniques makes unsuitable the simulta-

neous treatment of audio st reams where different types of audio content coexist . For exam-

ple in radio st reams, many types of audio data are found. These data are usually related to

songs, commercials, j ingles, speech and nonlinguist ic vocalizat ions (such as laughter, sights

and coughs). Therefore, a generic framework for audio indexing, ret rieval and recognit ion

is needed.

In this thesis we report our recent efforts in extending the ALISP (Automat ic Lan-

guage Independent Speech Processing) approach developed for speech as a generic method

for audio indexing, ret rieval and recognit ion. ALISP is a data-driven technique that was

first developed for very low bit -rate speech coding, and then successfully adapted for other

tasks such as speaker verificat ion and forgery, and language ident ificat ion. The part icularity

of ALISP tools is that no textual t ranscript ions are needed during the learning step, and

only raw audio data is suffi cient . In such a way any input speech data is t ransformed into

a sequence of arbit rary symbols. These symbols can be used for indexing purposes.

2.2 Aud io Indexing: P rob lem at ic

Audio indexing denotes the step in which relevant informat ion is ret rieved from un-

known audio data. As shown in figure 2.1, such informat ion, also referred as descript ive

metadata, is usually linked to the type of audio content . Obtaining these metadata man-

ually is tedious, t ime consuming, subject ive and error-prone. Therefore, many systems are

developed to automat ically generate this informat ion using minimal human intervent ion.

2.3 C ont r ibu t ions

As pointed out before, the general aim of this thesis is to use high-level informat ion

provided by ALISP tools for indexing purposes. In speech processing, high-level informa-

t ion represents the set of informat ion that reflects the behavioral t raits such as prosody,

phonet ic informat ion, pronunciat ion, idiolectal word usage, conversat ional pat terns, topics

of conversat ions, etc. The main contribut ion of this thesis is the exploitat ion of the ALISP
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Figure 2.1: Audio indexing system.

approach as a generic method for audio (and not only speech) indexing and recognit ion.

To this end, an audio indexing system based on the ALISP technique is int roduced. The

proposed architecture is composed of three modules:

- Automated acquisit ion (with unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP audio models.

- Segmentat ion (also referred as sequencing and transcript ion) module that t ransforms

the audio data into a sequence of symbols (using the previously acquired ALISP

Hidden Markov Models).

- Comparison and decision module, including approximate matching algorithms in-

spired form the Basic Local Alignment Search (BLAST) tool widely used in bioin-

format ics and the Levenshtein distance, to search for a sequence of ALISP symbols of

unknown audio data in the reference database (related to different audio items).

Our main contribut ions in this Ph.D can be divided into three parts:
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1. Improving the ALISP tools by int roducing a simple method to find stable segments

within the audio data. This technique, referred as spect ral stability segmentat ion, is

replacing the temporal decomposit ion used before for speech processing. Themain ad-

vantage of this method is its computat ion requirements which are very low comparing

to temporal decomposit ion.

2. Proposing an effi cient technique to ret rieve relevant informat ion from ALISP se-

quences using BLAST algorithm and Levenshtein distance. This method speeds up

the ret rieval process without affect ing the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,

for radio st reams indexing. This system is applied for different fields of audio indexing

to cover the majority of audio items that could be present in a radio st ream:

- audio ident ifi cat ion: detect ion of occurrences of a specific audio content (mu-

sic, advert isement , j ingle) in a radio st ream;

- audio mot i f discover y : detect ion of repeat ing objects in audio st reams (music,

advert isement , and jingle);

- speaker diar izat ion: segmentat ion of an input audio st ream into homogenous

regions according to speaker’s ident it ies in order to answer the quest ion: ” Who

spoke when?” ;

- nonl inguist ic vocal izat ion det ect ion: detect ion of nonlinguist ic sounds such

as laughter, sighs, cough, or hesitat ion;

2.4 T hesis St ruct u re

The thesis is organized as follows:

Chapt er 2: St at e of t he A r t of D at a-dr iven Speech Pr ocessing and A udio

I ndex ing, focuses on the state of the art of data-driven speech processing and audio index-

ing. An overview of the techniques used to extract relevant informat ion from unannotated

speech data without using any linguist ic informat ion and rules is reported. Moreover the
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ALISP data-driven segmentat ion method is presented. Finally a literature review of audio

indexing systems based on fingerprint ing is given.

Chapt er 3: D at abases, describes all the databases used in our work. They include

the audio corpus provided by YACAST2 that is used to t rain the ALISP models and to

evaluate the ALISP-based audio indexing systems. Then, the ETAPE database used in

the evaluat ion campaigns for automat ic speech processing is described. Next , the MOBIO

database exploited to evaluate our speaker verificat ion system is presented. Finally, the

databases needed for laughter detect ion are described.

Chapt er 4: Cont r ibut ions t o D at a-dr iven A udio I ndex ing, presents the main

contribut ions of our work. The first contribut ion is related to the ALISP segmenter where

the temporal decomposit ion is replaced by a simpler technique to find stable segments

within the audio data. Second, an effi cient technique to ret rieve relevant informat ion from

ALISP sequences is proposed. Third, a generic audio indexing system, based on data-driven

ALISP sequencing is developed, to cover the majority of audio items that could be present

in a radio st ream (song, advert isement , audio mot if, speaker turn, laughter).

Chapt er 5: A udio I dent ifi cat ion, presents the ALISP-based audio indexing sys-

tem applied to the audio ident ificat ion task. Experimental studies about the number of

Gaussian components, number of ALISP units and the method used for the init ial segmen-

tat ion are reported. Moreover, a comparison of the performances of our system with the

systems part icipat ing in the 2010 QUAERO evaluat ion campaign is given.

Chapt er 6: A udio M ot i f D iscover y, describes theexploitat ion of theALISP-based

audio indexing system for audio mot if discovery. Related works to audio mot if discovery

are presented. In addit ion, the evaluat ion of the proposed method is given. This evaluat ion

involves repeat ing songs and advert isement detect ion in radio st reams.

Chapt er 7: Speaker D iar izat ion, reports the use of the ALISP-based audio index-

ing systems to perform speaker diarizat ion. First , an overview of methods used for speaker

diarizat ion is given. Moreover, theperformancesof theproposed system in theETAPE 2011

evaluat ion campaign are given. Finally, the evaluat ion of the proposed speaker verificat ion

2http://www.yacast.fr/fr/index.html
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system in the MOBIO 2013 evaluat ion campaign is reported.

Chapt er 8: N onl inguist ic Vocal izat ions D et ect ion, deals with the detect ion

of laughter using the high-level informat ion provided by the ALISP segmenter. A generic

framework to detect nonlinguist ic vocalizat ions is proposed. The evaluat ion of the system

is performed on three publicly available databases.

Finally, Chapt er 9 closes this thesis with conclusions, discussions and perspect ives.
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C hapt er 3

St at e of t he Ar t of D at a-d r iven

Sp eech P rocessing and Aud io

Indexing

3.1 Int roduct ion

The main purpose of our work is to exploit data-driven approaches, usually applied

for speech processing, to develop a generic audio indexing system. In this chapter two

states of the art are reviewed. The first one is related to data-driven approaches for speech

processing while the second one deals with audio indexing.

Two categories of speech and language processing systems could be found in the

literature:

• Supervised systems that use linguist ic informat ion and rules.

• Unsupervised systems that exploit machine learning techniques to ext ract relevant

informat ion from a set of representat ive examples.

The first category requires the availability of a number of linguist ic informat ion, such

as phonet ic inventories, lexicons and language models, and annotated training corpora con-

sist ing of manual t ranscript ions of speech data. While such systems have proven its robust-
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ness and effect iveness for many problems where the human contribut ions are essent ial and

labeled speech data are easy available, they have many disadvantages, such as:

• Languagedependency: supervised systemsaredeveloped for a specific language, which

make them not portable across languages.

• Human effort : significant human expert ise is required to acquire the knowledge base

such as pronunciat ion lexicon and labeled speech data.

• Diversity of linguist ic models: represent ing all linguist ic rules and phenomena using

a common theory of linguist ic seems to be impossible.

On the other hand, unsupervised systems (also referred as data-driven systems or zero

resource systems) do not require t ranscript ions, annotat ions nor prior linguist ic knowledge.

The amount of available speech data, such as broadcast news archives, radio recordings,

podcastsor various internet media isconstant ly increasing. Therefore, most of thesesystems

exploit machine learning techniques to automat ically determine the linguist ic units and

informat ion required from representat ive examples of data.

The second part of this chapter deals with audio indexing. Audio indexing denotes

the step in which relevant informat ion are ret rieved from unknown audio data. In our work

we are interested in a part icular field of audio indexing, which is the audio ident ificat ion

(known also as audio detect ion or audio informat ion ret rieval).

Audio ident ificat ion involves detect ing (and eventually locat ing) occurrences of a spe-

cific audio content (music, advert isement , j ingle,...) in audio st reams or audio database.

In the literature the majority of proposed audio ident ificat ion systems rely on the same

underlying concept : audio fingerprint ing. An audio fingerprint is a compact content-based

signature that represents an audio recording. This technique consists of two parts: a finger-

print ext ract ion moduleand a comparison module. First a fingerprint is ext racted from each

audio document stored in a reference database. An unlabeled audio excerpt is ident ified by

comparing its fingerprint with those of the reference database.

In this chapter, the state of the art of unsupervised techniques for speech processing

is reviewed. Then the adopted data-driven system based on the Automat ic Language In-
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dependent Speech Processing (ALISP) method is detailed. After that an overview of the

applicat ion of the ALISP approach to speech processing, in part icular, very low bite rate

speech coding, speaker verificat ion, voice forgery and language ident ificat ion is presented.

Finally a literature review of audio indexing based on fingerprint ing techniques is presented.

3.2 Toward U nsup ervised Techn iques for Sp eech P rocessing

Automat ic Speech Recognit ion is the most mature field of speech processing. De-

veloping speech recognit ion systems requires the availability of large speech corpora with

the corresponding world-level annotat ions. Huge linguist ic resources associated with the

constant ly increasing computat ional and storage power have significant ly reduced the word

error rates on increasingly challenging tasks is speech processing [16] (Beyerlein et al.,

2002) [84] (Mart in and Garofolo, 2007) [38] (Deligne et al., 2002).

Supervised techniques provide good performances for scenarios where human exper-

t ise and annotated data are available. However, they remain ineffect ive when transcribed

data are not available. Therefore, many frameworks are proposed to develop increasingly

unsupervised data-driven systems which are less reliant on linguist ic expert ise and anno-

tated corpora.

In [53] (Glass, 2012), speech processing techniques are divided into four groups de-

pending on the scenario for which they are applied. Each scenario requires decreasing

amount of human expert ise and annotated resources, and increasing amount of unsuper-

vised learning. These groups are illust rated in figure 3.1 [53] (Glass, 2012).

3.2.1 Exp er t -based Sp eech P rocessing

Expert -based speech processing denotes systems that use human expert ise associated

with annotated speech corpora. Human expert ise is often provided in the form of a pro-

nunciat ion lexicon that gives the relat ion between vocabulary words and their associated

sub-word unit realizat ions. This scenario represents the most developed speech recognit ion

system using the Hidden Markov Model (HMM) to represent the speech data [11] (Baker

et al., 2009).
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Figure 3.1: Potent ial scenarios for speech processing depending on human expert ise and
unsupervised training.
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3.2.2 D at a-based Sp eech P rocessing

Data-based speech processing systems aim to learn the pronunciat ion lexicon and

provideautomat ically linguist ic informat ion, if no languageexpert knowledge (e.g. phonet ic

t ranscript ions) is available or affordable.

In [70] (K iller et al., 2003) theauthors automate thepronunciat ion dict ionary creat ion

process for languages that havest raight forward world-to-sound mappings (English, Spanish,

German). A grapheme-based approach is proposed to develop a speech recognit ion system.

Pronunciat ion dict ionaries for grapheme based recognizers are built by simply split t ing a

word into its graphemes. Each grapheme is modeled by a 3-state Hidden Markov Model

(HMM) consist ing of a begin, a middle, and an end-state. The evaluat ion of this system

shows that English has the worse correspondence between phonemes and graphemes while

the best one is relat ive to Spanish language.

When a straight forward let ter-to-sound mapping is not possible, a pronunciat ion mix-

ture model could be used to perform a grapheme-to-phoneme conversion [10] (Badr et al.,

2011). A joint -mult igram approach [19] (Bisani and Ney, 2008) is employed to model the

relat ionship between graphemes and phonet ic units and to build a pronunciat ion mixture

model. The evaluat ion of this approach shows that learned lexicons outperform expert ,

hand-crafted lexicons for a weather informat ion ret rieval spoken dialogue system and for

the academic lectures domain.

Data-based scenarios could also involve the combinat ion of annotated data from sev-

eral languagesto easily adapt thespeech processing parameters to a new language[118] (Schultz

and Kirchhoff , 2006). Moreover, in [54] (Gollan et al., 2007), the authors propose to com-

bine untranscribed and transcribed data to improve the performances of a speaker adapt ive

acoust ic model. Furthermore in [94] (Novotney et al., 2009), init ial models are t rained

from a small amount of t ranscribed data. Then these models are used to decode a larger

amount of speech data. Finally, new models are iterat ively learned from these automat ic

t ranscripts.
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3.2.3 D ecipher -based Sp eech P rocessing

A more challenging scenario consists of building an automat ic speech processing sys-

tem from speech only corpus combined with non-parallel text data. The decipher-based

speech processing systems represent a major breakthrough from convent ional speech recog-

nit ion systems.

In the last few years, many systems are developed to automat ically ext ract useful

informat ion from not annotated speech data. This scenario is generally referred to a zero

resource scenario. Most of these systems are used to ident ify word-like pat terns in the

speech signal by extract ing recurrent speech sequences.

In [97] (Park and Glass, 2008), an unsupervised speech pat tern discovery framework

is proposed. It is based on a segmental variant of Dynamic T ime Warping, which is used

to search for matching acoust ic pat terns between spoken ut terances. Similar acoust ic se-

quences are grouped together to form clusters corresponding to lexical ent it ies such as words

and short mult iword phrases. The evaluat ion of the proposed system on a corpus of aca-

demic lecture material shows that the obtained clusters are relevant to summarize the audio

st ream.

Muscariello et al. [92] (Muscariello et al., 2012) develop a similar system to ext ract

speech mot ifs or pat terns by unsupervised word discovery. The proposed system is based

on a template matching technique to ident ify recurrent acoust ic segments (using segmental

Dynamic T ime Warping met ric combined with self-similarity mat rix). A searching strategy

based on the ARGOS framework [61] (Herley, 2006) to detect repet it ions is designed. It

consists of a sequent ial algorithm to find repet it ion in audio st ream. First , the speech signal

is divided into two parts: the query pat tern and the past st ream. Then the query pat tern

is searched in a library of mot ifs that are already ext racted. After that , if a posit ive match

is found a new occurrence of the corresponding mot if is created, otherwise the pat tern is

searched in the past st ream. Finally, if a posit ive match is found in the past st ream, an

extension of the query matching is performed to find the ent ire occurrence. The proposed

system is evaluated on a French radio broadcast data and shows good results.

Another system using a Gaussian posteriorgram based representat ion for unsuper-
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vised discovery of speech pat terns is proposed by [136] (Yaodong and Glass, 2010). This

framework is composed of three steps. First a Gaussian posteriorgram technique is per-

formed to t rain an unsupervised Gaussian Mixture Model and associates each speech frame

with a Gaussian posteriorgram representat ion. Then the segmental Dynamic Time Warp-

ing metric is used to detect similar sequences of Gaussian posteriorgram vectors. Finally a

graph clustering procedure is carried out to group similar segments into clusters.

In addit ion to systems described above, many other frameworks are developed to

detect automat ically speech pat terns in large audio corpora. In [122] (Siu et al., 2011)

an unsupervised Hidden Markov Model-based recognizer system is built to convert speech

data into self-organized units which areused to detect common audio pat terns. Moreover an

unsupervised speaker recognit ion system is proposed in [67](Kanthak and Ney, 2003), that

combines grapheme-based units with mult ilingual acoust ic modeling. Furthermore, a Polish

speech recognit ion system is developed by combining the exploitat ion of the cross-language

bootst rapping and confidence based unsupervised acoust ic model t raining [79] (Loof et al.,

2009). In addit ion, a mult igram model is proposed in [37] (Deligne et Bimbot , 1997) to re-

t rievesequent ial variable-length regularit ies within st reamsof text data, which areexploited

for automat ic speech recognit ion. Speech mot if discovery is useful for several applicat ions,

including spoken term detect ion [91] (Muscariello et al., 2011), nonnegat ive convolut ive

sparse coding [134] (Wang et al., 2011), topic segmentat ion [82] (Malioutov et al., 2007),

topic classificat ion [51] (Gish et al., 2009), spoken corpus summarizat ion [60] (Harwath et

al., 2013) and unit learning [64] (Jansen and Church, 2011).

In [28] (Chollet et al., 1999), a data-driven system, referred as Automat ic Language

Independent Speech Processing (ALISP) isproposed. ALISP method consists in segment ing

the speech into data-driven speech units, denoted in this chapter and in the followings as

ALISP units (or data-driven units or pseudo-phonemes). These units are automat ically

determined from the training corpus with no need of phonet ic t ranscript ions and textual

annotat ions of the corpus. As pointed out before, our object ive through this thesis is to

exploit high-level informat ion for audio indexing by using data-driven units. To this end,

we selected Automat ic Language Independent Speech Processing (ALISP) tools as they
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are versat ile and have already been used in different applicat ions for speech processing. A

detailed descript ion of these tools is given in sect ion 3.3.

3.2.4 Sensor -based Sp eech P rocessing

In the sensor-based speech processing scenario, speech data are associated with other

modalit ies such as vision. Most of the systems belonging to this category are relat ive to

human-machine interact ion. The aim is to joint ly learn linguist ic and perceptual models of

semant ic concepts [114] (Roy and Pent land, 2000). For example, it would be appropriate

to teach robots new concepts through spoken interact ions in a new environment .

3.3 Dat a-dr iven ALISP Segm ent at ion

In theprevioussect ion, wedescribed many techniquesthat areused to acquirerelevant

informat ion from untranscribed speech data. For our work, we decided to use the ALISP

method to exploit the result ing data-driven units for audio indexing purposes.

ALISP tools are selected as they are versat ile and have already been used in different

applicat ions. First , they were used in Very Low Bit Rate coding based on recognit ion-

synthesis [26] (Cernoky, 1998) [96] (Padellini et al., 2005). The second applicat ion was the

use of those units for segmental speaker verificat ion [40] (ElHannani et al., 2009) [39] (El-

Hannani, 2007) [102] (Petrovska-Delacrétaz et al., 2000). Then, it was applied for voice

forgery [99] (Perrot et al., 2005). They were also exploited for automat ic language ident ifi-

cat ion [29] (Chollet et al., 2005).

The set of ALISP units is automat ically acquired through parameterizat ion, temporal

decomposit ion, vector quant izat ion, and Hidden Markov Modeling as shown in figure 3.2.

We detail hereafter each component of the figure.

3.3.1 P aram et er izat ion

The parameterizat ion of audio data is done with Mel Frequency Cepstral Coeffi cients

(MFCC), calculated on 20 ms windows, with a 10 ms shift . For each frame, Hamming
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Figure 3.2: Automat ic Language Independent Speech Processing (ALISP) units acquisit ion
and their HMM modeling.

window is applied and a cepstral vector of dimension 15 is computed and appended with

first and second order deltas.

3.3.2 Tem p oral D ecom p osit ion

After the parameterizat ion step temporal decomposit ion is used to obtain an init ial

segmentat ion of the audio data into quasi-stat ionary segments. This method is int roduced

originally by Atal [8] (Atal, 1983) as nonuniform sampling and interpolat ion procedure for

effi cient parameter coding.

Temporal decomposit ion approximates a matrix X of N successive parameter vectors

of dimension P by H target vectors aph with associated interpolat ion funct ionsφh(t)). The

t rajectory of xp
t , the pth parameter of the t th frame, is approximated as follows:

x̂p
t =

HX

h= 1

aphφh(t)� p = { 1�����P} (3.1)
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The previous equat ion can be writ ten more compact ly using mat rix notat ion:

X̂ = AΦ (3.2)

where X̂ is the approximated parameter matrix, A is the target-vectors matrix, and

Φ is the interpolat ion funct ions matrix.

The procedure to find targets and interpolat ion funct ions consists of the following

steps:

1. Init ial search of interpolat ion funct ions using adapt ive rectangular window and local

singular value decomposit ion.

2. Post-processing of interpolat ion funct ions: smoothing, de-correlat ion and normaliza-

t ion.

3. Target vectors computat ion: A = X Φ# , where Φ# is the pseudo-inverse of init ial

interpolat ion funct ions mat rix.

4. Local adapt ive refinement of interpolat ion funct ions and targets by iterat ions mini-

mizing the distance of X and X̂ .

The detailed algorithm can be found in [18] (Bimbot and Atal, 1991).

Once interpolat ion funct ions are computed, their intersect ions are used to determine

segment boundaries. The audio segments correspond at this point to spect rally stable

port ions of the signal. These segments will be further clustered using Vector Quant izat ion.

Then, boundaries together with labelswill beused as init ial t ranscript ion for Hidden Markov

Modeling. This step corresponds, in t radit ional phonet ic recognizer systems, to the use of

phonet ically t ranscribed data to init ialize phone models.

3.3.3 Vect or Quant izat ion

The next step in the ALISP process is the unsupervised clustering procedure per-

formed via vector quant izat ion [81] (Makhoul et al., 1985). This method maps the P-

dimensional vectors of each segment provided by the temporal decomposit ion into a finite
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set of L vectors Y = { yi ; 1 ≤ i ≤ L} . Each vector yi is called a code vector or a codeword

and the set of all codewords is called a codebook. The codebook size L defines the number

of ALISP units. Codebook training is performed using vectors located in gravity centers of

segments computed with temporal decomposit ion (one vector per segment).

This t raining is done by a K-means algorithm with binary split t ing. This method,

called Linde-Buzo-Gray or LBG [77] (Linde et al., 1980), results in a codebook size which

is power of 2. The LBG procedure is as follows:

1. Compute the init ial centroid as the average of all vectors in the training set .

2. Split each centroid into two by moving it in opposite direct ions. This is done by

adding small noise values ± ǫ.

3. Redist ribute vectors between the two centroids using the nearest neighbor rule.

4. Compute new posit ions for the two centroids by obtaining the average of their re-

spect ive clusters. Then iterate in Step 3 unt il the change of the average distort ion is

relat ively small.

5. Go to step 2 if the desired codebook size not yet reached, otherwise terminate.

The init ial labeling of the ent ire audio segments is achieved by assigning segments to

classes using minimizat ion of the cumulated distances of all the vectors x t from the audio

segment to the nearest cent roid of the codebook.

yl
s = min

i

�

�
esX

t= bs

d (x t�yi )

�

� (3.3)

wheres denotesa part icular segment with thebeginning bs and theend es. All vectors

in segment s are labeled with the label l of the winner centroid. The result of this step is

an init ial segmentat ion and labeling of the training corpus.

3.3.4 H idden M arkov M odeling

The final component in figure 3.2 represents the Hidden Markov Modeling proce-

dure. The object ive here is to t rain robust models of ALISP units on the basis of the
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init ial segments result ing from the temporal decomposit ion and vector quant izat ion steps.

HMMs t raining is performed using the HTK toolkit [1]. It is mainly based on Baum-Welch

re-est imat ions and on an iterat ive procedure of refinement of the models that may be sum-

marized as follows:

1. I ni t ial izat ion of paramet ers: Thisstep provides init ial est imates for theparameters

of HMMs using a set of observat ion sequences. First , a prototype HMM definit ion

must be specified in order to fix the model topology. In this system, each ALISP unit

ismodeled by a left -right HMM having threeemit t ing stateswith no skips. Covariance

mat rices are diagonal, and computed for each mixture. The init ializat ion of models

is performed via HInit tool. Let each audio segment be represented by a sequence

of feature vectors or observat ions defined as O = { o1�����oT } , where ot is the feature

vector observed at t ime t. HInit first divides the training observat ion vectors equally

amongst the model states and then init ializes values for the mean and variance of each

state j using the equat ions 3.4 and 3.5:

µ̂j =
1
T

TX

t= 1

ot (3.4)

Σ̂ j =
1
T

TX

t= 1

(ot − µj ) (ot − µj )
′ (3.5)

2. Cont ext independent re-est imat ion: The init ial parameter values computed by

HInit are then further re-est imated by HRest tool using theBaum-Welch re-est imat ion

procedure. In the contrary of HInit in which each observat ion vector ot is assigned

to a unique state, HRest assigns each observat ion to every state in proport ion to the

probability of the model being in that state when the vector was observed.

Thus, if Pj (t) denotestheprobability of being in state j at t imet then theequat ions3.4

and 3.5 given above become the following weighted average:

µ̂j =
P T

t= 1 Pj (t)ot
P T

t= 1 Pj (t)
(3.6)
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Σ̂ j =
P T

t= 1 Pj (t)(ot − µj )(ot − µj ) ′
P T

t= 1 Pj (t)
(3.7)

where the summat ions in the denominators are included to give the required normal-

izat ion. Equat ions 3.6 and 3.7 are the Baum-Welch re-est imat ion formula. The prob-

ability of state occupat ion Pj (t) is computed using the so-called Forward-Backward

algorithm.

3. Cont ext dependent re-est imat ion: This re-est imat ion step uses the same Baum-

Welch procedureas for thecontext independent re-est imat ion but rather than training

each model individually all models are t rained in parallel. This re-est imat ion is done

by HERest tool. For each training ut terance, the corresponding segment models are

concatenated to const ruct a composite HMM which spans the whole audio segment .

This composite HMM is made by concatenat ing instances of the ALISP classes HMMs

corresponding to each label in the transcript ion. The forward-backward algorithm

is then used to accumulate, for each HMM in the sequence, the stat ist ics of state

occupat ion, means, variances, etc. When all of the t raining data has been processed,

the accumulated stat ist ics are used to compute re-est imates of the HMM parameters.

It is important to emphasize that in this process, the t ranscript ions are only needed

to ident ify the sequence of labels in each segment . No segment boundary informat ion

is needed.

4. M odel r efinement : This step consists in an iterat ive refinement of these HMMs by

successive segmentat ion of the t raining data followed by re-est imat ions of parameters.

The segmentat ion is performed using the HVite tool which is based on the Viterbi

algorithm called the Token Passing Model [137] (Young et al., 1989). HVite matches

an audio file against a network of HMMs and outputs its t ranscript ion. A simple

grammar, in which each class can follow any other class, is used for decoding. The

procedure of refinement can be summarized as follows:

• use the previous models to segment the t raining data to produce new transcrip-

t ions. For the first iterat ion the models used are the one obtained in step 3;
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• re-est imate new set of HMMs parameters using t ranscript ions obtained in the

previous step. Old parameters are used as init ial values and the re-est imat ion

procedure used in this step is the one described in step 3;

• if themaximal number of iterat ions is reached (in thiswork 8) stop therefinement

procedure, otherwise return to the first step;

5. F inal r efi nement : This final step of the Hidden Markov Modeling aims at incre-

ment ing the number of mixture components in each model in a dynamic manner. The

operat ion of increasing the number of components in a mixture is done by a process

called mixture split t ing using the HHEd tool. The procedure of final refinement may

be summarized as follows:

a. denoteHMMsparametersλm and the list of modelsΓm . Set the iterat ion number

m to 0. λ0 corresponds to the parameters result ing from the first refinement and

the list Γ0 contains all ALISP models;

b. increment the number of mixture components in HMMs for each ALISP classes

in the list Γm . Denote new parameters Γm+ 1;

c. re-est imate the new set of HMMs parameters λm+ 1 using t ranscript ions obtained

at the end of the first refinement ;

d. perform a forced alignment of the all t raining data using λm+ 1;

e. for each ALISP class, compute the difference of recognit ion likelihoods using

λm+ 1 and λm . Update the ALISP list Γm+ 1 by removing all ALISP classes for

which the likelihood difference is relat ively small;

f. terminate the procedure if Γm+ 1 is empty or otherwise return to b;

The result ing HMM models will then be used to t ranscribe any incoming audio data.

This t ranscript ion will be referred in this chapter and the following as ALISP segmentat ion

(or ALISP sequencing or ALISP transcript ions). Figure 3.3 shows the spect rogram of the

sentence ” Bonjour Christophe” and its ALISP transcript ion.
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hsil hf h7 hi h7 hz hn h5 hR hsil

Figure 3.3: Spectrogram of a French speech sentence ” Bonjour Christophe” and its ALISP
t ranscript ion (hf, h7, hz,... are the name of ALISP units ).

3.4 ALISP -based Sp eech P rocessing

As ment ioned before, ALISP is a data-driven technique that was first developed for

Very Low Bit Rate speech coding, and then successfully adapted for other tasks such as

speaker verificat ion and forgery and language recognit ion. In this sect ion the ALISP-based

speech processing systems are short ly described.

3.4.1 Very Low B it e R at e Sp eech C od ing

Most of speech coding systems that achieve a bit rates lower than 600 bits/ s are based

on a recognit ion-synthesis approach. The ALISP-based Very Low Bit Rate speech coding

system [26] (Cernoky, 1998) [96] (Padellini et al., 2005) is composed of two phases:

• Encoding phase: The Viterbi algorithm is used to segment the speech file to be coded

using the ALISP HMM models. Then, the prosodic informat ion is ext racted from

each result ing segment . This informat ion is used to find the nearest synthesis unit

in the reference codebook. The synthesis codebook is organized in such a way that

each class (the ALISP unit ) is associated with the previous ident ified class to take
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into account the backward context informat ion.

• Decoder phase: From the unit indexes sent by the encoder, synthesis units are found

in the reference codebook and concatenated using the Harmonic plus Noise Model

algorithm [123] (Stylianou, 1996) to recover the target speech file.

3.4.2 Sp eaker Ver ificat ion

In [40] (ElHannani et al., 2009) [39] (ElHannani, 2007) [102] (Petrovska-Delacrétaz et

al., 2000), high-level features derived from the speech data using the ALISP segmentat ion

are used to develop three speaker verificat ion systems:

1. Idiolectal system: In this approach, only the labels associated to the ALISP segments

are used as source of informat ion. The speaker models and the background model are

computed using a simplen-gram frequency count . Thebackground model isest imated

using a large number of speakers while the speaker models are obtained by adapt ing

thebackground model. In theevaluat ion phase, each ALISP-sequence is tested against

the speaker specific model and the background model using a likelihood rat io.

2. ALISP language models system: The symbol sequences produced by data-driven AL-

ISP tools are used to t rain ALISP n-grams models. These models are built as follows.

First ly, the t raining text is scanned and the n-grams are counted and stored in a

database of gram files. Secondly, the result ing gram files are used to compute n-gram

probabilit ies which are stored in the language models file. In the evaluat ion phase, the

test file is t ranscribed using the ALISP tools. Then a log-likelihood rat io is computed

to obtain the recognit ion score.

3. Durat ion models system: In this system, the durat ion of the ALISP units are used as

features to model speakers. The durat ion of each ALISP unit is ext racted and used

to t rain background models. Each speaker is represented by 64 GMMs each of them

models the durat ion of an ALISP class. The speaker specific 64 models are adapted

from the 64 ALISP class dependent background models. During the evaluat ion phase,

the durat ion vectors of the test file are ext racted. Then, the test durat ion vectors are
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compared to the hypothesized speaker model and to the background model of the

corresponding ALISP class using the log-likelihood rat io.

The proposed systems were evaluated on English t rials from NIST 2006 SRE and

compared with phonet ic approaches. It was shown that data-driven units provide bet ter

results than phonet ic approaches.

3.4.3 Voice Forgery

Voice forgery aims to covert the voice of an arbit rary person (the impostor), in such

a way that it seems to be the voice of another person (the client ). In order to automat ically

t ransform the voice, the ALISP-based speech coder is used [99] (Perrot et al., 2005). First ,

speech corpus of the client is used to t rain the ALISP HMM models which provides a

segmentat ion of this corpus. Then Harmonic plus Noise Model parameters are ext racted

from each segment of the client speech. After that , the impostor voice is encoded using the

ALISP codebook of the client . Finally, in the decoding phase, synthesis units of the client

voice are used to build the t ransformed speech signal.

3.4.4 Language Ident ificat ion

In this part we report about the applicat ion of the ALISP data-driven segmentat ion

method for Automat ic Language Ident ificat ion task [29] (Chollet et al., 2005). Two ALISP-

based systems are developed to perform this task:

1. ALISP HMM based system: In this system, each test ut terance is decoded by all

language-dependent ALISP-recognizers, producing a t ranscript ion into ALISP-units

along with their log-likelihood scores. For a given language, these segmental scores

are summed up and normalized by the ut terance length to produce a score for the test

ut terance. In this summat ion process, the segments previously ident ified as silence are

simply skipped. Finally, each score produced for a language is divided by the mean

of the other languages scores.
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2. ALISP N-gram language models system: For each language, stat ist ics of the 2-grams

occurring in the transcript ion produced by that language recognizer are gathered.

For each 2-gram ALISP sequence in the test ut terance, its probability in the given

language is divided by the mean of its probability in the other language models. The

final score is the sum of the 2-gram probabilit ies normalized by the number of 2-grams

in the test ut terance.

At this point , ALISP method was only used for speech processing. It was exploited for

very low biteratespeech coding, speaker verificat ion and forgery and languageident ificat ion.

In this thesis we report our efforts in applying the ALISP approach as a generic method for

audio (and not only speech) indexing and recognit ion. The next sect ion presents the state

of the art of audio indexing based on audio fingerprint ing.

3.5 Aud io Indexing Based on F ingerp r int ing: St at e of t he

Ar t

Audio indexing denotes the step in which relevant informat ion are ret rieved from

unknown audio data. In our work we are interested in a part icular field of audio indexing,

which is the audio ident ificat ion based on fingerprint ing (known also as audio detect ion or

audio informat ion ret rieval).

The general architecture of an audio ident ificat ion system is described in figure 3.4.

This figure shows that an audio ident ificat ion system based on audio fingerprint ing consists

of 2 modules:

• A fingerprint ext ract ion module

• A comparison module

The first step in an audio fingerprint ing system is to create a fingerprint database

from a reference database. The reference database contains audio files (Music pieces, j in-

gles, advert isements,...) to be ident ified. In the second step an unlabeled audio excerpt is

ident ified by comparing its fingerprint with those of the reference database.
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Figure 3.4: Audio ident ificat ion system based on audio fingerprint ing.

3.5.1 P rop er t ies of Aud io F ingerp r int ing

An audio fingerprint ing system should meet certain propert ies in order to take into

account several requirements. The importance of each requirement varies depending on the

applicat ion. Such systems have to be computat ionally effi cient and robust . The require-

ments are the following [25] (Cano et al., 2005):

- A ccuracy : The number of correct ident ificat ions, missed ident ificat ions and false

alarms (wrong ident ificat ion).

- R obust ness: The ability of the system to work sat isfactorily under the presence of

different types of degradat ion.

- Granular i t y : The minimum durat ion of the query fingerprint needed to uniquely

ident ify the audio file. For example, the average durat ion of advert isements varying

from 5 to 30 seconds, it is necessary to have granularity less than 5 seconds.

- Complexi t y : The complexity of the system determines the computat ional costs.
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They include costs needed to create the fingerprint , to search for it and to add a new

entry in the exist ing reference database.

- Scalabi l i t y : Performance in the presence of larger database. This has direct rela-

t ionship with the complexity and the accuracy of the system.

Improving one parameter often puts addit ional constraints on other parameters. To

improve the robustness of the system, complex features need to be computed which affects

complexity and scalability. Using large databases often affects the accuracy of the system.

Due to these reasons, t rade-offs need to be made to find an opt imal solut ion which has

sat isfactory performance with respect to all parameters.

3.5.2 Aud io D egradat ions

Even though the audio files are made available to the audio ident ificat ion system for

building the reference database, the unknown audio signal (especially broadcasted audio)

goes through several processes which degrade the quality to a certain extent . A very diverse

panel of audio degradat ions are reported in the literature, designed to reproduce most of the

audio effects that can beapplied to an audio signal, affect ing itsquality, without changing its

semant ic content . Some of the degradat ions which occur quite often are listed in [24] (Cano

et al., 2002) and reported below:

- D ynamic A mpli t ude compression: Affect ing the dynamic range of the signal,

theseeffects areused in order to ensure the headroom of digital systems whileavoiding

clippings.

- Channel fi l t er ing: When the audio is broadcasted through a channel, it passes

through various filters which change the frequency spectrum of the audio.

- R eal wor ld noise addit ion: Due to poor t ransmission quality, but also sounds

superposed on the original document such as speech ut terance in the beginning of a

music t rack.
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- Pit ching: Playing songs or advert isements in a radio broadcast faster or slower,

where both the pitch and the tempo change. Somet imes stat ions use pitching up to

2,5% to achieve two goals: playing more songs per hour and get t ing more at t ract ion

for listeners.

- Equal izat ion: Boost ing or cut t ing the level of certain audio frequency bands com-

pared to other bands.

- Per cept ual A udio Coding: With the increasing amount of available audio, various

compression techniques are used to store the audio clips such as * .mp3 and * .aac

format . Compression techniques degrade the quality of audio, but percept ion of the

clip remains the same.

3.5.3 Lit erat u re R eview of Aud io F ingerp r int ing Syst em s

There have been many studies in the field of fingerprint ing of audio using different

features. Several fingerprint ing systems have been reviewed by Cano et al. in [25] (Cano

et al., 2005). The main challenge of these systems is to create a robust fingerprint against

different types of distort ions and to propose a fast matching method that can sat isfy real-

t ime requirements regardless the size of the reference database.

By reviewing papers published on the subject , we group them in three main families

based on the st rategy of fingerprint ext ract ion:

• Spect r al r epr esent at ion t echniques: These methods are generally based on the

division of the spectrum into sub-bands.

• Comput er v ision t echniques: These systems involve the processing of the audio

signal as a 2-D image. They are usually using the wavelet t ransform to extract the

audio fingerprint .

• M achine lear ning t echniques: This family includes approaches based on vector

quant izat ion and data-driven techniques. These systems propose a fingerprint model

that mimics the modeling and classificat ion techniques used in speech processing.



3.5. A U D I O I N D EX I N G B A SED ON FI N GER PR I N T I N G: STAT E OF T H E
A RT 74

We present audio fingerprint ing systems according to the three families ident ified

above. First , we describe few works that provide fingerprint models based on the spectral

representat ion of the signal, then we present some approaches that rely on computer vision

techniques and we end up by with works based on machine learning approaches.

3.5.3.1 Spect ral R epresent at ions Techniques

Most of audio ident ificat ion systems based on fingerprint ing operate direct ly on the

spectral representat ions of the signal to ext ract the fingerprint . This fingerprint is generally

easy to extract and does not require significant comput ing resources.

Haistma et al. [57] (Haitsma and Kalker, 2002) developed an audio ident ificat ion

system for the company Philips. They use 33 non-overlapping logarithmic bands covering

the range of 300Hz to 2kHz as their base feature. To improve the robustness of the system

and to reduce thecomputat ional requirement , thechange in theenergy differenceof adjacent

bands on frame to frame basis is computed and stored as a single bit . This process of

quant izat ion gives a robust 32-bit feature vector per frame. Such a vector is calculated every

12 ms, giving about 86 frames per seconds. In this case the number of vectors to store for a

music databaseof 10,000 songsof 5 minutes isabout 260 million vectors. Different variat ions

of this fingerprint have been developed, some by the authors themselves [58] (Haitsma and

Kalker, 2003), in order to make thefingerprint more robust to deformat ionssuch aschanging

the speed (pitching). Improvements are however not very important .

For the comparison phase, the similarity measure used is the bit error rate, which is

the number of erroneous bits divided by the total number of bits. The unknown fingerprint

is considered ident ified if the bit error rate is less than a certain threshold. The authors

show that for a value of 0�35, the probability of a false alarm is around 10− 20. The search

method is based on indexing every reference frame in a look-up table. If the number of

sub-bands used is Nb, then each frame will be a vector of (Nb − 1) bits and the look-up

table will have a 2N b entries. Each entry, called a key, points to all objects that have exact ly

this entry in the corresponding t ime. To reduce the ident ificat ion t ime, candidate select ion

from the reference templates in the database is done with an assumpt ion that at least one
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feature vector among the block is the same as its original. This mechanism is faced with

two diffi cult ies. The first is the limitat ion of available memory, the look-up table is indeed

too large to be loaded into memory. The second diffi culty involves the distort ions that the

unknown signal will suffer. In fact , theassumpt ion that at least onefeaturevector among the

block is the same as its original, is not respected if same degradat ions affect the ent ire block.

In order to test the robustness of this system, a hash block is ext racted from four audio

excerpts. All the excerpts are then subjected to different kinds of synthet ic degradat ions.

Experimental results show the robustness of the system against these degradat ions and the

discriminat ion power of the hash blocs.

Wang et al. [133] (Wang et al., 2006) propose an audio search engine for the company

SHAZAM. The algorithm uses a combinatorial hashed t ime-frequency constellat ion analysis

of the signal. The fingerprint is based on the concept of landmarks. The landmark point is

the spectrogram peak which has a higher energy content than all it s neighbors in a region

centered on itself. Candidate peaks are chosen according to a density criterion in order

to assure that the t ime-frequency strip for the audio file has reasonably uniform coverage.

Once the landmark points are ident ified, they are combined to increase the provided amount

of informat ion. Authors propose to create a key for each pair of landmarks, in fact , for two

spectrogram peaks (f 1�t1) and (f 2�t2), the key will be the t riplet (f 1�f 2�t2 − t1). Each key

presents an entry in the look-up table and each entry will contain the list of references (p�t)

having this key, where p is the reference ID and t the t ime inside the reference.

In the searching process, t riplet key of the unknown signal (f 1�f 2�t2 − t1) is matched

to select the possible candidates. For each candidate (p�t), the temporal off set histogram

is computed where the off set is equal to t1 − t. Once all candidate offset histograms are

computed, the one with the maximum peak, which must be superior to a certain threshold,

is considered as the best match to the unknown signal. The system is evaluated with 250

music samples of varying length and noise levels against a reference database of 10,000

t racks consist ing of popular music. Audio excerpts of 15, 10, and 5 seconds in length are

taken from the middle of each test t rack, each of which was taken from the test database.

For each test excerpt , the relat ive power of the noise was normalized to the desired Signal-
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to-Noise Rat io (SNR), then linearly added to the sample. Recognit ion rates are 50% for 15,

10, and 5 second samples at approximately -9, -6, and -3 dB SNR and more than 80% at

3, 6 and 9 db SNR. For the same analysis, except that the result ing music+ noise mixture

is further subjected to GSM 6.10 compression, then reconverted to PCM audio, the 50%

recognit ion rate level for 15, 10, and 5 second samples occurs at approximately -3, 0, and

+ 4 dB SNR. This method is intended to ident ify long audio objects. Indeed, short objects,

like an advert isement or a radio jingle will not have enough landmark points, to ensure

the reliability of the measure used in this case. In addit ion Fenet et al. [44] (Fenet et al.,

2011) propose to use the Constant Q Transform (CQT) to improve the performances of the

SHAZAM audio ident ificat ion engine.

Pinquier et al. [104] (Pinquier and André-Obrecht) propose a method based on simple

spectral coeffi cients. A total of 29 coeffi cients spanning the range of 100Hz to 8000Hz are

used as feature vector. The final fingerprint consists of blocks of N such vectors where N

depends on size of the training file. During the ident ificat ion process, a block of the input

feature vector is compared with the block stored in database using Euclidean distance. To

achieve the goal of real-t ime processing, instead of performing comparison at each frame,

fixed number of frames are skipped before next comparison. Test database is made up

of six different corpora. The total durat ion is about 10 hours. The reference database is

composed of 32 jingles with durat ion between 1 and 5 s. Among 132 jingles which had to

be detected and ident ified, 130 are ident ified (98.5% of accuracy).

3.5.3.2 Comput er V ision Techniques

There have been several experiments of using computer vision techniques for audio

fingerprint ing. The main idea is to t reat the spectrogram of each audio clip as a 2-D image

that t ransforms music ident ificat ion into a corrupted sub-image retrieval problem.

In [12] (Baluja and Covell, 2008), the authors exploit the applicability of wavelet

in image queries for large databases in fingerprint ing applicat ions by processing the audio

spectrogram asa 2-D image. They generatea spectrogram of an audio with exact ly thesame

parameter as described in [57] (Haitsma and Kalker, 2002). Then the audio spectrogram
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is divided into smaller spect ral images. Wavelet decomposit ion of each spectral image is

carried out using Haar wavelet . Signs of top 200 wavelet magnitudes are retained in thefinal

fingerprint . Then a hash table is used to find the best fingerprint segments and Hamming

distance is computed between the candidate fingerprints and the query fingerprints. The

system is evaluated with 1,000 independent probe snippets against a reference database of

10,000 songs, with an average song durat ion of 3.5 minutes. For this configurat ion, the

recognit ion rate is 97.9%.

In [68] (Ke et al., 2005), the spect rogram of each music clip is t reated as a 2-D

image and transforms music ident ificat ion into a corrupted sub-image retrieval problem.

By employing pair-wise boost ing on a large set of Viola-Jones features [132] (Viola and

Jones, 2001), the system learns compact , discriminat ive, local descriptors. The system

is evaluated on 220 songs captured with a very noisy recording setup against a reference

database of 1,862 songs. The precision rate obtained with this configurat ion is 93% with

the corresponding recall value of 80%.

Many other audio fingerprint ing methods based on computer-vision techniques are

proposed in the literature. For example in [138] (Zhu et al., 2010) an audio fingerprint ing

system is proposed to solve the problem of t ime scale modificat ion and pitch shift ing by

extract ing the Scale Invariant Feature Transform (SIFT) features from the spectrogram

image.

3.5.3.3 M achine Lear ning Techniques

The last category of audio fingerprint ing systems is based on machine learning tech-

niques usually exploited for speech processing. These systems generally rely on vector

quant izat ion and HMM modeling.

In [31] (Cremer et al., 2001), the authors exploit low-level signal features standard-

ized in MPEG-7 framework to develop a fingerprint ing system. The system uses loudness,

Spectral Flatness Measure and Spectral Crest Measure as the base feature. The features

extracted from the training data are further processed with vector quant izat ion method to

obtain a set of code vectors by minimizing the Root Mean Square Error criterion. The
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obtained set of code vectors is stored in a database forming a codebook which represents

a part icular class (audio item). The music ident ificat ion task here is a N -class classifica-

t ion problem. For each of the music items in the database one class, i.e. the associated

codebook, is generated.

To ident ify an unknown music item which is included in the reference database, a

sequence of feature vectors is generated from the unknown item and these features are

compared to the codebooks stored in the database. The class with minimal cumulat ive

distance is assigned as the resultant class to the query input . A correct ident ificat ion rate

of 98% is achieved on a test set comprising 15,000 songs. The system runs about 80 t imes

real-t ime on a Pent ium II I 500MHz class PC.

In [24] (Cano et al., 2002) a system based on HMM modeling is proposed. 32 models

called AudioDNA are used to segment theaudio signal into Audio Gens using the Viterbi al-

gorithm. The final fingerprint consists of a sequenceof let ters (the Gens) and their temporal

informat ion (start t ime and durat ion). During the matching process, short subsequences

of AudioDNA from an observed audio st ream are cont inuously ext racted and compared

with the fingerprints in the references database. To reduce the computat ional processing

t ime, st ring search algorithm called FASTA [98] (Pearson and Lipman, 1988) is proposed.

The FASTA algorithm is init ially deployed for bioinformat ics. They report results with a

reference database containing 50,000 music t it les. In a preliminary experiment 12 hours

of cont inuously broadcasted audio of different stat ions are captured to test the recogni-

t ion performance of the system. All the 104 t it les included in the reference database are

detected.

3.5.3.4 Compar ing Syst em Per for mances

In the previous sect ion, we presented some representat ive works of the state of the

art in the field of audio ident ificat ion based on fingerprint ing. The main challenge of these

systems is to create a robust fingerprint against different types of distort ions and to propose

a fast matching method that can sat isfy real-t ime requirements regardless the size of the

reference database. Table 4.1 illust rates the performance of the systems described above
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Systems Accuracy Robustness Granularity Complexity Scalability
Haitsma et al. [57] + NA NA + -
Wang et al. [133] - - - + +

Pinquier et al. [104] + NA + + -
Baluja et al. [12] + + NA - NA

KE et al. [68] - - NA - NA
Cremer et al. [31] + NA NA - -
Cano et al. [24] + + NA - NA

Table 3.1: Performance of audio fingerprint ing systems described in sect ion re-
fch02.sec.5.subsec.3, according to accuracy, robustness, granularity, complexity and
scalability.

Systems Reference database Test database Precision Recall
Haitsma et al. [57] 4 excerpts 4 excerpts 100% 100%
Wang et al. [133] 10,000 songs 250 NA 80%

Pinquier et al. [104] 32 jingles 10h broadcast 100% 98,5%
Baluja et al. [12] 10,000 songs 1,000 songs NA 97,9%

KE et al. [68] 1,862 songs 220 songs 93% 80%
Cremer et al. [31] 15,000 songs 15,000 excerpts NA 98%
Cano et al. [24] 50,000 songs 12h broadcast 100% 100%

Table 3.2: Comparison of the performances of the systems described in 3.5.3, involving
database and corpus sizes, precision and recall.

according to the criteria (accuracy, robustness, granularity, complexity and scalability) de-

scribed in sect ion 3.5.1.

Moreover, different experimental protocols are used in order to evaluate the audio

ident ificat ion systems based on fingerprint ing. Table 4.2 summarizes the evaluat ion pro-

tocols used by the systems described in the previous sect ion. The performance measure

computed to evaluate audio ident ificat ion systems based on fingerprint ing are usually:

- Precision: The number of audio items correct ly detected / Total number of detected

audio items.

- Recall: The number of audio items correct ly detected / The number audio items that

should be detected.

Most of the audio fingerprint ing systems described in tables 4.1 and 4.2 are only

evaluated on a specific type of audio content (song or j ingle) using private corpora which
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makes the comparison between each other impossible. In chapter 6, we will present an

audio fingerprint ing system based on ALISP method to detect simultaneously, songs and

advert isements in radio broadcast st reams. The proposed system will be evaluated during

the 2010 QUAERO evaluat ion campaign [108] (Ramona et al., 2012).

In this sect ion, a system overview of audio ident ificat ion based on fingerprint ing was

described. In fact audio fingerprint ing system should meet certain criteria as granularity

and accuracy. In addit ion the fingerprint must be robust to different degradat ions that

the audio signal could suffer. We also described in this chapter the most representat ive

techniques of the state of the art . These systems used different techniques to extract the

fingerprint and proposed several matching process to search that fingerprint in the references

database.

3.6 C onclusion

In this chapter, the state of the art of the unsupervised techniques for speech process-

ing was reviewed. These techniques are generally requiring decreasing amount of human

expert ise and annotated resources, and increasing amount of unsupervised learning. Then,

the adopted unsupervised technique used in our works was presented. This method is based

on ALISP data-driven segmentat ion which consists of four steps: parameterizat ion, tem-

poral decomposit ion, vector quant izat ion and HMM modeling. Finally, the ALISP-based

speech processing systems are described. These systems are relat ive to very low bite rate

speech coding, speaker verificat ion and forgery and language ident ificat ion.

At this point , ALISP method was only used for speech processing. In this thesis, a

generic audio indexing system based on ALISP segmentat ion isproposed. Themain purpose

of this system is to ret rieve and ident ify all the items present in a radio st reams. These

items are usually: music, commercial, j ingle, speech and nonlinguist ic vocalizat ion (such

as laughter, cough, applause,...). To this end, an audio indexing system based on data-

driven ALISP technique is exploited for radio st reams indexing and used for different audio

indexing tasks, which are audio ident ificat ion, audio mot if discovery, speaker diarizat ion

and nonlinguist ic vocalizat ions detect ion.
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C hapt er 4

D at abases

4.1 Int roduct ion

In this chapter, we present the audio databases exploited during this thesis. A radio

broadcast corpusof radio data is provided by YACAST1. Wehad 26 days of annotated audio

data that separated to t rain the ALISP models and to evaluate the ALISP-based audio

indexing systems. In order to validate our proposal for speaker diarizat ion we part icipated

to the ETAPE’2011 evaluat ion campaign. Moreover, the proposed speaker verificat ion

system is evaluated during the MOBIO’2013 evaluat ion campaign. Finally, we use three

publicly available corpora to evaluate our system for laughter detect ion.

4.2 R ad io Broadcast C orpus

In the framework of the ANR-SurfOnHertz project we had at disposal the YACAST

database. We had 26 days of annotated audio data from 13 French radio stat ions.

Three types of annotat ion are available, music, commercial and speaker turn, de-

scribed below:

• M usic annot at ion: it provides informat ion about the songs present in the radio

st ream. This ground t ruth is given by an XML file for each radio stat ion. The XML

1http://www.yacast.fr/fr/index.html
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structure is given as follows:

< M usicT rack>

< i d > 4134305< / i d>

< idM edia> 553< / idM edia>

< t i t l e > B el l y dancer < / t i t l e >

< ar t i st >Bob Si ncl ar , K evin L y t t l e< / ar t i st >

< album> Born i n 69< / album>

< genr e> Dance< / genr e>

< sousGenr e> House< / sousGenr e>

< st ar t D at e> 2009− 12− 03 23:57:54< / st ar t D at e>

< endDat e> 2009− 12− 04 00:00:47< / endDat e>

< / M usicT rack>

Music annotat ions are available for 10 radio stat ions which are: Virgin Radio, NRJ,

RFM, RTL, RTL2, Cherie FM, FUN Radio, Europe1, RMC, and France Inter.

• Commercial ’s annot at ion: As for music, it provides informat ion about the diffused

commercial in the radio stat ion. Its XML structure is given as follows:

< A dver t i sement >

< i d > 5917143< / i d>

< idM edia> 1< / idM edia>

< name>MUSE CONCERT< / name>

< brand>MUSE CONCERT< / brand>

< adv er t i ser >MUSE CONCERT< / adv er t i ser >

< st ar t D at e> 2009− 12− 01 00:45:08< / st ar t D at e>

< endDat e> 2009− 12− 01 00:45:51< / endDat e>

< / A dver t i sement >

Commercial’s annotat ions are available for the 10 radios given above plus the ” France

Info” radio.
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• Speaker t urn annot at ion: It gives the start and end t ime of each ut terance in the

radio st reams with the ident ity of the corresponding speaker. It s XML st ructure is

given as follows:

< T al kPassage>

< idM edia> 175712< / idM edia>

< mediaName> Fr ance Cul t ur e Temps de par ol e< / mediaName>

< i dSpeaker > 13355< / i dSpeaker >

< speakerName>SARKOZY NICOLAS< / speakerName>

< st ar t D at e> 2010− 06− 27 05:00:31:404 < / st ar t D at e>

< endDat e> 2010− 06− 27 05:00:51:438 < / endDat e>

< / T al kPassage>

This database contains 2,172 different commercials that are broadcasted between 2

and 117 t imes. Themean durat ion of thesecommercials is24 secondsand their total number

in the 26 days of recordings is 14,953. Moreover, 8,694 different songs are present in this

database. The mean durat ion of these songs is 229 seconds (3 minutes and 49 seconds) and

their total number in these recoding is 56,902. Regarding the speaker turn annotat ions,

this database contains 283 annotated speakers with a total durat ion of 42h46min.

The ALISP HMM models are t rained on a part of this corpus. In fact , the ALISP

models are t rained on one day of audio st ream from 12 radios (leading to 288 h). It is

important to insist that the t raining database remains the same for all the proposed audio

indexing systems. This t raining database is referred in this chapter and in the followings

as the ALISP t raining database, for the HMM ALISP models.

Three audio indexing systems are evaluated using this corpus: audio ident ificat ion,

audio mot if discovery and speaker diarizat ion that is also evaluated during theETAPE’2011

evaluat ion campaign.
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genre train dev test sources
TV news 7h30 1h35 1h35 BFM Story, Top Quest ions (LCP)
TV debates 10h30 2h40 2h40 Pile et Face, Ca vous regarde

Entre les lignes (LCP)
TV amusements - 1h05 1h05 La place du village (TV8)
Radio shows 7h50 3h00 3h00 Un temps de Pauchon, Service Public

Le masque et la plume, Comme on nous parle
Le fou du roi

Total 25h30 8h20 8h20 42h10

Table 4.1: ETAPE dataset composit ion [55].

4.3 ETAP E Corpus

ETAPE is an evaluat ion campaign for automat ic speech processing [55] (Gravier el

al., 2012). As illust rated in table 4.1, the ETAPE data are divided into three subsets; t rain,

development and evaluat ion data. Note that the number of hours are reported in terms of

recordings, not speech. As reported, in the ETAPE TV data, about 77% of the recordings

contain speech.

4.4 M OBIO C orpus

In this thesis we are interested by measuring the speech t ime of polit icians in radio

st reams. This task involves two fields of speaker-based processing: speaker ident ificat ion

and speaker diarizat ion. As pointed out before, the speaker diarizat ion system is evaluated

on the YACAST database and during the ETAPE’2011 evaluat ion campaign. Following

the same spirit , the speaker ident ificat ion system is evaluated during the MOBIO’2013

evaluat ion campaign.

The MOBIO database is a bimodal (face/ speaker) database recorded from 152 people.

The database has a female-male rat io of nearly 1:2 (100 males and 52 females) and was

collected from August 2008 to July 2010 in six different sites from five different countries.

In total 12 sessions were captured for each individual. The database was recorded

using two types of mobile devices: mobile phones (NOKIA N93i) and laptop computers
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(standard 2008 MacBook). In this evaluat ion we will only use the mobile phone data with

a sampling rate of 16kHz.

The MOBIO database is a challenging database since the data is acquired on Mobile

devices possibly with real noise, and the speech segments can be very short (less than 2sec).

More technical details about the MOBIO database can be found in [85] (McCool et al.,

2012). Based on the gender of the clients, two different evaluat ion protocols for male and

female were generated. In order to have an unbiased evaluat ion, the clients are split up into

three different sets: t raining, development and evaluat ion sets:

• Tr aining set : The data of this set is used to learn the background parameters of

the algorithm (UBM, subspaces, etc.). They can also be used for score normalizat ion

(cohort , etc.). It is worth not ing that part icipants can use external data in their back-

ground training, however they should explicit ly precise it in their system descript ion.

• D evelopment set : The data of this set is used to tune meta-parameters of the

algorithm (e.g. number of Gaussians, dimension of the subspaces, etc.). For the

enrollment of a client model, 5 audio files of the client are provided, and it is forbidden

to use the informat ion of other clients of the development set . The remaining audio

files of the clients serve as probe files, and likelihood scores have to be computed

between all probe files and all client models. In systems that require score calibrat ion

these scores can be used to t rain the calibrat ion parameters.

• Evaluat ion set : The data of this set is used for comput ing the final evaluat ion

performance. It has a structure similar to the development set . The only difference is

that the file names are anonymized in order to prevent part icipants to opt imize their

system on the evaluat ion set .

Table 4.2 details each of the sets described above. It specifies the number of files and

the number of targets.
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Background Development Evaluat ion
Enrollment Test Enrollment Test

Spks Files Targets Files Spks Files Targets Files Spks Files
MALE 37 7104 24 120 24 2520 38 190 38 3990

FEMALE 13 2496 18 90 18 1890 20 100 20 2100
TOTAL 50 9600 42 210 42 4410 58 290 58 6090

Table 4.2: Number of targets and audio files of the training set , the number of targets
and enrollment audio files, and the number of test segments for the development and the
evaluat ion set , in the MOBIO audio data.

4.5 Laught er Det ect ion C orpus

In order to evaluate the proposed laughter detect ion system, three publicly available

sources are used. These databases are:

• SEMAINE-DB [86] (McLeown et al., 2012): A large audiovisual database recorded

from 150 part icipants. The youngest part icipant is 22, the oldest 60, and the average

age is 32.8 years old. Thirty-eight percent are male. A manual t ranscript ions of

laughter are available. The total durat ion of the database is 15h5min.

• AVLaughterCycle[130] (Urbain et al., 2010): An audiovisual laughter databaserecorded

from 24 subjects. Annotat ions of the recordings, focusing on laughter descript ion

with more than 1,000 spontaneous laughs and 27 acted laughs. The laughter durat ion

ranges from 250ms to 82s.

• Mahnob laughter databases [100] (Petridis et al., 2013): Au audiovisual laughter

databaserecorded from 22 part icipants. Thetotal durat ion of thedatabaseis3h49min.

It contains 563 laughter sequences, 849 speech ut terances, 51 posed laughs, 67 speech

laughs episodes and 167 other vocalizat ions.

4.6 C onclusion

In this chapter, all the corpora used to develop and evaluate our audio indexing

system are described. The radio broadcast corpus is essent ially used to t rain the ALISP
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HMM models and evaluate the ALISP-based audio ident ificat ion, audio mot if discovery and

speaker diarizat ion systems. WhileETAPE and MOBIO databasesare related to evaluat ion

campaigns that we have part icipated. On the other hand the laughter detect ion database

are exploited to evaluate the proposed nonlinguist ic vocalizat ion detect ion system.

In the next chapter, the main contribut ions of our works are presented. These contri-

but ion are related to the ALISP segmenter, approximate matching process of ALISP units

and the generic audio indexing system.
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C hapt er 5

C ont r ibu t ions t o D at a-dr iven

Aud io Indexing

5.1 Int roduct ion

This chapter presents our main contribut ions in this Ph.D, which can be divided into

three parts:

1. Improving the ALISP tools by int roducing a simple method to find stable segments

within the audio data. This technique, referred as spect ral stability segmentat ion, is

replacing the temporal decomposit ion used before for speech processing. Themain ad-

vantage of this method is its computat ion requirements which are very low comparing

to temporal decomposit ion.

2. Proposing an effi cient technique to ret rieve relevant informat ion from ALISP se-

quences using BLAST algorithm [3] (Altschul et al., 1990) and Levenshtein dis-

tance [76] (Levenshtein, 1966), with the goal to speed up the ret rieval process without

affect ing the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,

for radio st reams indexing. This system is applied for different fields of audio indexing

to cover the majority of audio items that could be present in a radio st ream:
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- audio ident ifi cat ion: detect ion of occurrences of a specific audio content (mu-

sic, advert isement , j ingle) in a radio st ream;

- audio mot i f discover y : detect ion of repeat ing objects in audio st reams. (mu-

sic, advert isement , and jingle);

- speaker diar izat ion: segmentat ion of an input audio st ream into homogenous

regions according to speaker’s ident it ies in order to answer the quest ion ” Who

spoke when?” ;

- nonl inguist ic vocal izat ion det ect ion: detect ion of nonlinguist ic sounds such

as laughter, sighs, cough, or hesitat ion;

As pointed out before, ALISP tools have already been used for very low bit -rate

speech coding, speaker and language recognit ion, and voice forgery.

Theobject ive through this thesis is to exploit high-level informat ion provided by data-

driven units in order to build an unified data-driven plat form for audio indexing, ret rieval

and recognit ion. To this end, the ALISP method is used as a data-driven segmentat ion

tool. ALISP method consists in segment ing the audio data in data-driven segments. The

part icularity of ALISP tools is that no textual t ranscript ions are needed during the learning

step, and only raw audio data issuffi cient . In such a way any input audio data is t ransformed

into a sequence of arbit rary symbols. These symbols can be used for indexing purposes.

This chapter is divided into three parts according to our contribut ions. The first

sect ion deals with the improvements made on the ALISP tools. In the second sect ion a new

technique to ret rieve relevant informat ion from ALISP sequences is described. Finally, a

generic audio indexing system, based on data-driven ALISP sequencing, for radio st reams

indexing is int roduced.

5.2 Im proving t he ALISP Segm ent er

ALISP tools are the basis for the data-driven segmenter we are using in this thesis.

One part of our work is related to adapt and improve these tools with regard to the task and

thedatabaseweareusing for audio indexing. The improvements that wehavemadeconcern
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Segmentation 1

Segmentation 2

Maximal Intersection

Figure 5.1: Maximal intersect ion between two segmentat ions.

the init ial segmentat ion made by the temporal decomposit ion. As ment ioned before, the

temporal decomposit ion is used to obtain an init ial segmentat ion of the audio data into

quasi-stat ionary segments. These segments are clustered using vector quant izat ion. Then,

the boundaries together with labels are used as init ial t ranscript ion for Hidden Markov

Modeling.

In this sect ion, other segmentat ion methods (for the HMM models) are explored in

order to study the influence of the init ial segmentat ion on the ALISP training process.

These methods are:

• Uniform segmentat ion;

• Spectral stability segmentat ion;

• Phonet ic segmentat ion.

A set of ALISP HMM models is t rained for each init ial segmentat ion technique using

the training database (288 hours) described in the previous chapter, with 65 units (except

for the phonet ic segmentat ion).

In order to compare the proposed segmentat ion techniques with the temporal decom-

posit ion, the maximal intersect ion segmentat ion measure is computed. This measure is

int roduced in [66] (Joley et al., 2007) in order to extract the maximal intersect ion between

two segmentat ion as shown in figure 5.1.

This comparison is performed at two levels:

1. The init ial segmentat ion provided by each of the proposed segmentat ion technique is

compared to the one provided by the temporal decomposit ion.
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Figure 5.2: Spectrogram of an audio excerpt with two segmentat ions obtained by temporal
decomposit ion (below) and the uniform segmentat ion (above).

2. The segmentat ion given by the ALISP HMM model using the proposed segmentat ion

technique is compared to the one given by the ALISP HMM model using the temporal

decomposit ion. The set of ALISP HMM models is acquired as shown in figure 3.2.

5.2.1 U n iform Segm ent at ion

Generally, the uniform segmentat ion is the most direct approach to segment audio

data. It consists on segment ing the audio data into an equal size frames, for example

MFCCs are calculated for each 20ms frame. This process is similar to performing the vector

quant izat ion direct ly on audio frames. More precisely, after the parameterizat ion step, the

audio signal is divided into an equal size segments. Then a cent roid frame (central frame)

is taken as the representat ive frame of each segment . After that , the vector quant izat ion

and Hidden Markov Modeling are performed, as described in sect ion 3.3, only the cent roid

frames are taken to build the dict ionary. In this work the size of segments is equal to 50ms

(5 frames).
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Figure5.3: Spectrogram of an audio excerpt with two segmentat ions obtained by theALISP
HMM modelsafter re-est imat ion using the temporal decomposit ion (below) and theuniform
segmentat ion (above).

Figure 5.2 shows the spect rogram of an audio excerpt with the init ial segmentat ions

obtained by the temporal decomposit ion and the uniform segmentat ion. The maximal

intersect ion between the init ial segmentat ions of both methods is equal to 24%. This result

was predictable, since the temporal decomposit ion aims to find quasi-stat ionary segments

while in the uniform segmentat ion, the characterist ics of the audio signal are not considered

and the obtained segmentat ion relies only on the size of the segment .

In addit ion, ALISP segmentat ion obtained by the HMM models using the uniform

segmentat ion is computed and compared with the one obtained by the HMM models using

the temporal decomposit ion. Figure 5.3 shows an example of these segmentat ions. The

maximal intersect ion between the segmentat ions provided by both HMM models is equal

to 52%. This result shows that the init ial segmentat ion has a significant effect on the final

ALISP HMM models. On the other hand, the HMM modeling process has increased the

maximal intersect ion from 24% to 52%, leading to an absolute improvement of 28%.
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5.2.2 Sp ect ra l St ab ilit y Segm ent at ion

The goal of this method is to find the stable regions of the audio signal. These regions

represent the spectrally stable segments of the audio data. This process is performed using

the spectral stability curve obtained by comput ing the Euclidian distance between two

successive feature vectors as follows:

d =

vu
u
t

nX

i = 1

(Ci�j − Ci�j + 1)2 (5.1)

where Ci�j and Ci�j + 1 are two successive feature vectors and n is their size. The local

maxima of this curve represent the segment boundaries while the minima represent the

” stable” frames of the audio signal.

Figure 5.4 shows the spect rogram of an audio excerpt with the init ial segmentat ions

obtained by the temporal decomposit ion and the spectral stability segmentat ion. The max-

imal intersect ion between segmentat ions provided by the temporal decomposit ion and the

one obtained by the spectral stability segmentat ion of the ALISP training database is 78%.

This result shows that the temporal decomposit ion method could bereplaced by thespectral

stability segmentat ion which is much easier to compute.

Figure5.5 shows thespectrogram of an audio excerpt with thesegmentat ionsprovided

by the ALISP HMM models using the temporal decomposit ion and the spect ral stability

segmentat ion. The second comparison between HMM models using both techniques gives a

89% of maximal intersect ion, which leads to an absolute improvement of 11%. This result

confirms our previous assumpt ion that the spect ral stability segmentat ion is an appropriate

method to provide the init ial segmentat ion.

5.2.3 P honet ic Segm ent at ion

A phonet ic segmentat ion method consists of using a HMM phonet ic model to init ially

segment the audio data. This method is used to find out wether a phonet ic model could be

used for audio indexing purposes such as audio ident ificat ion or audio mot if discovery.

The HMM phonet ic models are t rained using ESTER database (French radio broad-
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Figure 5.4: Spectrogram of an audio excerpt with two init ial segmentat ions obtained by
temporal decomposit ion (below) and the spectral stability segmentat ion (above).
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Figure 5.5: Spectrogram of an audio excerpt with two segmentat ions obtained by the AL-
ISP HMM models using the temporal decomposit ion (below) and the spectral stability
segmentat ion (above).
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Figure 5.6: Spectrogram of an audio excerpt with two init ial segmentat ions provided by
temporal decomposit ion (below) and the phonet ic segmentat ion (above).

cast database) [49] (Galliano et al., 2009). As for ALISP units, each phone (41 phones)

is modeled by a left -right HMM having three emit t ing states with no skips. The phonet ic

segmentat ion is replacing the temporal decomposit ion and the vector quant izat ion. In fact ,

the phonet ic segmentat ion is used as init ial t ranscript ion for Hidden Markov Modeling step

of the ALISP modeling.

Figure 5.6 shows the spect rogram of an audio excerpt with the init ial segmentat ions

obtained by the temporal decomposit ion and the phonet ic segmentat ion. The maximal

intersect ion between the init ial segmentat ions provided by both techniques is equal to 21%.

This result is predictable given that the phonet ic models are t rained only on speech. In fact ,

using phone models on audio items other than speech (such as music and advert isement)

could lead to a random segmentat ion.

In the next experience, the segmentat ions provided by the ALISP HMM models using

both techniques are compared. Figure 5.7 shows the spectrogram of an audio excerpt with

the segmentat ions provided by the ALISP HMM models using the temporal decomposit ion
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Figure5.7: Spectrogram of an audio excerpt with two segmentat ions provided by theALISP
HMM models using the temporal decomposit ion (below) and the phonet ic segmentat ion
(above).

and the phonet ic segmentat ion. The maximal intersect ion between both segmentat ions is

equal to 32%, which gives an absolute improvement of 9%. This result shows that the use

of a phonet ic segmentat ion as an init ial segmentat ion leads to a different ALISP HMM

models.

5.2.4 C om par ing Segm ent at ion Techn iques

In this part , a comparison between the different segmentat ion techniques is pre-

sented. Table 5.1 shows the maximal intersect ion between each of the proposed segmen-

tat ion method and the temporal decomposit ion for the init ial segmentat ion and HMM

segmentat ion, using the 288-hours radio broadcast database to t rain the final ALISP HMM

models.

This table shows that the spect ral stability technique provides the nearest segmenta-

t ion to the one provided by the temporal decomposit ion. On the other hand, phonet ic and

uniform segmentat ions are not appropriate to obtain a segmentat ion of the audio data into
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Method Init ial segmentat ion HMM segmentat ion
Uniform segmentat ion 24 52

Spectral stability segmentat ion 78 89
Phonet ic segmentat ion 21 32

Table 5.1: Maximal intersect ion between segmentat ions provided from each of the pro-
posed methods and the temporal decomposit ion for the init ial segmentat ion and the HMM
segmentat ion.

quasi-stat ionary segments.

In this sect ion, the temporal decomposit ion was compared to three different segmen-

tat ion techniques in terms of init ial segmentat ion and HMM modeling. In the next chapter,

the influence of the four segmentat ion methods on the performances of the proposed audio

indexing system will be carried out .

5.3 Approxim at e M at ch ing P rocess of ALISP Sequences

As ment ioned before, the proposed audio indexing system is composed of three mod-

ules: automat ic acquisit ion and modeling of ALISP units, segmentat ion module and com-

parison module. In the previous sect ion, we presented our cont ribut ions related to the first

and second modules. In this sect ion, a new technique for approximate matching of AL-

ISP sequences is proposed. This technique is used to compare relevant informat ion from

ALISP t ranscript ions using BLAST algorithm [3], (Altschul et al., 1990) and Levenshtein

distance [76] (Levenshtein, 1966).

5.3.1 ALISP Sequencing

ALISP unit recognit ion involves the transformat ion of audio data into a sequence of

ALISP units. The most likely ALISP sequence given a sequence of feature Y = y1�����yT

is found by searching all possible state sequences arising from all possible ALISP units

sequences for the sequence that was most likely to have generated the observed data Y . An

effi cient way to solve this problem is to use Viterbi algorithm [137] (Young et al., 1989).

In the previous sect ion, we show that the temporal decomposit ion could be replaced
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by the spectral stability segmentat ion. Therefore, a new scheme to acquire and model

ALISP units is presented in figure 5.8.

5.3.2 Sim ilar it y M easure and Search ing M et hod

An important part of the proposed audio indexing system is the matching process. As

the main requirement of the proposed audio indexing system is robustness against several

types of signal distort ions, the actual ALISP unit sequences extracted from an observed

signal will not be fully ident ical to the reference database. Two techniques are developed

to perform the approximate matching process of ALISP sequences. The first one is related

to the baseline method where a full search (or brute search) is applied, while the second

technique is inspired form the Basic Local Alignment Search Tool (BLAST) [3] (Altschul

et al., 1990), widely used in bioinformat ics.

5.3.2.1 Ful l Sear ch

The full search module compares the ALISP sequences extracted from observed audio

signal against reference ALISP transcript ions stored in the reference database. First , the

t ranscript ions of each reference advert isement (the ones that we are going to look for in the

newly incoming audio st ream) into a sequence of reference ALISP symbols has to be done.

Then the test audio st ream is t ransformed into a sequence of ALISP symbols. Once the

ALISP transcript ions of reference and test data are done, we can proceed to the matching

step.

The similarity measure used to compare ALISP transcript ions is the Levenshtein

distance [76] (Levenshtein, 1966). The Levenshtein distance is a special case of an edit

distance. The edit distance between two strings of characters is the number of operat ions

required to t ransform one of them into the other. When edit operat ions are limited to

insert ion, delet ion and subst itut ion this distance is called Levenshtein distance. At this

stage the matching component used in our system is very elementary. In each step we move

on by one ALISP unit in the test st ream and Levenshtein distance is computed between

reference advert isement t ranscript ion and the transcript ion of the selected excerpt from the
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Spectral Stability Segmentation

Vector Quantization
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HMM Modeling
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Figure 5.8: I llust rat ion of the different steps of the ALISP units acquisit ion and their HMM
modeling.



5.3. A PPROX I M AT E M AT CH I N G PROCESS OF A L I SP SEQU EN CES 100

audio st ream. At the point when the Levenshtein distance is below a predefined threshold

it means that we have an overlap with the reference. Then we cont inue the Levenshtein

distance comparison by stepping on by one ALISP symbol unt il the Levenshtein distance

increases relat ively to its value in the previous step. This point indicates the opt imal match,

where the ent ire reference has been detected.

In order to speed up the search stage, an alternat ive approximate matching method

is developed. Approximate st ring matching algorithms are a tradit ional area of study in

computer science. With the huge increase of nucleot ide and protein sequence data produced

by various genome projects, fast st ring matching algorithms are developed. Our approxi-

mate st ring matching algorithm is based on the BLAST technique [3] (Altschul et al., 1990),

widely used in bioinformat ics.

5.3.2.2 B LA ST A lgor i t hm

The BLAST [3] (Altschul et al., 1990) algorithm can be summarized as follows. It

is an algorithm for comparing primary biological sequence informat ion, such as amino-acid

sequences of different proteins or the nucleot ides of DNA sequences. A BLAST search

enables to compare a query sequence with a library or database of sequences, and ident ify

library sequences that resemble the query sequence above a certain threshold. Note that

BLAST considers that the library is formed by one long st ring sequence.

Let q be the querying string sequence and D the database. From the string q a

subst ring w is considered. The first step in the algorithm is to build a lookup table (LUT)

for all w-length words in D and to let the ent ries in that LUT point to the posit ion where

w-length word occurs. In the second step, for each w-length subst ring in q, a list of seeds is

generated using the LUT. This list contains all w-length seeds with a similarity score with

the relat ive substring greater than a certain threshold T. The final step of the algorithm

consists of extending each candidate seed on either side to find the opt imal alignment with

the querying string sequence q. A candidate is considered as the opt imal alignment if it s

similarity score with the query q is greater than a certain threshold S.

In our case the query sequence is a long sequence of ALISP symbols where we are
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looking for occurrences of reference advert isements and songs. In order to deal with this,

the BLAST algorithm was adapted as follows.

5.3.2.3 A pprox imat e M at ching Process of A L I SP Sequences

The approximate matching process depicted in figure 5.9 is proposed. First , a LUT is

created by all possible ALISP sequences of w units but with an off set of k units that occur

in the ALISP transcript ions of the reference database. This database contains all the audio

item references that we can ident ify, such as songs, advert isements, speech segments and

audio mot ifs.

Each entry in the LUT points to the audio item reference and the posit ion in that

item where the respect ive ALISP unit sequence occurs. Since an ALISP unit sequence can

occur at mult iple posit ions in mult iple audio items the pointers are stored in a linked list .

Therefore one ALISP sequence can generate mult iple pointers and posit ions.
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Figure 5.9: Approximate matching process of an ALISP query t ranscript ion using a lookup
table (LUT) and a reference database containing N items.



5.4. GEN ER I C A L I SP-B A SED A U D I O I N D EX I N G SY ST EM 102

Then, theALISP transcript ion iscomputed from the query audio st ream, and for each

subsequenceof w unitswith an offset of k unitsof that query a set of candidatesubsequences

is found using the LUT. In contrast to the original BLAST algorithm, we are not looking

to the exact occurrence of the subsequence of w units in the LUT. We are rather searching

the subsequences that have some differences with w units subsequence. This operat ion is

mot ivated by the fact that the assumpt ion that at least one subsequence among the query

audio st ream is the same as its original, is not respected if the same degradat ions affect the

ent ire block.

From this set of subsequences, a list of candidate references and the posit ion where

the candidate subsequences occur in that reference is generated for each subsequence of the

query data.

Since our reference database is formed by each ALISP transcript ion of the reference

audio item (not one st ring sequence as in BLAST), the final step of the matching process

is different from the BLAST one. It consists of a simple comparison between the ALISP

t ranscript ion of thequery audio st ream and thecorresponding candidatesreferenceswith the

Levenshtein distance [76] (Levenshtein, 1966). Thecandidateaudio item selected as thebest

match of the unknown audio st ream is the reference having the lowest Levenshtein distance

among all candidates and providing a Levenshtein distance below a certain threshold.

The approximatematching of ALISP sequences is used to ident ify an audio items such

as commercial, music, audio mot if or speech segment . This module is very crucial since it

defines whether the proposed audio indexing system follows the real-t ime requirements or

not .

5.4 G ener ic ALISP -based Aud io Indexing Syst em

The next main contribut ion of this thesis is the exploitat ion of the ALISP approach

and the proposed approximate matching process as an unified method for audio indexing

and recognit ion. There are many exist ing applicat ions for audio processing, such as song

classificat ion, advert isement (commercial) detect ion, speaker diarizat ion and ident ificat ion,

with varioussystemsbeing developed to automat ically analyzeand summarizeaudio content
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for indexing and ret rieval purposes. With these systems audio data are t reated different ly

depending on the applicat ions. For example, song ident ificat ion systems are generally based

on audio fingerprint ing such as SHAZAM and Philips systems. While speaker diarizat ion

and ident ificat ion systems are using cepst ral features and machine learning techniques such

as Gaussian Mixture Models and Hidden Markov Models. The diversity of audio indexing

techniques makes unsuitable the simultaneous treatment of audio st reams where different

types of audio (music, commercials, j ingles, speech, laughter, etc.) coexist . Hence the need

for a generic system portable across domains.

One of the cont ribut ions of this thesis is the exploitat ion of ALISP approach as a

generic method for audio indexing and recognit ion. As pointed before, ALISP is a data-

driven technique that t ransforms any input audio data into a sequence of arbit rary symbols.

These symbols can be used for indexing purposes.

5.4.1 Syst em Overview

The main purpose of our works is to ret rieve and ident ify the majority of audio items

present in a radio st reams. These items are usually: music, commercial, j ingle, speech and

nonlinguist ic vocalizat ion (laughter, cough, sight ,...). To this end, a generic audio indexing

system based on data-driven ALISP technique is developed and exploited for radio st reams

indexing and applied for different fields to cover the different items that could be present

in a radio st ream.

Figure 5.10 shows the proposed ALISP-based system overview. As shown in this

figure, the proposed audio indexing system is composed of four sub-systems based on the

same ALISP sequencing method:

• A udio ident ifi cat ion: detect ion of occurrences of a specific audio content (music,

advert isement , jingle) in a radio st ream.

• A udio mot i f discover y : detect ion of repeat ing objects in audio st reams.

• Speaker diar izat ion: segmentat ion of an input audio st ream into homogenous re-

gions according to speaker’s ident it ies in order to answer the quest ion ” Who spoke
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ALISP Sequencing
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 H1 H2 HP HK..................................H3 Hp Hl Hg Hq Hc HR Hp Hq........................Hv Hg HJ HK 

Song 1 Ad 1 Song 2

Audio Motif Discovery

Song 1 Ad 1 Song 2 Motif 1

Speaker Diariza tion

Song 1 Ad 1 Song 2Motif 1 Motif 1

Motif 1

Spk 1 Spk 2

Nonlinguis tic Vocalizations Detection

Song 1 Ad 1 Song 2Motif 1 Motif 1Laughter cough

Spk 1 Spk 3

Spk 1 Spk 2 Spk 1 Spk 3

Figure 5.10: ALISP-based audio indexing system.
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when?”

• N onl inguist ic vocal izat ion det ect ion: detect ion of nonlinguist ic sounds such as

laughter, sighs, cough, or hesitat ion.

Speaker diarizat ion should only be applied to speech data. Therefore, performing

the audio ident ificat ion and audio mot if discovery at the beginning is important to remove

music and advert isement data. The ALISP-based audio indexing system is composed of 4

sub-systems. Although these systems are different , they are using a common architecture

based on ALISP method. This architecture is composed of two modules: ALISP sequencing

and approximate matching of ALISP sequences.

5.4.2 Aud io Indexing: F ields of Int erest

As pointed out before, the audio indexing system, based on ALISP sequencing and

approximate matching technique, is composed of four sub-systems. These systems are

chosen to cover the majority of audio items that could be present is a radio broadcast

st ream.

5.4.2.1 A udio I dent ifi cat ion

As shown in figure 5.11, the proposed system uses automat ically acquired units

provided by ALISP tools to search for advert isements and music pieces in radio broad-

cast st reams. In this sense ALISP transcript ions of advert isements and songs, present in

the reference database, are computed using HMM models provided by ALISP tools and

Viterbi algorithm and compared to t ranscript ions of the radio st ream using the BLAST

algorithm [3] (Altschul et al., 1990).

5.4.2.2 A udio M ot i f D iscovery

Radio st reams often contain redundant parts. Commercials on radio or television

stat ions, songs on music channels and jingles broadcasted before a specific radio or TV

show, are some of the repeat ing objects in mult imedia st reams. The ALISP-based audio
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Figure 5.11: Audio ident ificat ion system based on ALISP fingerprint ing.



5.4. GEN ER I C A L I SP-B A SED A U D I O I N D EX I N G SY ST EM 107

indexing system is used to detect repeat ing objects in audio st reams. In order to resolve this

problem, the ARGOS segmentat ion framework proposed in [61] (Herley, 2006) is used. This

framework is combined with ALISP sequencing technique to build an audio mot if detect ion

system. The BLAST algorithm is applied to speed up the approximate st ring matching to

find the repeat ing items in the audio st reams.

As was previously ment ioned, the data-driven ALISP technique converts the raw

audio data into a sequence of symbols. These symbols represent the fingerprint used to

detect the repeat ing items in audio st reams. Thus, the problem of audio mot if detect ion is

t ransformed into a string matching problem.

5.4.2.3 Speaker D iar izat ion

In our work, we are interested in speaker diarizat ion for TV and radio shows which

include various acoust ic sources such as studio/ telephone speech, music, or speech over

music. Usually these shows keep the same structure with same presenters and jingles. This

redundancy is used in order to improve the performance of the speaker diarizat ion system.

The main idea of our system is to compare the show to be segmented with the same

show broadcasted before in order to find the common audio segments. This operat ion is

performed via audio fingerprint ing which involves the ext ract ion of a fingerprint for each

audio document stored in a reference database. An unlabeled audio excerpt is ident ified by

comparing its fingerprint with those of the reference database.

The referencedatabase isbuilt from audio segments provided by annotated databases.

Thesesegments represent speech sentences, silence, noise, j ingles, music and advert isements.

Then ALISP t ranscript ions of reference segments are computed using HMMs provided by

the ALISP tools and compared to the transcript ions of the TV and radio shows st ream

using the BLAST algorithm.

5.4.2.4 N onl inguist ic Vocal izat ions D et ect ion

Despite the best efforts made over past two decades in speech recognit ion systems,

detect ion of nonlinguist ic vocalizat ions such as laughter, sighs, breathing, or hesitat ion
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sounds is st ill a challenging task. Such vocalizat ions are most frequent vocalizat ions in our

daily conversat ional speech.

Laughter isoneof thecomplex nonlinguist ic vocalizat ions that conveysa widerangeof

messages with different meanings. Most of previous studies on automat ic laughter detect ion

from audio arebased on framelevel acoust ic featuresasparameters to t rain machine learning

techniques, such as Gaussian Mixture Models and Support Vector Machines.

A generic methodology to detect nonlinguist ic vocalizat ions using ALISP method

is proposed. Using Maximum Likelihood Linear Regression and Maximum A Posterior

techniques, the proposed method adapts ALISP models, which then facilitate detect ion of

local regions of nonlinguist ic vocalizat ions with the standard Viterbi decoding algorithm.

Moreover, a simple majority vot ing scheme, using a sliding window on ALISP sequences,

can be helpful in eliminat ing out liers from the Viterbi-predicted sequence automat ically.

The evaluat ion of the proposed system is performed on laughter detect ion.

5.5 C onclusion

In this chapter, the main contribut ions of our works are presented. First we described

how theALISP segmenter is improved using other techniques to provide init ial segmentat ion

to init ialize the ALISP HMM models. These techniques were described and compared with

the temporal decomposit ion. The comparison of the segmentat ion at tained by the spectral

stability method and the temporal decomposit ion showed that there is a great correlat ion

between both segmentat ions.

In the second part of this chapter, a new technique to extract relevant informat ion

from ALISP sequences ispresented. Theproposed approximatematching process is inspired

form BLAST technique, widely exploited in bioinformat ics, and the Levenshtein distance,

used to compare ALISP transcript ions.

The third contribut ion is related to the generic ALISP-based audio indexing system.

This system is composed of four sub-systems which are: audio ident ificat ion, audio mot if

discovery, speaker diarizat ion and nonlinguist ic vocalizat ions detect ion. All these systems

are using a common architecture based on ALISP method.
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In the next chapter we treat the first task of audio indexing which is audio ident i-

ficat ion. Audio ident ificat ion consists of detect ing and locat ing occurrences of a specific

audio content (music, advert isement , j ingle,..) in audio streams or audio databases. The

proposed ALISP-based system will be evaluated on the radio broadcast corpus and during

the QUAERO project evaluat ion campaign.
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C hapt er 6

Aud io Ident ificat ion

6.1 Int roduct ion

In this chapter we present the ALISP-based audio indexing system applied to the

audio ident ificat ion task. Audio ident ificat ion consists of detect ing and locat ing occur-

rences of a specific audio content (music, advert isement , jingle,..) in audio st reams or audio

databases. Therearemany potent ial applicat ions of audio ident ificat ion, most have recent ly

emerged. We can dist inguish three categories according the applicat ion to which they are

intended [15] (Betser, 2008):

- Seeking infor mat ion in an audio document : ident ify the tracks of a CD audio

from a reference database of CDs, or more generally ret rieve metadata of an unknown

audio file, delete audio duplicate in a database, ident ify a ” live” song (broadcasted on

the radio) via a mobile phone or any other recording device, etc.

- A udio st r uct ur ing: search for occurrences like jingles as a first step for the analysis

of radio or television contents (informat ion ret rieval, summarizat ion).

- M edia monit or ing: confirm for advert isers if theplanned advert isements were really

broadcasted, detect ion of illegal use of mult imedia content , etc.

Performing the audio ident ificat ion task manually is quite tedious. Moreover, man-

ual methods are slow and prone to errors. In automated systems, audio ident ificat ion
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is typically accomplished by audio watermarking [30] (Cox et al., 1996) or audio finger-

print ing [25] (Cano et al., 2005). They are based on two different principles. The first

one is intended to hide the essent ial informat ion of ident ificat ion in the audio document .

In the second technique a signature (or fingerprint ) is ext racted from the audio content

and compared to the reference fingerprints stored in a database. An audio fingerprint is

a compact content -based signature that represents an audio recording. We are interested

in methods based on audio fingerprint ing, which are more appropriate for radio broadcast

monitoring [25] (Cano et al., 2005).

This chapter is organized as follows. The ALISP-based audio fingerprint ing system

is presented in sect ion 6.2. Then the experimental setup to evaluate the proposed systems

is described in sect ion 6.3. Studies about the number of Gaussian components, number of

ALISP units and the method used for the init ial segmentat ion are, respect ively, reported

in sect ion 6.4, sect ion 6.5 and sect ion 6.6. Finally a comparison of the performances of our

system with the systems part icipat ing in the 2010 QUAERO evaluat ion campaign is given.

6.2 ALISP -based Aud io F ingerpr int ing

Radio broadcast monitoring consist on keeping a record of the t iming and the oc-

currence of an audio content . It has an important role in the media industry. Generally,

radio stat ions must pay royalt ies for the music they play. Even for radio stat ions which

can play music for free, many companies are interested in detect ing these music t racks for

stat ist ics purposes. Moreover advert isers are willing to monitor radio st reams to verify the

fulfillment of contracts by the broadcast channel for broadcast ing the specific commercial

between the st ipulated t imes. Many commercial systems are providing these services, such

as Broadcast Data System(www.bdsonline.com), Music Reporter(www.musicreporter.net ),

Audible Magic (www.audiblemagic.com), and YACAST(www.yacast .fr).

Our proposed system is used to search for advert isements and songs in radio broad-

cast st reams. In this sense ALISP transcript ions of advert isements and songs are computed

using HMM models provided by ALISP tools and Viterbi algorithm and compared to t ran-

script ions of the radio st ream using the BLAST algorithm [3] (Altschul et al., 1990).



6.3. EX PER I M EN TA L SET U P 112

The ALISP HMM models are first t rained on the ALISP training database (288h),

described in sect ion 4.2, the number of ALISP units is 65 (64+ Silence model) and the aver-

age length per model is around 100ms. Compared to [57] (Haitsma and Kalker, 2002) which

extracts 32-bit vector per frame, leading to 5,160 vectors per minute, ALISP methodology

provides a very compact way to represent the audio data with 600 ALISP units per minute.

Moreover our fingerprint ing method is as compact as the audioDNA described in [24] (Cano

et al., 2002) which extracts 800 gens per minute.

Figure 6.1 shows a spectrogram of excerpts from a reference advert isement and two

spectrograms of the same advert isement st reamed on two different radios with their ALISP

t ranscript ions. Note the presence of some differences between ALISP transcript ions of the

three advert isements. These differences could be explained by the similarity between some

ALISP classes which leads to confusion during the recognit ion of these classes.

6.3 Exp er im ent al Set up

The ALISP-based audio ident ificat ion system is used to search for advert isements and

songs in radio broadcasted st reams. To evaluate this system, two experimental protocols are

proposed. Thefirst protocol, denoted theSurfOnHertz protocol, isused for the ident ificat ion

of advert isements and songs in radio st reams. It corresponds to 12 annotated days of

radio broadcast provided by the framework of the ANR-SurfOnHertz project and divided

in different parts as follows:

• D evelopment dat abase: five days of audio st ream are used to study the stability

of ALISP transcript ions of advert isements and to set the decision threshold for the

Levenshtein distance.

• R eference dat abase: it contains 2,172 advert isements and 7,000 songs leading to

9,172 reference items. The advert isement references correspond to the whole commer-

cial item while only a one-minute-long excerpts of each reference song is kept . The

posit ion of these signatures within the tracks is unknown. The radio st ream from

whom a given reference was extracted is not part of the evaluat ion set .
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Figure 6.1: Advert isement spectrograms, taken from the radio broadcast corpus, with their
ALISP transcript ions: first spectrogram is an excerpt from the reference advert isement ,
second one represents the same excerpt from French virgin radio and the last one represent
the same excerpt from French NRJ radio.
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• Evaluat ion dat abase: seven days of audio st ream from three French radios, these

days are different from the ones used in the development database and the ALISP

training database. This database contains 1,456 advert isements and 4880 songs.

The experimental protocol described above is also used to fix some parameters of the

ALISP-based audio ident ificat ion system:

• Number of Gaussian components: two ALISP HMM models are t rained. The first is

a mono-Gaussian model where each state is modeled with one Gaussian component .

While the second is a mult i-Gaussian model t rained using the techniques described in

sect ion 3.3.

• Number of ALISP units: the init ial number of ALISP unitswas65 (64+ silencemodel).

In order to find out if the set of possible ALISP units can be reduced, three new sets

of ALISP models are t rained and evaluated (using the same data) with 9, 17 and 33

units.

• Method of init ial segmentat ion: as described in sect ion 5.2, different methods for

the init ial segmentat ion of the ALISP training database are compared: temporal

decomposit ion, uniform segmentat ion, spectral stability segmentat ion and phonet ic

segmentat ion.

Like the majority of the evaluat ions of audio fingerprint ing systems, the evaluat ion

protocol described above is applied on private corpora. Therefore a second experiment

is done using a public evaluat ion framework for audio fingerprint ing technologies. This

framework is proposed by Ramona et al. [108] (Ramona et al., 2012) during the 2010

evaluat ion campaign of the QUAERO project (ht tp:/ / www.quaero.org). It is based on a

scenario involving thedetect ion of songsexcerpts in broadcast radio st reams. Theevaluat ion

protocol for this experiment on the QUAERO database is the following:

• Reference database : it contains only the 7,309 one-minute-long excerpts of songs.

• Evaluat ion database : It consists of the recording of 7 days of the French radio st ream

RTL captured and saved on disk in 5 minutes chunks. Therefore, the total durat ion
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Day Number of t racks
1 67
2 63
3 71
4 66
5 63
6 120
7 101

Table 6.1: Number of music t rack present in each day in the QUAERO evaluat ion set .

reaches 7 days x 24 hours per day = 168 hours. All of it was annotated by manually

checking theoutput of an audio ident ificat ion engine (with precision around 1 second).

This database contains 459 music t racks dist ributed as it shown in table 6.1.

It is important to remind that all the sets of ALISP HMM models are t rained on the

ALISP training database which contains 288 hours from 12 French radios.

6.4 N umb er of G aussian C om p onent s

In order to evaluate the contribut ion of the dynamic mixture split t ing described in

sect ion 3.3.4, two sets of ALISP HMM models are t rained with mono and mult i-Gaussian

models. The number of ALISP units for both models is 65 and temporal decomposit ion is

used for init ial segmentat ion. For the mult i-Gaussian HMM model the number of Gaussian

components per mixture is shown in figure 6.2. The mean value of Gaussian components

used per mixture is 6.

The evaluat ion of the proposed audio ident ificat ion system is performed using both

ALISP HMM models to find out whether the use of mult i-Gaussian models could improve

the accuracy of the system. But before that , the stability of ALISP transcript ions of

advert isement is studied. As shown in figure 6.1, the ALISP transcript ions of the same

advert isements broadcasted on different radios is different . Therefore a comparison between

advert isementspresent in thedevelopment data set isperformed to fix thedecision threshold

of the Levenshtein distance.
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Figure6.2: Number of Gaussian components used per mixture for themult i-Gaussian HMM
model t rained on the ALISP training database (288h).
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6.4.1 T hreshold Set t ing

To study the stability of ALISP transcript ions and determine the decision threshold,

two experiments are realized on the mono and mult i-Gaussian models obtained after the

dynamic split of states mixtures on the development database:

• Compare ALISP transcript ions of the reference advert isements to the commercials in

the radio recording (int ra-pub experience).

• Compare ALISP transcript ions of reference advert isements to data that does not

contain advert isements (ext ra-pub experience).

Figure 6.3 shows the dist ribut ion of the Levenshtein distances between ALISP t ran-

script ions of references and advert isements in the radio recordings (denoted as mono-int ra-

pub and mult i-int ra-pub) and the dist ribut ion of the Levenshtein distances between ALISP

t ranscript ions of references and data that do not contain advert isements (denoted as mono-

extra-pub and mult i-ext ra-pub).

Note that for both sets of HMM models, the two dist ribut ions (int ra-pub and ext ra-

pub) for the Levenshtein distance are disjoint . This result means that by choosing an

appropriate decision threshold for the Levenshtein distance, there is a big chance that all

advert isements in the radio st reams can be detected.

As commonly observed for speech recognit ion systems, at a phone-like level with

current ALISP models the t ranscript ions of audio data are not perfect . Therefore, when

two different repet it ions of the same advert isement are analyzed there are differences (that

is the reason why we need to apply the Levenshtein distance). The number of t ranscript ion

errors is proport ional to the length of the advert isement . For long advert isement , there is

a larger risk to find more t ranscript ion errors that lead to a bigger Levenshtein distance.

On the other side, this study shows that ALISP transcript ions made with mult i-Gaussian

models are more precise than those made with mono-Gaussian models.

Once we have tuned the threshold of the Levenshtein distance on the development

set , we can proceed to evaluate the proposed audio ident ificat ion system with mono and

mult i-Gaussian models.
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Figure 6.3: Dist ribut ion of the Levenshtein distance between ALISP transcript ions of refer-
ences and advert isements in the development radio recordings for the mono-Gaussian model
(denoted as mono-int ra-pub) and the mult i-Gaussian model (denoted as mult i-ext ra-pub)
and dist ribut ion of the Levenshtein distance between ALISP transcript ions of references
and data that do not contain advert isements for mono-Gaussian model (denoted as mono-
extra-pub) and mult i-Gaussian model (denoted as mult i-extra-pub).
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Item R% P% Missed item False alarms
Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Advert isement 98 98 93 100 27 27 102 0
Songs 92 92 96 100 389 389 176 0

All 93 93 95 100 416 416 278 0

Table 6.2: Precision (P%), recall value (R%), number of missed ads and number of false
alarms found for each audio item. Results for the SurfOnHertz protocol (Seven days of
audio st ream for 3 French radios, containing 1,456 advert isements and 4,880 songs from
YACAST database) with a threshold of 0.75 for mono-Gaussian model (Exp1) and 0.65 for
mult i-Gaussian model (Exp2).

6.4.2 Exp er im ent a l R esu lt s

To detect commercials and songs in the test database we proceed as follows:

• Transcript ion of reference items by 65 ALISP HMM models (acquired from the ALISP

development data set).

• Transcript ion of the test data to obtain its ALISP sequences.

• Set t ing the decision threshold on the development set of the Levenshtein distance to

0.75 for mono-Gaussian model and 0.65 for mult i-Gaussian model to be sure to detect

all items.

• Searching for each ALISP transcript ion of audio items in the ALISP transcript ions of

each test audio st ream using the proposed approximate matching process describes in

sect ion 5.3.

In order to evaluate the detect ion performance precision (P%) and recall (R%) rates

are given in table 6.2:

• Recall : The number of items correct ly detected / The number items that should be

detected.

• Precision : The number of items correct ly detected / Total number of detected items.

Table 6.2 shows that for both sets of HMM models, the system was not able to detect

416 audio items. These missed items belong to 389 songs and 27 commercials.
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For music ident ificat ion, 372 tracks are related to songs that have a different version

from the one present in the reference database. For example, 302 live version songs from

the test radio st ream correspond to the studio version in the references. For commercial

ident ificat ion, the 27 missed advert isements are different from the reference ones. For exam-

ple, there are 9 commercials spoken by different speakers who say the same things. These

results show that the proposed system allows us to find errors in the manual annotat ions

of songs and advert isements.

Moreover, we note the presence of 278 false alarms for the mono-Gaussian HMM

models, while with the mult i-Gaussian HMM models we observe no false alarms. This

result proves that using one Gaussian per state to model 288 hours of audio data is not

suffi cient and could lead to many errors of ident ificat ion. Hence, the dynamic split of the

states mixtures during the HMM modeling step of the ALISP units is a good solut ion to

overcome this problem.

Related to the processing t ime, the computat ional complexity of the system is mainly

limited to thesearch for theclosest ALISP sequence through theLevenshtein distance. With

the 7,000 songs and 2,172 commercials database, the system runs at a speed of 0.57 per

second of signal using the65 ALISP modelson a 3.00GHz Intel Core2 Duo 4GB RAM, while

for the brute search described in sect ion 5.3.2.1 the systems runs at a speed of 6 seconds per

second of signal. It ’s important to note that the approximate matching technique algorithm

speeds up the ALISP t ranscript ions search without affect ing the ident ificat ion scores.

6.5 N umb er of ALISP U nit s

In the previous sect ion, the number of ALISP units was 65 (64+ silence model). In

order to find out if the set of possible ALISP units can be reduced to speed up the matching

process, three new sets of ALISP models are t rained and evaluated (using the same data)

with 9, 17 and 33 units. All thesemodelsare t rained using themult i-Gaussian configurat ion.

The first part of this sect ion deals with the stability of the ALISP transcript ions for

each set of ALISP models. Then the results obtained in terms of precision and recall are

presented.
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6.5.1 T hreshold Set t ing

As for the set t ing of the number of Gaussian components, two experiences are realized

in order to study the stability of the ALISP transcript ions for each set of ALISP models.

Figure 6.4 shows the dist ribut ion of the Levenshtein distance between ALISP tran-

script ions of references and advert isements in the radio recordings (denoted as int ra-pub)

and the dist ribut ion of the Levenshtein distance between ALISP transcript ions of references

and data that do not contain advert isements (denoted as extra-pub), for the four sets of

ALISP models.

Note that for 17, 33 and 65 ALISP models, the two dist ribut ions (int ra-pub and

extra-pub) for the Levenshtein distance are disjoint . This result means that by choosing

an appropriate decision threshold for the Levenshtein distance, there is a big chance that

all items in radio st reams can be detected. Whereas, for the 9 ALISP models the two

dist ribut ions overlap. From theses dist ribut ions, the Levenshtein distance thresholds were

set to 0.35, 0.45, 0.55 and 0.65 respect ively for the sets const ituted from of 9, 17, 33 and 65

ALISP models.

6.5.2 Exp er im ent a l R esu lt s

In order to evaluate the ALISP-based audio ident ificat ion system performance recall

(R%) and precision (P%) rates are used. Table 6.3 shows that same results are obtained

in terms of missed items as for the mono/ mult i-Gaussian system described in the previous

sect ion. In fact , the ALISP-based systems were not able to detect 416 audio items using

the four ALISP sets. These missed items belong to 389 songs and 27 commercials.

ALISP Set Threshold R% P% Missed Items False Alarms

AL-65 0.65 93 100 416 0
AL-33 0.55 93 100 416 0
AL-17 0.45 93 96 416 129
AL- 9 0.35 93 92 416 334

Table 6.3: Recall (P%), Precision (R%) values, number of missed item and number of false
alarms found for the SurfOnHertz protocol with a threshold of 0.65, 0.55, 0.45 and 0.35
respect ively for 65, 33, 17 and 9 ALISP models.



6.5. N U M B ER OF A L I SP U N I T S 122

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Mean Levenshtein Distance

A
d

v
e

rt
is

e
m

e
n
t 
n
u
m

b
e

r

Distribution of the Levenshtein Distance unsing the ALISP 9 models

 

 

intra−pub
extra−pub

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Mean Levenshtein Distance

A
d
v
e
rt

is
e
m

e
n
t 
n
u
m

b
e
r

Distribution of the Levenshtein Distance unsing the ALISP 17 models

 

 

intra−pub
extra−pub

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

Mean Levenshtein Distance

A
d

v
e
rt

is
e

m
e

n
t 

n
u

m
b

e
r

Distribution of the Levenshtein Distance unsing the ALISP 33 models

 

 

intra−pub
extra−pub

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Mean Levenshtein Distance

A
d
v
e

rt
is

e
m

e
n

t 
n

u
m

b
e

r

Distribution of the Levenshtein Distance unsing the ALISP 65 models

 

 

intra−pub
extra−pub

Figure 6.4: Dist ribut ion of the Levenshtein distance for the int ra-pub and ext ra-pub expe-
riences using the four sets of ALISP models, corresponding to 9, 17, 33 and 65 units.
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Furthermore, the presence of 129 false alarms for 17 models and 334 false alarms

for the 9 models were predictable given the decision threshold for the Levenshtein distance.

This value was chosen to ensure the detect ion of all items even if false alarms have occurred.

Related to the processing t ime, the system runs at a speed of 0.49 per second of signal

using the 33 ALISP models on a 3.00GHz Intel Core 2 Duo 4GB RAM, while for the 65

ALISP models the systems runs at a speed of 0.57 per second of signal.

6.6 M et hod of t he In it ia l Segm ent at ion

At this point , the temporal decomposit ion is used to obtain an init ial segmentat ion

of the audio data into quasi-stat ionary segments. Then, these segments are clustered using

vector quant izat ion. After that , boundaries together with labels will be used as init ial

t ranscript ion for Hidden Markov Modeling. However, other methods to provide an init ial

segmentat ion of the audio data are used. These methods are described in sect ion 5.2.

In this sect ion, the influence of the init ial segmentat ion on the performances of the

audio ident ificat ion process is studied. Four different techniques to obtain an init ial seg-

mentat ion of the ALISP training database are used: temporal decomposit ion, uniform seg-

mentat ion, spectral stability segmentat ion and phonet ic segmentat ion. These techniques

combined with the vector quant izat ion are used to init ialize the HMM models. All the

acquired models are mult i-Gaussian with 33 ALISP units.

The first part of this sect ion involves the influence of the init ial segmentat ion on the

stability of the ALISP transcript ions of advert isements. Then the results obtained in terms

of precision and recall are reported for each method of segmentat ion.

6.6.1 T hreshold Set t ing

Same experiences used to study the stability of ALISP transcript ions and determine

the decision threshold are realized. Figure 6.5 shows the dist ribut ion of the Levenshtein

distancesbetween ALISP transcript ionsof referencesand advert isements in theradio record-

ings (denoted as int ra-pub) and the dist ribut ion of the Levenshtein distances between AL-

ISP transcript ions of references and data that do not contain advert isements (denoted as
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System R% P% Missed Items False Alarms

Temporal decomposit ion 92 100 416 0
Spect ral stability 92 100 416 0

Uniform segmentat ion 90 95 623 301
Phonet ic segmentat ion 85 87 942 806

Table 6.4: Recall (P%), Precision (R%) values, number of missed item and number of false
alarms found for the SurfOnHertz protocol for the different techniques of segmentat ion.

ext ra-pub), for the four techniques of segmentat ion.

Note, that the use of uniform segmentat ion, spectral stability segmentat ion and tem-

poral decomposit ion leads to disjoint dist ribut ions (int ra-pub and extra-pub) for the Lev-

enshtein distance. Furthermore, this study shows that ALISP transcript ions obtained using

the spectral stability segmentat ion and temporal decomposit ion are more precise than those

with uniform segmentat ion.

On the other side, for the phonet ic segmentat ion the two dist ribut ions overlap. This

result is predictable given that the phonet ic models are t rained only on speech. In fact ,

the phonet ic segmentat ion of audio data are used to init ialize the ALISP HMM models,

however the final ALISP models st ill vulnerable to distort ions occurred in audio data which

leads to many errors. From theses dist ribut ions, the Levenshtein distance thresholds were

set to 0.55, 0.55, 0.65 and 0.65 respect ively for temporal decomposit ion, spectral stability

segmentat ion, uniform segmentat ion and phonet ic segmentat ion.

6.6.2 R esu lt s

Table6.4 showstherecall (R%) and precision (P%) rateswhen thedifferent techniques

of init ial segmentat ion are used.

ALISP models using spect ral stability segmentat ion perform as well as the models

using temporal decomposit ion. This result confirms what is obtained in sect ion 5.2.2, when

maximal intersect ion between both models is computed.

For the uniform segmentat ion, the obtained results are slight ly worse than those

obtained with temporal decomposit ion and spectral stability segmentat ion. This could be

explained by the fact that uniform segmentat ion don’t take into account the audio signal
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Figure 6.5: Dist ribut ion of the Levenshtein distance for the int ra-pub and ext ra-pub expe-
riences using the phonet ic segmentat ion, uniform segmentat ion, spectral stability segmen-
tat ion and temporal decomposit ion.
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characterist ics which affects the HMM modeling of the data.

As shown in the study of ALISP t ranscript ions stability of advert isements, the pho-

net ic segmentat ion leads to many errors of ident ificat ion and especially to a higher false

alarms than the other techniques. This result confirms that phonet ic segmentat ion are not

appropriate to t reat songs and advert isements.

6.7 C om parat ive St udy

In this sect ion, the ALISP-based audio ident ificat ion system is evaluated using the

QUAERO evaluat ion protocol in order to compare the performance of the proposed sys-

tem with the systems provided by the part icipants of the 2010 QUAERO evaluat ion cam-

paign [108] (Ramona et al., 2012), which are:

• Fenet et al. [44] (Fenet et al., 2011) developed a fingerprint ing system based on the

SHAZAM approach [133] (Wang, 2006).

• Ramona et al. [109] (Ramona et al., 2011) provided a system based on spectral mod-

eling of bark-bands energy and synchronizat ion through onset detect ion.

• YACAST implemented an audio fingerprint ing system based on thePhilipssystem [58] (Haitsma

and Kalker, 2003)

Note that in this protocol the recognit ion of different versions of the same song t it le

is considered outside the perimeter of audio ident ificat ion. Therefore the number of music

t racks to be detected is reduced to 459 tracks.

The set of ALISP HMM models used in this evaluat ion campaign is t rained using the

mult i-Gaussian configurat ion with 33 ALISP units and the spectral stability method for

the init ial segmentat ion. The choice of spect ral stability segmentat ion is mot ivated by its

simplicity compared to the temporal decomposit ion.

Since theposit ion of music signatureswithin the t racks is unknown, our task is limited

only in detect ing the music t rack in the test audio st ream. For each detect ion of a reference,

the system provides the name and the date of the song in the radio st ream. If the date of
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System R% P% Missed Items False Alarms

Our system 100 100 0 0
Fenet et al. 97.4 100 12 0

Ramona et al. 96.9 99 15 2
YACAST 95.9 99 17 0

Table 6.5: Precision (P%), recall rate (R%), number of missed t racks and number of false
alarms found for the Quaero protocol (7 days of radio st reams containing 459 songs to be
ident ified).

detect ion is between the annotated start and end date of the same song, this song will be

considered as detected.

Results are shown in table 6.5.

Table 6.5 clearly shows the relevance of our ALISP-based fingerprint , when compared

to the other systems. However this protocol considers only one radio for evaluat ion which

is not a real-world use-case. However, it gives an idea about the posit ioning of our system

in the state of the art of audio fingerprint ing.

6.8 C onclusion

In this chapter, the ALISP-based audio fingerprint ing system was described. This

system uses automat ically acquired units provided by ALISP models to search for adver-

t isements and music pieces in radio broadcast st reams. In this sense ALISP transcript ions

of advert isements and songs are computed using HMM models provided by ALISP tools

and Viterbi algorithm and compared to t ranscript ions of the radio st ream using the an

approximate matching algorithm based on BLAST technique.

After that , many experiences were realized to determine the best configurat ion of

ALISP HMM models. It was found that using the mult i-Gaussian configurat ion with 33

ALISP units and the spect ral stability method for the init ial segmentat ion ensure the best

performances of the proposed audio fingerprint ing system. These models will be used in

the following chapters to extract the ALISP units from audio data.

Regarding the results, on a set of 6,336 audio items (4,880 songs and 1,456 adver-

t isements) 5,920 were detected without false alarms. 399 missed items are relat ive to songs
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and commercials that are different from their references. Moreover, a comparat ive study

showed that our system performs bet ter than other audio fingerprint ing systems on the task

of music ident ificat ion.

After all these studies and results, a legit imate quest ion could be raised: ” What if a

song or a commercial is st reamed for the first t ime in radio broadcast and do not have its

signature in the reference database?” . The next chapter will be dedicated on ident ifying au-

dio items without references by extract ing salient parts or by finding all repet it ions of audio

sequences in the ent ire database which should lead to automat ic discovery of advert isements

and songs.



129

C hapt er 7

Aud io M ot if D iscovery

7.1 Int roduct ion

This chapter is a cont inuat ion of our work on indexing radio st reams. In the previous

chapter an audio ident ificat ion system based on ALISP segmentat ion was described. The

first step in the proposed system is the automat ic acquisit ion and Hidden Markov Modeling

(HMM) of ALISP audio models. Then a fingerprint database is created from a reference

database using the automat ically acquired units provided by ALISP tools. A reference

database contains audio files (songs, j ingles, advert isements,...) which the system can iden-

t ify. In the last step an unlabeled audio excerpt is ident ified by comparing its fingerprint

with those of the reference database using the BLAST algorithm.

In the case where an audio item is not in the reference database, the audio iden-

t ificat ion system could not detect it . An example of such a case is when a new song or

advert isement is broadcasted by radio stat ions. These new items are usually played many

t imes. Therefore the detect ion of repet it ions of audio items in radio st reams should lead

to the automat ic discovery of advert isements and songs without the need of a reference

database.

The task of detect ing repeat ing audio objects is also referred as audio mot if discovery

or near-duplicate discovery. As explained in [115] (Sandve and Drablos, 2006), the term

” mot if” is borrowed from comparat ive genomic, where it designates a family of symbol
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sequences (each symbol represent ing a nucleot ide or amino-acid). In our work, the term

” mot if” denotes the repeat ing objects in audio st reams which are songs, advert isements and

jingles. We are not dealing with mot if discovery in speech data.

Performing this task is usually based on audio fingerprint ing which involves a compact

content-based signature that represents an audio recording. In this thesis, ALISP tools are

used to convert the heterogeneous audio st ream (containing music, j ingles, commercials,

speech, etc.) into a sequence of symbols. These symbols represent the fingerprint needed

to detect the repeat ing items in audio st reams. Therefore, the problem of repeat ing objects

detect ion is t ransformed into a string matching problem.

This chapter is organized and structured in the following manner. The first sect ion

deals with related work to audio mot if discovery. Then the ALISP-based near-duplicate

discovery system is presented. In sect ion 7.4, the evaluat ion of the proposed system is

given.

7.2 R elat ed Work

Theamount of audio data available, such asbroadcast newsarchives, radio recordings,

music and songs collect ions, podcasts, etc, has increased exponent ially in the past decades.

However, most of these data have limited label informat ion, or worse yet , have no label

informat ion.

Therefore, it is not easy for users to locate a desired song or speaker in such databases,

or to skip unwanted contents. To overcomethese limitat ions, varioussystemsweredeveloped

to rapidly analyze and summarize audio content for indexing and ret rieval purposes.

Oneof thepurposesof thesesystems is to detect repeat ing items in audio st reams, also

refereed as audio mot if discovery. Locat ing repet it ions of unknown audio objects is useful

for many reasons. Herley ment ions in [61] (Herley, 2006) many applicat ions for repeat ing

objects detect ion such as:

• Commercial skipping: the detect ion of repeat ing objects in radio (or TV) st reams

allows the delet ion of all unwanted contents (such as advert isements).
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• Compr ession and ar chiv ing: the repeat ing objects might be used to compress the

audio st reams effi cient ly [7] (Apostolico et al., 2006).

• B r oadcast monit or ing: confirm for advert isers if the advert isement was broad-

casted, detect ion of illegal use of mult imedia content .

• A udio st r uct ur ing: search for repeated occurrences, like jingles, as a first step for

the analysis of radio or television contents.

7.2.1 P rob lem Formu lat ion

Detect ing repeat ing audio objects in audio st reams consists of finding all pairs of

disjoint audio segments [x�y] and [u�v] which verify these three condit ions:

D([x�y]�[u�v]) < thr (7.1)

|x�y| < L min (7.2)

x < y < u < v (7.3)

Condit ion 9.1 is relat ive to the similarity const raint . It considers that two audio

segments are similar if their distance D is below a certain threshold thr . The second

condit ion is used to define the minimum length (L min ) of the repeat ing item. The last

condit ion is there to avoid the detect ion of two overlapping segments.

7.2.2 Lit erat u re R eview of Aud io M ot if D iscovery

Most of audio mot if discovery systems rely on the same principle: audio fingerprint -

ing [95] (Ogle and Ellis, 2007) [21] (Burges et al., 2005) [43] (Fenet et al., 2012) [121] (Sinit -

syn, 2006) [90] (Muscariello et al., 2011). We review in this sect ion the most representat ive

works of audio mot if discovery.

In [95] (Ogle and Ellis, 2007), a framework to ident ify repeat ing sound events in long-

durat ion personal audio recording is proposed. This system adapts the sparse landmark
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fingerprint and hashing technique proposed in [133] (Wang, 2006) to search and ret rieve

the repeat ing sound events. The system is evaluated on 40 hours of personal recording

containing 30 songs and 45 telephone rings that are repeated 10 t imes. The system achieves

a recall rate of 97% and a precision rate of 85 for songs while 69% and 100% are obtained,

respect ively, for recall and precision in the case of telephone rings. However, this method

do not perform well with organic sounds, such as impact t ransients, machinery, door closure

and speech.

Another framework for the detect ion of repeat ing objects in mult imedia st reams is

described in [43] (Fenet et al., 2012). First , a fingerprint is ext racted from each frame

present in the audio st ream. Then, each fingerprint is compared to the database containing

the past frames fingerprints. Based on this comparison a repet it ion detect ion decision is

taken. In case of posit ive match, the storage database, which contains all the processed

fingerprints, is updated so that it will not store repeated frames in the database. Two

audio mot if discovery systems are used for this framework. The first system is based on the

Constant-Q-Transform (CQT) [44] (Fenet et al., 2011) where a 2-dimensional peak-peaking

in CQT spectrogram is extracted for each frame. Then, the extracted peaks are clustered

in pairs. The t ime occurrences of these pairs are given by the temporal localizat ions of

the first peaks in the pairs. The second system exploits a fingerprint based on a sparse

decomposit ion of the signal in a redundant dict ionary using the Matching Pursuits (MP)

algorithm proposed in mallat -sp-1993 (Mallat and Zhang, 1993). The two systems are

evaluated on a 24-hours radio st ream that contains 191 repet it ions of songs. For the CQT-

based system, all the repet it ions are detected without false alarms, while the MP-based

system misses 13 repet it ions and records one false alarm.

A different algorithm to detect duplicatesongs isproposed in [21] (Burgeset al., 2005).

The system is based on the Robust Audio Recognit ion Engine (RARE) audio fingerprint ing

system [22] (Burges et al., 2003). It consists on transforming an audio segment into 64

float ing-point numbers and using a weighted Euclidean distance to search for repeat ing

songs. The system is evaluated on 21,322 songs for which one or more duplicates should be

detected. 259 mismatches are found leading to a detect ion rate of 98.8%. This framework is
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also exploited for audio thumbnail generat ion, where the task is to find a short representat ive

summary of the music t rack. The proposed system is used to find repeat ing parts within

the audio clip. In fact , if a song has a similar chorus segments, the system will be able

to exploit that redundancy to generate a good thumbnail which outperforms the use of a

random thumbnail.

In [90] (Muscariello et al., 2011), the authors adapt an exist ing system to ident ify

short and highly variable pat terns in speech to detect repeat ing songs in radio st ream. The

proposed system is based on the Automat ic Repeat inG Object Segmentat ion (ARGOS)

framework and Segmental Locally Normalized Dynamic Time Warping (SLNDTW)-based

pat tern matching of audio sequences. The fingerprint used in this system is a simple con-

version of raw data to MFCC features. In order to speed up the search of repet it ions a

regular downsampling of MFCC sequences is integrated in the framework. The system is

evaluated on 6 days of radio st reams that contain 1,742 songs. For a set of 208 repeat ing

songs a precision rate of 100% with the corresponding recall value of 70% are achieved.

Audio mot if discovery has also been applied to analyze the musical st ructure and

perform audio thumbnail generat ion. As explained in [33] (Dannenberg and Hu, 2002), the

audio data arefirst t ranscribed into a sequencesof representat ionssuch asmonophonic pitch

est imat ion [32] (Dannenberg, 2002), chroma representat ion [14] (Bartsch and Wakefield,

2001), and polyphonic t ranscript ion [83] (Marolt , 2001). Then similar segmentsaresearched

within the piece of music. After that , the obtained segments are grouped into classes in

order to analyze the structure of the song.

Most of the system described above are evaluated on repeat ing songs with long du-

rat ion (about 5min). In the next sect ion, the ALISP-based audio mot if discovery system is

described and evaluated on advert isements and songs where the durat ion could vary from

few seconds (3s) to some minutes (7min). This system uses the ALISP symbols to represent

the audio data and the BLAST algorithm to search for repet it ions.
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Figure 7.1: Main architecture of the ARGOS segmentat ion framework.

7.3 ALISP -based Aud io M ot if D iscovery Syst em

In order to detect repeat ing objects, the ARGOS segmentat ion framework proposed

in [61] (Herley, 2006) is combined with ALISP tools. The main advantages of the ARGOS

framework is its ability to work in a st reaming mode (where the future data are not avail-

able). The architecture of the ARGOS framework is illust rated in figure 7.1. It consists of a

sequent ial algorithm to find repet it ions in audio st ream. The query is an audio segment to

be searched in the mot if library and the received stream (buffer st ream). If a posit ive match

is found, an extension of the query matching is performed to find the ent ire audio item.

This item is considered as a repet it ion if it meets the condit ions described in sect ion 7.2.1.

This framework is combined with the ALISP-based audio ident ificat ion system to

build a new audio mot if detect ion system. As previously ment ioned, the data-driven ALISP

technique converts the raw audio data into a sequence of symbols. These symbols represent

the fingerprint used to detect the repeat ing items in audio streams. Therefore, the problem

of audio mot if detect ion is t ransformed into a string matching problem. As in the ALISP-

based audio indexing system described in sect ion 5.3, the BLAST algorithm is implemented

to speed up the approximate st ring matching. This algorithm is used in the ALISP-based

audio mot if detect ion system to accelerate the query search in the mot if library and the
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buffer st ream.

7.4 Exp er im ent al Set up and R esu lt s

In our work, we are interested by detect ing repeat ing songs and advert isements in

radio st reams. Comparing different mot if detect ion systems remains impossible, since no

public evaluat ion framework or corpus has been proposed. Therefore, the ALISP-based

mot if detect ion system is evaluated on the SurfOnHertz protocol previously used for audio

ident ificat ion.

The first part of this sect ion deals with the experimental setups. Then, studies related

to the stability of the ALISP transcript ions to set the decision threshold for the Levenshtein

distance are presented. Finally results obtained in terms of precision and recall are exposed.

7.4.1 Exp er im ent a l P rot ocol

In the previous chapter, we showed that the opt imal configurat ion of ALISP HMM

models is the one using the mult i-Gaussian modeling with 33 ALISP units and the spectral

stability method for the init ial segmentat ion. These models were trained on 288 hours

of audio data and already exploited for audio ident ificat ion as described in the previous

chapter. They will be also exploited in this chapter and the following to compute the

ALISP transcript ion of audio data.

TheALISP-based mot if detect ion system isevaluated theSurfOnHertz protocol where

seven days of audio st ream from three French radios (21 days) are considered.

7.4.2 T hreshold Set t ing

To study the stability of ALISP transcript ions and determine the decision threshold,

two experiments are realized:

• Compute the Levenshtein distance between the ALISP transcript ions of repeat ing

songs (rep-song experience).
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• ComputetheLevenshtein distancebetween theALISP transcript ionsof different songs

(diff -song experience).

These experiences realized on one day of audio from ” Radio Nostalgie” with 347

broadcasted songs. Among these songs, 47 are repeated.

Figure 7.2 shows the dist ribut ion of the Levenshtein distances between ALISP t ran-

script ions of repeat ing songs (denoted as rep-song) and the dist ribut ion of the Levenshtein

distances between ALISP transcript ions of different songs (denoted as diff -song). Note that

the two dist ribut ions (rep-song and diff -song) for the Levenshtein distance are disjoint . The

mean Levenshtein distance for rep-song experience is 0.32 while for diff -song experience this

value is equal to 0.85. This result means that by choosing an appropriate decision threshold

for the Levenshtein distance, there is a big chance that all repeat ing items in radio st reams

can be detected.

7.4.3 R esu lt s

7 days of audio st ream from 3 French radios (leading to 21 days) are used to evaluate

the proposed system. These data contain 4,880 songs and 1456 advert isements, yielding,

respect ively, to an average durat ion of 210 seconds and 29 seconds. The shortest song and

advert isement have, respect ively, a durat ion of 59 seconds and 5 seconds, while the longest

ones has, respect ively, a durat ion of 411 seconds and 43 seconds.

Among all songs in the evaluat ion database, 348 are repeated with a total number

of 3081 repet it ions. The most repeated mot if occurs 24 t imes while the average number

of repet it ions is 4. For advert isements, the most repeated mot if occurs 16 t imes while the

average number of repet it ions is 2. The total number of repeated advert isements is 1315.

In order to evaluate the ALISP-based mot if detect ion system performance precision

(P%) and recall (R%) rates are used:

• Precision: the number of mot ifs correct ly detected / Total number of detected mot ifs

• Recall: the number of mot ifs correct ly detected / The number of mot ifs present in

the audio st ream



7.4. EX PER I M EN TA L SET U P A N D R ESU LT S 137

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

Levenshtein distance

S
on

g 
nu

m
be

r

 

 

rep−song

diff−song

Figure 7.2: Dist ribut ions of the Levenshtein distance between ALISP transcript ions of
repeat ing songs (denoted as rep-song) and different songs (denoted as diff -song).
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The evaluat ion database contains various repeat ing objects other than songs and

advert isements, such as jingles and speech segments. Since the manual annotat ions relat ive

to these objects are not available, the detect ion of these items is considered to be out of the

scope of this work.

The evaluat ion process is defined as follows. When the system detects a repet it ion,

it gives its detect ion t ime to be checked if it does actually correspond to a repeat ing song.

If a detected mot if does not match any annotated repeat ing song, it will be considered as

a false alarm. The results of the experiments are summarized in table 7.1.

Rep R% P% MD FA
Songs 3081 99 100 21 0
Ads 1315 98 99 14 6

Table 7.1: Number of repet it ions (Rep), precision (P%), recall value (R%), number of
missed detect ion (MD) and number of false alarms (FA), found in the evaluat ion database
for songs and advert isements

For songs, thesystem isnot able to detect 21 repet it ions. These repet it ionsare related

to songs overlapped with speech which disturbs the detect ion process. On the other hand,

the absenceof falsealarmsconfirms the results obtained on thedevelopment databasewhere

the Levenshtein distance dist ribut ions of rep-song and diff -song experiences are disjoint .

For the advert isements, the system is not able to detect 14 repet it ions and leads to

6 false alarms. In fact , these errors are related to the detect ion of two repet it ions of two

successive advert isements and one repet it ion of three successive advert isements. In the

manual annotat ion these repeated advert isements are annotated as separate mot if. This is

the origin of this errors.

Moreover, this evaluat ion database was also used for the audio ident ificat ion task and

a mean precision rate of 100% with the corresponding recall value of 95% were achieved.

These results show that the ALISP-based audio indexing system is generic and could be

applied on different tasks for the same radio st reams.

It ’s important to note that the ALISP-based mot if detect ion system performs as well

as the two systems described in [43] where the evaluat ion database is a 24 hours of a French

radio. The first system used a fingerprint based on the Shazam system while the second
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one used a sparse decomposit ion-based fingerprint .

7.4.4 R unt im e

Thecomputat ion t imerequired to detect the repeat ing objects isan important param-

eter to be considered. Therefore the BLAST algorithm is used to speed up the approximate

ALISP symbols matching.

For the ALISP fingerprint ing comput ing the processing t ime is 0.04s per second of

signal. Accordingly, the computat ional complexity of the system is mainly limited to the

search for the closest ALISP sequence through the Levenshtein distance. Using the BLAST

algorithm, the system needs 15 hours to process 24 hours of radio st reams using 33 ALISP

models on a 3.00GHz Intel Core 2 Duo 4GB RAM, while for the brute search the runt ime

is est imated at 10 days to process 1 day of radio st ream.

It ’s important to note that the BLAST algorithm speeds up the ALISP transcript ions

comparison without affect ing the detect ion scores.

7.5 C onclusion

In this chapter a mot if discovery system to detect repeat ing songs and advert isements

in radio st reams was described. As for theaudio ident ificat ion, theproposed system is based

on ALISP sequencing to represent the audio data and BLAST algorithm to accelerate the

approximate ALISP units matching. As pointed before, this architecture is common for all

the audio indexing systems presented in this thesis.

The ALISP-based audio mot if discovery system was evaluated on 6 days broadcast

corpus of 4 radios. On a set of 975 mot ifs a mean precision rate of 100% with the corre-

sponding recall value of 97% were achieved. Moreover, BLAST algorithm was able to speed

up the searching step without affect ing the detect ion scores.

In thenext chapter, wewill focuson thespeaker diarizat ion task, that aims to segment

an input audio st ream into homogenous regions according to speaker’s ident it ies in order

to answer the quest ion ” Who spoke when?” . In our work, we are interested in speaker

diarizat ion for TV and radio shows. Usually these shows keep the same structure with
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same presenters and jingles. This redundancy is used in order to improve the performance

of the speaker diarizat ion system. The main idea of our system is to compare the show to

be segmented with the same show broadcasted before in order to find the common audio

segments. This operat ion is performed using the ALISP sequencing and BLAST algorithm.
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C hapt er 8

Sp eaker D iar izat ion

8.1 Int roduct ion

In this chapter, the proposed audio indexing system is applied to speaker diarizat ion

on TV and radio shows, where thegoal is to segment an input audio st ream into homogenous

regionsaccording to speaker’s ident it ies in order to answer thequest ion ” Who spokewhen?” .

Speaker diarizat ion is also known as a speaker segmentat ion and clustering. The

speaker segmentat ion step aims to detect the boundaries of speech segments by finding

the speaker change points or more generally the acoust ic change points. Then, speaker

clustering is applied to group together the speech segments that seem to be pronounced by

the same speaker. The general architecture of a speaker diarizat ion system is illust rated in

figure 8.1 [41] (ElKhoury, 2010). It is generally composed of four steps:

• Parameterizat ion.

• Voice Act ivity Detect ion (VAD).

• Speaker segmentat ion.

• Speaker clustering.

As ment ioned before, speaker diarizat ion provides useful informat ion related to the

speaker ident it ies. Coupled with automat ic speech recognit ion this knowledge is useful in

many applicat ions, such as:
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Figure 8.1: General architecture of a speaker diarizat ion system.
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• Rich transcript ion: speaker diarizat ion is performed as a preliminary step in every

task of informat ion ret rieval such as the speech durat ion of polit icians during an elec-

t ion campaign or the tracking of a part icular person for summarizat ion and indexing

purposes.

• Automat ic speech recognit ion: the main goal of speaker diarizat ion is to ident ify the

speech segments pronounced by the same speaker. These segments are exploited for

speaker adaptat ion to enhance the automat ic speech recognit ion performance.

• Speaker-based algorithms: speaker diarizat ion is the basis of several applicat ions such

as, speaker t racking, speaker verificat ion, speaker ident ificat ion and other speaker-

based algorithms.

In this work, we are interested in speaker diarizat ion for TV and radio shows which

include various acoust ic sources such as studio/ telephone speech, music, or speech over

music. Usually these programs tend to keep the same structure with same presenters,

reporters, sound effects, j ingles, etc. This redundancy is used in order to improve the

performance of the speaker diarizat ion system.

This chapter is organized as follows. The first sect ion presents the state of the art of

speaker diarizat ion. In sect ion 8.3, the ALISP-based speaker diarizat ion system is detailed.

Sect ion 8.4 presents the experiments and the results.

8.2 St at e of t he Ar t of Sp eaker D iar izat ion

Many speaker diarizat ion systems are described in [124] (Tranter and Reynolds, 2006)

and [5] (Anguera et al., 2012). As previously ment ioned, thesesystems arecomposed of four

modules: acoust ic features extract ion, speech detect ion, speaker segmentat ion and speaker

clustering. This sect ion is organized as follows. In sect ion 8.3.1, some of the acoust ic

features that are suitable for speaker diarizat ion are listed. In the next sect ion, a review of

speech detect ion algorithms is presented. Then, the different techniques used for speaker

segmentat ion and speaker clustering are respect ively int roduced in sect ions 8.3.3 and 8.3.4.

Finally the main recent search direct ions for speaker diarizat ion are described.
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8.2.1 Acoust ic Feat u res

As for speaker and speech recognit ion systems, the parameterizat ion in speaker di-

arizat ion system is based on frame-level features such as the Mel Frequency Cepstrum Co-

effi cients, the Linear Frequency Cepstrum Coeffi cients, the Linear Predict ive Coding and

Perceptual Linear Predict ive.

Moreover, in the field of VAD, other features are proposed such as energy, spectrum

divergence between speech and background noise, 4 Hertz modulat ion energy, pitch and

zero crossing rate. In addit ion, for music detect ion other features like the number and the

durat ion of the stat ionary segments obtained from a forward/ backward segmentat ion are

used. In the following part , some of these acoust ic features are described:

• Mel Frequency Cepstrum Coeffi cients (MFCC): The MFCCs [88] (Mermelstein, 1976)

areby far themost frequent features for speech processing. TheMFCCsarecommonly

extracted as show in figure 8.2. First , the audio signal is windowed using a Hamming

funct ion. Then the Fourier t ransform is applied on each window. After that , the pow-

ers of the spectrum obtained above are t ransformed to the MEL scale using triangular

overlapping windows. Finally, the Discrete Cosine Transform of the obtained powers

are calculated. The MFCCs are the amplitudes of the result ing spectrum.

• 4 Hertz modulat ion energy: The speech signal has a characterist ic energy modulat ion

peak at 4Hz syllabic rate. The 4Hz modulat ion energy is exploited in [105] (Pinquier

et al., 2003) in order to segment speech and music. To compute this feature, the

audio signal is t ransformed into 40 perceptual channels according to the same process

used to compute the MFCCs features. Then the energy of each band is filtered by a

bandpass filter with a center frequency of 4Hz. After that , the filtered energies are

summed and normalized. Finally, the desired feature is obtained by comput ing the

variance of the filtered energy.

• Zero Crossing Rate (ZCR): The ZCR is the rate at which the sign of the audio sig-

nal changes. This feature is often extracted for speech/ music segmentat ion. It is
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Figure 8.2: Extract ion method of MFCC features.

computed for each frame as follows:

Z CR(i ) =
1

2N

 
NX

n= 1

|sign(xn (i )) − sign(xn− 1(i ))|

!

(8.1)

Where xn (i ) is the nth sample in the frame i and N is the size of frame i .

• Energy: The energy is a temporal feature commonly used in signal processing. It is

computed as follows:

E(i ) =
NX

n= 1

x2
n (i ) (8.2)

After the parameterizat ion, the next module in a speaker diarizat ion system is the

voice act ivity detect ion which allows the detect ion of the speech parts in the audio signal.

8.2.2 Voice Act ivit y D et ect ion

Voice act ivity detect ion involves the labeling of speech and non-speech segments in

the audio signal. This module have a significant impact on speaker diarizat ion performance.

If a speaker segment is not labeled as speech, it is counted as a missed detect ion. On the

other hand, a non-speech segment , which is labeled as speech, can affect negat ively the

speaker diarizat ion process. Many different approaches and studies of such a system are

proposed in the literature [106] (Ramirez et al., 2007). These systems are generally divided

into two categories.

The first category concerns the model-based approaches. These approaches rely on a

two-classdetector, with models t rained on external speech and non-speech data [6] (Anguera
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et al., 2005) [42] (ElKhoury et al., 2009). The models are usually based on Gaussian Mix-

tures or Hidden Markov Models. Speech and non-speech models are usually adapted to spe-

cific condit ions such as noise and channel. The main drawback of model-based approaches

is their dependency on the t raining data.

The second category is related to unsupervised methods. These methods use acoust ic

features such as 4Hz modulat ion energy, energy or the number and the durat ion of seg-

ments, described in the previous sect ion, to discard non speech regions [107] (Ramirez et

al., 2003) [105] (Pinquier et al., 2003). The main drawback of these methods is the use of a

threshold decision to detect speech. Generally, this threshold is determined empirically on

a developmental corpus.

Hybrid approaches have been developed to overcome these limitat ions. Generally,

a threshold-based method is first applied to detect speech and non speech segments with

high confidence of classificat ion. Then, the labeled data is employed to t rain speech and

non-speech models. These models are then exploited to obtain the final segmentat ion of

the audio signal [4] (Anguera et al., 2006) [42] (ElKhoury et al., 2009).

Once the voice act ivity detect ion is performed, the next step in the diarizat ion process

is the speaker segmentat ion.

8.2.3 Sp eaker Segm ent at ion

During speaker segmentat ion (also referred as speaker change detect ion) the audio

st ream is split into homogeneous segments by detect ing changes in speakers. Each segment

should contain the speech of one speaker and two consecut ive segments should contain

the speech of two different speakers. Two main types of speaker segmentat ion systems

can be found in the literature. The first category concerns the metric-based segmentat ion

methods. While the second category involves other methods which rely on non met ric-based

segmentat ion approaches. In this works, we are only interested in metric-based speaker

segmentat ion methods that are exposed in this sect ion

Metric based speaker segmentat ion is the most common technique used to detect

speaker changes in audio st reams [5] (Anguera et al., 2012). It relies on the computat ion of
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a distance between two adjacent segments, usually in overlap, to figure out if they belong

to the same speaker. Most of the distances computed for speaker segmentat ion are also

applied to speaker clustering.

Metric-based speaker segmentat ion systems are divided into two category. The first

type of systems performs a single processing pass to detect the speaker turns boundaries. In

the second class, a two-pass method is carried out . The first pass yields many change points

with a high false alarm rate, in the second pass the detected change points are reconsidered

to enhance the speaker segmentat ion output .

The most used distances are described in the following sect ions. These distance are

calculated in the speaker segmentat ion step for either a single processing pass or two-pass

processing method.

8.2.3.1 Gener al ized L ikel ihood R at io

The Generalized Likelihood Rat io (GLR) is int roduced by [52] (Gish et al., 1991). It

considers that for each audio segment there are two possible hypotheses:

• H0: This hypothesis supposes that the segment X = x1�����xN is produced by a single

speaker. Therefore, the segment X is modeled by a mult i-Gaussian dist ribut ion.

• H1: This hypothesis supposes that the segment X = x1�����xN is produced by two

different speakers represent ing two different segments: X 1 = x1�����x i and X 2 =

x i + 1�����xN . In this case, the segment X is modeled by two mult i-Gaussian dist ribu-

t ion.

As described in [65] (Jin et al., 2004) and [59] (Han and Narayanan, 2008), the GLR

is determined to est imate the rat io between the probabilit ies of the hypothesis H0 and the

hypothesis H1 as follows:

GLR =
P(H0)
P(H1)

(8.3)
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In terms of likelihood, the previous equat ion is given by:

GLR =
L(X�M )

L(X 1�M 1)L (X 2�M 2)
(8.4)

where M , M 1 and M 2 are, respect ively, the est imated model of X , X 1 and X 2 and L(�) is

the likelihood funct ion. By considering a Gaussian dist ribut ion of the models, the previous

expression becomes:

R(i ) = − log(GLR) =
N
2

log |ΣX | −
N1

2
log |ΣX 1 | −

N2

2
log|ΣX 2 | (8.5)

whereΣX , ΣX 1 and ΣX 2 are, respect ively, the covariance mat rices of X , X 1 and X 2 and N ,

N1 and N2 , are respect ively the size of X , , X 1 and X 2. The est imated value of the point

of change is given by:

î = argmax
i

R(i ) (8.6)

Finally, a threshold T is defined in order to detect the point of speaker change. In

fact , if (̂i ) is greater that the threshold T, the segment X belongs to two different speakers

and î is designed as the change point .

The main drawback of the GLR measure is the existence of the threshold T. This

threshold is determined empirically using some external data.

8.2.3.2 B ayesian I nfor mat ion Cr i t er ion

TheBIC distance is themost common approach for speaker segmentat ion [5] (Anguera

et al., 2012), it is given by:

B I C(M ) = logL(X�M ) −
λ

2
n logN (8.7)

where n represents the number of feature vectors used to build the model M . The BIC

value is composed of two terms. The first one gives the log-likelihood of the data given

the model. While the second term represents the complexity of the data. λ is a penalty

coeffi cient , theoret ically set to 1 [112] (Rissanen, 1989).
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By considering the two hypothesis H0 and H1 defined in the previous sect ion, the

difference between BIC measures related to the two hypothesis is:

∆ B I C(i ) = R(i ) − λP (8.8)

where R(i ) is the likelihood rat io defined in equat ion 8.5 and P is the data complexity term:

P =
1
2

(d +
1
2

d(d + 1)) logN (8.9)

where d is the size of the feature vector. The larger the value of ∆ B I C(i ), the less similar

the two segments is. Therefore, if:

max
i
∆ B I C(i ) > 0 (8.10)

The t ime index corresponding to this maximum value is considered as a speaker change

point . Unlike the GLR criterion, the BIC segmentat ion method do not require a threshold

and the penalty coeffi cient λ is fixed theoret ically to 1. However, other studies suggest that

this value is not necessarily equal to 1 [125] (Tritschler and Gopinath, 1999) [35] (Delacourt

et al., 1999) [80] (Lopez and Ellis, 2000). Moreover, BIC-based speaker segmentat ion are

computat ionally more expensive than other metrics. Therefore, some systems propose to

consider a two-pass processing method, where the BIC metric in employed in the second

pass, while a faster metric is performed in the first pass [36] (Delacourt and Wellekens,

2000).

8.2.3.3 K ul lback-Leibler D iver gence

Like the GLR and the BIC metrics, The Kullback-Leibler (KL) divergence [72] (Kull-

back and Leibler, 1951) is a distance between two random probability dist ribut ions. Given

two probability dist ribut ion P and Q, the KL divergence is given as follows:

K L(P�Q) =
Z + ∞

− ∞
ln
�

p(x)
q(x)

�

p(x)dx (8.11)
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As shown in the previous equat ion, the KL divergence is an asymmetric distance

which make its use unsuitable for speaker segmentat ion. Therefore a symmetric version of

the KL divergence, denoted as KL2, is proposed [139] (Zhu et al., 2006):

K L2 =
K L(P�Q) + K L(Q�P)

2
(8.12)

By considering two adjacent windows of the audio signal with the Gaussian dist ribu-

t ions N1 (µ1�σ1) and N2 (µ2�σ2) the previous equat ion becomes:

K L2 =
1
2

�
σ2

1

σ2
2

+
σ2

2

σ2
1

+ (µ1 − µ2)2
�

1
σ2

1
+

1
σ2

2

��

(8.13)

where µi and σi are, respect ively, the mean and the covariance of the Gaussian dist ribut ion

N i . The local maxima of theKL2 met ric correspond to thespeaker changepoints [119] (Siegler

et al., 1997).

8.2.4 Sp eaker C lust er ing

As pointed out before, a speaker segmentat ion system aims to determine if two ad-

jacent segments belong to the same speakers. While, for a speaker clustering system, the

goal is to group the segments that seem to be pronounced by the same speaker. Unlike

the speaker segmentat ion, these segments could be localized anywhere in the audio signal.

The problem of measuring a distance between segments for the speaker clustering remains

the same. Therefore, all the distance presented in sect ion 8.3.3 are also used for speaker

clustering.

As shown in figure 8.1, the opt imal output of the speaker clustering system is a

single cluster for each speaker. Since the number of clusters and the speakers ident it ies

are unknown, the speaker clustering process is considered as an unsupervised classificat ion

problem that is commonly solved with hierarchical clustering.

The hierarchical clustering is applied to iterat ively agglut inate together a set of el-

ements that belong to the same class. Figure 8.3 shows the two most ly used methods to

perform hierarchical clustering: top-down clustering and bot tom-up clustering.
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Figure 8.3: Hierarchical bot tom-up or top-down clustering.

The bot tom-up clustering method, also known as agglomerat ive hierarchical cluster-

ing, is by far the most common in the literature. In this method, each segment provided

by the segmentat ion step is considered as a single cluster. Then a merging procedure is ap-

plied iterat ively to reach the opt imal number of clusters. On the other hand, the top-down

clustering technique assigns the whole data to a single cluster. Then a split t ing procedure

is performed in order to obtain the opt imum number of clusters.

Thenext subsect ionsdeal with themain systemsfor speaker clustering. Thesesystems

are developed for an offl ine configurat ion where the whole audio document is available.

However, some of these systems are adapted for an online scenario where only the st reamed

data is available.

8.2.4.1 B I C-based Clust er ing A ppr oach

As previously ment ioned, all the distances applied to detect speaker changes remain

useful for speaker clustering. The most commonly found distance is Bayesian Informat ion

Criterion [89] (Moraru et al., 2005). As shown in [124] (Tranter and Reynolds, 2006),

the Agglomerat ive Hierarchical Clustering using a BIC-based distance is composed of the
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following steps:

1. Each segment provided by the speaker change detect ion step is assigned to an inde-

pendent cluster.

2. Compute the pair-wise distance matrix between each cluster using the BIC metric.

3. Merge the pair with the lowest ∆ B I C distance.

4. Update the pair-wise distance between the remaining clusters and the merged one.

5. Iterate from step 2 to 4 unt il all pairs have a ∆ B I C > 0.

8.2.4.2 H idden M ar kov M odel A ppr oach

A HMM-based approach for speaker clustering is int roduced in [2] (Ajmera et al.,

2002). An ergodic HMM model is proposed, where each state represents a cluster with a

Gaussian dist ribut ion and the transit ions matrix reflect the changes between speakers. The

clustering process is performed by merging the closest clusters in terms of the log-likelihood

rat io distance. Then the HMM are re-t rained according to the new topology (one less state)

and the overall likelihood is computed. When this likelihood decreases, the merging process

is stopped.

An alternat iveHMM approach, called Evolut ive-HMM training, isproposed in [87] (Meignier

el al., 2001) and [46] (Fredouille et al., 2009). This method belongs to the top-down clus-

tering category, where the segmentat ion and the clustering module are unified in a common

step. First the whole speech file is assigned to a single speaker and modeled by a 1-state

HMM model. Then a new state, represent ing a new speaker, is est imated from few feature

vectors that maximize the likelihood rat ios of the init ial model. After that , each cluster

(represented by a HMM state) is iterat ively adapted and a Viterbi algorithm is performed to

obtain the new segmentat ion. The stop criterion is reached when the recognit ion likelihood

of the iterat ion m − 1 is greater than the one of the iterat ion m.
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8.2.4.3 Cr oss L ikel ihood Rat io A ppr oach

The Cross Likelihood Rat io (CLR) method is generally performed after a first clus-

tering based on the BIC metric [140] (Zhu et al., 2005). In the BIC clustering step, the

acoust ic features are not normalized in order to keep the background informat ion which are

useful to different iate between speakers. However these informat ion could lead to several

clusters belonging to the same speaker. Therefore, a second step of Cross Likelihood Radio

clustering is performed to overcome this problem.

In the CLR clustering step, the background environment effects are removed by nor-

malizing the acoust ic features. Then an universal background model is t rained and adapted

to each cluster provided by the BIC clustering step. After that , a pair-wise distance matrix

is computed using the CLR metric and the closest clusters are merged.

The CLR met ric is expressed as follows:

CLR(C1�C2) =
1

N1
log(

L (C1�M 2)
L(C1�UB M )

) ×
1

N2
log(

L (C2�M 1)
L (C2�UB M )

) (8.14)

where N1 and N2 are the sizes of the clusters C1 and C2. M 1 and M 2 are respect ively the

adapted models of the clusters C1 and C2 and L(.) is the likelihood funct ion. The clustering

stops when CLR(C1�C2) gets higher than a predefined threshold.

8.2.5 R ecent R esearch D irect ions

In this sect ion, a recent research direct ion for speaker diarizat ion are described. These

works did not confirm their robustness yet , but they show a considered potent ial to improve

thediarizat ion performances. Two direct ionsareexplored in thissect ion: theuseof prosodic

informat ion and the overlapping speech detect ion.

8.2.5.1 Pr osodic I nfor mat ion Exploi t at ion

For many years, speaker diarizat ion systems were based on cepst ral features, such as

MFCC, LFCC, etc., to represent the audio signal. However some works propose to exploit

the prosodic informat ion to improve the performance of the diarizat ion process.
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In [47] (Friedland et al., 2009), a framework to study the effects of 70 different long-

term features is described. These features belong to five different categories: pitch, energy,

formants, harmonics-to-noise rat io, and long-term average spectrum. The authors demon-

st rate that by combining the 10 top ranked features , in terms of speaker discriminability,

with the MFCC features the diarizat ion performance increases dramat ically.

8.2.5.2 Over lapping Speech D et ect ion

Speech overlaps involve audio segments where simultaneous speakers are act ive. For

many years, speaker diarizat ion systems were designed for audio contents where speech

overlaps are rare. However, it was shown in [63] ( (Huijbregts et al., 2012)) that overlapping

speech is one of the main source that decreases the performance of speaker diarizat ion

system. In fact , assigning an overlapping segment to a part icular speaker could perturb the

modeling of its cluster. Moreover, when an overlapping segment is missed by the diarizat ion

system, the error is accounted twice. Many works propose to detect overlapping speech in

order to improve the performances of the speaker diarizat ion. The main approaches are

based on HMM/ GMM modeling of overlapping and non-overlapping speech.

In [27] (Charlet et al., 2013), two systems are int roduced. The first one combines a

Gaussian MixtureModel classificat ion system and a mult i-pitch featuresdetect ion approach.

Three classes are considered: non-speech, non-overlapping speech and overlapping speech

using thePerceptual Linear Predict ive features. Themult i-speech detect ion method isbased

on the pitch est imat ion algorithm proposed in [34] (De Cheveigné, 2006). In the second

system threeGaussian modelsare t rained, represent ing malenon-overlapping speech, female

non-overlapping speech and overlapping speech. Then, the obtained models are used to

build a 2-class HMMs for overlapping and no-overlapping speech.

Two strategies are proposed to effi cient ly handle the overlapping speech informat ion

in a speaker diarizat ion system:

• Discard the detected overlapping speech from the diarizat ion process.

• Assign the overlapping speech segments to the two temporal closest speakers.
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An oraclestudies in [63] (Huijbregtset al., 2012) [120] (Sinclair and King, 2013) shows

that by assigning an overlapping segment to at least one right speaker the error is halved

and if the labeled second speaker is correct the error is halved again.

8.3 T he ALISP -based Sp eaker D iar izat ion Syst em

The main goal of this thesis is to ident ify the majority of audio items that could be

found in a radio broadcast st reams using data-driven ALISP segmentat ion. In the previous

chapters, the case of music and advert isement was treated and good performances of the

ALISP-based system were showed. In this sect ion, the generic audio indexing system is

applied to speaker diarizat ion.

As showed in the previous sect ion, the most systems of speaker diarizat ion involve

the acoust ic features extract ion, the speech act ivity detect ion and the speaker segmentat ion

and clustering. A new module based on ALISP tools is proposed at the top of the chain.

In this work, we are interested in speaker diarizat ion for TV and radio shows which

include various acoust ic sources such as studio/ telephone speech, music, or speech over

music. Usually these programs tend to keep the same structure with same presenters,

reporters, sound effects, j ingles, etc. This redundancy is used in order to improve the

performance of the speaker diarizat ion system.

The main idea of our system is to compare the show to be segmented with the same

show broadcasted before in order to find the common audio parts, represented by speech

sentences, silence, noise, j ingles, music and advert isements. This operat ion is performed via

audio fingerprint ing which involves the extract ion of the ALISP symbols, which const itutes

a compact audio fingerprint , for each audio document stored in a reference database. An

unlabeled test audio excerpt is ident ified by comparing its ALISP fingerprint with those

of the reference database using our approximate matching of ALISP units. Then, these

common segments are labeled according to their nature and the output pre-labeled signal is

processed with a speech act ivity detect ion, GLR-BIC speaker segmentat ion, BIC clustering,

Viterbi refinement and Normalized Cross Likelihood Rat io (NCLR) clustering.

This sect ion is organized as follows. In the next part , the general architecture of the
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proposed ALISP-based speaker diarizat ion system is presented. Then each module of the

proposed system is described individually.

8.3.1 Syst em Arch it ect u re

The general architecture of the proposed system is illust rated in figure 8.4. The

system is composed of the following steps:

1. ALISP-based audio sequencing and ident ificat ion.

2. Voice act ivity detect ion.

3. GLR-BIC segmentat ion.

4. BIC clustering.

5. Viterbi refinement .

6. Normalized Cross Likelihood Rat io clustering.

Theprinciplemodule in this architecture is ALISP-based audio sequencing and ident i-

ficat ion. The main contribut ion of this module is to help the diarizat ion process by labeling

the audio parts that were broadcasted before.

8.3.2 ALISP -based Aud io Sequencing and Ident ificat ion

The proposed system uses the transcript ions provided by ALISP tools to search for

recurrent segments in TV and radio shows. As a reminder, the generic audio indexing

system consists of three main modules: ALISP unit acquisit ion and modeling, ALISP t ran-

script ion and approximate matching to find recurrent segments. The set of ALISP models

is automat ically acquired through parameterizat ion, spectral stability segmentat ion, vector

quant izat ion, and Hidden Markov Modeling. This set of HMM ALISP models is used to

t ransform a new incoming audio data into a sequence of ALISP symbols. And the ap-

proximate st ring matching algorithm is based on the Basic Local Alignment Search Tool

(BLAST) [3] (Altschul et al., 1990), widely used in bioinformat ics.



8.3. T H E A L I SP-B A SED SPEA K ER D I A RI ZAT I ON SY ST EM 157

Audio File

ALISP Audio 
Identification

Voice Activity
Detection 

GLR-BIC
Segmentation 

BIC

Clustering 

Viterbi
Refinement 

NCLR
Clustering 

Segmented
File

Figure 8.4: General architecture of the proposed ALISP-based system.
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spk 1 spk 2 nonspeech unknownunknown

Figure 8.5: Example of an output file provided by ALISP-based audio sequencing and
ident ificat ion.

spk 1 spk 2 nonspeech spsp nosp

Figure 8.6: Example of an output file provided by the voice act ivity detect ion system.

This audio indexing system is applied on speaker diarizat ion as follows. First , a ref-

erence database is built from audio parts provided from previously annotated emissions.

These parts represent speech sentence excerpts, silence, noise, j ingles, music and advert ise-

ments. Then, the ALISP module for t ranscript ions of reference segments are computed

using ALISP HMM models and compared to the transcript ions of the TV and radio shows

stream using our approximate matching module.

This module could be seen as a pre-processing step that helps the diarizat ion process.

In fact , instead of t reat ing an unlabeled data, the proposed system is supposed to ident ify

all the audio segments that were st reamed before. This will provide a first segmentat ion of

the audio signal with three types of labels:

• ” spk” label: represents a sentence or an excerpt of sentences of a part icular speaker

that was seen before. These segments are, generally, relat ive to TV and radio presen-

ters, reporters, polit icians, art ists, etc.

• ” non-speech” label: represents the non-speech audio segments which could be: noise,

silence, advert isement , j ingles and music.

• ” unknown” label: represents the signal parts that are not recognized by the ALISP

module. Thesepartswill be t reated by thespeech detect ion moduleand theGLR-BIC

segmentat ion modules.



8.3. T H E A L I SP-B A SED SPEA K ER D I A RI ZAT I ON SY ST EM 159

An example of the output file provided by the ALISP module is shown in figure 8.5.

The ” spk” label is related to a speech sentence detected in the reference database, while

the ” unknown” label is relat ive to the signal parts which are not detected in the reference

database.

It is important to note that ALISP tools are speaker-dependent . The ALISP t ran-

script ions of ident ical sentences spoken by different speakers are very different , while the

ALISP transcript ions of ident ical sentences spoken by the same speaker are very similar.

Three main cont ribut ions of the ALISP-based audio sequencing and ident ificat ion

module are proposed to improve the performances of the speaker diarizat ion system:

• Discarding the non-speech segments limits the errors caused by the false alarms and

missed speech detect ion.

• Assigning an audio segment to a single speaker improves the purificat ion of their

models in the clustering step.

• When dealing with a long audio file (such as one day of a radio broadcast), the

processing t ime is reduced using the approximate matching process.

8.3.3 Sp eech Act ivit y D et ect ion

The next step in the system is the voice act ivity detect ion. The goal is to remove the

non-speech segments whose durat ion is above a predefined threshold. Our voice act ivity

detect ion system operates only on the port ions of the signal labeled as ” unknown” by the

ALISP recognizer. It relies on a two-class detector, with Gaussian Mixture Model t rained

on speech and non-speech data. The parameterizat ion is done with MFCCs, calculated on

20 ms windows, with a 10 ms shift . For each frame, a cepstral vector of dimension 12 is

computed and appended with first and second order deltas and the Zero Cross Rat io. A

minimum durat ion of 0.5 s is defined for speech and non-speech segments. In fact each class

is modeled as a concatenat ion of 50 one-state HMM models.

An exampleof theoutput fileprovided by thevoiceact ivity detect ion module isshown

in figure 8.6. The ” nosp” label is relat ive to a non-speech segment , while the ” sp” is relat ive
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to speech segment .

8.3.4 G LR -B IC Segm ent at ion

The GLR-BIC segmentat ion is a two-step algorithm that consists of a first pass to

determine the speaker change point candidates using the GLR criteria and a second pass

based on a BIC distance to validate or discard these candidates.

This step is only performed on signal parts that were labeled as ” sp” by the voice

act ivity detect ion module. On the other hand, the segments that were ident ified by the

ALISP module and labeled as ” spk” are not processed by this module.

The GLR-BIC segmentat ion consists of two main steps:

1. GLR segmentat ion: Theaudio signal is split into equal size sliding windows. Then the

speaker change candidates are determined for each window. These candidates corre-

spond to the local maxima of the GLR measure. Therefore there is no need to define

a threshold as for the convent ional GLR segmentat ion described in sect ion 8.2.3.1.

2. BIC segmentat ion: In the previous step, all the local maxima of GLR criterion are

considered as speaker change points, which leads to many false alarms. The BIC

measure is used to validate the real change points and to discard the false alarms. For

each candidate, the ∆ B I C distance is computed between the Gaussian dist ribut ions

of the two adjacent windows. If the maximum of the ∆ B I C is posit ive the change

point is confirmed, otherwise the two segments are merged.

8.3.5 B IC C lust er ing

Whereas the BIC segmentat ion operates on neighboring segments in order to detect

whether or not they correspond to the same speaker, BIC clustering is performed to group

together all the segments that belong to the same speaker. As for the segmentat ion process,

at each iterat ion the closest clusters are merged unt il ∆ B I C > 0. At this point , all the

labeled segments as ” spk” whether by the ALISP module or by the GLR-BIC segmentat ion

module are processed by the BIC clustering.
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8.3.6 V it erb i R efinem ent

The cluster boundaries produced by the BIC clustering are not perfect . Thus, a

Viterbi decoding is performed to adjust these boundaries. Each cluster is modeled by

a single-state HMM with an 8-component GMM trained using the EM algorithm. The

speaker change points are represented by the transit ions between HMMs.

8.3.7 N C LR C lust er ing

As was ment ioned in sect ion 8.2.4.3, a final step of clustering is performed in order to

remove the background environment effects. The MFCCs features are normalized using the

warping technique. Then, due to thegreat length of clusters, a robust speaker model ismod-

eled using an universal background model. Unlike the system described in sect ion 8.2.4.3,

a normalized version of the CLR metric is used [74] (Le, 2007). This metric demonstrates

a bet ter performance than its original version. The Normalized Cross Likelihood Rat io

(NCLR) is given by:

N CLR(C1�C2) =
1

N1
log(

L (C1�M 1)
L (C1�M 2)

) ×
1

N2
log(

L (C2�M 2)
L (C2�M 1)

) (8.15)

Where N1 and N2 are the sizes of the clusters C1 and C2. M 1 and M 2 are respect ively

the GMM adapted models of the clusters C1 and C2 and L(.) is the likelihood funct ion.

The clustering stops when N CLR(C1�C2) gets higher than a predefined threshold. At the

end of this step, the final diarizat ion of the audio file is provided. The next sect ion deals

with the experimental results obtained for the proposed system.

8.4 Exp er im ent s and R esu lt s

In this sect ion, the contribut ions of the ALISP-based module to speaker diarizat ion

are evaluated. Two main evaluat ions are carried out . The first one deals with the ETAPE

(Evaluat ions en Traitement Automat ique de la ParolE) evaluat ion campaign 2011 in order

to measure our cont ribut ions within a publicly available framework. While in the second
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evaluat ion, the ALISP-based speaker diarizat ion system is combined with a speaker verifi-

cat ion system to measure the speech t ime of polit icians in radio st reams.

8.4.1 ETAP E Evaluat ion C am paign

ETAPE is an evaluat ion campaigns for automat ic speech processing [55] (Gravier el

al., 2012). It was held in spring 2012 and considered four tasks:

1. Mult iple speaker detect ion: It is the task of overlapping speech detect ion, where the

goal is to provide for each audio file the start and end t imes of segments containing

speech from mult iple speech

2. Speaker turn segmentat ion: It is the speaker diarizat ion task. Two subtasks are

considered, depending on whether the diarizat ion process is performed on each audio

file independent ly or on all audio files together.

3. Lexical t ranscript ion: It is related to the automat ic speech recognit ion. The system

should provide a start and end t imes for each word associated with its speaker.

4. Named ent ity detect ion: It consists in detect ing all direct ment ions of named ent it ies

and in categorizing the ent ity type.

This works addresses the speaker diarizat ion task where each audio file is processed

independent ly. The ETAPE evaluat ion campaign targets the TV and radio shows with

various level of spontaneous speech and mult iple speaker speech. Unlike the ESTER eval-

uat ion campaigns [48] (Galliano et al., 2005) and [49] (Galliano et al., 2009) the ETAPE

evaluat ion set did not focus in a part icular type of show.

8.4.1.1 Corpus

The ETAPE 2011 evaluat ion campaign provides the part icipants with 13.5 hours of

radio data and 29 hours of TV data. This corpus was selected to contain spontaneous

speech and a reasonable proport ion of mult iple speaker data. A detailed descript ion of this

corpus is given in sect ion 4.3
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8.4.1.2 Evaluat ion M easur e

In order to evaluate the speaker diarizat ion system, theDiarizat ion Error Rate (DER)

is used. The DER is the sum of three errors: missed detect ion rate, false alarm rate and

the speaker error rate:

• The missed detect ion rate is expressed as:

M D =
P S

s= 1 dur (s) × (NRef (s) − NSys(s))
P S

s= 1 dur (s) × NRef (s)
(8.16)

• The false alarm rate is given by:

F A =
P S

s= 1 dur (s) × (NSys(s) − NRef (s))
P S

s= 1 dur (s) × NRef (s)
(8.17)

• The speaker error rate is computed as follows:

SER =
P S

s= 1 dur (s) × (min(NRef (s)�NSys(s)) − NCor r ect (s))
P S

s= 1 dur (s) × NRef (s)
(8.18)

where S is the total number of speaker segments, dur (s) denotes the durat ion of speaker

s. NRef (s) and NSys(s) indicate the number of speakers present in segment s provided,

respect ively, by the ground truth and the diarizat ion system. NCor r ect (s) is the number of

speakers in segment s that have been correct ly matched between the ground truth and the

proposed system. The DER is obtained by a one-to-one mapping of all the labeled speakers

between the system and reference files. It could direct ly be computed as follows:

SER =
P S

s= 1 dur (s) × (max(NRef (s)�NSys(s)) − NCor r ect (s))
P S

s= 1 dur (s) × NRef (s)
(8.19)

8.4.1.3 T hreshold Set t ing

The proposed speaker diarizat ion system contains four thresholds values which need

to be fixed. These thresholds are related to the Levenshtein distance, theBIC segmentat ion,

the BIC clustering and the NCLR clustering.
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# files Avg spk Avg turn durat ion (sec) % silence % ovlp
BFMTV 1 21 10 32 2

LCP 6 7.8 2 28 4
TV8 2 9 8 22 7

EST2BC 6 12.5 5 35 3

Table 8.1: Number of audio files (# files), average number of speaker (Avg spk), average
durat ion of turns in seconds (Avg turn durat ion), percentage of silence (% silence) and the
percentage of overlapping speech (% ovlp) of the evaluat ion corpus.

As explained in sect ion 6.3, some experiences are conducted in order to fix the Leven-

shtein distance threshold in the context of audio ident ificat ion where the goal is to ident ify

advert isements and songs in radio st reams. These experiences consist of comput ing the

Levenshtein distance between ALISP transcript ions of the reference advert isements and

their broadcasted occurrences in the radios and between ALISP transcript ions of the refer-

ence advert isements and data that does not contain advert isements. This study leads to a

Levenshtein distance threshold of 0.55.

In order to fix the other three thresholds, an automat ically tuning, by t rying various

combinat ions of thresholds, is performed on the ETAPE development corpus. Each gen-

erated segmentat ion is scored against the reference segmentat ion and the thresholds that

gave the lowest DER are chosen in the evaluat ion.

8.4.1.4 R esult s

The evaluat ion dataset provided by ETAPE is composed of 9 TV shows and 6 radio

shows. Table 8.1 gives some stat ist ics about the evaluat ion corpus.

BFMTV, LCP and TV8 are relat ive to TV shows while EST2BC is relat ive to radio

shows. In addit ion, table 8.1 shows the diversity of the evaluat ion corpus which make the

task of speaker diarizat ion more complicated. In order to evaluate the contribut ions of the

ALISP-based module to the diarizat ion results, a second experience is performed without

that module.

Table 8.2 gives the DER values for the baseline system (without the ALISP module)

and the ALISP-based system.



8.4. EX PER I M EN T S A N D RESU LT S 165

Show name Baseline ALISP
BFMTV-BFMStory-175900 19.30 15.87 (-17.77%)
LCP-CaVousRegarde-235900 20.70 12.60 (-39.13%)
LCP-EntreLesLignes-192800-1 24.77 17.31 (-30.11%)
LCP-EntreLesLignes-192800-2 27.19 18.48 (-32.03%)
LCP-PilesEtFace-192800 28.42 19.76 (-30.04%)
LCP-TopQuest ions-000400 35.46 29.55 (-16.66%)
LCP-TopQuest ions-213800 15.87 2.44 (-84.62%)
TV8-LaPlaceDuVillage-201300 37.86 22.27 (-41.22%)
TV8-LaPlaceDuVillage-172800 35.82 20.40 (-43.04%)
EST2BC-FRE-FR-1000 14.55 13.75 (-5.49%)
EST2BC-FRE-FR-1750 39.41 22.93 (-41.81%)
EST2BC-FRE-FR-2152-1 41.83 27.34 (-34.64%)
EST2BC-FRE-FR-2152-2 29.91 23.93 (-19.99%)
EST2BC-FRE-FR-0910 8.73 8.26 (-5.38%)
EST2BC-FRE-FR-2004 21.13 15.48 (-26.73%)
ETA PE-2011 (whole data) 24.73 16.23 (-34.37%)

Table 8.2: Diarizat ion Error Rate for the baseline and ALISP system on the ETAPE 2011
evaluat ion set .

Note that the ALISP-based module improves the diarizat ion results for all TV and

radio shows. However, these improvements are not significant for all audio files. For ” LCP-

TopQuest ions-213800” TV show the relat ive improvement of the DER is 84.62% while for

the ” EST2BC-FRE-FR-0910” radio show it is only is 5.38%. This is essent ially related to

the st ructure of the radio or TV show, and whether there are repeat ing audio parts that

can be detected by the ALISP-based module.

The main cont ribut ion of the ALISP module is essent ially the purificat ion of the

clusters, which leads to more robust speaker models. Moreover, the ALISP method is able

to detect recurrent audio excerpts such as commercials and jingles, decreasing the missed

detect ion rate and the false alarms. Overall, the int roduct ion of the ALISP module in the

speaker diarizat ion system has relat ively decreased the DER by 34.37%, while the absolute

improvement is 8.5%.

Since the proposed system did not deal with overlapping speech, many errors have

occurred especially in TV8 shows and radio shows (EST2BC). By using the ground truth

to label the overlapping speech segments, the DER decreases from 16.23% to 12.02%.
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Part icipant DER
Our system 16.23
System 1 19.01
System 2 21.18
system 3 22.45
system 4 22.73
System 5 27.27
system 6 29.32

Table 8.3: Diarizat ion Error Rate for the all the part icipants in the ETAPE 2011 evaluat ion
campaign.

The global DER value for each submit ted system are presented in table 8.5. Seven

part icipants have submit ted results for the speaker diarizat ion task in ETAPE 2011, which

are:

• Inst itut Mine Télécom-Télécom ParisTech-Télécom SudParis (Our System)

• Centre de Recherche Informat ique de Montréal (CRIM) [56] (Gupta et al., 2008)

• Eurecom [20] (bozonnet et al., 2010)

• Laboratoire d’Informat ique de l’Universit é du Maine (LIUM) [113] (Rouvier and

Meignier, 2012)

• Laboratoire Informat ique d’Avignon (LIA) [87] (Meignier et al., 2001)

• Orange Labs [27] (Charlet et al., 2013)

• Laboratoired’Informat iquepour la Mécaniqueet lesSciencesdel’Ingénieur (LIMSI) [13] (Bar-

ras et al., 2006)

As shown in the table 8.3, the proposed ALISP-based speaker diarizat ion system has

obtained the best results in the ETAPE 2011 evaluat ion campaign among 7 part icipants.

These results at test that the exploitat ion of the common structure of the radio and TV

shows by the ALISP techniques, leads to great improvements of the speaker diarizat ion

process.
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Related to the processing t ime, the system without the ALISP-based module runs at

a speed of 10 seconds per minute on a 3.00GHz Intel Core 2 Duo 4GB RAM. When the

ALISP-based module is added, the runt ime increased to 40 seconds per minute of speech

processed.

8.4.2 Sp eech T im e M easure of P olit icians

Thetask of measuring thespeech t imeof polit icians involves two disciplinesof speaker-

based processing: speaker ident ificat ion and speaker diarizat ion. Given one day of radio

st ream, the goal is to ident ify all the polit icians and to measure the t ime of their speech.

In order to achieve this goal, first the ALISP-based speaker diarizat ion system is applied to

segment the audio data into homogenous clusters according to speaker’s ident it ies. Then,

a speaker ident ificat ion system is performed to determine whether a cluster belongs to a

polit ician.

The speaker ident ificat ion system is an UBM-GMM system [111]. The Gaussian

MixtureModel-GMM approach is used to build models from thespeaker data. An Universal

gender-dependent Background Model-UBM is t rained with the Expectat ion-Maximizat ion

algorithm. Then, each speaker model is built by adapt ing the parameters of the UBM

using the speaker’s t raining feature vectors and the Maximum A Posteriori criterion. The

similarity score is the est imat ion of the log-likelihood rat io between the target (polit ician)

and UBM model.

We use the open source speaker verificat ion system described in [103] (Petrovska-

Delacrétaz et al., 2009) and available at [40] (ElHannani et al., 2009). This system was

originally developed for speaker verificat ion and adapted for speaker ident ificat ion. In fact ,

the major difference between verificat ion and ident ificat ion lies in the decision process.

In verificat ion, the decision is accept ing or reject ing the ident ity claim of a speaker. In

ident ificat ion, the goal is to determine which registered speaker provides a given ut terance.

Thus, the same algorithms and techniques are used for speaker verificat ion and speaker

ident ificat ion.

The performances of the speaker ident ificat ion system are evaluated during the com-
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pet it ion on speaker recognit ion in mobile environment using the MOBIO database [85] (Mc-

Cool et al., 2012). Moreover, a second evaluat ion is carried out on the YACAST database

to measure the speech t ime of polit icians in radio st reams. Unlike the first evaluat ion, the

second one involves the speaker diarizat ion and ident ificat ion systems.

8.4.2.1 M OB I O Evaluat ion Campaign

Following thesamespirit as theNIST SRE, theBiometric Group at the Idiap Research

Inst itute organized the evaluat ion on text independent speaker recognit ion. It is performed

on the MOBIO database, which consists of videos of talking faces that were filmed with

mobile devices. A detailed descript ion of the MOBIO database is given in sect ion 4.4.

The proposed primary system is an UBM-GMM system. It is based on the repro-

ducible BioSecure Speaker reference system described in [103] (Pet rovska-Delacrétaz et al.,

2009) and available at [40] (ElHannani et al., 2009). The main parameters of the proposed

system are: 32 MFCC coeffi cients + deltas + delta energy, energy based voice act ivity de-

tector, feature warping normalizat ion and 512 Gaussians. The part icularity of the system

is to join the MOBIO training dataset and the Voxforge 1 dataset to t rain the UBM model.

Two addit ional systems were also submit ted in this evaluat ion. The secondary sys-

tem has the same configurat ion as the primary one, except that the UMB-GMM training

was performed only MOBIO training data. Its performances are slight ly worse than the

primary system. For the third submission, the sampling frequency as fixed to 8 Khz and

the NIST 2003-04 along with MOBIO t raining data are used to build the UBM model. This

configurat ion changes do not seem to degrade drast ically the performances of the system.

In total, 12 inst itut ions part icipated in the speaker verificat ion evaluat ion, and pro-

vided 21 valid submissions (12 primary and 9 secondary submissions). These inst itut ions

are illust rated in table 8.5.

In order to evaluate theperformances of the speaker verificat ion systems, two measure

are used: Equal Error Rate (ERR) and Half Total Error Rate (HTER).

Table 8.5 shows the EER on the development set and the HTER on the evaluat ion

1http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Audio/Main/16kHz_16bit
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Inst itut ion System Ident ifier
Alpineon Ltd., Slovenia Alpineon
ATVS Biometric Recognit ion Group ATVS
Universidad Aut ónoma de Madrid, Spain
Centre de Développement des Technologies Avanćees, Algeria CDTA
CpqD, Brazil CPqD
GIAPSI, Universidad Polit écnica de Madrid, Spain GIAPSI
GTTS - University of Basque Country (UPV/ EHU), Spain EHU
Idiap Research Inst itute, Switzerland IDIAP
L2F/ INESC-ID, Portugual L2F
Joint submission of L2F/ INESC-ID and UPV/ EHU L2F-EHU
I nst i t ut M ines-T él écom M ines-Telecom
(T él écom Par isTech-T él écom SudPar is) , Fr ance
Phonexia s.r.o. , Czech Republic Phonexia
Radboud University Nijmegen, The Netherlands RUN

Table 8.4: The inst itut ions and the ident ifiers of their submit ted primary system (by al-
phabet ic order).

set for both genders.

On the evaluat ion set , our proposed system obtains the best simple system perfor-

mance on Female. Obviously, the use of addit ional suitable data (Voxforge database) for

t raining the UBM is helpful. Addit ional experiment that combines NIST SRE data (03 and

04) and MOBIO data are carried out to t rain the UBM model. The EER on the DEV set

are 14.80% for Female and 13.62% for Male, respect ively.

8.4.2.2 YA CA ST Evaluat ion

As previously ment ioned, the measuring of speech t ime of polit icians is divided into

two subtasks: speaker diarizat ion and speaker ident ificat ion. YACAST database contains

the record of 26 days of radio st reams from three different French radio: France Culture

France Info France Inter. This database contains 283 polit icians with a total durat ion of

42h46min. To ensure a good training of models, a polit ician is considered as a target if he

spoke more than 10 minutes which leads to a set of 72 target speakers.

In order to ensure an object ive evaluat ion of the speaker diarizat ion and ident ificat ion

systems, the YACAST database was divided into 5 subsets:
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System Female Male
DEV EVAL DEV EVAL

Alpineon* 7.982 10.678 5.040 7.076
ATVS 16.836 17.858 14.881 15.429
CPqD* 14.348 15.987 11.824 10.214
CDTA 19.471 22.640 12.738 19.404
GIAPSI 11.590 12.813 9.683 8.865
EHU 17.937 19.511 11.310 10.058
IDIAP 12.011 14.269 9.960 10.032
L2F* 13.484 22.140 10.599 11.129
L2F-EHU* 11.005 17.266 7.889 8.191
Our System 11.429 11.633 10.198 9.109
Phonexia 8.364 14.181 9.601 10.779
RUN 25.405 23.112 24.643 22.524

Table 8.5: Equal error rate (EER %) on the development (DEV) set and half total error
rate (HTER %) on the MOBIO evaluat ion (EVAL) set .

• Tr aining corpus: It isused to t rain theUBM model used for both speaker diarizat ion

and speaker ident ificat ion. It contains speech segments of non-target speakers. The

total durat ion of the training set is 7h28min. The number of speakers in this corpus

is 182.

• A dapt at ion corpus: It serves to adapt the UBM model to the target speakers. This

corpus contains 1min30s speech for each of the 72 target speaker.

• Evaluat ion corpus: Two days of each radio are chosen to evaluate the systems.

These two days contain the maximum t ime of the target speakers.

• D evelopment corpus I : It is used to set the thresholds of different metrics of the

speaker diarizat ion system. For this corpus, two days of each radio are selected.

• D evelopment corpus I I : It is used to set the threshold of the speaker ident ificat ion

system. The average length of speech for each target speaker in this corpus is 4min.

The est imat ion of the speech t ime of polit icians is evaluated on two levels. The first

level is relat ive to speaker diarizat ion and uses the DER as described in the sect ion 8.4.1.2.

The second level is related to the speaker ident ificat ion. The performances of the speaker

ident ificat ion system is evaluated as the sum of three errors:



8.4. EX PER I M EN T S A N D RESU LT S 171

Radio Day DER
France-Inter-30-06-2010 18.98
France-Inter-21-04-2010 16.03
France-Info-29-06-2010 18.33
France-Info-21-04-2010 18.12

France-Culture-27-06-2010 13.11
France-Culture-20-04-2010 16.32

All data 17.01

Table 8.6: Diarizat ion Error Rate for each day of the YACAST evaluat ion corpus.

• Subst itut ion error (ESub): I t occurs when the system assigns a speech segment to a

target speaker X when it is pronounced by a different target speaker Y.

• False alarm (EF A ): I t is the error due to the detect ion of a target speaker segment

when it really belongs to the non-target speaker set .

• False reject ion (EF R ): I t is the error due to the detect ion of a nontarget speaker

segment when it really belongs to the target speaker set .

Table 8.6 shows the DER values for each day of the radio st ream in the evaluat ion

set . It indicates an overall DER of 17.01%, close to that obtained in ETAPE evaluat ion

campaign, which proves the robustness of the proposed system. As for the audio ident ifica-

t ion evaluat ion described in sect ion 6.4.2, many annotat ion errors are found in the ground

t ruth. These errors are related to segments’ boundaries that were not precise and to some

confusions in the labels (speaker names) of speech segments.

Table 8.7 reports the performances of the speaker ident ificat ion system in terms of

subst itut ion errors, false alarms and false reject ions. This table reports an overall error rate

of 22.55%. These errors are essent ially due to the errors caused by the diarizat ion process.

In fact , by using a perfect diarizat ion system (DER= 0%), the global error rate decreases

to 13.25%. Moreover, as for the speaker diarizat ion system, the errors found in the ground

t ruth have a direct impact on the performances of the speaker ident ificat ion system. In fact

these errors lead to impure speaker models, which causes some degradat ions in the results

of the speaker ident ificat ion system.
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Radio day Esub(%) EF A (%) EF R (%) Global(%)
France-Inter-30-06-2010 10.23 9.56 11.22 31.01
France-Inter-21-04-2010 6.33 9.02 10.33 25.68
France-Info-29-06-2010 2.88 2.9 6.78 12.56
France-Info-21-04-2010 13.74 7.22 6.51 27.47

France-Culture-27-06-2010 9.63 4.51 7.28 21.42
France-Culture-20-04-2010 4.99 11.11 1.08 17.18

All data (Mean) 7.97 7.38 7.2 22.55

Table 8.7: Subst itut ion error (Esub), false alarm (EF A ) and false reject ion (EF R ) for the
speaker ident ificat ion system computed on the YACAST evaluat ion corpus.

Once the speaker diarizat ion and ident ificat ion process are performed, the speech

durat ion of polit icians is measured. The rat io between the speech durat ion detected by the

proposed system and the speech durat ion extracted from the ground t ruth is 79%. This

result can be improved by correct ing the ground to purify the speaker models.

8.5 C onclusion

In this chapter, the state of the art of speaker diarizat ion is reviewed. Speaker di-

arizat ion process is generally composed of speech act ivity detect ion, speaker segmentat ion

and speaker clustering. A new module based on data-driven segmentat ion using ALISP

techniques is added in order to improve the performance of the diarizat ion process. This

module compares the show to be segmented with the same show broadcasted before in order

to find the common audio parts.

The system is evaluated during the ETAPE 2011 evaluat ion campaign and obtained

a DER of 16.23%, which is the best result among all part icipants. We also demonst rate

that by adding the ALISP module to the speaker diarizat ion system the DER decreased by

8.5%.

A second evaluat ion relat ive to the est imat ion of the speech t ime of polit icians is

performed. First , the speaker recognit ion system is evaluated during the MOBIO 2013

evaluat ion campaign an obtained a HTER of 11.633% for female and 9.109% for male

speakers. Then the speaker diarizat ion and ident ificat ion systems are evaluated using the
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YACAST database. For the speaker diarizat ion system the obtained DER value is 17.01%.

While the global error rate for the speaker ident ificat ion system is 22.55%.

In the next chapter, a different category of audio events, denoted as nonlinguist ic

vocalizat ion, will be studied. The generic audio indexing system will be applied to laughter

detect ion.
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C hapt er 9

N onlingu ist ic Vocalizat ions

D et ect ion

9.1 Int roduct ion

As pointed before, one of the cont ribut ions of this thesis is to ident ify the majority of

audio itemsthat could bepresent in a radio broadcast st reamsusing thesameaudio indexing

principles. In previous chapters, the ALISP-based audio indexing system was applied to

audio ident ificat ion and audio mot if discovery, to detect songs and advert isements in radio

st reams, and speaker diarizat ion to segment the audio data into homogeneous segments

according to speaker ident it ies. In this chapter, a different category of audio events will be

studied, which is referred as nonlinguist ic vocalizat ion.

Despite the best efforts made over past two decades in speech recognit ion systems,

detect ion of nonlinguist ic vocalizat ions such as laughter, sighs, breathing, hesitat ion sounds

is st ill a challenging task [135] (Weninger et al., 2011). Such vocalizat ions are more frequent

in radio and TV shows, meet ings or our daily conversat ional speech.

Detect ion of the presence of these vocalizat ions is useful in several disciplines. In Au-

tomat ic Speech Recognit ion the detect ion of nonlinguist ic vocalizat ions could give relevant

informat ion to decide which parts of audio data should be treated for recognit ion, thereby

improving the performance of speech recognit ion systems. Tradit ional speech recognit ion
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frameworks havenot been adequately focused on detect ing nonlinguist ic vocalizat ions under

a common and generic framework. One of the main reasons could be the complexity behind

obtaining phonet ic representat ions or a pronunciat ion dict ionaries (i.e. phonet ic lexicon)

for such vocalizat ions.

One of the most obvious nonlinguist ic sounds is laughter. Laughter is one of the

complex nonlinguist ic vocalizat ions that communicates a wide range of messages with dif-

ferent meanings [23] (Campbell et al., 2005). Moreover, it was shown in [9] (Bachorowski

et al., 2001) [126] (Trouvain, 2003), that laugher sound is a highly variable signal whose

characterist ics are not yet revealed.

In this thesis, the use of ALISP-based indexing framework is proposed to detect non-

linguist ic vocalizat ions. Given the high variability of this category of sounds both between

and within speakers, we decided to use a different approach to search for these sounds from

the one used in the previous systems. Our method first adapts ALISP models, previously

t rained on 288 hours of radio broadcast , using Maximum Likelihood Linear Regression-

MLLR [75] (Legget ter and Woodland, 1995) and Maximum A Posterior-MAP [50] (Gauvain

and Lee, 1994) techniques. The result ing adapted models can then be used to detect local

regions of nonlinguist ic vocalizat ions, using the standard Viterbi algorithm [137] (Young et

al., 1989). Experiments on a laughter-annotated audio corpus show the usefulness of the

proposed method.

This chapter is organized as follows. Sect ion 9.2 presents a literature of nonlinguist ic

vocalizat ions sound detect ion. Then, the proposed methodology to detect any type of

nonlinguist ic vocalizat ions is explained in sect ion 9.3. In Sect ion 9.4, empirical evaluat ion

of the proposed method, on an laughter-annotated corpus, is exposed.

9.2 R elat ed Work

Most of the previous efforts on automat ic laughter detect ion from audio exploit frame

level acoust ic features as parameters to t rain machine learning techniques, such as Gaussian

Mixture Models and Support Vector Machines. These systems are composed of two steps:

feature extract ion and modeling.
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9.2.1 Feat u re Ext ract ion

Two categories of feature are used to represent the laughter signal: frame-level and

ut terance-level features.

Frame-level features refer to features extracted from each frame of the audio signal,

which leads to a variable length of featurevector that dependson the length of theprocessed

audio file. The most popular feature belonging to this category is MFCC. These features are

used in [69] (Kennedy and Ellis, 2004) [73] (Laskowski and Schultz, 2008) to represent the

laughter signal. Moreover, Perceptual Linear Predict ion Coding features [62] (Hermansky,

1990) are exploited to model the spectral propert ies of laughter [127] (Truong and Van

Leeuwen, 2005) [128] (Truong and Van Leeuwen, 2007). Prosodic informat ion are also used

to discriminate between laughter and no laughter sounds. In [9] (Bachorowski et al., 2001),

it is found that themean pitch for laughter is considerably higher than in speech. Therefore,

pitch feature, associated with energy are used in many systems to locate regions of laughter

in audio files [71] (Knox and Mirghafori, 2007) [127] (Truong and Van Leeuwen, 2005).

Ut terance-level features are relat ive to global features computed on the whole ut ter-

ance, which leads to fixed length feature vectors. In addit ion to the pitch computed for

each frame, some authors propose to extract the pitch from the whole sentenceand compute

some stat ist ics such as, the standard deviat ion, the mean, or the maximum and the mini-

mum [128] (Truong and Van Leeuwen, 2007). Furthermore, it is shown in [17] (Bickley and

Hunnicut t , 1992), that the rat io between unvoiced and voiced frames is higher for laughter

than for speech. Thus, stat ist ics such as the number of unvoiced frames divided by the

number of total frames are int roduced in [129] (Truong and Van Leeuwen, 2007) to detect

laughter. Moreover, the modulat ion spectrum feature is chosen to exploit the fact that

syllable rates are greater for laughter than for speech [17] (Bickley and Hunnicut t , 1992).

In addit ion to frame-level and ut terance-level features, other parameterizat ion meth-

ods are recent ly int roduced. In [135] (Weninger et al., 2011) [117] (Schuller and Weninger,

2010), the authors show that integrat ing likelihood features derived from Nonnegat ive Ma-

t rix Factorizat ion into Bidirect ional Long Short -Term Memory Recurrent Neural Networks

provide bet ter results in terms of discriminat ing nonlinguist ic vocalizat ions from speech.
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In addit ion, phonet ic t ranscript ion of laughter could be used to extract useful features to

model the laughter sounds [131] (Urbain et al., 2011).

9.2.2 M ach ine Learn ing Techn iques

The features described in the previous sect ion are exploited as an input for the dif-

ferent machine learning techniques to model laughter and speech. Mainly, four modeling

techniques are used which are: Gaussian Mixture Model-GMM, Hidden Markov Model-

HMM, Neural Network, and Support Vector Machine-SVM.

Generat ive modeling methods such as GMM and HMM are trained on laughter and

non-laughter data as explained in [73] (Laskowski and Schultz, 2008), then they are used to

label an unknown audio files according to the likelihood score of each frame. On the other

hand, discriminat iveclassifiersarealso exploited to segment theaudio data [135] (Weninger

et al., 2011) [69] (Kennedy and Ellis, 2004).

In [128] (Truong and Van Leeuwen, 2007), the authors invest igate fusion of GMM and

SVM methods to improve the performance of the laughter detect ion system. The reason of

this fusion is to exploit the st rength of each approach. The fusion is performed on the score

level by summing and weight ing the output score obtained from each classifier.

Recent works [101] (Petridis and Pant ic, 2008) [116] (Scherer et al., 2009) [110] (Reud-

erink et al., 2008), exploit visual informat ion to detect laughter in videos. These methods

are used to build a mult imodal system to locate nonlinguist ic vocalizat ions within audiovi-

sual data.

In this sect ion, nonlinguist ic vocalizat ions detect ion system were described. These

systemsaregenerally based on machine learning techniques using frame-level and ut terance-

level features. However, segmental approaches that capture higher-level informat ion have

not been adequately focused due to the nonlinguist ic nature of laughter.

9.3 ALISP -based Laught er Det ect ion Syst em

This sect ion describes our generic framework to detect nonlinguist ic vocalizat ions

using ALISP sequencing. The main purpose behind the proposed methodology is to adapt
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Laughter
Corpus

Nonlaughter
Corpus

ALISP Sequencing

Model Adaptation
MLLR+MAP

Laughter Specific Model Nonlaughter Specific Model

Figure 9.1: Workflow of the proposed methodology for ALISP-based acoust ic model adap-
tat ion to detect nonlinguist ic vocalizat ions (’Laughter’ is used as an example for a specific
set of nonlinguist ic vocalizat ions).

ALISP HMMsin order to facilitateViterbi decoding algorithm to detect similar regions from

audio. The proposed framework is illust rated in figure 9.1, which shows the workflow of

the proposed methodology for the specific example of detect ing laughter vocalizat ions from

audio. Laughter vocalizat ionsareused asadaptat ion data to model laughter specific HMMs,

while non-laughter audio (i.e. audio excluding laughter vocalizat ions) is used for get t ing

non-laughter specific HMMs. Finally, a combined set of HMMs are used to discriminate

laughter from audio with the help of Viterbi decoding algorithm.

9.3.1 ALISP Segm ent at ion and M odel Adap t at ion

As pointed out before, the acquired ALISP models can be used for pseudo-phonet ic

sequencing. In the current step, ALISP models are adapted to detect local regions of nonlin-

guist ic vocalizat ions by providing some supervised adaptat ion data. First ly, ALISP models

segment the adaptat ion data and acquire segment labels as shown in figure 9.1. Next , using

the segment labels and adaptat ion data, MLLR adaptat ion approach is applied to est imate

a set of linear t ransformat ions for the mean and variance parameters for reducing mismatch
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between the init ial ALISP models and the adaptat ion set . Finally, the model is further

adapted using MAP approach considering MLLR adapted model as a prior knowledge.

Therefore, adaptat ion of ALISP models uses MLLR followed by MAP approaches.

We propose to adapt ALISP models for specific nonlinguist ic vocalizat ions that need

to be detected as well as for the remaining data excluding the vocalizat ions. In this way, the

models are expected to deviate from each other in discriminat ing nonlinguist ic vocalizat ions

from speech. Figure 9.1 considers laughter as one of the nonlinguist ic vocalizat ions. As

shown in the figure, the adaptat ion is performed on the annotated laughter vocalizat ions

as well as on the non-laughter part of audio corpora excluding laughter vocalizat ions.

9.3.2 V it erb i D ecod ing and Symb olic-level Sm oot h ing

The Viterbi algorithm, a well-established technique for decoding an HMM sequence

of states, is used in order to t ransform an observed sequence of speech features into a st ring

of recognized ALISP units. In this work, a combined set of adapted ALISP models are used

to discriminate nonlinguist ic vocalizat ions from speech. Therefore, the labels of ALISP

sequences that are generated from the Viterbi decoding are expected to follow a naming

convent ion in order to support symbolic level post processing.

The other main advantage of ALISP HMM models is the possibility to operate on the

level of symbols and sequences. The out liers in the Viterbi decoded sequence can be post-

processed using contextual label informat ion. This method proposes a simple vot ing scheme

that uses a sliding window on the ALISP sequence to eliminate out liers in Viterbi-predicted

sequence automat ically. The sliding window counts ‘yes/ no’ votes depending on whether or

not a symbol belongs to target vocalizat ion. The window length is always expected to be

an odd number and the result of majority votes decides if the middle segment is a part of

nonlinguist ic vocalizat ion.

9.4 Exp er im ent s and R esu lt s

In this sect ion, the experimental evaluat ion of the proposed method is compared

to global acoust ic models in discriminat ing laughter from speech. First ly, the laughter-
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annotated experimental corpus is described. Secondly, global HMMs (i.e. laughter versus

non-laughter models) are modeled and ALISP HMM models are adapted, as described in

sect ion 9.3.1, on laughter and non-laughter t raining datasets. In addit ion, a combined set of

laughter and non-laughter ALISP HMM models are used together to segment the test data

set using the Viterbi algorithm. Consequent ly, the symbolic-level smoothing is applied to

eliminate out liers from the predicted ALISP sequences. Finally, the results of our method

are analyzed.

9.4.1 Exp er im ent a l C orpus

The proposed laughter detect ion system requires supervised training material for non-

linguist ic vocalizat ions that has manual annotat ion. A combined audio corpus is used, it

contains laughter annotat ionsfrom threepublicly availablesourcesSEMAINE-DB [86] (McLe-

own et al., 2012), AVLaughterCycle [130] (Urbain et al., 2010), and Mahnob laughter

databases [100] (Petridis et al., 2013). More details about these database are given in

sect ion 4.5. The corpus is an appropriate mix of hilarious and conversat ional laughter vo-

calizat ions. The data is uniformly divided into approximately 80% for t raining and 20% for

test ing. Table 9.1 shows the size of laughter and non-laughter audio (in seconds) used for

t raining and test ing.

9.4.2 Laught er M odeling

In order to detect laughter vocalizat ions from speech, we have trained global acoust ic

models such as GMMs, serial HMMs and ergodic HMMs with different HMM topologies,

as shown in figure 9.2. All of the above global acoust ic models include an addit ional silence

Laughter [sec] non-laughter [sec]
Training 3943 4957
Test set 853 1206
Total 4796 6163

Table9.1: Training and test data setsused to t rain thespecific HMM modelsand to evaluate
the ALISP-based system.



9.4. EX PER I M EN T S A N D RESU LT S 181

Figure 9.2: Global HMM topologies: (a) Simple GMM; (b) Serial (left -to-right ) HMM; (c)
Ergodic (fully-connected) HMM.

model.

In this work, the unlabeled audio corpus is modeled by the set of 32 ALISP HMM

model (i.e. pseudo-phonet ic HMMs) along with a silence model (The same ALISP model

used on previouschapter). Thisset can beconsidered asan universal acoust ic model because

of it s t raining database includes all possible sounds like music, laughter, advert isements

etc. It can be used not only for segment ing any audio, but also for get t ing pseudo-phonet ic

(symbolic) t ranscript ion.

In order to represent ALISP segments, the segmentat ion system uses 32 ALISP sym-

bols (such as HA, HB and H4), referring each to an ALISP HMM model, in addit ion to a

silence label (Hsil). Figure 9.3 shows an example of the segmentat ion task performed by

the ALISP segmental HMMs on an unseen laughter vocalizat ion.

In the next step, we adapt the generic ALISP HMM models into:

• Laughter specific ALISP HMMs by using laughter vocalizat ions as adaptat ion data.

• Non-laughter specific ALISP HMMs considering non-laughter vocalizat ions (audio

excluding laughter vocalizat ions) as adaptat ion data.

In order to facilitate combining the two sets, laughter-specific adapted models are

renamed such that HA to LHA, H4 to LH4, and so on. On the other hand, non-laughter specific

adapted models keeps the same names such as HA, H4, HB, etc. The combined set of the

models (referred as ALISP-adapt ) are used to discriminate local regions of laughter. As
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Figure 9.3: Segmentat ion task performed on an unseen laughter vocalizat ion by: (i) generic
ALISP HMMs before model adaptat ion (top row labels that are in Red); (ii) Combined set
of specific (or adapted) ALISP HMMs after MLLR+ MAP adaptat ion (i.e. ALISP-adapt )
(bot tom row labels that are in Blue). The marked symbol with a circle is an out lier which
can be automat ically found using proposed smoothing scheme on ALISP sequences.

shown in Figure 9.3, laughter specific regions seemed to be detected by the model except

some out liers. In order to eliminate these out liers a majority vot ing scheme has been

proposed in sect ion 7.4.2. The smoothing scheme is experimented using sliding window size

3 (referred as ALISP-adapt-sm3) and 5 (referred as ALISP-adapt-sm5). According to the

scheme, for example, the out lier (H4) in figure 9.3 obtains majority ‘yes’ votes in case of

laughter detect ion if sliding window size is either 3 or 5. Such a way, we can automat ically

detect and eliminate the out liers.

9.4.3 R esu lt s

Table 9.2 shows the precision, recall and F -measures obtained from different ap-

proaches to detect laughter on test set . The F -measures is computed as follows:

F =
2(pr ecision × r appel)

pr ecision + r appel
(9.1)

Among the global acoust ic models, ergodic HMMs perform bet ter than GMMs and

serial (left -to-right ) HMMs. Ergodic HMMsshow high precision (92.8%) in locat ing laughter
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regions, whereas serial HMMs are relat ively good in recall (86.3%) rates. When compared

with adapted ALISP segmental HMMs (ALISP-adapt ), global ergodic HMMs are st ill 4.2%

bet ter in precision. However, the ALISP HMM models (ALISP-adapt ) perform bet ter in

terms of overall accuracy (F -measure) when compared to global HMMs.

Adapted ALISP HMM models provide an addit ional flexibility to find out liers with

the help of a simple majority vot ing scheme. Therefore, ALISP-adapt-sm3 and ALISP-

adapt-sm5 show improvement in terms of F -measure when compared to ALISP-adapt by

2.9% and 4.4% of respect ively. Overall, ALISP-adapt-sm5 show 94.3% precision and 93.9%

recall rates and perform relat ively bet ter than all other approaches experimented in this

work.

[%] Precision Recall F -measure
GMMs 70.8 78.6 74.5
Serial HMMs 85.7 86.3 86.0
Ergodic HMMs 92.8 84.5 88.5
ALISP-adapt 88.6 90.9 89.7
ALISP-adapt-sm3 92.4 92.7 92.6
ALISP-adapt-sm5 94.3 93.9 94.1

Table 9.2: Precision, Recall and F -measure values computed on the evaluat ion set for the
different systems of laughter detect ion.

9.5 C onclusion

In this chapter, we proposed a generic approach for detect ing nonlinguist ic vocaliza-

t ions using ALISP sequencing. In fact , this is the first t ime that a data-driven approach is

applied for the detect ion of nonlinguist ic vocalizat ions.

The proposed methodology was evaluated against global acoust ic models such as

GMMs, left -to-right HMMs and ergodic HMMs on a laughter-annotated audio corpus. The

results show that the proposed methodology yields an increase of 19.6%, 8.1% and 5.6% on

F-measure against the three methods compared respect ively.

With this work, we argue that the adaptat ion of ALISP HMM models is useful in

detect ing local regions of nonlinguist ic vocalizat ions. This method has further facilitated us



9.5. CON CLU SI ON 184

to improve the performance using symbolic-level smoothing such as majority vot ing scheme

with sliding window approach.
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C hapt er 10

C onclusions, D iscussions and

P ersp ect ives

10.1 C onclusions

In this thesis, we propose a generic audio indexing system to ret rieve and recognize

the majority of the audio items present in a radio st reams. These items are usually: music,

commercial, j ingle, speech and nonlinguist ic vocalizat ion (such as laughter, cough, sight ,...).

To his end, an audio indexing system based on data-driven ALISP technique is exploited

for radio st reams indexing and used for different fields to cover all the items that could

be present in a radio st ream. The proposed audio indexing system is composed of three

modules:

- Automated acquisit ion (with an unsupervised machine learning methods) and Hidden

Markov Modeling (HMM) of ALISP acoust ic models.

- Segmentat ion module (also referred assequencing) that t ransforms theaudio data into

a sequence of symbols (using the previously acquired ALISP Hidden Markov Models).

- Comparison and decision module, including approximate matching algorithms in-

spired from the Basic Local Alignment Search (BLAST) tool widely used in bioin-

format ics and the Levenshtein distance, to search for a sequence of ALISP symbols of
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unknown audio data in the reference database (related to different audio items).

Throughout this thesis we have shown that theproposed ALISP data-driven approach

can be used to extract high-level informat ion for audio indexing. Our major cont ribut ions

can be summarized as follows:

1. Improving the ALISP tools by int roducing a simple method to find stable segments

within the audio data. This technique, referred as spect ral stability segmentat ion, is

replacing the temporal decomposit ion used before for speech processing. The main

advantageof thismethod is itscomputat ion requirementswhich arevery low compared

to those of temporal decomposit ion.

2. Proposing an effi cient technique to ret rieve relevant informat ion from ALISP se-

quences using BLAST algorithm and Levenshtein distance. This method speeds up

the ret rieval process without affect ing the accuracy of the audio indexing process.

3. Proposing a generic audio indexing system, based on data-driven ALISP sequencing,

for radio st reams indexing. This system is applied and evaluated for different fields of

audio indexing to cover the majority of audio items that could be present in a radio

st ream:

- audio ident ificat ion: detect ion of occurrences of a specific audio content (music,

advert isement , j ingle) in a radio st ream;

- audio mot if discovery: detect ion of repeat ing objects in audio st reams. (music,

advert isement , and jingle);

- speaker diarizat ion: segmentat ion of an input audio st ream into homogenous

regions according to speaker’s ident it ies in order to answer the quest ion ” Who

spoke when?” ;

- nonlinguist ic vocalizat ion detect ion: detect ion of nonlinguist ic sounds such as

laughter, sighs, cough, or hesitat ion;

The evaluat ion of the proposed audio ident ificat ion system, in the 2010 QUAERO

evaluat ion campaign, shows the relevance of our ALISP-based fingerprint compared to the
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other systems. Moreover, it was shown that the best configurat ion of ALISP HMM models

is the one using the mult i-Gaussian configurat ion with 33 ALISP units and the spectral

stability method for the init ial segmentat ion. The choice of spectral stability segmentat ion

is mot ivated by its simplicity compared to the temporal decomposit ion.

For theaudio mot if discovery theexperimental resultsshows that theproposed system

performsaswell as thesystemsusing audio fingerprint ing to detect repeat ing objects in radio

st reams. Furthermore, our system shows its ability to detect long repeat ing objects, such

as songs and short repeat ing objects, such as advert isements, using the same configurat ion.

The ALISP-based speaker diarizat ion system was evaluated during the 2011 ETAPE

evaluat ion campaign and has obtained the best results in the ETAPE 2011 evaluat ion

campaign among 7 part icipants. Moreover, a speaker ident ificat ion system was developed

to measure the speech t ime of polit icians in radio st reams. This systems has obtained the

best simplesystem performanceon Femalegender in theMOBIO 2010 evaluat ion campaign.

Finally, for the nonlinguist ic vocalizat ion detect ion, the segmental HMMs provided

by ALISP tools outperformed the global acoust ic models (GMM, serial HMM, ergodic

HMM). Actually, the proposed system showed a 94.3% precision and 93.9% recall rates and

performed relat ively bet ter than all other approaches experimented in laughter detect ion.

10.2 D iscussions

This thesis opened the way of exploit ing high-level informat ion for audio indexing

using data-driven approaches. Nevertheless, there are st ill many points to discuss.

First , the proposed audio ident ificat ion system was not able to recognize different

versions of a song (such as live and studio versions). This problem raises the quest ion of

how we could improve the ALISP HMM models to take into account this variability and to

use the proposed framework for cover song detect ion.

Second, we showed that the proposed audio mot if discovery system performed very

well in the case of repeat ing songs and advert isements. But what about detect ing repeat ing

worlds or sentences in speech data? It was shown in our work that ALISP segmenter is

speaker-dependent . It means that , ALISP t ranscript ions of ident ical sentences spoken by
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different speakers are very different , while the ALISP transcript ion of ident ical sentences

spoken by the same speaker is very similar. This could be an interest ing point to explore

in order to t rain a new set of ALISP HMM models that are speaker-independent .

Third, our speaker diarizat ion system is based on the assumpt ion that we dispose of

an annotated previous broadcasted copy of the show to be segmented, which is not always

the case. Moreover our system is not appropriate for meet ings and other type of spoken

document that we cannot have an annotated previous copy.

Finally, we should evaluate the performances of the proposed framework to ret rieve

all the audio items simultaneously. This evaluat ion is requiring an audio corpus with a

detailed annotat ions of music, j ingle, advert isement , speaker turn, nonlinguist ic vocaliza-

t ions. However disposing of such a corpus is not obvious which make the realizat ion of this

evaluat ion very complicated.

10.3 P ersp ect ives

Many perspect ives could result from this work:

• An extension of our work to the visual context . The main idea is to t rain an au-

diovisual data driven model and exploit them to build a generic audiovisual indexing

system. To this end, a coupled data-driven HMM models will be used to characterize

the state asynchrony of the audio and visual observat ions features while their natural

correlat ion over t ime is preserved. This technique was used before for audio-visual

speech recognit ion and showed bet ter results than mult ist ream HMM [93] (Nefian et

al., 2002).

• Improving the speaker diarizat ion system by using the semant ic informat ion derived

from an automat ic speech recognit ion system. The result ing t ranscript ions will be

used to locate the current , previous or next speaker. Transcripts such as, ” bonjour et

bienvenue, R omain” and ” bienvenue à toutes et à tous, c’est Chr ist ophe Ruault s”

could be exploited to correct the output segmentat ion of the diarizat ion system.
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• A parallel processing can be done in order to speed up the processing computat ion.

The proposed audio indexing system will be integrated in a car radio engine which

require a simultaneous treatment of several radio stat ions. Moreover, MFCCs compu-

tat ion and Viterbi algorithms along with the approximate matching of ALISP units

will be studied in order to detect the part that could be parallelized and implemented

using Graphic Processor Unit (GPU) architecture.

• Exploit ing the framework used in thenonlinguist ic vocalizat ions detect ion to domest ic

sounds such as door closure, impact t ransients, machinery that could be used to pro-

vide specific voice controlled home care and communicat ion services people suffering

from chronic diseases and persons suffering from (fine) motor skills impairments1.

1http://vassist.cure.at/project_overview/
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6. H. Khemiri, D. Petrovska-Delacrétaz and G. Chollet . Une empreinte audio à base
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Khemiri, G. Chollet , D. Pet rovska-Delacrétaz, R. Blouet , K. Hachicha and S. Viateur. Soft -

ware Radio FM Broadcast Receiver for Audio Indexing Applicat ions. IEEE International

Conference on Industrial Technology (ICIT), pages 585-590, 2012.

8. B. Happi-T ietche, O. Romain, B. Denby, L. Benaroya, F. De Dieuleveult , B. Granado,

G. Wassi H. Khemiri, G. Chollet , D. Petrovska-Delacrétaz, R. Blouet , K. Hachicha and S.
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[105] J. Pinquier, J.L. Rouas, and R. André-Obrecht . A fusion study in speech/ music

classificat ion. In IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 2, pages 17–20, 2003.

[106] J. Ramı́rez, J. M. Gorriz, and J. C. Segura. Voice Activity Detection. Fundamentals

and Speech Recognition System Robustness, pages 1–22. InTech, 2007.
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Unified Data-Driven Approach for Audio

Indexing Retrieval and Recognition

Houssemeddine KHEMIRI

RESUME : La quantité de données audio disponibles, telles que les enregistrements radio, la musique,
les podcasts et les publicités est en augmentation constance. Par contre, il n’y a pas beaucoup d’outils de
classification et d’indexation, qui permettent aux utilisateurs de naviguer et retrouver des documents audio.
Dans ces systèmes, les données audio sont traitées différemment en fonction des applications. La diver-
sité de ces techniques d’indexation rend inadéquat le traitement simultané de flux audio où différents types
de contenu audio coexistent. Dans cette thèse, nous présentons nos travaux sur l’extension de l’approche
ALISP, développé initialement pour la parole, comme une méthode générique pour l’indexation et l’identifi-
cation audio. La particularité des outils ALISP est qu’aucune transcription textuelle ou annotation manuelle
est nécessaire lors de l’étape d’apprentissage. Le principe de cet outil est de transformer les données au-
dio en une séquence de symboles. Ces symboles peuvent être utilisés à des fins d’indexation. La principale
contribution de cette thèse est l’exploitation de l’approche ALISP comme une méthode générique pour l’in-
dexation audio. Ce système est composé de trois modules : acquisition et modélisation des unités ALISP
d’une manière non supervisée, transcription ALISP des données audio et comparaison des symboles ALISP
avec la technique BLAST et la distance de Levenshtein. Les évaluations du système proposé pour les dif-
férentes applications sont effectuées avec la base de données YACAST et avec d’autres corpus disponibles
publiquement pour différentes tâche de l’indexation audio.

MOTS-CLEFS : indexation audio, modélisation HMM, segmentation ALISP, apprentissage non supervi-
sée, algorithme BLAST.

ABSTRACT : The amount of available audio data, such as broadcast news archives, radio recordings,
music and songs collections, podcasts or various internet media is constantly increasing. Therefore many
audio indexing techniques are proposed in order to help users to browse audio documents. Nevertheless,
these methods are developed for a specific audio content which makes them unsuitable to simultaneously
treat audio streams where different types of audio document coexist. In this thesis we report our recent efforts
in extending the ALISP approach developed for speech as a generic method for audio indexing, retrieval and
recognition. The particularity of ALISP tools is that no textual transcriptions are needed during the learning
step. Any input speech data is transformed into a sequence of arbitrary symbols. These symbols can be used
for indexing purposes. The main contribution of this thesis is the exploitation of the ALISP approach as a
generic method for audio indexing. The proposed system consists of three steps ; an unsupervised training to
model and acquire the ALISP HMM models, ALISP segmentation of audio data using the ALISP HMM models
and a comparison of ALISP symbols using the BLAST algorithm and Levenshtein distance. The evaluations
of the proposed systems are done on the YACAST and other publicly available corpora for several tasks of
audio indexing.

KEY-WORDS : audio indexing, HMM modeling, ALISP sequencing, unsupervised training, BLAST algo-
rithm.


